POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Optimisation de tournées de service en temps réel

Auteur:
Author:

Date: 2014

Type: Mémoire ou thése / Dissertation or Thesis

Sixtine Binart

LEL . Binart, S. (2014). Optimisation de tournées de service en temps réel [These de
Reférence: doctorat, Ecole Polytechnique de Montréal]. PolyPublie.

Citation: 'https://publications.polymtl.ca/1419/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) C
PolyPublie URL: https://publications.polymtl.ca/1419/

Directeurs de
recherche: Michel Gendreau, Nicolai Christov, & Frédéric Semet
Advisors:

Programme:

P '|Mathématiques de I'ingénieur
rogram:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/1419/
https://publications.polymtl.ca/1419/

UNIVERSITE DE MONTREAL

OPTIMISATION DE TOURNEES DE SERVICE EN TEMPS REEL

SIXTINE BINART
DEPARTEMENT DE MATHEMATIQUES ET DE GENIE INDUSTRIEL
ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L’OBTENTION
DU DIPLOME DE PHILOSOPHIE DOCTOR
(MATHEMATIQUES DE L'INGENIEUR)
MARS 2014

(© Sixtine Binart, 2014.

Lille1

M 0 N T R EA L THESE ’, Sciences et Technologies

CIRRELT En vue de 'obtention du grade de

OLYTECHNIQUE e\\ Université

DOCTEUR DE L’UNIVERSITE DE LILLE 1
et de

PHILOSOPHIAE DOCTOR DE L’ECOLE
POLYTECHNIQUE DE MONTREAL

Spécialités : Automatique et Mathématiques de l'ingénieur

Présentée et soutenue le 28/03/2014 par :
Sixtine BINART

Optimisation de tournées de service en temps réel

JURY
Danicle Prof r, Université de Bologn R rteur
VIGO ofesseur, versité de Bologne apporteu
Francois Prof Uni 6 de N N)
LOUVEAUX rofesseur, Université de Namur apporteur
Dominique) _ . .
FEILLET Professeur, Ecole des Mines de Saint-Etienne Examinateur
Gilles Prof Ecole Polvtechn do Montréal E at
PESANT rofesseur, Ecole Polytechnique de Montréa xaminateur

Louis-Martin

ROUSSEAU Professeur, Ecole Polytechnique de Montréal Examinateur

Nicolal
CHRISTOV

Michel
GENDREAU

Professeur, Université de Lille 1 Directeur

Professeur, Ecole Polytechnique de Montréal Directeur

Frédéric

SEMET Professeur, Ecole Centrale de Lille Co-directeur

Pierre

DEJAX Professeur, Ecole des Mines de Nantes Membre invité

Directeurs de Thése :
Nicolai CHRISTOV et Michel GENDREAU

Unités de Recherche :
LAGIS, école doctorale EDSPI
CIRRELT, département de mathématiques et de génie industriel

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette these intitulée :

OPTIMISATION DE TOURNEES DE SERVICE EN TEMPS REEL

présentée par : BINART Sixtine

en vue de 'obtention du diplome de : Philosophise Doctor

a été dument acceptée par le jury d’examen constitué de :

. FEILLET Dominique, Ph.D, président

. GENDREAU Michel, Ph.D, membre et directeur de recherche

. CHRISTOV Nicolai, Ph.D, membre et codirecteur de recherche
. SEMET Frédéric, Ph.D, membre et codirecteur de recherche

. ROUSSEAU Louis-Martin, Ph.D, membre

. VIGO Daniele, Ph.D, membre

. LOUVEAUX Francois, Ph.D, membre

S E S22 EE

DEDICACE

v

A Vincent Thirion,

mon fiancé . ..

REMERCIEMENTS

Je tiens tout d’abord a remercier Frédéric Semet, mon co-directeur de these, pour la
confiance qu’il m’a accordée en me proposant cette these il y a trois ans, pour le soutien
qu’il a su me fournir, pour tous ses conseils qui m’ont beaucoup aidé et appris, d’'un point de
vue scientifique comme d’un point de vue méthodologie de travail et autonomie. Merci pour
toutes les discussions tres intéressantes que nous avons eu et pour son soutien financier en
fin de these. Enfin, je le remercie vivement pour les repas partagés a chacun de mes retours
de Montréal, pour sa sympathie et son aptitude a ménager mes humeurs.

Je tiens également a remercier Michel Gendreau, mon directeur de these, pour sa confiance
et pour tout ce qu’il m’a apporté, a savoir son expertise dans le domaine du stochastique,
sa connaissance étendue de la littérature, et ses conseils avisés. Il m’a également beaucoup
apporté d'un point de vue culturel, en m’accueillant bras ouverts a Montréal, et en me
donnant de bonnes adresses et de bons conseils sur place. Un grand merci de m’avoir donné
la possibilité de participer a des conférences, méme si, pour certaines, je n’y ai participé que
par procuration, a mon grand regret. Enfin, merci de m’avoir offert 'opportunité d’encadrer
des travaux dirigés a I’Ecole Polytechnique de Montréal. J’ai ainsi pu me rendre compte que
la sévérité dans la notation francaise n’avait pas lieu d’étre au Canada.

Je tiens aussi a remercier Nicolai Christov, mon directeur de these, qui m’a permis d’effec-
tuer cette these et m’a offert son soutien des le début, alors méme qu’il ne me connaissait pas.
Il m’a, entre autres, beaucoup assisté dans de nombreuses démarches administratives rendues
compliquées par ma cotutelle de these. Il a toujours répondu présent et je ’en remercie.

Je tiens également a remercier Pierre Dejax, mon deuxieme co-directeur de these, mais
qui pour des raisons administratives, n’a pu apparaitre qu’en tant que membre invité dans ce
manuscrit alors qu’il mérite largement sa place de co-directeur. En effet, ce projet provient
de lui et je n’aurais donc pas pu travailler sur ce sujet sans lui. De plus, il m’a apporté un oeil
industriel sur la problématique, m’a fourni de précieux conseils et a toujours répondu a mes
demandes de correction/relecture dans les temps impartis, méme quand les délais impartis
étaient serrés.

Un grand merci a Daniele Vigo et Francois Louveaux, mes rapporteurs, pour leur relecture
consciencieuse de mon manuscrit et leur rapports constructifs. Un grand merci également
a Louis-Martin Rousseau, examinateur, d’avoir accepté de juger mon travail et de suivre
ma soutenance de these par visioconférence (ce qui ne fut pas sans quelques difficultés).
Merci aussi a Dominique Feillet, examinateur et directeur du jury, d’avoir accepté de juger

mon travail et de présider mon jury de soutenance. Merci a tous ces membres de mon jury

vi

pour leurs questions apres ma soutenance, qui m’ont permis d’entrevoir d’autres perspectives
futures sur mon travail.

Je remercie également les équipes des deux laboratoires (LAGIS et CIRRELT) au sein
desquels j’ai pu séjourner durant ma these. Je tiens a remercier tout particulierement Serge
Bisaillon du CIRRELT pour son aide et son soutien face aux multiples problemes informa-
tiques auxquels j’ai été confrontée. Il a toujours répondu présent et m’a permis de résoudre un
nombre de probléemes incalculable. Merci a lui pour tout le temps qu’il a su me consacrer et
pour ses précieux conseils. Je tiens également a remercier Daniel Charbonneau du CIRRELT,
pour son aide dans mon apprentissage de Linux. Je suis arrivée au CIRRELT, n’ayant jamais
travaillé sous linux et jutilise a présent beaucoup plus la console de commandes grace a tout
ce qu’il m’a appris et a tous ses conseils. Un grand merci a Lucie-Nathalie Cournoyer pour
sa sympathie et son accueil, ainsi qu’a toute I’équipe du CIRRELT. Je voudrais également
remercier tout particulierement Patrick Gallais du LAGIS pour son aide lors des problemes
d’ordinateur ou de disque dur rencontrés vers la fin de ma these. Il a su se montrer d’une
grande aide, disponible et efficace et je ’en remercie. Un grand merci a Christine Yvoz et
Brigitte Foncez du LAGIS pour leur aide dans de nombreuses démarches administratives
et pour leur sympathie. Je tiens également a adresser un remerciement spécial a Bernard
Szukala pour ses blagues, son humour, sa bonne humeur et nos nombreuses discussions fort
sympathiques au laboratoire. Un grand merci a Mireille pour sa sympathie, ses gateaux, ses
dessins, son sourire et son soutien sans faille. Un grand merci enfin a toutes les personnes
du troisieme étage du batiment C pour leur sympathie et leur sourire. Enfin, j'adresse un
remerciement spécial a Thomas Bourdeaud’huy pour m’avoir supportée comme co-bureau
durant la deuxieme partie de ma these.

Mes remerciements vont aussi & ma famille et mes amis. Un grand merci & mes parents et
mes grand-parents, sans qui je n’en serai pas la aujourd’hui, qui m’ont soutenu avec affection
durant ma these et qui se sont déplacés pour assister a ma soutenance de these. Un grand
merci a mes soeurs pour leur soutien sans faille (en particulier lors du probleme avec mon
disque dur) et pour les super moments de bonheur qu’elles ont su m’offrir durant ma these.
Merci beaucoup a la famille Thirion, qui a toujours répondu présente et qui m’a soutenue en
m’offrant toute son affection ainsi que des moments de pur bonheur durant ces trois années
de these. Ils sont également venus assister a ma soutenance de theése (de Nancy et méme de
Mulhouse), pour mon plus grand bonheur. Un merci tout particulier a Solange Henry pour
sa patience d’ange a relire mon manuscrit minutieusement et pour toute son affection et pour
son soutien durant ma these. Enfin, je remercie également mes amis pour leur compréhension
face a ma faible disponibilité durant ma these et pour les bons moments passés en leur

compagnie. Je remercie également celles et ceux qui ont pu se libérer et venir assister a ma

Vil

soutenance de these.

Enfin, je tiens a adresser un remerciement tout particulier & mon fiancé, Vincent Thirion,
pour le soutien indéfectible qu’il m’a apporté tout au long de ma these. A chacun de mes
moments de doute (et ils ont été nombreux), il a répondu présent et a su trouver les mots justes
pour me redonner la motivation nécessaire. Vincent m’a également donné de précieux conseils
tout au long de cette these et a supporté toutes mes présentations blanches et relu tous mes
documents. Il a su également me supporter durant ces trois années difficiles et a su faire des
sacrifices sur certains week-ends, vacances et autres (en se montrant tres compréhensif). Plus
que tout, il m’a fait passer avant sa vie professionnelle, en quittant un CDD qui le passionnait
pour m’accompagner au Canada, en acceptant de rester au Canada avec moi alors qu’il n’avait
pas de travail la-bas (pour cause de visa) et en acceptant de prendre un poste a son retour
en France dans un tout autre domaine que celui qu’il souhaitait, en attendant la fin de ma
these. Autant dire que Vincent a fait preuve d’'une grande patience et d’'un amour sans faille.
C’est pour toutes ces raisons que je lui dédie ce manuscrit de these et le travail de ces trois

dernieres années.

viil

RESUME

Les tournées de service concernent 1’organisation de déplacement de personnels vers des
clients afin d’effectuer différentes activités techniques ou commerciales. Ces tournées peuvent
devoir répondre a des objectifs et faire face a des contraintes nombreuses et complexes. Lors
de la planification et de ’exécution de tournées de service mono-période, les entreprises sont
confrontées aux aléas des temps de service et de parcours. C’est pourquoi, dans cette these,
nous nous intéressons a une variante du probléeme de tournées de service, dans laquelle les
temps de parcours et de service sont stochastiques. Il s’agit du probleme de tournées de ser-
vice multi-dépot, incluant fenétres de temps, temps de service et de parcours stochastiques
avec priorité entre les clients (distinction clients obligatoires / clients optionnels). Afin de
résoudre cette problématique, nous proposons trois méthodes différentes. Dans la premiere
méthode, nous construisons d’abord des routes contenant uniquement des clients obligatoires
puis nous procédons a l'insertion des clients optionnels. La deuxieme méthode est une mé-
thode approchée basée sur la génération de colonnes consistant a générer un ensemble de
routes de bonne qualité pour chaque véhicule puis a en sélectionner une par véhicule. La
derniere méthode est un algorithme de branch and price basé sur la deuxieme méthode. Le
sous-probleme consiste a générer des routes réalisables pour un véhicule donné, tandis que le
probleme maitre permet de sélectionner des routes en s’assurant que la priorité des clients est
respectée. Apres chacune de ces méthodes, afin d’évaluer la qualité de ces solutions face aux
aléas, nous utilisons un algorithme de programmation dynamique et procédons a un ensemble
de simulations du déroulement des tournées en temps réel. Nous avons testé ces méthodes

sur des problemes dont les données sont issues du milieu industriel.

Mots-clés : Tournées de véhicules, multi-dépot, fenétres de temps, temps de service sto-

chastiques, temps de parcours stochastiques, priorité entre les clients

X

ABSTRACT

The field service routing problem consists in assigning the visits of technicians to clients
in order to satisfy their requests for service activities such as maintenance. When planning
service routes, companies have to face hazardous travel and service times. Therefore, in this
thesis, we deal with a variant of the single-period field service routing problem in which travel
and service times are stochastic. It is the field service routing problem with multiple depots,
time windows, stochastic travel and service times and priority within customers (distinguish-
ing mandatory and optional customers). To solve this problem, we propose three different
methods. In the first one, we first build routes containing only mandatory customers and
then, we insert optional customers in these routes. The second one is a heuristic method
based on column generation consisting in generating a set of valuable routes for each vehicle
and then in selecting one route per vehicle. The last method is a branch and price algorithm,
based on the second method, in which the subproblem consists in finding feasible routes
for a given vehicle, whereas the master problem consists in selecting routes while ensuring
that customer’s priority is respected. After each of these methods, in order to evaluate the
quality of these solutions regarding stochasticity, we use a dynamic programming algorithm
and we proceed to a set of simulations of the real-time execution of the service activities over

the period. All our experimentations have been made on problems coming from realistic data.

Keywords : Vehicle routing, multi-depot, time windows, stochastic service times, stochas-

tic travel times, priority within customers

TABLE DES MATIERES

DEDICACE] . . s v
REMERCIEMENTY v
R MEL . . s, viil
WBSTRACT ix
MABLE DES MATIERES oo o <
[LISTE DES TABLEAUX i
LISTEDES FIGURES -
CHAPITREIL Introduction o oo |
CHAPITRE 2 __Le probleme de tournées de service avec temps de parcours et de service
stochastiques L 3
E; Description de 1o problématiqnd « -« « « oo 3
Hvpotheésed o . 5)
%M 5
= PSR 5
CHAPITREI3 Etatdelartl 7
|3 1 Variantes similaires a notre nrcbléme] 7
3.1.1 Priorité entre les clients 7
3.1.2 Stochasticitd 8
B2 Méthodes de résolutiono 10

x1

4.3 Hypothesed 24
4.4 Algorithme 1 : preuve sur un seqmeml 25
4.4.1 Client destination d 26
“M.4.2 Client optionnel vy (étape k= N) 26
443 Client optionnel vy o (ftape k= N — 1§ 26
4.4.4 Induction sur les clients optionnels 35
|£L5_ngrithme 2 : preuve sur toute layoutd 41
42

42

CHAPITRE |5 _Heuristique hasée sur la priorité des clients 51

|51

Etape de planificationl 51

5.1.1 Phase [: Etablissement du squelettd 52
M&Mﬂmﬁ&sﬂmﬁs&pﬁmﬂd 53
eXGCULION e e 64

b3 Expérimentationl 67

%% 67
H.3.2 Réglage des p etred. . . L 67

5.3.3 Résultats de 'étape de nla,niﬁ(’ationl 76
[5.3.4 Résultats de I'étape d’exécutionl 79

M@.&uﬁaﬂm@ﬁx@b&.&mﬁa&mﬂt&m&l 81

mmﬂd.uijm 82
CHAPITRE 6 Heuristique bww 84

m FOULES . o v v v 84
6.1.1 FEtat de 'art des méthodes de résolution de ’ESPPRd 86
6.1.2 Méthode de résolution de 'ESPPRC retenud 87

6.1.3 Algorithme de programmation dynamique bidirectionnelle bornée de
Salani . . . 88

6.1.4 Algorithme de orogmmmmmd 90

6.1.5 Variantes proposées 92

6.1.6 Sélection desroutes 96

|62

Expérimentation 97

X1l

CHAPITRE [T ﬂgw% 112
7.1 Principe des algorithmes de branch and pried 112

s

(7.2 Formulationl 114
7.2.1 _Probléme maitrd 115
7.2.2 Sous-probléme pour le véhicule A 116

xiil

LISTE DES TABLEAUX

5.1 Réglage de L4, (taille maximale des segments pour les reachability
CUts) . . . 69
5.2 Réglage de Syq. (taille maximale des inégalités d’élimination de sous-
ensembles) . .. oL 70
5.3 Impact de la variante et du parametre F' sur les résultats obtenud . . . 71
0.5 Etape de planification : Temps de caleul moyens (en secondes) 76

Comparaison du Branch and cut et du Branch and price sur les ins-

tances du Team Orienteering Problem 78

5.9 Valeurs movennes apres insertion des clients optionnels en 2 temps et
simulation sur des instances a 30 clients 79
5.10 Valeurs movennes apres insertion des clients optionnels en 2 temps et
simulation sur des instances a 40 clients 79
5.11 Valeurs movennes apres insertion des clients optionnels avec estimés
pessimistes et simulation sur des instances a 30 clients 80
5.12 Valeurs movennes apres insertion des clients optionnels avec estimés
pessimistes et simulation sur des instances a 40 clients 80
5.13 Valeurs moyennes apres insertion des clients optionnels avec relaxation
lagrangienne et simulation sur des instances a 50 clients 81
6.1 Comparaison sur les instances de tvpe OPTW a 50 Clientf_l 99
6.2 Comparaison sur les instances de type OPTW a 100 ('lien’rq 100
6.3 Comparaison sur les instances de type OPTW a 100 clients (fenétres
de temps larges) 101
6.4 Comparaison sur les instances de Vansteenwegen et al. EH 103
6.5 [nfluence du profit des clients obligatoires, variante (UD, DI, NV) . . . 105
6.6 Influence du profit des clients obligatoires, variante (BD, DI, NV} . . . 105
6.7 Résultats avant/apres simulation pour la variante (BD, DI, NV) . . . 106
6.8 Résultats avant/apres si i lante (UD, DI, NVY) . . .107
6.9 Comparaison des 2 méthodes avant simulation 108
6.10 Comparaison des 2 méthodes apres simulation, stratégie W BI 109
6.11 Comparaison des 2 méthodes apres simulation, stratégie OS 110

X1v

7.1 Comparaison des méthodes de résolution de 'ESPPRC 126
(7.2 Comparaison des stratégies d’identification pour le branchemen‘rl L. 127
7.3 Résultats avant/apres simulation pour 1'a

7.4 Comparaison de méthodes avant simulati

(7.5 Branch and price versus heuristique basée sur la génération de (‘olonnesl 130
7.6 Comparaison des 3 méthodes apres simulation, stratégie W BI 131
7.7 Comparaison des 3 méthodes apres simulation, stratégie O 131

XV

LISTE DES FIGURES

18
3.2 19
4.1 22
4.2 Etape k£ de la programmation dynamiqud 23
4.3 Contre-exemple graphiqud 47
5.1 [nsertion des clients optionnels avec estimés optimisted 56
0.2 Insertion des clients optionnels avec estimés pessimistes puis ontimisfesl 57
5.3 Influence du parametre 3 sur la convergence de la méthode du sous-
oradient L 74
5.4 Apres établissement du squelettd 81
5.5 Apres insertion des clients onti(m:lsl 81
5.6 Apres réparation de la solutionl 82
5.7 Apres W 82
‘ ¢ i IQUE .« 82
7.1 Schéma de la méthode de branch and price (Tricoire @ﬂ 113

CHAPITRE 1

Introduction

Aujourd’hui, avec le développement du secteur tertiaire, nombreuses sont les entreprises
confrontées a la planification de tournées de service. Cette activité consiste a organiser, sur
une ou plusieurs périodes de temps, les déplacements de personnels chez des clients (industriels
ou particuliers), pour effectuer des opérations techniques ou commerciales. Aussi, dans un
contexte de compétitivité croissante, elles doivent faire face a une clientele des plus exigeantes
et cherchent a améliorer le niveau de service. Elles sont donc souvent amenées a respecter des
heures de rendez-vous (ou des plages horaires) et doivent gérer une notion de priorité entre les
clients (dépendant, par exemple, de la fidélité du client, de 'importance de la demande...). De
plus, ces entreprises doivent aussi prendre en compte les variations des temps de service (durée
effective du service chez les clients) et de parcours (du fait des aléas dans les transports). Si
cette nécessité est une réalité, peu nombreux sont ceux qui se sont intéressés au probleme de
tournées de service avec temps de service et de parcours stochastiques. Le plus souvent, le
probleme de planification de tournées de service comporte des temps de service stochastiques
ou des temps de parcours stochastiques (incorporant parfois la variation des temps de service
dans celle des temps de parcours). Ces contraintes peuvent rendre les approches déterministes
inapplicables ou peu performantes.

L’objectif de cette these est de proposer des méthodes de résolution pour le probleme de
tournées de service mono-période avec fenétres de temps de visite chez les clients, plusieurs
dépots, priorité entre les clients (nous distinguons les clients "obligatoires” dont la visite est
impérative et les clients "optionnels” dont la visite peut étre annulée ou reportée a une période
ultérieure) et temps de service et de parcours stochastiques.

Pour résoudre cette problématique, nous proposons une approche globale de résolution
en deux étapes : une étape de planification et une étape d’exécution. Au cours de I’étape de
planification, on construit des routes contenant des clients obligatoires et optionnels. Durant
I’étape d’exécution, on utilise des outils de programmation dynamique pour déterminer la
politique optimale. Apres la programmation dynamique, on procede a un ensemble de si-
mulations de I'exécution des tournées en temps réel au long de la période afin d’évaluer la
qualité des solutions obtenues. Pour 1’étape de planification, nous proposons trois méthodes
distinctes : une heuristique basée sur la priorité des clients, consistant a établir des routes a
partir des clients obligatoires puis a insérer les clients optionnels dans ces routes; une heu-

ristique basée sur la génération de colonnes consistant a générer un ensemble de routes de

bonne qualité pour chaque véhicule puis a en sélectionner une par véhicule; un algorithme
de branch and price dans laquelle le probleme maitre consiste a sélectionner des routes en
s’assurant que la priorité des clients est respectée tandis que le sous-probleme consiste a gé-
nérer des routes réalisables. Dans chacune de ces méthodes de planification, on utilise des
estimés connus a priori des temps de service et de parcours (estimés minimaux, maximaux
ou modaux). Nous procédons a 'expérimentation de ces méthodes sur la base d'un ensemble
de jeux de données réalistes déja publiés et correspondant aux caractéristiques des tournées
de service d'une grande entreprise.

Dans le premier chapitre, nous donnons une description détaillée de la problématique
qui nous intéresse. Puis, dans le chapitre 2, nous situons le probleme étudié par rapport a
la litérature existante. Dans le troisieme chapitre, nous prouvons que la politique optimale
de notre algorithme de programmation dynamique est une politique de seuil. Enfin, dans les
chapitres 4, 5 et 6, nous détaillons les trois méthodes de résolution proposées pour le probleme

traité.

CHAPITRE 2

Le probleme de tournées de service avec temps de parcours et de service

stochastiques

2.1 Description de la problématique

Avant de décrire notre probleme, rappelons la définition du probleme de tournées de ser-
vice. Il peut étre formulé comme suit. Etant donné un nombre limité de techniciens et de
requétes clients, il s’agit de trouver des routes pour desservir ces requéetes, en s’assurant que
les clients sont servis dans leur fenétre de temps par un technicien ayant les compétences

requises. L’objectif est de minimiser la distance parcourue.

Le probleme auquel nous nous intéressons ici est une variante du probleme de tournées de
service. Nous complétons sa description en précisant un certain nombre d’éléments et d’hy-

potheses :

— Techniciens omniscients
On suppose que les techniciens sont capables de procéder a toutes les interventions.
En d’autres termes, on supprime I’aspect compétences des techniciens du probleme de
tournées de service classique. Aussi, dans la suite, on suppose qu’a chaque technicien

est associé un véhicule et on utilise le terme de véhicule plutot que celui de technicien.

— Priorité entre les clients

Dans ce probleme, on distingue deux types de clients : les clients obligatoires et les
clients optionnels.

Les clients optionnels sont connus a priori et n’ont pas de plage horaire de visite im-
posée (nous considérons qu’ils ont une fenétre de temps correspondant a 1’horizon de
temps et peuvent étre reportés a une autre période en tout temps). De plus, afin de
gérer une certaine notion de priorité au sein des clients optionnels, un profit leur est
associé. Les client obligatoires apparaissent au cours du temps mais on suppose qu'un
client obligatoire ne sera pas servi pendant la période au cours de laquelle il apparait
(s’il apparait a la période J, il ne sera pas servi avant la période J + 1). Tous les clients
obligatoires sont donc connus a priori a chaque période. De plus, une fenétre de temps

dure est associée a chaque client obligatoire des qu’il apparait.

— Fenétres de temps dures
Les fenétres de temps du dépot (durée d'une journée de travail) et des clients obliga-
toires sont dures. Ce qui signifie que 1'on n’autorise aucune heure supplémentaire ni

aucun retard chez les clients obligatoires.

— Aspect multi-dépots
On suppose que l'on dispose, pour les véhicules, non pas d'un dépot central mais de
plusieurs dépots. Chaque véhicule a son propre dépot origine et dépot destination (le
plus souvent, il s’agit du domicile du technicien). Pour un véhicule donné, le dépot

origine et le dépot destination peuvent étre identiques.

— Véhicules de capacité infinie
Etant donné qu’il s’agit de tournées de service et non de transport de marchandises,
on supposera que la capacité des véhicules est infinie (ou, en d’autres termes, que le

volume transporté par chaque véhicule n’excede pas sa capacité).

— Temps de parcours et de service stochastiques
Souvent, dans les problemes de tournées de service, des temps de parcours et de ser-
vice déterministes sont considérés. Cela ne reflete pourtant pas la réalité : les temps de
transport sont soumis a des aléas tels que la météorologie, le trafic, les accidents... De
meéme, les aléas sur les temps de service ne sont pas toujours négligeables. FEn effet, quel
que soit le type de service fourni, les temps de service sont variables (cela peut étre lié a
I’absence du client, a la nécessité de monter des escaliers, ainsi qu’a de nombreux autres
aléas). Ces variations ne sont pas neutres. On a donc choisi de prendre en compte des

temps de transport et de service stochastiques.

Une application générique de ce probleme est la construction de routes de techniciens pour
des opérations de maintenance et de réparation. Dans ce probleme, les clients obligatoires
requierent des opérations de type réparation tandis que les clients optionnels requierent des
opérations de service (controle, relevé de compteur, maintenance, ...). Dans cette application,
comme les véhicules servent uniquement au transport de matériel et du personnel, on peut
effectivement supposer que la capacité de leur véhicule est infinie. D’autre part, les véhicules
ne transportant pas de marchandises, ils peuvent donc avoir leurs propres dépots origine et
destination (typiquement les domiciles des techniciens). Enfin, comme le service fourni au

client peut étre de type réparation, on comprend la nécessité de considérer des temps de

service stochastiques.

2.2 Hypotheses

On suppose que tous les clients sont connus a priori (cf. plus haut, paragraphe Priorité
entre les clients).
Les valeurs minimales, modales et maximales des temps de service et des vitesses sont égale-
ment supposées connues a priori. En effet, on peut supposer que ’on dispose d’un historique
permettant de calculer ces valeurs.
On suppose que les distances vérifient I'inégalité triangulaire et que les unités de temps sont
discretes (on travaille, par exemple, en minutes).

Aussi, on suppose que les temps de parcours et les temps de service sont indépendants.

2.3 Lois de probabilité

Pour modéliser les temps de parcours et de service stochastiques, on souhaite des lois de
probabilité tronquées. En effet, les temps de parcours et de service sont bornés. Aussi, on
suppose que les unités de temps sont discretes (cf. ci-dessus). On choisit donc d’utiliser des
lois de distribution triangulaires discretes.

Pour le temps de service au client #, on utilise une loi de distribution triangulaire discrete et
symétrique entre o; — 1 et o; + 1, ou g, et o; désignent respectivement le temps de service
minimal et maximal du client 7.

Pour le temps de parcours unitaire ¢, on utilise une loi de distribution triangulaire discrete

100 100 100 . .
entre —1let +1, de mode OU Vpnin €t Upmae correspondent respective-
Umax Umin Umode

ment aux vitesses de parcours minimale et maximale, et v;,,q. désigne la vitesse de parcours
modale (la plus probable). Ensuite, afin de s’assurer que les temps de parcours vérifient 1'in-

¢galité triangulaire, la probabilité du temps de parcours 7;; entre les clients i et j est donnée

Dijo | _
P(1;; =m) —P({ 100“ —m>

avec D;; la distance euclidienne entre les clients i et j.

par la formule :

2.4 Instances

7

Afin de pouvoir tester les différentes méthodes dévelopﬁs dans cette these, nous propo-

sons d’utiliser des instances extraites de celles de Tricoire [68] et correspondant aux caracté-

6

ristiques des demandes de services d'une grande entreprise. Dans sa these, Tricoire @] s’est
intéressé au probleme de tournées de véhicules multi-dépots, multi-périodes, avec fenétres
de temps, priorité entre les clients et points de restauration. Toutefois, il prend en compte
des temps de parcours et de service déterministes. Dans ce contexte, il propose des instances
avec 3 véhicules, sur un horizon de 5 jours. Dans ces instances, il associe a chaque client des
coordonnées (x,y), une fenétre de temps (e, [), une période de validité d’'un ou plusieurs jours
(suivant 'urgence du client). Et a chaque véhicule, il associe, chaque jour, un dépdt origine
et un dépot destination. A partir de ces instances, nous avons extrait des instances journa-
lieres avec un nombre variable de clients obligatoires (compris entre 5 et 9). Ainsi, a partir
de chaque instance originale I (avec I € {C'1_1;C1_2; C'1_3; C'1_4;C'1_5}), nous avons extrait
les instances I_m(n) (avec m € {5;6;7;8;9}) comprenant m clients obligatoires et n clients
(obligatoires et optionnels). Dans ces instances, nous avons conservé les trois véhicules ainsi
que la journée de travail de huit heures (480 minutes), mais nous avons modifié les fenétres
de temps des clients obligatoires en attribuant a la premiere moitié des clients obligatoires
le matin (fenétre de temps [0;240]) et aux autres I'aprés-midi (fenétre de temps [240; 480]).
Pour procéder a l'extraction des instances, étant donnée une instance initiale I, un nombre
de clients obligatoires m et un nombre total de clients n, nous avons d’abord identifié les
clients obligatoires et optionnels de cette instance. Puis, nous avons conservé les m premiers
clients obligatoires et avons ajouté les n — m premiers clients optionnels, n’apparaissant pas
déja dans la liste des clients obligatoires. En procédant ainsi, nous construisons 'instance
I_m(n).

CHAPITRE 3

Etat de ’art

Dans le chapitre précédent, nous avons défini notre probleme comme étant une variante
du probleme de tournées de service avec omniscience des techniciens, priorité entre les clients,
plusieurs dépots, capacité infinie, et temps de parcours et de service stochastiques. Dans ce
chapitre, nous faisons un survol des principales méthodes de résolution proposées pour le pro-
bleme de tournées de service de techniciens et pour des problemes de tournées de véhicules
(VRP) qui s’en rapprochent. A cet effet, on note que notre probleme présente de nombreuses
ressemblances avec le probleme de tournées de véhicules avec fenétres de temps (VRPTW).
En effet, le VRPTW peut étre formulé comme suit. Etant donné un dépot, des véhicules de
capacité limitée et des demandes clients, il s’agit de trouver des routes pour satisfaire toutes
les demandes, en s’assurant que chacune de ces routes a pour origine et destination le dépot
donné et que les fenétres de temps sont respectées. L’objectif est de minimiser la distance
parcourue et parfois le nombre de véhicules utilisés. Notre probleme peut donc étre assimilé
aun VRPTW sélectif (il n’est pas nécessaire de desservir tous les clients), avec plusieurs dé-
pots, capacité infinie et temps de parcours et de service stochastiques. Dans ce chapitre, nous
présenterons d’abord les variantes du VRPTW et du probleme de tournées de service avec
priorité entre les clients ou stochasticité (car ce sont les deux spécificités de notre probleme).
Nous donnerons ensuite un apercu des différentes méthodologies proposées pour résoudre ces
variantes. Enfin, nous ferons une synthese de cet état de ’art et nous introduirons I’approche

de résolution globale proposée dans cette these.

3.1 Variantes similaires a notre probléeme

Ici, nous nous sommes intéressés aux variantes du probleme de tournées de service et
du VRPTW prenant en compte une spécificité de notre probléeme : priorité entre les clients
ou des temps de service et/ou de parcours stochastiques. Nous les classerons suivant deux

aspects majeurs du probleme : la priorité entre les clients et I'aspect stochastique.

3.1.1 Priorité entre les clients

Qu’il s’agisse de planifier des tournées de service ou des tournées de véhicules, les entre-

prises peuvent attacher plus d’importance a certains clients qu’a d’autres pour de nombreuses

raisons (fidélité, exigences du client...). Elles peuvent donc étre amenées & définir une priorité
entre les clients. Ainsi, Zeimpekis et al. [74], Borenstein et al. ﬁ], Branchini et al. B], Cortés
et al. ﬂﬂ] et Alsheddy et Tsang] associent a chaque client une priorité des que la requéte de
ce dernier entre dans le systeme. De méme, Angelelli et al. [3] et Hadjiconstantinou et Roberts
| affectent a chaque client une période de validité plus ou moins grande suivant sa priorité
des son arrivée dans le systeme. Quant a eux, Petrakis et al. [54] établissent une priorité entre
les clients en leur associant une pénalité de retard. Ceschia et al.] et Rasmussen et al.
| définissent également une priorité entre les clients en leur associant une pénalité. Plus
récisément, ils associent aux clients un cott de non desserte. Tandis que Rasmussen et al.
E] associent un cout de non desserte a tous les clients, Ceschia et al.] distinguent deux
types de clients : les clients obligatoires et les clients optionnels, et n’associent un cotit de non
desserte qu’aux clients optionnels. Dans le cadre du probleme du déploiement en temps réel
d’une flotte d’ambulances (ou les clients considérés sont en réalité des patients), Gendreau
et al. dil] et Haghani et Yang ﬁ] associent a chaque patient une priorité dépendant de son
état de santé. Cette priorité est définie des qu’une requéte entre dans le systéme mais peut
évoluer au cours du temps (comme la santé du patient peut se détériorer). La priorité des
clients est donc dynamique. Enfin, Tricoire [68], Dugardin [25], Bostel et al. @], Tricoire
et al. @] et Delage H] proposent une priorité définie sur le type de requéte, comme dans
notre cas. Ils distinguent deux types de clients : les différables et les rendez-vous. Les requétes
différables correspondent a des opérations planifiées par 'entreprise (comme des opérations
de maintenance, des relevés de compteurs...). Celles-ci sont connues a priori et peuvent étre
différées (elles ne sont pas obligatoires). Au contraire, les rendez-vous correspondent aux
requétes provenant des clients (le plus souvent, il s’agit de demande d’intervention suite a
une panne). Ces requétes apparaissent au cours du temps et sont obligatoires. Elles ont une

fenétre de temps qui leur est associée et on ne peut les différer.

3.1.2 Stochasticité

Dans notre probleme, on a considéré deux types d’aléas : ceux sur les temps de parcours
et ceux sur les temps de service. Dans la littérature sur le probleme de tournées de véhicules
classique et ses principales variantes, ce sont principalement les temps de parcours qui sont
considérés comme stochastiques. A cet effet, diverses lois de probabilité ont été proposées

our modéliser les temps de parcours stochastiques : la loi standard @], la loi normale @],
IB], @] et la distribution gamma @],], E] En 2007, Topaloglu [67] traite du VRP
dans lequel les temps de parcours suivent une loi de probabilité quelconque et propose un
modele de programmation dynamique. Quant a Shen et al. @], Shao et al. da], Tavakkoli-

Moghaddam et al. | et Zhang et al.], ils associent au dépot une fenétre de temps,

modélisent le probleme comme un modele avec contrainte en probabilité ou la probabilité
que tous les véhicules soient de retour au dépot avant la fin de la journée est supérieure a
un seuil donné, et minimisent la distance totale parcourue. Certains auteurs proposent de
résoudre le VRP avec fenétres de temps et temps de parcours stochastiques. Ainsi, Ando et
Taniguchi B], Russell et Urban @], Jie @], et Tas et al. M] formulent le probleme comme un
programme a variables entieres. Ils cherchent a minimiser la somme pondérée de la distance
totale parcourue et des pénalités liées a la violation des fenétres de temps. De plus, Ando
et Taniguchi E] et Russell et Urban @] minimisent le nombre de véhicules utilisés. Pour
résoudre le TSPTW avec temps de parcours stochastiques, Jula et al] définissent un
niveau de confiance associé a chaque client comme étant la probabilité d’arriver a ce noeud
avant la fin de la fenétre de temps et s’assurent que cette probabilité est suffisante tout au
long de la résolution.

Dans la littérature sur le probleme de tournées de véhicules classique et ses principales
variantes, seul Xu [73] consideére des temps de service stochastiques. Pour la modélisation des
temps de service, il reste générique en ne spécifiant aucune loi de distribution. Son objectif
est de minimiser I'espérance du temps passé par les requétes dans le systéme (ce temps inclut
le temps de service).

Dans la littérature du probleme de tournées de service, la prise en compte de temps de
service stochastiques est plus fréquente. Différentes lois de probabilité ont été proposées pour
modéliser les aléas sur les temps de service, notamment la loi normale], lognormale [34],
la loi de Weibull dﬂ], da] et la loi de distribution triangulaire [9]. De plus, certaines variantes
(avec ou sans fenétres de temps) du VRP classique ont été traitées avec aléas sur les temps
de service. Ainsi, Hadjiconstantinou et Roberts @] et Lei et al.] prennent en compte
uniquement une fenétre de temps au dépot. Tous deux modélisent le probleme comme un
modele de programmation stochastique a deux étapes avec recours. Tandis que Lei et al.
8] proposent un seul recours pour pénaliser 1'éventuel retard au dépot, Hadjiconstantinou
et Roberts [34] proposent, qui plus est, un recours consistant a retourner au dépot des que
la fin de la fenétre de temps au dépot est atteinte. Cortés et al. dﬂ], Borenstein et al. CE],
Delage] et Souyris et al. ﬂa], quant a eux, traitent du VRPTW. Delage] présente un
modele de programmation stochastique a deux étapes avec recours (ou le recours consiste a
allouer des pénalités d’attente et de retard). Quant & Borenstein et al. E], ils modélisent le
VRPTW comme un probleme d’ordonnancement avec contraintes de ressource. Souyris et al.
| proposent un modele d’optimisation robuste.

La stochasticité des temps de service et des temps de parcours a été introduite par La-

porte et al. M] Ces derniers restent tres généraux en considérant le probleme de tournées de

véhicules classique sans spécifier de loi de distribution. Ils proposent trois modeles distincts :

10

un modele avec contrainte en probabilité ainsi que deux modeles stochastiques avec recours.
Une approche inhabituelle pour les aléas sur les temps de service et de parcours est présen-
tée par Dugardin] dans le cadre du probleme de tournées de service : il n’anticipe pas
I'incertitude en utilisant des outils d’optimisation stochastiques, mais préfere attendre que
'aléa se produise avant de réagir (en procédant a une réoptimisation déterministe). Dans le
cadre du probleme de tournées de véhicules, Kenyon], Kenyon et Morton], Wang et
Regan Bl])et Zeimpekis et al. |74] proposent de prendre en compte simultanément les temps
de parcours et de service stochastiques. Dans ce contexte, Kenyon [43], Kenyon et Morton
] minimisent I’heure de fin espérée tandis que Zeimpekis et al. [74] proposent de maximiser
le nombre de clients servis et Wang et Regan [72] minimisent les couts espérés. Quant a aux,
Teng et al. @] et Li et al. [49] formulent le probleme comme un modele de programmation
stochastique a deux étapes avec recours ou le recours consiste a attribuer des pénalités pour
le retard, les temps de service... Li et al. @] proposent aussi un modele avec contrainte en

probabilité.

3.2 Méthodes de résolution

3.2.1 Heuristiques basées sur 1’affectation

le probleme de gestion de flotte de techniciens en temps réel. En 1994, Xu propose une

Des heuristiques simples basées sur la résolution du TSP ont été proposées pour résoudre
=

heuristique appelée « Part-TSP » consistant, pour le probleme a k véhicules, a partitionner
le territoire en k zones géographiques. Ensuite, il affecte un technicien a chaque zone. Des que
les zones géographiques ont été attribuées aux techniciens, un TSP est résolu pour chaque
couple technicien-zone (si un technicien n’a plus de requétes a servir a un instant donné,
il se repositionne au centre de sa zone). Quant a Borenstein et al. B], ils décomposent le
probleme en plusieurs sous-problemes résolus a 'aide d’heuristiques. Ils partitionnent donc
les clients en plusieurs groupes (correspondant a des zones géographiques) avec un algorithme
de clustering : le « k-means algorithm ». Ils affectent ensuite les techniciens aux zones avec
une heuristique. Puis, les frontieres des zones sont rendues floues : chaque client localisé a la
frontiere de plusieurs zones appartiendra a toutes les zones frontalieres simultanément. Enfin,
ils utilisent des regles d’affectation spécifiques pour affecter les taches aux techniciens. Plus
récemment, Petrakis et al. [54] ont proposé des heuristiques basées sur 'insertion & moindre
cott et sur un modele d’affectation. Ils y ajoutent une méthode de post-optimisation de type

recherche locale a voisinage variable.

11

3.2.2 Meétaheuristiques
Recherche taboue

La recherche taboue @] a été tres utilisée dans la littérature pour résoudre le probleme de
gestion de flotte en temps réel. Dans cette méthode, on entretient une liste taboue a chaque
itération pour éviter les cycles. La recherche taboue peut étre résumée comme suit : a partir
d’une solution initiale, on génére des solutions voisines. Si le déplacement vers la meilleure
de ces solutions n’est pas un mouvement tabou, on met a jour la solution et la liste taboue.
On continue jusqu’a ce qu’une condition d’arrét soit remplie. Dans le cadre du probleme de
relocalisation d’ambulances, Gendreau et al. [31] proposent d’utiliser une recherche taboue
pour calculer a 'avance des stratégies de redéploiement (afin que, lors de I'arrivée d’un appel,
on ait juste a choisir une stratégie). Ainsi, quand le patient urgent appelle, 'ambulance la
plus proche est envoyée sur place. Il peut s’agir d’'une ambulance en route pour servir un autre
client. Néanmoins, une ambulance en route pour aller servir un client sera déviée de ce client
seulement si ce dernier peut éetre desservi par une autre ambulance dans le temps imparti.
Une autre variante de la recherche taboue est utilisée par Russell et Urban @1]3 : il s’agit
d’une recherche taboue dans laquelle on maintient un pool contenant les meilleures solutions
obtenues. Ces solutions sont utilisées comme point de départ pour la recherche. Quant a Tas
et al. M], ils présentent une recherche taboue dans laquelle ils utilisent une mémoire a moyen
terme comme mécanisme d’intensification (si la meilleure solution réalisable reste inchangée
pendant un certain nombre d’itérations, elle devient la solution courante). Ceschia et al.
] proposent une recherche taboue et considerent les trois opérateurs de voisinage suivants :
insertion, échange intra-route et échange inter-route. De plus, ils optent pour une liste taboue
de longueur dynamique. Enfin, Shen et al. [62] et Li et al. | proposent une heuristique
basée sur la recherche taboue. Li et al. [49] construisent d’abord une solution déterministe en
utilisant I'algorithme de Clarke and Wright. Ensuite, ils appliquent une recherche taboue avec
un voisinage basé sur le choix aléatoire entre les opérateurs : 2-opt, relocalisation et échange.
Quant a Shen et al. @], ils utilisent comme opérateurs de voisinage : 2-opt, relocalisation,
échange, insertion d’un client absent de la solution ou échange d’un client absent de la solution

avec un client ou une séquence de clients.

Algorithmes évolutionnistes

L’algorithme génétique @] est une stratégie évolutionniste consistant a faire évoluer une
population de solutions. Cette méthode procede en plusieurs itérations, chacune d’elles se
décomposant en trois phases : la sélection des parents, le croisement, la mutation et la mise a

jour de la population. La premiere phase permet, étant donnée une population de solutions,

12

de sélectionner les solutions parents a ’aide d’une fonction d’évaluation. Dans la phase de
croisement, on procede au croisement des solutions parents précédemment sélectionnées. Les
solutions ainsi obtenues subissent des mutations. On obtient alors un ensemble de solutions
filles. Parmi ces solutions filles, on sélectionne les meilleures et on met a jour la population de
solutions. Jie @] applique cette méthode de résolution au probleme de tournées de véhicules
avec temps de parcours stochastiques.
L’algorithme mémétique [53] est un algorithme génétique hybridé avec une recherche locale
(aprés la mutation, une recherche locale commence pour choisir la nouvelle population de
arents). Comme ils considérent un probleme multi-périodes, Tricoire [68] et Bostel et al.
E] proposent d’utiliser un algorithme mémétique a horizon glissant. Les solutions initiales
sont considérées comme vides. Les solutions filles héritent d’une ou plusieurs routes de leurs
parents. Une solution fille peut contenir une route vide. Néanmoins, cet opérateur de croi-
sement peut étre problématique étant donné qu’un seul client peut étre servi deux fois dans
une solution fille. On considere que, lors de la construction dune solution fille, un client déja
desservi dans la partie construite ne peut étre desservi une deuxieme fois ; il sera donc simple-
ment enlevé des autres routes héritées. De plus, si une requéte est desservie dans les solutions
parents mais pas dans la solution fille, on procedera a la meilleure insertion de ce client
dans cette derniere. Nous avons mentionné plus haut qu’une solution fille pouvait contenir
une route vide. Cette route peut servir a insérer les clients qui n’étaient pas servis dans les
solutions parents (pour diversifier les solutions). Des que les solutions filles sont construites,
elles sont améliorées a 1’aide d'une recherche locale et évaluées sur le critere de distance. Les
meilleures d’entre elles sont sélectionnées pour constituer la nouvelle génération.
La recherche dispersée B] est une méthode dans laquelle on gere un pool de solutions. A
chaque itération, on crée de nouvelles solutions en combinant les solutions courantes, puis
on améliore ces nouvelles solutions a 'aide d’heuristiques. Ensuite, on ajoute les meilleures
solutions ainsi générées au pool de solutions. Zhang et al. [75] adaptent cette méthode a leur

probleme de type VRP avec temps de parcours stochastiques.

Optimisation par essaims particulaires

L’optimisation par essaims particulaires est une métaheuristique créée par Kennedy et
Eberhart [42]. Elle consiste, étant donnée une population initiale de particules, & autoriser ces
particules a se déplacer afin de converger vers des optima locaux. Néanmoins, cette méthode
tend a rester bloquée dans un optimum local au lieu de converger vers un optimum global.

C’est pourquoi Shao et al. [61] 'hybrident avec une recherche locale.

13

Recuit simulé

L’algorithme de recuit simulé M] est une méthode inspirée de la métallurgie. Elle consiste,
a chaque itération, a considérer une solution choisie aléatoirement dans le voisinage de la
solution courante. La solution courante est ensuite mise a jour dans deux cas : la nouvelle
solution est meilleure que ’ancienne, ou un critere probabiliste est respecté. Dans le cadre
de leur probleme de tournées de véhicules avec temps de service stochastiques, Tavakkoli-
Moghaddam et al. @] proposent d’hybrider la méthode de recuit simulé avec des opérateurs

de voisinage de l'algorithme génétique : la mutation et le croisement.

3.2.3 Autres méthodes basées sur la recherche locale

Pour résoudre le probleme de gestion de flotte en temps réel, Branchini et al. B] proposent
une recherche locale granulaire. Dans ce but, ils construisent d’abord une solution initiale, a
laquelle ils appliquent une recherche locale. Comme ils veulent s’assurer la couverture de tout
le territoire et équilibrer la charge de travail entre les véhicules, ils proposent de construire un
ensemble de K clients (ot K correspond au nombre de véhicules) dispersés géographiquement.
Des que cet ensemble est construit, ils affectent chacun de ces clients & un véhicule et inserent
les autres clients sur les routes des véhicules. Ensuite, ils appliquent une recherche locale avec
seuil de granularité pour résoudre le VRP dynamique (avec de nouveaux clients apparaissant
au cours du temps). En d’autres termes, ils limitent la recherche locale a une liste de clients
définie par un seuil de granularité. Ces clients sont tous situés dans un rayon égal au seuil
de granularité. Du fait de I'aspect dynamique du probleme, la liste de clients et le seuil de
granularité peuvent varier au cours du temps. Pour éviter de rester bloqués dans des optima
locaux avec la recherche locale, Alsheddy et Tsang [1] proposent une recherche locale guidée.
Il s’agit d’une recherche locale ou 'on ajoute des pénalités dans la fonction d’évaluation afin
d’éviter les optima locaux.

La recherche a voisinage variable @] est une variante de la recherche locale tres utilisée
pour résoudre le probleme de tournées de véhicules. Dans cette méthode, on dispose d'un
ensemble de structures de voisinage et on procede itérativement. A chaque itération, on choisit
une structure de voisinage différente et on choisit au hasard une solution voisine de la solution
courante. Ensuite, on applique a cette solution voisine une recherche locale. Si la solution ainsi
obtenue est meilleure que la solution actuelle, on met a jour cette derniere. Angelelli et al.

| proposent une variante de cette méthode avec trois opérateurs de voisinage (échange,
relocalisation et insertion). Ils I'integrent dans un contexte en temps réel dans la mesure ol
des réoptimisations ont lieu chaque jour et a intervalles de temps réguliers durant la journée.

Dans le cadre d’'un Team Orienteering avec temps de parcours et de service stochastiques,

14

Campbell et al. M] prennent en compte deux opérateurs de voisinage supplémentaires : le
« 1-shift » et le « ruin and recreate ». Lei et al.] prennent en compte 6 opérateurs de
voisinage : 2-opt, échange et insertion (versions inter et intra-routes). De plus, ils integrent
un mécanisme de granularité dans la recherche locale. Flatberg et al. Q] présentent un
algorithme basé sur la recherche locale itérative. Cet algorithme est lancé a chaque fois qu'un
événement (arrivée d’une nouvelle requéte, mise a jour d’une requéte existante, arrivée chez
un client...) a lieu et gere un pool de solutions. Quand une nouvelle requéte apparait, on
modifie la définition du probléme et on met a jour le pool de solutions (les solutions devenues
irréalisables sont réparées si possible ou enlevées du pool). La procédure suivante est itérée
sur le pool : on sélectionne une solution dans le pool et on crée un scénario (contenant les
éventuelles futures requétes). Puis, on ajoute ces requétes a celles de la solution considérée.
On résout un VRP sur toutes ces requétes (celles de la solution et celles que 'on vient
d’ajouter) en utilisant une recherche locale itérative. On obtient ainsi une nouvelle solution
qui prend en compte l'arrivée stochastique de nouvelles requétes. On enleve de la solution les
requétes non apparues et on évalue la solution. Selon la qualité de la solution ainsi obtenue,
on 'ajoute ou non au pool. Si on 'ajoute, on la compare a la solution courante et on met a

jour cette derniere si nécessaire.

3.2.4 Simulation de Monte Carlo et modele déterministe

Etant donné un probléeme avec variables aléatoires, la simulation de Monte Carlo permet
de générer une loi de distribution des solution obtenues. Cette méthode consiste a échan-
tillonner la loi de probabilité des variables aléatoires et a procéder a des simulations pour
chacun de ces échantillons, obtenant ainsi un ensemble représentatif de solutions possibles
(avec une probabilité associée a chacune d’elles). Dans le cadre du probleme de tournées de
techniciens avec temps de service stochastiques, Delage [21] combine cette méthode avec la
recherche taboue : la simulation de Monte Carlo leur permet d’évaluer correctement la qualité
d’une solution (en observant les retards pouvant étre obtenus du fait de la stochasticité des
temps de service) dans la recherche taboue. Dans cette derniere, ils construisent d’abord une
solution initiale en associant a chaque client obligatoire le dépot le plus proche. Ensuite, ils
établissent les routes des véhicules (chaque route est associée a un dépot) en triant les clients
obligatoires de chaque dépot par milieu de fenétre de temps croissant. Puis, ils inserent les
clients différables (optionnels) jusqu’a ce que toutes les routes soient de longueur maximale.
Deés que la solution initiale est construite, la recherche taboue peut commencer. Dans cette
recherche taboue, les opérateurs de voisinage sont l'insertion et la suppression ; une solution
est évaluée selon le nombre de requétes satisfaites et le retard estimé par la simulation de

Monte Carlo. Cette procédure de recherche taboue est relancée a chaque nouvel événement.

15

Quant a Kenyon dﬂ] et Kenyon et Morton M], ils proposent de combiner la simulation de
Monte Carlo avec une méthode de résolution appelée DESVRP. Ils prennent en compte si-
multanément les temps de service et de parcours stochastiques. La simulation de Monte Carlo
leur permet d’échantillonner les lois de probabilité pour résoudre ensuite un probleme déter-
ministe pour chacun de ces échantillons. Néanmoins, ce probleme reste difficile a résoudre
avec une méthode de type Branch and Bound du fait du nombre exponentiel de contraintes

d’élimination de sous-tours. Ils proposent donc une méthode de type Branch and Cut.

3.2.5 Meéthodes d’optimisation stochastique

D’autres méthodes d’optimisation ont été proposées pour prendre en compte les aspects
stochastiques du probleme. Ainsi, Teng et al. @?proposent une adaptation de la méthode
appelée integer L-shaped [47]. Elle consiste (pour un modele de programmation stochastique
a deux étapes avec recours) a résoudre le probleme de premiere étape. Ce probleme consiste
a trouver une route maximisant le profit (desservant autant de clients que possible) tout en
respectant la contrainte de retour au dépot. Si cette route contient des sous-tours, on ajoute
itérativement des contraintes d’élimination de sous-tours et on résout a nouveau. Ensuite, on

ajoute les contraintes de faisabilité pour la deuxieme étape puis les coupes d’optimalité.

3.2.6 Autres méthodes de résolution

Pour résoudre le probleme de gestion de flotte en temps réel, avec temps de service sto-
chastiques, Cortés et al. |[19] proposent une méthode d’optimisation robuste. Ils optimisent
donc le probleme dans le pire des cas (ou le pire cas correspond a la plus grande déviation
totale des temps de service pour un technnicien et non aux temps de service maximaux
pour chaque client). Ce probleme, rendu déterministe par la formulation robuste, est ensuite
résolu avec une génération de colonnes. Dans cette derniere, le probleme maitre consiste a
sélectionner les meilleures routes parmi celles construites par le sous-probleme. Tricoire [68],
Bostel et al. [10] et Tricoire et al. [69] se sont intéressés a la variante déterministe et multi-
périodes du probleme qui nous intéresse et proposent de le résoudre sur un horizon roulant
en utilisant, eux aussi, une méthode de génération de colonnes. Cette fois, le sous-probleme
n’est pas résolu de facon exacte mais a l'aide d'une heuristique. De surcroit, afin d’obtenir
une solution entiere, la génération de colonnes est intégrée a une méthode d’énumération
implicite : le Branch and Price [6]. Dans le cadre de leur probleme de tournées de service a
domicile, Rasmussen et al. |56] proposent eux aussi une méthode de génération de colonnes
intégrée dans un Branch and Price. Toutefois, afin de réduire les temps de calcul au niveau

du sous-probleme, ils y integrent une méthode de clustering afin de réduire le graphe du sous-

16

probleéme (en attribuant un cluster de clients a chaque véhicule). De méme, Souyris et al. @]
proposent une méthode de type Branch and Price pour le probleme de tournées de service
avec temps de service stochastiques, dans laquelle le sous-probleme est robuste et résolu avec
un solveur de programmation par contraintes.

En 1992, Laporte et al. @] proposent une méthode exacte de type Branch and Cut pour
résoudre un VRP avec temps de parcours et de service stochastiques. Une variante inhabi-
tuelle du Branch and Bound est introduite par Hadjiconstantinou et Roberts [34]. Il s’agit
d’une méthode de Branch and Bound appliquée a deux arbres de décisions correspondant
aux deux étapes du modele de programmation stochastique avec recours. Haghani et Yang

| et Topaloglu @] proposent une méthode de résolution exacte dans un contexte temps
réel. Ainsi, Haghani et Yang [35] optimisent exactement (avec Cplex) a chaque nouvel évé-
nement ou a intervalle de temps régulier. Quant a Topaloglu E], il transforme le modele
de programmation dynamique en plusieurs sous-problemes approchés (chacun de ces sous-
problemes correspondant a une étape de programmation dynamique). Ces sous-problémes,
formulés comme des programmes en nombres entiers, sont ensuite résolus exactement. Pour
traiter du probleme de gestion de flotte en temps réel, Zeimpekis et al. [74] considerent un
seul véhicule avec des aléas sur les temps de service et de parcours stochastiques. Lorsqu’'un
nouvel événement survient (retard d’un véhicule), le probléme consiste a modifier le planning
afin de servir les clients les plus importants. La méthode qu’ils proposent, pour ce faire, est
de vérifier, dans un premier temps, s’il est encore possible de desservir tous les clients de
la solution courante (par rapport aux fenétres de temps). Ensuite, ils évaluent les clients
en observant leur profit et leur fenétre de temps et inserent le meilleur client possible sur
la route. Cette étape d’évaluation-insertion est répétée jusqu’a ce que tous les clients soient
insérés ou qu’il ne soit plus possible d’insérer des clients sur cette route. Cette méthode est
tres similaire & la méthode appelée S-algorithm ﬂﬂ]

Enfin, Jula et al.] et Delage [21] proposent des méthodes basées sur la programmation
dynamique. Tandis que Jula et al.] utilisent la programmation dynamique pour résoudre
un TSPTW avec temps de parcours stochastiques, Delage [21] I'inteégre dans une méthode afin
de résoudre un MDVRPTW avec temps de service stochastiques et priorité entre les clients. 11
distingue deux types de clients : les rendez-vous (obligatoires) et les différables (optionnels).
Il suppose que chaque client obligatoire est associé a un véhicule et ne peut en changer, et
que tous les clients optionnels sont stockés dans une liste. Ainsi, chaque véhicule dispose
d’une liste ordonnée de clients obligatoires a desservir et d'une liste de clients optionnels a
servir si possible. Comme les temps de service sont stochastiques, il propose une méthode de
programmation dynamique ou chaque étape correspond a la fin de service chez un client et

ou les décisions sont les suivantes : soit on se rend au prochain client obligatoire, soit on va

17
desservir un client optionnel, soit on retourne au dépot.

3.3 Tableaux de synthese

Dans les tableaux ci-dessous, on indique les caractéristiques prises en compte. Il est im-
portant de bien distinguer la caractéristique « fenétre de temps » de celle intitulée « période
de validité ». On les distingue comme suit :

— une fenétre de temps est une plage horaire pour le service du client. Cette plage horaire

peut durer jusqu’a une journée de travail.

— une période de validité s’étend sur plusieurs jours. De plus, c’est une sorte de fenétre

de temps dure. Un client ne peut étre desservi en dehors de sa période de validité.
Ci-apres donc deux tableaux récapitulatifs : le premier regroupe tous les articles que nous
avons considéré qui traitent le probleme en temps réel et le deuxieme tous ceux qui ne traitent

pas le probleme en temps réel.

Légende pour les tableaux qui suivent :
(0) Les fenétres de temps correspondent ici a ’heure de début de service au plus tot et ’heure
de fin de service au plus tard.
(1) Ici, tous les clients ont des périodes de validité ne dépassant pas deux jours.
(2) Il s’agit de 'heure a laquelle tous les véhicules sont rentrés au dépot.
(3) Les notations correspondent & I’aspect stochastique pris en compte : TP pour temps de
parcours et TS pour temps de service.
(4) Il s’agit des pénalités liées au fait de ne pas servir un client le premier jour de sa période
de validité, et de I'écart entre la charge de travail quotidienne réelle et la charge de travail
quotidienne moyenne (calculée avec I'historique).
(5) Il s’agit du temps moyen que les requétes passent dans le systeme (temps avant le début
du service + temps de service).
(6) Les différents types de modélisation sont notés : CCP pour modele avec contrainte en
probabilité, MR pour modele robuste, MS2E pour modele de programmation stochastique a
deux étapes, P. Dyn. pour programmation dynamique et PNE pour programme en nombre

entier.

18

&risti Caractéristi éCifi
Carqctgqsthues — 2T Iques .Sp e - Fonction Objectif
génériques Générales |Service clientd Temps réel
w “ 1]
g o o|lo T & =
c- £ 2l 8 ol 2 2 |2 218,285 o
ob 2 € .3- @ C 2 > 50 wg.gr mgﬁm @ ” odélisation éthode de résolution
cf $ S 0’&”"’“‘” 25 2|s E: Modélisati Méthode de résoluti
Eys © w|o ® 2|0 2 SE|IE8 20|30 © e
€a o S|l 2 8|v T 2858858 °8 - 5
85 5 sl3 3 E|58s5°Eo g cacsE ¢
= = w
5 O Clrde £°
_ _ . y / N/A Méthode sin_1i|aire aus
Zeimpekis 2007 [2] algorithm
Borenstein 2009 [3] vy vy v v TS® v N/A Heuristique a plusieurs étapes
Branchini 2009 [4] oY v v ooV N/A Recherche Locale granulaire
Angelell 2008 7] s v v v . NA Recherche Lo;at:favonsnnage
gelell variable
v v v v | @] v ® ' i
Hadjiconstantinou 2002 [8)] TS MS2E Paired Tree Search Algorithm
Petrakis 2012 [9] v v VY Y VY v v v MIP Heuristiques
Q
s v M::' z:::zwnange NA Recherche Taboue Paralléle
W Y avec Mémoire Adaptative
Gendreau 2001 [12] rayon r1
Haghani 2007 [13] v v v v PNE® Résolution exacte
Dugardin 2006 [14] v ooy v v v vV v N/A Politiques de réaction
Programmation dynamique ;
AR R v Y TS@| v v IMR MS2E®| Monte Carlo + Recherche
Delage 2010 [17] Taboue
Topaloglu 2007 [25] v v TP | v P.Dyn® Résolution exacte
TP, . _
Jula 2005 [28] v oY TS'éﬁ 4 N/A Programmation dynamique
s v 5@ min. l'heure de MS2E® Simulation de Monte Carlo +

Kenyon 1998 [34]

retour au dépot?

DESVRP

Figure 3.1 Tableau récapitulatif : Problemes traités en temps réel

19

Caractenstiques

Caractéristiques spécifiques

Fonction Objectif

generiques Générales [Senvice clientd Temps réel
pd =
2 o 2 5|18 32 e
= 5 Elzs3 8|2 2 2|5 % |82.,.®
2 = Ela 3 2|l T Z|= = S sz m w Modélisation Méthode de résolution
w = @ |5 F 2o =z - = e m o = = -4
g' w Sl 2 32l= = |E = = o o o =
s 2 wmsls 2 E|lE S §|= - = <
- g S[Fe38|2 £ gl B |EeTF
k- e 5|2 7 | ¢
o =
Cortés 2010 [5] v v v i v v N/A N/A
Alsheddy 2011 [6] s v v v PNE® Recherche locale guidée
Ceschia 2011[10] v v L v ¥ min. nb veh. non linéaire Recherche taboue
Rasmussen 2012 [11] i i v v v ¥ max. préf visites PNE® Génération de colonnes
Tricoire 2006 [1], Bostel PO P ,r Algorithme mémétique et génération de
2008 [15] colonnes sur horizon roulant
Tricoire 2011 [16] e v R v Génération de colonnes
Zhang 2012 [18] v TP v min. nb veh. ccp® Recherche dispersée
Jie 2010 [19] v P2 v v ccp® Algorithme génétique
Shao 2010 [20] e | v ccp® Optimisation par essaims particulaires
Tavakkoli 2012 [21] Pe | v ccp® Recuit simulé hybride
Russell 2007 [22] v v PE |V v min. nb veh N/A Recherche taboue
Campbell 2011 [23] v v TS@ N/A Recherche locale & voisinage variable
Tas 2011 [24] l v v TS@ v PNE® Recherche taboue
Shen 2006 [26] e v v PME, cCP® | Heuristigue basée sur la rech. taboue
Ando 2006 [27] v v v ™2 | v v min. nb veh. Algorithme génétique
(.) Recherche locale granulaire a voisinage
v @ |~ min. tps senice ® g 9
Lei 2011 [29] s - P MS2E variable
Contés 2007 [30] v v v T8 | v v MR Génération de colonnes
Souyris2012 [31] v v v 8@ |v v v~ ccp® Génération de colonnes
Xu 1994 [32] TS@ min. tps moy.¥ N/A Heuristique Part-TSP
Laporte 1992 [33] TP, TS@| v min_ nb veh. MS2E.ccP® Branch and Cut algorithm
Kenyon 2003 [35] v TS, TP@ min. h de fin® PNE® Simulation de Monte Carlo + DESVRP
VWang 2001 [36] v TS, TP@) v Pb d'affectation N/A
Teng 2004 [37] v TS, TP@ v v MS2E® Integer L-shaped Method
Li 2010 [38] v v v TS, TPE| ~ v MS2E.cCP® | Heuristique basée sur la rech. taboue

Figure 3.2 Tableau récapitulatif : Problemes qui ne sont pas traités en temps réel

20

Nous pouvons observer dans ces tableaux que le probleme auquel nous nous intéressons
est nouveau car il prend en compte simultanément une priorité entre les clients et des temps
de parcours et de service stochastiques. Pour résoudre ce probleme, on propose une méthodo-
logie en deux étapes : la planification et I'exécution. Au cours de I’étape de planification, on
construit des routes avec des clients obligatoires et des clients optionnels en utilisant des esti-
més connus a priori. Ensuite, dans I'étape d’exécution, on utilise des outils de programmation
dynamique pour déterminer la politique optimale a partir des distributions de probabilité des
temps de service et de parcours. Dans le chapitre suivant, nous allons prouver que la politique

optimale de notre programmation dynamique est une politique de seuil.

21

CHAPITRE 4

Politique optimale et politique de seuil

Pour résoudre le probleme de tournées de service avec temps de parcours et de service
stochastiques présenté au chapitre 1, on propose une méthodologie en deux étapes : la plani-
fication et I'exécution. Au cours de I’étape de planification, on construit des routes avec des
clients obligatoires et des clients optionnels en utilisant des estimés connus a priori. Ensuite,
durant I’étape d’exécution, on utilise des outils de programmation dynamique pour détermi-
ner la politique optimale a partir des distributions de probabilité des temps de service et de
parcours. Au cours du déroulement des simulations (du déroulement de I’horizon de temps),
on peut alors réagir rapidement en temps réel en adoptant la décision définie par la politique
optimale ainsi obtenue. Dans ce chapitre, nous allons prouver que la politique optimale de
notre programmation dynamique est une politique de seuil. Dans un premier temps, nous
présentons le contexte de notre preuve et les deux algorithmes de programmation dynamique
proposés. Ensuite, nous donnerons les notations et hypotheses. Enfin, nous montrerons que la
politique optimale pour nos deux algorithmes de programmation dynamique est une politique

de preuve.

4.1 Contexte et algorithmes proposés

Supposons que 1'on dispose d’un ensemble de routes prévues pour une flotte de véhicules,
contenant simultanément des clients obligatoires et des clients optionnels. On définit alors
la notion de segment comme étant la portion de route entre deux clients obligatoires (les
dépots sont considérés comme des clients obligatoires). A chaque segment est associée une
liste de clients optionnels, qui peut étre vide (cf. exemple ci-dessous). Aussi, on suppose que
les segments sont rangés comme suit (cf. figure 1)) : le segment p+ 1 a pour origine le client
obligatoire oP™! = dP (client obligatoire correspondant a la destination du segment p). Par
exemple, prenons la route prévue (o,1,2,a,3,4,5,6,b,¢,7,d) d'un véhicule, avec o le dépot
origine, d le dépot destination, a, b et c trois clients obligatoires et 1,2,3,4,5 et 6 des clients
optionnels. Cette route est composée de quatre segments : le segment |0, a, le segment [a,],
le segment [b, ¢] et le segment [c, d]|. A chacun de ces segments est associée une liste ordonnée
de clients optionnels : pour |o,a], il s’agit de la liste {1,2}; pour [a,b], il s’agit de la liste
{3,4,5}; pour [b, ¢] il s’agit de la liste vide, et pour [c,d] de la liste {7}.

22

Segment 3
Segmentl\‘D/bseglnent 2 *

* Origin and destination depots

Mandatory customer a

Segment 0

Figure 4.1 Ordre des segments pour un véhicule donné (route)

On suppose également que 'objectif est de maximiser la somme des profits associés a
la desserte des clients optionnels, tout en minimisant la somme pondérée du retard chez les
clients obligatoires et des temps de parcours. Pour faire face aux temps de parcours et de
service stochastiques, on utilise, pour chaque véhicule de la flotte, des outils de programma-
tion dynamique pour déterminer la politique optimale (qui servira ensuite a modifier la route
prévue en temps réel). Nous supposons que chaque étape de la programmation dynamique
correspond a la fin de service chez un client (obligatoire ou non) et nous proposons alors deux

algorithmes de programmation dynamique.

Dans le premier algorithme, on ne considere que le segment en cours. L’objectif est de
maximiser le profit espéré sur le segment courant. Soit p ce segment, v le client courant et d?
le client destination du segment p, deux choix sont alors possibles : soit on se rend directement
chez le client destination du segment dP, soit on visite un client optionnel, dont le service est
prévu entre v et dP (cf. figure L.2).

Dans le deuxieme algorithme, on considere le reste de la route. Les choix sont alors les
mémes que ci-dessus sauf que I'objectif n’est plus de maximiser le profit espéré sur le segment

courant mais plutot de maximiser le profit espéré sur le reste de la route.

23

2 e

@ Optional customer v1 —> Traveled path

—> Planned path

a Mandatory customer a

---» Possibilities

Figure 4.2 Etape k de la programmation dynamique

4.2 Notations

Soit un segment {0, vy, v, ..., vn, d}, ot {v1, Vg, ..., N} est la liste ordonnée des clients option-

nels associés a ce segment. On utilisera les notations suivantes :

— Parametres généraux :

N ensemble des clients, obligatoires ou optionnels

@) ensemble des clients optionnels

Do, profit associé a la desserte du client optionnel v;

« pondération des temps de parcours dans la fonction de revenu
D;; distance entre les clients 7 et j

Iy pénalité de retard associée au client destination du segment
leq; La] fenétre de temps du client destination du segment

a; temps de service minimal chez le client ¢

T, temps de service maximal chez le client ¢

Tij temps de parcours minimal pour aller de 7 a j

Tij temps de parcours maximal pour aller de i a j

f(d,t,0) profit espéré si on débute le service du client d & t

— Parametres a 1'étape k :

24

th heure de fin de service du client vy,
Vi ensemble des clients optionnels associés au segment situés
apres vy

f(vg,ty, Vi) profit espéré si on finit le service du client v, (avec vy # d) &
i

Pour tout client 7, le temps de service, noté o;, suit une loi de distribution triangulaire

discrete entre g, — 1 et 7; + 1, de mode 0.

Le temps de parcours unitaire, noté J, suit une loi de distribution triangulaire discrete
entre § — 1 et § + 1, de mode 5.

4.3 Hypotheses

Pi (H1)
E(oi)
On suppose que les distances vérifient 'inégalité triangulaire :

On choisit I'y tel que : Vie O, T4>

VYa.b.c € N, Dy + Dy > Dy, (H2)
On suppose que les temps de parcours sont discrets et distribués comme suit :
Vij €N, Plry;=m)=P([Dys] =m) (H3)
Comme les temps de parcours sont discrets, on suppose sans perte de généralité
que :
Vi,j € N, avec 1 #j, T, =1 (H4)
On suppose que les temps de parcours et les temps de service sont indépendants. (H5)

A partir des hypotheses (H2) et (H3), on a :

3
Vi,j € N,E(ri;) = Y _ P(ry=m)m=Y P(6=m)[D;d]

m=r;; m=4

25

Ainsi,

D’ou la propriété sur les temps de parcours :
Va,b,c € N, E(Ta) + E(Tee) = E(Tac) (P1)

4.4 Algorithme 1 : preuve sur un segment

Rappelons que chaque étape de la programmation dynamique correspond a la fin de service
chez un client. On dispose alors d’une liste de clients optionnels pouvant étre servis avant
le prochain client obligatoire. Deux options sont a envisager a 1’étape k : soit on se rend
directement chez le prochain client obligatoire, soit on se rend chez le client optionnel de V;,
qui maximise le profit espéré.

Le premier algortihme de programmation dynamique consiste a ne considérer quun seul
segment. En notant R,.(v,t) le profit espéré lié au fait de se rendre au client ¢ depuis le client
v au temps ¢ (heure de fin de service chez le client v), la fonction de revenu peut alors étre

formulée comme suit :

Ry(vg, ty)
maX@er R@ (Uk, tk)

f(vk, tk, Vk) = Imax {

s —aB(Tya) + E(f(d, ty + Topa, 0))
) Heeer (pﬁ — @B (Ty5) + E(f (0,15 + Too + 00, Vk\{ﬁ}))>

avec f(d,t,0) = —T'ymax(t — l4,0)

Montrons que, dans le cadre de cet algorithme, la politique optimale est une politique de
seuil. Pour ce faire, on procedera par induction sur les clients optionnels et on prouvera les

assertions suivantes :

26

Ai(k) 1 Yo € Vi, Ry(vg,la) < Ra(vg, la)

Ax(k) : Vo € Vi, Ry(vg,t) est décroissante.

As(k) : Vo € Vi, Vt, Ry(vp,t +1) — Ry(vp,t) < Rg(vg,t + 1) — Ryg(vg,t) (en d’autres
termes, Rg(vg,t) — Ry(vg, t) est croissante)

Ay(k) : f(vg,t, V) est une fonction décroissante du temps.

4.4.1 Client destination d

On se trouve chez le client destination du segment.

Le revenu se calcule alors comme suit :

0 Sit{ld

—I'y(t —lz) sinon

f(d> t? ®> = _Pd maX(t — ld, 0) = {

Ce revenu est bien une fonction décroissante du temps. En effet, elle est décroissante sur
chacun des morceaux et Vt > Iy, f(d,t,0) = —T4(t — lg) < 0= f(d,14,0).

4.4.2 Client optionnel vy (étape k = N)

Supposons qu’on se trouve au dernier client optionnel du segment, on se rend donc directe-

ment au client destination du segment :

?'“Nd

f(/UNatNa @) = _aE(Tde) + Z P(Tde - m)f(d7 tn + m, (D)

mzzde

Ici, Viy est vide, les assertions A (N), As(N) et Az(N) sont donc clairement vérifiées. De plus,
comme le revenu au client destination est une fonction décroissante du temps, f(vy,ty,0)
est aussi une fonction décroissante du temps (et A4(N) est vérifiée). On a bien une politique

de seuil, étant donné qu’on décide de se rendre au client destination en tout temps.

4.4.3 Client optionnel vy_; (étape k=N — 1)

Supposons maintenant que ’on se trouve a l’avant-dernier client optionnel du segment. On a
deux possibilités : soit on se rend directement au client destination, soit on visite le dernier

client optionnel du segment. Le choix est déterminé par I'équation :

floy_1,tn-1,{vn}) = max (Ra(vn-1,tn-1))

R, (un_1,tN—1)

27

avec
F1)1\]710l
Ry(vy-1,tn-1) = —aBE(Tuy_a) + Y P(ruy_ja=m)f(d ty_y+m,0)
M=Ton_1d

RUN (UN—17tN—1) = Poy — aE(TUN—lvN)

Ton_1vN Tupn
+ Z P(TUN—I’UN = m) Z P(UUN = n)f(UNu INn-1+m+ n, (Z))
M=Tyn_1vN =%y

Ainsi, on ira directement au client destination du segment si Ry(vn_1,t) = Ry, (vn_1,1).

Simplifions I'écriture de Ry(vy_1,t) :

Ton_1d
Ry(vy-1,t) = —aB(toy o)+ Y P(roy_ya=m)f(d,t+m,0)
M=Ty_1d
Ton_1d
=—aFB(ryy_ya) — T4 Z P(Tyy_,a = m)max(t +m — [4,0)
M=Ty_1d
Ton_1d

Ra(vn-1,t) = —aB(Tuy_a) — T Z P(roy qa=m)(t+m—1la)| (4.1)

m=max(lg—t+1,7,)

Et celle de R, (vn-1,1) :

RUN ('UN,1, t) = Pun — &E(TUN—I'UN)

F1;1\]711)]\/ EUN
+ Z P(T'UNfl'UN = m) Z P(UUN = n)f(UNa t+m+n, @)
M=Ton_1vN =9,y

Aussi, d’apres 'hypothese (H5), les temps de service et de parcours sont indépendants donc

28
P(ri;)P(0;) = P(7i; + ;). D’ou :

RvN (’UNfla t) = Doy — aE<TUN—1UN)

?1)N71”N+E1)N

- Z P<TUN*1UN + Ov, = m)f(vf\ﬁ t+ m, (D)

m=T a
—UN-1YN +*UN

FquN*l UN +EUN

= Doy — @B (Toy _yoy) + Z P(Toy_yoy + v, = m)(— aB(Tyya)

M=Tyn_ oy TSy
F'uNd
+ Y Plruga=n)f(d,t+m+n,0))
n:Ide

RUN (UN—IJ t) = Pon — aE<TUN—1UN) - OéE(Tde)

F1)]\771111\74‘51)]\; ?de
+ Z P(Tyy_yon + 00, =m) Z P(1yya =n)max(t +m +n,0)| (4.2)
M=Tyn_1ony Ty N=Typd

Pour montrer que la politique optimale est bien une politique de seuil a I’étape k = N —1, on
prouvera les assertions A; (N — 1), Ay(N — 1), A3(N — 1) et A4(N — 1) puis on en conclura

que 'on a bien une politique de seuil :
Preuve de l’assertion A;(N — 1)

Pour prouver que I'assertion A4, (N —1) est vraie, montrons que Ry(vn_1,lq) = Ry (vn_1,14).
Pour ce faire développons 'expression de Ry(vn_1,q) puis celle de R, (vn_1,(q)

D’apres I'équation (41, on sait que Ry(vy_1,[lq) vaut :

F'U]\]_ld

Rd(UN—la ld) = _aE(TvN,ld) - Fd Z P(TUN,ld = m)m

m:max(l,LJN_ L a)

Or, d’apres I'hypothese (H4), comme vy_; # d, max(1,7,,) =

Toyn_qd

29

On obtient donc :

?UNfld
Ry(on—1,1a) = —0B(7yy) =Ta > Pty ,a=m)m
M=Ton_qd
- _O‘E<T’0N71d) - FdE(TUN—ld)
Ra(vn_1,la) = —(a +T0)E(Toy_1a) (4.3)

Calculons maintenant R, (vy_1,lq), & partir de I'équation (£.2) :

R’UN (UNfla ld) = Pun — OC(E(TUN_IUN> + E(Tde))

Toy 1oy TOuy Tund
— Ty Z P(Tyy_jon + vy =m) Z P(7,ya = n)max(m +n,0)
M=Ty, 0 oy Ty N=Tynd
(4.4)
= Doy — Oé(E(TUN—l'UN> + E(Tde))
Ton_q1on TOuN Tond
— Ly Z P(T'UN—I'UN + Ouy = m) Z P(Tde = n) (m + n)
M=T, oy n=r, 4
Tupnd
= Puoy — &(E(TUN—IUN> + E(Tde)) — Iy Z P(TUNd = n)n
N=Tynd
Toy_1oN Ty
—Ty Z P(Toy_yoy + vy = m)m (4.5)
M=Tyn_yon Ty

Aussi, d’apres 'hypothese (H5), les temps de service et de parcours sont indépendants

30

donc P(Tyy_jon + 0v,) = P(Tun_yun) P(0uy). Dol :

RUN (UN*M ld) = DPuy — C“(E(TUN—WN) + E<TUNd)) - FdE<Tde)

TUN*IUN O'UN
Ty Z P(Tyy_jon = M) Z P(o,, =n)(m+mn)
M=T, . oy n=g,.
= Doy — oz(E(TvalvN) + E(Tde)) — TyE(Tyya)
ToN_1VN Tupn
—Ta > P(roy oy =m)m =Ty Z (o =
M=Toy vy oy

= Duvy — O‘(E(TUNAVN) + E<TUNd)) - FdE(Tde)
— Ty (E<TUN—1'UN) + E(UUN))
= Duy — (a + Fd) (E(TUN—I'UN) + E(Tde)) - FdE(UUN)

Aussi, d’apres (H1), 'y > % et pyy — LaFE(0yy) < 0. Dot :
o

UN
RUN (UN—17 ld) < _(a + Fd) [E(TUN—WN) + E<TUNd) }
>E(ryy_;a) (apres (P1))

—(a+Ta)E(Toy_,a)
Ra(vn-1,1a))

<
<

RUN (UNfl, ld)

Preuve de ’assertion Ay(N — 1)

Montrons que Ry et R, sont décroissantes (assertion Az(N — 1)).

Par définition, Ry(v,t) = —aE(Tu) + i P(7og =m)f(d,t +m,0).
. M=T,q
Ainsi, Ry(v,t + 1) — Ry(v,t) Z P(1oa =m)(f(d,t +1+m,0)— f(d,t +m,0)).
Comme f(d,t,0) est décroissantwé, T}U%dd(v, t) l'est ¢galement pour tout v.
De méme, R, (v,t) = —aE(Ty,) + iv P(Tyy = m)f(vn,t + m,0). En procédant

U'UN
comme pour Ry(v,t), on montre que, comme f(vy,t, () est décroissante, R, (v,t) est dé-

croissante pour tout v.

31

Preuve de l’assertion A3(N — 1)

Montrons a présent que I'assertion A3(N — 1) est vraie.
En notant ARg(v,—1,t) = Rg(vy_1,t + 1) — Rg(vn_1,1t) et en utilisant I’équation ([Z.]), on
obtient :

Tun_1d
ARy(vy_1,t) = =Ty > P(Tyy_a=m)(t+1+m—1y)
m=max(lg—t,r, 4)
Ton_1d
+ Ty > P(Tyy_ja=m)(t+m —ly)

m:max(ld725+1,L)J\F1 a)

Deux cas sont a envisager :
~ Soit 7, 4= la—t+1 (ouencore P(7,y_q=1ls—1t)=1).

On a alors max(ly — ¢, T

vN,ld) =max(lg —t+ 1,L,N71d) =T 4 Ce qui donne

—UN-—1

Toy_1d

ARd(UNfl,t) = —Fd Z P(TvN,ld = m) = —Fd = _PdP<TvN,1d 2 ld — t)
M=Toy_qd
= Soit 7, 4 <lg—t.

Lo

On a alors : max(lg —t,7, 4) =la—tet max(lg—t+1,7,) =la—t+1. Etdonc

TUNfld
ARy(ox-1,t) = =Tq Y P(ry, a=m)(t+1+m—1ly)
m=lg—t
?’L}N_ld
+Ta Y Plrya=m)t+m—1l)
m=lg—t+1

Or,enm=Il;—t,t+m—1;=0.Dou:

Ton_1d Ton_1d

> Py a=m)t+m—1l)= Y Pty a=m)t+m=1l)

m=lg—t+1 m=lg—t

32

On en déduit que :

ARd(UN_l,t) = —Fd Z P(TvN,ld = m) <(t +14+m— ld) — (t +m — ld)>
m=lg—t
7_—’UN_1d
= —Fd Z P(TUN,ld = m)
m=lg—t
ARd(UN_l, t) = _FdP(TvN_ld } ld — t) (46)

En raisonnant comme ci-dessus, a partir de ’équation (€2]), on obtient :

R,y (vn—1,t +1) — R, (vn_1,1)

Ton_ oy +0uy Fund
=TIy Z P(Top_yuy + O, = m) Z P(Typa =n)max(t + 14+ m+n—10)
M=Tyn 1oy ooy N=Tond
Ton_ oy +0uy Fund
+ Ty Z P(Toy_yuy + 0w, = m) Z P(Typa =n)max(t +m +mn —lg,0)
M=Tyy oy Ty n=Tyd

= —Ty(Ry-1na(t +1) — Ry_1n.a(t))

ARy, (vn—1,t) = —Ta(Ry-1na(t +1) — Ry_1,n.4(t)) (4.7)

Montrons que V¢, R, (vn-1,t + 1) — Ry (vy—1,t) < Ra(vy-1,t +1) — Ra(vn_1,1).

— Soit ¢ 2 ld
On a alors P(7,y a2 la—1t) =1 et ARy(vy_1,t) = —I'q. On sait aussi que max(t +
l4+m+n—1450)=t+1+m+n—Ilget max(t+m+n—1040)=t+m+n—1;, dou:

R,y (vn_1,t+1) — Ry (vn_1,t) = Rg(vy_1,t + 1) — Ra(vn_1,t) = =Ty

— Soit t < ld
Montrons qu’alors (RN_LN,d(t +1)— RN_LN,d(t)) > P(Tyy_ya=la—1t). Ona:

P(TvN_ld 2 ld — t) = P((DvN_1d5—‘ 2 ld — t)

Soit d; tel que (DvNild(& — 1)} <lg—t< {DUN*ldél-‘.
Alors, P(Tyy_ya = la—1t) = P(6 = &1).

33

Aussi, Ry_1 n4(t) peut s’écrire :

Rn_1na(t)
3 Toy
— Z P(6=m) Z P(o,, =n)max (t + (DUN_lvaW + (DUNde +n—Ilg 0>
m=4 n=a, .
S1-1 Ton

— P(§=m) Z P(o,, = n)max (t + (DUN_IUNmW + (DdemW +n— ld,0>

m=4 n=c,
3 Fox
+ Z P(6 =m) Z P(0,, = n)max <t + {Dvawwa + {DUNde +n— ld,O)
m=0d1 n=a, .

Soit 0 > 0;. D’apres les propriétés de la fonction plafond, [a] + [b] > [a + b]. Dot :

t+ [Duoy yon0| + [Doyad| +n—lg =t + [(Doy_ oy + Duya) 6] +n— 1y

J/

2Dyy a d'apres (H2)

2 t+ ’V(D'UNfld)(;—‘ +n— ld
2 t+ ’V(D’UNfld)él—‘ +n— ld
>t+(ld—t)—|—n—ld:n>0

Donc, V6 > 61, t + [Dyy_yuy 0| + [Dyyad] +n—1la >0 Et :

Rn_1n4(t)
51—1 Ty
= Z P(6 =m) Z P(0,, = n)max (t + [Dyy_yoxm] + [Dyyam]| +n — g, O)
m=a4 n=a,
3 Foy
+ Z P(d=m) Z P(o,, =n) (t + [Duy_yoxm| + [Doyam| +n — ld>
m=0d1 n=ag

Zopn

34

En utilisant cette expression, recalculons (RN_17N7d(t +1) - RN_17N7d(t)).
Ry_1na(t+1) — Ry_1na(t)

61—1 EUN
= Z P(6=m) Z P(0,, = n)max (t +1+ [DUN*lmeW + (Ddemw +n—lg, O)
m=4

n=a.

=0,
) Ty
+ Z P(6=m) Z P(o,, =n) (t +1+ (DvN_lvaW + (Ddemw +n— ld>
m=d1 n=a, .
01—1 [N

— Z P(6=m) Z P(o,, = n)max <t + [Dyy_yoxm]| + [Dyyam] +n — ld,0>

m=4 n=a, .
5 C
=S PE=m) > Ploy, =n)(t+ [Duy soym] + [Doyam] +1 - 1a)
m=01 n=a,
51—1 Tup
= Z P(6 =m) P(o,, =n) [max (t +1+ [DUN,lva-‘ + (DUNdTrﬂ +n —lg, O)
m=4 n=c

— max (t + ’_Dvawwa + ’_Ddem-‘ +n —ly, 0)]

3 Fox
+ > P@E=m) Y Plo, =n) (t + 14 [Doy_uym| + [Dyyam| +n— ld>
m=0d1 n=g,,

_ (t + (DvNilva] + {Ddemw +n— ld)

5 Fuy
>3 Pa=m) S Plo,, =n) (t + 14 [Dyy_oym] + [Dugam] +n — zd)
m=0d1 n=a,,

— (t+ [y sowm] + [Doyam] +n — ld)]

3 Toy
>Y P(@=m) Y P, =n)
m=0d1 n=ag

35

Ry_ina(t+1) — Ryv_1na(t) = P(6 = 01) (4.8)

On en conclut, d’apres ([.6]) et (L1), que :
Ry (vn-1,t+1) = Ry (vn-1,t) < Ra(vn—1,t + 1) — Rg(vn_1,1)
L’assertion A3(N — 1) est donc bien vérifiée.

Soit s tel que Ry(vy_1,5) = Ryy(vn-1,5) et soit ¢t > s. D’apres A3(N — 1), on a :

tf
Rq(vn-1,t) = Ry(vn-1,5) + (Rd(UNA, s+k+1)— Rg(vn_1,s + k))
-0

—

o

1
2 RUN (UNfl, S) + (RvN (UNfl, S + k + 1) — RUN (UNfl, S + k))
k=0

> Ry, (vn_1,t)

Donc Vt > s, on vérifie bien Ry(vy_1,t) = Ry (vn-1,1).

On a montré (*) que les fonctions de revenu Ry et R, décroissent avec le temps (cf. section
MA3) et (**) que Ry(vn—1,lq) = Ryy(vn-1,1q) (cf. section [L.43]). On sait aussi (***) que s'il
existe un s pour lequel Ry(vn_1,5) = Ry (vn-1,$), alors Vt > s, Rg(vy_1,t) = Ry, (vy_1,1)
(cf. ci-dessus).
Deux cas sont donc & envisager (on suppose que l'instant initial au client vy_; est I'instant
0) :
— Soit Ry(vn-1,0) = Ry, (vn-1,0), auquel cas on préferera toujours aller au client desti-
nation (s = —1).
— Soit Ry(vn-1,0) < Ry, (vy—1,0). Auquel cas, d’apres (*) et (**), il existe au moins
un seuil en lequel Ry(vy_1,t) — Ryy(vn—_1,t) change de signe. D’apres (***), ce seuil
s est unique et vérifie V¢ < s, Ry (vn-1,t) = Rg(vn_1,t) et Vt > s, Ry(uy_1,t) =

RvN (UNfl, f})

Dans tous les cas, on a bien une politique de seuil, le revenu est bien une fonction décroissante
du temps (A4(N — 1) est vérifiée) et il existe bien un seuil unique entre vy et d.
4.4.4 Induction sur les clients optionnels

Supposons a présent que la politique optimale aux étapes k + 1,k + 2, ..., N soit bien une

politique de seuil, et que les assertions Ay, Ay, A3 et Ay soient vraies a ces étapes.

36

Montrons qu’alors, ces assertions sont toujours vraies a I’étape k et que la politique optimale
a I'étape k est une politique de seuil.
A T'étape k, on dispose de plusieurs possibilités : soit on va directement au client destination,

soit on se rend chez un client optionnel de V.

kad

—aB(tya)+ > P(rya=m)f(d t +m,0))

m:Ivkd

f(vg, ty, Vi) = max

veVy

max (pv — aE(7y,5)

+ Y Plue=m) Y. Plov=mf(@titmtn, Vk\{vb)

\ m:Iva) n:g'ﬁ

Pour montrer que I'on a bien une politique de seuil a 1’étape k, on procede en trois temps :

1. Montrer qu’il existe un seuil unique entre tout client optionnel de Vj, et le client desti-

nation

2. Montrer qu'il existe un (ou plusieurs) seuil(s) entre toute paire de clients optionnels de
Vi

3. Montrer que ces seuils définissent une politique de seuil

Seuil unique entre un client optionnel et le client destination

Soient vy, le client courant et ¢; un client optionnel de V;,, on notera R, (vg, t) le profit espéré
si on décide d’aller au client ¢; et Ry(vg,t) le profit espéré si on se rend au client destination
au temps t.

On veut montrer ici qu’il existe un seuil s pour lequel Vi < s, on va visiter le client ¢
(Ra(vi,t) < Re,(vk, 1)) et YVt > s, on se rend en d (Ry(vk,t) = R, (vi, 1)).

Pour ce faire, raisonnons comme précédemment : montrons les assertions A;(k), Az(k) et

As (k).

— Montrons que l'assertion A, (k) est vraie, soit Ry(vk,lqa) = Re, (g, la).
D’apres I'équation ([A3)), Ra(vk,la) = —(a + Tq) E(Typ.a)-

37

Aussi, par définition, on a :

Rcl (Uka ld) = Pe; — QE<Tvk61)

kacl Ecl
+ Z P(Tyc, =m) Z P(o.,, =n)f(er,lg+m+n)
M=Ty;cq n=0¢

Tuper H0e;

= Doy — @B (Ty0,) + Z P(Tpe, +0c, =m) fer,lg+m)

m:I’Uk C1 Jrg(,‘l

Soit k; I'étape associée au client ¢;, comme ¢; € Vi, on sait que k; > k. Soit v € Vkl.
Par hypothese de récurrence, quand on se trouve au client ¢;, les assertions A; et Az

sont vérifiées. On a donc :
Ry(c1,lq) = Ry(c,lg)etRy(cr, t + 1) — Ry(eq,t) = Ry(eq,t +1) — Ry(ca, t)

D’ou les inégalités pour tout ¢t > I, :

t—1

Ry(c1,t) = Ra(cr,la) + Y (Ralcr,m + 1) — Ra(cr, m))

m:ld
t—1

> Ry(erla) + Y (Ro(cr,m+1) = Ry(ci,m))

m=ly

Ry(cy1,t) = Ry(c1,t)

Ainsi, Vt > Iy, on a : Yo € Vi, Ra(er,t) = Ry(c1,t). Done Vt > 1y, f(c1,t) = Ry(cr,t).
On en déduit :

Tuper +0e;

RC1 (Ulﬁ ld) = Pey — aE(TUkCI) + Z P(Tvkcl + 0 = m)Rd(Ch lq + m)

M=Ty, ¢y T,

= Pey — O‘E(Tvkq) - O‘E(Tcui)

Toger +0c; Ferd
—Ty E P(Tyye, + 0cp =m) g P(7e;q = n) max(m + n, 0)
m:Ivk c1 +gcl n:Icl d

En raisonnant comme pour I'équation (f.4)), en remplagant vy par ¢; et vy_1 par vy,

38

on obtient :

Rey (Vi a) = ey = 0B (7o) = 0B(rra) = Da | E(e) + B(rra) + Elo,)

=pe, — LgE(0) —(a+Ty) [E(T»Ukcl) + E(Tcld)]

(. /

<O(d"apres (H1)) >B(ry, q) (dapres (P1)

< —(a+Tg)E(Tua)
R, (v, la) < Ra(vg, la)

— Montrons a présent que R, et R., sont décroissantes (assertion Ay(k)).
Comme précédemment, Ry est décroissante. Aussi, par hypothese de récurrence, f(cy,t, Ve,)

est décroissante donc R,, est décroissante.

— Montrons désormais que 'assertion Asz(k) est vérifiée.
D’apres 1'équation ([L4), on a : Ry(vg,t + 1) — Rg(vg,t) = —T4P (70 = la — t). En
notant AR, (vg,t) = Rey(vg, t + 1) — Req(vg, t), on a :

Toger +0e;

ARd(Uk?t) = Z P(Tvkcl + 0 :m)(f<clvt+1+m>_f<clat+m>>

mzzvk cq +gcl

Soient ¢,, le sommet choisi en ¢t +m et ¢, 1 le sommet choisi en ¢t +m + 1.

Alors, f(ei,t+1+m) — f(er,t+m) =R, ., (c1,t +1+m) = R, (c1,t +m).

Aussi, R, (c1,t+m) > R, ., (c1,t +m).

On en déduit que f(ci,t+1+m)— f(cr,t+m) < R, (c1,t+1+m)—R., . (c1,t+m)

?vkcl +Ec1

ARa(ve) < 3. Plre + 00 =m)(Repslert 414 m) = R, (cr,t +m))

M=Ty, cq to.,

Or, par hypothese de récurrence, Ajs est vraie aux étapes k + 1, ..., N. Donc

R, . (ci,t+1) =R, . (c1,t) < Ry(cr,t +1+m) — Ry(cr, t +m)

39

D’ou :

kacl +Ecl

ARa(vt) < Y. Plrye +0o, =m) (Rd(cl,t +m+1) — Ry(er, t+ m))

m= 7vkc1 +ch

Tvkcl +0cq

< Z P(Tye, +0¢ = m)(— L P(Tejqa = lg—t— m))

< =Tyd_ PO =m)P(0e > la—1t = [Dyem] + [Deam])

Or, soit 0y tel que P(T,,q = lg —1t) = P(0 > d2), et soit 6 > d9, on a :

’_kaq(ﬂ ’_ cld(ﬂ 2 I— vEC1 +Dcld 5-‘
2 [de(ﬂ
2 [de52—‘
>lg—t
Donc :
AR (v, t) < =Ty Z P(s P(0e, = lg—t — [Dyeym] + [Deyam])
—Ty Z P(6=m)P(0., =1y —t — [Dyeym] + [Deyam])
m=dso
5
—Ty Y P(6=m)P(o, > lg—t— [Dyem] + [Deam])
m=do
< —de(5 2 52) = —FdP(Tde 2 ld — t)
AR (vg,t) < Ra(vg, t +1) — Ra(vg,)

L’assertion A3 est donc vérifiée a I'étape k.

On sait donc que les fonctions de revenu R, et Ry sont décroissantes et que

Ry(vg,lg) = Rey (g, 1g).

De plus, comme Aj3(k) est vraie, en procédant comme a ’étape N — 1, on peut montrer que
sl existe s pour lequel on a Ry(vk,) = R, (vg, s), alors Vt > s, Ry(vg, t) = R, (vg,t). Deux
cas sont donc a envisager :

— Soit Ry(vg,0) = R, (v, 0), auquel cas on préferera toujours aller au client destination

40

(s =—1).
— Soit Rg(vg,0) < R, (vk, 0), auquel cas, il existe un seuil unique s vérifiant V¢ < s, on
choisit d’aller au client ¢y et Vt > s, on choisit d’aller directement au client destination

du segment.

Il existe donc bien un seuil unique entre tout client optionnel de Vj, et le client destination

du segment.

Seuil(s) entre deux clients optionnels

Soient ¢; et ¢y deux clients optionnels de V}, on notera R, (vy,t) et R, (v, t) le profit espéré
si on décide d’aller respectivement au client ¢; et ¢y au temps ¢.

On veut montrer ici qu’il existe un (ou plusieurs) seuil(s) 1, ..., s, pour lesquels Vi €]sy, s,
on préfere aller visiter ¢; (réciproquement cy) et Vt €]sy, s3], on préfere aller visiter ¢y (récipro-
quement ¢;). On montre trés simplement, comme ci-dessus, que R,, et R., sont décroissantes.
Deux cas sont alors a envisager :

— Soit R, (0) — R,(0) et Re,(lq) — Re,(lg) sont tous les deux positifs (réciproquement
négatifs). Deux cas sont alors possibles. Soit Vi € [0;14], Re, (t) — Re,(t) est positif
(réciproquement négatif). On préferera donc toujours visiter ¢; (réciproquement cs).
Soit il existe au moins un intervalle sur lequel R,, (t)— R., (t) est négatif (réciproquement
positif). Sur cet (ces) intervalle(s), on préferera donc aller en ¢y (réciproquement c;) et
hors de cet (ces) intervalle(s), on préferera aller en ¢; (récipro-quement c;).

— Soit R, (0) — R, (0) et R, (la) — Re,(la) sont de signe contraire. Auquel cas, il existe au
moins un seuil s en lequel R, (t) — R,,(t) change de signe (id est, un point en lequel il
devient préférable de visiter non plus ¢y mais ¢;, ou l'inverse).

Il existe donc bien au moins un seuil pour chaque paire de clients optionnels de V.

Politique de seuil

Montrons que I'on a donc bien une politique de seuil. Soit s1 le maximum des seuils entre les
clients optionnels de Vj, et le client destination (et cl le client associé a ce seuil). Pour tout
t < s1, il existe un client optionnel préférable au client destination. Par contre, si ¢t > s1, on
préferera aller directement au client destination. On a donc identifié un premier seuil s1.
Maintenant, soit S, I’ensemble des seuils s; entre les clients optionnels de Vj, et le client cl
pour lesquels V¢ > s;, on va au client c1. Soit s2 le plus grand seuil de S, et ¢2 le client qui lui
est associé. Pour tout ¢t < s2, il existe un client optionnel préférable au client c1. Par contre,
sit > s2, il est préférable d’aller au client c1. On a donc identifié un deuxieme seuil s2.

On procede ainsi jusqu’a 'étape h + 1 pour laquelle Sy est vide. On obtient ainsi A seuils

41

sl,s2,...,sh et les clients associés cl, 2, ..., ch. La politique optimale est alors la suivante :
Vt < sh, on va au client ch
Vt,sh <t < s(h—1), on va au client ¢(h — 1)

Vt,s2 <t < sl, on va au client cl
Vt > s1, on se rend directement au client destination du segment d

On a donc bien identifié une politique de seuil a ’étape k.

Décroissance de la fonction de revenu (assertion A4(k))

Montrons que la fonction de revenu est décroissante (jusqu’ici, on sait juste qu’elle est dé-
croissante par morceaux, chaque morceau étant délimité par les seuils). Considérons deux
morceaux successifs ml = [t1,¢2] et m2 = [t2 + 1, ¢3]. Supposons que, sur m1, le revenu soit
donné par R1 et sur m2 par R2.

Montrons que R1(t2) > R2(t2 + 1), ce qui prouvera la décroissance au niveau des disconti-
nuités.

On sait que R2 est décroissante donc R2(12) > R2(t2+ 1).

De plus, sur m1 = [t1, 2], le revenu est donné par R1 donc R1(t2) > R2(t2).

On en conclut que R1(t2) > R2(t2) > R2(t2 + 1).

La fonction de revenu a I’étape k est donc bien décroissante sur son ensemble de définition.

4.5 Algorithme 2 : preuve sur toute la route

Nous venons de traiter la premiere stratégie ne considérant qu’un seul segment. Nous nous
intéressons a présent a la deuxieme stratégie considérant le reste de la route. Dans cette
section, on réintroduit donc l'index p du segment (on notera of l'origine du segment, dP
la destination du segment et Vkp I’ensemble des clients optionnels, associés au segment p,
situés apres vg). On introduit également la notation VP pour désigner 'ensemble des clients
optionnels associés au segment p. On notera dans cette section f (Vk, t, V) le revenu espéré si
on finit le service du client v, a ty pour cette stratégie et f (dP,t) le revenu espéré si on débute
le service du client d” a t. On notera également de<vk7 t) et Rﬁ(vk, t) les revenus associés au

fait de se rendre respectivement au client d? et au client v depuis le client vy a t;. Avec ces

42

notations, pour cette stratégie, la fonction de revenu s’écrit alors :

Rao (vg, 1)

MaXzeyp éﬁ (Vk, i)

f(vk, tr, ‘7kp) = max {

_ { ~QE(Tya) + B[(P, + Topar)]
— Imax ~ _
MaXzeyp (p@ — aE(Ty5) + ELf (0, b + Tuo, V;cp\{z_)})])

avec f(dP,t) = —Tgo max(t — Iy, 0) + f(dP,t + oo, VP

En ce qui concerne les assertions, on utilisera les mémes notations que précédemment A;, As,
Az et Ay auxquelles on associera deux parametres : le segment p et I'étape k. Pour prouver
que la politique optimale est bien une politique de suil pour cette stratégie, on prouvera
par induction sur les segments et les étapes que les assertions A;, As, Ay sont vérifiées. Et
on donnera un contre-exemple pour montrer que 'unicité du seuil (assertion A3) n’est pas

vérifiée.

4.5.1 Dernier segment de route d’un véhicule

On a prouvé dans la section précédente que, dans ce cas, les assertions A, Ay, Az et Ay sont

vérifiées et que la politique optimale est bien une politique de seuil.

4.5.2 Induction sur les segments de route

Supposons que les assertions soient vérifiées sur les segments p+ 1,p + 2, ..., | P|.

Montrons qu’alors, elles restent vraies pour le segment p et que la politique optimale est bien
une politique de seuil sur ce segment.

Le fait de considérer le reste de la route et non simplement le segment en cours entraine une
différence dans 'expression de la fonction de revenu au client destination du segment p. En

effet, on a :
Tqp

f(dp,t) = —de maX(t — ldp, O) + Z P(O'dp = m)f(opﬂ,t%— m, Verl)

m=a g p

Par hypothese de récurrence, f (oPT1 ¢, VPT1) est décroissante donc ce revenu est une fonction
décroissante du temps.
Client optionnel vy (étape k = N)

On se trouve au dernier client optionnel du segment p, on se rend donc directement au client

destination :

43

?dep

~

f(UNv N, V]@) = _aE(TUNdp) + Z P<TUNdP = m)f(dpv tn + m)

B m:Idep
Ici, Vi est vide, les assertions A (N, p), A2(N,p) et A3(N,p) sont donc clairement vérifiées.
De plus, comme f(d?, t) est décroissante, f(vy,t, VP) Uest également (et A4 (N, p) est vérifiée).

On a bien une politique de seuil (on décide de se rendre au client destination en tout temps).

Client optionnel vy_; (étape k=N — 1)

On se trouve a 'avant dernier client optionnel du segment. On a deux possibilités : soit on se
rend directement au client destination du segment, soit on visite le dernier client optionnel

du segment. Le choix est déterminé par I’équation :

; > R (vn—1,tn-1)
flon_1,tn_1,VH_) =max | .
A R, (vn-1,tN-1)

avec
Toy_qdP
Rap(vn-1,tn-1) = —aB(Tyy_av) + Z P(roy_yar = m) f(d,tn—1 +m)
M=TyN_1dP

A

RUN (UNflathl) = Poy — &E(TUN—IUN)

Ton_1vN Tu
+ Z P(Tyy_jon = M) Z P(oy,y =n)f(vn,tn—1 +m+n,0)
M=Tyn_1vN "=Zuyn

Pour montrer qu’il existe un (ou plusieurs) seuil(s) au-dela duquel on va directement au client
destination et en deca duquel on va au dernier client optionnel, on montre les assertions

Aj, Ay, Ay et on donne un contre-exemple pour 'assertion Ajz (unicité du seuil).

Preuve de l’assertion A;(N — 1,p)
Montrons lassertion Ay (N — 1,p) : Rar(vn—_1,lap) = Roy (Un—1, Lap).-

On sait que Ry (un_1,lqr) vaut :

44

Toy_ydP

Rop(on-r,lar) = —@BE(Toy)+ Y P(Tuy_a0 = m)f(d, lar +m)

M=Ton_qdP

Ton_q1dP
= —aF(Tyy_ar) — Lar Z P(Typ_,ar = m) max(m,0)
=Ty _qdP
Ton_1dP ap
+ > Py =m) Y Plog=n)f(o"" t+m+n V)
M=Tyn_1dP nN=ggp
= —(a+Taw)E(Tuy_ar)
Ton_1dP Tap
+ > Py =m) Y Plow=n)f(0"" Iy +m+n, VT
M=T, . ap n=a:p

- _<a + de)E(TUN—ldp)

5 o gp
+Y P(6=m) Y Plow=n)f(0"" lsw+ [Dyy e8| +n, V™) (4.9)
m=4 n=0a ;p

Calculons a présent R,N (ovn_1,lap) :

A

R, (vn_1,lar)

Ton_1on TOuN

= Doy — O‘E(TUNAUN) + Z P(T'UNfl'UN + Oyy = m)f(UN7 ldp +m, Q))

+o

m=t
“UN-1YN ' =VN

= Poy — Oé\(E<TUN—1'UN) + E(TdepD

J/

g

>E(ryy_,ap) (cf. (P1))

?’L)N_I’UNJFE’UN ?UNdP R
) Pl ton=m) Y Pl =n)f(by +mtn) (410)
m +o n=rt,

:IvalvN Zun v dP

45

E’UN (UNfla ldp)

S Poy — aE(Tqudp)

Toy_qvny TOuy TopndP
+) Pyt o =m) Y Plroye = n)f(d L +m+n)
m:IvN_lvN +Q’UN n:I'UNdp

Développons lexpression de f (dP,lgp +m+n).

Soit m +n € [T, oy T Tun T Tundrs Ton_1on + Ovy + Toyar], o0 am +n > 0 d’apres (H5).
D’ou :
Tap
F(d? Iy +m +n) = —Lge max(m + n, 0) + Z P lg+m+n+q VP
9=09 qp
ogp
=—Tp(m+n)+ Z FoP Iy +m+n+q, VP (4.11)
q4=39 4p

Comme les temps de service et de parcours sont indépendants,

Ton_1un TO0uy T dP
Z P(Tyy_on + vy =m) Z P(7yyar = n)(m +n)
M=Ty\ on Ty N=T, \ qp
Tuy_1oN Guy FopdP
= > Py =m) Y Ploy,=m) Y P(ryw=q)(m+n+q)
M=T,\ o n=g,, 4=Ty 5 ap
= E(Tuy_yon) + E(0uy) + E(Tyyar) (4.12)

En utilisant les équations ({11 et (£I12]), on obtient :

~

RUN (UN—17 ld”) < Doy — aE(TUN—1d”) — Do [E(T'UN—IUN) + E(Tdep) + E(UUN)] + A
(4.13)

Avec :

Ton_1vN TN T dP Tap

A= Z P(Toy_yuy +0uy =m) Z P(Tyyar = 1) Z Plogr = Q)f(op-'—lyldl’ +m+n+q, VP

= n=rt =c
m I”N—l“NJrg”N LopdP 9=04p

46

A

RvN (’UNfl, ldp) < ?’UN — deE(O’UN)/—CME(TUN_ldp) - de (E(TUN—I’UN> —+ E(Tdep)) —|—A

<0 d’apres (H1) 2E(1yy_qap) (cf. (P1))

A

Ryy(on-1,lar) < —(a+Tae) E(Toy_yar) + A

Afin de pouvoir comparer R, (vn—_1,la) et Ragp(vn_1,ls), examinons le terme A. on a :

5 Tap Tap
A=>"P@E=m) > Plowy =1) > Ploar =n)f(o" ! lap + [Doy_yuym] + 1+ [Dyyarm] +n, VP
m=4 =g 4p n=a4p

De plus, on sait que :

(DUN_lvaW + ’VDdepm—‘ [(DUN_WN + DUNdp)m—‘ propriété de la fonction plafond

=
> (Dvaldpm] d’apres (H2)

Comme la fonction f(oP*!, ¢, V?*1) est décroissante (par hypothése de récurrence), on a :
f(0p+17 ldp + IVD'UNfl'UNm—‘ + ’V-D”UNdpm—‘ + n7 Vp+1) < f(Oerl? ldp + ervaldpm-‘ + n? Vp+1)

On en conclut que fx’UN (vn—1,lar) < R (N1, lar).

Preuve de ’assertion Ay(N — 1,p)
Montrons que Rg» et R, sont décroissantes (assertion Ay(N — 1,p)) Comme f(dP,t) et

f(vn,t,0) sont décroissantes, Rg et R, sont clairement décroissantes.

Preuve de l’assertion A4 (N — 1,p)

Montrons que f(vy_1,t, VE_,) est décroissante (assertion A4(N — 1,p)). On sait d’ores et
déja que la fonction est décroissante par morceaux comme Ryv et RUN sont décroissantes. En
procédant comme dans le paragraphe §3.4.4, on montre la décroissance aux discontinuités.

On en conclut que f (vn_1,t, V& _,) est bien décroissante sur son ensemble de définition.

Preuve de ’assertion A3(N — 1,p)
Pour ce qui est de 'unicité du seuil (assertion Az(N — 1,p)), montrons avec un contre-

exemple que la fonction Rz, — R, n’est pas croissante.

vN
Le contre-exemple est représenté graphiquement ci-dessous. Dans cet exemple, on choisit
a=1Tgw="5000,8=50=13etd=".

Pour les clients optionnels, on pose p; = 20, g, = 15, 7; = 30 et 7; = 22.

Pour les clients obligatoires, on pose g, = 30 et 7; = 60 et 6, = 35.

47

350 T T T

300 - 10 4

250 |+ e

200 R 13 4

150 e

100 e

-300 =250 -200 -150 -100

m Depots . Mandatory 4 Optional

Figure 4.3 Contre-exemple graphique

On se trouve au client 10 (vy_; = 10, vy = 13 et d = 11).
En calculant, avec la programmation dynamique, les fonctions de revenu des clients 11, 39,

15 et 42 en fonction du temps, on calcule 1%11(10, t) et 1:213(10, t) comme suit :

T10;11

}?11(10,25) = —aE(Tlo;H) + Z f(ll,t—i—m,@)

M=T10;11

T10;13;11
R13(10, t) = P13 — CK(E(Tlo;lg) —+ E(Tlg;n)) + Z f(ll, t + m, @)

M=T10;13;11

On obtient ainsi, en ¢ = 340, Ry;(10,¢) = 94.04 et Ry3(10,t) = 93.44.
Donc on préfere se rendre au client destination du segment (d” = 11) en t = 340.
En ¢ =341, on a : Ry1(10,t) = 89.51 et Ry5(10,t) = 90.01.
On préfere donc se rendre au client optionnel 13 en t = 341.
Ainsi, en posant s = 340, on a : de(lO, s) =]—?13(10, s). Par contre, on a également :
Ra(10,s + 1) < Ry3(10,s + 1).
On a donc Ry (10, s) — R,y (10,5) = 0> Rgp (10,54 1) — Ry, (10,5 +1). En d’autres termes,

48

A

Ry — R, n’est pas croissante. L'unicité du seuil n’est donc pas vérifiée.

Induction sur les clients optionnels

Supposons a présent que la politique optimale aux étapes k + 1,k + 2,..., N soit bien une
politique de seuil, et que les assertions Aj, As et A, soient vraies a ces étapes (on a vu que
As n’était pas vérifiée).

Montrons qu’alors, ces assertions sont toujours vraies a I’étape k et que la politique optimale
a l'étape k est une politique de seuil.

A T'étape k, on dispose de plusieurs possibilités : soit on va au client destination du segment

d?, soit on se rend chez un client optionnel de V7.

(?Uk dpP

—aB(Tya) + Y P(Toar =m)f(d g +m)

m:I'uk dp

f(vk, t, VP) = max

eVl

max (pv — aFE(T,5)

\ =Ty kU n=0o;

+ Z T’Uk:’U =) i: (UU = n)f<v’ ty +m+mn, V;C\{U})>

Pour montrer que I'on a bien une politique de seuil a I’étape k, on procede en trois temps :
1. Montrer qu'il existe un (ou plusieurs) seuil(s) entre tout client optionnel de V}? et d?

2. Montrer qu'il existe un (ou plusieurs) seuil(s) entre toute paire de clients optionnels de
v

3. Montrer que ces seuils définissent une politique de seuil

Seuil(s) entre un client optionnel et le client destination

Soient v le client courant et ¢; un client optionnel de ‘_/,f , on notera Rcl (v,t) le profit espéré
si on décide d’aller au client c; et de(v, t) le profit espéré si on se rend au client destination
au temps .

On veut montrer qu’il existe un seuil s pour lequel V¢ < s, on choisit de visiter le client ¢;
(de (v,t) < Ry, (v, t)) et Vt > s, on se rend au client destination (I%dp(v, t) > R, (v, t)).

Pour ce faire, raisonnons comme précédemment : montrons les assertions A; et A,.

49

Preuve de ’assertion A;(k,p)
Montrons que Rg» (v, lg) = R, (v, 1) (assertion A, (k, p)).

En remplacant vy par v dans ’équation (£.9), on obtient I’expression suivante pour R (v, lap)

de(v, ldp) = —(Oé + de)E(TUdp)

Todp T qp
+ > P(ruw=m) > Plow=n)f(0"" e +m+n, V')
M=T4qp n=ap

Aussi, par définition,]:201 (v,lgr) vaut :

Tuey +Tc;

Rcl (Ua ldp) = Dey — OéE(TUCl) + Z P(T’UCl + Ocy = m)f(clu ldp +m, Vkp>

mzl’ucl +gcl

Par hypothese de récurrence, quand on se trouve au client ¢q, la politique optimale est une
politique de seuil donc le revenu en ¢; pour ¢ > [z correspond a celui associé au fait d’aller

directement au client destination. Ainsi,

Toey +0c;

Rei(0,0) = poy — aB(rue) + > PlTuey + 0 = m) [— aE(Tow)

m=rt +o

Toe, He;
TeydP
+ Z P(toa0 = n) f(dP, lgp +m + n)]
n=r. q»
= Per — a(E(Tvq) + E(Tc1dp>)
Toey +5c; Toydp
+ Z P(Tye, + 0, =m) Z P(7e,ar :n)f(dp,ldp—l—m—i—n)
M=T,, +0,, n=r. g

L’équation ci-dessus est identique & ’équation ({.I0) en remplagant vy _; par v. En procédant

comme pour 'équation (£I0), on montre que Rcl (v, lar) < R (v, lap).

Preuve de I’assertion A (k,p)
Montrons & présent que Ry et R, sont décroissantes (assertion A, (k,p)).
Comme f (dP,t) est décroissante, Ry est décroissante. Aussi, par hypothese de récurrence,

f(c1,t, V) est décroissante donc R,, est clairement décroissante.

On sait donc : (¥) que les fonctions de revenu R,, et Rz sont décroissantes (cf. ci-dessus),
(**) que R (v, lgn) = Re, (v, lap) (cf. section E5.2) et (¥**) que Rgo — R, n’est pas monotone.

50

Deux cas sont donc a envisager :

— Soit Rar(v,0) > R, (v,0). D’apres (¥*) et (***), deux cas sont alors possibles. Soit
Vt € [0;la], Rar(v,t) > R, (v,t). On préferera donc toujours visiter d?. Soit il existe
au moins un intervalle sur lequel de(v, t) < }A%Cl (v,t). Sur cet intervalle, on préferera
donc aller en ¢; et hors de cet intervalle, on préferera aller en dP.

— Soit R (v,0) < Rcl (v,0). Auquel cas, d’apres (**), il existe au moins un seuil s (il peut
y en avoir plusieurs d’aprés (¥**)) en lequel Ry (v,t) — Ry, (v,t) change de signe (id

est, un point en lequel il devient préférable de visiter non plus ¢; mais d?, ou l'inverse).

Il existe donc bien au moins un seuil entre tout client optionnel de Vkp et le client destination

du segment.

Seuil(s) entre deux clients optionnels

Méme preuve que précédemment (quand on raisonnait sur un seul segment).

Politique de seuil et décroissance de la fonction de revenu (A4(k,p))

Meémes preuves que précédemment (quand on raisonnait sur un seul segment).

Ceci finalise la preuve que la politique optimale obtenue avec nos deux algorithmes de

programmation dynamique est une politique de seuil.

51

CHAPITRE 5

Heuristique basée sur la priorité des clients

Dans la variante du probleme de tournées de service considérée, tous les clients sont connus
a priori et les temps de parcours et de service sont stochastiques. L’approche de résolution
proposée pour résoudre ce probleme est une méthode en deux étapes : la planification et
I'exécution. Au cours de I'étape de planification, on construit des routes avec des clients
obligatoires et des clients optionnels en utilisant des estimés connus a priori. Ensuite, dans
I’étape d’exécution, on utilise des outils de programmation dynamique pour déterminer les
seuils de la politique optimale a partir des distributions de probabilité des temps de service et
de parcours. On dispose ainsi d'une liste de créneaux horaires et de décisions associées. Lors
des simulations du déroulement de I'horizon de temps, on décide en temps réel de la suite
de la route pour chaque technicien/véhicule. On peut ainsi décider de ne pas desservir un
ou plusieurs clients optionnels pour étre a I’heure au client obligatoire suivant (cf. chapitre
précédent). L’idée dans cette approche est d’utiliser les clients optionnels comme tampon
pour absorber les variations sur les temps de parcours et de service.
Dans ce chapitre, on suppose que le nombre de clients obligatoires est suffisant (si ce n’est
pas le cas, on peut rendre des clients optionnels obligatoires) et on présente une heuristique
basée sur la priorité des clients pour I’étape de planification. Dans cette heuristique, on
utilise la priorité des clients pour décomposer, comme Delage], I’étape de planification
en deux phases : i) construire des routes en ne considérant que les clients obligatoires (on
appelle I'ensemble de ces routes le « squelette ») ; ii) insertion des clients optionnels dans le
squelette. Dans ce chapitre, nous détaillons I'étape de planification dans la section [B.1l puis
I’étape d’exécution dans la section pour présenter ensuite les résultats dans la section

et conclure sur cette méthode dans la section .41

5.1 Etape de planification

Dans I’étape de planification, on cherche a construire des routes optimales contenant a
la fois des clients obligatoires et des clients optionnels. En supposant que les bornes sur les
temps de parcours et de service sont connues (cf. chapitre 1), on procede en deux phases :
d’abord, on construit un squelette de routes contenant uniquement des clients obligatoires et
ensuite on insere les clients optionnels dans ce squelette. Dans la phase I (construction du

squelette), on formule le probleme comme un programme a variables mixtes et on le résout

52

de fagon exacte en utilisant un algorithme de branch and bound. Dans la deuxieme phase
(insertion des clients optionnels), on formule le probleme comme un programme en nombres
entiers et on procede en deux temps : on résout d’abord le modele avec des estimés pessimistes
pour les temps de service et de parcours, en utilisant un algorithme de branch and cut puis
on répare et on améliore la solution a I’aide d’une méthode heuristique. Pour I'insertion des
clients optionnels, on propose également une méthode de relaxation lagrangienne suivie de
I’heuristique de réparation et d’amélioration, ce qui nous permet de résoudre de plus grosses

mstances.

5.1.1 Phase I : Etablissement du squelette

Dans cette phase, on considére uniquement les clients obligatoires, qui possedent une
fenétre de temps et sont tous connus a priori. Afin de construire le squelette de routes com-
prenant uniquement des clients obligatoires, il faut résoudre un m-TSPTW sur ’ensemble
des clients obligatoires. Comme on n’autorise aucun retard chez les clients obligatoires, on
considere dans cette phase que les temps de parcours et de service sont maximaux. On utilise
les notations suivantes :

— Ensembles
M ensemble de clients obligatoires

O ensemble de clients optionnels

K ensemble de véhicules

— Parametres
h horizon de temps
(o, d*) dépots origine et destination du véhicule k
lei, 1] fenétre de temps du client i : le service doit commencer entre e; et I; (par

convention, on notera lx = 0, ek = 0 et I = h)

Di profit associé au service du client optionnel ¢
Tij temps de parcours maximal entre 7 et j
T, temps de service maximal au client ¢
T grande constante de temps
— Variables
k

x; booléen indiquant si le client obligatoire ¢ est servi par le véhicule &
yfj booléen indiquant si le client obligatoire 7 est servi juste avant le client obligatoire
7 par le véhicule k

t; heure de début de service chez le client obligatoire ¢

93

Avec les notations mentionnées ci-dessus, on peut formuler le probleme comme un pro-

gramme a variables mixtes (M4.1) :

mind > > Tyl

keK je MU{o*} je MU{dF}

sujet a :
d ab=1 Vie M (5.1)
keK
d>ooyh=at Vie Mke K (5.2)
jeEMU{d+}
> uh=af vje Mk €K (5.3)
i€ MUu{ok}
e; <ty <y Vi € M U {o*;d"} (5.4)
>+ +7+ Y (Wh—1DT vie MU{o"},j e MU{d} (5.5)
keK
yl € {0;1} Vke K,ie MU{o"},j € MU{d"}
zF € {0;1} Vie Mke K
t; =0 Vi e MU {o*;d"}

Les contraintes (G5.1I) expriment le fait que chaque client obligatoire doit étre servi une et
une seule fois. Les contraintes (5.2)) et (B.3]) sont des contraintes de degré entrant et sortant.
Les contraintes (0.4]) assurent le respect des fenétres de temps (le service au client i doit
commencer dans la fenétre de temps [e;, [;]). Enfin, les contraintes (B.5]) sont des contraintes
de précédence temporelle, qui assurent I’élimination des sous-tours. Ce modele est résolu
de facon exacte a l'aide d'un solveur commercial, étant donné que le nombre de clients

obligatoires est faible dans les instances considérées.

5.1.2 Phase II : Insertion des clients optionnels

Une fois le squelette de routes servant les clients obligatoires construit, on dispose pour
chaque véhicule d’une liste ordonnée de clients obligatoires a desservir. Afin d’améliorer la
qualité de service, on met a jour les heures de début de service au plus tot et au plus tard,
e; et [;, associées au client obligatoire 7. Elles correspondent a I’heure de début de service
respectivement dans le meilleur et le pire des cas. On pose donc [; = t; et on calcule e; avec

les temps de parcours et de service minimaux (en s’assurant que e; respecte la fenétre de

54
temps d’origine) en fonction des routes du squelette.

Dans cette phase, on introduit le concept de segment comme étant une portion de route
entre deux clients obligatoires successifs (le dépot origine et le dépot destination de chaque vé-
hicule sont considérés comme des clients obligatoires). Le segment p a trois caractéristiques :
une origine o”, une destination d” et une longueur A? donnée par la formule A? = [p—ep—0,,
ol lgr désigne I’heure de début de service au plus tard chez le client dP, o, le temps de ser-

vice minimal au client origine o” et e,» I’heure de début de service au plus tot chez le client o.

Avec ce nouveau concept de segment, le probleme d’insertion des clients optionnels dans
le squelette consiste a établir des routes sur chaque segment du squelette, tout en s’assurant,
sur chaque segment p, que la longueur de la route n’excede pas AP. Deux fonctions objectif
sont considérées dans cette phase d’insertion : la maximisation du profit associé a la desserte
des clients optionnels et ensuite, la minimisation du temps de parcours total. Pour traiter
de ces objectifs, on utilise la méthode classique de la somme pondérée pour les combiner en
un seul ou « désigne le poids associé aux temps de parcours (a € [0;+00]). Pour définir ce

probleme, on utilise les mémes notations que précédemment plus celles-ci :

— Ensembles
P ensemble de segments sur tous les véhicules. Les segments sont ordonnés comme

suit : le segment p + 1 a pour origine d? (le client destination du segment p).

— Parametres
« pondération des temps de parcours dans la fonction objectif
AP longueur du segment p
7;; temps de parcours minimal entre i et j

o, temps de service minimal au client ¢

7,; temps de parcours de référence entre 7 et j

0; temps de service de référence au client ¢

— Variables

¥ booléen indiquant si le client optionnel i est servi sur le segment p

yfj booléen indiquant si 7 est servi juste avant j sur le segment p

Avec les notations ci-dessus, le probleme peut étre formulé sous forme du modele (M4.2)

suivant :

55

maX.ZZpixf—aZ Z Z TiVi;

pEP 1€0 peP icOU{or} jeOU{dr}
sujet a :
a1 VieO (5.6)
peEP
Z Y = T Vie O,pe P (5.7)
jeou{dr}
> oyh=at VjieO,peP (5.8)
1€OU{oP}
S w4 el <A Vpe P (5.9)
1€OU{oP} jeOU{dr} €0
> =1 Vp € P (5.10)
icOu{dr}
SN < Y b vScoS|=2vies (5.11)
€S jes €S\{l}
ot b € {0;1} VicOU{o},j€cOU{d’},pe P

Les contraintes (5.6]) expriment que chaque client optionnel est servi au plus une fois. Les
contraintes (0.7)) et (5.8]) sont des contraintes de degré entrant et sortant. Les contraintes (5.9])
forcent la longueur d’une route sur un segment a étre inférieure a la longueur du segment.
Les contraintes (B.I0) assurent que la route quitte bien le client origine du segment. Les
contraintes (B.I1]) sont des contraintes d’élimination de sous-tours. Elles sont nécessaires
dans ce modele car les clients optionnels n’ont pas de fenétre de temps.

Concernant les valeurs de référence pour les temps de parcours et de service 7;; et ¢;, plusieurs
choix sont possibles. Si on choisit les valeurs minimales (estimés optimistes), on peut obtenir
des solutions avec des routes vides tandis que certaines routes servent un grand nombre de
clients. C’est une solution admissible tant que 1’on se place dans le cas optimiste. Mais apres
avoir été confrontée a la réalité (durant 1'étape d’exécution), de nombreux clients restent non

desservis alors méme qu’une route demeure vide (cf. exemple figure [B.T]).

Pour éviter cet écueil, on doit répartir la charge de travail entre les véhicules lors de
I'insertion des clients optionnels. On décompose donc l'insertion des clients optionnels en

deux temps :

1. Insertion des clients optionnels avec estimation pessimiste des temps de parcours et

de service.

2. Insertion des clients optionnels avec estimation optimiste des temps de parcours et

96

400

200

-200

-400

-400 -200 0 200 400 -400 -200 0 200 400

= Depots + Obligatoires 4 Optionnels = Depots » Obligatoires 4 Optionnels

(a) Apres insertion des optionnels (b) Apres simulation

Figure 5.1 Insertion des clients optionnels avec estimés optimistes

de service, en gardant ’affectation des clients aux véhicules obtenue en 1.

Cette méthode fournit de bons résultats qui seront présentés section 5.3l Toutefois, comme
on peut le voir figure (.2, cette méthode tend a planifier des routes qui seront bouleversées
lors de la simulation. En effet, en choisissant de procéder a I'insertion des clients optionnels
en deux temps avec estimés pessimistes puis optimistes, on construit des routes sur des
segments avec une contrainte de durée correspondant a la longueur de ces segments. Mais
si on considere la route d'un véhicule comprenant plusieurs segments, cette route aura alors
une contrainte de durée correspondant a la somme des longueurs des segments associés, i.e.
lap — €0 — 0 (estimé optimiste de la longueur du segment p). La route obtenue peut donc étre
beaucoup plus longue que I'horizon de temps. Ainsi, la probabilité de faisabilité de certaines
routes peut parfois chuter a 20%. Ce qui a pour conséquence, lorsque les temps de parcours
et de service réels sont révélés, de changer completement les routes planifiées. On choisit donc
d’assurer une probabilité de faisabilité minimale. L’insertion des clients optionnels consiste,
a présent, a insérer les clients optionnels avec estimés pessimistes des temps de service et
de parcours. Ensuite, a réparer et améliorer la solution obtenue, tout en assurant que chaque
route conserve une probabilité suffisante d’étre réalisable (plus grande qu’'un seuil donné).
On propose un algorithme de branch and cut pour I'insertion des clients optionnels en ajou-
tant dynamiquement les contraintes d’élimination de sous-tours (B.11]). Comme l'insertion des
clients optionnels avec estimés pessimistes sur des petites instances avec un algorithme de
branch and cut est trop longue (cf. tableau 4.5), on propose des méthodes d’accélération pour
améliorer les temps de calcul. De plus, comme le modele d’insertion des clients optionnels
dans le squelette présente une structure bloc angulaire (hormis un ensemble de contraintes

liantes), et afin de résoudre des problemes de plus grande taille, nous utilisons une méthode

o7

400 +

poo

200

-200 ¢

400 |

b

-400 -200 0 200 400 -400 -200 0 200 400

m Depots s« Obligatoires & Optionnels m Depots s« Obligatoires & Optionnels

(a) Apres insertion des optionnels (b) Apres simulation

Figure 5.2 Insertion des clients optionnels avec estimés pessimistes puis optimistes

de relaxation lagrangienne. Dans ce qui suit, nous détaillerons dans un premier temps les dif-
férentes techniques d’accélération dans la section [B.1.2] puis nous présenterons la méthode de
relaxation lagrangienne dans la section et enfin, décrirons les algorithmes de réparation
et d’amélioration dans la section

Techniques d’accélération

Comme nous l'avons mentionné plus haut, la résolution du modele (M4.2) avec un al-
gorithme de branch and cut peut s’avérer tres chronophage. Afin d’améliorer les temps de
calcul, on propose dans cette section différentes techniques d’amélioration : du prétraitement,
une heuristique d’insertion pour construire une solution initiale, des « reachability cuts » et

des inégalités d’élimination de sous-ensembles.

Prétraitement

Une méthode d’accélération tres répandue est de faire du prétraitement, afin de fixer des
variables avant de commencer le branch and cut. Ce prétraitement est basé sur l'idée que,
lors de I'insertion des clients optionnels dans le squelette, des clients ne peuvent pas étre servis
sur certains segments. Afin d’éviter cela, en comparant les temps de service et de parcours
maximaux avec les longueurs des segments, on obtient des conditions qui nous permettent de
fixer la valeur de certaines variables ou de renforcer la formulation en ajoutant des inégalités

valides :

o8

Proposition 1. Les clauses suivantes sont valides :

Si Torj +0j + Tjar = AP, alors 2% =0 (5.12)

S1 ?Opz‘ + Ei + ?ij + Ej -+ ?jdp 2 Ap} alors yfj =0 (513)
Tori T+ 0 +T + 05+ Tjar = AP

Si Tori TOGHT 054 Tjar }, alors x} + 2% < 1 (5.14)
Tonj +0; + T + 0 + Tiap = AP

La clause (5I2) exprime le fait que le client i ne peut étre visité sur le segment p si le
temps total nécessaire pour servir uniquement ¢ sur le segment p (temps de parcours de o”
vers i, temps de service du client 7 et temps de parcours de i vers d?) dépasse la longueur A?
du segment p. De méme, la clause (5.13) indique que le client j ne peut étre servi apres le
client 7 si le temps total nécessaire pour servir uniquement les clients 7 et j dans cet ordre sur
le segment p (temps de parcours de o? vers i, temps de service du client i, temps de parcours
de i vers 7, temps de service du client j et temps de parcours de j vers dP) dépasse la longueur
AP de ce segment. Enfin, la clause (B.14]) est une inégalité valide basée sur la clause (B.I3]).
Cette clause indique que si le temps total nécessaire pour visiter ¢ et j dans cet ordre et celui
nécessaire pour visiter j et ¢ dans cet ordre excedent la longueur AP du segment p, alors 7
et j ne peuvent étre desservis ensemble sur le segment p. En effet, en appliquant la clause
(5.13) aux conditions de la clause (5.I4)), on obtient y7; = 0 et 3% = 0 (i.e. j ne peut étre
servi apres ¢ et i ne peut étre servi apres j sur le segment p). Donc on conclut que ¢ et j ne

peuvent étre servis tous les deux sur le segment p.

Heuristique d’insertion

Afin de construire une solution initiale pour le branch and cut, on propose une heuristique
basée sur l'insertion des clients. Cette heuristique peut étre décrite comme suit. On calcule
les cotts d’insertion de chaque client sur chaque segment (si un client ¢ ne peut étre inséré
sur un segment p, le cout d’insertion associé ¢! sera +00). Ensuite, on résout un probléme
d’affectation (affectation des clients aux segments). Etant donnée la solution de ce probleme,
on dispose pour chaque segment d’une route servant potentiellement un client optionnel.
Donc les couts d’insertion peuvent avoir changé pour les clients non affectés. Ce processus

est ensuite réitéré jusqu’a ce qu'un des criteres d’arrét suivants soit satisfait :
i) Tous les clients optionnels ont été insérés

ii) Aucun client optionnel n’a pu étre inséré a cette étape

99

Reachability Cuts
Afin d’accélérer I’algorithme de branch and cut, on propose de renforcer les contraintes d’éli-
mination de sous-tours (G.11]) présentes dans le modele (M4.2). Elles peuvent étre reformulées

comme suit. Soit d7(S) = {(¢,7)|i ¢ S,j € S} pour un ensemble de clients S, on a :

> yhzat ¥VSCO,|S|=2VieSpeP (5.15)
(k,1)es—(S)

Les contraintes (5.I5) sont connues pour étre équivalentes aux contraintes (G.11]). Lysgaard

| propose de renforcer ces contraintes en définissant les « reachability cuts ». En suivant
I'exemple de Lysgaard [50], on définit I'ensemble d’accessibilité A”™ comme étant ’ensemble
minimal d’arcs permettant d’accéder au client ¢ depuis 'origine du segment p. Par exemple,
si (0P, a,b,i) est un chemin possible (au regard de la contrainte de durée maximale) de o vers
i, alors {(0?,a); (a,b);(b,i)} C AY” tant que la matrice des temps satisfait 1'inégalité trian-
gulaire. Ensuite, les contraintes (5.I5]) peuvent étre renforcées en considérant les reachability

cuts suivantes :

Yoy zal ¥SCO,I8|=2VieSpeP (5.16)
(k,1)€S—(S)NAP~

En d’autres termes, soit p un segment, ¢ un client et S un ensemble de clients (avec o ¢ S
et i €), si le client 7 est servi sur le segment p, alors il existe un chemin depuis l'origine du
segment o vers i, et chaque arc de ce chemin appartient & A””. En particulier, comme i € S
et of ¢ S, il existe au moins un arc de A?” entrant dans S. Ces contraintes sont clairement
plus fortes que les contraintes d’élimination classiques (SEC) comme 6~ (S) N AP C §7(9).
Dans les contraintes (B5.I0]), on peut voir que le nombre de termes dans le membre de gauche
dépend de la taille de A?”. Ainsi, quand 'ensemble d’accessibilité AY™ est grand, la contrainte
(EI0) n’est pas tres forte, comparée a la contrainte SEC associée. Pour cette raison, dans un
premier temps, on choisit de générer ces nouvelles contraintes seulement sur les segments dont
la longueur n’excede pas un seuil L., et de générer les contraintes classiques d’élimination
de sous-tours sur les autres segments. Pour séparer les reachability cuts, on détermine a priori
I'ensemble d’arcs AY™ pour chaque i € O. Dans la phase de prétraitement, on crée une liste
C? de clients qui peuvent étre servis sur chaque segment p (relativement a la longueur des
segments).

Ensuite, pour chaque client ¢ et segment p, on parcourt la liste des arcs (j, k) tels que j €
C? et k € CP. Si le chemin (o, j,k,i) est réalisable sur le segment p, on ajoute les arcs
correspondant & I'ensemble AP §’ils ne lui appartiennent pas déja. Ensuite, pour identifier

les reachability cuts violées, on considere tous les couples possibles (client i, segment p) et,

60

pour chacun d’entre eux, on résout un probleme de flot maximum sur le graphe support

G = ({jli e CPyu{or}, A7)

Inégalités d’élimination de sous-ensembles
Une autre technique d’accélération consiste a utiliser une famille d’inégalités valides appelées

les inégalités d’élimination de sous-ensembles. Ces inégalités proviennent des contraintes (5.9]).

Proposition 2. Soit un ensemble S de clients et un segment p, soit LP(S) la longueur du
plus court chemin du noeud oP au noeud dP desservant tous les clients contenus dans S. Si

LP(S) > AP, alors l'inégalité valide d’élimination de sous-ensembles :
2P(S) < 15| —1 (5.17)

est valide.

Notons que pour |S| =2, on a z¥ + a:? < 1. Ces inégalités ont déja été générées lors du
prétraitement. Dans notre algorithme de branch and cut, ces inégalités sont générées pour
3 < |5] < Smaa-

Les contraintes (B.I7) sont séparées de fagon heuristique. Etant donnée une solution (Z, 7) et
un segment p, on range dans un premier temps les clients ¢ vérifiant ¥ > 0 par ordre décrois-
sant des Z¥. A partir de cette liste ordonnée, on identifie les k-uplets {iy, is, ..., i} vérifiant
Ty + T, 4 ...+ & >k—1. Pour chacun de ces k-uplets, on regarde si (0, 1y, 1, ..., iy, d”) est
admissible. Si tel est le cas, il n’y a pas d’inégalité de sous-ensemble violée pour ce k-uplet et
ce segment. Sinon, on identifie le plus court chemin de o” vers dP desservant tous les clients du
k-uplet. Si le plus court chemin n’est pas admissible, on a identifié une inégalité d’élimination

de sous-ensemble violée de taille k avec S = {iy,is, ..., 0k}

Relaxation lagrangienne

On peut observer que le modele d’insertion des clients optionnels dans le squelette présente
une structure bloc-angulaire (avec pour seules contraintes liantes les contraintes (5.0))) et
peut étre décomposé en sous-problémes (un par segment) si on ne prend pas en compte
les contraintes (5.6]). Une approche de résolution consiste donc a relacher ces contraintes
liantes et a leur attribuer un multiplicateur de Lagrange (i.e. une pénalité) dans la fonction

objectif, obtenant ainsi la relaxation lagrangienne R(u) pour une valeur donnée de u =

(u17u27 7U|O\) :

SIS Db DEED DIEHTES SITLES P

peEP 1€0 peP icOU{or} jeOU{dr} i€0 peP

61

sujet aux contraintes (B.7) a (B.11))

Afin de pouvoir décomposer ce probleme en sous-problemes, on reformule la fonction

objectif comme suit :
maxy) (pi—w)el—ad, >, Y, T+ w
peP i€O pEP i€OU{oP} jeOU{dr} €0

Comme le dernier terme), u; est constant pour un vecteur u donné, on peut décom-

poser R(u) en sous-problemes. Pour un segment p, le sous-probleme RP(u) s’écrit :

max E —u)rt — « E E TZ]yU

€O 1€0OU{oP} jeOU{dP}
sujet a :
S =t VieO (5.18)
jeOu{dr}
Z yfj = x? V€O (5.19)
1€OU{oP}
ieOudp
DI SIE TS SR 521
ieOU{oP} jeOU{dr} 1€0
S < D ot VS cCO,|S|=2,vies (5.22)
i€S jeS 1€S\{l}
yh € {0;1} Vie OU{o’},j € OU{d"}
¥ e {0;1} Vie O

Afin de procéder a 'insertion des clients optionnels dans le squelette, comme le vecteur u
peut prendre un grand nombre de valeurs, on doit résoudre le probleme du dual lagrangien,

qui peut étre formulé comme suit :

TS % IR b o SIS MRS ity
peP i€O PEP icOU{or} jeOU{dr} i€O peP
Pour résoudre le dual lagrangien, on applique 'algorithme des sous-gradients. Pour cet
algorithme, on a besoin d’une bonne borne inférieure (afin d’assurer la convergence de la mé-
thode). Pour ce faire, on construit une solution réalisable en utilisant I’heuristique d’insertion
présenté dans la section et on améliore la solution ainsi obtenue en utilisant des opéra-

teurs de type string exchange, arc exchange et relocalisation (en interdisant le déplacement

62

de tout client obligatoire). Soit w la valeur de cette solution (valeur de la borne inférieure),
e € [0;2] et u® = (0,0, ...,0), on proceéde comme suit & chaque itération k de l'algorithme du

sous-gradient :

Iteration £ :

—u=uF

— Pour chaque segment p € P, résoudre RP(u¥) avec estimés pessimistes pour les temps de
service et de parcours, en utilisant la méthode de branch and cut décrite précédemment
et les techniques d’accélération. On obtient ainsi la solution (2%);co pep-

— Avec les valeurs (27);c0 pep de la solution obtenue, calculer la valeur z(u¥) de la solution
de R(uF).

— Calculer la longueur de pas py et la direction du pas DF pour tout i € O avec les

formules :

LD o pro oY

TS)

€0 peP

— Calculer le nouveau vecteur u**' avec u¥™ = max(uf + pp DF,0).
- k< k+1

L’algorithme des sous-gradients finit soit quand le gap entre la meilleure borne supérieure
miny, z(uk) et la meilleure borne inférieure max; w® descend en-dessous d’un certain seuil
Gleng, soit apres un nombre fixé d’itérations I,,,,. On récupere alors la meilleure solution
réalisable trouvée (soit la meilleure borne inférieure).

Afin d’accélérer la convergence, on propose deux modifications de la méthode : utiliser la
méthode de Kiev pour le calcul des sous-gradients et calculer des bornes inférieures a chaque
itération afin de remplacer w par la meilleure borne inférieure.

Dans la méthode de Kiev, a l'itération k, au lieu de prendre en compte seulement le sous-

k¥ on propose de prendre en compte une combinaison convexe du sous-gradient

gradient en u
en u* et du sous-gradient en u*~!. On introduit donc un coefficient 3 € [0;1] pour cette
combinaison convexe, et on note (x} (k))iEO,pE p la solution obtenue a litération k. A présent,

les longueurs et directions des pas sont obtenues avec les formules :

1= (B + (- p)at®Y)

e(z(u”) — w)

o = o ot Dj= e
ST (- (-)
€0 peEP ’LEZO ;;

Aussi, on calcule une nouvelle borne inférieure w,, a chaque itération. Avec ’ensemble de ces

bornes inférieures, on peut alors sélectionner la meilleure borne inférieure a chaque itération

63

(maxy, w;,) et utiliser cette meilleure borne inférieure dans les formules ci-dessus au lieu de la
borne inférieure initiale (on pose w = maxy w;). Pour calculer une nouvelle borne inférieure
a 'itération k, on répare la solution obtenue a 'itération k en supprimant les doublons. Puis
on améliore la solution en procédant a des string exchange, arc exchange et relocalisation
successives (sans déplacer les clients obligatoires). On obtient ainsi une solution réalisable,
i.e. une nouvelle borne inférieure comme il s’agit d’un probleme de maximisation.

Cette méthode heuristique, basée sur la relaxation lagrangienne, nous permet d’obtenir
une borne inférieure de qualité pour la solution au probleme d’insertion des clients optionnels
dans le squelette. De plus, étant donnée sa rapidité de convergence, elle rend possible la
résolution d’instances de plus grande taille.

Comme nous résolvons ici le probleme segment par segment avec des estimés pessimistes,
apres la relaxation lagrangienne, on peut obtenir, comme précédemment, une solution avec
une probabilité tres faible d’étre réalisable. On applique donc les algorithmes de réparation

et d’amélioration a la solution obtenue (cf. section (.1.2).

Algorithmes de réparation et d’amélioration de solution

Comme nous ’avons mentionné précédemment, lors de I'insertion des clients optionnels dans
le squelette, on peut obtenir des routes avec une faible probabilité de faisabilité. Dans cette
phase, on essaye d’insérer des clients optionnels dans le squelette tout en assurant, sur chaque
segment p, que la longueur d’'une route n’excéde pas la longueur du segment AP. Mais la
longueur d’un segment est définie par la formule A? = [— e,» — 0. Dans le pire des cas, la
longueur du segment est plutot lg» —l» —Tp. Pour cette raison, la probabilité pour une route
d’étre réalisable peut s’avérer tres faible. Afin d’éviter cet écueil, on introduit un nouveau
parametre F' comme étant le seuil de réalisabilité. On propose une procédure consistant a
réparer dans un premier temps la solution (afin que chaque route ait une probabilité d’étre
réalisable supérieure ou égale a F'). Ensuite, on améliore la solution en essayant d’insérer les
clients non desservis et de repositionner les clients tout en assurant la probabilité F' pour
chaque route.

Une description pseudo-code de la procédure de réparation est donnée dans l’algorithme
@ Soit P, I'ensemble des segments associés au véhicule k. Etant donnée la route prévue
pour un véhicule k (et les segments associés Py), en utilisant les distributions de probabi-
lité des temps de service et de parcours, on peut calculer pour chaque client obligatoire les
heures d’arrivée possibles ainsi que les probabilités associées. calculer ProbaFaisable(oP, dP)
retourne la probabilité pour une route d’étre réalisable en dP (probabilité d’arriver avant
lgr), connaissant les heures d’arrivée possibles et les probabilités associées en of. On note

client PlusGrandDetour(a, b) la fonction qui renvoie le client situé entre a et b (a et b exclus)

64

générant le plus grand détour du point de vue des temps de parcours. L’algorithme de répa-
ration consiste a enlever le client générant le plus grand détour jusqu’a ce que la probabilité

de faisabilité soit suffisante.

pour chaque k € K faire
pour chaque p € P, faire
proba < calculer ProbaFaisable(oP, dP);
tant que proba < F faire
¢ « client PlusGrandDetour (0P, dP);
enlever le client ¢;
proba < calculer ProbaFaisable(o, dP);
fin

fin

fin
Algorithm 1: Réparation de la solution

La description en pseudo-code de I’algorithme d’amélioration est donnée dans ’algorithme
Dans cet algorithme, soient N le nombre total de clients, L une liste vide et U la liste des
clients non desservis. client PlusGrandDetour(L) retourne le client n’appartenant pas a L,
et générant le plus grand détour dans la solution. meilleureInsertion(c) renvoie la meilleure
insertion possible (du point de vue des temps de parcours) pour le client ¢ dans la solution
(une insertion étant définie par une route, une position et un profit d’insertion). Une insertion
est impossible si elle génere une route avec une probabilité de réalisabilité plus petite que F
ou si des fenétres de temps ne sont pas respectées. meilleurelnsertion(U), avec U une liste
de clients, est une méthode consistant a : récupérer la meilleure insertion possible sur toutes
les routes et tous les clients de U et a procéder a cette insertion si elle présente un intéret,
jusqu’a ce qu’aucun client ne puisse plus étre inséré. Dans cet algorithme, une insertion ne
sera pas considérée si le seuil de réalisabilité n’est pas respecté.

Pour procéder a la réparation et a ’amélioration d’une solution, on propose deux va-
riantes. Dans la premiére (que 'on appellera V1), on procede a une exécution de 1’algorithme
de réparation puis on exécute I'algorithme d’amélioration une seule fois. Dans la deuxieme
variante (appelée V2), on procede a une exécution de 'algorithme de réparation mais on

exécute l'algorithme d’amélioration jusqu’a ce que la solution ne puisse plus étre améliorée.

5.2 Etape d’exécution

Au début de I'étape d’exécution, on dispose, pour chaque véhicule, d’une route conte-
nant a la fois des clients obligatoires et des clients optionnels, obtenue a la fin de 1’étape

de planification. Le but de I'étape d’exécution est d’ajuster les routes planifiées a la réalité.

65

U < ClientsNonDesseruvis();

meilleurelnsertion(U);

L1

tant que taille(L) < N — taille(U) faire

¢ < client PlusGrandDetour(L);

(best Route, best Position, best Profit) <— meilleurelInsertion(c);

si meilleur Profit > (0 alors
insérer le client ¢ dans la route best Route en position best Position;
enlever le client ¢ de la liste U;

fin

ajouter ¢ dans la liste L;

fin
Algorithm 2: Amélioration de la solution

Jusqu’ici, nous avons supposé que les temps de service et de parcours étaient soit a leur borne
supérieure, soit a leur borne inférieure. Dans cette étape, on prend en compte la stochasticité
sur les temps de service et de parcours et on modifie le planning en temps réel pour faire face
a cette stochasticité. On suppose que les segments sont rangés comme suit (cf. chapitre 3,
figure L)) : le segment p + 1 a pour origine le client obligatoire o?™! = dP (client obligatoire
correspondant a la destination du segment p).

Chaque étape de programmation dynamique correspond a la fin de service chez un client
(obligatoire ou optionnel). A chaque étape, on dispose d'une liste de clients optionnels non
desservis qui peuvent étre servis avant le prochain client obligatoire. Dans ce contexte, deux
options sont a considérer : soit le véhicule se rend directement chez le prochain client obliga-

toire, soit il visite le client optionnel de cette liste qui maximise le profit.

On définit les parametres suivants :

pénalité de retard au client obligatoire j

l[; fin de la fenétre de temps pour le client obligatoire j

7ij temps de parcours du client i au client j (7,; < 755 < 745)

<0, <7)

o; temps de service au client i (g;

A Détape k, on définit :

66

Uk client ou se trouve le véhicule a I’étape k
ts heure de fin de service au client vy,
% liste ordonnée de clients optionnels associés au segment p

VP =VPUoP liste de clients optionnels associés au segment p + client origine du segment

p
Vkp liste de clients optionnels du segment p situés apres vy

Avec ces notations, on propose deux algorithmes distincts de programmation dynamique.
Dans le premier algorithme, on considere un seul segment p tandis que ’on prend en compte

le reste de la route dans le second.

— Méthode considérant un segment (OS5)
Dans le premier algorithme, quand un véhicule finit de servir un client, deux possibi-
lités s’offrent & lui (cf. chapitre 3, figure [£.2). Soit il se rend directement au prochain
client obligatoire dP, touchant ainsi un revenu correspondant au profit espéré en dP.
Soit il visite le client optionnel ¥ de VP maximisant le profit espéré (profit asssocié a la
visite du client © + profit espéré en v). Dans cet algorithme, le profit espéré au client
obligatoire dP est 'opposé de la pénalité de retard chez ce client. La fonction de revenu

de la premiere méthode peut donc s’écrire comme suit :
f(vka tk7 Vk;p) = Inax (E[f(dpu tk+Tvkdp7 (Z))]7 Il’laX,DerP (pl_)_'—E[f(@’ tk—i_Tva}—i_O—T)a ‘7]5\{1—]})]»

avec f(dP,t,0) = —T g max(t — lg,0)

— Méthode considérant toute la route (W R)
Dans le deuxieme algorithme, le seul changement concerne le revenu associé au client
obligatoire dP au temps ¢ : ce revenu comprend toujours 'opposé de la pénalité de
retard chez ce client mais il comprend aussi le profit espéré associé a la fin de service

du client d? au temps t+o4. La fonction de revenu du deuxieme algorithme s’écrit donc :
f (v, ty, VP) = max (E[f'(dl’, by + Tugar)], maxsepr (ps + E[f (0, 1 + Tua, VA\{o})]))

avec f(d?,t) = —Tgo max(t — Iy, 0) + f(dP,t + o, VP

67

En résolvant ces équations de Bellman, on obtient les seuils de la politique optimale. En effet,
pour chaque client, on obtient différents seuils temporels définissant des intervalles de temps.
A chacun de ces intervalles est associée une décision optimale (par exemple, si t € [ty, ts[, se

rendre au client c).

5.3 Expérimentation

5.3.1 Contexte expérimental

L’étape de planification est résolue de facon exacte avec Cplex 12.4 pour des instances
contenant jusqu’a 40 clients. Pour 1’établissement du squelette, on utilise un algorithme de
branch and bound tandis que, pour I'insertion des clients optionnels, on utilise un algorithme
de branch and cut dans lequel on ajoute dynamiquement les contraintes d’élimination de
sous-tours (B.I1]). Pour des instances plus grandes (avec 50 clients), on utilise un algorithme
de branch and bound pour le squelette, mais on utilise une relaxation lagrangienne pour
Iinsertion des clients optionnels dans le squelette. Dans les deux cas, a la fin de 1'étape
de planification, on utilise des algorithmes de réparation et d’amélioration afin d’obtenir des
routes avec une probabilité suffisante d’étre réalisables. En ce qui concerne I’étape d’exécution,
on utilise des outils de programmation dynamique pour trouver la politique optimale. On
obtient ainsi, pour chaque client, une liste de seuils et de décisions associées correspondant a
la politique optimale. Ensuite, on procede a 100 simulations par instance, chaque simulation
consistant d’abord a générer des temps de parcours et de service stochastiques puis, a chaque
fois que le service chez un client s’acheve, a comparer ’heure de fin de service avec les seuils
et a prendre la décision optimale déterminée par 1’algorithme de programmation dynamique.
Les tests ont été effectués sur une machine avec 4CPU, 2.8GHz et 30Go de RAM.

5.3.2 Réglage des parametres

Concernant le réglage des parametres, nous nous sommes inspirés des valeurs choisies par
Tricoire [68]. Ainsi, nous considérons un horizon de temps de 8 heures, soit 480 minutes.
De plus, comme il propose de considérer une vitesse moyenne de 35km/h, nous avons choisi
une vitesse minimale v,,;, = 20km/h et une vitesse maximale v,,,, = 50km/h (observant
ainsi une valeur moyenne de 35km/h), valables sur 'ensemble du réseau routier. Apres avoir
converti ces valeurs v, €t Umqe: €n unités arbitraires par minute, on calcule le temps de
parcours unitaire minimal § = [100/Vynq, | et maximal § = [100/vy,:,] Les temps de parcours

minimaux et maximaux sont ensuite obtenus en utilisant les formules Tij = [Dijé—‘ et T =

[Diﬂ-‘. Pour le réglage des temps de service, nous avons considéré que les temps de service

68

des clients optionnels étaient compris entre 15 et 30 minutes tandis que ceux des clients
obligatoires étaient compris entre 30 et 60 minutes. Pour l'insertion des client optionnels,
nous avons supposé que le service d'un client optionnel, quel qu’il soit, génere un profit
p; = 100. Afin de bien choisir la valeur du parametre o pour la pondération des temps de
parcours dans la fonction objectif de la deuxieme phase, nous avons procédé a quelques tests.
En choisissant o = 1, on s’assure de préférer insérer des clients optionnels au fait de parcourir
une moins grande distance. Pour la programmation dynamique, on choisit une pénalité de
retard I'g» = 5000 pour tout p. Enfin, pour les simulations, afin d’avoir des temps de parcours
et de service inattendus, on diminue la vitesse minimale & 15km/h et on augmente le temps
de service maximal pour les clients obligatoires a 90 min. Dans cette section, nous procédons
au réglage des parametres pour la deuxieme phase de I’étape de planification (Iinsertion des
clients optionnels). Nous verrons d’abord le réglage des parametres du branch and cut, puis
celui des méthodes de réparation et d’amélioration, et enfin, nous reglerons les parametres

pour la relaxation lagrangienne.

Parametres du branch and cut

Dans le cadre de 'algorithme de branch and cut pour l'insertion des clients optionnels
dans le squelette des clients obligatoires, nous avons proposé des techniques d’accélération (cf.
section B.1.2)) telles que les reachability cuts et les inégalités d’élimination de sous-ensembles.
Pour ajuster la valeur de L,,,, (taille maximale des segments sur lesquels on géneére des
contraintes de type reachability cuts au lieu des contraintes classiques d’élimination de sous-
tours), nous avons procédé a plusieurs tests sur des petites instances (contenant 30 clients
et 3 véhicules). Les résultats obtenus en faisant varier L,,,, entre 0 et I'horizon de temps
(Lymaz = 480) sont synthétisés dans le tableau Bl Contrairement a ce qui était attendu, on
observe dans le tableau [5.1] que les meilleurs temps de calcul sont obtenus pour L = 480 (i.e.
I'horizon de temps), soit lorsque I'on génere les reachability cuts sur tous les segments. En
effet, section du paragraphe B.1.2] nous avons mentionné que les contraintes de type
reachability cuts sont plus fortes que les contraintes d’élimination de sous-tours. Ainsi, indé-
pendamment de la taille des segments, on préfere générer les reachability cuts plutot que les

contraintes d’élimination de sous-tours.

Pour le choix de la taille maximale S,,,, des inégalités d’élimination de sous-ensembles
générées, nous avons également conduit une série de tests synthétisés dans le tableau On
observe dans ce tableau que les meilleurs temps de calcul sont obtenus pour S,,,, = 6, soit
lorsque I'on génere des inégalités d’élimination de sous-ensembles contenant au plus 6 clients.

On choisira donc S,,., = 6. En effet, pour S,,,, = 7, on ne génere quasiment aucune inégalité

69

Tableau 5.1 Réglage de L4, (taille maximale des segments pour les reachability cuts)

Nombre de
Instances clients L=0 | L=80 | L=160 | L=240 | L=320 | L=400 | L=480
obligatoires
Cl_-15 4 5 4 27 14 4 4
Cl1.2.5 10 11 11 23 23 24 10
C1.3.5 5 39 40 40 46 46 46 29
Cl145 1159 1208 1190 609 607 610 263
Cl1.5.5 55 55 35 57 57 57 41
Cl_.1-6 69 69 90 97 97 97 68
Cl26 139 136 100 64 64 64 82
C1.3.6 6 267 259 263 206 165 166 148
Cl1.46 120 120 120 82 83 83 76
Cl1.5.6 1024 1033 1041 247 319 322 320
C1.1.7 1219 1230 1427 565 559 561 559
Cl1.2.7 26 27 23 16 19 19 18
C1.3.7 7 75 75 75 63 47 47 47
C14.7 96 97 7 92 92 92 47
Cl1.5.7 54 54 54 36 37 37 36
C1.1.8 315 317 316 115 117 117 117
C12.8 25 25 29 25 62 18 18
C1.3.8 8 13 13 14 24 12 12 12
C1438 76 78 75 80 80 80 76
C1.5.8 23 24 23 23 31 31 31
C1.1.9 101 98 98 35 35 35 35
C1.2.9 28 27 27 25 41 41 41
C1.39 9 28 28 28 41 41 24 24
C1.49 134 132 132 110 110 80 80
C1.5.9 7 8 8 11 12 6 6

de sous-ensemble de taille 7. On passe donc plus de temps a rechercher des inégalités valides
qu’a en générer, ce qui représente une perte de temps. D’autre part, étant donné que I'on ne
génere quasiment aucune inégalité de sous-ensembles de taille 7, il est inutile de procéder a

des tests avec Sy00 > 7.

70

Tableau 5.2 Réglage de S, (taille maximale des inégalités d’élimination de sous-ensembles)

Nombre de
Instances clients Smazr =3 | Smazr =4 | Smaz =5 | Smaz =6 | Smaz =7
obligatoires
Cl.15 4 4 4 4 4
Cl1.2.5 8 8 8 12 17
C1.3.5 5 27 28 27 26 28
Cl14.5 163 131 177 139 153
Cl1.5.5 32 34 34 34 46
Cl.1.6 61 40 44 40 44
Cl126 65 58 59 55 60
C1.3.6 6 124 76 68 80 75
Cl46 69 46 45 53 59
Cl1.5.6 211 105 102 102 102
Cl.1.7 368 145 144 144 145
C1.2_7 16 16 16 15 15
C1.3.7 7 28 21 21 21 21
Cl14.7 65 64 51 53 49
Cl1.5.7 52 33 33 33 33
C1.1.8 66 56 56 56 56
C1.2.8 21 28 21 23 22
C1.3.8 8 17 13 12 13 12
C1438 63 46 58 60 70
C1.58 22 23 25 17 16
C1.19 31 23 23 23 23
C1.2.9 21 26 25 26 27
C1.39 9 28 29 33 26 27
C149 69 46 42 40 40
C1.5.9 5 7 7 7 6

Parametres des algorithmes de réparation et d’amélioration

Dans I'étape de planification, lors de I'insertion des clients optionnels, nous avons proposé
des algorithmes de réparation et d’amélioration afin de s’assurer que les routes construites
alent une probabilité suffisante d’étre réalisable (cf. section [5.1.2]). Afin de choisir le meilleur
réglage du parametre F' (seuil de faisabilité d'une route) et de la variante a utiliser, nous
avons procédé a un ensemble de tests dont les résultats sont regroupés dans le tableau 5.3
On y observe que le nombre de clients desservis ainsi que la distance totale parcourue sont
plus grands dans la variante V2 tandis que le retard moyen reste comparable dans les deux
variantes. On choisira donc la variante V2 afin de privilégier I'insertion des clients optionnels.
Quant au choix de la valeur F', on remarque que les résultats sont moins variables pour
F = 0.9. En effet, dans certains cas, on peut avoir un nombre de clients non desservis
nettement plus faible avec F' = 0.8 et dans d’autres cas, c’est le contraire. Il en va de méme
pour la distance totale et le retard. Pour favoriser la qualité de la solution obtenue, on choisit

donc F' = 0.9 pour la suite des expérimentations.

Tableau 5.3 Impact de la variante et du parametre F' sur les résultats obtenus

71

£ de 30 clients 40 clients
lients variante V1 variante V2 variante V1 variante V2
oblig. F=038 F=09 F =038 F=09 F =038 F=09 F=038 F=09
WR OS WR (ON) WR 0S WR 0S WR (O)) WR 0S WR OS WR 0S
nb moyen 5 5.82 3.72 5.98 3.93 4.03 3.53 5.33 3.36 | 1091 10.13 | 10.87 10.09 9.74 9.73 9.66 9.66
de clients 6 8.48 8.09 5.53 5.54 8.44 8.00 5.59 5.55 | 13.49 12.73 | 12.96 12,96 | 12.54 12,53 | 12.69 12.68
non 7 6.47 5.84 9.24 8.61 6.41 5.65 5.52 5.51 13.84 13.11 | 13.28 13.28 | 13.00 13.02 | 13.28 13.28
desservis 8 6.24 6.32 7.57 6.17 6.86 6.23 7.55 6.13 13.43 13.42 13.32 13.32 13.40 13.38 13.21 13.22
9 6.65 6.65 7.08 6.42 6.59 6.59 7.03 6.36 | 14.93 14.41 | 14.24 14.33 | 13.94 14.02 | 14.51 14.00
distance 5 198 209 199 210 206 210 199 211 189 191 189 191 196 196 193 194
parcot- 6 211 214 212 212 212 214 212 212 200 202 202 202 205 204 204 204
e en 7 200 203 201 204 204 207 209 209 191 194 198 198 195 196 198 198
moyenne 8 212 213 195 204 209 211 195 204 197 198 198 198 198 198 198 198
9 202 202 197 202 202 202 197 201 188 189 193 191 192 192 189 191
5 2.03 2.06 2.01 2.05 2.03 2.06 1.99 2.03 1.82 1.85 1.79 1.80 1.80 1.85 1.77 1.81
retard 6 43.07 43.07 | 3.09 3.10 | 43.07 43.12 | 3.09 3.15 2.59 2.62 2.65 2.65 2.61 2.64 2.65 2.65
moyen 7 2.68 2.76 2.68 2.75 2.71 2.79 2.70 2.77 2.52 2.54 2.41 2.45 2.52 2.54 2.41 2.45
8 4.76 3.48 3.14 3.24 3.51 3.58 3.18 3.24 3.63 3.67 3.62 3.61 3.59 3.69 3.60 3.61
9 4.82 4.79 4.65 4.65 4.92 4.89 4.62 4.63 6.69 5.61 6.71 5.60 6.71 5.57 6.75 5.59
Légende :

Variante V1 = une réparation et une amélioration

Variante V2 = une réparation et autant d’améliorations que possible

F = seuil pour la probabilité de faisabilité

WR = stratégie de programmation dynamique considérant toute la route

OS = stratégie de programmation dynamique considérant un seul segment

72

Parametres de la relaxation lagrangienne

Dans 'étape de planification, nous avons proposé une méthode heuristique, basée sur la
relaxation lagrangienne, pour résoudre le probleme d’insertion des clients optionnels dans
le squelette (cf.section B.I.2)). Cette méthode heuristique fait appel a I'algorithme du sous-
gradient dans lequel interviennent deux parametres : € et 5. Pour le premier parametre, on
choisit € = 1. Pour le réglage de 3, nous avons réalisé des tests de convergence en procédant
a 100 itérations de l'algorithme du sous-gradient. La moyenne des résultats obtenus sur
I’ensemble des instances a 30 clients en faisant varier [entre 0 et 1 avec un pas de 0.1 nous
a permis de tracer le graphique (pour plus de lisibilité, nous n’avons retenu que quelques
unes de ces courbes). Dans ce graphique, on a choisi comme origine de I’axe des ordonnées
la moyenne des solutions optimales des instances a 30 clients.

Dans ce graphique, on peut constater que la courbe pour 5 = 1 (donc sans la méthode de
Kiev) présente une convergence comparable a celle obtenue avec toute autre valeur de 5. On
choisira donc de ne pas prendre en compte la méthode de Kiev (ou 5 = 1). Aussi, on constate
que, des 50 itérations, on atteint le palier de convergence. Comme on applique un algorithme
de réparation et d’amélioration apres la relaxation lagrangienne, on choisit donc de se limiter
a Iq. = D0 itérations. On choisit également d’arréter I'algorithme si le gap entre la meilleure
borne supérieure et la meilleure borne inférieure est inférieur & G.,q = 2%.

Les résultats obtenus en comparant les différentes variantes de l’algorithme du sous-
gradient sont synthétisés dans le tableau[.4l Dans ce tableau, les en-tétes de colonnes sont les
suivants : SG : méthode du sous-gradient classique ; LB : calcul de bornes inférieures a chaque
itération ; K : méthode de Kiev. Aussi, dans les deux premieres variantes, on fixe le nombre
d’itérations a 100 tandis que, dans la derniere variante, on pose I 4. = 50 et Geng = 2%.

Pour I'analyse des résultats, on notera SG la premiere variante (colonne intitulée SG, nb
iter = 100), SG, LB la deuxiéme variante (SG, LB, nb iter = 100) et SG, LB, I,,,, la derniere
variante (SG, LB, I gz = 50, Geng = 2%). On peut constater dans le tableau (.4 que, pour
la variante classique du sous-gradient (SG), le gap entre la meilleure borne supérieure et la
meilleure borne inférieure peut aller jusque 30%, tandis qu’il est en-dessous de 8% avec 'ajout
des bornes inférieures (SG, LB). De méme, le gap entre la meilleure borne supérieure et la
solution optimale pouvait atteindre 11% et se situe désormais sous la barre des 8%. Enfin, on
remarque que la borne inférieure fournie par la variante SG, LB est a moins de 3% et méme,
tres souvent, a 0% de la solution optimale. Par contre, les temps de calcul de cette variante
sont nettement plus élevés qu’avec la variante classique du sous-gradient. D’ou I'intérét de la
troisieme variante (avec Geng €t Lnaz), dans laquelle on résout toutes les instances en moins de
8 minutes. De plus, dans cette variante, les gaps sont légerement détériorés mais on constate

tout de méme que les bornes inférieures fournies dans cette variante restent a moins de 3.5%

73

de la solution optimale et, pour la plupart, se trouvent méme & moins de 1% de I'optimalité.
Ce qui valide notre choix de la troisieme variante : sous-gradient avec bornes inférieures,
Gong = 2% et I,,,, = 50 itérations.

1491

1471

1451

1431

1411

1391

1371

1351

74

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 a0 95
—beta=0,2 —beta=04 —beta=0,6 —beta=08 —beta=1

Figure 5.3 Influence du parametre g sur la convergence de la méthode du sous-gradient

Tableau 5.4 Convergence de la méthode du sous-gradient suivant la variante choisie

1)

SG (nb iter = 100)

SG, LB (nb iter = 100)

SG, LB (Iyas = 50, Gong = 2%)

Instance Gap Gap Gap
Temps Gap opt Gap LB LB-opt Temps Gap opt Gap LB LB-opt Temps nb Iter Gap opt Gap LB LB-opt
Cl.15 120 2,03% 12,91% 9,63% 510 0,05% 0,05% 0,00% 294 41 1,87% 1,87% 0,00%
C1.2.5 263 0,39% 3,51% 3,01% 447 0,45% 0,45% 0,00% 64 12 1,95% 1,95% 0,00%
C1.35 449 2,99% 6,61% 3,40% 428 1,81% 1,81% 0,00% 180 50 2,71% 2,71% 0,00%
C1.4.5 710 459% 13,80% 8,09% 698 2,04% 2,19% 0,15% 370 50 2,04% 2,19% 0,15%
C1.5.5 279 2,46% 9,76% 6,65% 499 0,00% 0,00% 0,00% 51 10 0,20% 1,41% 1,20%
C1.1.6 199 6,40% 16,37% 8,56% 293 2,83% 2,98% 0,15% 166 50 2,83% 2,98% 0,15%
C1.2.6 457 6,90% 18,93% 10,11% 557 2,65% 2,65% 0,00% 309 50 2,65% 2,65% 0,00%
C1.3.6 298 10,59% 29,54% 14,63% 514 3,68% 3,68% 0,00% 277 50 3,68% 3,68% 0,00%
C1.4.6 468 6,10% 16,08% 8,60% 571 2,58% 2,74% 0,16% 304 50 2,58% 2,74% 0,16%
Cl.5.6 178 9,03% 26,26% 13,65% 427 3,10% 3,71% 0,59% 252 50 3,96% 4,58% 0,59%
C1.1.7 272 0,29% 1,77% 1,45% 267 0,10% 0,10% 0,00% 25 9 0,87% 0,87% 0,00%
C1.2.7 174 6,93% 25,82% 15,01% 429 0,20% 0,20% 0,00% 59 12 1,77% 1,77% 0,00%
C1.3_7 59 6,96% 22,12% 12,41% 224 3,07% 3,07% 0,00% 132 50 3,14% 3,14% 0,00%
Cl4.7 324 6,18% 17.67% 9,76% 445 3,42% 6,36% 2,77% 246 50 3,66% 6,61% 2,77%
C1.5_7 129 8,35% 25,26% 13,51% 341 0,00% 0,15% 0,15% 49 14 1,21% 1,75% 0,53%
C1.1.8 167 8,82% 9,82% 0,92% 245 7,90% 7,90% 0,00% 141 50 7,90% 7,90% 0,00%
C1.2.8 197 3,59% 11,04% 6,70% 373 0,48% 0,48% 0,00% 128 27 1,24% 1,88% 0,62%
C1.3.8 89 4,25% 9,02% 4,38% 186 2,29% 2,36% 0,07% 125 50 3,17% 3,45% 0,27%
C1.4.8 259 497% 14,35% 8,20% 388 1,82% 1,82% 0,00% 75 19 1,82% 1,82% 0,00%
C1.58 230 1,43% 3,95% 2,43% 350 0,50% 0,57% 0,07% 124 30 1,50% 1,57% 0,07%
C1.19 82 10,17% 21,31% 9,19% 152 4,99% 4,99% 0,00% 86 50 5,28% 5,28% 0,00%
C1.2.9 125 11,38% 29,66% 14,10% 329 0,40% 0,40% 0,00% 85 23 1,68% 1,68% 0,00%
C1.39 242 1,85% 4,49% 2,52% 279 0,00% 0,00% 0,00% 97 32 0,93% 1,10% 0,17%
C1.49 200 3.53% 12,19% 7, 711% 284 1,67% 1,67% 0,00% 163 50 1,67% 5,19% 3,35%
C1.5.9 238 0,00% 2,30% 2,25% 378 0,00% 0,00% 0,00% 64 16 1,53% 1,53% 0,00%

76

5.3.3 Résultats de I’étape de planification

Dans le tableau sont reportés les temps de calcul moyens de 1’étape de planification
dans laquelle I'insertion des clients optionnels consiste en un seul temps (celui avec les estimés
pessimistes). On a limité les temps de calcul a 2 heures (soit 7200s). Si le probleme n’a pas
pu étre résolu dans ce délai, on remplace le temps de calcul par un « - ». De nombreuses
variantes de ’algorithme de branch and cut sont considérées. Les en-tétes de colonnes sont
les suivants : # résolus : nombre d’instances résolues a optimalité en moins de 2 heures;
Temps moyen : moyenne des temps de calcul sur les instances résolues a optimalité; B&C :
branch and cut (avec une priorité de branchement sur les variables x); P : Prétraitement
sur les variables; H : Heuristique pour générer une solution initiale ; RC : Reachability cuts;

SEI : Inégalités d’élimination de sous-ensembles. Dans le tableau 5.5, on peut observer une

Tableau 5.5 Etape de planification : Temps de calcul moyens (en secondes)

pae | # # B&C B&C, P B&C, P, H B&C, P, H, RC Bﬁg: ;’;’
clients d Ob.h- ’ins- # 1é- Temps | # ré- Temps | # ré- Temps | # ré- Temps | # ré- Temps
gatolires | tances
solus moyen solus moyen solus moyen solus moyen solus moyen
5 5 5 1813 5 237 5 253 5 68 5 43
6 5 4 2797 5 288 5 324 5 137 5 66
30 7 5 2 1118 5 408 5 294 5 138 5 53
8 5 4 1689 5 109 5 90 5 50 5 34
9 5 5 1613 5 69 5 60 5 37 5 24
5 5 0 - 0 - 0 - 1 3869 3 3277
6 5 0 - 3 1952 3 1720 4 1601 4 962
40 7 5 0 - 1 519 1 493 3 3736 4 1451
8 5 0 - 1 556 2 3428 2 1196 5 1880
9 5 0 - 3 2250 3 1988 3 1201 5 1053

nette diminution des temps de calcul a l'aide des différentes techniques d’accélération. Nous
pouvons résoudre toutes les instances avec 30 clients en un temps moyen d’une minute et la
plupart des instances a 40 clients en moins de 2 heures lorsque toutes les techniques d’accé-

lération sont mises en oeuvre.

Les résultats obtenus en comparant les méthodes de relaxation Lagrangienne et de branch
and cut sont synthétisés dans le tableau 5.0l Les en-tétes de colonnes sont les suivants : #
résolus : nombre d’instances résolues; Gap Irioyen*opt : gap moyen entre la meilleure borne
supérieure Z et la valeur optimale z* (gap = %) ; Gap moyen LB : gap moyen entre Z et

zZ—2z

la meilleure borne inférieure z (gap =); Gap moyen LB - opt : gap moyen entre z et

*

Zr—z
2" (gap = ———). Pour la méthode basée sur la relaxation lagrangienne, toutes les instances
z

77

sont résolues dans le temps imparti. Toutefois, les instances ne sont pas résolues a I’'optimalité,
étant donné qu’il s’agit d’une heuristique. On n’indiquera pas pour cette méthode le nombre

d’instances résolues a optimalité, étant donné que celui-ci est nul (sauf cas exceptionnel).

Tableau 5.6 Etape de planification : Branch and cut versus Relaxation Lagrangienne

de # Branch and cut Relaxation lagrangienne
. d’obli- e , Gap Gap Gap Gap
clients . d’instances| # ré-
gatoires colus moyen Temps | moyen moyen moyen Temps
LB moyen opt. LB LB-opt. moyen
5 5 5 0.0% 43 1.75% 2.03% 0.27% 192
6 5 5 0.0% 66 3.14% 3.32% 0.18% 262
30 7 5 5 0.0% 53 2.13% 2.83% 0.66% 102
8 5 5 0.0% 34 3.13% 3.32% 0.19% 119
9 5 5 0.0% 24 2.22% 2.95% 0.70% 99
5 5 3 1.8% 3277 1.98% 2.64% 0.46% 1211
6 5 4 2.0% 962 1.99% 3.09% 0.52% 1106
40 7 5 4 0.8% 1451 1.60% 2.81% 0.27% 572
8 5 5 0.0% 1880 2.09% 2.42% 0.32% 532
9 5 5 0.0% 1053 1.35% 2.43% 1.04% 507
5 5 0 4.04% 7200 - 1.44% - 1227
6 5 1 4.99% 5960 0.33% 1.63% 0.00% 3064
50 7 5 1 4.03% 6820 0.88% 2.57% 0.07% 2844
8 5 0 7.50% 7200 - 2.40% - 2323
9 5 2 2.78% 5365 0.54% 2.13% 0.46% 1408

Dans le tableau 5.6l on peut observer que la méthode de relaxation lagrangienne est tres
efficace sur toutes tailles d’instances. Ainsi, sur les instances a 30 et 40 clients, la meilleure
solution obtenue est a moins de 1% de la solution optimale. Et cette méthode nous permet
de résoudre les instances avec 50 clients et 3 véhicules en moins de 3100 secondes (environ
50 minutes). Pour la suite des résultats, nous utiliserons donc la méthode exacte pour les

instances a 30 et 40 clients et la méthode de relaxation lagrangienne pour celles a 50 clients.

Afin de tester notre méthode d’insertion des clients optionnels, nous avons procédé a des
tests sur les instances du Team Orienteering Problem proposées par Chao et al. dﬁ], et avons
comparé nos résultats a ceux obtenus par Boussier et al.] avec une méthode de branch
and price. Les résultats obtenus en comparant ces deux méthodes sont regroupés dans le
tableau 5.7l Dans ce tableau, on peut constater, en moyenne, que I’algorithme de branch and
price proposé est plus performant que notre algorithme de branch and cut. La raison en est
la suivante : dans le probleme de team orienteering, on considere un seul dépot et tous les
véhicules partent de ce dépot pour y retourner. Cela génere une certaine symétrie au niveau
du probleme, qui n’apparait pas dans notre probleme multi-dépot. Dans notre algorithme de
branch and cut, afin de parer un minimum a cette symétrie, nous ajoutons des contraintes
du type > ,c0 @) < Yot 1 ¥p € P. Mais celles-ci s’averent insuffisantes pour diminuer

suffisamment la symétrie du probleme. Toutefois, avec notre branch and cut, nous avons tout

78

Tableau 5.7 Comparaison du Branch and cut et du Branch and price sur les instances du
Team Orienteering Problem

Type Nombre Branch and cut Branch and price
) yP Instance e Nb Valeur CPU Nb Valeur CPU
d’instance d’instances , ,

résolus moyenne moyen résolus moyenne moyen

pl2 18 18 140,0 13,2 15 116,0 127,5

pl pl3 18 18 111,1 75,0 18 111,1 2,1
pl4 18 18 84,2 120,2 18 84,2 0,1

p2.2 11 11 190,5 0,4 11 190,5 0,1

p2 p2-3 11 11 136,4 0,2 11 136,4 0,1
p2.4 11 11 94,5 0,0 11 94,5 0,0

p3-2 20 20 496,0 16,1 12 357,5 283,4

p3 p3-3 20 20 411,5 263,2 18 375,0 98,5
p3.4 20 18 305,6 476,8 20 336,5 0,9

p4d 2 20 3 332,7 1688,3 5 429,6 996,6

p4 p4-3 20 4 141,3 1263,8 9 4227 643,6
pd 4 20 6 90,8 330,2 11 344,3 65,8

p5_2 26 8 162,5 674,8 11 275,5 470,2

p5 p5-3 26 10 155,0 771,56 16 369,1 161,7
p5-4 26 10 100,0 288,7 23 476,2 103,7

p6_2 14 6 190,0 194,0 9 385,3 157,1

p6 p6_3 14 9 194,7 914,7 13 404,8 683,0
p6-4 14 10 36,6 162,8 14 255,0 0,6

p7-2 20 7 217,1 1448.9 6 177,0 9,3

p7 p7-3 20 7 143,1 1153,9 9 213,3 379,6
p7-4 20 7 94,1 474,6 12 240,2 71,0

de méme pu résoudre quelques instances restées ouvertes avec le branch and price de Boussier
et al.] Les résultats obtenus sur ces instances ouvertes sont regroupés dans le tableau (.8
On peut constater que, lorsque les problemes restent de taille réduite, on peut résoudre toutes

les instances méme si le branch and price est souvent plus rapide.

Tableau 5.8 Instances ouvertes du Team Orienteering Problem résolues a 'optimalité

Type

Nb de

). . Instance Valeur CPU
d’instance clients
pl2p 245 23
pl 32 pl2.q 265 15
pl2r 275 50
p3-21 590 24
p3-2_m 620 31
p32.n 660 34
p32o0 690 15
p32p 720 15
p3 3 p3.2.q 760 25
p3-2_r 790 33
p3-2_s 800 21
p3-3_s 720 836
p3-3_t 760 1416
7 102 P 2g 459 5812

79

5.3.4 Résultats de ’étape d’exécution

Dans cette section, nous présentons les résultats obtenus a la fin de la méthode (apres
la programmation dynamique et apres simulations). Nous noterons W R la stratégie de pro-
grammation dynamique consistant a considérer toute la route et OS celle consistant a ne
considérer qu'un seul segment. Dans les tableaux et (.10, nous présentons les résultats de
I’étape d’exécution avec les deux stratégies de programmation dynamique. Ces résultats ont
été obtenus en utilisant la meilleure solution obtenue lors de I'étape de planification (méme si
celle-ci n’était pas optimale) avec une insertion des clients optionnels en deux temps (estimés
pessimistes puis optimistes). Nous n’avons pas reporté les temps de calcul associés a 1'étape

d’exécution car ils sont de quelques secondes.

Tableau 5.9 Valeurs moyennes apres insertion des clients optionnels en 2 temps et simulation
sur des instances a 30 clients

. Avant simulation Apres simulation
clients . . .
obligatoires # moy. . distance | # moy. non servis distance moyenne retard moyen
non servis moyenne| WR OS | WR OS | WR 0OS
5 0 215 6.9 4.6 | 208 220 | 9.5 9.5
6 0 224 9.8 7.2 | 213 225 | 14.6 14.7
7 0 224 10.2 7.8 | 212 226 | 11.1 11.9
8 0 219 9.6 8.4 | 227 233 | 13.8 13.9
9 0 223 10.3 8.2 | 227 239 | 18.1 46.7

Tableau 5.10 Valeurs moyennes apres insertion des clients optionnels en 2 temps et simulation
sur des instances a 40 clients

. Avant simulation Apres simulation
clients . . .
obligatoire: # moy. . distance | # moy. non servis distance moyenne retard moyen
non servis moyenne| WR OS | WR OS | WR 0OS
5 4.8 213 11.1 11.1 | 176 177 | 6.9 6.9
6 1.6 249 13.2 12.9 188 189 | 12.2 12.0
7 1.4 246 17.1 13.6 162 176 | 16.4 13.1
8 0.0 247 16.0 14.7 | 168 172 | 16.9 15.6
9 0.0 248 14.2 135 | 179 189 | 15.4 14.7

80

Dans les tableaux et .10, on observe que le nombre de clients devenus non desservis
durant la simulation est tres élevé (5 a 10 clients en moyenne sur les instances a 30 clients et 11
a 17 clients en moyenne sur les instances a 40 clients.). Ces solutions ne sont pas admissibles.
Les résultats obtenus avec l'insertion des clients optionnels avec estimés pessimistes (a Iaide
du branch and cut pour 30 et 40 clients, et a 'aide de la relaxation lagrangienne pour 50
clients) puis réparation et amélioration de la solution pour la variante V2, et F' = 0.9, sur des
instances contenant jusqu’a 50 clients sont synthétisés dans les tableaux .11l et

Tableau 5.11 Valeurs moyennes apres insertion des clients optionnels avec estimés pessimistes
et simulation sur des instances a 30 clients

. Avant simulation Apres simulation
clients . . .
obligatoires # moy. . distance | # moy. non servis distance moyenne retard moyen
non servis ~ moyenne| WR OS | WR OS | WR 0S
5 14 220 5.3 3.4 | 199 211 | 2.0 2.0
6 2.8 232 5.6 5.6 | 212 212 | 3.1 3.2
7 2.4 230 5.5 5.5 | 209 209 | 2.7 2.8
8 3.4 216 7.6 6.1 | 195 204 | 3.2 3.2
9 3.0 217 7.0 6.4 | 197 201 | 4.6 4.6

Tableau 5.12 Valeurs moyennes apres insertion des clients optionnels avec estimés pessimistes
et simulation sur des instances a 40 clients

. Avant simulation Apres simulation
clients . . .
obligatoires # moy. distance | # moy. non servis distance moyenne retard moyen
1 non servis moyenne| WR 0SS | WR OS | WR 0OS
5 7.2 202 9.7 9.7 | 193 194 1.8 1.8
6 10.2 217 12.7 12.7 | 204 204 | 2.7 2.7
7 10.0 211 13.3 13.3 | 198 198 | 24 2.5
8 10.0 210 13.2 13.2 | 198 198 | 3.6 3.6
9 10.0 206 14.5 14.0 | 189 191 | 6.8 5.6

Dans les tableaux B.11] & 5.13], on observe que le nombre de clients devenus non desservis
durant les simulations est nettement plus raisonnable ici (3 & 4 clients en moyenne sur toutes
les instances). En comparant les stratégies de programmation dynamique, on peut constater
que la stratégie consistant a considérer un segment s’avere plus effective du point de vue
du nombre de clients desservis. Quant au retard moyen, il garde des valeurs comparables,
quelle que soit la stratégie. En ce qui concerne la distance moyenne, en calculant le ratio
distance/nombre de clients visités, on peut comparer ces valeurs. Elles restent quasiment

identiques d’'une stratégie a l'autre.

81

Tableau 5.13 Valeurs moyennes apres insertion des clients optionnels avec relaxation lagran-
gienne et simulation sur des instances a 50 clients

. Avant simulation Apres simulation
clients . . .
obligatoires # moy. . distance | # moy. non servis distance moyenne retard moyen
non servis moyenne| WR OS | WR OS | WR 0S
5 154 192 17.8 17.9 | 185 185 | 2.0 2.0
6 17.6 197 21.0 20.5 | 189 189 | 3.6 3.6
7 18 192 21.8 21.2 | 184 185 | 3.6 3.6
8 18.6 200 22.1 22.2 187 187 4.3 4.4
9 19.2 188 22.7 22.8 | 180 180 | 5.7 5.9

5.3.5 Représentation graphique des résultats obtenus

Intéressons-nous a présent a la représentation graphique des résultats obtenus apres

chaque étape de la méthode de résolution sur une instance contenant 40 clients et 3 vé-

hicules :

C1_5_8(40).

400 |

200 | W)
2

400 |

-400 -200 0 200 400

= Depots » Obligatoires

Figure 5.4 Apres établissement du sque-
lette

400 |

200

-200 +

400 |

-400 -200 0 200 400

m Depots » Obligatoires 4 Optionnels

Figure 5.5 Apres insertion des clients op-
tionnels

Dans les graphiques 5.4l a 5.8, on peut observer les différentes étapes de notre méthode

de résolution sur l'instance C1.5_8(40), contenant 8 clients obligatoires. Tout d’abord, on

construit un squelette de routes en ne considérant que ces 8 clients (figure [5.4]). Ensuite,

figure G5 on inseére les clients optionnels dans le squelette avec estimés pessimistes des

temps de service et de parcours. On peut observer que la tournée en haut a gauche est bien

remplie et ne peut desservir 2 clients optionnels. Apres réparation de la solution figure 5.0, la

tournée située en haut a gauche est clairement allégée et 9 clients de plus sur cette tournée

deviennent non desservis. Ensuite, on améliore la solution en gardant une probabilité de

faisabilité suffisante (figure 5.7)). Enfin, on utilise 'algorithme de programmation dynamique

82

400 +

200

-200 ¢

400

-400 -200 0 200 400 -400 -200 0 200 400

m Depots « Obligatoires a4 Optionnels m Depots « Obligatoires 4 Optionnels

Figure 5.6 Apres réparation de la solution Figure 5.7 Apres amélioration de la solu-
tion

=200

400 |

-400 -200 0 200 400

s Depots » Obligatoires 4 Optionnels

Figure 5.8 Apres programmation dynamique

et on procéde aux simulations. On obtient ainsi les routes réelles figure 5.8 qui ne sont pas

tres différentes des routes planifiées. Finalement, seuls 4 clients optionnels ont été annulés.

5.4 Conclusion

Dans ce chapitre, nous avons présenté une heuristique basée sur la priorité des clients
pour 'étape de planification. Cette heuristique procede en deux phases : la construction de
routes ne contenant que des clients obligatoires (ou construction du squelette) puis l'insertion
des clients optionnels dans le squelette. Nous avons également proposé des méthodes d’accé-

lération pour l'insertion des clients optionnels, qui nous ont permis de résoudre des instances

83

contenant jusqu’a 40 clients avec 3 véhicules en moins de 2 heures. En utilisant la relaxation
lagrangienne et ces techniques d’accélération, nous avons également pu résoudre des instances
comportant 50 clients et 3 véhicules en moins d'une heure. Dans les résultats obtenus apres
I’étape de planification, nous avons pu remarquer que la stratégie de programmation dyna-
mique consistant a ne considérer qu'un seul segment s’avere plus efficace du point de vue du
nombre de clients desservis tandis que les deux stratégies se valent quant a la distance totale
parcourue et au retard (tableaux a[B.I3). On pourrait donc préférer la stratégie considé-
rant un seul segment mais du point de vue opérationnel, il semble préférable de considérer
le reste de la route et non segment par segment. Afin de prendre cette décision, il faudrait
effectuer des tests sur un horizon de temps multi-période afin de juger de la pertinence de ces
deux stratégies. La méthode que nous avons proposée permet donc de résoudre des instances
de taille raisonnable en un temps acceptable (en effet, pour 3 véhicules, on ne peut espérer
desservir plus de 50 clients en une journée). Toutefois, la méthode que nous avons proposée
présente un inconvénient non négligeable : elle présuppose l'existence d’un nombre suffisant
de clients obligatoires (sinon, I’établissement du squelette sur les clients obligatoires devient
inutile). Or, d’'un point de vue pratique, dans I'application a laquelle nous nous intéressons
(ou les clients obligatoires correspondent a des clients chez lesquels une opération de répara-
tion est planifiée), on peut espérer ne pas avoir a traiter un trop grand nombre de pannes au
quotidien. Une piste intéressante serait donc d’intégrer les deux phases de planification en une
seule, i.e. a construire directement des routes contenant des clients optionnels et des clients
obligatoires. C’est pourquoi, dans le chapitre suivant, nous allons présenter une heuristique,
basée sur la génération de colonnes, capable de construire des routes avec les deux types de

clients en une seule étape.

84

CHAPITRE 6

Heuristique basée sur la génération de colonnes

Dans le chapitre précédent, nous avons proposé une heuristique basée sur la priorité des
clients pour I’étape de planification. Cette heuristique procede en deux temps : création de
routes a partir des clients obligatoires puis insertion des clients optionnels dans ces routes.
Toutefois, cette méthodologie présente I'inconvénient de nécessiter un nombre suffisant de
clients obligatoires (afin de justifier de la construction du squelette des clients obligatoires).
Dans ce chapitre, nous proposons une heuristique basée sur la génération de colonnes permet-
tant de construire directement des routes contenant simultanément des clients obligatoires et
des clients optionnels. Cette méthode vise a générer un ensemble de routes diversifiées et de
bonne qualité pour chacun des véhicules, puis, a sélectionner une route pour chaque véhicule
en résolvant un programme linéaire en nombres entiers. Dans les sections suivantes, nous dé-
taillerons en premier lieu la méthode utilisée pour générer des routes puis nous expliquerons
la sélection exacte des routes pour chaque véhicule. Ensuite, nous présenterons les résultats

expérimentaux et enfin nous conclurons.

6.1 Génération de routes

Lors de la génération de routes, on considere les véhicules un par un. Soient N I’ensemble
des clients, M I’ensemble des clients obligatoires, O I’ensemble des clients optionnels et P;;
'ensemble de chemins de i € M & j € M (desservant des clients optionnels). Soient o* et d*
I'origine et la destination du véhicule considéré, on note M° = M U {o"} et M? = M U {d"*}.
Afin de conserver la notion de priorité entre les clients obligatoires et les clients optionnels,
on attribue aux clients obligatoires un profit p; supérieur a celui des clients optionnels. Il
s’agit alors de générer des routes maximisant le profit total associé aux visites des clients,
tout en minimisant la distance totale parcourue et en respectant les contraintes de fenétres
de temps associées a la destination du véhicule et aux clients obligatoires. Notons 7y, et Ty,
les temps de parcours modaux et maximaux de [a m, 7; et 7; les temps de service modaux
et maximaux au client ¢, 7, et 0, les temps modaux de parcours et de service associés au
chemin p, [e;, ;] la fenétre de temps du client 4, T' ’horizon de temps et « la pondération des

temps de parcours dans la fonction objectif. On utilise les variables décisionnelles :

x; variable booléenne indiquant si le client [est servi

85

y;; variable booléenne indiquant si le client obligatoire j suit le client obligatoire 7 (quand

on ne considere que les clients obligatoires de la route)

Zim variable booléenne indiquant si 'arc (I, m) est utilisé (I,m € N)

Sl
.

N

considere que les clients obligatoires de la route)

heure de début de service modale chez le client obligatoire ¢

heure de début de service au plus tard chez le client obligatoire i (quand on ne

Avec les variables définies ci-dessus, on peut formuler le probleme de génération de la

meilleure route pour le véhicule £ comme suit :

max . E Dit; — g g Tim Zim,

ieEN leNU{ok} me NU{d*}

sujet a :

Z Zokm = 1

meNU{dF}

E Zim = Tm

leNU{ok}

E Zim = T

meNU{dF}

D A <Ipl =1 +ys

(I,m)ep

ti + 7ED"’O-p (Z Zlm — |p|+1> +(yz~j—1)T<tj
(

l,m)ep

ti+0, +Ti+ (yy — 1T < 45
tit 0+ 7y + (yiy — VT < 1y

(6.1)
Vm e N (6.2)
Vie N (6.3)

Vie M°je M pe Py
(6.4)
Vie M°je M pe Py

(6.5)
Vie M°jeM? (6.6)
Vie M°je M (6.7)

e; <t < Vie MU {o;d} (6.8)
e; <ty < Vie MU{d®;d*} (6.9)
xy, Zim €40; 1} Vi,m e N (6.10)
yi; €{0;1} Vie M°jeM? (6.11)
ti,t; =0 Vi e M U{o";d*} (6.12)

La contrainte ([6.]) assure que la route du véhicule quitte 'origine (éventuellement pour
aller directement au dépot destination). Les contraintes (6.2]) et (6.3) sont des contraintes
de degrés entrant et sortant. Les contraintes (G.4]) spécifient que si on emprunte le chemin p
allant de i a j, alors le client obligatoire j suit le client obligatoire i (quand on ne considere
que les clients obligatoires). Les contraintes (6.5]), quant a elles, indiquent que, si on utilise
un chemin p pour aller de ¢ a 7, alors, on doit s’assurer de commencer le service au client
obligatoire j apres avoir quitté le client obligatoire ¢ et apres avoir desservi tous les clients
optionnels du chemin p. Les contraintes (6.0) et (6.7) sont des contraintes de précédence
temporelle entre les clients obligatoires (avec des estimés modaux et maximaux). Enfin, les

contraintes (6.8)) et (6.0) assurent le respect des fenétres de temps des clients obligatoires.

Le probleme, pour un véhicule donné, peut donc étre assimilé a un « Orienteering Pro-
blem with Time Windows » (OPTW) dans lequel le temps de parcours total est minimisé
et auquel on ajoute les contraintes ([0.4]) a (6.6) et (6.8). Comme l'ont montré Bramel et
Simchi-Levi], ce probleme peut étre reformulé comme un « Elementary Shortest Path
Problem with Resource Constraints » (ESPPRC). Comme nous souhaitons générer un en-
semble de routes diversifiées de trées bonne qualité, I'idéal est d’utiliser une méthode exacte
de type programmation dynamique. On peut alors, a la fin de ’algorithme de programmation
dynamique sélectionner les meilleures routes (selon un critere donné). Dans ce qui suit, nous
présenterons un bref état de I'art sur les méthodes de résolution proposées pour 'ESPPRC
et nous expliquerons la méthode retenue. Nous détaillerons ensuite ’algorithme de Righini
et Salani E] Puis, nous présenterons sa version améliorée telle qu'implantée par Salani
(communications privées) et enfin nous proposerons différentes variantes de cet algorithme,

adaptées a la résolution de notre probleme.

6.1.1 Etat de ’art des méthodes de résolution de P’ESPPRC

Pour résoudre 'ESPPRC, différentes méthodes ont été proposées dans la littérature dans
le cadre du probleme de tournées de véhicules avec fenétres de temps. On distinguera trois

catégories : les algorithmes de programmation dynamique exacte, les algorithmes de pro-

87

grammation dynamique exacte avec relaxation des contraintes d’élémentarité et les méthodes
heuristiques de résolution de sous-problemes. Le premier algorithme de programmation dy-
namique exacte pour résoudre un ESPPRC est proposé par Feillet et al. E] Dans cette
méthode, ils étendent 1'algorithme d’étiquetage de Desrochers [23] proposé pour résoudre

et Salani proposent une variante bidirectionnelle bornée de I'algorithme de Feillet, afin

le SPPRC Eplus court chemin avec contraintes de ressources) au cas élémentaire. Righini
]

d’accélérer la résolution du probleme (cf. description détaillée dans le chapitre précédent).
La contrainte sur I’élémentarité d’un chemin étant a ’origine de nombreux états non dominés,
plusieurs méthodes ont été proposées, basées sur la relaxation des contraintes d’élémentarité.
Ainsi, Boland et al. @] et Righini et Salani @] proposent une méthode appelée « decre-
mental state space relaxation » (DSSR). Dans cette méthode, ils relachent entierement les
contraintes d’élémentarité lors de la génération des chemins (se ramenant ainsi a un probleme
de plus court chemin avec contraintes de ressources) et ajoutent itérativement des contraintes
empéchant la formation de cycles jusqu’a obtention de chemins élémentaires. De méme, Bal-
dacci et al. B] proposent une méthode appelée ng-route relaxation. Dans cette méthode, ils
introduisent une notion d’élémentarité partielle d’'un chemin en interdisant ’extension d’un
chemin a un sous-ensemble des clients visités par ce chemin. Ce sous-ensemble est défini a
partir d’'une notion de voisinage. Afin de gagner encore en efficacité, Pinto @] integre la
DSSR dans la ng-route relaxation en augmentant itérativement la taille des voisinages de la
ng-route relaxation jusqu’a obtenir des routes ng-réalisables.

Les méthodes proposées ci-dessus sont des algorithmes exacts de programmation dynamique.
Ces méthodes pouvant s’avérer tres chronophages, Desaulniers et al. | proposent deux
stratégies heuristiques de programmation dynamique afin d’accélérer la résolution de I'ESP-
PRC. La premiere stratégie est une « limited discrepancy search » (LDS) : étant donné un
parametre D,,.., elle consiste a ne garder pour chaque client que ses D,,,, successeurs les
plus proches et ses D,,q, prédécesseurs les plus proches (la distance correspondant aux couts
réduits associés aux arcs). La deuxieme stratégie est une stratégie de dominance aggrégée :
étant donné un parametre R,,.., elle consiste a n’utiliser dans les tests de dominance que

R0 TESSOUTCES.

6.1.2 Méthode de résolution de PESPPRC retenue

Dans la littérature (cf. ci-dessus), plusieurs techniques consistant a relacher les contraintes
d’élémentarité d’un chemin ont été proposées pour accélérer la programmation dynamique :
la DSSR @] et les ng-routes [5]. La DSSR (decremental state space relaxation) consiste a

relaxer la contrainte d’élémentarité d'un chemin lors de son extension (et donc a résoudre un

88

SPPRC au lieu d'un ESPPRC) puis a forcer 1’élémentarité des arcs de la solution optimale
tant que celle-ci contient des cycles. Dans leur article en 2009, Righini et Salani B] testent
cette méthode sur un ensemble d’instances dont celles de Cordeau et al.] et y indiquent
qu’en deux heures, ils obtiennent des solutions & plus de 50% de gap de l'optimal sur les
instances avec fenétres de temps larges (prll a pr20). Or, dans ces instances, les fenétres de
temps ne sont pas aussi larges que dans notre probleme. Nous n’avons donc pas conservé
cette méthodologie pour nos tests.

La méthode des ng-routes consiste aussi a relaxer la contrainte d’élémentarité d’un chemin,
sans pour autant réduire le probleme a un SPPRC. Il s’agit, pour un chemin p, de s’interdire
non pas tous les clients déja visités mais un sous-ensemble de ces clients. Soit N; I'ensemble
des Ang plus proches voisins du client ¢ (i inclus), et p = (i, 42, .., i) un chemin, on définit
'ensemble des clients interdits II(p) = {i, : i, € NF_, , Ni,r = 1,..,k — 1} U {i;}. Nous
avons testé cette méthodologie, combinée a I’élimination des 2-cycles. Toutefois, lors des tests,
quelle que soit la valeur du parametre Ay, nous avons obtenu des routes non élémentaires.
Nous n’avons donc pas retenu cette méthode pour nos expérimentations.

Afin de procéder a une génération d’un ensemble de routes de tres bonne qualité, nous avons
choisi de nous baser sur 'algorithme de programmation dynamique bi-directionnelle bornée

proposé par Righini et Salani [58].

6.1.3 Algorithme de programmation dynamique bidirectionnelle bornée de Sa-

lani

Dans I'algorithme de programmation dynamique bidirectionnelle bornée proposé par Ri-
ghini et Salani [58], on consideére deux directions : une direction « forward » (depuis 'origine
vers la destination) et une direction « backward » (depuis la destination vers l'origine). On
considere également une ressource critique. La programmation dynamique bidirectionnelle
bornée consiste alors a construire des chemins dans chacune des deux directions a 1’aide de
la programmation dynamique classique puis a procéder a la jonction des chemins forward
et backward. De plus, lors de la construction des chemins, on doit s’assurer, dans chacune
des directions, que la ressource critique utilisée par un chemin n’excede pas la moitié de la
quantité disponible de cette ressource. Une description en pseudo-code de cet algorithme est
présentée dans I'algorithme

Pour un véhicule donné, soient s l'origine et ¢ la destination de ce véhicule. Avant de
démarrer la programmation dynamique, Righini et Salani @] procedent a un tri des clients
par ordre d’extension avec la fonction triClientsOrdreEztension(). Ils trient les clients par
ordre croissant de début de fenétre de temps, et pour un méme début de fenétre de temps,

par ordre décroissant de fin de fenétre de temps. Ensuite, ils associent a chaque chemin un

L <« triClientsOrdre Extension();
// Extension forward
T 0,0, ...
Ffw[s] A {(O’ 0,0,0, 5)};
tant que fini # vra: faire
fini + vraz;
pour i =0 a taille(L) faire
pour chaque li € 'y, [L[i]] faire
pour chaque j € L tel que extensionFwdPossible(li, j) faire
si extendFwd(li, 7) alors
‘ fini + faux;
fin
fin

fin

fin

fin

// Extension backward

T < 0,0, ..., 0];

Cyt] <= {(0,0,0,0,1)};

tant que fini # vra: faire

fini < vraz;

pour i = taille(L) a 0 faire

pour chaque li € I',[L[i]] faire

pour chaque j € L tel que extensionBwdPossible(li, j) faire
si extendBwd(li, 7) alors

‘ fini < faux;

fin

fin

fin
fin

fin
// Jonction des labels
pour chaque i € I'y, faire

pour chaque [j € I'y, faire

‘ joindre(li, lj);

fin

fin
Algorithm 3: Programmation dynamique bornée bidirectionnelle
(Righini et Salani [58])

89

90

label permettant de caractériser ce chemin (cf. description plus loin) et créent des matrices
pour contenir les labels forward et backward, respectivement I'y,, et I'y, (I'fw[i] contient
tous les labels forward finissant au client 7). Ils initialisent un label forward pour le client s
et un label backward pour le client ¢. Une fois l'initialisation terminée, ils procedent dans
un premier temps a ’extension forward. Puis, ils considerent les clients un a un par ordre
d’extension et essayent d’étendre forward tous les labels associés a ce client. L’extension
forward s’arréte quand tous les labels ajoutés sont dominés. Pour 'extension forward, ils
disposent de deux fonctions : extension FwdPossible(li, j) qui indique si 'extension forward
du label li au client j est possible et une fonction extendFwd(li, j) qui étend le label li au
client j en forward et ajoute le label ainsi obtenu a la liste I'f,,[j] si ce label n’est pas dominé.
extendFwd(li, j) retourne vrai si la liste des labels forward a été modifiée. Pour I'extension
backward, ils considerent cette fois les clients par ordre inverse d’extension et procedent
comme ci-dessus mais en extension backward. Les fonctions utilisées sont identiques a celles
ci-dessus : extension BwdPossible(li, j) indique si I'extension backward du label /i au client
J est possible, et extendBwd(li, j) étend le label li au client j en backward, ajoute le label
ainsi obtenu a la liste 'y, [j] si ce label n’est pas dominé et retourne vrai si la liste des labels
backward a été modifiée. Enfin, une fois les extensions forward et backward terminées, ils
procedent a la jonction des labels forward et backward a 1'aide de la fonction joindre(li,lj)
qui joint le label forward /i au label backward [j si cette jonction est possible. Cet algorithme
fournit donc un ensemble de routes obtenues par jonction de chemins forward et de chemins

backward.

6.1.4 Algorithme de programmation dynamique implanté par Salani

Depuis son article en 2009, Salani a amélioré son code et a proposé une nouvelle variante
de son algorithme de programmation dynamique (communications privées avec Salani) pour
résoudre spécifiquement un OPTW. Dans cette variante, il construit des chemins forward et
des chemins backward en limitant la durée d’un chemin dans une direction a la moitié de
la durée totale autorisée. Puis, il procede a la jonction des chemins forward et backward.
Le fonctionnement de cette méthode est identique a celui de Righini et Salani @} La seule
différence réside au niveau des labels (cf. plus loin). Pour cet algorithme, Salani associe a
chaque chemin p un label (S,t,r,u,i) ou S est le vecteur de visite des clients (S[k] =1 si le
client k est visité par le chemin p, S[k] = 2 si le client k est inaccessible pour le chemin p et
S[k] = 0 sinon), t le temps consommé sur le chemin p (en utilisant les temps de service et les
distances comme temps de parcours), r le profit associé a la visite des clients, u le nombre
de clients inaccessibles et ¢ désigne le dernier client visité par le chemin. On remarquera

que, pour un label forward, le temps consommé correspond au temps qui s’est écoulé entre

91

le départ de l'origine et le début de service au client courant. Pour un label backward, le
temps consommeé représente plutot le temps écoulé entre la fin de service au client courant et
I’arrivée a destination. Pour ces labels, il définit des regles d’extension, de dominance ainsi
que de jonction décrites ci-apres. En notant N I’ensemble de clients, d le dépot destination,
o; la durée de service au client ¢, 7;; le temps de parcours de 7 a j, p; le profit associé a la
visite du client i et [e;, [;] la fenétre de temps du client ¢, il définit la durée totale autorisée T’
comme étant I’heure maximale d’arrivée au dépot, soit T = max;(l; + o; + Tia)-

Dans la premiere version de Righini et Salani @] décrite au paragraphe[6.1.3] ils utilisaient
les labels (S, t,7,4). Ils ne prenaient pas en compte le nombre de clients inaccessibles u. Cette

valeur aide a augmenter le nombre de labels dominés et accélere 1’algorithme.

Regles d’extension

Etendre un label revient a ajouter un client au chemin qui lui est associé. L’extension
du label (S,t,7,u,i) au client j génere le label (S',¢',r', v/, j). En posant e = e; si on est en

forward et e = T"'— [; — 0; si on est en backward, on a :

([S'=Set S'[j]=1
t' = max(e, t + 0; + 755)
r=r+p;
u' =u+1+|Uj| ou Uj = {k € N|S[k] =0 et t' + 0j + T > Iy} en forward
{ et Ui ={k € N|S[k] =0 et t' +0;+ 7 > T — e, — op} en backward

Le nouveau label visite les mémes clients que 1'ancien label, plus le client j. En forward, le
temps consommé par le nouveau label correspond soit a I’heure d’arrivée au plus tot au client
7, soit au temps consommé par I'ancien label auquel on ajoute le temps consommé pour des-
servir ¢ et celui consommé pour se rendre au client j. En backward, le temps consommé par
le nouveau label correspond soit au temps consommé entre la fin de service au plus tard au
client j et arrivée a destination (& ¢t = T'), soit au temps consommé par I’ancien label auquel
on ajoute le temps consommé pour servir i et celui consommé pour aller de j a i (temps de
parcours symétriques). Le revenu associé au nouveau label correspond au revenu de I'ancien
label auquel on ajoute le profit associé au client j. Enfin, le nombre de clients inaccessibles
pour le nouveau label correspond au nombre de clients inaccessibles associés a I’ancien label

auquel on ajoute le nombre de clients devenus inaccessibles avec la visite du client j.

En posant [= [; en forward et [=T — e; — 0; en backward, I'extension sera réalisable si

les conditions suivantes sont vérifiées :

92

Sl =0

t' <l

t' <T/2 sic’est un label backward
t <T/2 sic’est un label forward

Ici, on s’assure de ne pas visiter deux fois le méme client, de respecter la fenétre de temps
au client 7. On s’assure également qu’un label backward respecte la contrainte de durée. Par
contre, on autorise un label forward a déborder d’un client sur cette méme contrainte. En
d’autres termes, si la durée d’un chemin forward ne dépasse pas 7'/2, on s’autorise 1'extension
du label forward associé (méme si le label forward ainsi généré ne respecte pas la contrainte

de durée).

Regles de dominance

Pour limiter le nombre de labels considérés a chaque étape de la programmation dyna-
mique, on utilise des reégles de dominance. Le label (Sy, t1, 71, u1,1) domine le label (Ss, to, 12, us, 7)

Sl :

G
//\\v/ﬁ//\
Swg;

g
<
2

[une de ces inégalités est stricte

Les labels dominés ne seront pas conservés dans la programmation dynamique.

Regles de jonction
La jonction d'un label forward (S7* t/* rfv /v i) et d'un label backward

(Sbw gbw pbw ybw 7)) n’est possible que si les conditions suivantes sont vérifiées :

STwli] 4+ SPfi] < 1 Vie N
tfw+Ui+Tij+tbw<T

6.1.5 Variantes proposées

Dans le cadre du probleme que nous traitons, nous devons apporter quelques modifications
a l'algorithme de programmation dynamique bidirectionnel implanté par Salani décrit ci-

dessus (cf. section [6.1.4]). On doit notamment gérer une ressource supplémentaire liée aux

93

clients obligatoires et & la stochasticité des temps de service et de parcours : la ressource t
indiquant la durée du label dans le pire cas (quand on ne considere que les clients obligatoires).
De plus, dans notre probleme, comme les temps de service et de parcours sont stochastiques,
on utilisera leur valeur modale pour la ressource t. Enfin, étant donné que nos temps de
parcours sont différents de nos distances, on ajoute une ressource de distance d dans nos
labels. Comme nos clients obligatoires sont les seuls a avoir des fenétres de temps serrées,
la distance est nécessaire au niveau des criteres de dominance. En effet, sans ce critere de
distance, on aurait du mal a éliminer des chemins dominés au niveau des clients obligatoires.
On associe ainsi a chaque chemin p un nouveau label (S,t,t,r, d, u,i) on S est le vecteur
de visite des clients (défini comme précédemment), ¢ le temps consommé sur le chemin p
(en utilisant les valeurs modales des temps de service et de parcours), ¢ le temps consommé
par les clients obligatoires sur le chemin p (en utilisant les temps de service et de parcours
maximaux), 7 le profit associé a la visite des clients, d la distance parcourue, u le nombre de
clients inaccessibles et ¢ désigne le dernier client visité par le chemin. Pour ces labels, nous
définissons des regles d’extension, de dominance ainsi que de jonction ci-apres. Puis, nous

présentons la méthodologie.

Regles d’extension

Etendre un label revient a ajouter un client au chemin qui lui est associé. L’extension du
label (S, t,t,7,d, u,i) au client j génere le label (S, ¢, 7', d',/, 7). En notant D;; la distance

de ¢ a j et en posant e = ¢; si on est en forward et e = T'—1; — g, si on est en backward, on a :

4

S'=Set Sjl=1
t' = max(e, t + &; + 7;5)
" =r+p,
d=d+ D
u' =u+1+|Uj| ow Uj = {k € N|S[k] =0 et t' + oj + Tjx > I} en forward
et Ul ={k € N|S[k] =0ett' +o;+ 7 > T — e, — 01} en backward

\

De plus, suivant le caractere obligatoire (ou optionnel) du client j, en notant m le dernier

client obligatoire du label avant extension, on posera :

7 { t si j est optionnel

t+ Gm + Ty sinon

Ces regles d’extension sont similaires a celles présentées section B.1.4l On modifie la regle

d’extension pour la ressource temporelle ¢ en prenant en compte les valeurs modales des

94

temps de service et de parcours. Aussi, on ajoute deux regles associées aux deux nouvelles
ressources : la distance et les temps consommés par les clients obligatoires. La distance
associée au nouveau label correspond a la distance de l’ancien label a laquelle on ajoute
la distance pour aller de 7 a j. Le temps consommé par les clients obligatoires associé au
nouveau label dépend de la nature du client j. Si le client j est optionnel, le temps consommé
par les clients obligatoires reste inchangé dans le nouveau label. Si, au contraire, le client j
est obligatoire, le temps consommé par les clients obligatoires est incrémenté du temps de
service maximal au dernier client obligatoire m de l’ancien label et du temps de parcours
maximal de m a j.

En posant [= [; en forward et | =T — e; — 7, en backward, 'extension sera réalisable si

les conditions suivantes sont vérifiées :

Sl =0

<1

t' <T/2 sic’est un label backward
t <T/2 sic’est un label forward

Si le client j est un client obligatoire, les deux conditions suivantes doivent également étre

vérifiées :

{

Ici, on s’assure de ne pas visiter deux fois le méme client, de respecter la fenétre de temps au

!/

il
NN

!

T/2
I

el

client 7. On s’assure également du respect de la contrainte de durée pour un label backward
tandis qu’on autorise un label forward a déborder d'un client sur cette méme contrainte. De
plus, si le client j est obligatoire, on doit s’assurer que le chemin ne contenant que les clients
obligatoires est réalisable dans le pire des cas (avec les estimés maximaux). On doit donc
s’assurer du respect de la borne sur la longueur d’'un chemin et de la fenétre de temps au

client 7 avec les estimés pessimistes.

Regles de dominance

Pour limiter le nombre de labels considérés a chaque étape de la programmation dyna-
mique, on utilise des regles de dominance. Le label (Si,ty,t1,71,d1, u1,i) domine le label

<527 t27 7?27 T, d2, Ug, Z) St

95

N

YN/ A\ YA/AN/AN A
R

~
—_

<~
[\

S !
H
Sl

I
=

<
)

[une de ces inégalités est stricte

On retrouve ici les mémes regles de dominance que dans la section [6.1.4l On ajoute juste
deux regles de dominance au niveau de la nouvelle ressource de distance et au niveau de la
ressource de temps consommé par les clients obligatoires. Les labels dominés ne seront pas

conservés dans la programmation dynamique.

Regles de jonction

La jonction dun label forward (S7®, tfw tfv rfv dfv o 4) et d’'un label backward

(Sbw ghw ghw pbw gbw bw i) n’est possible que si les conditions suivantes sont vérifies :

STwli] 4+ SPfi] < 1 Vie N
Y+ 6+ 7+t LT
Efw + 5-mfw + 'fimfwmbw + Ebw < T

ot m/* et m” représentent respectivement le dernier client obligatoire du label forward et
du label backward.

Ci-dessus, nous avons présenté notre adaptation de ’algorithme bidirectionnel borné im-
planté par Salani dans le cadre de notre probleme. On notera cet algorithme (BD, DA, VV)
pour indiquer qu’il s’agit de I’algorithme bidirectionnel (B D), avec débordement autorisé d'un
label forward sur la borne (DA) dans lequel S désigne le vecteur de visite (V'V'). Nous avons
également proposé 3 variantes de cet algorithme. Dans la premiere variante (BD, DI, VV),
on interdit le débordement d’un label forward sur la contrainte de durée. Ainsi, dans cette
variante (BD, DI, VV'), quel que soit le label (S,t,t,r, d,u,i), forward ou backward, on a
t < T/2. Dans la deuxieme variante (BD, DI, NV'), on interdit également ce débordement
d’un label forward et on modifie les labels en ajoutant une ressource s indiquant le nombre
de clients visités. On modifie ensuite les regles de dominance en remplacant la regle S; < .S,
par la regle s; < s9. Cela ne remet pas en question 1’élémentarité des chemins car on stocke
tout de méme dans chaque label le chemin associé. Par contre, cela modifie les regles de do-
minance car on pourra comparer deux labels ne visitant pas du tout les mémes clients. Ainsi,

on augmente fortement le nombre de labels dominés mais on perd également 'optimalité de

96

la solution. Dans la derniere variante (UD, DI, NV'), on interdit le débordement d’un label
forward, on utilise le label modifié avec la ressource s indiquant le nombre de clients visités et

on procede a I'extension dans une seule direction (algorithme de programmation dynamique
classique, noté UD).

Parmi ces différentes variantes, on en distingue de deux types : les variantes exactes (BD, DA, V'V)
t (BD,DI,VV) et les variantes approchées (BD, DI, NV') et (UD,DI, NV). Au vu des
résultats obtenus avec les variantes approchées, nous avons choisi de procéder a une postop-
timisation de type 2-Opt (échange d’arcs intra-route). Cette méthode permet d’améliorer la
qualité des solutions obtenues du point de vue de la distance parcourue et donc des temps

de parcours. Les performances de ces différentes variantes seront comparées dans la section

résultats de ce chapitre.

6.1.6 Sélection des routes

Apres avoir généré des routes, nous disposons pour chaque véhicule d’un ensemble de
routes diversifiées et de bonne qualité. Pour chaque véhicule, cet ensemble de routes est
obtenu par jonction de chaque chemin forward avec chaque chemin backward. Il peut donc
contenir plusieurs exemplaires d’une méme route comme nos clients ne sont pas tres contraints
(par exemple, la route (0;1;2;3;4;d) peut étre obtenue en joignant le chemin forward (0;1;2)
et le chemin backward (3;4;d) ou en joignant le chemin forward (0;1;2;3) avec le chemin
backward (4;d)). On ne procede pas a I’élimination de ces doublons car cette opération est
cotiteuse en temps de calcul tandis que Cplex élimine tres rapidement les doublons lors de la
sélection des routes. A partir de ces ensembles de routes, il nous faut a présent procéder a la
sélection d’une route par véhicule, en s’assurant de desservir exactement une fois chaque client
obligatoire, au plus une fois chaque client optionnel. L’objectif est de maximiser le profit total
associé a la desserte des clients optionnels tout en minimisant le temps de parcours total.
Notons ¥ I’ensemble des routes générées pour le véhicule k. Pour une route 7, on note p, le
profit associé, 7, le temps de parcours modal sur cette route et ;. le booléen indiquant si le
client i est desservi sur la route 7. En introduisant les variables booléennes 2% indiquant si la

route r est sélectionnée pour le véhicule k, le probleme de sélection des routes peut s’écrire :

max g g —af.)z

keK reQk

97

sujet a :

D Gpat=1 Vie M (6.13)

keK reQk
Z Z St <1 Ve e O (6.14)
kEK reQk
d oab=1 Vk e K (6.15)
reQk

zy € {0;1}

Les contraintes ([6.13]) forcent chaque client obligatoire a étre desservi une et une seule fois,
les contraintes (6.14]) indiquent que chaque client optionnel est desservi au plus une fois et les
contraintes (6.15]) forcent la desserte d'une et une seule route par véhicule. Nous choisissons

de résoudre ce programme linéaire de facon exacte a 'aide d’'un solveur commercial.

6.2 Expérimentation

Nous procédons aux expérimentations sur des instances de la littérature ainsi que sur les
instances décrites chapitre 1, en utilisant Cplex 12.4, pour procéder a la sélection des routes.
Les tests ont été effectués sur une machine avec 4CPU, 2.8GHz et 30Go de RAM. Dans cette
section, nous présentons d’abord les résultats obtenus sur les instances de la littérature puis

ceux sur les instances décrites chapitre 1.

6.2.1 Résultats sur les instances de la littérature

Afin de valider la méthodologie proposée dans ce chapitre et de comparer les résultats ob-
tenus par les quatre variantes de I’algorithme de programmation dynamique (BD, DA, VV),
(BD,DI,VV), (BD,DI,NV) et (UD,DI, NV), nous avons procédé a des tests sur des ins-
tances de la littérature. Tout d’abord, pour valider la méthodologie de génération de routes,
nous ’avons testée sur des instances du OPTW. Ensuite, pour valider la méthodologie dans
sa globalité, nous avons procédé a des tests sur des instances du TOPTW. Dans cette section,

nous présenterons d’abord les résultats sur les instances du OPTW.

Résultats sur les instances du OPTW

Afin de pouvoir comparer les quatre variantes de l’algorithme de programmation dy-
namique (BD,DA,VV), (BD,DI,VV), (BD,DI,NV) et (UD,DI, NV, nous les avons

testées sur les instances proposées par Righini et Salani [58]. Pour ces tests, comme il s’agit

98

de résoudre un probleme de type OPTW, nous avons utilisé les mémes labels que dans le
code de Salani, mais avec nos variantes codées en C++. Nous avons également exécuté le code
de Salani sur notre machine afin d’obtenir des temps de calcul comparables. On notera que
les résultats obtenus avec le code de Salani sur les instances de type OPTW sont nouveaux,
puisqu’ils n’ont fait I'objet d’aucune publication jusqu’a présent, et sont meilleurs que ceux
proposés dans Righini et Salani [58]. Les résultats de ces tests sur les instances a 50, 100
clients et 100 clients avec fenétres de temps larges sont regroupés dans les tableaux [G.1]
et 6.3 Les en-tétes de colonnes dans ces tableaux sont : Opt : valeur de la solution optimale,
BKS : valeur de la meilleure solution connue, CPU : temps de résolution en secondes, Profit :
profit collecté, # vis. : nombre de clients visités et Gap : gap entre la solution obtenue et la
solution optimale (ou la meilleure solution connue). Dans ces tableaux, on se limite & deux
heures de résolution (7200 secondes). Si la résolution n’a pu se terminer en le temps imparti,
on inscrira un « - » dans la case correspondante. En ce qui concerne les solutions optimales
et les meilleures solutions connues sur ces instances, nous avons utilisé celles obtenues par

Hu et Lim @] De plus, on indique la valeur en gras s’il s’agit de la solution optimale.

Tableau 6.1 Comparaison sur les instances de type OPTW a 50 clients

99

Méthodes exactes Méthodes approchées

Instance | Opt. Code de Salani BD,DA,VV BD,DI,VV BD,DI,NV UD,DI,NV

CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. | CPU Profit # vis. Gap CPU Profit # vis. Gap
cl01 270 0 270 10 0 270 10 0 270 10 0 270 10 0,00% 0,01 270 9 0,00%
cl02 300 3,49 300 11 3,42 300 11 1,23 300 11 0,01 300 11 0,00% 0,03 300 10 0,00%
cl103 320 - - 3437,07 320 11 0,04 300 10 6,25% 0,16 320 10 0,00%
cl04 340 - - - 0,09 330 11 2,94% 0,44 340 10 0,00%
cl05 300 0 300 11 0 300 11 0,01 300 11 0 300 11 0,00% 0,01 300 10 0,00%
c106 280 0 280 10 0 280 10 0 280 10 0 280 10 0,00% 0,01 280 9 0,00%
c107 310 0,01 310 11 0,01 310 11 0,01 310 11 0,01 310 11 0,00% 0,01 310 9 0,00%
cl108 320 0,01 320 11 0,01 320 11 0,01 320 11 0,01 320 11 0,00% 0,03 320 10 0,00%
c109 340 0,15 340 11 0,15 340 11 0,14 340 11 0,02 340 11 0,00% 0,03 340 10 0,00%
r101 126 0 126 5 0 126 5 0 126 5 0 126 5 0,00% 0 126 4 0,00%
r102 198 0,16 198 9 0,16 198 9 0,06 198 9 0,01 182 8 8,08% 0,03 195 8 1,52%
r103 214 11,29 214 10 11,13 214 10 0,92 214 10 0,02 202 10 5,61% 0,08 208 8 2,80%
r104 227 | 1607,81 227 10 1602,63 227 10 24,12 227 10 0,05 225 10 0,88% 0,27 223 9 1,76%
r105 159 0 159 6 0 159 6 0,04 159 6 0 159 6 0,00% 0,01 159 5 0,00%
r106 208 0,2 208 10 0,2 208 10 0,08 208 10 0,01 203 8 2,40% 0,03 203 7 2,40%
rl07 220 10,43 220 10 10,29 220 10 1 220 10 0,03 216 10 1,82% 0,10 210 8 4,55%
r108 227 | 1371,02 227 10 1372,44 227 10 21,94 227 10 0,05 225 10 0,88% 0,22 223 9 1,76%
r109 192 0,01 192 8 0,01 192 8 0,01 192 8 0,01 192 8 0,00% 0,03 192 7 0,00%
r110 208 0,06 208 9 0,06 208 9 0,03 208 9 0,01 208 9 0,00% 0,06 208 8 0,00%
rlll 223 0,78 223 9 0,78 223 9 0,23 223 9 0,02 207 9 T17% 0,09 211 8 5,38%
rl12 226 2,65 226 10 2,67 226 10 0,55 226 10 0,03 225 10 0,44% 0,09 210 8 7,08%
rcl01 180 0 180 7 0 180 7 0 180 9 0 180 9 0,00% 0,01 180 8 0,00%
rc102 230 0,02 230 9 0,02 230 9 0,02 230 10 0,01 230 9 0,00% 0,01 230 8 0,00%
rcl03 240 0,17 240 9 0,18 240 9 0,08 240 9 | 0,01 240 9 0,00% | 0,03 240 8 0,00%
rcl04 270 3,96 270 10 3,96 270 10 0,77 270 10 0,02 260 10 3,70% 0,05 260 9 3,70%
rcl105 210 0,02 210 9 0,02 210 9 0,01 210 9 0,01 210 9 0,00% 0,01 210 8 0,00%
rc106 210 0,01 210 8 0,01 210 8 0,01 210 8 0 210 8 0,00% 0,01 210 7 0,00%
rcl07 240 0,18 240 10 0,18 240 10 0,08 240 10 0,01 230 8 4,17% 0,03 230 7 417%
rcl108 250 1,7 250 9 1,71 250 9 0,59 250 9 0,02 250 9 0,00% 0,04 240 8 4,00%

Tableau 6.2 Comparaison

sur les instances de type OPTW a 100 clients

100

Méthodes exactes Méthodes approchées
Instance | Opt. Code de Salani BD,DA,VV BD,DI,VV BD,DI,NV UD,DI,NV
CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. | CPU Profit # vis. Gap CPU Profit # vis. Gap

cl01 320 0,02 320 10 0,02 320 10 0,03 320 10 0,01 320 10 0,00% 0,05 320 9 0,00%
c102 360 - - - 0,09 360 11 0,00% 0,29 360 10 0,00%
c103 400 - - - 0,26 380 10 5,00% 1,19 390 10 2,50%
clo4 420 - - - 0,5 380 10 9,52% 2,12 410 10 2,38%
c105 340 0,03 340 10 0,03 340 10 0,04 340 10 0,03 340 10 0,00% 0,18 340 9 0,00%
106 340 0,05 340 10 0,05 340 10 0,06 340 10 | 0,04 340 10 0,00% | 0,14 340 9 0,00%
clo7 370 0,06 370 11 0,06 370 11 0,07 370 11 0,04 370 11 0,00% 0,11 370 10 0,00%
cl08 370 0,11 370 11 0,11 370 11 0,13 370 11 0,07 370 11 0,00% 0,18 370 10 0,00%
c109 380 1,49 380 11 1,46 380 11 1,55 380 11 0,14 380 11 0,00% 0,33 380 10 0,00%
r101 198 0,01 198 9 0,01 198 9 0,01 198 9 0,01 198 9 0,00% 0,03 198 8 0,00%
r102 286 | 529,28 286 11 | 512,15 286 11 335,95 286 11 0,07 267 11 6,64% 0,34 286 10 0,00%
r103 293 - - - 0,2 290 11 1,02% 0,97 292 10 0,34%
r104 303 - - - 0,4 299 12 1,32% 2,03 303 11 0,00%
r105 247 0,04 247 11 0,04 247 11 0,06 247 11 0,02 247 11 0,00% 0,1 247 10 0,00%
r106 293 | 289,26 293 11 | 280,37 293 11 199,51 293 11 0,13 282 11 3,75% 0,51 293 10 0,00%
107 299 - - - 0,27 292 11 2,34% | 1,12 292 12 2,34%
r108 308 - - - 0,47 305 12 0,97% 2,14 303 1 1,62%
r109 277 0,2 277 12 0,21 277 12 0,23 277 12 0,07 275 12 0,72% 0,33 275 11 0,72%
r110 284 3,33 284 13 3,34 284 13 3,15 284 13 0,16 281 11 1,06% 1,21 282 1 0,70%
r11l 297 | 496,88 297 12 | 476,79 297 12 330,19 297 12 0,25 289 11 2,69% 0,96 294 11 1,01%
rl12 298 - - 3632,62 298 12 0,33 289 12 3,02% 1,41 287 11 3,69%
rcl01 219 0,02 219 9 0,02 219 9 0,03 219 9 0,01 219 11 0,00% 0,06 219 8 0,00%
rc102 266 1,56 266 10 1,59 266 10 1,49 266 10 0,06 266 10 0,00% 0,41 266 9 0,00%
rcl03 266 | 236,36 266 10 | 235,25 266 10 135,54 266 10 0,14 266 10 0,00% 1,04 266 9 0,00%
rcl104 301 - - - 0,26 301 11 0,00% 2,24 301 10 0,00%
rc105 244 0,21 244 12 0,21 244 12 0,23 244 12 | 0,04 241 11 1,23% | 022 244 10 0,00%
rcl06 252 0,13 252 11 0,17 252 11 0,15 252 11 0,05 252 11 0,00% 0,31 246 9 238%
rcl07 277 3,24 277 10 3,36 277 10 2,89 277 10 0,12 277 10 0,00% 0,61 277 9 0,00%
rcl08 298 52 298 11 52,51 298 11 29,69 298 11 0,21 287 11 3,69% 0,91 278 9 6,71%

Tableau 6.3 Comparaison sur les instances de type OPTW a 100 clients (fenétres de temps larges)

101

Méthodes exactes

Méthodes approchées

Instance | BKS Code de Salani BD,DA,VV BD,DI,VV BD,DI,NV UD,DI,NV
CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. Gap CPU Profit # vis. Gap

c201 870 0,04 870 30 0,09 870 30 0,03 870 30 0,04 870 30 0,00% 1,32 870 29 0,00%
c202 930 - - - 1,00 880 31 5,38% 16,43 930 31 0,00%
c203 960 - - - 3,61 850 29 11,46% 44,43 940 30 2,08%
c204 980 - - - 7,41 800 26 18,37% 386,29 960 31 2,04%
c205 910 0,18 910 31 0,21 910 31 0,11 910 31 0,12 910 31 0,00% 5,04 900 30 1,10%
c206 930 1,05 930 32 1,13 930 32 0,74 930 32 0,29 930 32 0,00% 6,30 920 30 1,08%
c207 930 19,54 930 31 13,52 930 31 10,96 930 31 0,40 920 30 1,08% 5,50 910 30 2,15%
c208 950 | 712,23 950 31 | 556,74 950 31 | 531,54 950 31 0,40 940 31 1,05% 8,52 940 30 1,06%
r201 797 8,61 797 38 7,37 797 38 5,06 797 38 0,80 790 38 0,88% 50,79 793 37 0,50%
r202 929 - - - 18,88 837 42 9,90% 163,18 884 43 4,84%
r203 1021 - - - 276,96 849 40 16,85% | 2874,33 966 46 5,39%
r204 1086 - - - 1427,75 772 34 28,91% | 5358,00 1019 49 6,17%
r205 953 - - - 5,18 933 44 2,10% 174,74 908 41 4,72%
r206 1029 - - - 63,12 867 40 15,74% 661,86 976 46 5,15%
r207 1072 - - - 378,71 857 39 20,06% | 4460,81 1016 50 5,22%
r208 1112 - - - 1261,57 809 36 27,25% | 4751,50 1055 52 5,13%
r209 950 - - - 20,06 825 39 13,16% 449,80 903 43 4,95%
r210 987 - - - 104,78 811 37 17,83% 528,59 942 46 4,56%
r211 1046 - - - 35,83 980 45 6,31% 449,11 991 46 5,26%
rc201 795 1,53 795 33 1,58 795 33 0,77 795 33 0,61 785 33 1,26% 29,93 785 32 1,26%
rc202 936 - - - 8,25 866 35 7,48% 314,39 895 38 4,38%
rc203 1003 - - - 138,64 863 37 13,96% | 5746,75 955 40 4,79%
rc204 1140 - - - 204,01 1043 42 8,51% | 7200,00 1047 44 8,16%
rc205 859 - - - 4,62 840 37 2,21% 290,15 849 36 1,16%
rc206 895 - - - 3,44 862 35 3,69% 405,35 864 34 3,46%
rc207 983 - - - 13,76 927 42 5,70% 589,84 908 38 7,63%
rc208 1053 - - - 20,97 1017 41 3,42% 565,38 1028 42 2.3™%

102

Dans les tableaux [G.1], et [.3] on observe une diminution des temps de calcul entre
la variante (BD, DA, V'V') et la version de Salani qui sont pourtant les mémes au niveau du
pseudo-code. Cette diminution est liée aux différences d’implémentation (ordre des tests dans
'algorithme, code en C++ et non en C...). On observe également que la variante (BD, DI, V'V)
consistant a limiter I'extension d’un label forward & 7'/2 donne de meilleurs temps de réso-
lution que la variante (BD, DA, V'V). Elle permet de résoudre deux instances en moins de
2 heures qu’il n’était pas possible de résoudre auparavant. De plus, on remarquera dans le
tableau que l'optimalité de 7 meilleures solutions connues est prouvée par notre méthode
ainsi que par le code de Salani (sur les instances c201, ¢205, ¢206, ¢207, c208, r201 et rc201).

En ce qui concerne les méthodes approchées, on observe que la variante (BD, DI, NV)
est nettement plus rapide que toutes les autres variantes (exactes ou approchées) et qu’elle
fournit des solutions situées & moins de 10% de la solution optimale sur les instances avec
fenétres de temps serrées. Toutefois, des que 'on traite des instances avec fenétres de temps
larges (instances de type C2, R2, RC2), les solutions qu’elle fournit peuvent se trouver a 30%
de la solution optimale, ce qui n’est pas acceptable. En effet, dans la variante (BD, DI, NV'),
on procede a une programmation dynamique forward, une programmation dynamique back-
ward avec pour critere le nombre de clients visités et non le vecteur de visite. Ainsi, sur des
instances aux fenétres de temps larges, on peut avoir de tres bonnes solutions en forward et
de tres bonnes solutions en backward mais lors de la jonction, il y a une forte probabilité
que ces solutions aient des clients en commun et ne puissent étre jointes. On peut donc ob-
tenir des solutions de qualité tres médiocre. Pour remédier a ce probleme, dans la variante
(UD,DI,NV), on procede comme dans la variante (BD, DI, NV) mais dans une seule di-
rection. Il s’agit d'une programmation dynamique classique et non bidirectionnelle bornée.
On observe que cette variante (UD, DI, NV') fournit des solutions de meilleure qualité sur
I’ensemble des instances avec un gap a optimalité ne dépassant pas 8,2%. Toutefois, si cette

variante fournit de tres bonnes solutions, elle requiert des temps de calcul nettement plus
élevés que la variante (BD, DI, NV).

Résultats sur les instances du TOPTW

Avant de tester et valider la méthode proposée dans ce chapitre, nous avons testé les
variantes approchées sur des instances de la littérature afin de connaitre le gap entre les
solutions obtenues par notre méthode et les solutions optimales. Nous avons donc choisi
d’utiliser les instances de Vansteenwegen et al. |[71] comme il s’agit d’instances du TOPTW
pour lesquelles les solutions optimales sont connues. Plus précisément, nous avons choisi de
procéder a des tests sur les instances de Vansteenwegen et al. H] de type 12, ¢2 et rc2 (avec

fenétres de temps lagres) car ce sont les instances qui se rapprochent le plus de nos instances

103

(décrites au chapitre 1). Dans ces instances de Vansteenwegen et al. H], plusieurs véhicules
et un unique dépot sont considérés. En utilisant notre méthodologie (construction des routes
a 'aide de la programmation dynamique puis sélection exacte d’une route par véhicule)
telle quelle, on obtient des solutions de pietre qualité du fait de la symétrie du probleme.
Nous avons donc ajouté une phase de génération d’une partition de ’ensemble des sommets
associés aux clients en amont. Ainsi, on procede a plusieurs partitionnements en un nombre de
sous-ensembles égal au nombre de véhicules utilisés dans la solution optimale. Pour chacun
de ces sous-ensembles, on procede a la génération de routes de notre méthode. Ensuite,
on sélectionne une route par véhicule parmi toutes les routes de tous les sous-ensembles.
Les résultats obtenus en appliquant cette méthodologie avec les variantes (BD, DI, NV') et
(UD, DI, NV) sont synthétisés dans le Tableau Dans ce tableau, les en-tétes de colonnes
sont les suivants : Nb veh : nombre de véhicules utilisés dans la solution optimale, Opt :
valeur de la solution optimale (profit collecté), CPU : temps de calcul en secondes, Valeur :
valeur de la solution obtenue, Gap : gap entre la solution obtenue et la solution optimale. Si
la génération de routes n’a pu terminer en moins de 2 heures sur une instance, on mettra un

« - » dans la case correspondante.

Tableau 6.4 Comparaison sur les instances de Vansteenwegen et al. ﬂﬂ]

Instance | Nb veh Opt Variante BD, DI, NV Variante UD, DI, NV
CPU Valeur Gap CPU Valeur Gap

c201 4 1810 0,07 1810 0,00% 1,38 1810 0,00%
c202 4 1810 0,54 1810 0,00% 5,38 1790 1,10%
c203 4 1810 0,94 1810 0,00% 6,90 1800 0,55%
c204 4 1810 1,62 1680 7,18% 4,95 1800 0,55%
c205 4 1810 0,37 1810 0,00% 1,70 1810 0,00%
c206 4 1810 0,20 1810 0,00% 2,51 1810 0,00%
c207 4 1810 0,25 1810 0,00% 2,72 1810 0,00%
c208 4 1810 0,24 1810 0,00% 2,30 1810 0,00%
r201 4 1458 0,81 1385 5,01% 53,98 1384 5,08%
r202 3 1458 3,33 1354 7,13% 248,69 1383 5,14%
r203 3 1458 21,98 1353 7,20% | 1168,54 1410 3,29%
r204 2 1458 | 743,02 1140 21,81% -

r205 3 1458 1,92 1413 3,09% 603,49 1398 4,12%
r206 3 1458 10,47 1373 5,83% 714,92 1428 2,06%
r207 2 1458 | 291,05 1224 16,05% -

r208 2 1458 | 758,26 1186 18,66% -

r209 3 1458 6,13 1381 5,28% 609,40 1427 2,13%
r210 3 1458 15,74 1332 8,64% 831,68 1421 2,54%
r211 2 1458 10,49 1313 9,95% | 4307,51 1321 9,40%
rc201 4 1724 0,38 1695 1,68% 12,81 1684 2,32%
rc202 3 1724 2,01 1619 6,09% 196,40 1640 4,87%
rc203 3 1724 11,90 1605 6,90% 470,05 1677 2,73%
rc204 3 1724 26,07 1592 7,66% 403,16 1716 0,46%
rc205 4 1724 0,62 1692 1,86% 22,76 1701 1,33%
rc206 3 1724 1,48 1679 2,61% 226,77 1663 3,54%
rc207 3 1724 3,19 1640 4,87% 291,88 1645 4,58%
rc208 3 1724 9,60 1670 3,13% 216,75 1680 2,55%

Dans ce tableau, on observe sur 3 instances que les gaps a optimalité peuvent atteindre

104

20%. Pour y remédier, nous aurions pu développer encore la méthodologie. Toutefois, notre
objectif est avant tout de valider notre méthodologie sur les instances de la littérature. Nous
pouvons d’ailleurs observer, sur le reste des instances (comprenant 3 a 4 véhicules), que le
gap a optimalité ne dépasse pas 10%. Si les temps de calcul sont nettement plus faibles dans
la variante bidirectionnelle, les gaps a optimalité sont nettement plus élevés. En effet, quand
on procede a la programmation dynamique bidirectionnelle, étant donné que les fenétres de
temps sont larges (instances de type c2, r2 et rc2) et qu'un véhicule peut desservir jusqu’a 50
clients sur une tournée, on peut construire des chemins tres longs en forward et en backward
et souvent, ces chemins ne peuvent étre joints car ils ont un ou plusieurs clients en commun.
Toutefois, il peut également arriver que les solutions en bidirectionnel soient meilleures que
celles dans une direction. En effet, en bidirectionnel, on génere plus de chemins (donc plus

de diversité), ce qui aide lors de la sélection exacte des routes.

6.2.2 Résultats sur les instances du chapitre 1

Apres avoir procédé aux tests et a la validation de I’heuristique basée sur la génération
de colonnes sur les instances de la littérature, nous procédons a présent aux tests sur les
instances décrites au chapitre 1. Dans cette section, nous procederons d’abord au réglage des
parametres puis nous présenterons les résultats de la méthode de ce chapitre sur les instances
du chapitre 1 et enfin, nous comparerons la méthode de ce chapitre avec la méthode du

chapitre précédent.

Réglage des parametres

Concernant le réglage des parametres, nous utilisons le méme réglage de parametres
que dans les chapitres précédents : horizon de temps 7' = 480 minutes, vitesse minimale
Umin = 20km/h et vitesse modale v,,,q = 40km/h. Apres avoir converti ces valeurs v,
et Vo4 €n unités arbitraires par minute, on calcule le temps de parcours unitaire minimal
0 = [100/vaz | et modal 5 = [100/Vp04]- Les temps de parcours minimaux et modaux sont
ensuite obtenus en utilisant les formules Tij = {Dijé-‘ et 7;; = [chﬂ Pour le réglage des
temps de service, nous avons choisi des temps de service minimaux et modaux respectivement
de 15 et 22 minutes pour les clients optionnels et de 30 et 35 minutes pour les clients obliga-
toires. Comme précédemment, nous avons supposé que le service d'un client optionnel, quel
qu’il soit, génere un profit p, = 100 et nous avons choisi &« = 1. Pour le choix du profit associé
aux clients obligatoires p,, (utilisé durant la génération de routes), nous avons procédé a une
série de tests des variantes approchées (UD, DI, NV) et (BD, DI, NV) sur les instances a
40 clients dont les résultats sont synthétisés dans les tableaux et Afin d’accorder la

105

priorité aux clients obligatoires par rapport aux clients optionnels, on choisit de faire varier
le profit des clients obligatoires entre 200 et 500. Les en-tétes de colonnes dans ces tableaux
sont : CPU : temps de résolution en secondes, # ND : nombre de clients optionnels non

desservis et Dist. : distance totale parcourue en kilometres.

Tableau 6.5 Influence du profit des clients obligatoires, variante (UD, DI, NV)

Nb de Profit = 200 Profit = 300 Profit = 400 Profit = 500

ij de clients # . # . # . # .
clients oblig. CPU ND Dist. CPU ND Dist. CPU ND Dist. CPU ND Dist.
5 L1 02 214,01 1,3 0,2 219,04 1,3 02 218,98 L1 02 219,07
6 1,4 0,4 207,00 1,6 0,4 207,00 1,7 0,2 212,31 1,7 0,2 212,31
30 7 1,2 02 22257 14 02 22257 14 0,2 221,22 1,6 0,2 222,53
8 1,3 06 217,62 1,6 06 218,86 1,7 0,6 216,19 1,7 0,6 216,19
9 1,2 0,8 218,35 1,5 0,8 216,19 1,6 0,8 215,63 1,6 0,8 221,29
5 2,8 3,6 223,80 3,0 3,6 22575 2.8 3,8 22227 3,3 3,8 222,27
6 3,6 3,2 228,96 4,5 3,0 236,90 44 3,0 236,90 4,8 3,0 236,89
40 7 4,5 4,2 223,44 50 4,0 224,93 5,5 4,2 225,61 5,5 4,2 225,86
8 37 3,6 226,63 48 34 236,65 4,9 34 236,65 46 3,6 232,82
9 3,6 4,0 234,51 4,1 4,0 233,28 4.4 4,2 234,54 4,4 4,4 232,61
5 4,3 7,6 232,75 5,3 8,2 218,78 5,6 8,2 226,48 6,2 8,6 223,80
6 59 8,0 235,26 79 7.8 23551 8,3 7,8 235,51 8,4 7,8 23551
50 7 73 90 22151 96 92 22029 | 10,1 94 22632 | 10,3 9.8 221,33
8 7,0 7.6 232,06 89 7,6 231,35 9,6 8,2 224,43 10,4 8,4 241,88
9 7,6 94 227,00 9,1 94 226,27 9,7 10,0 220,24 10,1 10,4 220,60

Tableau 6.6 Influence du profit des clients obligatoires, variante (BD, DI, NV)

Nb de | Nb de Profit = 200 Profit = 300 Profit = 400 Profit = 500
clients ‘j]ffg“ CPU NTD Dist. | CPU N"i’; Dist. | CPU N#]; Dist. | CPU N?ZE) Dist.
5 225 00 19988 | 21,6 00 19988 | 231 0,0 19974 | 235 00 199,88
6 27.2 0,0 21370 | 371 00 21448 | 304 00 21448 | 31.0 00 21448
30 7 281 0,0 21929 | 335 00 21929 | 371 00 21929 | 351 00 219,29
8 219 0,0 21455 | 248 00 21450 | 259 00 21450 | 262 00 21450
9 234 0,0 21661 | 200 00 21663 | 27.7 00 216,63 | 250 00 216,63
5 804 1,6 23088 | 968 1,4 23837 | 881 1,4 23837 | 1042 14 23837
6 931 1,8 24982 | 1199 18 24991 | 117.2 1.8 24991 | 117.2 1,8 24991
40 7| 1046 2,6 23815 | 1224 22 25418 | 1125 2.2 25418 | 1225 2,2 25418
8 776 2,0 24284 | 97.6 2,0 24200 | 941 20 242,00 | 980 20 242,00
9 | 1078 2,6 23842 | 1203 24 239.64 | 120.2 24 23959 | 1115 24 239,59
5 | 1733 80 22842 | 1841 8,0 226,26 | 1730 80 22626 | 184,1 8,0 226,26
6 | 1920 86 22153 | 2120 86 221.88 | 1815 86 221,88 | 1846 86 22153
50 7| 1985 92 22426 | 2401 9.2 22145 | 2353 9.2 22180 | 233.9 9.2 221.80
8 | 1895 92 21484 | 2181 92 21484 | 201,6 9.2 21484 | 2190 9.2 21484
9 | 1802 94 22079 | 2612 94 220,86 | 2452 94 22086 | 237.2 94 220,86

Dans ces tableaux, on observe, pour la variante (BD, DI, NV'), que le nombre de clients
non desservis sur les instances a 40 clients est plus élevé lorsque le profit associé aux clients
obligatoires vaut 200. On observe également que, pour un nombre de clients non desservis
identique, la distance totale parcourue est plus élevée pour un profit de 200 associé aux
clients obligatoires. Quant aux temps de calcul, ils ont tendance a augmenter avec le profit

(mais les valeurs restent comparables). On évitera donc de choisir la valeur p,, = 200. En ce

106

qui concerne la variante (UD, DI, NV'), on observe que le nombre de clients non desservis
atteint le plus souvent sa valeur minimale pour p,, = 300. Comme précédemment, les temps
de calcul augmentent avec le profit mais gardent des valeurs comparables. Pour la suite des

expérimentations, on choisira donc d’attribuer un profit p,, = 300 aux clients obligatoires.

Résultats de la méthode

Dans cette section, nous avons testé les trois variantes (BD, DI, VV'), (BD, DI, NV) et
(UD, DI, NV) sur les instances vues au chapitre 1. Toutefois, la variante exacte (BD, DI, V'V)
(avec vecteur de visite) générant trop de labels, on ne peut procéder a la sélection exacte d'une
route par véhicule parmi ces labels. On présentera donc uniquement les solutions obtenues a
l'aide des variantes (BD, DI, NV) et (UD, DI, NV) (suivies d’'une méthode de postoptimi-
sation de type 2-Opt, comme indiqué précédemment). Afin d’obtenir des résultats complets,
nous avons procédé, apres I'étape de planification, a I’étape d’exécution (i.e. la programma-
tion dynamique), décrite au chapitre 4, a la fin de la méthode. Puis, nous avons réalisé 100
simulations par instance. Les résultats obtenus pour ces deux variantes sont synthétisés dans
les tableaux [6.7 et [6.8 Les en-tétes de ces tableaux sont les suivants : CPU : temps de calcul
en secondes, CPU : temps de la génération de routes en secondes, # moy. non servis : nombre
moyen de clients non servis, WR : stratégie de programmation dynamique considérant toute
la route et OS : stratégie de programmation dynamique considérant un seul segment de route
(cf. chapitre précédent). Dans ce tableau, le nombre indiqué de clients non servis apres simu-
lation comprend le nombre de clients non servis avant simulation plus le nombre de clients

devenus non desservis durant la simulation.

Tableau 6.7 Résultats avant /apres simulation pour la variante (BD, DI, NV)

Nb de N}:) de Avant simulation . .Aprés.simulation
clients clients CPU CPU # moy. distance | # moy. non servis distance moy. retard moy.
oblig. Gen non servis moy. WR OS | WR OS | WR OS
5 21,5 0,8 0,0 200 1,2 0,7 197 199 0,6 7.4
6 37,1 0,8 0,0 214 3,8 1,9 199 208 1,1 19,2
30 7 33,5 0,8 0,0 219 4,0 2,8 206 213 2,1 30,8
8 248 08 0,0 214 3,2 2,2 | 201 208 | 24 293
9 200 08 0,0 217 4,5 2,0 | 203 214 | 48 62,1
5 96,8 2,1 1,4 238 7,8 6,4 206 220 1,8 44,7
6 119,9 2,3 1,8 250 9,9 7,9 214 229 2,2 59,1
40 7 1224 24 2,2 254 11,7 8,8 | 221 21 | 2,7 782
8 97.6 24 2,0 242 11,1 79 | 201 232 | 27 93,0
9 120,3 2,6 2,4 240 12,3 7,8 198 232 8,2 135,0
5 84,1 4,2 8,0 226 16,3 14,6 | 195 214 | 1,8 68,9
6 212,0 4,6 8,6 222 17,5 15,5 193 208 1,5 48,9
50 7 240,1 4,9 9,2 221 19,1 16,7 194 208 2,9 62,8
8 218,1 5,4 9,2 215 19,7 16,4 188 205 3,9 82,2
9 261,2 5,7 9,4 221 21,3 16,8 187 210 3,5 102,6

107

Tableau 6.8 Résultats avant/apres simulation pour la variante (UD, DI, NV')

Nb de N'b de Avant simulation ' 'Aprés.simulation
clients clients CPU CPU # moy. distance | # moy. non servis distance moy. retard moy.
oblig. Gen non servis moy. WR OS | WR OS | WR oS
5 1,3 06 0,2 219 6,2 3,6 | 183 198 | 1,3 40,1
6 1,6 0,8 0,4 207 5,9 4,8 180 185 1,8 21,4
30 7 1,4 0,9 0,2 223 7.4 4,8 190 200 3,1 57,0
8 1,6 0,9 0,6 219 6,3 5,6 181 181 1,3 8,4
9 1,5 0,8 0,8 216 6,2 4,8 185 188 2,7 32,2
5 3,0 1,8 3,6 226 9,6 8,4 194 199 1,3 21,4
6 4,5 2,7 3,0 237 11,3 10,0 187 190 1,9 29,4
40 7 5,0 3,1 4,0 225 11,7 10,7 179 182 2,7 25,7
8 4,8 3,0 3,4 237 13,0 9,5 187 197 4,1 88,4
9 4,1 3,1 4,0 233 12,6 10,5 179 186 6,1 56,3
5 5,3 4,1 8,2 219 16,8 14,5 184 192 1,6 57,9
6 7,9 6,3 7.8 236 18,1 15,8 181 187 2,5 57,6
50 7 9,6 6,9 9,2 220 19,6 17,3 173 180 2,2 51,1
8 89 7.8 7.6 231 19,9 17,7 | 180 188 | 3,6 519
9 9,1 7.6 9,4 226 21,2 16,6 | 182 197 | 6,1 1257

Dans ces tableaux, on observe une cohérence des résultats obtenus : le nombre de clients
non desservis n’augmente pas beaucoup au cours des simulations. Ce qui signifie que les
routes ne sont pas bouleversées au cours des simulations. On constate aussi que le nombre
moyen de clients desservis est compris entre 25 et 32 clients. En ce qui concerne la distance,
on observe que, pour un méme nombre de clients desservis, la distance moyenne parcourue
diminue, pour un retard similaire quand la taille des instances augmente. En effet, plus les
instances contiennent de clients, meilleures sont les routes construites (car il y a plus de choix
possibles).

En comparant les deux stratégies de programmation dynamique (WR et OS), on remarque
que la stratégie ne considérant qu'un segment est préférable en ce qui concerne le nombre de
clients non desservis (comme au chapitre précédent) mais on préfere la stratégie considérant
toute la route du point de vue de la distance parcourue (pour comparer la distance parcourue
avec un nombre de clients visités différent, on calcule le ratio distance/nombre de clients
visités et on compare le ratio obtenu pour les deux stratégies).

En comparant les deux méthodes, on observe que le nombre de clients non servis avant
simulation est plus faible avec la variante bidirectionnelle. Il en est de méme apres simulation,
quelle que soit la stratégie. Toutefois, on constate également que la différence entre le nombre
de clients non desservis pour la méthode bidirectionnelle et celui obtenu pour la variante
unidirectionnelle diminue quand la taille des instances augmente (elle est quasiment nulle
pour les instances de taille 50). En ce qui concerne les temps de calcul, ils sont plus élevés
pour la variante bidirectionnelle mais restent inférieurs a 5 minutes. En effet, dans la variante

bidirectionnelle, on génere un plus grand nombre de routes et la sélection exacte nécessite donc

108

plus de temps. En comparant les solutions obtenues apres simulation par les deux méthodes,
on constate que le retard moyen et la distance moyenne (ratio distance parcourue / nombre de
clients visités) sont plus élevés dans la méthode bidirectionnelle. Toutefois, les différences au
niveau de la distance et du retard pour la stratégie WR restent faibles. De plus, comme nous
I’avons mentionné plus haut, le nombre de clients desservis par la méthode bidirectionnelle
est nettement supérieur. C’est donc cette variante approchée que nous retiendrons et que
nous comparerons avec 'heuristique basée sur la priorité des clients présentée au chapitre

précédent.

6.2.3 Comparaison de cette méthode avec la méthode précédente

Les résultats avant simulation (30, 40 et 50 clients) obtenus avec la méthode de ce chapitre

et celle du chapitre précédent sont synthétisés dans le Tableau Dans ce tableau, on

Tableau 6.9 Comparaison des 2 méthodes avant simulation

Heuristique basée sur la Heuristique basée sur la
lient # clients priorité des clients génération de colonnes
clients obligatoires CPU non Distance | CPU non Distance
(s) servis (km) (s) servis (km)
5 43 1,4 220 22 0,0 200
6 66 2.8 232 37 0,0 214
30 7 53 2,4 230 34 0,0 219
8 34 3,4 216 25 0,0 214
9 24 3 217 29 0,0 217
5 3277 7,2 202 97 1,4 238
6 962 10,2 217 120 1,8 250
40 7 1451 10 211 122 2,2 254
8 1880 10 210 98 2,0 242
9 1053 10 206 120 2,4 240
5 1227 15,4 192 184 8,0 226
6 3064 17,6 197 212 8,6 222
50 7 2844 18 192 240 9,2 221
8 2323 18,6 200 218 9,2 215
9 1408 19,2 188 261 9,4 221

observe, avant simulation, que la méthode présentée dans ce chapitre est nettement plus
rapide que I'heuristique basée sur la priorité des clients. En effet, elle permet de résoudre
toutes les instances en moins de 5 minutes, alors que cela pouvait prendre jusqu’a une heure
précédemment. En ce qui concerne la qualité des solutions, on peut également constater que le
nombre de clients non desservis avant simulation est nettement moins élevé dans la méthode
présentée ici que dans I’heuristique basée sur la priorité des clients. Tandis que ’on desservait
30 clients en moyenne dans I’heuristique basée sur la priorité des clients, quelle que soit la
taille des instances, on dessert a présent 30 clients pour les instances a 30 clients, 38 clients
pour les instances a 40 clients et 40 clients pour les instances a 50 clients (soit 10 clients de
plus que précédemment). Sur les instances de taille 30, les solutions obtenues avec la méthode

de ce chapitre sont de meilleure qualité : elles desservent plus de clients en parcourant moins

109

de distance que I'heuristique basée sur la priorité des clients. Cela se justifie par le fait que,
dans I’heuristique basée sur la priorité des clients, on fixait le squelette des clients avant
d’insérer les clients optionnels tandis qu’a présent, on construit directement des routes avec
des clients obligatoires et optionnels, ce qui peut donc conduire a des solutions de meilleure
qualité. Pour les autres instances, on ne peut pas comparer la qualité globale des solutions
obtenues par les deux méthodes étant donné que, dans I’heuristique basée sur la priorité des
clients, on s’assure que la solution obtenue avant simulation soit réalisable dans 90% des cas
(ce qui implique forcément un nombre de clients non desservis plus élevé avant simulation).
Pour juger de la qualité des solutions, il nous faut donc comparer les résultats obtenus apres
simulation. Ces résultats obtenus apres simulation, avec les stratégies de programmation

dynamique mentionnées au chapitre 4, sont regroupés dans les tableaux [6.10 et [6.11]

Tableau 6.10 Comparaison des 2 méthodes apres simulation, stratégie WR

Heuristique basée sur la Heuristique basée sur la
i # clients priorité des clients génération de colonnes
clients obligatoires non Distance non Distance
. retard . retard
servis (km) servis (km)

5 5,3 199 2 1,2 197 0,6
6 5,6 212 3,1 3,8 199 1,1
30 7 5,5 209 2,7 4.0 206 2,1
8 7,6 195 3,2 3,2 201 2,4
9 7 197 4,6 4,5 203 4.8
5 9,7 193 1,8 7,8 206 1,8
6 12,7 204 2,7 9,9 214 2,2
40 7 13,3 198 2,4 11,7 221 2,7
8 13,2 198 3,6 11,1 201 2,7
9 14,5 189 6,8 12,3 198 8,2
5 17,9 185 2 16,3 195 1,8
6 21,1 189 3,6 17,5 193 1,5
50 7 22,2 184 3,6 19,1 194 2,9
8 22,1 187 4,3 19,7 188 3,9
9 22,8 180 5,7 21,3 187 3,5

110

Tableau 6.11 Comparaison des 2 méthodes apres simulation, stratégie OS

Heuristique basée sur la Heuristique basée sur la
lient # clients priorité des clients génération de colonnes
clients obligatoires non Distance non Distance
. retard . retard
servis (km) servis (km)

5 3,4 211 2 0,7 199 7,4
6 5,6 212 3,2 1,9 208 19,2
30 7 5,5 209 2,8 2,8 213 30,8
8 6,1 204 3,2 2,2 208 29,3
9 6,4 201 4,6 2,0 214 62,1
5 9,7 194 1,8 6,4 220 44,7
6 12,7 204 2,7 7,9 229 59,1
40 7 13,3 198 2,5 8,8 241 78,2
8 13,2 198 3,6 7,9 232 93,0
9 14 191 5,6 7,8 232 135,0
5 17,9 185 2 14,6 214 68,9
6 20,5 189 3,6 15,5 208 48,9
50 7 21,5 185 3,6 16,7 208 62,8
8 22,1 187 4.4 16,4 205 82,2
9 22,7 180 5,9 16,8 210 102,6

On observe dans ces tableaux que le nombre de clients non desservis est nettement plus
élevé dans I'heuristique basée sur la priorité des clients que dans la méthode de ce chapitre,
quelle que soit la stratégie de programmation dynamique. D’autre part, le retard est lége-
rement moins élevé dans la méthode approchée quand on considere la stratégie WR tandis
qu’il est nettement plus élevé dans la stratégie OS. En effet, dans la stratégie consistant a
considérer un seul segment, étant donné que la route est réalisable dans 90% des cas dans
I’heuristique basée sur la priorité des clients, on ne peut pas avoir de retard moyen tres élevé.
Par contre, dans la méthode de ce chapitre, rien ne garantit cette réalisabilité. Ainsi, quand
on considere la stratégie WR, on se prémunit contre des retards aux clients obligatoires car
on prend les décisions en observant toute la route (et donc tous les clients obligatoires qui
suivent). Par contre, dans la stratégie ne considérant qu’'un segment a la fois, on se prémunit
uniquement contre un éventuel retard au prochain client obligatoire mais pas aux clients obli-
gatoires suivants. On peut donc obtenir des retards tres élevés. Quelle que soit la stratégie en
tout cas, on observe sur les instances a 30 clients que les solutions obtenues sont de meilleure
qualité avec la méthode de ce chapitre (nombre de clients non desservis et distance parcourue
moins élevée). Seul le retard pourrait préter a discussion mais il ne dépasse pas 7 minutes par
client obligatoire dans la stratégie WR. Comme on préfere desservir un maximum de clients,

on préferera donc la méthode de ce chapitre.

6.3 Conclusion

Dans ce chapitre nous avons proposé une heuristique basée sur la génération de colonnes

consistant a générer, pour chaque véhicule, des routes a l'aide d’'une méthode de type pro-

111

grammation dynamique puis a sélectionner de facon exacte une route par véhicule en ré-
solvant un programme linéaire en nombre entiers avec Cplex. Nous avons proposé plusieurs
variantes de programmation dynamique pour la génération de routes : une variante exacte
(bi-directionnelle, avec vecteur de visite) et deux variantes approchées (bidirectionnelle et
unidirectionnelle avec nombre de visités). Etant donné que nos instances ne sont pas tres
contraintes (fenétres de temps larges pour tous les clients), la méthode exacte ne permet
pas de résoudre nos instances en moins de 2 heures. Par contre, elle nous a permis d’éta-
blir Poptimalité de plusieurs solutions approchées de la littérature (sur des instances de type
OPTW). Quant aux variantes approchées, nous avons pu constater, dans les résultats expéri-
mentaux, que la variante approchée bidirectionnelle était nettement plus rapide et fournissait
de meilleures solutions que la variante approchée unidirectionnelle. En effet, cette méthode
permet d’obtenir de bonnes solutions sur toutes les instances en moins de 5 minutes. Ensuite,
nous avons pu comparer cette méthode avec ’heuristique basée sur la priorité des clients
proposée au chapitre précédent. Nous avons alors constaté que la méthode de ce chapitre
fournissait de meilleures solutions en moins de temps que la méthode précédente.

Toutefois, si cette variante approchée s’avere efficace, elle reste une méthode approchée.
Etant données sa rapidité et son efficacité, il serait intéressant de proposer une méthode exacte
basée sur la variante approchée bidirectionnelle, avec nombre de visités, de ce chapitre. C’est
pourquoi, dans le chapitre suivant, nous proposons un algorithme de branch and price qui

integre la méthode approchée de ce chapitre.

112

CHAPITRE 7

Algorithme de branch and price

Dans le chapitre précédent, nous avons présenté une heuristique basée sur la génération
de colonnes pour résoudre notre variante du probleme de tournées de service. Cette méthode
s’est montrée tres efficace sur nos instances avec des temps de calcul de moins de 5 minutes.
Toutefois, cette méthode, tout comme celle présentée au chapitre 4, reste une méthode ap-
prochée. Dans ce chapitre, nous proposons une méthode exacte pour I’étape de planification.
Comme cette étape correspond a un probleme de tournées de véhicules multi-dépots, avec
fenétres de temps et priorité entre les clients (MDVRPTW avec priorité), on ne peut espérer
résoudre ce probleme en utilisant les méthodes standards d’énumération implicite. Toutefois,
en formulant ce probleme comme un probleme de partitionnement, il nous devient possible
de résoudre ce probleme de fagon exacte avec un algorithme de branch and price. Dans ce
chapitre, nous rappellerons le principe du branch and price. Puis, nous reformulerons notre
problématique sous forme d’un probleme maitre et d’un sous-probleme. Nous détaillerons en-
suite les composantes de la méthode de branch and price utilisées. Enfin, nous présenterons

les résultats obtenus et nous conclurons sur cette méthode.

7.1 Principe des algorithmes de branch and price

La méthode de branch and price, introduite par Johnson M}, implémentée par Desrochers
et Soumis M] et baptisée par Savelsbergh [60] et Barnhart et al. ET

rescente (branch and bound) dans laquelle on ajoute de nouvelles colonnes a chaque noeud.

, est une recherche arbo-

L’idée, dans cette méthode, est de résoudre la relaxation linéaire du probleme restreint a un
sous-ensemble de variables (le nombre total de variables étant trop élevé pour une résolution
directe) puis a brancher pour obtenir une solution entieére. A chaque noeud de 'arbre, on
procede a une génération de colonnes, c’est-a-dire a I’extension du sous-ensemble de variables
(on résout un probleme de pricing). La génération de colonnes, introduite par Gilmore et Go-
mory [32], est basée sur la décomposition du probléme initial en deux problémes : le probleme
maitre et le sous-probleme. Le probleme maitre correspond au probleme initial dans lequel on
se limite a un sous-ensemble de variables. Le sous-probléme (ou probleme de pricing), quant
a lui, permet de générer de nouvelles variables, a ajouter au probleme maitre. Une itération
de la génération de colonnes consiste alors a résoudre le probleme maitre puis a résoudre le

sous-probleme pour ajouter de nouvelles variables présentant un cotit réduit intéressant dans

113

le probleme maitre (cott réduit négatif pour un probleme de minimisation, positif pour un
probléme de maximisation). La génération de colonnes finit lorsqu’il n’y a plus de variables
intéressantes a ajouter. La solution est alors optimale pour la relaxation linéaire du probleme

initial. La méthode est schématisée figure [[T] (figure extraite du mémoire de these de Tricoire

j6s]).

Solution Initiale

| I
\ /

I
Probléme Maitre [
—> <]—I

(Simplexe)

Modification|du graphe

Sous-Probléme
(Plus Court Chemin)

e e e e e e e e o e e . — — o — — ——

Résolution entiére
(Recherche
Arborescente)

FIN

Figure 7.1 Schéma de la méthode de branch and price (Tricoire [@])

Considérons 'exemple du probleme de tournées de véhicules classique et formulons le
probleme maitre et le sous-probleme associés. Soient N l’ensemble de clients, €2 un sous-
ensemble de routes réalisables, ¢, le cotut de la route r, d; un booléen indiquant si le client
¢ appartient a la route r et K le nombre de véhicules. On suppose que les cotts entre les

clients satisfont I'inégalité triangulaire. En posant z, la variable booléenne indiquant si la

114

route r est choisie, on peut formuler le probleme de tournées de véhicules classique comme

le probleme de partitionnement suivant :

min E CrTy

reQ)
sujet a :
> G, =1 Vie N (7.1)
reQ)

Z z, <K (7.2)

reQ)
z, €N (7.3)
r el (7.4)

Les contraintes (1)) assurent la visite de chaque client. La contrainte (Z.2) veille au respect
du nombre de véhicules. Dans la contrainte ((Z.3]), on peut constater que les variables ne sont
plus booléennes mais entieres. En effet, comme on minimise les cotits, il n’est pas nécessaire
d’imposer x, € {0;1}. La relaxation linéaire de ce probleme est appelée probleme maitre.
Il est défini sur un ensemble de routes réalisables €2 obtenues en résolvant le sous-probleme.
Dans le sous-probleme, 1'objectif est d’identifier des routes réalisables de cotit réduit négatif
(car il s’agit d'un probleme de minimisation). Soient m; les variables duales associées aux
contraintes (1)) et e la variable duale associée a la contrainte (Z.2)), on peut formuler la
fonction objectif du sous-probleme comme suit :
minc, — Z T; — €
ieN
Les contraintes du sous-probléeme sont les contraintes de faisabilité d’une route du probleme

considéré (contraintes de degré entrant et sortant, fenétres de temps, longueur d’une route...).

7.2 Formulation

Dans la section précédente, nous avons rappelé les principes du branch and price. Pour
pouvoir appliquer cette méthodologie a notre probleme, il est nécessaire de reformuler celui-
ci sous forme d’un probleme maitre et d'un sous-probleme. Dans notre probleme, chaque
véhicule dispose de son dépot origine et de son dépot destination. On aura donc un ensemble
de routes réalisables par véhicule (et un sous-probleme par véhicule). Dans ce qui suit, nous
présenterons d’abord la formulation du probleme maitre puis nous donnerons une formulation

du sous-probléme pour un véhicule donné.

115

7.2.1 Probléme maitre

Le probleme maitre consiste a affecter une route réalisable a chaque véhicule en s’assurant
que chaque client obligatoire est servi une fois et que chaque client optionnel est servi au plus
une fois. Soient M 'ensemble des clients obligatoires, O I’ensemble des clients optionnels et
QF I’ensemble de routes réalisables pour le véhicule k. Notons p, le revenu total de la route r
(profit - temps de parcours modal), d;- un booléen indiquant si le client i € M appartient & la
route r et d.. un booléen indiquant si le client ¢ € O appartient a la route r. En utilisant les
variables décisionnelles booléennes w” indiquant si la route r € QF est utilisée par le véhicule

k, on formule le probleme maitre comme suit :

max. Z Z prwk

keEK reQk
sujet a :
Var. duales

Z Z 5Z~rwf =1 Vie M Bi (7.5)
keEK reQk
Z Z Sewk <1 Ve e O Ve (7.6)
kEK reQk

Z wh =1 Vk e K €k (7.7)

reQk

wk € {0;1} Vk e K,reQF

Les contraintes ([Z.5]) assurent que chaque client obligatoire est servi une et une seule fois.
Les contraintes (Z.6]) imposent que chaque client optionnel soit servi au plus une fois. Enfin,
les contraintes (7)) interdisent l'affectation de plusieurs routes a un méme véhicule. Dans
ce modele, on associe aux contraintes ((L.H) les variables duales f3;, aux contraintes ((Z.0]) les
variables duales 7. et aux contraintes (7)) les variables duales €. Etant donnés les types
de contraintes, les variables 7. sont positives tandis que les variables (; et ¢; sont de signe
inconnu.

Dans le cadre de la génération de colonnes, on reformule les contraintes de partitionne-
ment (pour éviter d’avoir des variables duales non bornées). Pour ce faire, on remplace les
contraintes (ZH) par des contraintes de recouvrement (afin de desservir au moins une fois
chaque client obligatoire) et les contraintes (Z7) du probléme maitre par des contraintes de

packing (pour que nos variables primales soient bornées et pour avoir au plus une route par

116

véhicule). On obtient les contraintes :

SN dpuwp =1 Vie M (7.8)

keK reQk

> wk < Vk e K (7.9)

Avec ces nouvelles contraintes, les variables duales (3; sont a présent de signe négatif et les

variables duales €, de signe positif.

7.2.2 Sous-probleme pour le véhicule k

Le sous-probleme associé au véhicule k vise a construire des routes réalisables pour ce véhicule.
Ces routes contiennent des clients obligatoires et des clients optionnels. Afin de s’assurer le
respect des fenétres de temps des clients obligatoires dans le pire des cas (quand on prend en
compte uniquement les clients obligatoires) et dans le cas modal (quand on prend en compte
les clients obligatoires et les clients optionnels), on prend en compte deux types de ressources
temporelles : des heures de service modales et des heures de service au plus tard. Soient [3;,
Y. et € les variables duales associées respectivement aux contraintes (7.8)), (Z.8) et (L9).
Soient M’ = M U {0*;d*} I'ensemble de clients obligatoires plus l'origine et la destination
du véhicule, M° = M U {0*} I'ensemble de clients obligatoires plus l'origine du véhicule,
M¢? = MU{d*} Pensemble de clients obligatoires plus la destination du véhicule, N = M UO
I'ensemble des clients (obligatoires ou non) et P;; I'ensemble de chemins de i € M & j € M
(desservant des clients optionnels). Par exemple, p = {(4, k1); (k1, k2); ..; (kn1, kn); (kn,) }
et |p| = n+ 1. Notons « la pondération des temps de parcours dans la fonction objectif, p,.
le profit associé a la desserte du client optionnel ¢ € O, 7, le temps de parcours modal de [
a m et 7, la longueur modale du chemin p € P;; (comprend les temps de service modaux et
les temps de parcours modaux). On utilise les variables décisionnelles suivantes :

x; variable booléenne indiquant si le client [est servi

yi;; variable booléenne indiquant si le client obligatoire j suit le client obligatoire 7 (quand

on ne considere que les clients obligatoires de la route)
zim variable booléenne indiquant si l'arc (I, m) est utilisé (I,m € N)

heure de début de service modale chez le client obligatoire ¢

Sl
.

<.

heure de début de service au plus tard chez le client obligatoire ¢ (quand on ne

considere que les clients obligatoires de la route)

117

Modeéle

maxz @xmLZ c— Q Z Z TimZim — €k

ieM ceO leNU{ok} me NU{dr}

sujet aux contraintes (G.1I) a (612) (cf. chapitre 5, section G.1))

On observe dans cette formulation que les contraintes ([6.I]) a (6.4) sont des contraintes
de tournée tandis que les autres contraintes sont des contraintes temporelles. Ce probleme
peut donc étre assimilé a un probleme de plus court chemin élémentaire avec contraintes de
ressources. Afin de retrouver une formulation similaire a celle du probleme du plus court che-
min, reformulons la fonction objectif du sous-probleme. Dans un premier temps, reformulons

la fonction objectif sous forme d’un probleme de minimisation :

min . Z Bix; + Z — Pe)Te + Z Z Tim Zim + €k

ieM ce0 leNU{ok} meNU{dF}

En utilisant la contrainte ([6.3]), on a :

ieM i€M jeNU{d*}
> (7 => D — Pe)Zj
ceO ceO]ENU{dk}

De méme, en utilisant la contrainte (G.1I), on a :

€ = E €kZokm

meNU{dF}

On peut donc reformuler la fonction objectif comme suit :

min . Z Z /B'LZ'L] + Z Z (")/C - pc)zcj + Z Z f'llem + Z €L Zokm

€M je Nu{dk} c€0 jeNu{d+} leNU{ok} meNU{d*} meNU{dF}
En regroupant les variables z;, suivant que [est un client obligatoire, optionnel ou bien le

dépot origine, on obtient :

min . Z Z (Oﬁ'ij + ﬁi)Zij + Z Z (Oﬁ—cj + Ve — pc)zcj + Z (O”A—okm + 6k)'zokm

ieM je Nu{d+} c€0 jeNU{dF} meNU{d*}

Avec cette fonction objectif du type min) CijTij, on retrouve bien une formulation

ijeEN
similaire a celle d’un probléme de plus court chemin. Les cotuts modifiés ¢;; associés aux arcs

(1,7) sont répertoriés en trois catégories suivant le type du client i :

118

— Soit 7 est un client obligatoire (i € M) et ¢;; = a7 + f;.

— Soit ¢ est un client optionnel (i € O) et ¢;; = afi; — p; + Vi

— Soit i est le dépot origine du véhicule considéré (i = o¥) et c;; = afy; + €.

Avec ces couts modifiés, on retrouve bien une formulation des sous-problemes de type
ESPPRC (elementary shortest path problem with resource constraints) ou les ressources

correspondent a un temps modal et un temps maximal consommé.

7.3 Composantes de P’algorithme de branch and price

Dans l'algorithme de branch and price, trois composantes majeures peuvent impacter
lefficacité de la méthode. Il s’agit de la construction de la solution initiale, de la méthode
de résolution du sous-probleme et de la stratégie de branchement. Nous détaillerons donc ces

trois composantes dans cette section.

7.3.1 Construction de la solution initiale

L’algorithme de branch and price est basé sur la résolution du probleme sur un sous-
ensemble de routes de bonne qualité puis sur 'ajout de routes au fur et a mesure. Etant
donné que, dans notre probleme, nous devons assurer la couverture des clients obligatoires
sans desservir plus d’une fois chaque client optionnel, il nous faut un ensemble de routes initial
de bonne qualité mais aussi et surtout diversifié. Nous choisissons donc d’utiliser I’heuristique
basée sur la génération de colonnes (variante (BD, DI, NV')) décrite au chapitre précédent
pour construire la solution initiale.

Pour les instances de taille 40 et plus, I'’ensemble de colonnes initiales par véhicule ainsi
généré étant tres grand, nous limitons cet ensemble, pour chaque véhicule, aux colonnes avec
un écart de profit de moins de Ap,,.. de la meilleure route. En effet, le profit associé a une
route étant principalement guidé par le profit associé aux clients optionnels et obligatoires,
on choisit de se limiter aux routes ayant un écart de profit de moins de Ap,,., €t non un gap

en %.

7.3.2 Résolution du sous-probleme

Dans la section précédente, nous avons ramené la formulation des sous-problemes a des
ESPPRC. Nous avons présenté, au chapitre précédent, un état de l'art des méthodes de
résolution de 'ESPPRC (cf. section [6.1.1]). Dans cette section, nous ferons un bref état de
I’art sur 'intégration des méthodes de résolution de 'ESPPRC dans la génération de colonnes

puis nous justifierons nos choix pour la résolution du sous-probleme.

119

Etat de I’art des méthodes de résolution de PESPPRC dans la génération de

colonnes

Dans la génération de colonnes, les algorithmes exacts de programmation dynamique
peuvent s’avérer tres chronophages, d’autant plus qu’ils sont utilisés a maintes reprises pour
générer de nouvelles colonnes. Desaulniers et al. [22] proposent donc une stratégie heuristique
pour générer de nouvelles colonnes sans avoir a résoudre un ESPPRC. Cette stratégie est une
méthode de recherche taboue basée sur l'insertion et la suppression d'un client dans une
route. Pour générer de nouvelles colonnes de cott réduit négatif, ils appliquent un algorithme
de recherche taboue aux routes de la solution courante du probleme maitre .

Comme nous ’avons mentionné a plusieurs reprises, la résolution exacte d’'un ESPPRC né-
cessite des temps de calcul importants. Il faut donc éviter le plus possible d’y avoir recours.
Souvent, la génération de colonnes se décompose en deux phases : une premiere phase ou 1’on
génere des colonnes avec une méthode approchée puis une deuxieme phase ou les colonnes
sont générées de facon exacte (afin de garantir 'optimalité de la solution). Les méthodes
approchées utilisées dans cette approche en deux phases sont la LDS (Boussier et al. Héjt
J)

Bettinelli et al. [7] et Dayarian et al. . Les méthodes exactes utilisées dans la deuxieme
Eé] (Boussier et al. H], Tricoire @] et Jepsen et al.

|), I'algorithme de programmation dynamique bidirectionnelle bornée de Salani (Bettinelli

Tricoire [68]) et la programmation dynamique avec dominance aggrégée (Jepsen et al.
@ase sont l'algorithme de Feillet et al.

et al. |7]) et la ng-DSSR route relaxation (Dayarian et al. @]) Desaulniers et al.] et
Gauvin et al. [29] proposent de prendre en compte plusieurs méthodes approchées. Ainsi, a
chaque itération de I'algorithme de génération de colonnes, Desaulniers et al. [22] appliquent
les méthodes suivantes 1'une apres 'autre, par ordre de rapidité : la méthode de recherche
taboue puis l'algorithme de limited discrepancy search puis la méthode de dominance aggré-
gée et enfin la programmation dynamique exacte. Des que 'une d’elles génere des colonnes
de cout réduit négatif, ils passent a l'itération suivante. Si aucune ne génere de colonnes, la
solution est optimale. Gauvin et al. [29] procedent de méme avec la méthode de recherche
taboue, puis un algorithme de programmation dynamique bidirectionnelle bornée avec ng-

route relaxation et dominance aggrégée.

Méthodes choisies pour la résolution du sous-probleme

Comme nous I’avons mentionné au chapitre précédent, la relaxation de la contrainte d’élé-
mentarité lors de la résolution du sous-probleme ne nous aide pas, car les contraintes portant

sur les clients ne sont pas assez fortes. Nous ne retiendrons donc pas les méthodes de type

120

NG-route ou DSSR. Nous choisirons comme méthode exacte la variante exacte (BD, DI, V'V')
de programmation dynamique bidirectionnelle bornée (cf. chapitre précédent). En ce qui
concerne les méthodes approchées pour générer de nouvelles colonnes, nous disposons déja
d’une méthode tres efficace présentée au chapitre précédent : la variante (BD, DI, NV') de
programmation dynamique bidirectionnelle bornée. Cette méthode peut étre assimilée a une
méthode de type dominance aggrégée car on relache la ressource vecteur de visites dans les
tests de dominance. Comme cette méthode permet de générer un nombre important de routes
rapidement, nous n’utiliserons pas de recherche taboue. Par contre, nous proposons également
d’intégrer une méthode approchée de type limited discrepancy search lors de la génération de
colonnes. Rappelons que cette méthode consiste a ne garder, pour chaque sommet, que les
D ez plus proches prédécesseurs et successeurs (au vu des couts réduits) dans le graphe du
sous-probleme. Or, dans notre probleme, les clients ne sont pas tres contraints au niveau des
fenétres de temps, ce qui rend le graphe initial complet (a quelques arcs pres). Le fait d’iden-
tifier, a chaque itération, les D,,,, plus proches voisins dans le graphe est donc tres cotiteux
en temps de calcul (pour chaque client, tri des voisins puis élimination des mauvais arcs).
Pour éviter cela, on propose de construire un graphe restreint a priori en gardant pour chaque
sommet ses D4, plus proches voisins (en terme de distance/temps de parcours). Une fois ce
graphe construit, on associe a chaque itération une valeur aux arcs de ce graphe correspon-
dant aux couts modifiés de I'itération et on résout un ESPPRC sur ce graphe. Nous proposons
deux heuristiques de type limited discrepancy search : la premiere consiste a résoudre avec la
variante approchée (BD, DI, NV) FESPPRC sur le graphe restreint et la deuxiéme consiste
a résoudre exactement 'ESPPRC sur ce méme graphe (variante (BD, DI, VV)).

Nous disposons ainsi de quatre méthodes pour générer de nouvelles colonnes. Les trois
premiéres sont des méthodes approchées : la variante approchée (BD, DI, NV'), la variante
approchée (BD, DI, NV') avec discrepancy search, la variante exacte (BD, DI,V V') avec dis-
crepancy search. Quant a la derniere, il s’agit d’une méthode exacte : variante (BD, DI,V V')
de l'algorithme de programmation dynamique. Dans I’algorithme de génération de colonnes,
on distingue deux phases : une phase dans laquelle les nouvelles colonnes sont générées a
I’aide d’heuristiques suivie d'une phase dans laquelle les colonnes sont générées de fagon
exacte. Dans la premiere phase (génération heuristique de nouvelles colonnes), comme 'ont
proposé Desaulniers et al.] et Gauvin et al. [29], & chaque itération, nous appliquons les
méthodes approchées par ordre de rapidité décroissante. Nous utilisons d’abord la variante
approchée (BD, DI, NV') avec discrepancy. Si celle-ci ne permet pas de générer de colonnes,
nous utilisons la variante approchée (BD, DI, NV') simple. Si aucune colonne n’a pu étre gé-

nérée jusqu’ici, on applique la variante exacte (BD, DI, VV') avec discrepancy search. Enfin,

121

dans la deuxieme phase de la génération de colonnes, on procede a la génération exacte de
nouvelles colonnes a I'aide de la variante (BD, DI,V V). Aussi, dans ces deux phases, comme
le nombre de colonnes générées par nos méthodes est élevé, on introduit un parametre N,
et, a chaque itération de la génération de colonnes, on ajoute seulement les N,,,, meilleures

colonnes pour chaque véhicule.

7.3.3 Stratégie de branchement

Comme nous I'avons mentionné précédemment, apres résolution de la génération de co-
lonnes, on peut obtenir une solution fractionnaire. Il est donc nécessaire d’intégrer la géné-
ration de colonnes dans une méthode de recherche arborescente de type branch and price

(branch and bound avec possibilité d’ajouter de nouvelles colonnes a chaque noeud).

Etat de ’art des stratégies de branchement

Dans le probleme de tournées de véhicules classique, la stratégie de branchement la plus
fréquemment utilisée (@], @], B], H], @] et @]) est le branchement sur les variables de
flot (si on note xfj la variable indiquant le flot traversant I'arc (i, j) pour le véhicule k, cela
revient a brancher sur), $fj) Toutefois, si cette stratégie est souvent utilisée, elle n’est pas
tres efficace quand le graphe est dense.

Une autre stratégie, introduite par Augerat M], reprise par Jepsen et al. @] et Gauvin et al.
|, consiste a brancher sur le nombre d’arcs adjacents a un ensemble de clients. Il s’agit
d’identifier un ensemble de clients pour lequel le nombre d’arcs adjacents est dans I'intervalle
12;4] et a forcer d'un coté ce nombre a étre égal a 2, et de 'autre coté, a étre égal a 4.
Dans le cadre du probleme de Team Orienteering, Boussier et al.] proposent de brancher
sur le nombre de visites d'un client. Cette stratégie de branchement est spécifique au probleme
de team orienteering ou les clients peuvent étre desservis une fois ou ne pas étre desservis.
Pour son probleme de tournées de véhicules multi-dépot avec fenétres de temps, Dayarian
et al. [20] proposent deux stratégies de branchement. La premiere est un branchement sur
les fenétres de temps introduit par Gélinas et al. [30] consistant & diviser la fenétre de temps
en deux intervalles correspondant aux noeuds fils. La deuxieme stratégie consiste a brancher
sur affectation des usines aux producteurs (si le flot traversant un arc producteur-usine est

fractionnaire, on branche).

Stratégie de branchement choisie

Dans notre probleme, les clients (optionnels ou obligatoires) étant faiblement contraints

au niveau des fenétres de temps, le graphe support est donc tres dense. Les stratégies de

122

branchement consistant a brancher sur les variables de flot ou sur les fenétres de temps ne
sont donc pas judicieuses. Aussi, comme notre probleme comporte des clients optionnels qui
sont desservis au plus une fois, nous choisissons de nous inspirer de la stratégie de branchement
proposée par Boussier et al. [11]. Toutefois, le nombre de visites d'un client (obligatoire ou
optionnel) étant souvent entier tandis que le nombre de visites d'un client par un véhicule est
décimal, nous choisissons de brancher sur le nombre de visites d'un client par un véhicule.
Nous pouvons donc brancher aussi bien sur le nombre de visites d’un client optionnel que sur
celui d'un client obligatoire.

Pour choisir sur quel couple (client, véhicule) brancher, nous proposons deux méthodes.
La premiere méthode procede par véhicule et s’arréte des qu'un couple (client,véhicule) est
identifié. Pour chaque véhicule, on recherche d’abord parmi les clients obligatoires le couple
(client, véhicule) avec le nombre de visites le plus fractionnaire. Si aucun couple n’a pu étre
identifié pour le branchement, on procede a cette recherche parmi les clients optionnels. Si
aucun couple n’a été identifié pour le branchement, on passe au véhicule suivant. Dans la
deuxieme méthode, on procede par catégorie de clients. On recherche d’abord parmi les clients
obligatoires et I'ensemble des véhicules, le couple (client, véhicule) avec le nombre de visites
le plus fractionnaire. Si aucun couple n’a pu étre identifié, on procede de méme au niveau

des clients optionnels.

Notre stratégie de branchement consiste, dans la premiere branche, a forcer la desserte du
client par le véhicule concerné et, dans la deuxieme branche, a interdire la desserte du client
par le véhicule concerné.

Pour forcer la desserte du client ¢ par le véhicule k& au niveau du probleme maitre, on rajoute

une contrainte du type Z Sirz¥ > 1. On choisit volontairement une contrainte de type re-

reQk
couvrement plutot qu’'une contrainte de partitionnement afin de générer une variable duale

de signe connu. Cette contrainte génere une variable duale et donc une modification du cout
réduit au niveau du sous-probleme correspondant, mais ne garantit pas la génération de
routes contenant le client ¢ pour le véhicule k. C’est pourquoi, afin de garantir la génération
de routes contenant le client 7, on modifie les cotuts réduits associés aux arcs sortants de ce
client en posant pour tout j, ¢;; = ¢;; — M avec M suffisamment grand. On veut s’assurer
que les clients optionnels forcés deviennent plus importants que les clients obligatoires.

Pour interdire la desserte du client ¢ par le véhicule £ au niveau du probleme maitre, on

rajoute une contrainte du type E Sz’ < 0. Comme ci-dessus, la contrainte génére une mo-

reQk
dification des cotits réduits au niveau du sous-probleme concerné sans garantir la génération

de routes ne contenant pas le client 7. On interdit donc la desserte du client ¢ au niveau du

123

sous-probleme en associant a tous les arcs ayant pour extrémité le client ¢ un cott infini. Pour
I’exploration de I’arbre de branchement, on parcourt 'arbre en profondeur en commencant
par le coté ou les clients sont forcés (afin d’obtenir rapidement de bonnes bornes pour élaguer

la suite de I'arbre).

Etant donnée notre stratégie de branchement consistant & interdire/forcer la desserte d'un
client par un véhicule, on peut se retrouver avec un squelette de clients obligatoires non réa-
lisable. En effet, quand on interdit la desserte d'un client obligatoire par un véhicule, on
impose implicitement la desserte de ce client obligatoire par un autre véhicule. Inversement,
quand on impose la desserte d'un client obligatoire par un véhicule, on empéche potentielle-
ment la desserte de certains clients obligatoires par ce véhicule et donc on impose la desserte
de ces clients obligatoires par d’autres véhicules. Dans les deux cas, on impose la desserte
d’un ensemble de clients obligatoires par un ensemble de véhicules sans vérifier si le squelette
reste réalisable avec ces nouvelles contraintes. On peut donc se retrouver avec un squelette
de clients obligatoires non réalisable. Pour éviter cet écueil, on vérifie apres le branchement
si le squelette est réalisable. Si ce n’est pas le cas, on passe directement au noeud suivant.
Par contre, lors du branchement sur la desserte d’un client optionnel, d’apres notre stratégie
d’identification du couple sur lequel brancher, cela signifie que les clients obligatoires sont
tous desservis une fois par un véhicule (sinon, on aurait branché sur un client obligatoire) et
donc que le squelette est fixé. Dans ce cas, il n’y a donc pas de probleme de réalisabilité du

squelette.

7.4 Expérimentation

Nous procédons aux expérimentations sur les instances décrites chapitre 1, en utilisant
Cplex 12.4, pour procéder a la résolution du probleme maitre. Les tests ont été effectués sur
une machine avec 4CPU, 2.8GHz et 30Go de RAM.

7.4.1 Réglage des parametres

Concernant le réglage des parametres, nous utilisons le méme réglage de parametres
que dans les chapitres précédents : horizon de temps 7' = 480 minutes, vitesse minimale
Umin = 20km/h et vitesse modale v,,,q = 40km/h. Apres avoir converti ces valeurs v
et Umoq €n unités arbitraires par minute, on calcule le temps de parcours unitaire minimal
8 = [100/Vmaz] et modal 6 = [100/vmoq]. Les temps de parcours minimaux et modaux sont
ensuite obtenus en utilisant les formules T = {Dijé—‘ et 7;; = [Dwﬂ Pour le réglage des

temps de service, nous avons choisi des temps de service minimaux et modaux respective-

124

ment de 15 et 22 minutes pour les clients optionnels et de 30 et 35 minutes pour les clients
obligatoires. Comme précédemment, nous avons supposé que le service d’un client optionnel,
quel qu’il soit, génere un profit p, = 100 et nous avons choisi & = 1. Pour le profit associé
aux clients obligatoires p,,, nous avons repris la valeur choisie a la section 5.2 du chapitre
précédent, a savoir p,, = 300. Pour la génération des colonnes initiales sur les instances de
taille supérieure a 40, comme nous ’avons mentionné section [7.3.1] nous nous limitons, pour
un véhicule donné, aux routes présentant un écart de profit de moins de Ap,,,q. de la meilleure
route. Afin d’obtenir des ensembles de routes de taille comparable a ceux obtenus sur les ins-
tances a 30 clients, on choisit Ap,,.. = 500. A chaque itération de la génération de colonnes,
comme nous l'avons mentionné section [.3.2] nous n’ajoutons pas toutes les colonnes générées
mais seulement N,,,, colonnes par véhicule. Pour ce parametre, on a choisi N, = 30 (suite
a des tests préliminaires). Finalement, pour la méthode de type limited discrepancy search,
le graphe initial étant quasiment complet, nous avons choisi de nous limiter aux D, = 10

plus proches voisins.

7.4.2 Calibrage de la méthode

Avant de présenter les résultats obtenus avec la méthode de ce chapitre, nous devons
choisir la méthode de résolution du sous-probleme. Dans la section [[.3.2] nous avons proposé
plusieurs méthodes pour générer de nouvelles colonnes : la variante heuristique (BD, DI, NV)
sur le graphe restreint (que I'on notera HeurDisc), la variante approchée (BD, DI, NV') (que
I'on notera HeurSimple), la variante exacte (BD, DI, V'V) sur le graphe restreint (que I'on
notera ExactDisc) et la variante exacte (BD, DI, VV') (que l'on notera Exact). Ces mé-
thodes étant classées par ordre de rapidité décroissantes, nous les appliquons dans cet ordre.
Nous avons testé sur les instances a 30 clients différentes variantes : la variante (HeurDisc,
HeurSimple, ExactDisc, Exact), la variante (HeurSimple, ExactDisc, Exact) et la variante
(HeurSimple, Exact). Lors de ces tests, nous avons pu observer que la méthode HeurDisc
entrainait des temps de calcul plus élevés et augmentait le nombre d’itérations nécessaires
pour atteindre I'optimalité. Nous n’avons donc pas retenu cette variante dans nos tableaux
de résultats. Lors des tests des autres variantes, nous avons observé le célebre « Tailing ef-
fect » de la génération de colonnes. Nous avons donc décidé de proposer une méthodologie
pour y remédier : au bout de I,,,, itérations heuristiques de la génération de colonnes durant
lesquelles la solution ne change pas, on passe a la génération exacte des routes. On propose
donc deux variantes supplémentaires, a savoir : la variante (HeurSimple, ExactDisc, Exact,
Imae) et la variante (HeurSimple, Exact, I,,q.). Dans le tableau [l nous reportons donc
les résultats obtenus avec les quatre variantes mentionnées ci-dessus en posant I,,,, = 50

(au vu des résultats obtenus sans I,,,,;). Les en-tétes de colonnes sont les suivants : CPU :

125

temps de calcul en minutes ; # ité. a opt. : nombre d’itérations avant obtention de la solution
optimale ; # ité. heur. : nombre d’itérations heuristiques; # ité. exactes : nombre d’itéra-
tions exactes. Comme précédemment, dans ce tableau, nous limitons les temps de calcul
a 4 heures (si les temps de calcul dépassent cette durée, on inscrit un « - » dans la case
correspondante). Aussi, pour les instances sur lesquelles un branchement est nécessaire, on
n’indique pas le nombre d’itérations avant optimalité (on met un « - » dans la case corres-
pondante). L’introduction du parameétre I,,,, = 50 ne modifiant pas le nombre d’itérations
nécessaires pour atteindre I'optimalité (qui est d’au plus 51), nous n’indiquerons pas cette

valeur pour les variantes (HeurSimple, ExactDisc, Exact, I,,,,,) et (HeurSimple, Exact, I,,4.).

126

Tableau 7.1 Comparaison des méthodes de résolution de 'ESPPRC

#' de HeurSimple, Exact HeurSimple, ExactLDS, Exact Hetg}?;r;lf)l?;nlj]:ait;ODS, HeurIS;I:zpl: gl)i[l)xact,
che.nts Instances —CpU # dite. # d'ité. # d'ité. | CPU # d'ité. # d’ité. # d'ité. | CPU # d’ité. # d'ité. | CPU # d’ité. # d'ité.
oblig. (min) a opt heur exactes (min) a opt heur exactes (min) heur exactes (min) heur exactes
Cl.1.5 16 51 49 18 11 49 65 1 11 65 1 16 49 18
Cl125 66 25 23 32 87 23 114 19 82 75 33 66 23 32
5 C1.3.5 27 0 80 61 46 0 173 27 24 50 33 24 50 33
C14.5 137 - 169 69 156 - 321 33 181 287 106 150 163 120
C1.5.5 49 52 80 72 33 51 122 17 34 103 29 43 79 71
C1.1.6 25 11 42 32 25 10 108 1 17 62 2 22 41 31
Cl12.6 83 - 76 73 128 - 237 55 136 165 109 83 76 73
6 C1.3.6 139 7 177 210 100 6 412 25 30 58 27 27 58 27
Cl1.4.6 231 - 189 173 226 - 382 72 201 360 64 235 189 174
Cl1.5.6 28 15 13 47 31 13 125 1 31 65 34 28 13 47
Cl.1.7 8 13 34 3 15 12 58 5 15 58 5 8 34 3
Cl12.7 22 7 39 15 39 6 123 13 22 58 7 22 39 15
7 C1.3.7 73 2 156 71 84 2 306 36 43 53 55 40 53 55
C14.7 239 - 145 110 224 - 348 57 224 348 57 239 145 110
C1.5_7 32 0 72 33 37 0 159 1 27 50 35 26 50 35
C1.1.8 42 - 48 66 49 - 93 55 49 93 55 42 48 66
C1.2.8 17 16 51 4 31 15 109 2 40 67 28 17 51 4
8 C1.3.8 39 20 95 41 59 19 268 1 54 71 98 51 71 98
C1.4.8 - - - -
C1.5.8 25 15 43 29 25 14 99 1 18 66 1 23 42 28
C1.19 17 16 68 15 21 15 80 26 17 67 14 15 67 14
C12.9 42 - 44 56 61 - 156 18 60 156 18 42 44 56
9 C1.3.9 16 24 48 13 18 23 53 16 18 53 16 16 48 13
C149 13 22 20 31 26 20 109 14 16 72 5 13 20 31
C1.5_9 63 - 67 85 75 - 210 33 72 157 56 63 67 85

127

Dans le tableau [l on observe que les meilleurs temps de calcul sont obtenus avec la
variante (HeurSimple, Exact, I,,,, = 50). En particulier, sur I'instance C1_3_6(30), cette
variante permet de diviser les temps de calcul par 4. On constate également que le nombre
d’itérations nécessaire pour atteindre la solution optimale reste similaire (diminution de 0 a 2
itérations) dans la variante avec ExactLLDS. Aussi, on remarque dans la variante (HeurSimple,
ExactLDS, Exact) que la solution optimale est obtenue durant les itérations heuristiques et
que le nombre d’itérations exactes est souvent nettement plus faible dans cette variante. Pour
la suite des expérimentations, nous utiliserons la variante (HeurSimple, Exact, I, = 50)

pour ses temps de calcul.

Une autre composante importante de 1'algorithme de branch and price est la stratégie
d’identification du couple (client,véhicule) sur lequel brancher. Nous en avions proposé deux
(cf. section : on notera la premiere (par véhicule) V1 et la deuxieme (par catégories
de clients) V2. Les résultats obtenus sur les instances a 40 clients sont synthétisés dans le
tableau Dans ce tableau, on reporte pour chaque instance les temps de calcul en minutes
(colonne CPU). On limite les temps de calcul a 2 heures et on indique la meilleure solution

trouvée dans le temps imparti.

Tableau 7.2 Comparaison des stratégies d’identification pour le branchement

Branchement V1 Branchement V2

CPU Non visités Distance | CPU Non visités Distance
Cl.15 24 0 245,45 23 0 245,447
Cl125 43 0 226,78 48 0 226,78
C1.3.5 34 0 241,33 120 2 226,454
Cl45 120 0 249,52 59 0 249,52
Cl1.5.5 5 0 220,26 6 0 220,263
Cl.1.6 29 0 249,99 20 0 249,991
C1.2.6 120 0 250,82 120 1 265,534
C1.36 70 0 253,04 120 1 266,634
C1.46 | 103 0 243,19 | 120 1 252,538
Cl1.56 17 0 221,96 17 0 221,961
C1.1.7 4 0 254,78 4 0 254,781
C1.2.7 42 0 235,10 40 0 235,1
C1.3.7 120 1 271,14 120 1 253,496
Cl14.7 37 0 256,07 23 0 256,002
Cl5.7 12 0 230,89 12 0 230,894
C1.1.8 120 1 222,79 120 1 230,149
C1.28 68 0 243,44 113 0 246,748
C1.3.8 5 0 250,09 5 0 250,086
C1438 72 0 251,89 120 0 239,686
C1.5_8 17 0 215,16 18 0 215,157
C1.1.9 120 1 237,41 120 1 244,444
C1.29 120 2 244,21 120 1 235,903
C1.3.9 120 2 253,90 52 1 245,891
C1.49 114 1 228,60 120 1 228,6
C1.59 9 0 214,75 9 0 214,745

Dans le tableau [Z.2], on observe que la stratégie V1 permet de n’avoir que 7 instances

nécessitant 2 heures de calcul tandis que la stratégie V2 présente 10 instances nécessitant 2

128

heures de calcul. De plus, dans I’ensemble le nombre de clients non servis dans la stratégie
V2 est souvent plus élevé que dans la stratégie V1. Nous choisissons donc, pour la suite des
expérimentations, d’identifier sur quel couple (client,véhicule) brancher a 1’aide de la stratégie

V1 (procédant par véhicule).

7.4.3 Résultats de la méthode

Apres avoir calibré notre méthode (cf. ci-dessus), nous procédons a présent aux tests de
I’algorithme de branch and price sur les instances du chapitre 1. Pour les instances contenant
40 clients et plus, une itération exacte de génération de colonnes prend plus d’une heure,
nous générons donc uniquement des colonnes a ’aide de méthodes approchées (HeurSimple,
Imaz = 50). Les solutions obtenues sur ces instances ne sont donc pas optimales. Les résultats
obtenus avant et apres simulation sur les instances a 30, 40 et 50 clients sont synthétisés dans
le tableau [Z.3l Les temps de calcul indiqués dans ce tableau sont en minutes. On indique en
gras les valeurs correspondant a la solution optimale (instances a 30 clients). Les temps de
calcul sont limités a 4 heures pour les instances a 30 clients (résolution exacte) et a 2 heures

pour les autres instances (résolution approchée).

Tableau 7.3 Résultats avant /apres simulation pour 'algorithme de branch and price

Nb de Avant simulation Apres simulation
Nb de

clients clients CPU # moy. distance | # moy. non servis distance moy. retard moy.
oblig. non servis moy. WR OS | WR OS | WR OS
5 60 0,0 196 2,3 1,9 187 189 0,2 5,8
6 79 0,0 199 4,2 2,5 181 190 1,2 36,3
30 clients 7 67 0,0 202 4,3 2,4 183 193 1,6 25,8
8 33 0,0 201 4,7 3,7 180 188 1,8 30,8
9 30 0,0 205 4,9 3,0 184 198 3,6 51,0
5 45 0,0 237 7,7 6,3 202 216 1,3 47,4
6 68 0,0 244 8,7 7,0 196 211 1,6 44,0
40 clients 7 43 0,2 250 10,8 7,8 207 226 3,1 80,0
8 56 0,2 237 10,5 6,7 194 216 2,7 116,7
9 97 1,2 236 11,8 8,0 201 222 7,1 101,5
5 120 7,2 215 16,0 14,6 191 200 1,6 49,1
6 97 7.4 218 17,5 15,2 192 200 1,1 43,7
50 clients 7 120 8,6 218 19,0 15,8 192 204 3,2 68,4
8 97 8,2 212 19,2 16,6 182 198 2,8 64,4
9 98 8,8 213 20,8 16,1 186 202 3,9 100,3

Dans le tableau [[.3] on observe, comme au chapitre précédent, la cohérence des résultats
obtenus : le nombre de clients devenus non desservis durant la simulation n’est pas tres élevé.
En comparant les stratégies de programmation dynamique, on observe, comme au chapitre
précédent, que la stratégie considérant un seul segment est préférable pour le nombre de
clients desservis et que la stratégie considérant toute la route est préférable pour le retard et

la distance parcourue. Les différences au niveau du retard sont vraiment importantes, avec

129

un retard pouvant aller jusqu’a 2 heures dans la stratégie considérant un seul segment (contre
seulement 7 minutes avec I'autre stratégie). On constate également dans ce tableau que 'on

nécessite une heure de calcul en moyenne pour obtenir la solution optimale sur les instances

a 30 clients.

7.4.4 Comparaison de cette méthode avec les méthodes précédentes

Apres avoir observé les résultats obtenus avec la méthode de ce chapitre, comparons cette
méthode avec les deux méthodes proposées précédemment (méthode approchée basée sur
la priorité et méthode approchée basée sur la génération de colonnes). Les résultats avant
simulation (30, 40 et 50 clients) obtenus avec les trois méthodes sont synthétisés dans le
Tableau[7.4l On indique en gras les résultats correspondant aux solutions optimales (obtenus

avec l'algorithme de branch and price sur les instances a 30 clients).

Tableau 7.4 Comparaison des 3 méthodes avant simulation

Heuristique basée sur la Heuristique basée sur la .
. C s PR Branch and price
clients #. chen.ts priorité . génération de color.mes .
obligatoires CPU non Distance | CPU non Distance | CPU non Distance
(s) servis (km) (s) servis (km) (s) servis (km)

5 43 1,4 220 22 0,0 200 3588 0,0 196
6 66 2,8 232 37 0,0 214 4740 0,0 199

30 7 53 2,4 230 34 0,0 219 4020 0,0 202
8 34 3,4 216 25 0,0 214 1995 0,0 201
9 24 3 217 29 0,0 217 1788 0,0 205
5 3277 7,2 202 97 1,4 238 2652 0,0 237
6 962 10,2 217 120 1,8 250 3828 0,0 244

40 7 1451 10 211 122 2,2 254 2580 0,2 250
8 1880 10 210 98 2,0 242 3408 0,2 237
9 1053 10 206 120 24 240 5325 1,2 236
5 1227 15,4 192 184 8,0 226 7200 7,2 215
6 3064 17,6 197 212 8,6 222 5832 7.4 218

50 7 2844 18 192 240 9,2 221 7200 8,6 218
8 2323 18,6 200 218 9,2 215 5568 8,2 212
9 1408 19,2 188 261 9,4 221 5856 8,8 213

Dans le tableau [T4] on constate que les temps de résolution sont nettement plus éle-
vés dans l'algorithme de branch and price. Etant donné le nombre tres élevé de clients non
desservis avant simulation dans 1’heuristique basée sur la priorité des clients (rappelons que
I'on s’assure dans cette méthode que les routes soient réalisables dans 90% des cas), nous
ne retiendrons pas cette méthode dans la comparaison des résultats. En comparant les ré-
sultats obtenus avec I'heuristique basée sur la génération de colonnes et ceux obtenus avec
I’algorithme de branch and price, on observe une nette diminution du nombre de clients non
desservis dans I'algorithme de branch and price (sur les instances a 40 et 50 clients) accom-
pagnée d’une diminution de la distance totale parcourue (sur toutes les instances). Afin de
juger de la différence de qualité des solutions obtenues, il faut comparer la valeur des solutions

obtenues dans les deux méthodes (ou la valeur d’une solution correspond a la valeur de la

130

fonction objectif, a savoir, le profit des clients optionnels visités auquel on soustrait les temps
de parcours modaux). Avec ces valeurs, on peut calculer le gap a optimalité sur les instances
a 30 clients et le gap séparant les solutions des deux premieres méthodes des solutions de
I’algorithme de branch and price sur les autres instances. Ces valeurs et gaps sont reportés
dans le tableau

Tableau 7.5 Branch and price versus heuristique basée sur la génération de colonnes

Heuristique basée
. # clients Branch and price sur la génération
clients obligatoires de colonnes
Valeur Valeur Gap
5 2149 2143 0,3%
6 2044 2018 1,3%
30 clients 7 1938 1908 1,5%
8 1840 1817 1,3%
9 1734 1714 1,2%
5 3074 2931 4,7%
6 2969 2773 6,6%
40 clients 7 2833 2625 7,3%
8 2755 2566 6,9%
9 2557 2431 4,8%
5 3389 3292 3,5%
6 3264 3139 3,8%
50 clients 7 3045 2980 2,1%
8 2997 2891 3,5%
9 2834 2761 2,5%

Dans le tableau [Z.3] on constate que les solutions obtenues avec I’heuristique basée sur la
génération de colonnes sont de treés bonne qualité puisqu’elles sont situées a moins de 1.5%
des solutions optimales en moyenne. Par contre, sur les instances de plus grande taille, les
gaps augmentent et peuvent atteindre les 7% en moyenne, alors qu’il ne s’agit pas de gap
a optimalité. Ces gaps sont plus importants sur ces instances car le nombre de clients non
desservis est plus important dans I’heuristique basée sur la génération de colonnes (impactant
fortement la valeur de la solution car chaque client non desservi génere une perte de 100 dans
la valeur de la solution). Ainsi, méme si l'algorithme de branch and price ne permet pas
d’atteindre la solution optimale sur les instances de grande taille, il permet tout de meme
une amélioration importante de la qualité des solutions obtenues a 1’aide de I'heuristique
basée sur la génération de colonnes. Toutefois, pour juger de la qualité réelle des solutions,
il nous faut a présent comparer les résultats obtenus apres simulation. Ces résultats obtenus
apres simulation, avec les stratégies de programmation dynamique mentionnées au chapitre
4, sont regroupés dans les tableaux et [L1

Apres simulation, on constate que se baser sur les solutions fournies par 'algorithme de
branch and price conduit a desservir plus de clients que I'heuristique basée sur la priorité
mais moins de clients que ’heuristique basée sur la génération de colonnes sur les instances

a 30 clients. Ceci s’explique sur ces petites instances par le fait que la solution optimale peut

Tableau 7.6 Comparaison des 3 méthodes apres simulation, stratégie WR

131

Heuristique basée sur la Heuristique basée sur la .
. A . Branch and price
clients # clients priorité génération de colonnes
obligatoires non Distance non Distance non Distance
. retard . retard . retard
servis (km) servis (km) servis (km)
5 5.3 199 2 1,2 197 0,6 2.3 187 0,2
6 5,6 212 3,1 3,8 199 1,1 4,2 181 1,2
30 7 5,5 209 2,7 4,0 206 2,1 4,3 183 1,6
8 7,6 195 3,2 3,2 201 2,4 4,7 180 1,8
9 7 197 4,6 4,5 203 4,8 4,9 184 3,6
5 9,7 193 1,8 7,8 206 1,8 7,7 202 1,3
6 12,7 204 2,7 9,9 214 2,2 8,7 196 1,6
40 7 13,3 198 2,4 11,7 221 2,7 10,8 207 3,1
8 13,2 198 3,6 11,1 201 2,7 10,5 194 2,7
9 14,5 189 6,8 12,3 198 8,2 11,8 201 7,1
5 17,9 185 2 16,3 195 1,8 16,0 191 1,6
6 21,1 189 3,6 17,5 193 1,5 17,5 192 1,1
50 7 22,2 184 3,6 19,1 194 2,9 19,0 192 3,2
8 22,1 187 4,3 19,7 188 3,9 19,2 182 2,8
9 22,8 180 5,7 21,3 187 3,5 20,8 186 3,9
Tableau 7.7 Comparaison des 3 méthodes apres simulation, stratégie OS
Heuristique basée sur la Heuristique basée sur la .
. A s Branch and price
4 clients # clients priorité génération de colonnes
obligatoires non Distance non Distance non Distance
. retard . retard . retard
servis (km) servis (km) servis (km)
5 3,4 211 2 0,7 199 7,4 1,9 189 5,8
6 5,6 212 3,2 1,9 208 19,2 2.5 190 36,3
30 7 5,5 209 2,8 2,8 213 30,8 2,4 193 25,8
8 6,1 204 3,2 2,2 208 29,3 3,7 188 30,8
9 6,4 201 4,6 2,0 214 62,1 3,0 198 51,0
5 9,7 194 1,8 6,4 220 44,7 6,3 216 47,4
6 12,7 204 2,7 7,9 229 59,1 7,0 211 44,0
40 7 13,3 198 2,5 8,8 241 78,2 7,8 226 80,0
8 13,2 198 3,6 7,9 232 93,0 6,7 216 116,7
9 14 191 5,6 7,8 232 135,0 8,0 222 101,5
5 17,9 185 2 14,6 214 68,9 14,6 200 49,1
6 20,5 189 3,6 15,5 208 48,9 15,2 200 43,7
50 7 21,5 185 3,6 16,7 208 62,8 15,8 204 68,4
8 22,1 187 4,4 16,4 205 82,2 16,6 198 64,4
9 22,7 180 5,9 16,8 210 102,6 16,1 202 100,3

étre tres déséquilibrée étant donné le nombre de clients considérés. On peut ainsi avoir une

solution optimale dans laquelle deux véhicules desservent, a eux deux, 25 clients tandis que le

dernier véhicule ne dessert que 5 clients. Lors de la simulation, les routes étant déséquilibrées,

on observera alors plus de clients annulés. Sur les instances a 40 et 50 clients, par contre, on

observe une diminution du nombre de clients non desservis et de la distance parcourue apres

simulation dans le cadre de ’algorithme de branch and price. En ce qui concerne le retard

observé, il garde des valeurs similaires dans les deux méthodes.

132

7.5 Conclusion

Dans ce chapitre, nous avons proposé une méthode exacte : un algorithme de branch
and price pour résoudre le probleme de tournées de service avec priorité entre les clients et
temps de parcours et de service stochastiques. Nous avons proposé plusieurs méthodes pour
résoudre le sous-probleme, a savoir deux variantes approchées (programmation dynamique
bidirectionnelle avec nombre de clients visités et programmation dynamique bidirectionnelle
avec vecteur de visites sur un graphe restreint) et une variante exacte (programmation dy-
namique bidirectionnelle avec vecteur de visites). Cette méthode nous a permis d’établir les
solutions optimales pour toutes les instances a 30 clients. Pour les instances a 40 et 50 clients,
elle nous a fourni des solutions approchées, de qualité nettement supérieures a celles fournies
par 'heuristique basée sur la génération de colonnes (avec un gap pouvant atteindre 7%).
En comparant cette méthode avec les deux méthodes proposées précédemment apres simula-
tion, nous avons pu constater que cette méthode fournissait des solutions desservant moins
de clients que la méthode du chapitre précédent sur les instances a 30 clients. Par contre,
sur les instances de taille 40 et 50, I'algorithme de branch and price permet d’obtenir des
solutions de meilleure qualité du point de vue du nombre de clients desservis et de la distance

parcourue. En ce qui concerne le retard, les résultats obtenus sont comparables.

133

CHAPITRE 8

Conclusion

Dans cette these, nous avons présenté une approche globale de résolution pour résoudre
le probleme de tournées de service avec priorité entre les clients et temps de service et de
parcours stochastiques. Cette méthode consiste en deux étapes : une étape de planification et
une étape d’exécution. L’étape de planification consiste a construire des routes desservant des
clients optionnels et obligatoires en utilisant des estimés des temps de service et de parcours
connus a priori. Durant ’étape d’exécution, on prend en compte la stochasticité des temps
de service et de parcours, et on utilise des outils de programmation dynamique pour déter-
miner la politique optimale. Apres la programmation dynamique, on procede a un ensemble
de simulations de I'exécution des tournées en temps réel au long de la période afin d’évaluer
la qualité des solutions obtenues. Dans le cadre de cette approche, nous avons développé
trois méthodologies pour 1’étape de planification. La premiere, une heuristique basée sur la
priorité des clients, consiste a construire un squelette de clients obligatoires puis a insérer des
clients optionnels dans ce squelette. La deuxieme, une heuristique basée sur la génération de
colonnes, consiste a générer des routes contenant des clients obligatoires et optionnels puis
a sélectionner exactement une route pour chaque véhicule. La derniere méthode est un algo-
rithme de branch and price. En ce qui concerne 'étape d’exécution, nous avons prouvé que
la politique optimale de notre algorithme de programmation dynamique est une politique de

seuil.

Nous avons d’abord validé nos différentes méthodes en procédant a des tests sur des ins-
tances issues de la littérature. L heuristique basée sur la priorité des clients nous a permis de
résoudre a optimalité des instances restées ouvertes de type OPTW. Grace a I'heuristique ba-
sée sur la génération de colonnes, nous avons établi 'optimalité d’un ensemble de meilleures
solutions connues sur d’autres instances de type OPTW. Apres validation de ces méthodes,
nous avons procédé aux expérimentations sur des instances issues de données industrielles.
La premiere méthode présente de bons résultats, avec des temps de calcul raisonnables sur
I’ensemble des instances. Toutefois, elle présente un inconvénient : elle présuppose un nombre
suffisant de clients obligatoires. La deuxieme méthode présente de meilleurs résultats que la
premiere méthode (aussi bien au niveau du nombre de clients visités que de la distance par-
courue). Aussi, au niveau des temps de calcul, elle permet de résoudre toutes les instances

en moins de 5 minutes. Enfin, la troisieme méthode nous a permis d’obtenir les solutions

134

optimales sur les instances a 30 clients et ainsi d’apprécier la qualité des solutions obtenues
avec la deuxieme méthode. Elle nous a également permis de résoudre de fagcon approchée les
instances a 40 et 50 clients. Sur ces instances, nous avons pu observer que les solutions four-
nies par ’algorithme de branch and price étaient nettement meilleures que celles obtenues par
I'heuristique basée sur la génération de colonnes (avant comme apres simulation). Toutefois,
les temps de calcul de I'algorithme de branch and price sont nettement plus élevés que ceux
de I'heuristique basée sur la génération de colonnes. En ce qui concerne 1'étape d’exécution,
nous avons pu constater que la stratégie de programmation dynamique consistant a considé-
rer un seul segment est préférable du point de vue du nombre de clients desservis tandis que la

stratégie considérant le reste de la route est préférable pour le retard et la distance parcourue.

Parmi les trois méthodologies développées dans cette these pour I'étape de planification,
on préferera donc utiliser I'heuristique de génération de colonnes si on est prét a sacrifier la
qualité des solutions pour gagner en temps de calcul et, inversement, on préferera utiliser
I’algorithme de branch and price si on est prét a sacrifier du temps pour gagner en qualité
de la solution obtenue. Du point de vue de I'étape d’exécution, les résultats nous orientent
plutot vers la stratégie de programmation dynamique consistant a ne considérer quun seul
segment. Toutefois, cette décision est discutable. Pour déterminer si ce choix est judicieux,
il faudrait intégrer ces trois méthodologies dans un horizon multi-période afin de juger de la

qualité des solutions sur un horizon roulant.

1]

135

REFERENCES

ALSHEDDY, A. et TSANG, E. (2011). Empowerment scheduling for a field workforce.
Journal of Scheduling, 14, 639-654.

ANDO, N. et TANIGUCHI, E. (2006). Travel Time Reliability in Vehicle Routing and
Scheduling with Time Windows. Networks and Spatial Economics, 6, 293-311.
ANGELELLI, E., BIANCHESSI, N., MANSINI, R. et SPERANZA, M. (2009). Short
term strategies for a dynamic multi-period routing problem. Transportation Research
Part C' : Emerging Technologies, 17, 106-119.

AUGERAT, P. (1995). Approche polyédrale du probléme de tournées de véhicules. These
de doctorat, Institut National Polytechnique de Grenoble-INPG.

BALDACCI, R., MINGOZZI, A. et ROBERTI, R. (2011). New route relaxation and
pricing strategies for the vehicle routing problem. Operations research, 59, 1269-1283.
BARNHART, C., JOHNSON, E., NEMHAUSER, G., SAVELSBERGH, M. et VANCE,
P. (1998). Branch-and-price : Column generation for solving huge integer programs.
Operations research, 46, 316-329.

BETTINELLI, A., CESELLI, A. et RIGHINI, G. (2011). A branch-and-cut-and-price
algorithm for the multi-depot heterogeneous vehicle routing problem with time windows.
Transportation Research Part C : Emerging Technologies, 19, 723-740.

BOLAND, N., DETHRIDGE, J. et DUMITRESCU, I. (2006). Accelerated label setting
algorithms for the elementary resource constrained shortest path problem. Operations
Research Letters, 34, 5868.

BORENSTEIN, Y., SHAH, N., TSANG, E., DORNE, R., ALSHEDDY, A. et VOU-
DOURIS, C. (2009). On the partitioning of dynamic workforce scheduling problems.
Journal of Scheduling, 13, 411-425.

BOSTEL, N., DEJAX, P. et GUEZ, P. (2008). Multiperiod planning and routing on a
rolling horizon for field force optimization logistics. Routing Problem : Latest Advances.
BOUSSIER, S., FEILLET, D. et GENDREAU, M. (2007). An exact algorithm for team
orienteering problems. 4or, 5, 211-230.

BRAMEL, J. et SIMCHI-LEVI, D. (2001). Set-covering-based algorithms for the capa-
citated vrp. The vehicle routing problem, 9, 85—108.

BRANCHINI, R., AMARAL ARMENTANO, V. et LoKKETANGEN;, A. (2009). Adap-
tive granular local search heuristic for a dynamic vehicle routing problem. Computers
& Operations Research, 36, 2955-2968.

[14]

[15]

[16]

[17]

[19]

[20]

[24]

[25]

[26]

[27]

136

CAMPBELL, A., GENDREAU, M. et THOMAS, B. (2011). The orienteering problem

with stochastic travel and service times. Annals of Operations Research, 186, 61-81.

CESCHIA, S., DI GASPERO, L. et SCHAERF, A. (2011). Tabu search techniques for
the heterogeneous vehicle routing problem with time windows and carrier-dependent
costs. Journal of Scheduling, 14, 601-615.

CHAO, 1., GOLDEN, B., WASIL, E. ET AL. (1996). The team orienteering problem.

Furopean journal of operational research, 88, 464-474.

CORDEAU, J., GENDREAU, M. et LAPORTE, G. (1997). A tabu search heuristic for
periodic and multi-depot vehicle routing problems. Networks, 30, 105-119.

CORTES, C., GENDREAU, M., LENG, D. et WEINTRAUB, A. (2010). A simulation-
based approach for fleet design in a technician dispatch problem with stochastic demand.

Journal of the Operational Research Society, 1-14.
CORTES, C., ORDONEZ, F. et SOUYRIS, S. (2007). Routing technicians under sto-

chastic service times : a robust optimization approach. Tristan VI. Phuket Island, Thai-
land, 10-15.

DAYARIAN, I., CRAINIC, T. G., GENDREAU, M. et REI, W. (2013). A column
generation approach for a multi-attribute vehicle routing problem. Rapport technique,
Technical Report CIRRELT-2013-57, Montreal, CIRRELT.

DELAGE, E. (2010). Re-optimization of technician tours in dynamic environments with

stochastic service time. Rapport technique, Ecole des Mines de Nantes.

DESAULNIERS, G., LESSARD, F. et HADJAR, A. (2008). Tabu search, partial ele-
mentarity, and generalized k-path inequalities for the vehicle routing problem with time

windows. Transportation Science, 42, 387-404.

DESROCHERS, M. (1988). An algorithm for the shortest path problem with resource
constraints. Rapport technique, GERAD.

DESROCHERS, M. et SOUMIS, F. (1989). A column generation approach to the urban

transit crew scheduling problem. Transportation Science, 23, 1-13.

DUGARDIN, F. (2006). Optimisation réactive de tournées de service en environnement

dynamique. Rapport technique, Ecole des Mines de Nantes.
FEILLET, D., DEJAX, P., GENDREAU, M. et GUEGUEN, C. (2004). An exact algo-

rithm for the elementary shortest path problem with resource constraints : Application
to some vehicle routing problems. Networks, 44, 216-229.
FLATBERG, T., HASLE, G., KLOSTER, O., NILSSEN, E. et RIISE, A. (2007). Dy-

namic and stochastic vehicle routing in practice. V. Zeimpekis, C. Tarantilis, G. Giaglis

et I. Minis, éditeurs, Dynamic Fleet Management, Springer, chapitre 3. 41-63.

[28]

[29]

[30]

[31]

137

FUKASAWA, R., LONGO, H., LYSGAARD, J., DE ARAGAO, M., REIS, M., UCHOA,
E. et WERNECK, R. (2006). Robust branch-and-cut-and-price for the capacitated
vehicle routing problem. Mathematical programming, 106, 491-511.

GAUVIN, C., DESAULNIERS, G. et GENDREAU, M. (2013). A branch-cut-and-price

algorithm for the vehicle routing problem with stochastic demands. Rapport technique,

Technical report, GERAD.
GELINAS, S., DESROCHERS, M., DESROSIERS, J. et SOLOMON, M. M. (1995).

A new branching strategy for time constrained routing problems with application to
backhauling. Annals of Operations Research, 61, 91-1009.

GENDREAU, M., LAPORTE, G. et SEMET, F. (2001). A dynamic model and parallel
tabu search heuristic for real-time ambulance relocation. Parallel Computing, 27, 1641—
1653.

GILMORE, P. et GOMORY, R. (1961). A linear programming approach to the cutting-
stock problem. Operations research, 9, 849-859.

GLOVER, F., LAGUNA, M. ET AL. (1997). Tabu search, vol. 22. Springer.

HADJICONSTANTINOU, E. et ROBERTS, D. (2002). Routing under uncertainty : an
application in the scheduling of field service engineers. P. Toth et D. Vigo, éditeurs, The
vehicle routing problem, SIAM, chapitre 13. 331-352.

HAGHANI, A. et YANG, S. (2007). Real-time emergency response fleet deployment.
V. Zeimpekis, C. Tarantilis, G. Giaglis et I. Minis, éditeurs, Dynamic Fleet Management,
Springer, chapitre 7. 13-162.

HOLLAND, J. H. (1975). Adaptation in natural and artificial systems : An introductory
analysis with applications to biology, control, and artificial intelligence. U Michigan

Press.

HU, Q. et LIM, A. (2013). An iterative three-component heuristic for the team orien-
teering problem with time windows. European Journal of Operational Research.
JEPSEN, M., PETERSEN, B., SPOORENDONK, S. et PISINGER, D. (2008). Subset-
row inequalities applied to the vehicle-routing problem with time windows. Operations
Research, 56, 497-511.

JIE, G. (2010). Model and algorithm of vehicle routing problem with time windows in
stochastic traffic network. Logistics Systems and Intelligent Management, 2010. 848-851.
JOHNSON, E. (1989). Modeling and strong linear programs for mixed integer program-

ming. Algorithms and Model Formulations in Mathematical Programming, Springer.
1-43.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[51]

[52]

[53]

[54]

[55]

138

JULA, H., DESSOUKY, M. et IOANNOU, P. (2006). Truck route planning in nonsta-
tionary stochastic networks with time windows at customer locations. Intelligent Trans-

portation Systems, IEEE Transactions on, 7, 51-62.

KENNEDY, J. et EBERHART, R. (1995). Particle Swarm Optimization.

KENYON, A. (1998). Stochastic Vehicle Routing Problems with Random Travel Times.
These de doctorat, University of Texas at Austin.

KENYON, A. et MORTON, D. (2003). Stochastic vehicle routing with random travel

times. Transportation Science, 37, 69-82.

KIRKPATRICK, S., JR., D. et VECCHI, M. (1983). Optimization by simmulated an-
nealing. science, 220, 671-680.

LAPORTE, G., LOUVEAUX, F. et MERCURE, H. (1992). The Vehicle Routing Pro-
blem with Stochastic Travel Times. Transportation Science, 26, 161-170.

LAPORTE, G. et LOUVEAUX, F. V. (1993). The integer l-shaped method for stochastic

integer programs with complete recourse. Operations research letters, 13, 133-142.

LEIL H., LAPORTE, G. et GUO, B. (2011). A generalized variable neighborhood search
heuristic for the capacitated vehicle routing problem with stochastic service times. Top,
Online Fir.

LI, X., TIAN, P. et LEUNG, S. (2010). Vehicle routing problems with time windows
and stochastic travel and service times : Models and algorithm. International Journal
of Production Economics, 125, 137-145.

LYSGAARD, J. (2006). Reachability cuts for the vehicle routing problem with time
windows. Furopean Journal of Operational Research, 175, 210-223.

MARTTI, R., LAGUNA, M. et GLOVER, F. (2006). Principles of scatter search. European
Journal of Operational Research, 169, 359-372.

MLADENOVIC, N. et HANSEN, P. (1997). Variable neighborhood search. Computers
& Operations Research, 24, 1097-1100.

MOSCATO, P. et COTTA, C. (2003). A gentle introduction to memetic algorithms.
Handbook of metaheuristics, Springer. 105-144.

PETRAKIS, 1., HASS, C. et BICHLER, M. (2012). On the impact of real-time infor-
mation on field service scheduling. Decision Support Systems, 53, 282-293.

PINTO, R. (2012). Ezact Algorithms for Arc and Node Routing Problems. These de

doctorat, Pontiféia Universidade Catélica do Rio de Janeiro.

[56]

[57]

[58]

[60]

[61]

[62]

[63]

[64]

[65]

139

RASMUSSEN, M., JUSTESEN, T., DOHN, A. et LARSEN, J. (2012). The home care
crew scheduling problem : Preference-based visit clustering and temporal dependencies.
Furopean Journal of Operational Research, 219, 598-610.

RIGHINI, G. et SALANI, M. (2004). Dynamic programming algorithms for the ele-

mentary shortest path problem with resource constraints. FElectronic Notes in Discrete
Mathematics, 17, 247-249.

RIGHINI, G. et SALANI, M. (2009). Decremental state space relaxation strategies and
initialization heuristics for solving the orienteering problem with time windows with

dynamic programming. Computers & Operations Research, 36, 1191-1203.

RUSSELL, R. A. et URBAN, T. L. (2007). Vehicle routing with soft time windows and
Erlang travel times. Journal of the Operational Research Society, 59, 1220-1228.

SAVELSBERGH, M. (1997). A branch-and-price algorithm for the generalized assign-
ment problem. Operations Research, 45, 831-841.
SHAO, Z., GAO, S. et WANG, S. (2010). A Hybrid Particle Swarm Optimization

Algorithm for Vehicle Routing Problem with. FEngineering Applications of Artificial
Intelligence, 23, 566-574.

SHEN, Z., ORDONEZ, F. et DESSOUKY, M. (2006). The minimum unmet demand

stochastic vehicle routing problem.

SOUYRIS, S., CORTES, C., ORDONEZ, F. et WEINTRAUB, A. (2012). A robust
optimization approach to dispatching technicians under stochastic service times. Opti-

mization Letters.

TAS, D., DELLAERT, N., WOENSEL, T. et KOK, T. (2011). Vehicle Routing Pro-
blem with Stochastic Travel Times Including Soft Time Windows and Service Costs
Vehicle Routing Problem with Stochastic Travel Times Including Soft Time Windows

and Service Costs. Computers € Operations Research, 364.

TAVAKKOLI-MOGHADDAM, R., ALINAGHIAN, M., SALAMAT-BAKHSH, A. et
NOROUZI, N. (2012). A hybrid meta-heuristic algorithm for the vehicle routing problem
with stochastic travel times considering the driver’s satisfaction. Journal of Industrial

Engineering International, 8, 1-6.

TENG, S. Y., ONG, H. L. et HUANG, H. C. (2004). An integer L-shaped algorithm for
time-constrained traveling salesman problem with stochastic travel and service times.
Asia-Pacific Journal of Operational Research, 21, 241-257.

TOPALOGLU, H. (2007). A parallelizable and approximate dynamic programming-

based dynamic fleet management model with random travel times and multiple vehicle

140

types. V. Zeimpekis, C. Tarantilis, G. Giaglis et I. Minis, éditeurs, Dynamic Fleet
Management, Springer, chapitre 4. 65-93.

TRICOIRE, F. (2006). Optimisation des tournées de véhicules et de personnels de
maintenance : application a la distribution et au traitement des eauz. These de doctorat,
Ecole des Mines de Nantes.

TRICOIRE, F., BOSTEL, N., DEJAX, P. et GUEZ, P. (2011). Exact and hybrid me-
thods for the multiperiod field service routing problem. Central Furopean Journal of

Operations Research, Online Fir.

TSILIGIRIDES, T. (1984). Heuristic methods applied to orienteering. Journal of Ope-
rational Research Society, 35, 797-809.

VANSTEENWEGEN, P., SOUFFRIAU, W., VANDEN BERGHE, G. et VAN OUD-
HEUSDEN, D. (2009). Iterated local search for the team orienteering problem with
time windows. Computers € Operations Research, 36, 3281-3290.

WANG, X. et REGAN, A. (2001). Assignment models for local truckload trucking
problems with stochastic service times and time window constraints. Transportation
Network Modeling, 1771, 61-68.

XU, H. (1994). Optimal policies for stochastic and dynamic vehicle routing problems.
These de doctorat, Massachusetts institute of Technology.

ZEIMPEKIS, V., MINIS, I., MAMASSIS, K. et GIAGLIS, G. M. (2007). Dynamic
management of a delayed delivery vehicle in a city logistics environment. V. Zeimpekis,
C. Tarantilis, G. Giaglis et I. Minis, éditeurs, Dynamic Fleet Management, Springer,
chapitre 9. 197-217.

ZHANG, T., CHAOVALITWONGSE, W. et ZHANG, Y. (2012). Scatter search for the
stochastic travel-time vehicle routing problem with simultaneous pick-ups and deliveries.
Computers € Operations Research, 39, 2277-2290.

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	1 Introduction
	2 Le problème de tournées de service avec temps de parcours et de service stochastiques
	2.1 Description de la problématique
	2.2 Hypothèses
	2.3 Lois de probabilité
	2.4 Instances

	3 Etat de l'art
	3.1 Variantes similaires à notre problème
	3.1.1 Priorité entre les clients
	3.1.2 Stochasticité

	3.2 Méthodes de résolution
	3.2.1 Heuristiques basées sur l'affectation
	3.2.2 Métaheuristiques
	3.2.3 Autres méthodes basées sur la recherche locale
	3.2.4 Simulation de Monte Carlo et modèle déterministe
	3.2.5 Méthodes d'optimisation stochastique
	3.2.6 Autres méthodes de résolution

	3.3 Tableaux de synthèse

	4 Politique optimale et politique de seuil
	4.1 Contexte et algorithmes proposés
	4.2 Notations
	4.3 Hypothèses
	4.4 Algorithme 1 : preuve sur un segment
	4.4.1 Client destination d
	4.4.2 Client optionnel vN (étape k = N)
	4.4.3 Client optionnel vN-1 (étape k = N-1)
	4.4.4 Induction sur les clients optionnels

	4.5 Algorithme 2 : preuve sur toute la route
	4.5.1 Dernier segment de route d'un véhicule
	4.5.2 Induction sur les segments de route

	5 Heuristique basée sur la priorité des clients
	5.1 Etape de planification
	5.1.1 Phase I : Etablissement du squelette
	5.1.2 Phase II : Insertion des clients optionnels

	5.2 Etape d'exécution
	5.3 Expérimentation
	5.3.1 Contexte expérimental
	5.3.2 Réglage des paramètres
	5.3.3 Résultats de l'étape de planification
	5.3.4 Résultats de l'étape d'exécution
	5.3.5 Représentation graphique des résultats obtenus

	5.4 Conclusion

	6 Heuristique basée sur la génération de colonnes
	6.1 Génération de routes
	6.1.1 Etat de l'art des méthodes de résolution de l'ESPPRC
	6.1.2 Méthode de résolution de l'ESPPRC retenue
	6.1.3 Algorithme de programmation dynamique bidirectionnelle bornée de Salani
	6.1.4 Algorithme de programmation dynamique implanté par Salani
	6.1.5 Variantes proposées
	6.1.6 Sélection des routes

	6.2 Expérimentation
	6.2.1 Résultats sur les instances de la littérature
	6.2.2 Résultats sur les instances du chapitre 1
	6.2.3 Comparaison de cette méthode avec la méthode précédente

	6.3 Conclusion

	7 Algorithme de branch and price
	7.1 Principe des algorithmes de branch and price
	7.2 Formulation
	7.2.1 Problème maître
	7.2.2 Sous-problème pour le véhicule k

	7.3 Composantes de l'algorithme de branch and price
	7.3.1 Construction de la solution initiale
	7.3.2 Résolution du sous-problème
	7.3.3 Stratégie de branchement

	7.4 Expérimentation
	7.4.1 Réglage des paramètres
	7.4.2 Calibrage de la méthode
	7.4.3 Résultats de la méthode
	7.4.4 Comparaison de cette méthode avec les méthodes précédentes

	7.5 Conclusion

	8 Conclusion
	RÉFÉRENCES

