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(MATHÉMATIQUES DE L’INGÉNIEUR)

MARS 2014

c© Sixtine Binart, 2014.
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et pour tout ce qu’il m’a apporté, à savoir son expertise dans le domaine du stochastique,

sa connaissance étendue de la littérature, et ses conseils avisés. Il m’a également beaucoup
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étaient serrés.
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Brigitte Foncez du LAGIS pour leur aide dans de nombreuses démarches administratives
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RÉSUMÉ

Les tournées de service concernent l’organisation de déplacement de personnels vers des

clients afin d’effectuer différentes activités techniques ou commerciales. Ces tournées peuvent

devoir répondre à des objectifs et faire face à des contraintes nombreuses et complexes. Lors

de la planification et de l’exécution de tournées de service mono-période, les entreprises sont

confrontées aux aléas des temps de service et de parcours. C’est pourquoi, dans cette thèse,

nous nous intéressons à une variante du problème de tournées de service, dans laquelle les

temps de parcours et de service sont stochastiques. Il s’agit du problème de tournées de ser-

vice multi-dépôt, incluant fenêtres de temps, temps de service et de parcours stochastiques

avec priorité entre les clients (distinction clients obligatoires / clients optionnels). Afin de

résoudre cette problématique, nous proposons trois méthodes différentes. Dans la première

méthode, nous construisons d’abord des routes contenant uniquement des clients obligatoires

puis nous procédons à l’insertion des clients optionnels. La deuxième méthode est une mé-

thode approchée basée sur la génération de colonnes consistant à générer un ensemble de

routes de bonne qualité pour chaque véhicule puis à en sélectionner une par véhicule. La

dernière méthode est un algorithme de branch and price basé sur la deuxième méthode. Le

sous-problème consiste à générer des routes réalisables pour un véhicule donné, tandis que le

problème mâıtre permet de sélectionner des routes en s’assurant que la priorité des clients est

respectée. Après chacune de ces méthodes, afin d’évaluer la qualité de ces solutions face aux

aléas, nous utilisons un algorithme de programmation dynamique et procédons à un ensemble

de simulations du déroulement des tournées en temps réel. Nous avons testé ces méthodes

sur des problèmes dont les données sont issues du milieu industriel.

Mots-clés : Tournées de véhicules, multi-dépôt, fenêtres de temps, temps de service sto-

chastiques, temps de parcours stochastiques, priorité entre les clients
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ABSTRACT

The field service routing problem consists in assigning the visits of technicians to clients

in order to satisfy their requests for service activities such as maintenance. When planning

service routes, companies have to face hazardous travel and service times. Therefore, in this

thesis, we deal with a variant of the single-period field service routing problem in which travel

and service times are stochastic. It is the field service routing problem with multiple depots,

time windows, stochastic travel and service times and priority within customers (distinguish-

ing mandatory and optional customers). To solve this problem, we propose three different

methods. In the first one, we first build routes containing only mandatory customers and

then, we insert optional customers in these routes. The second one is a heuristic method

based on column generation consisting in generating a set of valuable routes for each vehicle

and then in selecting one route per vehicle. The last method is a branch and price algorithm,

based on the second method, in which the subproblem consists in finding feasible routes

for a given vehicle, whereas the master problem consists in selecting routes while ensuring

that customer’s priority is respected. After each of these methods, in order to evaluate the

quality of these solutions regarding stochasticity, we use a dynamic programming algorithm

and we proceed to a set of simulations of the real-time execution of the service activities over

the period. All our experimentations have been made on problems coming from realistic data.

Keywords : Vehicle routing, multi-depot, time windows, stochastic service times, stochas-

tic travel times, priority within customers
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2.3 Lois de probabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPITRE 3 Etat de l’art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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3.2.3 Autres méthodes basées sur la recherche locale . . . . . . . . . . . . . . 13

3.2.4 Simulation de Monte Carlo et modèle déterministe . . . . . . . . . . . 14
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simulation sur des instances à 40 clients . . . . . . . . . . . . . . . . . 79

5.11 Valeurs moyennes après insertion des clients optionnels avec estimés

pessimistes et simulation sur des instances à 30 clients . . . . . . . . . 80
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gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Après établissement du squelette . . . . . . . . . . . . . . . . . . . . . 81

5.5 Après insertion des clients optionnels . . . . . . . . . . . . . . . . . . . 81
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CHAPITRE 1

Introduction

Aujourd’hui, avec le développement du secteur tertiaire, nombreuses sont les entreprises

confrontées à la planification de tournées de service. Cette activité consiste à organiser, sur

une ou plusieurs périodes de temps, les déplacements de personnels chez des clients (industriels

ou particuliers), pour effectuer des opérations techniques ou commerciales. Aussi, dans un

contexte de compétitivité croissante, elles doivent faire face à une clientèle des plus exigeantes

et cherchent à améliorer le niveau de service. Elles sont donc souvent amenées à respecter des

heures de rendez-vous (ou des plages horaires) et doivent gérer une notion de priorité entre les

clients (dépendant, par exemple, de la fidélité du client, de l’importance de la demande...). De

plus, ces entreprises doivent aussi prendre en compte les variations des temps de service (durée

effective du service chez les clients) et de parcours (du fait des aléas dans les transports). Si

cette nécessité est une réalité, peu nombreux sont ceux qui se sont intéressés au problème de

tournées de service avec temps de service et de parcours stochastiques. Le plus souvent, le

problème de planification de tournées de service comporte des temps de service stochastiques

ou des temps de parcours stochastiques (incorporant parfois la variation des temps de service

dans celle des temps de parcours). Ces contraintes peuvent rendre les approches déterministes

inapplicables ou peu performantes.

L’objectif de cette thèse est de proposer des méthodes de résolution pour le problème de

tournées de service mono-période avec fenêtres de temps de visite chez les clients, plusieurs

dépôts, priorité entre les clients (nous distinguons les clients ”obligatoires” dont la visite est

impérative et les clients ”optionnels”dont la visite peut être annulée ou reportée à une période

ultérieure) et temps de service et de parcours stochastiques.

Pour résoudre cette problématique, nous proposons une approche globale de résolution

en deux étapes : une étape de planification et une étape d’exécution. Au cours de l’étape de

planification, on construit des routes contenant des clients obligatoires et optionnels. Durant

l’étape d’exécution, on utilise des outils de programmation dynamique pour déterminer la

politique optimale. Après la programmation dynamique, on procède à un ensemble de si-

mulations de l’exécution des tournées en temps réel au long de la période afin d’évaluer la

qualité des solutions obtenues. Pour l’étape de planification, nous proposons trois méthodes

distinctes : une heuristique basée sur la priorité des clients, consistant à établir des routes à

partir des clients obligatoires puis à insérer les clients optionnels dans ces routes ; une heu-

ristique basée sur la génération de colonnes consistant à générer un ensemble de routes de
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bonne qualité pour chaque véhicule puis à en sélectionner une par véhicule ; un algorithme

de branch and price dans laquelle le problème mâıtre consiste à sélectionner des routes en

s’assurant que la priorité des clients est respectée tandis que le sous-problème consiste à gé-

nérer des routes réalisables. Dans chacune de ces méthodes de planification, on utilise des

estimés connus a priori des temps de service et de parcours (estimés minimaux, maximaux

ou modaux). Nous procédons à l’expérimentation de ces méthodes sur la base d’un ensemble

de jeux de données réalistes déjà publiés et correspondant aux caractéristiques des tournées

de service d’une grande entreprise.

Dans le premier chapitre, nous donnons une description détaillée de la problématique

qui nous intéresse. Puis, dans le chapitre 2, nous situons le problème étudié par rapport à

la litérature existante. Dans le troisième chapitre, nous prouvons que la politique optimale

de notre algorithme de programmation dynamique est une politique de seuil. Enfin, dans les

chapitres 4, 5 et 6, nous détaillons les trois méthodes de résolution proposées pour le problème

traité.
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CHAPITRE 2

Le problème de tournées de service avec temps de parcours et de service

stochastiques

2.1 Description de la problématique

Avant de décrire notre problème, rappelons la définition du problème de tournées de ser-

vice. Il peut être formulé comme suit. Etant donné un nombre limité de techniciens et de

requêtes clients, il s’agit de trouver des routes pour desservir ces requêtes, en s’assurant que

les clients sont servis dans leur fenêtre de temps par un technicien ayant les compétences

requises. L’objectif est de minimiser la distance parcourue.

Le problème auquel nous nous intéressons ici est une variante du problème de tournées de

service. Nous complétons sa description en précisant un certain nombre d’éléments et d’hy-

pothèses :

– Techniciens omniscients

On suppose que les techniciens sont capables de procéder à toutes les interventions.

En d’autres termes, on supprime l’aspect compétences des techniciens du problème de

tournées de service classique. Aussi, dans la suite, on suppose qu’à chaque technicien

est associé un véhicule et on utilise le terme de véhicule plutôt que celui de technicien.

– Priorité entre les clients

Dans ce problème, on distingue deux types de clients : les clients obligatoires et les

clients optionnels.

Les clients optionnels sont connus a priori et n’ont pas de plage horaire de visite im-

posée (nous considérons qu’ils ont une fenêtre de temps correspondant à l’horizon de

temps et peuvent être reportés à une autre période en tout temps). De plus, afin de

gérer une certaine notion de priorité au sein des clients optionnels, un profit leur est

associé. Les client obligatoires apparaissent au cours du temps mais on suppose qu’un

client obligatoire ne sera pas servi pendant la période au cours de laquelle il apparâıt

(s’il apparâıt à la période J , il ne sera pas servi avant la période J +1). Tous les clients

obligatoires sont donc connus a priori à chaque période. De plus, une fenêtre de temps

dure est associée à chaque client obligatoire dès qu’il apparâıt.
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– Fenêtres de temps dures

Les fenêtres de temps du dépôt (durée d’une journée de travail) et des clients obliga-

toires sont dures. Ce qui signifie que l’on n’autorise aucune heure supplémentaire ni

aucun retard chez les clients obligatoires.

– Aspect multi-dépôts

On suppose que l’on dispose, pour les véhicules, non pas d’un dépôt central mais de

plusieurs dépôts. Chaque véhicule a son propre dépôt origine et dépôt destination (le

plus souvent, il s’agit du domicile du technicien). Pour un véhicule donné, le dépôt

origine et le dépôt destination peuvent être identiques.

– Véhicules de capacité infinie

Etant donné qu’il s’agit de tournées de service et non de transport de marchandises,

on supposera que la capacité des véhicules est infinie (ou, en d’autres termes, que le

volume transporté par chaque véhicule n’excède pas sa capacité).

– Temps de parcours et de service stochastiques

Souvent, dans les problèmes de tournées de service, des temps de parcours et de ser-

vice déterministes sont considérés. Cela ne reflète pourtant pas la réalité : les temps de

transport sont soumis à des aléas tels que la météorologie, le trafic, les accidents... De

même, les aléas sur les temps de service ne sont pas toujours négligeables. En effet, quel

que soit le type de service fourni, les temps de service sont variables (cela peut être lié à

l’absence du client, à la nécessité de monter des escaliers, ainsi qu’à de nombreux autres

aléas). Ces variations ne sont pas neutres. On a donc choisi de prendre en compte des

temps de transport et de service stochastiques.

Une application générique de ce problème est la construction de routes de techniciens pour

des opérations de maintenance et de réparation. Dans ce problème, les clients obligatoires

requièrent des opérations de type réparation tandis que les clients optionnels requièrent des

opérations de service (contrôle, relevé de compteur, maintenance, ...). Dans cette application,

comme les véhicules servent uniquement au transport de matériel et du personnel, on peut

effectivement supposer que la capacité de leur véhicule est infinie. D’autre part, les véhicules

ne transportant pas de marchandises, ils peuvent donc avoir leurs propres dépôts origine et

destination (typiquement les domiciles des techniciens). Enfin, comme le service fourni au

client peut être de type réparation, on comprend la nécessité de considérer des temps de
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service stochastiques.

2.2 Hypothèses

On suppose que tous les clients sont connus a priori (cf. plus haut, paragraphe Priorité

entre les clients).

Les valeurs minimales, modales et maximales des temps de service et des vitesses sont égale-

ment supposées connues a priori. En effet, on peut supposer que l’on dispose d’un historique

permettant de calculer ces valeurs.

On suppose que les distances vérifient l’inégalité triangulaire et que les unités de temps sont

discrètes (on travaille, par exemple, en minutes).

Aussi, on suppose que les temps de parcours et les temps de service sont indépendants.

2.3 Lois de probabilité

Pour modéliser les temps de parcours et de service stochastiques, on souhaite des lois de

probabilité tronquées. En effet, les temps de parcours et de service sont bornés. Aussi, on

suppose que les unités de temps sont discrètes (cf. ci-dessus). On choisit donc d’utiliser des

lois de distribution triangulaires discrètes.

Pour le temps de service au client i, on utilise une loi de distribution triangulaire discrète et

symétrique entre σi − 1 et σi + 1, où σi et σi désignent respectivement le temps de service

minimal et maximal du client i.

Pour le temps de parcours unitaire δ, on utilise une loi de distribution triangulaire discrète

entre

⌈

100

vmax

⌉

−1 et

⌈

100

vmin

⌉

+1, de mode

⌈

100

vmode

⌉

où vmin et vmax correspondent respective-

ment aux vitesses de parcours minimale et maximale, et vmode désigne la vitesse de parcours

modale (la plus probable). Ensuite, afin de s’assurer que les temps de parcours vérifient l’in-

égalité triangulaire, la probabilité du temps de parcours τij entre les clients i et j est donnée

par la formule :

P (τij = m) = P

(⌈

Dijδ

100

⌉

= m

)

avec Dij la distance euclidienne entre les clients i et j.

2.4 Instances

Afin de pouvoir tester les différentes méthodes développées dans cette thèse, nous propo-

sons d’utiliser des instances extraites de celles de Tricoire [68] et correspondant aux caracté-
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ristiques des demandes de services d’une grande entreprise. Dans sa thèse, Tricoire [68] s’est

intéressé au problème de tournées de véhicules multi-dépôts, multi-périodes, avec fenêtres

de temps, priorité entre les clients et points de restauration. Toutefois, il prend en compte

des temps de parcours et de service déterministes. Dans ce contexte, il propose des instances

avec 3 véhicules, sur un horizon de 5 jours. Dans ces instances, il associe à chaque client des

coordonnées (x, y), une fenêtre de temps (e, l), une période de validité d’un ou plusieurs jours

(suivant l’urgence du client). Et à chaque véhicule, il associe, chaque jour, un dépôt origine

et un dépôt destination. A partir de ces instances, nous avons extrait des instances journa-

lières avec un nombre variable de clients obligatoires (compris entre 5 et 9). Ainsi, à partir

de chaque instance originale I (avec I ∈ {C1 1;C1 2;C1 3;C1 4;C1 5}), nous avons extrait

les instances I m(n) (avec m ∈ {5; 6; 7; 8; 9}) comprenant m clients obligatoires et n clients

(obligatoires et optionnels). Dans ces instances, nous avons conservé les trois véhicules ainsi

que la journée de travail de huit heures (480 minutes), mais nous avons modifié les fenêtres

de temps des clients obligatoires en attribuant à la première moitié des clients obligatoires

le matin (fenêtre de temps [0; 240]) et aux autres l’après-midi (fenêtre de temps [240; 480]).

Pour procéder à l’extraction des instances, étant donnée une instance initiale I, un nombre

de clients obligatoires m et un nombre total de clients n, nous avons d’abord identifié les

clients obligatoires et optionnels de cette instance. Puis, nous avons conservé les m premiers

clients obligatoires et avons ajouté les n−m premiers clients optionnels, n’apparaissant pas

déjà dans la liste des clients obligatoires. En procédant ainsi, nous construisons l’instance

I m(n).
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CHAPITRE 3

Etat de l’art

Dans le chapitre précédent, nous avons défini notre problème comme étant une variante

du problème de tournées de service avec omniscience des techniciens, priorité entre les clients,

plusieurs dépôts, capacité infinie, et temps de parcours et de service stochastiques. Dans ce

chapitre, nous faisons un survol des principales méthodes de résolution proposées pour le pro-

blème de tournées de service de techniciens et pour des problèmes de tournées de véhicules

(VRP) qui s’en rapprochent. A cet effet, on note que notre problème présente de nombreuses

ressemblances avec le problème de tournées de véhicules avec fenêtres de temps (VRPTW).

En effet, le VRPTW peut être formulé comme suit. Etant donné un dépôt, des véhicules de

capacité limitée et des demandes clients, il s’agit de trouver des routes pour satisfaire toutes

les demandes, en s’assurant que chacune de ces routes a pour origine et destination le dépôt

donné et que les fenêtres de temps sont respectées. L’objectif est de minimiser la distance

parcourue et parfois le nombre de véhicules utilisés. Notre problème peut donc être assimilé

à un VRPTW sélectif (il n’est pas nécessaire de desservir tous les clients), avec plusieurs dé-

pôts, capacité infinie et temps de parcours et de service stochastiques. Dans ce chapitre, nous

présenterons d’abord les variantes du VRPTW et du problème de tournées de service avec

priorité entre les clients ou stochasticité (car ce sont les deux spécificités de notre problème).

Nous donnerons ensuite un aperçu des différentes méthodologies proposées pour résoudre ces

variantes. Enfin, nous ferons une synthèse de cet état de l’art et nous introduirons l’approche

de résolution globale proposée dans cette thèse.

3.1 Variantes similaires à notre problème

Ici, nous nous sommes intéressés aux variantes du problème de tournées de service et

du VRPTW prenant en compte une spécificité de notre problème : priorité entre les clients

ou des temps de service et/ou de parcours stochastiques. Nous les classerons suivant deux

aspects majeurs du problème : la priorité entre les clients et l’aspect stochastique.

3.1.1 Priorité entre les clients

Qu’il s’agisse de planifier des tournées de service ou des tournées de véhicules, les entre-

prises peuvent attacher plus d’importance à certains clients qu’à d’autres pour de nombreuses
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raisons (fidélité, exigences du client...). Elles peuvent donc être amenées à définir une priorité

entre les clients. Ainsi, Zeimpekis et al. [74], Borenstein et al. [9], Branchini et al. [13], Cortés

et al. [18] et Alsheddy et Tsang [1] associent à chaque client une priorité dès que la requête de

ce dernier entre dans le système. De même, Angelelli et al. [3] et Hadjiconstantinou et Roberts

[34] affectent à chaque client une période de validité plus ou moins grande suivant sa priorité

dès son arrivée dans le système. Quant à eux, Petrakis et al. [54] établissent une priorité entre

les clients en leur associant une pénalité de retard. Ceschia et al. [15] et Rasmussen et al.

[56] définissent également une priorité entre les clients en leur associant une pénalité. Plus

précisément, ils associent aux clients un coût de non desserte. Tandis que Rasmussen et al.

[56] associent un coût de non desserte à tous les clients, Ceschia et al. [15] distinguent deux

types de clients : les clients obligatoires et les clients optionnels, et n’associent un coût de non

desserte qu’aux clients optionnels. Dans le cadre du problème du déploiement en temps réel

d’une flotte d’ambulances (où les clients considérés sont en réalité des patients), Gendreau

et al. [31] et Haghani et Yang [35] associent à chaque patient une priorité dépendant de son

état de santé. Cette priorité est définie dès qu’une requête entre dans le système mais peut

évoluer au cours du temps (comme la santé du patient peut se détériorer). La priorité des

clients est donc dynamique. Enfin, Tricoire [68], Dugardin [25], Bostel et al. [10], Tricoire

et al. [69] et Delage [21] proposent une priorité définie sur le type de requête, comme dans

notre cas. Ils distinguent deux types de clients : les différables et les rendez-vous. Les requêtes

différables correspondent à des opérations planifiées par l’entreprise (comme des opérations

de maintenance, des relevés de compteurs...). Celles-ci sont connues a priori et peuvent être

différées (elles ne sont pas obligatoires). Au contraire, les rendez-vous correspondent aux

requêtes provenant des clients (le plus souvent, il s’agit de demande d’intervention suite à

une panne). Ces requêtes apparaissent au cours du temps et sont obligatoires. Elles ont une

fenêtre de temps qui leur est associée et on ne peut les différer.

3.1.2 Stochasticité

Dans notre problème, on a considéré deux types d’aléas : ceux sur les temps de parcours

et ceux sur les temps de service. Dans la littérature sur le problème de tournées de véhicules

classique et ses principales variantes, ce sont principalement les temps de parcours qui sont

considérés comme stochastiques. A cet effet, diverses lois de probabilité ont été proposées

pour modéliser les temps de parcours stochastiques : la loi standard [75], la loi normale [39],

[61], [65] et la distribution gamma [59], [14], [64]. En 2007, Topaloglu [67] traite du VRP

dans lequel les temps de parcours suivent une loi de probabilité quelconque et propose un

modèle de programmation dynamique. Quant à Shen et al. [62], Shao et al. [61], Tavakkoli-

Moghaddam et al. [65] et Zhang et al. [75], ils associent au dépôt une fenêtre de temps,
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modélisent le problème comme un modèle avec contrainte en probabilité où la probabilité

que tous les véhicules soient de retour au dépôt avant la fin de la journée est supérieure à

un seuil donné, et minimisent la distance totale parcourue. Certains auteurs proposent de

résoudre le VRP avec fenêtres de temps et temps de parcours stochastiques. Ainsi, Ando et

Taniguchi [2], Russell et Urban [59], Jie [39], et Tas et al. [64] formulent le problème comme un

programme à variables entières. Ils cherchent à minimiser la somme pondérée de la distance

totale parcourue et des pénalités liées à la violation des fenêtres de temps. De plus, Ando

et Taniguchi [2] et Russell et Urban [59] minimisent le nombre de véhicules utilisés. Pour

résoudre le TSPTW avec temps de parcours stochastiques, Jula et al. [41] définissent un

niveau de confiance associé à chaque client comme étant la probabilité d’arriver à ce noeud

avant la fin de la fenêtre de temps et s’assurent que cette probabilité est suffisante tout au

long de la résolution.

Dans la littérature sur le problème de tournées de véhicules classique et ses principales

variantes, seul Xu [73] considère des temps de service stochastiques. Pour la modélisation des

temps de service, il reste générique en ne spécifiant aucune loi de distribution. Son objectif

est de minimiser l’espérance du temps passé par les requêtes dans le système (ce temps inclut

le temps de service).

Dans la littérature du problème de tournées de service, la prise en compte de temps de

service stochastiques est plus fréquente. Différentes lois de probabilité ont été proposées pour

modéliser les aléas sur les temps de service, notamment la loi normale [48], lognormale [34],

la loi de Weibull [19], [63] et la loi de distribution triangulaire [9]. De plus, certaines variantes

(avec ou sans fenêtres de temps) du VRP classique ont été traitées avec aléas sur les temps

de service. Ainsi, Hadjiconstantinou et Roberts [34] et Lei et al. [48] prennent en compte

uniquement une fenêtre de temps au dépôt. Tous deux modélisent le problème comme un

modèle de programmation stochastique à deux étapes avec recours. Tandis que Lei et al.

[48] proposent un seul recours pour pénaliser l’éventuel retard au dépôt, Hadjiconstantinou

et Roberts [34] proposent, qui plus est, un recours consistant à retourner au dépôt dès que

la fin de la fenêtre de temps au dépôt est atteinte. Cortés et al. [19], Borenstein et al. [9],

Delage [21] et Souyris et al. [63], quant à eux, traitent du VRPTW. Delage [21] présente un

modèle de programmation stochastique à deux étapes avec recours (où le recours consiste à

allouer des pénalités d’attente et de retard). Quant à Borenstein et al. [9], ils modélisent le

VRPTW comme un problème d’ordonnancement avec contraintes de ressource. Souyris et al.

[63] proposent un modèle d’optimisation robuste.

La stochasticité des temps de service et des temps de parcours a été introduite par La-

porte et al. [46]. Ces derniers restent très généraux en considérant le problème de tournées de

véhicules classique sans spécifier de loi de distribution. Ils proposent trois modèles distincts :
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un modèle avec contrainte en probabilité ainsi que deux modèles stochastiques avec recours.

Une approche inhabituelle pour les aléas sur les temps de service et de parcours est présen-

tée par Dugardin [25] dans le cadre du problème de tournées de service : il n’anticipe pas

l’incertitude en utilisant des outils d’optimisation stochastiques, mais préfère attendre que

l’aléa se produise avant de réagir (en procédant à une réoptimisation déterministe). Dans le

cadre du problème de tournées de véhicules, Kenyon [43], Kenyon et Morton [44], Wang et

Regan [72] et Zeimpekis et al. [74] proposent de prendre en compte simultanément les temps

de parcours et de service stochastiques. Dans ce contexte, Kenyon [43], Kenyon et Morton

[44] minimisent l’heure de fin espérée tandis que Zeimpekis et al. [74] proposent de maximiser

le nombre de clients servis et Wang et Regan [72] minimisent les coûts espérés. Quant à aux,

Teng et al. [66] et Li et al. [49] formulent le problème comme un modèle de programmation

stochastique à deux étapes avec recours où le recours consiste à attribuer des pénalités pour

le retard, les temps de service... Li et al. [49] proposent aussi un modèle avec contrainte en

probabilité.

3.2 Méthodes de résolution

3.2.1 Heuristiques basées sur l’affectation

Des heuristiques simples basées sur la résolution du TSP ont été proposées pour résoudre

le problème de gestion de flotte de techniciens en temps réel. En 1994, Xu [73] propose une

heuristique appelée « Part-TSP » consistant, pour le problème à k véhicules, à partitionner

le territoire en k zones géographiques. Ensuite, il affecte un technicien à chaque zone. Dès que

les zones géographiques ont été attribuées aux techniciens, un TSP est résolu pour chaque

couple technicien-zone (si un technicien n’a plus de requêtes à servir à un instant donné,

il se repositionne au centre de sa zone). Quant à Borenstein et al. [9], ils décomposent le

problème en plusieurs sous-problèmes résolus à l’aide d’heuristiques. Ils partitionnent donc

les clients en plusieurs groupes (correspondant à des zones géographiques) avec un algorithme

de clustering : le « k-means algorithm ». Ils affectent ensuite les techniciens aux zones avec

une heuristique. Puis, les frontières des zones sont rendues floues : chaque client localisé à la

frontière de plusieurs zones appartiendra à toutes les zones frontalières simultanément. Enfin,

ils utilisent des règles d’affectation spécifiques pour affecter les tâches aux techniciens. Plus

récemment, Petrakis et al. [54] ont proposé des heuristiques basées sur l’insertion à moindre

coût et sur un modèle d’affectation. Ils y ajoutent une méthode de post-optimisation de type

recherche locale à voisinage variable.
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3.2.2 Métaheuristiques

Recherche taboue

La recherche taboue [33] a été très utilisée dans la littérature pour résoudre le problème de

gestion de flotte en temps réel. Dans cette méthode, on entretient une liste taboue à chaque

itération pour éviter les cycles. La recherche taboue peut être résumée comme suit : à partir

d’une solution initiale, on génère des solutions voisines. Si le déplacement vers la meilleure

de ces solutions n’est pas un mouvement tabou, on met à jour la solution et la liste taboue.

On continue jusqu’à ce qu’une condition d’arrêt soit remplie. Dans le cadre du problème de

relocalisation d’ambulances, Gendreau et al. [31] proposent d’utiliser une recherche taboue

pour calculer à l’avance des stratégies de redéploiement (afin que, lors de l’arrivée d’un appel,

on ait juste à choisir une stratégie). Ainsi, quand le patient urgent appelle, l’ambulance la

plus proche est envoyée sur place. Il peut s’agir d’une ambulance en route pour servir un autre

client. Néanmoins, une ambulance en route pour aller servir un client sera déviée de ce client

seulement si ce dernier peut être desservi par une autre ambulance dans le temps imparti.

Une autre variante de la recherche taboue est utilisée par Russell et Urban [59] : il s’agit

d’une recherche taboue dans laquelle on maintient un pool contenant les meilleures solutions

obtenues. Ces solutions sont utilisées comme point de départ pour la recherche. Quant à Tas

et al. [64], ils présentent une recherche taboue dans laquelle ils utilisent une mémoire à moyen

terme comme mécanisme d’intensification (si la meilleure solution réalisable reste inchangée

pendant un certain nombre d’itérations, elle devient la solution courante). Ceschia et al.

[15] proposent une recherche taboue et considèrent les trois opérateurs de voisinage suivants :

insertion, échange intra-route et échange inter-route. De plus, ils optent pour une liste taboue

de longueur dynamique. Enfin, Shen et al. [62] et Li et al. [49] proposent une heuristique

basée sur la recherche taboue. Li et al. [49] construisent d’abord une solution déterministe en

utilisant l’algorithme de Clarke and Wright. Ensuite, ils appliquent une recherche taboue avec

un voisinage basé sur le choix aléatoire entre les opérateurs : 2-opt, relocalisation et échange.

Quant à Shen et al. [62], ils utilisent comme opérateurs de voisinage : 2-opt, relocalisation,

échange, insertion d’un client absent de la solution ou échange d’un client absent de la solution

avec un client ou une séquence de clients.

Algorithmes évolutionnistes

L’algorithme génétique [36] est une stratégie évolutionniste consistant à faire évoluer une

population de solutions. Cette méthode procède en plusieurs itérations, chacune d’elles se

décomposant en trois phases : la sélection des parents, le croisement, la mutation et la mise à

jour de la population. La première phase permet, étant donnée une population de solutions,
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de sélectionner les solutions parents à l’aide d’une fonction d’évaluation. Dans la phase de

croisement, on procède au croisement des solutions parents précédemment sélectionnées. Les

solutions ainsi obtenues subissent des mutations. On obtient alors un ensemble de solutions

filles. Parmi ces solutions filles, on sélectionne les meilleures et on met à jour la population de

solutions. Jie [39] applique cette méthode de résolution au problème de tournées de véhicules

avec temps de parcours stochastiques.

L’algorithme mémétique [53] est un algorithme génétique hybridé avec une recherche locale

(après la mutation, une recherche locale commence pour choisir la nouvelle population de

parents). Comme ils considèrent un problème multi-périodes, Tricoire [68] et Bostel et al.

[10] proposent d’utiliser un algorithme mémétique à horizon glissant. Les solutions initiales

sont considérées comme vides. Les solutions filles héritent d’une ou plusieurs routes de leurs

parents. Une solution fille peut contenir une route vide. Néanmoins, cet opérateur de croi-

sement peut être problématique étant donné qu’un seul client peut être servi deux fois dans

une solution fille. On considère que, lors de la construction d’une solution fille, un client déjà

desservi dans la partie construite ne peut être desservi une deuxième fois ; il sera donc simple-

ment enlevé des autres routes héritées. De plus, si une requête est desservie dans les solutions

parents mais pas dans la solution fille, on procèdera à la meilleure insertion de ce client

dans cette dernière. Nous avons mentionné plus haut qu’une solution fille pouvait contenir

une route vide. Cette route peut servir à insérer les clients qui n’étaient pas servis dans les

solutions parents (pour diversifier les solutions). Dès que les solutions filles sont construites,

elles sont améliorées à l’aide d’une recherche locale et évaluées sur le critère de distance. Les

meilleures d’entre elles sont sélectionnées pour constituer la nouvelle génération.

La recherche dispersée [51] est une méthode dans laquelle on gère un pool de solutions. A

chaque itération, on crée de nouvelles solutions en combinant les solutions courantes, puis

on améliore ces nouvelles solutions à l’aide d’heuristiques. Ensuite, on ajoute les meilleures

solutions ainsi générées au pool de solutions. Zhang et al. [75] adaptent cette méthode à leur

problème de type VRP avec temps de parcours stochastiques.

Optimisation par essaims particulaires

L’optimisation par essaims particulaires est une métaheuristique créée par Kennedy et

Eberhart [42]. Elle consiste, étant donnée une population initiale de particules, à autoriser ces

particules à se déplacer afin de converger vers des optima locaux. Néanmoins, cette méthode

tend à rester bloquée dans un optimum local au lieu de converger vers un optimum global.

C’est pourquoi Shao et al. [61] l’hybrident avec une recherche locale.
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Recuit simulé

L’algorithme de recuit simulé [45] est une méthode inspirée de la métallurgie. Elle consiste,

à chaque itération, à considérer une solution choisie aléatoirement dans le voisinage de la

solution courante. La solution courante est ensuite mise à jour dans deux cas : la nouvelle

solution est meilleure que l’ancienne, ou un critère probabiliste est respecté. Dans le cadre

de leur problème de tournées de véhicules avec temps de service stochastiques, Tavakkoli-

Moghaddam et al. [65] proposent d’hybrider la méthode de recuit simulé avec des opérateurs

de voisinage de l’algorithme génétique : la mutation et le croisement.

3.2.3 Autres méthodes basées sur la recherche locale

Pour résoudre le problème de gestion de flotte en temps réel, Branchini et al. [13] proposent

une recherche locale granulaire. Dans ce but, ils construisent d’abord une solution initiale, à

laquelle ils appliquent une recherche locale. Comme ils veulent s’assurer la couverture de tout

le territoire et équilibrer la charge de travail entre les véhicules, ils proposent de construire un

ensemble deK clients (oùK correspond au nombre de véhicules) dispersés géographiquement.

Dès que cet ensemble est construit, ils affectent chacun de ces clients à un véhicule et insèrent

les autres clients sur les routes des véhicules. Ensuite, ils appliquent une recherche locale avec

seuil de granularité pour résoudre le VRP dynamique (avec de nouveaux clients apparaissant

au cours du temps). En d’autres termes, ils limitent la recherche locale à une liste de clients

définie par un seuil de granularité. Ces clients sont tous situés dans un rayon égal au seuil

de granularité. Du fait de l’aspect dynamique du problème, la liste de clients et le seuil de

granularité peuvent varier au cours du temps. Pour éviter de rester bloqués dans des optima

locaux avec la recherche locale, Alsheddy et Tsang [1] proposent une recherche locale guidée.

Il s’agit d’une recherche locale où l’on ajoute des pénalités dans la fonction d’évaluation afin

d’éviter les optima locaux.

La recherche à voisinage variable [52] est une variante de la recherche locale très utilisée

pour résoudre le problème de tournées de véhicules. Dans cette méthode, on dispose d’un

ensemble de structures de voisinage et on procède itérativement. A chaque itération, on choisit

une structure de voisinage différente et on choisit au hasard une solution voisine de la solution

courante. Ensuite, on applique à cette solution voisine une recherche locale. Si la solution ainsi

obtenue est meilleure que la solution actuelle, on met à jour cette dernière. Angelelli et al.

[3] proposent une variante de cette méthode avec trois opérateurs de voisinage (échange,

relocalisation et insertion). Ils l’intègrent dans un contexte en temps réel dans la mesure où

des réoptimisations ont lieu chaque jour et à intervalles de temps réguliers durant la journée.

Dans le cadre d’un Team Orienteering avec temps de parcours et de service stochastiques,
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Campbell et al. [14] prennent en compte deux opérateurs de voisinage supplémentaires : le

« 1-shift » et le « ruin and recreate ». Lei et al. [48] prennent en compte 6 opérateurs de

voisinage : 2-opt, échange et insertion (versions inter et intra-routes). De plus, ils intègrent

un mécanisme de granularité dans la recherche locale. Flatberg et al. [27] présentent un

algorithme basé sur la recherche locale itérative. Cet algorithme est lancé à chaque fois qu’un

événement (arrivée d’une nouvelle requête, mise à jour d’une requête existante, arrivée chez

un client...) a lieu et gère un pool de solutions. Quand une nouvelle requête apparâıt, on

modifie la définition du problème et on met à jour le pool de solutions (les solutions devenues

irréalisables sont réparées si possible ou enlevées du pool). La procédure suivante est itérée

sur le pool : on sélectionne une solution dans le pool et on crée un scénario (contenant les

éventuelles futures requêtes). Puis, on ajoute ces requêtes à celles de la solution considérée.

On résout un VRP sur toutes ces requêtes (celles de la solution et celles que l’on vient

d’ajouter) en utilisant une recherche locale itérative. On obtient ainsi une nouvelle solution

qui prend en compte l’arrivée stochastique de nouvelles requêtes. On enlève de la solution les

requêtes non apparues et on évalue la solution. Selon la qualité de la solution ainsi obtenue,

on l’ajoute ou non au pool. Si on l’ajoute, on la compare à la solution courante et on met à

jour cette dernière si nécessaire.

3.2.4 Simulation de Monte Carlo et modèle déterministe

Etant donné un problème avec variables aléatoires, la simulation de Monte Carlo permet

de générer une loi de distribution des solution obtenues. Cette méthode consiste à échan-

tillonner la loi de probabilité des variables aléatoires et à procéder à des simulations pour

chacun de ces échantillons, obtenant ainsi un ensemble représentatif de solutions possibles

(avec une probabilité associée à chacune d’elles). Dans le cadre du problème de tournées de

techniciens avec temps de service stochastiques, Delage [21] combine cette méthode avec la

recherche taboue : la simulation de Monte Carlo leur permet d’évaluer correctement la qualité

d’une solution (en observant les retards pouvant être obtenus du fait de la stochasticité des

temps de service) dans la recherche taboue. Dans cette dernière, ils construisent d’abord une

solution initiale en associant à chaque client obligatoire le dépôt le plus proche. Ensuite, ils

établissent les routes des véhicules (chaque route est associée à un dépôt) en triant les clients

obligatoires de chaque dépôt par milieu de fenêtre de temps croissant. Puis, ils insèrent les

clients différables (optionnels) jusqu’à ce que toutes les routes soient de longueur maximale.

Dès que la solution initiale est construite, la recherche taboue peut commencer. Dans cette

recherche taboue, les opérateurs de voisinage sont l’insertion et la suppression ; une solution

est évaluée selon le nombre de requêtes satisfaites et le retard estimé par la simulation de

Monte Carlo. Cette procédure de recherche taboue est relancée à chaque nouvel événement.
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Quant à Kenyon [43] et Kenyon et Morton [44], ils proposent de combiner la simulation de

Monte Carlo avec une méthode de résolution appelée DESVRP. Ils prennent en compte si-

multanément les temps de service et de parcours stochastiques. La simulation de Monte Carlo

leur permet d’échantillonner les lois de probabilité pour résoudre ensuite un problème déter-

ministe pour chacun de ces échantillons. Néanmoins, ce problème reste difficile à résoudre

avec une méthode de type Branch and Bound du fait du nombre exponentiel de contraintes

d’élimination de sous-tours. Ils proposent donc une méthode de type Branch and Cut.

3.2.5 Méthodes d’optimisation stochastique

D’autres méthodes d’optimisation ont été proposées pour prendre en compte les aspects

stochastiques du problème. Ainsi, Teng et al. [66] proposent une adaptation de la méthode

appelée integer L-shaped [47]. Elle consiste (pour un modèle de programmation stochastique

à deux étapes avec recours) à résoudre le problème de première étape. Ce problème consiste

à trouver une route maximisant le profit (desservant autant de clients que possible) tout en

respectant la contrainte de retour au dépôt. Si cette route contient des sous-tours, on ajoute

itérativement des contraintes d’élimination de sous-tours et on résout à nouveau. Ensuite, on

ajoute les contraintes de faisabilité pour la deuxième étape puis les coupes d’optimalité.

3.2.6 Autres méthodes de résolution

Pour résoudre le problème de gestion de flotte en temps réel, avec temps de service sto-

chastiques, Cortés et al. [19] proposent une méthode d’optimisation robuste. Ils optimisent

donc le problème dans le pire des cas (où le pire cas correspond à la plus grande déviation

totale des temps de service pour un technnicien et non aux temps de service maximaux

pour chaque client). Ce problème, rendu déterministe par la formulation robuste, est ensuite

résolu avec une génération de colonnes. Dans cette dernière, le problème mâıtre consiste à

sélectionner les meilleures routes parmi celles construites par le sous-problème. Tricoire [68],

Bostel et al. [10] et Tricoire et al. [69] se sont intéressés à la variante déterministe et multi-

périodes du problème qui nous intéresse et proposent de le résoudre sur un horizon roulant

en utilisant, eux aussi, une méthode de génération de colonnes. Cette fois, le sous-problème

n’est pas résolu de façon exacte mais à l’aide d’une heuristique. De surcrôıt, afin d’obtenir

une solution entière, la génération de colonnes est intégrée à une méthode d’énumération

implicite : le Branch and Price [6]. Dans le cadre de leur problème de tournées de service à

domicile, Rasmussen et al. [56] proposent eux aussi une méthode de génération de colonnes

intégrée dans un Branch and Price. Toutefois, afin de réduire les temps de calcul au niveau

du sous-problème, ils y intègrent une méthode de clustering afin de réduire le graphe du sous-
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problème (en attribuant un cluster de clients à chaque véhicule). De même, Souyris et al. [63]

proposent une méthode de type Branch and Price pour le problème de tournées de service

avec temps de service stochastiques, dans laquelle le sous-problème est robuste et résolu avec

un solveur de programmation par contraintes.

En 1992, Laporte et al. [46] proposent une méthode exacte de type Branch and Cut pour

résoudre un VRP avec temps de parcours et de service stochastiques. Une variante inhabi-

tuelle du Branch and Bound est introduite par Hadjiconstantinou et Roberts [34]. Il s’agit

d’une méthode de Branch and Bound appliquée à deux arbres de décisions correspondant

aux deux étapes du modèle de programmation stochastique avec recours. Haghani et Yang

[35] et Topaloglu [67] proposent une méthode de résolution exacte dans un contexte temps

réel. Ainsi, Haghani et Yang [35] optimisent exactement (avec Cplex) à chaque nouvel évé-

nement ou à intervalle de temps régulier. Quant à Topaloglu [67], il transforme le modèle

de programmation dynamique en plusieurs sous-problèmes approchés (chacun de ces sous-

problèmes correspondant à une étape de programmation dynamique). Ces sous-problèmes,

formulés comme des programmes en nombres entiers, sont ensuite résolus exactement. Pour

traiter du problème de gestion de flotte en temps réel, Zeimpekis et al. [74] considèrent un

seul véhicule avec des aléas sur les temps de service et de parcours stochastiques. Lorsqu’un

nouvel événement survient (retard d’un véhicule), le problème consiste à modifier le planning

afin de servir les clients les plus importants. La méthode qu’ils proposent, pour ce faire, est

de vérifier, dans un premier temps, s’il est encore possible de desservir tous les clients de

la solution courante (par rapport aux fenêtres de temps). Ensuite, ils évaluent les clients

en observant leur profit et leur fenêtre de temps et insèrent le meilleur client possible sur

la route. Cette étape d’évaluation-insertion est répétée jusqu’à ce que tous les clients soient

insérés ou qu’il ne soit plus possible d’insérer des clients sur cette route. Cette méthode est

très similaire à la méthode appelée S-algorithm [70].

Enfin, Jula et al. [41] et Delage [21] proposent des méthodes basées sur la programmation

dynamique. Tandis que Jula et al. [41] utilisent la programmation dynamique pour résoudre

un TSPTW avec temps de parcours stochastiques, Delage [21] l’intègre dans une méthode afin

de résoudre un MDVRPTW avec temps de service stochastiques et priorité entre les clients. Il

distingue deux types de clients : les rendez-vous (obligatoires) et les différables (optionnels).

Il suppose que chaque client obligatoire est associé à un véhicule et ne peut en changer, et

que tous les clients optionnels sont stockés dans une liste. Ainsi, chaque véhicule dispose

d’une liste ordonnée de clients obligatoires à desservir et d’une liste de clients optionnels à

servir si possible. Comme les temps de service sont stochastiques, il propose une méthode de

programmation dynamique où chaque étape correspond à la fin de service chez un client et

où les décisions sont les suivantes : soit on se rend au prochain client obligatoire, soit on va
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desservir un client optionnel, soit on retourne au dépôt.

3.3 Tableaux de synthèse

Dans les tableaux ci-dessous, on indique les caractéristiques prises en compte. Il est im-

portant de bien distinguer la caractéristique « fenêtre de temps » de celle intitulée « période

de validité ». On les distingue comme suit :

– une fenêtre de temps est une plage horaire pour le service du client. Cette plage horaire

peut durer jusqu’à une journée de travail.

– une période de validité s’étend sur plusieurs jours. De plus, c’est une sorte de fenêtre

de temps dure. Un client ne peut être desservi en dehors de sa période de validité.

Ci-après donc deux tableaux récapitulatifs : le premier regroupe tous les articles que nous

avons considéré qui traitent le problème en temps réel et le deuxième tous ceux qui ne traitent

pas le problème en temps réel.

Légende pour les tableaux qui suivent :

(0) Les fenêtres de temps correspondent ici à l’heure de début de service au plus tôt et l’heure

de fin de service au plus tard.

(1) Ici, tous les clients ont des périodes de validité ne dépassant pas deux jours.

(2) Il s’agit de l’heure à laquelle tous les véhicules sont rentrés au dépôt.

(3) Les notations correspondent à l’aspect stochastique pris en compte : TP pour temps de

parcours et TS pour temps de service.

(4) Il s’agit des pénalités liées au fait de ne pas servir un client le premier jour de sa période

de validité, et de l’écart entre la charge de travail quotidienne réelle et la charge de travail

quotidienne moyenne (calculée avec l’historique).

(5) Il s’agit du temps moyen que les requêtes passent dans le système (temps avant le début

du service + temps de service).

(6) Les différents types de modélisation sont notés : CCP pour modèle avec contrainte en

probabilité, MR pour modèle robuste, MS2E pour modèle de programmation stochastique à

deux étapes, P. Dyn. pour programmation dynamique et PNE pour programme en nombre

entier.
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Figure 3.1 Tableau récapitulatif : Problèmes traités en temps réel



19

Figure 3.2 Tableau récapitulatif : Problèmes qui ne sont pas traités en temps réel



20

Nous pouvons observer dans ces tableaux que le problème auquel nous nous intéressons

est nouveau car il prend en compte simultanément une priorité entre les clients et des temps

de parcours et de service stochastiques. Pour résoudre ce problème, on propose une méthodo-

logie en deux étapes : la planification et l’exécution. Au cours de l’étape de planification, on

construit des routes avec des clients obligatoires et des clients optionnels en utilisant des esti-

més connus a priori. Ensuite, dans l’étape d’exécution, on utilise des outils de programmation

dynamique pour déterminer la politique optimale à partir des distributions de probabilité des

temps de service et de parcours. Dans le chapitre suivant, nous allons prouver que la politique

optimale de notre programmation dynamique est une politique de seuil.
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CHAPITRE 4

Politique optimale et politique de seuil

Pour résoudre le problème de tournées de service avec temps de parcours et de service

stochastiques présenté au chapitre 1, on propose une méthodologie en deux étapes : la plani-

fication et l’exécution. Au cours de l’étape de planification, on construit des routes avec des

clients obligatoires et des clients optionnels en utilisant des estimés connus a priori. Ensuite,

durant l’étape d’exécution, on utilise des outils de programmation dynamique pour détermi-

ner la politique optimale à partir des distributions de probabilité des temps de service et de

parcours. Au cours du déroulement des simulations (du déroulement de l’horizon de temps),

on peut alors réagir rapidement en temps réel en adoptant la décision définie par la politique

optimale ainsi obtenue. Dans ce chapitre, nous allons prouver que la politique optimale de

notre programmation dynamique est une politique de seuil. Dans un premier temps, nous

présentons le contexte de notre preuve et les deux algorithmes de programmation dynamique

proposés. Ensuite, nous donnerons les notations et hypothèses. Enfin, nous montrerons que la

politique optimale pour nos deux algorithmes de programmation dynamique est une politique

de preuve.

4.1 Contexte et algorithmes proposés

Supposons que l’on dispose d’un ensemble de routes prévues pour une flotte de véhicules,

contenant simultanément des clients obligatoires et des clients optionnels. On définit alors

la notion de segment comme étant la portion de route entre deux clients obligatoires (les

dépôts sont considérés comme des clients obligatoires). A chaque segment est associée une

liste de clients optionnels, qui peut être vide (cf. exemple ci-dessous). Aussi, on suppose que

les segments sont rangés comme suit (cf. figure 4.1) : le segment p+1 a pour origine le client

obligatoire op+1 = dp (client obligatoire correspondant à la destination du segment p). Par

exemple, prenons la route prévue (o, 1, 2, a, 3, 4, 5, 6, b, c, 7, d) d’un véhicule, avec o le dépôt

origine, d le dépôt destination, a, b et c trois clients obligatoires et 1, 2, 3, 4, 5 et 6 des clients

optionnels. Cette route est composée de quatre segments : le segment [o, a], le segment [a, b],

le segment [b, c] et le segment [c, d]. A chacun de ces segments est associée une liste ordonnée

de clients optionnels : pour [o, a], il s’agit de la liste {1, 2} ; pour [a, b], il s’agit de la liste

{3, 4, 5} ; pour [b, c] il s’agit de la liste vide, et pour [c, d] de la liste {7}.
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Figure 4.1 Ordre des segments pour un véhicule donné (route)

On suppose également que l’objectif est de maximiser la somme des profits associés à

la desserte des clients optionnels, tout en minimisant la somme pondérée du retard chez les

clients obligatoires et des temps de parcours. Pour faire face aux temps de parcours et de

service stochastiques, on utilise, pour chaque véhicule de la flotte, des outils de programma-

tion dynamique pour déterminer la politique optimale (qui servira ensuite à modifier la route

prévue en temps réel). Nous supposons que chaque étape de la programmation dynamique

correspond à la fin de service chez un client (obligatoire ou non) et nous proposons alors deux

algorithmes de programmation dynamique.

Dans le premier algorithme, on ne considère que le segment en cours. L’objectif est de

maximiser le profit espéré sur le segment courant. Soit p ce segment, v le client courant et dp

le client destination du segment p, deux choix sont alors possibles : soit on se rend directement

chez le client destination du segment dp, soit on visite un client optionnel, dont le service est

prévu entre v et dp (cf. figure 4.2).

Dans le deuxième algorithme, on considère le reste de la route. Les choix sont alors les

mêmes que ci-dessus sauf que l’objectif n’est plus de maximiser le profit espéré sur le segment

courant mais plutôt de maximiser le profit espéré sur le reste de la route.
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Figure 4.2 Etape k de la programmation dynamique

4.2 Notations

Soit un segment {o, v1, v2, ..., vN , d}, où {v1, v2, ..., vN} est la liste ordonnée des clients option-

nels associés à ce segment. On utilisera les notations suivantes :

– Paramètres généraux :

N ensemble des clients, obligatoires ou optionnels

O ensemble des clients optionnels

pvi profit associé à la desserte du client optionnel vi

α pondération des temps de parcours dans la fonction de revenu

Dij distance entre les clients i et j

Γd pénalité de retard associée au client destination du segment

[ed; ld] fenêtre de temps du client destination du segment

σi temps de service minimal chez le client i

σi temps de service maximal chez le client i

τ ij temps de parcours minimal pour aller de i à j

τ ij temps de parcours maximal pour aller de i à j

f(d, t, ∅) profit espéré si on débute le service du client d à t

– Paramètres à l’étape k :
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tk heure de fin de service du client vk

V̄k ensemble des clients optionnels associés au segment situés

après vk

f(vk, tk, V̄k) profit espéré si on finit le service du client vk (avec vk 6= d) à

tk

Pour tout client i, le temps de service, noté σi, suit une loi de distribution triangulaire

discrète entre σi − 1 et σi + 1, de mode σ̂i.

Le temps de parcours unitaire, noté δ, suit une loi de distribution triangulaire discrète

entre δ − 1 et δ + 1, de mode δ̂.

4.3 Hypothèses

On choisit Γd tel que : ∀i ∈ O, Γd >
pi

E(σi)
(H1)

On suppose que les distances vérifient l’inégalité triangulaire :

∀a, b, c ∈ N, Dab +Dbc > Dac
(H2)

On suppose que les temps de parcours sont discrets et distribués comme suit :

∀i, j ∈ N, P (τij = m) = P
(⌈

Dijδ
⌉
= m

)
(H3)

Comme les temps de parcours sont discrets, on suppose sans perte de généralité

que :

∀i, j ∈ N, avec i 6= j, τ ij > 1
(H4)

On suppose que les temps de parcours et les temps de service sont indépendants. (H5)

A partir des hypothèses (H2) et (H3), on a :

∀i, j ∈ N,E(τij) =

τ ij∑

m=τ ij

P (τij = m)m =
δ∑

m=δ

P (δ = m)
⌈
Dijδ

⌉
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Ainsi,

E(τab) + E(τbc) =
δ∑

m=δ

P (δ = m)
(⌈

Dabδ
⌉
+
⌈
Dbcδ

⌉)

>

δ∑

m=δ

P (δ = m)
⌈
(Dab +Dbc)δ

⌉

>

δ∑

m=δ

P (δ = m)
⌈
Dacδ

⌉

E(τab) + E(τbc) > E(τac)

D’où la propriété sur les temps de parcours :

∀a, b, c ∈ N, E(τab) + E(τbc) > E(τac) (P1)

4.4 Algorithme 1 : preuve sur un segment

Rappelons que chaque étape de la programmation dynamique correspond à la fin de service

chez un client. On dispose alors d’une liste de clients optionnels pouvant être servis avant

le prochain client obligatoire. Deux options sont à envisager à l’étape k : soit on se rend

directement chez le prochain client obligatoire, soit on se rend chez le client optionnel de V̄k

qui maximise le profit espéré.

Le premier algortihme de programmation dynamique consiste à ne considérer qu’un seul

segment. En notant Rc(v, t) le profit espéré lié au fait de se rendre au client c depuis le client

v au temps t (heure de fin de service chez le client v), la fonction de revenu peut alors être

formulée comme suit :

f(vk, tk, V̄k) = max

{

Rd(vk, tk)

maxv̄∈V̄k
Rv̄(vk, tk)

= max

{

−αE(τvkd) + E
(
f(d, tk + τvkd, ∅)

)

maxv̄∈V̄k

(

pv̄ − αE(τvk v̄) + E
(
f(v̄, tk + τvk v̄ + σv̄, V̄k\{v̄})

))

avec f(d, t, ∅) = −Γd max(t− ld, 0)

Montrons que, dans le cadre de cet algorithme, la politique optimale est une politique de

seuil. Pour ce faire, on procèdera par induction sur les clients optionnels et on prouvera les

assertions suivantes :
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A1(k) : ∀v̄ ∈ V̄k, Rv̄(vk, ld) 6 Rd(vk, ld)

A2(k) : ∀v̄ ∈ V̄k, Rv̄(vk, t) est décroissante.

A3(k) : ∀v̄ ∈ V̄k, ∀t, Rv̄(vk, t + 1) − Rv̄(vk, t) 6 Rd(vk, t + 1) − Rd(vk, t) (en d’autres

termes, Rd(vk, t)−Rv̄(vk, t) est croissante)

A4(k) : f(vk, t, V̄k) est une fonction décroissante du temps.

4.4.1 Client destination d

On se trouve chez le client destination du segment.

Le revenu se calcule alors comme suit :

f(d, t, ∅) = −Γd max(t− ld, 0) =

{

0 si t 6 ld

−Γd(t− ld) sinon

Ce revenu est bien une fonction décroissante du temps. En effet, elle est décroissante sur

chacun des morceaux et ∀t > ld, f(d, t, ∅) = −Γd(t− ld) < 0 = f(d, ld, ∅).

4.4.2 Client optionnel vN (étape k = N)

Supposons qu’on se trouve au dernier client optionnel du segment, on se rend donc directe-

ment au client destination du segment :

f(vN , tN , ∅) = −αE(τvNd) +

τvNd
∑

m=τvNd

P (τvNd = m)f(d, tN +m, ∅)

Ici, V̄N est vide, les assertionsA1(N),A2(N) etA3(N) sont donc clairement vérifiées. De plus,

comme le revenu au client destination est une fonction décroissante du temps, f(vN , tN , ∅)

est aussi une fonction décroissante du temps (et A4(N) est vérifiée). On a bien une politique

de seuil, étant donné qu’on décide de se rendre au client destination en tout temps.

4.4.3 Client optionnel vN−1 (étape k = N − 1)

Supposons maintenant que l’on se trouve à l’avant-dernier client optionnel du segment. On a

deux possibilités : soit on se rend directement au client destination, soit on visite le dernier

client optionnel du segment. Le choix est déterminé par l’équation :

f(vN−1, tN−1, {vN}) = max

(

Rd(vN−1, tN−1)

RvN (vN−1, tN−1)

)
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avec

Rd(vN−1, tN−1) = −αE(τvN−1d) +

τvN−1d∑

m=τvN−1d

P (τvN−1d = m)f(d, tN−1 +m, ∅)

RvN (vN−1, tN−1) = pvN − αE(τvN−1vN )

+

τvN−1vN∑

m=τvN−1vN

P (τvN−1vN = m)

σvN∑

n=σvN

P (σvN = n)f(vN , tN−1 +m+ n, ∅)

Ainsi, on ira directement au client destination du segment si Rd(vN−1, t) > RvN (vN−1, t).

Simplifions l’écriture de Rd(vN−1, t) :

Rd(vN−1, t) = −αE(τvN−1d) +

τvN−1d∑

m=τvN−1d

P (τvN−1d = m)f(d, t+m, ∅)

= −αE(τvN−1d)− Γd

τvN−1d∑

m=τvN−1d

P (τvN−1d = m)max(t+m− ld, 0)

Rd(vN−1, t) = −αE(τvN−1d)− Γd

τvN−1d∑

m=max(ld−t+1,τvN−1d
)

P (τvN−1d = m)(t+m− ld) (4.1)

Et celle de RvN (vN−1, t) :

RvN (vN−1, t) = pvN − αE(τvN−1vN )

+

τvN−1vN∑

m=τvN−1vN

P (τvN−1vN = m)

σvN∑

n=σvN

P (σvN = n)f(vN , t+m+ n, ∅)

Aussi, d’après l’hypothèse (H5), les temps de service et de parcours sont indépendants donc
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P (τij)P (σj) = P (τij + σj). D’où :

RvN (vN−1, t) = pvN − αE(τvN−1vN )

+

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvn = m)f(vN , t+m, ∅)

= pvN − αE(τvN−1vN ) +

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvn = m)
(

− αE(τvNd)

+

τvNd
∑

n=τvNd

P (τvNd = n)f(d, t+m+ n, ∅)
)

RvN (vN−1, t) = pvN − αE(τvN−1vN )− αE(τvNd)

+

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvn = m)

τvNd
∑

n=τvNd

P (τvNd = n)max(t+m+ n, 0) (4.2)

Pour montrer que la politique optimale est bien une politique de seuil à l’étape k = N−1, on

prouvera les assertions A1(N − 1), A2(N − 1), A3(N − 1) et A4(N − 1) puis on en conclura

que l’on a bien une politique de seuil :

Preuve de l’assertion A1(N − 1)

Pour prouver que l’assertionA1(N−1) est vraie, montrons queRd(vN−1, ld) > RvN (vN−1, ld).

Pour ce faire développons l’expression de Rd(vN−1, ld) puis celle de RvN (vN−1, ld)

D’après l’équation (4.1), on sait que Rd(vN−1, ld) vaut :

Rd(vN−1, ld) = −αE(τvN−1d)− Γd

τvN−1d∑

m=max(1,τvN−1d
)

P (τvN−1d = m)m

Or, d’après l’hypothèse (H4), comme vN−1 6= d, max(1, τ vN−1d
) = τ vN−1d

.
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On obtient donc :

Rd(vN−1, ld) = −αE(τvN−1d)− Γd

τvN−1d∑

m=τvN−1d

P (τvN−1d = m)m

= −αE(τvN−1d)− ΓdE(τvN−1d)

Rd(vN−1, ld) = −(α + Γd)E(τvN−1d) (4.3)

Calculons maintenant RvN (vN−1, ld), à partir de l’équation (4.2) :

RvN (vN−1, ld) = pvN − α
(
E(τvN−1vN ) + E(τvNd)

)

− Γd

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)

τvNd
∑

n=τvNd

P (τvNd = n)max(m+ n, 0)

(4.4)

= pvN − α
(
E(τvN−1vN ) + E(τvNd)

)

− Γd

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)

τvNd
∑

n=τvNd

P (τvNd = n)(m+ n)

= pvN − α
(
E(τvN−1vN ) + E(τvNd)

)
− Γd

τvNd
∑

n=τvNd

P (τvNd = n)n

− Γd

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)m (4.5)

Aussi, d’après l’hypothèse (H5), les temps de service et de parcours sont indépendants
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donc P (τvN−1vN + σvn) = P (τvN−1vN )P (σvN ). D’où :

RvN (vN−1, ld) = pvN − α
(
E(τvN−1vN ) + E(τvNd)

)
− ΓdE(τvNd)

− Γd

τvN−1vN∑

m=τvN−1vN

P (τvN−1vN = m)

σvN∑

n=σvN

P (σvN = n)(m+ n)

= pvN − α
(
E(τvN−1vN ) + E(τvNd)

)
− ΓdE(τvNd)

− Γd

τvN−1vN∑

m=τvN−1vN

P (τvN−1vN = m)m− Γd

σvN∑

n=σvN

P (σvN = n)n

= pvN − α
(
E(τvN−1vN ) + E(τvNd)

)
− ΓdE(τvNd)

− Γd

(
E(τvN−1vN ) + E(σvN )

)

= pvN − (α + Γd)
(
E(τvN−1vN ) + E(τvNd)

)
− ΓdE(σvN )

Aussi, d’après (H1), Γd >
pvN

E(σvN )
et pvN − ΓdE(σvN ) 6 0. D’où :

RvN (vN−1, ld) 6 −(α + Γd)
[
E(τvN−1vN ) + E(τvNd)
︸ ︷︷ ︸

>E(τvN−1d
) (d’après (P1) )

]

6 −(α + Γd)E(τvN−1d)

RvN (vN−1, ld) 6 Rd(vN−1, ld))

Preuve de l’assertion A2(N − 1)

Montrons que Rd et RvN sont décroissantes (assertion A2(N − 1)).

Par définition, Rd(v, t) = −αE(τvd) +

τvd∑

m=τvd

P (τvd = m)f(d, t+m, ∅).

Ainsi, Rd(v, t+ 1)−Rd(v, t) =

τvd∑

m=τvd

P (τvd = m)
(
f(d, t+ 1 +m, ∅)− f(d, t+m, ∅)

)
.

Comme f(d, t, ∅) est décroissante, Rd(v, t) l’est également pour tout v.

De même, RvN (v, t) = −αE(τvvN ) +

τvvN∑

m=τvvN

P (τvvN = m)f(vN , t + m, ∅). En procédant

comme pour Rd(v, t), on montre que, comme f(vN , t, ∅) est décroissante, RvN (v, t) est dé-

croissante pour tout v.
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Preuve de l’assertion A3(N − 1)

Montrons à présent que l’assertion A3(N − 1) est vraie.

En notant ∆Rd(vn−1, t) = Rd(vN−1, t + 1) − Rd(vN−1, t) et en utilisant l’équation (4.1), on

obtient :

∆Rd(vN−1, t) = −Γd

τvN−1d∑

m=max(ld−t,τvN−1d
)

P (τvN−1d = m)(t+ 1 +m− ld)

+ Γd

τvN−1d∑

m=max(ld−t+1,τvN−1d
)

P (τvN−1d = m)(t+m− ld)

Deux cas sont à envisager :

– Soit τ vN−1d
> ld − t+ 1 (ou encore P (τvN−1d > ld − t) = 1).

On a alors max(ld − t, τ vN−1d
) = max(ld − t+ 1, τ vN−1d

) = τ vN−1d
. Ce qui donne

∆Rd(vN−1, t) = −Γd

τvN−1d∑

m=τvN−1d

P (τvN−1d = m) = −Γd = −ΓdP (τvN−1d > ld − t)

– Soit τ vN−1d
6 ld − t.

On a alors : max(ld − t, τ vN−1d
) = ld − t et max(ld − t+ 1, τ vN−1d

) = ld − t+ 1. Et donc

∆Rd(vN−1, t) = −Γd

τvN−1d∑

m=ld−t

P (τvN−1d = m)(t+ 1 +m− ld)

+ Γd

τvN−1d∑

m=ld−t+1

P (τvN−1d = m)(t+m− ld)

Or, en m = ld − t, t+m− ld = 0. D’où :

τvN−1d∑

m=ld−t+1

P (τvN−1d = m)(t+m− ld) =

τvN−1d∑

m=ld−t

P (τvN−1d = m)(t+m− ld)
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On en déduit que :

∆Rd(vN−1, t) = −Γd

τvN−1d∑

m=ld−t

P (τvN−1d = m)

(

(t+ 1 +m− ld)− (t+m− ld)

)

= −Γd

τ̄vN−1d∑

m=ld−t

P (τvN−1d = m)

∆Rd(vN−1, t) = −ΓdP (τvN−1d > ld − t) (4.6)

En raisonnant comme ci-dessus, à partir de l’équation (4.2), on obtient :

RvN (vN−1, t+ 1)−RvN (vN−1, t)

= −Γd

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvn = m)

τvNd
∑

n=τvNd

P (τvNd = n)max(t+ 1 +m+ n− ld, 0)

+ Γd

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvn = m)

τvNd
∑

n=τvNd

P (τvNd = n)max(t+m+ n− ld, 0)

= −Γd

(
RN−1,N,d(t+ 1)−RN−1,N,d(t)

)

∆RvN (vN−1, t) = −Γd

(
RN−1,N,d(t+ 1)−RN−1,N,d(t)

)
(4.7)

Montrons que ∀t, RvN (vN−1, t+ 1)−RvN (vN−1, t) 6 Rd(vN−1, t+ 1)−Rd(vN−1, t).

– Soit t > ld

On a alors P (τvN−1d > ld − t) = 1 et ∆Rd(vN−1, t) = −Γd. On sait aussi que max(t +

1+m+n− ld, 0) = t+1+m+n− ld et max(t+m+n− ld, 0) = t+m+n− ld, d’où :

RvN (vN−1, t+ 1)−RvN (vN−1, t) = Rd(vN−1, t+ 1)−Rd(vN−1, t) = −Γd

– Soit t < ld

Montrons qu’alors
(
RN−1,N,d(t+ 1)−RN−1,N,d(t)

)
> P (τvN−1d > ld − t). On a :

P (τvN−1d > ld − t) = P (
⌈
DvN−1dδ

⌉
> ld − t)

Soit δ1 tel que
⌈
DvN−1d(δ1 − 1)

⌉
< ld − t 6

⌈
DvN−1dδ1

⌉
.

Alors, P (τvN−1d > ld − t) = P (δ > δ1).
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Aussi, RN−1,N,d(t) peut s’écrire :

RN−1,N,d(t)

=
δ∑

m=δ

P (δ = m)

σvN∑

n=σvN

P (σvn = n)max
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

=

δ1−1∑

m=δ

P (δ = m)

σvN∑

n=σvN

P (σvn = n)max
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

+
δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)max
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

Soit δ > δ1. D’après les propriétés de la fonction plafond, ⌈a⌉+ ⌈b⌉ > ⌈a+ b⌉. D’où :

t+
⌈
DvN−1vN δ

⌉
+
⌈
DvNdδ

⌉
+ n− ld > t+

⌈
(DvN−1vN +DvNd)
︸ ︷︷ ︸

>DvN−1d
d’après (H2)

δ
⌉
+ n− ld

> t+
⌈
(DvN−1d)δ

⌉
+ n− ld

> t+
⌈
(DvN−1d)δ1

⌉
+ n− ld

> t+ (ld − t) + n− ld = n > 0

Donc, ∀δ > δ1, t+
⌈
DvN−1vN δ

⌉
+
⌈
DvNdδ

⌉
+ n− ld > 0 Et :

RN−1,N,d(t)

=

δ1−1∑

m=δ

P (δ = m)

σvN∑

n=σvN

P (σvn = n)max
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

+
δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)
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En utilisant cette expression, recalculons
(
RN−1,N,d(t+ 1)−RN−1,N,d(t)

)
.

RN−1,N,d(t+ 1)−RN−1,N,d(t)

=

δ1−1∑

m=δ

P (δ = m)

σvN∑

n=σvN

P (σvn = n)max
(

t+ 1 +
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

+
δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)
(

t+ 1 +
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)

−
δ1−1∑

m=δ

P (δ = m)

σvN∑

n=σvN

P (σvn = n)max
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

−
δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)

=

δ1−1∑

m=δ

P (δ = m)

σvN∑

n=σvN

P (σvn = n)

[

max
(

t+ 1 +
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)

−max
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld, 0

)
]

+
δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)

[
(

t+ 1 +
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)

−
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)
]

>

δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)

[
(

t+ 1 +
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)

−
(

t+
⌈
DvN−1vNm

⌉
+
⌈
DvNdm

⌉
+ n− ld

)
]

>

δ∑

m=δ1

P (δ = m)

σvN∑

n=σvN

P (σvn = n)

>

δ∑

m=δ1

P (δ = m)
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RN−1,N,d(t+ 1)−RN−1,N,d(t) > P (δ > δ1) (4.8)

On en conclut, d’après (4.6) et (4.7), que :

RvN (vN−1, t+ 1)−RvN (vN−1, t) 6 Rd(vN−1, t+ 1)−Rd(vN−1, t)

L’assertion A3(N − 1) est donc bien vérifiée.

Soit s tel que Rd(vN−1, s) > RvN (vN−1, s) et soit t > s. D’après A3(N − 1), on a :

Rd(vN−1, t) = Rd(vN−1, s) +
t−1∑

k=0

(
Rd(vN−1, s+ k + 1)−Rd(vN−1, s+ k)

)

> RvN (vN−1, s) +
t−1∑

k=0

(
RvN (vN−1, s+ k + 1)−RvN (vN−1, s+ k)

)

> RvN (vN−1, t)

Donc ∀t > s, on vérifie bien Rd(vN−1, t) > RvN (vN−1, t).

On a montré (*) que les fonctions de revenu Rd et RvN décroissent avec le temps (cf. section

4.4.3) et (**) que Rd(vN−1, ld) > RvN (vN−1, ld) (cf. section 4.4.3). On sait aussi (***) que s’il

existe un s pour lequel Rd(vN−1, s) > RvN (vN−1, s), alors ∀t > s, Rd(vN−1, t) > RvN (vN−1, t)

(cf. ci-dessus).

Deux cas sont donc à envisager (on suppose que l’instant initial au client vN−1 est l’instant

0) :

– Soit Rd(vN−1, 0) > RvN (vN−1, 0), auquel cas on préfèrera toujours aller au client desti-

nation (s = −1).

– Soit Rd(vN−1, 0) < RvN (vN−1, 0). Auquel cas, d’après (*) et (**), il existe au moins

un seuil en lequel Rd(vN−1, t) − RvN (vN−1, t) change de signe. D’après (***), ce seuil

s est unique et vérifie ∀t 6 s, RvN (vN−1, t) > Rd(vN−1, t) et ∀t > s, Rd(vN−1, t) >

RvN (vN−1, t).

Dans tous les cas, on a bien une politique de seuil, le revenu est bien une fonction décroissante

du temps (A4(N − 1) est vérifiée) et il existe bien un seuil unique entre vN et d.

4.4.4 Induction sur les clients optionnels

Supposons à présent que la politique optimale aux étapes k + 1, k + 2, ..., N soit bien une

politique de seuil, et que les assertions A1,A2, A3 et A4 soient vraies à ces étapes.
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Montrons qu’alors, ces assertions sont toujours vraies à l’étape k et que la politique optimale

à l’étape k est une politique de seuil.

A l’étape k, on dispose de plusieurs possibilités : soit on va directement au client destination,

soit on se rend chez un client optionnel de V̄k.

f(vk, tk, V̄k) = max







−αE(τvkd) +

τvkd
∑

m=τvkd

P (τvkd = m)f(d, tk +m, ∅))

max
v̄∈V̄k

(

pv̄ − αE(τvk v̄)

+

τvkv̄
∑

m=τvkv̄

P (τvk v̄ = m)
σv̄∑

n=σv̄

P (σv̄ = n)f(v̄, tk +m+ n, V̄k\{v̄})

)

Pour montrer que l’on a bien une politique de seuil à l’étape k, on procède en trois temps :

1. Montrer qu’il existe un seuil unique entre tout client optionnel de V̄k et le client desti-

nation

2. Montrer qu’il existe un (ou plusieurs) seuil(s) entre toute paire de clients optionnels de

V̄k

3. Montrer que ces seuils définissent une politique de seuil

Seuil unique entre un client optionnel et le client destination

Soient vk le client courant et c1 un client optionnel de V̄k, on notera Rc1(vk, t) le profit espéré

si on décide d’aller au client c1 et Rd(vk, t) le profit espéré si on se rend au client destination

au temps t.

On veut montrer ici qu’il existe un seuil s pour lequel ∀t 6 s, on va visiter le client c1

(Rd(vk, t) 6 Rc1(vk, t)) et ∀t > s, on se rend en d (Rd(vk, t) > Rc1(vk, t)).

Pour ce faire, raisonnons comme précédemment : montrons les assertions A1(k), A2(k) et

A3(k).

– Montrons que l’assertion A1(k) est vraie, soit Rd(vk, ld) > Rc1(vk, ld).

D’après l’équation (4.3), Rd(vk, ld) = −(α + Γd)E(τvkd).
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Aussi, par définition, on a :

Rc1(vk, ld) = pc1 − αE(τvkc1)

+

τvkc1∑

m=τvkc1

P (τvkc1 = m)

σc1∑

n=σc1

P (σc1 = n)f(c1, ld +m+ n)

= pc1 − αE(τvkc1) +

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)f(c1, ld +m)

Soit k1 l’étape associée au client c1, comme c1 ∈ V̄k, on sait que k1 > k. Soit v ∈ V̄k1 .

Par hypothèse de récurrence, quand on se trouve au client c1, les assertions A1 et A3

sont vérifiées. On a donc :

Rd(c1, ld) > Rv(c1, ld)etRd(c1, t+ 1)−Rd(c1, t) > Rv(c1, t+ 1)−Rv(c1, t)

D’où les inégalités pour tout t > ld :

Rd(c1, t) = Rd(c1, ld) +
t−1∑

m=ld

(
Rd(c1,m+ 1)−Rd(c1,m)

)

> Rv(c1, ld) +
t−1∑

m=ld

(
Rv(c1,m+ 1)−Rv(c1,m)

)

Rd(c1, t) > Rv(c1, t)

Ainsi, ∀t > ld, on a : ∀v ∈ V̄k1 , Rd(c1, t) > Rv(c1, t). Donc ∀t > ld, f(c1, t) = Rd(c1, t).

On en déduit :

Rc1(vk, ld) = pc1 − αE(τvkc1) +

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)Rd(c1, ld +m)

= pc1 − αE(τvkc1)− αE(τc1d)

− Γd

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)

τc1d∑

n=τc1d

P (τc1d = n)max(m+ n, 0)

En raisonnant comme pour l’équation (4.4), en remplaçant vN par c1 et vN−1 par vk,
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on obtient :

Rc1(vk, ld) = pc1 − αE(τvkc1)− αE(τc1d)− Γd

[

E(τvkc1) + E(τc1d) + E(σc1)
]

= pc1 − ΓdE(σc1)
︸ ︷︷ ︸

60(d’après (H1))

−(α + Γd)
[

E(τvkc1) + E(τc1d)
]

︸ ︷︷ ︸

>E(τvkd) (d’après (P1))

6 −(α + Γd)E(τvkd)

Rc1(vk, ld) 6 Rd(vk, ld)

– Montrons à présent que Rd et Rc1 sont décroissantes (assertion A2(k)).

Comme précédemment,Rd est décroissante. Aussi, par hypothèse de récurrence, f(c1, t, V̄c1)

est décroissante donc Rc1 est décroissante.

– Montrons désormais que l’assertion A3(k) est vérifiée.

D’après l’équation (4.6), on a : Rd(vk, t + 1) − Rd(vk, t) = −ΓdP (τvkd > ld − t). En

notant ∆Rc1(vk, t) = Rc1(vk, t+ 1)−Rc1(vk, t), on a :

∆Rc1(vk, t) =

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)
(

f(c1, t+ 1 +m)− f(c1, t+m)
)

Soient cm le sommet choisi en t+m et cm+1 le sommet choisi en t+m+ 1.

Alors, f(c1, t+ 1 +m)− f(c1, t+m) = Rcm+1
(c1, t+ 1 +m)−Rcm(c1, t+m).

Aussi, Rcm(c1, t+m) > Rcm+1
(c1, t+m).

On en déduit que f(c1, t+1+m)−f(c1, t+m) 6 Rcm+1
(c1, t+1+m)−Rcm+1

(c1, t+m)

∆Rc1(vk, t) 6

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)
(

Rcm+1
(c1, t+ 1 +m)−Rcm+1

(c1, t+m)
)

Or, par hypothèse de récurrence, A3 est vraie aux étapes k + 1, ..., N . Donc

Rcm+1
(c1, t+ 1)−Rcm+1

(c1, t) 6 Rd(c1, t+ 1 +m)−Rd(c1, t+m)



39

D’où :

∆Rc1(vk, t) 6

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)
(

Rd(c1, t+m+ 1)−Rd(c1, t+m)
)

6

τvkc1
+σc1∑

m=τvkc1
+σc1

P (τvkc1 + σc1 = m)
(

− ΓdpP (τc1d > ld − t−m)
)

6 −Γd

δ∑

m=δ

P (δ = m)P (σc1 > ld − t−
⌈
Dvkc1m

⌉
+
⌈
Dc1dm

⌉
)

Or, soit δ2 tel que P (τvkd > ld − t) = P (δ > δ2), et soit δ > δ2, on a :

⌈
Dvkc1δ

⌉
+
⌈
Dc1dδ

⌉
>
⌈
(Dvkc1 +Dc1d)δ

⌉

>
⌈
Dvkdδ

⌉

>
⌈
Dvkdδ2

⌉

> ld − t

Donc :

∆Rc1(vk, t) 6 −Γd

δ2−1∑

m=δ

P (δ = m)P (σc1 > ld − t−
⌈
Dvkc1m

⌉
+
⌈
Dc1dm

⌉
)

− Γd

δ∑

m=δ2

P (δ = m)P (σc1 > ld − t−
⌈
Dvkc1m

⌉
+
⌈
Dc1dm

⌉
)

6 −Γd

δ∑

m=δ2

P (δ = m)P (σc1 > ld − t−
⌈
Dvkc1m

⌉
+
⌈
Dc1dm

⌉
)

6 −ΓdP (δ > δ2) = −ΓdP (τvkd > ld − t)

∆Rc1(vk, t) 6 Rd(vk, t+ 1)−Rd(vk, t)

L’assertion A3 est donc vérifiée à l’étape k.

On sait donc que les fonctions de revenu Rc1 et Rd sont décroissantes et que

Rd(vk, ld) > Rc1(vk, ld).

De plus, comme A3(k) est vraie, en procédant comme à l’étape N − 1, on peut montrer que

s’il existe s pour lequel on a Rd(vk, s) > Rc1(vk, s), alors ∀t > s, Rd(vk, t) > Rc1(vk, t). Deux

cas sont donc à envisager :

– Soit Rd(vk, 0) > Rc1(vk, 0), auquel cas on préfèrera toujours aller au client destination
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(s = −1).

– Soit Rd(vk, 0) 6 Rc1(vk, 0), auquel cas, il existe un seuil unique s vérifiant ∀t 6 s, on

choisit d’aller au client c1 et ∀t > s, on choisit d’aller directement au client destination

du segment.

Il existe donc bien un seuil unique entre tout client optionnel de V̄k et le client destination

du segment.

Seuil(s) entre deux clients optionnels

Soient c1 et c2 deux clients optionnels de V̄k, on notera Rc1(vk, t) et Rc2(vk, t) le profit espéré

si on décide d’aller respectivement au client c1 et c2 au temps t.

On veut montrer ici qu’il existe un (ou plusieurs) seuil(s) s1, ..., sn pour lesquels ∀t ∈]s1, s2],

on préfère aller visiter c1 (réciproquement c2) et ∀t ∈]s2, s3], on préfère aller visiter c2 (récipro-

quement c1). On montre très simplement, comme ci-dessus, que Rc2 et Rc1 sont décroissantes.

Deux cas sont alors à envisager :

– Soit Rc1(0) − Rc2(0) et Rc1(ld) − Rc2(ld) sont tous les deux positifs (réciproquement

négatifs). Deux cas sont alors possibles. Soit ∀t ∈ [0; ld], Rc1(t) − Rc2(t) est positif

(réciproquement négatif). On préfèrera donc toujours visiter c1 (réciproquement c2).

Soit il existe au moins un intervalle sur lequel Rc1(t)−Rc2(t) est négatif (réciproquement

positif). Sur cet (ces) intervalle(s), on préfèrera donc aller en c2 (réciproquement c1) et

hors de cet (ces) intervalle(s), on préfèrera aller en c1 (récipro-quement c2).

– Soit Rc1(0)−Rc2(0) et Rc1(ld)−Rc2(ld) sont de signe contraire. Auquel cas, il existe au

moins un seuil s en lequel Rc1(t)−Rc2(t) change de signe (id est, un point en lequel il

devient préférable de visiter non plus c2 mais c1, ou l’inverse).

Il existe donc bien au moins un seuil pour chaque paire de clients optionnels de V̄k.

Politique de seuil

Montrons que l’on a donc bien une politique de seuil. Soit s1 le maximum des seuils entre les

clients optionnels de V̄k et le client destination (et c1 le client associé à ce seuil). Pour tout

t 6 s1, il existe un client optionnel préférable au client destination. Par contre, si t > s1, on

préfèrera aller directement au client destination. On a donc identifié un premier seuil s1.

Maintenant, soit S2 l’ensemble des seuils si entre les clients optionnels de V̄k et le client c1

pour lesquels ∀t > si, on va au client c1. Soit s2 le plus grand seuil de S2 et c2 le client qui lui

est associé. Pour tout t 6 s2, il existe un client optionnel préférable au client c1. Par contre,

si t > s2, il est préférable d’aller au client c1. On a donc identifié un deuxième seuil s2.

On procède ainsi jusqu’à l’étape h + 1 pour laquelle Sh+1 est vide. On obtient ainsi h seuils
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s1, s2, ..., sh et les clients associés c1, c2, ..., ch. La politique optimale est alors la suivante :

∀t 6 sh, on va au client ch

∀t, sh < t 6 s(h− 1), on va au client c(h− 1)

...

∀t, s2 < t 6 s1, on va au client c1

∀t > s1, on se rend directement au client destination du segment d

On a donc bien identifié une politique de seuil à l’étape k.

Décroissance de la fonction de revenu (assertion A4(k))

Montrons que la fonction de revenu est décroissante (jusqu’ici, on sait juste qu’elle est dé-

croissante par morceaux, chaque morceau étant délimité par les seuils). Considérons deux

morceaux successifs m1 = [t1, t2] et m2 = [t2 + 1, t3]. Supposons que, sur m1, le revenu soit

donné par R1 et sur m2 par R2.

Montrons que R1(t2) > R2(t2 + 1), ce qui prouvera la décroissance au niveau des disconti-

nuités.

On sait que R2 est décroissante donc R2(t2) > R2(t2 + 1).

De plus, sur m1 = [t1, t2], le revenu est donné par R1 donc R1(t2) > R2(t2).

On en conclut que R1(t2) > R2(t2) > R2(t2 + 1).

La fonction de revenu à l’étape k est donc bien décroissante sur son ensemble de définition.

4.5 Algorithme 2 : preuve sur toute la route

Nous venons de traiter la première stratégie ne considérant qu’un seul segment. Nous nous

intéressons à présent à la deuxième stratégie considérant le reste de la route. Dans cette

section, on réintroduit donc l’index p du segment (on notera op l’origine du segment, dp

la destination du segment et V̄ p
k l’ensemble des clients optionnels, associés au segment p,

situés après vk). On introduit également la notation V p pour désigner l’ensemble des clients

optionnels associés au segment p. On notera dans cette section f̂(vk, tk, V̄
p
k ) le revenu espéré si

on finit le service du client vk à tk pour cette stratégie et f̂(d
p, t) le revenu espéré si on débute

le service du client dp à t. On notera également R̂dp(vk, t) et R̂v̄(vk, t) les revenus associés au

fait de se rendre respectivement au client dp et au client v̄ depuis le client vk à tk. Avec ces
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notations, pour cette stratégie, la fonction de revenu s’écrit alors :

f̂(vk, tk, V̄
p
k ) = max

{

R̂dp(vk, tk)

maxv̄∈V̄ p
k
R̂v̄(vk, tk)

= max

{

−αE(τvkdp) + E[f̂(dp, tk + τvkdp)]

maxv̄∈V̄ p
k

(
pv̄ − αE(τvk v̄) + E[f̂(v̄, tk + τvk v̄, V̄

p
k \{v̄})]

)

avec f̂(dp, t) = −Γdp max(t− ldp , 0) + f̂(dp, t+ σdp , V
p+1)

En ce qui concerne les assertions, on utilisera les mêmes notations que précédemment A1,A2,

A3 et A4 auxquelles on associera deux paramètres : le segment p et l’étape k. Pour prouver

que la politique optimale est bien une politique de suil pour cette stratégie, on prouvera

par induction sur les segments et les étapes que les assertions A1,A2, A4 sont vérifiées. Et

on donnera un contre-exemple pour montrer que l’unicité du seuil (assertion A3) n’est pas

vérifiée.

4.5.1 Dernier segment de route d’un véhicule

On a prouvé dans la section précédente que, dans ce cas, les assertions A1,A2, A3 et A4 sont

vérifiées et que la politique optimale est bien une politique de seuil.

4.5.2 Induction sur les segments de route

Supposons que les assertions soient vérifiées sur les segments p+ 1, p+ 2, ...., |P |.

Montrons qu’alors, elles restent vraies pour le segment p et que la politique optimale est bien

une politique de seuil sur ce segment.

Le fait de considérer le reste de la route et non simplement le segment en cours entrâıne une

différence dans l’expression de la fonction de revenu au client destination du segment p. En

effet, on a :

f̂(dp, t) = −Γdp max(t− ldp , 0) +

σdp∑

m=σdp

P (σdp = m)f̂(op+1, t+m,V p+1)

Par hypothèse de récurrence, f̂(op+1, t, V p+1) est décroissante donc ce revenu est une fonction

décroissante du temps.

Client optionnel vN (étape k = N)

On se trouve au dernier client optionnel du segment p, on se rend donc directement au client

destination :
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f̂(vN , tN , V̄
p
N) = −αE(τvNdp) +

τvNdp
∑

m=τvNdp

P (τvNdp = m)f̂(dp, tN +m)

Ici, V̄ p
N est vide, les assertions A1(N, p), A2(N, p) et A3(N, p) sont donc clairement vérifiées.

De plus, commef̂(dp, t) est décroissante, f̂(vN , t, V̄
p
N) l’est également (et A4(N, p) est vérifiée).

On a bien une politique de seuil (on décide de se rendre au client destination en tout temps).

Client optionnel vN−1 (étape k = N − 1)

On se trouve à l’avant dernier client optionnel du segment. On a deux possibilités : soit on se

rend directement au client destination du segment, soit on visite le dernier client optionnel

du segment. Le choix est déterminé par l’équation :

f̂(vN−1, tN−1, V̄
p
N−1) = max

(

R̂dp(vN−1, tN−1)

R̂vN (vN−1, tN−1)

)

avec

R̂dp(vN−1, tN−1) = −αE(τvN−1dp) +

τvN−1d
p

∑

m=τvN−1d
p

P (τvN−1dp = m)f̂(dp, tN−1 +m)

R̂vN (vN−1, tN−1) = pvN − αE(τvN−1vN )

+

τvN−1vN∑

m=τvN−1vN

P (τvN−1vN = m)

σvN∑

n=σvN

P (σvN = n)f̂(vN , tN−1 +m+ n, ∅)

Pour montrer qu’il existe un (ou plusieurs) seuil(s) au-delà duquel on va directement au client

destination et en deçà duquel on va au dernier client optionnel, on montre les assertions

A1,A2,A4 et on donne un contre-exemple pour l’assertion A3 (unicité du seuil).

Preuve de l’assertion A1(N − 1, p)

Montrons l’assertion A1(N − 1, p) : R̂dp(vN−1, ldp) > R̂vN (vN−1, ldp).

On sait que R̂dp(vN−1, ldp) vaut :
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R̂dp(vN−1, ldp) = −αE(τvN−1dp) +

τvN−1d
p

∑

m=τvN−1d
p

P (τvN−1dp = m)f̂(dp, ldp +m)

= −αE(τvN−1dp)− Γdp

τvN−1d
p

∑

m=τvN−1d
p

P (τvN−1dp = m)max(m, 0)

+

τvN−1d
p

∑

m=τvN−1d
p

P (τvN−1dp = m)

σdp∑

n=σdp

P (σdp = n)f̂(op+1, t+m+ n, V p+1)

= −(α + Γdp)E(τvN−1dp)

+

τvN−1d
p

∑

m=τvN−1d
p

P (τvN−1dp = m)

σdp∑

n=σdp

P (σdp = n)f̂(op+1, ldp +m+ n, V p+1)

= −(α + Γdp)E(τvN−1dp)

+
δ∑

m=δ

P (δ = m)

σdp∑

n=σdp

P (σdp = n)f̂(op+1, ldp +
⌈
DvN−1dpδ

⌉
+ n, V p+1) (4.9)

Calculons à présent R̂vN (vN−1, ldp) :

R̂vN (vN−1, ldp)

= pvN − αE(τvN−1vN ) +

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)f̂(vN , ldp +m, ∅)

= pvN − α
(
E(τvN−1vN ) + E(τvNdp)

)

︸ ︷︷ ︸

>E(τvN−1d
p ) (cf. (P1))

+

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)

τvNdp
∑

n=τvNdp

P (τvNdp = n)f̂(dp, ldp +m+ n) (4.10)
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R̂vN (vN−1, ldp)

6 pvN − αE(τvN−1dp)

+

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)

τvNdp
∑

n=τvNdp

P (τvNdp = n)f̂(dp, ldp +m+ n)

Développons l’expression de f̂(dp, ldp +m+ n).

Soit m + n ∈ [τ vN−1vN
+ σvN

+ τ vNdp ; τ vN−1vN + σvN + τ vNdp ], on a m + n > 0 d’après (H5).

D’où :

f̂(dp, ldp +m+ n) = −Γdp max(m+ n, 0) +

σdp∑

q=σdp

f̂(op+1, ld +m+ n+ q, V p+1)

= −Γdp(m+ n) +

σdp∑

q=σdp

f̂(op+1, ld +m+ n+ q, V p+1) (4.11)

Comme les temps de service et de parcours sont indépendants,

τvN−1vN
+σvN∑

m=τvN−1vN
+σvN

P (τvN−1vN + σvN = m)

τvNdp
∑

n=τvNdp

P (τvNdp = n)(m+ n)

=

τvN−1vN∑

m=τvN−1vN

P (τvN−1vN = m)

σvN∑

n=σvN

P (σvN = m)

τvNdp
∑

q=τvNdp

P (τvNdp = q)(m+ n+ q)

= E(τvN−1vN ) + E(σvN ) + E(τvNdp) (4.12)

En utilisant les équations (4.11) et (4.12), on obtient :

R̂vN (vN−1, ldp) 6 pvN − αE(τvN−1dp)− Γdp [E(τvN−1vN ) + E(τvNdp) + E(σvN )] + A

(4.13)

Avec :

A =

τvN−1
vN

+σvN
∑

m=τvN−1
vN

+σvN

P (τvN−1vN + σvN = m)

τvNdp
∑

n=τvNdp

P (τvNdp = n)

σdp
∑

q=σdp

P (σdp = q)f̂(op+1, ldp +m+ n+ q, V p+1)
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R̂vN (vN−1, ldp) 6 pvN − ΓdpE(σvN )
︸ ︷︷ ︸

60 d’après (H1)

−αE(τvN−1dp)− Γdp

(
E(τvN−1vN ) + E(τvNdp)

)

︸ ︷︷ ︸

>E(τvN−1d
p ) (cf. (P1))

+A

R̂vN (vN−1, ldp) 6 −(α + Γdp)E(τvN−1dp) + A

Afin de pouvoir comparer R̂vN (vN−1, ldp) et R̂dp(vN−1, ldp), examinons le terme A. on a :

A =
δ

∑

m=δ

P (δ = m)

σdp
∑

l=σdp

P (σvN = l)

σdp
∑

n=σdp

P (σdp = n)f̂(op+1, ldp +
⌈

DvN−1vNm
⌉

+ l+
⌈

DvNdpm
⌉

+ n, V p+1)

De plus, on sait que :

⌈
DvN−1vNm

⌉
+
⌈
DvNdpm

⌉
>
⌈
(DvN−1vN +DvNdp)m

⌉
propriété de la fonction plafond

>
⌈
DvN−1dpm

⌉
d’après (H2)

Comme la fonction f̂(op+1, t, V p+1) est décroissante (par hypothèse de récurrence), on a :

f̂(op+1, ldp +
⌈
DvN−1vNm

⌉
+
⌈
DvNdpm

⌉
+ n, V p+1) 6 f̂(op+1, ldp +

⌈
DvN−1dpm

⌉
+ n, V p+1)

On en conclut que R̂vN (vN−1, ldp) 6 R̂dp(vN−1, ldp).

Preuve de l’assertion A2(N − 1, p)

Montrons que R̂dp et R̂vN sont décroissantes (assertion A2(N − 1, p)) Comme f̂(dp, t) et

f̂(vN , t, ∅) sont décroissantes, R̂dp et R̂vN sont clairement décroissantes.

Preuve de l’assertion A4(N − 1, p)

Montrons que f̂(vN−1, t, V̄
p
N−1) est décroissante (assertion A4(N − 1, p)). On sait d’ores et

déjà que la fonction est décroissante par morceaux comme R̂dp et R̂vN sont décroissantes. En

procédant comme dans le paragraphe §3.4.4, on montre la décroissance aux discontinuités.

On en conclut que f̂(vN−1, t, V̄
p
N−1) est bien décroissante sur son ensemble de définition.

Preuve de l’assertion A3(N − 1, p)

Pour ce qui est de l’unicité du seuil (assertion A3(N − 1, p)), montrons avec un contre-

exemple que la fonction R̂dp − R̂vN n’est pas croissante.

Le contre-exemple est représenté graphiquement ci-dessous. Dans cet exemple, on choisit

α = 1, Γdp = 5000, δ = 5, δ̄ = 13 et δ̂ = 7.

Pour les clients optionnels, on pose pi = 20, σi = 15, σi = 30 et σ̂i = 22.

Pour les clients obligatoires, on pose σi = 30 et σi = 60 et σ̂i = 35.
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Figure 4.3 Contre-exemple graphique

On se trouve au client 10 (vN−1 = 10, vN = 13 et dp = 11).

En calculant, avec la programmation dynamique, les fonctions de revenu des clients 11, 39,

15 et 42 en fonction du temps, on calcule R̂11(10, t) et R̂13(10, t) comme suit :

R̂11(10, t) = −αE(τ10;11) +

τ10;11∑

m=τ10;11

f̂(11, t+m, ∅)

R̂13(10, t) = p13 − α
(
E(τ10;13) + E(τ13;11)

)
+

τ10;13;11∑

m=τ10;13;11

f̂(11, t+m, ∅)

On obtient ainsi, en t = 340, R̂11(10, t) = 94.04 et R̂13(10, t) = 93.44.

Donc on préfère se rendre au client destination du segment (dp = 11) en t = 340.

En t = 341, on a : R̂11(10, t) = 89.51 et R̂13(10, t) = 90.01.

On préfère donc se rendre au client optionnel 13 en t = 341.

Ainsi, en posant s = 340, on a : R̂dp(10, s) > R̂13(10, s). Par contre, on a également :

R̂dp(10, s+ 1) 6 R̂13(10, s+ 1).

On a donc R̂dp(10, s)− R̂vN (10, s) > 0 > R̂dp(10, s+1)− R̂vN (10, s+1). En d’autres termes,
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R̂dp − R̂vN n’est pas croissante. L’unicité du seuil n’est donc pas vérifiée.

Induction sur les clients optionnels

Supposons à présent que la politique optimale aux étapes k + 1, k + 2, ..., N soit bien une

politique de seuil, et que les assertions A1,A2 et A4 soient vraies à ces étapes (on a vu que

A3 n’était pas vérifiée).

Montrons qu’alors, ces assertions sont toujours vraies à l’étape k et que la politique optimale

à l’étape k est une politique de seuil.

A l’étape k, on dispose de plusieurs possibilités : soit on va au client destination du segment

dp, soit on se rend chez un client optionnel de V̄ p
k .

f̂(vk, tk, V̄
p
k ) = max







−αE(τvkdp) +

τvkdp
∑

m=τvkdp

P (τvkdp = m)f̂(dp, tk +m)

max
v̄∈V̄ p

k

(

pv̄ − αE(τvk v̄)

+

τvkv̄
∑

m=τvkv̄

P (τvk v̄ = m)
σv̄∑

n=σv̄

P (σv̄ = n)f̂(v̄, tk +m+ n, V̄k\{v̄})

)

Pour montrer que l’on a bien une politique de seuil à l’étape k, on procède en trois temps :

1. Montrer qu’il existe un (ou plusieurs) seuil(s) entre tout client optionnel de V̄ p
k et dp

2. Montrer qu’il existe un (ou plusieurs) seuil(s) entre toute paire de clients optionnels de

V̄ p
k

3. Montrer que ces seuils définissent une politique de seuil

Seuil(s) entre un client optionnel et le client destination

Soient v le client courant et c1 un client optionnel de V̄ p
k , on notera R̂c1(v, t) le profit espéré

si on décide d’aller au client c1 et R̂dp(v, t) le profit espéré si on se rend au client destination

au temps t.

On veut montrer qu’il existe un seuil s pour lequel ∀t 6 s, on choisit de visiter le client c1
(
R̂dp(v, t) 6 R̂c1(v, t)

)
et ∀t > s, on se rend au client destination

(
R̂dp(v, t) > R̂c1(v, t)

)
.

Pour ce faire, raisonnons comme précédemment : montrons les assertions A1 et A2.
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Preuve de l’assertion A1(k, p)

Montrons que R̂dp(v, ldp) > R̂c1(v, ldp) (assertion A1(k, p)).

En remplaçant vN par v dans l’équation (4.9), on obtient l’expression suivante pour R̂dp(v, ldp) :

R̂dp(v, ldp) = −(α + Γdp)E(τvdp)

+

τvdp∑

m=τvdp

P (τvdp = m)

σdp∑

n=σdp

P (σdp = n)f̂(op+1, ldp +m+ n, V p+1)

Aussi, par définition, R̂c1(v, ldp) vaut :

R̂c1(v, ldp) = pc1 − αE(τvc1) +

τvc1+σc1∑

m=τvc1
+σc1

P (τvc1 + σc1 = m)f̂(c1, ldp +m, V̄ p
k )

Par hypothèse de récurrence, quand on se trouve au client c1, la politique optimale est une

politique de seuil donc le revenu en c1 pour t > ldp correspond à celui associé au fait d’aller

directement au client destination. Ainsi,

R̂c1(v, ldp) = pc1 − αE(τvc1) +

τvc1+σc1∑

m=τvc1
+σc1

P (τvc1 + σc1 = m)
[

− αE(τc1dp)

+

τc1dp∑

n=τc1dp

P (τc1dp = n)f̂(dp, ldp +m+ n)
]

= pc1 − α
(
E(τvc1) + E(τc1dp)

)

+

τvc1+σc1∑

m=τvc1
+σc1

P (τvc1 + σc1 = m)

τc1dp∑

n=τc1dp

P (τc1dp = n)f̂(dp, ldp +m+ n)

L’équation ci-dessus est identique à l’équation (4.10) en remplaçant vN−1 par v. En procédant

comme pour l’équation (4.10), on montre que R̂c1(v, ldp) 6 R̂dp(v, ldp).

Preuve de l’assertion A2(k, p)

Montrons à présent que R̂dp et R̂c1 sont décroissantes (assertion A2(k, p)).

Comme f̂(dp, t) est décroissante, R̂dp est décroissante. Aussi, par hypothèse de récurrence,

f̂(c1, t, V̄
p
k ) est décroissante donc R̂c1 est clairement décroissante.

On sait donc : (*) que les fonctions de revenu R̂c1 et R̂dp sont décroissantes (cf. ci-dessus),

(**) que R̂dp(v, ldp) > R̂c1(v, ldp) (cf. section 4.5.2) et (***) que R̂dp−R̂c1 n’est pas monotone.
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Deux cas sont donc à envisager :

– Soit R̂dp(v, 0) > R̂c1(v, 0). D’après (**) et (***), deux cas sont alors possibles. Soit

∀t ∈ [0; ldp ], R̂dp(v, t) > R̂vN (v, t). On préfèrera donc toujours visiter dp. Soit il existe

au moins un intervalle sur lequel R̂dp(v, t) < R̂c1(v, t). Sur cet intervalle, on préfèrera

donc aller en c1 et hors de cet intervalle, on préfèrera aller en dp.

– Soit R̂dp(v, 0) 6 R̂c1(v, 0). Auquel cas, d’après (**), il existe au moins un seuil s (il peut

y en avoir plusieurs d’après (***) ) en lequel R̂dp(v, t) − R̂c1(v, t) change de signe (id

est, un point en lequel il devient préférable de visiter non plus c1 mais dp, ou l’inverse).

Il existe donc bien au moins un seuil entre tout client optionnel de V̄ p
k et le client destination

du segment.

Seuil(s) entre deux clients optionnels

Même preuve que précédemment (quand on raisonnait sur un seul segment).

Politique de seuil et décroissance de la fonction de revenu (A4(k, p))

Mêmes preuves que précédemment (quand on raisonnait sur un seul segment).

Ceci finalise la preuve que la politique optimale obtenue avec nos deux algorithmes de

programmation dynamique est une politique de seuil.
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CHAPITRE 5

Heuristique basée sur la priorité des clients

Dans la variante du problème de tournées de service considérée, tous les clients sont connus

a priori et les temps de parcours et de service sont stochastiques. L’approche de résolution

proposée pour résoudre ce problème est une méthode en deux étapes : la planification et

l’exécution. Au cours de l’étape de planification, on construit des routes avec des clients

obligatoires et des clients optionnels en utilisant des estimés connus a priori. Ensuite, dans

l’étape d’exécution, on utilise des outils de programmation dynamique pour déterminer les

seuils de la politique optimale à partir des distributions de probabilité des temps de service et

de parcours. On dispose ainsi d’une liste de créneaux horaires et de décisions associées. Lors

des simulations du déroulement de l’horizon de temps, on décide en temps réel de la suite

de la route pour chaque technicien/véhicule. On peut ainsi décider de ne pas desservir un

ou plusieurs clients optionnels pour être à l’heure au client obligatoire suivant (cf. chapitre

précédent). L’idée dans cette approche est d’utiliser les clients optionnels comme tampon

pour absorber les variations sur les temps de parcours et de service.

Dans ce chapitre, on suppose que le nombre de clients obligatoires est suffisant (si ce n’est

pas le cas, on peut rendre des clients optionnels obligatoires) et on présente une heuristique

basée sur la priorité des clients pour l’étape de planification. Dans cette heuristique, on

utilise la priorité des clients pour décomposer, comme Delage [21], l’étape de planification

en deux phases : i) construire des routes en ne considérant que les clients obligatoires (on

appelle l’ensemble de ces routes le « squelette ») ; ii) insertion des clients optionnels dans le

squelette. Dans ce chapitre, nous détaillons l’étape de planification dans la section 5.1, puis

l’étape d’exécution dans la section 5.2 pour présenter ensuite les résultats dans la section 5.3

et conclure sur cette méthode dans la section 5.4.

5.1 Etape de planification

Dans l’étape de planification, on cherche à construire des routes optimales contenant à

la fois des clients obligatoires et des clients optionnels. En supposant que les bornes sur les

temps de parcours et de service sont connues (cf. chapitre 1), on procède en deux phases :

d’abord, on construit un squelette de routes contenant uniquement des clients obligatoires et

ensuite on insère les clients optionnels dans ce squelette. Dans la phase I (construction du

squelette), on formule le problème comme un programme à variables mixtes et on le résout
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de façon exacte en utilisant un algorithme de branch and bound. Dans la deuxième phase

(insertion des clients optionnels), on formule le problème comme un programme en nombres

entiers et on procède en deux temps : on résout d’abord le modèle avec des estimés pessimistes

pour les temps de service et de parcours, en utilisant un algorithme de branch and cut puis

on répare et on améliore la solution à l’aide d’une méthode heuristique. Pour l’insertion des

clients optionnels, on propose également une méthode de relaxation lagrangienne suivie de

l’heuristique de réparation et d’amélioration, ce qui nous permet de résoudre de plus grosses

instances.

5.1.1 Phase I : Etablissement du squelette

Dans cette phase, on considère uniquement les clients obligatoires, qui possèdent une

fenêtre de temps et sont tous connus a priori. Afin de construire le squelette de routes com-

prenant uniquement des clients obligatoires, il faut résoudre un m-TSPTW sur l’ensemble

des clients obligatoires. Comme on n’autorise aucun retard chez les clients obligatoires, on

considère dans cette phase que les temps de parcours et de service sont maximaux. On utilise

les notations suivantes :

– Ensembles

M ensemble de clients obligatoires

O ensemble de clients optionnels

K ensemble de véhicules

– Paramètres

h horizon de temps

(ok, dk) dépôts origine et destination du véhicule k

[ei, li] fenêtre de temps du client i : le service doit commencer entre ei et li (par

convention, on notera lok = 0, ekd = 0 et ldk = h)

pi profit associé au service du client optionnel i

τ ij temps de parcours maximal entre i et j

σi temps de service maximal au client i

T grande constante de temps

– Variables

xk
i booléen indiquant si le client obligatoire i est servi par le véhicule k

ykij booléen indiquant si le client obligatoire i est servi juste avant le client obligatoire

j par le véhicule k

ti heure de début de service chez le client obligatoire i
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Avec les notations mentionnées ci-dessus, on peut formuler le problème comme un pro-

gramme à variables mixtes (M4.1) :

min
∑

k∈K

∑

i∈M∪{ok}

∑

j∈M∪{dk}

τ ijy
k
ij

sujet à :

∑

k∈K

xk
i = 1 ∀i ∈M (5.1)

∑

j∈M∪{dk}

ykij = xk
i ∀i ∈M,k ∈ K (5.2)

∑

i∈M∪{ok}

ykij = xk
j ∀j ∈M,k ∈ K (5.3)

ei 6 ti 6 li ∀i ∈M ∪ {ok; dk} (5.4)

tj > ti + σi + τ ij +
∑

k∈K

(ykij − 1)T ∀i ∈M ∪ {ok}, j ∈M ∪ {dk} (5.5)

ykij ∈ {0; 1} ∀k ∈ K, i ∈M ∪ {ok}, j ∈M ∪ {dk}

xk
i ∈ {0; 1} ∀i ∈M,k ∈ K

ti > 0 ∀i ∈M ∪ {ok; dk}

Les contraintes (5.1) expriment le fait que chaque client obligatoire doit être servi une et

une seule fois. Les contraintes (5.2) et (5.3) sont des contraintes de degré entrant et sortant.

Les contraintes (5.4) assurent le respect des fenêtres de temps (le service au client i doit

commencer dans la fenêtre de temps [ei, li]). Enfin, les contraintes (5.5) sont des contraintes

de précédence temporelle, qui assurent l’élimination des sous-tours. Ce modèle est résolu

de façon exacte à l’aide d’un solveur commercial, étant donné que le nombre de clients

obligatoires est faible dans les instances considérées.

5.1.2 Phase II : Insertion des clients optionnels

Une fois le squelette de routes servant les clients obligatoires construit, on dispose pour

chaque véhicule d’une liste ordonnée de clients obligatoires à desservir. Afin d’améliorer la

qualité de service, on met à jour les heures de début de service au plus tôt et au plus tard,

ei et li, associées au client obligatoire i. Elles correspondent à l’heure de début de service

respectivement dans le meilleur et le pire des cas. On pose donc li = ti et on calcule ei avec

les temps de parcours et de service minimaux (en s’assurant que ei respecte la fenêtre de
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temps d’origine) en fonction des routes du squelette.

Dans cette phase, on introduit le concept de segment comme étant une portion de route

entre deux clients obligatoires successifs (le dépôt origine et le dépôt destination de chaque vé-

hicule sont considérés comme des clients obligatoires). Le segment p a trois caractéristiques :

une origine op, une destination dp et une longueur ∆p donnée par la formule ∆p = ldp−eop−σop

où ldp désigne l’heure de début de service au plus tard chez le client dp, σop le temps de ser-

vice minimal au client origine op et eop l’heure de début de service au plus tôt chez le client op.

Avec ce nouveau concept de segment, le problème d’insertion des clients optionnels dans

le squelette consiste à établir des routes sur chaque segment du squelette, tout en s’assurant,

sur chaque segment p, que la longueur de la route n’excède pas ∆p. Deux fonctions objectif

sont considérées dans cette phase d’insertion : la maximisation du profit associé à la desserte

des clients optionnels et ensuite, la minimisation du temps de parcours total. Pour traiter

de ces objectifs, on utilise la méthode classique de la somme pondérée pour les combiner en

un seul où α désigne le poids associé aux temps de parcours (α ∈ [0; +∞]). Pour définir ce

problème, on utilise les mêmes notations que précédemment plus celles-ci :

– Ensembles

P ensemble de segments sur tous les véhicules. Les segments sont ordonnés comme

suit : le segment p+ 1 a pour origine dp (le client destination du segment p).

– Paramètres

α pondération des temps de parcours dans la fonction objectif

∆p longueur du segment p

τ ij temps de parcours minimal entre i et j

σi temps de service minimal au client i

τ̃ij temps de parcours de référence entre i et j

σ̃i temps de service de référence au client i

– Variables

xp
i booléen indiquant si le client optionnel i est servi sur le segment p

ypij booléen indiquant si i est servi juste avant j sur le segment p

Avec les notations ci-dessus, le problème peut être formulé sous forme du modèle (M4.2)

suivant :
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max .
∑

p∈P

∑

i∈O

pix
p
i − α

∑

p∈P

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij

sujet à :

∑

p∈P

xp
i 6 1 ∀i ∈ O (5.6)

∑

j∈O∪{dp}

ypij = xp
i ∀i ∈ O, p ∈ P (5.7)

∑

i∈O∪{op}

ypij = xp
j ∀j ∈ O, p ∈ P (5.8)

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij +

∑

i∈O

σ̃ix
p
i 6 ∆p ∀p ∈ P (5.9)

∑

i∈O∪{dp}

ypopi = 1 ∀p ∈ P (5.10)

∑

i∈S

∑

j∈S

ypij 6
∑

i∈S\{l}

xp
i ∀S ⊂ O, |S| > 2, ∀l ∈ S (5.11)

xp
i , y

p
ij ∈ {0; 1} ∀i ∈ O ∪ {op}, j ∈ O ∪ {dp}, p ∈ P

Les contraintes (5.6) expriment que chaque client optionnel est servi au plus une fois. Les

contraintes (5.7) et (5.8) sont des contraintes de degré entrant et sortant. Les contraintes (5.9)

forcent la longueur d’une route sur un segment à être inférieure à la longueur du segment.

Les contraintes (5.10) assurent que la route quitte bien le client origine du segment. Les

contraintes (5.11) sont des contraintes d’élimination de sous-tours. Elles sont nécessaires

dans ce modèle car les clients optionnels n’ont pas de fenêtre de temps.

Concernant les valeurs de référence pour les temps de parcours et de service τ̃ij et σ̃i, plusieurs

choix sont possibles. Si on choisit les valeurs minimales (estimés optimistes), on peut obtenir

des solutions avec des routes vides tandis que certaines routes servent un grand nombre de

clients. C’est une solution admissible tant que l’on se place dans le cas optimiste. Mais après

avoir été confrontée à la réalité (durant l’étape d’exécution), de nombreux clients restent non

desservis alors même qu’une route demeure vide (cf. exemple figure 5.1).

Pour éviter cet écueil, on doit répartir la charge de travail entre les véhicules lors de

l’insertion des clients optionnels. On décompose donc l’insertion des clients optionnels en

deux temps :

1. Insertion des clients optionnels avec estimation pessimiste des temps de parcours et

de service.

2. Insertion des clients optionnels avec estimation optimiste des temps de parcours et
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(a) Après insertion des optionnels (b) Après simulation

Figure 5.1 Insertion des clients optionnels avec estimés optimistes

de service, en gardant l’affectation des clients aux véhicules obtenue en 1.

Cette méthode fournit de bons résultats qui seront présentés section 5.3. Toutefois, comme

on peut le voir figure 5.2, cette méthode tend à planifier des routes qui seront bouleversées

lors de la simulation. En effet, en choisissant de procéder à l’insertion des clients optionnels

en deux temps avec estimés pessimistes puis optimistes, on construit des routes sur des

segments avec une contrainte de durée correspondant à la longueur de ces segments. Mais

si on considère la route d’un véhicule comprenant plusieurs segments, cette route aura alors

une contrainte de durée correspondant à la somme des longueurs des segments associés, i.e.

ldp−eop−σop (estimé optimiste de la longueur du segment p). La route obtenue peut donc être

beaucoup plus longue que l’horizon de temps. Ainsi, la probabilité de faisabilité de certaines

routes peut parfois chuter à 20%. Ce qui a pour conséquence, lorsque les temps de parcours

et de service réels sont révélés, de changer complètement les routes planifiées. On choisit donc

d’assurer une probabilité de faisabilité minimale. L’insertion des clients optionnels consiste,

à présent, à insérer les clients optionnels avec estimés pessimistes des temps de service et

de parcours. Ensuite, à réparer et améliorer la solution obtenue, tout en assurant que chaque

route conserve une probabilité suffisante d’être réalisable (plus grande qu’un seuil donné).

On propose un algorithme de branch and cut pour l’insertion des clients optionnels en ajou-

tant dynamiquement les contraintes d’élimination de sous-tours (5.11). Comme l’insertion des

clients optionnels avec estimés pessimistes sur des petites instances avec un algorithme de

branch and cut est trop longue (cf. tableau 4.5), on propose des méthodes d’accélération pour

améliorer les temps de calcul. De plus, comme le modèle d’insertion des clients optionnels

dans le squelette présente une structure bloc angulaire (hormis un ensemble de contraintes

liantes), et afin de résoudre des problèmes de plus grande taille, nous utilisons une méthode
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(a) Après insertion des optionnels (b) Après simulation

Figure 5.2 Insertion des clients optionnels avec estimés pessimistes puis optimistes

de relaxation lagrangienne. Dans ce qui suit, nous détaillerons dans un premier temps les dif-

férentes techniques d’accélération dans la section 5.1.2, puis nous présenterons la méthode de

relaxation lagrangienne dans la section 5.1.2 et enfin, décrirons les algorithmes de réparation

et d’amélioration dans la section 5.1.2.

Techniques d’accélération

Comme nous l’avons mentionné plus haut, la résolution du modèle (M4.2) avec un al-

gorithme de branch and cut peut s’avérer très chronophage. Afin d’améliorer les temps de

calcul, on propose dans cette section différentes techniques d’amélioration : du prétraitement,

une heuristique d’insertion pour construire une solution initiale, des « reachability cuts » et

des inégalités d’élimination de sous-ensembles.

Prétraitement

Une méthode d’accélération très répandue est de faire du prétraitement, afin de fixer des

variables avant de commencer le branch and cut. Ce prétraitement est basé sur l’idée que,

lors de l’insertion des clients optionnels dans le squelette, des clients ne peuvent pas être servis

sur certains segments. Afin d’éviter cela, en comparant les temps de service et de parcours

maximaux avec les longueurs des segments, on obtient des conditions qui nous permettent de

fixer la valeur de certaines variables ou de renforcer la formulation en ajoutant des inégalités

valides :
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Proposition 1. Les clauses suivantes sont valides :

Si τ opj + σj + τ jdp > ∆p, alors xp
j = 0 (5.12)

Si τ opi + σi + τ ij + σj + τ jdp > ∆p, alors ypij = 0 (5.13)

Si
τ opi + σi + τ + σj + τ jdp > ∆p

}

,
τ opj + σj + τ + σi + τ idp > ∆p

alors xp
i + xp

j 6 1 (5.14)

La clause (5.12) exprime le fait que le client i ne peut être visité sur le segment p si le

temps total nécessaire pour servir uniquement i sur le segment p (temps de parcours de op

vers i, temps de service du client i et temps de parcours de i vers dp) dépasse la longueur ∆p

du segment p. De même, la clause (5.13) indique que le client j ne peut être servi après le

client i si le temps total nécessaire pour servir uniquement les clients i et j dans cet ordre sur

le segment p (temps de parcours de op vers i, temps de service du client i, temps de parcours

de i vers j, temps de service du client j et temps de parcours de j vers dp) dépasse la longueur

∆p de ce segment. Enfin, la clause (5.14) est une inégalité valide basée sur la clause (5.13).

Cette clause indique que si le temps total nécessaire pour visiter i et j dans cet ordre et celui

nécessaire pour visiter j et i dans cet ordre excèdent la longueur ∆p du segment p, alors i

et j ne peuvent être desservis ensemble sur le segment p. En effet, en appliquant la clause

(5.13) aux conditions de la clause (5.14), on obtient ypij = 0 et ypji = 0 (i.e. j ne peut être

servi après i et i ne peut être servi après j sur le segment p). Donc on conclut que i et j ne

peuvent être servis tous les deux sur le segment p.

Heuristique d’insertion

Afin de construire une solution initiale pour le branch and cut, on propose une heuristique

basée sur l’insertion des clients. Cette heuristique peut être décrite comme suit. On calcule

les coûts d’insertion de chaque client sur chaque segment (si un client i ne peut être inséré

sur un segment p, le coût d’insertion associé cpi sera +∞). Ensuite, on résout un problème

d’affectation (affectation des clients aux segments). Etant donnée la solution de ce problème,

on dispose pour chaque segment d’une route servant potentiellement un client optionnel.

Donc les coûts d’insertion peuvent avoir changé pour les clients non affectés. Ce processus

est ensuite réitéré jusqu’à ce qu’un des critères d’arrêt suivants soit satisfait :

i) Tous les clients optionnels ont été insérés

ii) Aucun client optionnel n’a pu être inséré à cette étape
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Reachability Cuts

Afin d’accélérer l’algorithme de branch and cut, on propose de renforcer les contraintes d’éli-

mination de sous-tours (5.11) présentes dans le modèle (M4.2). Elles peuvent être reformulées

comme suit. Soit δ−(S) = {(i, j)|i /∈ S, j ∈ S} pour un ensemble de clients S, on a :

∑

(k,l)∈δ−(S)

ypkl > xp
i ∀S ⊂ O, |S| > 2, ∀i ∈ S, p ∈ P (5.15)

Les contraintes (5.15) sont connues pour être équivalentes aux contraintes (5.11). Lysgaard

[50] propose de renforcer ces contraintes en définissant les « reachability cuts ». En suivant

l’exemple de Lysgaard [50], on définit l’ensemble d’accessibilité Ap−
i comme étant l’ensemble

minimal d’arcs permettant d’accéder au client i depuis l’origine du segment p. Par exemple,

si (op, a, b, i) est un chemin possible (au regard de la contrainte de durée maximale) de op vers

i, alors {(op, a); (a, b); (b, i)} ⊂ Ap−
i tant que la matrice des temps satisfait l’inégalité trian-

gulaire. Ensuite, les contraintes (5.15) peuvent être renforcées en considérant les reachability

cuts suivantes :

∑

(k,l)∈δ−(S)∩Ap−
i

ypkl > xp
i ∀S ⊂ O, |S| > 2, ∀i ∈ S, p ∈ P (5.16)

En d’autres termes, soit p un segment, i un client et S un ensemble de clients (avec op /∈ S

et i ∈ S), si le client i est servi sur le segment p, alors il existe un chemin depuis l’origine du

segment op vers i, et chaque arc de ce chemin appartient à Ap−
i . En particulier, comme i ∈ S

et op /∈ S, il existe au moins un arc de Ap−
i entrant dans S. Ces contraintes sont clairement

plus fortes que les contraintes d’élimination classiques (SEC) comme δ−(S) ∩ Ap−
i ⊆ δ−(S).

Dans les contraintes (5.16), on peut voir que le nombre de termes dans le membre de gauche

dépend de la taille de Ap−
i . Ainsi, quand l’ensemble d’accessibilité Ap−

i est grand, la contrainte

(5.16) n’est pas très forte, comparée à la contrainte SEC associée. Pour cette raison, dans un

premier temps, on choisit de générer ces nouvelles contraintes seulement sur les segments dont

la longueur n’excède pas un seuil Lmax et de générer les contraintes classiques d’élimination

de sous-tours sur les autres segments. Pour séparer les reachability cuts, on détermine a priori

l’ensemble d’arcs Ap−
i pour chaque i ∈ O. Dans la phase de prétraitement, on crée une liste

Cp de clients qui peuvent être servis sur chaque segment p (relativement à la longueur des

segments).

Ensuite, pour chaque client i et segment p, on parcourt la liste des arcs (j, k) tels que j ∈

Cp et k ∈ Cp. Si le chemin (op, j, k, i) est réalisable sur le segment p, on ajoute les arcs

correspondant à l’ensemble Ap−
i s’ils ne lui appartiennent pas déjà. Ensuite, pour identifier

les reachability cuts violées, on considère tous les couples possibles (client i, segment p) et,
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pour chacun d’entre eux, on résout un problème de flot maximum sur le graphe support

G = ({j|j ∈ Cp} ∪ {op}, Ap−
i ).

Inégalités d’élimination de sous-ensembles

Une autre technique d’accélération consiste à utiliser une famille d’inégalités valides appelées

les inégalités d’élimination de sous-ensembles. Ces inégalités proviennent des contraintes (5.9).

Proposition 2. Soit un ensemble S de clients et un segment p, soit Lp(S) la longueur du

plus court chemin du noeud op au noeud dp desservant tous les clients contenus dans S. Si

Lp(S) > ∆p, alors l’inégalité valide d’élimination de sous-ensembles :

xp(S) 6 |S| − 1 (5.17)

est valide.

Notons que pour |S| = 2, on a xp
i + xp

j 6 1. Ces inégalités ont déjà été générées lors du

prétraitement. Dans notre algorithme de branch and cut, ces inégalités sont générées pour

3 6 |S| 6 Smax.

Les contraintes (5.17) sont séparées de façon heuristique. Etant donnée une solution (x̃, ỹ) et

un segment p, on range dans un premier temps les clients i vérifiant x̃p
i > 0 par ordre décrois-

sant des x̃p
i . A partir de cette liste ordonnée, on identifie les k-uplets {i1, i2, ..., ik} vérifiant

x̃p
i1
+ x̃p

i2
+ ...+ x̃p

ik
> k− 1. Pour chacun de ces k-uplets, on regarde si (op, i1, i2, ..., ik, d

p) est

admissible. Si tel est le cas, il n’y a pas d’inégalité de sous-ensemble violée pour ce k-uplet et

ce segment. Sinon, on identifie le plus court chemin de op vers dp desservant tous les clients du

k-uplet. Si le plus court chemin n’est pas admissible, on a identifié une inégalité d’élimination

de sous-ensemble violée de taille k avec S = {i1, i2, ..., ik}.

Relaxation lagrangienne

On peut observer que le modèle d’insertion des clients optionnels dans le squelette présente

une structure bloc-angulaire (avec pour seules contraintes liantes les contraintes (5.6)) et

peut être décomposé en sous-problèmes (un par segment) si on ne prend pas en compte

les contraintes (5.6). Une approche de résolution consiste donc à relâcher ces contraintes

liantes et à leur attribuer un multiplicateur de Lagrange (i.e. une pénalité) dans la fonction

objectif, obtenant ainsi la relaxation lagrangienne R(u) pour une valeur donnée de u =

(u1, u2, ..., u|O|) :

max
∑

p∈P

∑

i∈O

pix
p
i − α

∑

p∈P

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij +

∑

i∈O

ui(1−
∑

p∈P

xp
i )
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sujet aux contraintes (5.7) à (5.11)

Afin de pouvoir décomposer ce problème en sous-problèmes, on reformule la fonction

objectif comme suit :

max
∑

p∈P

∑

i∈O

(pi − ui)x
p
i − α

∑

p∈P

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij +

∑

i∈O

ui

Comme le dernier terme
∑

i∈O ui est constant pour un vecteur u donné, on peut décom-

poser R(u) en sous-problèmes. Pour un segment p, le sous-problème Rp(u) s’écrit :

max
∑

i∈O

(pi − ui)x
p
i − α

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij

sujet à :

∑

j∈O∪{dp}

ypij = xp
i ∀i ∈ O (5.18)

∑

i∈O∪{op}

ypij = xp
j ∀j ∈ O (5.19)

∑

i∈O∪dp

ypopi = 1 (5.20)

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij +

∑

i∈O

σ̃ix
p
i 6 ∆p (5.21)

∑

i∈S

∑

j∈S

ypij 6
∑

i∈S\{l}

xp
i ∀S ⊂ O, |S| > 2, ∀l ∈ S (5.22)

ypij ∈ {0; 1} ∀i ∈ O ∪ {op}, j ∈ O ∪ {dp}

xp
i ∈ {0; 1} ∀i ∈ O

Afin de procéder à l’insertion des clients optionnels dans le squelette, comme le vecteur u

peut prendre un grand nombre de valeurs, on doit résoudre le problème du dual lagrangien,

qui peut être formulé comme suit :

min
u

(

max
x

∑

p∈P

∑

i∈O

pix
p
i − α

∑

p∈P

∑

i∈O∪{op}

∑

j∈O∪{dp}

τ̃ijy
p
ij +

∑

i∈O

ui(1−
∑

p∈P

xp
i )

)

Pour résoudre le dual lagrangien, on applique l’algorithme des sous-gradients. Pour cet

algorithme, on a besoin d’une bonne borne inférieure (afin d’assurer la convergence de la mé-

thode). Pour ce faire, on construit une solution réalisable en utilisant l’heuristique d’insertion

présenté dans la section 5.1.2 et on améliore la solution ainsi obtenue en utilisant des opéra-

teurs de type string exchange, arc exchange et relocalisation (en interdisant le déplacement
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de tout client obligatoire). Soit ω la valeur de cette solution (valeur de la borne inférieure),

ǫ ∈ [0; 2] et u0 = (0, 0, ..., 0), on procède comme suit à chaque itération k de l’algorithme du

sous-gradient :

Iteration k :

– u = uk

– Pour chaque segment p ∈ P , résoudre Rp(uk) avec estimés pessimistes pour les temps de

service et de parcours, en utilisant la méthode de branch and cut décrite précédemment

et les techniques d’accélération. On obtient ainsi la solution (xp
i )i∈O,p∈P .

– Avec les valeurs (xp
i )i∈O,p∈P de la solution obtenue, calculer la valeur z(uk) de la solution

de R(uk).

– Calculer la longueur de pas µk et la direction du pas Dk
i pour tout i ∈ O avec les

formules :

µk =
ǫ(z(uk)− ω)

∑

i∈O

(
1−

∑

p∈P

xp
i

)2
et Dk

i = 1−
∑

p∈P

xp
i

– Calculer le nouveau vecteur uk+1 avec uk+1
i = max(uk

i + µkD
k
i , 0).

– k ← k + 1

L’algorithme des sous-gradients finit soit quand le gap entre la meilleure borne supérieure

mink z(u
k) et la meilleure borne inférieure maxk ω

k descend en-dessous d’un certain seuil

Gend, soit après un nombre fixé d’itérations Imax. On récupère alors la meilleure solution

réalisable trouvée (soit la meilleure borne inférieure).

Afin d’accélérer la convergence, on propose deux modifications de la méthode : utiliser la

méthode de Kiev pour le calcul des sous-gradients et calculer des bornes inférieures à chaque

itération afin de remplacer ω par la meilleure borne inférieure.

Dans la méthode de Kiev, à l’itération k, au lieu de prendre en compte seulement le sous-

gradient en uk, on propose de prendre en compte une combinaison convexe du sous-gradient

en uk et du sous-gradient en uk−1. On introduit donc un coefficient β ∈ [0; 1] pour cette

combinaison convexe, et on note (x
p(k)
i )i∈O,p∈P la solution obtenue à l’itération k. A présent,

les longueurs et directions des pas sont obtenues avec les formules :

µk =
ǫ(z(uk)− ω)

√
∑

i∈O

(
1−

∑

p∈P

x
p(k)
i

)2
et Dk

i =

1−
∑

p∈P

(

βx
p(k)
i + (1− β)x

p(k−1)
i

)

√
∑

i∈O

(

1−
∑

p∈P

(

βx
p(k)
i + (1− β)x

p(k−1)
i

))

Aussi, on calcule une nouvelle borne inférieure ωk à chaque itération. Avec l’ensemble de ces

bornes inférieures, on peut alors sélectionner la meilleure borne inférieure à chaque itération
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(maxk ωk) et utiliser cette meilleure borne inférieure dans les formules ci-dessus au lieu de la

borne inférieure initiale (on pose ω = maxk ωk). Pour calculer une nouvelle borne inférieure

à l’itération k, on répare la solution obtenue à l’itération k en supprimant les doublons. Puis

on améliore la solution en procédant à des string exchange, arc exchange et relocalisation

successives (sans déplacer les clients obligatoires). On obtient ainsi une solution réalisable,

i.e. une nouvelle borne inférieure comme il s’agit d’un problème de maximisation.

Cette méthode heuristique, basée sur la relaxation lagrangienne, nous permet d’obtenir

une borne inférieure de qualité pour la solution au problème d’insertion des clients optionnels

dans le squelette. De plus, étant donnée sa rapidité de convergence, elle rend possible la

résolution d’instances de plus grande taille.

Comme nous résolvons ici le problème segment par segment avec des estimés pessimistes,

après la relaxation lagrangienne, on peut obtenir, comme précédemment, une solution avec

une probabilité très faible d’être réalisable. On applique donc les algorithmes de réparation

et d’amélioration à la solution obtenue (cf. section 5.1.2).

Algorithmes de réparation et d’amélioration de solution

Comme nous l’avons mentionné précédemment, lors de l’insertion des clients optionnels dans

le squelette, on peut obtenir des routes avec une faible probabilité de faisabilité. Dans cette

phase, on essaye d’insérer des clients optionnels dans le squelette tout en assurant, sur chaque

segment p, que la longueur d’une route n’excède pas la longueur du segment ∆p. Mais la

longueur d’un segment est définie par la formule ∆p = ldp − eop −σop . Dans le pire des cas, la

longueur du segment est plutôt ldp− lop−σop . Pour cette raison, la probabilité pour une route

d’être réalisable peut s’avérer très faible. Afin d’éviter cet écueil, on introduit un nouveau

paramètre F comme étant le seuil de réalisabilité. On propose une procédure consistant à

réparer dans un premier temps la solution (afin que chaque route ait une probabilité d’être

réalisable supérieure ou égale à F ). Ensuite, on améliore la solution en essayant d’insérer les

clients non desservis et de repositionner les clients tout en assurant la probabilité F pour

chaque route.

Une description pseudo-code de la procédure de réparation est donnée dans l’algorithme

1. Soit Pk l’ensemble des segments associés au véhicule k. Etant donnée la route prévue

pour un véhicule k (et les segments associés Pk), en utilisant les distributions de probabi-

lité des temps de service et de parcours, on peut calculer pour chaque client obligatoire les

heures d’arrivée possibles ainsi que les probabilités associées. calculerProbaFaisable(op, dp)

retourne la probabilité pour une route d’être réalisable en dp (probabilité d’arriver avant

ldp), connaissant les heures d’arrivée possibles et les probabilités associées en op. On note

clientP lusGrandDetour(a, b) la fonction qui renvoie le client situé entre a et b (a et b exclus)
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générant le plus grand détour du point de vue des temps de parcours. L’algorithme de répa-

ration consiste à enlever le client générant le plus grand détour jusqu’à ce que la probabilité

de faisabilité soit suffisante.

pour chaque k ∈ K faire
pour chaque p ∈ Pk faire

proba← calculerProbaFaisable(op, dp);
tant que proba < F faire

c← clientP lusGrandDetour(op, dp);
enlever le client c;
proba← calculerProbaFaisable(op, dp);

fin

fin

fin
Algorithm 1: Réparation de la solution

La description en pseudo-code de l’algorithme d’amélioration est donnée dans l’algorithme

2. Dans cet algorithme, soient N le nombre total de clients, L une liste vide et U la liste des

clients non desservis. clientP lusGrandDetour(L) retourne le client n’appartenant pas à L,

et générant le plus grand détour dans la solution. meilleureInsertion(c) renvoie la meilleure

insertion possible (du point de vue des temps de parcours) pour le client c dans la solution

(une insertion étant définie par une route, une position et un profit d’insertion). Une insertion

est impossible si elle génère une route avec une probabilité de réalisabilité plus petite que F

ou si des fenêtres de temps ne sont pas respectées. meilleureInsertion(U), avec U une liste

de clients, est une méthode consistant à : récupérer la meilleure insertion possible sur toutes

les routes et tous les clients de U et à procéder à cette insertion si elle présente un intérêt,

jusqu’à ce qu’aucun client ne puisse plus être inséré. Dans cet algorithme, une insertion ne

sera pas considérée si le seuil de réalisabilité n’est pas respecté.

Pour procéder à la réparation et à l’amélioration d’une solution, on propose deux va-

riantes. Dans la première (que l’on appellera V 1), on procède à une exécution de l’algorithme

de réparation puis on exécute l’algorithme d’amélioration une seule fois. Dans la deuxième

variante (appelée V 2), on procède à une exécution de l’algorithme de réparation mais on

exécute l’algorithme d’amélioration jusqu’à ce que la solution ne puisse plus être améliorée.

5.2 Etape d’exécution

Au début de l’étape d’exécution, on dispose, pour chaque véhicule, d’une route conte-

nant à la fois des clients obligatoires et des clients optionnels, obtenue à la fin de l’étape

de planification. Le but de l’étape d’exécution est d’ajuster les routes planifiées à la réalité.
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U ← ClientsNonDesservis();
meilleureInsertion(U);
L← [] ;
tant que taille(L) < N − taille(U) faire

c← clientP lusGrandDetour(L);
(bestRoute, bestPosition, bestProfit)← meilleureInsertion(c);
si meilleurProfit > 0 alors

insérer le client c dans la route bestRoute en position bestPosition;
enlever le client c de la liste U ;

fin
ajouter c dans la liste L;

fin
Algorithm 2: Amélioration de la solution

Jusqu’ici, nous avons supposé que les temps de service et de parcours étaient soit à leur borne

supérieure, soit à leur borne inférieure. Dans cette étape, on prend en compte la stochasticité

sur les temps de service et de parcours et on modifie le planning en temps réel pour faire face

à cette stochasticité. On suppose que les segments sont rangés comme suit (cf. chapitre 3,

figure 4.1) : le segment p+ 1 a pour origine le client obligatoire op+1 = dp (client obligatoire

correspondant à la destination du segment p).

Chaque étape de programmation dynamique correspond à la fin de service chez un client

(obligatoire ou optionnel). A chaque étape, on dispose d’une liste de clients optionnels non

desservis qui peuvent être servis avant le prochain client obligatoire. Dans ce contexte, deux

options sont à considérer : soit le véhicule se rend directement chez le prochain client obliga-

toire, soit il visite le client optionnel de cette liste qui maximise le profit.

On définit les paramètres suivants :

Γj pénalité de retard au client obligatoire j

lj fin de la fenêtre de temps pour le client obligatoire j

τij temps de parcours du client i au client j (τ ij 6 τij 6 τ ij)

σi temps de service au client i (σi 6 σi 6 σi)

A l’étape k, on définit :
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vk client où se trouve le véhicule à l’étape k

tk heure de fin de service au client vk

V p liste ordonnée de clients optionnels associés au segment p

Ṽ p = V p ∪ op liste de clients optionnels associés au segment p + client origine du segment

p

V̄ p
k liste de clients optionnels du segment p situés après vk

Avec ces notations, on propose deux algorithmes distincts de programmation dynamique.

Dans le premier algorithme, on considère un seul segment p tandis que l’on prend en compte

le reste de la route dans le second.

– Méthode considérant un segment (OS)

Dans le premier algorithme, quand un véhicule finit de servir un client, deux possibi-

lités s’offrent à lui (cf. chapitre 3, figure 4.2). Soit il se rend directement au prochain

client obligatoire dp, touchant ainsi un revenu correspondant au profit espéré en dp.

Soit il visite le client optionnel v̄ de V̄ p
k maximisant le profit espéré (profit asssocié à la

visite du client v̄ + profit espéré en v̄). Dans cet algorithme, le profit espéré au client

obligatoire dp est l’opposé de la pénalité de retard chez ce client. La fonction de revenu

de la première méthode peut donc s’écrire comme suit :

f(vk, tk, V̄
p
k ) = max

(
E[f(dp, tk+τvkdp , ∅)],maxv̄∈V̄ p

k
(pv̄+E[f(v̄, tk+τvk v̄+σv̄, V̄

p
k \{v̄})])

)

avec f(dp, t, ∅) = −Γdp max(t− ldp , 0)

– Méthode considérant toute la route (WR)

Dans le deuxième algorithme, le seul changement concerne le revenu associé au client

obligatoire dp au temps t : ce revenu comprend toujours l’opposé de la pénalité de

retard chez ce client mais il comprend aussi le profit espéré associé à la fin de service

du client dp au temps t+σdp . La fonction de revenu du deuxième algorithme s’écrit donc :

f(vk, tk, V̄
p
k ) = max

(
E[f̂(dp, tk + τvkdp)],maxv̄∈V̄ p

k
(pv̄ + E[f(v̄, tk + τvk v̄, V̄

p
k \{v̄})])

)

avec f̂(dp, t) = −Γdp max(t− ldp , 0) + f(dp, t+ σdp , V
p+1)
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En résolvant ces équations de Bellman, on obtient les seuils de la politique optimale. En effet,

pour chaque client, on obtient différents seuils temporels définissant des intervalles de temps.

A chacun de ces intervalles est associée une décision optimale (par exemple, si t ∈ [t1, t2[, se

rendre au client c).

5.3 Expérimentation

5.3.1 Contexte expérimental

L’étape de planification est résolue de façon exacte avec Cplex 12.4 pour des instances

contenant jusqu’à 40 clients. Pour l’établissement du squelette, on utilise un algorithme de

branch and bound tandis que, pour l’insertion des clients optionnels, on utilise un algorithme

de branch and cut dans lequel on ajoute dynamiquement les contraintes d’élimination de

sous-tours (5.11). Pour des instances plus grandes (avec 50 clients), on utilise un algorithme

de branch and bound pour le squelette, mais on utilise une relaxation lagrangienne pour

l’insertion des clients optionnels dans le squelette. Dans les deux cas, à la fin de l’étape

de planification, on utilise des algorithmes de réparation et d’amélioration afin d’obtenir des

routes avec une probabilité suffisante d’être réalisables. En ce qui concerne l’étape d’exécution,

on utilise des outils de programmation dynamique pour trouver la politique optimale. On

obtient ainsi, pour chaque client, une liste de seuils et de décisions associées correspondant à

la politique optimale. Ensuite, on procède à 100 simulations par instance, chaque simulation

consistant d’abord à générer des temps de parcours et de service stochastiques puis, à chaque

fois que le service chez un client s’achève, à comparer l’heure de fin de service avec les seuils

et à prendre la décision optimale déterminée par l’algorithme de programmation dynamique.

Les tests ont été effectués sur une machine avec 4CPU, 2.8GHz et 30Go de RAM.

5.3.2 Réglage des paramètres

Concernant le réglage des paramètres, nous nous sommes inspirés des valeurs choisies par

Tricoire [68]. Ainsi, nous considérons un horizon de temps de 8 heures, soit 480 minutes.

De plus, comme il propose de considérer une vitesse moyenne de 35km/h, nous avons choisi

une vitesse minimale vmin = 20km/h et une vitesse maximale vmax = 50km/h (observant

ainsi une valeur moyenne de 35km/h), valables sur l’ensemble du réseau routier. Après avoir

converti ces valeurs vmin et vmax en unités arbitraires par minute, on calcule le temps de

parcours unitaire minimal δ = ⌈100/vmax⌉ et maximal δ = ⌈100/vmin⌉. Les temps de parcours

minimaux et maximaux sont ensuite obtenus en utilisant les formules τ ij =
⌈

Dijδ
⌉

et τ ij =
⌈

Dijδ
⌉

. Pour le réglage des temps de service, nous avons considéré que les temps de service
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des clients optionnels étaient compris entre 15 et 30 minutes tandis que ceux des clients

obligatoires étaient compris entre 30 et 60 minutes. Pour l’insertion des client optionnels,

nous avons supposé que le service d’un client optionnel, quel qu’il soit, génère un profit

pi = 100. Afin de bien choisir la valeur du paramètre α pour la pondération des temps de

parcours dans la fonction objectif de la deuxième phase, nous avons procédé à quelques tests.

En choisissant α = 1, on s’assure de préférer insérer des clients optionnels au fait de parcourir

une moins grande distance. Pour la programmation dynamique, on choisit une pénalité de

retard Γdp = 5000 pour tout p. Enfin, pour les simulations, afin d’avoir des temps de parcours

et de service inattendus, on diminue la vitesse minimale à 15km/h et on augmente le temps

de service maximal pour les clients obligatoires à 90 min. Dans cette section, nous procédons

au réglage des paramètres pour la deuxième phase de l’étape de planification (l’insertion des

clients optionnels). Nous verrons d’abord le réglage des paramètres du branch and cut, puis

celui des méthodes de réparation et d’amélioration, et enfin, nous règlerons les paramètres

pour la relaxation lagrangienne.

Paramètres du branch and cut

Dans le cadre de l’algorithme de branch and cut pour l’insertion des clients optionnels

dans le squelette des clients obligatoires, nous avons proposé des techniques d’accélération (cf.

section 5.1.2) telles que les reachability cuts et les inégalités d’élimination de sous-ensembles.

Pour ajuster la valeur de Lmax (taille maximale des segments sur lesquels on génère des

contraintes de type reachability cuts au lieu des contraintes classiques d’élimination de sous-

tours), nous avons procédé à plusieurs tests sur des petites instances (contenant 30 clients

et 3 véhicules). Les résultats obtenus en faisant varier Lmax entre 0 et l’horizon de temps

(Lmax = 480) sont synthétisés dans le tableau 5.1. Contrairement à ce qui était attendu, on

observe dans le tableau 5.1 que les meilleurs temps de calcul sont obtenus pour L = 480 (i.e.

l’horizon de temps), soit lorsque l’on génère les reachability cuts sur tous les segments. En

effet, section 5.1.2 du paragraphe 5.1.2, nous avons mentionné que les contraintes de type

reachability cuts sont plus fortes que les contraintes d’élimination de sous-tours. Ainsi, indé-

pendamment de la taille des segments, on préfère générer les reachability cuts plutôt que les

contraintes d’élimination de sous-tours.

Pour le choix de la taille maximale Smax des inégalités d’élimination de sous-ensembles

générées, nous avons également conduit une série de tests synthétisés dans le tableau 5.2. On

observe dans ce tableau que les meilleurs temps de calcul sont obtenus pour Smax = 6, soit

lorsque l’on génère des inégalités d’élimination de sous-ensembles contenant au plus 6 clients.

On choisira donc Smax = 6. En effet, pour Smax = 7, on ne génère quasiment aucune inégalité
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Tableau 5.1 Réglage de Lmax (taille maximale des segments pour les reachability cuts)

Nombre de
Instances clients L=0 L=80 L=160 L=240 L=320 L=400 L=480

obligatoires
C1 1 5

5

4 5 4 27 14 4 4
C1 2 5 10 11 11 23 23 24 10
C1 3 5 39 40 40 46 46 46 29
C1 4 5 1159 1208 1190 609 607 610 263
C1 5 5 55 55 35 57 57 57 41
C1 1 6

6

69 69 90 97 97 97 68
C1 2 6 139 136 100 64 64 64 82
C1 3 6 267 259 263 206 165 166 148
C1 4 6 120 120 120 82 83 83 76
C1 5 6 1024 1033 1041 247 319 322 320
C1 1 7

7

1219 1230 1427 565 559 561 559
C1 2 7 26 27 23 16 19 19 18
C1 3 7 75 75 75 63 47 47 47
C1 4 7 96 97 77 92 92 92 47
C1 5 7 54 54 54 36 37 37 36
C1 1 8

8

315 317 316 115 117 117 117
C1 2 8 25 25 29 25 62 18 18
C1 3 8 13 13 14 24 12 12 12
C1 4 8 76 78 75 80 80 80 76
C1 5 8 23 24 23 23 31 31 31
C1 1 9

9

101 98 98 35 35 35 35
C1 2 9 28 27 27 25 41 41 41
C1 3 9 28 28 28 41 41 24 24
C1 4 9 134 132 132 110 110 80 80
C1 5 9 7 8 8 11 12 6 6

de sous-ensemble de taille 7. On passe donc plus de temps à rechercher des inégalités valides

qu’à en générer, ce qui représente une perte de temps. D’autre part, étant donné que l’on ne

génère quasiment aucune inégalité de sous-ensembles de taille 7, il est inutile de procéder à

des tests avec Smax > 7.
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Tableau 5.2 Réglage de Smax (taille maximale des inégalités d’élimination de sous-ensembles)

Nombre de
Instances clients Smax = 3 Smax = 4 Smax = 5 Smax = 6 Smax = 7

obligatoires
C1 1 5

5

4 4 4 4 4
C1 2 5 8 8 8 12 17
C1 3 5 27 28 27 26 28
C1 4 5 163 131 177 139 153
C1 5 5 32 34 34 34 46
C1 1 6

6

61 40 44 40 44
C1 2 6 65 58 59 55 60
C1 3 6 124 76 68 80 75
C1 4 6 69 46 45 53 59
C1 5 6 211 105 102 102 102
C1 1 7

7

368 145 144 144 145
C1 2 7 16 16 16 15 15
C1 3 7 28 21 21 21 21
C1 4 7 65 64 51 53 49
C1 5 7 52 33 33 33 33
C1 1 8

8

66 56 56 56 56
C1 2 8 21 28 21 23 22
C1 3 8 17 13 12 13 12
C1 4 8 63 46 58 60 70
C1 5 8 22 23 25 17 16
C1 1 9

9

31 23 23 23 23
C1 2 9 21 26 25 26 27
C1 3 9 28 29 33 26 27
C1 4 9 69 46 42 40 40
C1 5 9 5 7 7 7 6

Paramètres des algorithmes de réparation et d’amélioration

Dans l’étape de planification, lors de l’insertion des clients optionnels, nous avons proposé

des algorithmes de réparation et d’amélioration afin de s’assurer que les routes construites

aient une probabilité suffisante d’être réalisable (cf. section 5.1.2). Afin de choisir le meilleur

réglage du paramètre F (seuil de faisabilité d’une route) et de la variante à utiliser, nous

avons procédé à un ensemble de tests dont les résultats sont regroupés dans le tableau 5.3.

On y observe que le nombre de clients desservis ainsi que la distance totale parcourue sont

plus grands dans la variante V2 tandis que le retard moyen reste comparable dans les deux

variantes. On choisira donc la variante V2 afin de privilégier l’insertion des clients optionnels.

Quant au choix de la valeur F , on remarque que les résultats sont moins variables pour

F = 0.9. En effet, dans certains cas, on peut avoir un nombre de clients non desservis

nettement plus faible avec F = 0.8 et dans d’autres cas, c’est le contraire. Il en va de même

pour la distance totale et le retard. Pour favoriser la qualité de la solution obtenue, on choisit

donc F = 0.9 pour la suite des expérimentations.
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Tableau 5.3 Impact de la variante et du paramètre F sur les résultats obtenus

# de
clients
oblig.

30 clients 40 clients
variante V1 variante V2 variante V1 variante V2

F = 0.8 F = 0.9 F = 0.8 F = 0.9 F = 0.8 F = 0.9 F = 0.8 F = 0.9
WR OS WR OS WR OS WR OS WR OS WR OS WR OS WR OS

nb moyen
de clients
non
desservis

5 5.82 3.72 5.98 3.93 4.03 3.53 5.33 3.36 10.91 10.13 10.87 10.09 9.74 9.73 9.66 9.66
6 8.48 8.09 5.53 5.54 8.44 8.00 5.59 5.55 13.49 12.73 12.96 12.96 12.54 12.53 12.69 12.68
7 6.47 5.84 9.24 8.61 6.41 5.65 5.52 5.51 13.84 13.11 13.28 13.28 13.00 13.02 13.28 13.28
8 6.24 6.32 7.57 6.17 6.86 6.23 7.55 6.13 13.43 13.42 13.32 13.32 13.40 13.38 13.21 13.22
9 6.65 6.65 7.08 6.42 6.59 6.59 7.03 6.36 14.93 14.41 14.24 14.33 13.94 14.02 14.51 14.00

distance
parcou-
rue en
moyenne

5 198 209 199 210 206 210 199 211 189 191 189 191 196 196 193 194
6 211 214 212 212 212 214 212 212 200 202 202 202 205 204 204 204
7 200 203 201 204 204 207 209 209 191 194 198 198 195 196 198 198
8 212 213 195 204 209 211 195 204 197 198 198 198 198 198 198 198
9 202 202 197 202 202 202 197 201 188 189 193 191 192 192 189 191

retard
moyen

5 2.03 2.06 2.01 2.05 2.03 2.06 1.99 2.03 1.82 1.85 1.79 1.80 1.80 1.85 1.77 1.81
6 43.07 43.07 3.09 3.10 43.07 43.12 3.09 3.15 2.59 2.62 2.65 2.65 2.61 2.64 2.65 2.65
7 2.68 2.76 2.68 2.75 2.71 2.79 2.70 2.77 2.52 2.54 2.41 2.45 2.52 2.54 2.41 2.45
8 4.76 3.48 3.14 3.24 3.51 3.58 3.18 3.24 3.63 3.67 3.62 3.61 3.59 3.69 3.60 3.61
9 4.82 4.79 4.65 4.65 4.92 4.89 4.62 4.63 6.69 5.61 6.71 5.60 6.71 5.57 6.75 5.59

Légende :

Variante V1 = une réparation et une amélioration

Variante V2 = une réparation et autant d’améliorations que possible

F = seuil pour la probabilité de faisabilité

WR = stratégie de programmation dynamique considérant toute la route

OS = stratégie de programmation dynamique considérant un seul segment
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Paramètres de la relaxation lagrangienne

Dans l’étape de planification, nous avons proposé une méthode heuristique, basée sur la

relaxation lagrangienne, pour résoudre le problème d’insertion des clients optionnels dans

le squelette (cf.section 5.1.2). Cette méthode heuristique fait appel à l’algorithme du sous-

gradient dans lequel interviennent deux paramètres : ǫ et β. Pour le premier paramètre, on

choisit ǫ = 1. Pour le réglage de β, nous avons réalisé des tests de convergence en procédant

à 100 itérations de l’algorithme du sous-gradient. La moyenne des résultats obtenus sur

l’ensemble des instances à 30 clients en faisant varier β entre 0 et 1 avec un pas de 0.1 nous

a permis de tracer le graphique 5.3 (pour plus de lisibilité, nous n’avons retenu que quelques

unes de ces courbes). Dans ce graphique, on a choisi comme origine de l’axe des ordonnées

la moyenne des solutions optimales des instances à 30 clients.

Dans ce graphique, on peut constater que la courbe pour β = 1 (donc sans la méthode de

Kiev) présente une convergence comparable à celle obtenue avec toute autre valeur de β. On

choisira donc de ne pas prendre en compte la méthode de Kiev (ou β = 1). Aussi, on constate

que, dès 50 itérations, on atteint le palier de convergence. Comme on applique un algorithme

de réparation et d’amélioration après la relaxation lagrangienne, on choisit donc de se limiter

à Imax = 50 itérations. On choisit également d’arrêter l’algorithme si le gap entre la meilleure

borne supérieure et la meilleure borne inférieure est inférieur à Gend = 2%.

Les résultats obtenus en comparant les différentes variantes de l’algorithme du sous-

gradient sont synthétisés dans le tableau 5.4. Dans ce tableau, les en-têtes de colonnes sont les

suivants : SG : méthode du sous-gradient classique ; LB : calcul de bornes inférieures à chaque

itération ; K : méthode de Kiev. Aussi, dans les deux premières variantes, on fixe le nombre

d’itérations à 100 tandis que, dans la dernière variante, on pose Imax = 50 et Gend = 2%.

Pour l’analyse des résultats, on notera SG la première variante (colonne intitulée SG, nb

iter = 100), SG,LB la deuxième variante (SG, LB, nb iter = 100) et SG,LB, Imax la dernière

variante (SG,LB, Imax = 50, Gend = 2%). On peut constater dans le tableau 5.4 que, pour

la variante classique du sous-gradient (SG), le gap entre la meilleure borne supérieure et la

meilleure borne inférieure peut aller jusque 30%, tandis qu’il est en-dessous de 8% avec l’ajout

des bornes inférieures (SG, LB). De même, le gap entre la meilleure borne supérieure et la

solution optimale pouvait atteindre 11% et se situe désormais sous la barre des 8%. Enfin, on

remarque que la borne inférieure fournie par la variante SG,LB est à moins de 3% et même,

très souvent, à 0% de la solution optimale. Par contre, les temps de calcul de cette variante

sont nettement plus élevés qu’avec la variante classique du sous-gradient. D’où l’intérêt de la

troisième variante (avec Gend et Imax), dans laquelle on résout toutes les instances en moins de

8 minutes. De plus, dans cette variante, les gaps sont légèrement détériorés mais on constate

tout de même que les bornes inférieures fournies dans cette variante restent à moins de 3.5%
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de la solution optimale et, pour la plupart, se trouvent même à moins de 1% de l’optimalité.

Ce qui valide notre choix de la troisième variante : sous-gradient avec bornes inférieures,

Gend = 2% et Imax = 50 itérations.
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Figure 5.3 Influence du paramètre β sur la convergence de la méthode du sous-gradient
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Tableau 5.4 Convergence de la méthode du sous-gradient suivant la variante choisie

Instance
SG (nb iter = 100) SG, LB (nb iter = 100) SG, LB (Imax = 50, Gend = 2%)

Temps Gap opt Gap LB
Gap

LB-opt
Temps Gap opt Gap LB

Gap
LB-opt

Temps nb Iter Gap opt Gap LB
Gap

LB-opt
C1 1 5 120 2,03% 12,91% 9,63% 510 0,05% 0,05% 0,00% 294 41 1,87% 1,87% 0,00%
C1 2 5 263 0,39% 3,51% 3,01% 447 0,45% 0,45% 0,00% 64 12 1,95% 1,95% 0,00%
C1 3 5 449 2,99% 6,61% 3,40% 428 1,81% 1,81% 0,00% 180 50 2,71% 2,71% 0,00%
C1 4 5 710 4,59% 13,80% 8,09% 698 2,04% 2,19% 0,15% 370 50 2,04% 2,19% 0,15%
C1 5 5 279 2,46% 9,76% 6,65% 499 0,00% 0,00% 0,00% 51 10 0,20% 1,41% 1,20%
C1 1 6 199 6,40% 16,37% 8,56% 293 2,83% 2,98% 0,15% 166 50 2,83% 2,98% 0,15%
C1 2 6 457 6,90% 18,93% 10,11% 557 2,65% 2,65% 0,00% 309 50 2,65% 2,65% 0,00%
C1 3 6 298 10,59% 29,54% 14,63% 514 3,68% 3,68% 0,00% 277 50 3,68% 3,68% 0,00%
C1 4 6 468 6,10% 16,08% 8,60% 571 2,58% 2,74% 0,16% 304 50 2,58% 2,74% 0,16%
C1 5 6 178 9,03% 26,26% 13,65% 427 3,10% 3,71% 0,59% 252 50 3,96% 4,58% 0,59%
C1 1 7 272 0,29% 1,77% 1,45% 267 0,10% 0,10% 0,00% 25 9 0,87% 0,87% 0,00%
C1 2 7 174 6,93% 25,82% 15,01% 429 0,20% 0,20% 0,00% 59 12 1,77% 1,77% 0,00%
C1 3 7 59 6,96% 22,12% 12,41% 224 3,07% 3,07% 0,00% 132 50 3,14% 3,14% 0,00%
C1 4 7 324 6,18% 17,67% 9,76% 445 3,42% 6,36% 2,77% 246 50 3,66% 6,61% 2,77%
C1 5 7 129 8,35% 25,26% 13,51% 341 0,00% 0,15% 0,15% 49 14 1,21% 1,75% 0,53%
C1 1 8 167 8,82% 9,82% 0,92% 245 7,90% 7,90% 0,00% 141 50 7,90% 7,90% 0,00%
C1 2 8 197 3,59% 11,04% 6,70% 373 0,48% 0,48% 0,00% 128 27 1,24% 1,88% 0,62%
C1 3 8 89 4,25% 9,02% 4,38% 186 2,29% 2,36% 0,07% 125 50 3,17% 3,45% 0,27%
C1 4 8 259 4,97% 14,35% 8,20% 388 1,82% 1,82% 0,00% 75 19 1,82% 1,82% 0,00%
C1 5 8 230 1,43% 3,95% 2,43% 350 0,50% 0,57% 0,07% 124 30 1,50% 1,57% 0,07%
C1 1 9 82 10,17% 21,31% 9,19% 152 4,99% 4,99% 0,00% 86 50 5,28% 5,28% 0,00%
C1 2 9 125 11,38% 29,66% 14,10% 329 0,40% 0,40% 0,00% 85 23 1,68% 1,68% 0,00%
C1 3 9 242 1,85% 4,49% 2,52% 279 0,00% 0,00% 0,00% 97 32 0,93% 1,10% 0,17%
C1 4 9 200 3,53% 12,19% 7,71% 284 1,67% 1,67% 0,00% 163 50 1,67% 5,19% 3,35%
C1 5 9 238 0,00% 2,30% 2,25% 378 0,00% 0,00% 0,00% 64 16 1,53% 1,53% 0,00%
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5.3.3 Résultats de l’étape de planification

Dans le tableau 5.5 sont reportés les temps de calcul moyens de l’étape de planification

dans laquelle l’insertion des clients optionnels consiste en un seul temps (celui avec les estimés

pessimistes). On a limité les temps de calcul à 2 heures (soit 7200s). Si le problème n’a pas

pu être résolu dans ce délai, on remplace le temps de calcul par un « - ». De nombreuses

variantes de l’algorithme de branch and cut sont considérées. Les en-têtes de colonnes sont

les suivants : # résolus : nombre d’instances résolues à optimalité en moins de 2 heures ;

Temps moyen : moyenne des temps de calcul sur les instances résolues à optimalité ; B&C :

branch and cut (avec une priorité de branchement sur les variables x) ; P : Prétraitement

sur les variables ; H : Heuristique pour générer une solution initiale ; RC : Reachability cuts ;

SEI : Inégalités d’élimination de sous-ensembles. Dans le tableau 5.5, on peut observer une

Tableau 5.5 Etape de planification : Temps de calcul moyens (en secondes)

# de
clients

#
d’obli-
gatoires

#
d’ins-
tances

B&C B&C, P B&C, P, H B&C, P, H, RC
B&C, P, H,
RC, SEI

# ré-
solus

Temps
moyen

# ré-
solus

Temps
moyen

# ré-
solus

Temps
moyen

# ré-
solus

Temps
moyen

# ré-
solus

Temps
moyen

30

5 5 5 1813 5 237 5 253 5 68 5 43
6 5 4 2797 5 288 5 324 5 137 5 66
7 5 2 1118 5 408 5 294 5 138 5 53
8 5 4 1689 5 109 5 90 5 50 5 34
9 5 5 1613 5 69 5 60 5 37 5 24

40

5 5 0 - 0 - 0 - 1 3869 3 3277
6 5 0 - 3 1952 3 1720 4 1601 4 962
7 5 0 - 1 519 1 493 3 3736 4 1451
8 5 0 - 1 556 2 3428 2 1196 5 1880
9 5 0 - 3 2250 3 1988 3 1201 5 1053

nette diminution des temps de calcul à l’aide des différentes techniques d’accélération. Nous

pouvons résoudre toutes les instances avec 30 clients en un temps moyen d’une minute et la

plupart des instances à 40 clients en moins de 2 heures lorsque toutes les techniques d’accé-

lération sont mises en oeuvre.

Les résultats obtenus en comparant les méthodes de relaxation Lagrangienne et de branch

and cut sont synthétisés dans le tableau 5.6. Les en-têtes de colonnes sont les suivants : #

résolus : nombre d’instances résolues ; Gap moyen opt : gap moyen entre la meilleure borne

supérieure z et la valeur optimale z∗ (gap =
z − z∗

z∗
) ; Gap moyen LB : gap moyen entre z et

la meilleure borne inférieure z (gap =
z − z

z
) ; Gap moyen LB - opt : gap moyen entre z et

z∗ (gap =
z∗ − z

z∗
). Pour la méthode basée sur la relaxation lagrangienne, toutes les instances
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sont résolues dans le temps imparti. Toutefois, les instances ne sont pas résolues à l’optimalité,

étant donné qu’il s’agit d’une heuristique. On n’indiquera pas pour cette méthode le nombre

d’instances résolues à optimalité, étant donné que celui-ci est nul (sauf cas exceptionnel).

Tableau 5.6 Etape de planification : Branch and cut versus Relaxation Lagrangienne

# de
clients

#
d’obli-
gatoires

#
d’instances

Branch and cut Relaxation lagrangienne

# ré-
solus

Gap
moyen
LB

Temps
moyen

Gap
moyen
opt.

Gap
moyen
LB

Gap
moyen
LB-opt.

Temps
moyen

30

5 5 5 0.0% 43 1.75% 2.03% 0.27% 192
6 5 5 0.0% 66 3.14% 3.32% 0.18% 262
7 5 5 0.0% 53 2.13% 2.83% 0.66% 102
8 5 5 0.0% 34 3.13% 3.32% 0.19% 119
9 5 5 0.0% 24 2.22% 2.95% 0.70% 99

40

5 5 3 1.8% 3277 1.98% 2.64% 0.46% 1211
6 5 4 2.0% 962 1.99% 3.09% 0.52% 1106
7 5 4 0.8% 1451 1.60% 2.81% 0.27% 572
8 5 5 0.0% 1880 2.09% 2.42% 0.32% 532
9 5 5 0.0% 1053 1.35% 2.43% 1.04% 507

50

5 5 0 4.04% 7200 - 1.44% - 1227
6 5 1 4.99% 5960 0.33% 1.63% 0.00% 3064
7 5 1 4.03% 6820 0.88% 2.57% 0.07% 2844
8 5 0 7.50% 7200 - 2.40% - 2323
9 5 2 2.78% 5365 0.54% 2.13% 0.46% 1408

Dans le tableau 5.6, on peut observer que la méthode de relaxation lagrangienne est très

efficace sur toutes tailles d’instances. Ainsi, sur les instances à 30 et 40 clients, la meilleure

solution obtenue est à moins de 1% de la solution optimale. Et cette méthode nous permet

de résoudre les instances avec 50 clients et 3 véhicules en moins de 3100 secondes (environ

50 minutes). Pour la suite des résultats, nous utiliserons donc la méthode exacte pour les

instances à 30 et 40 clients et la méthode de relaxation lagrangienne pour celles à 50 clients.

Afin de tester notre méthode d’insertion des clients optionnels, nous avons procédé à des

tests sur les instances du Team Orienteering Problem proposées par Chao et al. [16], et avons

comparé nos résultats à ceux obtenus par Boussier et al. [11] avec une méthode de branch

and price. Les résultats obtenus en comparant ces deux méthodes sont regroupés dans le

tableau 5.7. Dans ce tableau, on peut constater, en moyenne, que l’algorithme de branch and

price proposé est plus performant que notre algorithme de branch and cut. La raison en est

la suivante : dans le problème de team orienteering, on considère un seul dépôt et tous les

véhicules partent de ce dépôt pour y retourner. Cela génère une certaine symétrie au niveau

du problème, qui n’apparâıt pas dans notre problème multi-dépôt. Dans notre algorithme de

branch and cut, afin de parer un minimum à cette symétrie, nous ajoutons des contraintes

du type
∑

i∈O xp
i 6

∑

i∈O xp+1
i , ∀p ∈ P . Mais celles-ci s’avèrent insuffisantes pour diminuer

suffisamment la symétrie du problème. Toutefois, avec notre branch and cut, nous avons tout
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Tableau 5.7 Comparaison du Branch and cut et du Branch and price sur les instances du
Team Orienteering Problem

Type
d’instance

Instance
Nombre
d’instances

Branch and cut Branch and price
Nb

résolus
Valeur
moyenne

CPU
moyen

Nb
résolus

Valeur
moyenne

CPU
moyen

p1
p1 2 18 18 140,0 13,2 15 116,0 127,5
p1 3 18 18 111,1 75,0 18 111,1 2,1
p1 4 18 18 84,2 120,2 18 84,2 0,1

p2
p2 2 11 11 190,5 0,4 11 190,5 0,1
p2 3 11 11 136,4 0,2 11 136,4 0,1
p2 4 11 11 94,5 0,0 11 94,5 0,0

p3
p3 2 20 20 496,0 16,1 12 357,5 283,4
p3 3 20 20 411,5 263,2 18 375,0 98,5
p3 4 20 18 305,6 476,8 20 336,5 0,9

p4
p4 2 20 3 332,7 1688,3 5 429,6 996,6
p4 3 20 4 141,3 1263,8 9 422,7 643,6
p4 4 20 6 90,8 330,2 11 344,3 65,8

p5
p5 2 26 8 162,5 674,8 11 275,5 470,2
p5 3 26 10 155,0 771,5 16 369,1 161,7
p5 4 26 10 100,0 288,7 23 476,2 103,7

p6
p6 2 14 6 190,0 194,0 9 385,3 157,1
p6 3 14 9 194,7 914,7 13 404,8 683,0
p6 4 14 10 36,6 162,8 14 255,0 0,6

p7
p7 2 20 7 217,1 1448,9 6 177,0 9,3
p7 3 20 7 143,1 1153,9 9 213,3 379,6
p7 4 20 7 94,1 474,6 12 240,2 71,0

de même pu résoudre quelques instances restées ouvertes avec le branch and price de Boussier

et al. [11]. Les résultats obtenus sur ces instances ouvertes sont regroupés dans le tableau 5.8.

On peut constater que, lorsque les problèmes restent de taille réduite, on peut résoudre toutes

les instances même si le branch and price est souvent plus rapide.

Tableau 5.8 Instances ouvertes du Team Orienteering Problem résolues à l’optimalité

Type
d’instance

Nb de
clients

Instance Valeur CPU

p1 32
p1 2 p 245 23
p1 2 q 265 15
p1 2 r 275 50

p3 33

p3 2 l 590 24
p3 2 m 620 31
p3 2 n 660 34
p3 2 o 690 15
p3 2 p 720 15
p3 2 q 760 25
p3 2 r 790 33
p3 2 s 800 21
p3 3 s 720 836
p3 3 t 760 1416

p7 102 p7 2 g 459 5812
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5.3.4 Résultats de l’étape d’exécution

Dans cette section, nous présentons les résultats obtenus à la fin de la méthode (après

la programmation dynamique et après simulations). Nous noterons WR la stratégie de pro-

grammation dynamique consistant à considérer toute la route et OS celle consistant à ne

considérer qu’un seul segment. Dans les tableaux 5.9 et 5.10, nous présentons les résultats de

l’étape d’exécution avec les deux stratégies de programmation dynamique. Ces résultats ont

été obtenus en utilisant la meilleure solution obtenue lors de l’étape de planification (même si

celle-ci n’était pas optimale) avec une insertion des clients optionnels en deux temps (estimés

pessimistes puis optimistes). Nous n’avons pas reporté les temps de calcul associés à l’étape

d’exécution car ils sont de quelques secondes.

Tableau 5.9 Valeurs moyennes après insertion des clients optionnels en 2 temps et simulation
sur des instances à 30 clients

# clients
obligatoires

Avant simulation Après simulation
# moy.
non servis

distance
moyenne

# moy. non servis distance moyenne retard moyen
WR OS WR OS WR OS

5 0 215 6.9 4.6 208 220 9.5 9.5
6 0 224 9.8 7.2 213 225 14.6 14.7
7 0 224 10.2 7.8 212 226 11.1 11.9
8 0 219 9.6 8.4 227 233 13.8 13.9
9 0 223 10.3 8.2 227 239 18.1 46.7

Tableau 5.10 Valeurs moyennes après insertion des clients optionnels en 2 temps et simulation
sur des instances à 40 clients

# clients
obligatoires

Avant simulation Après simulation
# moy.
non servis

distance
moyenne

# moy. non servis distance moyenne retard moyen
WR OS WR OS WR OS

5 4.8 213 11.1 11.1 176 177 6.9 6.9
6 1.6 249 13.2 12.9 188 189 12.2 12.0
7 1.4 246 17.1 13.6 162 176 16.4 13.1
8 0.0 247 16.0 14.7 168 172 16.9 15.6
9 0.0 248 14.2 13.5 179 189 15.4 14.7
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Dans les tableaux 5.9 et 5.10, on observe que le nombre de clients devenus non desservis

durant la simulation est très élevé (5 à 10 clients en moyenne sur les instances à 30 clients et 11

à 17 clients en moyenne sur les instances à 40 clients.). Ces solutions ne sont pas admissibles.

Les résultats obtenus avec l’insertion des clients optionnels avec estimés pessimistes (à l’aide

du branch and cut pour 30 et 40 clients, et à l’aide de la relaxation lagrangienne pour 50

clients) puis réparation et amélioration de la solution pour la variante V 2, et F = 0.9, sur des

instances contenant jusqu’à 50 clients sont synthétisés dans les tableaux 5.11, 5.12 et 5.13.

Tableau 5.11 Valeurs moyennes après insertion des clients optionnels avec estimés pessimistes
et simulation sur des instances à 30 clients

# clients
obligatoires

Avant simulation Après simulation
# moy.
non servis

distance
moyenne

# moy. non servis distance moyenne retard moyen
WR OS WR OS WR OS

5 1.4 220 5.3 3.4 199 211 2.0 2.0
6 2.8 232 5.6 5.6 212 212 3.1 3.2
7 2.4 230 5.5 5.5 209 209 2.7 2.8
8 3.4 216 7.6 6.1 195 204 3.2 3.2
9 3.0 217 7.0 6.4 197 201 4.6 4.6

Tableau 5.12 Valeurs moyennes après insertion des clients optionnels avec estimés pessimistes
et simulation sur des instances à 40 clients

# clients
obligatoires

Avant simulation Après simulation
# moy.
non servis

distance
moyenne

# moy. non servis distance moyenne retard moyen
WR OS WR OS WR OS

5 7.2 202 9.7 9.7 193 194 1.8 1.8
6 10.2 217 12.7 12.7 204 204 2.7 2.7
7 10.0 211 13.3 13.3 198 198 2.4 2.5
8 10.0 210 13.2 13.2 198 198 3.6 3.6
9 10.0 206 14.5 14.0 189 191 6.8 5.6

Dans les tableaux 5.11 à 5.13, on observe que le nombre de clients devenus non desservis

durant les simulations est nettement plus raisonnable ici (3 à 4 clients en moyenne sur toutes

les instances). En comparant les stratégies de programmation dynamique, on peut constater

que la stratégie consistant à considérer un segment s’avère plus effective du point de vue

du nombre de clients desservis. Quant au retard moyen, il garde des valeurs comparables,

quelle que soit la stratégie. En ce qui concerne la distance moyenne, en calculant le ratio

distance/nombre de clients visités, on peut comparer ces valeurs. Elles restent quasiment

identiques d’une stratégie à l’autre.
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Tableau 5.13 Valeurs moyennes après insertion des clients optionnels avec relaxation lagran-
gienne et simulation sur des instances à 50 clients

# clients
obligatoires

Avant simulation Après simulation
# moy.
non servis

distance
moyenne

# moy. non servis distance moyenne retard moyen
WR OS WR OS WR OS

5 15.4 192 17.8 17.9 185 185 2.0 2.0
6 17.6 197 21.0 20.5 189 189 3.6 3.6
7 18 192 21.8 21.2 184 185 3.6 3.6
8 18.6 200 22.1 22.2 187 187 4.3 4.4
9 19.2 188 22.7 22.8 180 180 5.7 5.9

5.3.5 Représentation graphique des résultats obtenus

Intéressons-nous à présent à la représentation graphique des résultats obtenus après

chaque étape de la méthode de résolution sur une instance contenant 40 clients et 3 vé-

hicules : C1 5 8(40).

Figure 5.4 Après établissement du sque-
lette

Figure 5.5 Après insertion des clients op-
tionnels

Dans les graphiques 5.4 à 5.8, on peut observer les différentes étapes de notre méthode

de résolution sur l’instance C1 5 8(40), contenant 8 clients obligatoires. Tout d’abord, on

construit un squelette de routes en ne considérant que ces 8 clients (figure 5.4). Ensuite,

figure 5.5, on insère les clients optionnels dans le squelette avec estimés pessimistes des

temps de service et de parcours. On peut observer que la tournée en haut à gauche est bien

remplie et ne peut desservir 2 clients optionnels. Après réparation de la solution figure 5.6, la

tournée située en haut à gauche est clairement allégée et 9 clients de plus sur cette tournée

deviennent non desservis. Ensuite, on améliore la solution en gardant une probabilité de

faisabilité suffisante (figure 5.7). Enfin, on utilise l’algorithme de programmation dynamique
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Figure 5.6 Après réparation de la solution Figure 5.7 Après amélioration de la solu-
tion

Figure 5.8 Après programmation dynamique

et on procède aux simulations. On obtient ainsi les routes réelles figure 5.8, qui ne sont pas

très différentes des routes planifiées. Finalement, seuls 4 clients optionnels ont été annulés.

5.4 Conclusion

Dans ce chapitre, nous avons présenté une heuristique basée sur la priorité des clients

pour l’étape de planification. Cette heuristique procède en deux phases : la construction de

routes ne contenant que des clients obligatoires (ou construction du squelette) puis l’insertion

des clients optionnels dans le squelette. Nous avons également proposé des méthodes d’accé-

lération pour l’insertion des clients optionnels, qui nous ont permis de résoudre des instances
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contenant jusqu’à 40 clients avec 3 véhicules en moins de 2 heures. En utilisant la relaxation

lagrangienne et ces techniques d’accélération, nous avons également pu résoudre des instances

comportant 50 clients et 3 véhicules en moins d’une heure. Dans les résultats obtenus après

l’étape de planification, nous avons pu remarquer que la stratégie de programmation dyna-

mique consistant à ne considérer qu’un seul segment s’avère plus efficace du point de vue du

nombre de clients desservis tandis que les deux stratégies se valent quant à la distance totale

parcourue et au retard (tableaux 5.9 à 5.13). On pourrait donc préférer la stratégie considé-

rant un seul segment mais du point de vue opérationnel, il semble préférable de considérer

le reste de la route et non segment par segment. Afin de prendre cette décision, il faudrait

effectuer des tests sur un horizon de temps multi-période afin de juger de la pertinence de ces

deux stratégies. La méthode que nous avons proposée permet donc de résoudre des instances

de taille raisonnable en un temps acceptable (en effet, pour 3 véhicules, on ne peut espérer

desservir plus de 50 clients en une journée). Toutefois, la méthode que nous avons proposée

présente un inconvénient non négligeable : elle présuppose l’existence d’un nombre suffisant

de clients obligatoires (sinon, l’établissement du squelette sur les clients obligatoires devient

inutile). Or, d’un point de vue pratique, dans l’application à laquelle nous nous intéressons

(où les clients obligatoires correspondent à des clients chez lesquels une opération de répara-

tion est planifiée), on peut espérer ne pas avoir à traiter un trop grand nombre de pannes au

quotidien. Une piste intéressante serait donc d’intégrer les deux phases de planification en une

seule, i.e. à construire directement des routes contenant des clients optionnels et des clients

obligatoires. C’est pourquoi, dans le chapitre suivant, nous allons présenter une heuristique,

basée sur la génération de colonnes, capable de construire des routes avec les deux types de

clients en une seule étape.
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CHAPITRE 6

Heuristique basée sur la génération de colonnes

Dans le chapitre précédent, nous avons proposé une heuristique basée sur la priorité des

clients pour l’étape de planification. Cette heuristique procède en deux temps : création de

routes à partir des clients obligatoires puis insertion des clients optionnels dans ces routes.

Toutefois, cette méthodologie présente l’inconvénient de nécessiter un nombre suffisant de

clients obligatoires (afin de justifier de la construction du squelette des clients obligatoires).

Dans ce chapitre, nous proposons une heuristique basée sur la génération de colonnes permet-

tant de construire directement des routes contenant simultanément des clients obligatoires et

des clients optionnels. Cette méthode vise à générer un ensemble de routes diversifiées et de

bonne qualité pour chacun des véhicules, puis, à sélectionner une route pour chaque véhicule

en résolvant un programme linéaire en nombres entiers. Dans les sections suivantes, nous dé-

taillerons en premier lieu la méthode utilisée pour générer des routes puis nous expliquerons

la sélection exacte des routes pour chaque véhicule. Ensuite, nous présenterons les résultats

expérimentaux et enfin nous conclurons.

6.1 Génération de routes

Lors de la génération de routes, on considère les véhicules un par un. Soient N l’ensemble

des clients, M l’ensemble des clients obligatoires, O l’ensemble des clients optionnels et Pij

l’ensemble de chemins de i ∈M à j ∈M (desservant des clients optionnels). Soient ok et dk

l’origine et la destination du véhicule considéré, on note M o = M ∪ {ok} et Md = M ∪ {dk}.

Afin de conserver la notion de priorité entre les clients obligatoires et les clients optionnels,

on attribue aux clients obligatoires un profit pi supérieur à celui des clients optionnels. Il

s’agit alors de générer des routes maximisant le profit total associé aux visites des clients,

tout en minimisant la distance totale parcourue et en respectant les contraintes de fenêtres

de temps associées à la destination du véhicule et aux clients obligatoires. Notons τ̂lm et τ lm

les temps de parcours modaux et maximaux de l à m, σ̂i et σi les temps de service modaux

et maximaux au client i, τ̂p et σ̂p les temps modaux de parcours et de service associés au

chemin p, [ei, li] la fenêtre de temps du client i, T l’horizon de temps et α la pondération des

temps de parcours dans la fonction objectif. On utilise les variables décisionnelles :
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xl variable booléenne indiquant si le client l est servi

yij variable booléenne indiquant si le client obligatoire j suit le client obligatoire i (quand

on ne considère que les clients obligatoires de la route)

zlm variable booléenne indiquant si l’arc (l,m) est utilisé (l,m ∈ N)

ti heure de début de service modale chez le client obligatoire i

ti heure de début de service au plus tard chez le client obligatoire i (quand on ne

considère que les clients obligatoires de la route)

Avec les variables définies ci-dessus, on peut formuler le problème de génération de la

meilleure route pour le véhicule k comme suit :

max .
∑

i∈N

pixi − α
∑

l∈N∪{ok}

∑

m∈N∪{dk}

τ̂lmzlm

sujet à :

∑

m∈N∪{dk}

zokm = 1 (6.1)

∑

l∈N∪{ok}

zlm = xm ∀m ∈ N (6.2)

∑

m∈N∪{dk}

zlm = xl ∀l ∈ N (6.3)

∑

(l,m)∈p

zlm 6 |p| − 1 + yij ∀i ∈M o, j ∈Md, p ∈ Pij

(6.4)

ti + (τ̂p + σ̂p)

(
∑

(l,m)∈p

zlm − |p|+ 1

)

+ (yij − 1)T 6 tj ∀i ∈M o, j ∈Md, p ∈ Pij

(6.5)

ti + σi + τ ij + (yij − 1)T 6 tj ∀i ∈M o, j ∈Md (6.6)

ti + σ̂i + τ̂ij + (yij − 1)T 6 tj ∀i ∈M o, j ∈Md (6.7)
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ei 6 ti 6 li ∀i ∈M ∪ {ok; dk} (6.8)

ei 6 ti 6 li ∀i ∈M ∪ {ok; dk} (6.9)

xl, zlm ∈{0; 1} ∀l,m ∈ N (6.10)

yij ∈{0; 1} ∀i ∈M o, j ∈Md (6.11)

ti, ti > 0 ∀i ∈M ∪ {ok; dk} (6.12)

La contrainte (6.1) assure que la route du véhicule quitte l’origine (éventuellement pour

aller directement au dépôt destination). Les contraintes (6.2) et (6.3) sont des contraintes

de degrés entrant et sortant. Les contraintes (6.4) spécifient que si on emprunte le chemin p

allant de i à j, alors le client obligatoire j suit le client obligatoire i (quand on ne considère

que les clients obligatoires). Les contraintes (6.5), quant à elles, indiquent que, si on utilise

un chemin p pour aller de i à j, alors, on doit s’assurer de commencer le service au client

obligatoire j après avoir quitté le client obligatoire i et après avoir desservi tous les clients

optionnels du chemin p. Les contraintes (6.6) et (6.7) sont des contraintes de précédence

temporelle entre les clients obligatoires (avec des estimés modaux et maximaux). Enfin, les

contraintes (6.8) et (6.9) assurent le respect des fenêtres de temps des clients obligatoires.

Le problème, pour un véhicule donné, peut donc être assimilé à un « Orienteering Pro-

blem with Time Windows » (OPTW) dans lequel le temps de parcours total est minimisé

et auquel on ajoute les contraintes (6.4) à (6.6) et (6.8). Comme l’ont montré Bramel et

Simchi-Levi [12], ce problème peut être reformulé comme un « Elementary Shortest Path

Problem with Resource Constraints » (ESPPRC). Comme nous souhaitons générer un en-

semble de routes diversifiées de très bonne qualité, l’idéal est d’utiliser une méthode exacte

de type programmation dynamique. On peut alors, à la fin de l’algorithme de programmation

dynamique sélectionner les meilleures routes (selon un critère donné). Dans ce qui suit, nous

présenterons un bref état de l’art sur les méthodes de résolution proposées pour l’ESPPRC

et nous expliquerons la méthode retenue. Nous détaillerons ensuite l’algorithme de Righini

et Salani [58]. Puis, nous présenterons sa version améliorée telle qu’implantée par Salani

(communications privées) et enfin nous proposerons différentes variantes de cet algorithme,

adaptées à la résolution de notre problème.

6.1.1 Etat de l’art des méthodes de résolution de l’ESPPRC

Pour résoudre l’ESPPRC, différentes méthodes ont été proposées dans la littérature dans

le cadre du problème de tournées de véhicules avec fenêtres de temps. On distinguera trois

catégories : les algorithmes de programmation dynamique exacte, les algorithmes de pro-
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grammation dynamique exacte avec relaxation des contraintes d’élémentarité et les méthodes

heuristiques de résolution de sous-problèmes. Le premier algorithme de programmation dy-

namique exacte pour résoudre un ESPPRC est proposé par Feillet et al. [26]. Dans cette

méthode, ils étendent l’algorithme d’étiquetage de Desrochers [23] proposé pour résoudre

le SPPRC (plus court chemin avec contraintes de ressources) au cas élémentaire. Righini

et Salani [57] proposent une variante bidirectionnelle bornée de l’algorithme de Feillet, afin

d’accélérer la résolution du problème (cf. description détaillée dans le chapitre précédent).

La contrainte sur l’élémentarité d’un chemin étant à l’origine de nombreux états non dominés,

plusieurs méthodes ont été proposées, basées sur la relaxation des contraintes d’élémentarité.

Ainsi, Boland et al. [8] et Righini et Salani [58] proposent une méthode appelée « decre-

mental state space relaxation » (DSSR). Dans cette méthode, ils relâchent entièrement les

contraintes d’élémentarité lors de la génération des chemins (se ramenant ainsi à un problème

de plus court chemin avec contraintes de ressources) et ajoutent itérativement des contraintes

empêchant la formation de cycles jusqu’à obtention de chemins élémentaires. De même, Bal-

dacci et al. [5] proposent une méthode appelée ng-route relaxation. Dans cette méthode, ils

introduisent une notion d’élémentarité partielle d’un chemin en interdisant l’extension d’un

chemin à un sous-ensemble des clients visités par ce chemin. Ce sous-ensemble est défini à

partir d’une notion de voisinage. Afin de gagner encore en efficacité, Pinto [55] intègre la

DSSR dans la ng-route relaxation en augmentant itérativement la taille des voisinages de la

ng-route relaxation jusqu’à obtenir des routes ng-réalisables.

Les méthodes proposées ci-dessus sont des algorithmes exacts de programmation dynamique.

Ces méthodes pouvant s’avérer très chronophages, Desaulniers et al. [22] proposent deux

stratégies heuristiques de programmation dynamique afin d’accélérer la résolution de l’ESP-

PRC. La première stratégie est une « limited discrepancy search » (LDS) : étant donné un

paramètre Dmax, elle consiste à ne garder pour chaque client que ses Dmax successeurs les

plus proches et ses Dmax prédécesseurs les plus proches (la distance correspondant aux coûts

réduits associés aux arcs). La deuxième stratégie est une stratégie de dominance aggrégée :

étant donné un paramètre Rmax, elle consiste à n’utiliser dans les tests de dominance que

Rmax ressources.

6.1.2 Méthode de résolution de l’ESPPRC retenue

Dans la littérature (cf. ci-dessus), plusieurs techniques consistant à relâcher les contraintes

d’élémentarité d’un chemin ont été proposées pour accélérer la programmation dynamique :

la DSSR [58] et les ng-routes [5]. La DSSR (decremental state space relaxation) consiste à

relaxer la contrainte d’élémentarité d’un chemin lors de son extension (et donc à résoudre un
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SPPRC au lieu d’un ESPPRC) puis à forcer l’élémentarité des arcs de la solution optimale

tant que celle-ci contient des cycles. Dans leur article en 2009, Righini et Salani [58] testent

cette méthode sur un ensemble d’instances dont celles de Cordeau et al. [17] et y indiquent

qu’en deux heures, ils obtiennent des solutions à plus de 50% de gap de l’optimal sur les

instances avec fenêtres de temps larges (pr11 à pr20). Or, dans ces instances, les fenêtres de

temps ne sont pas aussi larges que dans notre problème. Nous n’avons donc pas conservé

cette méthodologie pour nos tests.

La méthode des ng-routes consiste aussi à relaxer la contrainte d’élémentarité d’un chemin,

sans pour autant réduire le problème à un SPPRC. Il s’agit, pour un chemin p, de s’interdire

non pas tous les clients déjà visités mais un sous-ensemble de ces clients. Soit Ni l’ensemble

des ∆NG plus proches voisins du client i (i inclus), et p = (i1, i2, .., ik) un chemin, on définit

l’ensemble des clients interdits Π(p) = {ir : ir ∈ ∩
k
s=r+1Nis , r = 1, ..., k − 1} ∪ {ik}. Nous

avons testé cette méthodologie, combinée à l’élimination des 2-cycles. Toutefois, lors des tests,

quelle que soit la valeur du paramètre ∆NG, nous avons obtenu des routes non élémentaires.

Nous n’avons donc pas retenu cette méthode pour nos expérimentations.

Afin de procéder à une génération d’un ensemble de routes de très bonne qualité, nous avons

choisi de nous baser sur l’algorithme de programmation dynamique bi-directionnelle bornée

proposé par Righini et Salani [58].

6.1.3 Algorithme de programmation dynamique bidirectionnelle bornée de Sa-

lani

Dans l’algorithme de programmation dynamique bidirectionnelle bornée proposé par Ri-

ghini et Salani [58], on considère deux directions : une direction « forward » (depuis l’origine

vers la destination) et une direction « backward » (depuis la destination vers l’origine). On

considère également une ressource critique. La programmation dynamique bidirectionnelle

bornée consiste alors à construire des chemins dans chacune des deux directions à l’aide de

la programmation dynamique classique puis à procéder à la jonction des chemins forward

et backward. De plus, lors de la construction des chemins, on doit s’assurer, dans chacune

des directions, que la ressource critique utilisée par un chemin n’excède pas la moitié de la

quantité disponible de cette ressource. Une description en pseudo-code de cet algorithme est

présentée dans l’algorithme 3.

Pour un véhicule donné, soient s l’origine et t la destination de ce véhicule. Avant de

démarrer la programmation dynamique, Righini et Salani [58] procèdent à un tri des clients

par ordre d’extension avec la fonction triClientsOrdreExtension(). Ils trient les clients par

ordre croissant de début de fenêtre de temps, et pour un même début de fenêtre de temps,

par ordre décroissant de fin de fenêtre de temps. Ensuite, ils associent à chaque chemin un
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L← triClientsOrdreExtension();
// Extension forward

Γfw ← [∅, ∅, ...., ∅];
Γfw[s]← {(0, 0, 0, 0, s)};
tant que fini 6= vrai faire

fini← vrai;
pour i = 0 à taille(L) faire

pour chaque li ∈ Γfw[L[i]] faire
pour chaque j ∈ L tel que extensionFwdPossible(li, j) faire

si extendFwd(li, j) alors
fini← faux;

fin

fin

fin

fin

fin
// Extension backward

Γbw ← [∅, ∅, ...., ∅];
Γbw[t]← {(0, 0, 0, 0, t)};
tant que fini 6= vrai faire

fini← vrai;
pour i = taille(L) à 0 faire

pour chaque li ∈ Γbw[L[i]] faire
pour chaque j ∈ L tel que extensionBwdPossible(li, j) faire

si extendBwd(li, j) alors
fini← faux;

fin

fin

fin

fin

fin
// Jonction des labels

pour chaque li ∈ Γfw faire
pour chaque lj ∈ Γbw faire

joindre(li, lj);
fin

fin

Algorithm 3: Programmation dynamique bornée bidirectionnelle
(Righini et Salani [58])
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label permettant de caractériser ce chemin (cf. description plus loin) et créent des matrices

pour contenir les labels forward et backward, respectivement Γfw et Γbw (Γfw[i] contient

tous les labels forward finissant au client i). Ils initialisent un label forward pour le client s

et un label backward pour le client t. Une fois l’initialisation terminée, ils procèdent dans

un premier temps à l’extension forward. Puis, ils considèrent les clients un à un par ordre

d’extension et essayent d’étendre forward tous les labels associés à ce client. L’extension

forward s’arrête quand tous les labels ajoutés sont dominés. Pour l’extension forward, ils

disposent de deux fonctions : extensionFwdPossible(li, j) qui indique si l’extension forward

du label li au client j est possible et une fonction extendFwd(li, j) qui étend le label li au

client j en forward et ajoute le label ainsi obtenu à la liste Γfw[j] si ce label n’est pas dominé.

extendFwd(li, j) retourne vrai si la liste des labels forward a été modifiée. Pour l’extension

backward, ils considèrent cette fois les clients par ordre inverse d’extension et procèdent

comme ci-dessus mais en extension backward. Les fonctions utilisées sont identiques à celles

ci-dessus : extensionBwdPossible(li, j) indique si l’extension backward du label li au client

j est possible, et extendBwd(li, j) étend le label li au client j en backward, ajoute le label

ainsi obtenu à la liste Γbw[j] si ce label n’est pas dominé et retourne vrai si la liste des labels

backward a été modifiée. Enfin, une fois les extensions forward et backward terminées, ils

procèdent à la jonction des labels forward et backward à l’aide de la fonction joindre(li, lj)

qui joint le label forward li au label backward lj si cette jonction est possible. Cet algorithme

fournit donc un ensemble de routes obtenues par jonction de chemins forward et de chemins

backward.

6.1.4 Algorithme de programmation dynamique implanté par Salani

Depuis son article en 2009, Salani a amélioré son code et a proposé une nouvelle variante

de son algorithme de programmation dynamique (communications privées avec Salani) pour

résoudre spécifiquement un OPTW. Dans cette variante, il construit des chemins forward et

des chemins backward en limitant la durée d’un chemin dans une direction à la moitié de

la durée totale autorisée. Puis, il procède à la jonction des chemins forward et backward.

Le fonctionnement de cette méthode est identique à celui de Righini et Salani [58]. La seule

différence réside au niveau des labels (cf. plus loin). Pour cet algorithme, Salani associe à

chaque chemin p un label (S, t, r, u, i) où S est le vecteur de visite des clients (S[k] = 1 si le

client k est visité par le chemin p, S[k] = 2 si le client k est inaccessible pour le chemin p et

S[k] = 0 sinon), t le temps consommé sur le chemin p (en utilisant les temps de service et les

distances comme temps de parcours), r le profit associé à la visite des clients, u le nombre

de clients inaccessibles et i désigne le dernier client visité par le chemin. On remarquera

que, pour un label forward, le temps consommé correspond au temps qui s’est écoulé entre
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le départ de l’origine et le début de service au client courant. Pour un label backward, le

temps consommé représente plutôt le temps écoulé entre la fin de service au client courant et

l’arrivée à destination. Pour ces labels, il définit des règles d’extension, de dominance ainsi

que de jonction décrites ci-après. En notant N l’ensemble de clients, d le dépôt destination,

σi la durée de service au client i, τij le temps de parcours de i à j, pi le profit associé à la

visite du client i et [ei, li] la fenêtre de temps du client i, il définit la durée totale autorisée T

comme étant l’heure maximale d’arrivée au dépôt, soit T = maxi(li + σi + τid).

Dans la première version de Righini et Salani [58] décrite au paragraphe 6.1.3, ils utilisaient

les labels (S, t, r, i). Ils ne prenaient pas en compte le nombre de clients inaccessibles u. Cette

valeur aide à augmenter le nombre de labels dominés et accélère l’algorithme.

Règles d’extension

Etendre un label revient à ajouter un client au chemin qui lui est associé. L’extension

du label (S, t, r, u, i) au client j génère le label (S ′, t′, r′, u′, j). En posant e = ej si on est en

forward et e = T − lj − σj si on est en backward, on a :







S ′ = S et S ′[j] = 1

t′ = max(e, t+ σi + τij)

r′ = r + pj

u′ = u+ 1 + |U ′
j| où U ′

j = {k ∈ N |S[k] = 0 et t′ + σj + τjk > lk} en forward

et U ′
j = {k ∈ N |S[k] = 0 et t′ + σj + τjk > T − ek − σk} en backward

Le nouveau label visite les mêmes clients que l’ancien label, plus le client j. En forward, le

temps consommé par le nouveau label correspond soit à l’heure d’arrivée au plus tôt au client

j, soit au temps consommé par l’ancien label auquel on ajoute le temps consommé pour des-

servir i et celui consommé pour se rendre au client j. En backward, le temps consommé par

le nouveau label correspond soit au temps consommé entre la fin de service au plus tard au

client j et l’arrivée à destination (à t = T ), soit au temps consommé par l’ancien label auquel

on ajoute le temps consommé pour servir i et celui consommé pour aller de j à i (temps de

parcours symétriques). Le revenu associé au nouveau label correspond au revenu de l’ancien

label auquel on ajoute le profit associé au client j. Enfin, le nombre de clients inaccessibles

pour le nouveau label correspond au nombre de clients inaccessibles associés à l’ancien label

auquel on ajoute le nombre de clients devenus inaccessibles avec la visite du client j.

En posant l = lj en forward et l = T − ej − σj en backward, l’extension sera réalisable si

les conditions suivantes sont vérifiées :
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





S[j] = 0

t′ 6 l

t′ 6 T/2 si c’est un label backward

t 6 T/2 si c’est un label forward

Ici, on s’assure de ne pas visiter deux fois le même client, de respecter la fenêtre de temps

au client j. On s’assure également qu’un label backward respecte la contrainte de durée. Par

contre, on autorise un label forward à déborder d’un client sur cette même contrainte. En

d’autres termes, si la durée d’un chemin forward ne dépasse pas T/2, on s’autorise l’extension

du label forward associé (même si le label forward ainsi généré ne respecte pas la contrainte

de durée).

Règles de dominance

Pour limiter le nombre de labels considérés à chaque étape de la programmation dyna-

mique, on utilise des règles de dominance. Le label (S1, t1, r1, u1, i) domine le label (S2, t2, r2, u2, i)

si :







S1 6 S2

t1 6 t2

r1 > r2

u1 6 u2

une de ces inégalités est stricte

Les labels dominés ne seront pas conservés dans la programmation dynamique.

Règles de jonction

La jonction d’un label forward (Sfw, tfw, rfw, ufw, i) et d’un label backward

(Sbw, tbw, rbw, ubw, i) n’est possible que si les conditions suivantes sont vérifiées :

{

Sfw[i] + Sbw[i] 6 1 ∀i ∈ N

tfw + σi + τij + tbw 6 T

6.1.5 Variantes proposées

Dans le cadre du problème que nous traitons, nous devons apporter quelques modifications

à l’algorithme de programmation dynamique bidirectionnel implanté par Salani décrit ci-

dessus (cf. section 6.1.4). On doit notamment gérer une ressource supplémentaire liée aux
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clients obligatoires et à la stochasticité des temps de service et de parcours : la ressource t̄

indiquant la durée du label dans le pire cas (quand on ne considère que les clients obligatoires).

De plus, dans notre problème, comme les temps de service et de parcours sont stochastiques,

on utilisera leur valeur modale pour la ressource t. Enfin, étant donné que nos temps de

parcours sont différents de nos distances, on ajoute une ressource de distance d dans nos

labels. Comme nos clients obligatoires sont les seuls à avoir des fenêtres de temps serrées,

la distance est nécessaire au niveau des critères de dominance. En effet, sans ce critère de

distance, on aurait du mal à éliminer des chemins dominés au niveau des clients obligatoires.

On associe ainsi à chaque chemin p un nouveau label (S, t, t̄, r, d, u, i) où S est le vecteur

de visite des clients (défini comme précédemment), t le temps consommé sur le chemin p

(en utilisant les valeurs modales des temps de service et de parcours), t̄ le temps consommé

par les clients obligatoires sur le chemin p (en utilisant les temps de service et de parcours

maximaux), r le profit associé à la visite des clients, d la distance parcourue, u le nombre de

clients inaccessibles et i désigne le dernier client visité par le chemin. Pour ces labels, nous

définissons des règles d’extension, de dominance ainsi que de jonction ci-après. Puis, nous

présentons la méthodologie.

Règles d’extension

Etendre un label revient à ajouter un client au chemin qui lui est associé. L’extension du

label (S, t, t̄, r, d, u, i) au client j génère le label (S ′, t′, t̄′, r′, d′, u′, j). En notant Dij la distance

de i à j et en posant e = ej si on est en forward et e = T − lj− σ̂j si on est en backward, on a :







S ′ = S et S ′[j] = 1

t′ = max(e, t+ σ̂i + τ̂ij)

r′ = r + pj

d′ = d+Dij

u′ = u+ 1 + |U ′
j| où U ′

j = {k ∈ N |S[k] = 0 et t′ + σj + τjk > lk} en forward

et U ′
j = {k ∈ N |S[k] = 0 et t′ + σj + τjk > T − ek − σk} en backward

De plus, suivant le caractère obligatoire (ou optionnel) du client j, en notant m le dernier

client obligatoire du label avant extension, on posera :

t̄′ =

{

t̄ si j est optionnel

t̄+ σ̄m + τ̄mj sinon

Ces règles d’extension sont similaires à celles présentées section 6.1.4. On modifie la règle

d’extension pour la ressource temporelle t en prenant en compte les valeurs modales des
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temps de service et de parcours. Aussi, on ajoute deux règles associées aux deux nouvelles

ressources : la distance et les temps consommés par les clients obligatoires. La distance

associée au nouveau label correspond à la distance de l’ancien label à laquelle on ajoute

la distance pour aller de i à j. Le temps consommé par les clients obligatoires associé au

nouveau label dépend de la nature du client j. Si le client j est optionnel, le temps consommé

par les clients obligatoires reste inchangé dans le nouveau label. Si, au contraire, le client j

est obligatoire, le temps consommé par les clients obligatoires est incrémenté du temps de

service maximal au dernier client obligatoire m de l’ancien label et du temps de parcours

maximal de m à j.

En posant l = lj en forward et l = T − ej − σ̂j en backward, l’extension sera réalisable si

les conditions suivantes sont vérifiées :







S[j] = 0

t′ 6 l

t′ 6 T/2 si c’est un label backward

t 6 T/2 si c’est un label forward

Si le client j est un client obligatoire, les deux conditions suivantes doivent également être

vérifiées :

{

t̄′ 6 T/2

t̄′ 6 l

Ici, on s’assure de ne pas visiter deux fois le même client, de respecter la fenêtre de temps au

client j. On s’assure également du respect de la contrainte de durée pour un label backward

tandis qu’on autorise un label forward à déborder d’un client sur cette même contrainte. De

plus, si le client j est obligatoire, on doit s’assurer que le chemin ne contenant que les clients

obligatoires est réalisable dans le pire des cas (avec les estimés maximaux). On doit donc

s’assurer du respect de la borne sur la longueur d’un chemin et de la fenêtre de temps au

client j avec les estimés pessimistes.

Règles de dominance

Pour limiter le nombre de labels considérés à chaque étape de la programmation dyna-

mique, on utilise des règles de dominance. Le label (S1, t1, t̄1, r1, d1, u1, i) domine le label

(S2, t2, t̄2, r2, d2, u2, i) si :
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





S1 6 S2

t1 6 t2

t̄1 6 t̄2

r1 > r2

d1 6 d2

u1 6 u2

une de ces inégalités est stricte

On retrouve ici les mêmes règles de dominance que dans la section 6.1.4. On ajoute juste

deux règles de dominance au niveau de la nouvelle ressource de distance et au niveau de la

ressource de temps consommé par les clients obligatoires. Les labels dominés ne seront pas

conservés dans la programmation dynamique.

Règles de jonction

La jonction d’un label forward (Sfw, tfw, t̄fw, rfw, dfw, ufw, i) et d’un label backward

(Sbw, tbw, t̄bw, rbw, dbw, ubw, i) n’est possible que si les conditions suivantes sont vérifiées :







Sfw[i] + Sbw[i] 6 1 ∀i ∈ N

tfw + σ̂i + τ̂ij + tbw 6 T

t̄fw + σ̄mfw + τ̄mfwmbw + t̄bw 6 T

où mfw et mbw représentent respectivement le dernier client obligatoire du label forward et

du label backward.

Ci-dessus, nous avons présenté notre adaptation de l’algorithme bidirectionnel borné im-

planté par Salani dans le cadre de notre problème. On notera cet algorithme (BD,DA, V V )

pour indiquer qu’il s’agit de l’algorithme bidirectionnel (BD), avec débordement autorisé d’un

label forward sur la borne (DA) dans lequel S désigne le vecteur de visite (V V ). Nous avons

également proposé 3 variantes de cet algorithme. Dans la première variante (BD,DI, V V ),

on interdit le débordement d’un label forward sur la contrainte de durée. Ainsi, dans cette

variante (BD,DI, V V ), quel que soit le label (S, t, t̄, r, d, u, i), forward ou backward, on a

t 6 T/2. Dans la deuxième variante (BD,DI,NV ), on interdit également ce débordement

d’un label forward et on modifie les labels en ajoutant une ressource s indiquant le nombre

de clients visités. On modifie ensuite les règles de dominance en remplaçant la règle S1 6 S2

par la règle s1 6 s2. Cela ne remet pas en question l’élémentarité des chemins car on stocke

tout de même dans chaque label le chemin associé. Par contre, cela modifie les règles de do-

minance car on pourra comparer deux labels ne visitant pas du tout les mêmes clients. Ainsi,

on augmente fortement le nombre de labels dominés mais on perd également l’optimalité de
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la solution. Dans la dernière variante (UD,DI,NV ), on interdit le débordement d’un label

forward, on utilise le label modifié avec la ressource s indiquant le nombre de clients visités et

on procède à l’extension dans une seule direction (algorithme de programmation dynamique

classique, noté UD).

Parmi ces différentes variantes, on en distingue de deux types : les variantes exactes (BD,DA, V V )

et (BD,DI, V V ) et les variantes approchées (BD,DI,NV ) et (UD,DI,NV ). Au vu des

résultats obtenus avec les variantes approchées, nous avons choisi de procéder à une postop-

timisation de type 2-Opt (échange d’arcs intra-route). Cette méthode permet d’améliorer la

qualité des solutions obtenues du point de vue de la distance parcourue et donc des temps

de parcours. Les performances de ces différentes variantes seront comparées dans la section

résultats de ce chapitre.

6.1.6 Sélection des routes

Après avoir généré des routes, nous disposons pour chaque véhicule d’un ensemble de

routes diversifiées et de bonne qualité. Pour chaque véhicule, cet ensemble de routes est

obtenu par jonction de chaque chemin forward avec chaque chemin backward. Il peut donc

contenir plusieurs exemplaires d’une même route comme nos clients ne sont pas très contraints

(par exemple, la route (o ;1 ;2 ;3 ;4 ;d) peut être obtenue en joignant le chemin forward (o ;1 ;2)

et le chemin backward (3 ;4 ;d) ou en joignant le chemin forward (o ;1 ;2 ;3) avec le chemin

backward (4 ;d)). On ne procède pas à l’élimination de ces doublons car cette opération est

coûteuse en temps de calcul tandis que Cplex élimine très rapidement les doublons lors de la

sélection des routes. A partir de ces ensembles de routes, il nous faut à présent procéder à la

sélection d’une route par véhicule, en s’assurant de desservir exactement une fois chaque client

obligatoire, au plus une fois chaque client optionnel. L’objectif est de maximiser le profit total

associé à la desserte des clients optionnels tout en minimisant le temps de parcours total.

Notons Ωk l’ensemble des routes générées pour le véhicule k. Pour une route r, on note pr le

profit associé, τ̂r le temps de parcours modal sur cette route et δir le booléen indiquant si le

client i est desservi sur la route r. En introduisant les variables booléennes xk
r indiquant si la

route r est sélectionnée pour le véhicule k, le problème de sélection des routes peut s’écrire :

max
∑

k∈K

∑

r∈Ωk

(pr − ατ̂r)x
k
r
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sujet à :

∑

k∈K

∑

r∈Ωk

δirx
k
r = 1 ∀i ∈M (6.13)

∑

k∈K

∑

r∈Ωk

δirx
k
r 6 1 ∀c ∈ O (6.14)

∑

r∈Ωk

xk
r = 1 ∀k ∈ K (6.15)

xk
r ∈ {0; 1}

Les contraintes (6.13) forcent chaque client obligatoire à être desservi une et une seule fois,

les contraintes (6.14) indiquent que chaque client optionnel est desservi au plus une fois et les

contraintes (6.15) forcent la desserte d’une et une seule route par véhicule. Nous choisissons

de résoudre ce programme linéaire de façon exacte à l’aide d’un solveur commercial.

6.2 Expérimentation

Nous procédons aux expérimentations sur des instances de la littérature ainsi que sur les

instances décrites chapitre 1, en utilisant Cplex 12.4, pour procéder à la sélection des routes.

Les tests ont été effectués sur une machine avec 4CPU, 2.8GHz et 30Go de RAM. Dans cette

section, nous présentons d’abord les résultats obtenus sur les instances de la littérature puis

ceux sur les instances décrites chapitre 1.

6.2.1 Résultats sur les instances de la littérature

Afin de valider la méthodologie proposée dans ce chapitre et de comparer les résultats ob-

tenus par les quatre variantes de l’algorithme de programmation dynamique (BD,DA, V V ),

(BD,DI, V V ), (BD,DI,NV ) et (UD,DI,NV ), nous avons procédé à des tests sur des ins-

tances de la littérature. Tout d’abord, pour valider la méthodologie de génération de routes,

nous l’avons testée sur des instances du OPTW. Ensuite, pour valider la méthodologie dans

sa globalité, nous avons procédé à des tests sur des instances du TOPTW. Dans cette section,

nous présenterons d’abord les résultats sur les instances du OPTW.

Résultats sur les instances du OPTW

Afin de pouvoir comparer les quatre variantes de l’algorithme de programmation dy-

namique (BD,DA, V V ), (BD,DI, V V ), (BD,DI,NV ) et (UD,DI,NV ), nous les avons

testées sur les instances proposées par Righini et Salani [58]. Pour ces tests, comme il s’agit
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de résoudre un problème de type OPTW, nous avons utilisé les mêmes labels que dans le

code de Salani, mais avec nos variantes codées en C++. Nous avons également exécuté le code

de Salani sur notre machine afin d’obtenir des temps de calcul comparables. On notera que

les résultats obtenus avec le code de Salani sur les instances de type OPTW sont nouveaux,

puisqu’ils n’ont fait l’objet d’aucune publication jusqu’à présent, et sont meilleurs que ceux

proposés dans Righini et Salani [58]. Les résultats de ces tests sur les instances à 50, 100

clients et 100 clients avec fenêtres de temps larges sont regroupés dans les tableaux 6.1, 6.2

et 6.3. Les en-têtes de colonnes dans ces tableaux sont : Opt : valeur de la solution optimale,

BKS : valeur de la meilleure solution connue, CPU : temps de résolution en secondes, Profit :

profit collecté, # vis. : nombre de clients visités et Gap : gap entre la solution obtenue et la

solution optimale (ou la meilleure solution connue). Dans ces tableaux, on se limite à deux

heures de résolution (7200 secondes). Si la résolution n’a pu se terminer en le temps imparti,

on inscrira un « - » dans la case correspondante. En ce qui concerne les solutions optimales

et les meilleures solutions connues sur ces instances, nous avons utilisé celles obtenues par

Hu et Lim [37]. De plus, on indique la valeur en gras s’il s’agit de la solution optimale.
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Tableau 6.1 Comparaison sur les instances de type OPTW à 50 clients

Instance Opt.
Méthodes exactes Méthodes approchées

Code de Salani BD,DA, V V BD,DI, V V BD,DI,NV UD,DI,NV

CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. Gap CPU Profit # vis. Gap
c101 270 0 270 10 0 270 10 0 270 10 0 270 10 0,00% 0,01 270 9 0,00%
c102 300 3,49 300 11 3,42 300 11 1,23 300 11 0,01 300 11 0,00% 0,03 300 10 0,00%
c103 320 - - 3437,07 320 11 0,04 300 10 6,25% 0,16 320 10 0,00%
c104 340 - - - 0,09 330 11 2,94% 0,44 340 10 0,00%
c105 300 0 300 11 0 300 11 0,01 300 11 0 300 11 0,00% 0,01 300 10 0,00%
c106 280 0 280 10 0 280 10 0 280 10 0 280 10 0,00% 0,01 280 9 0,00%
c107 310 0,01 310 11 0,01 310 11 0,01 310 11 0,01 310 11 0,00% 0,01 310 9 0,00%
c108 320 0,01 320 11 0,01 320 11 0,01 320 11 0,01 320 11 0,00% 0,03 320 10 0,00%
c109 340 0,15 340 11 0,15 340 11 0,14 340 11 0,02 340 11 0,00% 0,03 340 10 0,00%
r101 126 0 126 5 0 126 5 0 126 5 0 126 5 0,00% 0 126 4 0,00%
r102 198 0,16 198 9 0,16 198 9 0,06 198 9 0,01 182 8 8,08% 0,03 195 8 1,52%
r103 214 11,29 214 10 11,13 214 10 0,92 214 10 0,02 202 10 5,61% 0,08 208 8 2,80%
r104 227 1607,81 227 10 1602,63 227 10 24,12 227 10 0,05 225 10 0,88% 0,27 223 9 1,76%
r105 159 0 159 6 0 159 6 0,04 159 6 0 159 6 0,00% 0,01 159 5 0,00%
r106 208 0,2 208 10 0,2 208 10 0,08 208 10 0,01 203 8 2,40% 0,03 203 7 2,40%
r107 220 10,43 220 10 10,29 220 10 1 220 10 0,03 216 10 1,82% 0,10 210 8 4,55%
r108 227 1371,02 227 10 1372,44 227 10 21,94 227 10 0,05 225 10 0,88% 0,22 223 9 1,76%
r109 192 0,01 192 8 0,01 192 8 0,01 192 8 0,01 192 8 0,00% 0,03 192 7 0,00%
r110 208 0,06 208 9 0,06 208 9 0,03 208 9 0,01 208 9 0,00% 0,06 208 8 0,00%
r111 223 0,78 223 9 0,78 223 9 0,23 223 9 0,02 207 9 7,17% 0,09 211 8 5,38%
r112 226 2,65 226 10 2,67 226 10 0,55 226 10 0,03 225 10 0,44% 0,09 210 8 7,08%
rc101 180 0 180 7 0 180 7 0 180 9 0 180 9 0,00% 0,01 180 8 0,00%
rc102 230 0,02 230 9 0,02 230 9 0,02 230 10 0,01 230 9 0,00% 0,01 230 8 0,00%
rc103 240 0,17 240 9 0,18 240 9 0,08 240 9 0,01 240 9 0,00% 0,03 240 8 0,00%
rc104 270 3,96 270 10 3,96 270 10 0,77 270 10 0,02 260 10 3,70% 0,05 260 9 3,70%
rc105 210 0,02 210 9 0,02 210 9 0,01 210 9 0,01 210 9 0,00% 0,01 210 8 0,00%
rc106 210 0,01 210 8 0,01 210 8 0,01 210 8 0 210 8 0,00% 0,01 210 7 0,00%
rc107 240 0,18 240 10 0,18 240 10 0,08 240 10 0,01 230 8 4,17% 0,03 230 7 4,17%
rc108 250 1,7 250 9 1,71 250 9 0,59 250 9 0,02 250 9 0,00% 0,04 240 8 4,00%
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Tableau 6.2 Comparaison sur les instances de type OPTW à 100 clients

Instance Opt.
Méthodes exactes Méthodes approchées

Code de Salani BD,DA, V V BD,DI, V V BD,DI,NV UD,DI,NV

CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. Gap CPU Profit # vis. Gap
c101 320 0,02 320 10 0,02 320 10 0,03 320 10 0,01 320 10 0,00% 0,05 320 9 0,00%
c102 360 - - - 0,09 360 11 0,00% 0,29 360 10 0,00%
c103 400 - - - 0,26 380 10 5,00% 1,19 390 10 2,50%
c104 420 - - - 0,5 380 10 9,52% 2,12 410 10 2,38%
c105 340 0,03 340 10 0,03 340 10 0,04 340 10 0,03 340 10 0,00% 0,18 340 9 0,00%
c106 340 0,05 340 10 0,05 340 10 0,06 340 10 0,04 340 10 0,00% 0,14 340 9 0,00%
c107 370 0,06 370 11 0,06 370 11 0,07 370 11 0,04 370 11 0,00% 0,11 370 10 0,00%
c108 370 0,11 370 11 0,11 370 11 0,13 370 11 0,07 370 11 0,00% 0,18 370 10 0,00%
c109 380 1,49 380 11 1,46 380 11 1,55 380 11 0,14 380 11 0,00% 0,33 380 10 0,00%
r101 198 0,01 198 9 0,01 198 9 0,01 198 9 0,01 198 9 0,00% 0,03 198 8 0,00%
r102 286 529,28 286 11 512,15 286 11 335,95 286 11 0,07 267 11 6,64% 0,34 286 10 0,00%
r103 293 - - - 0,2 290 11 1,02% 0,97 292 10 0,34%
r104 303 - - - 0,4 299 12 1,32% 2,03 303 11 0,00%
r105 247 0,04 247 11 0,04 247 11 0,06 247 11 0,02 247 11 0,00% 0,1 247 10 0,00%
r106 293 289,26 293 11 280,37 293 11 199,51 293 11 0,13 282 11 3,75% 0,51 293 10 0,00%
r107 299 - - - 0,27 292 11 2,34% 1,12 292 12 2,34%
r108 308 - - - 0,47 305 12 0,97% 2,14 303 11 1,62%
r109 277 0,2 277 12 0,21 277 12 0,23 277 12 0,07 275 12 0,72% 0,33 275 11 0,72%
r110 284 3,33 284 13 3,34 284 13 3,15 284 13 0,16 281 11 1,06% 1,21 282 11 0,70%
r111 297 496,88 297 12 476,79 297 12 330,19 297 12 0,25 289 11 2,69% 0,96 294 11 1,01%
r112 298 - - 3632,62 298 12 0,33 289 12 3,02% 1,41 287 11 3,69%
rc101 219 0,02 219 9 0,02 219 9 0,03 219 9 0,01 219 11 0,00% 0,06 219 8 0,00%
rc102 266 1,56 266 10 1,59 266 10 1,49 266 10 0,06 266 10 0,00% 0,41 266 9 0,00%
rc103 266 236,36 266 10 235,25 266 10 135,54 266 10 0,14 266 10 0,00% 1,04 266 9 0,00%
rc104 301 - - - 0,26 301 11 0,00% 2,24 301 10 0,00%
rc105 244 0,21 244 12 0,21 244 12 0,23 244 12 0,04 241 11 1,23% 0,22 244 10 0,00%
rc106 252 0,13 252 11 0,17 252 11 0,15 252 11 0,05 252 11 0,00% 0,31 246 9 2,38%
rc107 277 3,24 277 10 3,36 277 10 2,89 277 10 0,12 277 10 0,00% 0,61 277 9 0,00%
rc108 298 52 298 11 52,51 298 11 29,69 298 11 0,21 287 11 3,69% 0,91 278 9 6,71%
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Tableau 6.3 Comparaison sur les instances de type OPTW à 100 clients (fenêtres de temps larges)

Instance BKS
Méthodes exactes Méthodes approchées

Code de Salani BD,DA, V V BD,DI, V V BD,DI,NV UD,DI,NV

CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. CPU Profit # vis. Gap CPU Profit # vis. Gap
c201 870 0,04 870 30 0,09 870 30 0,03 870 30 0,04 870 30 0,00% 1,32 870 29 0,00%
c202 930 - - - 1,00 880 31 5,38% 16,43 930 31 0,00%
c203 960 - - - 3,61 850 29 11,46% 44,43 940 30 2,08%
c204 980 - - - 7,41 800 26 18,37% 386,29 960 31 2,04%
c205 910 0,18 910 31 0,21 910 31 0,11 910 31 0,12 910 31 0,00% 5,04 900 30 1,10%
c206 930 1,05 930 32 1,13 930 32 0,74 930 32 0,29 930 32 0,00% 6,30 920 30 1,08%
c207 930 19,54 930 31 13,52 930 31 10,96 930 31 0,40 920 30 1,08% 5,50 910 30 2,15%
c208 950 712,23 950 31 556,74 950 31 531,54 950 31 0,40 940 31 1,05% 8,52 940 30 1,05%
r201 797 8,61 797 38 7,37 797 38 5,06 797 38 0,80 790 38 0,88% 50,79 793 37 0,50%
r202 929 - - - 18,88 837 42 9,90% 163,18 884 43 4,84%
r203 1021 - - - 276,96 849 40 16,85% 2874,33 966 46 5,39%
r204 1086 - - - 1427,75 772 34 28,91% 5358,00 1019 49 6,17%
r205 953 - - - 5,18 933 44 2,10% 174,74 908 41 4,72%
r206 1029 - - - 63,12 867 40 15,74% 661,86 976 46 5,15%
r207 1072 - - - 378,71 857 39 20,06% 4460,81 1016 50 5,22%
r208 1112 - - - 1261,57 809 36 27,25% 4751,50 1055 52 5,13%
r209 950 - - - 20,06 825 39 13,16% 449,80 903 43 4,95%
r210 987 - - - 104,78 811 37 17,83% 528,59 942 46 4,56%
r211 1046 - - - 35,83 980 45 6,31% 449,11 991 46 5,26%
rc201 795 1,53 795 33 1,58 795 33 0,77 795 33 0,61 785 33 1,26% 29,93 785 32 1,26%
rc202 936 - - - 8,25 866 35 7,48% 314,39 895 38 4,38%
rc203 1003 - - - 138,64 863 37 13,96% 5746,75 955 40 4,79%
rc204 1140 - - - 204,01 1043 42 8,51% 7200,00 1047 44 8,16%
rc205 859 - - - 4,62 840 37 2,21% 290,15 849 36 1,16%
rc206 895 - - - 3,44 862 35 3,69% 405,35 864 34 3,46%
rc207 983 - - - 13,76 927 42 5,70% 589,84 908 38 7,63%
rc208 1053 - - - 20,97 1017 41 3,42% 565,38 1028 42 2,37%
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Dans les tableaux 6.1, 6.2 et 6.3, on observe une diminution des temps de calcul entre

la variante (BD,DA, V V ) et la version de Salani qui sont pourtant les mêmes au niveau du

pseudo-code. Cette diminution est liée aux différences d’implémentation (ordre des tests dans

l’algorithme, code en C++ et non en C...). On observe également que la variante (BD,DI, V V )

consistant à limiter l’extension d’un label forward à T/2 donne de meilleurs temps de réso-

lution que la variante (BD,DA, V V ). Elle permet de résoudre deux instances en moins de

2 heures qu’il n’était pas possible de résoudre auparavant. De plus, on remarquera dans le

tableau 6.3 que l’optimalité de 7 meilleures solutions connues est prouvée par notre méthode

ainsi que par le code de Salani (sur les instances c201, c205, c206, c207, c208, r201 et rc201).

En ce qui concerne les méthodes approchées, on observe que la variante (BD,DI,NV )

est nettement plus rapide que toutes les autres variantes (exactes ou approchées) et qu’elle

fournit des solutions situées à moins de 10% de la solution optimale sur les instances avec

fenêtres de temps serrées. Toutefois, dès que l’on traite des instances avec fenêtres de temps

larges (instances de type C2, R2, RC2), les solutions qu’elle fournit peuvent se trouver à 30%

de la solution optimale, ce qui n’est pas acceptable. En effet, dans la variante (BD,DI,NV ),

on procède à une programmation dynamique forward, une programmation dynamique back-

ward avec pour critère le nombre de clients visités et non le vecteur de visite. Ainsi, sur des

instances aux fenêtres de temps larges, on peut avoir de très bonnes solutions en forward et

de très bonnes solutions en backward mais lors de la jonction, il y a une forte probabilité

que ces solutions aient des clients en commun et ne puissent être jointes. On peut donc ob-

tenir des solutions de qualité très médiocre. Pour remédier à ce problème, dans la variante

(UD,DI,NV ), on procède comme dans la variante (BD,DI,NV ) mais dans une seule di-

rection. Il s’agit d’une programmation dynamique classique et non bidirectionnelle bornée.

On observe que cette variante (UD,DI,NV ) fournit des solutions de meilleure qualité sur

l’ensemble des instances avec un gap à optimalité ne dépassant pas 8,2%. Toutefois, si cette

variante fournit de très bonnes solutions, elle requiert des temps de calcul nettement plus

élevés que la variante (BD,DI,NV ).

Résultats sur les instances du TOPTW

Avant de tester et valider la méthode proposée dans ce chapitre, nous avons testé les

variantes approchées sur des instances de la littérature afin de connâıtre le gap entre les

solutions obtenues par notre méthode et les solutions optimales. Nous avons donc choisi

d’utiliser les instances de Vansteenwegen et al. [71] comme il s’agit d’instances du TOPTW

pour lesquelles les solutions optimales sont connues. Plus précisément, nous avons choisi de

procéder à des tests sur les instances de Vansteenwegen et al. [71] de type r2, c2 et rc2 (avec

fenêtres de temps lagres) car ce sont les instances qui se rapprochent le plus de nos instances
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(décrites au chapitre 1). Dans ces instances de Vansteenwegen et al. [71], plusieurs véhicules

et un unique dépôt sont considérés. En utilisant notre méthodologie (construction des routes

à l’aide de la programmation dynamique puis sélection exacte d’une route par véhicule)

telle quelle, on obtient des solutions de piètre qualité du fait de la symétrie du problème.

Nous avons donc ajouté une phase de génération d’une partition de l’ensemble des sommets

associés aux clients en amont. Ainsi, on procède à plusieurs partitionnements en un nombre de

sous-ensembles égal au nombre de véhicules utilisés dans la solution optimale. Pour chacun

de ces sous-ensembles, on procède à la génération de routes de notre méthode. Ensuite,

on sélectionne une route par véhicule parmi toutes les routes de tous les sous-ensembles.

Les résultats obtenus en appliquant cette méthodologie avec les variantes (BD,DI,NV ) et

(UD,DI,NV ) sont synthétisés dans le Tableau 6.4. Dans ce tableau, les en-têtes de colonnes

sont les suivants : Nb veh : nombre de véhicules utilisés dans la solution optimale, Opt :

valeur de la solution optimale (profit collecté), CPU : temps de calcul en secondes, Valeur :

valeur de la solution obtenue, Gap : gap entre la solution obtenue et la solution optimale. Si

la génération de routes n’a pu terminer en moins de 2 heures sur une instance, on mettra un

« - » dans la case correspondante.

Tableau 6.4 Comparaison sur les instances de Vansteenwegen et al. [71]

Instance Nb veh Opt
Variante BD,DI,NV Variante UD,DI,NV

CPU Valeur Gap CPU Valeur Gap
c201 4 1810 0,07 1810 0,00% 1,38 1810 0,00%
c202 4 1810 0,54 1810 0,00% 5,38 1790 1,10%
c203 4 1810 0,94 1810 0,00% 6,90 1800 0,55%
c204 4 1810 1,62 1680 7,18% 4,95 1800 0,55%
c205 4 1810 0,37 1810 0,00% 1,70 1810 0,00%
c206 4 1810 0,20 1810 0,00% 2,51 1810 0,00%
c207 4 1810 0,25 1810 0,00% 2,72 1810 0,00%
c208 4 1810 0,24 1810 0,00% 2,30 1810 0,00%
r201 4 1458 0,81 1385 5,01% 53,98 1384 5,08%
r202 3 1458 3,33 1354 7,13% 248,69 1383 5,14%
r203 3 1458 21,98 1353 7,20% 1168,54 1410 3,29%
r204 2 1458 743,02 1140 21,81% -
r205 3 1458 1,92 1413 3,09% 603,49 1398 4,12%
r206 3 1458 10,47 1373 5,83% 714,92 1428 2,06%
r207 2 1458 291,05 1224 16,05% -
r208 2 1458 758,26 1186 18,66% -
r209 3 1458 6,13 1381 5,28% 609,40 1427 2,13%
r210 3 1458 15,74 1332 8,64% 831,68 1421 2,54%
r211 2 1458 10,49 1313 9,95% 4307,51 1321 9,40%
rc201 4 1724 0,38 1695 1,68% 12,81 1684 2,32%
rc202 3 1724 2,01 1619 6,09% 196,40 1640 4,87%
rc203 3 1724 11,90 1605 6,90% 470,05 1677 2,73%
rc204 3 1724 26,07 1592 7,66% 403,16 1716 0,46%
rc205 4 1724 0,62 1692 1,86% 22,76 1701 1,33%
rc206 3 1724 1,48 1679 2,61% 226,77 1663 3,54%
rc207 3 1724 3,19 1640 4,87% 291,88 1645 4,58%
rc208 3 1724 9,60 1670 3,13% 216,75 1680 2,55%

Dans ce tableau, on observe sur 3 instances que les gaps à optimalité peuvent atteindre
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20%. Pour y remédier, nous aurions pu développer encore la méthodologie. Toutefois, notre

objectif est avant tout de valider notre méthodologie sur les instances de la littérature. Nous

pouvons d’ailleurs observer, sur le reste des instances (comprenant 3 à 4 véhicules), que le

gap à optimalité ne dépasse pas 10%. Si les temps de calcul sont nettement plus faibles dans

la variante bidirectionnelle, les gaps à optimalité sont nettement plus élevés. En effet, quand

on procède à la programmation dynamique bidirectionnelle, étant donné que les fenêtres de

temps sont larges (instances de type c2, r2 et rc2) et qu’un véhicule peut desservir jusqu’à 50

clients sur une tournée, on peut construire des chemins très longs en forward et en backward

et souvent, ces chemins ne peuvent être joints car ils ont un ou plusieurs clients en commun.

Toutefois, il peut également arriver que les solutions en bidirectionnel soient meilleures que

celles dans une direction. En effet, en bidirectionnel, on génère plus de chemins (donc plus

de diversité), ce qui aide lors de la sélection exacte des routes.

6.2.2 Résultats sur les instances du chapitre 1

Après avoir procédé aux tests et à la validation de l’heuristique basée sur la génération

de colonnes sur les instances de la littérature, nous procédons à présent aux tests sur les

instances décrites au chapitre 1. Dans cette section, nous procèderons d’abord au réglage des

paramètres puis nous présenterons les résultats de la méthode de ce chapitre sur les instances

du chapitre 1 et enfin, nous comparerons la méthode de ce chapitre avec la méthode du

chapitre précédent.

Réglage des paramètres

Concernant le réglage des paramètres, nous utilisons le même réglage de paramètres

que dans les chapitres précédents : horizon de temps T = 480 minutes, vitesse minimale

vmin = 20km/h et vitesse modale vmod = 40km/h. Après avoir converti ces valeurs vmin

et vmod en unités arbitraires par minute, on calcule le temps de parcours unitaire minimal

δ = ⌈100/vmax⌉ et modal δ̂ = ⌈100/vmod⌉. Les temps de parcours minimaux et modaux sont

ensuite obtenus en utilisant les formules τ ij =
⌈

Dijδ
⌉

et τ̂ij =
⌈

Dij δ̂
⌉

. Pour le réglage des

temps de service, nous avons choisi des temps de service minimaux et modaux respectivement

de 15 et 22 minutes pour les clients optionnels et de 30 et 35 minutes pour les clients obliga-

toires. Comme précédemment, nous avons supposé que le service d’un client optionnel, quel

qu’il soit, génère un profit po = 100 et nous avons choisi α = 1. Pour le choix du profit associé

aux clients obligatoires pm (utilisé durant la génération de routes), nous avons procédé à une

série de tests des variantes approchées (UD,DI,NV ) et (BD,DI,NV ) sur les instances à

40 clients dont les résultats sont synthétisés dans les tableaux 6.5 et 6.6. Afin d’accorder la
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priorité aux clients obligatoires par rapport aux clients optionnels, on choisit de faire varier

le profit des clients obligatoires entre 200 et 500. Les en-têtes de colonnes dans ces tableaux

sont : CPU : temps de résolution en secondes, # ND : nombre de clients optionnels non

desservis et Dist. : distance totale parcourue en kilomètres.

Tableau 6.5 Influence du profit des clients obligatoires, variante (UD,DI,NV )

Nb de
clients

Nb de
clients
oblig.

Profit = 200 Profit = 300 Profit = 400 Profit = 500

CPU
#

ND
Dist. CPU

#
ND

Dist. CPU
#

ND
Dist. CPU

#
ND

Dist.

30

5 1,1 0,2 214,01 1,3 0,2 219,04 1,3 0,2 218,98 1,1 0,2 219,07
6 1,4 0,4 207,00 1,6 0,4 207,00 1,7 0,2 212,31 1,7 0,2 212,31
7 1,2 0,2 222,57 1,4 0,2 222,57 1,4 0,2 221,22 1,6 0,2 222,53
8 1,3 0,6 217,62 1,6 0,6 218,86 1,7 0,6 216,19 1,7 0,6 216,19
9 1,2 0,8 218,35 1,5 0,8 216,19 1,6 0,8 215,63 1,6 0,8 221,29

40

5 2,8 3,6 223,80 3,0 3,6 225,75 2,8 3,8 222,27 3,3 3,8 222,27
6 3,5 3,2 228,96 4,5 3,0 236,90 4,4 3,0 236,90 4,8 3,0 236,89
7 4,5 4,2 223,44 5,0 4,0 224,93 5,5 4,2 225,61 5,5 4,2 225,86
8 3,7 3,6 226,63 4,8 3,4 236,65 4,9 3,4 236,65 4,6 3,6 232,82
9 3,6 4,0 234,51 4,1 4,0 233,28 4,4 4,2 234,54 4,4 4,4 232,61

50

5 4,3 7,6 232,75 5,3 8,2 218,78 5,6 8,2 226,48 6,2 8,6 223,80
6 5,9 8,0 235,26 7,9 7,8 235,51 8,3 7,8 235,51 8,4 7,8 235,51
7 7,3 9,0 221,51 9,6 9,2 220,29 10,1 9,4 226,32 10,3 9,8 221,33
8 7,0 7,6 232,06 8,9 7,6 231,35 9,6 8,2 224,43 10,4 8,4 241,88
9 7,6 9,4 227,00 9,1 9,4 226,27 9,7 10,0 220,24 10,1 10,4 220,60

Tableau 6.6 Influence du profit des clients obligatoires, variante (BD,DI,NV )

Nb de
clients

Nb de
clients
oblig.

Profit = 200 Profit = 300 Profit = 400 Profit = 500

CPU
#

ND
Dist. CPU

#
ND

Dist. CPU
#

ND
Dist. CPU

#
ND

Dist.

30

5 22,5 0,0 199,88 21,6 0,0 199,88 23,1 0,0 199,74 23,5 0,0 199,88
6 27,2 0,0 213,70 37,1 0,0 214,48 30,4 0,0 214,48 31,0 0,0 214,48
7 28,1 0,0 219,29 33,5 0,0 219,29 37,1 0,0 219,29 35,1 0,0 219,29
8 21,9 0,0 214,55 24,8 0,0 214,50 25,9 0,0 214,50 26,2 0,0 214,50
9 23,4 0,0 216,61 29,0 0,0 216,63 27,7 0,0 216,63 25,0 0,0 216,63

40

5 80,4 1,6 230,88 96,8 1,4 238,37 88,1 1,4 238,37 104,2 1,4 238,37
6 93,1 1,8 249,82 119,9 1,8 249,91 117,2 1,8 249,91 117,2 1,8 249,91
7 104,6 2,6 238,15 122,4 2,2 254,18 112,5 2,2 254,18 122,5 2,2 254,18
8 77,6 2,0 242,84 97,6 2,0 242,00 94,1 2,0 242,00 98,0 2,0 242,00
9 107,8 2,6 238,42 120,3 2,4 239,64 120,2 2,4 239,59 111,5 2,4 239,59

50

5 173,3 8,0 228,42 184,1 8,0 226,26 173,9 8,0 226,26 184,1 8,0 226,26
6 192,9 8,6 221,53 212,0 8,6 221,88 181,5 8,6 221,88 184,6 8,6 221,53
7 198,5 9,2 224,26 240,1 9,2 221,45 235,3 9,2 221,80 233,9 9,2 221,80
8 189,5 9,2 214,84 218,1 9,2 214,84 201,6 9,2 214,84 219,0 9,2 214,84
9 180,2 9,4 220,79 261,2 9,4 220,86 245,2 9,4 220,86 237,2 9,4 220,86

Dans ces tableaux, on observe, pour la variante (BD,DI,NV ), que le nombre de clients

non desservis sur les instances à 40 clients est plus élevé lorsque le profit associé aux clients

obligatoires vaut 200. On observe également que, pour un nombre de clients non desservis

identique, la distance totale parcourue est plus élevée pour un profit de 200 associé aux

clients obligatoires. Quant aux temps de calcul, ils ont tendance à augmenter avec le profit

(mais les valeurs restent comparables). On évitera donc de choisir la valeur pm = 200. En ce
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qui concerne la variante (UD,DI,NV ), on observe que le nombre de clients non desservis

atteint le plus souvent sa valeur minimale pour pm = 300. Comme précédemment, les temps

de calcul augmentent avec le profit mais gardent des valeurs comparables. Pour la suite des

expérimentations, on choisira donc d’attribuer un profit pm = 300 aux clients obligatoires.

Résultats de la méthode

Dans cette section, nous avons testé les trois variantes (BD,DI, V V ), (BD,DI,NV ) et

(UD,DI,NV ) sur les instances vues au chapitre 1. Toutefois, la variante exacte (BD,DI, V V )

(avec vecteur de visite) générant trop de labels, on ne peut procéder à la sélection exacte d’une

route par véhicule parmi ces labels. On présentera donc uniquement les solutions obtenues à

l’aide des variantes (BD,DI,NV ) et (UD,DI,NV ) (suivies d’une méthode de postoptimi-

sation de type 2-Opt, comme indiqué précédemment). Afin d’obtenir des résultats complets,

nous avons procédé, après l’étape de planification, à l’étape d’exécution (i.e. la programma-

tion dynamique), décrite au chapitre 4, à la fin de la méthode. Puis, nous avons réalisé 100

simulations par instance. Les résultats obtenus pour ces deux variantes sont synthétisés dans

les tableaux 6.7 et 6.8. Les en-têtes de ces tableaux sont les suivants : CPU : temps de calcul

en secondes, CPU : temps de la génération de routes en secondes, # moy. non servis : nombre

moyen de clients non servis, WR : stratégie de programmation dynamique considérant toute

la route et OS : stratégie de programmation dynamique considérant un seul segment de route

(cf. chapitre précédent). Dans ce tableau, le nombre indiqué de clients non servis après simu-

lation comprend le nombre de clients non servis avant simulation plus le nombre de clients

devenus non desservis durant la simulation.

Tableau 6.7 Résultats avant/après simulation pour la variante (BD,DI,NV )

Nb de
clients

Nb de
clients
oblig.

Avant simulation Après simulation

CPU
CPU
Gen

# moy.
non servis

distance
moy.

# moy. non servis distance moy. retard moy.
WR OS WR OS WR OS

30

5 21,5 0,8 0,0 200 1,2 0,7 197 199 0,6 7,4
6 37,1 0,8 0,0 214 3,8 1,9 199 208 1,1 19,2
7 33,5 0,8 0,0 219 4,0 2,8 206 213 2,1 30,8
8 24,8 0,8 0,0 214 3,2 2,2 201 208 2,4 29,3
9 29,0 0,8 0,0 217 4,5 2,0 203 214 4,8 62,1

40

5 96,8 2,1 1,4 238 7,8 6,4 206 220 1,8 44,7
6 119,9 2,3 1,8 250 9,9 7,9 214 229 2,2 59,1
7 122,4 2,4 2,2 254 11,7 8,8 221 241 2,7 78,2
8 97,6 2,4 2,0 242 11,1 7,9 201 232 2,7 93,0
9 120,3 2,6 2,4 240 12,3 7,8 198 232 8,2 135,0

50

5 184,1 4,2 8,0 226 16,3 14,6 195 214 1,8 68,9
6 212,0 4,6 8,6 222 17,5 15,5 193 208 1,5 48,9
7 240,1 4,9 9,2 221 19,1 16,7 194 208 2,9 62,8
8 218,1 5,4 9,2 215 19,7 16,4 188 205 3,9 82,2
9 261,2 5,7 9,4 221 21,3 16,8 187 210 3,5 102,6
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Tableau 6.8 Résultats avant/après simulation pour la variante (UD,DI,NV )

Nb de
clients

Nb de
clients
oblig.

Avant simulation Après simulation

CPU
CPU
Gen

# moy.
non servis

distance
moy.

# moy. non servis distance moy. retard moy.
WR OS WR OS WR OS

30

5 1,3 0,6 0,2 219 6,2 3,6 183 198 1,3 40,1
6 1,6 0,8 0,4 207 5,9 4,8 180 185 1,8 21,4
7 1,4 0,9 0,2 223 7,4 4,8 190 200 3,1 57,0
8 1,6 0,9 0,6 219 6,3 5,6 181 181 1,3 8,4
9 1,5 0,8 0,8 216 6,2 4,8 185 188 2,7 32,2

40

5 3,0 1,8 3,6 226 9,6 8,4 194 199 1,3 21,4
6 4,5 2,7 3,0 237 11,3 10,0 187 190 1,9 29,4
7 5,0 3,1 4,0 225 11,7 10,7 179 182 2,7 25,7
8 4,8 3,0 3,4 237 13,0 9,5 187 197 4,1 88,4
9 4,1 3,1 4,0 233 12,6 10,5 179 186 6,1 56,3

50

5 5,3 4,1 8,2 219 16,8 14,5 184 192 1,6 57,9
6 7,9 6,3 7,8 236 18,1 15,8 181 187 2,5 57,6
7 9,6 6,9 9,2 220 19,6 17,3 173 180 2,2 51,1
8 8,9 7,8 7,6 231 19,9 17,7 180 188 3,6 51,9
9 9,1 7,6 9,4 226 21,2 16,6 182 197 6,1 125,7

Dans ces tableaux, on observe une cohérence des résultats obtenus : le nombre de clients

non desservis n’augmente pas beaucoup au cours des simulations. Ce qui signifie que les

routes ne sont pas bouleversées au cours des simulations. On constate aussi que le nombre

moyen de clients desservis est compris entre 25 et 32 clients. En ce qui concerne la distance,

on observe que, pour un même nombre de clients desservis, la distance moyenne parcourue

diminue, pour un retard similaire quand la taille des instances augmente. En effet, plus les

instances contiennent de clients, meilleures sont les routes construites (car il y a plus de choix

possibles).

En comparant les deux stratégies de programmation dynamique (WR et OS), on remarque

que la stratégie ne considérant qu’un segment est préférable en ce qui concerne le nombre de

clients non desservis (comme au chapitre précédent) mais on préfère la stratégie considérant

toute la route du point de vue de la distance parcourue (pour comparer la distance parcourue

avec un nombre de clients visités différent, on calcule le ratio distance/nombre de clients

visités et on compare le ratio obtenu pour les deux stratégies).

En comparant les deux méthodes, on observe que le nombre de clients non servis avant

simulation est plus faible avec la variante bidirectionnelle. Il en est de même après simulation,

quelle que soit la stratégie. Toutefois, on constate également que la différence entre le nombre

de clients non desservis pour la méthode bidirectionnelle et celui obtenu pour la variante

unidirectionnelle diminue quand la taille des instances augmente (elle est quasiment nulle

pour les instances de taille 50). En ce qui concerne les temps de calcul, ils sont plus élevés

pour la variante bidirectionnelle mais restent inférieurs à 5 minutes. En effet, dans la variante

bidirectionnelle, on génère un plus grand nombre de routes et la sélection exacte nécessite donc
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plus de temps. En comparant les solutions obtenues après simulation par les deux méthodes,

on constate que le retard moyen et la distance moyenne (ratio distance parcourue / nombre de

clients visités) sont plus élevés dans la méthode bidirectionnelle. Toutefois, les différences au

niveau de la distance et du retard pour la stratégie WR restent faibles. De plus, comme nous

l’avons mentionné plus haut, le nombre de clients desservis par la méthode bidirectionnelle

est nettement supérieur. C’est donc cette variante approchée que nous retiendrons et que

nous comparerons avec l’heuristique basée sur la priorité des clients présentée au chapitre

précédent.

6.2.3 Comparaison de cette méthode avec la méthode précédente

Les résultats avant simulation (30, 40 et 50 clients) obtenus avec la méthode de ce chapitre

et celle du chapitre précédent sont synthétisés dans le Tableau 6.9. Dans ce tableau, on

Tableau 6.9 Comparaison des 2 méthodes avant simulation

# clients
# clients

obligatoires

Heuristique basée sur la
priorité des clients

Heuristique basée sur la
génération de colonnes

CPU
(s)

non
servis

Distance
(km)

CPU
(s)

non
servis

Distance
(km)

30

5 43 1,4 220 22 0,0 200
6 66 2,8 232 37 0,0 214
7 53 2,4 230 34 0,0 219
8 34 3,4 216 25 0,0 214
9 24 3 217 29 0,0 217

40

5 3277 7,2 202 97 1,4 238
6 962 10,2 217 120 1,8 250
7 1451 10 211 122 2,2 254
8 1880 10 210 98 2,0 242
9 1053 10 206 120 2,4 240

50

5 1227 15,4 192 184 8,0 226
6 3064 17,6 197 212 8,6 222
7 2844 18 192 240 9,2 221
8 2323 18,6 200 218 9,2 215
9 1408 19,2 188 261 9,4 221

observe, avant simulation, que la méthode présentée dans ce chapitre est nettement plus

rapide que l’heuristique basée sur la priorité des clients. En effet, elle permet de résoudre

toutes les instances en moins de 5 minutes, alors que cela pouvait prendre jusqu’à une heure

précédemment. En ce qui concerne la qualité des solutions, on peut également constater que le

nombre de clients non desservis avant simulation est nettement moins élevé dans la méthode

présentée ici que dans l’heuristique basée sur la priorité des clients. Tandis que l’on desservait

30 clients en moyenne dans l’heuristique basée sur la priorité des clients, quelle que soit la

taille des instances, on dessert à présent 30 clients pour les instances à 30 clients, 38 clients

pour les instances à 40 clients et 40 clients pour les instances à 50 clients (soit 10 clients de

plus que précédemment). Sur les instances de taille 30, les solutions obtenues avec la méthode

de ce chapitre sont de meilleure qualité : elles desservent plus de clients en parcourant moins
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de distance que l’heuristique basée sur la priorité des clients. Cela se justifie par le fait que,

dans l’heuristique basée sur la priorité des clients, on fixait le squelette des clients avant

d’insérer les clients optionnels tandis qu’à présent, on construit directement des routes avec

des clients obligatoires et optionnels, ce qui peut donc conduire à des solutions de meilleure

qualité. Pour les autres instances, on ne peut pas comparer la qualité globale des solutions

obtenues par les deux méthodes étant donné que, dans l’heuristique basée sur la priorité des

clients, on s’assure que la solution obtenue avant simulation soit réalisable dans 90% des cas

(ce qui implique forcément un nombre de clients non desservis plus élevé avant simulation).

Pour juger de la qualité des solutions, il nous faut donc comparer les résultats obtenus après

simulation. Ces résultats obtenus après simulation, avec les stratégies de programmation

dynamique mentionnées au chapitre 4, sont regroupés dans les tableaux 6.10 et 6.11.

Tableau 6.10 Comparaison des 2 méthodes après simulation, stratégie WR

# clients
# clients

obligatoires

Heuristique basée sur la
priorité des clients

Heuristique basée sur la
génération de colonnes

non
servis

Distance
(km)

retard
non
servis

Distance
(km)

retard

30

5 5,3 199 2 1,2 197 0,6
6 5,6 212 3,1 3,8 199 1,1
7 5,5 209 2,7 4,0 206 2,1
8 7,6 195 3,2 3,2 201 2,4
9 7 197 4,6 4,5 203 4,8

40

5 9,7 193 1,8 7,8 206 1,8
6 12,7 204 2,7 9,9 214 2,2
7 13,3 198 2,4 11,7 221 2,7
8 13,2 198 3,6 11,1 201 2,7
9 14,5 189 6,8 12,3 198 8,2

50

5 17,9 185 2 16,3 195 1,8
6 21,1 189 3,6 17,5 193 1,5
7 22,2 184 3,6 19,1 194 2,9
8 22,1 187 4,3 19,7 188 3,9
9 22,8 180 5,7 21,3 187 3,5
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Tableau 6.11 Comparaison des 2 méthodes après simulation, stratégie OS

# clients
# clients

obligatoires

Heuristique basée sur la
priorité des clients

Heuristique basée sur la
génération de colonnes

non
servis

Distance
(km)

retard
non
servis

Distance
(km)

retard

30

5 3,4 211 2 0,7 199 7,4
6 5,6 212 3,2 1,9 208 19,2
7 5,5 209 2,8 2,8 213 30,8
8 6,1 204 3,2 2,2 208 29,3
9 6,4 201 4,6 2,0 214 62,1

40

5 9,7 194 1,8 6,4 220 44,7
6 12,7 204 2,7 7,9 229 59,1
7 13,3 198 2,5 8,8 241 78,2
8 13,2 198 3,6 7,9 232 93,0
9 14 191 5,6 7,8 232 135,0

50

5 17,9 185 2 14,6 214 68,9
6 20,5 189 3,6 15,5 208 48,9
7 21,5 185 3,6 16,7 208 62,8
8 22,1 187 4,4 16,4 205 82,2
9 22,7 180 5,9 16,8 210 102,6

On observe dans ces tableaux que le nombre de clients non desservis est nettement plus

élevé dans l’heuristique basée sur la priorité des clients que dans la méthode de ce chapitre,

quelle que soit la stratégie de programmation dynamique. D’autre part, le retard est légè-

rement moins élevé dans la méthode approchée quand on considère la stratégie WR tandis

qu’il est nettement plus élevé dans la stratégie OS. En effet, dans la stratégie consistant à

considérer un seul segment, étant donné que la route est réalisable dans 90% des cas dans

l’heuristique basée sur la priorité des clients, on ne peut pas avoir de retard moyen très élevé.

Par contre, dans la méthode de ce chapitre, rien ne garantit cette réalisabilité. Ainsi, quand

on considère la stratégie WR, on se prémunit contre des retards aux clients obligatoires car

on prend les décisions en observant toute la route (et donc tous les clients obligatoires qui

suivent). Par contre, dans la stratégie ne considérant qu’un segment à la fois, on se prémunit

uniquement contre un éventuel retard au prochain client obligatoire mais pas aux clients obli-

gatoires suivants. On peut donc obtenir des retards très élevés. Quelle que soit la stratégie en

tout cas, on observe sur les instances à 30 clients que les solutions obtenues sont de meilleure

qualité avec la méthode de ce chapitre (nombre de clients non desservis et distance parcourue

moins élevée). Seul le retard pourrait prêter à discussion mais il ne dépasse pas 7 minutes par

client obligatoire dans la stratégie WR. Comme on préfère desservir un maximum de clients,

on préfèrera donc la méthode de ce chapitre.

6.3 Conclusion

Dans ce chapitre nous avons proposé une heuristique basée sur la génération de colonnes

consistant à générer, pour chaque véhicule, des routes à l’aide d’une méthode de type pro-
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grammation dynamique puis à sélectionner de façon exacte une route par véhicule en ré-

solvant un programme linéaire en nombre entiers avec Cplex. Nous avons proposé plusieurs

variantes de programmation dynamique pour la génération de routes : une variante exacte

(bi-directionnelle, avec vecteur de visite) et deux variantes approchées (bidirectionnelle et

unidirectionnelle avec nombre de visités). Etant donné que nos instances ne sont pas très

contraintes (fenêtres de temps larges pour tous les clients), la méthode exacte ne permet

pas de résoudre nos instances en moins de 2 heures. Par contre, elle nous a permis d’éta-

blir l’optimalité de plusieurs solutions approchées de la littérature (sur des instances de type

OPTW). Quant aux variantes approchées, nous avons pu constater, dans les résultats expéri-

mentaux, que la variante approchée bidirectionnelle était nettement plus rapide et fournissait

de meilleures solutions que la variante approchée unidirectionnelle. En effet, cette méthode

permet d’obtenir de bonnes solutions sur toutes les instances en moins de 5 minutes. Ensuite,

nous avons pu comparer cette méthode avec l’heuristique basée sur la priorité des clients

proposée au chapitre précédent. Nous avons alors constaté que la méthode de ce chapitre

fournissait de meilleures solutions en moins de temps que la méthode précédente.

Toutefois, si cette variante approchée s’avère efficace, elle reste une méthode approchée.

Etant données sa rapidité et son efficacité, il serait intéressant de proposer une méthode exacte

basée sur la variante approchée bidirectionnelle, avec nombre de visités, de ce chapitre. C’est

pourquoi, dans le chapitre suivant, nous proposons un algorithme de branch and price qui

intègre la méthode approchée de ce chapitre.
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CHAPITRE 7

Algorithme de branch and price

Dans le chapitre précédent, nous avons présenté une heuristique basée sur la génération

de colonnes pour résoudre notre variante du problème de tournées de service. Cette méthode

s’est montrée très efficace sur nos instances avec des temps de calcul de moins de 5 minutes.

Toutefois, cette méthode, tout comme celle présentée au chapitre 4, reste une méthode ap-

prochée. Dans ce chapitre, nous proposons une méthode exacte pour l’étape de planification.

Comme cette étape correspond à un problème de tournées de véhicules multi-dépôts, avec

fenêtres de temps et priorité entre les clients (MDVRPTW avec priorité), on ne peut espérer

résoudre ce problème en utilisant les méthodes standards d’énumération implicite. Toutefois,

en formulant ce problème comme un problème de partitionnement, il nous devient possible

de résoudre ce problème de façon exacte avec un algorithme de branch and price. Dans ce

chapitre, nous rappellerons le principe du branch and price. Puis, nous reformulerons notre

problématique sous forme d’un problème mâıtre et d’un sous-problème. Nous détaillerons en-

suite les composantes de la méthode de branch and price utilisées. Enfin, nous présenterons

les résultats obtenus et nous conclurons sur cette méthode.

7.1 Principe des algorithmes de branch and price

La méthode de branch and price, introduite par Johnson [40], implémentée par Desrochers

et Soumis [24] et baptisée par Savelsbergh [60] et Barnhart et al. [6], est une recherche arbo-

rescente (branch and bound) dans laquelle on ajoute de nouvelles colonnes à chaque noeud.

L’idée, dans cette méthode, est de résoudre la relaxation linéaire du problème restreint à un

sous-ensemble de variables (le nombre total de variables étant trop élevé pour une résolution

directe) puis à brancher pour obtenir une solution entière. A chaque noeud de l’arbre, on

procède à une génération de colonnes, c’est-à-dire à l’extension du sous-ensemble de variables

(on résout un problème de pricing). La génération de colonnes, introduite par Gilmore et Go-

mory [32], est basée sur la décomposition du problème initial en deux problèmes : le problème

mâıtre et le sous-problème. Le problème mâıtre correspond au problème initial dans lequel on

se limite à un sous-ensemble de variables. Le sous-problème (ou problème de pricing), quant

à lui, permet de générer de nouvelles variables, à ajouter au problème mâıtre. Une itération

de la génération de colonnes consiste alors à résoudre le problème mâıtre puis à résoudre le

sous-problème pour ajouter de nouvelles variables présentant un coût réduit intéressant dans
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le problème mâıtre (coût réduit négatif pour un problème de minimisation, positif pour un

problème de maximisation). La génération de colonnes finit lorsqu’il n’y a plus de variables

intéressantes à ajouter. La solution est alors optimale pour la relaxation linéaire du problème

initial. La méthode est schématisée figure 7.1 (figure extraite du mémoire de thèse de Tricoire

[68]).

Figure 7.1 Schéma de la méthode de branch and price (Tricoire [68])

Considérons l’exemple du problème de tournées de véhicules classique et formulons le

problème mâıtre et le sous-problème associés. Soient N l’ensemble de clients, Ω un sous-

ensemble de routes réalisables, cr le coût de la route r, δir un booléen indiquant si le client

i appartient à la route r et K le nombre de véhicules. On suppose que les coûts entre les

clients satisfont l’inégalité triangulaire. En posant xr la variable booléenne indiquant si la
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route r est choisie, on peut formuler le problème de tournées de véhicules classique comme

le problème de partitionnement suivant :

min
∑

r∈Ω

crxr

sujet à :

∑

r∈Ω

δirxr > 1 ∀i ∈ N (7.1)

∑

r∈Ω

xr 6 K (7.2)

xr ∈ N (7.3)

r ∈ Ω (7.4)

Les contraintes (7.1) assurent la visite de chaque client. La contrainte (7.2) veille au respect

du nombre de véhicules. Dans la contrainte (7.3), on peut constater que les variables ne sont

plus booléennes mais entières. En effet, comme on minimise les coûts, il n’est pas nécessaire

d’imposer xr ∈ {0; 1}. La relaxation linéaire de ce problème est appelée problème mâıtre.

Il est défini sur un ensemble de routes réalisables Ω obtenues en résolvant le sous-problème.

Dans le sous-problème, l’objectif est d’identifier des routes réalisables de coût réduit négatif

(car il s’agit d’un problème de minimisation). Soient πi les variables duales associées aux

contraintes (7.1) et ǫ la variable duale associée à la contrainte (7.2), on peut formuler la

fonction objectif du sous-problème comme suit :

min cr −
∑

i∈N

πi − ǫ

Les contraintes du sous-problème sont les contraintes de faisabilité d’une route du problème

considéré (contraintes de degré entrant et sortant, fenêtres de temps, longueur d’une route...).

7.2 Formulation

Dans la section précédente, nous avons rappelé les principes du branch and price. Pour

pouvoir appliquer cette méthodologie à notre problème, il est nécessaire de reformuler celui-

ci sous forme d’un problème mâıtre et d’un sous-problème. Dans notre problème, chaque

véhicule dispose de son dépôt origine et de son dépôt destination. On aura donc un ensemble

de routes réalisables par véhicule (et un sous-problème par véhicule). Dans ce qui suit, nous

présenterons d’abord la formulation du problème mâıtre puis nous donnerons une formulation

du sous-problème pour un véhicule donné.
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7.2.1 Problème mâıtre

Le problème mâıtre consiste à affecter une route réalisable à chaque véhicule en s’assurant

que chaque client obligatoire est servi une fois et que chaque client optionnel est servi au plus

une fois. Soient M l’ensemble des clients obligatoires, O l’ensemble des clients optionnels et

Ωk l’ensemble de routes réalisables pour le véhicule k. Notons pr le revenu total de la route r

(profit - temps de parcours modal), δir un booléen indiquant si le client i ∈M appartient à la

route r et δcr un booléen indiquant si le client c ∈ O appartient à la route r. En utilisant les

variables décisionnelles booléennes wk
r indiquant si la route r ∈ Ωk est utilisée par le véhicule

k, on formule le problème mâıtre comme suit :

max .
∑

k∈K

∑

r∈Ωk

prw
k
r

sujet à :

Var. duales
∑

k∈K

∑

r∈Ωk

δirw
k
r = 1 ∀i ∈M βi (7.5)

∑

k∈K

∑

r∈Ωk

δcrw
k
r 6 1 ∀c ∈ O γc (7.6)

∑

r∈Ωk

wk
r = 1 ∀k ∈ K ǫk (7.7)

wk
r ∈ {0; 1} ∀k ∈ K, r ∈ Ωk

Les contraintes (7.5) assurent que chaque client obligatoire est servi une et une seule fois.

Les contraintes (7.6) imposent que chaque client optionnel soit servi au plus une fois. Enfin,

les contraintes (7.7) interdisent l’affectation de plusieurs routes à un même véhicule. Dans

ce modèle, on associe aux contraintes (7.5) les variables duales βi, aux contraintes (7.6) les

variables duales γc et aux contraintes (7.7) les variables duales ǫk. Etant donnés les types

de contraintes, les variables γc sont positives tandis que les variables βi et ǫk sont de signe

inconnu.

Dans le cadre de la génération de colonnes, on reformule les contraintes de partitionne-

ment (pour éviter d’avoir des variables duales non bornées). Pour ce faire, on remplace les

contraintes (7.5) par des contraintes de recouvrement (afin de desservir au moins une fois

chaque client obligatoire) et les contraintes (7.7) du problème mâıtre par des contraintes de

packing (pour que nos variables primales soient bornées et pour avoir au plus une route par
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véhicule). On obtient les contraintes :

∑

k∈K

∑

r∈Ωk

δirw
k
r > 1 ∀i ∈M (7.8)

∑

r∈Ωk

wk
r 6 1 ∀k ∈ K (7.9)

Avec ces nouvelles contraintes, les variables duales βi sont à présent de signe négatif et les

variables duales ǫk de signe positif.

7.2.2 Sous-problème pour le véhicule k

Le sous-problème associé au véhicule k vise à construire des routes réalisables pour ce véhicule.

Ces routes contiennent des clients obligatoires et des clients optionnels. Afin de s’assurer le

respect des fenêtres de temps des clients obligatoires dans le pire des cas (quand on prend en

compte uniquement les clients obligatoires) et dans le cas modal (quand on prend en compte

les clients obligatoires et les clients optionnels), on prend en compte deux types de ressources

temporelles : des heures de service modales et des heures de service au plus tard. Soient βi,

γc et ǫk les variables duales associées respectivement aux contraintes (7.8), (7.6) et (7.9).

Soient M ′ = M ∪ {ok; dk} l’ensemble de clients obligatoires plus l’origine et la destination

du véhicule, M o = M ∪ {ok} l’ensemble de clients obligatoires plus l’origine du véhicule,

Md = M ∪{dk} l’ensemble de clients obligatoires plus la destination du véhicule, N = M ∪O

l’ensemble des clients (obligatoires ou non) et Pij l’ensemble de chemins de i ∈ M à j ∈ M

(desservant des clients optionnels). Par exemple, p = {(i, k1); (k1, k2); ...; (kn−1, kn); (kn, j)}

et |p| = n + 1. Notons α la pondération des temps de parcours dans la fonction objectif, pc

le profit associé à la desserte du client optionnel c ∈ O, τ̂lm le temps de parcours modal de l

à m et τ̂p la longueur modale du chemin p ∈ Pij (comprend les temps de service modaux et

les temps de parcours modaux). On utilise les variables décisionnelles suivantes :

xl variable booléenne indiquant si le client l est servi

yij variable booléenne indiquant si le client obligatoire j suit le client obligatoire i (quand

on ne considère que les clients obligatoires de la route)

zlm variable booléenne indiquant si l’arc (l,m) est utilisé (l,m ∈ N)

t̂i heure de début de service modale chez le client obligatoire i

ti heure de début de service au plus tard chez le client obligatoire i (quand on ne

considère que les clients obligatoires de la route)
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Modèle

max .
∑

i∈M

(−βi)xi +
∑

c∈O

(pc − γc)xc − α
∑

l∈N∪{ok}

∑

m∈N∪{dk}

τ̂lmzlm − ǫk

sujet aux contraintes (6.1) à (6.12) (cf. chapitre 5, section 6.1)

On observe dans cette formulation que les contraintes (6.1) à (6.4) sont des contraintes

de tournée tandis que les autres contraintes sont des contraintes temporelles. Ce problème

peut donc être assimilé à un problème de plus court chemin élémentaire avec contraintes de

ressources. Afin de retrouver une formulation similaire à celle du problème du plus court che-

min, reformulons la fonction objectif du sous-problème. Dans un premier temps, reformulons

la fonction objectif sous forme d’un problème de minimisation :

min .
∑

i∈M

βixi +
∑

c∈O

(γc − pc)xc + α
∑

l∈N∪{ok}

∑

m∈N∪{dk}

τ̂lmzlm + ǫk

En utilisant la contrainte (6.3), on a :

∑

i∈M

βixi =
∑

i∈M

∑

j∈N∪{dk}

βizij

∑

c∈O

(γc − pc)xc =
∑

c∈O

∑

j∈N∪{dk}

(γc − pc)zcj

De même, en utilisant la contrainte (6.1), on a :

ǫk =
∑

m∈N∪{dk}

ǫkzokm

On peut donc reformuler la fonction objectif comme suit :

min .
∑

i∈M

∑

j∈N∪{dk}

βizij +
∑

c∈O

∑

j∈N∪{dk}

(γc− pc)zcj +α
∑

l∈N∪{ok}

∑

m∈N∪{dk}

τ̂lmzlm+
∑

m∈N∪{dk}

ǫkzokm

En regroupant les variables zlm suivant que l est un client obligatoire, optionnel ou bien le

dépôt origine, on obtient :

min .
∑

i∈M

∑

j∈N∪{dk}

(ατ̂ij + βi)zij +
∑

c∈O

∑

j∈N∪{dk}

(ατ̂cj + γc − pc)zcj +
∑

m∈N∪{dk}

(ατ̂okm + ǫk)zokm

Avec cette fonction objectif du type min
∑

i,j∈N cijxij, on retrouve bien une formulation

similaire à celle d’un problème de plus court chemin. Les coûts modifiés cij associés aux arcs

(i, j) sont répertoriés en trois catégories suivant le type du client i :
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– Soit i est un client obligatoire (i ∈M) et cij = ατ̂ij + βi.

– Soit i est un client optionnel (i ∈ O) et cij = ατ̂ij − pi + γi.

– Soit i est le dépôt origine du véhicule considéré (i = ok) et cij = ατ̂ij + ǫk.

Avec ces coûts modifiés, on retrouve bien une formulation des sous-problèmes de type

ESPPRC (elementary shortest path problem with resource constraints) où les ressources

correspondent à un temps modal et un temps maximal consommé.

7.3 Composantes de l’algorithme de branch and price

Dans l’algorithme de branch and price, trois composantes majeures peuvent impacter

l’efficacité de la méthode. Il s’agit de la construction de la solution initiale, de la méthode

de résolution du sous-problème et de la stratégie de branchement. Nous détaillerons donc ces

trois composantes dans cette section.

7.3.1 Construction de la solution initiale

L’algorithme de branch and price est basé sur la résolution du problème sur un sous-

ensemble de routes de bonne qualité puis sur l’ajout de routes au fur et à mesure. Etant

donné que, dans notre problème, nous devons assurer la couverture des clients obligatoires

sans desservir plus d’une fois chaque client optionnel, il nous faut un ensemble de routes initial

de bonne qualité mais aussi et surtout diversifié. Nous choisissons donc d’utiliser l’heuristique

basée sur la génération de colonnes (variante (BD,DI,NV )) décrite au chapitre précédent

pour construire la solution initiale.

Pour les instances de taille 40 et plus, l’ensemble de colonnes initiales par véhicule ainsi

généré étant très grand, nous limitons cet ensemble, pour chaque véhicule, aux colonnes avec

un écart de profit de moins de ∆pmax de la meilleure route. En effet, le profit associé à une

route étant principalement guidé par le profit associé aux clients optionnels et obligatoires,

on choisit de se limiter aux routes ayant un écart de profit de moins de ∆pmax et non un gap

en %.

7.3.2 Résolution du sous-problème

Dans la section précédente, nous avons ramené la formulation des sous-problèmes à des

ESPPRC. Nous avons présenté, au chapitre précédent, un état de l’art des méthodes de

résolution de l’ESPPRC (cf. section 6.1.1). Dans cette section, nous ferons un bref état de

l’art sur l’intégration des méthodes de résolution de l’ESPPRC dans la génération de colonnes

puis nous justifierons nos choix pour la résolution du sous-problème.
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Etat de l’art des méthodes de résolution de l’ESPPRC dans la génération de

colonnes

Dans la génération de colonnes, les algorithmes exacts de programmation dynamique

peuvent s’avérer très chronophages, d’autant plus qu’ils sont utilisés à maintes reprises pour

générer de nouvelles colonnes. Desaulniers et al. [22] proposent donc une stratégie heuristique

pour générer de nouvelles colonnes sans avoir à résoudre un ESPPRC. Cette stratégie est une

méthode de recherche taboue basée sur l’insertion et la suppression d’un client dans une

route. Pour générer de nouvelles colonnes de coût réduit négatif, ils appliquent un algorithme

de recherche taboue aux routes de la solution courante du problème mâıtre .

Comme nous l’avons mentionné à plusieurs reprises, la résolution exacte d’un ESPPRC né-

cessite des temps de calcul importants. Il faut donc éviter le plus possible d’y avoir recours.

Souvent, la génération de colonnes se décompose en deux phases : une première phase où l’on

génère des colonnes avec une méthode approchée puis une deuxième phase où les colonnes

sont générées de façon exacte (afin de garantir l’optimalité de la solution). Les méthodes

approchées utilisées dans cette approche en deux phases sont la LDS (Boussier et al. [11] et

Tricoire [68]) et la programmation dynamique avec dominance aggrégée (Jepsen et al. [38],

Bettinelli et al. [7] et Dayarian et al. [20]). Les méthodes exactes utilisées dans la deuxième

phase sont l’algorithme de Feillet et al. [26] (Boussier et al. [11], Tricoire [68] et Jepsen et al.

[38]), l’algorithme de programmation dynamique bidirectionnelle bornée de Salani (Bettinelli

et al. [7]) et la ng-DSSR route relaxation (Dayarian et al. [20]). Desaulniers et al. [22] et

Gauvin et al. [29] proposent de prendre en compte plusieurs méthodes approchées. Ainsi, à

chaque itération de l’algorithme de génération de colonnes, Desaulniers et al. [22] appliquent

les méthodes suivantes l’une après l’autre, par ordre de rapidité : la méthode de recherche

taboue puis l’algorithme de limited discrepancy search puis la méthode de dominance aggré-

gée et enfin la programmation dynamique exacte. Dès que l’une d’elles génère des colonnes

de coût réduit négatif, ils passent à l’itération suivante. Si aucune ne génère de colonnes, la

solution est optimale. Gauvin et al. [29] procèdent de même avec la méthode de recherche

taboue, puis un algorithme de programmation dynamique bidirectionnelle bornée avec ng-

route relaxation et dominance aggrégée.

Méthodes choisies pour la résolution du sous-problème

Comme nous l’avons mentionné au chapitre précédent, la relaxation de la contrainte d’élé-

mentarité lors de la résolution du sous-problème ne nous aide pas, car les contraintes portant

sur les clients ne sont pas assez fortes. Nous ne retiendrons donc pas les méthodes de type
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NG-route ou DSSR. Nous choisirons comme méthode exacte la variante exacte (BD,DI, V V )

de programmation dynamique bidirectionnelle bornée (cf. chapitre précédent). En ce qui

concerne les méthodes approchées pour générer de nouvelles colonnes, nous disposons déjà

d’une méthode très efficace présentée au chapitre précédent : la variante (BD,DI,NV ) de

programmation dynamique bidirectionnelle bornée. Cette méthode peut être assimilée à une

méthode de type dominance aggrégée car on relâche la ressource vecteur de visites dans les

tests de dominance. Comme cette méthode permet de générer un nombre important de routes

rapidement, nous n’utiliserons pas de recherche taboue. Par contre, nous proposons également

d’intégrer une méthode approchée de type limited discrepancy search lors de la génération de

colonnes. Rappelons que cette méthode consiste à ne garder, pour chaque sommet, que les

Dmax plus proches prédécesseurs et successeurs (au vu des coûts réduits) dans le graphe du

sous-problème. Or, dans notre problème, les clients ne sont pas très contraints au niveau des

fenêtres de temps, ce qui rend le graphe initial complet (à quelques arcs près). Le fait d’iden-

tifier, à chaque itération, les Dmax plus proches voisins dans le graphe est donc très coûteux

en temps de calcul (pour chaque client, tri des voisins puis élimination des mauvais arcs).

Pour éviter cela, on propose de construire un graphe restreint a priori en gardant pour chaque

sommet ses Dmax plus proches voisins (en terme de distance/temps de parcours). Une fois ce

graphe construit, on associe à chaque itération une valeur aux arcs de ce graphe correspon-

dant aux coûts modifiés de l’itération et on résout un ESPPRC sur ce graphe. Nous proposons

deux heuristiques de type limited discrepancy search : la première consiste à résoudre avec la

variante approchée (BD,DI,NV ) l’ESPPRC sur le graphe restreint et la deuxième consiste

à résoudre exactement l’ESPPRC sur ce même graphe (variante (BD,DI, V V )).

Nous disposons ainsi de quatre méthodes pour générer de nouvelles colonnes. Les trois

premières sont des méthodes approchées : la variante approchée (BD,DI,NV ), la variante

approchée (BD,DI,NV ) avec discrepancy search, la variante exacte (BD,DI, V V ) avec dis-

crepancy search. Quant à la dernière, il s’agit d’une méthode exacte : variante (BD,DI, V V )

de l’algorithme de programmation dynamique. Dans l’algorithme de génération de colonnes,

on distingue deux phases : une phase dans laquelle les nouvelles colonnes sont générées à

l’aide d’heuristiques suivie d’une phase dans laquelle les colonnes sont générées de façon

exacte. Dans la première phase (génération heuristique de nouvelles colonnes), comme l’ont

proposé Desaulniers et al. [22] et Gauvin et al. [29], à chaque itération, nous appliquons les

méthodes approchées par ordre de rapidité décroissante. Nous utilisons d’abord la variante

approchée (BD,DI,NV ) avec discrepancy. Si celle-ci ne permet pas de générer de colonnes,

nous utilisons la variante approchée (BD,DI,NV ) simple. Si aucune colonne n’a pu être gé-

nérée jusqu’ici, on applique la variante exacte (BD,DI, V V ) avec discrepancy search. Enfin,
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dans la deuxième phase de la génération de colonnes, on procède à la génération exacte de

nouvelles colonnes à l’aide de la variante (BD,DI, V V ). Aussi, dans ces deux phases, comme

le nombre de colonnes générées par nos méthodes est élevé, on introduit un paramètre Nmax

et, à chaque itération de la génération de colonnes, on ajoute seulement les Nmax meilleures

colonnes pour chaque véhicule.

7.3.3 Stratégie de branchement

Comme nous l’avons mentionné précédemment, après résolution de la génération de co-

lonnes, on peut obtenir une solution fractionnaire. Il est donc nécessaire d’intégrer la géné-

ration de colonnes dans une méthode de recherche arborescente de type branch and price

(branch and bound avec possibilité d’ajouter de nouvelles colonnes à chaque noeud).

Etat de l’art des stratégies de branchement

Dans le problème de tournées de véhicules classique, la stratégie de branchement la plus

fréquemment utilisée ([28], [68], [22], [7], [55] et [29]) est le branchement sur les variables de

flot (si on note xk
ij la variable indiquant le flot traversant l’arc (i, j) pour le véhicule k, cela

revient à brancher sur
∑

k x
k
ij). Toutefois, si cette stratégie est souvent utilisée, elle n’est pas

très efficace quand le graphe est dense.

Une autre stratégie, introduite par Augerat [4], reprise par Jepsen et al. [38] et Gauvin et al.

[29], consiste à brancher sur le nombre d’arcs adjacents à un ensemble de clients. Il s’agit

d’identifier un ensemble de clients pour lequel le nombre d’arcs adjacents est dans l’intervalle

]2; 4[ et à forcer d’un côté ce nombre à être égal à 2, et de l’autre côté, à être égal à 4.

Dans le cadre du problème de Team Orienteering, Boussier et al. [11] proposent de brancher

sur le nombre de visites d’un client. Cette stratégie de branchement est spécifique au problème

de team orienteering où les clients peuvent être desservis une fois ou ne pas être desservis.

Pour son problème de tournées de véhicules multi-dépôt avec fenêtres de temps, Dayarian

et al. [20] proposent deux stratégies de branchement. La première est un branchement sur

les fenêtres de temps introduit par Gélinas et al. [30] consistant à diviser la fenêtre de temps

en deux intervalles correspondant aux noeuds fils. La deuxième stratégie consiste à brancher

sur l’affectation des usines aux producteurs (si le flot traversant un arc producteur-usine est

fractionnaire, on branche).

Stratégie de branchement choisie

Dans notre problème, les clients (optionnels ou obligatoires) étant faiblement contraints

au niveau des fenêtres de temps, le graphe support est donc très dense. Les stratégies de
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branchement consistant à brancher sur les variables de flot ou sur les fenêtres de temps ne

sont donc pas judicieuses. Aussi, comme notre problème comporte des clients optionnels qui

sont desservis au plus une fois, nous choisissons de nous inspirer de la stratégie de branchement

proposée par Boussier et al. [11]. Toutefois, le nombre de visites d’un client (obligatoire ou

optionnel) étant souvent entier tandis que le nombre de visites d’un client par un véhicule est

décimal, nous choisissons de brancher sur le nombre de visites d’un client par un véhicule.

Nous pouvons donc brancher aussi bien sur le nombre de visites d’un client optionnel que sur

celui d’un client obligatoire.

Pour choisir sur quel couple (client, véhicule) brancher, nous proposons deux méthodes.

La première méthode procède par véhicule et s’arrête dès qu’un couple (client,véhicule) est

identifié. Pour chaque véhicule, on recherche d’abord parmi les clients obligatoires le couple

(client, véhicule) avec le nombre de visites le plus fractionnaire. Si aucun couple n’a pu être

identifié pour le branchement, on procède à cette recherche parmi les clients optionnels. Si

aucun couple n’a été identifié pour le branchement, on passe au véhicule suivant. Dans la

deuxième méthode, on procède par catégorie de clients. On recherche d’abord parmi les clients

obligatoires et l’ensemble des véhicules, le couple (client, véhicule) avec le nombre de visites

le plus fractionnaire. Si aucun couple n’a pu être identifié, on procède de même au niveau

des clients optionnels.

Notre stratégie de branchement consiste, dans la première branche, à forcer la desserte du

client par le véhicule concerné et, dans la deuxième branche, à interdire la desserte du client

par le véhicule concerné.

Pour forcer la desserte du client i par le véhicule k au niveau du problème mâıtre, on rajoute

une contrainte du type
∑

r∈Ωk

δirx
k
r > 1. On choisit volontairement une contrainte de type re-

couvrement plutôt qu’une contrainte de partitionnement afin de générer une variable duale

de signe connu. Cette contrainte génère une variable duale et donc une modification du coût

réduit au niveau du sous-problème correspondant, mais ne garantit pas la génération de

routes contenant le client i pour le véhicule k. C’est pourquoi, afin de garantir la génération

de routes contenant le client i, on modifie les coûts réduits associés aux arcs sortants de ce

client en posant pour tout j, ĉij = ĉij −M avec M suffisamment grand. On veut s’assurer

que les clients optionnels forcés deviennent plus importants que les clients obligatoires.

Pour interdire la desserte du client i par le véhicule k au niveau du problème mâıtre, on

rajoute une contrainte du type
∑

r∈Ωk

δirx
k
r 6 0. Comme ci-dessus, la contrainte génère une mo-

dification des coûts réduits au niveau du sous-problème concerné sans garantir la génération

de routes ne contenant pas le client i. On interdit donc la desserte du client i au niveau du
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sous-problème en associant à tous les arcs ayant pour extrémité le client i un coût infini. Pour

l’exploration de l’arbre de branchement, on parcourt l’arbre en profondeur en commençant

par le côté où les clients sont forcés (afin d’obtenir rapidement de bonnes bornes pour élaguer

la suite de l’arbre).

Etant donnée notre stratégie de branchement consistant à interdire/forcer la desserte d’un

client par un véhicule, on peut se retrouver avec un squelette de clients obligatoires non réa-

lisable. En effet, quand on interdit la desserte d’un client obligatoire par un véhicule, on

impose implicitement la desserte de ce client obligatoire par un autre véhicule. Inversement,

quand on impose la desserte d’un client obligatoire par un véhicule, on empêche potentielle-

ment la desserte de certains clients obligatoires par ce véhicule et donc on impose la desserte

de ces clients obligatoires par d’autres véhicules. Dans les deux cas, on impose la desserte

d’un ensemble de clients obligatoires par un ensemble de véhicules sans vérifier si le squelette

reste réalisable avec ces nouvelles contraintes. On peut donc se retrouver avec un squelette

de clients obligatoires non réalisable. Pour éviter cet écueil, on vérifie après le branchement

si le squelette est réalisable. Si ce n’est pas le cas, on passe directement au noeud suivant.

Par contre, lors du branchement sur la desserte d’un client optionnel, d’après notre stratégie

d’identification du couple sur lequel brancher, cela signifie que les clients obligatoires sont

tous desservis une fois par un véhicule (sinon, on aurait branché sur un client obligatoire) et

donc que le squelette est fixé. Dans ce cas, il n’y a donc pas de problème de réalisabilité du

squelette.

7.4 Expérimentation

Nous procédons aux expérimentations sur les instances décrites chapitre 1, en utilisant

Cplex 12.4, pour procéder à la résolution du problème mâıtre. Les tests ont été effectués sur

une machine avec 4CPU, 2.8GHz et 30Go de RAM.

7.4.1 Réglage des paramètres

Concernant le réglage des paramètres, nous utilisons le même réglage de paramètres

que dans les chapitres précédents : horizon de temps T = 480 minutes, vitesse minimale

vmin = 20km/h et vitesse modale vmod = 40km/h. Après avoir converti ces valeurs vmin

et vmod en unités arbitraires par minute, on calcule le temps de parcours unitaire minimal

δ = ⌈100/vmax⌉ et modal δ̂ = ⌈100/vmod⌉. Les temps de parcours minimaux et modaux sont

ensuite obtenus en utilisant les formules τ ij =
⌈

Dijδ
⌉

et τ̂ij =
⌈

Dij δ̂
⌉

. Pour le réglage des

temps de service, nous avons choisi des temps de service minimaux et modaux respective-
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ment de 15 et 22 minutes pour les clients optionnels et de 30 et 35 minutes pour les clients

obligatoires. Comme précédemment, nous avons supposé que le service d’un client optionnel,

quel qu’il soit, génère un profit po = 100 et nous avons choisi α = 1. Pour le profit associé

aux clients obligatoires pm, nous avons repris la valeur choisie à la section 5.2 du chapitre

précédent, à savoir pm = 300. Pour la génération des colonnes initiales sur les instances de

taille supérieure à 40, comme nous l’avons mentionné section 7.3.1, nous nous limitons, pour

un véhicule donné, aux routes présentant un écart de profit de moins de ∆pmax de la meilleure

route. Afin d’obtenir des ensembles de routes de taille comparable à ceux obtenus sur les ins-

tances à 30 clients, on choisit ∆pmax = 500. A chaque itération de la génération de colonnes,

comme nous l’avons mentionné section 7.3.2, nous n’ajoutons pas toutes les colonnes générées

mais seulement Nmax colonnes par véhicule. Pour ce paramètre, on a choisi Nmax = 30 (suite

à des tests préliminaires). Finalement, pour la méthode de type limited discrepancy search,

le graphe initial étant quasiment complet, nous avons choisi de nous limiter aux Dmax = 10

plus proches voisins.

7.4.2 Calibrage de la méthode

Avant de présenter les résultats obtenus avec la méthode de ce chapitre, nous devons

choisir la méthode de résolution du sous-problème. Dans la section 7.3.2, nous avons proposé

plusieurs méthodes pour générer de nouvelles colonnes : la variante heuristique (BD,DI,NV )

sur le graphe restreint (que l’on notera HeurDisc), la variante approchée (BD,DI,NV ) (que

l’on notera HeurSimple), la variante exacte (BD,DI, V V ) sur le graphe restreint (que l’on

notera ExactDisc) et la variante exacte (BD,DI, V V ) (que l’on notera Exact). Ces mé-

thodes étant classées par ordre de rapidité décroissantes, nous les appliquons dans cet ordre.

Nous avons testé sur les instances à 30 clients différentes variantes : la variante (HeurDisc,

HeurSimple, ExactDisc, Exact), la variante (HeurSimple, ExactDisc, Exact) et la variante

(HeurSimple, Exact). Lors de ces tests, nous avons pu observer que la méthode HeurDisc

entrâınait des temps de calcul plus élevés et augmentait le nombre d’itérations nécessaires

pour atteindre l’optimalité. Nous n’avons donc pas retenu cette variante dans nos tableaux

de résultats. Lors des tests des autres variantes, nous avons observé le célèbre « Tailing ef-

fect » de la génération de colonnes. Nous avons donc décidé de proposer une méthodologie

pour y remédier : au bout de Imax itérations heuristiques de la génération de colonnes durant

lesquelles la solution ne change pas, on passe à la génération exacte des routes. On propose

donc deux variantes supplémentaires, à savoir : la variante (HeurSimple, ExactDisc, Exact,

Imax) et la variante (HeurSimple, Exact, Imax). Dans le tableau 7.1, nous reportons donc

les résultats obtenus avec les quatre variantes mentionnées ci-dessus en posant Imax = 50

(au vu des résultats obtenus sans Imax). Les en-têtes de colonnes sont les suivants : CPU :
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temps de calcul en minutes ; # ité. à opt. : nombre d’itérations avant obtention de la solution

optimale ; # ité. heur. : nombre d’itérations heuristiques ; # ité. exactes : nombre d’itéra-

tions exactes. Comme précédemment, dans ce tableau, nous limitons les temps de calcul

à 4 heures (si les temps de calcul dépassent cette durée, on inscrit un « - » dans la case

correspondante). Aussi, pour les instances sur lesquelles un branchement est nécessaire, on

n’indique pas le nombre d’itérations avant optimalité (on met un « - » dans la case corres-

pondante). L’introduction du paramètre Imax = 50 ne modifiant pas le nombre d’itérations

nécessaires pour atteindre l’optimalité (qui est d’au plus 51), nous n’indiquerons pas cette

valeur pour les variantes (HeurSimple, ExactDisc, Exact, Imax) et (HeurSimple, Exact, Imax).
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Tableau 7.1 Comparaison des méthodes de résolution de l’ESPPRC

# de
clients
oblig.

Instances

HeurSimple, Exact HeurSimple, ExactLDS, Exact
HeurSimple, ExactLDS,

Exact, Imax = 50
HeurSimple, Exact,

Imax = 50
CPU
(min)

# d’ité.
à opt

# d’ité.
heur

# d’ité.
exactes

CPU
(min)

# d’ité.
à opt

# d’ité.
heur

# d’ité.
exactes

CPU
(min)

# d’ité.
heur

# d’ité.
exactes

CPU
(min)

# d’ité.
heur

# d’ité.
exactes

5

C1 1 5 16 51 49 18 11 49 65 1 11 65 1 16 49 18
C1 2 5 66 25 23 32 87 23 114 19 82 75 33 66 23 32
C1 3 5 27 0 80 61 46 0 173 27 24 50 33 24 50 33
C1 4 5 137 - 169 69 156 - 321 33 181 287 106 150 163 120
C1 5 5 49 52 80 72 33 51 122 17 34 103 29 43 79 71

6

C1 1 6 25 11 42 32 25 10 108 1 17 62 2 22 41 31
C1 2 6 83 - 76 73 128 - 237 55 136 165 109 83 76 73
C1 3 6 139 7 177 210 100 6 412 25 30 58 27 27 58 27
C1 4 6 231 - 189 173 226 - 382 72 201 360 64 235 189 174
C1 5 6 28 15 13 47 31 13 125 1 31 65 34 28 13 47

7

C1 1 7 8 13 34 3 15 12 58 5 15 58 5 8 34 3
C1 2 7 22 7 39 15 39 6 123 13 22 58 7 22 39 15
C1 3 7 73 2 156 71 84 2 306 36 43 53 55 40 53 55
C1 4 7 239 - 145 110 224 - 348 57 224 348 57 239 145 110
C1 5 7 32 0 72 33 37 0 159 1 27 50 35 26 50 35

8

C1 1 8 42 - 48 66 49 - 93 55 49 93 55 42 48 66
C1 2 8 17 16 51 4 31 15 109 2 40 67 28 17 51 4
C1 3 8 39 20 95 41 59 19 268 1 54 71 98 51 71 98
C1 4 8 - - - -
C1 5 8 25 15 43 29 25 14 99 1 18 66 1 23 42 28

9

C1 1 9 17 16 68 15 21 15 80 26 17 67 14 15 67 14
C1 2 9 42 - 44 56 61 - 156 18 60 156 18 42 44 56
C1 3 9 16 24 48 13 18 23 53 16 18 53 16 16 48 13
C1 4 9 13 22 20 31 26 20 109 14 16 72 5 13 20 31
C1 5 9 63 - 67 85 75 - 210 33 72 157 56 63 67 85
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Dans le tableau 7.1, on observe que les meilleurs temps de calcul sont obtenus avec la

variante (HeurSimple, Exact, Imax = 50). En particulier, sur l’instance C1 3 6(30), cette

variante permet de diviser les temps de calcul par 4. On constate également que le nombre

d’itérations nécessaire pour atteindre la solution optimale reste similaire (diminution de 0 à 2

itérations) dans la variante avec ExactLDS. Aussi, on remarque dans la variante (HeurSimple,

ExactLDS, Exact) que la solution optimale est obtenue durant les itérations heuristiques et

que le nombre d’itérations exactes est souvent nettement plus faible dans cette variante. Pour

la suite des expérimentations, nous utiliserons la variante (HeurSimple, Exact, Imax = 50)

pour ses temps de calcul.

Une autre composante importante de l’algorithme de branch and price est la stratégie

d’identification du couple (client,véhicule) sur lequel brancher. Nous en avions proposé deux

(cf. section 7.3.3 : on notera la première (par véhicule) V 1 et la deuxième (par catégories

de clients) V 2. Les résultats obtenus sur les instances à 40 clients sont synthétisés dans le

tableau 7.2. Dans ce tableau, on reporte pour chaque instance les temps de calcul en minutes

(colonne CPU). On limite les temps de calcul à 2 heures et on indique la meilleure solution

trouvée dans le temps imparti.

Tableau 7.2 Comparaison des stratégies d’identification pour le branchement

Branchement V1 Branchement V2
CPU Non visités Distance CPU Non visités Distance

C1 1 5 24 0 245,45 23 0 245,447
C1 2 5 43 0 226,78 48 0 226,78
C1 3 5 34 0 241,33 120 2 226,454
C1 4 5 120 0 249,52 59 0 249,52
C1 5 5 5 0 220,26 6 0 220,263
C1 1 6 29 0 249,99 20 0 249,991
C1 2 6 120 0 250,82 120 1 265,534
C1 3 6 70 0 253,04 120 1 266,634
C1 4 6 103 0 243,19 120 1 252,538
C1 5 6 17 0 221,96 17 0 221,961
C1 1 7 4 0 254,78 4 0 254,781
C1 2 7 42 0 235,10 40 0 235,1
C1 3 7 120 1 271,14 120 1 253,496
C1 4 7 37 0 256,07 23 0 256,002
C1 5 7 12 0 230,89 12 0 230,894
C1 1 8 120 1 222,79 120 1 230,149
C1 2 8 68 0 243,44 113 0 246,748
C1 3 8 5 0 250,09 5 0 250,086
C1 4 8 72 0 251,89 120 0 239,686
C1 5 8 17 0 215,16 18 0 215,157
C1 1 9 120 1 237,41 120 1 244,444
C1 2 9 120 2 244,21 120 1 235,903
C1 3 9 120 2 253,90 52 1 245,891
C1 4 9 114 1 228,60 120 1 228,6
C1 5 9 9 0 214,75 9 0 214,745

Dans le tableau 7.2, on observe que la stratégie V1 permet de n’avoir que 7 instances

nécessitant 2 heures de calcul tandis que la stratégie V2 présente 10 instances nécessitant 2
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heures de calcul. De plus, dans l’ensemble le nombre de clients non servis dans la stratégie

V2 est souvent plus élevé que dans la stratégie V1. Nous choisissons donc, pour la suite des

expérimentations, d’identifier sur quel couple (client,véhicule) brancher à l’aide de la stratégie

V1 (procédant par véhicule).

7.4.3 Résultats de la méthode

Après avoir calibré notre méthode (cf. ci-dessus), nous procédons à présent aux tests de

l’algorithme de branch and price sur les instances du chapitre 1. Pour les instances contenant

40 clients et plus, une itération exacte de génération de colonnes prend plus d’une heure,

nous générons donc uniquement des colonnes à l’aide de méthodes approchées (HeurSimple,

Imax = 50). Les solutions obtenues sur ces instances ne sont donc pas optimales. Les résultats

obtenus avant et après simulation sur les instances à 30, 40 et 50 clients sont synthétisés dans

le tableau 7.3. Les temps de calcul indiqués dans ce tableau sont en minutes. On indique en

gras les valeurs correspondant à la solution optimale (instances à 30 clients). Les temps de

calcul sont limités à 4 heures pour les instances à 30 clients (résolution exacte) et à 2 heures

pour les autres instances (résolution approchée).

Tableau 7.3 Résultats avant/après simulation pour l’algorithme de branch and price

Nb de
clients

Nb de
clients
oblig.

Avant simulation Après simulation

CPU
# moy.

non servis
distance
moy.

# moy. non servis distance moy. retard moy.
WR OS WR OS WR OS

30 clients

5 60 0,0 196 2,3 1,9 187 189 0,2 5,8
6 79 0,0 199 4,2 2,5 181 190 1,2 36,3
7 67 0,0 202 4,3 2,4 183 193 1,6 25,8
8 33 0,0 201 4,7 3,7 180 188 1,8 30,8
9 30 0,0 205 4,9 3,0 184 198 3,6 51,0

40 clients

5 45 0,0 237 7,7 6,3 202 216 1,3 47,4
6 68 0,0 244 8,7 7,0 196 211 1,6 44,0
7 43 0,2 250 10,8 7,8 207 226 3,1 80,0
8 56 0,2 237 10,5 6,7 194 216 2,7 116,7
9 97 1,2 236 11,8 8,0 201 222 7,1 101,5

50 clients

5 120 7,2 215 16,0 14,6 191 200 1,6 49,1
6 97 7,4 218 17,5 15,2 192 200 1,1 43,7
7 120 8,6 218 19,0 15,8 192 204 3,2 68,4
8 97 8,2 212 19,2 16,6 182 198 2,8 64,4
9 98 8,8 213 20,8 16,1 186 202 3,9 100,3

Dans le tableau 7.3, on observe, comme au chapitre précédent, la cohérence des résultats

obtenus : le nombre de clients devenus non desservis durant la simulation n’est pas très élevé.

En comparant les stratégies de programmation dynamique, on observe, comme au chapitre

précédent, que la stratégie considérant un seul segment est préférable pour le nombre de

clients desservis et que la stratégie considérant toute la route est préférable pour le retard et

la distance parcourue. Les différences au niveau du retard sont vraiment importantes, avec
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un retard pouvant aller jusqu’à 2 heures dans la stratégie considérant un seul segment (contre

seulement 7 minutes avec l’autre stratégie). On constate également dans ce tableau que l’on

nécessite une heure de calcul en moyenne pour obtenir la solution optimale sur les instances

à 30 clients.

7.4.4 Comparaison de cette méthode avec les méthodes précédentes

Après avoir observé les résultats obtenus avec la méthode de ce chapitre, comparons cette

méthode avec les deux méthodes proposées précédemment (méthode approchée basée sur

la priorité et méthode approchée basée sur la génération de colonnes). Les résultats avant

simulation (30, 40 et 50 clients) obtenus avec les trois méthodes sont synthétisés dans le

Tableau 7.4. On indique en gras les résultats correspondant aux solutions optimales (obtenus

avec l’algorithme de branch and price sur les instances à 30 clients).

Tableau 7.4 Comparaison des 3 méthodes avant simulation

# clients
# clients

obligatoires

Heuristique basée sur la
priorité

Heuristique basée sur la
génération de colonnes

Branch and price

CPU
(s)

non
servis

Distance
(km)

CPU
(s)

non
servis

Distance
(km)

CPU
(s)

non
servis

Distance
(km)

30

5 43 1,4 220 22 0,0 200 3588 0,0 196

6 66 2,8 232 37 0,0 214 4740 0,0 199

7 53 2,4 230 34 0,0 219 4020 0,0 202

8 34 3,4 216 25 0,0 214 1995 0,0 201

9 24 3 217 29 0,0 217 1788 0,0 205

40

5 3277 7,2 202 97 1,4 238 2652 0,0 237
6 962 10,2 217 120 1,8 250 3828 0,0 244
7 1451 10 211 122 2,2 254 2580 0,2 250
8 1880 10 210 98 2,0 242 3408 0,2 237
9 1053 10 206 120 2,4 240 5325 1,2 236

50

5 1227 15,4 192 184 8,0 226 7200 7,2 215
6 3064 17,6 197 212 8,6 222 5832 7,4 218
7 2844 18 192 240 9,2 221 7200 8,6 218
8 2323 18,6 200 218 9,2 215 5568 8,2 212
9 1408 19,2 188 261 9,4 221 5856 8,8 213

Dans le tableau 7.4, on constate que les temps de résolution sont nettement plus éle-

vés dans l’algorithme de branch and price. Etant donné le nombre très élevé de clients non

desservis avant simulation dans l’heuristique basée sur la priorité des clients (rappelons que

l’on s’assure dans cette méthode que les routes soient réalisables dans 90% des cas), nous

ne retiendrons pas cette méthode dans la comparaison des résultats. En comparant les ré-

sultats obtenus avec l’heuristique basée sur la génération de colonnes et ceux obtenus avec

l’algorithme de branch and price, on observe une nette diminution du nombre de clients non

desservis dans l’algorithme de branch and price (sur les instances à 40 et 50 clients) accom-

pagnée d’une diminution de la distance totale parcourue (sur toutes les instances). Afin de

juger de la différence de qualité des solutions obtenues, il faut comparer la valeur des solutions

obtenues dans les deux méthodes (où la valeur d’une solution correspond à la valeur de la
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fonction objectif, à savoir, le profit des clients optionnels visités auquel on soustrait les temps

de parcours modaux). Avec ces valeurs, on peut calculer le gap à optimalité sur les instances

à 30 clients et le gap séparant les solutions des deux premières méthodes des solutions de

l’algorithme de branch and price sur les autres instances. Ces valeurs et gaps sont reportés

dans le tableau 7.5.

Tableau 7.5 Branch and price versus heuristique basée sur la génération de colonnes

# clients
# clients

obligatoires

Branch and price
Heuristique basée
sur la génération

de colonnes
Valeur Valeur Gap

30 clients

5 2149 2143 0,3%
6 2044 2018 1,3%
7 1938 1908 1,5%
8 1840 1817 1,3%
9 1734 1714 1,2%

40 clients

5 3074 2931 4,7%
6 2969 2773 6,6%
7 2833 2625 7,3%
8 2755 2566 6,9%
9 2557 2431 4,8%

50 clients

5 3389 3292 3,5%
6 3264 3139 3,8%
7 3045 2980 2,1%
8 2997 2891 3,5%
9 2834 2761 2,5%

Dans le tableau 7.5, on constate que les solutions obtenues avec l’heuristique basée sur la

génération de colonnes sont de très bonne qualité puisqu’elles sont situées à moins de 1.5%

des solutions optimales en moyenne. Par contre, sur les instances de plus grande taille, les

gaps augmentent et peuvent atteindre les 7% en moyenne, alors qu’il ne s’agit pas de gap

à optimalité. Ces gaps sont plus importants sur ces instances car le nombre de clients non

desservis est plus important dans l’heuristique basée sur la génération de colonnes (impactant

fortement la valeur de la solution car chaque client non desservi génère une perte de 100 dans

la valeur de la solution). Ainsi, même si l’algorithme de branch and price ne permet pas

d’atteindre la solution optimale sur les instances de grande taille, il permet tout de même

une amélioration importante de la qualité des solutions obtenues à l’aide de l’heuristique

basée sur la génération de colonnes. Toutefois, pour juger de la qualité réelle des solutions,

il nous faut à présent comparer les résultats obtenus après simulation. Ces résultats obtenus

après simulation, avec les stratégies de programmation dynamique mentionnées au chapitre

4, sont regroupés dans les tableaux 7.6 et 7.7.

Après simulation, on constate que se baser sur les solutions fournies par l’algorithme de

branch and price conduit à desservir plus de clients que l’heuristique basée sur la priorité

mais moins de clients que l’heuristique basée sur la génération de colonnes sur les instances

à 30 clients. Ceci s’explique sur ces petites instances par le fait que la solution optimale peut
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Tableau 7.6 Comparaison des 3 méthodes après simulation, stratégie WR

# clients
# clients

obligatoires

Heuristique basée sur la
priorité

Heuristique basée sur la
génération de colonnes

Branch and price

non
servis

Distance
(km)

retard
non
servis

Distance
(km)

retard
non
servis

Distance
(km)

retard

30

5 5,3 199 2 1,2 197 0,6 2,3 187 0,2
6 5,6 212 3,1 3,8 199 1,1 4,2 181 1,2
7 5,5 209 2,7 4,0 206 2,1 4,3 183 1,6
8 7,6 195 3,2 3,2 201 2,4 4,7 180 1,8
9 7 197 4,6 4,5 203 4,8 4,9 184 3,6

40

5 9,7 193 1,8 7,8 206 1,8 7,7 202 1,3
6 12,7 204 2,7 9,9 214 2,2 8,7 196 1,6
7 13,3 198 2,4 11,7 221 2,7 10,8 207 3,1
8 13,2 198 3,6 11,1 201 2,7 10,5 194 2,7
9 14,5 189 6,8 12,3 198 8,2 11,8 201 7,1

50

5 17,9 185 2 16,3 195 1,8 16,0 191 1,6
6 21,1 189 3,6 17,5 193 1,5 17,5 192 1,1
7 22,2 184 3,6 19,1 194 2,9 19,0 192 3,2
8 22,1 187 4,3 19,7 188 3,9 19,2 182 2,8
9 22,8 180 5,7 21,3 187 3,5 20,8 186 3,9

Tableau 7.7 Comparaison des 3 méthodes après simulation, stratégie OS

# clients
# clients

obligatoires

Heuristique basée sur la
priorité

Heuristique basée sur la
génération de colonnes

Branch and price

non
servis

Distance
(km)

retard
non
servis

Distance
(km)

retard
non
servis

Distance
(km)

retard

30

5 3,4 211 2 0,7 199 7,4 1,9 189 5,8
6 5,6 212 3,2 1,9 208 19,2 2,5 190 36,3
7 5,5 209 2,8 2,8 213 30,8 2,4 193 25,8
8 6,1 204 3,2 2,2 208 29,3 3,7 188 30,8
9 6,4 201 4,6 2,0 214 62,1 3,0 198 51,0

40

5 9,7 194 1,8 6,4 220 44,7 6,3 216 47,4
6 12,7 204 2,7 7,9 229 59,1 7,0 211 44,0
7 13,3 198 2,5 8,8 241 78,2 7,8 226 80,0
8 13,2 198 3,6 7,9 232 93,0 6,7 216 116,7
9 14 191 5,6 7,8 232 135,0 8,0 222 101,5

50

5 17,9 185 2 14,6 214 68,9 14,6 200 49,1
6 20,5 189 3,6 15,5 208 48,9 15,2 200 43,7
7 21,5 185 3,6 16,7 208 62,8 15,8 204 68,4
8 22,1 187 4,4 16,4 205 82,2 16,6 198 64,4
9 22,7 180 5,9 16,8 210 102,6 16,1 202 100,3

être très déséquilibrée étant donné le nombre de clients considérés. On peut ainsi avoir une

solution optimale dans laquelle deux véhicules desservent, à eux deux, 25 clients tandis que le

dernier véhicule ne dessert que 5 clients. Lors de la simulation, les routes étant déséquilibrées,

on observera alors plus de clients annulés. Sur les instances à 40 et 50 clients, par contre, on

observe une diminution du nombre de clients non desservis et de la distance parcourue après

simulation dans le cadre de l’algorithme de branch and price. En ce qui concerne le retard

observé, il garde des valeurs similaires dans les deux méthodes.
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7.5 Conclusion

Dans ce chapitre, nous avons proposé une méthode exacte : un algorithme de branch

and price pour résoudre le problème de tournées de service avec priorité entre les clients et

temps de parcours et de service stochastiques. Nous avons proposé plusieurs méthodes pour

résoudre le sous-problème, à savoir deux variantes approchées (programmation dynamique

bidirectionnelle avec nombre de clients visités et programmation dynamique bidirectionnelle

avec vecteur de visites sur un graphe restreint) et une variante exacte (programmation dy-

namique bidirectionnelle avec vecteur de visites). Cette méthode nous a permis d’établir les

solutions optimales pour toutes les instances à 30 clients. Pour les instances à 40 et 50 clients,

elle nous a fourni des solutions approchées, de qualité nettement supérieures à celles fournies

par l’heuristique basée sur la génération de colonnes (avec un gap pouvant atteindre 7%).

En comparant cette méthode avec les deux méthodes proposées précédemment après simula-

tion, nous avons pu constater que cette méthode fournissait des solutions desservant moins

de clients que la méthode du chapitre précédent sur les instances à 30 clients. Par contre,

sur les instances de taille 40 et 50, l’algorithme de branch and price permet d’obtenir des

solutions de meilleure qualité du point de vue du nombre de clients desservis et de la distance

parcourue. En ce qui concerne le retard, les résultats obtenus sont comparables.
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CHAPITRE 8

Conclusion

Dans cette thèse, nous avons présenté une approche globale de résolution pour résoudre

le problème de tournées de service avec priorité entre les clients et temps de service et de

parcours stochastiques. Cette méthode consiste en deux étapes : une étape de planification et

une étape d’exécution. L’étape de planification consiste à construire des routes desservant des

clients optionnels et obligatoires en utilisant des estimés des temps de service et de parcours

connus a priori. Durant l’étape d’exécution, on prend en compte la stochasticité des temps

de service et de parcours, et on utilise des outils de programmation dynamique pour déter-

miner la politique optimale. Après la programmation dynamique, on procède à un ensemble

de simulations de l’exécution des tournées en temps réel au long de la période afin d’évaluer

la qualité des solutions obtenues. Dans le cadre de cette approche, nous avons développé

trois méthodologies pour l’étape de planification. La première, une heuristique basée sur la

priorité des clients, consiste à construire un squelette de clients obligatoires puis à insérer des

clients optionnels dans ce squelette. La deuxième, une heuristique basée sur la génération de

colonnes, consiste à générer des routes contenant des clients obligatoires et optionnels puis

à sélectionner exactement une route pour chaque véhicule. La dernière méthode est un algo-

rithme de branch and price. En ce qui concerne l’étape d’exécution, nous avons prouvé que

la politique optimale de notre algorithme de programmation dynamique est une politique de

seuil.

Nous avons d’abord validé nos différentes méthodes en procédant à des tests sur des ins-

tances issues de la littérature. L’heuristique basée sur la priorité des clients nous a permis de

résoudre à optimalité des instances restées ouvertes de type OPTW. Grâce à l’heuristique ba-

sée sur la génération de colonnes, nous avons établi l’optimalité d’un ensemble de meilleures

solutions connues sur d’autres instances de type OPTW. Après validation de ces méthodes,

nous avons procédé aux expérimentations sur des instances issues de données industrielles.

La première méthode présente de bons résultats, avec des temps de calcul raisonnables sur

l’ensemble des instances. Toutefois, elle présente un inconvénient : elle présuppose un nombre

suffisant de clients obligatoires. La deuxième méthode présente de meilleurs résultats que la

première méthode (aussi bien au niveau du nombre de clients visités que de la distance par-

courue). Aussi, au niveau des temps de calcul, elle permet de résoudre toutes les instances

en moins de 5 minutes. Enfin, la troisième méthode nous a permis d’obtenir les solutions
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optimales sur les instances à 30 clients et ainsi d’apprécier la qualité des solutions obtenues

avec la deuxième méthode. Elle nous a également permis de résoudre de façon approchée les

instances à 40 et 50 clients. Sur ces instances, nous avons pu observer que les solutions four-

nies par l’algorithme de branch and price étaient nettement meilleures que celles obtenues par

l’heuristique basée sur la génération de colonnes (avant comme après simulation). Toutefois,

les temps de calcul de l’algorithme de branch and price sont nettement plus élevés que ceux

de l’heuristique basée sur la génération de colonnes. En ce qui concerne l’étape d’exécution,

nous avons pu constater que la stratégie de programmation dynamique consistant à considé-

rer un seul segment est préférable du point de vue du nombre de clients desservis tandis que la

stratégie considérant le reste de la route est préférable pour le retard et la distance parcourue.

Parmi les trois méthodologies développées dans cette thèse pour l’étape de planification,

on préfèrera donc utiliser l’heuristique de génération de colonnes si on est prêt à sacrifier la

qualité des solutions pour gagner en temps de calcul et, inversement, on préfèrera utiliser

l’algorithme de branch and price si on est prêt à sacrifier du temps pour gagner en qualité

de la solution obtenue. Du point de vue de l’étape d’exécution, les résultats nous orientent

plutôt vers la stratégie de programmation dynamique consistant à ne considérer qu’un seul

segment. Toutefois, cette décision est discutable. Pour déterminer si ce choix est judicieux,

il faudrait intégrer ces trois méthodologies dans un horizon multi-période afin de juger de la

qualité des solutions sur un horizon roulant.
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[25] DUGARDIN, F. (2006). Optimisation réactive de tournées de service en environnement

dynamique. Rapport technique, Ecole des Mines de Nantes.

[26] FEILLET, D., DEJAX, P., GENDREAU, M. et GUEGUEN, C. (2004). An exact algo-

rithm for the elementary shortest path problem with resource constraints : Application

to some vehicle routing problems. Networks, 44, 216–229.

[27] FLATBERG, T., HASLE, G., KLOSTER, O., NILSSEN, E. et RIISE, A. (2007). Dy-

namic and stochastic vehicle routing in practice. V. Zeimpekis, C. Tarantilis, G. Giaglis
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vehicle routing problem, SIAM, chapitre 13. 331–352.

[35] HAGHANI, A. et YANG, S. (2007). Real-time emergency response fleet deployment.

V. Zeimpekis, C. Tarantilis, G. Giaglis et I. Minis, éditeurs, Dynamic Fleet Management,
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