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RESUME

L’estimation des paramétres de fiabilité d’un équipement est toujours conditionnée par la
disponibilité des données a savoir les durées de vie et leurs natures complétes ou
censurées ce qui rend cette tache difficile. Les méthodes d’estimation de ces paramétres

peuvent varier selon la situation.

Cette estimation est une étape cruciale pour un fiabiliste pour étre en mesure de proposer
des stratégies de maintenance préventive de 1’équipement et ainsi maximiser sa

disponibilité et minimiser ses colts de maintenance
Notre mémoire focalise sur deux principaux objectifs:

1. Etablir un modéle d’actualisation des paramétres du taux de défaillance d’un
équipement en utilisant 1’inférence bayésienne et les méthodes de simulation
Chaines de Markov Monte Carlo (MCMC).

2. Proposer une stratégie de remplacement périodique avec réparation minimale
(Remplacement du composant défaillant par un composant aussi mauvais que
vieux) en cas de défaillance tenant compte du modeéle d’actualisation bayésienne

du taux de défaillance.

La méthodologie suivie pour atteindre le premier objectif consiste a modéliser le taux de
défaillance d’un équipement par une loi exponentielle. Ce taux de défaillance est
actualisé par la prise en compte d’une distribution a priori représentant 1’avis d’expert.
Cette distribution est caractérisée par une loi normale. Comme cette loi est non
conjuguee, la simulation MCMC est utilisée pour déterminer 1’a posteriori du taux de

défaillance. Cet a posteriori représente la valeur actualisée du taux de défaillance.

Pour le second objectif, une modélisation analytique du codt total moyen de la stratégie
de remplacement périodique avec réparation minimale en cas de défaillance est proposée.
Cette modélisation prend en compte le taux de défaillance actualisée préecédemment.
Comme le modele ne s’appréte pas a une dérivation analytique, une approche par

simulation est considérée pour déterminer la stratégie optimale.

Un cas d’étude est utilisé tout au long du mémoire pour valider les modéles proposés.



ABSTRACT

The estimation of equipment reliability Parameters is always conditioned by the
availability of its life-time data and the nature of this data such as complete or censored
making this task delicate. The methods of estimation of these parameters may vary by

situation.

This estimation is a crucial step for a reliability engineer to propose strategies for
preventive maintenance of equipment, maximizing availability and minimizing the costs

of maintenance
Our work focuses on two main objectives:

1. Establish a model that updates the equipment failure rate parameters by using
Bayesian inference and simulation methods of Monte Carlo Markov Chains
(MCMC).

2. Develop a minimal repair strategy, taking into account the Bayesian estimation

model of updating the failure rate.

The methodology used to achieve the first objective is to model the failure rate of
equipment by an exponential law. This failure rate is updated by taking into account a
representative expert advice prior. The prior is characterized by a normal distribution. As
this law is non-conjugate, the MCMC simulation is used to determine the posterior failure

rate. This posterior is the current value of the failure rate.

For the second objective, an analytical model of the average total cost for the periodic
replacement with minimal repair strategy in case of failure is proposed. This model takes
into account the failure rate previously updated. As the model is not about to analytical
derivation, a simulation approach is considered to determine the optimal strategy.

A case study is used throughout the store to validate the proposed models.
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CHAPITRE 1 : INTRODUCTION GENERALE

1.1 Contexte

Dans toute analyse probabiliste de fiabilité, les durées de vie aléatoires d’un équipement
ou d’un systéme industriel, sont souvent modélisées par des lois de probabilité
paramétriques telle la loi exponentielle, normale ou de Weibull. Cependant, I’estimation
des parameétres de ces lois demeure une tache relativement délicate du fait de la
disponibilité des données et de leurs natures c’est-a-dire des durées de vie complétes ou

censurées.

En effet, plusieurs approches classiques sont utilisées pour estimer les parameétres d’une
distribution de probabilité telle que par exemple, ’estimation du taux de défaillance
associe a la loi exponentielle, ainsi que son intervalle de confiance. Parmi les méthodes
les plus populaires, nous citons 1’estimation par les méthodes de moindres carrés et du

maximum de vraisemblance.

Par ailleurs, afin de maximiser la disponibilité d’un équipement ou minimiser ses cotts
de maintenance, un ingénieur fiabiliste ou de maintenance étudie des stratégies de
maintenance préventive qui cherchent a ordonnancer les remplacements préventifs d’un
équipement de facon a optimiser la disponibilité ou minimiser les colts de maintenance
sur un horizon infini. Ces modeles permettent de déterminer la périodicité ou I’intervalle

de remplacements préventifs de maniére a satisfaire le critere de disponibilité ou de codt.

Bien que les modéles minimisant les colits s’apprétent plus ou moins a I’optimisation
analytique, les modeles de maximisation de la disponibilité des équipements sont plus
difficiles a résoudre analytiquement du fait qu’ils font intervenir des formes plus
complexes de produits de convolution. Toutes ces stratégies sont basées sur la théorie de
renouvellement qui suppose que les remplacements préventifs et correctifs remettent
I’équipement aussi bon que neuf. Une hypothése plus ou moins justifiée en pratique.
Cependant, une hypothese de réparation minimale, permettant de remettre 1’équipement
dans un état «aussi bon que mauvais » est plus réaliste. Ce type de stratégie permet

d’effectuer des interventions correctives minimales aprés une défaillance et effectuer un



remplacement préventif a une périodicité donnée. Ce type de stratégie donne des

stratégies optimales si le taux de défaillance est strictement croissant.

D’un point de vue pratique, pour établir de tels modeles, le fiabiliste se base sur plusieurs
informations issues des inspections périodiques de I’équipement et données de
dégradation ou de défaillance. Les informations concernent 1’état de dégradation de
I’équipement, ces informations sont collectées pendant les inspections préventives ou
apres diagnostic de défaillances. Ces informations sont consignées dans les dossiers
machines. Elles sont généralement non exploitées a leurs justes valeurs. Les données de
dégradation regroupent les relevés de fatigue, d’usure, de corrosion, collectées
habituellement lorsque 1’équipement est soumis a une stratégie de maintenance
conditionnelle. Ces informations peuvent étre rares et ne sont disponibles que pour les
équipements dont la défaillance cause des accidents graves ou des pertes énormes en
termes de codt ou de disponibilité. Les autres données dites de défaillance concernent les
durées de vie completes ou censurées. Les données de vie completes caractérisent la fin
de vie d’un équipement. L’équipement est retiré de la production et sera soumis a une
rénovation majeure. Les données de vie censurées caractérisent les durées de
fonctionnement sans panne. Bien entendu, toutes les informations et les données

disponibles peuvent étre entachées d’incertitudes ou d’erreurs.

Lorsque les données de défaillance ne sont pas disponibles en quantité suffisante, cas
d’un équipement neuf, I’estimation du taux de défaillance a I’aide de la méthode du
maximum de vraisemblance est biaisée et ne peut étre considérer pour prédire son
évolution a court terme. Pour ce faire, le taux de défaillance estimé ainsi que son écart-
type, ceux généralement fournis par le constructeur de 1’équipement, peuvent étre utilisés
pour prédire les défaillances d’un équipement au cours d’une période donnée. Le calcul
du taux de défaillance estimé se base sur des essais limités de laboratoire ou du retour
d’expériences. Ce taux de défaillance estimé est souvent considéré comme constant au

cours de la durée de vie utile de I’équipement selon 1’hypothese du constructeur.

En pratique, comme 1’usage d’un équipement pourrait étre différent de celui prévu par le
constructeur, ou que 1’équipement a ¢ét¢ modifié pour incorporer d’autres fonctions non

prévu par le constructeur, ou bien I’efficacité des interventions de maintenance, toutes ces



raisons et bien d’autres pourraient avoir un effet sur le comportement du taux de
défaillance au cours du temps. Ainsi, il peut rester constant, augmenter ou diminuer au

cours du temps. A ce sujet, les remarques suivantes peuvent étre soulignees :

- Au fur et a mesure que les défaillances s’accumulent, la dégradation de I’équipement
augmente au cours du temps méme si les interventions de maintenance sont
entreprises sur I’équipement. D’ailleurs, ces interventions peuvent étre imparfaites,
ce qui peut étre a I’origine d’autres défaillances. Dans ce cas, le taux de défaillance
augmentera. Cependant, il pourra diminuer ou rester constant si des opérations de
maintenance ont été entreprises sur 1’équipement.

- L’estimation du taux de défaillance utilisant la méthode des moindres carrés ou de
maximum de vraisemblance n’intégre pas les informations récoltées et les avis
d’experts consignés aprés la mise en marche de I’équipement, ce qui pourrait
améliorer I’estimation de taux de défaillance et la rendre plus représentatif.

Afin de pouvoir prendre en compte les avis d’experts par rapport a 1’état de dégradation

ou tout simplement par rapport au taux de défaillance a un moment donné, I’inférence

bayésienne est souvent proposée dans la littérature. Son objectif est de conjuguer, sur une
période donnée, I’avis d’expert, pris sous forme d’une distribution a priori sur la valeur
du taux de défaillance, avec les données de défaillances réellement enregistrées dans la
méme peériode. Cela permet de mettre a jour le taux de défaillance en considérant non

seulement les données de défaillances mais aussi les avis d’experts.

1.2 Objectif de travail

L’objectif de ce travail est de proposer une stratégie de réparation minimale pour un
équipement en se basant sur I’actualisation du taux de défaillance par une inférence
bayésienne. La stratégie de réparation minimale consiste a remplacer préventivement
I’équipement a une certaine périodicité. Si 1’équipement tombe en panne entre deux
périodes de remplacement préventif, 1’équipement est réparé minimalement (aussi bon
que vieux).Son taux de défaillance reste sensiblement le méme aprés la réparation
minimale qu’avant la défaillance. Cette stratégie déterminera, a chaque période de mise
en marche, I’instant ou le remplacement préventif doit étre effectué et ce a moindre co(t.

\

Ce modele de réparation minimale permettra de mettre a contribution I’inférence



bayésienne pour estimer le taux de défaillance d’un équipement pour la période suivante
(appelé taux de defaillance a postériori) en se basant sur les données de défaillance
colletées (appelées données de vraisemblance) et 1’avis d’expert de maintenance (appelé
I’a priori) durant la période antérieure. Ce modele de réparation minimale permettra
ensuite de déterminer la périodicité optimale des remplacements préventifs de

I’équipement.

D’un point de vue modélisation bayésienne du taux de défaillance, celui qui combine les
données de vraisemblance avec 1’a priori d’experts de maintenance améne a des modeles
tres complexes lorsque les modéles représentant la loi a priori et la loi a posteriori sont
différents (modéles dits non conjugués). Dans ce cas, une expression analytique de la
distribution a posteriori n’existe pas. Pour résoudre ce probléme, nous faisons appelle a
une technique d’échantillonnage par simulation dite MCMC « Markov Chain Monte
Carlo ». Cette technique nous permettra de déterminer le modéle a posteriori pour
n’importe quel modele a priori. L’estimation du taux de défaillance a posteriori ainsi que

son intervalle de confiance seront définitivement déterminés par simulation.

Considérons les cotits de réparation minimale, d’inspection et de remplacement préventif,
nous chercherons a déterminer la périodicité optimale de remplacement d’un équipement.
Pour une période donnée, les données de défaillance seront combinées avec quatre
différents scénarios (avis d’experts) concernant le comportement du taux de défaillance
durant la période subséquente: aucun avis, le taux de défaillance reste constant, augmente
ou diminue ainsi que I’erreur que I’expert estime a propos de son avis. Ainsi, plusieurs
situations seront considérées afin d’examiner le comportement du taux de défaillance a
postériori. L’existence ou non d’une périodicité optimale de remplacement préventif
dépendra essentiellement du taux de défaillance et des colts encourus. Un programme

MatLab est proposé pour modéliser et résoudre la stratégie de réparation minimale.

1.3 Organisation du mémoire

Le mémoire est organisé sur trois chapitres. Le chapitre 2 est consacré aux concepts de
bases de fiabilité paramétrique des équipements, de fiabilité et d”’inférence bayésienne et

des techniques de simulations de type MCMC. Une revue de littérature sur les modeles



de modélisation des taux de défaillance appliquant une inférence bayésienne avec des
techniques de simulation MCMC. Ce chapitre présente également une revue de littérature
sur les stratégies de maintenance en général et celles basées sur le principe de réparation

minimale.

Le chapitre 3 présente la démarche de modélisation d’actualisation du taux de défaillance
selon la méthode d’inférence bayésienne, pour ce faire, nous allons prendre comme
exemple une densité exponentielle de la vraisemblance et nous allons modéliser 1’avis
d’un expert a I’aide d’une distribution normale. L’organisation de I’étude statistique
permettant de simuler les différents avis d’experts et les combiner avec la vraisemblance
choisie, nous intégrons cette démarche dans un algorithme de Metropolis-Hastings pour
avoir une actualisation a posteriori du taux de defaillance a chaque période. Enfin du
chapitre nous allons présenter et analyser les résultats de cette simulation.

Le chapitre 4 présente le modéle d’optimisation de la stratégie de réparation minimale.
Comme le taux de défaillance est actualisé a chaque période, une nouvelle formulation de
la stratégie de maintenance est proposée qui tient compte des codts et du taux de
défaillance a posteriori ainsi que les colts de réparation minimale, d’inspection et de

remplacement. L’optimisation de la stratégie proposée sera basée sur de simulation.

Enfin, une conclusion ainsi que les pistes et idées qui peuvent étre developpées a partir

des travaux élaborés seront présentées.



CHAPITRE 2 : CONCEPTS DE BASE ET REVUE DE
LITTERATURE

Dans ce chapitre, nous allons présenter les différentes notions de bases et lois de fiabiliteé,
du taux de défaillance habituellement utilisées pour estimer la fiabilité d’un équipement.
Ensuite, nous présentons un état de 1’art des principaux modéeles de fiabilité proposés
dans la littérature, en particulier, ceux utilisant les méethodes bayésiennes. Les modeles
avec des distributions de densité non conjuguées, ceux nécessitant le recours aux
techniques d’échantillonnage MCMC pour estimer les paramétres des densités a
posteriori sont également esquissés. En derniére partie, nous présentons une revue des
stratégies de maintenance les plus rencontrées, en particulier, les stratégies dites age et

bloc, ainsi que celles utilisant le principe de réparation minimale.

2.1 Fiabilité des équipements
2.1.1 Concepts de défaillance, de fiabilité et de duree de vie

La défaillance d’un équipement désigne 1’arrét de réalisation de sa fonction principale ou
de ’'une de ses fonctions secondaires. Un équipement est déclaré défaillant lorsque une
ou plusieurs de ses grandeurs caractéristiques évoluent en dehors des tolérances définies

lors de sa conception (Kozlov, Ushakov et al. (1970)).

Plus spécifiquement, I’'Union Technique de 1'Electricité (UTE), sur recommandation de la
Commission électrotechnique internationale, a proposé la définition suivante de la
fiabilité : « La fiabilité est I’aptitude d’un dispositif ou un équipement a accomplir une
fonction requise dans des conditions données pour une période de temps donnée. En

d’autres termes la fiabilité c¢’est la probabilité de survie d’un équipement » (Laprie 2004).

La fiabilité est une caractéristique d’un systéme exprimée par la probabilité qu’il
accomplisse la fonction pour laquelle il a été congu, dans des conditions données et
pendant une durée donnée. La fiabilité est une caractéristique du systéme au méme titre
que les caractéristiques dimensionnelles (Elsayed 2012). Cette définition vehicule quatre

concepts principaux :



e Concept 1: La fiabilité s’exprime par une probabilité (grandeur comprise entre 0 et 1)
et qui rend compte du caractere aléatoire de I’accomplissement de la fonction.

e Concept 2: La fonction requise (service rendu ou mission accomplie) implique un
seuil d’admissibilité en dessous duquel la fonction n’est plus remplie.

e Concept 3: Les conditions d’utilisation renvoie a 1’environnement et ses variations,
les contraintes mécaniques, etc.

e Concept 4: La période de temps donne la durée de la mission en unités d’usage, c’est

le temps de bon fonctionnement.

En pratique, la fonction de fiabilité est directement liée a une autre notion qui est la durée
de vie d'un équipement qu’on définit comme étant la durée durant laquelle le systéme est
en fonctionnement et elle mesure la quantité de service rendue par le systéme et qui peut

étre exprimée en unités de temps, en cycles ou en unités produites par le systeme.

La durée de vie T est une variable aléatoire caractérisant le passage aléatoire d'un systeme
d'un état de fonctionnement a un état de défaillance selon une loi de probabilité qui peut

étre connue ou inconnue.

La fonction de densité de la variable aléatoire associée a la durée de vie T du systeme est

exprimée par la probabilité que la durée de vie soit comprise entre t et t+dt :
f@®)=Pr(t<T < t+dt) (2.1)

Avec la fonction de densité définie auparavant, une fonction de répartition F(t) peut étre
associée a la durée de vie. F(t) représente la probabilité que la durée de vie T soit

inférieure ou égale a t:

F(t)=Pr(T<t)= ff(u)du (2.2)
0

Par conséquent, la fiabilité R(t)du systéme qui désigne la probabilité que le systéeme soit

fonctionnel au-dela de la durée t. Elle s'écrit comme suit:

R(t) =Pr(T >t) = ff(u)du (2.3)

D’aprés les deux définitions précedentes, la propriété suivante doit étre vérifiée :



R(t) +F(t) = ff(u)du =1 (2.4)
0

2.1.2 Fonction du taux de défaillance

La fonction du taux de défaillance ou d’avarie A(t)d’un systéme est donné par A(t) =
f(t|T > t). Comme F(t) désigne le risque de défaillance d’un équipement a I’instant t, la

probabilité que I’équipement tombe en panne entre les instants t et t+dt est donnée par la

dF (t)

dérivé de la fonction F(t) au cours de I’intervalle t et t+dt, notée —

sachant que

I’équipement est survivant a I’instant t avec une probabilité R(t). Ainsi, lafonction du

taux de défaillance A(t) s’écrit alors comme sulit :

1 dF(®) -1 _dR(®)
RO dt RO dt

A(t) = (2.5)

Il est largement admis en fiabilité¢ classique que 1’évolution du taux de panne d’un
équipement neuf au cours de son cycle de vie suit une courbe spéciale, appelée « courbe
en baignoire » (Figure 2.1). Selon cette courbe, le taux de défaillance décroit pendant la
premicre période de vie de 1’équipement. Les défaillances qui surviennent dans cette
période sont appelées« défaillances infantiles ». Ensuite, le taux de défaillance devient
constant dans le temps. Cette période caractérise les défaillances aléatoires. Il s’agit de la
période de vie utile de I’équipement. Enfin, durant la derniére période, le taux de
défaillance croit avec le temps. L’équipement subit des défaillances dites d’usure ou de

vieillesse.

Connaissant une des quatre fonctions de fiabilité, les relations suivantes permettent d’en
déduire les autres fonctions. Ces fonctions sont générales et ne dépendent pas de la loi de

probabilité.

R() = [} f(®)dt=exp |- [, A(w)du] (2.6)

Il en découle de cette relation, les relations suivantes :

F(t)=1—exp —Jl(u)du (2.7)
0



t
f(t) = A(t)exp —fxl(u)du (2.8)
0
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Figure 2.1 La courbe en baignoire (adaptée de Kaffel, 2001)

2.1.3 Lois usuelles de fiabilité

L’évaluation de la fiabilit¢ d’un équipement passe obligatoirement par la connaissance
déterministe ou plus ou moins approximative, soit de la distribution de probabilité des
durées de vie de cet équipement, soit des parameétres de son taux de défaillance. Cela est
généralement déterminé a travers des essais de fiabilité, ou des données de retour
d’expérience. Plusieurs distributions paramétriques peuvent étre utilisées. Nous

présentons celles les plus utilisées en pratique.
e Loiexponentielle

La loi exponentielle est une loi qui est parfaitement définie dés que son unique parametre
Lambda est connu. Elle est la loi suivie par la variable aléatoire T lorsque le taux de
défaillance est constant. Pour tout t > 0 nous avons A () = A, une constante strictement
positive (A >0). Cette loi caractérise généralement la durée de vie utile d’un équipement.
Cette loi est tres utilisée en fiabilité a raison de sa simplicité analytique. Donc pout tout t

> 0, la fonction de densité de défaillance est donnée par f(t) = Ae~* (Figure 2.2).
La fonction de distribution (de défaillance) est donnée par : F(t) =1 — e~

La fonction de fiabilité est donnée par : R(t) = e~ (Figure 2.3).
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F!'rr) Rit)

Figure 2.2 La fonction f(t) de la loi exponentielle

Figure 2.3 La fonction R(t) de la loi exponentielle
e Loi de Weibull

Cette distribution est définie dés que les trois parameétres suivants sont déterminés:
(paramétre de forme), ¢ (paramétre de position) et n (paramétre d’échelle). Elle est
connue pour caractériser des phénoménes de fatigue, d’usure ou de dégradation. Ses

fonctions de fiabilité sont données par :

f(t) = g(t_T(p)[H exp l— (t_Tq))ﬂl (2.9)
F(t)=1—exp l— (t—Tga)ﬁl (2.10)
R(t) = exp l— (t—Tgo)ﬁl (2.11)

Q) = %(“T‘p)ﬁ_l (212)
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e Loi normale

La loi normale est la plus usuelle parmi les lois de fiabilité. Elle comporte deux
paramétres la moyenne u et 1’écart-type o. La fonction de densité s’écrit, pour t > 0,
comme suit :

F© = ——exp [—%(%“)

2

,a>0 (2.13)

La loi normale prend une place particuliéere dans les études statistiques grace a la
convergence d’une suite de variables aléatoires vers cette loi en utilisant le théoreme de la
limite centrale. En effet, elle correspond au comportement de la moyenne d'une suite
d'expériences aléatoires similaires et indépendantes lorsque le nombre d'expériences est
tres élevé. Grace a cette propriété, la loi normale permet de s’approcher d'autres
distributions et ainsi de modéliser de nombreuses études scientifiques telles la

modélisation d’erreurs de mesure ou d’expériences aléatoires.

Par ailleurs, la loi normale est souvent utilisee pour modéliser des avis d’experts. Ainsi,
I’avis d’un expert peut étre modélisé par la moyenne d’une loi normale et I’incertitude de
I’avais de I’expert par la variance ou 1’écart-type de la méme loi (Gendre 1977), (Saporta
2006).

Il existe également d’autres lois paramétriques utilisées en fiabilité telles que la loi
gamma ou la loi log-normale. Toutes ces lois sont déterminées des que leurs parameétres

sont estimés a partir d’échantillons de données de durées de vie.
2.2 Méthodes d’estimation paramétrique

Pour estimer les paramétres d’une distribution de probabilité, nous faisons recours aux
méthodes statistiques d’estimation telles que les méthodes graphiques et les méthodes
d’inférence statistiques en particulier, la méthode du maximum de vraisemblance et

d’estimation bayésienne.

Plus généralement, soit une variable aléatoire x = {x;, x5, ..., x,,} qui représente les durées
de vie d’un équipement. Le probleme consiste & déterminer une fonction de densité

f(x]6) ou seul le vecteur de parametres 8 = {64, 6,, ..., 8, } est inconnu.
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Une fois le modéle paramétrique construit, I’objectif serait d’effectuer une inférence sur
le parametre inconnué.Dans la littérature, plusieurs méthodes d’inférence statistique sont
possibles, nous examinons les plus connues : la méthode de maximum de vraisemblance

et I’estimation bayésienne.

2.2.1 Méthode d’estimation par le maximum de vraisemblance

Dans cette méthode dite classique, I'information provenant des données observées est
l'unique source d’information utilisée pour estimer les parameétres de la loi de fiabilité.
Elles sont des réalisations de la variable aléatoire. Elles servent a faire porter I'inférence
sur les paramétres 6. Dans cette méthode, une fonction de vraisemblance est utilisée. Elle

s’écrit comme suit:
L(6]x) = f(x|6) (2.14)

Dans cette méthode, nous cherchons un estimateur de 8,,, qui maximise la fonction de

vraisemblance [(0]x). L’estimateur est donné par :
Oy = Argemax{1(6|x)} (2.15)

ou [(@]x) est la densité de probabilité conditionnelle suite aux observations.

2.2.2 Méthodes d’estimation bayésienne

L’estimation bayésienne se base sur le théoréme de Bayes (Miller, Freund et al. 1965).
Pour deux événements aléatoires A et B, ce théoréme s’écrit comme suit :

P(B|A)P(A)

P(AIB) = = 2

(2.16)

Ou P(A) représente la probabilité a priori, et P(A|B) représente la probabilité a

posteriori.

Par opposition a 1’estimation paramétrique basée sur le maximum de vraisemblance,
I’estimation bayésienne suppose que les parametres d’intéréts & sont considerés comme
des variables aléatoires caractérisées par des densités de probabilité 7(8). Ces densités
s'appellent les densités a priori. Afin d’estimer les parameétres a posteriori, la formule

précédente de Bayes est utilisée. Elle donne le résultat suivant :



13

__ f(19)m(9)
J;” f(x10)m(6)de

7(0]%) (2.17)

Ou f(x|@) caractérise la vraisemblance des données connaissant les parametres 6.

Les bases de I’estimation bayésienne sont mises en place dans les années 40. Cependant,
elles seront réellement développées dans les années 70 a travers plusieurs travaux comme
ceux de (Efron and Morris 1972), (Casella 1985), (Deely and Lindley 1981), (Kass and
Steffey 1989) et (Morris 1983). Dans ces travaux, les auteurs expliquent la théorie de

modélisation bayésienne et sa relation avec les autres méthodes statistiques.

L’un des premiers auteurs & avoir utilisé 1’estimation bayésienne du taux de défaillance
de composants électroniques est (Ringler 1981). Ce travail a mené a des changements sur
la courbe classique en baignoire du taux de défaillance. D’autres auteurs ont utilisé cette
méthode pour combiner les informations issues des observations (vraisemblance) avec les
connaissances des experts tels que I’estimation de la fiabilit¢ des équipements en

aerospatial a la NASA (Pérez, Martin et al. 2006).

En général, dans la modélisation bayésienne, les parameétres de la distribution a priori
(appelés les hyperparameétres) sont déterminés par inférence bayésienne dite
« hiérarchique ». Cette inférence permet de modéliser en plusieurs niveaux hiérarchiques
les paramétres de la densité a priori jusqu’au dernier niveau qui consiste a estimer le
paramétre visé par 1’inférence. Dans la plupart des cas, la loi de premier niveau sera
conjuguée, par souci de simplification et aussi, parce que la modélisation sur les niveaux
supérieurs permet de corriger éventuellement cette erreur de spécification de
I'information a priori. L’idée principale de la modélisation bayésienne hiérarchique
consiste a considérer les hyperparameétres de la densité a priori comme des variables
aléatoires dépendantes d’autres hyperparameétres. Donc, un modele bayésien hiérarchique
est un modeéle tel que la loi a priori est composée de plusieurs distributions
conditionnelles (Robinson 2001). La figure 2.4 illustre un cas d’une inférence bayésienne

avec trois niveaux hiérarchiques des parameétres a estimer.
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Figure 2.4 Exemple d’une inférence hiérarchique avec trois niveaux

Un résumé des méthodes bayésiennes est présenté dans (Berger 2000). Cependant, il est
tres difficile d’appliquer une inférence bayésienne analytiquement dans le cas ou nous
avons des distributions de probabilité non conjuguées (la distribution a priori et la
distribution a posteriori n’ont pas la méme forme). Donc I’utilisation de ces méthodes, est
restée restreinte jusqu'a I’introduction de méthodes numériques de chaines de Markov
Monte Carlo (MCMC)(Brooks 1998). Ces méthodes sont basées sur des techniques de
simulation qui permettent d’obtenir des solutions numériques des problémes basés sur

des modeles trés complexes (Pérez, Martin et al. 2006).

A ce sujet, plusieurs algorithmes sont proposés dans la littérature. Les algorithmes
Metropolis, Hastings et Gibbs sont parmi les dix algorithmes les plus utilisés en
ingénierie dans le dernier siecle (Beichel et Sullivan 2000). L’algorithme Metropolis de
base (Metropolis, Rosenbluth et al. 1953), (Hastings 1970) est adapté dans plusieurs
travaux consacrés a des différents domaines tels que en biologique (Liu and Logvinenko
2003) et en intelligence artificielle (Andrieu, De Freitas et al. 2003). Ces algorithmes

offrent des méthodes d’échantillonnage a partir de distributions de probabilité complexes.

Enfin, Kelly & Smith (2008) constatent aussi le large champ d’application des méthodes
bayésiennes avec les méthodes MCMC. Nous pouvons citer les applications dans les
sciences sociales (Gill 2002), I’ingénierie financiére (Geweke 2005), la science de santé

(Lawson 2006) et le contréle des processus (Enrique 2006).
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2.2.3 Considérations importantes

L’estimation bayésienne est trés sensible aux aspects suivant :
e Choix de la loi a priori

Le choix de la loi a priori est une étape fondamentale dans I’analyse bayésienne.
L’information a priori est défini sur le parameétre 6. Cette information n’est pas apportée
par les observations, c’est-a-dire la vraisemblance, mais plutdt par la mise a contribution
des expériences du passé, les intuitions ou 1’expérience des spécialistes des modes de
défaillance. Cette information est incertaine, donc il est naturel de la modéliser au travers
d’une loi de probabilité n(6). En pratique, n(8) peut-étre une loi normale, Beta, Gamma,

ou autres. Les parameétres d’une loi a priori sont appelés Hyperparameétres.
e Loia priori conjuguée

Etant donné une loi paramétrique sur les observations collectées, si la loi a priori sur le
parameétre a estimer donne une loi a posteriori de méme famille, alors la loi a priori est
dite conjuguee. Ceci bien entendu simplifie considérablement le calcul de la densité a
posteriori sur le méme parametre d’intérét. Le tableau 2.1 présente des exemples de lois a
priori conjuguées. A remarquer qu’il n’existe pas de loi a priori conjuguée si la loi

m(x|@) caractérisant la vraisemblance est exponentielle.

Tableau 2-1 Exemples de lois a priori conjuguées

n(x|6) n(6) m(6]x)
Normale(8,0?) Normale(u,t?) Normale(p(c?u + t2x), pa?t?)
ou p_1 = g?—1?
Poisson(0) Gamma(a, ) Gamma(a + x,5 + 1)
Binomiale(n, 8) Beta(a, B) Beta(a + x, +n — x)
Gamma(v, 0) Gamma(a, ) Gamma(a + v, — x)

e Loisa priori non informatives

Une loi a priori non informative est une loi qui porte une information sur le paramétre a
estimer dont le poids dans l’inférence bayésienne est reduit. Certains auteurs la
définissent également comme une loi a priori qui ne contient aucune information sur 6,

ou encore, comme une loi qui ne donne pas davantage de poids a telle ou telle valeur du
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parametre. Par exemple, supposons @ un ensemble fini de taille q une loi a priori non

informative pourra étre une loi de la forme :
P@6) =1/q (2.18)

Donc, les valeurs possibles de 6 se voient attribuer le méme poids.

Les lois a priori non informatives peuvent étre construites a partir de la distribution
d’échantillonnage. Une deuxiéme méthode est celle proposée par Jeffreys (1961) en
utilisant  I’information de Fischer: I(6) qui représente une mesure de la quantité
d’information sur € contenue dans 1’observation. Plus 1(0) est grande, plus 1’observation
apporte de I’information. Il semble alors naturel de favoriser les valeurs de 6 pour
lesquels 1(6) est grande. Ce qui minimise I’influence de la loi a priori au profit des

observations (la vraisemblance).

2.2.4 Calcul de la loi a postériori

Tel que énoncé précédemment, si la loi a priori n’est pas conjuguée, la résolution
analytique de m(6|x) devienne tres complexe. La méthode MCMC est alors utilisée.
Nous présentons dans ce qui suit, le principe de simulation Monte Carlo ainsi que les

algorithmes d’échantillonnage les plus connus.

¢ Principe des méthodes MCMC

L’idée général des méthodes MCMC est d’utiliser des échantillons pour approximer les
moyenne des distributions complexes en remplacant les intégrations complexes par des
simulations d’un large ensemble d’échantillons. La précision de ces approches se base
sur le nombre d’itérations ou d’échantillonnages et le degré d’indépendance entre les
échantillons. De ce fait apparait I’importance des chaines de Markov qui permettent

d’échantillonner des échantillons indépendants a partir d’une distribution stationnaire.

Comme la distribution a posteriori m(6|x) est une fonction proportionnelle au produit de
la distribution a priori (@) et de la vraisemblance f (8, x), t(8|x)ar(8) x (6, x), alors
les méthodes MCMC permettent de calculer la moyenne et la variance de la fonction a
posteriori en simulant plusieurs fois le produit des deux valeurs aléatoires tirées des loi a

priori et de la vraisemblance.
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En résumé, les méthodes MCMC permet de générer et résoudre une chaine de Markov a
partir de la distribution stationnaire qui sera exactement la distribution a étudier
(distribution a postériori). Parmi les méthodes MCMC les plus répandues, nous allons
présenter les algorithmes de Metropolis-Hastings et de Gibbs.

e Algorithme de Metropolis-Hastings

On suppose que 1’objectif soit d’échantillonner a partir de la distribution de densité
P(0).L’algorithme de Metropolis-Hastings génére une chaine de Markov qui produit une

séquence de valeurs :

oue® représente 1’¢tat de la chaine de Markov a I’itération t, et on initialise la chaine n

donnant une certaine valeur initialea 8@,

La méthode utilise ensuite une distribution dite instrumentale notée q(8|6“~Y) pour
générer un nouveau candidat 8*. L’étape prochaine consiste a accepter ou refuser ce
nouveau candidat en utilisant une probabilité d’acceptation. Le candidat choisi est
accepté comme prochaine état de la chaine avec la probabilité suivante :

m(0")g(e¢V]e*)
m(e D)g(e T D)

a (04 Ve*) = min[1, (2.19)

Enfin pour prendre la décision d’accepter ou de refuser le nouveau candidat proposé on
génere une valeur a partir d’une distribution uniforme et on la compare avec la

probabilité d’acceptation. La figure 2.5 décrit I’algorithme Metropolis-Hastings.
e Algorithme de Gibbs

Du fait de la difficulté de trouver une distribution instrumentale, 1’échantillonnage de
Gibbs est un cas particulier de la méthode Metropolis-Hastings. La différence est que
’algorithme de Gibbs permet d’échantillonner seulement dans le cas ou la distribution
conditionnelle a posteriori est parfaitement connue. C'est-a-dire nous connaissons toutes
les distributions de ses parametres avec précision. En d’autres terme les lois a priori sont

conjuguées. La figure 2.6 présente I’algorithme de Gibbs.
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Figure 2.5 Algorithme Metropolis-Hastings
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2.3 Stratégies de maintenance

2.3.1 Stratégie de maintenance de type Age

Une stratégie de maintenance de type age consiste a effectuer un remplacement correctif
en cas de défaillance de I’équipement ou effectuer un remplacement préventif seulement
si ce dernier atteint un age T sans défaillance. L’4ge T représente la période de
remplacement préventif. L’idée de cette stratégie est de remplacer préventivement
I’équipement le plus proche possible de I’instant ou il risque de tomber en défaillance.
Par ailleurs, si I’équipement tombe en défaillance avant 1’instant T, il fera objet d’une
maintenance corrective. Comme les remplacements préventifs et correctifs utilisent des

équipements neufs, I’age réel de I’équipement est remis a zéro.

Pour définir la stratégie optimale correspondante, il faut déterminer la périodicité
optimal T ou le remplacement préventif sera effectué. Considérant les colits de
remplacement correctif et préventif de I’équipement la stratégie optimale T~ garantit un
colt total moyen par unité de temps sur un horizon infini minimum. Un modeéle
mathématique a été développé par Barlow et Proschan (1965). La (Figure 2.7) présente

un schéma simple des séquences des événements dans cette stratégie.

—
| Panne |

ClL 12

-

|
I/ ™y
maintenance | ¢ T Ty
AESEEes Panne
preventive " .
maintenance
corrective
L :
| . = 1
- . e _i_ -

maintenance

preventive

Figure 2.7 Stratégie de maintenance de type Age (Bagayoko, 2009)
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Le modéle de Barlow et Proschan (1965) suppose que 1’équipement a deux états
possibles (en marche ou en panne), la détection des pannes est instantanée, les temps des
opérations de maintenance sont négligeables et la remise a neuf de 1’équipement par un
équipement identique. Les auteurs ont montré qu’un tel mode¢le est toujours préférable en
comparaison a une stratégie de remplacement correctif si le taux de défaillance est
strictement croissant. Cette stratégie permet 1’utilisation effective de I’équipement, donc

ne pas remplacer un équipement neuf aprés une courte période de fonctionnement.

Cependant, cette stratégie nécessite une surveillance continue et un suivi de 'utilisation
de I’équipement. Elle présente quelques inconvénients tels que I’impossibilité d’effectuer
les remplacements préventifs a 1’age optimal T* & cause de la non concordance de cette

période optimale avec le calendrier de production.

2.3.2 Stratégie de maintenance de type Bloc

Cette stratégie consiste a faire des remplacements préventifs a des intervalles de temps
fixes et prédéterminés. En cas de défaillance, un remplacement correctif de 1’équipement
est encouru. L’un des premiers mod¢les de cette méthode est le modéle de Barlow et
Hunter (1960) (Figure 2.8) dans lequel, ils utilisent la fonction de renouvellement de
I’équipement. Ils déterminent la période optimale T qui minimise le codit total moyen par
unité de temps sur un horizon infini. Un deuxieme modele proposé par Ait-Kadi et Chelbi
(1995) qui constitue une extension du dernier modele en tenant compte des stocks

disponibles de pieces de rechange.

Par opposition a la maintenance de type age, la stratégie de type bloc peut avoir un effet
de gaspillage des équipements neufs. Car, il arrive de remplacer un équipement qui vient
d’étre mis en marche. Pour remédier & cette lacune, des modeles étendus de type Bloc
ont été proposés en effectuant des réparations minimales ou remplacer par des

équipements usages (Tango 1978).
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Figure 2.8 Stratégie de maintenance de type Bloc (Bagayoko, 2009)

2.3.3 Stratégie de remplacement périodique avec réparation minimale apreés

défaillance

Cette stratégie consiste a remplacer périodiquement 1’équipement avec un équipement
identique neuf. En cas de défaillance, une réparation minimale est entreprise. Cette
réparation n’a pas d’effet sur le taux de défaillance de 1’équipement. L’équipement est
dans un état aussi mauvais qu’avant I’occurrence de la défaillance. Cette stratégie est
introduite par (Barlow and Hunter 1960) avec 1’établissement des conditions d’existence
et d’unicité d’une stratégie optimale. Ensuite, Barlow et Proschan (1965) ont établi un
modele en minimisant le colt total moyen par unité de temps sur un horizon infini. Un
autre modéle de remplacement périodique considérant des codts croissant de réparation
minimale a été proposé par (Boland and Proschan 1982).

2.3.4 Autres strategies de maintenance periodique

A partir des deux politiques de base cités au-dessus, d’autres modéles ont été développés,

nous présentons quelques-uns ci-apres :

o Stratégie de remplacement avec période d’inactivité. Cette stratégie propose
d’arréter 1’équipement suite a une panne jusqu’au moment déterminé de la

maintenance préventive. Mais le modéle suppose que la défaillance est survenue a un
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petit moment avant I’arrét programmé de 1’équipement. Le modele de base a été
développé par Cox (1962) en déterminant le co(t total moyen par unité de temps sur
un horizon infini et en établissant les conditions d’existence d’une stratégie optimale
(i.e. taux de défaillance croissant).

e Stratégie de maintenance imparfaite. Cette stratégie propose de remplacer des
composants défaillants par des composants en meilleurs états sans étre neufs. Donc, le
but est seulement d’améliorer les performances de I’équipement. Des modé¢les dans la
littérature ont été deéveloppés comme les modeles de maintenance préventive
imparfaite de (Nakagawa 1986), le modele de (Brown et Proschan 1983) ou le modele
de (Pham and Wang 1996).

e Stratégie de maintenance séquentielle. Cette stratégie suppose un horizon de temps
fini. Une stratégie optimale qui minimise le colt total moyen sur cet horizon a été
établie par (BARLOW and Proschan 1965). De méme, un autre modéle de
remplacement périodique avec des colts de réparation minimale croissant a éeté

développé par les mémes auteurs précédents.

En résumé, la stratégie qui correspond mieux a la situation observee par les équipements
réparables est celle de remplacement périodique avec réparation minimale aprés
défaillance. C’est cette stratégie qui nous intéresse. Elle sera détaillée et exploitée
ultérieurement dans le chapitre 4.
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CHAPITRE 3 : MODELE D’ACTUALISATION DU TAUX DE
DEFAILLANCE

Le chapitre précédent nous a permis d’avoir une revue de littérature sur les notions de
modélisation du taux de défaillance et des stratégies de maintenance. Dans ce chapitre
nous allons présenter une étude de cas, I’expérimentation de plusieurs modélisations de la
distribution a priori, le modéle d’actualisation du taux de défaillance et nous analyserons

les résultats obtenus selon les différents scénarios pris sur I’information a priori.

3.1 Présentation du cas d’étude

Dans le cas d’étude, nous considérons un équipement neuf schématisé dans la figure 3.1,
mis en exploitation a un instant t = 0. Le fournisseur de I’équipement dispose d’un taux

de défaillance estimé 6, et d’un écart-type estimé o,.

Figure 3.1: Equipement multi-composants neuf
Cet équipement sera mis en marche pendant plusieurs périodes et nous allons enregistrer
le nombre de défaillances et les durées de vie pour chaque période. Ce qui constituera la

vraisemblance de 1’équipement.

Ensuite, un avis d’un expert sur le taux de défaillance sera modélisé en début de chaque

période, cet avis est défini par les trois éléments suivants :

e Latendance du taux de défaillance (augmente, stable, diminue),

e le pourcentage caractérisant la tendance du taux de défaillance
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e D’incertitude de I’expert vis-a-vis de la tendance du taux de défaillance.

Ces trois éléments vont permettre la construction de la loi a priori sur le taux de
défaillance. La vraisemblance, modélisée par une loi exponentielle, jumelée avec la loi a
priori, modelisée par une loi normale, va permettre d’effectuer une inférence bayésienne

sur le taux de défaillance ().

L’inférence dans ce cas se fera en utilisant un échantillonnage de Metropolis-Hastings et
qui donnera la moyenne et I’écart-type de la loi a posteriori représentant ainsi
I’actualisation du taux de défaillance estimé du constructeur de I’équipement, une période
apres une autre. La loi conditionnelle a posteriori de taux de défaillance A sera le produit

de la vraisemblance exponentielle et la distribution a priori normale.
3.2 Eléments de modélisation
3.2.1 Démarche générale

Dans notre cas, la figure 3.2 représente la démarche générale pour actualiser le taux de
défaillance. L’information a priori consiste en une estimation d’une moyenne et d’une
variance. Le choix de deux parameétres sera détaillé dans section 3.2.3. Nous disposons
également des observations x; qui représentent les données de défaillance de notre
équipement. Ces observations sont utilisées pour construire la fonction de vraisemblance.
La fonction a posteriori permet d’actualiser le taux de défaillance observé considérant la

distribution a priori de I’expert.

—_—
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Figure 3.2 Démarche générale d’actualisation du taux de défaillance
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3.2.2 Calcul de la vraisemblance

La distribution de la vraisemblance est tirée des observations tout au long de la période

d’étude. La vraisemblance est donnée par la relation suivante:

L) = | [0 3.1
i=1

Dans le cas étudié, nous supposons que les durées de vie suivent une loi exponentielle de
paramétre 1, sachant la densité f(t,A) = Ae™* , nous pouvons en déduire la

vraisemblance L(t; 1) qui s’écrit comme suit :
n

LD = | [2e7 = arer i (3.2)
i=1

3.2.3 Modélisation de I’avis de I’expert

L’expert devrait donner un avis sur le taux de défaillance. Quatre possibilités pourraient

étre obtenues :

e L’expert n’a pas d’avis. Cet avis pourrait se produire au début de 1’exploitation
d’un équipement ou que I’expert ne peut pas se référer a un équipement similaire.

e [’expert pense que le taux de défaillance est resté stable par rapport a la valeur du
taux de défaillance estimé par le constructeur.

e L’expert pense que le taux de défaillance a augmenté. Cet avis pourrait
représenter par exemple une augmentation de nombre de défaillances enregistré
plus grand que celui estimé par le constructeur a cause d’une mauvaise
maintenance ou d’une sollicitation plus importante de I’équipement.

e [’expert pense que le taux a diminué. Cet avis pourrait représenter le cas ou une
maintenance préventive accrue a été effectuée sur 1’équipement réduisant ainsi

son taux de défaillance.

Pour les trois derniers avis, 1’expert pourrait spécifier son incertitude en choisissant une

des situations suivantes :

e [’expert est certain.

e L’expert est moyennement certain.
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e L’expert est incertain.

Le tableau 3.1 résume les avis, les incertitudes et les codes utilisés pour notre étude. Nous
avons choisi la loi normale pour modéliser 1’avis d’expert ainsi que son incertitude. Les

parametres de cette loi normale (p et ) sont calibrés par les choix de 1’expert.

Tableau 3-1 Codes utilisés pour modéliser I'a priori

Avis :u Code Incertitude : o Code
Sans avis 0 Certaine 0
Augmente 1 Moyenne 1
Diminue -1 Incertaine 2
Stable 2

Plus précisément, les parameétres de la loi normale sont les hyperparametres caractérisant
le taux de défaillance A. Le choix de ces hyperparamétres sont déterminés comme suit :

e Sil’expert est sans avis dans la période (i), la moyenne de la loi a priori sera égale au
A a posteriori de la période (i-1). Pour la premiére période la moyenne sera égale au A
estimé du constructeur. Dans ce cas, nous n’aurons aucune précision de 1’expert.
L’écart-type sera égal a 1’écart-type de la période précédente (i-1).

e Si expert prévoit une augmentation ou une diminution, deux valeurs aléatoires (o,
p) seront tirées a partir d’une loi uniforme [0,1]. Ces valeurs définiront le
pourcentage d’augmentation ou de diminution du taux de défaillance ainsi que son
incertitude. Dans le cas ou I’expert prévoit une stabilit¢ du taux de défaillance,
seulement la valeur (p) sera utilisée pour déterminer I’incertitude de 1’expert.

a. En cas de prévision d’une augmentation dans une période (i) la moyenne
de la loi a priori sera toujours égale a (/+ «) fois le A a posteriori de la
période (i-1).L’écart-type sera déterminé selon I’incertitude de I’expert :

e Expert certain : écart-type(i) sera égal a (1- ) fois I’écart-type (i-1)
e Expert moyen : écart-type(i) sera égal a 1’écart-type (i-1)
e Expert incertain : écart-type(i) sera egal a (/+ f) fois 1’écart-type
(i-1)
b. En cas de prévision d’une diminution dans une période (i) la moyenne de la

loi a priori sera toujours égale a (1- o) fois le A a posteriori de la période (i-
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1).L’écart-type sera déterminé selon I’incertitude de 1’expert, tel exprimé

en a).
e Si I’expert prévoit une stabilité du taux de défaillance dans une période (i), la
moyenne de la loi a priori sera toujours égale au A a posteriori de la période (i-1) et

I’écart-type est donné avec 1’écart-type tel que exprimé en a).

En combinant les différents avis de I’expert avec les différentes incertitudes nous

obtenons les scénarios suivants :

Tableau 3-2 Différents scénarios a priori selon les avis de I'expert

Numeéro Scénario Incertitude Moyenne(u) Ecart-type(o)
1 Sans Avis / pn=2(-1) o =0o(-1)
2 Augmentation  Certaine u = (1+a) A(j-1) o = (1-B)o(j-1)
3 Augmentation  Moyenne p=1+a) AM(j-1) o=0(-1)
4 Augmentation  Incertaine u = (1+a) A(j-1) o = (1+B)o(j-1)
5 Diminution Certaine p = (1-o) A(j-1) o = (1-B)o(j-1)
6 Diminution Moyenne u=(1-a) A(j-1) o =o(j-1)
7 Diminution Incertaine u=(1-a) A(j-1) o = (1+B)o(j-1)
8 Stabilité Certaine u=2(j-1) c = (1-B)o(j-1)
9 Stabilité Moyenne u=2x(-1) o =0(j-1)
10 Stabilité Incertaine u=2(j-1) c = (1+B)o(j-1)
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3.3 Algorithme d’actualisation du taux de défaillance

La figure 3.3 présente I’algorithme d’actualisation du taux de défaillance d’un

équipement. Ce taux de défaillance est supposé constant pendant une période (i).

Entrer les paramétres estmés: .
& o etle temps de péniode

| |

Leacture des données d'observations
de pannes et le nombre de période N’

[ J

Calculer le nombre de pannes, la somme ]4

[

etla somme cumulée des durées de vies J‘
Lecture des avis de 1'expert de
la période

) e

A, (j): moyenne des échantillons

1

A=20—-1) -l..z_cnn'edela
G=0y(j-1) | précision de I'expert |
- I
Lecture du taux de
changement du taux
de pannes
\ J/
Lecteur des
valeurs (g, )
Avis=1 Avis=.1 Avis=2
(A.ugmenmon) (Dmmution) (Stzbilme)
é:(uaﬁ,q-n - ,.:(1-@4,(;-1) cver AEX(=1 owe
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¢=6,(j-1) expetmoyen & =¢,(f - 1) experzmoyen 3 =¢,(f = 1) expersmoyem
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hication Hastings-Metropolis
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0,(j) : écart — type des échantillons
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Figure 3.3 Algorithme d’actualisation du taux de défaillance
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Dans notre cas, la vraisemblance est calculée a partir d’une distribution exponentielle.
L’avis de I’expert est modélisé en une loi normale avec une moyenne et écart-type connu.
Ces deux lois ne sont pas conjuguées, donc la méthode MCMC approprié. Dans ce cas,

I’algorithme de Metropolis-Hastings est utilisé. Les paramétres d’initialisation sont :

e Le lambda estimé du constructeur est de 5 10 défaillance/heure.

o L’écart-type estimé du constructeur est de 5 10 défaillance/heure.

e L’étendue d’une période (i) est de 10* heures.

e Le nombre d’échantillonnages de la méthode Metropolis-Hastings est fixé a 1000
itérations.

e [L’écart-type de la loi instrumentale utilisée par la méthode Metropolis-Hastings
est de 107,

3.4 Résultats obtenus et discussion
3.4.1 Effet de la variation des parametres (o, )

Nous avons appliqué différents scénarios des avis et des incertitudes qu’un expert
pourrait formuler. Nous obtenons 10 scénarios possibles (Tableau 3.2) en combinant les
avis d’expert (4 avis) et sa précision (3 niveaux) (Tableau 3.1), sachant que le scénario du
sans avis n’a pas de précision. Pour tous les scénarios, nous avons considéré une seule
période mais avec plusieurs valeurs des paramétres («, f) de la loi uniforme. Rappelons
que ces parametres définissent le pourcentage d’augmentation ou de diminution désiré
par I’expert. Les tableaux 3.3, 3.4 et 3.5 présentent les résultats pour les couples (a, f)

suivant une loi uniforme respectivement entre (0;0,1), (0,1;0,2) et (0,2;0,3).

Les tableaux 3.3, 3.4 et 3.5 montrent que si les valeurs de (o, ) changent, les 2 premiers
scénarios donnent des résultats identiques. Ces scénarios sont: I’expert sans avis et
I’expert prévoit une stabilité du taux de défaillance avec ses trois niveaux de précision.
Ceci est parfaitement normal, car 1’avis de I’expert est non information. C’est la
vraisemblance qui prend le dessus. Par contre en cas d’un avis d’augmentation ou de
diminution du taux de défaillance, ’augmentation ou la diminution du taux a posteriori
est proportionnelle aux valeurs de (o, p). Ainsi, si (o, f) augmentent, le taux de

défaillance a posteriori augmente et inversement. Ceci traduit le fait que 1’augmentation
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ou la diminution des valeurs de (a, B), dans ces scénarios, rend la distribution a priori
plus informative et devient plus influente que la vraisemblance. Ce qui explique la

croissance ou decroissance du taux de defaillance a posteriori.

Tableau 3-3 Résultats de simulation aprés 1000 itérations avec (a, ) provenant d’une loi uniforme (0 ; 0.1)

{alpha, beta) tirées d'une loi uniforme(0;0,1)
Année | Taux de panne Vrais | Avis Expert| Precision Expert | AugDim | Taux de panne | Ecart-type observation
0 0,0050 S0 50 S0 S0 50
1 0,00540 0 5 10 0,00510 0,000410 |sans avis
1 0,00540 2 0 0 0,00510 0,000389 |stable certain
1 0,00540 2 1 0 0,00510 0,000410 |stable moyen
1 0,00540 2 2 0 0,00511 0,000416 |stable incertain
1 0,00540 1 0 0 0,00517 0,000377 |augmente certain
1 0,00540 1 1 0 0,00517 0,000410 |augmente moyen
1 0,00540 1 2 0 0,00518 0,000426 |augmente incertain
1 0,00540 1 0 0 0,00501 0,000380 |diminue certain
1 0,00540 1 1 0 0,00502 0,000409 |diminue moyen
1 0,00540 1 2 0 0,00504 0,000418 |diminue incertain

Tableau 3-4 Résultats de simulation aprés 1000 itérations avec (a, ) provenant d’une loi uniforme (0.1 ; 0.2)

(alpha, beta) tirées d'une loi uniforme(0,1;0,2)
Année | Taux de panne Vrais | Avis Expert | Precision Expert [ AugDim | Taux de panne | Ecart-type Observation
0 0,0050 50 50 50 50 50
1 0,00540 0 E 10 0,00510 0,000410 |sans avis
1 0,00540 2 0 1 0,00508 0,000360 |stable certain
1 0,00540 2 1 1 0,00510 0,000410 |stable moyen
1 0,00540 2 2 1 0,00512 0,000452 |stable incertain
1 0,00540 1 1] 1 0,00552 0,000374 |augmente certain
1 0,00540 1 1 1 0,00551 0,000408 |augmente moyen
1 0,00540 1 2 1 0,00551 0,000463 |augmente incertain
1 0,00540 -1 0 1 0,00464 0,000355 |diminue certain
1 0,00540 -1 1 1 0,00471 0,000389 |diminue moyen
1 0,00540 -1 2 1 0,00478 0,000433 |diminue incertain

Tableau 3-5 Résultats de simulation apreés 1000 itérations avec (o, p) provenant d’une loi uniforme (0.2 ; 0.3)

(alpha, beta) tirées d"une loi uniforme(0,2;0,3)
Année | Taux de panne Vrais | Avis Expert| Precision Expert|AugDim | Taux de panne | Ecart-type Observation
0 0,0050 S0 50 S0 50 50
1 0,00540 0 ] 10 0,00310 0,000410 |sans avis
1 0,00540 2 0 2 0,00308 0,000327 |stable certain
1 0,00540 2 1 2 0,00510 0,000410 |stable moyen
1 0,00540 2 2 2 0,00514 0,000457 |stable incertain
1 0,00540 1 1] 2 0,00556 0,000351 |augmente certain
1 0,00540 1 1 2 0,00587 0,000433 |augmente moyen
1 0,00540 1 2 2 0,00578 0,000475 |augmente incertain
1 0,00540 -1 1] 2 0,00425 0,000303 [diminue certain
1 0,00540 -1 1 2 0,00440 0,000375 [diminue moyen
1 0,00540 -1 2 2 0,00459 0,000437 |diminue incertain
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En réesumé, le tableau 3-6 suivant présente le résultat des moyennes et des écart-types en
fonction de (a, p).

Tableau 3-3 Résumé des résultats du taux de défaillance a posteriori en fonction de (a, f§)

(e, B) (0;0.1) (0.1;0.2) {0.2;0.3)
Sans avis |Moyenne | 0,00510 0,00510 0,00510
écart-type| 0,00041 0,00041 0,00041
Stable Moyenne | 0,00510 0,00510 0,00511
écart-type| 0,00041 0,00041 0,00040
Augmente |Moyenne 0,00317 0,00531 0,00587
écart-type| 0,00040 0,00041 0,00042
Diminue |Moyenne | 0,00502 0,00471 0,00441
ecart-type| 0,00040 0,00039 0,00037

3.4.2 Effet de I’incertitude de I’expert

Dans cette expérimentation, nous simulons un cas d’augmentation du taux de défaillance
mais avec trois types d’incertitudes de 1’expert : certaine, moyenne et incertaine avec (a,
B) sont compris dans (0.2 ; 0.3). Les résultats de simulation sont présentés dans le tableau 3-

7 et les figures suivantes :

Tableau 3-7 Résultats de simulation avec un un avis d'augmentation et (a, f§) entre (0.2;0.3)

(alpha, beta) tirées d'une loi uniforme(0,2;0,3)

Année | Taux de panne Vrais | Avis Expert | Precision Expert| AugDim | Taux de panne | Ecart-type Observation
1 0,00540 1 0 2 0,00610 0,00036 |augmente certain
1 0,00540 1 1 2 0,00587 0,00043 |augmente moyen
1 0,00340 1 2 2 0,00578 0,00048 |augmente incertain

En examinant I’effet de la précision de 1I’expert, nous remarquons que taux de défaillance
a posteriori augmente (respectivement diminue) significativement si I’expert est certain
(respectivement incertain). De plus, I’écart-type du taux de défaillance a posteriori

augmente lorsque I’expert est incertain. Ce qui est tout a fait logique.

Dans les figures 3.4, 3.5 et 3.6, les graphes de haut en bas présentent respectivement, la
loi a posteriori avant échantillonnage, la distribution a priori de 1’expert, la densité
théorique du modele apres échantillonnage et la séquence d’échantillonnage obtenue par

MCMC pour les cas d’une augmentation certaine, moyenne et incertaine respectivement.

Nous remarquons a partir de ces figures, que la méthode de Metropolis-Hastings
converge rapidement vers une valeur du taux de défaillance a posteriori qui serait la

moyenne de toutes les valeurs du taux de défaillance a posteriori échantillonnées. Cette
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moyenne ainsi que 1’écart-type de 1’échantillonnage sont les parametres de la densité a

posteriori du taux de défaillance.

A premiere vue, il semble que les 3 figures se ressemblent mais en examinant de plus
prés, nous constatons que seulement les graphes en haut des trois figures sont identiques
(car nous avons la méme vraisemblance). Les autres graphes sont différents a cause du
changement de la précision de la loi a priori. En effet, la précision de ’expert affecte le
nombre des échantillons qui s’approchent de la moyenne a postériori. Une grande
précision permet de tirer des échantillons qui se rapprochent le plus de la valeur exacte du
taux de défaillance a postériori.

|
148

x 107 =

2 T T T
Vraisemblance +.
HT-_-__-._'_—_E/. \

0 L e ’ -

0 0002 0.004 i].006 0.008 001 0012 0.014 0016 0018 0.02

2000 T T T T T T T T '

A priori =—————gag . A i
> \

(]—.—_—L—.—w-d—bI_L_.—_A-d—_,_g__,_,_e_w_,_.__Jﬁ__,ﬁL___.ﬁ
0 0.002 0.004 ®.006 0008 0.01 0012 0.014 0.016 0.018 0.02

-E T T — T T T T T T T
A posteriori S I
g T —
“ 0 0002 0004 0006 0008 001 0012 0014 0016 0.018 002
0 I %

Echantillonnage
MCMC

— 1000F ~>

2000

0 0.002 0.004 1.00'5 0.008 0.01 0012 0014 0016 0018 0.02

A
L]

Figure 3.4 La vraisemblance, I’a priori et le résultat d’échantillonnage dans le cas d’une augmentation certaine
avec (a, B) provenant d’une loi uniforme (0.2 ; 0.3)
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avec (o, ) provenant d’une loi uniforme (0.1 ; 0.2)
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Figure 3.6 La vraisemblance, I’a priori et le résultat d’échantillonnage dans le cas d’une augmentation
incertaine avec (o, p) provenant d’une loi uniforme (0.1 ; 0.2)
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CHAPITRE 4 : STRATEGIE DE MAINTENANCE ET
OPTIMISATION

Dans le chapitre précédent, nous avons modélisé et estimé la moyenne du taux de
défaillance d’un équipement ainsi que sa variance en utilisant une inférence bayésienne
de type MCMC. Nous avons démontré que nous pouvons avoir plusieurs valeurs a
posteriori selon 1’avis de ’expert. Nous avons considéré un équipement dont le taux de
défaillance est constant par intervalle et nous avons modélisé 1’avis d’un expert a 1’aide
d’une loi normale. Dans ce chapitre, le taux défaillance actualisé sera intégré a une
stratégie de remplacement périodique de 1’équipement avec réparation minimale en cas
de défaillance. Nous étudierons cette stratégie sur un horizon fini et déterminerons la
stratégie optimale qui minimise le colit total moyen de maintenance dans le cas d’un avis
d’augmentation du taux de défaillance. Deux cas de figures sont examinés : le cas ou la
vraisemblance n’est pas actualisée d’une période d’estimation a I’autre, et le cas ou la
vraisemblance est actualisée avec le taux de défaillance a posteriori de la période

précédente.

4.1 Modélisation de la stratégie de maintenance

Pour un équipement assujetti a des défaillances aléatoires, le besoin des stratégies de
maintenance est crucial pour éviter les colts élevés des défaillances et des arréts de
I’équipement. La stratégie de maintenance qui nous intéresse est dite périodique avec
réparation minimale en cas de défaillance. Sous cette stratégie, les réparations remettent
I’équipement dans un état opérationnel mais sa performance sera la méme que celle a
I’état juste avant la défaillance. Cette stratégie est trés appliquée dans le cas de systemes

complexes ou multi-composants.

La stratégie de remplacement périodique avec réparation minimale en cas de défaillance
sera améliorée afin de pouvoir prendre en compte I’actualisation du taux de défaillance
sur plusieurs périodes. Cette stratégie sera évaluée et optimisée sur un horizon fini de 20
années. En d’autres termes, dans cette stratégie, nous allons considérer un taux de

défaillance discret sur plusieurs périodes.
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Ce taux de défaillance sera actualisé d’une période a une autre selon les données de
défaillance enregistrées et les avis des experts sur I’horizon de ’étude. C‘est-a-dire, dans
chaque période j nous estimons le taux de défaillance a postériori et son écart-type. Ce
taux sera considéré dans la fonction du co(t de la stratégie pour la période j en question.

4.1.1 Hypotheses et notations
Les hypothéses suivantes sont considerées dans le modele des colts de la stratégie :

e Les pannes sont détectées instantanement

e Les durées de maintenance corrective ou préventive sont considérées comme
négligeables

e Le taux de défaillance est actualisé selon une méthode bayésienne a chaque
période ce qui conduit a un taux de défaillance discret.

e Les codts liés aux opérations de maintenance sont connus et constants.
Notation

e n: Nombre total de périodes

T : Période de remplacement préventif de 1’équipement.

e (. : Cout de réparation corrective de I’équipement a la fin d’une période j.
e (;: Colt d’inspection de I’équipement a la fin de chaque période j.

e Cp : Colt de réparation préventive de I’équipement

e Cpry : Colt de réparation minimale du produit a chaque panne

e A, : Taux de défaillance a postériori

e (C(T): Colt total moyen par unité de temps
4.1.2 Formulation mathématique du colt

D’apres le travail de Barlow et Proschan (1996), le co(t total esperé durant un cycle de

longueur T s’écrit comme suit :

T
C, + CryE[N] _ Cp + Cry fy Ap(D)at

T,N) =
¢(T,N) T T

(4.1)

Ce modele suppose une fonction du taux de défaillance continue dans le temps. Le codt

des réparations minimales C.(T) a la fin de la période T est égal a :
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T
C.(T) = Cpuy. f 2, (0)dt (4.2)
0

Dans le cas de notre étude, les valeurs du taux de défaillance 2, (t) sont différentes d’une
période a I’autre. Il s’agit d’une fonction constante par période. Ainsi, en considérant que
le taux de défaillance est discret, le colt de réparation minimale a la période (k) s’écrit

comme suit ;

k
C.(k) = Cpy. A Zap(,)) (4.3)
j=1

0u 4 est I’intervalle de temps représentant 1’étendue d’une période et k = 1, ... N.

Prenant en compte le colt d’inspection C;, le colt total moyen par période se définit

comme suit ;

Cp + kCl + CRMA(Z}I'(=1 ’113(])))
kA

C(k) = (4.4)

Existence et unicité d’une politique optimale

Le probléme de vérification de I’existence d’une stratégie optimale revient & trouver un
k* qui minimise le codt total moyen. Pour ce faire, nous dérivons la fonction du codt total

C(k)par rapport a k:

ACrow  KAC; = k(Cp + kCi + CauA( Tf—1 2p()))

= 4.5
dk (kA)? (45)
Nous cherchons ensuite la valeur de k qui annule la dérivée :
k
j=1

k

Con ) c

k Z An) |=a—=2 47
}:
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Pour ce faire, nous avons une fonction dont la variable k ne peut pas étre isolée : k se
trouve comme un terme de la sommation du taux de defaillance. Dans ce cas, une
résolution numérique est privilégiée. Nous avons choisi de déterminer la solution

optimale de I’expression précédente par simulation.

4.2 Structure des données
Pour appliquer la méthode de simulation par MatLab, nous avons genéré des observations
de vraisemblance en utilisant le taux de défaillance estimé par le constructeur. Le tableau

4-1 présente la structure des données exploitées :

Tableau 4-1 Structure des données de durées de vie

Année (j)
Année 1 | Année 2 Année n
Nombre de
defaillances (i)
2 tyy tyy ton
3 t3y tyy tan
i til ti tin
i+1 ti+1)2

Il faut bien noter que la somme des durées de défaillance pour une période donnée ne
devrait pas dépasser une année, soit 10* heures. Ce qui veut dire que nous n’aurons pas
un nombre égal d’observations d’une année a I’autre. Pour les besoins de ce cas d’étude,

nous avons choisi les colts suivants (Tableau 4-2).

Tableau 4-2 Données des colits de maintenance

Crum G, C;

Colts (K$) | 0,5 40 0,1
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4.3 Résultats de la simulation

Nous avons programmé a 1’aide d’un programme MatLAb le calcul du cofit total moyen
de la stratégie de remplacement périodique avec réparation minimale. Ce programme
simule le co(it de maintenance sur une période de 20 périodes, chaque période dure 10*
heures. Deux scénarios sont simulés : le scénario ou la vraisemblance est non actualisée
et le scénario ou elle est actualisée. Dans le premier scénario, le taux de défaillance qui a
servi pour estimer les durées de vie est correspond a celui proposé par le constructeur. Il
ne change pas d’une période a 1’autre, donc la vraisemblance reste la méme. Dans le
second scénario, le taux de défaillance a posteriori est utilisé pour simuler les données de
vraisemblance pour la période subséquente. Pour comparer les stratégies optimales pour
ces deux scénarios, nous avons choisi de garder la méme séquence d’avis d’expert durant
les 20 périodes de simulation. Trois avis d’expert sont considérés. lls concernent tous
I’augmentation du taux de défaillance avec trois niveaux d’incertitude : certaine,

moyenne, incertaine).
4.3.1 Cas de la vraisemblance non actualisée

Dans les tableaux 4.3, 4.4 et 4.5, nous présentons le taux de vraisemblance non actualises,
le taux de défaillance a posteriori et son écart-type ainsi que les codts de maintenance
pour chaque période (année) sur un horizon de 20 périodes avec un avis d’expert relatant

une augmentation certaine , moyenne et incertaine respectivement.

D’aprés le tableau 4-3, nous remarquons que lorsque D’expert est sOr quant a
I’augmentation du taux défaillance, le taux de défaillance a posteriori croit
exponentiellement. L’écart-type diminue si la moyenne a priori ne s’¢loigne pas

beaucoup de la moyenne de vraisemblance. Sinon, 1’écart-type commence a croitre aussi.

D’autre part nous remarquons que le colit de maintenance par unité de temps est minimal
a la cinquiéme période. Pour déterminer exactement le T*, nous avons utilisé une
fonction polynomiale (polyfit) de degré 5 sous MatLab. Cette fonction nous donne un
coit minimum 3913 $ atteint aprés 4.97 10* heures de fonctionnement. Donc, les

remplacements préventifs se feront a chaque T* = 4.97 10* heures.
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Tableau 4-3 Résultats, cas d’augmentation sure du taux de défaillance, vraisemblance non actualisée avec 0.1 <

0.<0.2
Année | Taux de panne Vraisx104-3 | Avis Expert| Precision Expert| AugDim | Taux de pannex104-3 | Ecart-typex104-3|  cout Total(K$)
0 5,00 50 50 50 S50 S0 0,00
1 5,40 1 0 1 5,64 0,42 6,51
2 4,43 1 0 1 6,13 0,35 4,68
3 5,24 1 0 1 8,76 0,29 4,16
4 4,63 1 0 1 7,35 0,23 3,97
5 5,41 1 0 1 8,48 0,19 3,91
6 4,34 1 0 1 9,80 0,17 3,97
7 4,92 1 0 1 10,88 0,15 4,11
] 5,19 1 0 1 12,82 0,14 4,27
9 5,11 1 0 1 14,12 0,12 4,50
10 5,02 1 0 1 16,02 0,14 4,76
11 5,37 1 0 1 17,54 0,13 5,06
12 6,81 1 0 1 19,82 0,15 5,37
13 3,67 1 0 1 23,46 0,27 5,72
14 5,50 1 0 1 26,21 0,25 6,14
15 4,73 1 0 1 29,63 0,29 6,61
16 5,48 1 0 1 34,20 0,44 7,13
17 4,28 1 0 1 37,33 0,45 7,72
18 4,10 1 0 1 42,87 0,66 8,34
19 5,27 1 0 1 45,22 0,54 9,03
20 4,96 1 0 1 51,40 0,80 9,71

Les graphes de

la figure 4.1 présentent respectivement de haut vers le bas:

le

comportement du taux de défaillance; 1I’évolution de 1’écart-type pendant les 20 périodes

et I’évolution du cott de la maintenance. Nous remarquons sur le graphe des colts de la

figure 4.1, que ce dernier décroit rapidement pour atteindre le minimum détecté a la fin

de la quatriéeme période puis il présente une tendance d’augmentation rapide.
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Figure 4.1 Evolution du taux de défaillance, écart-type et coiit de maintenance, cas d’augmentation
sure avec 0.1 <a < 0.2
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Dans le tableau 4.3, la précision de I’expert est moyenne pour chaque année avec 0.1 <a <
0.2. De ce fait, nous constatons que le taux de défaillance a posteriori augmente
moyennement par rapport au premier cas. Cependant, la bande [min, max] qui désigne la
borne supérieure et inférieure du taux a posteriori est plus large justifiant ainsi la

I’incertitude moyenne de 1’expert.

En appliquant la méme fonction polyfit sous MatLab, le colt minimum de maintenance
est atteint a T* = 5.94 10* heures avec un co(t minimum donné parC(T*) = 3738 $.
Une fois le colt minimum atteint, I’augmentation du codt se fait lentement a cause de la
lente croissance du taux de défaillance a postériori. Dans ce cas de figure, il serait plus

économique d’effectuer le remplacement préventif 4 la fin de la 5°période.

Tableau 4-4 Résultats en cas d’augmentation moyenne de taux de défaillance, vraissmblance non actualisée,
avec 0.1 <a<0.2

Année | Taux de panne Vraisx104-3 | Avis Expert | Precision Expert | AugDim | Taux de pannex10/-3 | Ecart-typex104-3| cout Total{K$)
0 5,00 S0 S0 50 50 S0 0,00
1 5,40 1 1 1 5,62 0,47 6,51
2 4,43 1 1 1 5,89 0,45 4,67
3 5,24 1 1 1 6,33 0,42 4,12
4 4,63 1 1 1 6,54 0,41 3,89
5 5,41 1 1 1 7,20 0,42 3,76
6 4,34 1 1 1 7,64 0,43 3,74
7 4,92 1 1 1 7,85 0,41 3,75
8 5,19 1 1 1 8,58 0,43 3,77
9 5,11 1 1 1 8,74 0,42 3,83
10 5,02 1 1 1 9,13 0,43 3,89
11 5,37 1 1 1 9,25 0,44 3,95
12 6,81 1 1 1 9,86 0,44 4,01
13 3,67 1 1 1 10,46 0,45 4,08
14 5,50 1 1 1 10,83 0,46 4,16
15 4,73 1 1 1 11,17 0,46 4,24
16 5,48 1 1 1 11,94 0,48 4,33
17 4,28 1 1 1 12,00 0,49 4,43
18 4,10 1 1 1 12,56 0,46 4,52
19 5,27 1 1 1 12,77 0,46 4,61
20 4,96 1 1 1 13,77 0,46 4,70

Dans le graphe de la figure 4.2, nous remarquons que le taux de défaillance croit d’une
facon linéaire passant de 0,0056 jusqu’a 0,0137défaillance/heure avec une précision
moyenne. Par contre, I’évolution de 1’écart-type n’est pas affectée par la précision de
I’expert sauf lorsque la moyenne a priori s’¢loigne considérablement de la moyenne de la

vraisemblance. L’écart-type devient plus grand.

Le graphe représentant 1’évolution du colt de maintenance (courbe en bas de la figure

4.2) a tendance a s’aplatir apres atteinte du colt minimum a la fin de la période 5. Ceci
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indique qu’en considérant une incertitude moyenne de 1’expert, le colt de maintenance,

augmentent lentement.

Ewalution du taus de panne
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Figure 4.2 Evolution du taux de défaillance, écart-type et coiit de maintenance, cas d’augmentation moyenne
avec 0.1 <a < 0.2

Dans le cas ou I’expert est incertain quant a I’augmentation du taux de défaillance, nous
constatons que le taux de défaillance a posteriori est fluctuant. Ce qui est expliqué par
I’effet dominant de la vraisemblance sur la densité a postériori, alors que I’information a
priori a un effet mineur. De plus, vu I’incertitude de I’expert la bande [min, max] qui
désigne les bornes supérieure et inférieur du taux de défaillance est trés large (Tableau 4-
5).

Le minimum du co(t de maintenance est atteint & T* = 10.41 10* heures, avec C(T*) =
3504 $ . Il serait intéressant économiquement de considérer une périodicité de
remplacement préventif optimale a chaque T*. Cependant, nous encourons le risque de

se baser sur un avis d’expert incertain qui peut s’avérer loin de la vraisemblance (figure
4.3).
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Tableau 4-5 Résultats, cas d’augmentation incertaine de taux de défaillance, vraisemblance non actualisée, avec

0.1<0<0.2
Année | Taux de panne Vraisx104-3 | Avis Expert| Precision Expert| AugDim | Taux de pannex104-3 | Ecart-typex104-3|  cout Total(K$)
0 5,00 50 50 50 S50 S0 0,00
1 5,40 1 2 1 5,61 0,48 6,51
2 4,43 1 2 1 5,70 0,47 4,67
3 5,24 1 2 1 6,07 0,48 4,09
4 4,63 1 2 1 6,03 0,47 3,83
5 5,41 1 2 1 6,51 0,49 3,67
6 4,34 1 2 1 6,50 0,47 3,60
7 4,92 1 2 1 6,56 0,48 3,55
8 5,19 1 2 1 6,91 0,48 3,52
9 5,11 1 2 1 6,86 0,47 3,51
10 5,02 1 2 1 7,01 0,47 3,51
11 5,37 1 2 1 6,97 0,47 3,51
12 6,81 1 2 1 7,56 0,49 3,52
13 3,67 1 2 1 7,28 0,56 3,53
14 5,50 1 2 1 7,19 0,55 3,54
15 4,73 1 2 1 6,87 0,53 3,54
16 5,48 1 2 1 7,13 0,51 3,53
17 4,28 1 2 1 6,74 0,55 3,54
18 4,10 1 2 1 6,44 0,56 3,53
19 5,27 1 2 1 6,36 0,52 3,51
20 4,96 1 2 1 6,66 0,47 3,52
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Figure 4.3 Evolution du taux de défaillance, écart-type et coiit de maintenance, cas d’augmentation incertaine
avec 0.1 <o < 0.2



43

Le tableau 4-6 résume les différentes périodicités optimales ainsi que les colts de

maintenance a cette périodicité en fonction de 1’incertitude de 1’expert:

Tableau 4-6 Récapitulatif des stratégies optimales en fonction de I’incertitude de I’expert

Précision Expert T*(Heures) x 10* | C(T*) ($)
Certaine 497 3913
Moyenne 5.94 3738
Incertaine 10.41 3504

Dans la figure 4.4, les graphiques servent a comparer les trois cas d’augmentation du taux

de défaillance selon les différentes incertitudes de I’expert. Nous remarquons bien que la

croissance du taux de défaillance devient plus significative avec 1’augmentation de

I’incertitude de I’expert.
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Figure 4.4 Comparaison du comportement du taux de défaillance suivant trois avis d’expert différents

La figure 4.5 montre que le colt de maintenance est en accord avec 1’évolution du taux

de défaillance. Cependant, le minimum des codts est atteint plus rapidement lorsque

I’expert est certain. La périodicité du remplacement préventif s’¢loigne lorsque 1I’expert

est incertain. Nous pouvons conclure que la périodicité optimale de remplacement

diminue avec I’augmentation de la précision de I’expert et inversement.
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Figure 4.5 Comparaison des coiits de maintenance pour trois avis d’experts

4.3.2 Cas de la vraisemblance actualisée

Dans ce cas, le taux de défaillance a posteriori sert a actualiser la vraisemblance (les
observations des durées de vie) dans la période suivante. Nous obtenons les résultats de
simulation dans le cas ou I’expert est certain d’une augmentation du taux de défaillance a
chaque période avec un pourcentage compris 0 < o < 0.1. Ensuite, nous comparons ce cas

avec le cas de la vraisemblance constante (sous-section 4.3.2).

Le tableau 4.7, indique que le colt de maintenance minimum si nous nous basons sur les
données de vraisemblance du taux estimé par le constructeur, se situe entre les périodes 9
et 10. En approximant les colts de maintenance par la fonction polyfit de MatLab, nous
obtenons une périodicité optimale a T* = 9.75 10* heures, avec C(T*) = 3269 $. Si

I’équipement tombe en défaillance avant T*, il sera réparé minimalement.

Dans le cas d’une actualisation de la vraisemblance, le taux de défaillance a une
croissance plus rapide par rapport au premier cas. Parce que le nombre de défaillances
augmente a chaque période. Cependant, 1’écart-type n’est pas tres affecté, ce qui est
justifié compte tenu de 1’avis certain de I’expert a propos de I’augmentation dans les deux
cas. Le co(t de maintenance par unité de temps est minimum a T* = 5.80 10* heures,
avec C(T*) = 3557 $. Ce colt se situe entre les périodes 5 et 6. Si I’équipement tombe

en défaillance avant T*, il sera réparé minimalement.
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Tableau 4-7 Résultats de simulation en cas d’augmentation sure de taux de défaillance, vraisemblance non
actualisée, avec 0 < 0. < 0.1

Année | Taux de panne Vraisx10A-3 | Avis Expert | Precision Expert| AugDim | Taux de pannex10A-3 | Ecart-typex107-3| cout Total(K$)
0 5,00 SO SO SO S0 S0 0,00
1 5,40 1 0 0 5,29 0,41 6,51
2 4,43 1 0 0 5,30 0,36 4,59
3 5,24 1 0 0 5,43 0,33 3,97
] 4,63 1 0 0 5,39 0,28 3,66
5 5,41 1 0 0 5,73 0,25 3,47
6 4,34 1 0 0 5,98 0,21 3,37
7 4,92 1 0 0 6,02 0,13 3,31
8 5,19 1 0 0 6,47 0,17 3,28
9 5,11 1 0 0 6,46 0,16 3,27
10 5,02 1 0 ] 6,65 0,14 3,27
11 5,37 1 0 0 6,61 0,11 3,28
12 6,81 1 0 0 6,82 0,11 3,28
13 3,67 1 0 0 7,40 0,10 3,29
14 5,50 1 0 0 7,60 0,10 3,32
15 4,73 1 0 0 7,91 0,09 3,35
16 5,43 1 0 0 8,45 0,09 3,39
17 4,28 1 0 0 8,65 0,08 3,44
18 4,10 1 0 0 9,35 0,09 3,49
19 5,27 1 0 0 9,47 0,09 3,55
20 4,96 1 0 0 10,24 0,09 3,61

Tableau 4-8 Résultats de simulation en cas d’augmentation sure de taux de défaillance, vraisemblance
actualisée, avec 0 < a < 0.1

Année | Taux de panne Vraisx10n-3 | Avis Expert | Precision Expert| AugDim | Taux de pannex10A-3 | Ecart-typex10~-3| cout Total (K$)
0 5,00 SO SO SO S0 S0 0
1 5,40 1 0 0 5,29 0,41 6,51
2 6,13 1 0 0 5,66 0,38 4,59
3 2,96 1 0 0 3,87 0,34 4,01
4 6,71 1 0 0 6,07 0,30 3,75
5 7,49 1 0 0 6,61 0,26 3,61
6 7,66 1 0 0 7,12 0,25 3,56
7 8,76 1 0 0 7,44 0,24 3,60
8 9,88 1 0 0 8,06 0,18 3,58
9 9,95 1 0 0 8,18 0,16 3,63
10 9,20 1 0 0 8,51 0,16 3,68
11 10,06 1 0 0 8,57 0,14 3,73
12 9,63 1 0 0 8,87 0,12 3,78
13 9,39 1 0 0 9,67 0,11 3,83
14 11,13 1 0 0 10,00 0,11 3,90
15 5,77 1 0 0 10,51 0,09 4,00
16 10,53 1 0 0 11,18 0,11 4,06
17 11,30 1 0 0 11,50 0,12 4,14
18 11,23 1 0 0 12,49 0,11 4,23
19 11,63 1 0 0 12,66 0,11 4,34
20 11,60 1 0 0 13,72 0,11 4,44

Nous résumons les résultats des co(its de maintenance dans le tableau 4-9 suivant :

Tableau 4-9 Récapitulatif des stratégies optimales en fonction ’actualisation de la vraisemblance

T* (Heures) c(T) (%)
Vraisemblance non actualisée 9.75 x 10*% 3269
Vraisemblance actualisée 5.80 x 10* 3557
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Les Figures 4.6 et 4.7 comparent respectivement, 1’évolution du taux de défaillance ainsi
que I’évolution du colt de maintenance, en supposant que les observations de
vraisemblance de 1’équipement seront actualisées ou non actualisées dans chaque
période. Le colt minimum de maintenance C(T*), est atteint plus rapidement lorsque la
vraisemblance est actualisée par le taux de défaillance a posteriori de la période

précédente, la croissance du cot est plus significative (Figure 4-7).
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Figure 4.6 Evolution du taux de défaillance avec actualisation ou non de la vraisemblance
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Figure 4.7 Evolution du coiit de maintenance dans le cas d’actualisation ou non de la vraisemblance
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CHAPITRE 5 : CONCLUSION GENERALE

L'utilisation des méthodes bayésiennes présente beaucoup d’avantages. En effet, ces
méthodes utilisent des connaissances antérieures, des avis d’experts ou des intuitions,
exprimées sous forme de distribution de probabilité, afin de générer une nouvelle
information. Les méthodes MCMC ont permis de simplifier les calculs lorsque la loi a

priori est non conjuguée.

Dans le cadre de ce mémoire, nous avons proposé une stratégie de réparation minimale
pour un équipement. Cette stratégie integre un taux de defaillance actualisé par une
inférence bayésienne a chaque période. La complexité du modéle bayésien déployé nous

a amené a appliquer une méthode d’échantillonnage de type MCMC.
Ce projet de recherche, nous a permis de bien appréhender les points suivants :

e Utiliser les statistiques bayésiennes dans le domaine de la fiabilité.

e Avoir recours aux méthodes MCMC pour simuler des modeles statistiques
complexes.

e Modéliser une stratégie de maintenance initialement dédiée pour des taux de
défaillance continus et non actualisés

e Utiliser la simulation pour optimiser le colt total moyen d’une stratégie de
réparation minimal.

e Analyser les résultats de différents scénarios.

Dans ce travail, nous avons pu intégrer le taux de défaillance actualisé pour proposer une
stratégie de remplacement périodique avec réparation minimale en cas de défaillance et

I’optimiser dans le cas du taux de défaillance croissant.

Un programme écrit avec le code Matlab a été élaboré pour combiner et actualiser le taux
de défaillance d’une période a I’autre. Le programme utilise ce taux actualisé pour

déterminer la stratégie de remplacement optimale.

Comme développement et complément de ce travail de recherche, nous proposons les

perspectives de recherche suivantes :
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Le programme développé utilise un seul expert. C'est-a-dire les avis d’un seul
expert sont modelisés selon une seule distribution. Si plusieurs experts sont
disponibles, il serait intéressant de modéliser leurs avis avec plusieurs lois a priori
et déterminer une seule distribution a posteriori pour une seule vraisemblance.

L’étude de la sensibilit¢ de 1’étude peut étre effectuée en changeant les

parameétres de modélisation et de simulation.
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ANNEXES

ANNEXE A: PROGRAMME MATLAB

clear
clc

filename = 'TEST.xlsx';
Lambda estimee
Error Lambda estimee
Cout reparation Annee
Cout Reparation cumulee
cout maintenance

lambdaMin (1)= 0.0045;
Lambda estimee(l) = 0.005;
lambdaMax (1) = 0.0055;

Error Lambda estimee (1)

o

cout maintenance (1)
Cout reparation Annee (

0
1

Temps estime = 10000;
Couts = xlsread(filename,
Crm = Couts(1l);

[

Crc

o

Couts (2) ;

Ci = Couts(3);

% Cout d'inspection

Nb pannes estime
Nb pannes estime min
Temps estime;
Nb pannes estime max
Temps estime;

o)

) =

2,

zeros(1l,1);
zeros(1l,1);
zeros (1,21);

zeros (1,21);

zeros(1,21);

0.0005;

¢ Ecart-type de lambda estimée

0;

'Bl6:D16") ;

s Cout de la reparation minimale

s Cout du remplacement Préventif

Lambda estimee * Temps estime;
(Lambda estimee * (1 - Error Lambda estimee)) *

(Lambda estimee * (1 + Error Lambda estimee))*

¢ Lecture des données a partir du fichier données Excel

Anneel = xlsread(filename, 1, 'G2:G500');Annee?2 = xlsread(filename, 1,
'"H2:H500") ;Annee3 = xlsread(filename, 1, 'I2:1500");

Anneed = xlsread(filename, 1, 'J2:J500');Annee5 = xlsread(filename, 1,
'K2:K500") ;Annee6 = xlsread(filename, 1, 'L2:L500");

Annee’7 = xlsread(filename, 1, 'M2:M500'");Annee8 = xlsread(filename, 1,
'N2:N500"') ;Annee9 = xlsread(filename, 1, '02:0500");

Anneel(0 = xlsread(filename, 1, 'P2:P500');Anneell = xlsread(filename,
1, '02:0500");Anneel?2 = xlsread(filename, 1, 'R2:R500");

Anneel3 = xlsread(filename, 1, 'S2:5500');Anneeld4 = xlsread(filename,
1, 'T2:7500"'");Anneel5 = xlsread(filename, 1, 'U2:0U500");

Anneel6 = xlsread(filename, 1, 'V2:V500');Anneel7 = xlsread(filename,
1, '"W2:W500");Anneel8 = xlsread(filename, 1, 'X2:X500");

Anneel?9
1,

'22:2500") ;

xlsread (filename,

1, 'Y2:Y500");Annee20

xlsread (filename,

53



54

% Calcul du nombre de pannes par année, la somme, la somme carrée et la
somme cumulée des durées de pannes

AN = [size(Anneel,l) size(Annee2,1l) size(Annee3,1l) size (Anneed,l)
size (Anneeb5, 1) size (Annee6,1l) size(Annee7,1) size (Annee8,1)

size (Annee9,1) size(AnneelO,1l) size(Anneell,l) size(Anneel2,1)
size (Anneel3, 1) size(Anneeld4,l) size (Anneel5,1) size (Anneel6,1)
size (Anneel7,1) size(Anneel8,1) size(Anneel9,1) size (Annee20,1)];
Somme = [sum(Anneel) sum(Annee2) sum(Annee3l) sum(Anneed) sum(Anneeb)
sum (Annee6) sum(Annee7) sum(Annee8) sum(Annee9) sum(Anneel)

sum (Anneell) sum(Anneel2) sum(Anneel3) sum(Anneeld) sum(Anneelb)
sum (Anneel6) sum(Anneel”) sum(Anneel8) sum(Anneel9) sum(Annee20)];
Somme Carree = [sum(Anneel.”2) sum(Annee2.”2) sum(Annee3."2)

sum (Annee4.”2) sum(Annee5.”2) sum(Annee6.”2) sum(Annee7."2)

sum (Annee8.”2) sum(Annee9.”2) sum(Anneel0.”2) sum(Anneell.”2)

sum (Anneel2.”2) sum(Anneel3.”2) sum(Anneeld.”2) sum(Anneel5."2)
sum (Anneel6.”2) sum(Anneel7.”2) sum(Anneel8.”2) sum(Anneel9."2)
sum (Annee20.72)1;

Somme cumulee = cumsum(Somme) ;

% Lecture des avis de 1l'expert de chagque année
AV = xlsread(filename, 2, 'B2:0U2"');

NA = 20;

J =1

for j = 1:NA

Avis = AV (J)

% Avis,Variable représentant l'avis de l'expert: Pas d'avis (0)
Stabilité (2) Diminution(-1) Augmentation (1)

if Avis ~= 0
% Lacture de la précision de l'expert pour chaque année
PR = xlsread(filename, 2, 'B3:U3");

% Precision, Variable définissant la precision de l'expert: Certain (0)
Moyennement certain(l) Pas trés certain (2)

Precision = PR (7J)

% AugDim,Variable définissant le taux d'augmentation ou de diminution
du taux de panne

Aug Dim = xlsread(filename, 2, 'B4:U4");
AugDim = Aug Dim(3J)

if AugDim ==

a = xlsread(filename, 2, 'A10'");
b = xlsread(filename, 2, 'B10');



elseif AugDim ==

a xlsread(filename, 2, 'Al1l'");
b = xlsread(filename, 2, 'B1l1l');

else

a = xlsread(filename, 2, 'Al2'");
b = xlsread(filename, 2, 'B1l2');

AL = random('Uniform',a,b, [1,20]);

BE = random('Uniform',a,b, [1,20]);
Alpha = AL(3)

Beta = BE(J)

end

Nb pannes = AN(J)
t = Somme (7)
s = Somme Carree(Jj)

Moy Vrais = Nb_pannes/t

% Avis de l'expert

if Avis ==
% Expert n'a pas d'avis
muu = Lambda estimee (J)
sigmaa = Error Lambda estimee (Jj)
Precision = 5;
AugDim = 10;
elseif Avis == -1

o)

% Expert prévoit une diminution
if Precision ==

muu = (l-Alpha)*Lambda estimee (J)
sigmaa = (l-Beta)*Error Lambda estimee (J)
elseif Precision ==
muu = (l-Alpha) *Lambda estimee (J)
sigmaa = Error Lambda estimee (Jj)
else
muu = (l-Alpha)*Lambda estimee (J)
sigmaa = (l+Beta)*Error Lambda estimee (J)
end
end

elseif Avis ==
Expert prévoit une augmentation
if Precision ==

muu = (l+Alpha)*Lambda estimee (J)
sigmaa = (l-Beta) *Error Lambda estimee (J)
elseif Precision ==
muu = (l+Alpha) *Lambda estimee (J)
sigmaa = Error Lambda_ estimee (Jj)
else
muu = (l+Alpha) *Lambda estimee (J)

sigmaa = (l+Beta)*Error Lambda estimee (J)
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end
end
elseif Avis == %
Expert prévoit une stabilisation
if Precision ==
muu = Lambda_ estimee (Jj)
sigmaa = (l-Beta) *Error Lambda estimee (J)
elseif Precision ==
muu = Lambda estimee (Jj)
sigmaa = Error Lambda_ estimee (Jj)
else
muu = Lambda estimee (Jj)
sigmaa = (l+Beta)*Error Lambda estimee (J)
end
end
end
end
end
end

o)

% Metropolis-Hastings

A = '"((lambda.”m)) * (exp (-sum (t) *lambda)) * (1/ (sigmaa*sqrt (2*pi) ) * (exp (-
((lambda-muu) ."2) / (2* (sigmaa.”2))))) ';
posteriori = inline (A, 'lambda’', 'm','t', 'muu', 'sigmaa');

[

% Evaluation avec la distribution normale.

B = '"(1/(sigma*sqgrt (2*pi))) *exp (-0.5* ((lambda-mu) /sigma) .”2)"';

norm = inline (B, 'lambda', 'mu', 'sigma');

o\°

Génération des observations.

= AN(J);
Nombre d'observations m

oo 3

o\°

Génération de N échantillonnage.

o\°

Les parametres

N = 2000;

% Nombre d'itération N
sigma = 0.001;

lambda = zeros(1,N);

o)

% génération de la valeur initiale de lambda

lambdamin = 0;
lambdamax = 0.02;
seed = 1; rand('state' , seed); randn('state' , seed);

lambda (1) = Lambda estimee(J);
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%% Début de 1'échantillonnage
i=1;
while i < N

i=1+ 1;

% Génération un point a partir de la distribution proposée
theta = lambda(i-1) + sigma*randn(l);

% Calcul du ratio d'acceptation

alpha = min([1l, (posteriori (theta,m,t,muu, sigmaa) *norm(lambda (i-
1), theta, sigma))/ ((posteriori (lambda (i-
1),m,t,muu, sigmaa) *norm(theta, lambda (i-1),sigma)))]);

% Génération d'une loi uniforme pour la comparaison
u = rand;
if u <= alpha

lambda (i) = theta;

else
lambda (1)

lambda (i-1) ;
end

lambda Min = min (lambda) ;

Moy lambda mean (lambda) ;
lambda Max = max (lambda) ;

Et lambda = std(lambda);

end

Cout Reparation = (Lambda estimee (j) *Somme (j)) *Crm;

Cout reparation Annee(j) = Cout Reparation;

Cout Reparation cumulee = cumsum(Cout reparation Annee);
Cout total Moyen = (Crc +

Cout Reparation cumulee (j)+(j*Ci))/Somme cumulee (j)

%+ (Lambda estimee (J) * (Somme cumulee (NA)-Somme cumulee (j)) *Crm))
Resultats = {'Année', 'Taux de panne Vraisx1l07-3', 'Avis
Expert', 'Precision Expert', 'AugDim', 'Taux de pannex1l0”7-3','Ecart-
typex107-3", 'cout Total (KS)'; J Moy Vrais*1073 Avis Precision AugDim
Moy lambda*1073 Et lambda*1073 Cout total Moyen}
Matt (j,:) = [J Moy Vrais*10"-3 Avis Precision AugDim Moy lambda*10"-
3 Et lambda*10"7-3 Cout total Moyen];

%% Affichage les resultats



figure(j); clf;

subplot (13,1,7:8);

nbins = 100;

lambdabins = linspace (lambdamin, lambdamax, nbins) ;
counts = hist (lambda, lambdabins);

bar (lambdabins, counts/sum(counts), 'k'");
xlim([lambdamin lambdamax]) ;

xlabel ("\lambda'); ylabel ('a posteriori');

[

% Affichage de 1'a posteriori théorique

D = ((lambdabins.”m)) .* (exp (-

sum (t) . *lambdabins)) .* (1/ (sigmaa*sqgrt (2*pi)) .* (exp (- ( (lambdabins-
muu) ."2)/(2* (sigmaa.”2)))));

hold on;

plot (lambdabins, D/sum(D), 'r--', 'lineWidth', 3);

set(gca, 'vtick', [1);

[

% Affichage de la vraisemblance

VR = ((lambdabins.”m)) .* (exp(-sum(t) .*lambdabins)) ;
subplot (13,1,1:2)

plot (lambdabins, VR, '.-.', 'lineWidth', 3)

% Affichage de la loi Normale ( A priori)

R = (1/(sigmaa*sqgrt (2*pi)) .* (exp (- ((lambdabins-
muu) ."2)/(2* (sigmaa.”2)))));

subplot (13,1,4:5);
plot (lambdabins, R, 'g--', 'lineWidth', 3)

% Affichage de 1'historique d'échantillonnage

subplot (13,1,10:13)
stairs(lambda, 1:N, 'k-');
ylabel ('i'); xlabel('\lambda');
set(gca, 'Ydir' , 'reverse');
xlim([lambdamin lambdamax]) ;

file = 'C:\Users\Mehdi\Desktop\Resultats';

x1lswrite(file, {'Année', 'Taux de panne Vraisx107-3', 'Avis

Expert', 'Precision Expert',6 "AugDim', 'Taux de pannex1l0”7-3','Ecart-
typex107"-3', 'cout Total(K$)'}, 1,'Al:H1');

xlswrite(file, {0 Lambda estimee(1)*107-3 'SO''SO''SO''s0O''s0O"' 0},
'A2:H2"'");

xlswrite(file,Matt, 1, 'A3:H22');

%$Pause = inputdlg('Entrer pour continuer:', '1', 1);
j=3+ 1

lambdaMin (j) = lambda Min

Lambda estimee(j) = Moy lambda

lambdaMax (j) = lambda Max

Error Lambda estimee(j) = Et lambda

cout maintenance(j) = Cout total Moyen

1,
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end

[

de maintenance

figure (30);

S(1) = subplot(3,1,1)
x = linspace(0,NA,21)
plot (x,Lambda estimee
hold on

plot (x, lambdaMin, 'k--")

hold on

plot(x, lambdaMax, 'r--")
S(2) = subplot(3,1,2);

plot (x,Error Lambda estimee)
S(3)= subplot(3,1,3);

plot (x,cout maintenance)
ylabel ('KS")

’

)

% Tracer l'évolution du taux de panne

et de son écart-type et le cout

title(S(1), 'Evolution du taux de panne')
title(S(2), 'Evolution de 1''ecart type')
title(S(3), 'Evolution du cout de maintenance moyen')
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