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RÉSUMÉ 

 

L’estimation des paramètres de fiabilité d’un équipement est toujours conditionnée par la 

disponibilité des données à savoir les durées de vie et leurs natures complètes ou 

censurées ce qui rend cette tâche difficile. Les méthodes d’estimation de ces paramètres 

peuvent varier selon la situation. 

Cette estimation est une étape cruciale pour un fiabiliste pour être en mesure de proposer 

des stratégies de maintenance préventive de l’équipement et ainsi maximiser sa 

disponibilité et minimiser ses coûts de maintenance 

Notre mémoire focalise sur deux principaux objectifs:  

1. Établir un modèle d’actualisation des paramètres du taux de défaillance d’un 

équipement en utilisant l’inférence bayésienne et les méthodes de simulation 

Chaines de Markov Monte Carlo (MCMC). 

2. Proposer une stratégie de remplacement périodique avec réparation minimale 

(Remplacement du composant défaillant par un composant aussi mauvais que 

vieux) en cas de défaillance tenant compte du modèle d’actualisation bayésienne 

du taux de défaillance. 

La méthodologie suivie pour atteindre le premier objectif consiste à modéliser le taux de 

défaillance d’un équipement par une loi exponentielle. Ce taux de défaillance est 

actualisé par la prise en compte d’une distribution a priori représentant l’avis d’expert. 

Cette distribution est caractérisée par une loi normale. Comme cette loi est non 

conjuguée, la simulation MCMC est utilisée pour déterminer l’a posteriori du taux de 

défaillance. Cet a posteriori représente la valeur actualisée du taux de défaillance.  

Pour le second objectif, une modélisation analytique du coût total moyen de la stratégie 

de remplacement périodique avec réparation minimale en cas de défaillance est proposée. 

Cette modélisation prend en compte le taux de défaillance actualisée précédemment. 

Comme le modèle ne s’apprête pas à une dérivation analytique, une approche par 

simulation est considérée pour déterminer la stratégie optimale.  

Un cas d’étude est utilisé tout au long du mémoire pour valider les modèles proposés. 
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ABSTRACT 

 

The estimation of equipment reliability Parameters is always conditioned by the 

availability of its life-time data and the nature of this data such as complete or censored 

making this task delicate. The methods of estimation of these parameters may vary by 

situation. 

This estimation is a crucial step for a reliability engineer to propose strategies for 

preventive maintenance of equipment, maximizing availability and minimizing the costs 

of maintenance 

Our work focuses on two main objectives: 

1. Establish a model that updates the equipment failure rate parameters by using 

Bayesian inference and simulation methods of Monte Carlo Markov Chains 

(MCMC). 

2. Develop a minimal repair strategy, taking into account the Bayesian estimation 

model of updating the failure rate. 

The methodology used to achieve the first objective is to model the failure rate of 

equipment by an exponential law. This failure rate is updated by taking into account a 

representative expert advice prior. The prior is characterized by a normal distribution. As 

this law is non-conjugate, the MCMC simulation is used to determine the posterior failure 

rate. This posterior is the current value of the failure rate. 

For the second objective, an analytical model of the average total cost for the periodic 

replacement with minimal repair strategy in case of failure is proposed. This model takes 

into account the failure rate previously updated. As the model is not about to analytical 

derivation, a simulation approach is considered to determine the optimal strategy. 

A case study is used throughout the store to validate the proposed models. 
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CHAPITRE 1 : INTRODUCTION GÉNÉRALE 

1.1 Contexte 

Dans toute analyse probabiliste de fiabilité, les durées de vie aléatoires d’un équipement 

ou d’un système industriel, sont souvent modélisées par des lois de probabilité 

paramétriques telle la loi exponentielle, normale ou de Weibull. Cependant, l’estimation 

des paramètres de ces lois demeure une tâche relativement délicate du fait de la 

disponibilité des données et de leurs natures c’est-à-dire des durées de vie complètes ou 

censurées. 

En effet, plusieurs approches classiques sont utilisées pour estimer les paramètres d’une 

distribution de probabilité telle que par exemple, l’estimation du taux de défaillance 

associé à la loi exponentielle, ainsi que son intervalle de confiance. Parmi les méthodes 

les plus populaires, nous citons l’estimation par les méthodes de moindres carrés et du 

maximum de vraisemblance. 

Par ailleurs, afin de maximiser la disponibilité d’un équipement ou minimiser ses coûts 

de maintenance, un ingénieur fiabiliste ou de maintenance étudie des stratégies de 

maintenance préventive qui cherchent à ordonnancer les remplacements préventifs d’un 

équipement de façon à optimiser la disponibilité ou minimiser les coûts de maintenance 

sur un horizon infini. Ces modèles permettent de déterminer la périodicité ou l’intervalle 

de remplacements préventifs de manière à satisfaire le critère de disponibilité ou de coût. 

Bien que les modèles minimisant les coûts s’apprêtent plus ou moins à l’optimisation 

analytique, les modèles de maximisation de la disponibilité des équipements sont plus 

difficiles à résoudre analytiquement du fait qu’ils font intervenir des formes plus 

complexes de produits de convolution. Toutes ces stratégies sont basées sur la théorie de 

renouvellement qui suppose que les remplacements préventifs et correctifs remettent 

l’équipement aussi bon que neuf. Une hypothèse plus ou moins justifiée en pratique. 

Cependant, une hypothèse de réparation minimale, permettant de remettre l’équipement 

dans un état « aussi bon que mauvais » est plus réaliste. Ce type de stratégie permet 

d’effectuer des interventions correctives minimales après une défaillance et effectuer un 
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remplacement préventif à une périodicité donnée. Ce type de stratégie donne des 

stratégies optimales si le taux de défaillance est strictement croissant. 

D’un point de vue pratique, pour établir de tels modèles, le fiabiliste se base sur plusieurs 

informations issues des inspections périodiques de l’équipement et données de 

dégradation ou de défaillance. Les informations concernent l’état de dégradation de 

l’équipement, ces informations sont collectées pendant les inspections préventives ou 

après diagnostic de défaillances. Ces informations sont consignées dans les dossiers 

machines. Elles sont généralement non exploitées à leurs justes valeurs. Les données de 

dégradation regroupent les relevés de fatigue, d’usure, de corrosion, collectées 

habituellement lorsque l’équipement est soumis à une stratégie de maintenance 

conditionnelle. Ces informations peuvent être rares et ne sont disponibles que pour les 

équipements dont la défaillance cause des accidents graves ou des pertes énormes en 

termes de coût ou de disponibilité. Les autres données dites de défaillance concernent les 

durées de vie complètes ou censurées. Les données de vie complètes caractérisent la fin 

de vie d’un équipement. L’équipement est retiré de la production et sera soumis à une 

rénovation majeure. Les données de vie censurées caractérisent les durées de 

fonctionnement sans panne. Bien entendu, toutes les informations et les données 

disponibles peuvent être entachées d’incertitudes ou d’erreurs. 

Lorsque les données de défaillance ne sont pas disponibles en quantité suffisante, cas 

d’un équipement neuf, l’estimation du taux de défaillance à l’aide de la méthode du 

maximum de vraisemblance est biaisée et ne peut être considérer pour prédire son 

évolution à court terme. Pour ce faire, le taux de défaillance estimé ainsi que son écart-

type, ceux généralement fournis par le constructeur de l’équipement, peuvent être utilisés 

pour prédire les défaillances d’un équipement au cours d’une période donnée. Le calcul 

du taux de défaillance estimé se base sur des essais limités de laboratoire ou du retour 

d’expériences. Ce taux de défaillance estimé est souvent considéré comme constant au 

cours de la durée de vie utile de l’équipement selon l’hypothèse du constructeur. 

En pratique, comme l’usage d’un équipement pourrait être différent de celui prévu par le 

constructeur, ou que l’équipement a été modifié pour incorporer d’autres fonctions non 

prévu par le constructeur, ou bien l’efficacité des interventions de maintenance, toutes ces 
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raisons et bien d’autres pourraient avoir un effet sur le comportement du taux de 

défaillance au cours du temps. Ainsi, il peut rester constant, augmenter ou diminuer au 

cours du temps. A ce sujet, les remarques suivantes peuvent être soulignées : 

- Au fur et à mesure que les défaillances s’accumulent, la dégradation de l’équipement 

augmente au cours du temps même si les interventions de maintenance sont 

entreprises sur l’équipement. D’ailleurs, ces interventions peuvent être imparfaites, 

ce qui peut être à l’origine d’autres défaillances. Dans ce cas, le taux de défaillance 

augmentera. Cependant, il pourra diminuer ou rester constant si des opérations de 

maintenance ont été entreprises sur l’équipement. 

- L’estimation du taux de défaillance utilisant la méthode des moindres carrés ou de 

maximum de vraisemblance n’intègre pas les informations récoltées et les avis 

d’experts consignés après la mise en marche de l’équipement, ce qui pourrait 

améliorer l’estimation de taux de défaillance et la rendre plus représentatif. 

Afin de pouvoir prendre en compte les avis d’experts par rapport à l’état de dégradation 

ou tout simplement par rapport au taux de défaillance à un moment donné, l’inférence 

bayésienne est souvent proposée dans la littérature. Son objectif est de conjuguer, sur une 

période donnée, l’avis d’expert, pris sous forme d’une distribution a priori sur la valeur 

du taux de défaillance, avec les données de défaillances réellement enregistrées dans la 

même période. Cela permet de mettre à jour le taux de défaillance en considérant non 

seulement les données de défaillances mais aussi les avis d’experts.  

1.2 Objectif de travail 

L’objectif de ce travail est de proposer une stratégie de réparation minimale pour un 

équipement en se basant sur l’actualisation du taux de défaillance par une inférence 

bayésienne. La stratégie de réparation minimale consiste à remplacer préventivement 

l’équipement à une certaine périodicité. Si l’équipement tombe en panne entre deux 

périodes de remplacement préventif, l’équipement est réparé minimalement (aussi bon 

que vieux).Son taux de défaillance reste sensiblement le même après la réparation 

minimale qu’avant la défaillance. Cette stratégie déterminera, à chaque période de mise 

en marche, l’instant où le remplacement préventif doit être effectué et ce à moindre coût. 

Ce modèle de réparation minimale permettra de mettre à contribution l’inférence 
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bayésienne pour estimer le taux de défaillance d’un équipement pour la période suivante 

(appelé taux de défaillance a postériori) en se basant sur les données de défaillance 

colletées (appelées données de vraisemblance) et l’avis d’expert de maintenance (appelé 

l’a priori) durant la période antérieure. Ce modèle de réparation minimale permettra 

ensuite de déterminer la périodicité optimale des remplacements préventifs de 

l’équipement.  

D’un point de vue modélisation bayésienne du taux de défaillance, celui qui combine les 

données de vraisemblance avec l’a priori d’experts de maintenance amène à des modèles 

très complexes lorsque les modèles représentant la loi a priori et la loi a posteriori sont 

différents (modèles dits non conjugués). Dans ce cas, une expression analytique de la 

distribution a posteriori n’existe pas. Pour résoudre ce problème, nous faisons appelle à 

une technique d’échantillonnage par simulation dite MCMC  « Markov Chain Monte 

Carlo ». Cette technique nous permettra de déterminer le modèle a posteriori pour 

n’importe quel modèle a priori. L’estimation du taux de défaillance a posteriori ainsi que 

son intervalle de confiance seront définitivement déterminés par simulation. 

Considérons les coûts de réparation minimale, d’inspection et de remplacement préventif, 

nous chercherons à déterminer la périodicité optimale de remplacement d’un équipement. 

Pour une période donnée, les données de défaillance seront combinées avec quatre 

différents scénarios (avis d’experts) concernant le comportement du taux de défaillance 

durant la période subséquente: aucun avis, le taux de défaillance reste constant, augmente 

ou diminue ainsi que l’erreur que l’expert estime à propos de son avis. Ainsi, plusieurs 

situations seront considérées afin d’examiner le comportement du taux de défaillance a 

postériori. L’existence ou non d’une périodicité optimale de remplacement préventif 

dépendra essentiellement du taux de défaillance et des coûts encourus. Un programme 

MatLab est proposé pour modéliser et résoudre la stratégie de réparation minimale. 

1.3 Organisation du mémoire 

Le mémoire est organisé sur trois chapitres. Le chapitre 2 est consacré aux concepts de 

bases de fiabilité paramétrique des équipements, de fiabilité et d’’inférence bayésienne et 

des techniques de simulations de type MCMC. Une revue de littérature sur les modèles 
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de modélisation des taux de défaillance appliquant une inférence bayésienne avec des 

techniques de simulation MCMC. Ce chapitre présente également une revue de littérature 

sur les stratégies de maintenance en général et celles basées sur le principe de réparation 

minimale. 

Le chapitre 3 présente la démarche de modélisation d’actualisation du taux de défaillance 

selon la méthode d’inférence bayésienne, pour ce faire, nous allons prendre comme 

exemple une densité exponentielle de la vraisemblance et nous allons modéliser l’avis 

d’un expert à l’aide d’une distribution normale. L’organisation de l’étude statistique 

permettant de simuler les différents avis d’experts  et les combiner avec la vraisemblance 

choisie, nous intégrons cette démarche dans un algorithme de Metropolis-Hastings pour 

avoir une actualisation a posteriori du taux de défaillance à chaque période. Enfin du 

chapitre nous allons présenter et analyser les résultats de cette simulation. 

Le chapitre 4 présente le modèle d’optimisation de la stratégie de réparation minimale. 

Comme le taux de défaillance est actualisé à chaque période, une nouvelle formulation de 

la stratégie de maintenance est proposée qui tient compte des coûts et du taux de 

défaillance a posteriori ainsi que les coûts de réparation minimale, d’inspection et de 

remplacement. L’optimisation de la stratégie proposée sera basée sur de simulation. 

Enfin, une conclusion ainsi que les pistes et idées qui peuvent être développées à partir 

des travaux élaborés seront présentées.  
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CHAPITRE 2 : CONCEPTS DE BASE ET REVUE DE 

LITTÉRATURE 

 

Dans ce chapitre, nous allons présenter les différentes notions de bases et lois de fiabilité, 

du taux de défaillance habituellement utilisées pour estimer la fiabilité d’un équipement. 

Ensuite, nous présentons un état de l’art des principaux modèles de fiabilité proposés 

dans la littérature, en particulier, ceux utilisant les méthodes bayésiennes. Les modèles 

avec des distributions de densité non conjuguées, ceux nécessitant le recours aux 

techniques d’échantillonnage MCMC pour estimer les paramètres des densités a 

posteriori sont également esquissés. En dernière partie, nous présentons une revue des 

stratégies de maintenance les plus rencontrées, en particulier, les stratégies dites âge et 

bloc, ainsi que celles utilisant le principe de réparation minimale.  

2.1 Fiabilité des équipements 

2.1.1 Concepts de défaillance, de fiabilité et de durée de vie 

La défaillance d’un équipement désigne l’arrêt de réalisation de sa fonction principale ou 

de l’une de ses fonctions secondaires. Un équipement est déclaré défaillant lorsque une 

ou plusieurs de ses grandeurs caractéristiques évoluent en dehors des tolérances définies 

lors de sa conception (Kozlov, Ushakov et al. (1970)). 

Plus spécifiquement, l’Union Technique de l'Électricité (UTE), sur recommandation de la 

Commission électrotechnique internationale, a proposé la définition suivante de la 

fiabilité : « La fiabilité est l’aptitude d’un dispositif ou un équipement à accomplir une 

fonction requise dans des conditions données pour une période de temps donnée. En 

d’autres termes la fiabilité c’est la probabilité de survie d’un équipement » (Laprie 2004). 

La fiabilité est une caractéristique d’un système exprimée par la probabilité qu’il 

accomplisse la fonction pour laquelle il a été conçu, dans des conditions données et 

pendant une durée donnée. La fiabilité est une caractéristique du système au même titre 

que les caractéristiques dimensionnelles (Elsayed 2012). Cette définition véhicule quatre 

concepts principaux : 
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 Concept 1: La fiabilité s’exprime par une probabilité (grandeur comprise entre 0 et 1) 

et qui rend compte du caractère aléatoire de l’accomplissement de la fonction.  

 Concept 2: La fonction requise (service rendu ou mission accomplie) implique un 

seuil d’admissibilité en dessous duquel la fonction n’est plus remplie. 

 Concept 3: Les conditions d’utilisation renvoie à l’environnement et ses variations, 

les contraintes mécaniques, etc. 

 Concept 4: La période de temps donne la durée de la mission en unités d’usage, c’est 

le temps de bon fonctionnement. 

En pratique, la fonction de fiabilité est directement liée à une autre notion qui est la durée 

de vie d'un équipement qu’on définit comme étant la durée durant laquelle le système est 

en fonctionnement et elle mesure la quantité de service rendue par le système et qui peut 

être exprimée en unités de temps, en cycles ou en unités produites par le système.  

La durée de vie T est une variable aléatoire caractérisant le passage aléatoire d'un système 

d'un état de fonctionnement à un état de défaillance selon une loi de probabilité qui peut 

être connue ou inconnue.   

La fonction de densité de la variable aléatoire associée à la durée de vie T du système est 

exprimée par la probabilité que la durée de vie soit comprise entre t et t+dt : 

𝑓 𝑡 = Pr 𝑡 < 𝑇 ≤ 𝑡 + 𝑑𝑡                                                                                                         (2.1) 

Avec la fonction de densité définie auparavant, une fonction de répartition F(t) peut être 

associée à la durée de vie. F(t) représente la probabilité que la durée de vie T soit 

inférieure ou égale à t: 

𝐹 𝑡 = Pr 𝑇 ≤ 𝑡 =  𝑓 𝑢 𝑑𝑢                                                                                                 (2.2)

𝑡

0

 

Par conséquent, la fiabilité R(t)du système qui désigne la probabilité que le système soit 

fonctionnel au-delà de la durée t. Elle s'écrit comme suit: 

𝑅 𝑡 = Pr 𝑇 > 𝑡 =  𝑓 𝑢 𝑑𝑢                                                                                                 (2.3)

∞

𝑡

 

D’après les deux définitions précédentes, la propriété suivante doit être vérifiée : 
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𝑅 𝑡 + 𝐹 𝑡 =  𝑓 𝑢 𝑑𝑢

∞

0

= 1                                                                                                   (2.4) 

2.1.2 Fonction du taux de défaillance 

La fonction du taux de défaillance ou d’avarie 𝜆 𝑡 d’un système est donné par 𝜆 𝑡 =

𝑓 𝑡|𝑇 > 𝑡 . Comme 𝐹(𝑡) désigne le risque de défaillance d’un équipement à l’instant t, la 

probabilité que l’équipement tombe en panne entre les instants t et t+dt est donnée par la 

dérivé de la fonction 𝐹(𝑡) au cours de l’intervalle t et t+dt, notée 
 𝑑𝐹 𝑡 

𝑑𝑡
, sachant que 

l’équipement est survivant à l’instant t avec une probabilité 𝑅(𝑡). Ainsi, lafonction du 

taux de défaillance  λ(t) s’écrit alors comme suit : 

𝜆 𝑡 =  
1

𝑅(𝑡)
×

𝑑𝐹 𝑡 

𝑑𝑡
=

−1

𝑅(𝑡)
×

𝑑𝑅 𝑡 

𝑑𝑡
                                                                                   (2.5) 

Il est largement admis en fiabilité classique que l’évolution du taux de panne d’un 

équipement neuf au cours de son cycle de vie suit une courbe spéciale, appelée « courbe 

en baignoire » (Figure 2.1). Selon cette courbe, le taux de défaillance décroit pendant la 

première période de vie de l’équipement. Les défaillances qui surviennent dans cette 

période sont appelées« défaillances infantiles ». Ensuite, le taux de défaillance devient 

constant dans le temps. Cette période caractérise les défaillances aléatoires. Il s’agit de la 

période de vie utile de l’équipement. Enfin, durant la dernière période, le taux de 

défaillance croit avec le temps. L’équipement subit des défaillances dites d’usure ou de 

vieillesse. 

Connaissant une des quatre fonctions de fiabilité, les relations suivantes permettent d’en 

déduire les autres fonctions. Ces fonctions sont générales et ne dépendent pas de la loi de 

probabilité. 

𝑅 𝑡 =  𝑓 𝑡 𝑑𝑡
∞

𝑇
= 𝑒𝑥𝑝  − 𝜆 𝑢 𝑑𝑢

𝑡

0
                                                                                   (2.6) 

Il en découle de cette relation, les relations suivantes : 

𝐹 𝑡 = 1 − 𝑒𝑥𝑝  − 𝜆 𝑢 𝑑𝑢

𝑡

0

                                                                                                 (2.7) 
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𝑓 𝑡 =  𝜆 𝑡 𝑒𝑥𝑝  − 𝜆 𝑢 𝑑𝑢

𝑡

0

                                                                                                (2.8) 

 

Figure 2.1 La courbe en baignoire (adaptée de Kaffel, 2001) 

2.1.3 Lois usuelles de fiabilité 

L’évaluation de la fiabilité d’un équipement passe obligatoirement par la connaissance 

déterministe ou plus ou moins approximative, soit de la distribution de probabilité des 

durées de vie de cet équipement, soit des paramètres de son taux de défaillance. Cela est 

généralement déterminé à travers des essais de fiabilité, ou des données de retour 

d’expérience. Plusieurs distributions paramétriques peuvent être utilisées. Nous 

présentons celles les plus utilisées en pratique.  

 Loi exponentielle 

La loi exponentielle est une loi qui est parfaitement définie dès que son unique paramètre 

Lambda est connu. Elle est la loi suivie par la variable aléatoire T lorsque le taux de 

défaillance est constant. Pour tout t ≥ 0 nous avons λ (t) = λ, une constante strictement 

positive (λ >0). Cette loi caractérise généralement la durée de vie utile d’un équipement. 

Cette loi est très utilisée en fiabilité à raison de sa simplicité analytique. Donc pout tout t 

≥ 0, la fonction de densité de défaillance est donnée par 𝑓 𝑡 = 𝜆𝑒−𝜆𝑡  (Figure 2.2).  

La fonction de distribution (de défaillance) est donnée par : 𝐹 𝑡 = 1 − 𝑒−𝜆𝑡  

La fonction de fiabilité est donnée par : 𝑅 𝑡 = 𝑒−𝜆𝑡  (Figure 2.3). 
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Figure 2.2 La fonction f(t) de la loi exponentielle 

 

Figure 2.3 La fonction R(t) de la loi exponentielle 

 Loi de Weibull 

Cette distribution est définie dès que les trois paramètres suivants sont déterminés:𝛽 

(paramètre de forme),𝜑  (paramètre de position) et 𝜂  (paramètre d’échelle). Elle est 

connue pour caractériser des phénomènes de fatigue, d’usure ou de dégradation. Ses 

fonctions de fiabilité sont données par : 

𝑓 𝑡 =
𝛽

𝜂
 
𝑡 − 𝜑

𝜂
 
𝛽−1

𝑒𝑥𝑝  − 
𝑡 − 𝜑

𝜂
 
𝛽

                                                                                (2.9) 

𝐹 𝑡 = 1 − 𝑒𝑥𝑝  −  
𝑡 − 𝜑

𝜂
 
𝛽

                                                                                               (2.10) 

𝑅 𝑡 =  𝑒𝑥𝑝  − 
𝑡 − 𝜑

𝜂
 
𝛽

                                                                                                      (2.11) 

𝜆 𝑡 =
𝛽

𝜂
 
𝑡 − 𝜑

𝜂
 
𝛽−1

                                                                                                               (2.12) 
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 Loi normale 

La loi normale est la plus usuelle parmi les lois de fiabilité. Elle comporte deux 

paramètres la moyenne μ et l’écart-type σ. La fonction de densité s’écrit, pour  𝑡 ≥ 0, 

comme suit : 

𝑓 𝑡 =
1

σ 2π
𝑒𝑥𝑝  −

1

2
 
𝑡 − 𝜇

𝜍
 

2

 , 𝜍 > 0                                                                                           (2.13) 

La loi normale prend une place particulière dans les études statistiques grâce à la 

convergence d’une suite de variables aléatoires vers cette loi en utilisant le théorème de la 

limite centrale. En effet, elle correspond au comportement de la moyenne d'une suite 

d'expériences aléatoires similaires et indépendantes lorsque le nombre d'expériences est 

très élevé. Grâce à cette propriété, la loi normale permet de s’approcher d'autres 

distributions et ainsi de modéliser de nombreuses études scientifiques telles la 

modélisation d’erreurs de mesure ou d’expériences aléatoires.  

Par ailleurs, la loi normale est souvent utilisée pour modéliser des avis d’experts. Ainsi, 

l’avis d’un expert peut être modélisé par la moyenne d’une loi normale et l’incertitude de 

l’avais de l’expert par la variance ou l’écart-type de la même loi (Gendre 1977), (Saporta 

2006). 

Il existe également d’autres lois paramétriques utilisées en fiabilité telles que la loi 

gamma ou la loi log-normale. Toutes ces lois sont déterminées dès que leurs paramètres 

sont estimés à partir d’échantillons de données de durées de vie. 

2.2 Méthodes d’estimation paramétrique 

Pour estimer les paramètres d’une distribution de probabilité, nous faisons recours aux 

méthodes statistiques d’estimation telles que les méthodes graphiques et les méthodes 

d’inférence statistiques en particulier, la méthode du maximum de vraisemblance et 

d’estimation bayésienne. 

Plus généralement, soit une variable aléatoire 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  qui représente les durées 

de vie d’un équipement. Le problème consiste à déterminer une fonction de densité 

𝑓 𝑥 𝜃  où seul le vecteur de paramètres 𝜃 =  𝜃1, 𝜃2 , … , 𝜃𝑛  est inconnu. 
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Une fois le modèle paramétrique construit, l’objectif serait d’effectuer une inférence sur 

le paramètre inconnu𝜃.Dans la littérature, plusieurs méthodes d’inférence statistique sont 

possibles, nous examinons les plus connues : la méthode de maximum de vraisemblance 

et l’estimation bayésienne. 

2.2.1 Méthode d’estimation par le maximum de vraisemblance 

Dans cette méthode dite classique, l'information provenant des données observées est 

l'unique source d’information utilisée pour estimer les paramètres de la loi de fiabilité. 

Elles sont des réalisations de la variable aléatoire. Elles servent à faire porter l'inférence 

sur les paramètres  θ. Dans cette méthode, une fonction de vraisemblance est utilisée. Elle 

s’écrit comme suit: 

𝑙 𝜃 𝑥 = 𝑓 𝑥 𝜃                                                                                                                                        (2.14) 

Dans cette méthode, nous cherchons un estimateur de 𝜃 𝑀𝑉 qui maximise la fonction de 

vraisemblance  𝑙 𝜃 𝑥 . L’estimateur est donné par : 

𝜃 𝑀𝑉 = 𝐴𝑟𝑔𝜃𝑚𝑎𝑥 𝑙 𝜃 𝑥                                                                                                                       (2.15) 

où  𝑙 𝜃 𝑥  est la densité de probabilité conditionnelle suite aux observations. 

2.2.2 Méthodes d’estimation bayésienne 

L’estimation bayésienne se base sur le théorème de Bayes (Miller, Freund et al. 1965). 

Pour deux évènements aléatoires A et B, ce théorème s’écrit comme suit :   

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴 

𝑃 𝐵 
                                                                                                          (2.16) 

Où 𝑃(𝐴)  représente la probabilité a priori, et 𝑃 𝐴 𝐵  représente la probabilité a 

posteriori. 

Par opposition à l’estimation paramétrique basée sur le maximum de vraisemblance, 

l’estimation bayésienne suppose que les paramètres d’intérêts 𝜃  sont considérés comme 

des variables aléatoires caractérisées par des densités de probabilité 𝜋(𝜃). Ces densités 

s'appellent les densités a priori. Afin d’estimer les paramètres a posteriori, la formule 

précédente de Bayes est utilisée. Elle donne le résultat suivant : 
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𝜋 𝜃 𝑥 =
𝑓 𝑥 𝜃 𝜋 𝜃 

 𝑓 𝑥 𝜃 𝜋 𝜃 𝑑𝜃
∞

𝜃

                                                                                                 (2.17) 

Où 𝑓 𝑥 𝜃  caractérise la vraisemblance des données connaissant les paramètres 𝜃. 

Les bases de l’estimation bayésienne sont mises en place dans les années 40. Cependant, 

elles seront réellement développées dans les années 70 à travers plusieurs travaux comme 

ceux de (Efron and Morris 1972), (Casella 1985), (Deely and Lindley 1981), (Kass and 

Steffey 1989) et (Morris 1983). Dans ces travaux, les auteurs expliquent la théorie de 

modélisation bayésienne et sa relation avec les autres méthodes statistiques. 

L’un des premiers auteurs à avoir utilisé l’estimation bayésienne du taux de défaillance 

de composants électroniques est (Ringler 1981). Ce travail a mené à des changements sur 

la courbe classique en baignoire du taux de défaillance. D’autres auteurs ont utilisé cette 

méthode pour combiner les informations issues des observations (vraisemblance) avec les 

connaissances des experts tels que l’estimation de la fiabilité des équipements en 

aérospatial à la NASA (Pérez, Martín et al. 2006). 

En général, dans la modélisation bayésienne, les paramètres de la distribution a priori 

(appelés les hyperparamètres) sont déterminés par inférence bayésienne dite 

« hiérarchique ». Cette inférence permet de modéliser en plusieurs niveaux hiérarchiques 

les paramètres de la densité a priori jusqu’au dernier niveau qui consiste à estimer le 

paramètre visé par l’inférence. Dans la plupart des cas, la loi de premier niveau sera 

conjuguée, par souci de simplification et aussi, parce que la modélisation sur les niveaux 

supérieurs permet de corriger éventuellement cette erreur de spécification de 

l'information a priori. L’idée principale de la modélisation bayésienne hiérarchique 

consiste à considérer les hyperparamètres de la densité a priori comme des variables 

aléatoires dépendantes d’autres hyperparamètres. Donc, un modèle bayésien hiérarchique 

est un modèle tel que la loi a priori est composée de plusieurs distributions 

conditionnelles (Robinson 2001). La figure 2.4 illustre un cas d’une inférence bayésienne 

avec trois niveaux hiérarchiques des paramètres à estimer. 
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Figure 2.4 Exemple d’une inférence hiérarchique avec trois niveaux 

Un résumé des méthodes bayésiennes est présenté dans (Berger 2000). Cependant, il est 

très difficile d’appliquer une inférence bayésienne analytiquement dans le cas où nous 

avons des distributions de probabilité non conjuguées (la distribution a priori et la 

distribution a posteriori n’ont pas la même forme). Donc l’utilisation de ces méthodes, est 

restée restreinte jusqu'à l’introduction de méthodes numériques de chaines de Markov 

Monte Carlo (MCMC)(Brooks 1998). Ces méthodes sont basées sur des techniques de 

simulation qui permettent d’obtenir des solutions numériques des problèmes basés sur 

des modèles très complexes (Pérez, Martín et al. 2006). 

À ce sujet, plusieurs algorithmes sont proposés dans la littérature. Les algorithmes 

Metropolis, Hastings et Gibbs sont parmi les dix algorithmes les plus utilisés en 

ingénierie dans le dernier siècle (Beichel et Sullivan  2000). L’algorithme Metropolis de 

base (Metropolis, Rosenbluth et al. 1953), (Hastings 1970) est adapté dans plusieurs 

travaux consacrés à des différents domaines tels que en biologique (Liu and Logvinenko 

2003) et en intelligence artificielle (Andrieu, De Freitas et al. 2003). Ces algorithmes 

offrent des méthodes d’échantillonnage à partir de distributions de probabilité complexes. 

Enfin, Kelly & Smith (2008) constatent aussi le large champ d’application des méthodes 

bayésiennes avec les méthodes MCMC. Nous pouvons citer les applications dans les 

sciences sociales (Gill 2002), l’ingénierie financière (Geweke 2005), la science de santé 

(Lawson 2006) et le contrôle des processus (Enrique 2006).  
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2.2.3 Considérations importantes 

L’estimation bayésienne est très sensible aux aspects suivant : 

 Choix de la loi a priori 

Le choix de la loi a priori est une étape fondamentale dans l’analyse bayésienne. 

L’information a priori est défini sur le paramètre θ. Cette information n’est pas apportée 

par les observations, c’est-à-dire la vraisemblance, mais plutôt par la mise à contribution 

des expériences du passé, les intuitions ou l’expérience des spécialistes des modes de 

défaillance. Cette information est incertaine, donc il est naturel de la modéliser au travers 

d’une loi de probabilité π(θ). En pratique, π(θ) peut-être une loi normale, Beta, Gamma, 

ou autres. Les paramètres d’une loi a priori sont appelés Hyperparamètres. 

 Loi a priori conjuguée 

Étant donné une loi paramétrique sur les observations collectées, si la loi a priori sur le 

paramètre à estimer donne une loi a posteriori de même famille, alors la loi a priori est 

dite conjuguée. Ceci bien entendu simplifie considérablement le calcul de la densité a 

posteriori sur le même paramètre d’intérêt. Le tableau 2.1 présente des exemples de lois a 

priori conjuguées. À remarquer qu’il n’existe pas de loi a priori conjuguée si la loi  

𝜋(𝑥|𝜃) caractérisant la vraisemblance est exponentielle.   

Tableau 2-1 Exemples de lois a priori conjuguées 

𝜋(𝑥|𝜃) 𝜋(𝜃) 𝜋(𝜃|𝑥) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑒 𝜃, 𝜍2  

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑒 𝜇, 𝜏2  

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑒(𝜌(𝜍2𝜇 + 𝜏2𝑥), 𝜌𝜍2𝜏2) 

ou 𝜌−1 = 𝜍2−𝜏2 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 𝐺𝑎𝑚𝑚𝑎(𝛼 + 𝑥, 𝛽 + 1) 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑒(𝑛, 𝜃) 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 𝐵𝑒𝑡𝑎(𝛼 + 𝑥, 𝛽 + 𝑛 − 𝑥) 

𝐺𝑎𝑚𝑚𝑎(𝜈, 𝜃) 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 𝐺𝑎𝑚𝑚𝑎(𝛼 + 𝜈, 𝛽 − 𝑥) 

 

 Lois a priori non informatives 

Une loi a priori non informative est une loi qui porte une information sur le paramètre à 

estimer dont le poids dans l’inférence bayésienne est réduit. Certains auteurs la 

définissent également comme une loi a priori qui ne contient aucune information sur θ, 

ou encore, comme une loi qui ne donne pas davantage de poids à telle ou telle valeur du 
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paramètre. Par exemple, supposons Θ un ensemble fini de taille q une loi a priori non 

informative pourra être une loi de la forme : 

𝑃 𝜃𝑖 = 1
𝑞                                                                                                                                               (2.18)  

Donc, les valeurs possibles de θ se voient attribuer le même poids. 

Les lois a priori non informatives peuvent être construites à partir de la distribution 

d’échantillonnage. Une deuxième méthode est celle proposée par Jeffreys (1961) en 

utilisant  l’information de Fischer : 𝐼(𝜃)  qui représente une mesure de la quantité 

d’information sur θ contenue dans l’observation. Plus 𝐼(𝜃) est grande, plus l’observation 

apporte de l’information. Il semble alors naturel de favoriser les valeurs de θ pour 

lesquels 𝐼(𝜃) est grande. Ce qui minimise l’influence de la loi a priori au profit des 

observations (la vraisemblance). 

2.2.4 Calcul de la loi a postériori 

Tel que énoncé précédemment, si la loi a priori n’est pas conjuguée, la résolution 

analytique de 𝜋 𝜃 𝑥  devienne très complexe. La méthode MCMC est alors utilisée. 

Nous présentons dans ce qui suit, le principe de simulation Monte Carlo ainsi que les 

algorithmes d’échantillonnage les plus connus. 

 Principe des méthodes MCMC 

L’idée général des méthodes MCMC est d’utiliser des échantillons pour approximer les 

moyenne des distributions complexes en remplaçant les intégrations complexes par des 

simulations d’un  large ensemble d’échantillons. La précision de ces approches se base 

sur le nombre d’itérations ou d’échantillonnages et le degré d’indépendance entre les 

échantillons. De ce fait apparait l’importance des chaines de Markov qui permettent 

d’échantillonner  des échantillons indépendants à partir d’une distribution stationnaire. 

Comme la distribution a posteriori 𝜋 𝜃 𝑥  est une fonction proportionnelle au produit de 

la distribution a priori 𝜋 𝜃  et de la vraisemblance 𝑓 𝜃, 𝑥 , 𝜋 𝜃 𝑥 𝛼𝜋 𝜃 × 𝑓 𝜃, 𝑥 , alors 

les méthodes MCMC permettent de calculer la moyenne et la variance de la fonction a 

posteriori en simulant plusieurs fois le produit des deux valeurs aléatoires tirées des loi a 

priori et de la vraisemblance.  
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En résumé, les méthodes MCMC permet de générer et résoudre  une chaine de Markov à 

partir de la distribution stationnaire qui sera exactement la distribution à étudier 

(distribution a postériori). Parmi les méthodes MCMC les plus répandues, nous allons 

présenter les algorithmes de Metropolis-Hastings et de Gibbs. 

 Algorithme de Metropolis-Hastings 

On suppose que l’objectif soit d’échantillonner à partir de la distribution de densité 

P(θ).L’algorithme de Metropolis-Hastings génère une chaine de Markov qui produit une 

séquence de valeurs : 

𝜃(1) → 𝜃(2) → ⋯ → 𝜃(𝑡) → ⋯ 

où 𝜃(𝑡) représente l’état de la chaine de Markov à l’itération t, et on initialise la chaine n 

donnant une certaine valeur initiale a  𝜃(1).  

La méthode utilise ensuite une distribution dite instrumentale notée 𝑞(𝜃|𝜃 𝑡−1 ) pour 

générer un nouveau candidat 𝜃∗ . L’étape prochaine consiste à accepter ou refuser ce 

nouveau candidat en utilisant une probabilité d’acceptation. Le candidat choisi est 

accepté comme prochaine état de la chaine avec la probabilité suivante : 

𝛼 (𝛩 𝑡−1 𝛩∗) =  min [1, 
𝜋 𝛩∗ 𝑔 𝛩 𝑡−1  𝛩∗ 

𝜋 𝛩 𝑡−1  𝑔 𝛩∗ 𝛩 𝑡−1  
]                                                (2.19) 

Enfin pour prendre la décision d’accepter ou de refuser le nouveau candidat proposé on 

génère une valeur à partir d’une distribution uniforme et on la compare avec la 

probabilité d’acceptation. La figure 2.5 décrit l’algorithme Metropolis-Hastings. 

 Algorithme de Gibbs 

Du fait de la difficulté de trouver une distribution instrumentale, l’échantillonnage de 

Gibbs est un cas particulier de la méthode Metropolis-Hastings. La différence est que 

l’algorithme de Gibbs permet d’échantillonner seulement dans le cas où la distribution 

conditionnelle a posteriori est parfaitement connue. C'est-à-dire nous connaissons toutes 

les distributions de ses paramètres avec précision. En d’autres terme les lois a priori sont 

conjuguées. La figure 2.6 présente l’algorithme de Gibbs. 
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Figure 2.5 Algorithme Metropolis-Hastings 

 

Figure 2.6 Algorithme de Gibbs 
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2.3 Stratégies de maintenance 

2.3.1 Stratégie de maintenance de type Age 

Une stratégie de maintenance de type âge consiste à effectuer un remplacement correctif 

en cas de défaillance de l’équipement ou effectuer un remplacement préventif seulement 

si ce dernier atteint un âge T sans défaillance. L’âge T représente la période de 

remplacement préventif. L’idée de cette stratégie est de remplacer préventivement 

l’équipement le plus proche possible de l’instant où il risque de tomber en défaillance. 

Par ailleurs, si l’équipement tombe en défaillance avant l’instant T, il fera objet d’une 

maintenance corrective. Comme les remplacements préventifs et correctifs utilisent des 

équipements neufs, l’âge réel de l’équipement est remis à zéro. 

Pour définir la stratégie optimale correspondante, il faut déterminer la périodicité  

optimal T
* 

où le remplacement préventif sera effectué. Considérant les coûts de 

remplacement correctif et préventif de l’équipement la stratégie optimale T
*
 garantit un 

coût total moyen par unité de temps sur un horizon infini minimum. Un modèle 

mathématique a été développé par Barlow et Proschan (1965). La (Figure 2.7) présente 

un schéma simple des séquences des événements dans cette stratégie. 

 

Figure 2.7 Stratégie de maintenance de type Age (Bagayoko, 2009) 
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Le modèle de Barlow et Proschan (1965) suppose que l’équipement a deux états 

possibles (en marche ou en panne), la détection des pannes est instantanée, les temps des 

opérations de maintenance sont négligeables et la remise à neuf de l’équipement par un 

équipement identique. Les auteurs ont montré qu’un tel modèle est toujours préférable en 

comparaison à une stratégie de remplacement correctif si le taux de défaillance est 

strictement croissant. Cette stratégie permet l’utilisation effective de l’équipement, donc 

ne pas remplacer un équipement neuf après une courte période de fonctionnement. 

Cependant, cette stratégie nécessite une surveillance continue et un suivi de l’utilisation 

de l’équipement. Elle présente quelques inconvénients tels que l’impossibilité d’effectuer 

les remplacements préventifs à l’âge optimal T* à cause de la non concordance de cette 

période optimale avec le calendrier de production.  

2.3.2 Stratégie de maintenance de type Bloc 

Cette stratégie consiste à faire des remplacements préventifs à des intervalles de temps 

fixes et prédéterminés. En cas de défaillance, un remplacement correctif de l’équipement 

est encouru. L’un des premiers modèles de cette méthode est le modèle de Barlow et 

Hunter (1960) (Figure 2.8) dans lequel, ils utilisent la fonction de renouvellement de 

l’équipement. Ils déterminent la période optimale T
*
qui minimise le coût total moyen par 

unité de temps sur un horizon infini. Un deuxième modèle proposé par Ait-Kadi et Chelbi 

(1995) qui constitue une extension du dernier modèle en tenant compte des stocks 

disponibles de pièces de rechange. 

Par opposition à la maintenance de type âge, la stratégie de type bloc peut avoir un effet 

de gaspillage des équipements neufs. Car, il arrive de remplacer un équipement qui vient 

d’être mis en marche. Pour remédier à  cette lacune, des modèles étendus de type Bloc 

ont été proposés en effectuant des réparations minimales ou remplacer par des 

équipements usagés (Tango 1978). 
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Figure 2.8 Stratégie de maintenance de type Bloc (Bagayoko, 2009) 

2.3.3 Stratégie de remplacement périodique avec réparation minimale après 

défaillance 

Cette stratégie consiste à remplacer périodiquement l’équipement avec un équipement 

identique neuf. En cas de défaillance, une réparation minimale est entreprise. Cette 

réparation n’a pas d’effet sur le taux de défaillance de l’équipement. L’équipement est 

dans un état aussi mauvais qu’avant l’occurrence de la défaillance. Cette stratégie est 

introduite par (Barlow and Hunter 1960) avec l’établissement des conditions d’existence 

et d’unicité d’une stratégie optimale. Ensuite, Barlow et Proschan (1965) ont établi un 

modèle en minimisant le coût total moyen par unité de temps sur un horizon infini. Un 

autre modèle de remplacement périodique considérant des coûts croissant de réparation 

minimale a été proposé par (Boland and Proschan 1982).  

2.3.4 Autres stratégies de maintenance périodique 

À partir des deux politiques de base cités au-dessus, d’autres modèles ont été développés, 

nous présentons quelques-uns ci-après : 

 Stratégie de remplacement avec période d’inactivité. Cette stratégie propose 

d’arrêter l’équipement suite à une panne jusqu’au moment déterminé de la 

maintenance préventive. Mais le modèle suppose que la défaillance est survenue à un 
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petit moment avant l’arrêt programmé de l’équipement. Le modèle de base a été 

développé par Cox (1962) en déterminant le coût total moyen par unité de temps sur 

un horizon infini et en établissant les conditions d’existence d’une stratégie optimale 

(i.e. taux de défaillance croissant).  

 Stratégie de maintenance imparfaite. Cette stratégie propose de remplacer des 

composants défaillants par des composants en meilleurs états sans être neufs. Donc, le 

but est seulement d’améliorer les performances de l’équipement. Des modèles dans la 

littérature ont été développés comme les modèles de maintenance préventive 

imparfaite de (Nakagawa 1986), le modèle de (Brown et Proschan 1983) ou le modèle 

de (Pham and Wang 1996). 

 Stratégie de maintenance séquentielle. Cette stratégie suppose un horizon de temps 

fini. Une stratégie optimale qui minimise le coût total moyen sur cet horizon a été 

établie par (BARLOW and Proschan 1965). De même, un autre modèle de 

remplacement périodique avec des coûts de réparation minimale croissant a été 

développé par les mêmes auteurs précédents.  

En résumé, la stratégie qui correspond mieux à la situation observée par les équipements 

réparables est celle de remplacement périodique avec réparation minimale après 

défaillance. C’est cette stratégie qui nous intéresse. Elle sera détaillée et exploitée 

ultérieurement dans le chapitre 4.  
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CHAPITRE 3 : MODÈLE D’ACTUALISATION DU TAUX DE 

DÉFAILLANCE 

 

Le chapitre précédent nous a permis d’avoir une revue de littérature sur les notions de 

modélisation du taux de défaillance et des stratégies de maintenance. Dans ce chapitre 

nous allons présenter une étude de cas, l’expérimentation de plusieurs modélisations de la 

distribution a priori, le modèle d’actualisation du taux de défaillance et nous analyserons 

les résultats obtenus selon les différents scénarios pris sur  l’information a priori.  

3.1 Présentation du cas d’étude 

Dans le cas d’étude, nous considérons un équipement neuf schématisé dans la figure 3.1, 

mis en exploitation à un instant t = 0. Le fournisseur de l’équipement dispose d’un taux 

de défaillance estimé 𝜃𝑒  et d’un écart-type estimé 𝜍𝑒 . 

 

Figure 3.1: Équipement multi-composants neuf 

Cet équipement sera mis en marche pendant plusieurs périodes et nous allons enregistrer 

le nombre de défaillances et les durées de vie pour chaque période. Ce qui constituera la 

vraisemblance de l’équipement. 

Ensuite, un avis d’un expert sur le taux de défaillance sera modélisé en début de chaque 

période, cet avis est défini par les trois éléments suivants :  

 La tendance du taux de défaillance (augmente, stable, diminue),  

 le pourcentage caractérisant la tendance du taux de défaillance 
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 l’incertitude de l’expert vis-à-vis de la tendance du taux de défaillance.  

Ces trois éléments vont permettre la construction de la loi a priori sur le taux de 

défaillance. La vraisemblance, modélisée par une loi exponentielle, jumelée avec la loi a 

priori, modélisée par une loi normale, va permettre d’effectuer une inférence bayésienne 

sur le taux de défaillance (λ). 

L’inférence dans ce cas se fera en utilisant un  échantillonnage de Metropolis-Hastings et 

qui donnera la moyenne et l’écart-type de la loi a posteriori représentant ainsi 

l’actualisation du taux de défaillance estimé du constructeur de l’équipement, une période 

après une autre. La loi conditionnelle a posteriori de taux de défaillance λ sera le produit 

de la vraisemblance exponentielle et la distribution a priori normale. 

3.2 Éléments de modélisation 

3.2.1 Démarche générale 

Dans notre cas, la figure 3.2 représente la démarche générale pour actualiser le taux de 

défaillance. L’information a priori consiste en une estimation d’une moyenne et d’une 

variance. Le choix de deux paramètres sera détaillé dans section 3.2.3. Nous disposons 

également des observations xi qui représentent les données de défaillance de notre 

équipement. Ces observations sont utilisées pour construire la fonction de vraisemblance. 

La fonction a posteriori permet d’actualiser le taux de défaillance observé considérant la 

distribution a priori de l’expert.  

 

Figure 3.2 Démarche générale d’actualisation du taux de défaillance 
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3.2.2 Calcul de la vraisemblance 

La distribution de la vraisemblance est tirée des observations tout au long de la période 

d’étude. La vraisemblance est donnée par la relation suivante: 

𝐿 𝑥; 𝜃 =  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

                                                                                                               (3.1) 

Dans le cas étudié, nous supposons que les durées de vie suivent une loi exponentielle de 

paramètre 𝜆 , sachant la densité  𝑓 𝑡, 𝜆 =  𝜆𝑒−𝜆𝑡 , nous pouvons en déduire la 

vraisemblance 𝐿 𝑡; 𝜆  qui s’écrit comme suit : 

𝐿 𝑡; 𝜆 =  𝜆𝑒−𝜆𝑡𝑖

𝑛

𝑖=1

=  𝜆𝑛𝑒−𝜆  𝑡𝑖
𝑛
𝑖=1                                                                                       (3.2) 

3.2.3 Modélisation de l’avis de l’expert 

L’expert devrait donner un avis sur le taux de défaillance. Quatre possibilités pourraient 

être obtenues :  

 L’expert n’a pas d’avis. Cet avis pourrait se produire au début de l’exploitation 

d’un équipement ou que l’expert ne peut pas se référer à un équipement similaire. 

 L’expert pense que le taux de défaillance est resté stable par rapport à la valeur du 

taux de défaillance estimé par le constructeur. 

 L’expert pense que le taux de défaillance a augmenté. Cet avis pourrait 

représenter par exemple une augmentation de nombre de défaillances enregistré 

plus grand que celui estimé par le constructeur à cause d’une mauvaise 

maintenance ou d’une sollicitation plus importante de l’équipement. 

 L’expert pense que le taux a diminué. Cet avis pourrait représenter le cas où une 

maintenance préventive accrue a été effectuée sur l’équipement réduisant ainsi 

son taux de défaillance. 

Pour les trois derniers avis, l’expert pourrait spécifier son incertitude en choisissant une 

des situations suivantes : 

 L’expert est certain. 

 L’expert est moyennement certain. 
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 L’expert est incertain. 

Le tableau 3.1 résume les avis, les incertitudes et les codes utilisés pour notre étude. Nous 

avons choisi  la loi normale pour modéliser l’avis d’expert ainsi que son incertitude.  Les 

paramètres de cette loi normale (μ et σ) sont calibrés par les choix de l’expert.  

Tableau 3-1 Codes utilisés pour modéliser l'a priori 

Avis :μ Code  Incertitude : σ Code 

Sans avis 0  Certaine 0 

Augmente 1  Moyenne 1 

Diminue -1  Incertaine 2 

Stable 2   

    
 

Plus précisément, les paramètres de la loi normale sont les hyperparamètres caractérisant 

le taux de défaillance 𝜆. Le choix de ces hyperparamètres sont déterminés comme suit : 

 Si l’expert est sans avis dans la période (i), la moyenne de la loi a priori sera égale au 

𝜆 a posteriori de la période (i-1). Pour la première période la moyenne sera égale au 𝜆 

estimé du constructeur. Dans ce cas, nous n’aurons aucune précision de l’expert. 

L’écart-type sera égal à l’écart-type de la période précédente (i-1). 

 Si l’expert prévoit une augmentation ou une diminution, deux valeurs aléatoires (α, 

β) seront tirées à partir d’une loi uniforme [0,1]. Ces valeurs définiront le 

pourcentage d’augmentation ou de diminution du taux de défaillance ainsi que son 

incertitude. Dans le cas où l’expert prévoit une stabilité du taux de défaillance, 

seulement la valeur (β) sera utilisée pour déterminer l’incertitude de l’expert. 

a. En cas de prévision d’une augmentation dans une période (i) la moyenne 

de la loi a priori sera toujours égale à (1+ α) fois le 𝜆 a posteriori de la 

période (i-1).L’écart-type sera déterminé selon l’incertitude de l’expert : 

 Expert certain : écart-type(i) sera égal à (1- β) fois l’écart-type (i-1) 

 Expert moyen : écart-type(i) sera égal à l’écart-type (i-1) 

 Expert incertain : écart-type(i) sera égal à (1+ β) fois l’écart-type 

(i-1) 

b. En cas de prévision d’une diminution dans une période (i) la moyenne de la 

loi a priori sera toujours égale à (1- α) fois le 𝜆 a posteriori de la période (i-
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1).L’écart-type sera déterminé selon l’incertitude de l’expert, tel exprimé 

en a). 

 Si l’expert prévoit une stabilité du taux de défaillance dans une période (i), la 

moyenne de la loi a priori sera toujours égale au 𝜆 a posteriori de la période (i-1) et 

l’écart-type est donné avec l’écart-type tel que exprimé en a). 

En combinant les différents avis de l’expert avec les différentes incertitudes nous 

obtenons les scénarios suivants : 

Tableau 3-2 Différents scénarios a priori selon les avis de l'expert 

Numéro Scénario Incertitude Moyenne(μ) Écart-type(σ) 

1 Sans Avis  / μ = λ(j-1)  σ = σ(j-1)  

2 Augmentation  Certaine  μ = (1+α) λ(j-1)  σ = (1-β)σ(j-1)  

3 Augmentation  Moyenne  μ = (1+α) λ(j-1)  σ = σ(j-1)  

4 Augmentation  Incertaine  μ = (1+α) λ(j-1)  σ = (1+β)σ(j-1)  

5 Diminution  Certaine  μ = (1-α) λ(j-1)  σ = (1-β)σ(j-1)  

6 Diminution  Moyenne  μ = (1-α) λ(j-1)  σ = σ(j-1)  

7 Diminution  Incertaine  μ = (1-α) λ(j-1)  σ = (1+β)σ(j-1)  

8 Stabilité  Certaine  μ = λ(j-1)  σ = (1-β)σ(j-1)  

9 Stabilité Moyenne  μ = λ(j-1)  σ = σ(j-1)  

10 Stabilité Incertaine  μ = λ(j-1)  σ = (1+β)σ(j-1)  
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3.3 Algorithme d’actualisation du taux de défaillance 

La figure 3.3 présente l’algorithme d’actualisation du taux de défaillance d’un 

équipement. Ce taux de défaillance est supposé constant pendant une période (i). 

 

Figure 3.3 Algorithme d’actualisation du taux de défaillance 
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Dans notre cas, la vraisemblance est calculée à partir d’une distribution exponentielle. 

L’avis de l’expert est modélisé en une loi normale avec une moyenne et écart-type connu. 

Ces deux lois ne sont pas conjuguées, donc la méthode MCMC approprié. Dans ce cas, 

l’algorithme de Metropolis-Hastings est utilisé. Les paramètres d’initialisation sont : 

 Le lambda estimé du constructeur est de 5 10
-3

 défaillance/heure. 

 L’écart-type estimé du constructeur est de 5 10
-4

  défaillance/heure. 

 L’étendue d’une période (i) est de 10
4
 heures. 

 Le nombre d’échantillonnages de la méthode Metropolis-Hastings est fixé à 1000 

itérations. 

 L’écart-type de la loi instrumentale utilisée par la méthode Metropolis-Hastings 

est  de 10
-3

. 

3.4 Résultats obtenus et discussion 

3.4.1 Effet de la variation des paramètres (α, β) 

Nous avons appliqué différents scénarios des avis et des incertitudes qu’un expert 

pourrait formuler. Nous obtenons 10 scénarios possibles (Tableau 3.2) en combinant les 

avis d’expert (4 avis) et sa précision (3 niveaux) (Tableau 3.1), sachant que le scénario du 

sans avis n’a pas de précision. Pour tous les scénarios, nous avons considéré une seule 

période mais avec plusieurs valeurs des paramètres (α, β) de la loi uniforme. Rappelons 

que ces paramètres définissent le pourcentage d’augmentation ou de diminution désiré 

par l’expert. Les tableaux 3.3, 3.4 et 3.5 présentent les résultats pour les couples (α, β) 

suivant une loi uniforme respectivement  entre (0;0,1), (0,1;0,2) et (0,2;0,3).  

Les tableaux 3.3, 3.4 et 3.5 montrent que si les valeurs de (α, β) changent, les 2 premiers 

scénarios donnent des résultats identiques. Ces scénarios sont : l’expert sans avis et 

l’expert prévoit une stabilité du taux de défaillance avec ses trois niveaux de précision. 

Ceci est parfaitement normal, car l’avis de l’expert est non information. C’est la 

vraisemblance qui prend le dessus. Par contre en cas d’un avis d’augmentation ou de 

diminution du taux de défaillance, l’augmentation ou la diminution du taux a posteriori 

est proportionnelle aux valeurs de (α, β). Ainsi, si (α, β) augmentent, le taux de 

défaillance a posteriori augmente et inversement. Ceci traduit le fait que l’augmentation 
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ou la diminution des valeurs de (α, β), dans  ces scénarios, rend la distribution a priori 

plus informative et devient plus influente que la vraisemblance. Ce qui explique la 

croissance ou décroissance du taux de défaillance a posteriori. 

Tableau 3-3 Résultats de simulation après 1000 itérations avec (α, β) provenant d’une loi uniforme (0 ; 0.1) 

 

Tableau 3-4 Résultats de simulation après 1000 itérations avec (α, β) provenant d’une loi uniforme (0.1 ; 0.2) 

 

Tableau 3-5 Résultats de simulation après 1000 itérations avec (α, β) provenant d’une loi uniforme (0.2 ; 0.3) 
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En résumé, le tableau 3-6 suivant présente le résultat des moyennes et des écart-types en 

fonction de (α, β). 

Tableau 3-3 Résumé des résultats du taux de défaillance a posteriori en fonction de (α, β) 

 

3.4.2 Effet de l’incertitude de l’expert 

Dans cette expérimentation, nous simulons un cas d’augmentation du taux de défaillance 

mais avec trois types d’incertitudes de l’expert : certaine, moyenne et incertaine avec (α, 

β) sont compris dans (0.2 ; 0.3). Les résultats de simulation sont présentés dans le tableau 3-

7 et les figures suivantes : 

Tableau 3-7 Résultats de simulation avec un un avis d'augmentation et (α, β) entre (0.2;0.3) 

 

En examinant l’effet de la précision de l’expert, nous remarquons que taux de défaillance 

a posteriori augmente (respectivement diminue) significativement si l’expert est certain 

(respectivement incertain). De plus, l’écart-type du taux de défaillance a posteriori 

augmente lorsque l’expert est incertain. Ce qui est tout à fait logique. 

Dans les figures 3.4, 3.5 et 3.6, les graphes de haut en bas présentent respectivement, la 

loi a posteriori avant échantillonnage, la distribution a priori de l’expert, la densité 

théorique du modèle après échantillonnage et la séquence d’échantillonnage obtenue par 

MCMC pour les cas d’une augmentation certaine, moyenne et incertaine respectivement. 

Nous remarquons à partir de ces figures, que la méthode de Metropolis-Hastings 

converge rapidement vers une valeur du taux de défaillance a posteriori qui serait la 

moyenne de toutes les valeurs du taux de défaillance a posteriori échantillonnées. Cette 
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moyenne ainsi que l’écart-type de l’échantillonnage sont les paramètres de la densité a 

posteriori du taux de défaillance. 

A première vue, il semble que les 3 figures se ressemblent mais en examinant de plus 

prés, nous constatons que seulement les graphes en haut des trois figures sont identiques 

(car nous avons la même vraisemblance). Les autres graphes sont différents à cause du 

changement de la précision de la loi a priori. En effet, la précision de l’expert affecte le 

nombre des échantillons qui s’approchent de la moyenne a postériori. Une grande 

précision permet de tirer des échantillons qui se rapprochent le plus de la valeur exacte du 

taux de défaillance a postériori. 

 

Figure 3.4 La vraisemblance, l’a priori et le résultat d’échantillonnage dans le cas d’une augmentation certaine 

avec (α, β) provenant d’une loi uniforme (0.2 ; 0.3) 
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Figure 3.5 La vraisemblance, l’a priori et le résultat d’échantillonnage dans le cas d’une augmentation moyenne 

avec (α, β) provenant d’une loi uniforme (0.1 ; 0.2) 

 

Figure 3.6 La vraisemblance, l’a priori et le résultat d’échantillonnage dans le cas d’une augmentation 

incertaine avec (α, β) provenant d’une loi uniforme (0.1 ; 0.2) 
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CHAPITRE 4 : STRATÉGIE DE MAINTENANCE ET 

OPTIMISATION 

 

Dans le chapitre précédent, nous avons modélisé et estimé la moyenne du taux de 

défaillance d’un équipement ainsi que sa variance en utilisant une inférence bayésienne 

de type MCMC. Nous avons démontré que nous pouvons avoir plusieurs valeurs a 

posteriori selon l’avis de l’expert. Nous avons considéré un équipement dont le taux de 

défaillance est constant par intervalle et nous avons modélisé l’avis d’un expert à l’aide 

d’une loi normale. Dans ce chapitre, le taux défaillance actualisé sera intégré à une 

stratégie de remplacement périodique de l’équipement avec réparation minimale en cas 

de défaillance. Nous étudierons cette stratégie sur un horizon fini et déterminerons la 

stratégie optimale qui minimise le coût total moyen de maintenance dans le cas d’un avis 

d’augmentation du taux de défaillance. Deux cas de figures sont examinés : le cas où la 

vraisemblance n’est pas actualisée d’une période d’estimation à l’autre, et le cas où la 

vraisemblance est actualisée avec le taux de défaillance a posteriori de la période 

précédente.  

4.1 Modélisation de la stratégie de maintenance 

Pour un équipement assujetti à des défaillances aléatoires, le besoin des stratégies de 

maintenance est crucial pour éviter les coûts élevés des défaillances et des arrêts de 

l’équipement. La stratégie de maintenance qui nous intéresse est dite périodique avec 

réparation minimale en cas de défaillance. Sous cette stratégie, les réparations remettent 

l’équipement dans un état opérationnel mais sa performance sera la même que celle à 

l’état juste avant la défaillance. Cette stratégie est très appliquée dans le cas de systèmes 

complexes ou multi-composants.  

La stratégie de remplacement périodique avec réparation minimale en cas de défaillance 

sera améliorée afin de pouvoir prendre en compte l’actualisation du taux de défaillance 

sur plusieurs périodes. Cette stratégie sera évaluée et optimisée sur un horizon fini de 20 

années. En d’autres termes, dans cette stratégie, nous allons considérer un taux de 

défaillance discret sur plusieurs périodes. 
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Ce taux de défaillance sera actualisé d’une période à une autre selon les données de 

défaillance enregistrées et les avis des experts sur l’horizon de l’étude. C‘est-à-dire, dans 

chaque période j nous estimons le taux de défaillance à postériori  et son écart-type. Ce 

taux sera considéré dans la fonction du coût de la stratégie pour la période j en question.  

4.1.1 Hypothèses et notations 

Les hypothèses suivantes sont considérées dans le modèle des coûts de la stratégie : 

 Les pannes sont détectées instantanément 

 Les durées de maintenance corrective ou préventive sont considérées comme 

négligeables 

 Le taux de défaillance est actualisé selon une méthode bayésienne à chaque 

période ce qui conduit à un taux de défaillance discret.  

 Les coûts liés aux opérations de maintenance sont connus et constants. 

Notation 

 𝒏 : Nombre total de périodes 

 T : Période de remplacement préventif de l’équipement. 

 𝑪𝒄 : Coût de réparation corrective de l’équipement à la fin  d’une période j. 

 𝑪𝒊 : Coût d’inspection de l’équipement à la fin de chaque période j. 

 𝑪𝑷 : Coût de réparation préventive de l’équipement 

 𝑪𝑹𝑴 : Coût de réparation minimale du produit à chaque panne 

 𝝀𝒑 : Taux de défaillance a postériori 

 𝑪 𝑻 : Coût total moyen par unité de temps 

4.1.2 Formulation mathématique du coût 

D’après  le travail de Barlow et Proschan (1996), le coût total espéré durant un cycle de 

longueur T s’écrit comme suit : 

𝐶 𝑇, 𝑁 =
𝐶𝑝 + 𝐶𝑅𝑀E[N]

𝑇
=

𝐶𝑝 + 𝐶𝑅𝑀  𝜆𝑝 𝑡 𝑑𝑡
𝑇

0

𝑇
                                                                           (4.1) 

Ce modèle suppose une fonction du taux de défaillance continue dans le temps. Le coût 

des réparations minimales 𝐶𝑐 𝑇  à la fin de la période T est égal à :  
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𝐶𝑐 𝑇 =  𝐶𝑅𝑀 .  𝜆𝑝 𝑡 𝑑𝑡                                                                                                           (4.2)

𝑇

0

 

Dans le cas de notre étude, les valeurs du taux de défaillance  𝜆𝑝(t) sont différentes d’une 

période à l’autre. Il s’agit d’une fonction constante par période. Ainsi, en considérant que 

le taux de défaillance est discret, le coût de réparation minimale à la période (k) s’écrit 

comme suit : 

𝐶𝑐 𝑘 = 𝐶𝑅𝑀 . 𝛥   𝜆𝑝 𝑗  )

𝑘

𝑗=1

                                                                                                                   (4.3) 

où 𝛥 est l’intervalle de temps représentant l’étendue d’une période et 𝑘 = 1, …𝑁. 

Prenant en compte le coût d’inspection 𝐶𝑖 , le coût total moyen par période se définit 

comme suit : 

C 𝑘 =
𝐶𝑝 + 𝑘𝐶𝑖 + 𝐶𝑅𝑀𝛥  𝜆𝑝 𝑗  )

𝑘
𝑗=1  

𝑘𝛥
                                                                                               (4.4) 

Existence et unicité d’une politique optimale 

Le problème de vérification de l’existence d’une stratégie optimale revient à trouver un 

𝑘∗ qui minimise le coût total moyen. Pour ce faire, nous dérivons la fonction du coût total 

C 𝑘 par rapport à k: 

𝑑𝐶𝑇𝑜𝑡𝑎𝑙

𝑑𝑘
=

𝑘𝛥𝐶𝑖 − 𝑘(𝐶𝑝 + 𝑘𝐶𝑖 + 𝐶𝑅𝑀𝛥(  𝜆𝑝 𝑗  )
𝑘
𝑗=1 )

 𝑘𝛥 2
                                                                      (4.5) 

Nous cherchons ensuite la valeur de k qui annule la dérivée : 

𝛥𝐶𝑖 − 𝐶𝑝 − 𝑘𝐶𝑖 − 𝐶𝑅𝑀𝛥  𝜆𝑝 𝑗  )

𝑘

𝑗=1

 = 0                                                                                          (4.6) 

𝑘 +
𝐶𝑅𝑀𝛥

𝐶𝑖
  𝜆𝑝 𝑗  )

𝑘

𝑗=1

 = 𝛥 −
𝐶𝑝

𝐶𝑖
                                                                                                         (4.7) 
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Pour ce faire,  nous avons une fonction dont la variable k ne peut pas être isolée : k se 

trouve comme un terme de la sommation du taux de défaillance. Dans ce cas, une 

résolution numérique est privilégiée. Nous avons choisi de déterminer la solution 

optimale de l’expression précédente par simulation. 

 

4.2 Structure des données 

Pour appliquer la méthode de simulation par MatLab, nous avons généré des observations 

de vraisemblance en utilisant le taux de défaillance estimé par le constructeur. Le tableau 

4-1 présente la structure des données exploitées : 

Tableau 4-1 Structure des données de durées de vie 

Année (j) 

 

Nombre de 

défaillances (i) 

 

Année 1 

 

Année 2 

 

… 

 

Année n 

1 𝑡11  𝑡12  … 𝑡1𝑛  

2 𝑡21  𝑡21  … 𝑡2𝑛  

3 𝑡31  𝑡21  … 𝑡3𝑛  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

i 𝑡𝑖1 𝑡𝑖2 … 𝑡𝑖𝑛  

i+1  𝑡(𝑖+1)2 …  

 

Il faut bien noter que la somme des durées de défaillance pour une période donnée ne 

devrait pas dépasser une année, soit 10
4
 heures. Ce qui veut dire que nous n’aurons pas 

un nombre égal d’observations d’une année à l’autre. Pour les besoins de ce cas d’étude, 

nous avons choisi les coûts suivants (Tableau 4-2).  

Tableau 4-2 Données des coûts de maintenance 

 𝐶𝑅𝑀  𝐶𝑝  𝐶𝑖  

Coûts (K$) 0,5 40  0,1 
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4.3 Résultats de la simulation 

Nous avons programmé à l’aide d’un programme MatLAb le calcul du coût total moyen 

de la stratégie de remplacement périodique avec réparation minimale. Ce programme 

simule le coût de maintenance sur une période de 20 périodes, chaque période dure 10
4
 

heures. Deux scénarios sont simulés : le scénario où la vraisemblance est non actualisée 

et le scénario où elle est actualisée. Dans le premier scénario, le taux de défaillance qui a 

servi pour estimer les durées de vie est correspond à celui proposé par le constructeur. Il 

ne change pas d’une période à l’autre, donc la vraisemblance reste la même. Dans le 

second scénario, le taux de défaillance a posteriori est utilisé pour simuler les données de 

vraisemblance pour la période subséquente. Pour comparer les stratégies optimales pour 

ces deux scénarios, nous avons choisi de garder la même séquence d’avis d’expert durant 

les 20 périodes de simulation. Trois avis d’expert sont considérés. Ils concernent tous 

l’augmentation du taux de défaillance avec trois niveaux d’incertitude : certaine, 

moyenne, incertaine).  

4.3.1 Cas de la vraisemblance non actualisée 

Dans les tableaux 4.3, 4.4 et 4.5, nous présentons le taux de vraisemblance non actualisés, 

le taux de défaillance a posteriori et son écart-type ainsi que les coûts de maintenance 

pour chaque période (année) sur un horizon de 20 périodes avec un avis d’expert relatant 

une augmentation certaine , moyenne et incertaine respectivement. 

D’après le tableau 4-3, nous remarquons que lorsque l’expert est sûr quant à 

l’augmentation du taux défaillance, le taux de défaillance a posteriori croit 

exponentiellement. L’écart-type diminue si la moyenne a priori ne s’éloigne pas 

beaucoup de la moyenne de  vraisemblance. Sinon, l’écart-type commence à croître aussi. 

D’autre part nous remarquons que le coût de maintenance par unité de temps est minimal 

à la cinquième période. Pour déterminer exactement le  𝑇∗ , nous avons utilisé une 

fonction polynomiale (polyfit) de degré 5 sous MatLab. Cette fonction nous donne un 

coût minimum 3913 $ atteint après 4.97 10
4
 heures de fonctionnement. Donc, les 

remplacements préventifs se feront à chaque  𝑇∗ = 4.97 104 𝑕𝑒𝑢𝑟𝑒𝑠. 
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Tableau 4-3 Résultats, cas d’augmentation sure du taux de défaillance, vraisemblance non actualisée avec 0.1 < 

α < 0.2 

 

Les graphes de la figure 4.1 présentent respectivement de haut vers le bas : le 

comportement du taux de défaillance; l’évolution de l’écart-type pendant les 20 périodes 

et l’évolution du coût de la maintenance. Nous remarquons sur le graphe des coûts de la 

figure 4.1, que ce dernier décroit rapidement pour atteindre le minimum détecté à la fin 

de la quatrième période puis il présente une tendance d’augmentation rapide. 

 

Figure 4.1 Évolution du taux de défaillance, écart-type et coût de maintenance, cas d’augmentation 

sure avec 0.1 < α <  0.2 
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Dans le tableau 4.3, la précision de l’expert est moyenne pour chaque année avec 0.1 < α < 

0.2. De ce fait, nous constatons que le taux de défaillance a posteriori augmente 

moyennement par rapport au premier cas. Cependant, la bande [min, max] qui désigne la 

borne supérieure et inférieure du taux a posteriori est plus large justifiant ainsi la 

l’incertitude moyenne de l’expert. 

En appliquant la même fonction polyfit sous MatLab, le coût minimum de maintenance 

est atteint à   𝑇∗ = 5.94 104 𝑕𝑒𝑢𝑟𝑒𝑠 avec un coût minimum donné par𝐶 𝑇∗ = 3738 $. 

Une fois le coût minimum atteint, l’augmentation du coût se fait lentement à cause de la 

lente croissance du taux de défaillance a postériori. Dans ce cas de figure, il serait plus 

économique d’effectuer le remplacement préventif à la fin de la 5
e
période. 

Tableau 4-4 Résultats en cas d’augmentation moyenne de taux de défaillance, vraisemblance non actualisée, 

avec 0.1 < α < 0.2 

 

Dans le graphe de la figure 4.2, nous remarquons que le taux de défaillance croit d’une 

façon linéaire passant de 0,0056 jusqu’à 0,0137défaillance/heure avec une précision 

moyenne. Par contre, l’évolution de l’écart-type n’est pas affectée par la précision de 

l’expert sauf lorsque la moyenne a priori s’éloigne considérablement de la moyenne de la  

vraisemblance. L’écart-type devient plus grand. 

Le graphe représentant l’évolution du coût de maintenance (courbe en bas de la figure 

4.2) a tendance à s’aplatir après atteinte du coût minimum à la fin de la période 5. Ceci 
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indique qu’en considérant une incertitude moyenne de l’expert, le coût de maintenance, 

augmentent lentement. 

 

Figure 4.2 Évolution du taux de défaillance, écart-type et coût de maintenance, cas d’augmentation moyenne 

avec 0.1 < α <  0.2 

Dans le cas où l’expert est incertain quant à l’augmentation du taux de défaillance, nous 

constatons que le taux de défaillance a posteriori est fluctuant. Ce qui est expliqué par 

l’effet dominant de la vraisemblance sur la densité a postériori, alors que l’information a 

priori a un effet mineur. De plus, vu l’incertitude de l’expert la bande [min, max] qui 

désigne les bornes supérieure et inférieur du taux de défaillance est très large (Tableau 4-

5). 

Le minimum du coût de maintenance est atteint à  𝑇∗ = 10.41 104  𝑕𝑒𝑢𝑟𝑒𝑠, avec 𝐶 𝑇∗ =

3504 $ . Il serait intéressant économiquement de considérer une périodicité de 

remplacement préventif  optimale à chaque  𝑇∗. Cependant, nous encourons le risque  de 

se baser sur un avis d’expert incertain qui peut s’avérer loin de la vraisemblance (figure 

4.3). 
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Tableau 4-5 Résultats, cas d’augmentation incertaine de taux de défaillance, vraisemblance non actualisée, avec 

0.1 < α < 0.2 

 

 

Figure 4.3 Évolution du taux de défaillance, écart-type et coût de maintenance, cas d’augmentation incertaine 

avec 0.1 < α <  0.2 
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Le tableau 4-6 résume les différentes périodicités optimales ainsi que les coûts de 

maintenance à cette périodicité en fonction de l’incertitude de l’expert: 

Tableau 4-6 Récapitulatif des stratégies optimales en fonction de l’incertitude de l’expert 

Précision Expert   𝑇∗(𝐻𝑒𝑢𝑟𝑒𝑠) × 104 𝐶 𝑇∗  ($) 

Certaine 4.97  3913 

Moyenne 5.94  3738 

Incertaine 10.41  3504 

Dans la figure 4.4, les graphiques servent à comparer les trois cas d’augmentation du taux 

de défaillance selon les différentes incertitudes de l’expert. Nous remarquons bien que la 

croissance du taux de défaillance devient plus significative avec l’augmentation de 

l’incertitude de l’expert. 

 

Figure 4.4 Comparaison du comportement du taux de défaillance suivant trois avis d’expert différents 

La figure 4.5 montre que le coût de maintenance est en accord avec l’évolution du taux 

de défaillance. Cependant, le minimum des coûts est atteint plus rapidement lorsque 

l’expert est certain. La périodicité du remplacement préventif s’éloigne lorsque l’expert 

est incertain. Nous pouvons conclure que la périodicité optimale de remplacement 

diminue avec l’augmentation de la précision de l’expert et inversement. 
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Figure 4.5 Comparaison des coûts de maintenance pour trois avis d’experts 

 

4.3.2 Cas de la vraisemblance actualisée 

Dans ce cas, le taux de défaillance a posteriori sert à actualiser la vraisemblance (les 

observations des durées de vie) dans la période suivante. Nous obtenons les résultats de 

simulation dans le cas où l’expert est certain d’une augmentation du taux de défaillance à 

chaque période avec un pourcentage compris 0 < α < 0.1. Ensuite, nous comparons ce cas 

avec le cas de la vraisemblance constante (sous-section 4.3.2). 

Le tableau 4.7, indique que le coût de maintenance minimum si nous nous basons sur les 

données de vraisemblance du taux estimé par le constructeur, se situe entre les périodes 9 

et 10. En approximant les coûts de maintenance par la fonction polyfit de MatLab, nous 

obtenons une périodicité optimale à   𝑇∗ = 9.75 104 𝑕𝑒𝑢𝑟𝑒𝑠 , avec  𝐶 𝑇∗ = 3269 $ . Si 

l’équipement tombe en défaillance avant  𝑇∗, il sera réparé minimalement. 

Dans le cas d’une actualisation de la vraisemblance, le taux de défaillance a une 

croissance plus rapide par rapport au premier cas. Parce que le nombre de défaillances 

augmente à chaque période. Cependant, l’écart-type n’est pas très affecté, ce qui est 

justifié compte tenu de l’avis certain de l’expert à propos de l’augmentation dans les deux 

cas. Le coût de maintenance par unité de temps est minimum à  𝑇∗ = 5.80 104 𝑕𝑒𝑢𝑟𝑒𝑠, 

avec 𝐶 𝑇∗ = 3557 $. Ce coût se situe entre les périodes 5 et 6. Si l’équipement tombe 

en défaillance avant  𝑇∗, il sera réparé minimalement. 
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Tableau 4-7 Résultats de simulation en cas d’augmentation sure de taux de défaillance, vraisemblance non 

actualisée, avec 0 < α < 0.1 

 

Tableau 4-8 Résultats de simulation en cas d’augmentation sure de taux de défaillance, vraisemblance 

actualisée, avec 0 < α < 0.1 

 

Nous résumons les résultats des coûts de maintenance dans le tableau 4-9 suivant : 

Tableau 4-9 Récapitulatif des stratégies optimales en fonction l’actualisation de la vraisemblance 

   𝑻∗ (𝑯𝒆𝒖𝒓𝒆𝒔)   𝑪(𝑻∗) ($) 
Vraisemblance non actualisée 9.75 × 104 3269 

Vraisemblance actualisée 5.80 × 104 3557 
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Les Figures 4.6 et 4.7 comparent respectivement, l’évolution du taux de défaillance ainsi 

que l’évolution du coût de maintenance, en supposant que les observations de 

vraisemblance de l’équipement seront actualisées ou non actualisées dans chaque 

période. Le coût minimum de maintenance  𝐶(𝑇∗), est atteint plus rapidement lorsque la 

vraisemblance est actualisée par le taux de défaillance a posteriori de la période 

précédente, la croissance du coût est plus significative (Figure 4-7). 

 

Figure 4.6 Évolution du taux de défaillance avec actualisation ou non de la vraisemblance 

 

 

Figure 4.7 Évolution du coût de maintenance dans le cas d’actualisation ou non de la vraisemblance 
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CHAPITRE 5 : CONCLUSION GÉNÉRALE 

L'utilisation des méthodes bayésiennes présente beaucoup d’avantages. En  effet, ces 

méthodes utilisent des connaissances antérieures, des avis d’experts ou des intuitions, 

exprimées sous forme de distribution de probabilité, afin de générer une nouvelle 

information. Les méthodes MCMC ont permis de simplifier les calculs lorsque la loi a 

priori est non conjuguée.  

Dans le cadre de ce mémoire, nous avons proposé une stratégie de réparation minimale 

pour un équipement. Cette stratégie intègre un taux de défaillance actualisé par une 

inférence bayésienne à chaque période. La complexité du modèle bayésien déployé nous 

a amené à appliquer  une méthode d’échantillonnage de type  MCMC. 

Ce projet de recherche, nous a permis de bien appréhender les points suivants : 

 Utiliser les statistiques bayésiennes dans le domaine de la fiabilité. 

 Avoir recours aux méthodes MCMC pour simuler des modèles statistiques 

complexes. 

 Modéliser une stratégie de maintenance initialement dédiée pour des taux de 

défaillance continus et non actualisés 

 Utiliser la simulation pour optimiser le coût total moyen d’une stratégie de 

réparation minimal. 

 Analyser les résultats de différents scénarios.  

Dans ce travail, nous avons pu intégrer le taux de défaillance actualisé pour proposer une 

stratégie de remplacement périodique avec réparation minimale en cas de défaillance et 

l’optimiser dans le cas du taux de défaillance croissant. 

Un programme écrit avec le code Matlab a été élaboré pour combiner et actualiser le taux 

de défaillance d’une période à l’autre. Le programme utilise ce taux actualisé pour 

déterminer la stratégie de remplacement optimale.  

Comme développement et complément de ce travail de recherche, nous proposons les 

perspectives de recherche suivantes : 
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 Le programme développé utilise un seul expert. C'est-à-dire les avis d’un seul 

expert sont modélisés selon une seule distribution. Si plusieurs experts sont 

disponibles, il serait intéressant de modéliser leurs avis avec plusieurs lois a priori 

et déterminer une seule distribution a posteriori pour une seule vraisemblance.  

  L’étude de la sensibilité de l’étude peut être effectuée en changeant les 

paramètres de modélisation et de simulation. 
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ANNEXES 

ANNEXE A: PROGRAMME MATLAB 

 
clear 
clc 
filename = 'TEST.xlsx'; 
Lambda_estimee = zeros(1,1); 
Error_Lambda_estimee = zeros(1,1); 
Cout_reparation_Annee = zeros(1,21); 
Cout_Reparation_cumulee = zeros(1,21); 
cout_maintenance = zeros(1,21); 

 
lambdaMin(1)= 0.0045; 
Lambda_estimee(1) = 0.005; 
lambdaMax(1) = 0.0055; 
Error_Lambda_estimee(1) = 0.0005;                                          

% Ecart-type de lambda estimée 
cout_maintenance(1) = 0; 
Cout_reparation_Annee(1) = 0; 
Temps_estime = 10000; 

 
Couts = xlsread(filename, 2, 'B16:D16'); 

 
Crm = Couts(1);                                                            

% Cout de la reparation minimale 
Crc = Couts(2);                                                            

% Cout du remplacement Préventif 
Ci = Couts(3);                                                             

% Cout d'inspection  

 
Nb_pannes_estime = Lambda_estimee * Temps_estime; 
Nb_pannes_estime_min = (Lambda_estimee *(1 - Error_Lambda_estimee))* 

Temps_estime; 
Nb_pannes_estime_max = (Lambda_estimee *(1 + Error_Lambda_estimee))* 

Temps_estime; 

 
% Lecture des données a partir du fichier données Excel 

 
Annee1 = xlsread(filename, 1, 'G2:G500');Annee2 = xlsread(filename, 1, 

'H2:H500');Annee3 = xlsread(filename, 1, 'I2:I500'); 
Annee4 = xlsread(filename, 1, 'J2:J500');Annee5 = xlsread(filename, 1, 

'K2:K500');Annee6 = xlsread(filename, 1, 'L2:L500'); 
Annee7 = xlsread(filename, 1, 'M2:M500');Annee8 = xlsread(filename, 1, 

'N2:N500');Annee9 = xlsread(filename, 1, 'O2:O500'); 
Annee10 = xlsread(filename, 1, 'P2:P500');Annee11 = xlsread(filename, 

1, 'Q2:Q500');Annee12 = xlsread(filename, 1, 'R2:R500'); 
Annee13 = xlsread(filename, 1, 'S2:S500');Annee14 = xlsread(filename, 

1, 'T2:T500');Annee15 = xlsread(filename, 1, 'U2:U500'); 
Annee16 = xlsread(filename, 1, 'V2:V500');Annee17 = xlsread(filename, 

1, 'W2:W500');Annee18 = xlsread(filename, 1, 'X2:X500'); 
Annee19 = xlsread(filename, 1, 'Y2:Y500');Annee20 = xlsread(filename, 

1, 'Z2:Z500'); 
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% Calcul du nombre de pannes par année, la somme,la somme carrée et la 

somme cumulée des durées de pannes 

 
AN = [size(Annee1,1) size(Annee2,1) size(Annee3,1) size(Annee4,1) 

size(Annee5,1) size(Annee6,1) size(Annee7,1) size(Annee8,1) 

size(Annee9,1) size(Annee10,1) size(Annee11,1) size(Annee12,1) 

size(Annee13,1) size(Annee14,1) size(Annee15,1) size(Annee16,1) 

size(Annee17,1) size(Annee18,1) size(Annee19,1) size(Annee20,1)]; 
Somme = [sum(Annee1) sum(Annee2) sum(Annee3) sum(Annee4) sum(Annee5) 

sum(Annee6) sum(Annee7) sum(Annee8) sum(Annee9) sum(Annee10) 

sum(Annee11) sum(Annee12) sum(Annee13) sum(Annee14) sum(Annee15) 

sum(Annee16) sum(Annee17) sum(Annee18) sum(Annee19) sum(Annee20)]; 
Somme_Carree = [sum(Annee1.^2) sum(Annee2.^2) sum(Annee3.^2) 

sum(Annee4.^2) sum(Annee5.^2) sum(Annee6.^2) sum(Annee7.^2) 

sum(Annee8.^2) sum(Annee9.^2) sum(Annee10.^2) sum(Annee11.^2) 

sum(Annee12.^2) sum(Annee13.^2) sum(Annee14.^2) sum(Annee15.^2) 

sum(Annee16.^2) sum(Annee17.^2) sum(Annee18.^2) sum(Annee19.^2) 

sum(Annee20.^2)];  
Somme_cumulee = cumsum(Somme);  

 
% Lecture des avis de l'expert de chaque année 

 
AV = xlsread(filename, 2, 'B2:U2'); 

 
NA = 20; 
j = 1; 
for j = 1:NA 
Avis = AV(j)     

 
% Avis,Variable représentant l'avis de l'expert: Pas d'avis(0) 

Stabilité(2) Diminution(-1) Augmentation(1)  

 
if Avis ~= 0  

 
% Lacture de la précision de l'expert pour chaque année  

 
PR = xlsread(filename, 2, 'B3:U3'); 

 
% Precision, Variable définissant la precision de l'expert: Certain (0) 

Moyennement certain(1) Pas trés certain (2) 

 
Precision = PR(j) 

 
% AugDim,Variable définissant le taux d'augmentation ou de diminution 

du taux de panne 

 
Aug_Dim = xlsread(filename, 2, 'B4:U4'); 
AugDim = Aug_Dim(j) 

 
if AugDim == 0 

 
a = xlsread(filename, 2, 'A10'); 
b = xlsread(filename, 2, 'B10');  
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elseif AugDim == 1 

 
a = xlsread(filename, 2, 'A11'); 
b = xlsread(filename, 2, 'B11'); 

 
else 

 
a = xlsread(filename, 2, 'A12'); 
b = xlsread(filename, 2, 'B12'); 
end 
end 

 
AL = random('Uniform',a,b,[1,20]); 
BE = random('Uniform',a,b,[1,20]); 

 
Alpha = AL(j) 
Beta = BE(j) 
end 

 
Nb_pannes = AN(j)     
t = Somme(j) 
s = Somme_Carree(j) 
Moy_Vrais = Nb_pannes/t 

 
% Avis de l'expert 
if Avis == 0                                                               

% Expert n'a pas d'avis 
   muu = Lambda_estimee(j)  
   sigmaa = Error_Lambda_estimee(j) 
   Precision = 5; 
   AugDim = 10; 
elseif Avis == -1                                                         

% Expert prévoit une diminution 
if Precision == 0  
                 muu = (1-Alpha)*Lambda_estimee(j) 
sigmaa = (1-Beta)*Error_Lambda_estimee(j) 
elseif Precision == 1 
muu = (1-Alpha)*Lambda_estimee(j) 
sigmaa = Error_Lambda_estimee(j) 
else 
muu = (1-Alpha)*Lambda_estimee(j) 
sigmaa = (1+Beta)*Error_Lambda_estimee(j) 
end 
end 
elseif Avis == 1                                                      % 

Expert prévoit une augmentation 
if Precision == 0  
                 muu = (1+Alpha)*Lambda_estimee(j) 
                 sigmaa = (1-Beta)*Error_Lambda_estimee(j) 
elseif Precision == 1 
muu = (1+Alpha)*Lambda_estimee(j) 
sigmaa = Error_Lambda_estimee(j) 
else 
muu = (1+Alpha)*Lambda_estimee(j) 
sigmaa = (1+Beta)*Error_Lambda_estimee(j) 
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end 
end 
elseif Avis == 2                                                  % 

Expert prévoit une stabilisation 
if Precision == 0  
                 muu = Lambda_estimee(j) 
                 sigmaa = (1-Beta)*Error_Lambda_estimee(j) 
elseif Precision == 1 
                 muu = Lambda_estimee(j) 
                 sigmaa = Error_Lambda_estimee(j) 
else 
                 muu = Lambda_estimee(j) 
                 sigmaa = (1+Beta)*Error_Lambda_estimee(j) 
end 
end 
end 
end 
end 
end 

 
% Metropolis-Hastings  

 
A = '((lambda.^m))*(exp(-sum(t)*lambda))*(1/(sigmaa*sqrt(2*pi))*(exp(-

((lambda-muu).^2)/(2*(sigmaa.^2)))))'; 

 
posteriori = inline(A,'lambda','m','t','muu','sigmaa'); 

 
% Évaluation avec la distribution normale. 

 
B = '(1/(sigma*sqrt(2*pi)))*exp(-0.5*((lambda-mu)/sigma).^2)'; 

 
norm = inline(B, 'lambda','mu','sigma'); 

 
% Génération des observations. 

 
m = AN(j);                                                                 

% Nombre d'observations m 

 
% Génération de N échantillonnage. 

 
% Les parametres 

 
N = 2000;                                                                 

% Nombre d'itération N 
sigma = 0.001; 
lambda = zeros(1,N); 

 
% génération de la valeur initiale de lambda 

 
lambdamin = 0; 
lambdamax = 0.02; 
seed = 1; rand('state' , seed); randn('state' , seed); 
lambda(1) = Lambda_estimee(j); 
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%% Début de l'échantillonnage 
i = 1; 
while i < N 
    i = i + 1; 

 
% Génération un point a partir de la distribution proposée 

 
theta = lambda(i-1) + sigma*randn(1); 

 
% Calcul du ratio d'acceptation 

 
    alpha = min([1,(posteriori(theta,m,t,muu,sigmaa)*norm(lambda(i-

1),theta,sigma))/((posteriori(lambda(i-

1),m,t,muu,sigmaa)*norm(theta,lambda(i-1),sigma)))]); 

 
% Génération d'une loi uniforme pour la comparaison 

 
u = rand; 

 
if u <= alpha 

 
        lambda(i) = theta; 
else 
        lambda(i) = lambda(i-1); 

 
end 

 
    lambda_Min = min(lambda); 
    Moy_lambda = mean(lambda); 
lambda_Max = max(lambda); 
    Et_lambda = std(lambda); 

 
end 

 
Cout_Reparation = (Lambda_estimee(j)*Somme(j))*Crm; 

 
Cout_reparation_Annee(j) = Cout_Reparation; 

 
Cout_Reparation_cumulee = cumsum(Cout_reparation_Annee); 

 
Cout_total_Moyen = (Crc + 

Cout_Reparation_cumulee(j)+(j*Ci))/Somme_cumulee(j)  

 
%+(Lambda_estimee(j)*(Somme_cumulee(NA)-Somme_cumulee(j))*Crm)) 
   Resultats = {'Année', 'Taux de panne Vrais×10^-3','Avis 

Expert','Precision Expert','AugDim','Taux de panne×10^-3','Ecart-

type×10^-3','cout Total(K$)'; j Moy_Vrais*10^3 Avis Precision AugDim 

Moy_lambda*10^3 Et_lambda*10^3 Cout_total_Moyen} 
   Matt(j,:) = [j Moy_Vrais*10^-3 Avis Precision AugDim Moy_lambda*10^-

3 Et_lambda*10^-3 Cout_total_Moyen]; 

 
%% Affichage les resultats 
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figure(j); clf; 
subplot(13,1,7:8); 
nbins = 100; 
lambdabins = linspace(lambdamin,lambdamax,nbins); 
counts = hist(lambda, lambdabins); 
bar(lambdabins, counts/sum(counts), 'k'); 
xlim([lambdamin lambdamax]); 
xlabel('\lambda'); ylabel ('a posteriori'); 

 
% Affichage de l'a posteriori théorique 

 
D = ((lambdabins.^m)).*(exp(-

sum(t).*lambdabins)).*(1/(sigmaa*sqrt(2*pi)).*(exp(-((lambdabins-

muu).^2)/(2*(sigmaa.^2))))); 
hold on; 
plot(lambdabins, D/sum(D), 'r--', 'lineWidth', 3); 
set(gca, 'Ytick', []); 

 
% Affichage de la vraisemblance 

 
VR = ((lambdabins.^m)).*(exp(-sum(t).*lambdabins)); 
subplot(13,1,1:2) 
plot(lambdabins, VR, '.-.', 'lineWidth', 3) 

 
% Affichage de la loi Normale ( A priori)  
R = (1/(sigmaa*sqrt(2*pi)).*(exp(-((lambdabins-

muu).^2)/(2*(sigmaa.^2))))); 
subplot(13,1,4:5); 
plot(lambdabins, R, 'g--', 'lineWidth', 3) 

 
% Affichage de l'historique d'échantillonnage 

 
subplot(13,1,10:13) 
stairs(lambda, 1:N, 'k-'); 
ylabel ('i'); xlabel('\lambda'); 
set(gca, 'Ydir' , 'reverse'); 
xlim([lambdamin lambdamax]); 

 
file = 'C:\Users\Mehdi\Desktop\Resultats'; 
xlswrite(file, {'Année','Taux de panne Vrais×10^-3','Avis 

Expert','Precision Expert','AugDim','Taux de panne×10^-3','Ecart-

type×10^-3','cout Total(K$)'}, 1,'A1:H1'); 
xlswrite(file, {0 Lambda_estimee(1)*10^-3 'SO''SO''SO''SO''SO' 0}, 1, 

'A2:H2');   
xlswrite(file,Matt, 1, 'A3:H22'); 
%Pause = inputdlg('Entrer pour continuer:', '1', 1); 
j = j + 1; 

 
lambdaMin(j) = lambda_Min 
Lambda_estimee(j) = Moy_lambda 
lambdaMax(j) = lambda_Max 
Error_Lambda_estimee(j) = Et_lambda 
cout_maintenance(j) = Cout_total_Moyen 
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end 

 
% Tracer l'évolution du taux de panne et de son écart-type et le cout 

de maintenance 

 
figure(30); 
S(1) = subplot(3,1,1); 
x = linspace(0,NA,21); 
plot(x,Lambda_estimee) 
hold on 
plot(x,lambdaMin,'k--') 
hold on 
plot(x, lambdaMax,'r--') 
S(2) = subplot(3,1,2); 
plot(x,Error_Lambda_estimee) 
S(3)= subplot(3,1,3); 
plot(x,cout_maintenance) 
ylabel('K$') 

 
title(S(1),'Evolution du taux de panne') 
title(S(2),'Evolution de l''ecart type') 
title(S(3),'Evolution du cout de maintenance moyen') 

 

 

 

 

 

 

 

 


