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RESUME

Le galop en translation et en torsion d’en cylindres différentes de sections a de faible valeurs du
nombre de Reynolds est étudié par le biais de simulations bidimensionnelles. Une formulation par
éléments finis spécialement congue pour les interactions fluide-structure été utilisée. Les équations
de Navier-Stokes pour un écoulement de fluide incompressible et les équations du mouvement de le
structure sont résolues de maniére fortement couplé. La performance d’un critere quasi-stationnaire
visant a prédire le galop est également évaluée sur la base de simulations autour de cylindres fixes
pour différents angles d’attaque. L’ amortissement et I’inertie induits par I’écoulement sont calculée
a partir d’oscillations forcées en rotation. Enfin, la réponse angulaire libre de cylindres rigides
montés sur ressorts en torsion est obtenue a partir de simulations d’interaction fluide-structure.
Les résultats pour le galop en translation montrent que les prédictions obtenu aes partir du critere
quasi-stationnaire sont en tres bon accord avec les résultats d’interactions fluide-structure directs.
Les résultats en de torsion montrent par contre que le modéle quasi-stationnaire surprédit les zones

d’instabilités dynamique.
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ABSTRACT

The occurrence of translational and torsional galloping for a square cylinder and of a gene-
ric bundle are assessed at low Reynolds number through two-dimensional simulations. A finite
element formulation specifically designed for fluid-structure interactions has been used. Incom-
pressible Navier-Stokes equations for fluid flow and structural motion equations are solved in a
fully coupled manner. A quasi-steady criterion for predicting galloping is also evaluated based on
flow simulations around fixed cylinders for various angles of attack. The flow-induced damping and
inertia coefficients of torsional galloping are calculated from a forced rotational oscillation model.
Finally, the free angular response of rigid cylinders mounted in cross-flow are obtained from fully
coupled fluid-structure simulations. Results for the translational motion of a bundle show that the
prediction of quasi-steady criterion are in a very good agreement with direct fluid structure interac-
tion results. Results for the torsional case show that fixed and forced rotations of the cylinders are

able to predict quite well the static deflection angles and instability ranges respectively.
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CHAPITRE 1

INTRODUCTION

1.1 Background and Motivation

The study of fluid-induced vibrations of a structure is important in many engineering fields such
as aeronautical, offshore, civil and mechanical engineering. Two important fluid-induced vibrations
which play a critical roles in designing the structures placed in fluid flows, are Vortex-Induced Vi-
bration (VIV) and galloping Fig.([[.I). Both Mechanisms can lead to high oscillation amplitudes
which can result in significant damage to the structures.

VIV results from the two unstable separated shear layers which form discrete vortices lead to os-

Figure 1.1 Marine structures in the oil industry [1]]

cillatory pressure loading on the back of the structure. When the vortex shedding frequency is close
to the natural frequency of the structure, the resulting vibration are termed VIV.
Galloping is caused by a coupling between the flow-induced forces acting on a structure and the

structural vibrations. If the oscillating fluid force tends to increase vibrations, the structure is ae-



rodynamically unstable and very large-amplitude vibration can result. Therefore, galloping is a
velocity dependent and damping controlled instability which can introduce high-amplitude and
low-frequency oscillations. Wind-induced galloping of buildings, bridges and cables has been re-
ported as well as, ocean-current-induced galloping of marine structures such as box piles, cables
and riser towers.
Galloping can cause severe damages to structures. The most famous occurrence was the disastrous
oscillation and collapse of the Tacoma Narrows Bridge on 7 November 1940 in 68 Km/h wind
Fig.([I.2)). As illustrated in the figure, the torsional motion of the bridge was very large. Rotational
vibrations reached nearly +35 degrees of amplitude which ultimately lead to collapse [2]]. After the
Tacoma Narrows Bridge collapse, one of the main design criteria for all structures, which are ex-
posed external fluid flow, has required considering the fluid-induced instabilities such as galloping.
For transverse galloping, the transverse oscillation structure and the fluid flow motion cause a
variation of the effective angle of attack. Thus, the oscillation of the structure changes the angle
of attack and causes variation of the aerodynamic forces acting on the structure. Therefore, the
variation of flow-induced forces causes variation in the response of the structure. The galloping in-
stability depends on different factors, such as the shape of the structure, the Reynolds number and
the angle of attack. Hence, investigating galloping is difficult particularly in the case of torsional
galloping. Quasi-steady models work well at predicting transverse galloping but are not appropriate

for torsional galloping.

1.2 Outline of Thesis

The goal of this research is the determination of the flow-induced coefficients and stability map
of transverse and torsional galloping phenomenon by using the finite element method. In this work,
we will investigate the validity of quasi-steady criterion for the transverse and torsional galloping

of different geometrical sections of a oscillating structure.

1.3 Thesis organization

This thesis is structured in five chapters, starting with details that led to the motivation of the
study and the goals in chapter 1. Chapter 2 presents the background of the galloping modeling
and the literature review, along with descriptions of the theories which support investigation of
the research areas. In chapter 3, the translational galloping of structure with quasi-steady criterion
and direct fluid structure interaction are investigated. Chapter 4 presents the torsional galloping
model. We will discuss results from the quasi-steady, forced oscillation and direct fluid-structure

interaction simulations. The thesis ends by stating the outcomes of this study in chapter 5 and



(b)

Figure 1.2 Figures of the galloping Tacoma Narrows bridge a) before collapse b) after collapse.

proposition for further research possibilities.



CHAPITRE 2

MATHEMATICAL MODELING OF GALLOPING

In the absence of any external forces, the oscillations of a structure decay with time because
of the inherent damping which dissipates the oscillation energy. When the structure is exposed to
an external fluid flow, aerodynamic forces arise and influence the dynamics of oscillations. In the
study of the interaction between flows and structures, the influence of the motion of structures on
flow-induced forces has to be considered. Galloping is the instability caused by the variation of ae-
rodynamic forces. Because of the high non-linearity of the galloping phenomenon, and particularly
rotational galloping, the simulation of such complicated instability is resource demanding. Thus,
we are interested in simulating it by a numerical method which provides for investigation of many
parameters effecting galloping with reasonable simulation cost.

This chapter presents a literature review the existing simulation techniques to deal with galloping

phenomenon and also numerical approaches to solve obtained models.

2.1 Mathematical modeling

Den Hartog (1956) introduced a very simple criterion for predicting the occurrence of trans-
verse galloping based on the quasi-steady theory which is an approximation to the analysis of the
galloping problems [3]. The aerodynamic forces acting on the structure are assumed to be compu-
ted by considering the instantaneous relative velocity. This theory assumes that the fluid forces are

those acting on a stationary model placed at various angles and it is a quasi-steady model [4].

2.1.1 Translational galloping

The simplest possible explanation of the galloping mechanism is based on the Den Hartog
assumption. Fig.([2.1) shows a body in a steady flow of velocity V. In this model, the body is
assumed to have only translation motion transverse to the flow. The vertical direction y is defined
positive downwards and the body velocity is u = y. Hence, the angle of attack of the flow relative
to the motion model is :

a=tan"'(y/V) (2.1)



Figure 2.1 one degree-of-freedom galloping model

The lift and drag forces Fy, Fp are in the directions illustrated in figure (2.1). Thus, the fluid force
in the vertical direction :
F, = —Fjcosa — Fpsino (2.2)

The variation of the fluid force with angle of attack dF,/da determines the stability conditions
of the model. Thus, increasing the body velocity Ay > 0 results in At > 0. If dF,/do < 0 with
Ao > 0, then AF, < 0 and is directed upwards and opposite to the direction of Ay, thus it reduces
the oscillation and the model will be stable. The model is unstable if : dF, /doc > 0.
It means that if the model is unstable, Ay and AFy point in the same direction.
Using equation (2.2), dF,/da becomes :

dF, dF, dF

d—(;: (FL_d_olc)) sina+(—d—;—FD)cosa (2.3)
For small enough angles of attack o which result from the small enough velocity y, equation (2.3)

can be written as :
dF _

do

dFy
do

—( + Fp) (2.4)

Thus, the instability criterion based on the Den Hartog theory, is :

dFy,

(w +FD) <0 (2.5)

The lift and drag forces are respectively defined as :

1 1
= 5CLpVZDl, Fp= ECDpV2D1 (2.6)



where Cr,Cp are the lift and drag coefficients respectively, p fluid density, D is the dimension of

1
the body and [ is the length of body. Similarly, by considering F}, = ECypszl and substituting in

equation (2.3) yields :
JaC,  JCL

%_—W—CD>O:> %+CD<O (2.7)
To use equation (2.7) for assessing the stability map of a structure, two aspects should be consi-
dered. First, obviously Cp and Cy should be known as a function of ¢. This data can be measured
from experiments or from the monitoring of real structures [5-10]. Next, conditions for which the
quasi-steady assumption is valid, should be determined. Obviously, the quasi-steady assumption is
valid in low-velocity flows, however from an engineering point of view the low-velocity should be
quantified. Two different criteria have been introduced for the validity of the quasi-steady assump-
tion by Fung [11] and Blevins [4]].
Based on the Fung criteria, any disturbance imposed on the oscillating body at a particular point
must be swept downstream far enough in a period of time so that the disturbance has no effect on
the flow around the body. If the velocity of disturbance is equal to the free-stream velocity V, after a
period of time the disturbance must be at a distance of V/ f;,, where f;, is the frequency of the body
oscillation. Fung has suggested that this distance should be at least 10 times the body dimension
(D), or V/ f,D > 10, which is called reduced velocity.
Based on the Blevins criteria, the frequency of the fluid force f; should be larger than the frequency

of oscillation body f,,, fs > f,. This criterion is satisfied at high reduced velocity when :

14
JaD

> 20, (2.8)

This criterion is easily met in many cases which are prone to galloping instabilities [2].

Bearman et al. [12] studied the transverse galloping of a square prism with interference of vortex
shedding. They concluded that it is safer to use the quasi-steady theory if the reduced velocity is
higher that 30 : V/ f,D > 30.

Van Oudheusden [13] studied the second prerequisite for quasi-steady validation. They found that
it is essential to define a steady situation for oscillation structure so that it is aerodynamically equal
with the unsteady situation. This can be satisfied by defining a proper reference frame.

To obtain a very useful non-dimensional critical flow velocity for galloping, the oscillation body is

assumed as a spring-supported, damped modeled satisfying the equation of motion :
. 1 2
my+cy+ky =F =5 yoV°D (2.9)

in which m is the mass per unit length, ¢ and k the damping and stiffness coefficients per unit length.

Cy can be expanded in a Taylor series :



dC
Gy =Cla=o+(F la=0) et + .. (2.10)

By neglecting C, at equilibrium (& = 0), and substituting & = y/V in the above relation, equation

(2.9) can be rewritten as :

) L)

By substituting c¢/m = 2& @, k/m = ®? in equation (2.11), we obtain :

VD dC
—fmw 8—(;} y+ o2y =0 (2.12)
n

J+ 2w, {5

where & is the damping ratio and @ the natural frequency. The term in brackets is the net damping
factor. It is the sum of the structural damping and fluid-induced damping. Instability occur if the
net damping becomes negative. Thus, the threshold of galloping when the velocity is equal to
Verie = 4m, & /[pD(JCy/d )] for reduced velocity is :

Vcri[ 4 m(27‘£§ )

f.D ~ (3C,/da) pD? 2.13)

The linear theory has been used to predict the critical velocity at which galloping occurs. The
question arises as to whether this critical velocity also applies to real engineering structures which
exhibit nonlinear behavior. In the next section, the effects of non-linearity on the modeling of

galloping are discussed.

Nonlinear effects

In this section, we present the analysis and results that have been obtained by considering the
nonlinear terms.

By defining the following nondimensional parameters :

y Vv pD?> c
Y==1t=0t,U=—n="—,0"=—,20 = — 2.14
D ) T ) U a)D ) n 2m 9 m7 é m7 ( )
equation (2.9) can be written in dimensionless form :
Y +2EY +Y =nUC,, (2.15)

where the n is a mass related non-dimensional parameter and the derivation of equation (2.15) are
taken with respect to T = .
For the square-section model shown of Fig. ( , Smith [[14] obtained the Cy as a function of



o from experimental measurements done in a wind tunnel. Parkinson and Smith [[15] achieved a

D

-,
L _
F-.rr II' e
- - . [k 4 ~
-
//
l =0

Figure 2.2 A square section model in fluid flow

polynomial approximation based on experimental data :

C,=A (dyT/df> _B (dyT/ch23+C(dy‘§dt>5 _P gdyédzy
4(0)-#(6) +e(6) -2(0)

now equation (2.15) yields :

oy 26Ny (B Yy (C\ys (L2 y
prrem|(0-2)r- (2)re () (2)7]. en

where the linear damping the first term of the right-hand side of the equation and the other terms

(2.16)

of the right-hand side are the higher order velocity dependent terms. However, it is obvious from

equation (2.17) that the critical velocity is :

_2%

Uer =2

(2.18)

This threshold of galloping is equivalent to the one obtained by linear theory.
The solution for equation (2.17) is not unique and researchers [2, [15, [16]] have used different me-

thods to obtain its solutions.

The sectional shape effects

The effects of sectional shape on galloping cannot be neglected because of the effects of body
shape on the separation points. Flow separation leads to high pressure on the surface of the body.
Thus, the separated flow results in a negative slope of the lift coefficient (dCp/da < 0) [17].



However, if there is no afterbody (a part of body in downstream of flow where separation points
are), galloping cannot occur [2]]. Therefore, in most important shape factor for the galloping is the
size of the body (d) relative to its height (k) (d/h). Many researchers [18-21] have investigated
the effects of the shape ratio on galloping. Based on these investigations, (d/h) must be large
enough for galloping to occur, but not too large to have flow re-attachment on the surface of the
structure see Fig.([2.3). Tamura and Itoh [22] numerically studied the effect of shape ratio on the

(a) Square cylinder (b) Rectangular cylinder

Figure 2.3 Flow separation on bodies : smooth flow (-), turbulent flow (——) [17]

transverse motion. The critical depth ratio from their work is smaller than the experimental values.
Most studies have investigated the effects of aspect ratio on the translational galloping. Thus, the

studying of effects of aspect ratio on torsional galloping is an open research area.

2.1.2 Torsional galloping

If the section of the oscillating structure undergoes a rotational motion because of the flow
induced forces (see Fig. 1.2) galloping is labeled as torsional galloping. Most galloping phenomena
occurring in the real world and experimental investigations can be termed torsional galloping.

The analysis of torsional galloping is more challenging than that of the transverse galloping because
the (i) aerodynamic forces depend on both instantaneous angle of attack and angular velocity, and
(ii) also because the relative flow velocity varies along the section and results in a varying angle of
attack along the section. While translational galloping can most of the time be adequately defined
by a quasi-steady approach, it is not as straightforward an issue for torsional galloping. Another
aspect is the fact the phase difference between the aerodynamic forces acting on the structure and
the motion of the structure itself varies with the flow velocity which constitutes another problem
in the analysis of the torsional galloping. There is no fully satisfactory solutions to deal with these

problems and thus modeling of torsional galloping is an open research area.
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Linear quasi-steady analysis

The first attempt to analyze torsional galloping have been adapted from the analysis used for
translational to torsional galloping. Fig. ( [2.4) shows a very simple system related to torsional

galloping and in this system the hinge point is not at the geometric center.

Figure 2.4 Schematic of rectangular section in torsional galloping [2]

In torsional galloping, the angle of attack varies along the section and with the angular velocity.
Thus, an approximation is needed for determining the variation of the angle of attack. Therefore,
a reference radius r, on the rotational section is defined such that at an angle 7, the translational
velocity 7,0 is unique and presents the motion of whole section see Fig. ( [2,4]. A reference

.0 r,,l’}siny,,

r,_!‘i‘cc:sy,_ﬁj V—r, {;cnsy,

v

Figure 2.5 Torsional galloping model [2]]
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angle of attack ¢, induced by 6, and a reference relative velocity are :

o = tan”! (M> (2.19)
V —r.8cosy,
Vrzel = (r,é sin %)2 + (V —rr0cos %)2 (2.20)

For small enough o (@ < 1), equations (2.19) and (2.20) are approximately equivalent with :

r0siny, RO
o0~ ——=0—— 221
v v (2.21)
Viet =V (2.22)

where R = r,sin; is the characteristic radius. Since the definition of r, is not clear and 7%, depends
on 0, equation (2.21) is nonlinear. For a rectangular section rotating about its centroid, Nakamura
and Mizota [20] defined R to be half the length of the rectangle. Consequently, & corresponds to
the instantaneous angle of attack at the leading edge. Van Oudheusden [[13} 23] have considered the
simple system shown in the Fig.([2.6). In this model, the depth of the section d is small relative to
the distance from hinge point thus that r. ~ R.

The equation governing the torsional motion of the section is :

Figure 2.6 Schematic of van Oudheusden model [23]

Ip0 +co0+kob =M (2.23)
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where Iy is the mass moment of inertia of the section, cg and kg are the torsional damping and

stiffness coefficients respectively and M the moment and defined as :
1
M= zpVZhZCM (2.24)

where Cys is the moment coefficient and 4 is a characteristic length. As for the translational case,
the Cjs can be expanded in a Taylor series :
dCy

Cut = Cutla—o+ (5" lao)or + .. (2.25)

By neglecting the first term of equation (2.25), and substituting equation (2.21) in the above equa-
tion and by defining Cg /Iy = 2Eg@g and kg /Ig = a)g, equation (2.25) yields :

O+ (2 — 6 —p———2106=0 2.26
+ 59(09"‘2[) I da + 2p Iy da ( )

1 VRK? 8CM] : [ , 1 V2h2acy
This equation has two type of instabilities ; first, the static instability or divergence happens when
the stiffness term, sum of the structure and the flow-induced torsional stiffness, goes to zero :
1 aC,
2 h2 M

_pV

> > ko (2.27)

The second instability is the torsional galloping which occurs when the damping term becomes
negative. The torsional galloping would happen if dCy/da < 0. Thus, the critical velocity for
threshold of the torsional galloping is :

Verie _ 419(278p) ,dCu

foh ph3R /aa’

(2.28)

Investigations [20, 24, [25] on criteria for the threshold of torsional galloping based on equation
(2.28) illustrates that it is not reliable. Two drawbacks exist in the theory : "first, approximation
the effect of torsional velocity on the angle of attack with a single characteristic point is not viable
for complex sections" and second, the torsional motion of the section is sensitive to the vorticity
produced by the rotating section while the quasi-steady theory cannot account the related unsteady
vortex forces [4, 26]. Therefore, the quasi-steady theory is questionable for torsional galloping and
even experimental works which have been done to support using the quasi-steady theory donot

agree.
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Nonlinear quasi-steady effects

Because torsional galloping is an unsteady phenomenon, the quasi-steady theory approxima-
tions for this phenomenon are in poor agreement with experimental data. In the quasi-steady theory
the instantaneous moment coefficient, which depends only on the instantaneous position and angu-
lar velocity of the structure, is considered and no memory effects is included. Nakamura and his

collaborations [20, 27]] consider the moment by incorporating the fluid memory effects :
M(6) =Mg6 +M,6 (2.29)

where My = dM /90 is the "steady aerodynamic torsional moment derivative" and My = dM /9
is the "quasi-steady damping derivative". The Cge "% and Cée’i% present the phase correction of

quasi-steady responses, thus equation (2.29) yields :
M(6) = Coe " Mg8 +Cye %M, 6 (2.30)

where ¢g, ¢4 are phase delays and overbar variables are quasi-steady values. After substituting and

simplifications, the following equation is obtained :
—MQ' = — _9+ lim (Sil’l(Pg/(D)Mg, (2.31)
o—0

As can be seen in equation (2.31), the stiffness term is now incorporated in the flow-induced dam-
ping term. From a physical point of view, equation (2.31) shows that the phase-lag-related damping
is associated to the time needed for the viscous flow to adjust to position changes of the structure.
The second term of equation (2.31) demonstrates that the unsteady effects can not be neglected.
In order to use the quasi-steady theory to analyze torsional galloping properly, the phase delay
needs to be considered. However, there is no reliable tool to predict the phase delay. Nakamura and
Mizota [20] experimentally measured the M, for different aspect ratios. Their results showed that
quasi-steady criterion dCys/d o < 0 for torsional galloping is valid for small aspect ratios (d/h=1,2
) but not for higher ratios. Investigations [4} 20, 27, 28] on the quasi-steady theory show that the
unsteady fluid dynamics theory is essential to the analysis of torsional galloping. Since, modelling
and measurement of unsteady effects in theoretical and experimental investigations are difficult and

expensive, numerical analysis a viable alternative for simulation of torsional galloping.
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2.2 Multi-degree-of-freedom galloping

Most engineering structures can simultaneously translate and rotate. Galloping has a sporadic
nature and is a multi-degree-of-freedom phenomenon in the real world. Thus, the theoretical and
experimental works [4} 29-36] have been performed to investigate multidegrees-of-freedom gallo-
ping.

Two-degree-of-freedom studies on galloping have been performed by combining the transverse and
rotational galloping. Fig.( shows a simple model which translates vertically and rotates. The
springs are fixed to the structure at the elastic axis which does not coincide with the inertial axis.

Thus, the equations for the two-degree-of-freedom model shown in Fig.(2.7) are as follows :

Figure 2.7 A simple two-degree-of-freedom model [4]].

) 1
my +2m&y @,y + 8.0 + kyy = F, = EpszCy, (2.32)

) . 1
190 + 2190 + Sy i+ kg0 =M = E,oVZDCM, (2.33)

where the mass per unit length, mass moment of inertia and the S, are defined as :

m= [ wagan, 1o= [ (+nPuatan, S.= [ Cudgan.
A A A

where A is the area of the section, u is the density of the material of the section, { and n are

coordinates fixed to the section.
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The angle of attack according for the quasi-steady theory for small amplitudes is :

rré y
=0—-—+= 2.34
07 v +V (2.34)

Based on this model, the two-degree-of-freedom motion is aerodynamically coupled through the
angle of attack and S,. Linear analysis of equations (2.32) and (2.33) yields, the minimum flow
velocity for the threshold of galloping as :

—4m§ya)y—4b%lg Eg g
pD(r, b2+ 1) (b;DICy; [de—ICy /I )

74b%m§ya)y741959(09 (235)
pD(r,1b1)(—b10C,/d0+DICy [IG)

V = min

where b1 and b2 are defined as :

2 2
b _&—wl b _&—wZ

Y e—0? P ol —w?
y 1 6 Wy 1

1/2
o of + 0F + (0] + ©F)* — 407 05 (1 — 83 /I peram) / 236
12 2(1—82/Igm) '

Equation (2.36) shows that, when the inertia coupling Sy decreases, b1 and b, become close to zero.
Thus, equation (2.35) approaches the individual flow velocities for galloping.

Blevins and Iwan [37] have modeled the two-degree-of-freedom motion by considering that the
inertial coupling is zero (Sy) from the beginning. They approximated the force and moment coeffi-
cients as polynomial functions of o ; Cy, = 0.6560 — 7.83a and Cyy = —0.105a 4 9.340>. They
found that around the wy/®, ~ 1, transverse and torsional motions are strongly coupled otherwise
the motion is predominately transverse and the amplitude of motion is in agreement with the indi-
vidual translational motion.

The poor performance of the quasi-steady theory for the torsional galloping and the need to consi-
der coupling of translational and torsional motion are strong motivation to develop a method for

simulating multi-degree-of-freedom in galloping.

2.3 Numerical simulation

Numerical simulations provide a possibility to incorporate more parameters that could influence
galloping. Many numerical studies [[17, 22| 38-43]] have been performed. However only a few of
them have investigated torsional galloping.

The governing equations for the motion of a rigid body in a laminar flow are the incompressible
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Navier-Stokes equations :
V.V=0 (2.37)
oV

1
- V)V=—-VP V> 2.
at+07)v 5 +0V2V (2.38)

where V is the fluid velocity vector, p is the fluid density, P is the pressure and v is the kinematic
viscosity of the fluid.
The following equation is used for the motion of a rigid body :

MX+CX+KX=F (2.39)

where the M, C, K respectively are the mass, damping and stiffness matrices, and F is the vector
of external forces and moment. Also, X is the vector of translational displacements in the x and y
directions and 6@ of rotational displacement.

By considering the Navier-Stokes equations for fluid and structural motion equation, we can nu-
merically investigate cases leading to galloping. If the galloping conditions are met, the different
parameters in design process can be adjusted to protect against damages caused by galloping.
Tamura and Itoh [22] investigated the critical section of a rectangular cylinder for translational gal-
loping. They used a finite difference method and found that for small aspect ratios flow-induced
forces are overestimated compared to the experimental results.

Li et al. [39] used a moving frame which is fixed on the rigid body to derive a formulation go-
verning fluid-structure interactions. Then, they applied their formulation to rectangular bodies at
Re =250 under forced and free motions which demonstrate the torsional galloping.

Robertson et al. [40] used the quasi-steady theory to determine under which conditions rectangu-
lar structures undergo translational and torsional galloping. Their results show that the quasi-steady
criterion performs well at predicting the threshold of both translational and torsional galloping of
rectangular sections.

Joly et al. used a 2D finite element method to analyze the translational galloping of square cylin-
ders at low Reynolds numbers. Their model predicts the threshold of translational galloping and its
amplitude at high values of mass ratio. However, their quasi-steady model performed poorly at low
values of mass ratio.

In this work, we will use a 2D finite element method to analyze the galloping of arbitrary sections.
The flow around the structure is considered laminar and incompressible fluid and the solid is trea-
ted as a rigid body. A fully coupled formulation using Navier-Stokes equations and the equation of
structure is used in this study.

The fundamental basis of almost all CFD problems is the Navier-Stokes equations which are spatial

and time dependent. The discretization process is concerned with the transformation of continuous
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partial differential equations into discrete equations which are appropriate for numerical computa-

tions. In this section, we briefly present the discretization methods for spatial and time.

2.3.1 Spatial discretization

Finite Difference Method (FDM), Finite Volume Method (FVM) and Finite Element Method

(FEM) are common spatial discretization methods. Among these numerical methods, the FEM is
preferable in this study owing to the ability of the FEM to handle complex geometries and defor-
ming boundaries as well as its flexibility in meshing. Our approach uses the FEM code CADYF
that has been developed in the lab of Professor Pelletier.
The FEM is a numerical approach which divides a very complicated domain into small elements.
The dependent variable for this system are velocity and pressure for the flow and displacements
for the structure. The computational domain is decomposed into N, elements with N, nodes for
velocity, Nj, nodes for pressure and N, for the displacement. The solution is approximated by using
the FEM method for each element as :

Ny
U uy = Z uiN;'
i=1

Nl’
pprp= Y, piN; (2.40)
i=1

XX = % xiN?
i=1

where u;, p; and x; are the velocity, pressure and displacement unknowns at node i and N}, N,P and
N are the interpolation functions for the velocity, pressure and displacement respectively.
In the weak form of the Galerkin approach, the test and interpolation functions are the same and
there is no equation for the pressure. Several techniques can be used to relate the velocity to the
pressure such as the mixed formulation, Uzawa, Penalisation and Augmented Lagrangian Method
(ALM). We will use the mixed formulation due to its optimal convergence rate [44]].
Discretization is the first step in the procedure of finite element analysis. High accurate results can
obtain by utilizing proper discretization techniques and interpolation functions. Discretization can
be divided into structured and unstructured techniques. Among them, the unstructured mesh is more
appropriate for this study due to its better adaptability for problems with complex geometries.
Several interpolation functions are appropriate for this study such as linear, quadratic which are
adaptable for P; — P; and P, — P; elements, respectively. The interpolation function is chosen so that

it should satisfy the accuracy level and meet computational cost criteria. The P; — P; element has 3
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nodes for velocity and 3 nodes for pressure Fig. ([2.8)). The velocity and pressure approximations

are linear and continuous. However, this element does not satisfy stability condition. The P> — P

\J S

Nodes for velocity Nodes for pressure
and displacement

Figure 2.8 P, — P, Element [44]

element has 6 nodes for velocity and 3 nodes for pressure Fig.(|2.9). The velocity approximation
is quadratic and continuous and pressure approximation is linear and continuous. Hence, the stable
Taylor-Hood P> — P element is used in this study, for the spatial discretization of the velocity u and

pressure p.

R Ry Ny

Nodes for velocity Nodes for pressure
and displacement

Figure 2.9 Taylor-Hood Element [44]]
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2.3.2 Time discretization

For many years time integration methods have been intensively investigated for unsteady flow
fields which are commonly encountered in engineering applications. Time integration schemes are
chosen based on their stability, accuracy and computational cost.

Explicit time integrators are conditionally stable. The time stepsize required for stability is usually
much smaller than what is required to get to an acceptable level of accuracy. Explicit schemes are
often time consuming for stiff problems [45]] while implicit schemes are stable and robust. The time
stepsize for implicit schemes is mostly determined based on accuracy considerations and much less
restricted by numerical stability requirements. The investigation of phenomena, which may lead
to galloping instabilities, needs to use implicit time integrators. Furthermore, the computational
efficiency of high-order methods is a strong incentive towards the use of higher order (i.e. higher
than 2) time integrators. Second-order time integrators are widely used for large scale engineering
computations while high-order methods are less often used due to implementation complexity [46].
The one-step multistage Implicit Runge-Kutta (IRK) schemes have been used in flow simulations :
Etienne and collaborators [47]] have studied Crank-Nicolson, the 1-, 2- and 3-level Radau ITA IRKSs
for ALE formulation of incompressible flows. Charlot and collaborators [48]] have used IRK32 and
IRKS3 for free-surface flow.

Multistep implicit Backward Difference Formulas (BDF) is another time integration family that is
widely used in the computation of large-scale stiff engineering problems [46] because it possesses
stiff decay. Although first-order (BDF1) and second-order (BDF2) backwards difference schemes
are unconditionally stable, higher-order multistep BDF schemes lose stability for problems for
which eigenvalues approach the imaginary axis. Fortunately, the unstable region of the BDF3 is
very small. Therefore this scheme can be successfully applied for many unsteady flow computations
[49]].

Jothiprasad and collaborators have compared a fourth-order IRK64 (1% order for the pressure) with
BDF3. They have shown that IRK schemes produce more accuracy with low cost in comparison
by BDF. Although, high-order BDF schemes such as BDF3 have high temporal accuracy at modest
computational cost, their applications are rather limited due to their tendency to instability for large
time step sizes. [49].

Adaptive time integration schemes allow automatic calculation of an optimal time step to adapt the
time discretization for following the physics of the flow problem [50]. The Adaptive Trapezoidal
Rule (ATR) is a popular adaptive time integration scheme which is used to calculate appropriate
time steps in order to avoid oscillations of standard TR. However, ATR scheme can indicate wiggles
in some cases. Because of this, Malidi and collaborators [S0] have used an Adaptive Backward
Differentiation Formula (ABDF) for modeling free surface flows to damp undesired oscillations. In

our research group, this idea has been extended to the complete family of BDF schemes. Both step-
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size (h-adaptivity) and order (p-adaptivity) selections are performed in a coupled manner. Hence,
given a user-chosen error tolerance, the method chooses the order and step-size so that the error

tolerance can be satisfied at a low cost.
In this study, we use the adaptive backward differentiation formula with tolerance 10~ 5 for time

integration.
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CHAPITRE 3

TRANSLATIONAL GALLOPING

In this chapter, we analyse the threshold of translational galloping for bundle section cylinders.
The quasi-steady theory and direct fluid-structure interaction simulations present the occurrence of
translational galloping.

The simulation and analysis of translational galloping for square section cylinder have been perfor-
med with our colleagues in Professor Pelletier’s lab [42]. We used a finite element based program
(CADYF) to perform simulations. Results show that the threshold of translational galloping of a
square section is only valid for Reynolds numbers larger than 140. Thus, we consider Reynolds

number 200 for the bundle section simulations.

3.1 Bundle

Bundle section cylinders occurs frequently in the design of underwater riser towers or of oil
export lines. A bundle is made up of several parallel pipes located in longitudinal grooves of a core
section. The pipes protrude from the grooves so that the bundle has a noncircular cross section
Fig.([3.1). Thus, the bundle in the flow may exhibit for the galloping instability.

In this work, we consider a bundle section already tested for transverse galloping by Damblans et

Figure 3.1 Riser tower bundle [9]

al. [51]]. A configuration of the flow around the bundle at zero angle of attack is shown in Fig.([3.2).
The Reynolds number is set to 200. The characteristic length D corresponds to the effective dia-

meter of the fictitious circle shown in dotted lines on Fig.([3.3).
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Figure 3.2 Computational domain and fluid flow velocity orientation for the bundle

A convergence study was performed for the flow around a bundle cylinder which includes five

a=-45°

Figure 3.3 Arrangement of the mechanical system : notations and sign orientations

parallel pipes at a Reynolds number of 100. The mesh makes up of P2 — P1 element has sufficient
accuracy. The drag and lift coefficients (Cp and Cp) are shown in Fig.([3.4). As can be seen in
Fig (3.4), when the mesh is refined, the results obtained from meshes 40,000, 80,000 and 160,000
are very close. Thus, all numerical computations have been obtained with meshes made of around
50,000 nodes.

The mesh was refined in two areas : in wake area and close to the bundle section. Fig.([3.5) shows
a close-up view of the mesh. The mesh density close to the bundle is increased to ensure a good
resolution of the flow.

The quasi-steady and direct fluid-structure interaction simulations will been performed using this

mesh at different angles of attack. We will rearrange the mesh for different angles of attack so that
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Figure 3.5 Arrangement of the mechanical system : notations and sign orientations

the quality and density of mesh is similar to that for the mesh at zero angle of attack. The follo-
wing section presents results from the quasi-steady model and from full fluid structure interaction

simulations.

3.1.1 Quasi-steady model

In this section a steady simulation has been performed to determine data required for the quasi-
steady model prediction of the galloping threshold. The time average values of lift and drag coef-

ficients as functions of the angle of attack are shown in Fig.([3.6) and Fig.([3.7) respectively. As
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Figure 3.6 The lift coefficient, Cy, for the bundle section
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Figure 3.7 The drag coefficient, Cp for the bundle section

can be seen in figures, the quasi-steady criterion (dC/da + Cp < 0) is not satisfied in this case.
Thus, the quasi-steady theory predicts no translational galloping for bundle section at a Reynolds
number of 200. In the following section, the direct fluid structure interaction simulation has been

performed in order to investigate the validating of quasi-steady prediction.

3.1.2 Direct fluid structure interaction

Direct Fluid Structure Interaction (FSI) simulations have been performed in order to analyze
the threshold of translational galloping. We investigate the translational galloping for three angles

of attack (—45,0,45 degrees) by FSI. The following equation governs the translational motion of
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the bundle : 1
m(+2Ewy+ 0*y) = F, = EpﬂmdUchy (3.1)

where m is the mass per length of structure, & is the damping ratio, @ is the natural frequency
of the structure and C, is the lift coefficient.
The structural damping has been neglected for all computations and the reduced velocity (Ug) is

equal to 25. The mass per length and the stiffness coefficient are given by :

m=mx /(psVy) = 0.846,

O =2nf, = IZDLUZ =VK/m = K= m(%)z,K =0.0534
The Navier-stokes equations for the fluid and equation (3.1) for the structure are solved in a cou-
pled manner. Fig.([3.8)) shows time histories of translational amplitude for angles of attack of —45,0
and 45 degrees. As can be seen in Fig.(3.8) the amplitudes of translational motion do not increase
with time and they achieve an established periodic state. This means that no translational gallo-
ping happens for bundle section at Re = 200. The result confirms the quasi-steady prediction for

translational galloping of bundle section.

3.2 Summary

The fixed and free translational motion of cylinder simulations have been performed to in-
vestigate of occurrence translational galloping. The quasi-steady criterion predicts no translational
galloping and the results from direct FSI validate the quasi-steady predictions. We have also perfor-
med simulations of bundle section for Re = 400 and observed no translational galloping. It means
that the inherent damping of the system dissipates the oscillation energy so that no translational

galloping instabilities are observed.
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CHAPITRE 4

TORSIONAL GALLOPING

In this chapter, we analyze the threshold of torsional galloping and its amplitude for a square and
a generic bundle. Results from the quasi-steady theory, forced oscillation and direct fluid-structure

interaction simulations will be presented at low Reynolds number.

4.1 Parameters affecting torsional galloping

The torsional galloping is a very complicated phenomenon which it depends on several parame-
ters. However, dimensional analysis regroups the parameters in 4 key non-dimensional numbers :
— Reynolds number Re =UD/v
where U is the fluid flow velocity, D is the dimension of the section and v is the kinematic
fluid viscosity,
— the reduced velocity Ug = U/ f,D
where the f,, = @, /2 is the natural frequency of structure,
— the inertia ratio I* = I/psD*,
— the structural damping ratio & = ¢/(21®,).
If we consider the oscillation amplitude A, then the dimensionless amplitude of oscillation will be

a function of these parameters :
A

Bz@(Re,URJ*,é) 4.1)
Aspect ratio (D /L)is another dimensionless parameter which influences the galloping in the varying

section of structures, by considering the aspect ratio, equation (4.1) yields :

% — @(D/L,Re,Ug,I* &) (4.2)

where L is the length of the structure.

The Reynolds number Re in the analysis of torsional galloping for all numerical computations is
set to 200 and the reduced velocity U is set to 40. The rotational damping is not considered.

All numerical computations are performed using the finite element based program CADYF from
the laboratory of Professor Dominque Pelletier. The solver has been specifically designed and de-
veloped to treat fluid-structure interactions with rigid or elastic structures. The characteristics of
the code for fluid-structure interactions are as follows :

— A fully coupled formulation of the incompressible Navier-Stokes equations with the struc-
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tural dynamics equations.

— 3" order spatial accuracy thanks to the use of P2 — P1 Taylor-Hood element.

— Up to 5" order time accuracy by using Backward Differencing Formulas (BDF). In this
study all simulations have been performed with an adaptive BDF method. The tolerance of
the error has been set in time of order 107>,

— Parallel sparse direct solver PARDISO [52, 53] is used for this work.

— This code has been thoroughly verified for unsteady flows on moving grids [47].

The moment and rotation angles will all be considered positive in the counter-clockwise direction.

4.2 Square section

A two dimensional square is considered in laminar flow at Re = 200. A configuration of the
flow around a square cylinder at zero angle of attack is shown in Fig.([.1).

The characteristic length D considered throughout this work corresponds to the edge for the square

-

60

60

60 120

-t -t -

Figure 4.1 Computational domain and orientation of fluid flow velocity.

section as shown in the Fig.([4.2). A convergence study has been performed for the case of the flow
around a square cylinder at zero angle of attack at a Reynolds number of 200. This study shows that
a mesh of 30,000 nodes is sufficient to ensure 3 digits accuracy on the drag and lift coefficients (Cp
and Cp) as shown in Fig.([.3)). As seen in Fig.(4.3), when the mesh is refined, the results obtained
from meshes 30,000 and 60,000 are similar. Thus, all numerical computations have been obtained
with meshes made of around 50,000 nodes.

Fig. (f.4) and Fig. (}.5) show the mesh employed for the square cylinder simulations. The mesh
is refined in the wake and close to the square cylinder. The mesh density close to the walls of the
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Figure 4.2 Arrangement of the mechanical system : notations and sign orientations

1416

1415
1414
1413

1412

“o

141

C (x107
= f=]
o @

1.4

1.409

1.408

1407
59 17 30 60 £ 9 17 30 60
number of nodes (x 1[13] number of nodes (x 103?

Figure 4.3 Convergence as a function of the number of nodes

square is increased to ensure a good resolution of the flow. The quasi-steady, forced oscillation
and direct fluid-structure interaction simulations will be performed by using this mesh at different
angles of attack. We will rearrange the mesh for different angles of attack so that the quality and
density of mesh are similar to the mesh at zero angle of attack. The next section presents the model

and results obtained from each simulations.

4.2.1 Quasi-steady model

The quasi-steady model was very successful at predicting the occurrence and amplitudes of
translational galloping [54]. It is natural to begin our study by extending this approach to torsional
galloping. This leads to the introduction of a model based on the derivative of the moment coeffi-
cient with respect to the angle of attack at different values of the angle of attack.
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Figure 4.5 Close-up view of the mesh at proximity of the square cylinder.

A steady simulation has been performed to analyze the threshold of torsional galloping by using

the quasi-steady criterion. The time averaged value of the moment coefficient as a function of the

angle of attack is shown in Fig ({.6). While the square section is symmetric with respect to the flow

axis, the moment coefficient is antisymmetric. The Cy; values are in good agreement with results

obtained by Robertson et al [40]. While discrepancies have been observed between the present re-

sults and those from the three-dimensional simulation obtained by Yoon et al. [43]], we suspect that
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their results were obtained on too coarse a mesh.

As discussed before, the quasi-steady criterion requires the actual averaged flow induced moment
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Figure 4.6 C, for the square section and comparison with Robertson and Yoon results.

at various angles of attack. The galloping criterion is expressed as :

— Ko = Sa <0 4.3)
where My, is the moment (My = 1/ 2pﬂm-dU£,D2CM(a)) and « is the angle of attack. The moment
derivative in equation (4.3) can be interpreted as a flow induced linear stiffness term which is
denoted as K.

As seen in Fig.([4.6), the quasi-steady criterion is satisfied at Angle Of Attack (AOA) ranging
from -10 to 10 degrees approximately. In the following, we evaluate the validity of prediction
of the instability range from the quasi-steady criterion results. We will first discuss results from
forced body rotations in cross-flow and then pursue with the analysis of the direct fluid-structure

interaction simulations results.

4.2.2 Forced oscillation

Forced oscillation simulations have been performed to determine the induced fluid flow dam-

ping and the added inertia coefficients. The forced rotational oscillation is given by sinusoidal :

0 = Oysinwt 4.4)
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where the 6 is the amplitude of the motion and  is the angular velocity (0 = 27 /T where T = 40

for this study). The fluid flow induced moment can be approximated by :

My =—Ky0—Cy6—1,6 4.5)

Using to equation (4.3), equation (4.5) can be rewritten as :

1 .
My = 5pﬂmdUo%,z)sz(oz +0)—Cyb — 1,6 (4.6)

Since the stiffness and the inertia have the same phase, we must be able to determine one of the two
coefficients to deduce the other one. By multiplying equation (4.6) by 8 and taking the average in

time, we can determine the damping coefficient by solving equation (4.7) :

t+nT | t+nT .
_Ca / 62di — M (0,1)0d: 4.7)
t

t

To determine the inertia coefficient, we multiply equation (4.6) by 0 and take the average in time :

t+nT | . t+nT t+nT .
/ P 1iaUD*Cy (0 +0) Bt — I / §2dt — / Mo(0.0)6dt  (48)
t t

t

From the steady simulation, we have been able to determine the averaged moment for the fixed
section for several angles of attack. This allowed us to provide a definition for the stiffness term in
equation (3.6). We have decided to keep it in the form of the moment without expressing it as the
stiffness multiplying to the angle because the moment is a nonlinear function of the angle of attack
and it becomes less practical to use a polynomial stiffness function. Thus, it is simpler to keep the
values of moments obtained for the steady flows conditions from the previous section for stiffness
term. According to our expectation the amplitude of rotational motion is of the order of 20 degrees.
Fig.( shows the fluid flow induced rotational damping for the square section. The values of the
coefficients are plotted as a function of forced rotation amplitude for several values of the angle of
attack at rest.

As illustrated in Fig.(4.7), the fluid flow damping coefficient is negative up to around 20 degrees
for angles of attack at rest of 0 and 5 degrees. Also, the damping coefficient is never negative for an
angle of attack of & = 10 degree. This indicates that the quasi-steady criterion is too conservative
since according to results presented in the steady section, the criterion is satisfied at angles of attack
ranging from -10 to 10.

Fig.([.8) shows the added inertia for the square section. The values of the coefficients are plotted
as a function of forced rotation amplitude for several values of the angle of attack at rest.

As seen in Fig.(4.8), the added inertia values are positive except for o = 0 degree angle of attack.
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Figure 4.7 Induced fluid flow rotational damping.
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Figure 4.8 Added inertia for the square section

4.2.3 Direct fluid-structure interaction

In this section, we consider the free rotation of square around its central axis. We assume that,
the elastic and rotational centers are both located at the centroid of the cylinder. The galloping in-

stability will be determined by solving the following equation governing the free motion of system :

1(0 +2§(Dé + 0)29) = Mfluid

(4.9)
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where the [ is the inertia per unit length of the square, @ the undamped natural frequency of the
system, § the structural damping ratio and M4 the fluid moment.

Equation (4.9) and the incompressible Navier-Stokes equations are solved in a fully coupled man-
ner. As mentioned before, the Reynolds number is set to 200 and the reduced velocity is equal to
40. The structural damping has been considered to zero for all simulations. The inertia and stiffness

coefficients for the square will be :

I=1x/(psD*) = 16.67

U 2nU
—— w=2nf,=/K/I = K=I222)\ K=0411

Simulations have been performed for several values of the angle of attack at rest in the range of
0 to 45 degrees in order to compare results with the forced motion case. Fig. ([4.9) shows time
histories of the rotation angles for several values of the angle of attack. As can be seen in Fig.(4.9),
the amplitudes of rotation angle grow when the angle of attack at rest changes from -10 to 10.
However, for other angles of attack no of rotation galloping is observed. These results appear to
contradict those obtained from forced rotation simulations, but they are in good agreement with the

quasi-steady theory predictions.

4.2.4 Summary

The predictions of rotational galloping threshold for square section have been performed based
on the quasi-steady criterion, forced rotation and direct FSI simulations Table( 4.1]). Based on the
quasi-steady criterion, rotational galloping occurs at angles of attack at range -10 to 10 degrees.
Rotational amplitudes are shown in column 2 and 3 in Table (4.1) for those angles of attack at
which galloping occurs. The free rotation results are not in proper agreement with the results of the
forced oscillation model. When the section freely rotates, the fluid flow induced stiffness generates

a static angular deflection.

For spring mounted cylinders, the average moment induced by the flow generates a change in the
apparent angle of attack which is named the effective angle of attack. Columns 5 and 6 in Table
(4.1) show the effective angles of attack. To predict the quasi-steady average effective angle of

attack the following equation was used :

Mo = f(ers) = K(Cepr — @) (4.10)
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Figure 4.9 Rotation angle histories of square section

This prediction is based on the assumption that dynamic effects have a small influence on the

average angle of attack. The effective angle of attack for the FSI simulations was obtained by the



Tableau 4.1 Square cylinder rotational galloping threshold based on the models.
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AOA o QS Forced 6 | FSI Gmax QS Qory FSI Oery FSI1UR

0 Yes 22 27 0 0 36.3
5 Yes 18 20 2.9 3 36

10 Yes No 16 6.0 6.5 35.4
15 No No No 9.8 10 37.6
20 No No No 15 15 43.3
25 No No No

following equation :
Aepfr=0+0 4.11)

where o is the angle of attack at rest and 8 is the time average value of the computed angle of
rotation (obtained from Fig.(4.9)).

As seen in Table (4.1), the effective angle of attack is zero when the angle of attack at rest is zero.
This is because the section is symmetric with respect to the incoming flow. Also, from the Table
(4.1), we can conclude that the quasi-steady and FSI simulations static deflections predictions are
generally in agreement.

The observed reduced velocities are given in the last column of Table (4.1). We set a reduced
velocity equal to 40, however the observed reduced velocities are lowered by around the 10% for
all configurations corresponding to galloping. This is because of the negative flow induced torsional
stiffness. The effective added moment of inertia is quite low for the effective rotational amplitudes
encountered in direct FSI simulations compared to the solid moment of inertia as can be seen in Fig.
(4.8). Thus, it has less effect than the flow-induced stiffness on the observed vibration frequency.
In the next section, the bundle section will be simulated based on the quasi-steady, forced rotation
and direct FSI models.

4.3 Bundle section

Bundle section cylinders are most interesting in the design of underwater riser towers or oil
export lines. In this work, we consider a bundle section already tested for transverse galloping by
Damblans et al. [S1]. A configuration of the flow around the bundle at zero angle of attack is shown
in Fig.(|.10).

We investigate the flow at low velocity the Reynolds number is set to 200 and the characteristic
length D considered corresponds to diameter of the fictitious circle in dotted lines on Fig. ([4.T1).

A convergence study has been performed for the case of the flow around a bundle cylinder which
includes five parallel pipes with the Reynolds number set to 100. The drag and lift coefficients (Cp
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Figure 4.11 Arrangement of the mechanical system : notations and sign orientations

and Cp) as shown in Fig. ([.12)). As seen in Fig (4.3), when the mesh is refined, the results obtained
from meshes with 40,000, 80,000 and 160,000 nodes are similar. Thus, all numerical computations
have been performed with meshes with around 50,000 nodes.

For the bundle section two areas of refinement are considered as for the square section in previous
part ; the wake area and the area close to the section. Fig. ([4.13) shows a close-up of the mesh. The
mesh density close to the bundle is increased to ensure a good resolution of the flow.

The quasi-steady, forced oscillation and direct fluid-structure interaction simulations will been
performed with this mesh at different angles of attack. We will rearrange the mesh for different
angles of attack so that the quality and density of mesh is similar for the mesh at zero angle of
attack. In the following section, the model and results obtained from each of simulations will be

presented.
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Figure 4.13 Arrangement of the mechanical system : notations and sign orientations

4.3.1 Quasi-steady model

In this section, the quasi-steady criterion is used to predict the threshold of rotational galloping
for the bundle. The averaged moment coefficient values as a function of the angle of attack are
shown in Fig.(§.14). Following notations of Fig (4.11), there is no symmetry with respect to the
midplane. By considering 45 or -45 degrees as a reference, the section would have been symmetric.
However, the current choice makes it easier to compare with the square section.

We observe a behavior roughly similar to that of the square section as a function of the angle of
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Figure 4.14 Moment coefficient, Cy for the bundle section

attack. However, it is no longer antisymmetric due to the asymmetry of the bundle. The absolute
maximum averaged moment is lower than those for the square section. This might be due to two
reasons. First recall that the outside diameter is equal to the square section edge. This makes the
apparent bundle face smaller than that of the square. And second, the bundle section "corners" are
rounded making the cylinder less sensitive to a change in angle of attack.

The quasi-steady criterion for the threshold of the rotational galloping is satisfied for the angles of
attack ranging from -10 to 15 degrees approximately. This is similar to the square section. In the
following, we will evaluate the quasi-steady criterion for the bundle section. Thus, we will present
and discussed the results from the forced body rotations in cross-flow and then end with the analysis

of the direct FSI simulations results.

4.3.2 Forced oscillation

Forced rotation simulations are used to determine the induced fluid flow damping and inertia
coefficients of the bundle section. As for the square section, a sinusoidal rotation is imposed on the
bundle section (see equation 4.4). We have used equations (4.7) and (4.8) to compute the induced
fluid flow damping and inertia coefficients, respectively. As discussed before, the stiffness coeffi-
cient is defined as a function of the averaged moment from the steady case for several angles of
attack. According to predictions of the quasi-steady theory, the forced rotation has been performed

for angles of attack ranging from -10 to 20. Rotational amplitudes 6 are set between 1 and 20
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however for angles of attack equal to oc = —5,0 those are set ranging from 1 to 25.

Fig.([.15) shows the fluid flow induced rotational damping as a function of forced rotation ampli-
tude for several values of the angle of attack at rest. As shown in Fig (4.15), the flow fluid damping
coefficients are negative for angles of attack at rest of -5 to 5 up to amplitude of around 20 degrees.
This observation is similar to forced rotation results from the square section model. We observe that
the fluid flow damping coefficients are positive for angles of attack ranging from -5 to -10 and 5 to

15 which have been predicted negative by the quasi-steady criterion. This observation demonstrates
once more that the quasi-steady criterion is too conservative.

Added inertia values as a function of forced rotation amplitude are shown in Fig. (}.16)). For the
bundle section, all the added inertia coefficients are positive over the whole range of the forced
rotation amplitudes and angles of attack at rest except for O degree angle of attack. Also, as seen in
Fig (4.16), the added inertia for the angles of attack -5 and 5 is similar as for the angles of attack
-10 and 10.

4.3.3 Direct fluid-structure interaction

In this section, the free rotation around the central axis of bundle is considered. The section
is restrained by a torsional stiffness. As discussed in the section on the square prism, equation
(4.9) is the governing equation for free rotation. As for the square section, fluid flow and structural
rotations are solved fully coupled. The following structure parameters (which are defined per unit
length) have been considered :

— I=1Ix/(psD*) =4.99

— K=0.123
The time histories of rotational angles for several values of the angles of attack are shown in
Fig.([4.17). From the simulations of free rotation, rotational angles vibrations have been obser-
ved at angles of attack at rest ranging from -5 to 15 degrees. These results are not in agreement
with the results from the forced rotation, while FSI results are close to the quasi-steady theory.
From the time histories of rotation angles, for example when the angle of attack at rest is 10, the
observed averaged angle if 5 degrees. A more detailed discussion will be presented in the following

summary section.

4.3.4 Summary

The predictions of rotational galloping threshold for square section has been performed ba-
sed on the quasi-steady criterion, forced rotation and direct FSI simulations see Table ([4.2). The
quasi-steady theory predicts that rotational galloping occurs at between angles of attack -10 and

15 degrees. The occurrence of torsional galloping based on our three models are identified by Yes
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Figure 4.16 Added inertia for the bundle section.

or No in the first 3 columns of Table (4.2). As discussed in previous sections, the occurrence of
torsional galloping predicted by quasi-steady criterion and free rotation simulations are in good

agreements. For the angles of attack at rest that the threshold of torsional galloping is Yes, the am-
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plitude of rotations are determined.

The effective angle of attack for several angles of attack are shown in columns 5 and 6. To predict
the effective angle of attack of quasi-steady model, the equation (4.10) has been used. Also, to
compute the effective angle of attack for the FSI simulations, the equation (4.11) has been used. By
comparison between the quasi-steady and free rotation effective angles of attack, we conclude that
the quasi-steady and FSI simulations predictions are generally in accordance. Although, we note
more pronounced differences between at rest and effective angles of attack for the bundle than for
the square section. This can be due to the much lower values for the structural parameters, particu-
larly the torsional stiffness for the bundle. Indeed, the torsional stiffness is 3.35 lower than that of
the square section.

The reduced velocity observed in FSI simulations are given in the last column of the Table (4.2).
We set the reduced velocity equal to 40. However, the observed reduced velocity is lower for all
configurations correspond to the galloping. This can be due to two reasons, first because of the ne-
gative flow-induced torsional stiffness. Next, it is due to the quite low added moment of inertia for
the effective rotational amplitudes encountered in the FSI simulations in comparison with the solid

moment of inertia. Thus, the effects of the flow-induced stiffness is more than the added inertia.

Tableau 4.2 Bundle cylinder rotational galloping threshold based on the models.

AOA a | QS | Forced® | FSI0,,,, | QSa.sr | FSIa,.;r | FSIUR

-25 No No No -21.3 -21.3

-20 No No No -16.2 -16

-15 No No No -11.9 -12

-10 Yes No No -8.1 -8

-5 Yes 19 19 -4.5 -4 35
0 Yes 22 21 -1.1 -1.4 35
5 Yes 20 20 2.2 2 35
10 Yes No 17 5.5 5 35.7
15 Yes No 5 9 9 35
20 No No No 13 13

25 No No No 17.7 17.6
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CHAPITRE 5

CONCLUSION

In this work, we have performed simulations of the laminar flow around a square and a bundle
section cylinders at Re = 200. The threshold of the translational galloping of bundle section cylinder
has investigated by considering the quasi-steady criterion and direct fluid structure interaction.
The occurrence of torsional galloping of square and bundle section cylinders has been investigated
with three kinds of simulations :

— Fixed body in order to evaluate the quasi-steady criterion,

— forced rotation to determine the induced-fluid flow damping coefficient and added inertia,

— free rotation simulations to determine the response of the structures by solving fully coupled

of the fluid flow and structure motion.
All of the simulations were performed by using a finite element method with high spatial and tem-

poral accuracy.

5.1 Discussion

Results from steady simulations of translational galloping of bundle show that no translational
galloping occurs for this case. Free transverse motion results validate the quasi-steady prediction.
We increased the Reynolds number to 400 but no translational galloping was observed.

Results show that torsional galloping will occur for square and bundle sections over a limited range
of angles of attack. The amplitude of rotational galloping reaches a maximum of 25 degrees at
Re = 200 and a reduced velocity 40. Good agreement has been observed between our results for
square section with those of Robertson et al. at similar Reynolds numbers.

By comparing predictions from the three models for torsional galloping occurrence, we conclude
that the quasi-steady criterion does not predict the same instability range obtained with the other
two methods. In fact, we observe an overestimated range of instability. At least the criterion is
overly conservative. But, there is no assurance that this criterion preserves this characteristic for
other shapes or flow conditions.

Furthermore, there are noticeable discrepancies between forced rotation results and direct FSI. Ho-
wever, by considering the effective angle of attack induced by the averaged moment, comparable

instability ranges are observed.
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5.2 Future Study suggestions

Galloping phenomenon particularly the torsional galloping is more challenging in simulation
and also, its threshold is an important key in designing structures placed in the fluid flow. More
work need to be done in order to evaluate the galloping phenomenon and the effective parameters

on it. It is believed that the existing finite element method and analysis tools could be extended to :

— simulation of three-dimensional problem

— study the effects of turbulent flow on instability

— study the two-degrees-freedom by considering the translational and torsional galloping
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