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DÉDICACE 

 

  

 

« Success is not final, failure is not fatal: 

 it is the courage to continue that counts. » 

W. Churchill 

 

« Le succès n'est pas définitif, l'échec n'est pas fatal :  

c'est le courage de continuer qui compte. » 

W. Churchill 
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RÉSUMÉ 

La scoliose idiopathique de l'adolescence est une pathologie complexe et évolutive entraînant une 

déformation tridimensionnelle du rachis, de la cage thoracique et du bassin. Cette pathologie 

affecte 2 à 4% de la population adolescente. Dans le cas de scolioses sévères, un traitement 

chirurgical est recommandé. L’imagerie radiographique est la technique la plus répandue pour le 

diagnostic et le suivi des effets de cette pathologie. De plus, des outils de reconstruction 3D du 

rachis à partir de radiographies du patient sont actuellement disponibles avant la chirurgie pour 

permettre une caractérisation bi- et tridimensionnelle des déformations scoliotiques ainsi que la 

planification des manœuvres d'instrumentation. Les modèles 3D préopératoires ne sont pas 

directement utilisables pendant la chirurgie puisqu'il y existe un changement des courbures 

scoliotiques dû à la position allongée, à l'exposition chirurgicale et à l'anesthésie. 

Plusieurs systèmes de suivi ont été testés pour suivre le changement de forme du rachis et le 

mouvement des vertèbres en intraopératoire : mécaniques, optoélectroniques, électromagnétiques, 

ultrasons, radiographiques. Ces systèmes permettent de détecter la position des vertèbres pendant 

la chirurgie et peuvent être utilisés pour la mise à jour de modèles 3D préopératoires. Pour ce 

faire, ils requièrent l'installation de marqueurs sur les vertèbres ou l'identification manuelle de 

points anatomiques pendant la chirurgie, ce qui peut interférer avec la procédure chirurgicale. 

Ainsi, des systèmes d'imagerie et de navigation intraopératoires sont actuellement disponibles 

pour visualiser les déformations 3D du rachis et guider les manœuvres d'instrumentation de façon 

sûre et précise. Cependant, à partir de ces systèmes, il n'est pas encore possible de quantifier en 

intraopératoire les déformations scoliotiques et la correction résultant des manœuvres 

d'instrumentation. 

Ce projet de maîtrise visait à développer une technique permettant la mesure intraopératoire 

automatique des déformations scoliotiques afin de fournir au chirurgien des données quantitatives 

exploitables pour évaluer et améliorer la stratégie chirurgicale. Globalement, le calcul des 

déformations scoliotiques 3D a été effectué grâce à la mise à jour d'un modèle géométrique 

préopératoire à partir d'images fluoroscopiques 3D intraopératoires.  

De façon plus précise, un modèle géométrique préopératoire a été construit à partir de 28 repères 

anatomiques vertébraux identifiés manuellement par un opérateur sur des radiographies bi-

planaires en position érigée avant la chirurgie. Ces points ont été utilisés pour obtenir un modèle 
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surfacique de chaque vertèbre grâce à une technique de krigeage. Le modèle intraopératoire a été 

calculé par recalage entre ce modèle géométrique et les données intraopératoires provenant d’un 

modèle voxélisé reconstruit à l’aide d’un fluoroscope 3D. Chaque vertèbre du modèle voxélisé a 

été segmentée et identifiée manuellement sur les images 3D fluoroscopiques intraopératoires. Un 

recalage rigide entre le modèle préopératoire de chaque vertèbre et les données intraopératoires 

correspondantes a abouti au calcul de 6 paramètres de transformation spatiale (!! , !!, !!, !!, !!, 

!!) permettant de retrouver la position intraopératoire du modèle vertébral. Le recalage a été 

réalisé en deux étapes. D'abord, une étape linéaire fondée sur l’analyse en composantes 

principales a été appliquée pour obtenir une première superposition du modèle vertébral 

préopératoire et des données intraopératoires correspondantes. Le résultat de cette étape a permis 

de définir la position de départ de l'algorithme de l’Iterative Closest Point, utilisé par la suite pour 

minimiser la distance entre le modèle vertébral préopératoire et les données intraopératoires. À 

chaque itération, la distance a été calculée à l'aide d'un champ scalaire 3D de distances associé 

aux images intraopératoires. L’estimation de paramètres de transformation spatiale a été 

optimisée avec l’algorithme de Levenberg-Marquardt. Les paramètres de rotation et translation 

calculés ont permis de mettre à jour les repères anatomiques vertébraux nécessaires pour la 

quantification automatique des déformations du rachis scoliotique en configuration 

intraopératoire. Les indices cliniques considérés dans ce travail incluent : les angles de Cobb 

(dans le plan coronal), la cyphose thoracique et la lordose lombaire dans le plan sagittal, la 

balance du rachis dans les plans frontal et sagittal, la translation et la rotation des vertèbres 

apicales, l'inclinaison de T1, l'orientation des plans de courbure maximale par rapport au plan 

sagittal (représentation da Vinci). 

Cette méthode de modélisation, recalage et mesure a été validée suivant deux étapes. Dans un 

premier temps, un modèle synthétique de rachis scoliotique a été utilisé. Il a d'abord été 

radiographié en position debout, de face et de profil, simulant les conditions préopératoires. Le 

modèle géométrique a été reconstruit en 3D à partir de repères anatomiques vertébraux identifiés 

manuellement par un opérateur sur les deux radiographies. Le positionnement intraopératoire en 

décubitus ventral du modèle synthétique a ensuite été reproduit et numérisé à partir d'un appareil 

d'imagerie fluoroscopique 2D/3D. L'application des algorithmes développés a permis de 

quantifier les déformations scoliotiques avec une erreur du même ordre de grandeur que les 

mesures préopératoires. Ainsi, les mesures angulaires dans les plans coronal et sagittal avaient 
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des erreurs inférieures à 4.6°, ce qui est à l’intérieur du seuil cliniquement acceptable de 5°. Les 

mesures dans le plan transverse avaient des erreurs inférieures à 5.2° pour la rotation axiale de la 

vertèbre apicale et 5° pour l’orientation des plans de courbure maximale (représentation daVinci), 

ce qui est aussi des valeurs cliniquement acceptables. Les mesures linaires avaient des erreurs 

inférieures à 2.7 mm.  

La validation de la méthode de recalage a été complétée par une analyse de sensibilité à l'aide de 

modèles construits numériquement, ce qui a permis d'analyser séparément l'influence de deux 

sources d'erreur différentes : une erreur reliée à l'identification manuelle des repères vertébraux 

préopératoires et une erreur reliée à la segmentation du modèle voxelisé intraopératoire. Les 

simulations ont été effectuées sur 15 vertèbres provenant de 3 configurations scoliotiques 

différentes. La séquence de rotations latérale-sagittale-axiale successives a été utilisée pour 

évaluer l'exactitude du recalage. L'algorithme a été robuste aux deux sources d'erreur. L'erreur 

moyenne maximale est de 2.6°. Par la suite, les mêmes simulations ont été répétées en utilisant 

un algorithme de recalage de la littérature basé sur un Iterative Closest Point optimisé avec la 

méthode Levenberg-Marquardt, et une exactitude comparable (écart maximal de 0.5° entre les 

deux méthodes) a été démontrée.  

Dans le but d'augmenter le niveau d'automatisation de la méthode de mesure développée, un 

algorithme d'étiquetage automatique des vertèbres intraopératoires a été proposé. L’objectif de 

cet algorithme était d’identifier chaque vertèbre à partir des images segmentées intraopératoires. 

D’abord, le produit de convolution avec une fonction gaussienne 2D a permis d’identifier les 

centres des vertèbres. À partir de ces centres, une succession d'opérations morphologiques 

d’erosion et dilatation a été appliquée pour étiqueter les voxels associés à chaque vertèbre. Cette 

méthode a été appliquée à trois modèles numériques de rachis. 97.1% du volume du rachis a ainsi 

pu être étiqueté. Plus spécifiquement, l'algorithme a montré une sensibilité et une spécificité 

moyenne pour l'étiquetage de chaque vertèbre de 97.6% et de 99.6% respectivement. Cependant 

l’algorithme a montré une dépendance à la qualité de la segmentation des images 

intraopératoires. 

Ces résultats ont montré la faisabilité de quantification des indices cliniques du rachis scoliotique 

pendant la chirurgie afin de fournir au chirurgien des informations utiles pour évaluer le niveau 

de correction atteint. Cependant, les techniques proposées présentent encore certaines limites. 
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D'abord, un outil entièrement automatique pour le calcul des déformations scoliotiques devrait 

intégrer une segmentation automatique des images fluoroscopiques intraopératoires, ce qui n’a 

pas été abordé dans ce travail. De plus, une amélioration de la technique d'étiquetage automatique 

serait nécessaire pour réduire les erreurs liées à la qualité de segmentation. Des études plus 

approfondies sur le prétraitement du modèle intraopératoire seront donc nécessaires. La méthode 

de recalage implémentée prévoit une transformation rigide des modèles de vertèbres, ce qui est 

généralement acceptable, mais ne permet pas de prendre en compte des changements de la 

topologie de la vertèbre, par exemple à cause d'ostéotomies. Par ailleurs, une transformation 

élastique pourrait permettre de modifier localement la position des repères anatomiques 

vertébraux afin d’en corriger d’éventuelles imprécisions grâce à l’information surfacique 

intraopératoire. Les algorithmes ont été appliqués en considérant le positionnement du patient au 

début de la chirurgie, et ne prennent donc pas en compte la présence de l’instrumentation qui 

pourrait influencer l’acquisition des données intraopératoires. L'appareil d'imagerie 

intraopératoire utilisé dans ce travail, l'O-Arm, ne permet pas de scanner en une seule étape la 

colonne vertébrale en entier, et plusieurs prises d'images ont donc été nécessaires. Ceci peut 

constituer un problème à la fois pour le niveau d'irradiation du patient et pour le recalage entre les 

images dérivant des différentes prises. Enfin, les outils développés ont été validés seulement sur 

des modèles numériques et sur un rachis synthétique et une validation sur des images issues d'un 

vrai patient serait nécessaire. 

Ce travail a permis de montrer la faisabilité d’exploiter les systèmes d'imagerie déjà utilisés en 

salle de chirurgie et les techniques de recalage présentement connues pour obtenir des 

informations quantitatives au cours de la chirurgie. L'intégration de cet outil avec les techniques 

de navigation et de simulation biomécanique permettrait d'offrir de nouvelles options pour 

éventuellement améliorer la correction et les manœuvres d'instrumentation. 
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ABSTRACT 

Adolescent idiopathic scoliosis (AIS) is a complex and progressive pathology leading to three-

dimensional deformities of the spine, rib cage and pelvis. This pathology affects 2 to 4% of the 

adolescent population. In the case of severe scoliosis, a surgical treatment is required. 

Radiographic imaging is mostly used for the diagnosis and the monitoring of scoliosis. 3D 

reconstruction of the spine from patient’s radiographs is currently available to enable the two- 

and three-dimensional characterization of scoliotic deformities and planning of the 

instrumentation maneuvers. The 3D preoperative models can’t be directly used during surgery 

since there is a change in the scoliotic curvature caused by the prone positioning, the surgical 

exposure and the anesthesia. 

Several tracking systems have been tested to monitor the spinal shape changes and follow the 

intraoperative motion of the vertebrae: optoelectronics or electromagnetics systems, ultrasounds, 

radiographs. These systems enable the tracking of the intraoperative positioning of the vertebrae, 

and can be used to update 3D preoperative models. This requires the installation of external 

markers on vertebrae or the manual identification of anatomic points during surgery, which can 

interfere with the surgical procedure. Imaging and navigation systems are then currently available 

to visualize the 3D deformities of the spine and to safely and precisely guide the instrumentation 

maneuvers. Nevertheless, these systems do not enable the quantification of the intraoperative 

scoliotic deformities and the correction resulting from instrumentation maneuvers. 

This project aimed to develop a technique that enables the automatic intraoperative measurement 

of the scoliotic deformities, in order to provide the surgeon with quantitative feedback to evaluate 

and improve the surgical strategy. The 3D scoliotic deformities were computed by registering a 

preoperative geometric model with intraoperative 3D fluoroscopic images of the spine. 

More precisely, a preoperative geometric model was constructed from 28 vertebral landmarks 

manually identified by an operator on biplanar radiographs acquired preoperatively in standing 

position. These landmarks were used to obtain a surface model of each vertebra though a dual 

kriging interpolation technique. The intraoperative model was computed by the registration 

between this preoperative geometric model and the intraoperative data, composed of a voxelized 

model obtained from 3D fluoroscopic images. Each vertebra of the voxelized model was 

segmented and manually identified on intraoperative 3D fluoroscopic images. A rigid registration 
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with the corresponding preoperative model led to the computation of 6 spatial transformation 

parameters (!! , !! , !! ,!! ,!! ,!!) to compute the position of the intraoperative vertebral model. 

The registration algorithm is composed of two steps. First, a linear step based on the principal 

component analysis was applied to obtain a first superimposition of two corresponding vertebrae. 

The result of this first step defined the initial position of the Iterative Closest Point algorithm, 

used to minimize the distance between the preoperative vertebral model and the corresponding 

intraoperative data.  At each iteration, the distance between the preoperative vertebral model and 

the intraoperative data was computed using a 3D distance map with intraoperative data. The 

estimation of transformation parameters was optimized with the Levenberg-Mararquardt 

algorithm. These computed rotation and translation parameters enabled the update of vertebral 

landmarks, which are necessary to automatically quantify the scoliotic spine deformities in the 

intraoperative configuration. The selected clinical indices: the Cobb angles in the coronal plane, 

the thoracic kyphosis and lumbar lordosis in the sagittal plane, the spinal balance in the frontal 

and sagittal planes, the translation and rotation of the apical vertebrae, the T1-tilt, and the 

orientation of the planes of maximal curvature with respect to the sagittal plan (da Vinci 

representation). 

The modeling, registration algorithm and measurement method were validated in two steps. At 

first, a synthetic model of the spine was used. The preoperative standing positioning was 

reproduced and the preoperative geometrical model was obtained using vertebral anatomical 

landmarks identified manually on biplanar radiographs. The intraoperative prone positioning was 

reproduced and acquired using a 2D/3D fluoroscopic imaging system. The application of the 

developed algorithm enabled the quantification of the scoliotic deformities with accuracy similar 

or better as compared to preoperative measurements. Thus the angular measurements in the 

coronal and sagittal planes had errors below 4.6°, which is below the clinically acceptable 

threshold of 5°. The measurements in the transversal plane had errors below 5.2° for the axial 

rotation of the apical vertebra and 5° for the orientation of the plans of maximum curvature (da 

Vinci representation), which are also clinically acceptable errors. The linear measurements had 

errors below 2.7 mm. 

The validation of the registration algorithm was assessed with a sensitivity analysis using 

computerized models. The use of computerized models enabled the analysis of the influence of 

two sources of errors: an error deriving from inaccuracies in the manual identification of 
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vertebral landmarks in the preoperative geometric model, an error deriving from inaccuracies in 

the segmentation and identification of each vertebra in the intraoperative fluoroscopic images. 

The simulations were carried out on 15 vertebrae from 3 different scoliotic configurations. A 

sequence of “lateral-sagittal-axial angles” was used to evaluate the accuracy of the registration 

algorithm. The algorithm was robust to both sources of error. The maximal average error was 

2.6°. The same simulations were then repeated using a registration algorithm of the literature, 

based on the Iterative Closest Point method optimized with the Levenberg-Marquart method, and 

a similar accuracy (maximal difference between the two methods of 0.5°) was shown. 

An automatic intraoperative labeling algorithm of the vertebrae was also proposed. The aim of 

this algorithm was to identify each vertebra from intraoperative segmented images. First, the 

convolution product with a 2D Gaussian function enabled the identification of the vertebrae’s 

centers. Then, sequential operations of erosion and dilation were performed to label all the 

voxels. This method was applied to three computerized spinal models. 97.1% of the spine’s 

volume was labeled. More specifically, the algorithm showed average specificity and sensitivity 

for the labeling of each vertebra of 97.6% and 99.6% respectively. However, the algorithm 

showed dependence to the quality of the segmentation of the intraoperative images. 

These results showed the feasibility of quantifying clinical indices of the scoliotic spine during 

surgery, in order to provide the surgeon with useful feedback to evaluate the level of correction 

reached. However, the proposed techniques still present several limitations. First, a full-automatic 

tool for the computation of scoliotic deformities should include an automatic segmentation of 

intraoperative fluoroscopic images, which was not addressed in this work. Moreover, an 

improvement of the automatic labeling technique is necessary to reduce the errors caused by the 

quality of the segmentation. Further studies on the pretreatment of the intraoperative model are 

then necessary. The proposed registration method is based on a rigid transformation of the 

vertebral models, which is generally acceptable but doesn’t takes into account the vertebrae’s 

topology changes, for instance due to osteotomies. Furthermore, an elastic transformation could 

enable the local modification of the vertebral landmarks’ positions, in order to correct their 

inaccuracies using the information from intraoperative data. The algorithm was applied 

considering the patient’s position at the beginning of the surgery, and thus doesn’t take into 

account the presence of instrumentation that could influence the acquisition of the intraoperative 

data. The intraoperative imaging system used in this study, O-Arm, doesn’t enable the entire 
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scanning of the spine in one single step, and several acquisitions are then necessary thus causing 

significant ionizing exposure. Moreover stitching images from different scans is still an open 

issue. Finally, the tools developed were validated only on computerized models and on a 

synthetic spine. A validation on images from real patients would be necessary. 

The work showed the feasibility of using available imaging systems and registration techniques 

to obtain quantitative information during surgery. Integrating this tool with the navigation system 

and biomechanical simulation tools would offer new options to improve the correction and the 

instrumentation maneuvers. 
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INTRODUCTION 

La scoliose idiopathique de l'adolescence est une pathologie rachidienne fréquente, affectant 2 à 

4% des adolescents (Asher et al., 2006; Reamy et al., 2001; Silva et al., 2009). Cette pathologie 

entraîne une déformation tridimensionnelle (3D) de la colonne vertébrale, avec l'apparition de 

courbes dans le plan frontal, une modification des courbures physiologiques dans le plan sagittal 

ainsi qu'une rotation des vertèbres et des courbures spinales dans le plan transverse. 

L’imagerie radiographique est la technique la plus répandue pour le diagnostic de la scoliose. De 

nombreux indices cliniques peuvent être calculés sur les radiographies pour l’évaluation d'un 

patient scoliotique (Aubin et al., 2011; O'Brien et al., 2004). Un indice clinique communément 

utilisé pour évaluer la sévérité de la scoliose est l'angle de Cobb, dont la mesure permet de fournir 

des indications pour le traitement orthopédique. Les courbures scoliotiques caractérisées par un 

angle de Cobb compris entre 20° et 40° sont généralement traitées par corsets orthopédiques, 

alors que dans le cas de scoliose sévère (angle de Cobb > 40°), un traitement chirurgical est 

recommandé.  

Le traitement chirurgical le plus courant prévoit des manœuvres de dérotation, translation et 

compression/distraction pour redresser la colonne vertébrale à l'aide de plusieurs types d'implants 

(habituellement des vis) installés sur des tiges métalliques (Aubin et al., 2008). La chirurgie 

d'instrumentation est complexe et invasive, et plusieurs travaux ont été réalisés afin d'améliorer la 

caractérisation géométrique des déformations scoliotiques ainsi que la compréhension 

biomécanique des paramètres d'instrumentation (Aubin et al., 1997; Aubin et al., 2003; Delorme 

et al., 2003; Wang et al., 2012). Ces travaux sont principalement basés sur la reconstruction 3D 

de la géométrie du rachis à partir de radiographies préopératoires du patient avec plusieurs 

techniques développées au cours des dernières décennies (Cheriet et al., 1999; Dansereau et al., 

1988; Delorme et al., 2003; Humbert, 2008; Kadoury et al., 2007; Pomero et al., 2004). 

Cependant, ces modèles 3D ne sont pas directement utilisables pendant la chirurgie à cause du 

changement de forme de la colonne vertébrale entre la position debout préopératoire et la position 

allongée intraopératoire, qui induit une réduction de l’angle de Cobb d’en moyenne 37° (Delorme 

et al., 2000). 

Le champ visuel pendant la chirurgie est restreint ce qui rend difficile l'accès au changement de 

forme de la colonne vertébrale. En effet, dans le cas de chirurgie par approche postérieure, seule 
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la partie postérieure des vertèbres est exposée, ce qui rend le suivi du mouvement des vertèbres 

compliqué. Cet aspect constitue aussi un problème important pour l’insertion de vis. Ces 

difficultés ont entrainé le développement d’outils pour suivre les changements de position des 

vertèbres, augmenter la visibilité et guider l'insertion des vis pendant la chirurgie. Différents 

types de localisateurs ont été testés pour le suivi du mouvement de la colonne, de nature 

mécanique (Glossop et al., 1997), optique (Ghanem et al., 1997; Lavallée et al., 1995a; Nolte et 

al., 1995), électromagnétique (Amiot et al., 1995), à ultrason (Yan et al., 2011). Ces systèmes 

nécessitent l'installation de marqueurs sur les vertèbres, ou l'identification manuelle de certains 

points, ce qui rend compliquée leur utilisation au cours de la chirurgie. Plusieurs systèmes 

d'imagerie (i.e. Curve™ de BrainLab, O-Arm® de Medtronic, Mobile C-arms de Siemens) ont 

également été exploités afin d’augmenter la visibilité du champ chirurgical et d'améliorer la 

précision des manœuvres d'instrumentation. Merloz et al. (1997) et plus récemment Gelalis et al. 

(2012) ont montré que la navigation avec les images CT-scan peut augmenter significativement le 

pourcentage de vis correctement placées dans le pédicule. Larson et al. (2012) et Silbermann et 

al. (2011) ont montré que des appareils d'imagerie fluoroscopique et de navigation disponibles 

actuellement en salle de chirurgie (i.e. O-Arm® et StealthStation de Medtronic, ARCADIS® 

Orbic 3D et NaviLink 3D de Siemens)  permettent de diminuer de 16% à 0.8% le risque de 

pénétration du cortex avec les vis (Tian et al., 2011). 

L'objectif de ce projet de maîtrise est de développer une méthode de mesure permettant de 

quantifier de façon automatique les déformations scoliotiques pendant la chirurgie. Pour ce faire, 

deux objectifs spécifiques ont été définis : (1) évaluer la faisabilité de modéliser la géométrie 

intraopératoire de la colonne vertébrale par recalage entre un modèle préopératoire obtenu à partir 

des radiographies biplanaires et des images fluoroscopiques 2D/3D intraopératoires; (2) valider le 

calcul des déformations scoliotiques.  

Ce mémoire se divise en 5 chapitres. Le premier chapitre présente la revue des connaissances 

nécessaires à la compréhension du sujet. La problématique ainsi que les objectifs spécifiques du 

projet sont exposés dans le chapitre 2. Le chapitre 3 présente un article détaillant la méthode 

développée ainsi que sa validation. Des résultats complémentaires sont présentés dans le chapitre 

4. Le chapitre 5 dresse une discussion critique du projet, en détaillant ses points forts et ses 

limites. Le dernier chapitre conclut ce mémoire avec une courte synthèse des travaux et de 

suggestions d'améliorations futures. 
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CHAPITRE 1 REVUE DES CONNAISSANCES 

Ce chapitre présente une revue des connaissances de l'anatomie du rachis, de la scoliose 

idiopathique de l'adolescent (SIA) et de ses traitements, en particulier le traitement par chirurgie 

qui constitue le cœur de la problématique clinique à la base de ce projet de recherche. Au niveau 

technique, la reconstruction géométrique 3D et la modélisation biomécanique du rachis ainsi que 

les systèmes actuellement utilisés pour les gestes médico-chirurgicaux assistés par ordinateur 

sont présentés. Dans la dernière partie de ce chapitre, les principales techniques de recalage 

pertinentes à ce projet sont détaillées. 

1.1 Anatomie descriptive et fonctionnelle du rachis 

La position et l'orientation des éléments de la colonne vertébrale dans l'espace seront décrites 

dans ce mémoire par rapport aux trois plans anatomiques illustrés dans la Figure 1-1: le plan 

coronal, le plan sagittal et le plan transverse  (Knudson, 2007). 

 

Figure 1-1 : Plans anatomiques (adapté de Wikipedia)  

 

Le système de coordonnées global de la colonne vertébrale est défini selon la convention 

indiquée par la Scoliosis Research Society (Stokes, 1994). L'origine est placée au niveau du 
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centre du plateau supérieur de la vertèbre S1. L'axe ! est orienté positivement vers l'avant, alors 

que l'axe ! est orienté positivement vers la gauche. L'axe ! est vertical vers la tête.  

 

Figure 1-2 : Repère global de la colonne vertébrale (reproduit avec autorisation de Stokes, 1994) 

 

Pour chaque vertèbre, le centre du système de coordonnées local est positionné au centre du corps 

vertébral, l'axe ! passe par le centre des plateaux supérieur et inférieur et l'axe ! unit les 

pédicules droit et gauche. L'axe ! est défini selon la règle de la main droite (Stokes, 1994). 

 

 

Figure 1-3 : Repère local d’une vertèbre (reproduit avec autorisation de Stokes, 1994) 

 

La colonne vertébrale est une structure anatomique d'importance fondamentale pour le support du 

corps, pour la protection de la moelle épinière ainsi que pour la mobilité. Pour remplir ces 

(a) (b) (c) (d) 
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fonctions, le rachis doit concilier les requis mécaniques de rigidité et de souplesse (Kapandji et 

al., 2005). 

Le rachis est constitué en général de 33 à 34 vertèbres pouvant être classées selon quatre zones : 

sept vertèbres cervicales (C1 à C7), douze vertèbres thoraciques (T1 à T12) sur lesquelles est 

articulée la cage thoracique, cinq vertèbres lombaires (L1 à L5), cinq vertèbres du sacrum (S1 à 

S5) et entre trois et cinq vertèbres du coccyx. Ces quatre zones présentent en position debout 

deux types de courbures dans le plan sagittal: les segments lombaire et cervical sont 

généralement à concavité postérieure (lordose), alors que les segments thoracique et 

sacrococcygien présentent une concavité antérieure (cyphose). Cette alternance de courbures 

permet d'augmenter la résistance aux efforts de compression axiale (Kapandji et al., 2005) 

(Figure 1-4). 

 

Figure 1-4 : Anatomie du rachis (adapté de Gray, 1918) 

 

La vertèbre est l'élément constitutif le plus important du rachis. Antérieurement elle est composée 

du corps vertébral, de forme cylindrique, qui est connecté postérieurement à l'arc vertébral pour 

former le canal rachidien qui contient la moelle épinière (Figure 1-5). 
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Figure 1-5 : Anatomie d’une vertèbre : (a) vue de dessus, (b) coupe frontale (adapté de Gray, 1918) 

 

Le corps vertébral est composé d'une coque d'os cortical dense contenant du tissu spongieux, et 

est délimité par les plateaux inférieur et supérieur eux-mêmes en contact avec les disques 

intervertébraux. La succession des corps vertébraux  forme un pilier qui contribue principalement 

à la fonction statique de support. Afin de mieux accomplir cette tâche, la taille et la masse des 

vertèbres augmentent en descendant des vertèbres cervicales jusqu'aux lombaires de manière à 

permettre de mieux supporter l'augmentation progressive de sollicitations mécaniques (White et 

al., 1990). 

L'arc vertébral est constitué de plusieurs parties : deux pédicules qui représentent les points de 

jonction avec le corps vertébral, deux paires de facettes articulaires (une inférieure et une 

supérieure) permettant la liaison entre deux vertèbres adjacentes, deux lames délimitant 

postérieurement le foramen vertébral et qui se rejoignent pour former l’apophyse épineuse, deux 

apophyses transverses qui sont le site d'insertion des éléments musculaires et ligamentaires. La 

superposition des arches et des articulations joue le rôle fondamental de guide du mouvement du 

rachis (Kapandji et al., 2005). 

Les vertèbres sont séparées par un disque intervertébral constitué d'un annulus fibrosus, constitué 

principalement de cartilage, entourant un nucléus pulposus, constitué au 80% d’eau (Figure 1-6). 

Les disques intervertébraux ont comme fonction de rendre la colonne flexible ainsi que d’amortir 
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des pressions élevées et de transmettre la pression agissant sur les différents segments vertébraux. 

C'est pourquoi la dimension des disques augmente du rachis cervical au rachis lombaire (Redaelli 

et al., 2007). 

 

Figure 1-6 : Coupe latérale d’une vertèbre permettant d’observer les nucleus pulposus et l’annulus fibrosus (adapté 

de Gray, 1918) 

 

1.2 Scoliose idiopathique de l’adolescence (SIA) 

1.2.1  Définition de la scoliose 

La scoliose est une pathologie qui implique une déformation tridimensionnelle (3D) du rachis, du 

bassin et de la cage thoracique. Elle entraine une déviation latérale du rachis dans le plan frontal 

et peut également entraîner une modification des courbures physiologiques dans le plan sagittal. 

De plus, on observe dans le plan transverse une rotation des vertèbres et des côtes, ce qui cause 

l'apparition d'une bosse dans le dos (gibbosité). En raison de ces déformations, la répartition du 

poids du squelette sur les vertèbres devient asymétrique. Ceci entraîne alors un changement de 

forme du corps vertébral, qui devient cunéiforme, ainsi que d'autres déformations locales au 

niveau des pédicules et des disques (Figure 1-7). 
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Figure 1-7 : Illustration des déformations entraînées par la scoliose : (a) radiographie d’un patient scoliotique (tiré 

d’une banque d’images de l’auteur), (b) cunéiformisation de la vertèbre (reproduit avec autorisation de Stokes, 

1994), (c) gibbosité (issu de Wikipedia) 

 

La scoliose idiopathique de l'adolescent est la forme de scoliose idiopathique la plus commune 

(Asher et al., 2006). Elle se manifeste entre 10 et 18 ans, affecte 2 à 4% de la population 

adolescente et la forme évolutive est quatre fois plus présente chez les individus de sexe féminin 

(Reamy et al., 2001; Silva et al., 2009). L'étiologie de cette pathologie n'a pas encore été 

clairement identifiée, d'où l'appellation idiopathique, mais plusieurs facteurs jouant un rôle 

important dans la progression de la déformation ont été identifiés: l'instabilité biomécanique du 

rachis, des facteurs de croissance, des facteurs hormonaux, génétiques, neurologiques ou 

musculaires (Lowe et al., 2000; Villemure et al., 2004).  

1.2.2 Mesures cliniques des déformations 

Plusieurs indices cliniques peuvent être utilisés pour caractériser la SIA en termes de 

déformations globales du rachis et de déformation locale de chaque vertèbre. Dans la pratique 
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clinique, les radiographies sont communément utilisées pour obtenir des informations 

caractéristiques sur les courbures scoliotiques d'un patient. 

1.2.2.1 Paramètres globaux 

Les paramètres globaux plus communément utilisés sont présentés dans les prochains 

paragraphes. Les définitions sont principalement issues de O'Brien et al. (2004). 

Angle de Cobb 

L'angle de Cobb est mesuré sur la radiographie postéro-antérieure ou antéro-postérieure du 

patient. Il représente l'angle défini par les tangentes aux plateaux supérieur et inférieur 

respectivement de la vertèbre limite supérieure et inférieure de la courbure scoliotique (Figure 

1-8). Un patient est considéré scoliotique si l'angle de Cobb est supérieur à 10°. Il s'agit de 

l'indice clinique le plus utilisé pour obtenir des indications cliniques sur le traitement 

orthopédique à adopter. Les patients pour lesquels les courbures scoliotiques sont comprises entre 

20° et 40° peuvent être traités par corsets orthopédiques, alors que dans le cas de scoliose sévère 

(angle de Cobb > 40°), un traitement chirurgical est recommandé. Plusieurs études ont montré 

que la précision intra- et inter observateur pour le calcul de l'angle selon la méthode de Cobb est 

de ±5° (Cassar-Pullicino et al., 2002). 

 

Figure 1-8 : Mesure des angles de Cobb sur une radiographie PA (issue d’une banque d’images de l’auteur) 
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Cyphose et lordose 

La cyphose et la lordose sont calculées à partir des radiographies latérales du patient. La cyphose 

thoracique est mesurée entre le plateau supérieur de T2 et le plateau inférieur de T12 (Figure 

1-9.a). On peut aussi distinguer les angles suivants : 

• Cyphose thoracique proximale évaluée entre les vertèbres T2 et T5 

• Cyphose thoracique moyenne évaluée entre les vertèbres T5 et T12 

• Cyphose thoraco-lombaire évaluée entre les vertèbres T10 et L2 

La lordose thoraco-lombaire est mesurée entre le plateau supérieur de T10 et le plateau inférieur 

de S1, et la lordose lombaire est mesurée entre le plateau supérieur de T12 et le plateau supérieur 

de S1 (Figure 1-9.b).  

Dans la population asymptomatique, la cyphose varie normalement entre 10° et 40° alors que la 

lordose varie entre 40° et 60°  (O'Brien et al., 2004).  

 

Figure 1-9 : Mesure des déformations dans le plan sagittal : (a) cyphose, (b) lordose 

Vertèbre apicale 

La vertèbre apicale est la vertèbre présentant la plus grande déviation latérale. Cette déviation, 

appelée en anglais apical vertebral translation (AVT),  représente la distance entre le centroïde de 

la vertèbre apicale et la droite verticale passant par le centroïde de la vertèbre C7 pour les 

courbures thoraciques, ou la distance entre le centroïde de la vertèbre apicale et la ligne verticale 
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centrale sacrée, appelée en anglais central sacral vertical line (CSVL), pour les courbures 

thoraco-lombaires/lombaires (O'Brien et al., 2004) (Figure 1-10.a). L'identification de la vertèbre 

apicale permet de classer la scoliose selon différentes régions anatomiques (Stokes et al., 2006): 

• Scoliose cervicale : la vertèbre apicale est située entre C1 et le disque C6-C7 

• Scoliose cervico-thoracique : la vertèbre apicale est située entre C7 et T1 

• Scoliose thoracique : la vertèbre apicale est située entre T2 et le disque T11-T12 

• Scoliose thoraco-lombaire : la vertèbre apicale est située entre T12 et L1 

• Scoliose lombaire : la vertèbre apicale est située entre le disque L1-L2 et le disque L4-L5 

• Scoliose lombo-sacrale : la vertèbre apicale est située au-dessous de L5 

Déjettement frontal et sagittal 

Le déjettement est un indice permettant de quantifier le déplacement du rachis par rapport à son 

axe vertical à la suite de l'apparition des courbures scoliotiques. Le déjettement frontal est mesuré 

à partir de la radiographie postéro-antérieure ou antéro-postérieure du patient et correspond à la 

distance entre la CSVL et la droite verticale passant par le centroïde de la vertèbre C7 (Figure 

1-10.b). De manière similaire, le déjettement sagittal est défini comme la distance entre la CSVL 

et la droite verticale passant par le centroïde de la vertèbre C7 sur la radiographie latérale (Figure 

1-10.c). Un déjettement du rachis vers la droite est par convention positif. 
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Figure 1-10 : (a) translation de la vertèbre apicale (AVT) pour une courbure thoracique, (b) déjettement dans le plan 

coronal, (c) déjettement dans le plan sagittal 

1.2.2.2 Paramètres locaux 

L’orientation des vertèbres est un paramètre permettant l’évaluation des déformations 

scoliotiques. Plusieurs méthodes de mesures ont été proposées dans la littérature. Dans ce 

mémoire, les rotations locales sont calculées à partir du repère local de la vertèbre selon la 

méthode définie par (Skalli et al., 1995), qui utilise les rotations successives autour des axes 

mobiles !, !!, !!! selon la séquence des angles latéral-sagittal-axial (L-S-A). (Figure 1-11). 

 

Figure 1-11 : Rotations successives de la vertèbre autour des axes locaux : (a) rotation latérale, (b) rotation sagittale, 

(c) rotation axiale 

 

(a) (b) (c) 
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Pour le calcul de la rotation axiale, la méthode de Stokes a aussi été utilisée dans le cadre de ce 

mémoire. Cette méthode est basée sur l’identification de la position des pédicules par rapport aux 

plateaux vertébraux (Stokes, 1989).  

1.2.2.3 Évaluation des mesures des paramètres rachidiens 

Plusieurs études se sont penchées sur l’analyse de la précision et de la fiabilité de la mesure 

manuelle et digitale des indices cliniques précédemment présentés et elles ont reporté une bonne 

ou excellente fiabilité inter- et intra-observateur pour toutes les mesures, sauf pour la cyphose T2-

T5 et pour l’AVT (dans l’analyse inter-observateur pour les mesures digitales)  (Kuklo et al., 

2005a; Kuklo et al., 2005b). Le logiciel de mesures de la colonne vertébrale NewSpine3D permet 

entre autres de calculer l'angle de Cobb avec une précision supérieure à 2°, les autres angles avec 

une précision supérieure à 4° et les mesures linaires avec une précision supérieure à 3.5 mm 

(Aubin et al., 2011).  

1.2.3 Classification de la SIA 

Une première classification de la SIA a été proposée par King et al. (1983) afin de fournir des 

recommandations sur la sélection des niveaux vertébraux à fusionner lors d'un traitement 

chirurgical. Les courbures thoraciques ont été divisées en cinq types (I à V), en fonction de 

l'amplitude, la forme et la flexibilité des courbures scoliotiques du patient.  
À l'heure actuelle, la classification la plus utilisée est celle proposée par Lenke et al. (2001) qui 

distingue six catégories de classification des courbures scoliotiques sur la base de l'angle de Cobb 

ainsi que trois modificateurs lombaires et trois modificateurs sagittaux permettant de compléter la 

classification. Les modificateurs lombaires sont assignés sur la base de la CSVL, alors que la 

valeur des modificateurs sagittaux dépend de la courbure dans le plan sagittal (Figure 1-12). 
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Figure 1-12 : Classification de Lenke (reproduit avec autorisation de Lenke, 2001) 

 

1.2.4 Caractérisation tridimensionnelle des déformations scoliotiques 

Au cours des dernières années, le caractère 3D de la scoliose est devenu de plus en plus important 

(Labelle et al., 2011), c'est pourquoi plusieurs techniques de reconstruction 3D du rachis ont été 

développées. Ceci permet d'avoir accès à des informations sur le plan transverse qui n'est 

normalement pas accessible sur les radiographies, ainsi qu'à des paramètres tridimensionnels 

permettant d'améliorer la qualité du diagnostic et la prise de décision pour les traitements 
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orthopédiques. La fiabilité des mesures cliniques à partir de modèles géométriques 3D pour 

l'évaluation de la SIA a déjà été démontrée par Labelle et al. (1995) et Sangole et al. (2009).  

Le CT-scan et l’IRM peuvent être utilisés pour obtenir des images 3D, mais ces techniques 

comportent des inconvénients liés à la position allongée du patient qui  implique un changement 

des courbures scoliotiques, aux radiations auxquelles le patient est soumis (pour le CT-scan) ainsi 

qu'à l'incompatibilité avec les instruments métalliques installés pendant la chirurgie ce qui en 

rend compliquée l’utilisation pour le suivi du patient après la chirurgie (Stokes et al., 2006). 

Toutefois, l'utilisation du CT-scan permet d'obtenir une meilleure précision pour l'évaluation 

d'indices dans le plan transverse, tels que la rotation axiale, par rapport aux mesures à partir des 

radiographies (Lam et al., 2008). 

À ce jour, il existe plusieurs approches basées sur l'utilisation d’images radiographiques pour 

reconstruire en 3D les structures osseuses du tronc. Plusieurs techniques basées sur l'appariement 

de repères anatomiques stéréo-correspondants sur une paire de radiographies ont été mises en 

place, en utilisant l'algorithme « Direct Linear Transformation » (DLT) pour reconstruire en 3D 

la position d'un point anatomique identifié par un opérateur sur des radiographies frontales et 

latérales (Aubin et al., 1997; Dansereau et al., 1988). Des travaux plus récents ont proposé des 

techniques pour obtenir un autocalibrage des radiographies et faciliter l’utilisation en clinique des 

outils de reconstruction 3D (Cheriet et al., 2007; Kadoury et al., 2010). D'autres techniques ont 

été développées pour prendre en compte aussi des points non stéréo-correspondants (visibles 

seulement sur l'une des radiographies), ce qui permet d'augmenter le nombre de repères 

anatomiques utilisés  (Mitton et al., 2000).  

Un modèle géométrique 3D peut ensuite être obtenu à partir des repères anatomiques à l'aide 

d’une technique de krigeage dual qui consiste à déformer une vertèbre type issue d'une base de 

données pour la faire correspondre aux points anatomiques identifiés (Aubin et al., 1997).  

Aujourd'hui, le système d'imagerie EOSTM (Biospace Instruments, France) est également 

disponible. Il s'agit d'un appareil auto-calibré permettant l'acquisition simultanée des 

radiographies de face et profil, en réduisant la dose de rayons X de 8 à 10 fois par rapport aux 

radiographies conventionnelles et de 100 fois par rapport à un système CT-scan, dans le cas d'une 

acquisition du patient complet debout (Dubousset et al., 2005). Humbert et al. (2009) ont proposé 

une technique de reconstruction 3D à partir de deux radiographies EOSTM qui est ici détaillée, car 
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elle a été utilisée dans le cadre de ce travail. Cette méthode prévoit deux étapes de reconstruction 

3D : 

• D'abord la position des centres des plateaux des deux vertèbres limites (T1 et L5), 

identifiés par un opérateur, est utilisée pour tracer une courbe passant par les barycentres 

des corps vertébraux. Cette courbe permet d'estimer des descripteurs permettant de définir 

28 repères anatomiques : 10 points associés au corps vertébral sont estimés directement à 

partir de 8 dimensions associées au corps vertébral, alors que les 18 points restants (3 

pour le corps vertébral, 8 pour les pédicules, 4 pour les facettes et 3 pour les apophyses) 

sont calculés par inférence statistique. Le krigeage, une technique d'interpolation non 

linéaire, permet de déformer un modèle générique de vertèbre en utilisant les 28 points 

comme points de contrôle et d'obtenir un modèle géométrique personnalisé. Ce modèle 

est rétroprojeté sur les radiographies afin de permettre à l'opérateur de mieux évaluer la 

précision du modèle et d'apporter les modifications nécessaires afin d'améliorer le calcul 

des descripteurs et la position des repères qui sont directement utilisés pour le calcul des 

indices cliniques, tels que les points du plateau. 

• Par la suite, le modèle pré-personnalisé est raffiné par l'opérateur qui peut modifier la 

position des points associés au corps vertébral, aux pédicules ainsi qu'aux arcs postérieurs  

(Figure 1-13). 

 

Figure 1-13 : Reconstruction 3D à partir du système EOS : (a) interface du logiciel de reconstruction sterEOS (EOS 

imaging), (b) modèle 3D d’une vertèbre (avec les repères anatomiques) 
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Grâce aux modèles géométriques 3D du rachis, il est possible de calculer des indices cliniques 

additionnels qui peuvent être utiles pour la caractérisation d'un patient présentant une SIA, tels 

que le plan de courbure maximale passant par les centres des deux vertèbres limites et de la 

vertèbre apicale (end-apex-end (EAE) plane). La projection de ce plan en vue transversale permet 

d’en calculer l'angle par rapport au plan sagittal (Figure 1-14). Pour les patients 

asymptomatiques, cet angle est compris entre 0° et 10°, alors que pour les patients scoliotiques, 

cet angle s’écarte de plus en plus (Labelle et al., 2011; Parent et al., 2011) 

 

Figure 1-14 : Orientation des plans de courbure maximale par rapport au plan sagittal (vue de dessus) 

 

1.3 Traitement de la SIA par chirurgie 

La chirurgie d’instrumentation pour la correction de la scoliose est un traitement complexe et 

invasif nécessaire dans le cas de scolioses sévères ou de forte progression et d'un échec du 

traitement avec corset. Lors de l'intervention, les chirurgiens exécutent des manœuvres de 

dérotation, translation et compression/distraction de la colonne à l'aide de plusieurs types 

d'implants (tels que vis, crochets) installés sur des tiges métalliques (Aubin et al., 2008) (Figure 

1-15). L'instrumentation chirurgicale vise à corriger les déformations scoliotiques en 

rééquilibrant l'axe du rachis et en améliorant l'apparence extérieure du tronc. La fusion osseuse 

des niveaux instrumentés permet de limiter la progression des déformations rachidiennes. 
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Figure 1-15 : Radiographies post-opératoires d’un patient scoliotique suite à l’instrumentation du rachis (issue d’une 

banque d’images de l’auteur) 

 

La chirurgie d'instrumentation est souvent pratiquée par voie postérieure en réalisant une incision 

au niveau du dos. Les techniques d'instrumentation ont largement évolué au cours des trente 

dernières années. Dans un premier temps, elles étaient basées sur la technique développée par 

Harrington (1973). Celle-ci a ensuite été remplacée par la technique développée par Cotrel et al. 

(1988) qui permettait d'améliorer la correction 3D en appliquant des manœuvres de rotation aux 

tiges. Au cours des dix dernières années, ces techniques ont été améliorées. Tout d’abord, de 

nouveaux types d'implants (vis multiaxiales de différents diamètres) ont été développés afin 

d’améliorer la correction 3D (Medtronic, 2004). De plus, la correction dans le plan transverse a 

été perfectionnée en introduisant une technique prévoyant la dérotation vertébrale directe (en 

anglais direct vertebral derotation (DVR)), qui consiste appliquer une rotation dans le plan axial à 

chaque vertèbre afin d'en corriger l'orientation (Chang et al., 2009) 

Le champ visuel auquel le chirurgien a accès pendant ce type d'opérations est très restreint 

(Figure 1-16). En effet, l'incision pratiquée au niveau du dos permet d'exposer uniquement la 

partie postérieure des vertèbres, ce qui rend difficile le suivi du mouvement 3D des vertèbres 

pendant l'application des efforts mécaniques et l'installation des implants, ainsi que la 

quantification des déformations scoliotiques résiduelles (Mac-Thiong et al., 1999; Tjardes et al., 
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2010). Or, la connaissance de ces informations permettrait d'évaluer le niveau de correction 

atteint à la suite des manœuvres chirurgicales pendant l'opération. 

 

 

Figure 1-16 : Champ visuel pendant la chirurgie par approche postérieure 

 

1.3.1 Simulation biomécanique préopératoire de l’instrumentation 

Les modèles 3D précédemment présentés peuvent être exploités pour la planification chirurgicale 

et la compréhension biomécaniques des paramètres d’instrumentation. Plusieurs avancées ont été 

réalisées dans ces deux domaines au cours des vingt dernières années grâce à des approches 

numériques de modélisation par éléments finis et par multi-corps flexibles. 

Les modèles par éléments finis permettent d'accéder aux informations sur les déformations et les 

contraintes mécaniques locales dans chaque élément du maillage. Ce type de modèle a été utilisé 

par Stokes et al. (1993) pour simuler une instrumentation de type Harrington ainsi que par 

Gardner-Morse et al. (1994), Le Borgne et al. (1999), Lafage et al. (2004) pour simuler une 

instrumentation Cotrel-Dubousset. Rohlmann et al. (2007) ont comparé l'effet de différents 

dispositifs sur la mobilité et les charges appliquées sur un segment du rachis. Lalonde et al. 

(2008) ont utilisé un modèle FEM pour modéliser la chirurgie correctrice par voie endoscopique 
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en utilisant des agrafes entre deux vertèbres successives. Driscoll et al. (2013) ont utilisé un 

modèle FEM simplifié pour la simulation de la manœuvre de « segmental translation ». 

Dans l'approche multi-corps flexible, les vertèbres sont modélisées comme des corps rigides et 

reliées entre eux par des liaisons déformables. Aubin et al. (2003) et Desroches et al. (2007) ont 

utilisé ce type de modèle pour simuler respectivement une instrumentation de type Cotrel-

Dubousset et une chirurgie avec approche antérieure. Ce même type de modèle a été utilisé pour 

étudier l'impact biomécanique de la densité des vis pédiculaires (Wang et al., 2012), pour 

optimiser la stratégie d'instrumentation selon un objectif de correction recherché (Majdouline et 

al., 2012), ainsi que pour analyser la correction atteinte à l'aide de la technique de « direct 

incremental segmental translation » (Wang et al., 2011). 

Un simulateur de chirurgie avec une interface conviviale a été développé par Aubin et al. (2008) 

pour permettre aux chirurgiens de comparer avant l'opération plusieurs stratégies d'intervention 

afin d'identifier la stratégie optimale (Figure 1-17). Une étude sur 10 patients scoliotiques a 

montré que le simulateur est capable de reproduire l'angle de Cobb, la cyphose et la lordose avec 

une erreur moyenne inférieure à 5°. Par ailleurs, une simulation est achevée en moins de 5 

secondes. Ce travail a démontré la faisabilité d'un simulateur des manœuvres chirurgicales 

comme instrument de prévision et de planification pour les chirurgiens. 

 

Figure 1-17 : Interface graphique du simulateur de chirurgie S3 
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1.3.2 Gestes médico-chirurgicaux assistés par ordinateur (GMCAO) 

Les GMCAO rassemblent l'ensemble des techniques utilisées pour améliorer la visibilité du 

champ chirurgical ainsi que les systèmes robotiques employés dans la réalisation de certaines 

manœuvres chirurgicales (Nolte et al., 2004). Un système de GMCAO constitue un système de 

guidage et de  navigation que le chirurgien peut utiliser pour s'orienter pendant la chirurgie, basé 

sur des techniques d'imagerie avancées, permettant de réduire le caractère invasif des chirurgies 

et d'améliorer la précision des manœuvres d'intervention en augmentant la visibilité du champ 

chirurgical (Kowal et al., 2007). C'est pourquoi les systèmes de GMCAO sont de plus en plus 

utilisés dans plusieurs domaines, tels que l'arthroplastie, la chirurgie de la scoliose et 

traumatologique (Manzotti et al., 2011; Tjardes et al., 2010; Weng et al., 2009). Il est possible 

d'identifier trois composantes principales définissant un système de GMCAO comme illustré en 

Figure 1-18: 

• l'objet chirurgical, qui est la partie anatomique soumise à la chirurgie, identifié par un 

référentiel dynamique (en anglais, dynamic reference array (DRA)) permettant de définir 

sa position dans l'espace; 

• l'objet virtuel, qui est la représentation virtuelle de l'objet chirurgical. La représentation 

communément utilisée est basée sur des coupes de type CT-scan, dont le chirurgien peut 

changer le plan de vue selon la nécessité. Par ailleurs, des modèles surfaciques et 

volumiques peuvent être utilisés, mais ceux-ci sont actuellement moins diffusés; 

• le navigateur, qui définit le système de coordonnées dans lequel on exprime la position à 

la fois de l'objet virtuel et des autres instruments chirurgicaux. 
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Figure 1-18 : Composants principaux d’un système de GMCAO avec la représentation des systèmes de coordonnées 

locaux (reproduit avec autorisation de Nolte, 2004) 

 

1.3.2.1 Représentation de l’anatomie du patient 

Plusieurs techniques d'imagerie peuvent être utilisées pour l'acquisition de la structure 

anatomique d'intérêt (l'objet chirurgical) afin d'en obtenir une représentation virtuelle. Dans les 

systèmes de GMCAO de première génération, la source d'information privilégiée pour obtenir 

l'objet virtuel est constituée d'images médicales préopératoires (CT-scan, IRM, radiographies). 

Dans ce cas, un processus de recalage est nécessaire afin de définir le positionnement de l'image 

préopératoire pendant la chirurgie. Une alternative est l'utilisation d'appareils fluoroscopiques 2D 

ou 3D intraopératoires, ce qui permet de déterminer automatiquement la position intraopératoire 

des structures anatomiques, sans passer par le recalage (Kowal et al., 2007). 

GMCAO basée sur le CT-scan 

Le CT-scan est un appareil d'imagerie permettant d'obtenir des images 3D avec une résolution 

pour l'os de 200 à 500 µm (Burghardt et al., 2011). Il présente donc un avantage par rapport aux 

radiographies (bidimensionnelles) pour la navigation des chirurgies orthopédiques. Son 

utilisation en salle de chirurgie est cependant compliquée à cause de ses dimensions. L'os étant un 

corps rigide, on peut pallier à ce problème et utilisant les images acquises avec le CT-scan avant 

la chirurgie pour mettre à jour en intraopératoire la géométrie du patient ainsi que le planning 

chirurgical, simulés sur les images CT. Ceci permet d'améliorer la visualisation du champ 
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opératoire et des manœuvres d'intervention (Jaramaz et al., 2004). Une étape fondamentale 

comporte donc l'identification de la position de l'objet anatomique par rapport aux images 

préopératoires. Pour ce faire, différents systèmes de suivi peuvent être utilisés (Section 1.3.2.2). 

Par ailleurs les instruments chirurgicaux sont repérés grâce à des marqueurs, normalement 

optiques ou électromagnétiques, installés sur les instruments eux-mêmes. Ceci permet d'en 

exprimer la position dans le même système de référence que celui des images et de les visualiser 

avec l'anatomie du patient (Figure 1-19). 

 

Figure 1-19 : Configuration d’un système de navigation CT : composants de base et leur système de coordonnées 

local associé. La représentation virtuelle de l’objet « surgical objet » est générée à partir d’une série d’images CT 

acquises en préopératoire (reproduit avec autorisation de Nolte, 2004) 

 

Cette technologie a subi un grand développement dans le cadre de l'installation de prothèses de la 

hanche et du genou, en permettant la visualisation des implants mais aussi une navigation 

avancée basée sur la modification des images pour montrer les coupes de l'os (Nolte et al., 2004). 

Plusieurs études ont montré un grand intérêt pour l'application de ce type de système pour 

l'insertion des vis pédiculaires pour la chirurgie du rachis lombaire et pour tout le rachis par la 

suite : Merloz et al. (1997) sont parmi les premiers à avoir montré la fiabilité des systèmes de 

navigation basés sur la mise à jour du planning d'insertion des vis simulé sur les images CT-scan 
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préopératoires. Une étude prospective conduite par Gelalis et al. (2012) a montré que la 

navigation avec les images CT-scan peut augmenter significativement le pourcentage de vis 

correctement placées dans le pédicule en réduisant le risque de lésion neurovasculaire. En effet, 

la projection dans les plans frontal, latéral et axial permet de visualiser les déformations 

vertébrales ainsi que la trajectoire d'insertion des vis sur les images. Cependant, Holly et al. 

(2007) ont mis en évidence certains désavantages liés à l'utilisation de cette technologie pour la 

chirurgie de la scoliose. Tout d'abord, l'acquisition des images CT augmente les coûts liés à ce 

type de chirurgie ainsi que l'exposition du patient aux rayons X. Il s'agit en fait d'une acquisition 

d'images, en plus des radiographies nécessaires afin d'évaluer la sévérité de la scoliose. De plus, 

l'identification de points anatomiques ou l'installation de marqueurs (par exemple optiques) 

pendant la chirurgie en augmentent la durée. Par ailleurs, cette identification de points rend 

difficile l'utilisation des systèmes basés sur le CT-scan pour les chirurgies mini-invasives. 

GMCAO basés sur les systèmes fluoroscopiques 

Les systèmes fluoroscopiques intraopératoires constituent une alternative au CT-scan dans le 

cadre des GMCAO. Ces systèmes permettent de simplifier les techniques de navigation grâce à 

l'élimination de l'étape de mise à jour des images, nécessaire dans le cas du CT-scan. La présence 

d'un DRA attaché sur l'anatomie du patient, ainsi que de marqueurs actifs ou passifs pour 

reconnaitre la position de l'appareil d'imagerie et des instruments chirurgicaux, permet au 

navigateur de définir automatiquement les transformations spatiales nécessaires afin d'exprimer 

tous les éléments dans le même système de référence (Hebecker, 2004). Après l'acquisition des 

images, l'appareil d'imagerie peut être déplacé en laissant plus de place pour les manœuvres 

chirurgicales, tout en permettant de continuer la navigation intraopératoire des images acquises 

précédemment (Figure 1-20). Les systèmes fluoroscopiques peuvent utiliser à la fois des 

appareils d'imagerie 2D et 3D. 
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Figure 1-20 : Configuration d’un système de navigation basé sur des images fluoroscopiques composants de base et 

leur système de coordonnées local associé. La représentation virtuelle de l’objet « surgical objet » est générée à partir 

d’images acquises en intraopératoire à l’aide du C-arm (reproduit avec autorisation de Nolte, 2004) 

 

Les systèmes fluoroscopiques 2D (C-arm) permettent d’obtenir des images intraopératoires selon 

2 plans, ce qui constitue un avantage par rapport à la fluoroscopie standard qui ne permet l'accès 

qu'à un plan à la fois. Cependant, ces systèmes ne permettent pas d'accéder au plan transverse, ce 

qui est limitant dans le cas d'interventions où le plan axial joue un rôle fonctionnel important, tels 

que la chirurgie de la scoliose. Cependant, le C-arm a déjà été utilisé dans la chirurgie mini-

invasive pour l'insertion des vis lombaires percutanées (Holly et al., 2007). Bien que les C-arm 

aient constitué un premier pas vers l'utilisation de la technologie fluoroscopique pour des 

systèmes intraopératoires, ils présentent des problèmes liés à la distorsion des images due à la 

projection dans deux plans lors du changement de la position spatiale de l'ouverture en forme de 

C. 

Le premier système 3D développé est un isocentric C-arm capable d'enregistrer plusieurs images 

successives pendant une rotation de 190°, ce qui est suffisant pour obtenir une reconstruction 3D, 

avec une durée d'acquisition d'environ 2 minutes pour 100 images (Nolte et al., 2004). 

Récemment, un nouvel appareil d'imagerie, l'O-Arm®, a été mis au point pour obtenir des images 

fluoroscopiques 2D standard ainsi que des images 3D, grâce à une rotation de 360° de l'arceau 

télescopique (Figure 1-21.a).  Les images de l'O-Arm® sont caractérisées par une meilleure 
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résolution, en particulier après des procédures d'instrumentation avec des composants 

métalliques, tels que les vis pédiculaires, et il est donc possible de l'utiliser pour contrôler 

l'emplacement des implants. Bien que toujours importante, l'exposition fluoroscopique est réduite 

par rapport aux autres systèmes (Tjardes et al., 2010). La dimension du détecteur (d'une longueur 

de 15 cm), assure de scanner plusieurs vertèbres en même temps en permettant de visualiser la 

forme et les déformations d'un segment du rachis (Medtronic, 2013). Ces deux systèmes 3D 

permettent, comme le CT-scan, d'avoir accès aux informations relatives au plan transverse, ce qui 

a une importance pour les chirurgies de la scolioses pour la définition de la trajectoire d'insertion 

des vis (Figure 1-21.b) et pour une visualisation complète de l'anatomie dans les interventions 

mini-invasives (Gonschorek et al., 2011; Holly et al., 2007). Deux études prospectives conduites 

par Larson et al. (2012) et Silbermann et al. (2011) ont montré que l'insertion de vis pédiculaires 

guidées avec l'O-Arm® permet d'atteindre une précision dans le placement supérieure à 96%. 

 

 

Figure 1-21 : (a) système d’imagerie fluoroscopique 2D/3D O-Arm, (b) interface du navigateur intégré à l’O-arm 

 

1.3.2.2 Systèmes de suivi intraopératoires 

Les systèmes de suivi constituent un composant fondamental dans un système de GMCAO pour  

identifier la position et l’orientation des instruments chirurgicaux, des points 3D sélectionnés sur 

l'anatomie du patient, de structures anatomiques  ainsi que des appareils d'imagerie par rapport au 

système de référence du navigateur. Ces types de système font partie des systèmes de navigation 
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passive, qui se limitent à relever les informations spatiales sur les objets dans le champ 

chirurgical, mais qui n'effectuent aucune action. Les systèmes de navigation active (robotique) ne 

sont pas traités dans ce mémoire, car ils ne présentent pas d'intérêt pour la problématique traitée 

ici. 

Systèmes de navigation passive 

Les systèmes passifs utilisent des localisateurs pour définir la position et l'orientation des objets 

en temps réel et font référence à différents principes physiques : 

• les bras mécaniques à 6 degrés de liberté constituent la première classe de localisateurs 

3D. Ils permettent d'identifier la position d'un point dans l'espace à l'aide d'un palpeur, à 

partir de la position des codeurs des axes de mouvement du bras. Ils peuvent atteindre une 

précision de 0.1 mm à 1 mm mais celle-ci peut descendre jusqu'à 3 mm en cas de légère 

détérioration du bras (Lavallée et al., 1997). Le principal désavantage de ces systèmes est 

la possibilité d'identifier un seul objet à la fois et l'obstruction du champ chirurgical. 

Cependant, ils peuvent être très utiles pour fixer la position d'un outil dans l'espace. 

Glossop et al. (1997) ont proposé l'utilisation d'un système mécanique afin de suivre les 

mouvements des vertèbres au cours de la chirurgie et ils ont montré leur capacité à relever 

à la fois le mouvement dû à la respiration (1.3 mm) et les mouvements induits par les 

manœuvres d'instrumentation (jusqu'à 12.3 mm). 

• les localisateurs optiques sont actuellement les plus répandus. Ils utilisent le 

rayonnement infrarouge provenant des marqueurs positionnés sur les objets suivis, soit 

par émission active, soit par réflexion passive. Pour repérer un instrument chirurgical, il 

est muni d'un minimum de trois marqueurs non colinéaires permettant de définir un 

système de référence local (T-cos). Un nombre plus élevé de marqueurs peut améliorer la 

précision de la navigation et permettre de définir des configurations différentes utiles pour 

distinguer les différents instruments utilisés. À l'aide de caméras optoélectroniques, le 

rayonnement réfléchi ou émis par les marqueurs est détecté et cette information est 

utilisée pour calculer la transformation spatiale nécessaire afin d'exprimer chaque repère 

local dans le système global de la caméra (C-cos). De la même manière, un repère local 

des structures anatomiques du patient (A-cos) est identifié à l'aide d'un DRA connecté 

rigidement à l'os, muni de marqueurs optiques relevés par la caméra (Kowal et al., 2007). 
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Afin d'assurer le bon fonctionnement de ces systèmes, il est nécessaire que la caméra 

puisse voir les marqueurs optiques tout au long de la navigation. Elfring et al. (2010) ont 

montré que la précision dans l'identification des points est d'environ 0.6 mm avec des 

marqueurs passifs, et inférieure à 0.2 mm pour les marqueurs actifs. Les senseurs optiques 

sont les plus répandus dans la chirurgie de la scoliose : Ghanem et al. (1997) les ont 

utilisés pour étudier la translation et la rotation des vertèbres à la suite des manœuvres de 

dérotation selon la technique de Cotrel-Dubousset. Lavallée et al. (1995a) ont combiné 

l'information des images CT préopératoires et d'un marqueur optique pour définir une 

trajectoire précise pour l'insertion des vis pédiculaires. Nolte et al. (1995) ont utilisé un 

capteur optique pour identifier sur les vertèbres 4 à 6 points anatomiques nécessaires pour 

la mise à jour d'images CT ou IRM préopératoires. Cependant, ils ont également souligné 

que de grosses imprécisions dans l'identification des points rendent parfois nécessaire 

l'acquisition d'un nombre de points plus élevé, jusqu'à 20-40. Duong et al. (2009) ont 

utilisé 10 marqueurs optiques fixés sur la surface externe du tronc pour évaluer la 

correction des déformations externes pendant la chirurgie. Merloz et al. (2007) ont montré 

que l'utilisation d'instruments chirurgicaux munis de marqueurs optiques associés à un 

système fluoroscopique permet d'améliorer la précision de l'insertion des vis en réduisant 

le pourcentage de pénétration du cortex. 

• les localisateurs à ultrasons utilisent comme source d'information la durée de parcours 

d'un signal ultrasonique. En considérant que la vitesse de déplacement des ultrasons dans 

l'air est connue, il est possible de calculer la distance entre un émetteur et un récepteur. 

Un minimum de trois émetteurs disposés sur un objet selon une configuration connue 

permet de calculer le système de référence local de l'objet ainsi que la transformation vers 

le système global. Ces systèmes nécessitent également  d'assurer que les récepteurs voient 

les émetteurs pendant la navigation. Une faible précision liée aux changements de 

température, aux déplacements et aux inhomogénéités de l'air, ainsi qu’à la complexité de 

la procédure de calibration limite l'utilisation de ces systèmes pour les GMCAO (Kowal et 

al., 2007). Dans le cadre des chirurgies de la scolioses, ce type de systèmes de suivi a été 

proposé par Yan et al. (2011) pour la mise à jour des images CT-scan préopératoires à 

partir de la surface vertébrale postérieure ainsi que par Ungi et al. (2012) pour l'infiltration 

des facettes. 
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• les localisateurs électromagnétiques utilisent un générateur de champ magnétique et des 

bobines associées aux objets chirurgicaux, capables de détecter la présence du champ. La 

mesure des interférences entre les bobines et les champs permet de déterminer la position 

spatiale des instruments chirurgicaux ou du patient. Ces systèmes ont une précision 

comparable à celle des systèmes optiques. De plus, ils ne nécessitent pas d'assurer un lien 

visuel entre l'émetteur et le détecteur étant donné que le champ magnétique n'interfère pas 

avec l'os ni avec les tissus biologiques  (Kowal et al., 2007; Lavallée et al., 1997). 

Cependant, le signal est influencé par la présence d'éléments métalliques, et ceci en limite 

donc l'utilisation pour les GMCAO. Des localisateurs électromagnétiques ont été utilisés 

dans le traitement de la scoliose pour l'infiltration des facettes et des disques 

intervertébraux (Bruners et al., 2009). Amiot et al. (1995) ont utilisé une sonde 

magnétique pour calculer en intraopératoire la position des pédicules ainsi que du trou 

pour l'insertion des vis pédiculaires. Cependant, une étude de comparaison entre différents 

systèmes de suivi pour la chirurgie de la scoliose a montré que ce type de numériseurs 

comporte une précision inférieure à celle du bras mécanique (Mac-Thiong et al., 1999). 

 

Les systèmes de suivi présentés ici n’ont pas permis d'avancées majeures dans le cadre de la 

chirurgie de la scoliose lors des dix dernières années, c'est pourquoi les références fournies ici 

sont principalement datées de la fin des années 1990 et du début des années 2000. 

1.4 Les techniques de recalage 

Le recalage se définit comme l'ensemble des algorithmes utilisés pour calculer la transformation 

permettant de retrouver la position d'un objet dans une autre vue ainsi que dans un autre instant 

temporel. La résolution de ce type de problème a une importance fondamentale dans plusieurs 

applications biomédicales dont les gestes medico-chirurgicaux assistés par ordinateur. L’objet à 

recaler peut être constitué d'images médicales 2D ou 3D (CT-scan, IRM, radiographies, etc.), par 

des marqueurs identifiés à l'aide de senseurs ou par des modèles géométriques 2D ou 3D associés 

à la structure anatomique d'intérêt (Oliveira et al., 2012). Le recalage est dit monomodal lorsque 

les deux objets à recaler proviennent de la même source d'information, sinon il est dit 

multimodal. 

De manière générale, le recalage entre deux objets comporte plusieurs étapes : 
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• définition de la transformation géométrique permettant de passer d'un objet à l'autre; 

• définition de la fonction de coût estimant les différences où les similarités des objets; 

• calcul des paramètres de transformation optimaux pour minimiser (ou maximiser) la 

fonction de coût; 

• validation des paramètres calculés. 

Dans le cas de l’assistance à la chirurgie d’instrumentation pour la correction de la scoliose, le 

problème de recalage consiste à identifier les paramètres de transformation spatiale permettant 

d’exprimer le modèle d’une vertèbre construit en préopératoire dans un système de coordonnées 

intraopératoire à partir des données acquises pendant la chirurgie.  

Selon la notation introduite par Markelj et al. (2012) on définit par !!!!, !!!! et !!!
!! les points 

appartenant respectivement aux données préopératoires 3D A (obtenues par CT-scan, IRM), aux 

données intraopératoires 3D B, et aux données intraopératoires 2D Bj (obtenues à partir des 

radiographies). Le recalage vise à identifier la transformation T permettant d’aligner au mieux 

!(!!!!) avec !(!!!!) : 

 !:  !!(!!!!)⟺ !(!!!!) (1-1) 

La transformation T dépend de la méthode de recalage choisie. Dans le cadre des techniques de 

mise à jour des vertèbres, les vertèbres étant des structures osseuses, la plupart des travaux dans 

la littérature considèrent une transformation rigide préservant la même taille et la même forme 

(Lavallée et al., 1997). Les transformations élastiques sont plutôt utilisées dans les cas de 

déformations variant avec le temps (comme le battement du cœur ou la progression d'une tumeur) 

ainsi que la mise en correspondance d'un atlas de référence avec la géométrie spécifique du 

patient (Maintz et al., 1998). 

Il est ensuite possible de distinguer les transformations locales, utilisant l’information provenant 

d’une seule partie de l’image, et les transformations globales. Dans le cadre des techniques de 

mise à jour des vertèbres, plusieurs travaux proposent l’utilisation d’une transformation locale 

(Mac-Thiong et al., 1999; Yan et al., 2011). Ce choix découle de la difficulté d’avoir accès aux 

données intraopératoires sur la vertèbre en entier, en considérant que seule la partie postérieure 

est exposée. Cependant, ce type de transformation est plus sensible aux bruits des données 
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utilisées donc ceci peut représenter une limite dans le cas où le modèle préopératoire est construit 

à partir des radiographies, puisque les erreurs sur les parties postérieures de la vertèbre sont plus 

grandes que celles associées au corps vertébral et aux pédicules (Humbert, 2008). D’autres 

travaux dans la littérature ont proposé d’utiliser une transformation globale, par exemple pour 

recaler deux vertèbres reconstruites à partir de CT-scan/IRM préopératoires et des radiographies 

intraopératoires (Lavallée et al., 1995b; Weese et al., 1997). 

Markelj et al. (2012) ont proposé une classification des techniques de recalage des structures 

anatomiques selon les attributs choisis pour obtenir l’alignement des données pré- et intra-

opératoires : attributs géométriques, attributs basés sur l’intensité et attributs basés sur le 

gradient.  

Dans le cas le plus simple, les attributs géométriques considérés sont des points dont la 

correspondance est connue. Ceci permet d’obtenir une formulation simple de la fonction de coût 

(1-2) qui peut être minimisée en utilisant une méthode directe, telle que la décomposition en 

valeurs singulières (SVD) où la méthode Procuste (Challis, 1995; Hill et al., 2001) : 

 

 
! ! = !! !(!!!!)− !(!(!!!!)) !

!

!!!

 (1-2) 

où ! est le nombre des points correspondants et !! un poids qui peut être assigné à chaque point 

sur la base de l'erreur estimée pour l’identifier. 

Une alternative consiste à utiliser des attributs géométriques basés sur l’information de surface. 

Dans ce cas, la correspondance entre les points à recaler n’est pas définie, et il est donc nécessaire 

d’introduire un critère permettant de définir cette correspondance. Une méthode communément 

utilisée est l’iterative closest point (ICP) (Besl et al., 1992), permettant de définir la 

correspondance entre les points à recaler sur la base du critère du plus proche voisin. Dans ce cas, 

la minimisation de la fonction de coût peut être effectuée à l'aide d'un des algorithmes directs 

présentés, mais des méthodes non-linéaires, telles que l’algorithme de Levenberg-Marquardt 

(Moré, 1978) (Annexe 1), peuvent réduire significativement le temps de calcul. Cependant, la 

convergence de l’algorithme d’optimisation peut être compromise par une mauvaise estimation 

de la position de départ entre les deux surfaces à recaler, c’est pourquoi certains auteurs ont 
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suggéré une initialisation manuelle par un opérateur ou une initialisation automatique (basée par 

exemple sur le calcul des axes principaux) (Muratore et al., 2002; Oliveira et al., 2012) 

Les méthodes de recalage utilisant les attributs basés sur l’intensité ou basés sur le gradient 

prennent en compte respectivement la similarité des valeurs associées aux pixels/voxels des 

images pré- et intra-opératoires ou la similarité de la direction des gradients calculés pour les 

surfaces associées aux structures anatomiques.  

Dans le cadre des techniques de mise à jour des vertèbres, l’utilisation de critères de différence, 

basés sur la distance entre points, lignes, courbes ou surfaces, est plus répandue. Plusieurs 

travaux se basent sur l’identification de repères vertébraux correspondants sur la vertèbre pré- et 

intra-opératoire par un opérateur ou grâce à l'utilisation de marqueurs fixés sur l'anatomie du 

patient (Cartiaux et al., 2012; Ghanem et al., 1997; Glossop et al., 1997). D’autres travaux dans la 

littérature proposent un recalage à partir de la surface (ou portions de surface) des vertèbres pré- 

et intra-opératoires (Mac-Thiong et al., 1999; Yan et al., 2011). Certains autres auteurs ont ainsi 

proposé de se baser sur la similarité du gradient pour recaler des images de vertèbres scannées 

avec CT-scan/IRM avec les vertèbres radiographiées (Tomazevic et al., 2003). 

La validation du résultat de recalage comporte plusieurs difficultés liées à la fois à la méthode de 

validation et aux critères à utiliser pour évaluer la précision à cause de la difficulté de définir une 

base de référence (« ground truth »). Dans le cadre de la chirurgie pour la correction de la 

scoliose, les travaux dans la littérature proposent une validation basée sur l’utilisation de 

marqueurs externes (Muratore et al., 2002), l'utilisation d'un fantôme synthétique ou os 

cadavérique (Bruners et al., 2009; Mac-Thiong et al., 1999; Yan et al., 2011) ou de simulateurs 

d'images pour générer un modèle de contrôle (Kadoury et al., 2009; Lavallée et al., 1997). Un 

autre paramètre utilisé est la mesure de DICE qui quantifie la superposition entre les vertèbres à 

recaler (Kadoury et al., 2009). La variété des critères utilisés pour la validation rend compliquée 

la comparaison des algorithmes actuellement existants en termes de temps de calcul ou de 

robustesse. 
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CHAPITRE 2 RATIONNELLE ET OBJECTIFS DU PROJET 

En résumé, la revue de la littérature a permis d'identifier les éléments clés suivants justifiant la 

réalisation du projet de maîtrise: 

• Les cas de scoliose sévère (angle de Cobb > 40°) nécessitent un traitement chirurgical 

complexe et invasif. Il est difficile d’évaluer la position des vertèbres ainsi que le 

changement de forme de la colonne vertébrale durant une chirurgie d’instrumentation 

étant donné que seule la partie postérieure des vertèbres est exposée. Il est important de 

pouvoir quantifier la forme intraopératoire du rachis, car ceci permettrait de mieux valider 

la correction atteinte par rapport aux objectifs initiaux.  

• Les images radiographiques habituellement acquises en préopératoire en position debout 

ne permettent pas d’apprécier la tridimensionnalité du rachis lors de l’opération étant 

donné qu’elles constituent une projection 2D de la colonne vertébrale sur deux plans. 

• Les modèles 3D préopératoires construits à partir des radiographies ne permettent pas de 

quantifier la forme intraopératoire du rachis étant donné que la position allongée 

intraopératoire, l’exposition chirurgicale et l’anesthésie induisent un changement de 

position des vertèbres par rapport à la position debout préopératoire. 

• Aucun système ne permet de mesurer automatiquement les indices cliniques pertinents 

pour l’évaluation de la scoliose pendant la chirurgie. Les systèmes d'imagerie disponibles 

en salle de chirurgie fournissent seulement une information visuelle et ne permettent pas 

d'obtenir des informations quantitatives sur la correction atteinte à la suite des manœuvres 

chirurgicales. Les systèmes de suivi intraopératoires ont été utilisés pour détecter les 

changements de forme du rachis mais ils nécessitent l'installation de marqueurs ou 

l'identification manuelle de repères anatomiques sur les vertèbres. 

 

L'analyse des points précédents permet de dégager la question de recherche suivante : 
« Comment peut-on exploiter les techniques utilisé dans le cadre des gestes medico-

chirurgicaux assistés par ordinateur pour quantifier les changements de forme de la 

colonne vertébrale et les mouvements des vertèbres de façon automatique pendant la 

chirurgie d’instrumentation pour la correction de la scoliose? » 
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Afin de répondre à cette question de recherche, les objectifs suivants ont été formulés: 

Objectif général 

Développer une nouvelle méthode de mesure permettant de quantifier de façon automatique les 

déformations scoliotiques du rachis pendant la chirurgie d’instrumentation afin de fournir au 

chirurgien des données exploitables pour évaluer le niveau de correction. 

Objectifs spécifiques 

O1.  Évaluer la faisabilité de modéliser la colonne vertébrale par recalage entre un modèle 

géométrique préopératoire réalisé à partir de deux radiographies et les images 

fluoroscopiques 3D intraopératoires. 

O2.  Valider le calcul des déformations scoliotiques avec la méthode développée dans le 1er 

objectif.  

 

Ce projet visera donc à vérifier l’hypothèse scientifique suivante : 

La méthode de mesure développée permet d'évaluer la correction de la colonne vertébrale 

pendant la chirurgie à ±5° d'angle de Cobb. Les autres déformations scoliotiques sont mesurées 

avec une exactitude comparable avec celle des mesures préopératoires (i.e. 5° pour les mesures 

angulaires et 3.5 mm pour les mesures linaires). 

La réalisation des objectifs de ce projet de recherche est présentée au chapitre suivant par 

l'intermédiaire d'un article scientifique. L'article résume les algorithmes développés pour le calcul 

des déformations scoliotiques intraopératoires et la validation des résultats. Le chapitre 4 présente 

des résultats qui complètent la validation de la méthode développée, ainsi que des outils 

complémentaires développés dans le cadre de ce projet. Une discussion générale, une conclusion 

et des recommandations complètent ce mémoire de maîtrise. 
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CHAPITRE 3 MÉTHODE DE MESURE AUTOMATIQUE 

INTRAOPÉRATOIRE DES DÉFORMATIONS SCOLIOTIQUES 

3.1 Présentation de l’article 

L’article porte sur la description et la validation de la méthode développée pour la mesure 

intraopératoire des déformations scoliotiques. Une méthode de mesure basée sur la mise à jour 

d’un modèle géométrique préopératoire muni des repères vertébraux anatomiques à partir 

d’images fluoroscopiques 3D intraopératoires a été développée. Un algorithme de recalage a été 

mis en place en prenant en compte les données suivantes : 

• Modèle préopératoire : constitué de l’ensemble des points 3D de la surface obtenue par 

krigeage à partir de 28 repères identifiés pour chaque vertèbre sur les deux radiographies 

biplanaires du patient en position debout; 

• Données intraopératoires : constituées de l’ensemble des points 3D issus de la 

segmentation du contour de la vertèbre sur chaque coupe des images fluoroscopiques 3D 

intraopératoires. 

La méthode de mesure des déformations scoliotiques a été validée sur un modèle synthétique de 

rachis. Par la suite, une étude de sensibilité sur des modèles de vertèbres numériques a permis 

d’analyser la robustesse de l’algorithme de recalage à des bruits sur les données préopératoires et 

intraopératoires. 

L’Annexe 1, présentant la méthode d’optimisation Levenberg-Marquardt utilisée dans le cadre de 

ce travail, complète les aspects méthodologiques présentés dans l’article. 

Cet article est intitulé: « Automatic Intraoperative measurements of scoliotic deformities », et a 

été soumis pour publication à la revue « Medical & Biological Engineering & Computing » au 

mois de Novembre 2013. Le premier auteur a contribué à environ 80% de la rédaction de 

l’article. 
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3.2.1 Abstract 

During a scoliosis instrumentation surgery, the surgeon has access to a narrow field of view to 

execute the correction maneuvers and residual spinal deformities are difficult to fully assess 

without imaging technologies and manual measurements. The objective was to develop an 

automatic measurement method of spinal deformities during an instrumentation surgery. 

Preoperatively, a 3D geometric model of the spine, including vertebral landmarks, is 

reconstructed using standing calibrated biplanar radiographs. Intraoperatively, using 2D/3D 

fluoroscopic images, a registration algorithm updates the position of vertebral landmarks, which 

can be used to automatically recompute the clinical indices relevant for the assessment of 

scoliotic deformities. This method was tested using a synthetic model of a scoliotic spine. 

Updated vertebral landmarks enabled the automatic computation of Cobb angles with an error 

below 1.8°. Errors on other angular indices in the coronal and sagittal planes were below 4.6°, 

and below 5.2° in the transverse plane. Errors on linear measurements were below 2.7 mm. A 

sensitivity analysis on computerized vertebral models with simulated noises on input data 

revealed a maximum average error below 3°. This study revealed the feasibility and clinical 

relevance of a tool that could be used intraoperatively for the quantitative 3D assistance of 

scoliosis surgeries. 

 

Keywords: Scoliosis surgery, 3D registration, spinal deformities, automatic measurement 
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3.2.2 Introduction 

Scoliosis is a complex three-dimensional (3D) deformity of the spine. Severe cases (Cobb 

angle>40°) are usually treated by surgical instrumentation to realign the spine in the coronal 

plane, reduce the rotation in the transverse plane and achieve an adequate balance in the sagittal 

plane. The most common surgical procedure involves a combination of rotation, translation, 

compression and distraction of the vertebrae using different implants (screws, hooks) attached to 

bilateral rods. During surgery using a posterior approach, only the posterior elements of the 

vertebrae are exposed and the surgeon has access to a limited field of view, partially obstructed 

by the instrumentation and surgical tools. Therefore, it is difficult to track the 3D motion of each 

vertebra and quantify the correction induced by the instrumentation maneuvers in the three 

anatomical planes [21]. 

Radiographs are routinely acquired preoperatively in the standing position to assess the deformity 

and plan the surgical procedure. However, these images are 2D projection of the 3D deformities. 

Moreover, these data are not entirely usable intraoperatively to assess the actual 3D position and 

orientation of the vertebrae because of the modification of the spinal shape due to the patient 

prone positioning and anesthesia. For instance, the coronal deformity is documented to be 

reduced by 37%, on average, between the preoperative standing position and the intraoperative 

prone position [8]. Intraoperative imaging systems (fluoroscope, CT-scan, radiographs) facilitate 

the sight of the anatomical structures [16], but can be limited to a small field of view. 

Intraoperative navigation systems enable to localize the vertebrae and track the 3D motion of the 

surgical tools in relation to the spine [19,27]. However, the systems presented above do not 

enable the automatically computation of relevant clinical indices in 2D and 3D and the 

quantitative assessment of the correction. Several intraoperative tracking systems (optoelectronic, 

magnetic, ultrasound, radiographic, mechanical arm) [5,7,10,11,30] have been used to update 

preoperative spinal models and follow the 3D motion of vertebrae and their spatial orientation 

during surgery. These systems are invasive and time-consuming since they involve the manual 

installation of markers, identification of anatomical landmarks and digitization of several points 

on the vertebral surface during surgery. 
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The aim of this study was to develop an automatic measurement method of 3D scoliotic 

deformities during surgery and provide the surgeon with quantitative feedback for the assessment 

of the intraoperative geometry of the spine. 

3.2.3 Materials and methods 

The main steps of the intraoperative automatic measurement method of 3D scoliotic deformities 

developed in this study are illustrated in Figure 3-1. The automatic computation of clinical 

indices of the scoliotic spine requires the use of vertebral landmarks that are not available 

intraoperatively. In consequence, the proposed methodology involves a combination of both 

preoperative and intraoperative information concerning the geometry of the spine. Preoperative 

biplanar radiographs are used for the 3D reconstruction of vertebral landmarks enabling the 

automatic computation of relevant 2D/3D clinical indices. Intraoperatively, 3D fluoroscopic 

images are used to register the position and orientation of the vertebrae, to update the vertebral 

landmarks and to automatically recompute the 2D/3D clinical indices. First, each step of the 

automatic measurement method will be described. Then, the validation of the method will be 

presented. 

3.2.3.1 Preoperative geometric model 

Prior to surgery, postero-anterior (PA) and lateral (LAT) radiographs of the spine were acquired 

in the standing position using a low-dose calibrated biplanar radiographic system (EOS™ 

imaging, France). The 3D geometry of the spine was reconstructed according to the technique 

presented in Humbert et al. [13]. This approach involved a two-level 3D reconstruction. First, 

several points along the spine were manually digitized to obtain a fast estimation of the spine 

curve. Then, the position of vertebral landmarks was finely adjusted to achieve a more accurate 

reconstruction. Twenty-eight vertebral landmarks were reconstructed for each vertebra (Figure 

3-2): 13 corresponding to the vertebral body (VB), 8 corresponding to pedicles (PED), 4 

corresponding to articular facets (FAC) and 3 corresponding to posterior processes (PP). A 

refined 3D geometric model was constructed by combining the reconstructed vertebral landmarks 

with dual kriging interpolation techniques [1] to define the surface of each vertebra. A previous 

study reported 3D errors on vertebral position of 1.8 mm and vertebral orientations of 2.3°, 2.4° 

and 3.9° for the sequence “lateral-sagittal-axial angles” [13]. 
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For each vertebra, the x, y, z coordinates of N points m{ }i=1
N that constitute the preoperative 

vertebral surface resulting from the 3D reconstruction algorithm are denoted preop data. 

3.2.3.2 Intraoperative model 

Intraoperative images of the spine were acquired using a 2D/3D fluoroscopic imaging system (O-

Arm®, Medtronic). The intraoperative 3D geometry of the spine was reconstructed using 

sequential scans from this system. Each scan represented a volume composed of 192 2D slices 

with a 0.83-mm thickness along the axial direction of the imaging system. Each 2D slice was 

composed of 512x512 pixels with a 0.415-mm spacing. For each slice, the vertebral contours 

were manually segmented and a binary voxel model was identified for each vertebra using Slice-

O-Matic™ software (Tomovision, Magog, QC).  

For each vertebra, the x, y, z coordinates of M points s{ } j=1
M that constitute the intraoperative data 

(spine voxel model) resulting from the segmentation are denoted intraop data. 

The intraoperative model was obtained through registering the preoperative model with the 

intraoperative data. The objective of this registration step was to estimate the geometric 

transformation T which best aligns the preop data with the corresponding intraop data for each 

vertebra and compute the intraoperative model. Rigid transformations were used since each 

vertebra was considered undeformed during surgery, which is generally the case except when 

osteotomies are performed. For each vertebra, T is then a combination of rotations and 

translations.  

 ! ! = !! + ! (3-1) 

The translation vector is defined as   ! = !! , !! , !!
!
. The rotation matrix R is defined from Euler 

angles γ, β, α around x, y and z axes, which represent respectively the anterior, left and cranial 

directions of the body [29]: 

 
! =

cos! cos  ! − sin! cos! sin!
cos! sin! sin ! + sin! cos ! − sin ! sin! sin! + cos ! cos! − cos! sin !
− cos ! sin! cos! + sin ! sin! sin! sin! cos ! + cos! sin ! cos ! cos!

  (3-2) 
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The aim of the registration algorithm was to estimate the transformation T, by minimizing an 

error function between intraop and preop data. The error function to be minimized was adapted 

from the notation introduced by Fitzgibbon [9]: 

 

 
! = !!!!min! !! − ! !!

!
!

!!!

  (3-3) 

 

The term wi is the weight applied to each point mi of the preop data. The Shepard's method [26] 

was used to define the value of the weight wi as a function of the geodesic distance between the 

point mi and their three closest vertebral landmarks: 

 

 

!! =

!!!
! !! ,!!!

1
! !! ,!!!

!
!!!

!

!!!

 (3-4) 

 

In Eq. (3-4), the terms mL and wL are respectively the positions and weights of the vertebral 

landmarks. The geodesic distance ! !! ,!!!      was computed using the method proposed by Peyré 

and Cohen [24]. The value of the weights wL  of the vertebral landmarks is based on the estimated 

errors in their identification [12]. The highest weight (100) was assigned to vertebral body and 

pedicle landmarks since they have the lowest localization error (1-mm standard deviation), while 

the lowest weights (50 and 30) were assigned to articular and posterior processes landmarks, 

respectively, since they have the highest localization errors (2- and 3-mm standard deviation 

respectively) [12].  

In Eq. (3-3), σD is the standard deviation of the computed distances between preop and intraop 

data at each iteration of the registration algorithm. This term was introduced in order to 

uniformly distribute the distance between the preop and intraop data. 

The Iterative Closest Point (ICP) registration algorithm [3] was used to find transformation T 

which minimizes error function E. The ICP algorithm was initialized using the initial 

transformation T0, which defines the initial relative position between preop and intraop data. The 
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estimation of T0 was undertaken using principal component analysis (PCA) [14]. Both preop and 

intraop data were normalized to have a zero mean. The PCA was performed on these normalized 

data and the three principal axes of both preop and intraop data were computed. The directions 

of the three axes were used to estimate the initial transformation parameters of rotation and 

translation. 

The ICP involves three iterative steps, starting from the initial transformation T0: 

1. Compute, for each point mi of the preop data, the distance from its corresponding 

closest point in the intraop data sj; 

2. Estimate the transformation parameters (translation and rotation) by minimizing 

the error function E (the parameters that best align each preop data mi on their 

corresponding closest points found in step 1); 

3. Transform the preop data mi using the estimated transformation parameters. 

The steps above were repeated until changes in error function E were lower than a chosen 

threshold (the stop criterion). 

At each iteration, step 1 was performed using a precompiled distance map associated with the 

intraoperative data. For each vertebra, the distance map was a function providing the distance 

between each voxel of the intraoperative images and the voxels associated with the contour of the 

vertebra [20]. The result was a set of new images where all the voxels associated with the contour 

of the vertebra had a zero value, while the other voxels had a value proportional to the distance to 

their closest zero-value voxel. For each point of the preop data mi, the distance map enabled the 

computation of distance from its corresponding closest point based on a 3D interpolation between 

the 8 voxels of the distance map that enclosed point mi. 

Step 2 was performed using the non-linear Levenberg-Marquardt algorithm [22], which estimated 

transformation T that minimized error function E. In step 3, the transformation T was used to 

update the relative position between preop data mi and intraop data sj. The final transformation 

that satisfied the stop criterion (10-4) was denoted Tf. This transformation Tf enabled the update 

of the preoperative geometric model of the spine according to the intraoperative data, in order to 

compute the intraoperative model. The intraoperative position of vertebral landmarks sL was 

obtained by applying the transformation Tf to the preoperative vertebral landmarks mL: 
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 !! = !! !!  (3-5) 

 

3.2.3.3 Intraoperative measurement of the clinical indices 

The updated vertebral landmarks sL enabled the computation of the intraoperative clinical indices 

of the spine. The computation of these clinical indices was adapted from the radiographic 

measurement manual of the Spinal Deformity Study Group [23]. The selected clinical indices in 

the coronal and sagittal planes were: the main thoracic (MT) and thoracolumbar–lumbar (TL/L) 

Cobb angles, kyphosis between T5–T12 and T2–T12, and lordosis between T10–L2 and T12-L5. 

Coronal and sagittal balances were also computed to evaluate the straightness of the spine. Local 

vertebral measurements, such as apical vertical translation (AVT), T1 tilt and apical vertebral 

rotation (AVR) were also calculated. AVR was calculated according to Stokes method [18]. 

Finally, the orientation of the planes of maximum curvature (PMC), defined as the End-Apex-

End vertebrae planes, with respect to the sagittal plane for the MT and TL/L segments was also 

computed for the 3D measurement of scoliotic deformities [17]. In a normal spine, these planes 

lie in the sagittal plane (around 0°), but shift in the lateral direction as lateral deformity increases 

[17]. Selected clinical indices are shown in Figure 3-3. 

3.2.3.4 Evaluation of the automatic measurement method 

A global evaluation of the automatic measurement method described above was performed using 

a synthetic model of a scoliotic spine (T1-L5). The synthetic model was first positioned in a 

realistic scoliotic configuration (with a 60° MT Cobb angle) representing the spine of a patient 

preoperatively in the standing position. The synthetic model was fixed in a rigid radiotransparent 

frame (Figure 3-4a). Biplanar radiographs were acquired and the 3D geometric model was 

reconstructed according to the previously described method. The synthetic model of the spine 

was then modified to reproduce the intraoperative prone position of the patient on the operating 

table (Figure 3-4b). This configuration was scanned using the fluoroscopic imaging system (O-

Arm®, Medtronic). The registration algorithm developed for this study was used to compute the 

intraoperative model and, thereafter, the clinical indices. 

The clinical indices computed automatically were compared to reference measurements 
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performed twice manually by the same operator, using a radiographic measurement software with 

known accuracy [2]. The average value for each pair of measurements of a given clinical index 

was considered as the reference value for comparison with the corresponding automatic 

measurement. 

3.2.3.5 Sensitivity analysis of the registration algorithm 

A sensitivity analysis was performed on the ICP registration algorithm of the automatic 

measurement method to investigate the effect of possible sources of inaccuracy during the 

acquisition of pre- and intra-operative data of the spine.  

Simulations were performed on five different vertebrae (T1, T5, T10, T12, L3) from three 

scoliotic patients. For each vertebra, the preoperative geometric model was represented with its 

digitized surface and 28 vertebral landmarks. The same geometric model was voxelized using the 

Bresenham's line algorithm [4] to simulate segmented intraoperative fluoroscopic images 

composed of 3D voxels (intraoperative data).  

Random rotations between -20° and +20° around x, y, and z axes were simulated on the 

preoperative geometric model to represent possible variations in the vertebra orientation between 

the preoperative standing and the intraoperative prone configurations of the spine.  

The first part of the sensitivity analysis investigated inaccuracies in the manual identification of 

vertebral landmarks in the preoperative geometric model. These inaccuracies affect the shape of 

the vertebral surface and may influence the registration result. The vertebral surface was 

modified applying small displacements to the vertebral landmarks. Five series of 100 simulations 

were performed for each vertebra, for a total of 7500 simulations. For each series of simulations, 

small displacements were simulated by a random noise applied to a different group of vertebral 

landmarks: vertebral body (VB) landmarks, pedicles (PED) landmarks, facets (FAC) landmarks, 

posterior processes (PP) landmarks, all vertebral landmarks (ALL). For each group of vertebral 

landmarks, the standard deviation σ of the simulated displacements was defined according to the 

errors reported by Humbert [12]: σ = 1 mm for vertebral body landmarks, σ = 1 mm for pedicles 

landmarks, σ = 2 mm for facets landmarks, σ = 3 mm for posterior processes landmarks. 

The second part of the sensitivity analysis investigated inaccuracies in the segmentation and 

identification of each vertebra in the intraoperative fluoroscopic images. A random noise was 
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computationally applied to the intraoperative data. Ten series of 500 simulations were performed 

for each vertebra, for a total of 75,000 simulations. For each series a random noise was applied to 

the points constituting the intraoperative data, with an increasing mean from 0.25 mm to 2.5 mm 

and a 0.25-mm step. The simulated maximum noise was two times higher than the average error 

of 1.12 mm reported in a recent experimental study for automatic vertebral identification and 

segmentation algorithms applied on computed tomography images [15]. 

The angular differences, between the intraoperative reference data and intraoperative model 

resulting from the registration algorithm, were computed using the sequence of “lateral-sagittal-

axial angles” [28]. The angular differences are presented as the mean (and standard deviation) for 

the five vertebrae and three patients. 

3.2.4 Results 

The registration algorithm enabled the identification of the intraoperative position of vertebral 

landmarks necessary to compute the clinical indices. Figure 3-5 shows the intraoperative model, 

resulting from the ICP registration between the preoperative geometric data of the synthetic 

scoliotic spine and the intraoperative data. For each vertebra, the 28 vertebral landmarks were 

updated using the rotation and translation transformation parameters determined by the 

registration algorithm.  

The clinical indices computed with the automatic measurement method were slightly different 

from the reference values measured by the operator (Table 3-1); the maximum difference for the 

angular measurements in the coronal and sagittal planes was below 4.6°, while it was below 5.2° 

for other angular measurements (AVR and orientation of PMC). In particular, the difference in 

Cobb angles was below 1.8°. The maximum difference for linear measurements was below 2.7 

mm. 

Simulated inaccuracies in the identification of vertebral landmarks in the preoperative geometric 

model induced a maximum angular difference of 2.1° between the intraoperative model and the 

intraoperative reference data when all vertebral landmarks were noised (Figure 3-6). No 

significant angular difference between the three local axes was observed for the five different 

groups of simulated randomly-noised vertebral landmarks. 
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Simulated inaccuracies in the segmentation and identification of the vertebrae in the 

intraoperative images induced angular differences below 2.6° with reference measurements 

(Figure 3-7). A maximum difference of 0.5° was observed between the three local axes at the 

same noise level. For each local axis of the vertebrae, the mean and standard deviation of the 

angular differences increased with the level of noise applied to the intraoperative images. 

3.2.5 Discussion 

This study introduces a method to automatically compute intraoperative 3D measurements of 

scoliotic deformities. Furthermore, it demonstrates clinically relevant accuracy, similar or better 

as compared with the reported average accuracy of 2° for Cobb angles, 5.3° for T2-T12 kyphosis, 

4° for other angles and 3.5 mm for linear measurements [2]. The greater angular differences in 

the transverse plane could be explained by the sensitivity of Stokes method and of the planes of 

maximum curvature method to the position of the landmarks used to compute the angles [18,25]. 

These differences could also be explained by slight motions in the synthetic spine model between 

the acquisitions of radiographs with the fluoroscopic and radiographic systems. 

The sensitivity analysis revealed that the registration algorithm computes the intraoperative 

model with a clinically relevant robustness. The angular difference induced by the simulated 

inaccuracies in the identification of vertebral landmarks and in the segmentation and 

identification of vertebrae was smaller than ±2.5° (range of 5°) in the coronal and sagittal planes, 

which is appropriate when considering the commonly accepted accuracy of 5° in Cobb angle 

measurement [2]. The angular difference is also smaller than average error of 5.3° on vertebral 

orientation reported by a previous experimental study [21] using a similar geometric model 

constructed from preoperative biplanar radiographs. 

The automatic measurement method uses standard radiographs taken preoperatively, which is 

advantageous to previous studies involving the use of CT-scans [5,30] that are costly, time-

consuming and add significant ionizing exposure. Moreover, currently available 3D 

reconstruction techniques from standard radiographs provide access to the 3D analysis of 

scoliosis, which is fundamental to this work.  The 3D intraoperative images provide data of the 

entire vertebrae for the ICP registration algorithm, which differentiates itself from other 

navigation technologies that are based on fiducial markers and intraoperative identification of 
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landmarks on the posterior part of the spine [10,11]. This reduces marker installation and 

identification time and extrapolation errors.  

To date, the automatic measurement method has only been tested using a synthetic asymptomatic 

spine model in a single configuration; further testing on different cases of scoliotic patterns is 

required before confirming its generalizability. The identification of vertebral surfaces and 

landmarks was easier compared to scoliotic spines with deformed vertebrae, soft tissues and 

neighboring anatomical structures. By considering the shape of the spine at the beginning of the 

surgery, the automatic measurement method only took into account the contribution of 

differences between the standing and prone position of the patient and effects of anesthesia and 

surgical exposure. The same process may be applied at any time of surgery if a new set of images 

is acquired, especially following correction maneuvers, to evaluate the final shape of the spine, 

but at the expense of supplementary radiation exposure. The measurement process has other 

limitations. For instance, it does not take into account possible vertebral osteotomies during 

surgery that may modify the shape and topology of the vertebrae. However, the selection of 

vertebral landmarks could be adapted to be always present throughout surgery. In this feasibility 

study, the segmentation and identification of vertebrae using the intraoperative fluoroscopic 

images were performed manually. To obtain a fully automatic measurement tool, automatic 

segmentation and identification should be developed. Other factors not tested in this study, such 

as the presence of instrumentation devices and tools, may affect the visibility of the anatomical 

landmarks and should be further tested to fully assess the proposed approach. 

In conclusion, the current study demonstrates the feasibility of using pre- and intra-operative 

images to automatically provide the surgeon with relevant quantitative 2D and 3D measurements 

of scoliotic deformities during intervention.  

In the long term, the transformation parameters resulting from the registration algorithm may also 

be used to update preoperative surgical planning and the obtained intraoperative model may 

support the testing of other instrumentation strategies [6].  
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3.2.7 Figures  

 

Figure 3-1 : Workflow diagram of automatic measurement method 
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Figure 3-2 : Preoperative geometric model of a vertebra. The vertebral surface is illustrated with the vertebral 

landmarks on the vertebral body (circles), pedicles (triangles), articular facets (squares), and posterior processes 

(stars) 
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Figure 3-3 : Schematic representation of the measurement of clinical indices: (a) Cobb angles in the coronal plane, 

(b) thoracic kyphosis and lumbar lordosis in the sagittal plane, (c) apical vertebral translation (AVT), (d) frontal and 

sagittal balance, (e) T1 tilt, (f) apical vertebral rotation (AVR) (g) 3D orientation of the planes of maximum 

curvature (PMC) 
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Figure 3-4 : Experimental set-up using a synthetic model of the spine. a) the synthetic model was configured to 

represent a scoliotic spine in a preoperative standing position. 2D biplanar radiographs were acquired. b) the scoliotic 

shape of the synthetic model has been modified to simulate an intraoperative prone position, and 3D fluoroscopic 

images were acquired 
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Figure 3-5 : Intraoperative model (dark gray) resulting from the ICP registration between the preoperative geometric 

data of the synthetic scoliotic spine and the intraoperative data (light gray) For each vertebra of the intraoperative 

model, the 28 vertebral landmarks are illustrated in black  
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Figure 3-6 : Angular differences between the reference intraoperative data and the intraoperative model, considering 

a simulated random noise on different subgroups of vertebral landmarks (VB: vertebral body; PED: pedicles; FAC: 

articular facets; PP: posterior processes; ALL: all vertebral landmarks). Mean values are shown with standard 

deviation for lateral, sagittal and axial angles 
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Figure 3-7 : Angular differences between the reference intraoperative data and intraoperative model resulting from 

the registration algorithm, considering different levels of simulated errors in the intraoperative data. Mean values are 

shown with standard deviation for lateral (a), sagittal (b) and axial (c) angles 
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3.2.8 Table 

 

Table 3-1 : Comparison of the intraoperative automatic measurements and reference values measured twice by an 

operator 

Clinical indices Reference 
measurements 

Automatic 
measurements Difference 

Cobb MT 43.0° 41.2° 1.8° 

Cobb TL/L -21.0° -21.9° 0.9° 

T2-T12 kyphosis -12.0° -8.9° 3.1° 

T5-T12 kyphosis -19.0° -17.3° 1.7° 

T10-L2 Lordosis -8.5° -10.9° 2.4° 

T12-S1 Lordosis -31.0° -35.6° 4.6° 

AVT MT 43.5 mm 44.8 mm 1.3 mm 

AVT TLL 0.0 mm 2.7 mm 2.7 mm 

Coronal balance -1.0 mm 0.2 mm 1.2 mm 

Sagittal balance 13.0 mm 14.4 mm 1.4 mm 

T1 TILT -1.0° -2.6° 1.6° 

AVR 1.1° -4.1° 5.2° 

PMC of MT curve 102° 105° 3° 

PMC of TL/L curve 36° 41° 5° 
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CHAPITRE 4 ASPECTS MÉTHODOLOGIQUES ET RÉSULTATS 

COMPLÉMENTAIRES 

Ce chapitre présente d’abord des détails complémentaires sur la méthode de recalage présentée 

dans l’article du Chapitre 3. Ensuite, une comparaison avec une autre méthode de recalage 

classique dans la littérature est présentée. Pour conclure, une méthode d’identification 

automatique des vertèbres (étiquetage) dans les images fluoroscopiques intraopératoires est 

proposée.  

4.1 Détails sur la méthode de recalage 

Cette section présente plus de détails sur l’analyse en composantes principales (ACP) utilisée 

pour initialiser l’ICP ainsi que sur le calcul du champ scalaire des distances. De plus, un tableau 

précisant les repères vertébraux utilisés pour le calcul des indices cliniques est présenté à la fin de 

cette section. 

4.1.1 Analyse en composantes principales 

Pour chaque vertèbre, l’ACP a été utilisée pour calculer la transformation initiale permettant 

d’identifier la position de départ du modèle géométrique préopératoire par rapport aux données 

intraopératoires. Cet algorithme est basé sur le calcul des axes principaux de chaque vertèbre en 

préopératoire et intraopératoire. Un algorithme de recalage rigide utilisant la direction des axes 

principaux a été appliqué et a permis une première estimation de la position de départ du modèle 

géométrique préopératoire par rapport aux données intraopératoires. 

Lors du calcul de la transformation initiale, un paramètre de contrôle de la position de départ 

entre le modèle géométrique de chaque vertèbre préopératoire et des données intraopératoires a 

été introduit. On définit !!"# ,!!"#,!!"# les angles autour des axes !,!, ! identifiés par l’ACP. 

Pour chaque vertèbre à recaler, on définit un angle moyen !!! entre les apophyses transverses et 

l’apophyse épineuse en utilisant les repères vertébraux correspondant à ces parties anatomiques 

sur le modèle préopératoire (Figure 4-1). Cette information spécifique de chaque vertèbre a été 

ajoutée pour corriger, si nécessaire, la valeur de l’angle !!"#. 
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Figure 4-1 : Illustration des angles αPP1 et αPP2 utilisés pour définir l’angle moyen αPP entre les apophyses transverses 

et l’apophyse épineuse.  

 

Pour chaque vertèbre à recaler, la distance entre le modèle géométrique préopératoire et les 

données intraopératoires a été calculée en tournant le modèle géométrique préopératoire en cinq 

positions différentes autour de l’axe !  selon les angles: !!"#, !!"# + !!! 2, !!"# + !!!, 

!!"# − !!! 2, !!"# − !!!. Les angles suivant les deux autres directions (!!!" ,!!"#) sont restés 

inchangés. La position minimisant la distance entre le modèle préopératoire et les données 

intraopératoires a été choisie comme position de départ pour l’ICP.  

L’angle !!!, calculé à partir du modèle préopératoire de la vertèbre, a donc été utilisé pour 

corriger la direction des axes principaux, qui peut être influencée par des bruits caractérisant les 

données (Jolliffe, 2005). En effet, dans cette étude nous avions remarqué une dépendance de la 

direction des axes principaux dans le plan axial à l’orientation des apophyses de la vertèbre. En 

particulier, dans le cas où l’apophyse épineuse a une longueur comparable à celle des apophyses 

transverses, les axes principaux peuvent mal identifier les directions PA et LAT de la vertèbre. 

Ceci pourrait donc compromettre l’identification de la transformation pour initialiser l’ICP et en 

empêcher la convergence vers la bonne solution. 

La position alors identifiée a permis à l’ICP d’atteindre une convergence dans 99.9% des cas. 

Pour les rares cas où la convergence n’était pas atteinte, les axes principaux de la vertèbre 

préopératoire étaient inversés par rapport à ceux de la vertèbre intraopératoire, ce qui a causé une 

identification erronée de la transformation initiale. Ces cas correspondent à des situations où les 
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bruits simulés étaient très importants, ce qui avait entrainé un changement radical de forme de la 

vertèbre. 

4.1.2 Calcul du champ scalaire 

Pour chaque vertèbre à recaler, le champ scalaire des distances a été introduit pour simplifier le 

calcul de la distance entre le modèle géométrique préopératoire et les données intraopératoires à 

chaque itération de l’ICP.  

Les données intraopératoires sont constituées d’une succession de ! images segmentées. Dans 

chaque image, les voxels associés au contour de la vertèbre valent 1 alors que les autres voxels 

valent 0. Chaque vertèbre peut donc être représentée par une matrice 3D ! de dimension 

512x512x! composée de 0 et de 1. Le champ scalaire des distances a été obtenu en appliquant 

une transformée de distance euclidienne permettant de définir pour chaque voxel !! la distance 

euclidienne au voxel non nul le plus proche, notée !"!. À chaque voxel !! on associe donc une 

valeur !!! définie selon la formule suivante : 

 !"! = min
!∈!,
!!!

||!! − !|| (4-1) 

Un exemple de coupe du champ scalaire des distances résultant est illustré en Figure 4-2. 

 

Figure 4-2 : Illustration d’une coupe (512x512 pixels) du champ scalaire des distances. L’échelle des couleurs 

représente la distance de chaque pixel par rapport au contour de la vertèbre à recaler (bleu foncé : pixels appartenant 

au contour; rouge foncé : pixels très éloignés du contour) 
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À chaque itération de l’ICP, ce champ scalaire des distances pré-calculé peut être utilisé pour 

définir la distance de chaque point !! du modèle géométrique préopératoire de la vertèbre  par 

rapport aux données intraopératoires. Chaque point !! du modèle géométrique préopératoire de 

la vertèbre  sera positionné à l’intérieur du réseau défini par les voxels constituant les données 

intraopératoires (Figure 4-3). La valeur de la distance pour chaque point !! a été définie en 

utilisant une interpolation trilinéaire des distances des voxels !!,   !!, !!, !!, !!, !!, !! et !!. 

 

 

Figure 4-3 : 8 voxels du champ scalaire des distances intraopératoire entourant le point d’interpolation !! du modèle 

géométrique préopératoire de la vertèbre 

4.1.3 Calcul des indices cliniques 

Le tableau ci-dessous présente, pour chaque indice clinique, les repères vertébraux utilisés pour le 

calculer. Dans le Tableau 4-1, le centroïde d’une vertèbre désigne le point moyen calculé à partir 

de l’ensemble des repères vertébraux. 

  

v1 v2 

v6 

v8 

v3 v4 

v7 

v5 

mi 
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Tableau 4-1 : Repères vertébraux utilisés pour calculer les indices cliniques 

Indices cliniques Repères vertébraux 

Angles de  
Cobb 

• Repères droit et gauche du plateau supérieur 
de la vertèbre limite supérieure 

• Repères droit et gauche du plateau inférieur 
de la vertèbre limite inferieure 

Cyphose et 
Lordose 

• Repères antérieur et postérieur du plateau 
supérieur de la vertèbre limite supérieure 

• Repères antérieur et postérieur du plateau 
inférieur de la vertèbre limite inferieure 

Translation de la 
vertèbre apicale 

• Centroïde de la vertèbre apicale 

• Centroïde de T1 pour courbures MT 

• Centroïde de L5 pour courbures TL/L 

Déjettement  
frontal 

• Centroïde de T1 

• Centroïde de L5 

Déjettement  
sagittal 

• Repère postérieur du plateau inferieur de T1 

• Centroïde de T1 

Inclinaison  
frontal de T1 

Repères droit et gauche du plateau supérieur de 
T1 

Rotation axiale de la 
vertèbre apicale 

• Repères supérieurs et inférieurs des pédicules 

• Repères centraux des plateaux supérieur et 
inférieur 

Orientation des plans 
de courbure maximale 

Centroïdes des vertèbres limites et de la vertèbre 
apicale 

 

4.2 Comparaison avec une autre méthode de recalage 

La validation de la méthode de recalage présentée dans le chapitre 3 a été complétée en 

comparant les résultats obtenus avec ceux d’un algorithme de la littérature basé sur un Iterative 

Closest Point optimisé avec la méthode Levenberg-Marquardt (Fitzgibbon, 2003), qu’on 

nommera méthode de recalage LM-ICP. Les simulations numériques décrites dans le chapitre 3 
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(simulation d'un bruit sur les données intraopératoires et simulation d'un bruit représentant une 

erreur d'identification de repères vertébraux préopératoires) ont été effectuées également en 

utilisant la méthode proposée par Fitzgibbon (2003), et les résultats de la séquence d'angles L-S-

A ont été comparés. 

4.2.1 Simulation d’un bruit sur les données intraopératoires 

Les résultats obtenus révèlent que la méthode développée ainsi que la méthode de recalage LM-

ICP permettent d'obtenir des résultats comparables (Figure 4-4). On observe que l'erreur 

enregistrée est comparable pour des bruits de faible amplitude, alors que la méthode développée 

permet d'obtenir une erreur légèrement plus faible (écart maximal de 0.5°)  dans les cas de bruits 

très élevés. 
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Figure 4-4 : Différences angulaires entre les données intraopératoires de référence et le modèle intraopératoire 

obtenu par le recalage en utilisant la méthode développée et la méthode LM-ICP, en considérant différents niveaux 

d'erreurs simulées sur les données intraopératoires. Les valeurs moyennes sont présentées avec leur déviation 

standard pour les angles latéral (a), sagittal (b) et axial (c) 
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4.2.2 Simulation d’un bruit représentant une erreur d’identification de 

repères vertébraux préopératoires 

Le Tableau 4-2 présente les différences angulaires entre les données intraopératoires de référence 

et le modèle intraopératoire obtenu par le recalage en utilisant la méthode développée et la 

méthode LM-ICP. Les résultats obtenus révèlent que les deux méthodes sont comparables avec 

des différences inférieures à 0.4°.  

 

Tableau 4-2 : Différences angulaires entre les données intraopératoires de référence et le modèle intraopératoire 

obtenu par le recalage en utilisant la méthode développée et la méthode LM-ICP lorsqu’un bruit est appliqué sur 

différents sous-groupes de repères vertébraux : du corps vertébral (CV), des pédicules (PED), des facettes (FAC), des 

parties postérieures (PP) et sur tous les repères (TOUS). Les valeurs moyennes sont présentées pour les angles 

latéral, sagittal et axial 

 Angle Latéral Angle Sagittal Angle Axial 

 Méth. 
Développée 

Méth.   
LM-ICP 

Méth. 
Développée 

Méth.   
LM-ICP 

Méth. 
Développée 

Méth.   
LM-ICP 

CV 0.7° 0.5° 0.7° 0.6° 0.5° 0.5° 

PED 0.4° 0.4° 0.3° 0.2° 0.4° 0.3° 

FAC 0.8° 0.8° 1.0° 1.0° 0.8° 0.7° 

PP 1.3° 1.7° 1.4° 1.7° 1.5° 1.8° 

TOUS 1.9° 2.0° 1.9° 2.0° 2.0° 2.0° 

 

4.3 Identification automatique des vertèbres 

L'article présenté dans le chapitre 4 ne prend pas en compte les problèmes de segmentation et 

d'identification automatique de chaque vertèbre. Dans cette section, on propose donc une 

méthode qui, à partir du modèle segmenté des images fluoroscopiques, permet d'identifier 

automatiquement le volume associé à chaque vertèbre.  

On considère un volume segmenté dans lequel les voxels appartenant aux vertèbres sont associés 

à la valeur 1 et les autres voxels à la valeur 0 (i.e. résultat d'une segmentation par croissance de 
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région, seuillage, etc.). Le but de cet algorithme est de définir de façon automatique une étiquette 

différente pour chaque vertèbre (étiquetage). 

Tout d'abord, les centres des corps vertébraux ont été identifiés. Pour ce faire, une fonction 

gaussienne 2D a été définie à partir de l'information sur la dimension des corps vertébraux, elle-

même calculée sur le modèle géométrique préopératoire. La largeur moyenne des corps 

vertébraux a été calculée dans le plan transverse en utilisant les repères anatomiques associés aux 

plateaux vertébraux : les repères postérieurs et antérieurs ainsi que les repères gauches et droits 

ont permis de calculer la dimension des plateaux supérieurs et inférieurs de chaque vertèbre. La 

largeur moyenne des corps vertébraux a été définie comme moyenne de toutes ces mesures. 

Cette dimension a été utilisée pour définir la largeur de la fonction Gaussienne. En pratique, on a 

imposé que 98.75% de la gaussienne soit contenu à l'intérieur de cette distance. Le produit de 

convolution de la fonction Gaussienne 2D et des images 2D segmentées a permis de définir une 

fonction décrivant la superposition entre la fonction Gaussienne et les images. L'application d'une 

fenêtre Gaussienne a ensuite permis d'identifier les pics de cette fonction, qui correspondent aux 

images les plus superposées à la fonction Gaussienne. Grâce à la dimension particulière choisie 

pour définir la fonction Gaussienne, ces pics ont pu être associés aux centres des corps 

vertébraux. 

Une fois les centres identifiés, ils ont été utilisés afin de séparer le volume intraopératoire en 

sous-volumes. Pour l'identification de chaque vertèbre  !!, les centres !!!! et !!!! des vertèbres 

adjacentes !!!! et !!!! ont été utilisés pour définir un sous-volume d'intérêt, permettant de 

simplifier l'identification et l'étiquetage des vertèbres. Chaque sous-volume inclut des voxels 

associés à !!, !!!! et à !!!!. 

Plusieurs opérations morphologiques ont été appliquées afin d'étiqueter !!. D'abord, 5 opérations 

successives d’erosion ont été appliquées pour séparer les vertèbres l'une de l'autre. Par la suite, 

les objets présentant une connexion 3D de 6 voxels ont été identifiés. Seuls les 3 objets les plus 

grands (caractérisés par un plus grand nombre de voxels) ont été pris en compte pour les étapes 

suivantes. En effet, il est raisonnable de supposer que ces objets correspondent aux vertèbres !!, 

!!!! et !!!!. L'objet positionné au milieu a été étiqueté comme étant la vertèbre d'intérêt !!. 

Plusieurs opérations morphologiques de dilatation ont été appliquées successivement afin de 

compléter l'identification de tous les voxels appartenant à !!. Deux critères ont été choisis pour 
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sélectionner les voxels à étiqueter comme appartenant à !!, et pour choisir quand arrêter les 

opérations de dilatation : 

• un voxel est étiqueté comme appartenant à !! si et seulement si il est un voxel de valeur 1 

dans le volume de départ. Cela signifie que, si un voxel ne fait pas partie du volume 

définissant la colonne vertébrale, il ne peut pas être sélectionné comme appartenant à !!; 

• un voxel ne peut avoir qu'une seule étiquette. Cela signifie qu'un voxel ne peut pas être 

associé à deux vertèbres en même temps. Ce critère permet de définir les limites entre 

deux vertèbres. 

En accord avec ces deux critères, les opérations de dilatation s'arrêtent lorsque le volume 

appartenant à !! n'est plus modifié entre deux itérations successives. Ces opérations ont été 

répétées pour toutes les vertèbres, ce qui a permis d'obtenir un volume de la colonne vertébrale au 

sein duquel chaque vertèbre est caractérisée par une étiquette différente. 

La méthode proposée a été testée sur trois modèles numériques, représentant trois configurations 

scoliotiques différentes. L'algorithme de tracé de segment de Bresenham a été utilisé afin 

d'obtenir un modèle voxelisé à partir de la surface de la colonne vertébrale. Ce modèle voxelisé 

reproduit un modèle segmenté, au sein duquel les voxels appartenant aux vertèbres sont associés 

à la valeur 1 et les autres voxels sont associés à la valeur 0. Pour les trois configurations, la 

position des centres des corps vertébraux a été évaluée visuellement. Par la suite, la proportion de 

voxels appartenant au rachis correctement étiquetés a été calculée selon la formule suivante : 

 

 
!! =

!!!"#$%
!"!!"#$%

 (4-2) 

!!!"#$% est le nombre de voxels correctement étiquetés comme appartenant à la colonne 

vertébrale et !"!!"#$% est le nombre de voxels appartenant au modèle voxelisé original. 

De plus l'identification de chaque vertèbre a été analysée. On a défini : 

• !" les voxels correctement étiquetés comme appartenant à la vertèbre; 

• !" les voxels correctement étiquetés comme n'appartenant pas à la vertèbre; 

• !" les voxels erronément étiquetés comme appartenant à la vertèbre; 
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• !" les voxels erronément étiquetés comme n'appartenant pas à la vertèbre. 

Deux paramètres ont été évalués : la sensibilité (!!) qui mesure la proportion de voxels 

correctement étiquetés comme appartenant à la vertèbre et la spécificité (!!) qui mesure la 

proportion de voxels correctement étiquetés comme n'appartenant pas à la vertèbre. 

 !! =
!"

!" + !" (4-3) 

 !! =
!"

!" + !" (4-4) 

4.3.1 Résultats 

4.3.1.1 Identification des centres des corps vertébraux 

Le résultat du produit de convolution entre la fonction gaussienne et les images 2D pour les 3 

modèles est montré à la Figure 4-5. On peut constater visuellement que la fonction Gaussienne 

définie permet d'identifier 17 pics (associés aux centres des corps vertébraux). 
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Figure 4-5 : Résultat du produit de convolution entre la fonction Gaussienne et les images 2D pour les 3 modèles, 

avant filtrage (a.1, b.1, c.1) et après filtrage (a.2, b.2, c.2) 

 

Pour chacun des trois modèles numériques, représentant trois configurations scoliotiques 

différentes, la Figure 4-6 montre la position des centres des vertèbres. 

(a.1) 

(c.1) 

(b.1) 

(a.2) 

(b.2) 

(c.2) 
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Figure 4-6 : Positionnement des centres des vertèbres pour les 3 modèles (a, b, c) identifiés grâce au produit de 

convolution avec la fonction Gaussienne. 

 

4.3.1.2 Étiquetage des vertèbres 

La méthode proposée permet d'identifier le volume associé au rachis avec une exactitude 

moyenne de 97.1% (respectivement 97.5%, 96.5% et 97.3% pour les trois modèles scoliotiques 

considérés). Pour l'identification de chaque vertèbre, la méthode proposée a une sensibilité 

moyenne de 97.6% et une spécificité moyenne de 99.6%. Les valeurs de sensibilité et de 

spécificité pour chaque vertèbre pour les trois modèles scoliotiques sont présentées dans le 

Tableau 4-3. 
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Tableau 4-3 : Sensibilité et spécificité de l'étiquetage pour les 3 modèles pour chaque vertèbre 

 Modèle 1 Modèle 2 Modèle 3 

Vertèbre Se Sp Se Sp Se Sp 

T1 96.8% 99.9% 83.2% 99.9% 90.1% 100.0% 

T2 96.9% 100.0% 97.5% 93.9% 96.5% 97.2% 

T3 97.1% 100.0% 97.6% 100.0% 97.1% 100.0% 

T4 96.3% 100.0% 97.5% 100.0% 96.3% 100.0% 

T5 95.8% 100.0% 96.7% 100.0% 95.2% 100.0% 

T6 96.5% 100.0% 96.7% 100.0% 95.5% 100.0% 

T7 95.0% 100.0% 97.0% 100.0% 95.7% 100.0% 

T8 95.8% 100.0% 96.8% 100.0% 95.9% 100.0% 

T9 96.9% 100.0% 97.1% 100.0% 96.7% 100.0% 

T10 97.7% 100.0% 97.5% 100.0% 97.8% 100.0% 

T11 97.9% 100.0% 95.0% 100.0% 98.4% 100.0% 

T12 98.1% 100.0% 98.2% 98.7% 98.2% 100.0% 

L1 98.2% 100.0% 98.0% 100.0% 98.4% 100.0% 

L2 98.1% 99.9% 98.0% 99.8% 97.0% 100.0% 

L3 97.9% 100.0% 98.1% 99.9% 98.8% 99.3% 

L4 98.3% 100.0% 91.0% 100.0% 98.4% 100.0% 

L5 98.4% 100.0% 98.6% 92.7% 98.3% 100.0% 

 

Les résultats obtenus suggèrent que la méthode développée permet d'obtenir une sensibilité et une 

spécificité moyenne élevées. Cependant, une analyse plus approfondie des résultats a permis de 

détecter certaines faiblesses de l'algorithme. Nous avons observé que les cas de sensibilité 

inférieure sont associés à un contact entre deux vertèbres adjacentes, comme illustré à la Figure 

4-7. Cette figure montre une coupe du modèle 3 qui permet d'observer clairement un contact 

entre deux vertèbres adjacentes. Ce type de contact peut compromettre l'identification. En effet, 
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lors des opérations de dilatation, ce contact peut causer une mauvaise expansion des voxels en 

causant un étiquetage erroné. 

 

 

Figure 4-7 : Coupe du modèle 3 segmenté, permettant d'observer un contact critique entre 2 vertèbres adjacentes. Les 

deux couleurs représentent les voxels appartenant à 2 vertèbres différentes  
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CHAPITRE 5 DISCUSSION GÉNÉRALE 

L'étude réalisée au cours de ce projet de maîtrise visait à développer et valider une méthode de 

mesure des déformations scoliotiques pendant la chirurgie, afin de fournir aux chirurgiens un 

outil d'évaluation de la correction atteinte. L'objectif de ce projet était d'exploiter les techniques 

d'imagerie médicale et de recalage existantes pour obtenir une quantification automatique des 

indices cliniques significatifs, afin d'évaluer la correction du rachis scoliotique en intraopératoire. 

La méthode développée a permis d'atteindre cet objectif, en fournissant une information 

quantitative, sans nécessiter d'opérations manuelles pendant la chirurgie (installation de 

marqueurs extérieurs sur les vertèbres ou identification de points anatomiques). 

Dans un premier temps, l’hypothèse scientifique constituant la base de ce projet a été vérifiée 

grâce à une expérimentation avec un modèle de rachis synthétique. En effet, les résultats 

expérimentaux ont montré que la méthode développée permet d'estimer les angles de Cobb ainsi 

que les autres mesures angulaires avec une erreur inférieure à 5°, et les mesures linaires avec une 

erreur inférieure à 3.5 mm. L’AVR et l’orientation des plans de courbures maximales ont montré 

une erreur légèrement supérieure à 5°, car les méthodes de calcul utilisées sont très sensibles aux 

erreurs sur la position des repères anatomiques dans le plan transverse (Lam et al., 2008; Sangole 

et al., 2009). 

Par la suite, une étude de sensibilité a permis de confirmer la faisabilité de modéliser la colonne 

vertébrale par recalage entre un modèle géométrique préopératoire, réalisé à partir de deux 

radiographies, et les images fluoroscopiques 3D intraopératoires, en évaluant la robustesse des 

algorithmes mis en place à l’aide de modèles numériques. Les modèles numériques ont permis 

d'examiner séparément deux sources d'erreur influençant le processus de recalage : une erreur 

dérivant de l'identification des repères anatomiques de la vertèbre sur lesquels est fondée la 

définition du modèle géométrique préopératoire, et une erreur dérivant de la segmentation de la 

vertèbre intraopératoire. Les résultats obtenus pour cette partie de l'étude ont montré que les 

techniques développées permettent d'obtenir une exactitude cliniquement acceptable pour 

l'orientation vertébrale, qui a été évaluée à partir de la séquence d'angles latéral-sagittal-axial. 

L'objectif de ce travail étant le calcul des déformations scoliotiques, une validation fondée sur 

l'orientation spatiale des vertèbres a été considérée comme plus appropriée qu'une validation 

fondée sur la distance point-surface. De plus, la simulation d'un bruit à la fois sur le modèle 
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préopératoire et intraopératoire aurait introduit des biais dans l'évaluation de la distance point-

surface. C'est pourquoi cette variable n'a pas été incluse en phase de validation. 

L'objectif du travail étant d'obtenir une méthode automatique, la procédure développée ne 

nécessite pas d'intervention manuelle d'un opérateur. Toutes les étapes du recalage sont 

effectuées de façon automatique et ne requièrent pas l'installation de marqueurs sur les vertèbres 

ni l'identification des repères anatomiques au cours de la chirurgie. Le temps de calcul nécessaire 

pour le recalage (PCA + calcul du champ scalaire de distances + optimisation non linéaire) est 

inférieur à 10 ! pour chaque vertèbre (sur un Intel i5 680 3.6 GHz), ce qui permet d'obtenir la 

mise à jour du modèle géométrique entier en moins d'une minute et demie à partir du modèle 

intraopératoire précédemment segmenté. L'implémentation en parallèle de l'algorithme de 

recalage n'a pas été réalisée dans cette étude, mais ceci permettrait de réduire considérablement le 

temps de calcul nécessaire pour le recalage de toutes les vertèbres. 

Dans le cadre de cette étude, l'attention a été focalisée sur le recalage entre un modèle 

géométrique préopératoire et les données intraopératoires du rachis, qui est une des étapes 

fondamentales pour la quantification des déformations scoliotiques pendant la chirurgie. 

Cependant, l'utilisation de cette procédure dans un contexte clinique demanderait un 

prétraitement des données intraopératoires afin de segmenter les images fluoroscopiques et 

d'identifier le modèle intraopératoire de chaque vertèbre de façon automatique. Ces étapes feront 

l'objet d'études plus approfondies au sein de notre laboratoire. Toutefois, une technique 

d'étiquetage des vertèbres à partir d'un modèle segmenté a été proposée dans ce travail. Cette 

technique a permis d'identifier les centres des corps vertébraux de façon robuste et elle a présenté 

une sensibilité et une spécificité moyenne élevée pour l'identification de chaque vertèbre. 

Cependant, une forte dépendance à la qualité de la segmentation a été remarquée. Un contact en 

2D et 3D entre les voxels appartenant à 2 vertèbres différentes peut affecter fortement le résultat 

obtenu. Dans ce cas, en effet, l'algorithme montre une forte sensibilité au nombre d'opérations 

morphologiques d’erosion appliquées. Un nombre différent d'opérations d’erosion entraîne une 

dimension différente du noyau qui est utilisé comme état initial pour les opérations de dilatation. 

Ceci peut alors causer une erreur dans  l'expansion de deux vertèbres adjacentes. Ce facteur rend 

l'application de l'algorithme très critique surtout au niveau thoracique où la dimension du disque 

intervertébral est plus petite et lorsqu’il existe un contact entre les facettes articulaires plus 

important. Dans ce cas, il est plus difficile d'assurer un étiquetage correct des vertèbres, ce qui se 
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traduit par une sensibilité inférieure au niveau thoracique. L'application de cet algorithme 

nécessiterait donc une étape de segmentation très précise permettant de prévenir un contact en 2D 

et en 3D entre deux vertèbres adjacentes. Une solution alternative serait l’utilisation d’un 

algorithme automatique permettant d'effectuer simultanément la segmentation et l'étiquetage des 

vertèbres, à l'aide d'un modèle statistique des vertèbres, comme cela a déjà été abordé par certains 

auteurs (Aslan et al., 2010; Klinder et al., 2009) 

L'algorithme de recalage a été initialisé en utilisant l'analyse en composantes principales. Ceci a 

permis de définir une position de départ pour le recalage indépendante du changement de position 

de la vertèbre entre la configuration debout préopératoire et la position allongée intraopératoire. 

Par contre, nous avons observé que la position de départ identifiée n'était parfois pas optimale 

pour le recalage. Une recherche plus approfondie pour identifier une position de départ optimale 

permettrait de rendre encore plus stable le résultat de l'étape d'optimisation non linéaire. De plus, 

la position de départ a été définie en utilisant un paramètre angulaire calculé à partir de 

l’apophyse épineuse qui peut être retirée pendant la chirurgie, ce qui pourrait compromettre 

l’utilisation de cette méthode d’initialisation pendant la chirurgie.  

L'algorithme de recalage considéré dans ce travail est fondé sur une transformation rigide sans 

facteurs d'échelle. Ce type de transformation a été choisi sur la base de la nature rigide des 

vertèbres et nous a permis d'obtenir des résultats cliniquement acceptables. Cependant, ce choix 

admet comme limite de ne pas permettre de corriger les éventuelles erreurs dans le 

positionnement des repères anatomiques sur le modèle géométrique préopératoire. Dans un 

premier temps, 3 facteurs d'échelle différents pour chaque axe avaient été ajoutés à la 

transformation, afin de corriger les éventuelles erreurs. Toutefois, nous avons observé que cela 

pouvait introduire des erreurs significatives dans le recalage. En effet, les erreurs les plus 

communément observées dans le modèle préopératoire se situent au niveau des apophyses 

transverses et de l’apophyse épineuse qui sont plus difficilement visibles sur les radiographies. 

Les facteurs d'échelle permettaient de corriger une partie de ces erreurs, mais ils introduisaient 

une dilatation/compression du corps vertébral et des pédicules. En considérant l'importance des 

repères anatomiques associés au corps vertébral et aux pédicules dans la définition des 

déformations scoliotiques, les facteurs d'échelle ont été éliminés pour la suite du projet. 
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Il serait possible d'améliorer l'algorithme de recalage en considérant une transformation élastique 

permettant de prendre en compte des variations localisées entre le modèle préopératoire et celui 

intraopératoire. Cette solution présente une complexité dans l'automatisation du processus liée à 

l'identification des caractéristiques correspondantes entre les deux modèles (i.e. repères 

anatomiques). C'est pourquoi dans ce travail préliminaire, seul le recalage rigide a été considéré. 

Pendant la phase de définition de la méthode, plusieurs tests ont été effectués pour déterminer si 

les apophyses transverses et l’apophyse épineuse pouvaient être éliminées pour le recalage. En 

considérant la complexité d'une identification automatique des apophyses dans les données 

intraopératoires, les apophyses ont été partialement éliminées sur le modèle préopératoire. En 

particulier, les repères anatomiques associés aux apophyses ont été utilisés pour définir un plan 

de coupe. Plusieurs distances de coupe ont été analysées (de 10% à 80% de la taille de 

l'apophyse). Cependant, les résultats obtenus n'ont pas permis d'identifier une distance de coupe 

optimale. De plus, nous avons observé visuellement que la coupe des apophyses pouvait affecter 

fortement le résultat du recalage au niveau du corps vertébral. La forme particulière des 

apophyses constitue en effet un élément fondamental pour la définition de l'orientation de la 

vertèbre, et l'on a donc décidé de garder les apophyses entières pour la suite de l'étude. 

Les éventuelles erreurs dans le modèle préopératoire ont tout de même été prises en compte dans 

la définition de la fonction de coût à minimiser pour le calcul des paramètres de transformation. 

Tous les points du modèle préopératoire ont été pondérés par un poids corrélé à l'erreur de 

sélection des repères anatomiques sur les radiographies préopératoires. Ce facteur, ainsi que 

l'écart type des distances !!, également pris en compte dans la fonction de coût, ont permis de 

privilégier le bon positionnement des repères anatomiques les plus importants dans la définition 

des déformations scoliotiques, tels que les repères du corps vertébral et des pédicules. 

La comparaison avec une méthode de la littérature, basée sur un Iterative Closest Point optimisé 

avec la méthode Levenberg-Marquardt, a permis de confirmer que les modifications introduites 

dans la fonction de coût de l’ICP (écart type de distances et poids sur les points du modèle 

préopératoire) garantissent un résultat comparable ou meilleur par rapport aux méthodes de 

recalage existantes. Toutefois, il est important de mettre en évidence certaines différences entre 

les deux méthodes. Dans le cas où l'on simule une erreur sur les repères du corps vertébral et des 

pédicules, la méthode de Fitgizibbon (2003) permet d'obtenir des résultats légèrement meilleurs 
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(d'environ 0.2°). Par contre, la méthode développée permet d'obtenir une erreur plus faible en 

présence d'un bruit sur les parties postérieures de la vertèbre (d'environ 0.3°). Ceci est un effet 

conséquent à l'introduction des poids dans la fonction de coût. Le poids plus élevé accordé aux 

points du corps vertébral et des pédicules augmente l'impact de ces points lorsque l'on simule une 

erreur sur ces zones anatomiques. Par contre, les points autour des apophyses ont été pondérés 

avec un poids plus faible, ce qui permet de réduire l'erreur lorsque l'on introduit une erreur au 

niveau de l'identification des parties postérieures. Dans le cas de bruits sur l'ensemble des repères 

anatomiques, la méthode développée est également légèrement meilleure (d'environ 0.1°) que la 

méthode choisie pour la comparaison. 

Pour conclure la discussion sur l’algorithme de recalage développé dans le cadre de ce travail, il 

est important de souligner que la méthode choisie prend en compte une seule vertèbre à la fois. 

D’autres travaux dans la littérature proposent une approche de recalage basée sur l’utilisation 

d’un modèle articulé de la colonne vertébrale (Boisvert et al., 2008; Harmouche et al., 2013). 

Cette solution n’a pas été considérée dans ce travail car elle demanderait l’identification des 

repères anatomiques dans le modèle intraopératoire afin de calculer les transformations 

intervertébrales, ce qui compromettrait le caractère automatique de l’algorithme. Cependant, cela 

pourrait constituer une solution intéressante à approfondir dans des études futures. 

Le système d'imagerie utilisé pour obtenir l'information sur le positionnement intraopératoire est 

l'O-Arm®, qui est actuellement disponible au CHU Sainte-Justine. L'avantage de ce système est 

de permettre l'acquisition de la géométrie 2D et 3D du patient en salle de chirurgie en quelques 

dizaines de secondes. Plusieurs études ont déjà démontré la fiabilité de cet appareil pour guider 

l'insertion des vis pédiculaires en temps réel (Larson et al., 2012; Silbermann et al., 2011). C'est 

pourquoi on a choisi d'analyser s'il était possible de l'exploiter pour obtenir également des 

informations quantitatives au cours de la chirurgie. Cependant, ce système présente des 

caractéristiques qui constituent une limite pour l'application clinique de la procédure développée. 

L'anneau de l'O-Arm a une dimension telle que le segment anatomique scanné a une longueur de 

15 cm, ce qui est insuffisant pour scanner la colonne vertébrale entière. Dans le cadre de ce 

projet, un protocole provisoire pour l'acquisition des images a été mis en place afin de scanner 

l'ensemble du rachis synthétique. Une règle a été positionnée à côté du modèle synthétique et le 

laser de l'O-Arm a permis de lire sur la règle la distance entre deux acquisitions d'images 

consécutives. La distance considérée a toujours été inférieure à 15 cm afin d'assurer une 
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superposition entre deux groupes d'images adjacents, tout en considérant les distorsions des 

images aux extrémités. Toutefois, ce protocole ne peut pas être appliqué dans un contexte 

clinique réel, car il nécessite un temps de lecture des valeurs sur la règle important et expose le 

patient à une dose élevée de radiations (1-31 mSv pour un nombre de scans inférieur à 3 selon 

l’étude de Lange et al. (2013)). 

Nous avons ici choisi la méthode de reconstruction développée par Humbert et al. (2008) pour 

définir le modèle géométrique préopératoire. Cependant, d'autres techniques de reconstruction 3D 

du rachis peuvent être utilisées à condition que chaque vertèbre soit représentée à la fois par une 

surface et par des repères anatomiques suffisants pour la quantification des déformations 

scoliotiques (Cheriet et al., 1999; Dansereau et al., 1988; Delorme et al., 2003; Kadoury et al., 

2007). Dans ce cas il faudrait modifier de manière adéquate la définition des poids introduits dans 

la fonction de coût. 

La procédure mise en place permet de déterminer la position du patient au début de la chirurgie et 

de calculer les déformations scoliotiques dans cette position. Ceci implique la prise en compte 

des changements de forme du rachis entre la position debout préopératoire et la position allongée 

intraopératoire (Delorme et al., 2000). Toutefois, cette méthode ne prend pas en compte les 

modifications du modèle vertébral intraopératoire qui pourraient dériver des procédures 

d'instrumentation ainsi que d'une ostéotomie. Il s'agit de manœuvres qui introduisent des 

différences de topologie entre le modèle préopératoire et celui intraopératoire et qui peuvent donc 

affecter le résultat du recalage. C'est pourquoi une idée alternative serait de ne pas effectuer un 

nouveau recalage à chaque étape de la chirurgie, mais de profiter de la présence du navigateur 

associé à l'O-Arm pour effectuer une mise à jour automatique du modèle défini au début de la 

chirurgie. En salle de chirurgie, tous les instruments chirurgicaux sont identifiables par des 

marqueurs optiques. Le suivi du mouvement de ces instruments pourrait être associé à un 

changement de position des vertèbres et permettre une modification automatique du modèle 

intraopératoire. Des outils de simulation chirurgicale utilisés actuellement en préopératoire sont 

capables d'associer les mouvements d'un instrument chirurgical (i.e. une rotation) à une 

modification dans la position des vertèbres (Aubin et al., 2008). Des travaux de recherche sont 

actuellement en cours dans notre laboratoire pour tenter de transférer cet outil en salle de 

chirurgie et de l'utiliser dans ce sens. 
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Le modèle géométrique intraopératoire obtenu grâce au recalage pourrait ainsi être utilisé pour 

mettre à jour les simulations d'instrumentation préopératoires pendant la chirurgie. Ce travail a 

déjà été abordé dans notre laboratoire (Cartiaux et al., 2012), en utilisant des sphères métalliques 

fixées sur les vertèbres pour le recalage du modèle préopératoire en intraopératoire. Cette étude a 

montré que la mise à jour de la trajectoire de vis planifiée avant la chirurgie pouvait être atteinte 

avec une erreur inférieure à 0.5 mm. La procédure développée dans le cadre de cette maîtrise 

permettrait d'automatiser l'étape de recalage du modèle et donc de guider l'insertion des vis 

pédiculaires selon la trajectoire planifiée avant la chirurgie. 

Finalement, les résultats présentés démontrent que l'on peut exploiter les techniques d'imagerie 

médicales et de recalage actuellement existantes afin de calculer les déformations scoliotiques 

pendant la chirurgie. Cependant, en considérant le caractère préliminaire de ce travail, l'étude a 

été limitée à un modèle de rachis synthétique. Dans les prochaines étapes, il sera nécessaire de 

valider les outils de recalage sur des modèles issus d'un vrai patient. 
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CONCLUSIONS 

L'objectif de ce travail était de développer une méthode de mesure capable de quantifier 

automatiquement des déformations scoliotiques pertinentes pour l'évaluation de la correction 

pendant la chirurgie. 

La méthode de mesure intraopératoire des déformations rachidiennes consiste à réaliser le 

recalage d’un modèle géométrique préopératoire, à partir d’images médicales acquises au début 

de la chirurgie. Le modèle géométrique préopératoire a été construit à partir de repères 

anatomiques vertébraux identifiés manuellement par un opérateur sur les radiographies 

biplanaires en position debout. Le positionnement intraopératoire en décubitus ventral a été 

numérisé à partir d'un appareil d'imagerie fluoroscopique 2D/3D (O-Arm®). Un recalage rigide 

entre un modèle géométrique préopératoire et les images intraopératoires a permis la mise à jour 

des repères vertébraux utilisés pour la quantification automatique des indices cliniques du rachis 

scoliotique. 

La validation conduite sur un modèle de rachis synthétique et sur des modèles simulés 

numériquement a permis de confirmer la possibilité de quantifier les déformations scoliotiques 

pendant la chirurgie, avec une précision comparable avec les mesures préopératoires. Toutefois, il 

s'agit d'un résultat préliminaire qui nécessite une étude plus approfondie afin d'être confirmé. 

La discussion présentée au chapitre 5 a permis d'identifier les recommandations et suggestions 

suivantes pour les travaux futurs: 

• Améliorer l'identification de la position initiale de l'algorithme de recalage pour assurer la 

convergence de l'Iterative Closest Point vers la bonne solution. 

• Implémenter le recalage de chaque vertèbre en parallèle afin de réduire le temps de calcul 

nécessaire à l'obtention du modèle géométrique intraopératoire. 

• Modifier l'algorithme de recalage pour prendre en compte une transformation élastique 

permettant de corriger localement les éventuelles erreurs de positionnement des repères 

anatomiques dans le modèle préopératoire. 

• Automatiser le prétraitement des images médicales intraopératoires nécessaires pour 

obtenir le modèle 3D intraopératoire qui est ensuite utilisé pour le recalage. Une première 
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solution consisterait  à développer un algorithme de segmentation permettant d'appliquer 

l'algorithme d'étiquetage des vertèbres proposé dans cette étude. Il faudrait alors améliorer 

la sensibilité de cet algorithme ainsi que le temps de calcul, qui est actuellement d'environ 

2-3 minutes par vertèbre. Alternativement, un algorithme automatique permettant 

d'effectuer simultanément la segmentation et l'étiquetage de vertèbres pourrait représenter 

une solution souhaitable pour notre problématique. 

• Définir une méthode d'acquisition des images fluoroscopiques intraopératoires permettant 

de fusionner plusieurs groupes d'images tout en limitant l'exposition du patient aux rayons 

X. Une solution envisageable serait l'utilisation de marqueurs optiques placés sur l'O-

Arm. Ceci permettrait de repérer la position spatiale de l'appareil d'imagerie par 

l'intermédiaire du système de navigation et d'en déduire la distance entre deux groupes 

d'images consécutifs. De plus, la définition avant la chirurgie du nombre minimum de 

groupes d'images nécessaires afin de scanner la colonne entière permettrait de réduire 

l'exposition du patient aux radiations.  

• Exploiter le système de navigation disponible avec l'O-Arm et les outils de simulations 

chirurgicales (Aubin et al., 2008) afin de mettre à jour automatiquement, au fur et à 

mesure de l'opération, le modèle intraopératoire calculé au début de la chirurgie sans 

besoin de scanner plusieurs fois le patient. 

• Valider les algorithmes de recalage en utilisant les images médicales d'un vrai patient. 

Ceci permettrait d'analyser l'effet des déformations locales de la vertèbre ainsi que de la 

présence de tissus mous et d’autres structures anatomiques sur l'algorithme de recalage et, 

en conséquence, sur le calcul des indices cliniques intraopératoires. 

Les études réalisées dans ce travail de maîtrise ont permis de valider l'hypothèse de recherche 

principale, ainsi que de prouver la faisabilité d'utiliser les appareils d'imagerie et les techniques 

de recalage actuellement existantes pour le calcul automatique des indices cliniques du rachis 

pendant la chirurgie, ce qui constituait la question de recherche de ce travail de maîtrise. 

L'intégration de certaines recommandations proposées ici permettrait d'obtenir un outil plus 

complet et sécurisé pour les patients. Dans ce cas, une validation fondée sur une étude clinique 

pourrait être effectuée afin d'analyser l'efficacité réelle de la méthode présentée.  L'utilisation de 

cet outil en salle de chirurgie, combiné avec les outils de simulations chirurgicales actuellement 
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utilisés pour la planification chirurgicale préopératoire, pourrait éventuellement permettre 

d'optimiser la correction obtenue. 
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ANNEXE 1 – Algorithme de Levenberg-Marquardt 

La théorie mathématique présentée ici est fondée sur l’explication de Fitzgibbon (2003). 

L’algorithme de Levenberg-Marquardt est une méthode d’optimisation non-linéaire basée sur 

l’interpolation de la méthode de Gauss-Newton et du gradient descendant. Cet algorithme est 

souvent appliqué pour la résolution de problèmes de moindres carrés, tels que la minimisation de 

fonctions de la forme suivante : 

 
! ! =    !!!(!)

!

!!!

 (A1- 1) 

Le vecteur ! est le vecteur des paramètres à optimiser afin de minimiser la fonction !(!). La 

fonction !(!), qui dans le cas du recalage représente la fonction de coût,  peut être exprimée 

comme la somme des carrés des résidus !!(!). Tous les résidus sont regroupés dans un vecteur 

! !   : 

 ! ! = {!!(!)}!!!!  (A1- 2) 

Le problème d’optimisation vise à estimer, à chaque itération !, le vecteur !!!! = !! + ! 

permettant de réduire la fonction !(!). Le développement en série de Taylor au voisinage de ! 

permet d’écrire : 

 ! !+ ! =   ! ! + ∇ E a ∙ x+   
1
2! ∇! ! ! ! + !(!!) (A1- 3) 

En utilisant l’Eq. (A1- 2) on peut définir: 

 ! ! = !!! (A1- 4) 

 

 ∇! ! = 2(∇!)!! (A1- 5) 

 

 ∇! ! ! = 2(∇!!)!!+   2(∇!)!∇! (A1- 6) 
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En utilisant les relations (A1- 4), (A1- 5) et (A1- 6), et en introduisant la matrice jacobienne 

! = ∇!, on peut réécrire l’Eq. (A1- 3) sous la forme :  

 ! !+ ! = !!!+ 2!!!!!+   !!!!!! (A1- 7) 

Ceci suppose ∇!! = 0 (approximation de Gauss-Newton). La dérivée par rapport à la variable ! 

de l’Eq. (A1- 7) s’exprime comme suit : 

 ∇! ! !+ ! = 2!!!+ 2!!!! (A1- 8) 

En annulant l’Eq. (A1- 8), le paramètre ! permettant d’estimer !!!! est défini par : 

 ! =   −(!!!)!!!!! (A1- 9) 

Dans le cas où ∇!(!) est non nul, ! permet de diminuer la valeur de !(!). 

Dans le cadre de la méthode du gradient descendant, ! est calculé selon la relation suivante : 

 ! =   −!!!!!! (A1- 10) 

Le paramètre ! permet de choisir la taille du pas, afin de faciliter la convergence quand la 

position de départ est éloignée du minimum. Cependant, ceci implique de ralentir la convergence 

à mesure que l’on s’approche du minimum. 

L’algorithme de Levenberg-Marquardt prend en compte une interpolation des deux méthodes 

(Eq. (A1- 9) et (A1- 10)), donc ! s’exprime comme suit : 

 ! =   −(!!! + !)!!!!! (A1- 11) 

Quand ! est grand, l'algorithme se déplace approximativement selon la méthode du gradient 

descendant pour s'approcher de la solution avec un pas plus grand, alors que si ! est petit,  cela 

implique une forte diminution de la fonction d'erreur et l'algorithme utilise donc la méthode de 

Gauss-Newton pour se déplacer avec un pas plus petit permettant d'assurer la convergence vers le 

minimum. Le choix du paramètre !, détaillé dans Madsen et al. (2004), détermine la taille du pas. 

La valeur de ! est imposée en évaluant l'erreur à chaque itération: si l'erreur augmente entre deux 

itérations successives ! sera augmenté d'un certain facteur (10 normalement), alors que ! sera 

diminué de ce même facteur si l'erreur est en train de diminuer. 


