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RESUME

Pendant la derniere décennie, les bioraffineries basées sur la gazéification ont fait 'objet
de nombreuses études dans le cadre des efforts mondiaux visant a remplacer les combustibles
fossiles qui produisent de 'énergie et des produits chimiques a valeur ajoutée. Une partie
importante de ces bioraffineries est I'unité de purification des gaz de synthese issus de I'oxy-
dation partielle, qui enleve le CO, et I'H,S. Un des procédés de purification considéré dans
ces études est le Rectisol. Ce procédé est utilisé car il est plus environnemental et requiert
moins de couts d’investissement et d’opération par rapport a d’autres procédés similaires.
Afin de faire I’étude dynamique de ce procédé, une simulation en régime permanent a, d’abord,
été menée a 'aide du logiciel Aspen plus ®). Le comportement de ce modele a été étudié et
validé par rapport aux données trouvées dans la littérature. Des vannes de controle ont été
placées dans les endroits nécessaires. Apres avoir dimensionné les équipements, tels que les
séparateurs, les vannes, les puisards de colonne et les condenseurs, les pressions ont été véri-
fiées pour que celles des courants entrants a I’équipement s’accordent avec la pression dans la
zone d’entrée de 'équipement. Le modele a été exporté en Aspen plus Dynamics et les effets
des entrées de modele et des perturbations ont été étudiés sur les variables de sorties.

Vu que la composition et les caractéristiques de la biomasse gazéifiée varient, la composition
et la quantité d'impuretés du gaz produit changent aussi. Ceci crée alors des variations au
niveau de la pureté du gaz de synthese et des sous-produits de I'unité de purification du gaz.
Dans une usine, il est important de garder les compositions de produits aussi constantes que
possible afin de ne pas créer de perturbations dans les unités en aval. Pour surmonter ces va-
riations, un schéma de recherche d’extremum adaptatif a été implanté. Il consiste a optimiser
une fonction objectif quadratique des compositions de produit pour laquelle la relation entre
les variables indépendantes et la fonction objectif est inconnue.

Pour que la recherche d’extremum soit bien efficace, une structure de controle régulateur
sensible, a I’échelle de 'usine, est nécessaire. Les procédés de purification des gaz basés sur
I’absorption ont tous un courant de recyclage du solvant, ce qui peut étre problématique
au niveau du controle des procédés. Une recherche a donc été menée sur les techniques de
controle conventionnelles et avancées. Quatre stratégies potentielles de controle ont été mises
en ceuvre et leurs performances ont été analysées. Ces quatre stratégies sont : PI, MPC cen-
tralisé, MPC distribué et MPC décentralisé. La raison pour laquelle nous avons choisi des
controleurs MPC est qu’ils peuvent envisager systématiquement, a la fois, les interactions

entre les variables et les contraintes sur les entrées et sorties dans les calculs de controle.
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Parmi les quatre stratégies, MPC distribué et MPC centralisé sont apparue comme les plus
performante en terme de rejet de perturbations du flux d’entrée et de suivi des consignes.

Pour ces deux stratégies, un schéma de recherche d’extremum adaptatif a plusier entreés a été
concu et appliqué et leurs performances ont été étudiées pour différentes fréquences de signal
d’excitation. Les résultats ont montré que, pour la fréquence la plus performante, les deux
combinaisons de structures d’optimisation et de controle ont un comportement identique.
Pour finir, la combinaison de la recherche d’extremum adaptatif avec MPC distribué a été
choisie comme structure d’optimisation et de controle pour 1'usine de Rectisol étudiée. En
effet, MPC distribué est moins sensible aux pannes et le controle de l'installation ne dépend
pas d’un seul agent de controle. En conclusion, nous avons rendu le procédé Rectisol plus
robuste aux perturbations sur la composition et le débit d’entrée afin que 1’usine soit capable

de garder ses compositions de produits les plus proches possibles des spécifications souhaitées.
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ABSTRACT

Gasification based biorefineries have been studied in the past decade as part of a global
effort to replace fossil fuels to produce energy and added value chemicals. An important
part of these biorefineries is the acid gas removal units, that remove CO, and H,S from the
produced synthesis gas. One of the acid gas removal processes associated in these studies
is Rectisol. Rectisol has been chosen since it’s environmental friendly and requires a lower
amount of operational and capital costs compared to its opponents.

To carry out a dynamic study of the process, as a first step, a steady-state simulation was
carried out in Aspen Plus ®). The steady-state behavior of the columns were studied and
validated based on data found in the literature. Control valves were placed in all the necessary
places. After sizing the equipment, such as seperation drums, valves and column sumps, the
pressures were varified, so that the pressure at the inlet of each equipment corresponds to
incoming stream. Later on the model was exported to Aspen plus dynamics and the effect
of different inputs and disturbances on the outputs were studied.

Due to the fact that the composition of the gasified biomass varies, the composition and the
amount of impurities in the gasification gas also varies This creates variations in the purities
of the syngas and byproducts of acid gas removal units. In any chemical plant it is important
to keep compositions of products as constant as possible so that we don’t create perturbations
in downstream units. To overcome these variations an adaptive extremum control scheme was
implemented that optimizes a quadratic objective function of product compositions, while
the relation between the objective function and its independent variables is unknown.

For the adaptive extremum seeking control to be effective, a responsive plantwide regulatory
control structure is required. Absorption based gas cleaning processes like Rectisol all have
a recycle flow of solvent. This recycle flow can always be problematic from a process control
point of view. Thus a search was conducted amongst the conventional and advanced control
techniques. Four potential control strategies were implemented and their performance was
analyzed. These four strategies were Multiloop PI, Centralized Model Predictive Control
(MPC), Decentralized MPC and Distributed MPC. The reason we have chosen MPC is
that these controllers can systematically consider process variable interactions and input and
output constraints in their control calculations. Among the four, distributed and centralized
MPC were found to be most effective in terms of rejecting input flow disturbances and tracking
setpoints. Keeping this fact in mind a multivariable extremum-seeking scheme was designed

and implemented on these two types of controllers and their performance was studied for
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different dither signal frequencies. The results showed that at the proper frequency, both
combination of optimization and control structures have identical behavior.

At the end the combination of adaptive extremum seeking and Distributed MPC was chosen
as the optimizing and control structure for the studied Rectisol plant, since Distributed MPC
is more fault tolerant and the control of the plant will not depend on a single control agent.
In conclusion, Rectisol has been robustified to the composition and flowrate of the input
and the plant is able to keep its product compositions as close as possible to the desired

specifications.
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CHAPTER 1

INTRODUCTION

Work done in this thesis can be divided in two general sections, first the process enginee-
ring section which focuses on the design, steady-state and dynamic simulation of a Rectisol
plant and second the control and real time optimization section. In this chapter we will brie-
fly provide a background on these two subjects and describe the motivation and objectives

behind our work. The structure of the thesis is also provided at the end of this chapter.

1.1 Motivation

Removal of acid gases, mainly CO, and sulphuric compounds such as H,S and COS, is
used for the purification of a tailgas, intermediate or final product gas stream. The purpose
of this purification can be environmental and safety issues , operating constraints, or both.
Acid gas removal processes are utilized in many industries such as the oil and gas, power
plants and most recently in the gasification based biorefineries.

There are many reasons for removal of sour components in a gas, one is environmental
regulations. For example in many regions there are regulations on the amount of carbon and
sulfur in gas emissions of a power plant or chemical unit. Another reason can be the quality
of a final product, for example if a plant is producing syn gas for combustion, the CO,, is
removed to increase the heating value of the gas and sulfur compounds have to be removed
due to safety issues. Also another constraint is the requirement of downstream processes, for
example the syn gas being sent to a Fischer Tropsch unit should not contain sulfur compounds
to prevent their reaction with the catalyst and to protect the catalyst.

These processes consist of two main sections :

— The absorption section.

— The regeneration section.

1.1.1 Process configuration

The absorption section consists of one or two absorption columns where the gas is contac-

ted with the lean solvent and impurities are absorbed. The regeneration section contains strip-



pers and distillation columns where the rich solvent is stripped from the absorbed impurities.
The configuration of the absorption and regeneration sections depends on the pressure, tem-
perature and composition of the contaminated gas, the upstream and downstream processes

and the use of the syngas, such as production of ammonia, methanol, or even combustion gas.

1.1.2 Absorption mechanisms

Depending on the absorption mechanism used for separation acid gas removal processes
are divided into two groups :

— Chemical absorption.

— Physical absorption.
In chemical absorption the contaminants form a chemical bond with the solvent, while in phy-
sical absorption the contaminats are absorbed only based on their solubility in the solvent
and no significant chemical reaction occurs. Examples of chemical absorption processes are
Monoethanolamine (MEA), Diethanolamine (DEA), Methyl diethanolamine (MDEA), Die-
thyleneglycol (DEG) and Triethyleneglycol (TEG). As we see these solvent are all of a basic
nature and thus react with the acid gas components to absorb it. Examples of physical ab-
sorption processes used for acid gas removal are Rectisol which uses methanol as solvent,
Purisol with N-methyl-2-pyrrolidone (NMP) as solvent, Selexol with a mixture of dimethyle-
ther and polyethylene glycol. A third group of processes use a mixture of both physical and
chemical solvents. Examples of these processes are Amisol and the Selefining process.
The process studied in this work is a physical absorption process named Rectisol. Compared
to many similar processes, Rectisol is an economical and environmental friendly candidate
for purification of gases produced by partial oxidation of carbon containing material. It is
widely considered as part of many gasification based biorefinary schemes due to its design and
operation flexibility, capability in removal of sulphuric compounds and CO, in ppm ranges,
and its potential for energy integration. The advantages of Rectisol is that in this process the
solvent does not foam in contact with the sour gas, the solvent is not corrosive and it can be
easily regenerated by flashing at low pressures. But it also comes with a disadvantage which
is the relatively high refrigeration energy requirement which leads to higher operating costs
(Olajire, 2010).
Based on the area of application, Rectisol can have many configurations. If the absorption
section consists only of one column, or in other words if the absorption of CO, and H,S is
done at the same time, the process is said to be single stage. But if the absorption of H,S and

CO, is done in two separate columns, the process is said to be two stage. Also if CO, and



H,S are disposed of in the same stream the process is non-selective, and if CO, and sulfur
compounds are disposed of in separate streams, the process is called selective (Ranke and
Mohr, 1985).

The configuration we used in this work is two stage and selective. Figure 1.1 shows this

configuration :



posn WOIRINSYUOD [0S1909Y T'T 9INSTq

sen mey

uojelausbay

JUBA|OS
............ Jojenusoduo) SZH [ oo i <

uondas
uondiosqy

Jadduyg i
Z090 foqiosqy

|

Jleceepemmcem e m e L - -

uoI1D3sS sebjiel 19NPOIdZ0D $eb UKS paijing
uondiosaqg

seb unog N




As we can see the syngas enters the bottom absorber ( which actually consists of two
columns on top of each other) where it is contacted with partially loaded solvent, mostly
containing CO,, to absorb the H,S, and also CO, . The remaining amount of CO, is ab-
sorbed in the top section of the column in contact with the lean solvent. The solvent is
withdrawn from the absorber at the end of each section, and flashed to remove the valuable
components like H,, CO and CH,. While part of the liquids from the first section is sent to
the third column, the remainder is sent to the second column. In the second column which
is also called the "H,S Concentrator” the rich solvent is heated up to a temperature where
mainly CO, is stripped from the liquid. The gas product of the H,S concentrator is 98 vol%
CO,. The pressure of the liquid product is dropped and it is flashed, the resulting gas stream
is recycled back to column as stripping gas and the liquid phase is sent to the third column.
The third column which is called the "CO, stripper” removes the remaining CO, from the rich
solvent using a stream of pure nitrogen.The gas product of this column is approximately half
CO, and half N,. The liquid product is divided into two streams, while the smaller portion
is recycled to the H,S concentrator, the larger portion is sent the solvent regenerator. The
solvent regenerator is a conventional distillation column, where the remaining sour compo-
nents are removed from the solvent using distillation and the lean solvent is cooled and sent
back to the absorber.

1.2 Problem definition

The problem assumed to be associated with the Rectisol process studied in this thesis is
that the feed composition and flowrate to the Rectisol process may vary depending on the
operating conditions of the gasifier, the biomass composition and many other parameters. In
order for the process to react to these variations and keep the products as close as possible
to the specified standards, adaptive extremum seeking control was used.

As seen in the previous section, the process is complex in terms of recycle streams. Such a
process is multivariable and highly interactive and like many other chemical processes shows
nonlinear behaviour. For the adaptive extremum seeking control to be functional and to
reject measurable and unmeasurable disturbances and also for the process to adapt to new
operating conditions a fast interactive regulatory control structure is required.

In this context a search for an implementable multivariable control structure was done and
an adaptive extremum seeking scheme was designed that keeps the product specifications as

close as possible to their standards.



1.3 Objectives

The general objective associated with this work is : to implement adaptive extre-
mum seeking control on the Rectisol process to optimize its performance in the
presence of perturbations. In this context the following specific objectives were declared
to achieve our General objective :

— To develop a dynamic model for Rectisol

— To design and implement a plantwide regulatory control structure on the dynamic

model
The hypothesis linked to our objectives is that adaptive extremum seeking can help improve

the performance of the process especially in the presence of unmeasurable disturbances.

1.4 Thesis orginization

This thesis commences with a brief literature review (Chapter 2) on the Rectisol process
and its simulation, a plantwide control solution to recycle processes, Linear MPC, Distributed
Linear MPC and at the end adaptive extremum seeking control.

In Chapter 3 the methodological concepts used, will be described. The latter includes the
development of a dynamic model in Aspen plus®Dynamics, design of a centralized and
distributed MPC structure and design of a multi input adaptive extremum seeking scheme.
In chapter 4 the results of the regulatory control structure will be presented independently
and compared using existing criteria and interpreted.Then the adaptive extremum seeking
control layer will be implemented on some of these structures and their performance will be
compared in terms of control and optimization.

In the final chapter (chapter 5) a conclusion will be made from the results presented in the

previous chapter and the best regulation and optimization structure will be chosen.



CHAPTER 2

LITERATURE REVIEW

In this chapter we briefly review the literature on Rectisol, linear model predictive control,

distributed MPC and adaptive extremum seeking.

2.1 Rectisol

Rectisol is known to be an economical process for acid gas removal of partial oxidation
products(Weiss, 1988). As found in Ullmann’s Encyclopedia of industrial chemistry, it has
been cited by Ranke that the Rectisol process was at first invented by Lurgi in 1950 and
later on further developed, in cooperation with Linde (Hiller et al, 2000). In general it is
used for the purification of partial oxidization gases, and has different configurations based
on the purpose of its application. Ranke and Mohr (1985) classify different configurations of
the process into two main classes, non-selective and selective. The selective systems have at
least two sour gas products, one sulfur free CO, stream, and a sulfur stream which is fed to
a Clause unit. The non-selective systems only have one sour gas stream containing both CO,,
and sulfur compounds. The standard Rectisol configuration is of the non selective type. Its

flow diagram can be seen in figure 2.3. Ranke (1977) modified this flow diagram to create a

Treated gas

NHy o
Methanol
Raw g&s—_g i

Methanol

Figure 2.1 Standard Rectisol configuration (Hiller et al. (2000),p.96)

selective system that has a high concentration CO, stream and a clause feed stream. Figure



2.2 shows the proposed configuration.

Figure 2.2 Selective Rectisol configuration (Ranke, 1977)

Ranke and Mohr (1985) have also compared the selective and non-selective configurations
considering energy consumption and performance in different applications. They have also
listed a few applications such as ammonia production and methanol production. They also
studied the integration of different processes with Rectisol such as shift gas conversion, sulfur
production and cryogenic separation.

The number of absorption columns can also be different, single stage Rectisol consists of
only one wash column while two-stage Rectisol consists of two. Two-stage Rectisol is mostly
used along with the shift conversion process in ammonia and methanol plants where the shift
conversion is done between the two stages of the wash (Weiss, 1988).

Literature on simulation of Rectisol itself is very limited, and it has been mainly studied as
part of another process and mainly in steady state. Preston (1981) has developed a steady
state model of Rectisol using the Aspen®) software. A non-selective configuration has been
modeled. The Redlich-Kwong-Soave equation-of-state was found suitable and the coefficients
were found using experimental data. The model was developed to obtain mass and energy
balances and to predict the composition of clean product gas by varying different paramaters
and operating conditions. The overall regenerated solvent recycle loop was not closed to
obtain convergence.

As part of a Dynamic model for IGCC, only the absorption section of Rectisol was modelled
using the Dymola software. Equilibrium stages where considered and it was assumed that
the system obeys the ideal gas - Henry law. The steady state results of this simulation where
validated by results from Aspen Plus and Chemcad (Heil et al., 2009).



Many works has been done on dynamic modelling and simulation of other acid gas removal
processes that are similar to Rectisol from a systems engineering point of view. The models are
either created by combining first principle models of individual units or by using commercial
software like Aspen®Plus Dynamics (Lin et al., 2010; Harun et al., 2012).

2.2 Plantwide control of processes with recycle

Design of a plantwide control procedure for cascaded unit operations without any recycle
streams was developed over half a century ago and has been widely used in the industry ever
since (Buckley, 1964). But when a process contains recycle streams these techniques might
cause instabilities through what is called "the snowball effect”. The dynamic behaviour of
these systems have been studied and analyzed in detail by Luyben. In his work Luyben has
used a Reactor/Separator example with a linear model (Luyben, 1993).

Later on Luyben (1994) proposes that in order to deal with the mass recycle loop , at least one
of the flows in the in liquid recycle loop has to be flow controlled. The same concept can be
applied on energy recycle loops. Once this is done conventional plantwide control procedures
can be used. Tyreus and Luyben (1993) have also studied the snowball effect in a one reactor,
two separators configuration with two recycle streams, where a second order reaction takes
place in the reactor, and have once again reached the conclusion that the flow-rate should be
fixed at-least in one stream of the recycle loop. It has been shown that fixing the flow rate in
the recycle loop at the fresh feed inlet can be advantageous compared to other alternatives
(Bildea and Dimian, 2003).

By analyzing Luyben’s structure we can see that it takes away the possibility of optimizing
the plant’s production rate. We can also see that snowball effect can be dealt with by redoing
the process design, in this case by increasing the reactor volume so that the larger volume
of the reactor can damp the oscillation of the recycle loop . Larsson et al. (2003) pointed
out that by defining an objective function and a set of active constraints we can develop
a self optimizing control structure to regulate and optimize the plant’s performance. They
later on point out that a MPC controller can explicitly handle the constraints. Seki and Naka
(2008) have used Larsson’s self optimizing control structure as their regulatory layer and
implemented a MPC as the supervisory layer to optimize the process economy.

The Tennessee Eastman process is another example of processes with a recycle stream. This
process is nonlinear and open loop unstable. Amongst the first attempts to stabilize this
process was the work of McAvoy and Ye (1994). They developed a multi loop PID structure
using steady-state analysis, relative gain analysis, Niederlinski index and disturbance analysis.

Ricker and Lee (1995) mention that Palavajjhala et al used PI controllers alongside with
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Dynamic matrix control (DMC) to control this problem. The PI controllers give a partially
open loop stable plant. Ricker formed a nonlinear model of the partially open loop stable plant
and formed an MPC controller that linearizes the model at each time step. The Tennessee
Eastman process is a benchmark for many control topics and a vast amount of literature can

be found on this subject.

2.3 Linear Model Predictive Control

Roots of MPC can be traced back to Linear Quadratic Gaussian (LQG). In LQG for a

linear time invariant discrete system in the form of :

x(k+ 1) = Az(k) + Bu(k) + Gw(k)

(2.1)
y(k) = Cx(k) + £(k)

where w(k) and (k) are the state disturbance and measurement noise, considered to be zero

mean independent Gaussian noise, an objective function in the following form is formulated :
J = Z xlTQ:(:z + ulTRui (2.2)
i=1

() and R are tuneable weighting matrices. By replacing u = —Kz(k) in equation 2.2 the
objective function is minimised for K which is the gain. The optimization is done offline once,
and the gain is implemented in the control loop. MPC is an extension of LQG in the sense
that it controls the plant by optimizing a similar objective function, but the optimization is
done at each time step for the current states of the system and it has a finite horizon (Qin
and Badgwell, 2003).

In General MPC needs an internal model to generate the vector of predictions that represent
the future dynamic behaviour of the plant. This model can be in the state space form,
polynomial, or can even be a matrix of transfer functions. MPC also has an optimizer that
tries to bring the vector of predictions generated by the internal model close to the reference
trajectory by solving an optimization problem. This optimization problem can be constrained

or unconstrained.

HlAlUIl(Y - )/ref)TQG/ - Y;”ef) + AUTRAU (23)

The first works on MPC were carried out by Cutler and Ramaker (1980). They used linear
step response models and formed an unconstrained multivariable control algorithm which is

called Dynamic Matrix Control. This algorithm is advantageous compared to a multiloop
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PID structure since it considers the interactions between variables but it does not explicitly
handle constraints. DMC is considered as first generation MPC. Garcia and Morshedi (1986)
reformulated the DMC problem into a Quadratic programming problem that can find the
plant’s input by considering the constraints as part of the solution. This technique is cal-
led Quadratic Dynamic Matrix control (QDMC). QDMC is considered as second generation
MPC.

Clarke et al. (1987) have used input-output models to find the predictions. They showed that
as long as the input-output correlation is rich enough, the predictive controller formed by this
model is able to control the system even in the presence of non-minimum phase behaviour,
open loop instability or unknown dead-time. This technique is called Generalized Predictive
Control. As promising as it seems, this technique cannot handle multivariable constrained
systems well (Morari and Lee, 1999).

MPC has been formulated in the state space format (Morari, 1990). In this manner, many
useful theories can be applied to it and it also facilitates the extension of MPC to more com-
plex cases. State space MPC needs the value of the states to carry out the calculations. These
values can either be measured from the plant (if possible) or be provided by a state estimator.
Wang and Young (2006) have proposed a method where non-minimal state space models are
formed using input output data or even using transfer functions. They also augmented the
model with integrators to enable offset free tracking. Previously to handle modelling error
and offset, at each sampling interval the error between the process output and the model
prediction at that instant was calculated and was fedback to the controller as a constant dis-
turbance over the prediction horizon (Constant Output Disturbance (COD)). Another idea
is using a Kalman filter.

In the third generation MPC, new features are mainly use of state space models, an explicit
description of disturbance models, the integration of a Kalman filter for state estimation and
unmeasured disturbances and the introduction of soft and hard constraints to insure the fea-
sibility of a solution by MPC. Examples of this generation are Shell multivariable optimizing
control (SMOC), IDCOM-M by Setpoint Inc. and HIECON by Adersa . In terms of industrial
application, MPC is pretty mature and has been applied in the industry for years. Aspen
Technology Inc. and Honeywell are the two leaders in industrial MPC development. They
have developed the fourth generation of MPC controllers which consider model uncertainty
and enable multiple optimization levels (Qin and Badgwell, 2003). Table 2.1 shows a list of
industrial linear MPC products.
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Table 2.1 Industrial linear MPC products (Qin and Badgwell, 2003)

Company | Aspen Tech | Honeywell Adersa Invensys SGS
Product DMC-plus | RMPCT PFC Connois | SMOC

Model Type FSR ARX,TF | LSS,TF,ARX | ARX,FIR | LSS

Feedback COD COD COD COD KF

2000 4 3 3 4
@ 4th generation

MPC
1990 @@ PFC @ 3rd generation
IDCOM-M)-(HIECON @ MPC
t \ ] )
Connoisseur) "QDMC 2nd generation
Grrosed) (GO gon

1980 @

1970

1st generation
MPC

1960

Figure 2.3 Evolution of industrial MPC technology (Qin and Badgwell, 2003)

2.4 Distributed Linear Model Predictive control

Centralized MPC control of a multivariable system comes with the of advantage of syste-
matically considering all interactions between states and outputs. But if the system is large,
the optimization problem can become too computationally demanding. Also the fact that
the system relies on a single control agent can cause maintenance problems (Stewart et al.,
2010). A solution to this problem is decentralization of MPC. The model is decomposed into
smaller subsystems and an optimization agent is assigned to each subsystem. The agents are
completely independent of one another and there is no communication between them. The
advantages that come with decentralization are easier implementation and modelling. The
disadvantages are loss of performance in case of highly interactive systems and also in the
presence of non-minimum phase transmission zeros (Cui and Jacobsen, 2002).

In general any type of communicating combination of MPC controllers can be seen as distri-
buted MPC. Distributed MPC not only offers the flexibility and ease of implementation of
decentralized MPC, but improves its performance by creating communication amongst the
agents(Scattolini, 2009). The communication structure can be formed based on the topo-
logy of the plant. It is suggested that subsystems that interact with each other must have a

communication link. In the case of chemical plants, if there is no recycle flow, it is just the
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neighbouring units that communicate, in the presence of a recycle flow all units inside the
recycle loop must be linked (Rawlings and Stewart, 2008).

Depending on the number of information exchanges done in a sampling interval distributed
MPC is divided into two groups :

— Non-iterative or independent, if information exchange is only done once during the

sampling intervals.

— Iterative, if information exchange is done more than once during the sampling intervals.
Iterative algorithms can be more beneficial in the sense that the amount of information
exchanged amongst local controllers is large (Scattolini, 2009). Another classification is based
on the objective function used in the local controllers (Christofides et al., 2013) :

— If all local controllers work together to optimize a global cost function the DMPC

structure is called Cooperative.

— if each local controller solves it’s own objective function, which is independent of the

others it is called Non-cooperative.

An iterative, cooperating method is said to converge closely to the solution of a centralized
method, what is called "Pareto optimal solution” in game theory, whereas in non-iterative
and independent algorithms, local controllers tend towards the "Nash equilibrium” which
may be unstable (Scattolini, 2009). In order to insure stability of non-iterative, independent
algorithms for linear discrete systems, Camponogara et al. (2002) have added a constraint.
They have studied the application of their proposed method to load frequency control of
power systems. Alessio and Bemporad (2008) have also added a stability condition for when
the communication between local controllers fails.

Stewart et al. (2010) have developed an iterative-cooperative DMPC algorithm for linear
systems with decoupled or weakly coupled constraints. Venkat et al. (2005) have studied the
stability and optimality of iterative-cooperative DMPC. They have also added a modification
which insures that all intermediate iterates are stable. Mercangtz and Doyle (2007) have
developed an iterative DMPC framework and applied it to the four tank system to control
the level of the two bottom tanks. They compared their DMPC to centralized and completely
decentralized controllers. The results showed that the DMPC’s performance is significantly
better than the decentralized controllers and very close to that of a centralized controller.
Venkat et al. (2008) applied cooperative DMPC to automatic generation control. Our DMPC
Structure is similar to that of Mercangoz and Doyle (2007), so it’s non-cooperative leading

to a Nash equilibrium despite its iterative nature.
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2.5 Adaptive extremum seeking control and Realtime optimization

Adaptive extremum seeking is one of the subjects of adaptive control, where an input
which optimizes an output is found, while the only knowledge required is the existence of an
extremum. Tan et al. (2010) mention that adaptive extremum seeking was primarily presen-
ted by Leblanc to maximise the power transfer from an overhead electric transmission device
to a tram car. Luxat and Lees (1971) have studied the stability of an adaptive extremum
scheme using Lyapunov’s second stability law. Wang and Krstic (2000) also studied the sta-
bility of classic extremum seeking and applied it to minimize limit cycle behaviour in the
Van der Pol oscillator. Krstié¢ (2000) has proposed adding a dynamic compensator to the in-
tegrator that improves the speed of the overall extremum seeking by accounting for the plant
dynamics. Ariyur and Krstic (2002) have created a design algorithm based on common LTI
control techniques and stability. They have extended their design procedure to multivariable
systems.

Many applications of adaptive extremum seeking have been reported in the literature. Wang
et al. (2000) have used adaptive extremum seeking to maximize pressure rise in an axial
flow compressor with uncertain compressor characteristics. Schneider et al. (2000) have used
adaptive extremum seeking to tune the controllers that stabilizes the thermoacoustic insta-
bilities in combustion processes. Banaszuk et al. (2000) have used this technique to tune the
phase shifting controller that is part of a control structure that reduces acoustic pressure
oscillations in gas-turbine engines.

Nguang and Chen (2000) took advantage of the model free concept of adaptive extremum
seeking and implemented it on a continuos fermentation process were the extremum seeking
controller optimizes the biomass production rate using the feed substrate rate. Wang et al.
(1999) have also used the model-free (steady-state) form of extremum seeking to maximise
biomass production rate in bioreactors with Haldane and Monod kinetic models, two different
non-linear models.

Other forms of extremum seeking have also been formed that require an explicit structure
information of the objective function. (Zhang et al., 2003; Titica et al., 2003; Marcos et al.,
2004b,a). Zhang et al. (2003) claims that this approach insures global stability for non-linear
systems since it’s based on Lyapunov’s theorem whereas the approach utilized by Wang et al.
(1999) can only assure global stability for linear systems and in the non-linear case, it can
only guarantee local stability. A parameter estimation algorithm was developed for the unk-
nown parameters. The proposed approach was applied to a continuous stirred tank bioreactor
with Monod’s kinetic model with unknown parameters and was shown that as long as the

dither signal respects a certain persistent excitation criteria the convergence is guaranteed.
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Marcos et al. (2004b) have applied a similar technique with the difference that they used
the Haldane’s Kinetic model with unknown parameters, which has unstable steady states.
The approaches mentioned up to here are all based on state feedback. An output feedback
alternative was proposed and applied to a continuous stirred tank bioreactor with Monod’s
Kinetic model (Marcos et al., 2004a). This methodology has also been applied to fed batch
bioreactors with both of the kinetic models (Titica et al., 2003; Cougnon et al., 2011).

The principles of the methodology proposed by Zhang et al. (2003) have been applied to a
non-isothermal continuous stirred tank where the Van de Vusse reaction occurs, to maximize
the concentration of a product by manipulating the rate of heating and cooling (Guay et al.,
2005). The obtained extremum seeking structure was later on used to maximize an objective
function of the reactor outlet concentrations through changing the jacket temperature, in a
non-isothermal tubular reactor with the Williams-otto reaction, where the system is consi-
dered as a Distributed Parameter System (DPS). The kinetics were assumed unknown but
a certain level of the systems structure information was used (Hudon et al., 2005). Hudon
et al. (2008) have extended this scheme to a case where input constraints are also considered

in the optimization problem.
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CHAPTER 3

Methodology

The methodology used in this thesis may be divided into three sections :
1. Development of a dynamic model for Rectisol
2. Design of a plantwide control strategy for disturbance rejection and setpoint tracking
3. Implementation of an Adaptive extremum seeking for realtime optimization

The steps taken in each section will be discussed in this chapter.

3.1 Development of a dynamic model

In order to create a dynamic model the Aspen Plus Dynamics software by AspenTech®was
used, so a steady state model had to be developed in Aspen plus, due to the fact that the
creation of a dynamic model in this manner is more simple. Later on the steady state model
was modified and was exported to Aspen dynamics. This dynamic model will be treated in

a blackbox manner.

3.1.1 Development of the steady state model

To create a steady state model, the steady state data and process flow diagram found in
Larson et al. (2006) was used. Amongst the different process layouts introduced for Rectisol
in this report, the more general case where both CO, and H,S are removed was considered. In
this layout the syngas enters the bottom of the column C1 where it is contacted with chilled
methanol at a temperature of —60°C, there’s a side-stream of methanol that is flashed and
sent to C2 and C3. The bottom methanol stream is flashed and sent to C2 where it is heated
just enough to strip a mostly CO, stream from it. The bottom liquid stream is flashed, and
the gas released is recycled back to C2, the liquid stream is sent to C3 where the remaining
CQ, is stripped using a N, flow. It is then passed to C4 where using distillation the remaining

CO, and H,S are separated.
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This layout was slightly modified by adding a compressor and a heat exchanger to the
feed stream and by replacing the heat exchanger between columns C3 and C4 with a hea-
ter and cooler. Also valves are added to the flow diagram. All valves besides those indicated

in red are control valves. The red valves are valves used to decrease pressure along the stream.
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In order to carry out the steady state simulation, the Peng-Robinson thermodynamic
package was used. This package was also used by Aspen in their Integrated Gasification
combined Cycle (IGCC) example (AspenTech, July 2008), where the Rectisol process is used
for acid gas removal. The feed composition was taken from Larson et al. (2006), which can
be seen in the table 3.1.

Table 3.1 Feed Composition

Component | Molar Fraction

Ar 0.0101

CH, 0.0206
CH,O 0

CO 0.3609

CO, 0.2095

COS 0.0002

H, 0.3757

H,S 0.0193

N, 0.0037

The columns were based on the RadFrac (Equilibrium stages) model of Aspen since
RateFrac (Rate based) cannot be used in dynamic mode. The absorber (C1) design was
based also on information found in the Aspen Plus IGCC example. The number of stages
was set to 30, and the Sum-rates algorithm was chosen as the convergence algorithm. Also
a liquid side-stream was set at the 10" stage. The results were obtained from the absorber
and were verified with Larson et al. (2006)’s results by comparing temperature, pressure,
and compositions. It must be noted that the composition of the lean solvent stream was
considered to be pure methanol as an initial guess. The valves and the flash drums were
added with their relevant operational information.

In the next step the H,S concentrator (C2) was added. The number of stages was considered
to be 10 and the standard convergence method was used. As seen in Figure 3.2 the liquid
stream leaving D-1 is split into two streams and one of these streams is sent to C2. This
stream enters the column on the 2"¢ stage. As of the liquid stream leaving D2 , it enters the
column on the 9" stage. As we can see in Figure 3.2, there are also two recycled streams, one
coming from D3 and one coming from C3. These streams enter the column on stages 6 and 9,
respectively. It must be noted that these stages were chosen in a way to have the smoothest
composition and temperature profile in the columns. Since the composition of these streams
were at first unknown, pure methanol was considered as an initial guess. After adding drum
D3 and the compressor and cooler a next estimate could be found for the guessed composition

of the respected stream. After a couple of trials and errors the cooler can be directly connected
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to the column.

Next, the CO, stripper was configured. The number of stages were set to 10, and the streams
coming from drum D1 and D3 were introduced on stages 2 and 1, respectively. Also a stream
of pure nitrogen was introduced at the bottom of the column. The stream leaving the bottom
of C3 is split into two and is sent to C2. The same trial and error procedure, described above
was applied.

The last column is the solvent regenerator (C4). This column was also considered to have
10 stages and the standard algorithm was used for convergence. The feed stream to column,
coming from C3 was introduced on stage 7. The reboiler and condenser duties were set to
values found in Larson et al. (2006) and slightly modified so that the temperature, pressure
and flow rates match.

The total recycle loop was not closed because, firstly, the Aspen plus solvers are not able
to solve the large problem created and by replacing the composition of the liquid inlet with
the bottom composition of C4 several times we can get an adequately exact approximation.
Secondly because an easier alternative is dynamic simulation which better serves our purpose
(Luyben, 2006).

The finalized steady state model was analyzed. As mentioned absorption of H,S ends in the
bottom section of the absorber while the absorption of CO, ends in the top section (Figure
3.3). The evolution of CO, concentration in the H,S concentrator was also studied, and as
we see in Figure 3.4, in general the concentration of CO, in the gas phase increases from
bottom to top showing that CO, is being removed from the liquid phase, leading to a higher

concentration of H,S.
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Figure 3.3 CO, and H,S mole fraction profiles (gas phase) in the absorber
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Figure 3.4 CO, mole fraction profile (gas phase) in the H,S concentrator

The CO, concentration profile in the gas phase for the CO, stripper (Figure 3.5) shows
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that from bottom to top the amount of CO, in the phase increases, so it’s concentration in

the liquid phase decreases.
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Figure 3.5 CO, mole fraction profile (gas phase) in the CO, stripper

Figure 3.6 shows the H,S and CO, profile in the gas phase of the solvent regenerator.
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Figure 3.6 CO, and H,S mole fraction profiles (gas phase) in the solvent regenerator

After obtaining a steady state model we must prepare it for the transition to a dynamic
model. In order to do so all the vessels (drums and column sumps) must be sized and column
pressure drops must be assigned.The vessel dimensions can be found in table 3.2 and the
pressure drops in table 3.3. The model is then pressure driven in Aspen Plus to verify if

there are any inconsistencies in pressures and exported to Aspen Dynamics environment.

Table 3.2 Vessel dimensions

Vessel Diameter(m) | Length(m)
C1-Sump 2.35 5.2875
C2-Sump 2 5
C3-Sump 2 5
C4-Sump 2 4

C4-condenser 0.705 2.058
D1 2.35 5.2875
D2 2.82 6.34
D3 6.17 30.85
T1 9.135 45.675
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Table 3.3 Pressure drop per tray

Vessel | AP (bar)
C1 0.016
C2 0.017
C3 0.017
C4 0.015

3.1.2 Forming the dynamic platform

The dynamic model consists of material and balances energy balances that are coupled by
thermodynamic correlations. For example if we consider the flash drum D-1, molar balances

can be written for each component :

dni
dt

= Fz — Vy;, — Lz; (3.1)

where n is the number of moles, F the molar feed flow-rate, V and L the vapor and liquid
molar flow-rates and and z;,y; and z; are the corresponding mole fractions. x; and y; are

related using the K-value which is a function of the temperature :

K(T) = Yi (3.2)

€
The energy balance for this equipment is :

dH

where H is the accumulated enthalpy and hg, hy and hj, are the enthalpies of the feed, vapor
and liquid streams. @) is the heat duty sent to the equipment. The enthalpies are calculated
as a function of temperature using thermodynamic correlations. The combination of these
equations gives a Differential Algebraic Equation system (DAE). The same principles are
used for other equipments, meaning mass balances, an energy balance and thermodynamic
equations.

The exported model from Aspen Plus already contains some pressure and level controllers. In
fact when exporting the model pressure and level controllers were added to vessels as long as
there is a valve directly on the gas or liquid stream. But if the model is run without adding
any further controllers it well diverge since the level on D3 is not controlled. In order to
develop a simple plant wide control configuration of PI controllers the procedure presented

by Luyben was used (Luyben et al., 1997; Luyben, 1993). The pressures and levels of all
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vessels were controlled. Also the output temperature of all heaters, coolers and flash drums
were controlled as well the recycle flow-rate of the stream from C3 to C2. The remaining
actuators (degrees of freedom) were used to control the temperatures on the stages of the
columns. In order to choose what stage temperature to control the manipulated variables
are subjected to a step change at steady state for each column and a matrix of steady gains
for each tray temperature and the manipulated variables is formed. Using Singular Value
Decomposition (SVD) the matrix is decomposed and the tray with the highest singular value
is chosen as a controlled variable (Moore, 1993). A list of all the controllers used is provided
in Table 3.4 and a PFD showing these controllers can be found in Figure 3.7. Something
that is worth noting is that the method used for integration here was the Gear method with

a relative tolerance of 0.0005.



Table 3.4 List of PID controllers

Controller tag

Process variable

Manipulated variable

PC-1 Top Pressure of C1 % opening of V-5
PC-2 Top Pressure of D1 % opening of V-7
PC-3 Top Pressure of D2 % opening of V-8
PC-4 Top Pressure of C2 % opening of V-13
PC-5 Top Pressure of D3 % opening of V-11
PC-6 Top Pressure of C3 % opening of V-16
PC-7 Top Pressure of C4 % opening of V-19
LC-1 level of C1-Sump % opening of V-4
LC-2 Level of D1 % opening of V-6
LC-3 Level of D2 % opening of V-9
LC-4 Level of C2-Sump % opening of V-10
LC-5 Level of D3 % opening of V-12
LC-6 Level of C3-Sump % opening of V-14
LC-7 Level of C4-Sump % opening of V-18
LC-8 Level of C4-Cond Recycle flow rate (Kg/hr)
LC-9 Level of T1 % opening of V-20
TC-1 Temperature of 9 stage of C1 % opening of V-2
TC-2 Temperature of 11" stage of C1 % opening of V-3
TC-3 Temperature of D1 D1 Duty (GJ/hr)
TC-4 Temperature of D2 D2 Duty (GJ/hr)
TC-5 Temperature of 10 stage of C2 | C2 reboiler Duty (GJ/hr)
TC-6 Output Temperature of E-2 E-2 Duty (GJ/hr)
TC-7 Temperature of 8" stage of C3 % opening of V-17
TC-8 Temperature of E-3 E-3 Duty (GJ/hr)
TC-9 Temperature of 2" stage of C4 | C4-cond Duty (GJ/hr)
TC-10 Temperature of 5™ stage of C4 | C4-reboiler Duty (GJ/hr)
TC-11 Output Temperature of E-31 E-31 Duty (GJ/hr)
FC-1 Mass flow rate of Recycle % opening of V-15

stream from C3 to C2

27
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This model with PID controllers was used as our base case, and all the other control
strategies developed later on were compared to it. In the PID case controllers were tuned
using lambda-tuning, and in the other cases the PIDs were tuned using Ziegler-Nichols. It
must be noted that the controllers PC-1, TC-1, TC-2, PC-4, TC-5, PC-6, TC-7, PC-7, TC-9,
TC-10 were removed from the aspen dynamics file and created in a Simulink model that can
communicate with Aspen dynamics using the Aspen Modeler block provided by AspenTech®).

This was done so that all our controllers will use a unique file as their plant.
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3.2 Identification of a linear model for MPC

To design a MPC controller , a discrete linear model of the plant is required. This model
has to be able to find the dynamic relations between the considered inputs and outputs

of the system. It must be noted that not all the process variables are considered in our

MPC controller. Only those related to the controllers mentioned in the previous section are
considered.
The inputs are subjected to a series of step changes. As can be seen in Figure 3.9 while one
input is being manipulated the rest are kept constant. Later on the System Identification
toolbox of Matlab®) was used to find the needed model (Ljung, 1999).
Direct identification of a Multi Input- Multi Output (MIMO) is very time consuming and in
the case where the number of inputs and outputs are slightly high it may be infeasible. So
instead an indirect method was used. This means that multiple Multi Input- Single Output
(MISO) models will be identified that map all inputs to each output, and then the MISO
models were combined to form a MIMO model of the process.
There are many criteria used to determine the precision of an identified model, the one used
in our work is Normalized Root Mean Square Error (NRMSE). NRMSE is calculated through
Equation 3.4 .
9wl

|lyi = mean(y;)]]

NRMSE(y;) = (1 )100 (3.4)

where 7j; corresponds to the simulated value of i output (from the identified model) and y;
the actual value of i*" output.
This identification method can lead to a composite model that can be helpful in forming the

distributed model predictive control framework (Venkat et al., 2007).

3.2.1 Identification of dynamic models

The data seen in Figure 3.9 were fed to the system identification toolbox as time domain
data. The data series had a sampling time of 0.1 seconds. Another important point about
the identification data is that all the data where subtracted from the values at the nominal
point and the data used for identification was y and @, where y =y — 9y, u = u — u. §y and u

are the nominal values.
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The identified models have the state space form, and were found using the N4SID (sub-
space identification) method (Ljung, 1999). These algorithms use QR and singular value de-
compositions ; therefore they have guaranteed convergence and numerical stability (Van Over-
schee and De Moor, 1996). The models have unit input delay and the N4weight and N4Horizon
are chosen automatically. To identify the MISO models the entire input data and the data
related to each output were imported to the toolbox. The order of the state space models
are determined using the order selection tool, which plots the logarithm of the singular value
versus the order of the model, the order after which the singular value decreases drastically

is considered as the best choice. The model structure we’re looking for is :

Ymi (k) = ChiTmi(k) (3.5)

where 7 represents the number of outputs and the corresponding model, x; the states of the

" model, d the measurable disturbance, A4;, B; and C; the system matrixes and G; the

7
measurable disturbance matrix. A model with this format can not be identified using the

System Identification toolbox, so the model is modified to the following form :

ek +1) = Amixmi(k)Jr[Bmi Gmi}

u(k)
d(k) (3.6)
This way the System Identification toolbox can be used to find the models. Table 3.6 shows

the orders of the MISO models, the i model represents the model relating the ,,; to inputs.
The identified MISO are combined to form a MIMO model in the following manner :

Table 3.6 Inputs and Outputs of model

Model number Corresponding output Order
1 Top Pressure of C1 4
2 Temperature of 9" stage of C1 3
3 Temperature of 11" stage of C1 4
4 Top Pressure of C2 4
5 Temperature of 10" stage of C2 3
6 Top Pressure of C3 4
7 Temperature of 7" stage of C3 3
8 Top Pressure of C4 4
9 Temperature of 2°¢ stage of C4 4
10 Temperature of 5™ stage of C2 3




A 0
0 A0 0
rm(k+1) = ‘
0 Amio
Gml
G,
" | ak)
GmlO
Coi O
0 Cpe 0
Ym (k) =
0 Cito
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Tm1 (k)

Zlfmg(k?)
. + Bml Bm2 BmlO ’LL(k')

$m10(k)

Imlo(k?)
(3.7)

The NRMSE of the model output versus the identification data for each output can be seen

in Table 3.7.

Table 3.7 Goodness of fit of model

Output | NRMSE %
i 94.16
s 93.70
U 95.29
s 79.26
U 94.93
yr 69.99
Y10 92.53
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3.2.2 Validation of the dynamic model

Now that a model has been identified, it has to be validated against a new series of data.
So a new series of input signals was fed into the system and the results were gathered and

compared to the model output. Table 3.8 showed the results of this validation.

Table 3.8 Validation of model

Output | NRMSE %
o 93.74
Ys 92.83
U 94.42
s 82.13
Yo 94.76
Y 68.86
Us 91.95
Y10 92.01

The observability and controllability matrices of this model were formed and found to
be of rank 36, which is equal to the order of the overall model. This means that our model
is controllable and that using this model and the measured outputs we can reconstruct the
states. Since a proper model has been identified we can move on to the design of a MPC

controller.

3.3 Centralized linear MPC design

MPC is based on minimization of an objective function which includes the prediction of
output errors and manipulated variable variations subject to constraints. So a MPC controller
can be described by Eq 3.8.

min(Y" — Yoe)TQ(Y — Yiep) + AUTRAU
st (3.8)
aAU <b

where Y is the vector of predicted outputs,Y,.; setpoint, AU the input trajectory that mini-

mizes the objective function and () and R are weighting matrices. Now using the identified
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model we have to generate a Y in terms of AU. In order to do so we will rewrite Eq 3.7 in

the following form :

rm(k+1) = Apnzn(k)+ Buhu(k) + Gnd(k)

ym(k) Omxma{:) (3'9)

This equation gives us the values of the states at k& + 1 based on values at instant k. We can

rewrite Eq 3.9 to have the states at instant k& based on instant k£ — 1 :

Tm(k) = Apam(k — 1) + Bpu(k — 1) + Gprd(k — 1) (3.10)
Subtracting 3.10 from 3.9 leads to :

Az, (k+1) = AnAxy, (k) + BnAu(k) + GLAd(k) (3.11)

where Az, (k) =z, (k) — (k= 1), Au(k) = u(k) —u(k —1) and Ad(k) = d(k) —d(k —1).

Now we have to relate Ax,, to y,,. This is done by augmenting the state variable and creating

Ax,,(k

a new one such that z(k) = ’ (]i)> (Wang, 2009). So we have :

Ym
= Cn(AnAz, (k) + BAu(k) + GAd(k)) '
We now have an augmented model :
Arn(k+1)] [ A Ay (k B, G
kL)) O A (k) u(k) + Ad(k)
~ ~ "y ~_ - ) ~~ _/ A ~ g N — S—
x(k+1) A x(k) B G (3.13)
r Az, (k
y(k) = [0 1] k)
C

As we can see we have embedded an integrator into our model that will insure that we have
no offset (Wang and Young, 2006). Using Eq 3.13 we will generate the vector of output
predictions. To do so we need a prediction of the system states. It must be considered that
from now on the when we refer to states it’s the states in eq 3.13 that we have in mind.
Before we proceed there are a few notations that should be introduced. First a prediction
horizon (NN,) which is the number of intervals that the output is predicted on, and the control

horizon (V) that is the number of intervals in which the control sequence is calculated. We
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know that :

x(k + 1|k) = Ax(k) + BAu(k) + GAd(k)
v(k+2lk) = Ax(k + 1lk) + BAu(k + 1) = A%z(k) + ABAu(k) + AGAd(k) + BAu(k + 1)

z(k + N,|K) = AN a(k) + AN BAu(k) + AN 2BAu(k + 1)
4o AN NeBA (K + N, — 1) + AN TG Ad(R).
(3.14)

where z(k + m|k) is the predicted state variable at instant k& + m based on states at k. It
must be noted that d(k) has no future value so it does not go further than instant k. Now

that we have the prediction of states we generate the output values :

y(k + 1k) = CAz(k) + CBAu(k) + CGAd(k)
y(k 4 2|k) = CA%x(k) + CABAu(k) + CAGAd(K) + CBAu(k + 1)
: (3.15)
y(k + N,|K) = CAN (k) + CAN ' BAu(k) + CAN"2BAu(k + 1)
4+ CAMY e BAu(k + N, — 1) + CAM ' GAd(k).

Now we have to form the output prediction matrix. This is done using the following equation :

Y = Fa(k) + ®AU + T'Ad (3.16)
where
[ oA ] [ OB 0 0 0 | el
CA? CAB CB 0 0 CAG
F=|CA®|,;d=| CA’B CAB CB 0 T =| CA*G
C AN» CAN»—=1B CAN»—2B CAM3B ... CANe—NeB CAN—1@3
and _ _ _ -
y(k+ 1|k) Au(k)
y(k+ 2|k) Au(k+1)

Y =|ylk+3lk) | ;AU = Au(k + 2)

| y(k + Nylk) | Au(k+ N.+1)
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If n is the number of outputs and m is the number of outputs, then Y is a vector with a

length of n x N, and AU is a vector of length m x N. (Wang, 2009). In our case where we
T T
have a multivariable model y = [ylyg . yn} and u = [u1u2 . um} . Since our system is

large the optimization problem is pretty time consuming. Instead of doing calculations on
the whole prediction horizon, we skip a specific number of intervals. This way we have the
same sampling interval and prediction horizon but we make the computation faster. This
technique helps us because not all our outputs have the same response time and some are
slower compared to others as seen in 3.11. We have used Quadratic Programming to solve
this optimization problem, thus the constraints must have a form of aAU < b. In our work

we only considered constraints on the inputs and their variations.

Umin S U(k; + 1) S Umaa:

(3.17)
AUvmzn S AU S Aljma:):

As we can see our constraints also contain the absolute value of u;, thus,U. So we have to
reformulate them so that they are explicitly a function of AU. We know that if U(k + 1) <
Umaz then U(k) + AU < Upaw, Thus AU < U — U(k). So we can rewrite Eq 3.17 in the

following form :

AU < AUpaa
AU < =AUy,
AU < Upaz — U(k)
AU < ~Uppin + U(K)

and in a matrix form :

I AUmaiE
—1 —AUpin
AU < (3.18)
I Umaz — U(k)
-1 —Upin + U(K)
—— \br v

We will reformulate 3.8 into a Quadratic programming problem by replacing Y and rearran-

ging the terms. We have :

AU = mz’n%HTAUH—l—fTAU—l—c
st (3.19)

aAU <b
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where

H =2(0TQ® + R)
f=-22"Q(Y,e; — Fx — TAd))

We can see all the information required for solving the QP problem is obtained but the value
of the states. Since our states do not have a physical meaning we can not measure them
from the plant. We need a state estimator. Therefore, a Kalman Filter was used to provide
realtime values of the states for the controller. A steady state Kalman filter was tuned using
the kalman command of Matlab®), with a small Q and a large R. This way the filter is based
more on the measured values than the model itself or in other words provides state values
that correspond to the measured outputs of the plant. As we know the Kalman filter state

update equation is :
T(k+1) = Az(k) + Bu(k) + K(y(k) — Cz(k)) (3.20)

where 7 is the estimated state, K the filter gain and A,B and C' the model matrices. By
putting the Centralized MPC, Kalman filter and the plant in loop, we can close the control
loop. The MPC controller was coded using a S-function. The plant is the Aspen dynamics
model linked to Simulink@®) using the Aspen Modeler block provided by AspenTech@®). Since
the plant, the controller and Kalman filter have different sampling intervals, zero order holds
were placed at the inputs and outputs of the plant. Figures 3.12 to 3.14 show the simulink

layout of the centralized MPC simulation and its related subsystems.
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3.4 Distributed MPC Design

In order to break down our centralized MPC controller, first the model of the system
has to be decomposed into local subsystems. This was done by considering each column
as a subsystem and thus forming four. The identified model has a composite form (Venkat
et al., 2007) which helps with the decomposition. The pressures and temperatures of each
column were put together forming a subsystem. All models consider the effect of all inputs
and the measured disturbance on their outputs. Therefore equation 3.7 is broken down in the

following form :

l'ml(k' + 1 mlxml k mlul( ) + Gm1d<k) -+ Bmlﬂl(k)

mlxml k

m2xm2 k + m2um2( ) + Gde(k) + Bm26m2<k)

yml(

_ (3.21)
xm?)(k + 3 m3mm3 k + m3um3(k) + Gm3d<k) + Bm3am3(k3)
ym3(k m3xm3 k

l'm4(k‘ +4

) = (k) +
) = (k)
) = (k)
Ym2(k) = CraTma (k)
) = (F)
) = (k)
) = Apaima(k) + Brgtma(k) + Groad(k) 4+ Bogtipa(k)
) = (F)

Yma ( m4x m4 k

where u; represents all the inputs not manipulated by the subsystem. Table 3.9 shows the
corresponding inputs and outputs of each subsystem. Just as seen in the previous section

through equations 3.9 to 3.16 the models were all augmented to the following form :

1=1...4

(3.22)
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Table 3.9 Inputs and Outputs of model

Subsystem # (7) Outputs Inputs
Top Pressure of C1(y;) % opening of V-5 (uy)
1 Temperature of 9™ stage of C1(ys ) % opening of V-2 (uy)
Temperature of 11" stage of C1(ys3) % opening of V-3(u3)
5 Top Pressure of C2(y,) % opening of V-13(uy)
Temperature of 10™® stage of C2(ys) | % C2 reboiler Duty (GJ/hr)(us)
5 Top Pressure of C3(yg) % opening of V-16(ug)
Temperature of 71 stage of C3(yr) % opening of V-17(uz)
Top Pressure of C4 (ys) % opening of V-19(usg)
4 Temperature of 2" stage of C4(yy) C4-cond Duty (GJ/hr)(uy)
Temperature of 5™ stage of C4(y19) | Cd-reboiler Duty (GJ/hr)(uy)

where F;,®; and I'; are defined in the same manner as in equation 3.16, and

C;B; 0 0

C;A2B;

CANMT'B, CANYTB, CANTB,

C; AN N B,

All the controllers here have the same N, and V.. N, > 2 is a must in order for the algorithm to

have a good performance and without this condition the communication would be somewhat

pointless. ¥, has the same dimensions as ®;. Now the QP problems can be formed. Each

problem has its own constraints which are defined as in the previous section, in other words

our DMPC subproblems have a structure and formulation very similar to the centralized

problem .

where

1
AU; = mz’niHl-TAUiHi + fFAU;

st
a;AU; <b;
1=1...4

H =2(0;Q;®; + R;)
f==20]Qi(Yrepi — Fir; — T'Ad

(3.23)

— U,AD))
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Rawlings and Stewart (2008) have suggested that for a process with total recycle the informa-
tion flow diagram between controllers should be similar to Figure 3.15, but the information

flow in our DMPC is better represented by Figure 3.16 :

p~@

Figure 3.15 Information flow suggested by Rawlings and Stewart (2008)

ONNO

D —

Figure 3.16 Information flow of our DMPC

As we can see these problems are not completely independent of each other compared
to Decentralized MPC. The four optimization of each MPC subcontroller were solved in an
iterative manner, but they do not cooperate with each other in solving a global objective
function.Our DMPC is of a iterative, non-cooperative class, which acts by the following

algorithm :

1. At each sampling instant (every 0.1 seconds) the changes in states, disturbance and

inputs and also the absolute value of process outputs are measured.
Au

2. AU is set to | : and the proper elements are sent to each subcontroller.

1xmN,
3. fori =1to N (N is a tuneable parameter which we have chosen 10).

(a) Each subproblem (subcontroller) is solved (equation 3.23).
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Au1
(b) AU = | : | and sent to other subcontrollers.
AU4

(c) return to (a) unless i = N.
4. The first series of AU is sent to the plant as a control signal.

Further details of this method and the code can be found in the appendix.

3.5 Design of the adaptive extremum seeking loop

After finding the proper primary layer of control configuration or the regulatory layer,
based on our objectives we were to design and tune an adaptive extremum seeking scheme
that optimizes an objective function of the system. In this framework we decided to define
an objective function that quantifies the quality of the product streams, or in other words
that shows the deviation of these product streams from their standards. the chosen objective

function 1is :

standard 2
J =aq (xHQS in Clean gas — xHQS in Clean gas)

+03(20, in €O, stream — LEO T G0, stream)” (3.24)

+3(T1,8 in clause gas stream — :vff;‘él T clause gas stream)
The variables we chose to manipulate to optimize our objective function were setpoints on s,
ys and y19. Since we have three manipulated variables we will have a schematic in the form
of Figure 3.17. As seen in Figure 3.17 the extremum seeking method used is multivariable
static mapping. The overall system has three time scales : the fastest which is the plant and
it’s controllers, the medium which is the perturbation signal or dieter signal and the slowest
which is the high pass filter. As we can see in Figure 3.17 the setpoints are perturbed by the
dither signal, therefore perturbing the objective function. The high pass filter washes out or
removes the low frequency part of J, or in simple words the part of the system that is not
affected by the dither. After demodulation the integrator’s estimation gives us the gradient,
which optimizes the objective. This method finds local optimums , which is why we have

chosen a quadratic objective (Ariyur and Krstic, 2003).
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ref \ J J(t)

1
Y= f(Yref2 Yrefs Yref10)

AL
Y

< 1 _5 <
N Kl s [€ C? E S+wp,

wi é1
a sin(|wy| t+ [do|)

w3 @3

Figure 3.17 Adaptive extremum seeking principle

The equivalent of Figure 3.17 in simulink is given in Fig 3.18

Figure 3.18 Adaptive extremum seeking in simulink

To tune the adaptive extremum seeking structure, the amplitude of the dither signal was
chosen in a way to obtain a small steady state error. The components of the dither signal
have a phase angle of 0 ,5 and 7 respectively. The high pass filter was tuned so that it is in
a slower time scale compared to the plant with its controllers. The gains were set to a value
corresponding to the effect of their related input on the objective function (Ariyur and Krstic,
2003). The frequencies were chosen corresponding to the settling time of the related output
of the system. Figure 3.19 shows the closed loop time response of plant with a centralized

MPC for the setpoints considered in our extremum seeking scheme.
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Figure 3.19 Settling time for the closed loop system for a) 274, b) 5% ¢) 10" output of the
system with Centralized MPC

The frequency of the dither signal for the 5 and the 10 setpoint are chosen proportional

to the frequency of the 2" output by the inverse of their settling times.
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The combination of adaptive extremum seeking and our regulatory controllers is shown

in Figure 3.20.

RTO Adaptive Extremum RTO Adaptive Extremum
Seeking Seeking
Setpoints Setpoints
A 4 \4
Regulators Centralized MPC Regulators | pypc | pmpc | DMPC
Plant Plant
(a) (b)

Figure 3.20 Combination of adaptive extremum seeking with a) Centralized MPC and b)
Distributed MPC

Since the simulations with adaptive extremum seeking need more time and memory to run,
and due to fact that the Aspen plus dynamics can only run in a 32 bit windows environment,
the simulations where run using a linear model obtained from the Control Design Interface

of Aspen plus Dynamics.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter the preparation of simulations and of multiloop PI, Centralized MPC, De-
centralized MPC and Distributed MPC are presented and compared. Afterwards the adaptive
extremum seeking scheme is applied to some of the control structures and results are obtained

and examined.

4.1 Tuning of different control schemes

4.1.1 Multiloop PI tuning

As mentioned in the previous chapter a series of PI controllers were removed form the
Aspen plus dynamics file in order to obtain a uniform dynamic platform for all simulations.
The controllers in both Simulink and Aspen plus dynamics were tuned using the Internal
Model Control (IMC) interpretation of PID (lambda tuning). The input output relations
were approximated by a first order plus dead time model and the following formulas were

used for tuning :

Y;<S> _ kp 6—95

Gpi = =
! U(s) 7ps+1

(4.1)

The parameters of this model were used in the following equations to tune an ideal PI

controller :

T+ 2
ke = —— 2= 4.2
ky(0+ X) (42)

6
T =Ty + 3 (4.3)

The controllers obtained are continous so in order to implement them they were discreti-
zed using the Tustin method. Table 4.1 shows the discrete controller parameters obtained.
Controller i corresponds to the i input and output and the sampling interval for all is 0.1

seconds.



Table 4.1 Tuning of PI controllers

i | Flowsheet tag 3 Ti

1 PC-1 -3.39 (%,/bar) | 16.9(s)
2 TC-1 -0.0395(%/(°C) | 0.051(s)
3 TC-2 0.162(%/°C) | 0.223(s)
4 PC-4 -0.46 (%/bar) 0.148(s)
5 TC5 0.229 (Gj/hr/°C) | 1.35(s

6 PC6 ~8.33(%/bar) 3.39(s

7 TC-7 -2.46(%/°C) 0.051(s
8 PC-7 "8.29 (%/bar) | 0.051(s
9 TC-9 0.00176(Gj/hr/°C) | 0.355(s)
10 TC-10 1.82(Gj/hr/°C) | 5.68 (s)
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PI controllers with this tuning were implemented. The simulations were carried out for

two different cases, one where the controller rejects a 500Kg/s input feed step increase at

instant 20 seconds, and other for tracking the setpoints.

4.1.2 Centralized MPC tuning

A centralized MPC controller was designed in Chapter 3. This controller runs alongside
with a series of PI controllers tuned by the Ziegler-Nichols method. Tuning of the MPC

controller was done done using the linear model and fine-tuned using the actual plant later

on. The tuning matrices of this controller are as follows :

Qi

10 0 0
0 20 0
0 0 10
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0o 0 0 0 O
0O 0 0 0 0
0O 0 0 0 0
100 0 0 O
0 10 0 0 O
0O 0 10 0 O
0O 0 0 10 0
0 0 0 0 50
0O 0 0 0 0
0O 0 0 0 0

SO O O O O o o O

o O O O O o o o o

—_
e}
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0.1 0 o o0 o0 0 0 0 O
0 0.1 o o0 o0 0 0 0 O
o o0 01 0 O O O 0 0 O
o 0 o0 01 0 O O 0 0 O
R — o o0 o0 o0 01 O O O 0 O
o o0 o0 o0 o0 01 0 0 0 O
o o o0 o o o0 01 O 0 O
o o0 o0 o0 o0 0 0 01 0 O
o o0 o0 o0 o0 o0 0 0 01 O
o o o0 o o 0 0 0 0 05

These matrices are adjusted to the required size based on N, and NN, to be compatible with

Eq 3.8. The prediction horizon is 500 and the control horizon is set to 2.

Qi 0 - 0 R 0
0 Qi - 0 0 R
Q= ¢ L R= 1
0 0 - Qi nNpxnN 0 0 - R mNexmNe

4.1.3 Distributed and Decentralized MPC tuning

The DMPC designed in Chapter 3, also runs along with PI controllers tuned in Ziegler
Nichols. The subcontrollers were tuned using the the same weights of centralized MPC for

outputs. The output and input weight matrices are as follows :

10 0 O 10 0 10 0 5 0 0

i = 0 20 O ;o = 1 &3 = 1 &ag = 0 10 O
o Q2 ( 0 10) Q3 ( 0 10) Q4

0O 0 10 0O 0 10

0.1 0 0 01 0 01 0 0.1 O 0

Ry = 0 01 0 ; Roy = '  R3; = ' s Ry = 0 01 0
0 0.1 0 0.1

0 0 0.5 0 0 0.5

The prediction and control horizons are exactly the same as the centralized controller and
the number of iterations for DMPC in one sampling interval was determined by simulation

with the complete linear model.
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4.2 Comparison of controller performance

As a criteria to compare the results of our different controllers The Integral of Squared

Error (ISE) criterion was used.

t

ISE = / (s (£) — y(1))2dt (4.4)

Another criteria considered was the integral of the the centralized MPC objective function

as shown below :

t

/(yref(t) = y(1))" QYres (t) — y(t)) + Au(t)" RAu(t)dt (4.5)

0

As mentioned before all controllers were simulated in two main themes : disturbance rejection
and setpoint tracking. The following tables and Figures 4.1 and 4.2 show the results with

the chosen criteria :

Table 4.2 Results for Disturbance rejection

Criteria Multiloop PI | MPC cent | DMPC | Decent MPC
ISE(y) 3.401E-3 9.889E-5 | 7.805E-5 6.695E-5
ISE(ys) 1.801E-2 1.240E-3 9.570E-4 8.424E-4
ISE(ys) 2.484E-2 5.726E-3 | 3.894E-3 3.740E-3
ISE(y,) 5.102E-4 | 1.040BE-4 | 2.834E-6 | 4.932E-6
ISE(ys) 1.438E-3 2.422E-3 2.644E-4 2.507E-4
ISE(ys) 3415E3 | 1.033E4 | 3.252E5 | 1.441E4
ISE(y;) 8.154E-4 | 3.525E-4 | 8510E-4 | 5.989E-3
ISE(ys) 1.372E-4 1.016E-5 | 1.651E-4 1.783E-4
ISE(yy) 6.574E+1 2417E-4 | 9.911E-4 1.692E-3
ISE(y0) 4.522F-3 2.426B-5 | 6.353E-4 | 8.3210-4

STISE(y,) 6.580E+1 | 1.032E-2 | 7.872E-3 | 1.374E-2

Integral of MPC objective function | 6.582E+2 1.498E-1 | 1.062E-1 1.671E-1




Table 4.3 Results for Set point tracking
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ISE Multiloop PI | MPC cent DMPC Decent
ISE(y1) 7T138E+0 | 6.462E-1 | 7.556E-1 | 7.557E-1
ISE(ys) 6.811E+0 | 1.163E+0 | 2.636E-1 | 2.526E-1
ISE(yg) 1.114E+1 | 1.882E+0 | 5.842E-1 | 5.571E-1

ISE(ys) 8.387E-2 3.332E-1 | 6.746B-3 | 8.856E-3
ISE(ys) 4.265E4+0 | 4.494E+0 | 7.010E-1 | 5.434E-1
ISE(ys) 8.406 E+0 | 1.395E-1 | 4.359E-1 | &.116E-1
ISE(yr) 5162E+0 | 1.970E+0 | 4.574E+0 | 3.031E+1
ISE(ys) 5.884E-1 5.464E-2 | 5.868E-1 | 9.231E-1
ISE(yy) 8.616E+4 | 2.400E+0 | 8.072E+0 | 2.810E+0
ISE(y,0) A156E+1 | 3.970B-1 | 3.291E+0 | 6.791E+0

ST ISE(y:) 8.625E+5 | 1.348E+1 | 1.927E+1 | 6.905E+1
Integral of MPC objective function | 8.627E+5 1.801E+2 | 2.323E+2 | 7.534E+2

The results show that all predictive controllers have a much better performance compared
to the Multiloop PI controllers, mainly due the fact that a feedforward disturbance model is
easily integrated in these controllers. For setpoint tracking, the centralized MPC shows the
best performance and the DMPC has a performance very close to it. Also we see that adding
communication and an iterative nature to a decentralize MPC can improve its performance.
Table 4.5 shows the loss of precision for the controllers based on the performance for setpoint

tracking of centralized MPC using the following equation :

fjcdt — fJCMpcdt

4.6
[ Jempedt (4.6)

Table 4.4 Comparison of loss of precision for setpoint tracking

Controller Loss of precision
Multiloop PI 4789.7
Centralized MPC 0
DMPC 0.29
Decentralized MPC 3.18
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Both the numerical and graphical results show that PI controllers show a poor perfor-
mance compared to all MPC schemes, in both disturbance rejection and setpoint tracking.
Even in some cases the PI controllers become wind up at the constraints of the manipulated
variables, while the predictive controllers are not even close to the constraints. this can be
related to a couple of reasons. First the tuning of the PI controllers, which is not meant for
fast responses unlike the MPCs. Another reason is that our PI controllers have no antiwind
up strategy. Tests were also done with anti-windup PID tuned by Ziegler Nichols, but the
performance was still significantly poor compared to MPCs. At last PIDs do not consider the
interaction amongst process variables. This can be solved by adding a decoupler, but then,
the problem is that considering input constraints with decouplers is complicated.

Among the MPC controllers, the centralized scheme has the best performance, since it has
full control over all interactions, but it is also more costly and very risky in terms of main-
tenance. Distributed MPC has a performance insignificantly worse compared to centralized
MPC but it’s easier to implement and maintain. Decentralized MPC is better than multi
loop PI, but we have to consider that by adding communication and iteration to it we will
significantly improve its performance by replacing decentralization with distribution. In the
case of DMPC in a worst case scenario where communication fails we will still be able to

control the process with a Decentralized scheme.

4.3 Adaptive extremum seeking

Adaptive extremum seeking was applied to centralized and distributed MPC at different

frequency based on what was discussed in Chapter 3 with the following tuning :

Table 4.5 Tuning of adaptive extremum seeking parameters

Parameter Value
K 30
K, 10
K3 30

high pass filter frequency | 3 x 10~*

ax 0.005
as 0.05
as 0.005

where K is the gain and a; is the amplitude for each component. As mentioned before,

if the frequency of the setpoint on g, is chosen to be w, the frequency for y; and y;o will
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be 2.9053w and 2.5458w, respectively. Figure 4.3 shows the results of adaptive extremum
seeking with Centralized MPC for three different frequencies.



60

OdIN PZI[RIIU8D YHM SUIN99S WNUDIIXS dATjdepe Jo 9oURMLIOJSJ ¢'F 2In31]

(s)owny
005t 000t 00s€ 000€ 00s2 0002 005+ 000} 00S

005y 000% 00se 000€ 00S2 0002 00S+ 0004 005

00S¥ 0007 00S€ 000€ 0052 0002 005} 0004 005

S S I A
VAVAVAVAVAVAVAFAY

800~

90°0—

00—

200-

(2) 01dS

(D.) GdS

(Do) 2dS



61

As we can see, the best performance is achieved through a frequency of 0.02 Hz. At 0.01
Hz we do not reach smaller values and at 0.1 Hz we have a similar case. The reason can be
related to the fact that in order to have a good estimate of our gradient we need an optimum
frequency.
The same frequencies were applied to Distributed MPC. The results are shown in Figure 4.4.
For frequencies of 0.01 and 0.02 Hz we have identical results to centralized MPC, but for 0.1
Hz the objective function value oscillates around its initial value. This can be related to fact
that DMPC is not able to follow the setpoints generated for the 10?* output. This is shown
in Figure 4.5.
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Figure 4.5 Tracking performance of distributed MPC for setpoints generated by adaptive
extremum seeking

The trajectories of setpoints generated by adaptive extremum seeking have been plotted
in 3D (Figure 4.6). As we can see the behaviour of the system for the controllers is exactly
identical at 0.01 and 0.02 Hz, but as explainbed aboved, they perform differently at 0.1 Hz.
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Figure 4.6 Setpoint trajectories for a) CMPC at 0.01 Hz, b) DMPC at 0.01 Hz, ¢) CMPC at
0.02 Hz, d) DMPC at 0.02 Hz, e) CMPC at 0.1 Hz and f) DMPC at 0.1 Hz
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4.4 Summary of results

Four different plantwide control structures were presented. Centralized MPC and distri-
buted MPC were found to be better performing. Adaptive extremum seeking was applied to
these two controllers and it was found that for a proper frequency the two control structures

perform identically.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The general objective of this thesis was to apply adaptive extremum seeking to the Rectisol
process to improve its performance in the presence of measured and unmeasured disturbances
related to upstream gasification unit. To achieve this objective, three steps were defined, ob-
taining a dynamic model of Rectisol, finding a responsive regulatory control structure and
implementation of adaptive extremum seeking.

The Aspen Plus dynamic software was used to develop a dynamic model of Rectisol based on
information found in the literature. This information was based on steady state performance,
and the steady state behaviour was used to validate our model. The dynamic model was used
to evaluate our different control structures.

Four plantwide control structures were applied, multiloop PI, centralized MPC, distributed
MPC and decentralized MPC. The four control strategies were simulated using a combination
of Matlab, Simulink and Aspen Plus dynamic software. The results of our simulations were
compared for setpoint tracking and disturbance rejection using measures of perofrmance,
such as ISE, and showed that the centralized and distributed MPC controllers are able to
attenuate measured disturbances and follow desired setpoints with a performance superior
to that of decentralized MPC and Multiloop PI.

To fulfill our main objective, a multivariable static mapping adaptive extremum seeking
control scheme was developed. The objective function to be minimized was a quadratic sum
of the difference of the three gas products from their standards. This scheme was applied
to centralized and distributed MPC and were simulated. The results showed that at a pro-
per dither signal frequency both controllers showed identical performance and capability to
minimize our objective function. This also means that if ever any unmodelled or unmea-
surable perturbation affects the plant, adaptive extremum seeking will correct its assigned
setpoints to keep the product quality as close as possible to their desired standards. At last
we have been able to achieve our objective and also take advantage of Distributed MPC and

to overcome the limitations of centralized MPC.
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5.2 Future works and recommendations

To continue the work done in this thesis the following unexplored topics can be studied :

1. Validation of dynamic model for Rectisol : The dynamic model of Rectisol can be vali-
dated by using industrial data, to make sure that it represents the dynamic behaviour

as closely as possible .

2. Improvement of Distributed MPC : Our Distributed MPC structure is of non coopera-
tive nature. It is recommended to develop and evaluate a cooperative DMPC structure.
Also the distribution parameters here were chosen in a manner that guarantees per-
formance without considering calculation time. It is recommended to optimize these

parameters with respect to computation time.

3. Improvement of the integration of Simulink and Aspen dynamics for cosimulation :
The main problem with the interface provided by AspenTech is the limitation to 32
bit operating systems, leading to the inability of performing very long simulations. It
is recommended to find a solution to this problem by creating an interface for 64 bit

operating systems.

4. Implementation of the suggested control and optimization configuration on a real plant.
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APPENDIX A

Distributed MPC matlab code

function dunew = DQDMC_mf (dxhat,yref,dd,uold,ybar)

%2/26/2013 9:09 AM
Np=500;

dunew=zeros(10,1);

yrefl=yref (1:3);
yref2=yref (4:5);
yref3=yref (6:7);
yrefd=yref (8:10);

dxhatl=dxhat(1:12);
dxhat2=dxhat (13:19);
dxhat3=dxhat (20:26) ;
dxhat4=dxhat (27:36) ;

uoldi=uold(1:3);
uold2=uold(4:5);
uold3=uo0ld(6:7);
uold4=u0ld(8:10);

persistent dunewk
if isempty(dunewk)
dunewk=zeros(10,2);

end

dd=[dunewk; [dd(11) dd(11)]17;

dd1=dd(4:11,:);

dd1=[dd1(:,1); dd1(:,2)];
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dd2=[dd(1:3,:);dd(6:11,:)];dd2=[dd2(:,1); dd2(:,2)];
dd3=[dd(1:5,:);dd(8:11,:)];dd3=[dd3(:,1); dd3(:,2)];
dd4=[dd(1:7,:);dd(11,:)];dd4=[dd4(:,1); dd4(:,2)];

i=0;

ybarl=ybar(1:3);
ybar2=ybar (4:5) ;
ybar3=ybar(6:7) ;
ybar4=ybar (8:10) ;

%i1=01;
ddkong=zeros(10,1);

for j=1:10

dunewlk=dqgmc1 (dxhatl,yrefl,ddl,uo0ldl,ybarl);

dunew2k=dgmc2 (dxhat2,yref2,dd2,u0ld2,ybar2) ;
dunew3k=dgmc3(dxhat3,yref3,dd3,u0ld3,ybar3) ;

dunewdk=dqmc4 (dxhat4,yref4,dd4,uo0ld4,ybar4) ;
dunewk=[[dunewlk(1:3); dunew2k(1:2); dunew3k(1:2); dunewdk(1:3)]
[dunewlk(4:6) dunew2k(3:4); dunew3k(3:4); dunewdk(4:6)]];
dd=[dunewk; [dd(11) dd(11)]1];

dd1=dd(4:11,:);dd1=[dd1(:,1); dd1(:,2)];
dd2=[dd(1:3,:);dd(6:11,:)];dd2=[dd2(:,1); dd2(:,2)];
dd3=[dd(1:5,:);dd(8:11,:)];dd3=[dd3(:,1); dd3(:,2)];
dd4=[dd(1:7,:);dd(11,:)];dd4=[dd4(:,1); dd4(:,2)];
j2=norm(abs (dunewk(:,1)-ddkong)) ;

ddkong=dunewk (:,1);

i=i+1;
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end

dunew=ddkong;

end

function dunewl = dgmcl(dxhat,yref,dd,uold,ybar)

Num_y=3;

Np=500;
U=[50.3566685765720;100;77.5900919718307;22.1166376165571;1.89321771047563; . ..
0.574850448861118;44.7494717139745;-15.9088120280391;18.7553295034155;]’;
Nc=2;

Num_u=3;

rs=rs_gen(yref ,Np,Num_y) ;

dxhataug=[dxhat ;ybar] ;

% eml.extrinsic(’quadprog’)

% dunew=double(zeros(18,1));

Totolotlototolootolhconstraintshhsheletss

dUmax=[100 75 100];

dUmin=-dUmax;

Umax=[50 50 50];

Umin=[-50 -25 -50];

Dototototimod e %% htotetols

Amt = [0.122953849808169,-0.946070996513701,-0.109278736566159, .. .]

Bmt [-29.4327374071590,-0.0519540422363396,-0.000238618690118114,...];
Cmt [0.0222915493767768,-0.0457691502076677,0.205340068384083, ,...];
Dm=[0,0,0,0,0,0,0,0,0,0,0,...];

%Dm=zeros(9,10) ;

Am=Amt (1:12,1:12);

Gm=Bmt (1:12,4:11);

Bm=Bmt (1:12,1:3);

Cm=Cmt(1:3,1:12);

Yottt ololololololololole Control calculationkihihhhhhle
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persistent F phi wy wdu kessi

if isempty(F)||isempty(phi)||isempty(wy)||isempty(wdu) ||isempty(kessi)
[A,B,C,Gl=dmcaug(Am,Bm,Cm,Gm,Num_y) ;

F=F_gen(A,C,Np);

wyl=[1 2 1];

wdul=0.1x[1 1 1]; [wy wdul= w_gen(wyl,wdul,Np,Num_u,Nc,Num_y);
phi=phi_gen(A,B,C,Np,Nc);

kessi=phi_gen(A,G,C,Np,Nc);

end

[H,f,a,b]=qdmcform(F,phi,wy,wdu,dUmin,dUmax,Unin,Umax,uold,rs,dxhataug,dd,kessi);
dunewa=QDMC(H,f,a,b) ;
dunewl=dunewa;

end

function dunew2 = dgmc2(dxhat,yref,dd,uold,ybar)

Np=500;

Num_y=2;
U=[50.3566685765720;100;77.5900919718307;22.1166376165571;1.89321771047563; . ..
0.574850448861118;44.7494717139745;-15.9088120280391;18.7553295034155;];
Nc=2;

Num_u=2;

rs=rs_gen(yref ,Np,Num_y) ;

dxhataug=[dxhat ;ybar];

% eml.extrinsic(’quadprog’)

% dunew=double(zeros(18,1));

T lololo o totohconstraintshthhlhlels

dUmax=[100 10];

dUmin=-dUmax;

Umax=[ 50 Inf ];

Umin=[ -50 -Inf ];

Totototofomode 1%, %% httste

Amt [0.122953849808169,-0.946070996513701,-0.109278736566159, .. .]

Bmt [-29.4327374071590,-0.0519540422363396,-0.000238618690118114,...];
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Cmt = [0.0222915493767768,-0.0457691502076677,0.205340068384083, ,...1;
Dm=[0,0,0,0,0,0,0,0,0,0,0,...1;

%Dm=zeros(9,10) ;

Am=Amt (13:19,13:19);

Gm=Bmt (13:19,[1:3 6:11]);

Bm=Bmt (13:19,4:5) ;

Cm=Cmt (4:5,13:19) ;

T It ottt tohihedes Control calculation%lhhhhlel

persistent F phi wy wdu kessi

if isempty(F)||isempty(phi)||isempty(wy) ||isempty(wdu) ||isempty(kessi)
[A,B,C,Gl=dmcaug(Am,Bm,Cm,Gm,Num_y) ;

F=F_gen(A,C,Np);

wyl=[1 1];

wdul=0.1x[1 1]; [wy wdul= w_gen(wyl,wdul,Np,Num_u,Nc,Num_y);
phi=phi_gen(A,B,C,Np,Nc);

kessi=phi_gen(A,G,C,Np,Nc);

end

[H,f,a,bl=qdmcform(F,phi,wy,wdu,dUmin,dUmax,Unin,Umax,uo0ld,rs,dxhataug,dd,kessi);
dunewa=QDMC(H,f,a,b);
dunew2=dunewa;

end

function dunew3=dqmc3(dxhat,yref,dd,uold,ybar)

Np=500;

Num_y=2;
U=[50.3566685765720;100;77.5900919718307;22.1166376165571;1.89321771047563; . ..
0.574850448861118;44.7494717139745;-15.9088120280391;18.7553295034155;] ’;
Nc=2;

Num_u=2;

rs=rs_gen(yref ,Np,Num_y) ;

dxhataug=[dxhat ;ybar];

% eml.extrinsic(’quadprog’)
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% dunew=double(zeros(18,1));

Tolololotoolotohtoconstraintsheshless s

dUmax=[ 100 100 1];

dUmin=-dUmax;

Umax=[ 50 50 ];

Umin=[ -50 -50 ];

Totolotofomode 1% % httste

Amt = [0.122953849808169,-0.946070996513701,-0.109278736566159, .. .]
Bmt [-29.4327374071590,-0.0519540422363396,-0.000238618690118114,...];
Cmt [0.0222915493767768,-0.0457691502076677,0.205340068384083, ...];
bm=[0,0,0,0,0,0,0,0,0,0,0,...];

%Dm=zeros (9,10);

Am=Amt (20:26,20:26) ;

Gm=Bmt (20:26, [1:5 8:11]);

Bm=Bmt (20:26,6:7) ;

Cm=Cmt (6:7,20:26) ;

hohlolololslolololotilotote Control calculationihlhlelhlle
persistent F phi wy wdu kessi

if isempty(F)||isempty(phi)||isempty(wy)||isempty(wdu) ||isempty (kessi)
[A,B,C,G]=dmcaug(Am,Bm,Cm,Gm,Num_y) ;

F=F_gen(A,C,Np);

wyl=[1 1];

wdul=0.1x[1 1 ]; [wy wdul= w_gen(wyl,wdul,Np,Num_u,Nc,Num_y);
phi=phi_gen(A,B,C,Np,Nc);

kessi=phi_gen(A,G,C,Np,Nc);

end
[H,f,a,bl=qdmcform(F,phi,wy,wdu,dUmin,dUmax,Unin,Umax,uo0ld,rs,dxhataug,dd,kessi);
dunewa=QDMC(H,f,a,b);

dunew3=dunewa;

end

function dunew4=dqmc4(dxhat,yref,dd,uold,ybar)
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Np=500;

Num_y=3;
U=[50.3566685765720;100;77.5900919718307;22.1166376165571;1.89321771047563; . ..
0.574850448861118;44.7494717139745;-15.9088120280391;18.7553295034155;];
Nc=2;

Num_u=3;

rs=rs_gen(yref ,Np,Num_y) ;

dxhataug=[dxhat ;ybar] ;

% eml.extrinsic(’quadprog’)

% dunew=double(zeros(18,1));

T lolololhlotehconstraintshhhhlhlels

dUmax=[100 50 50];

dUmin=-dUmax;

Umax=[50 Inf Inf];

Umin=[-50 -Inf -Inf];

Dot totofomode 1%, %% htatets

Amt = [0.122953849808169,-0.946070996513701,-0.109278736566159, .. .]

Bmt [-29.4327374071590,-0.0519540422363396,-0.000238618690118114,...];
Cmt [0.0222915493767768,-0.0457691502076677,0.205340068384083, .. .];
Dm=[0,0,0,0,0,0,0,0,0,0,0,...];

%Dm=zeros(9,10);

Am=Amt (27:36,27:36) ;

Gm=Bmt (27:36, [1:7 11]);

Bm=Bmt (27:36,8:10) ;

Cm=Cmt (8:10,27:36) ;

Db lotolo oo loto ol folots Control calculationhlklelhhlhle

persistent F phi wy wdu kessi

if isempty(F)||isempty(phi) | |isempty(wy) ||isempty(wdu) | |isempty (kessi)
[A,B,C,Gl=dmcaug(Am,Bm,Cm,Gm,Num_y) ;

F=F_gen(A,C,Np);

wyl=[5 1 1];

wdul=0.1x[1 1 5]; [wy wdul= w_gen(wyl,wdul,Np,Num_u,Nc,Num_y) ;
phi=phi_gen(A,B,C,Np,Nc);

kessi=phi_gen(A,G,C,Np,Nc);
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end

[H,f,a,bl=qdmcform(F,phi,wy,wdu,dUmin,dUmax,Unin,Umax,uold,rs,dxhataug,dd,kessi);
dunewa=QDMC(H,f,a,b);
dunew4=dunewa;

end

Tolo oo oo oo folee s S1 %%t oo oo oo oo o
function kessi=kessi_gen(A,C,G,Np)
[n,m]=size(C*G);
kessi=zeros(Np/10*n,m) ;
for i=1:10:Np
kessi((i-1)/10*n+1:(i-1)/10*n+n,1:m)=C*xA~ (i-1)*G;
end
end
oo To oo o To o oo o ToTo JoTY To o o Jo o Jo o o Jo o
function [wy wdul=w_gen(A,B,Np,Num_u,Nc,Num_y)
wy=zeros (Num_y*Np/10,Num_y*Np/10) ;
for i=1:10:Np
for j=1:Num_y
wy ((i-1)/10*Num_y+j, (1-1) /10*Num_y+3)=A(j) ;
end
end
wdu=diag([B B]);
end
TotoTolo oo o foTo o oo F _ g€ Yoo Voo To Vo o Jo Vo oo
function F=F_gen(A,C,Np)
[n,m]=size(C*A);
F=zeros(n*Np/10,m) ;
for i=1:10:Np
F((i-1)/10*n+1:(i-1)/10*n+n,:)=C*A"1i;
end
end
ToTolotolo foTo ot o oo Toto oo to fo e P L _ gDV o foTo oo o foTo foo o oo o
function phi=phi_gen(A,B,C,Np,Nc)
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[n,m]=size(C*B);

phi=zeros (Np/10*n,Nc*m) ;

for i=1:10:Np
phi((i-1)/10*n+1:(i-1)/10*n+n,1:m)=C*A~ (i-1)*B;

end

for j=2:Nc
phi(:, (j-1)*m+1: (j-1)*m+m)=[zeros((j-1)*n,m); phi(l:(Np/10-(j-1))*n,1:m)];

end

end

Totololotolotofolotofodemodel Augmentationslelstelssetststolale
function [A,B,C,G]l=dmcaug(Am,Bm,Cm,Gm,Num_y)
ni=length (Am) ;

A=[Am zeros(nl,Num_y); Cm*Am eye(Num_y)];
B=[Bm; Cm*Bm] ;

C=[zeros(Num_y,n1) eye(Num_y)];

G=[Gm; Cm*Gm];

end
JoToTo oo fo To RS Yo To o fo o o Jo o o
function rs=rs_gen(yref,Np,Num_y)
rs=zeros (Num_y*Np/10,1) ;
for i=1:10:Np
rs ((i-1)/10*%Num_y+1:(i-1)/10*Num_y+Num_y)=yref;
end
end
ol ToloTo o ToTooTo o ToToo oo JoTo o o hQuadratic
TooTo oo o To o To o o To o fo o o Joo foJo e F OTMUL L 10N %o oo o oo Jo o o oo Jo o o oo o To o Jo o o Jo o To o o Jo o To o oo
function [H,f,a,bl=qdmcform(F,phi,wy,wdu,dUmin,dUmax,Unin,Umax,uold,rs,xhat,dd,kesi)
Num_u=length(uold);

H=2% (phi’*wy*phi+wdu) ;
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f=-2.%(phi’*wy*(rs-Fxxhat-kesix*dd)) ;

a=[eye(Num_u) zeros(Num_u,Num_u) ;zeros(Num_u,Num_u) eye(Num_u); -eye(Num_u)...
zeros (Num_u,Num_u) ;zeros (Num_u,Num_u) -eye(Num_u);...

eye(Num_u) zeros(Num_u,Num_u);eye(Num_u) eye(Num_u,Num_u);...

-eye(Num_u) zeros(Num_u,Num_u);-eye(Num_u) -eye(Num_u,Num_u) ];

b=[dUmax’ ;dUmax’; -dUmin’;-dUmin’; Umax’-uold;Umax’-uold;...

-Umin’+uold; -Umin’+uold];

end

Db hhhAOptimization ksl

function dunewl1=QDMC(H,f,a,b)

options=optimset (’Algorithm’,’active-set’,’Display’,’off’);
[dunewl,J]= quadprog(H,f,a,b,[],[],[],[],[],options);

end



