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RÉSUMÉ 

Les plates-formes d'aujourd'hui, telles que les simulateurs de missions (FMS), présentent un 

niveau sans précédent d'intégration de systèmes matériels et logiciels. Dans ce contexte, les 

intégrateurs de systèmes sont confrontés à une hétérogénéité d'interfaces système qui doivent être 

alignées et reliées ensemble afin de fournir les capacités prévues d'une plate-forme. Le seul 

aspect des échanges de données système est problématique allant de données désalignées jusqu'à 

des environnements multi-architecturaux utilisant différents types de protocoles de 

communication. Les intégrateurs sont également confrontés à des défis similaires lors de 

l'interaction de multiples plates-formes ensemble à travers des environnements de simulation 

distribuée où chaque plate-forme peut être considérée comme un système avec sa propre interface 

distincte. D'autre part, permettre la réutilisation de système à travers diverses plates-formes en 

support aux gammes de produits est un défi pour les fournisseurs de systèmes, car ils doivent 

adapter leurs interfaces système à des plates-formes hétérogènes faisant donc face aux mêmes 

difficultés que les intégrateurs. En outre, l'introduction de modifications aux interfaces système 

afin de répondre aux besoins tardifs d'affaires, ou à des contraintes de performance imprévues, 

par exemple, est d'autant plus ardue que leurs impacts sont difficiles à prévoir et que leurs effets 

sont souvent décelés tard dans le processus d'intégration. 

En conséquence, cette thèse aborde la nécessité de simplifier l'intégration et l'interopérabilité 

système afin de réduire leurs coûts associés et d'accroître leur efficacité ainsi que leur efficience. 

Elle est destinée à apporter de nouvelles avancées dans les domaines de l'intégration système et 

de l'interopérabilité système. Notamment, en établissant une taxonomie commune, et en 

augmentant la compréhension des interfaces système, des divers aspects impactant les échanges 

de données système, des considérations des environnements multi-architecturaux, ainsi que des 

facteurs permettant la gouvernance d'interface ainsi que de la réutilisation système. À cette fin, 

deux objectifs de recherche ont été formulés. 

Le premier objectif vise à définir un langage utilisé pour décrire les interfaces système et les 

divers aspects entourant leurs échanges de données. Par conséquent, trois aspects principaux sont 

étudiés relatifs aux interfaces système: les éléments de langage pertinents utilisés pour les décrire, 

la modélisation des interfaces système avec ce langage, et la capture des considérations multi-

architecturales. 



vi 

Le second objectif vise à définir une méthode pour automatiser le logiciel responsable des 

échanges de données système comme moyen pour simplifier les tâches impliquées dans 

l'intégration et l'interopérabilité système. Par conséquent, les compilateurs de modèles et les 

techniques de génération de code sont étudiés. 

La démonstration de ces objectifs apporte de nouvelles avancées dans l'état de l'art de 

l'intégration système et de l'interopérabilité système. Notamment, ceci culmine en un nouveau 

langage de description d'interface système, SIDL, utilisé pour capturer les interfaces système et 

les divers aspects entourant leurs échanges de données, ainsi qu'en une nouvelle méthode pour 

automatiser le logiciel d'échange de données au niveau système à partir des interfaces systèmes 

capturées dans ce langage. 

L'avènement de SIDL contribue également une nouvelle taxonomie fournissant une perspective 

complète sur l'interopérabilité système ainsi qu'en un langage commun qui peut être partagé entre 

les parties prenantes, tels que les intégrateurs, les fournisseurs et les experts système. Étant 

agnostique aux architectures, SIDL fournit un seul point de vue architectural supervisant toutes 

les interfaces système et capture les considérations multi-architecturales ce qui n'a jamais été 

réalisé avant ce travail. D'autant plus, un générateur de code SIDL est introduit présentant la 

nouveauté de générer le logiciel d'échange de données à partir d'un bassin plus riche 

d'information, notamment à partir des relations système de haut niveau allant jusqu'au bas niveau 

couvrant les détails protocolaires et d'encodage. En raison des considérations multi-

architecturales qui sont capturées nativement dans SIDL, ceci permet au générateur de code d'être 

agnostique aux architectures le rendant réutilisable dans d'autres contextes. 

Cette thèse ouvre également la voie à de futures recherches bâtissant sur ses contributions. Elle 

propose même une vision pour le développement d'applications logicielles avec comme objectif 

final de repousser encore plus loin les limites de la simplification et de l'automatisation des tâches 

liées à l'intégration et à l'interopérabilité système. 
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ABSTRACT 

Today’s platforms, such as full mission simulators (FMSs), exhibit an unprecedented level of 

hardware and software system integration. In this context, system integrators face heterogeneous 

system interfaces which need to be aligned and interconnected together in order to deliver a 

platform's intended capabilities. The sole aspect of the data systems exchange is problematic 

ranging from data misalignment up to multi-architecture environments over varying kinds of 

communication protocols. Similar challenges are also faced by integrators when interoperating 

multiple platforms together through distributed simulation environments where each platform can 

be seen as a system with its own distinct interface. On the other hand, enabling system reuse 

across multiple platforms for product line support is challenging for system suppliers, as they 

need to adapt system interfaces to heterogeneous platforms therefore facing similar challenges as 

integrators. Furthermore, the introduction of system interface changes in order to respond to late 

business needs, or unforeseen performance constraints for instance, is even more arduous as 

impacts are challenging to predict and their effect are often found late into the integration 

process. 

Consequently, this thesis tackles the need to simplify system integration and interoperability in 

order to reduce their associated costs and increase their effectiveness along with their efficiency. 

It is meant to bring new advances in the fields of system integration and system interoperability. 

Notably, by establishing a common taxonomy, and by increasing the understanding of system 

interfaces, the various aspects impacting system data exchanges, multi-architecture environment 

considerations, and the factors enabling interface governance as well as system reuse. To this 

end, two research objectives have been formulated. 

The first objective aims at defining a language used to describe system interfaces and the various 

aspects surrounding their data exchanges. Therefore, three key aspects are studied relating to 

system interfaces: the relevant language elements used to describe them, modeling system 

interfaces with the language, and capturing multi-architecture considerations. 

The second objective aims at defining a method to automate the software responsible for system 

data exchanges as a way of simplifying the tasks involved in system integration and 

interoperability. Therefore, model compilers and code generation techniques are studied. 
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The demonstration of these objectives brings new advances in the state of the art of system 

integration and system interoperability. Notably, this culminates in a novel system interface 

description language, SIDL, used to capture system interfaces and the various aspects 

surrounding their data exchanges, as well as a new method for automating the system-level data-

interchange software from system interfaces captured in this language. 

The advent of SIDL also contributes a new taxonomy providing a comprehensive perspective 

over system interoperability as well as a common language which can be shared amongst 

stakeholders, such as integrators, suppliers, and system experts. Being architecture-agnostic, 

SIDL provides a single architectural viewpoint overseeing all system interfaces and capturing 

multi-architecture considerations which was never achieved prior to this work. Furthermore, a 

SIDL code generator is introduced which has the novelty of generating the data-interchange 

software from a richer pool of information, notably from the high-level system relationships 

down to the low-level protocol and encoding details. Because multi-architecture considerations 

are captured natively in SIDL, this enables the code generator to be architecture-agnostic making 

it reusable in other contexts. 

This thesis also paves the way for future research building upon its contributions. It even 

proposes a vision for software application development with the end goal being to push further 

the boundaries of simplifying and automating the tasks involved in system integration and 

interoperability. 
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INTRODUCTION AND BACKGROUND
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INTRODUCTION 

Background - Better System Interoperability and Reuse 

A full mission simulator (FMS), as illustrated in Figure 1, replicates an existing aircraft and its 

environment in order to provide training to aircraft crews. This requires the interaction of several 

hardware and software systems examples of which include: systems simulating aircraft flight and 

propulsion; systems replicating the environment surrounding the aircraft such as weather, motion, 

and air traffic; systems dealing with cockpit displays and pilot inputs; and systems supporting the 

training lessons providing instructor feedback and control. Moreover, these systems need to 

exchange data with each other, for instance, in order to replicate the end functions of the aircraft 

to the aircrew. In addition, multiple FMSs can be joined together to simulate air traffic or to 

perform joint missions involving multiple aircrews training together. 

 

Figure 1: FMS Hardware and Software Systems 

Today’s platforms, such as full mission simulators (FMSs), exhibit an unprecedented level of 

hardware and software system integration. Moreover, they typically integrate systems from 

multiple parties. Some of the integrated systems are even the same hardware boxes as the ones 

found on the real devices they replicate, an aircraft's cockpit display system being such an 

example in the case of a FMS. Furthermore, networking platforms together usually involves the 

interaction of disparate devices spanning across multiple integration sites. This results in a 

heterogeneous set of system interfaces which need to be interconnected together in order to 

deliver the platform's intended capabilities, training being an example for a FMS. The sole aspect 
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of the data exchanges is problematic ranging from data misalignment up to multi-architecture 

environments over varying kinds of communication protocols [1,2]. In this context, enabling 

system reuse across multiple platforms for product line support becomes even more challenging. 

Therefore, this thesis contributes to the simplification of the integration of heterogeneous systems 

on platforms, such as FMSs, with the end goal being more cost-effective and efficient 

development, along with integration, of systems exhibiting better product line support. 

Contributions - Automating System-Level Data-Interchange Software 

The intent of this thesis is to facilitate system integration and system interoperability by 

automating the software required to connect systems together and to enable their interaction. To 

this end, this thesis proposes means to formally describe system interfaces from which the 

required software artifacts realizing the data exchanges can be derived and potentially be fully 

automated. Moreover, this thesis focuses on multi-architecture environments in order to facilitate 

the reuse of systems across platforms. 

This is achieved with the System Interface Description Language (SIDL) which focuses on the 

data systems exchange and on the various aspects surrounding them. The primary focus of SIDL 

is the data systems exchange together. With system interfaces described in a formal language, it 

becomes possible to automate some of the tasks involved in achieving data interoperability, for 

instance, generating the software which deals with data serialization and protocol details, or 

which adapts a system interface to a prescribed unit of measurement (e.g., meters instead of feet). 

Furthermore, having explicit system interface descriptions simplifies their validation, evolution 

and governance. That is because the proposed language used to describe them is a domain-

specific language (DSL) thus boasts the vocabulary richness and expressiveness of a dedicated 

language describing system interfaces and their multiple facets. 

System Interoperability Facets 

SIDL is an architecture description language (ADL) as defined by [3] which is the ISO/IEC/IEEE 

International Standard for "Systems and software engineering — Architecture description". As 

such, SIDL is used to produce architecture description artifacts which formally capture the facets, 

or viewpoints, surrounding system interoperability. 
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Figure 2: System Interoperability Facets 

Conceptually, system interoperability revolves around four distinct facets as illustrated in Figure 

2: the system's Interface, the Connection of the interface to data, the Data being exchanged 

between systems, and the data's Transport (e.g., protocol, middleware) from system to system. 

As an example, consider a computer with a USB keyboard as depicted in Figure 3. Both system 

Interfaces, computer and keyboard, expose a USB port where the former inputs keyboard Data 

while the later outputs it. It is the Connection of each port together with a USB cable that enables 

the concrete Transport of the data from the keyboard to the computer. 

 

Figure 3: System Interoperability Facets Example 
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This thesis introduces the system interoperability facets as the core foundation used to partition 

and structure the problem domain as well as the proposed solution. The author selected this 

taxonomy, or organization, because each facet encapsulates a distinct interoperability area. This 

separation of concerns facilitates the understanding of this thesis and allows for a modular 

approach to system interoperability. Figure 2 illustrates these facets and highlights the scope of 

this thesis positioning SIDL accordingly. 

Thesis Structure 

This section introduced the subject of this thesis along with an overview of its contributions. The 

rest of the thesis is organized into three main parts. The first part provides the background 

information relating to system interoperability. It elaborates a current state of the art of the actual 

problems and solutions surrounding system interoperability covering its various aspects. It 

provides the rationale for a dedicated language aimed at describing system interfaces. Then 

follows the problem statement this thesis tries to address along with the research questions and 

objectives. The general approach consisting of generating software artifacts from formal 

descriptions of system interfaces is presented. The second part focuses on the methodology and 

the results obtained. It covers the System Interface Description Language along with examples 

using it. It also details test cases that demonstrate how the proposed methodology can enable 

better system interoperability and reuse. Finally, the third part presents a general discussion 

regarding the proposed methodology and its improvements over the current state of the art. It also 

concludes this thesis with a summary of the contributions made and points to potential ways 

forward that could improve upon this research. Following are the details regarding each part: 

Part I - Introduction and Background 

 Introduction: This is the introductory chapter of this thesis. It provides the background 

information required to understand this thesis. It also provides an overview of the 

contributions of this work. 

 Chapter 1: This chapter presents an in-depth literature review covering both the problem 

domain and the existing solutions highlighting areas of improvement. 
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 Chapter 2: This chapter presents the general methodology covering problem statement, 

the research questions, as well as the research objectives that this thesis proposes to 

address. The general approach is also presented. 

Part II - Methodology and Results 

 Chapter 3: The System Interface Description Language (SIDL) elements are presented in 

this chapter. Each language element is described according to its relationship to the 

system interoperability facet that it relates to. Semantic rules are also presented covering 

the expected behavior of SIDL compilers. The expected usage of SIDL descriptions is 

detailed in the context of automating the system-level data-interchange software. 

 Chapter 4: This chapter focuses on the experimental implementation used to create and 

validate SIDL. It covers the elaborated SIDL language, compiler, and code generator. 

 Chapter 5: This chapter presents the experimental results of using SIDL to address 

specific test cases. Each test case is a distributed software application involving the 

interoperability of test systems. They are detailed with a particular regard over their data-

interchange software which is generated from SIDL descriptions. It also covers the 

experiences of SMEs using SIDL in the development of the test systems. 

Part III - Conclusions 

 Chapter 6: This chapter presents a general discussion regarding the advances made by this 

thesis focusing on their implications and limitations. 

 Conclusion: This is the concluding chapter of this thesis. It summarizes the key 

contributions made by this thesis and presents potential opportunities for future work. 
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Chapter 1 LITERATURE REVIEW 

 

The delivery of capabilities over a specified platform often requires the integration of 

heterogeneous systems by an original equipment manufacturer (OEM). Moreover, from the 

perspective of an equipment supplier, the same equipment product line needs to deal with 

multiple integration platforms. In this context, this chapter focuses on understanding the span of 

the possible system integration issues related to data exchanges, as well as the issues impeding 

reuse and interoperability. This is achieved through an in-depth literature review covering both 

the problem domain and the existing solutions. 

Moreover, the review focuses on two system integration perspectives: distributed simulations and 

platforms. The former perspective looks at the issues related to the integration of systems within 

distributed simulations such as training devices interacting together within the same training 

session. The latter perspective looks at the issues related to the integration of systems on a 

platform, for instance, the integration of avionics systems on a training device. From this 

perspective, the platform can also be seen as a system of systems. 

The review also relates to the system interoperability facets which are illustrated in Figure 2. 

These include the system's Interface, the Connection of the interface to data, the Data being 

exchanged between systems, and the data's Transport (e.g., protocol, middleware) from system to 

system. These facets are used to structure the review since system interoperability conceptually 

revolves around them. 

1.1 From Simulation to Distributed Simulations 

Technology restricted to the domain of research and development, simulation is seen as the tool 

to model a platform and the environment in which it operates in the early 1970s [4]. During that 

period, advanced simulators have been successfully used in the design and engineering of new 

systems. It is with the improvement of simulators that the training community sees a marked 

interest in simulation as simulators are tailored to train civilian and military pilots. Unfortunately, 

[4] reports that this new type of training focuses only on the acquisition of skills to operate the 

simulated vehicle. The complexity required in training involving several aircraft at the same time 



8 

is so great that this type of training is only done on real planes. [4] explains that it was only 

during the mid-1970s that speculation began on the feasibility of distributed interactive 

simulations while the benefits of simulation began to be understood. 

1.1.1 Simulator Network 

In the early 1980s, it is generally recognized that the construction of a low-cost global networked 

military training system is virtually impossible [5]. It is a paper of Captain J. A. Thorpe, 

according to [5], which changes this by stating that it is not at the level of teaching techniques or 

at increased fidelity simulators to look out; Thorpe claims he should rather align training and 

actual combat systems to make them indistinguishable to minimize costs and maximize training. 

It is this statement which launches in 1983 an initiative dubbed SIMNET (Simulator Network) 

[4,5], to build a new generation of realistic distributed simulators at a cost one hundred times less 

than the existing generation that still does not allow the complex collective training involving 

several human-in-the-loop interactions. After more than 260 interconnected simulators across 11 

sites in the United States and Europe, the prototype of SIMNET is seen to be a success. [5] added 

that the first SIMNET results of interconnecting worldwide simulators in real-time demonstrate 

the importance of practicing collective joint military exercises on a large scale under the same 

network infrastructure. Moreover, [5] reports that SIMNET even brings a new dimension to 

equipment acquisition practices with the advent of distributed simulations. Not only does 

SIMNET change the training industry, but it also changes how the military interacts with the 

industry by allowing for ready-to-use commercial off-the-shelf (COTS) components. This 

triggers billion dollars investment by the U.S. military to expand its global network of simulators 

for collective training and development of combat in the following years. These investments, 

according to [5], reflect the need for the Army to reduce costs through further industry 

involvement. 

1.1.2 Distributed Interactive Simulation 

In 1990, SIMNET change its name to Distributed Interactive Simulation (DIS) to eliminate the 

abuse of usage of the acronym SIMNET to denote any simulator network rather than the 

SIMNET distributed simulation [4]. In 1996, DIS becomes an IEEE standard [6]. It is the need to 

interoperate disparate distributed simulations which forces the development of standards 
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according to [7]. But [7] adds the equally important aspect of standards development is the need 

to expand business opportunities for simulator component suppliers. The advent of standards 

allows vendors to integrate their various simulation solutions under a single distributed 

simulation opening the door to new markets and meet the needs of targeted cost reduction by the 

U.S. military during the initial initiative with SIMNET (which is also confirmed by [5]). 

1.1.3 High-Level Architecture 

In the mid-1990s, the current simulation technologies as DIS did not achieve the Modeling & 

Simulation (M&S) vision of the U.S. Department of Defense (DoD) as reported by [8]. This 

M&S vision states the use of common environments such that the operations and acquisition 

domains be able to meet their respective responsibilities. Moreover, this vision requires that these 

M&S environments be constructed from affordable, reusable components interoperating through 

an open architecture. This is what drives a 1995 effort involving the public, private, and academic 

sectors for the development of a new distributed simulation environment in line with DoD's 

initial M&S vision, which is the High-Level Architecture (HLA). 

According to [9], HLA is based on the premise that no simulation can satisfy all users and all 

possible uses, a premise which was not considered during the development of DIS. HLA is 

intended to be an interface specification rather than a specific implementation and wants to be 

programming language independent. After creating a reference implementation for HLA via its 

Defense Modeling and Simulation Office (DMSO), the DoD relies on third parties for providing 

commercial implementations and stops expanding its reference implementation always in pursuit 

of cost reductions. In 2000, HLA becomes an IEEE standard [10]. 

New traffic reduction techniques are required to enable the proper operation of large scale 

distributed simulations, as explained by [11], in order to meet their ever increasing network 

bandwidth needs. [9] explains that the services exposed by HLA's runtime infrastructure help 

manage the inherent complexity of communication protocols and thereby abstracting the use of 

the latest networking technologies. From [11,12,13,14], it is clear that HLA's exposed interface 

for managing data distribution drastically reduces the network traffic through the effective 

management of multicast groups. 
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From this point on, a number of other distributed simulation architectures emerged. These 

architectures are referenced accordingly throughout the following sections in the scope of system 

integration issues. The link from simulation to distributed simulation being established, we can 

now delve into distributed simulation interoperability. 

1.2 Distributed Simulation Interoperability 

A simulation, such as a flight simulation for example, is composed of objects that interact 

together. This is illustrated in Figure 1-1 where the objects represent aircrafts. Within this object 

model, objects interact with each other, among other things, through the information, or Data 

(Figure 2), they exchange. 

 

Figure 1-1: Non-Distributed Simulation 

The behavior, position, speed, and acceleration of the aircrafts in Figure 1-1 are examples of the 

Data enabling an aircraft pilot to train with other virtual aircrafts. To enable the training of 

several pilots in the same training session, different simulators have to be Connected (Figure 2) 

together. The interconnection of multiple simulations requires a network exposing a 

communications protocol which allows for the same interactions as when there is a single 

simulation. That is what Figure 1-2 illustrates by presenting a distributed simulation. 
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Figure 1-2: Distributed Simulation 

Excluding communication protocol, or Transport (Figure 2), peculiarities, a fundamental trait of 

distributed simulations is that only a subset of the available Data is required to enable the same 

interactions as when the simulation is not distributed. This minimum set of data is known as the 

Simulation Data Exchange Model (SDEM). As illustrated in Figure 1-2, this minimum set is 

composed of the aircraft's position, speed, and acceleration, the behavior not being required to 

enable distributed interactions. 

It is the need to interconnect different types of distributed simulations that gave rise to the 

concept of interoperability and appeared from the very beginning of SIMNET [7]. 

Interoperability, as defined by [15] is "the transfer of information that preserves the meaning and 

relationships of the information exchanged". Typically, according to [16], a gateway is used for 

distributed simulations interoperability such that the whole is seen as a single, unified, 

simulation. Figure 1-3 presents this interoperability agent which bridges between different 

distributed simulations. Here, the agent adapts the information of two simulation data exchange 

models, notably SDEM 1 and SDEM 2. 
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Figure 1-3: Achieving Interoperability through an Interoperability Agent 

Two solutions, as pointed out by [16], are typically used to interoperate distributed simulations: 

adapt the existing applications by modifying their source code, or develop a gateway, i.e., a 

software bridge, to fulfill the interoperability needs. The adaptation of existing applications may 

be required for technical reasons, such as latency or throughput constraints, or for necessary 

migrations as articulated by [13,14,17,18]. Except that it is not always possible either for 

technical reasons, such as accreditation or security considerations, or simply for economic 

reasons as demonstrated by [19,20,21]. That is why most interoperability problems are solved 

using a gateway which is even qualified as a "necessary evil" by [15]. 

Moreover, it is not always possible to preserve all the Data exchanged. That is the case for the 

object B' which is transformed into B" (Figure 1-3) since a subset of the information has no 

correspondence in Simulation 1. To preserve the integrity of the Data exchanged as much as 

possible, the interoperability logic has to face such eventuality which significantly increases its 

complexity. Interoperability agent development often requires case-by-case development because 

of the intrinsic characteristics of the distributed simulations to interoperate, and involves multi-

disciplinary teams. 

1.3 System Interoperability 

A distributed simulation is populated by systems which provide its content. For instance, a 

training device is such a system because it exposes a virtual representation of the aircraft it 
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replicates within the distributed simulation. This implies that the distributed simulation is the 

artifice which enables systems to interact together. Therefore, “distributed simulation 

interoperability” effectively refers to system interoperability. On a larger scale, a distributed 

simulation can be seen as a system itself in which case a gateway effectively allows systems, i.e., 

distributed simulations, to interoperate. That is why this thesis generalizes the concept of 

distributed simulation interoperability to system interoperability as emphasised by the Interface 

facet of Figure 2. Even though distributed simulations exhibit distinct integration issues, they are 

seen from the perspective of system interoperability throughout this thesis. 

1.4 Multi-Architecture Environments 

Modern system integration scenarios typically involve multi-architecture environments. That is, 

the systems being integrated together expose interfaces that are not aligned over a single 

architecture. Multi-architecture case studies are presented by [1] primarily in the context of Live 

Virtual Constructive (LVC) environments. These environments integrate various distributed 

simulation architectures such as DIS, HLA, and the Test and Training Enabling Architecture 

(TENA). In order to assist the development and the execution of such applications, the authors 

propose an overlay to the IEEE Distributed Simulation Engineering and Execution Process 

(DSEEP) [22]. This overlay targets specific activities that exhibit multi-architecture issues. The 

following sections dig into these issues. 

1.5 Meta-Model Incompatibilities 

Each architecture essentially has its own meta-model, or way of representing the data being 

exchanged. The data being exchanged forms a model which is captured by a meta-model. 

Possible meta-model incompatibilities are highlighted by [1] when the simulation data exchange 

model (SDEM) is being developed. The authors ideally propose that the SDEM be developed in 

an architecture-agnostic way. This would ensure that the semantic meanings of the data 

representation in each SDEM be preserved across each architecture. For the time being, they 

recommend the use of gateways due to the lack of an architecture neutral meta-model. 

Meta-model incompatibilities are the concern of the Data and Transport facets (Figure 2). 

Because the meta-model deals with how data is represented within an architecture, i.e., the 
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primitives used to model the data, how the data is serialized, the data's quality of service (QoS) 

such as reliability and latency budget. 

1.6 Data Incompatibilities 

Another multi-architecture issue listed by the authors of [1] is SDEM data incompatibilities. The 

data that systems exchange needs to have equivalent semantics across all architectures for 

interoperability to occur. A position concept, for instance, needs to be uniformly represented with 

the same units and frame of reference. The authors propose to either re-align (i.e. refactor) 

systems, which has the greatest cost, or use gateways to bridge the gaps. They even recommend 

architecture-agnostic gateways. 

Data incompatibilities are primarily the concern of the Data facet because they directly impact 

the data itself. But they also touch the system's Interface, since systems exchange Data through 

it, and the Connection as that is how the system's Interface is connected to the Data. Data 

incompatibilities arise when trying to connect an Interface that uses a different unit of 

measurement or frame of reference for instance. 

1.7 Lack of Architecture Neutral Meta-Model 

The lack of an architecture-agnostic way of expressing data exchange models slows the whole 

integration process as highlighted by [2]. It renders the mapping between training and 

experimental objectives, along with the data exchange models supporting them, more challenging 

and prevents further automation. The authors expose early work on an Architecture Neutral Data 

Exchange Model (ANDEM) trying to represent HLA, TENA, DIS and CTIA (Common Training 

Instrumentation Architecture) data models into a core one with specific architecture mappings. 

The authors also studied the Base Object Model (BOM) template specification [23]. They point 

out that BOM can be used to map high-level conceptual models to data exchange models. But as 

BOM is focused around HLA, this needs to be generalized. The follow-ups to this work are the 

SISO ANDEM Study Group and SISO BOM specification revision which aim at addressing 

these issues. 

Other early work in this field is presented by [24] which suggests a Neutral SDEM format along 

the lines of [25]. That is a SDEM whose format is not associated with any distributed simulation 
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architecture. This ongoing research primarily targets the simplification of gateways which 

translate between SDEMs. 

1.7.1 The FACE Technical Standard 

The Future Airborne Capability Environment (FACE) Technical Standard [26] proposes its own 

meta-model in the context of warfighting platform development. The general approach used by 

FACE, as highlighted by [27], is to develop a standard for a software computing environment 

designed to promote software product lines across different platforms therefore enabling 

increased reuse. Ultimately, the goal of FACE is to reduce development and integration costs and 

reduce time to field new avionics capabilities. Therefore, FACE proposes a data modeling 

methodology covering platform-independent and portable models down to platform-specific 

ones. These models are separated into Conceptual, Logical and Platform data models, 

respectively, each level refining the previous one with the latter being platform-specific. In this 

context, this thesis generalizes the notion of SDEM, which only focuses around simulations, to 

that of data exchange model (DEM). This allows platforms and distributed simulations to be seen 

from a common perspective. The FACE standard also deals with Interfaces through units of 

portability which package full services or mission-level capabilities to systems. 

The main problem with FACE’s meta-model is that it does not capture the details of each 

individual architecture realizing the models. That is because FACE standardizes a technology 

stack specifying details down to the Operating System (OS). Hence, the meta-model does not 

need to deal with multi-architecture issues from the perspective of a FACE-compliant platform. 

In fact, the meta-model only allows for data variability by providing data conversion and aliasing 

mechanisms. Except issues arise as soon as a non-FACE component gets into the picture. From 

the perspective of an equipment supplier, the same equipment product line needs to deal with 

FACE and non-FACE platforms nevertheless. Another example is performing a joint exercise 

with non-FACE platforms which invariably confronts against multi-architecture issues. 

1.7.2 Web Services Similarity 

A web service is a method of communication between electronic devices over the web. The Web 

Services Description Language (WSDL) is an XML format for describing web services [28]. It is 

commonly used in large-scale distributed applications particularly with ones based on the 
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Service-Oriented Architecture (SOA). WSDL addresses the need of communication 

formalization for web services and formalizes the set of operations services expose as 

architecture-neutral service interfaces. 

1.7.3 Service versus System 

Conceptually, a web service is very similar to a system part of a platform (or a distributed 

simulation). Both revolve around the Transport of Data through an explicit Interface. The main 

disparity between the two originates from the intent of their interfaces. A system can only interact 

with other systems if its Interface is aligned with them, that is if it can be connected to the 

available Data. A service, on the other hand, is only concerned with making its Interface 

available to its consumers. That is why a service contract is required to capture the interactions 

between service providers and consumers as described by [29]. That is why WSDL does not 

cover the Connection facet and which must be captured to enable system interoperability. On the 

other hand, WSDL allows capturing a service's expected interaction sequences which ensures 

coherent service behavior. This is achieved through WSDL's message exchange patterns (MEPs). 

Nonetheless, there is a natural fit between the services and systems as they share the other facets. 

1.8 Representing Data Exchange Models 

Data exchange models represent what is being exchanged between systems. There exists a 

multitude of ways for capturing them. The following sections describe some of these ways 

highlighting issues, along with limitations, related to capturing Data explicitly. 

1.8.1 Lack of Machine-Processable Definitions 

Some data exchange models are represented as paper specifications. DIS is such an example and 

describes Data through various textual descriptions and tables [6] which are aimed towards 

implementers. It is sufficient to say that paper specifications prevent any form of automation. 

Moreover, in order to extend capabilities not initially covered by DIS, open constructs are 

provided which producers and consumers need to agree on. This implies that these extensions are 

captured in varying ways and on a case-by-case basis being left outside the scope of the 

specification. 
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Another issue is the presence of definitions within SDEMs which prevent automation by a 

software agent. This is particularly problematic when trying to automate the serialization of an 

SDEM through code generation. These types of definitions render code generation choices 

complex and even un-automatable requiring manual intervention. An example of this is the 

encoding attribute of HLA data models which is an open text field [17]. It can be filled with a 

pre-defined encoding type in which case the automation is not problematic. Except encoding is 

sometimes defined as the set of instructions a developer is expected to read in order to handle the 

serialization manually. Such definitions need to be captured in a form entirely processable by 

machine as well as exempt from ambiguity and misinterpretation. 

1.8.2 XML-Based Format Deficiencies 

Most data exchange models are typically captured explicitly in a machine-processable format. 

That is the case of the HLA Object Model Template (OMT) standard [17] which provides an 

XML format to capture HLA data models. OMT specifies the XML schema [30] used to define 

the data available to HLA distributed simulations. The OMT schema provides some form of 

validation which XML tools and runtime libraries can use to produce or consume the data 

models. For instance, an OMT rule is defined to ensure that a referenced type is defined in the 

SDEM. This form of rule is simple to capture with XML Schema. Unfortunately, not all XML 

tools and libraries validate these rules, and only a few cover the full spectrum of XML Schema’s 

validation capabilities. 

Moreover, complex rules cannot be expressed with XML Schema as it focuses around structural 

validation. For instance, it is not allowed with OMT to have sibling subclasses with identical 

names, or to have user defined type names which start with the letters "HLA". Supporting such 

rules could require modification of the schema which is impractical as XML is primarily meant to 

be an interchange format. Therefore, one needs to balance between simplicity in validating the 

format, and ease in producing or consuming it. Nonetheless, OMT is a modular format enabling 

reuse and extension of existing data models in a guided way. For interoperability to occur, 

systems must share the same SDEM. Failing to do so require adapting the unaligned data models 

and is left out of the scope of the OMT specification. 

Another XML format used to represent SDEMs is the BOM standard [23]. It was a response to 

the need to increase the level of abstraction of OMT by introducing conceptual modeling 
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capabilities through its patterns of interplay. Being built around HLA currently prevents BOM 

from being used to represent other types of SDEMs. Nevertheless, BOM's ability to model 

patterns of communication exhibits great value capturing dynamic data exchange details in an 

architecture-agnostic way. 

WSDL [28] is a standardized XML format used to describe web services. It requires that an 

external type system be used in order to describe the messages passed between a service and its 

consumers. XML Schema typically fulfills this purpose. The notion of external type system is 

interesting, except it creates a burden on WSDL consumers, such as service frameworks, which 

need to cope for type system limitations, such as with XML Schema, and variability. As 

highlighted by [31], WSDL lacks the real ability to fully capture service data models because of 

this. Even so, WSDL provides Message Exchange Patterns (MEPs) similar to BOM's patterns of 

interplay which capture the dynamic details of data exchanges. 

In the context of ongoing research, the authors of [24] propose an architecture-neutral XML 

Schema-based format to represent SDEMs. They identify the key characteristics of SDEMs 

which consists in a format, a data structure, and semantics. The format captures how to represent 

the information; the data structure describes the content in the specified format; while the 

semantics provide meta-information about the data model. The notion of a format agnostic to 

architecture as proposed by the authors is interesting, except the authors limit their research to 

HLA data models and focus on describing mappings between SDEMs in order to describe 

gateways. Alternatively, the authors of [2] are looking towards the semantic web, such as 

ontologies, for added semantic capabilities on top of XML in order to capture SDEMs in an 

architecture-neutral way. The authors describe how ontologies could be used for this purpose, but 

no concrete detail is given as their work is too preliminary. One point emphasized is the need for 

human readability and machine understanding. It is important to point out that these requirements 

are generally incompatible, one impeding the other. 

1.8.3 Language-Based Format Deficiencies 

The Interface Definition Language (IDL) [32] is a standardized language used to describe the 

interfaces of software components independently from the languages used to implement and use 

them. IDL requires a compiler which not only validates IDL definitions, but also transforms them 

into other forms. There even exists standard language mappings such as IDL to C++ [33]. This 
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enables IDL to provide strong validation constructs over data models with consistent behavior. 

Amongst its users, Data Distribution Service (DDS) [34] middlewares use a subset of IDL to 

represent data exchange models. Being a dedicated language enables IDL to provide a clutter-free 

view of the data models it captures. DDS uses IDL to automate the data serialization software 

through code generation. Unfortunately, IDL only captures the low-level details of data models 

being close to their computing platform equivalent. For instance, IDL data types allow the 

representation of integer and floating point numbers, but lack the capability to qualify data with 

engineering units of measurement or frames of reference. Additionally, some data models, such 

as DIS and HLA OMT, require explicit enumeration values which IDL forbids. This prevents 

IDL from being used to completely capture these types of data models. 

The TENA Definition Language (TDL) [35] is similar to IDL which it actually extends to meet 

specific use cases (such as considering local versus remote objects). Besides exhibiting the same 

characteristics mentioned above, TDL enumeration identifiers need to be unique and vector 

cardinalities cannot be bounded to represent fixed-length arrays [36]. These restrictions simplify 

the TENA middleware, except they prevent capturing some types of data models. Nonetheless, it 

allows TENA to generate distributed applications from TDL descriptions as noted by [37]. 

Except interoperating with other architectures still requires gateways which cannot be automated. 

The Abstract Syntax Notation One (ASN.1) [38] is a standard notation for describing data along 

with the rules for serializing and transmitting it. ASN.1 is principally used in the 

telecommunications industry. It shares many traits with IDL by providing an abstract syntax 

independent from the languages used to implement and use it [39]. Its type system accounts for 

bit representations as one of its primary purposes is to provide compact binary representations. In 

regards to system integration, the principal issue with ASN.1 is that it is aimed towards protocol 

designers [39]. Moreover, its notation differs in many ways to traditional programming 

languages, or from languages such as IDL, which makes ASN.1 less accessible. Additionally, as 

opposed to IDL, ASN.1 does not provide guidance on mapping it to programming languages 

since it focuses solely on uniform encoding behaviors. It also lacks higher-level abstractions, 

such as units of measurement and frames of reference, which typically hamper interoperability. 

Conversely, the Architecture Analysis & Design Language (AADL) is an architecture description 

language used to model software and hardware architectures of embedded real-time systems [40]. 
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AADL represents data through property type declarations which provide a set of values with 

characteristics such as units of measurement. Because it is primarily aimed towards analysing 

architectures, there exists many ways and scenarios to represent data. This makes AADL 

awkward to represent data in the context of describing data exchanges. Moreover, the AADL 

grammar is challenging to read even if textual. 

1.8.4 Model-Based Format Deficiencies 

On the other hand, FACE proposes a model-driven methodology based around UML modeling. 

Its three-levels of Data modeling through refinement (i.e., conceptual, logical, and platform) 

enable strong data semantics and cover many reuse scenarios. It also accounts for a uniform 

mapping from UML models to IDL, as covered by [26], which enables consistent software 

artifact generation across FACE platforms and supported programming languages. Unfortunately, 

modeling is cumbersome and very repetitive simply to create the required artifacts because each 

element needs to be modeled three times. Another model-based format is the Systems Modeling 

Language (SysML) which is a general-purpose language for system modeling [41]. SysML 

proposes a UML profile, i.e., a subset of UML with extensions, which is meant to be customized 

in order to create domain-specific modeling languages such as for the automotive and aerospace 

domains. 

Unfortunately, the lack of model validity feedback from UML editors is a concern noted by [42] 

and impacts both FACE and SysML. The authors also expose scalability problems of UML tools 

particularly when dealing with large modeling environments seeing load times exceeding one 

hour in some cases. Furthermore, they point out that UML lacks expressiveness making it 

challenging to capture information in a natural way. 

Additionally, UML models are often persisted in proprietary formats although they can be 

exported using the XML Metadata Interchange (XMI) format [43]. Being a XML format, XMI 

therefore exhibits the same limitations as the ones presented in Section 1.8.2. Another caveat 

with XMI is that most UML tools do not interoperate well even if XMI and UML are standards, 

as exposed by [44,45], thus undermining reuse. FACE's IDL heritage also causes the 

manifestation of the issues elicited in Section 1.8.3 when using the UML to IDL mapping. 
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1.8.5 Data Type Deficiencies 

Data exchange models capture data of varying representations. Most provide data representations, 

i.e., data types, aligned with computing platforms. These include representations of numbers, 

strings, characters, Booleans, and enumerations. Also available are structures composed of fields 

which in turn are of a particular data type. Arrays are found amongst data types and are used to 

represent a bounded or unbounded set of values of the same type. Unions, or variants, are often 

encountered which are used to represent a value which has a finite set of varying forms such as 

for a uniform array of different items. 

HLA OMT can express all of the above data types with the exception of unsigned numerical 

types [17] which are required when representing positive numbers. Likewise, XML Schema, 

IDL, and FACE prevent the association of literal values to enumerators within enumerations 

[26,30,32]. Another issue with FACE is that it lacks variant type support [26] which is also the 

case for AADL [40]. These issues prevent completely capturing existing data models such as DIS 

and HLA OMT. 

1.9 Lack of Transport Details 

Capturing data exchange models explicitly only addresses the Data facet covering what is 

exchanged between systems. The ability to capture how data is transported between systems is 

covered by some data exchange model representations. Some representations, such as IDL, do 

not cover Transport details at all focusing solely on Data. Conversely, some formats cover many 

Transport aspects, except they lack some of the details required to enable system interoperability. 

As an example, the author of [31] presses that WSDL fails to capture non-functional service 

characteristics, such as quality of service (QoS), which is the root cause of several service 

interoperability problems. 

Alternatively, ASN.1 covers Transport details by providing reusable means to model how data is 

encoded which, in turn, can be changed independently from the abstract data representations. 

This separation of Data and Transport is also present in WSDL which enables specific protocol 

characteristics to be captured in bindings even if QoS coverage is deficient. Regrettably, ASN.1 

protocol designers cannot control the final encoding which is often required in order to 

interoperate with existing systems [46]. 
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Transport details are not captured within AADL models per se, except AADL provides the 

capability to represent a communication link through its conceptual bus construct [40]. For 

instance, representing an HLA transport would require creating an HLA bus. Moreover, some 

predefined general transport characteristics can be captured through AADL properties. 

Unfortunately, these are quite limiting and prevent AADL from capturing the sought transport 

details. 

Another issue is capturing where data is accessible from. One could argue that this is a concern of 

the Connection facet, except the Connection facet is concerned with how systems are logically 

connected to one another whereas the Transport facet is concerned with the concrete details 

required to realize data exchanges. This is also consistent with WSDL which considers Transport 

to be concrete [28]. WSDL provides access to services through endpoints which capture where a 

service is accessible from. Moreover, it represents how data is transported between the service 

and its clients through bindings which capture the message format and transmission protocol. 

Bindings enable WSDL to consider multi-architecture environments by capturing the 

peculiarities of each architecture in a distinct binding. 

1.9.1 Intermingling Transport with Data 

Some data exchange model representations mix Transport directly on Data. This prevents data 

reuse within the same architecture and across multiple ones. For instance, Transport attributes, 

such as encoding and QoS, are expressed directly on HLA Data [17]. Consequently, reusing 

HLA Data can only be achieved within HLA architectures. Furthermore, this can only be realized 

by duplicating and by adapting the Data to the various Transport use cases. Transposing the 

same data over multiple architectures further duplicates the information. Therefore, there must be 

a clear separation between Data and Transport as captured within a data exchange model 

representation in order to enable reuse. 

1.10 Lack of Interface Details 

Most data exchange model representations only focus on capturing Data with some detailing 

Transport characteristics. Except, in order to simplify system integration, one also needs to 

represent systems as they are the focal point of the integration process. One typical type of 

integration issue relates to systems with diverging interfaces. Consider two data types with 
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different units of measurement. From the Data facet's perspective, these two types provide no 

indication of possible integration issues. Except systems requiring aligning these two types 

together proves otherwise if the systems need to interoperate together. Therefore, an explicit 

description of each system's Interface is required in order to capture, and identify, these potential 

issues. 

Service interfaces can be captured with WSDL [28] where the operations supported by a service 

are detailed on an interface element. Interface elements then relate to Data by specifying the 

inbound and outbound message types. This enables WSDL to fully describe web services 

covering the Interface, Data, and Transport facets. 

Conversely, AADL proposes an abstraction of components accounting for application software, 

execution platform, and composite components [40]. As an example, AADL can represent 

software processes, hardware processors, and memory components. One of the central AADL 

component is the system component which is used to model distinct units within an architecture. 

System components expose ports enabling them to exchange Data together. As with WSDL, 

AADL values the explicit capture of system interfaces. To this end, [47] uses AADL to facilitate 

middleware analysis by formally capturing the complete systems to interoperate and by 

describing the required behavior of the middleware. The problem with the proposed approach is 

that it only works with their architecture as AADL does not model transport which their 

architecture compensates for. 

As with AADL, FACE proposes a way of capturing system interfaces through its Unit of 

Portability (UoP) [26]. Each FACE UoP is composed of ports which makeup its Interface. These 

definitions can then be used to automate some of the data exchange software through code 

generation. In a similar fashion to FACE, SysML proposes a native Interface element which can 

be composed of ports. Therefore, the ability to formally capture system interfaces is key in 

describing data exchanges and enabling automation. 

1.11 Lack of Connection Details 

Capturing the Interface of systems, the Data they exchange, and how this data is Transported 

does not account for a full description of system data exchanges. One needs to know how data is 

routed between systems, that is, how systems are connected to one another. This is the purpose of 
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the Connection facet. Unfortunately, of all the languages explored, only SysML and AADL 

capture system connections by modeling the connections between system ports. Moreover, the 

lack of such details renders connections implicit and subject to interpretation by SMEs. This can 

cause an SME to input data from the wrong source. These types of issues are quite challenging to 

detect and are often found late into the integration phase. 

1.12 Subject Matter Expert Modeling Complexity 

One of the main problems with the existing solutions is the required knowledge to use them 

which is not typically shared amongst subject matter experts (SMEs) and impedes productivity 

[42,48] which, in turn, directly impacts system development and integration. As an example, [24] 

justifies the use of XML for capturing data exchange models based on the fact that it provides 

human readability, machine readability, and existing tool support. Being a human-readable 

format does not necessarily make it human-understandable too. This explains why [31] stipulates 

for WSDL, an XML format, that "[WSDL] descriptions are machine-readable rather than human-

friendly". 

Another example involves SMEs which are expected to directly translate their domain expertise 

into a software form [48]. As software programming increases in complexity, there is a 

conflicting duality of requiring SMEs to be experts both in their domain and in software. In the 

same lines, HLA OMT exposes system experts to protocol details by intermingling Transport 

with Data. Except the SMEs' primary concern regards consuming and producing system data. On 

the other hand, system integrators are concerned with such details. 

Languages, such as IDL and ASN.1, are more restrictive exposing dedicated viewpoints aimed 

towards specific SMEs thus hiding complexity from them. Unfortunately, these languages lack 

the level of abstraction expected by SMEs focusing solely on a first-degree abstraction from 

computing platforms and software protocols. For instance, units of measurement and frames of 

reference are not an integral part of IDL. This forces SMEs to deal directly with their computing 

platform representations instead. To cope for this, an SME could model an IDL Altitude type as 

an altitude Value with its Units and Frame of reference representations as follows: 

enum AltitudeUnit 
{ 
  Meter, 
  Feet 
}; 
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enum AltitudeFrame 
{ 
  AboveGround, 
  EarthCenter 
}; 
struct Altitude 
{ 
  double Value; 
  AltitudeUnit Units; 
  AltitudeFrame Frame; 
}; 

Except the Altitude type is no longer a single 64-bit double precision floating-point Value from 

IDL's perspective therefore impacting its computing platform representation and transmission 

size. Additionally, an IDL compiler cannot help SMEs with units and frame errors as it does not 

know about them. In opposition, XML formats cope for this by providing richer representations. 

Moreover, XML formats require to be transformed thus eliminate the superfluous information not 

required by the computing platform representation. 

In contrast, UML provides the capability to create profiles, which are similar to dedicated 

languages, exposing rich constructs and abstractions therefore hiding complexity from SMEs. 

FACE uses this capability, as presented by [26], as well as SysML, to combine the 

aforementioned benefits of both the dedicated languages and the XML formats. Except UML 

modeling exhibits many pitfalls when trying to create dedicated languages, i.e., profiles, as 

uncovered by [49] which states the lack of framework support, existing tool limitations, and a 

complex UML extension mechanism. The lack of expressiveness is also noted by [42] which 

proposes domain-specific languages (DSLs) instead. That is because a DSL boasts the 

vocabulary richness and expressiveness of a dedicated language aligned with an SME's domain. 

1.12.1 Leveraging SME Expertise 

The main purpose of a full mission simulator (FMS) is to provide training to aircraft crews. From 

a software application perspective, replicating an existing aircraft and its environment involves 

the interaction of several systems within the FMS (Figure 1). Each system has its own set of 

simulation models, for instance, aircraft system models, such as flight and engines, and models 

dealing with the environment surrounding the aircraft, such as weather and air traffic. In addition, 

multiple FMSs can be joined together to simulate air traffic. Moreover, system models need to 

communicate data to other systems, thus demonstrating particular data interests, in order to 

replicate an end function of the aircraft to the pilot. In a nutshell, this technology-agnostic 

description represents What (Figure 1-4) SMEs need to build to achieve an FMS. Additionally, 
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because SMEs are experts in a particular domain, abstractions need to be available to them so 

they can use resources, such as the hardware, without requiring being experts in these resources. 

 

Figure 1-4: Hiding Software Complexity from SMEs 

Next, How to actually implement an FMS involves many different kinds of expertise covering the 

whole application’s scope (hardware, software, OS, etc.). Moreover, reusable components 

provided by frameworks can be composed together to form the software application 

complemented by model-specific user code and parameterizations. This software application is 

also subject to multiple configuration parameters and is deployed on hosts interconnected via 

diverse networks. Moreover, because system models elicit their communication’s quality of 

service (QoS) requirements such as data transfer latency, deployment strategies need to be 

considered. For instance, if the expected transfer latency is high, then a strategy involving 

network communication might be appropriate. If the latency is low, then system models 

communicating together might be required to run on the same host or in the same process. 

Furthermore, with a 64-bit OS capable of accessing large amounts of memory, the number of 

simulation models per process is likely to increase in order to leverage multi-core CPUs therefore 

it becomes important to efficiently address communications within the same process. This 

unfolding of the What into the How requires Know-How (Figure 1-4) that is not shared by the 

majority of SMEs. As such, there is a need to abstract this complexity in order to leverage the 

expertise of SMEs. 

1.12.2 Hardware Performance 

Another source of complexity to hide from SMEs is the alignment with hardware. Indeed, SMEs 

tend to model from abstractions that are close to their corresponding real-world equivalent. For 
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instance, one would model a list of aircraft as an Array of Structure (AoS) (Figure 1-5). 

However, in order to fully leverage today’s hardware capabilities, a specific memory layout must 

be used by models to efficiently move data in/out of the CPU and to demonstrate the capability to 

simultaneously perform multiple computations which Brownsword [50] and Collin [51] 

highlight. For instance, the Single Instruction, Multiple Data (SIMD) instructions [52] supported 

by modern multi-core CPUs and GPUs process a great deal of data in parallel. An example of an 

efficient hardware model is a list of aircraft data structures represented as a Structure of Array 

(SoA) (Figure 1-5). 

 

Figure 1-5: Array of Structure vs. Structure of Array 

To illustrate the impact of the data memory layout strategy on performance, following AoS and 

SoA, we computed the time taken to execute the following kinematic equations on a list of 

aircraft data structures considering their position, velocity and acceleration: 

                  
  and             .  

 

Figure 1-6: Impact of Data Memory Layout on Performance 

As shown in Figure 1-6, using a SoA memory layout has significant impact on the speedup when 

compared to a single-threaded execution using an AoS memory layout. Moreover, a SoA 
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memory layout allows the use of SIMD instructions and improves the speedup gains of using 

multi-threaded execution. Again the Know-How (Figure 1-4) required to store a simulation 

model’s data (i.e., What) into a hardware efficient data memory layout (i.e., How) is not shared 

by the majority of SMEs. Moreover, such a data memory layout depends on the actual 

computations applied to the simulation model. Consequently, each simulation model’s data 

memory layout may differ, which leads to suboptimal hardware performance. As such, there is a 

need to abstract this complexity with considerations at the level of the whole software 

application. 

1.12.3 Frameworks 

Frameworks are a further source of complexity for SMEs because they offer too much latitude in 

the way they can be used [53,54]. Frameworks are programmed using a general-purpose 

language, and if SMEs have access to the full expressivity of the language, this increases the 

probability that they can introduce software defects, create suboptimal solutions or apply non-

uniform solutions to a recurring problem due to their lack of software expertise. SMEs could also 

make technological choices directly within their code that others would have no knowledge of, 

which can cause problems with managing technology obsolescence and evolution. Imagine the 

difficulty of managing the network resources of an FMS when systems exchange data through the 

network without exposing that resource usage. 

1.12.4 Domain-Specific Languages 

A domain-specific language (DSL) allows SMEs to focus on What (Figure 1-4) needs to be done 

while abstracting the complexity of having to specify the full algorithmic details needed to 

implement a software application that does the How [55]. 

An example of a DSL is the Structured Query Language (SQL) designed, among other things, to 

insert, update, delete and query data in a relational database. An SQL query allows the user to 

describe its data interest, the What, while avoiding the need to describe the necessary operations 

to produce the expected results, i.e., the How. For instance, an SQL query to retrieve Books with 

a price greater than 100$ would be: 
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SELECT * FROM Book WHERE price > 100.00 

As such, this query doesn’t specify the details of the operations needed to locate, retrieve and 

filter the expected Books from a persistent storage. This gap between the What and the How 

provides users with a simplified experience and gives relational database implementers leeway 

for specific optimizations. 

In contrast to a general-purpose language used to create a framework, a DSL is a computer 

programming language of limited expressivity that focuses on the core concepts and behaviors of 

a particular domain. Therefore, SMEs working with a DSL are more restricted in the valid 

programs they can create than they would be with a framework [53]. 

1.12.5 Model Compilers 

Following the analogy of a compiler transforming a high-level language such as C++ into a low-

level assembly language, a Model Compiler (Figure 1-4) contains the software knowledge Know-

How needed to transform a model created using DSLs into a software application. Since models 

created using DSLs are domain specific, compiling them also requires a domain specific Model 

Compiler. More specifically, a Model Compiler generates from a model part or all of the software 

assets, like the C++ user code to complement a framework’s reusable components and an 

application’s configuration files, needed to obtain an FMS software application. For instance, a 

Model Compiler can generate all the C++ code needed to achieve data-level interoperability [56] 

between two simulation models for a particular data format and communication protocol. Also, 

using a Model Compiler to generate software assets reduces the risk of introducing software 

defects, creating suboptimal solutions or applying non-uniform patterns to a given recurring 

problem. 

Moreover, a Model Compiler can deal with the QoS requirements of communications such as 

data transfer latency. Based on the expected data transfer latency between two simulation models, 

a Model Compiler can opt to deploy the models separately on different computing nodes or to 

combine them in the same process. 

Again, similar to a compiler generating assembly code from C++ code but allowing debugging at 

the higher-level C++ abstraction, a Model Compiler can generate the code needed to support 

debugging using the level of abstraction of DSLs thus hiding complexity from SMEs. In addition, 



30 

the gap between the What and the How provides potential for a Model Compiler to apply context 

specific optimizations. An example of such optimization would be to transform a list of aircraft 

modelled from an Array of Structure (AoS) into a list of aircraft stored in memory as a Structure 

of Array (SoA) (Figure 1-5). 

1.12.6 Code Generation 

Code generation is used by existing solutions principally to automate software artifacts such as 

source code and configuration data. For instance, FACE and DDS use IDL to automate data 

serialization [26,34]. Another example is TENA which uses compiled-in object definitions [57]. 

The author noted that code generation is used by TENA because it provides strong type 

validation, detects errors early, enables better performances, and it conforms to current best 

software engineering practices. AADL also enables code generation as demonstrated by [47] for 

middleware analysis. 

Code generation approaches, particularly the ones using model compilers from DSL models, 

offer advantages sought by the approach of this research. First, simplifying the task of software 

development by automating some code allows SMEs to limit their work on the problems they are 

trying to solve rather than having to expand their knowledge in areas that are in support of their 

work. This is the case of the development of interoperability where the real problem to be 

addressed is limited to the interconnection of system interfaces and the data they exchange rather 

than at the intricacies of data serialization and communication protocols. Second, code generation 

can be optimal in order to adapt to the environment in which the generated code is executed. This 

allows replacing pieces of code that are too generic to be effective, too long to write to be 

optimal, or too difficult to maintain because too broad. Code generation is a potential candidate to 

enable better system interoperability. 

Nonetheless, it is imperative that SMEs only see what concerns them in order to hide complexity 

from them, increase their productivity, and better leverage their expertise [48]. 

1.13 Model Configuration Management and Governance Deficiencies 

Another problem with models created with the existing solutions is identifying changes and 

understanding how they evolved. This ability is critical in finding issues early on in the 

development and integration processes. This is also particularly significant in enabling model 
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governance which is an integral part of FACE's strategy to reduce software costs [26]. This also 

touches configuration management which is handled by revision control systems [58]. Contrast 

the differences between multiple revisions of a UML diagram or an XML file to that of a C++ or 

Java file under revision control. The latter source code representations enable simpler 

understanding of a model’s evolution being clutter-free formats. 

That is one of the motivations of [42] for migrating all of their UML models to DSLs. They also 

highlight the risk of UML models and source code getting out-of-sync which directly impacts the 

outcome of model governance activities: models are updated and source code needs to be in 

agreement with the changes. That is why they propose to store models as textual DSL 

representations alongside source code and applying the same software engineering practices, 

including reusing the same revision control system and configuration management. This is in line 

with [59] which proclaims that the model is the code in the context of service models. Treating 

DSL models as source code enables simpler understanding of a model’s evolution. That is 

because a DSL provides a clutter-free view of the model and therefore allows for easier 

understanding, management, and governance. 

1.14 Summary 

This chapter presented an in-depth literature review covering system integration issues related to 

data exchanges, as well as issues impeding reuse and interoperability. As demonstrated, no single 

existing solution solves these problems on its own. Except each one offers a piece of the solution 

with some pieces intersecting while others diverge in their approach. Moreover, no solution 

provides an architecture-agnostic way of capturing system interfaces, i.e., meta-model, nor 

addresses multi-architecture considerations. The review also focused around two system 

integration perspectives, distributed simulations and platforms, generalizing both under the same 

roof. 

Moreover, the review segmented the problem domain into the system interoperability facets. The 

findings highlight many issues related to the Data facet ranging from meta-model and data 

incompatibilities to how data models are captured. Another finding is the complexity incurred on 

SMEs when using existing solutions to model system data exchanges and the various aspects 

surrounding them. Furthermore, deficiencies of some solutions concerning model configuration 

management and governance point to potential areas of improvement and gains in efficiency. 
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The following chapter presents the research questions and objectives, as well as the motivation 

behind the proposed methodology. 
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Chapter 2 GENERAL METHODOLOGY 

2.1 Research Motivation 

Today’s platforms, such as full mission simulators (FMSs), exhibit an unprecedented level of 

hardware and software system integration. In this context, system integrators face heterogeneous 

system interfaces which need to be aligned and interconnected together in order to deliver a 

platform's intended capabilities. The sole aspect of the data systems exchange is problematic 

ranging from data misalignment up to multi-architecture environments over varying kinds of 

communication protocols. Similar challenges are also faced by integrators when interoperating 

multiple platforms together through distributed simulation environments where each platform can 

be seen as a system with its own distinct interface. On the other hand, enabling system reuse 

across multiple platforms for product line support is challenging for system suppliers, as they 

need to adapt system interfaces to heterogeneous platforms therefore facing similar challenges as 

integrators. Furthermore, the introduction of system interface changes in order to respond to late 

business needs, or unforeseen performance constraints for instance, is even more arduous as 

impacts are challenging to predict and their effect are often found late into the integration 

process. All these issues highlight the need to simplify system integration and interoperability 

in order to reduce their associated costs and increase their effectiveness along with their 

efficiency. 

2.2 Problem Statement 

Today's approach of achieving a high level of integration and interoperability between systems 

involves formal interface descriptions. Moreover, multi-architecture environments incur a 

duplication of these descriptions as each architecture requires its own representation. Introducing 

changes in this context becomes even more challenging as each representation might require a 

specific solution to address each change. From the perspective of system integrators, there is a 

need to have architecture-agnostic descriptions providing a single architectural viewpoint 

overseeing all system interfaces. On the other hand, suppliers require a method to adapt a 

system's interface to various platform-specific ones in order to enable reuse and better support 

product lines. 
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There exists a multitude of solutions to capture interface descriptions ranging from document 

specifications to dedicated languages. Some solutions enable the automation of some of the tasks 

involved in achieving system interoperability by generating software artifacts from interface 

descriptions. Some suggest using domain-specific languages (DSLs) to model the aspects 

relevant to specific stakeholders in the language of their respective domain therefore simplifying 

their comprehension. 

Unfortunately, no single solution offers a single architectural viewpoint capturing all the details 

surrounding data exchanges covering system Interfaces, the Connection of these interfaces to 

data, the Data exchanged between systems, and the data’s Transport from system to system 

(Figure 2). They also exhibit limited validation capabilities. Moreover, interface descriptions 

captured with these solutions are not easily understandable even if some are expressed in human-

readable formats because they do not target the system integrators or the SMEs involved in the 

development and integration activities. In turn, identifying changes and understanding how they 

evolved becomes challenging. This ability is critical in finding issues early on in the development 

and integration processes. This is also particularly significant in enabling interface governance. 

Furthermore, no solution addresses multi-architecture environments nor provides the flexibility 

required to enable system reuse across multiple platforms in support of product lines. 

Therefore, there is a lack of an architecture-agnostic format which captures the details relevant to 

system data exchanges down to specific architectures, exhibits flexibility over system interfaces 

to enable their reuse, and is at the same time human-understandable by its stakeholders and 

machine-processable being exempt from ambiguity in addition to misinterpretation. 

Consequently, this thesis tackles the general question of: How should system interface 

descriptions be captured, and used, to simplify system integration and interoperability? 

2.3 Research Questions 

The specific research questions presented in the following sections are meant to bring new 

advances in the fields of system integration and system interoperability. Notably, by establishing 

a common taxonomy, and by increasing the understanding of system interfaces, the various 

aspects impacting system data exchanges, multi-architecture environment considerations, and the 

factors enabling interface governance as well as system reuse. 
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2.3.1 What should be Formally Described in Order to Capture System 

Interfaces and the Various Aspects Surrounding their Data Exchanges, 

and How? 

There is a lack of a common taxonomy which can be shared amongst stakeholders, such as 

integrators, suppliers, and system experts, when discussing system integration and 

interoperability. This taxonomy would allow a better understanding of the elements impacting 

system integration and system interoperability. The system interoperability facets (Figure 2) 

propose a breakdown based on the specific concerns surrounding system interoperability. 

Unfortunately, no single solution covers all of the facets, along with the concepts required to 

formally describe system interfaces, on its own. The elements relevant to stakeholders have been 

identified in the literature review (Chapter 1) and provide a good starting point for answering this 

question. 

Additionally, existing solutions each provide a specific way of capturing the elements relevant to 

system interface descriptions. A common system interface description interchange format would 

enable better communication between stakeholders, simplify interface governance, enable reuse 

of system interface descriptions, and provide common grounds for engineering tools. 

2.3.2 How should Multi-Architecture Considerations be Captured? 

No existing solution addresses multi-architecture considerations which is a key problematic area 

of system integration and system interoperability. Identifying a way to capture such detail with 

the right level of abstraction would greatly benefit the integration and interoperability activities as 

well as further enable their automation. This would also enable easier change propagation 

between each architecture's representation of system interface descriptions. 

2.3.3 How should System Interface Descriptions be Used to Automate Some of 

the Tasks Involved in System Integration and Interoperability? 

The tasks involved in achieving system interoperability, such as data serialization or protocol 

handling, need to be formalized to remove ambiguity or misinterpretation. Some solutions derive 

software artifacts from interface descriptions in order to automate these tasks. Understanding how 
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to further enable the automation of the system integration and interoperability tasks would reduce 

costs and improve effectiveness, as well as efficiency, in performing them. 

2.4 Research Objectives 

The fundamental research objective of this thesis is to automate the system-level data-

interchange software through a system interface description language. To this end, the 

following specific objectives have been derived. 

2.4.1 Define a System Interface Description Language 

This objective aims at defining a language used to describe system interfaces and the various 

details surrounding their data exchanges. This language is denoted as the System Interface 

Description Language (SIDL). 

First, meeting this objective involves answering the research question "What should be Formally 

Described in Order to Capture System Interfaces and the Various Aspects Surrounding their Data 

Exchanges, and How?" (refer to Section 2.3.1). To this end, all the elements relevant to the 

system interoperability facets (Figure 2) are developed in Chapter 3 as the core language 

elements of SIDL. Moreover, [42] suggests using DSLs to model and capture the aspects relevant 

to specific stakeholders in the language of their respective domain. They also suggest storing 

models as textual DSL representations alongside source code to leverage the same software 

engineering practices, including reusing the same revision control system and configuration 

management. Therefore, the developed language is a textual DSL which is populated from 

elements of existing languages and elements derived from the author as well as SME feedback. 

Being a DSL, the proposed language is at the same time human-understandable, since in the 

language of its stakeholders, and machine-processable thus enabling automation. Therefore, this 

simplifies change identification and the understanding of interface evolution. Furthermore, the 

use of a model compiler enables strong validation semantics on the system interface descriptions. 

Second, this objective also implies addressing the research question "How should Multi-

Architecture Considerations be Captured?" (refer to Section 2.3.2). The language elaborated in 

Chapter 3 is architecture-agnostic such that architecture-specific representations can be derived 

from this single viewpoint. Because SIDL provides a single architectural viewpoint overseeing 

all system interfaces, SIDL is considered an architecture description language [3]. Moreover, in 
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order to address multi-architecture environment considerations, the language models architecture-

specific details. Therefore, the introduction of changes to system interfaces becomes simplified as 

changes are automatically propagated down each architecture's own representation being 

introduced from a single architectural viewpoint defined in SIDL. 

2.4.2 Define a Method to Automate the System-Level Data-Interchange 

Software from System Interface Descriptions 

Achieving this objective directly answers the research question "How should System Interface 

Descriptions be Used to Automate Some of the Tasks Involved in System Integration and 

Interoperability?" (refer to Section 2.3.3). One way of simplifying system integration and 

interoperability is by automating some of its tasks. Therefore, this objective targets the 

automation of the software responsible for system data exchanges from system interface 

descriptions. 

The general methodology of transforming system interface descriptions into data-interchange 

software will be elaborated in Section 3.6. The generated software artifacts that emanate from 

this process are largely contextual since they depend on characteristics such as the resulting 

software interface presented to the system, the frameworks or libraries which can be used in 

support of code generation, the output programming language, etc. This explains the generic trait 

of the elaborated method. That is why its experimental implementation is detailed in Chapter 4 

which can form the baseline for other implementations. 

2.5 General Approach 

The System Interface Description Language (SIDL) has been developed along with a method for 

automating the data-interface software of systems from descriptions expressed in the elaborated 

language. These two results demonstrate the achievement of the specific research objectives 

which leads to a better understanding of system integration and interoperability as well as enables 

the simplification of their associated activities. 

Because of the intrinsic relationships between each research objective, they have all been 

approached at the same time with the following iterative methodology: 
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1. Identify use cases 

2. Identify and implement test cases, composed of test systems, covering all use cases 

3. Define language syntax & semantics 

4. Prototype language implementation 

4.1. Model test system interfaces and data exchanges in language 

4.2. Generate software artifacts realizing data-interchange for each test system 

4.3. Refactor test systems 

4.4. Validate results 

4.5. Improve language 

4.6. Go back to 4.1 if all use cases are not achieved or if data-interchange software requires 

manual intervention, otherwise stop. 

The methodology starts with the identification of use cases which are populated mainly from the 

author's experience with support from SME feedback and literature data (detailed in Chapter 1 in 

the context of full mission simulators). This enables use cases to be more pragmatic covering 

existing system integration and interoperability concerns. Then, a series of test cases, composed 

of multiple test systems, are elaborated in order to cover all use cases. Each test case can verify 

multiple use cases, and use cases can be verified by more than one test case. This overlap is 

intentional and allows for greater certainty over the expected results. At this stage, the data-

interchange software of each test case is manually created with the intent of being automated at a 

later stage. A language baseline is created next based on literature data which particularly focuses 

on standard languages. 

From there on, an iterative approach starts for converging both the language and the data-

interchange software automation until all use cases are demonstrated, and all test cases no longer 

require manual intervention to use the generated software interface. Each iteration sees more and 

more pieces of the test systems become automated now being modeled with the language. In turn, 

this has the effect of modifying the software interface consumed by the test systems which 

justifies the need for a refactoring activity to occur. Once the test systems compile, their behavior 

is validated to prevent regressions from the expected test results. At this stage, SMEs also 
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validate the language constructs with the primary end goal being to improve its human-

understandability. These results are then injected into the next and final stage which consists of 

improving the language based on them. 

This general overview of the iterative methodology is revisited in detail in Chapter 4 particularly 

when describing the experimental implementation used to meet the research objectives. The 

achievement of each research objective is demonstrated in the following sections. 

2.5.1 System Interface Description Language 

The demonstration of this objective revolves around three aspects: the relevant language 

elements, the capture of models described with the language, and addressing the multi-

architecture considerations. 

The first aspect revolves around the language elements, i.e., What should formally be described 

by the language. This is demonstrated as SIDL covers all the system interoperability facets 

(Figure 2) as depicted in its conceptual model (Figure 3-1). Each language element is categorized 

under one of the facets notably the system Interfaces, the Connection of these interfaces to data, 

the Data exchanged between systems, and the data’s Transport from system to system. As such, 

each element targets a specific aspect of system integration and interoperability as described 

throughout Chapter 3. This is also demonstrated by the fact that all SIDL elements are derived 

from standard language elements dealing with integration and interoperability, notably FACE 

[26], WSDL [28], AADL [40], and HLA OMT [17], as well as from the author and SME 

feedback. 

The second aspect concerns How to capture the language. This is demonstrated since SIDL is 

represented as a textual DSL, as such is human-understandable, being in the language of its 

stakeholders, and machine-processable being equally considered as source code. Additionally, 

being supported by a model compiler (Chapter 4), SIDL demonstrates strong validation 

semantics on system interface descriptions as detailed in Section 3.7. The success of its validation 

semantics has also been praised by SMEs using it as illustrated in Chapter 5. 

The third aspect concerns addressing multi-architecture considerations. This is demonstrated as 

SIDL is architecture-agnostic and can model architecture-specific details through its Transport 

elements as detailed in Section 3.5. Moreover, architecture-specific representations can be 
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derived from SIDL descriptions as demonstrated in the experimental results detailed in Chapter 5 

when generating IDL [32] and HLA OMT [17] data exchange model representations. 

2.5.2 System-Level Data-Interchange Software Automation 

The demonstration of this objective revolves around the automation of the data-interchange 

software used by systems. This is demonstrated by having the data-interchange software of all the 

test systems be entirely generated from models described in SIDL. Each test system is 

represented in SIDL covering each system interoperability facet, i.e., the test system Interfaces, 

the Connection of test systems to data, the Data the test systems exchange, and the Transport of 

data between test systems. From these definitions, a code generator creates the corresponding 

software artifacts which each test system uses. This process is detailed in Chapter 4 in the context 

of the experimental implementation used to demonstrate the research objectives. The generated 

software artifacts include: 

 the software interface expressed in one of the supported programming languages covering 

a representation of the data exchange model and a communication interface supported by 

frameworks and libraries 

 the data serialization software which is expressed in either one of the supported 

programming languages or in a dedicated language such as IDL in the case of DDS 

 the communication middleware data exchange model representations such as HLA OMT 

data exchange models. 

The software artifacts that emanate from this process are specific to the experimental results 

hence the objective is only demonstrated in this context. In order to extrapolate and generalize the 

demonstration to other contexts, a general methodology of transforming system interface 

descriptions into data-interchange software artifacts is elaborated in Section 3.6. Moreover, the 

resulting data-interchange software is validated through regression tests as well as objective 

criteria instead of empirical measurements. The hypothesis is that the generated artifacts are 

equivalent, or better, to the ones an expert would have produced. This is validated as the code 

generation process uses code templates produced by experts. 
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2.5.3 Publications 

During the course of this work, five conference articles have been published. Each article focuses 

on specific aspects related to the research objectives. 

 Conference Article #1 ([60]): Study on using code generation from simulation data 

exchange model representations and interoperability mapping descriptions to automate the 

data-interchange software of gateways for system interoperability. [SISO Fall SIW 2005, 

05F-SIW-074] 

 Conference Article #2 ([61]): Study on using XML formats for describing simulation data 

exchange models and system interoperability mappings by SMEs to automate the data-

interchange software of gateways dynamically through runtime code generation. [SISO 

Spring SIW 2006, 06S-SIW-087] 

 Conference Article #3 ([62]): Study on performance of gateways created using XML 

interoperability descriptions through runtime code generation. [SISO Spring SIW 2006, 

06S-SIW-086] 

 Conference Article #4 ([48]): Study on hiding software complexity from SMEs in order to 

better leverage their expertise. [I/ITSEC 2011, 11236] 

 Conference Article #5 ([63]): Study on a system interface description language for 

simplifying system integration and interoperability. [SISO Fall SIW 2013, 13F-SIW-021] 
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Part II  

METHODOLOGY AND RESULTS
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Chapter 3 SYSTEM INTERFACE DESCRIPTION LANGUAGE 

SIDL is a language used to formally describe system interfaces focusing on the data they 

exchange and on the various aspects surrounding them. This information set is captured into one 

or more SIDL descriptions. Figure 2 illustrates the facets covered by SIDL descriptions notably 

the system Interfaces, the Connection of these interfaces to data, the Data exchanged between 

systems, and the data’s Transport from system to system. 

The conceptual model of SIDL is illustrated in Figure 3-1. It presents the high-level elements of a 

SIDL description and their relationships to one another. The elements are also categorized against 

the facet they relate to and are detailed alongside this organization throughout the following 

sections. It is important to note that the Interface, Connection, and Data facets are considered 

conceptual whereas Transport is concrete. This implies that any conceptual element is designed 

to be reusable by other SIDL descriptions. Concrete elements can be reused, but with less extent. 

 

Figure 3-1: SIDL Conceptual Model 

SIDL's language elements are primarily derived from FACE [26], WSDL [28], AADL [40], and 

HLA OMT [17], while some originate from the author as well as SME feedback. Throughout the 

following sections, each element identifies its origin to better position its relationship to system 

integration and interoperability. 
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Note that the examples used throughout this section are inspired by RPR-FOM [64]. Moreover, 

some examples refer to declarations of previous ones. 

3.1 SIDL Grammar 

SIDL aims to be a human-understandable language. As such, it reads very similarly to the 

English language with the exception of being structured differently. Another difference with 

typical programming languages is that SIDL uses English words instead of relying on symbolic 

operators. For instance, to denote the type of a field, the as construct is used instead of typical 

whitespace or a colon ':' delimiter. The following example illustrates these differences. 

// SIDL 
Psi as AngleRadian 

// C/C++/Java/C# 
AngleRadian Psi; 
 
-- ASN.1 
Psi AngleRadian 
 
-- AADL 
Psi: data AngleRadian; 

The preceding example also demonstrates the different single-line comment styles. In addition, 

multi-line comment are enclosed between '/*' and '*/' in SIDL as with C, C++, Java, C#, and 

ASN.1. Note that AADL does not support multi-line comments. 

3.1.1 Control Blocks 

Another difference with SIDL is the lack of explicit control block delimiters. SIDL uses 

whitespace instead whereas most languages use delimiters such as curly braces '{}', or keywords 

such as 'end' paired with a start keyword. One limitation of this approach is that multiple 

declarations cannot be provided on the same line. This limitation is overcome with the improved 

readability this incurs on SIDL descriptions. The following example illustrates these differences. 

// SIDL 
entity Orientation: 
  Psi as AngleRadian 
  Theta as AngleRadian 
  Phi as AngleRadian 
 
// C/C++ 
struct Orientation 
{ 
  AngleRadian Psi; 
  AngleRadian Theta; 
  AngleRadian Phi; 
}; 
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// C# 
struct Orientation 
{ 
  AngleRadian Psi; 
  AngleRadian Theta; 
  AngleRadian Phi; 
} 
 
// Java 
class Orientation 
{ 
  AngleRadian Psi; 
  AngleRadian Theta; 
  AngleRadian Phi; 
} 
 
-- ASN.1 
Orientation ::= SET 
{ 
  Psi AngleRadian, 
  Theta AngleRadian, 
  Phi AngleRadian 
} 
 
-- AADL 
data Orientation 
subcomponents 
Psi: data AngleRadian; 
Theta: data AngleRadian; 
Phi: data AngleRadian; 
end Orientation; 

3.1.2 Namespaces and Imports 

In order to better structure SIDL descriptions, namespaces can be used. A namespace is declared 

using the namespace SIDL element, and must appear as the first declaration in a SIDL 

description. The following example demonstrates namespaces in SIDL. 

namespace Rpr 
 
entity OrientationStruct: 
  Psi as AngleRadian 
  Theta as AngleRadian 
  Phi as AngleRadian 

The preceding example attributes the Rpr namespace to the Orientation entity. Therefore, 

referencing the orientation entity now requires its fully qualified name which becomes RprFom. 

Orientation. In order to simplify referencing SIDL declarations, import declarations can be used. 

An import is declared using the import SIDL element. This is demonstrated in the following 

example. 

import Rpr 
 
entity SpatialStaticStruct: 
  Orientation as OrientationStruct 
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3.1.3 SIDL Source File Encoding 

All SIDL source files must conform to the UTF-8 character encoding as specified by ISO/IEC 

10646-1 [65]. 

These are the main elements of the SIDL grammar and are used throughout the following 

sections when providing SIDL examples. Appendix A provides the full SIDL grammar reference. 

3.2 The Data Facet 

The data available to be exchanged between systems is the concern of the Data facet. It takes 

form as the SIDL Data Model which is illustrated in Figure 3-2. 

 

Figure 3-2: SIDL Data Model 

The SIDL data model is derived from the FACE data model as its main purpose is "to provide an 

interoperable means of data exchange" [26]. The FACE data model also provides many elements 

which increase the semantic meaning of data such as units of measurement and frames of 

reference. Moreover, FACE promotes reuse extensively which its data model reflects by enabling 

it. For all these reasons, the SIDL data model can be seen as a DSL representation of the FACE 

data model. However, some divergences are introduced notably: the addition of facts (Section 

3.2.2.1), variations of the supported value types (Section 3.2.3.3), the support for variants 

(Section 3.2.3.5), the support for mapping existing data models (Section 3.2.4), and the concept 

of a concrete reference data model (Section 3.2.5). 
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The SIDL data model is subdivided into three levels of abstraction being, from highest to lowest, 

Conceptual, Logical, and Specific. The following sections describe each level in detail. 

3.2.1 Conceptual Data Model 

The Conceptual Data Model (CDM) captures the fundamental elements of Data which are 

informations and observables. The objective of the CDM is to provide the highest level of 

abstraction to data such that it exhibits the highest level of reuse. The CDM is meant to be refined 

by the logical data model such that it increases the semantic meaning of the CDM elements. 

Therefore, the CDM elements create the unifying link between all of their refined representations. 

3.2.1.1 Informations and Observables 

An information is “something that is typically not quantified through measurement of the 

physical world but is descriptive in nature” [26]. It is declared using the info element followed 

by its name. Name, description, and unique identity are information examples. The following 

SIDL description presents information examples. 

info Name 
info Description 
info UniqueIdentity 
info PartialIdentity 

An observable is “something which can be quantified through measurement(s) of the physical 

world” [26]. It is declared using the observable element followed by its name. Speed, pressure, 

and mass are examples of observables. Examples of observables expressed in SIDL follow. 

observable Angle 
observable Orientation 

Together, informations and observables allow strong semantic links to be established with any of 

their logical refinements. For instance, the Angle observable can be used to relate to any angle 

representation independently from its computing platform representation, units of measurement, 

or frame of reference. 

3.2.2 Logical Data Model 

The Logical Data Model (LDM) extends the CDM through refinement. The objective of this 

refinement is to increase the semantic meaning of CDM elements while offering concrete data 

representations of the them to suit specific needs. Notably, the logical elements capture facts and 
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measures which provide the concrete representations of informations and observables 

respectively augmented with semantic information such as engineering units and frames of 

reference. 

3.2.2.1 Facts 

A fact is one or more evidences representing an information. It is not part of the FACE data 

model and has been introduced by the author. Its purpose is to provide a concrete representation 

for an information which FACE does not capture. It is declared using the fact element followed 

by its name. The of construct is then used to establish the link between the fact and the 

information it concretely refines by specifying the information reference after the construct. 

Before delving into the purpose of this link, which is detailed in Section 3.2.2.3, a closer look at 

facts is required. Facts are subdivided into two categories: simple and composite. 

A simple fact reduces an information to a single evidence. The fact's representation is specified 

using the as construct followed by the representation's reference which specifies its concrete 

value type (Section 3.2.3.3). Follows is the concrete representation of a partial identity as a 16-bit 

unsigned integer fact. 

// Simple fact refining the PartialIdentity info 
fact IdPart of PartialIdentity as ushort 

A composite fact reduces a set of informations to a set of evidences. It is composed of one or 

more facts, simple or composite. An entity identifier fact representing a unique identity 

information is illustrated next. 

// Composite fact composed of simple facts and refining the UniqueIdentity info 
fact EntityIdentifier of UniqueIdentity: 
  Site as IdPart 
  AppId as IdPart 
  EntId as IdPart 

3.2.2.2 Units, Frames, and Measures 

A measure is “one or more quantities representing an observable in a defined frame of reference” 

[26]. It is declared using the measure element followed by its name. The of construct is then used 

to establish the link between the measure and the observable it concretely refines by specifying 

the observable reference after the construct. As measures are the parallel of facts for observables, 

this link, which is detailed in Section 3.2.2.3, enables an observable to relate to all of its 
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corresponding measure representations. Additionally, measures are subdivided into two 

categories: simple and composite. 

A simple measure “reduces an observable to a single quantity that can be recorded” [26]. It 

specifies this quantity through its units, frame of reference, and precision. Units of measurement 

are declared using the unit element followed by its name. Associating a unit to a simple measure 

is done by referencing the unit using the units property on the measure. The same applies to 

frames of reference which are declared using the frame element followed by its name, and are 

associated to a measure using the frame property. The precision of the measure's value is 

expressed with the precision property as a real literal value (i.e., decimal value). The measure's 

representation is specified after the as construct which specifies its concrete value type (Section 

3.2.3.3). The following example illustrates an angle measure in radians with a True-North 

reference frame. 

unit Radian 
frame TrueNorth 
 
// Simple measure refining the Angle observable 
measure AngleRadian of Angle as single: 
  units Radian 
  frame TrueNorth 
  precision 0.000001 

A composite measure “reduces a set of observables to a set of quantities that can be recorded” 

[26]. A composite measure can be composed of other measures, simple or composite. It can 

specify a frame of reference which its composed measures become relative to. The following 

example illustrates the concrete representation of an orientation observable as a composition of 

angle measures. 

// Composite measure composed of simple measures refining the Orientation observable 
measure OrientationMeasure of Orientation: 
  Psi as AngleRadian 
  Theta as AngleRadian 
  Phi as AngleRadian 

3.2.2.3 Linking Conceptual and Logical Elements 

The purpose of linking conceptual and logical elements together is to increase the semantic 

meaning of data. As an information/observable is refined concretely by one or more fact/measure 

through the of construct, a new semantic link is created that is shared between the fact/measure 

with the notion that they all relate to the same information/observable. This is very powerful as 

many data exchange models represent the same kind of data except with different computing 
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platform representations or semantics. This particularly impacts heterogeneous system 

integration. In the context of multi-architecture environments, it becomes even more essential to 

establish and preserve such links as each architecture has its own representation of a data model. 

Many interoperability issues originate from the lack of such links. 

As an example, consider the concept of unique identity which is present in many data models. 

Within the RPR-FOM [64], for instance, there exists many kinds of unique identities notably: 

entity identity (EntityIdentifier), object identity (RTIobjectId), and emitter beam identity 

(BeamIdentifier). All have different computing platform representations with varying size and 

structure. Additionally, no link exists which relates any of them together. Interoperating RPR-

FOM data with other data exchange models adds even more kinds of unrelated unique identities. 

This prevents from automatically treating identities with a common pattern. Increasing the 

semantic level of data through informations and facts would add the missing links, and could 

enable better automation particularly in the context of gateway applications. 

Another example is in regards to the semantic meaning of data. One common problem faced in 

interoperating data exchange models is with the concept of spatial positions. The typical geodetic 

versus geocentric position is always a problematic area because both are often represented with 

the exact same computing platform representation, except their semantic meaning are completely 

different. Likewise, consider a UUID, which is a universally unique identifier represented as a 

128-bit value, and four 32-bit integers. Both types exhibit the same size, i.e., 128-bit, except their 

semantic meaning are not aligned. Again, increasing the semantic meaning of data by 

establishing links between conceptual and logical elements would prevent these problems. 

3.2.3 Specific Data Model 

The Specific Data Model (SDM) provides concrete data representations. Its main objective is to 

compose logical elements together and expose them as higher-level concepts. Enabling system 

reuse is another SDM objective, and is realized through views which enable the adaption of 

system interfaces to Data (refer to Section 3.2.3.6). Another objective of the SDM is to enable 

the representation of existing data models in SIDL by providing concrete representations aligned 

with them (detailed in Section 3.2.4). The principal SDM elements are entities, value types, and 

views. 
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3.2.3.1 Entities 

An entity is a “non-basis concept that is constructed through composition of basis elements and 

other entities” [26]. An entity can be seen as a structure, or fixed record, with fields. Each field 

has a name, and is of a specific type which can either be another entity or a basis element. Basis 

elements are either facts, measures, or value types. Moreover, an entity is declared using the 

entity element followed by its name. Fields are constructed by specifying their name followed 

by the type reference using the as construct. The following example demonstrates this. 

entity WorldLocationStruct: 
  // Value type composition 
  X as double 
  Y as double 
  Z as double 
 
entity BeamAntennaStruct: 
  // Composite measure composition 
  Orientation as OrientationMeasure 
 
  // Simple measure composition 
  AzimuthWidth as AngleRadian 
  ElevationWidth as AngleRadian 

A cardinality can be specified on a field's type to indicate a bounded or unbounded array, i.e., a 

collection of items, using the array construct "(type)". The following SIDL example 

demonstrates arrays in SIDL. 

entity SphericalAntennaStruct: 
  // Unbounded array composition 
  OrderACoefficients as (single) 
 
entity MarkingArray11: 
  // Bounded array composition 
  Items as (byte, 11)  

3.2.3.2 Composition Over Polymorphism 

As with FACE, SIDL favors composition over polymorphism, i.e., inheritance. This constraint 

ensures coherence in views (Section 3.2.3.6) because views navigate the fields of entities. 

Supporting polymorphism on entities would create complexity in specifying the navigation paths 

particularly when inherited types expose fields of the same name as in derived ones. This 

phenomenon, called name hiding, would require SMEs to disambiguate to correct field to select 

by having them qualify the field's type. For this reason, SIDL prevents polymorphism. Moreover, 

variants can be used to emulate it (refer to Section 3.2.3.5). 
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3.2.3.3 Value Types 

A value type specifies a specific data representation aligned with computing platforms. Most 

value types have a fixed size in bytes. They are derived from a combination of FACE value types 

[26], .NET primitive types [66], and Boo value types [67]. Basically, the value types are aligned 

with FACE with the exception of decimal, which comes from .NET and provides a greater 

numerical range than long double, and string as well as char which use UTF-8 for Unicode 

character support [65]. The type names originate from Boo to make them more succinct, and are 

very similar to C# [66] with the exception of single which replaces float providing a more 

natural alignment with double. Table 3-1 presents the SIDL value types. 

Table 3-1 SIDL Value Types 

Value Type Range Size (bytes) 

sbyte -128 to 127 1 

byte 0 to 255 1 

short -2
15

 to (2
15

 - 1) 2 

ushort 0 to (2
16

 - 1) 2 

int -2
31

 to (2
31

 - 1) 4 

uint 0 to (2
32

 - 1) 4 

long -2
63

 to (2
63

 - 1) 8 

ulong 0 to (2
64

 - 1) 8 

single1 ~ ±1.5e-
45

 to ±3.4e
38

 4 

double1 ~ ±5.0e-
324

 to ±1.7e
308

 8 

decimal2 ~ ±1.0e
-28

 to ±7.9e
28

 16 

bool true or false 1 

char Unicode character (UTF-8) 1 

string Unicode string (UTF-8) Unbounded char sequence 

enum 2
32

 identifiers 4 

                                                 

1
 IEEE floating-point numbers (single and double) 

2
 .NET System.Decimal number 
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3.2.3.4 Enumerations 

An enumeration is "an ordered list of identifiers" [26]. As opposed to the other value types, 

enumerations are not predefined in SIDL hence its different color coding which distinguishes it 

from the predefined ones. An enumeration is declared using the enum element followed by its 

name. An enumeration is a collection of enumerators which are specified using a name. 

Optionally, an integer literal value can be associated to an enumerator. The following example 

demonstrates enumerations in SIDL. 

enum AntennaPatternEnum: 
  Beam 
  SphericalHarmonic 

enum DeadReckoningAlgorithmEnum8: 
  Other = 0 
  Static = 1 
  DRM_FPW = 2 
  DRM_RPW = 3 
  DRM_RVW = 4 
  DRM_FVW = 5 
  DRM_FPB = 6 
  DRM_RPB = 7 
  DRM_RVB = 8 
  DRM_FVB = 9 

3.2.3.5 Variants 

A variant is a special kind of entity. Variants are "discriminated unions of types" [17]. They are 

present in many languages such as C, C++, IDL, and HLA OMT. A variant is used to represent a 

value which has a finite set of varying forms such as for a uniform array of different items. The 

end result is similar to polymorphism (i.e., inheritance). That is primarily why HLA OMT 

incorporates such a concept. A variant's fields are called alternatives, and must conform to entity 

fields (refer to Section 3.2.3.1). The alternative to use is determined by the variant's discriminant 

value which is usually an enumeration. 

A variant is declared using the variant element followed by its name. Then follows the reference 

to the discriminant's type which is specified using the of construct. The list of alternatives is 

specified using case constructs based on the discriminant's range of values. The value associated 

to an alternative must not already be specified by another one. A default alternative can be 

specified using the otherwise construct, and must appear after all declared alternatives. A variant 

must specify at least a single case or otherwise. The following example demonstrates how to 

declare a variant in SIDL. 
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variant AntennaPatternType of AntennaPatternEnum: 
  // BeamAntenna alternative accessible only when discriminant's value is Beam 
  case AntennaPatternEnum.Beam: 
    BeamAntenna as BeamAntennaType 
 
  // Otherwise, the SphericalAntenna alternative is accessible 
  otherwise: 
    SphericalAntenna as SphericalAntennaType 

3.2.3.6 Views 

A view is a particular way of representing one or more entities. The concept of views originates 

from FACE [26]. A view can be seen as a window on entities. It can be used to specify particular 

interest in a subset of an entity's fields. It can also be used to adapt data such as units, frames, and 

representations. Even names can be adapted with a view which provides an aliasing mechanism 

in case where a different notation is required. All these traits make views the pattern of choice 

when requiring Data adaptation. 

A view is declared using the view element followed by its name. Specific points of interest are 

specified through select constructs. This allows navigation within the composed entity's fields 

through the dot '.' path delimiter. The end result of selecting an entity's fields is that they become 

an integral part of the view. The selected field's name can be changed by specifying the new 

name with the alias property on the select construct. Views are particularly well suited to adapt 

entities as is demonstrated in the following example. 

view AppAndWideEntityNumber: 
  // Only interested in EntityIdentifier's AppId and EntId, i.e., ignore Site 
  select EntityIdentifier.AppId 
  // Adapt EntId's representation from ushort to uint 
  select EntityIdentifier.EntId as uint: 
    // Adapt name using an alias 
    // i.e. EntityNumberWide contains an EntityNumber field 
    //      instead of EntId as in EntityIdentifier 
    alias EntityNumber 

In the previous example, the AppAndWideEntityNumber view shows an interest in some of 

EntityIdentifier's fields by only selecting a subset of them. The end result is similar to having 

defined a AppAndWideEntityNumber entity with AppId and EntId fields. Moreover, the EntId field 

is adapted from ushort, i.e., EntityIdentifier's representation, to uint using the as construct. 

The field's name is also changed by renaming it to EntityNumber to adapt to a different notation. 

Therefore, AppAndWideEntityNumber is equivalent to the following declaration. 

entity AppAndWideEntityNumber: 
  AppId as ushort 
  EntityNumber as uint 
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The BeamAntennaDegrees view shows an interest in BeamAntennaStruct's fields by selecting all its 

fields. The end result is similar to having defined a BeamAntennaDegrees entity with AzimuthWidth 

and ElevationWidth fields. The following example demonstrates unit adaptation where 

BeamAntennaDegrees requires angle specified in degrees instead of radians. 

// BeamAntennaStruct uses fields which are angles in radian 
entity BeamAntennaStruct: 
  AzimuthWidth as AngleRadian 
  ElevationWidth as AngleRadian 
 
unit Degree 
measure AngleDegree of Angle as single: 
  units Degree 
 
// BeamAntennaDegrees uses fields which are angles in degrees 
view BeamAntennaDegrees: 
  // Adapt an angle in radians to an angle in degrees 
  select BeamAntennaStruct.AzimuthWidth as AngleDegree 
  select BeamAntennaStruct.ElevationWidth as AngleDegree 

Views play an invaluable role in enabling system interoperability as is further discussed in 

Section 3.2.5. 

3.2.4 Existing Data Model Support 

SIDL enables value types to be specified directly on elements, such as entities, simple facts, and 

simple measures, which FACE disallows [26]. This support is mandatory in order to map existing 

data models. FACE forces the elaboration of strong semantics which is great for new 

development. Unfortunately, it is far from being trivial to map existing data exchange models to 

observables, informations, and measures for instance. Refactoring existing data models could 

also compromise the integrity of already deployed applications. Interoperating with such 

applications inevitably requires to represent them as they are. Another barrier to existing data 

model support is with enumeration literals which are disallowed to specify a literal value by 

FACE. This is primarily because of the IDL baggage which prevents this [32]. Except they are 

required by some data exchange models and therefore are captured in SIDL. 

3.2.5 Concrete Reference Data Model 

The main difference with the FACE data model is that SIDL elements belong to a single level of 

abstraction instead of having refined representations over multiple ones. For instance, an entity 

only has a Specific SIDL representation for it whereas FACE has Conceptual, Logical, and 

Specific ones. FACE’s design decision allows for vaster data variability scenarios. Combined to 
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the fact that FACE governance is only applied at the conceptual and logical levels, this has the 

side effect of specific data possibly varying on every FACE platform causing divergences. These 

divergences might be required in order to deliver the specific platform, except they should be 

minimized. Therefore, constraining refinement in SIDL forces the emergence of a concrete 

reference data model because it inherently promotes specific data reuse. It also has the side effect 

of simplifying modeling by minimizing the repetitive refinement tasks found in FACE. 

An analogy to this would be that SIDL promotes concrete representations whereas FACE 

promotes conceptual ones. Both FACE and SIDL promote conceptual and logical data reuse. 

Except over time, system integration can become simplified by having more and more systems 

adhering to a concrete reference data model dealing with variability only within the systems not 

doing so such as with views to support specific platform needs. 

As an example, consider a concrete reference data model which suggests using angles in radians 

and expressed using double value representations. Derived data models can opt to not use this 

definition, except using it enables easier system reuse across platforms. 

That is why some logical elements specify a value type as their reference representation in SIDL, 

and why some elements are considered specific whereas they have a higher-level of abstraction in 

FACE. 

3.3 The Interface Facet 

The Interface facet is used to capture system interfaces. System interfaces express the data 

systems require to consume, and the data they produce. This can be seen as a data-centric system 

contract and is captured in SIDL using system elements. 

3.3.1 Systems and Ports 

The term system is used to refer to entities whose interface is of interest. Moreover, the system 

element is the parallel of the interface element of WSDL [28] which is used to describe a service 

interface. The word system is used in SIDL instead of interface because it is systems who need to 

interoperate, not their interfaces which only need to be aligned. 

A system is declared using the system element followed by its name. It is considered a black-box 

being solely composed of ports which make up its interface. Ports are similar to fields on entities 
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with the main difference being that a port can either input or output data, or perform both, i.e., 

inout. Following the port's flow is the port's name. The type of the port represents the data that 

flows through it in the form of messages. Therefore, a port restricts data to a single kind of 

message. The message type is specified using the of construct followed by the reference to the 

message type. The of construct distinguishes the port's messaging nature from the as construct 

used on fields which denotes their representation. Messages can be seen as instances of types 

with specific values. 

 

Figure 3-3: Radar System Example 

The following example demonstrates systems in detail and is illustrated in Figure 3-3. The figure 

shows a simplified radar system. The aircraft's radar sensor extracts radar cross-section (RCS) 

information from entities it acquires within the synthetic environment. The RCS information is 

then passed to the processor which determines the ones it detects. The detection information is 

finally pushed to the display. The radar display also controls the state of the processor by turning 

it on or off. The SIDL description corresponding to the whole example is presented next. 

// Entity description which originates from synthetic env. and is captured by the sensor 
entity Entity: 
  // Entity's unique identity 
  EntityIdentifier as EntityIdentifier 
  // RCS signature as DB index 
  RcsSignatureIndex as short 
  // Acoustic signature as DB index 
  AcousticSignatureIndex as short 
 
// Represents the RCS of an entity 
entity RadarCrossSection: 
  // Entity's unique identity 
  EntityIdentifier as EntityIdentifier 
  // RCS signature as DB index 
  SignatureIndex as short 
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// Represents a list of RCS exchanged between the sensor and the processor 
entity RcsList: 
  // Limit RCS count 
  Items as (RadarCrossSection, 500) 
 
// Represents a detection 
entity Detection: 
  // Detected entity's unique identity 
  EntityIdentifier as EntityIdentifier 
 
// Represents a list of detections exchanged between the processor and the display 
entity DetectionList: 
  // Limit detection count 
  Items as (Detection, 20) 
 
// Possible processor states 
enum RadarStateEnum: 
  Off 
  On 
 
// Represents a radar state 
entity RadarState: 
  State as RadarStateEnum 
 
// Extracts RCS info from entities which are processable by the radar processor 
system RadarSensor: 
  // Inputs Entity messages 
  input Entities of Entity 
  // Outputs RCS lists messages 
  output RadarCrossSections of RcsList 
 
// Transforms RCSs into detections which can be displayed by the radar display 
system RadarProcessor: 
  // Inputs radar state messages 
  input State of RadarState 
  // Inputs RCS lists messages 
  input RadarCrossSections of RcsList 
  // Outputs detection lists messages 
  output Detections of DetectionList 
 
// Displays the radar detections and control the radar's state 
system RadarDisplay: 
  // Inputs detection lists messages 
  input Detections of DetectionList 
  // Outputs radar state messages 
  output State of RadarState 

The preceding example contains two types of declarations: data and systems. The data exchanged 

between the radar system's components is captured with entities and value types, such as the 

RadarState enumeration. The system interfaces of each radar component are captured with 

system elements. Notice the symmetry between the inputs and outputs of systems. From the 

preceding SIDL description which captures Data and system Interfaces, we know that systems 

share data, because ports use the same types, except we do not know where data actually flows. 

3.4 The Connection Facet 

Whereas the Data facet is concerned about what data is available to systems and the Interface 

facet about which data systems consume or produce, the Connection facet is concerned about 
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where data is routed. Therefore, the Connection facet is used to capture how system interfaces 

conceptually connect to one another. This is achieved using bus and channel elements. 

3.4.1 Buses and Channels 

A bus is a collection of channels which facilitates the connections and communication of systems 

as well as enable their interaction. It is inspired by the same concept in AADL [68] with the 

difference that the SIDL bus is conceptual. The conceptual links between the Connection, Data, 

and Transport facets is illustrated in Figure 3-4. 

 

Figure 3-4: SIDL Conceptual Data Transport 

A bus is declared using the bus element followed by its name. Channels are added to a bus using 

the channel construct followed by the channel's name. Each channel makes data available in the 

form of messages which is specified using the of construct followed by the reference to the 

message type. The bus for the radar system follows in SIDL. 

bus RadarSystemBus: 
  channel Entities of Entity 
  channel RadarCrossSections of RcsList 
  channel Detections of DetectionList 
  channel RadarState of RadarState 

The preceding example only captures the radar system's bus structure. In order to route data 

between systems, connection information needs to be captured. Systems connect their ports to 

channels using the connect construct on a channel followed by the port's reference. Therefore, the 

channel establishes the communication the link between all the ports connected to it. The full 

radar system's bus, including the system connection information, follows in SIDL. 

Transport
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bus RadarSystemBus: 
  channel Entities of Entity: 
    connect RadarSensor.Entities 
 
  channel RadarCrossSections of RcsList: 
    connect RadarSensor.RadarCrossSections 
    connect RadarProcessor.RadarCrossSections 
 
  channel Detections of DetectionList: 
    connect RadarProcessor.Detections 
    connect RadarDisplay.Detections 
 
  channel RadarState of RadarState: 
    connect RadarProcessor.State 
    connect RadarDisplay.State 

The RadarSystemBus now fully captures the system relationships found in Figure 3-3. 

3.4.2 Configurable Routing 

Multiple buses can be declared for the same systems with different connection information. This 

enables system instances to be configured with specific routing and is particularly useful when 

dealing with redundancy. For instance, an aircraft system is often paired with a pilot and co-pilot 

instance. Using separate pilot and co-pilot buses enables both instances to reuse the same system 

interface and be configured with different routings. 

system Egi: 
  output Attitudes of Attitude 
 
system Imu: 
  output Attitudes of Attitude 
 
system Nav: 
  input Attitudes of Attitude 
 
bus LeftBus: 
  // Use Egi's attitude 
  channel Attitudes of Attitude: 
    connect Nav.Attitudes 
    connect Egi.Attitudes 
 
bus RightBus: 
  // Use Imu's attitude 
  channel Attitudes of Attitude: 
    connect Nav.Attitudes 
    connect Imu.Attitudes 

3.5 The Transport Facet 

The previous facets have captured what Data is exchanged between systems, which data they 

consume as well as produce through their Interface, and where data is routed through the 

Connection of their interfaces to data. The missing link required to completely capture system 



61 

interoperability is how this data gets transported from system to system, and is the concern of the 

Transport facet. 

The Transport facet establishes the concrete link required to address details such as protocol and 

encoding which explains why this facet is considered concrete whereas the others are considered 

conceptual (Figure 3-1). For this reason, these elements are primarily targeted towards system 

integrators. The transport elements include binding, protocol, network, and endpoint. Basically, a 

binding capture the protocol details of buses which a network makes accessible through 

endpoints. 

In addition, the transport elements are derived directly from WSDL [28]. The only divergence 

from WSDL is the service element which is renamed to network in SIDL. The justification for 

this is that the word network is more suited in the context of system interoperability whereas 

service concerns a different domain. 

3.5.1.1 Bindings and Protocols 

A binding "describes a concrete message format and transmission protocol which may be used to 

define an endpoint" [28]. It defines the implementation details necessary to enable data 

exchanges on a bus. This realizes data exchanges because systems are connected on the buses 

through their ports. 

A binding is declared using the binding element followed by its name. The bus detailed by a 

binding is specified using the of construct followed by the bus reference. The protocol to be used 

by the bus is specified using the as construct followed by the protocol reference. A binding 

declaration example follows in SIDL. 

// An HLA 1516-2010 binding for RadarSystemBus 
binding HlaBinding of RadarSystemBus as HLA.Protocol1516_2010 

A binding allows the configuration of the protocol by specifying aspects such as encoding and 

QoS. Each protocol provides properties which can be configured instead of using the default 

values (refer to Chapter 4 for a more complete list). The following example demonstrates HLA 

and DDS bindings for the radar system (Figure 3-3). 
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// An HLA 1516-2010 binding for RadarSystemBus 
binding HlaBinding of RadarSystemBus as HLA.Protocol1516_2010: 
  // Configure aspects common to all channels 
  channels: 
    qos: 
      Reliability = BestEffort 
 
  // Configure a specific channel 
  channel Detections: 
    // Specify QoS for DetectionList.Items 
    qos Items: 
      Reliability = Reliable 
      Order = Receive 
      Sharing = PublishSubscribe 
 
    // Specify type encodings 
    encode RadarStateEnum as HLAoctet 
    encode EntityIdentifyer as HLAfixedRecord 
 
// A DDS 1.2 binding for RadarSystemBus 
binding DdsBinding of RadarSystemBus as DDS.Protocol1_2: 
  channels: 
    qos: 
      Reliability.Kind = BestEffort 
      Durability.Kind = Volatile 
 
  channel Detections: 
    qos: 
      Reliability.Kind = Reliable 
      Durability.Kind = Transient 
      History.Kind = KeepLast 

Bindings can configure aspects common to all channels, through its channels property, or for 

specific ones, using the channel property as illustrated by the previous example. For instance, the 

DdsBinding uses a best-effort reliability kind which makes all channels use this default. The 

Detections channel changes this to require reliable communications instead. The qos Items of the 

HlaBinding configures the Items field of DetectionList to use reliable communications. 

The author considers QoS as sensitive to interoperability and that is why it is modeled instead of 

being delegated to external configuration. Moreover, QoS is positioned in bindings because it is 

intrinsically protocol-related. The default encoding can be changed with encode. Thus, 

RadarStateEnum gets encoded as a single byte, in the HlaBinding, instead of four (Table 3-1). 

Protocols are provided through model compiler extensions (Figure 1-4). This is, in essence, the 

same way WSDL [28] provides extensibility for service descriptions. Details regarding this 

support are provided in Chapter 4. Nonetheless, extensibility is an enabler to fully capturing and 

validating the details of system interface descriptions. 
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3.5.1.2 Networks, Endpoints, and Addresses 

A network describes a set of endpoints at which a particular implementation of a bus is provided. 

In other words, a network provides protocol-bound data access to systems because it realizes the 

bus through a binding. The endpoint "associates a network address with a binding" [28]. From the 

endpoint's address, systems gain access to the bus. There, data exchanges become bound to the 

protocol and characteristics specified by the endpoint's binding. This results in systems being 

interconnected. A similar mechanism is used by WSDL [28] for web services. Service clients 

gain access to the service interface from a service endpoint that is bound to a protocol. 

A network is declared using the network element followed by its name. The bus associated to the 

network is declared with the of construct followed by the bus reference. Endpoints are added to 

networks using the endpoint element followed by the endpoint's name. The endpoint's binding is 

specified using the of construct followed by the binding reference. The address of the endpoint 

can also be specified using the address element on the endpoint. It is optional as more often than 

not, the address is not known a priori. Additionally, as with protocol details on bindings, address 

details are protocol-specific and are discussed in Chapter 4. 

The following example shows the radar system network which provides access to the 

RadarSystemBus from the bindings previously declared. 

network RadarSystemNetwork of RadarSystemBus: 
  endpoint Hla of HlaBinding: 
    address: 
      FederationName = 'Radar System' 
 
  endpoint Dds of DdsBinding: 
    address: 
      DomainId = 0 
      Partition = 'Radar System' 

This completes the description of the radar system example (Figure 3-3). The resulting 

description captures all the relevant facets surrounding system interoperability. The next section 

presents how to use this information particularly for automation purposes. 

3.6 Using SIDL Descriptions 

The main purpose of SIDL descriptions, from the perspective of this thesis, is to automate the 

date-interchange software of systems. In order to accomplish this, a system implementation needs 

to refer to two SIDL elements in order to fully capture its interface and the details surrounding its 

data exchanges. The two SIDL elements are: 
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 System Reference 

 Network Endpoint Reference 

First, a system needs the definition of its interface as captured in SIDL which is achieved by 

referring to the corresponding system element. The system element links to the Interface facet as 

well as the Data facet since the system's ports refer to the data the system exchanges. 

Second, a system needs the definition of how the data is exchanged, and from where it is 

accessible. This is achieved by referring to the endpoint of a network element. The endpoint 

specifies the access point, and its associated binding covers the transport details. Therefore, these 

definitions capture the required details concerned by the Transport facet. Moreover, because the 

binding associated on the endpoint captures the Transport details of a specific bus, Connection 

information becomes available. 

Therefore, the data-interchange software of any system implementation can be completely 

derived from a SIDL system reference and a network endpoint reference. The following example 

demonstrates these two elements for the radar sensor using the HLA binding (Figure 3-3). 

system RadarSensor: 
  input Entities of Entity 
  output RadarCrossSections of RcsList 
 
network RadarSystemNetwork of RadarSystemBus: 
  endpoint Hla of HlaBinding: 
    address: 
      FederationName = 'Radar System' 

3.6.1 Data-Interchange Software Automation 

The general methodology used to generate the data-interchange software of a system involves a 

two-stage workflow. The first stage, which is modeling, is used to model, in SIDL, the system 

interfaces capturing all the details related to the system interoperability facets. The second stage, 

which is code generation, involves specifying the system and endpoint in order to generate the 

corresponding software artifacts. 

The author proposes a two-stage workflow in favor of a single-stage one. A single-stage 

workflow would see the compiler input SIDL descriptions and generate the corresponding 

software artifacts directly. In this context, SIDL descriptions, which are equivalent to source 

code, are reused directly instead of being shared through a library. The two-stage workflow 

ensures that SIDL descriptions, i.e., the source code, are only reusable through libraries 
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preventing the problems associated to reusing source code directly. The following sections 

describe these two stages in detail. 

3.6.2 SIDL Modeling Stage 

The modeling stage, illustrated in Figure 3-5, is used to create reusable SIDL libraries from SIDL 

descriptions. These libraries can be referenced by other SIDL descriptions to share common 

definitions, or used in the code generation stage to generate the software artifacts. A SIDL library 

is created by a model compiler which inputs SIDL descriptions and ensures their validity before 

generating the library. The model compiler is supported by a metadata library containing the 

SIDL element definitions. It is used by the compiler to encode the descriptions into a SIDL 

library providing common grounds for SIDL model compilers and the code generation stage. 

 

Figure 3-5: SIDL Modeling Stage 

3.6.3 SIDL Code Generation Stage 

The code generation stage, illustrated in Figure 3-6, is used to generate the software artifacts 

realizing the data exchanges of a specific system. The SIDL code generator inputs SIDL libraries 

and the reference to a system element as well as to the endpoint of a network element. Because 

code generation is largely contextual, the generator also inputs specific settings such as the output 

programming language of the software artifacts or preferences impacting the generated software 

interface exposed to the system using it. Additionally, the generator shares the same metadata 

library as used in the modeling stage simplifying the analysis of SIDL libraries. Frameworks and 

libraries can also support the code generation process. For instance, middleware dependencies 
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can be injected in the generated software artifacts. From there, the data-interchange software is 

generated and can be added to the system's implementation. Relying on external libraries enables 

easier software maintenance as the external library can be changed without requiring the system 

implementation to be rebuilt and deployed again. This step could also be done, in whole or in 

part, at runtime as is suggested by [60] in the context of dynamically generated gateways using 

runtime code generation. 

 

Figure 3-6: SIDL Code Generation Stage 

A concrete implementation of the two-stage workflow is documented in Chapter 4. 

3.7 SIDL Model Compiler Behavior 

This section covers the rules which are not captured by the SIDL grammar (Appendix A) and 

which model compilers must enforce. These rules are required in order to make SIDL more 

portable and involves consistent compiler behavior. 

3.7.1 Identifier Declaration Rules 

 A new element's name must be unique in its namespace within its declared library. 

3.7.2 Composition Rules 

 Composition shall never resolve to circular definitions which are proscribed. This applies 

to the following elements: entity, composite fact, composite measure. 
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3.7.3 Fact Rules 

 A field's name must be unique within a composite fact. 

 A field's type must resolve to any other fact within a composite fact. 

3.7.4 Measure Rules 

 A simple measure cannot specify a precision when its representation is an enum. 

 A simple measure can declare at most a single units, frame, and precision. 

 A field's name must be unique within a composite measure. 

 A field's type must resolve to any other measure within a composite measure. 

3.7.5 Enumeration Rules 

 An enumerator's name must be unique within an enum. 

3.7.6 Array Rules 

 An array's element type when specified as an identifier must reference a valid entity, 

measure, or fact. 

3.7.7 Entity Rules 

 A field's name must be unique within an entity. 

 A field's type when specified as an identifier must reference a valid entity, measure, or 

fact. 

3.7.8 Variant Rules 

 A case's value must be unique within a variant. 

 An alternative's name must be unique within a variant. 

3.7.9 View Rules 

 A select's member name, or alias when specified, must be unique within a view. 
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 A select's type when specified as an identifier must reference a valid entity, measure, or 

fact. 

 A select adapting a type with the of construct when both the referenced entity member's 

type and the specified type represent the same type reference shall result in a warning. 

3.7.10 System Rules 

 A port's name must be unique within a system. 

 A port's type when specified as an identifier must reference a valid entity, measure, or 

fact. 

3.7.11 Bus Rules 

 A channel's name must be unique within a bus. 

3.7.12 Property Rules 

 A property declaration must reference a declared property of the associated protocol. 

 A property declaration referencing an identifier must reference a value declared by the 

associated protocol. 

3.7.13 Binding Rules 

 A channel must reference a declared channel on the associated bus. 

 A channel's name must be unique within a binding. 

 A encode declaration must reference a valid entity, measure, fact, or enum. 

 A property declaration affecting previously declared ones has precedence over them 

within the same scope (channels or channel) or for future references (channels). 

 A key declaration must be unique within a channel. 

 A key declaration must resolve to a valid field relative to the channel's associated message 

type. 

 A qos declaration must be unique within a channel. 
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 A qos declaration must resolve to a valid field relative to the channel's associated message 

type. 

3.7.14 Network Rules 

 An endpoint's name must be unique within a network. 

 An endpoint declaration must reference a binding which is associated to the same bus as 

the network. 

3.7.15 Unspecified Behavior 

 A view's select adapting a type with the of construct when both the referenced entity 

member's type and the specified type are different shall be implementation specific
3
.  

                                                 

3
 See the Limitations in Section 6.3 for more details on this behavior. 
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Chapter 4 EXPERIMENTAL IMPLEMENTATION 

This chapter focuses on the experimental implementation used to elaborate the SIDL language, 

the SIDL model compiler, and the SIDL code generator. Section 3.6 presented the general 

approach which involved a two-stage workflow. This chapter covers a concrete implementation 

of this workflow. Moreover, this chapter covers the implementation challenges faced while 

implementing both stages as well as the implementation choices which were made in the context 

of this experimentation. 

This chapter is separated into two main sections each one covering a distinct perspective: 

workflow and system interoperability facets. The workflow perspective examines the various 

artifacts, their relationships to one another, and the technological choices supporting the two-

stage workflow's implementation. The perspective of the system interoperability facets examines 

the implementation of each facet throughout the iterative methodology (refer to Section 2.5). 

Following these two sections is one describing the strategy used to validate the implementation. 

4.1 Two-Stage Workflow 

The workflow used to create the test applications involves two stages which are generalized in 

Section 3.6. The first one is to create SIDL descriptions. The second one is to generate the 

associated code. The reason for this is to allow the reuse of the elements declared in SIDL 

descriptions. For instance, a SIDL library contained only the data model elements. Other SIDL 

descriptions can reuse it to describe their specific system interfaces, data, connections, and 

transport. 

4.1.1 Modeling Stage Implementation 

Figure 4-1 presents the implementation of the SIDL modeling stage. SIDL descriptions are 

created using the SharpDevelop [69] text editor. The selection of this tool derives from the choice 

of the compiler baseline used to create the SIDL model compiler. The SIDL description compiler, 

i.e., model compiler, is embedded within SharpDevelop. It compiles SIDL descriptions into a 

SIDL library while validating them a priori. 
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Figure 4-1: SIDL Modeling Stage Implementation 

The SIDL model compiler itself is an extension to Boo [70]. Boo is an open source programming 

language for .NET platforms [71] featuring strong metaprogramming capabilities. It is 

particularly well suited to create DSLs [72]. It was selected over the Eclipse Modeling 

Framework [73] principally for its .NET support, simplicity, and integration with text editors, 

such as SharpDevelop, which can be embedded in other .NET application stacks. .NET support 

was mandatory in the industrial context where this research was held. Moreover, existing 

codebases were principally in .NET, and in C++ which .NET is particularly well suited to 

interoperate with. The goal of the compiler baseline selection was to select one which did not 

require writing a lexical analyser, a grammar parser, and a full-featured compiler stack from 

scratch including abstract-syntax tree analysis as well as error handling. Therefore, Boo was the 

most suited choice. 

The SIDL compiler is defined within the SIDL.Compiler .NET library which is an extension to 

Boo. This library is also the implementation of the SIDL Metadata Library illustrated in Figure 

3-5 when describing the general approach to the modeling stage. As a Boo extension, this library 

intervened within the Boo compilation stages in order to create the SIDL DSL. Therefore, this 

implementation makes SIDL an internal DSL [74] as the full Boo language features are still 

available to SIDL modelers. This limitation can be addressed by changing Boo's parser stage to 

make SIDL an external DSL [74] therefore only presenting SIDL constructs to modelers. This 

work was left outside the scope of this research as it does not impact the demonstration of the 

research objectives, moreover the elaborated SIDL models only use the SIDL grammar. 

Nonetheless, future work can make an external DSL out of SIDL with Boo. 

SIDL Description
(SharpDevelop Editor)

SIDL Description Compiler 
(Boo)

SIDL Library
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Know-How

What

How
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Boo outputs .NET libraries which, therefore, are used by the SIDL compiler to represent SIDL 

libraries. The SIDL compiler transforms SIDL descriptions and maps them to a common 

metadata interface with the help of SIDL.Compiler
4
. For instance, this enables a network in a 

SIDL description to reference a binding in another SIDL description as well as a bus in a 

referenced SIDL library. This methodology is the same one used for typical software 

development with the exception that the source code is in SIDL. This enables configuration 

management with strong versioning as .NET libraries exhibit strong-names [75]. 

Furthermore, one could use the SIDL.Compiler library directly to create SIDL descriptions from 

C#, or any .NET language, since the library represents all SIDL elements which are used by the 

SIDL model compiler. This mechanism is used to expose a protocol to a binding through SIDL 

compiler extensions. This facilitates the integration of new protocols as they are left outside of 

the SIDL compiler, and can be written in any .NET language. Moreover, protocols implement an 

interface defined by SIDL.Compiler as any other SIDL element. In the context of the research, 

the following protocols were implemented, using Boo, as SIDL compiler extensions: DDS [34], 

HLA [10], and a generic Socket protocol for UDP communication. The Socket protocol is used to 

support the implementation of DIS [6]. 

Additionally, a protocol exposes a list of properties which can be modified by bindings. For 

instance, the DDS protocol exposes a Reliability property for the qos of a channel. This value 

is defined as an enumeration, containing BestEffort and Reliable choices, and provides the 

valid range of values the SIDL compiler can accept. The same pattern applies to an endpoint 

address and encode which are protocol-specific and extended the same way as qos. 

4.1.2 Code Generation Stage Implementation 

With SIDL libraries created from SIDL descriptions, a system and an endpoint can be specified 

to generate code from them as illustrated in Figure 4-2. The code generation consists of 

transforming the specified inputs into C++ or C# code based on the settings passed to the 

generator. 

                                                 

4
 For brevity, the SIDL.Compiler API is not described in this thesis, but can be provided on demand by the author. 
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Figure 4-2: SIDL Code Generation Stage Implementation 

The code generator reuses the SIDL.Compiler library to share the core definitions of all the SIDL 

elements used by SIDL libraries. This greatly reduces code generation complexity because the 

metadata is accessed as strongly-typed SIDL elements rather than as generic metadata or text. For 

instance, the RadarSystemNetwork of Section 3.5.1.2 can be accessed as an INetwork object as 

declared by SIDL.Compiler. Additionally, one important aspect of the SIDL.Compiler library is 

that it allows for a SIDL library to be re-created from a SIDL description. That is because a SIDL 

library presents the same metadata as a SIDL description. Therefore, it is possible to re-create a 

complete SIDL description from a SIDL library. 

The strategy of sharing the SIDL.Compiler library between both stages supports well the iterative 

nature of the methodology used (refer to Section 2.5). Extending the language with new concepts 

only impacts the compiler until the code generator is ready to use them. This also makes updating 

the code generator trivial when the compiler changes since breaking changes are easily 

pinpointed in either stage because of the strongly typed information used. 

On the code generation side, T4 text templates [76] is used to etch-out the target code skeleton 

and fill it based on embedded C# code constructs. Code generation patterns can be used with T4 

which simplifies even more this task. As an example, HLA requires the generation of code which 

handles code serialization and de-serialization. Because both exhibit the same code generation 

structure, a pattern is used handle their common structure while specific implementations fill it 

with either serialization or de-serialization code snippets. 

The generation of the software artifacts is supported by runtime libraries notably ones 

simplifying protocol handling and encoding. This simplifies code generation because the libraries 
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encapsulate complexity that is not required to be generated. For instance, generating the DDS 

QoS attributes requires the interaction of many objects which the DDS runtime library simplifies. 

The following generated C# example demonstrates this. 

// With library support 
var qos = participant.TopicQosBuilder() 
  .Reliable() 
  .Transient() 
  .KeepLast() 
  .Shared() 
  .Build(); 
 
// Without library support 
DDS.TopicQos qos; 
participant.GetDefaultTopicQos(ref qos); 
qos.Reliability.Kind = DDS.ReliabilityQosPolicyKind.ReliableReliabilityQos; 
qos.Durability.Kind = DDS.DurabilityQosPolicyKind.TransientDurabilityQos; 
qos.History.Kind = DDS.HistoryQosPolicyKind.KeepLastHistoryQos; 
qos.Ownership.Kind = DDS.OwnershipQosPolicyKind.SharedOwnershipQos; 

Generating the software artifacts starts by finding the system and endpoint within the SIDL 

libraries provided as input. Then, based on the type of source code to generate, a code-specific 

factory is selected. Additionally, based on the type of protocol required by the endpoint, as 

defined by its associated binding, a protocol-specific factory is selected. Then, both factories 

work hand-in-hand to generate the software artifacts. For instance, the HLA factory generates the 

HLA FOM module required by HLA runtimes. Another example is with DDS which requires an 

IDL file to be generated. The IDL file is then used by DDS implementations to handle data 

serialization. The following example demonstrates a SIDL description with its corresponding 

IDL representation. 

// 
// SIDL 
// 
enum State: 
  StandBy 
  Start 
  Stop 
 
entity Controller: 
  Id as long 
  State as State 
 
system ControllerSystem: 
  output Controllers of Controller 
 
bus ControlBus: 
  channel Controllers of Controller 
 
binding ControlBusDdsBinding of ControlBus as DDS.Protocol1_2: 
  channel Controllers: 
    key Id 
 
network ControlNetwork of ControlBus: 
  endpoint Dds of ControlBusDdsBinding 
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// 
// IDL: Generated using above SIDL, System: ControllerSystem, Endpoint: ControlNetwork.Dds 
// 
enum State 
{ 
  StandBy, 
  Start, 
  Stop 
}; 
 
struct Controller 
{ 
  unsigned long long Id; 
  State State; 
}; 
#pragma keylist Controller Id 

4.2 System Interoperability Facets Implementation 

Throughout the implementation of the system interoperability facets, many challenges emerged. 

For instance, while elaborating the SIDL language, syntax changes would trigger the most source 

code refactorings. Introducing new concepts were less impacting, except changing the language 

would have ripple effects down to the systems using the generated software interface. Therefore, 

the following sections present how SIDL was implemented covering the language, the compiler, 

and the code generation with reference to the system interoperability facets. 

4.2.1 Data Facet Implementation 

The Data facet was the first one to be implemented as data definitions represent the foundation of 

any data exchange. The language side was implemented based on the FACE data model [26] with 

the exceptions detailed in Chapter 3. This part of the language was the simplest primarily because 

of the abundance of data exchange models. On the code generation side, this would consist of 

elaborating the target form of the code required by the test applications, and then automating it. 

The data model definitions would cover all of the data model elements, e.g., observables, 

measures, informations, facts, entities, variants, views... They would all be transformed into 

.NET classes which inherit from a base interface corresponding to their SIDL element 

counterpart in SIDL.Compiler. An entity inherits from IEntity, simple measure from 

ISimpleMeasure, and so on. 

Each iteration of the language would introduce new data elements, revised by SMEs, which the 

code generator would transform. For instance, the introduction of measures broke the code 

generation because entity fields were now missing from the generated code being modeled as 



76 

entities prior to the language update. Moreover, some iterations were used only to refine the 

generated code because of impacts it would have on systems using it. For instance, simple 

measures were transformed into C++ structures at first with a single field representing its value. 

Except this would impact the performance of the DDS middleware which was optimal when 

replacing structures with their corresponding value type. In other words, the generated software 

interface used a double for a speed measure instead of a speed structure containing a double. 

Preserving type-safety in the generated code would have been ideal, except it was left outside of 

this research not impeding the demonstration of the research objectives. Moreover, these changes 

originated from recommendations of the middleware vendor. 

The greatest challenge encountered while implementing the Data facet was with views. This 

required special handling on the Boo pipeline because a select statement might reference 

metadata that is currently being compiled in another SIDL description. This metadata was not yet 

available while a view was being processed by Boo. Therefore, a handler was attached to the 

stage of the Boo compilation pipeline which made this metadata available
5
. This allowed views 

to be properly generated in the output SIDL library, and validated before doing so. Unfortunately, 

view support was limited to representing entities due to the lack of conversion support. This 

limitation is further discussed in Chapter 6. 

4.2.2 Transport Facet Implementation 

Implemented next was the Transport facet in order to link the data model to protocols, and enable 

preliminary data exchanges. At this point, bindings were simplified, even from their WSDL 

counterpart [28], in order to consider the data model directly instead of buses. This was revisited 

when implementing the Connection facet with the help of SMEs on the language side. Protocol 

implementation was facilitated by the use of extensions on the SIDL description side to 

seamlessly introduce new protocols, and by protocol runtimes on the code generation side. 

For DDS support, the data model was transformed into IDL which DDS implementations use for 

data serialization through their own code generation (IDL to C++ and C#). To simplify code 

                                                 

5
 The AfterStep event of the Boo compilation pipeline is used waiting for the ResolveTypeReferences to complete. 
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generation, DDS helper classes were created in a helper library. This would also reduce the size 

of the generated code as common source code was now shared in the helper library. 

A socket was also implemented to support a reduced DIS data model. Its elaboration was more 

challenging because of the lack of higher-level functionality, as offered by DDS or HLA, and it 

required the generation of the code to encode data which was automated by DDS. In order to 

simplify code generation, a dedicated serialization library was created incorporating stream 

readers and writers. The streams also simplified the handling of endianness through swapping 

and non-swapping classes, i.e., StreamWriter and StreamWriterSwapped. DIS expects data to be 

serialized in big-endian ordering therefore the target application decided to either use the 

swapped or non-swapped version at runtime based on the execution platform's network ordering. 

HLA support was the most challenging because of the additional code generation required for 

generating the HLA FOM module. HLA applications use FOM modules for data exchanges at 

runtime whereas DDS generates the required metadata at compile-time. Additionally, HLA 

required the generation of data encoding similar to the socket implementation with the main 

difference that data alignment rules exist for predefined encodings. HLA encoding helpers were 

not used for FOM encoding because of their reliance on dynamically allocated memory [77]. 

Nevertheless, they would only have simplified the data alignment rules of the predefined 

encodings [17], e.g., HLAfixedRecord, HLAvariantRecord. As with the DDS and socket 

implementations, helper classes were used to simplify code generation. 

As with views in the Data facet, bindings were the greatest challenge encountered while 

implementing the Transport facet because they require metadata that is not yet available when 

being processed. The same trick was used to attach a handler to the Boo compilation pipeline and 

wait for the right stage to provide the required metadata. 

4.2.3 Interface Facet Implementation 

Next to follow was the Interface facet's implementation. This required representing systems and 

their ports in SIDL libraries which were trivial as it only required the addition of new SIDL 

element metadata. Unfortunately, in order to implement the code generation side, the Connection 

facet had to be implemented first because no link existed at this point between data, transport, 

and interfaces. 
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4.2.4 Connection Facet Implementation 

The implementation of the Connection facet was the most challenging and required a major 

refactoring of the compiler, the code generator, and the test applications. That is because it is the 

glue between all the other facets dealing with the full stack from the system interface down to the 

transported data. The compiler side was the most challenging because of the introduction of the 

bus element and the connections of system ports to bus channels. Because the language elements 

were based on AADL [40], this provided guidance for their introduction. 

In the early stage of implementation, the code generator referenced bindings directly to trigger 

code generation. Bindings provided the link to data directly since buses were not yet introduced. 

The introduction of the bus element broke how data was provided to the code generator therefore 

triggering a major refactoring. This resulted in the analysis of the bus channels based on the 

selected system to determine which data to use by correlating the connected ports. Moreover, 

representing the system's ports in the generated code consisted of generating readers and writers 

in the software interface. At the same time, this completed both the Interface and the Connection 

facet implementations. 

4.2.5 SIDL to DDS Mapping 

The SIDL to DDS mapping consists in generating a DDS participant in the software interface. A 

DDS topic is generated for each bus channel using the same channel name for the topic. Each 

topic's QoS attributes are mapped from the corresponding qos declarations in the corresponding 

channel declaration, or channels, in the binding. The endpoint's address, when specified, sets 

the DDS domain identifier and partition name of the DDS participant. The generated IDL file 

includes all the types referenced by connected channels recursively including their inner 

declarations therefore capturing the complete data exchange model. For instance, fields of entities 

are recursively analysed to include their declarations. The mapping of SIDL types to IDL types is 

presented in Table 4-1. The mapping of value types is based on the size of the SIDL's 

representation size (Table 3-1) when no direct correspondence exists in IDL. 
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Table 4-1: SIDL to IDL Type Mapping 

SIDL Type IDL Type 

Entity struct 

View struct 

Variant union 

Enum enum 

Composite Fact struct 

Simple Fact IDL value type based on representation 

Composite Measure struct 

Simple Measure IDL value type based on representation 

Bounded Array array 

Unbounded Array sequence 

Value Type Corresponding IDL value type, otherwise based on size 

 

4.2.6 SIDL to HLA Mapping 

The SIDL to HLA mapping consists in generating a HLA RTI federate ambassador in the 

software interface. For each bus channel that is connected, when an encoding is specified as 

HLA.interactionClass, then an HLA interaction class with the channel's type name is generated, 

otherwise it is an object class. Each field of the channel's type is considered a parameter in the 

case of an interaction, or a class attribute otherwise. Each topic's QoS attributes are mapped from 

the corresponding qos declarations in the corresponding channel declaration, or channels, in the 

binding to the parameters/attributes. The mapping of the type of a parameter/attribute is based on 

Table 4-2. The mapping of value types is based on the size of the SIDL's representation size 

(Table 3-1) when no direct correspondence exists in HLA. Unsigned integer types have been 

added to the set of basic data types as HLA only provides signed versions. This lack should be 

addressed within the next revision of the standard. 
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Table 4-2: SIDL to HLA Type Mapping 

SIDL Type HLA Type Default HLA Encoding 

Entity fixedRecord HLAfixedRecord 

View fixedRecord HLAfixedRecord 

Variant variantRecord HLAvariantRecord 

Enum enumeratedData HLAinteger32BE 

Composite Fact fixedRecord HLAfixedRecord 

Simple Fact simpleData Fact's representation 

Composite Measure fixedRecord HLAfixedRecord 

Simple Measure simpleData Measure's representation 

Bounded Array fixedArray HLAfixedArray 

Unbounded Array variableArray HLAvariableArray 

Value Type Corresponding HLA basic 

type, otherwise based on 

size 

Determined by selected HLA basic type 

The endpoint's address, when specified, sets the HLA federation name. The generated HLA 

FOM module is constructed in the same fashion as the DDS IDL file with the exception that it is 

an XML file and its content is based on Table 4-2. Moreover, when an encoding is specified, it is 

used instead of the default encoding as described in Table 4-2. 

4.2.7 SIDL to DIS Mapping 

The SIDL to DIS mapping consists in generating a socket participant, as defined in the socket 

helper library, in the software interface. A socket topic is generated for each bus channel using 

the same channel name for the topic. The generated data exchange model is constructed in the 

same fashion as the DDS IDL file, as described in Section 4.2.5, with the exception that it is in 

C++ or C#. 

4.3 Implementation Validation 

As presented in the iterative methodology (Section 2.5), the success criteria of each iteration 

involved the demonstration of functional test systems exhibiting the same behavior as the one 

defined in the previous iteration. 
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Testing the compiler involved the creation of test cases written in SIDL using all of the language 

elements. This would ensure that regressions on the language were captured by these tests. 

Testing the compiled SIDL libraries against compiler regressions was found to be the most 

complex task as the only decent methodology found was to use the code generator. This involved 

ensuring the code generator would cover all of the metadata exposed by the SIDL library. This 

proved to be challenging as language elements were introduced faster than they were used by the 

code generator. Nonetheless, this strategy caught many breaking changes in the SIDL library 

compilation and typically involved major metadata changes. 

Because the focus of this research is on data exchanges, regression tests were used to validate 

their behavior. The performance aspects of the generated code were not examined as it replicated 

what was considered to be the optimal code that a senior software developer would have 

manually written. This was also inherent to the iterative methodology used as the code generator 

was built against code templates developed by such software experts. 

The first kind of regression tests involved the comparison of the generated software artifacts with 

the manually created ones. This would ensure that the code generation preserved the same 

software elements. It was often required to reformat the manually created source code to enable 

better comparison. These tests were applied to both C++ and C# code bases independently 

primarily because of the inherent differences in the middleware and helper library interfaces. This 

methodology proved to be very effective as many errors were found this way before going any 

further. 

The second kind of regression tests consisted in interoperating a test system using the updated 

software interface with the same system using the software interface of the previous iteration. 

Moreover, these tests were done manually using data injection from user interfaces. Because the 

comparison tests validated that the same software characteristics were preserved, the 

interoperability tests only consisted in visually determining if data was exchanged or not. This 

proved to always be sufficient as the identified regressions only came from errors introduced in 

the supporting libraries and the protocol runtimes. Once deemed valid, the entire code base was 

updated to only preserve the newly created software artifacts. 

All of these regression tests have therefore demonstrated the experimental implementation. The 

following chapter focuses on the results obtained using this experimental implementation. 
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Chapter 5 EXPERIMENTAL RESULTS 

This chapter presents the experimental results of using SIDL to address specific test cases. Each 

test case is a distributed software application involving the interoperability of test systems. They 

are detailed with a particular regard over their data-interchange software which is generated from 

SIDL descriptions. All the test cases and the test applications are detailed in this chapter. 

The primary goal of all the test cases is a contract-first approach to the data exchanges. That is, 

any data exchanged by the test systems needs to be specified in SIDL. This ensures that special 

cases are always dealt with in SIDL instead of being compensated for in the application's 

codebase. Moreover, this chapter presents the experience of SMEs modeling system interfaces 

and the details surrounding their data exchanges in SIDL, along with using the generated 

software artifacts emanating from these models into their code base. 

5.1 Test cases 

From the start of the experimentation phase of this research, test cases were elaborated in order to 

capture the essence of the targeted system integration and interoperability issues emanating from 

multiple discussions and refinements with SMEs along with literature data. These culminated 

into the research's objectives and resulted in the following test cases. The full SIDL descriptions 

used to capture these test cases is provided in Appendix B. 

5.1.1 Test Case 1 - Colliding Balls 

This test case involved reusing a simple distributed simulation application which basically 

involves balls colliding together. The goal of this test case is to have a representative system that 

SMEs would develop dealing with the system's inputs and outputs, i.e., its data exchanges. It is 

meant to demonstrate the software interface exposed to SMEs as well as their automation from 

SIDL descriptions. 

In this test case, the balls, represented as rigid spheres of various sizes, bounce in a cubical room 

using a frictionless gravity-based model. Each instance of the application, denoted as a collision 

system, shares its data with the existing ones by distributing it over a communication 

middleware, DDS or HLA. This results in a distributed simulation of colliding balls where each 

collision system inputs and outputs balls. Moreover, a collision system extrapolates the positions 
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of balls and only computes the collisions of the balls it produced. In other words, local balls 

collide with local or remote balls from the perspective of a collision system. Because it is a 

distributed application, the extrapolation model used is the DIS_DRALG_DRM_RVW(4) of the 

dead reckoning algorithm [6] which at the same time determines the criteria for outputting data 

updates. The resulting test application is illustrated in Figure 5-1. 

 

Figure 5-1: Colliding Balls Test Case 

Figure 5-1 shows two test systems, the left one producing a single small ball while the right one 

produces two big ones, and a controller system. Each test system contains a 3D display where 

balls colored in blue are outputted by a system while the red ones represent inputted ones. The 

controller system is used to control the execution of the whole distributed application by 

outputting common tick and simulation times as well as a shared simulation state covering the 

start-up, pause, run, and stop states. Once the controller is in the run state, the collision systems 

execute their model. The collision system's user interface supports many options including the 

injection of new balls and the ball count at each injection. 

On the architecture side, an Entities data model describes in SIDL the data that is exchanged 

between systems. A Control data model does the same for sharing state and time data. A collision 

system is loaded by a container which handles its execution. This way, collision systems do not 

need to be aware of the control's data exchanges and the containers can load any type of model, 

through a common interface, which has been used for all test case systems. All the code bases are 

in C++ for this test case. 
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5.1.2 Test Case 2 - Ownership Transfer 

This test case is meant to demonstrate the concept of ownership transfer which implies having a 

system drive the value of another one such that the other systems see the new values instead of 

the original ones. Ownership transfer is a typical function used in distributed simulations. The 

test case reuses the collision system previously defined. It consists in having a ball follow 

another. To this end, a web front-end allows the selection of master/slave pairs. Once the 

ownership is assigned, the ownership system drives the position of the slave with the master's 

position offset by a constant. This is illustrated in Figure 5-2. 

 

Figure 5-2: Ownership Transfer Test Case 

One can notice that the top-most system sees the effect of the ownership while the bottom one 

does not. That is expected as this type of ownership is only visible at the middleware-level which 

is DDS here. The ownership system writes the position of the slave using a higher strength QoS 

therefore achieving the desired effect. 
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On the architecture side, the web front-end communicates with a C# REST service [78]. A SIDL 

ownership service is defined to input the ball descriptions and output the ownership data to the 

ownership system. Then, the ownership system, also defined in SIDL, outputs the new position 

data thereby demonstrating the ownership transfer. Moreover, an Ownership data model 

describes in SIDL the data exchanged between the ownership service and system. 

5.1.3 Test Case 3 - DDS-DIS Gateway 

This test case is meant to be representative of multi-architecture environment considerations by 

demonstrating a gateway application bridging two different architectures, DDS and DIS. The 

gateway bridges the Entities data model, used by the Colliding Balls test case, and a DIS subset 

modeled in SIDL. It is illustrated in Figure 5-3. 

 

Figure 5-3: DDS-DIS Gateway Test Case 
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In order to reuse the collision systems, two gateway systems are used which share the same SIDL 

definition. Basically, each collision system resides in its own SIDL network. This is achieved by 

using different DDS partition names. In Figure 5-3, the left collision system resides in the 

Entities partition while the right one in the Entities2. In order to bridge both partitions with the 

two gateway systems, each gateway connects to either the Entities or Entities2 partition. Then, 

each gateway system outputs the resulting DIS data on the same DIS network. Because each 

gateway system inputs DIS data from the same DIS network, this triggers the reverse transforms 

resulting in the collision system of the opposing network to receive the transformed balls. 

Therefore, the full data flow as seen in Figure 5-3 is as follows: 

 Left collision system outputs to Entities network 

 Left gateway system inputs from Entities network, outputs to DIS network 

 Right gateway system inputs from DIS network, outputs to Entities2 network 

 Right collision system inputs from Entities2 network. 

In addition, the gateway's code base is in C#. 

5.2 Modeling System Interface Descriptions 

The SME feedback from modeling system interfaces in SIDL is very positive. Its strongest 

highlighted force is its expressiveness. SMEs find that SIDL only shows them what they need to. 

Its separation of concerns also contributes to their understanding of the data models particularly 

as demonstrated by the SIDL descriptions developed for the test cases (Appendix B) which 

organizes SIDL descriptions by system interoperability facet (Figure 2). Moreover, most SMEs 

do not want to be aware of the transport technicalities which can be encapsulated in isolated 

SIDL descriptions and be taken care of by system integrators. 

Another noted plus by SMEs is in regards to treating SIDL descriptions as source code. The 

SMEs used the same software tools to manage the SIDL files, notably the same revision control 

system and comparison tool, which made them "feel at home". They noted that this particularly 

contributed to their understanding of the evolution of the data models. The SIDL models are also 

stored within the same code base as the test systems. 
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The principal difference on the tooling side SMEs faced is the additional editor introduced to edit 

SIDL files. SMEs would have preferred to use a single tool for handling all of their source code. 

This tool integration concern was expected, but was left out of the scope of this research not 

hindering the demonstrability of the research objectives, and can be addressed by extending the 

existing source editor. Additionally, in order to link the SIDL code generation with their code 

base, their source code project had to be modified to include pre-build events. This consisted in 

providing to the code generator the SIDL system and endpoint references, the SIDL library 

references, and the target language. Again, SMEs would have preferred a better integration, but 

was required only once. 

On the language side, the only criticized aspect of SIDL by SMEs was the array syntax which 

uses parentheses instead of the common square brackets. Moreover, SMEs asked for the 

inclusion of lower bounds such that they are able to capture lists with a minimum item count. 

This is also in line with UML modeling which presents cardinality has having both upper and 

lower bounds. 

SMEs expressed that the validation messages of the SIDL compiler really helped them 

understand and correct their modeling errors. An example of this was the error messages which 

exactly pinpointed to the model elements impacted by the introduction of breaking changes, for 

instance, such as when renaming an entity as seen in Figure 5-4. 

 

Figure 5-4: Pinpointing a Breaking Change in SIDL 

Another example was the notification of the duplication of named elements particularly across 

multiple SIDL descriptions. Users even requested additional validation rules to further prevent 
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their typical modeling errors and increase their efficiency. An example of this was the validation 

omission of paths specified in the select clauses of a view. Errors were always captured, except 

it was by the compiler of the generated code instead of the SIDL model compiler. This 

complicated the user’s understanding of the error and was hard to relate to the invalid select. 

The SIDL model compiler contextualized such errors. 

The code generation capabilities have also been noted as enabling efficiency as it prevented 

typical encoding inconsistencies with the data model. Another noted plus was the reuse it 

enabled. Many data model refactorings occurred simply to remove duplications, particularly 

expressing the same concept except with different names, and to standardize specific data types 

as well as units. 

One side to improve upon, as noted by users, is code completion, or autocomplete, which has not 

been implemented as of this writing. The tooling support is present, but the lack of time 

prevented its integration. The same applies to syntax highlighting which was partially 

implemented. SMEs considered it less important than code completion as they consider the 

language readable as it stands. The following example illustrates the targeted syntax highlighting 

versus the actual one. 

// Expected syntax highlighting 
measure Position_Meter_Double of Position as double: 
  units Meter 
  precision 0.00001 
 
// Actual syntax highlighting 
measure Position_Meter_Double of Position as double: 
  units Meter 
  precision 0.00001 

One major benefit of SIDL, as highlighted by SMEs, was the ability to capture multi-architecture 

peculiarities by modeling them in SIDL in a uniform way. They noted that it was particularly 

useful while developing the DDS-DIS gateway as every aspect could be captured from a single 

viewpoint providing an architectural oversight enabling efficient access to the whole application. 

Moreover, it was noted that the configurability of SIDL networks easily helped reuse the same 

applications throughout the test cases without modifying them. For instance, the colliding balls 

test case could have its endpoint address configured externally allowing it to be reused easily for 

the gateway test case. 

All in all, the experience of modeling system interfaces in SIDL was very effective and allowed 

SMEs to focus on their expertise by hiding software complexity from them. The following 
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chapter elaborates on this as it presents a general discussion over the research questions and the 

demonstration of the research objectives. 



90 

Part III 

CONCLUSIONS
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Chapter 6 GENERAL DISCUSSION 

The preceding chapters aimed at contributing to the answer of the research questions, notably: a) 

how to capture system interfaces and which elements should be captured, b) how to capture 

multi-architecture considerations, and c) how to use system interface descriptions to automate 

system interoperability tasks. In this regards, the general methodology proposed to address 

specific research objectives. This led to advent of: 1) a new system interface description language 

used to capture system interfaces and the various aspects surrounding their data exchanges, and 

2) a new method for automating the system-level data-interchange software from system 

interface descriptions. These new tools contribute to the simplification of system integration and 

interoperability. The following sections present a general discussion regarding these advances, 

particularly with reference to the current state of the art, focusing on their implications and 

limitations. 

6.1 System Interface Description Language 

This thesis studied three key aspects relating to system interfaces: the relevant language elements, 

modeling system interfaces with the language, and capturing multi-architecture considerations. 

6.1.1 Relevant Language Elements 

The first aspect studied involved the creation of a new perspective on system interoperability by 

introducing the system interoperability facets notably the system Interfaces, the Connection of 

these interfaces to data, the Data exchanged between systems, and the data’s Transport from 

system to system. Prior to finding the facets, the Levels of Conceptual Interoperability Model 

(LCIM) defined by [79] was the only architecture viewpoint overlooking system interoperability, 

and was only used to characterize the attainable levels of interoperability between systems. 

On the other hand, the system interoperability facets structure the problem domain enabling a 

clear separation of concerns, and provide the architectural foundation to a system interoperability 

taxonomy. To this end, existing taxonomies were studied principally originating from standards. 

It was discovered that no single solution covers the full scope of the interoperability facets. 

Therefore, the language elements relevant to describing system interfaces were forged from 

existing ones, along with novel additions, into this new taxonomy in order to cover the full 
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spectrum of the system interoperability facets. In turn, this new taxonomy enables a better 

understanding of the elements impacting system integration and system interoperability, and the 

common language which can be shared amongst stakeholders, such as integrators, suppliers, and 

system experts. 

6.1.2 Modeling System Interfaces 

The second aspect studied involved modeling system interfaces using this new taxonomy. SIDL, 

the System Interface Description Language, would become this incarnation as described 

throughout Chapter 3. As demonstrated by the study of existing formats, i.e., meta-models, they 

primarily focus on Data with most ones only capturing this facet, exhibit limited validation 

semantics, or are not easily understandable by the stakeholders targeted by this research even if 

some languages are expressed in human-readable formats. The study identified DSLs as potential 

candidates for capturing system interfaces and addressing these issues. 

Consequently, SIDL was materialized as a textual DSL covering all the system interoperability 

facets. Moreover, SIDL simplifies change identification as well as the understanding of interface 

evolution by being in the language of its stakeholders as demonstrated in Chapter 5. This is 

critical in finding issues early on in the development and integration processes. At the same time, 

SIDL provides a common interchange format which facilitates communication between 

stakeholders, simplifies interface governance, enables reuse of system interface descriptions, and 

provides common grounds for engineering tools. The impacts of the introduction of a new 

language to SMEs are counter-balanced by the fact that the language is designed to reflect their 

domain as such decreases its learning curve. Furthermore, managing SIDL descriptions as source 

code has the added benefit of leveraging the same software engineering practices including 

reusing the same revision control system and configuration management. For SMEs, this also 

hides complexity from them, increase their productivity, and better leverage their expertise. 

6.1.3 Capturing Multi-Architecture Considerations 

The third aspect studied focused on capturing multi-architecture considerations. Identifying a 

way to capture such detail with the right level of abstraction is a key problematic area of system 

integration and system interoperability as no solution currently exists. The study revealed that 

there is a general consensus towards an architecture-agnostic format to address these 
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considerations. Unfortunately, only preliminary work has been done, until now, in this area. 

Moreover, these research initiatives focus on simplifying gateway solutions which bridge multi-

architecture environments therefore do not tackle the problem at its root. Nevertheless, they do 

recognize the need to have at least architecture-neutral representations of the data exchange 

models. 

Consequently, SIDL was designed as an architecture-agnostic format used to capture, not only 

Data, but the full span of the system interoperability facets. Architecture-specific details are 

modeled in SIDL through its Transport elements as detailed in Chapter 3. Moreover, 

architecture-specific representations can be derived from SIDL descriptions as demonstrated in 

the experimental results presented in Chapter 5 particularly when tackling the DDS-DIS gateway. 

This implies that SIDL captures the details relevant to system data exchanges down to specific 

architectures. At the same this, this simplifies the introduction of changes to system interfaces as 

changes are automatically propagated down each architecture's own representation being 

introduced from a single architectural viewpoint defined in SIDL. As such, SIDL is an 

architecture description language. Additionally, capturing multi-architecture considerations in 

SIDL is an enabler to the further automation of system integration and interoperability activities. 

6.2 Automation of the System-Level Data-Interchange Software 

This thesis studied the automation of the software responsible for system data exchanges as a 

way of simplifying the tasks involved in system integration and interoperability. To this end, 

code generation techniques were studied and it was found that they are used extensively in the 

industry principally for automating software artifacts, such as source code and configuration data. 

Moreover, some solutions use these techniques in order to automate data serialization. 

Additionally, the study of DSLs revealed that their usage could allow SMEs to limit their work 

on the interconnection of system interfaces as well as the data they exchange instead of the 

intricacies of data serialization and communication protocols. 

This led to the introduction of the SIDL code generator described in Chapter 4. The SIDL code 

generator has the novelty of generating the data-interchange software from system interface 

descriptions covering all the system interoperability facets. Therefore, this enables the code 

generator to take better decisions because it has access to a richer pool of information, notably 

from the high-level system relationships down to the low-level protocol and encoding details. 
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Because multi-architecture considerations are captured natively in SIDL, this enables the code 

generator to be architecture-agnostic making it reusable in other contexts. 

The study of code generation techniques also found that they can be optimal in order to adapt to 

the environment in which the generated code is executed. This capability is mandatory in order to 

provide the flexibility required by systems to enable their reuse across multiple platforms in 

support of product lines. Consequently, the SIDL language was augmented based on these 

findings by introducing the concept of views in order to capture system interface variability, as 

described in Chapter 3, and enable their automation as described in Chapter 4. 

The general methodology of transforming system interface descriptions into data-interchange 

software therefore culminates in the combination of the modeling workflow and the code 

generation workflow, i.e., the two-stage workflow presented in Chapter 3. This enabled the 

automation of the system-level data-interchange software of all the test cases presented in 

Chapter 5 and resulted in simpler system interoperability. 

6.3 Limitations 

The following sections present limitations of the proposed approach to the automation of the 

system-level data-interchange software. The limitations cover both the modeling and code 

generation workflows as proposed by the two-stage workflow presented in Chapter 3. Moreover, 

these limitations, some of which were identified in preceding chapters, principally originate from 

the fact that they were not investigated by this research which future work could address. 

6.3.1 More than Semantic 

SIDL only covers up to the Semantic level of the Levels of Conceptual Interoperability Model 

(LCIM) as defined by [79]. Thus, the following levels of the LCIM are covered by SIDL: 

 Technical (communication infrastructure) 

 Syntactic (message format) 

 Semantic (reference model) 

The Technical level is covered in SIDL by the Transport elements except for binding which is at 

the Syntactic level being the mechanism to format data. The Syntactic level also includes all of 

the Data elements except for facts and measures which are at the Semantic level providing strong 
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meaning to data. The other SIDL elements are considered at the Semantic level as they 

encompass a reference model. 

The current state of SIDL does not cover the following levels of the LCIM which future work 

could address: 

 Pragmatic (information exchange context) 

 Conceptual (fully specified model) 

Supporting higher LCIM levels would enable further system interoperability and automation. As 

an example, BOM’s patterns of interplay [23] capture mission details making them reach the 

Pragmatic level. SIDL buses could be considered to be at the Pragmatic level because they 

capture the concrete link between systems, except this information is not used by systems which 

would be required to reach this level. 

Furthermore, one limitation of SIDL is the ability to completely represent WSDL [28] and TENA 

[35] models. Both rely on the concept of operations which are not captured in SIDL. One strategy 

could be to extend the system element to include operations in addition to ports. Another one 

could be to create higher-level abstractions similar to WSDL's message exchange patterns. 

Because operations can always be atomically decomposed into data, whether for requests or 

responses, exchange patterns could be introduced in SIDL's data model. This would also bring 

SIDL to the Pragmatic level. 

6.3.2 Conversion Modeling 

As previously mentioned in Section 4.2.1, view support was limited in this research. On the 

language side, data adaption was captured by SIDL's model compiler which was able to 

recognize if either the types matched or not, i.e., if the referenced type of the select clause and 

the type specified with the as construct were equal or not. When both types matched, a warning 

was issued since adaptation was not required, and when both differed, a warning was issued 

stipulating that the final type was reverted to the referenced type of the select clause since no 

conversions were available to validate or perform the adaptation. Therefore, views were treated 

as entities by the code generator. 
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FACE supports conversions in its data model as long as they are between units or frames [26]. 

Moreover, affine conversions, in the form     , can be defined, along with descriptive ones 

which are meant to be informative and manually implemented by model users. 

In order to provide the flexibility required by systems to enable their reuse across multiple 

platforms in support of product lines, the implementation of views must cover conversions. To 

this end, SIDL's data model could be extended to incorporate conversions which was preliminary 

prototyped. The following SIDL code could represent this type of support with affine conversions 

along with general purpose conversions which would be defined externally and which code 

generators would have to support. 

external_conversion GeodeticToGeocentric of Geodetic, Geocentric 
 
affine_conversion DegreesToFahrenheit of Degree, Fahrenheit: 
  m: 9/5 
  b: 32 

6.3.3 Defining External Bus Connections 

A bus, in SIDL, captures system connection information by having system ports connected to its 

channels. One limitation of this pattern is the requirement that all systems must connect to the 

bus at the same time and within the same SIDL description. Moreover, reusing a bus with 

different connection information is not possible as it stands and would require the introduction of 

an external connection mechanism. This was prototyped in this research, but unfortunately could 

not be completed. The following SIDL example demonstrates how the RadarDisplay system 

presented in Chapter 3 could be connected to the RadarSystemBus using a new connection 

element. 

connection RadarDisplayConnection of RadarDisplay: 
  connect State in RadarSystemBus.RadarState 
  connect Detections in RadarSystemBus.Detections 

6.3.4 Configuration in Support of Modeling 

It is interesting to note that the elements captured by SIDL descriptions represent the minimal set 

of information required to describe system interfaces and their data exchanges. Many information 

items are not captured by SIDL and are left as configuration data. For instance, the configuration 

of the DDS and HLA runtime libraries, such as multi-cast groups, are not captured but are 
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essential in achieving system interoperability. Moreover, middleware configuration data is often 

vendor-specific. This makes their integration in SIDL requiring further standardization. 

The rule to determine if an information item should be captured in SIDL or be left out as 

configuration data is far from being trivial. Software configuration is so fundamental that FACE 

proposes standard configuration services [26]. A simplified rule could be to derive new SIDL 

elements from information items only when they are standardized and impact system 

interoperability in a uniform way. Nonetheless, this requires further investigation. 

6.3.5 Standard SIDL Library Bindings and Metadata Interface 

SIDL libraries have been implemented in .NET. It would be interesting to revisit this to 

determine if it is the proper interchange format or if other platform bindings should be specified 

instead such as a Java binding. This also requires standardizing the content of the SIDL.Compiler 

library in order to expose a uniform interface to code generators. 

6.3.6 Protocol Extensibility 

Another area which would benefit system interoperability is through the standardization of SIDL 

protocol extensions. This is not a trivial task as it touches the core grammar and the interface 

used to define the protocols. One way of addressing protocol extensibility would be to introduce 

a protocol element in SIDL which would only capture its characteristics, as opposed to modeling 

the protocol itself, such as its allowed QoS attributes. 

All these limitations highlight the potential growth that comes out of the findings of this thesis 

and SIDL in particular. Nevertheless, the contributions of this thesis provide a significant step 

towards simpler system integration and interoperability laying a path ahead filled with even 

further simplifications. 
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CONCLUSION 

This thesis has addressed the general problem of simplifying system integration and 

interoperability by automating the system-level data-interchange software through a system 

interface description language. The current state of the art explored through a comprehensive 

survey in Chapter 1 shed light on limitations of existing solutions particularly in capturing the 

system interfaces and considering multi-architecture environments for which no solution existed 

prior to this work. This literature review also uncovered potential starting points such as using 

domain-specific languages and code generation techniques. From there, the general methodology 

of this research was formulated in Chapter 2 with the main research objectives tackling a 

language for describing system interfaces and the various aspects surrounding their data 

exchanges, as well as a method for automating the data-interchange software of systems from 

models described in this language. 

SIDL, the System Interface Description Language, introduced in Chapter 3, features the relevant 

language elements for capturing system interfaces. It covers all the system interoperability facets 

notably the system Interfaces, the Connection of these interfaces to data, the Data exchanged 

between systems, and the data’s Transport from system to system. The automation of the 

software responsible for system data exchanges was achieved through a two-stage workflow 

involving modeling and code generation stages. This was described in Chapter 4 along with the 

experimental implementations developed covering the language, the model compiler, the code 

generator, and their validation. SMEs involved in the system development and integration 

activities would use the two-stage workflow to create test applications which consisted in the 

experimental results captured in Chapter 5. The contributions made by this thesis are discussed in 

detail in Chapter 6 along with limitations which highlight future research directions. 

The following sections provide a summary of the contributions made by this thesis along with a 

vision of future challenges. 

Contributions 

This thesis has contributed to the simplification of the tasks involved in system integration and 

interoperability with the goal of reducing their associated costs and increasing their effectiveness 

along with their efficiency. Even though the primary context of this thesis revolved around full 
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mission simulators interacting within distributed simulations, the problem of formally describing 

system interfaces spans more than this context and could apply to other ones such as operational 

systems. 

This thesis contributed a system interface description language (SIDL) and a method for 

automating the system-level data-interchange software using this language. SIDL is an 

architecture description language used to formally describe system interfaces focusing on the data 

they exchange and on the various aspects surrounding them. As a meta-model, it facilitates 

system interoperability and enables further automation of the tasks involved in achieving it 

particularly through code generation. Being architecture-agnostic, it provides a single 

architectural viewpoint overseeing all system interfaces and capturing multi-architecture 

considerations. The advent of SIDL also contributed a new taxonomy providing a comprehensive 

perspective over system interoperability. 

As a DSL, SIDL provides the richness and expressiveness of a dedicated language to describe 

system interfaces. The main values of SIDL reside in the easier validation, evolution, and 

governance of system interfaces it enables. This originates from the human-understandability of 

the language reflecting the domain of its stakeholders. At the same time, this hides software 

complexity from them preventing the conflicting duality of requiring them to be experts both in 

their domain and in areas that are in support of their work such as software development and 

hardware resource usage. Moreover, acknowledging the current hardware and software trends 

emphasizes this need even more. The experiences with these new contributions demonstrated 

concrete gains in these directions. Future work can only improve upon this as the way ahead 

seems filled with DSLs. 

Future Challenges 

This section discusses potential ways forward providing a vision over software application 

development and in improving SIDL as well as enabling system interoperability even further. 

Workflow-Driven Development 

As highlighted previously, hiding software complexity from SMEs is quite challenging, but the 

results obtained demonstrate that it is imperative to produce more cost-effective, productive and 

interoperable software products. Moreover, there is a need to consider the software application as 
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a whole addressing its cross-cutting concerns (Figure 4) which further increases the challenge. 

That is why completely hiding software complexity from SMEs following the full product 

lifecycle management workflow is one future research area exhibiting many challenges. 

 

Figure 4: Addressing Cross-Cutting Concerns 

Multi-DSLs 

As an architecture description language, SIDL focuses on system integration and interoperability. 

This aspect is one of many others required to fully describe a software application. Since a 

software application deals with multiple domains and a DSL focuses on one particular domain, 

multiple DSLs need to be combined to define a complete software application. Otherwise stated, 

a DSL provides a means to edit a particular aspect, or architectural viewpoint of an application’s 

model (Figure 4). For instance, one could use a graphical DSL implementing a domain specific 

notation for a coarse-grained cross-cutting concern, like a graphical representation of the 

computing complex to address the deployment of the software application, while a textual DSL 

would be used to address a finer-grained cross-cutting concern (Figure 4) such as the 

mathematical equations involved in the extrapolation of network data to address performance. 
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Several issues are associated with managing multiple DSLs ranging from mixing graphical and 

textual DSLs in a single model to integrating multiple DSLs while keeping them as loosely 

coupled as possible [54]. To this end, Völter [54] highly recommends managing dependencies 

between DSLs such that there is a strict layering with unidirectional dependencies. For instance, 

Völter [54] proposes to integrate multiple DSLs by first defining a base DSL on top of an 

existing framework to simplify its use by raising its level of abstraction and then building a more 

business-domain specific DSL on top of the base DSL. Also, Johansen [53] underlines that 

frameworks composition is typically easier because frameworks all use a general purpose 

language that acts as a common ground. For DSLs to be composable means this common ground 

needs to be designed up-front. For Fowler and Parsons [80], this common ground is the 

Application Model (Figure 4) (also referred to as the semantic model). 

Model Compilers & Legacy Assets 

Again, according to the compiler analogy, no one would change assembly code generated by a 

compiler to modify the behavior of a C++ program. Similarly, no one should think of changing 

the C++ code generated by a Model Compiler to modify the behavior of a DSL program. 

However, this dogmatic approach collides with reality because in practice not all the software 

application is auto-generated, such as legacy frameworks and third-party systems. In fact, 

integrating legacy code requires manual coding and debugging against the auto-generated code. 

As pointed out by Völter [54], this increases the importance for a Model Compiler to generate 

documented code having well defined extension points for user code. Another source of difficulty 

is the non-uniformity of some existing legacy APIs, forcing a Model Compiler to deviate from its 

highly uniform model transformations. 

Debugging at the DSL Level 

The ability for SMEs to debug software applications using DSL concepts is also subject to 

several issues [54]. Again, a software application is also composed of code that isn’t generated by 

a Model Compiler. In particular, since an application such as a FMS is deployed on several hosts, 

a DSL debugger is required to deal with distributed data. Moreover, some applications are subject 

to strict performance requirements forcing a Model Compiler to support the equivalent of Debug 
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and Release builds to avoid the overhead of the additional code needed to enable debugging at 

the DSL level. 

Towards Hardware-Aware Software 

The Application Model (Figure 4) captures several cross-cutting concerns and model-specific 

details giving Model Compilers the necessary context and leeway to make better decisions 

regarding hardware optimizations. Even though the software application has strong hardware 

dependencies, it is the Model Compilers that provide cross-platform portability by adapting the 

Application Model towards a specific platform. However, moving towards hardware-aware 

software to obtain better performance requires a Know-How (Figure 1-4) of a hardware specific 

set of changes to the Application Model that increases the gap between the DSL concepts and the 

structure of the associated code. Fortunately, as pointed out by Völter [54], integrating multiple 

DSLs via several Model Compilers as part of a transformation chain seems applicable to deal 

with this additional complexity. 

Modeling Solution 

DSLs are designed with the goal of implementing a solution to a specific problem domain. To be 

successful, one also needs to consider a particular domain workflow. To this end, the more we 

hide software complexity from SMEs, the more we are able to identify and formalize the 

fundamental tasks of SMEs which define their workflow. In the end, we are still creating 

software that is an economic asset and that needs to deliver the required performances while 

being maintainable. This asset, the software application, still needs to be updated with patches 

and service packs. Some software quality attributes cannot be hidden from the SMEs because 

ultimately they are dealing with software. A major challenge is to provide a productive 

infrastructure by maintaining the level of abstraction across DSLs with tools supporting the 

SMEs’ workflow which encompasses the full product lifecycle. 

Capturing Data Model Mappings 

Early work has started to extend SIDL in order to capture the mapping between data models. The 

end goal is to simplify gateway creation by providing an architecture-agnostic way of specifying 

the mappings. One of the test applications developed was a DDS-DIS gateway to bridge two 
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SIDL networks. It reused the same code generation as their individual DDS and DIS application 

counterparts. Preliminary work started to capture these mappings in order to simplify and further 

automate this application. This is a natural evolution of SIDL and is in line with system interface 

adaptation in order to simplify system integration further.  
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APPENDIX A SIDL GRAMMAR REFERENCE 

The following provides the SIDL grammar reference. The format used is a simplified version of 

the Extended Backus–Naur Form (EBNF) for XML [81] with the following distinctions: 

productions use '=' instead of '::='. The presented grammar only focuses on the language 

constructs. Therefore, other constructs are possible such as single line comments, which start 

with '//', and multi-line comments, which are enclosed within '/*' and '*/'. Moreover, control 

blocks are delimited by whitespace which removes the need for explicit delimiters such as curly 

braces '{}' in C, C++, and Java. Whitespace includes any character in Unicode class Zs, 

horizontal tab (U+0009), vertical tab (U+000B), and form feed (U+000C) [66]. Additionally, 

long lines can be broken-up with the line-continuation character which is the backslash '\'. 

sidl_description = 
  namespace_directive? 
  import_directive* 
  declaration* 
 
namespace_directive = 'namespace' identifier 
import_directive = 'import' identifier ('as' ID)? 
 
declaration = 
    data_facet_decl 
  | interface_facet_decl 
  | connection_facet_decl 
  | transport_facet_decl 
 
data_facet_decl = 
    observable_decl 
  | info_decl 
  | unit_decl 
  | frame_decl 
  | measure_decl 
  | fact_decl 
  | enum_decl 
  | variant_decl 
  | entity_decl 
  | view_decl 
 
interface_facet_decl = 
  system_decl 
 
connection_facet_decl = 
    bus_decl 
 
transport_facet_decl = 
    binding_decl 
  | network_decl 
 
observable_decl = 'observable' ID 
info_decl = 'info' ID 
unit_decl = 'unit' ID 
frame_decl = 'frame' ID 
 
measure_decl = 
    simple_measure 
  | composite_measure 
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simple_measure = 
    'measure' ID 'of' observable_ref 'as' value_type (':' simple_measure_property+)? 
 
simple_measure_property = 
    'units' unit_ref 
  | 'frame' frame_ref 
  | 'precision' real_literal 
 
composite_measure = 'measure' ID 'of' observable_ref (':' field_decl+)? 
 
observable_ref = identifier 
unit_ref = identifier 
frame_ref = identifier 
 
fact_decl = 
    simple_fact 
  | composite_fact 
 
simple_fact = 'fact' ID 'of' info_ref 'as' value_type 
composite_fact = 'fact' ID 'of' info_ref (':' field_decl+)? 
 
info_ref = identifier 
 
enum_decl = 'enum' ID ':' enum_literal+ 
enum_literal = ID ('=' integer_literal)? 
 
variant_decl = 
    'variant' ID ':' (case_member+ otherwise_member? | case_member* otherwise_member) 
case_member = 
    'case' (enum_literal_ref | integer_literal | bool_literal) (':' field_decl)? 
otherwise_member = 'otherwise' ':' field_decl 
enum_literal_ref = ID '.' identifier 
 
entity_decl = 'entity' ID (':' field_decl+)? 
 
view_decl = 'view' ID (':' select_clause+)? 
select_clause = 'select' entity_member_ref ('as' type)? ':' 'alias' ID)? 
entity_member_ref = ID '.' identifier 
 
system_decl = 'system' ID (':' port_decl+)? 
port_decl = ('input' | 'output' | 'inout') ID 'of' type 
 
bus_decl = 'bus' ID (':' channel_decl)? 
channel_decl = 'channel' ID 'of' type (':' bus_connect_decl+)? 
bus_connect_decl = 'connect' port_ref 
port_ref = system_ref '.' ID 
system_ref = identifier 
 
binding_decl = 'binding' ID 'of' bus_ref 'as' protocol_ref (':' binding_member+)? 
binding_member = ('channels' | 'channel' ID) (':' channel_member+)? 
channel_member = 
    key_decl 
  | qos_decl 
  | encode_decl 
bus_ref = identifier 
protocol_ref = identifier 
key_decl = 'key' ID (',' ID)* 
qos_decl = 'qos' ID? (':' property_assignment+)? 
encode_decl = 'encode' identifier ('as' type)? 
property_assignment = identifier '=' expression 
 
network_decl = 'network' ID 'of' bus_ref (':' endpoint_decl+)? 
endpoint_decl = 'endpoint' ID 'of' binding_ref (':' address_decl)? 
address_decl = 'address' (':' property_assignment+)? 
binding_ref = identifier 
 
field_decl = ID 'as' type 
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type = 
    identifier 
  | value_type 
  | array_type 
 
array_type = '(' type (',' integer_literal)? ')' 
 
value_type = 
    'sbyte' 
  | 'byte' 
  | 'short' 
  | 'ushort' 
  | 'int' 
  | 'uint' 
  | 'long' 
  | 'ulong' 
  | 'single' 
  | 'double' 
  | 'decimal' 
  | 'bool' 
  | 'char' 
  | 'string' 
  | enum_ref 
 
enum_ref = identifier 
 
expression = 
    identifier 
  | real_literal 
  | integer_literal 
  | string_literal 
  | bool_literal 
 
identifier = ID ('.' identifier)? 
ID = id_start (id_part)* 
id_start = letter_character | '_' 
id_part = 
    letter_character 
  | decimal_digit 
  | connecting_char 
  | combining_char 
  | formatting_char 
decimal_digit = any Unicode character of the class Nd 
connecting_char = any Unicode character of the class Pc 
combining_char = any Unicode character of the classes Mn or Mc 
formatting_char = any Unicode character of the class Cf 
 
integer_literal = decimal_digits 
real_literal = 
    decimal_digits ('.' decimal_digits)? exponent_part? 
  | '.' decimal_digits exponent_part? 
decimal_digits = [0-9]+ 
exponent_part = ('e'|'E')('+'|'-')? decimal_digits 
 
string_literal = '"' character* '"' | '\'' character* '\'' 
character = char | escape_sequence 
escape_sequence = one of \' \" \\ \0 \a \b \f \n \r \t \v 
 
letter_character = any Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl 
char = any character except new_line 
new_line = one of \r \n \r\n 
 
bool_literal = 'true' | 'false' 
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APPENDIX B TEST CASE SIDL DESCRIPTIONS 

B.1 Common Data Model 

namespace Common 
 
info UniqueIdentity 
fact UniqueId of UniqueIdentity as ulong 
 
observable Time 
observable Position 
observable Velocity 
observable Acceleration 
 
unit Tick // 1 tick = 100ns 
unit Degree 
unit Meter 
unit MeterPerSecond 
unit MeterPerSecondPerSecond 
 
// Coordinated Universal Time 
frame UTC 
frame EarthCenter 
 
measure TickTime of Time as long: 
  units Tick 
  frame UTC 
  precision 1 // Precision is 1 tick i.e. 100ns 
 
measure Position_Meter_Double of Position as double: 
  units Meter 
  precision 0.00001 
measure Velocity_Meter_Single of Velocity as single: 
  units MeterPerSecond 
  precision 0.00001 
measure Acceleration_Meter_Single of Velocity as single: 
  units MeterPerSecondPerSecond 
  precision 0.00001 

B.2 Control Data Model 

namespace Control 
 
import Common 
 
enum State: 
  StandBy 
  Start 
  Pause 
  Run 
  Stop 
 
entity Timer: 
  Tick as TickTime 
  ScenarioTime as TickTime 
 
entity Controller: 
  State as State 
 
entity Container: 
  Id as UniqueId 
  State as State 
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B.3 Entities Data Model 

namespace Entities 
 
import Common 
 
measure WorldLocation of Position: 
  frame EarthCenter 
  X as Position_Meter_Double 
  Y as Position_Meter_Double 
  Z as Position_Meter_Double 
 
measure LinearVelocity of Velocity: 
  X as Velocity_Meter_Single 
  Y as Velocity_Meter_Single 
  Z as Velocity_Meter_Single 
 
measure AccelerationVector of Acceleration: 
  X as Velocity_Meter_Single 
  Y as Velocity_Meter_Single 
  Z as Velocity_Meter_Single 
 
enum DeadReckoning: 
  DIS_DRALG_OTHER = 0 
  DIS_DRALG_STATIC = 1 
  DIS_DRALG_DRM_FPW = 2 
  DIS_DRALG_DRM_RPW = 3 
  DIS_DRALG_DRM_RVW = 4 
  DIS_DRALG_DRM_FVW = 5 
  DIS_DRALG_DRM_FPB = 6 
  DIS_DRALG_DRM_RPB = 7 
  DIS_DRALG_DRM_RVB = 8 
  DIS_DRALG_DRM_FVB = 9 
 
entity EntityType: 
  EntityKind as byte 
  Domain as byte 
  Country as ushort 
  Category as byte 
  Subcategory as byte 
  Specific as byte 
  Extra as byte 
 
entity EntityDescription: 
  Id as UniqueId 
  EntityType as EntityType 
 
entity EntityState: 
  Id as UniqueId 
  LinearVelocity as LinearVelocity 
  Location as WorldLocation 
  Acceleration as AccelerationVector 
  DeadReckoning as DeadReckoning 

B.4 Ownership Data Model 

namespace Ownership 
 
import Common 
 
entity Ownership: 
  MasterId as UniqueId 
  SlaveId as UniqueId 
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B.5 DIS Data Model 

namespace DIS 
 
import Common 
 
enum PduType: 
  DIS_PDUTYPE_OTHER = 0 
  DIS_PDUTYPE_ENTITY_STATE = 1 
 
enum EntityKind: 
  DIS_EKIND_OTHER = 0 
  DIS_EKIND_PLATFORM = 1 
  DIS_EKIND_MUNITION = 2 
  DIS_EKIND_LIFEFORM = 3 
  DIS_EKIND_ENVIRON = 4 
  DIS_EKIND_CULTURAL = 5 
  DIS_EKIND_SUPPLY = 6 
  DIS_EKIND_RADIO = 7 
  DIS_EKIND_EXPENDABLE = 8 
  DIS_EKIND_SENS_EMIT = 9 
  DIS_EKIND_LIMIT = 10 
 
enum PlatformDomain: 
  DIS_PLATFORM_DOMAIN_OTHER = 0 
  DIS_PLATFORM_DOMAIN_LAND = 1 
  DIS_PLATFORM_DOMAIN_AIR = 2 
  DIS_PLATFORM_DOMAIN_SURFACE = 3 
  DIS_PLATFORM_DOMAIN_SUBSURFACE = 4 
  DIS_PLATFORM_DOMAIN_SPACE = 5 
 
enum CharSet: 
  DIS_MARKING_CHAR_SET_UNUSED = 0 
  DIS_MARKING_CHAR_SET_ASCII = 1 
 
enum DeadReckoning: 
  DIS_DRALG_OTHER = 0 
  DIS_DRALG_STATIC = 1 
  DIS_DRALG_DRM_FPW = 2 
  DIS_DRALG_DRM_RPW = 3 
  DIS_DRALG_DRM_RVW = 4 
  DIS_DRALG_DRM_FVW = 5 
  DIS_DRALG_DRM_FPB = 6 
  DIS_DRALG_DRM_RPB = 7 
  DIS_DRALG_DRM_RVB = 8 
  DIS_DRALG_DRM_FVB = 9 
 
entity PduHeader: 
  ProtocolVersion as byte 
  ExerciseIdent as byte 
  PduType as PduType 
  ProtocolFamily as byte 
  TimeStamp as uint 
  Length as ushort 
  Padding as (byte, 2) 
 
entity EntityIdent: 
  Site as ushort 
  AppId as ushort 
  EntId as ushort 
 
entity EntityType: 
    EntityKind as EntityKind 
    Domain as PlatformDomain 
    Country as ushort 
    Category as byte 
    Subcategory as byte 
    Specific as byte 
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    Extra as byte 
 
entity Vector: 
  X as single 
  Y as single 
  Z as single 
 
entity Position: 
  X as double 
  Y as double 
  Z as double 
 
entity Euler: 
  Phi as single 
  Theta as single 
  Psy as single 
 
entity Marking: 
  CharSet as CharSet 
  String as (byte, 11) 
 
entity EntityState: 
  PduHeader as PduHeader 
  EntityIdent as EntityIdent 
  ForceIdent as byte 
  PartCount as byte 
  EntityType as EntityType 
  AlternateType as EntityType 
  LinearVelocity as Vector 
  Location as Position 
  Orientation as Euler 
  Appearance as uint 
  DeadReckoning as DeadReckoning 
  Padding as (byte, 15) 
  Acceleration as Vector 
  AngularVelocity as Vector 
  Marking as Marking 
  Capabilities as uint 

B.6 Control Systems 

import Control 
 
system ControllerSystem: 
  input Containers of Container 
  output Controller of Controller 
  output Timer of Timer 
 
system ContainerSystem: 
  input Controller of Controller 
  input Timer of Timer 
  output Containers of Container 

B.7 Collision Test Case Systems 

import Entities 
 
system CollisionSystem: 
  inout EntityDescriptions of EntityDescription 
  inout EntityStates of EntityState 

B.8 Ownership Test Case Systems 

import Entities 
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import Ownership 
 
system OwnershipSystem: 
  input Ownerships of Ownership 
  inout EntityStates of EntityState 
 
system OwnershipService: 
  input EntityDescriptions of EntityDescription 
  inout Ownerships of Ownership 

B.9 Gateway Test Case Systems 

import Entities 
 
system GatewaySystem: 
  inout EntityDescriptions of EntityDescription 
  inout EntityStates of EntityState 
  inout Entities of DIS.EntityState 

B.10 Control Network 

import Control 
 
bus ControlBus: 
  channel Controller of Controller: 
    connect ControllerSystem.Controller 
    connect ContainerSystem.Controller 
 
  channel Timer of Timer: 
    connect ControllerSystem.Timer 
    connect ContainerSystem.Timer 
 
  channel Containers of Container: 
    connect ControllerSystem.Containers 
    connect ContainerSystem.Containers 
 
binding ControlBusDdsBinding of ControlBus as DDS.Protocol1_2: 
  channel Timer: 
    qos: 
      Reliability.Kind = BestEffort 
      Durability.Kind = Volatile 
  channel Containers: 
    key Id 
    qos: 
      Reliability.Kind = Reliable 
      Durability.Kind = Transient 
      History.Kind = KeepLast 
  channel Controller: 
    qos: 
      Reliability.Kind = Reliable 
      Durability.Kind = Transient 
      History.Kind = KeepLast 
 
network ControlNetwork of ControlBus: 
  endpoint ControlBusDds of ControlBusDdsBinding: 
    address: 
      DomainId = 0 
      Partition = "Control" 

B.11 Collision Test Case Network 

import Entities 
 
bus EntitiesBus: 
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  channel EntityDescriptions of EntityDescription: 
    connect CollisionSystem.EntityDescriptions 
  channel EntityStates of EntityState: 
    connect CollisionSystem.EntityStates 
 
binding entities_dds_binding of EntitiesBus as DDS.Protocol1_2: 
  channel EntityDescriptions: 
    key Id 
    qos: 
      Reliability.Kind = Reliable 
      Durability.Kind = Transient 
      History.Kind = KeepLast 
      Ownership.Kind = Exclusive 
  channel EntityStates: 
    key Id 
    qos: 
      Reliability.Kind = BestEffort 
      Durability.Kind = Volatile 
      Ownership.Kind = Exclusive 
 
binding entities_hla_binding of EntitiesBus as HLA.Protocol1516_2010: 
  channel EntityDescriptions: 
    qos: 
      Reliability = Reliable 
  channel EntityStates: 
    qos: 
      Reliability = BestEffort 
 
network entities_demo_network of EntitiesBus: 
  endpoint entities_dds of entities_dds_binding: 
    address: 
      DomainId = 0 
      Partition = "Entities" 
  endpoint entities_hla of entities_hla_binding: 
    address: 
      FederationName = "Entities" 

B.12 Ownership Test Case Network 

import Ownership 
 
bus ownerships_bus: 
  channel Ownerships of Ownership: 
    connect OwnershipSystem.Ownerships 
    connect OwnershipService.Ownerships 
 
binding ownerships_dds_binding of ownerships_bus as DDS.Protocol1_2: 
  channel Ownerships: 
    key MasterId, SlaveId 
    qos: 
      Reliability.Kind = Reliable 
      Durability.Kind = Transient 
      History.Kind = KeepLast 
      Ownership.Kind = Exclusive 
 
network ownerships_demo_network of ownerships_bus: 
  endpoint ownerships of ownerships_dds_binding: 
    address: 
      DomainId = 0 
      Partition = "Entities" 

B.13 Gateway Test Case Network 

import DIS 
 
bus dis_bus: 



  135 

  channel Entities of EntityState: 
    connect GatewaySystem.Entities 
 
binding dis_binding of dis_bus as Net.SocketProtocol: 
  channels: 
    encode PduType as byte 
    encode EntityKind as byte 
    encode PlatformDomain as byte 
    encode CharSet as byte 
    encode DeadReckoning as byte 
 
network dis_demo_network of dis_bus: 
  endpoint entities of dis_binding: 
    address: 
      Port = 29000 
 
network entities2_demo_network of EntitiesBus: 
  endpoint entities_dds of entities_dds_binding: 
    address: 
      DomainId = 0 
      Partition = "Entities2" 
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