
Titre:
Title:

Automating System-Level Data-Interchange Software Through a
System Interface Description Language

Auteur:
Author:

Martin Tapp

Date: 2013

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Tapp, M. (2013). Automating System-Level Data-Interchange Software Through a
System Interface Description Language [Thèse de doctorat, École Polytechnique
de Montréal]. PolyPublie. https://publications.polymtl.ca/1256/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/1256/

Directeurs de
recherche:

Advisors:
Gabriela Nicolescu, & El Mostapha Aboulhamid

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/1256/
https://publications.polymtl.ca/1256/

UNIVERSITÉ DE MONTRÉAL

AUTOMATING SYSTEM-LEVEL DATA-INTERCHANGE SOFTWARE

THROUGH A SYSTEM INTERFACE DESCRIPTION LANGUAGE

MARTIN TAPP

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

DÉCEMBRE 2013

© Martin Tapp, 2013.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée:

AUTOMATING SYSTEM-LEVEL DATA-INTERCHANGE SOFTWARE THROUGH A

SYSTEM INTERFACE DESCRIPTION LANGUAGE

présentée par: TAPP Martin

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Mme BOUCHENEB Hanifa, Doctorat, présidente

Mme NICOLESCU Gabriela, Doct., membre et directrice de recherche

M. ABOULHAMID El Mostapha, Ph.D., membre et codirecteur de recherche

M. DAGENAIS Michel, Ph.D., membre

Mme MORSE Katherine L., Ph.D., membre

iii

DEDICATION

To the ones following an idea through.

iv

ACKNOWLEDGMENTS

I wish to thank CAE for supporting me in undertaking this endeavor and making it possible. I

particular want to acknowledge the following persons for supporting me: Éric Simon, Louis

Dontigny, Éric Bouthillier, Charles Fortier, Sébastien Lévesque, and particularly Jean-François

Campeau for seeing the value in this work, and supporting the required experimentation to

demonstrate it. I want to acknowledge my fellow architects and co-workers, notably Alexandre,

Marc-André, Steve, Benoit, and Yannick, for their precious support and feedback, and above all

Sidney Chartrand for his many insights and contributions to this work which at the same time

inspired me.

I wish to thank Gabriela Nicolescu and El Mostapha Aboulhamid for their support and guidance

along with giving me the freedom to pursue this work. Their valuable advice contributed to

making me a better researcher.

I wish to thank all of the members of the revision committee for the time they put into revising

this work.

I would also like to acknowledge the SISO community which many of its members helped shape

this work.

Finally, to the most important persons in my life, my marvelous wife, Caroline, my wonderful

daughters, Clara and Abigaël, my mom, Jacqueline, my dad, Gervais, my sister, Sophie, and my

brothers, Julien and Rémi, along with Hélène, Marie-Claude, Julie, Ginette, and Yves, I wish to

gracefully bow before you, and thank you for your continued support, inspiration, and

unconditional love.

v

RÉSUMÉ

Les plates-formes d'aujourd'hui, telles que les simulateurs de missions (FMS), présentent un

niveau sans précédent d'intégration de systèmes matériels et logiciels. Dans ce contexte, les

intégrateurs de systèmes sont confrontés à une hétérogénéité d'interfaces système qui doivent être

alignées et reliées ensemble afin de fournir les capacités prévues d'une plate-forme. Le seul

aspect des échanges de données système est problématique allant de données désalignées jusqu'à

des environnements multi-architecturaux utilisant différents types de protocoles de

communication. Les intégrateurs sont également confrontés à des défis similaires lors de

l'interaction de multiples plates-formes ensemble à travers des environnements de simulation

distribuée où chaque plate-forme peut être considérée comme un système avec sa propre interface

distincte. D'autre part, permettre la réutilisation de système à travers diverses plates-formes en

support aux gammes de produits est un défi pour les fournisseurs de systèmes, car ils doivent

adapter leurs interfaces système à des plates-formes hétérogènes faisant donc face aux mêmes

difficultés que les intégrateurs. En outre, l'introduction de modifications aux interfaces système

afin de répondre aux besoins tardifs d'affaires, ou à des contraintes de performance imprévues,

par exemple, est d'autant plus ardue que leurs impacts sont difficiles à prévoir et que leurs effets

sont souvent décelés tard dans le processus d'intégration.

En conséquence, cette thèse aborde la nécessité de simplifier l'intégration et l'interopérabilité

système afin de réduire leurs coûts associés et d'accroître leur efficacité ainsi que leur efficience.

Elle est destinée à apporter de nouvelles avancées dans les domaines de l'intégration système et

de l'interopérabilité système. Notamment, en établissant une taxonomie commune, et en

augmentant la compréhension des interfaces système, des divers aspects impactant les échanges

de données système, des considérations des environnements multi-architecturaux, ainsi que des

facteurs permettant la gouvernance d'interface ainsi que de la réutilisation système. À cette fin,

deux objectifs de recherche ont été formulés.

Le premier objectif vise à définir un langage utilisé pour décrire les interfaces système et les

divers aspects entourant leurs échanges de données. Par conséquent, trois aspects principaux sont

étudiés relatifs aux interfaces système: les éléments de langage pertinents utilisés pour les décrire,

la modélisation des interfaces système avec ce langage, et la capture des considérations multi-

architecturales.

vi

Le second objectif vise à définir une méthode pour automatiser le logiciel responsable des

échanges de données système comme moyen pour simplifier les tâches impliquées dans

l'intégration et l'interopérabilité système. Par conséquent, les compilateurs de modèles et les

techniques de génération de code sont étudiés.

La démonstration de ces objectifs apporte de nouvelles avancées dans l'état de l'art de

l'intégration système et de l'interopérabilité système. Notamment, ceci culmine en un nouveau

langage de description d'interface système, SIDL, utilisé pour capturer les interfaces système et

les divers aspects entourant leurs échanges de données, ainsi qu'en une nouvelle méthode pour

automatiser le logiciel d'échange de données au niveau système à partir des interfaces systèmes

capturées dans ce langage.

L'avènement de SIDL contribue également une nouvelle taxonomie fournissant une perspective

complète sur l'interopérabilité système ainsi qu'en un langage commun qui peut être partagé entre

les parties prenantes, tels que les intégrateurs, les fournisseurs et les experts système. Étant

agnostique aux architectures, SIDL fournit un seul point de vue architectural supervisant toutes

les interfaces système et capture les considérations multi-architecturales ce qui n'a jamais été

réalisé avant ce travail. D'autant plus, un générateur de code SIDL est introduit présentant la

nouveauté de générer le logiciel d'échange de données à partir d'un bassin plus riche

d'information, notamment à partir des relations système de haut niveau allant jusqu'au bas niveau

couvrant les détails protocolaires et d'encodage. En raison des considérations multi-

architecturales qui sont capturées nativement dans SIDL, ceci permet au générateur de code d'être

agnostique aux architectures le rendant réutilisable dans d'autres contextes.

Cette thèse ouvre également la voie à de futures recherches bâtissant sur ses contributions. Elle

propose même une vision pour le développement d'applications logicielles avec comme objectif

final de repousser encore plus loin les limites de la simplification et de l'automatisation des tâches

liées à l'intégration et à l'interopérabilité système.

vii

ABSTRACT

Today’s platforms, such as full mission simulators (FMSs), exhibit an unprecedented level of

hardware and software system integration. In this context, system integrators face heterogeneous

system interfaces which need to be aligned and interconnected together in order to deliver a

platform's intended capabilities. The sole aspect of the data systems exchange is problematic

ranging from data misalignment up to multi-architecture environments over varying kinds of

communication protocols. Similar challenges are also faced by integrators when interoperating

multiple platforms together through distributed simulation environments where each platform can

be seen as a system with its own distinct interface. On the other hand, enabling system reuse

across multiple platforms for product line support is challenging for system suppliers, as they

need to adapt system interfaces to heterogeneous platforms therefore facing similar challenges as

integrators. Furthermore, the introduction of system interface changes in order to respond to late

business needs, or unforeseen performance constraints for instance, is even more arduous as

impacts are challenging to predict and their effect are often found late into the integration

process.

Consequently, this thesis tackles the need to simplify system integration and interoperability in

order to reduce their associated costs and increase their effectiveness along with their efficiency.

It is meant to bring new advances in the fields of system integration and system interoperability.

Notably, by establishing a common taxonomy, and by increasing the understanding of system

interfaces, the various aspects impacting system data exchanges, multi-architecture environment

considerations, and the factors enabling interface governance as well as system reuse. To this

end, two research objectives have been formulated.

The first objective aims at defining a language used to describe system interfaces and the various

aspects surrounding their data exchanges. Therefore, three key aspects are studied relating to

system interfaces: the relevant language elements used to describe them, modeling system

interfaces with the language, and capturing multi-architecture considerations.

The second objective aims at defining a method to automate the software responsible for system

data exchanges as a way of simplifying the tasks involved in system integration and

interoperability. Therefore, model compilers and code generation techniques are studied.

viii

The demonstration of these objectives brings new advances in the state of the art of system

integration and system interoperability. Notably, this culminates in a novel system interface

description language, SIDL, used to capture system interfaces and the various aspects

surrounding their data exchanges, as well as a new method for automating the system-level data-

interchange software from system interfaces captured in this language.

The advent of SIDL also contributes a new taxonomy providing a comprehensive perspective

over system interoperability as well as a common language which can be shared amongst

stakeholders, such as integrators, suppliers, and system experts. Being architecture-agnostic,

SIDL provides a single architectural viewpoint overseeing all system interfaces and capturing

multi-architecture considerations which was never achieved prior to this work. Furthermore, a

SIDL code generator is introduced which has the novelty of generating the data-interchange

software from a richer pool of information, notably from the high-level system relationships

down to the low-level protocol and encoding details. Because multi-architecture considerations

are captured natively in SIDL, this enables the code generator to be architecture-agnostic making

it reusable in other contexts.

This thesis also paves the way for future research building upon its contributions. It even

proposes a vision for software application development with the end goal being to push further

the boundaries of simplifying and automating the tasks involved in system integration and

interoperability.

ix

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGMENTS ... IV

RÉSUMÉ .. V

ABSTRACT ...VII

TABLE OF CONTENTS .. IX

LIST OF TABLES ... XVI

LIST OF FIGURES ... XVII

LIST OF ABBREVIATIONS ... XVIII

LIST OF APPENDICES .. XXI

Part I INTRODUCTION AND BACKGROUND .. 1

INTRODUCTION ... 2

Background - Better System Interoperability and Reuse ... 2

Contributions - Automating System-Level Data-Interchange Software 3

System Interoperability Facets ... 3

Thesis Structure .. 5

Chapter 1 LITERATURE REVIEW .. 7

1.1 From Simulation to Distributed Simulations ... 7

1.1.1 Simulator Network ... 8

1.1.2 Distributed Interactive Simulation ... 8

1.1.3 High-Level Architecture .. 9

1.2 Distributed Simulation Interoperability ... 10

1.3 System Interoperability .. 12

1.4 Multi-Architecture Environments .. 13

x

1.5 Meta-Model Incompatibilities .. 13

1.6 Data Incompatibilities .. 14

1.7 Lack of Architecture Neutral Meta-Model ... 14

1.7.1 The FACE Technical Standard .. 15

1.7.2 Web Services Similarity ... 15

1.7.3 Service versus System .. 16

1.8 Representing Data Exchange Models .. 16

1.8.1 Lack of Machine-Processable Definitions ... 16

1.8.2 XML-Based Format Deficiencies .. 17

1.8.3 Language-Based Format Deficiencies ... 18

1.8.4 Model-Based Format Deficiencies ... 20

1.8.5 Data Type Deficiencies .. 21

1.9 Lack of Transport Details ... 21

1.9.1 Intermingling Transport with Data ... 22

1.10 Lack of Interface Details .. 22

1.11 Lack of Connection Details .. 23

1.12 Subject Matter Expert Modeling Complexity .. 24

1.12.1 Leveraging SME Expertise .. 25

1.12.2 Hardware Performance ... 26

1.12.3 Frameworks .. 28

1.12.4 Domain-Specific Languages .. 28

1.12.5 Model Compilers .. 29

1.12.6 Code Generation ... 30

1.13 Model Configuration Management and Governance Deficiencies 30

xi

1.14 Summary .. 31

Chapter 2 GENERAL METHODOLOGY .. 33

2.1 Research Motivation .. 33

2.2 Problem Statement ... 33

2.3 Research Questions .. 34

2.3.1 What should be Formally Described in Order to Capture System Interfaces and the

Various Aspects Surrounding their Data Exchanges, and How? ... 35

2.3.2 How should Multi-Architecture Considerations be Captured? 35

2.3.3 How should System Interface Descriptions be Used to Automate Some of the Tasks

Involved in System Integration and Interoperability? .. 35

2.4 Research Objectives ... 36

2.4.1 Define a System Interface Description Language .. 36

2.4.2 Define a Method to Automate the System-Level Data-Interchange Software from

System Interface Descriptions .. 37

2.5 General Approach .. 37

2.5.1 System Interface Description Language .. 39

2.5.2 System-Level Data-Interchange Software Automation ... 40

2.5.3 Publications .. 41

Part II METHODOLOGY AND RESULTS .. 42

Chapter 3 SYSTEM INTERFACE DESCRIPTION LANGUAGE .. 43

3.1 SIDL Grammar ... 44

3.1.1 Control Blocks .. 44

3.1.2 Namespaces and Imports .. 45

3.1.3 SIDL Source File Encoding ... 46

3.2 The Data Facet ... 46

xii

3.2.1 Conceptual Data Model .. 47

3.2.2 Logical Data Model .. 47

3.2.3 Specific Data Model ... 50

3.2.4 Existing Data Model Support ... 55

3.2.5 Concrete Reference Data Model .. 55

3.3 The Interface Facet ... 56

3.3.1 Systems and Ports ... 56

3.4 The Connection Facet ... 58

3.4.1 Buses and Channels .. 59

3.4.2 Configurable Routing ... 60

3.5 The Transport Facet ... 60

3.6 Using SIDL Descriptions ... 63

3.6.1 Data-Interchange Software Automation ... 64

3.6.2 SIDL Modeling Stage ... 65

3.6.3 SIDL Code Generation Stage ... 65

3.7 SIDL Model Compiler Behavior .. 66

3.7.1 Identifier Declaration Rules ... 66

3.7.2 Composition Rules ... 66

3.7.3 Fact Rules ... 67

3.7.4 Measure Rules .. 67

3.7.5 Enumeration Rules ... 67

3.7.6 Array Rules .. 67

3.7.7 Entity Rules .. 67

3.7.8 Variant Rules .. 67

xiii

3.7.9 View Rules ... 67

3.7.10 System Rules .. 68

3.7.11 Bus Rules .. 68

3.7.12 Property Rules .. 68

3.7.13 Binding Rules ... 68

3.7.14 Network Rules .. 69

3.7.15 Unspecified Behavior ... 69

Chapter 4 EXPERIMENTAL IMPLEMENTATION ... 70

4.1 Two-Stage Workflow ... 70

4.1.1 Modeling Stage Implementation .. 70

4.1.2 Code Generation Stage Implementation .. 72

4.2 System Interoperability Facets Implementation ... 75

4.2.1 Data Facet Implementation .. 75

4.2.2 Transport Facet Implementation .. 76

4.2.3 Interface Facet Implementation .. 77

4.2.4 Connection Facet Implementation ... 78

4.2.5 SIDL to DDS Mapping .. 78

4.2.6 SIDL to HLA Mapping .. 79

4.2.7 SIDL to DIS Mapping .. 80

4.3 Implementation Validation ... 80

Chapter 5 EXPERIMENTAL RESULTS .. 82

5.1 Test cases .. 82

5.1.1 Test Case 1 - Colliding Balls .. 82

5.1.2 Test Case 2 - Ownership Transfer .. 84

xiv

5.1.3 Test Case 3 - DDS-DIS Gateway ... 85

5.2 Modeling System Interface Descriptions ... 86

Part III CONCLUSIONS ... 90

Chapter 6 GENERAL DISCUSSION .. 91

6.1 System Interface Description Language .. 91

6.1.1 Relevant Language Elements ... 91

6.1.2 Modeling System Interfaces ... 92

6.1.3 Capturing Multi-Architecture Considerations .. 92

6.2 Automation of the System-Level Data-Interchange Software 93

6.3 Limitations ... 94

6.3.1 More than Semantic ... 94

6.3.2 Conversion Modeling ... 95

6.3.3 Defining External Bus Connections ... 96

6.3.4 Configuration in Support of Modeling ... 96

6.3.5 Standard SIDL Library Bindings and Metadata Interface ... 97

6.3.6 Protocol Extensibility ... 97

CONCLUSION ... 98

Contributions .. 98

Future Challenges ... 99

Workflow-Driven Development .. 99

Multi-DSLs ... 100

Model Compilers & Legacy Assets ... 101

Debugging at the DSL Level .. 101

Towards Hardware-Aware Software .. 102

xv

Modeling Solution .. 102

Capturing Data Model Mappings ... 102

BIBLIOGRAPHY ... 104

APPENDIX ... 125

xvi

LIST OF TABLES

Table 3-1 SIDL Value Types ... 52

Table 4-1: SIDL to IDL Type Mapping ... 79

Table 4-2: SIDL to HLA Type Mapping ... 80

xvii

LIST OF FIGURES

Figure 1: FMS Hardware and Software Systems ... 2

Figure 2: System Interoperability Facets ... 4

Figure 3: System Interoperability Facets Example .. 4

Figure 1-1: Non-Distributed Simulation .. 10

Figure 1-2: Distributed Simulation .. 11

Figure 1-3: Achieving Interoperability through an Interoperability Agent 12

Figure 1-4: Hiding Software Complexity from SMEs ... 26

Figure 1-5: Array of Structure vs. Structure of Array .. 27

Figure 1-6: Impact of Data Memory Layout on Performance ... 27

Figure 3-1: SIDL Conceptual Model ... 43

Figure 3-2: SIDL Data Model .. 46

Figure 3-3: Radar System Example ... 57

Figure 3-4: SIDL Conceptual Data Transport .. 59

Figure 3-5: SIDL Modeling Stage .. 65

Figure 3-6: SIDL Code Generation Stage .. 66

Figure 4-1: SIDL Modeling Stage Implementation ... 71

Figure 4-2: SIDL Code Generation Stage Implementation .. 73

Figure 5-1: Colliding Balls Test Case .. 83

Figure 5-2: Ownership Transfer Test Case .. 84

Figure 5-3: DDS-DIS Gateway Test Case ... 85

Figure 5-4: Pinpointing a Breaking Change in SIDL ... 87

Figure 4: Addressing Cross-Cutting Concerns ... 100

xviii

LIST OF ABBREVIATIONS

AADL Architecture Analysis & Design Language

ADL Architecture Description Language

ANDEM Architecture Neutral Data Exchange Model

AoS Array of Structure

ASN.1 Abstract Syntax Notation One

BOM Base Object Model

CDM Conceptual Data Model

CGF Computer Generated Forces

COTS Commercial off-the-shelf

CTIA Common Training Instrumentation Architecture

CPU Central Processing Unit

DDS Data Distribution Service

DEM Data Exchange Model

DIS Distributed Interactive Simulation

DMSO Defense Modeling and Simulation Office

DoD Department of Defense

DSEEP Distributed Simulation Engineering and Execution Process

DSL Domain-Specific Language

FACE Future Airborne Capability Environment

FMS Full Mission Simulator

FOM Federation Object Model

GPU Graphics Processing Unit

xix

HLA High-Level Architecture

IDL Interface Definition Language

LCIM Levels of Conceptual Interoperability Model

LDM Logical Data Model

LVC Live Virtual Constructive

OS Operating System

OEM Original Equipment Manufacturer

OMT Object Model Template

OWL Web Ontology Language

M&S Modeling and Simulation

MEP Message Exchange Pattern

QoS Quality of Service

RCS Radar Cross-Section

RDF Resource Description Framework

RPR-FOM Real-time Platform Reference Federation Object Model

RTI Run-Time Infrastructure

SDEM Simulation Data Exchange Model

SDM Specific Data Model

SIDL System Interface Description Language

SIMD Single Instruction, Multiple Data

SIMNET Simulator Network

SISO Simulation Interoperability Standards Organization

SME Subject Matter Expert

SoA Structure of Array

xx

SOA Service-Oriented Architecture

SQL Structured Query Language

SysML Systems Modeling Language

TDL TENA Definition Language

TENA Test and Training Enabling Architecture

UoP Unit of Portability

UML Unified Modeling Language

USB Universal Serial Bus

XMI XML Metadata Interchange

XML Extensible Markup Language

WSDL Web Services Description Language

xxi

LIST OF APPENDICES

APPENDIX A SIDL GRAMMAR REFERENCE .. 126

APPENDIX B TEST CASE SIDL DESCRIPTIONS ... 129

1

Part I

INTRODUCTION AND BACKGROUND

2

INTRODUCTION

Background - Better System Interoperability and Reuse

A full mission simulator (FMS), as illustrated in Figure 1, replicates an existing aircraft and its

environment in order to provide training to aircraft crews. This requires the interaction of several

hardware and software systems examples of which include: systems simulating aircraft flight and

propulsion; systems replicating the environment surrounding the aircraft such as weather, motion,

and air traffic; systems dealing with cockpit displays and pilot inputs; and systems supporting the

training lessons providing instructor feedback and control. Moreover, these systems need to

exchange data with each other, for instance, in order to replicate the end functions of the aircraft

to the aircrew. In addition, multiple FMSs can be joined together to simulate air traffic or to

perform joint missions involving multiple aircrews training together.

Figure 1: FMS Hardware and Software Systems

Today’s platforms, such as full mission simulators (FMSs), exhibit an unprecedented level of

hardware and software system integration. Moreover, they typically integrate systems from

multiple parties. Some of the integrated systems are even the same hardware boxes as the ones

found on the real devices they replicate, an aircraft's cockpit display system being such an

example in the case of a FMS. Furthermore, networking platforms together usually involves the

interaction of disparate devices spanning across multiple integration sites. This results in a

heterogeneous set of system interfaces which need to be interconnected together in order to

deliver the platform's intended capabilities, training being an example for a FMS. The sole aspect

3

of the data exchanges is problematic ranging from data misalignment up to multi-architecture

environments over varying kinds of communication protocols [1,2]. In this context, enabling

system reuse across multiple platforms for product line support becomes even more challenging.

Therefore, this thesis contributes to the simplification of the integration of heterogeneous systems

on platforms, such as FMSs, with the end goal being more cost-effective and efficient

development, along with integration, of systems exhibiting better product line support.

Contributions - Automating System-Level Data-Interchange Software

The intent of this thesis is to facilitate system integration and system interoperability by

automating the software required to connect systems together and to enable their interaction. To

this end, this thesis proposes means to formally describe system interfaces from which the

required software artifacts realizing the data exchanges can be derived and potentially be fully

automated. Moreover, this thesis focuses on multi-architecture environments in order to facilitate

the reuse of systems across platforms.

This is achieved with the System Interface Description Language (SIDL) which focuses on the

data systems exchange and on the various aspects surrounding them. The primary focus of SIDL

is the data systems exchange together. With system interfaces described in a formal language, it

becomes possible to automate some of the tasks involved in achieving data interoperability, for

instance, generating the software which deals with data serialization and protocol details, or

which adapts a system interface to a prescribed unit of measurement (e.g., meters instead of feet).

Furthermore, having explicit system interface descriptions simplifies their validation, evolution

and governance. That is because the proposed language used to describe them is a domain-

specific language (DSL) thus boasts the vocabulary richness and expressiveness of a dedicated

language describing system interfaces and their multiple facets.

System Interoperability Facets

SIDL is an architecture description language (ADL) as defined by [3] which is the ISO/IEC/IEEE

International Standard for "Systems and software engineering — Architecture description". As

such, SIDL is used to produce architecture description artifacts which formally capture the facets,

or viewpoints, surrounding system interoperability.

4

Figure 2: System Interoperability Facets

Conceptually, system interoperability revolves around four distinct facets as illustrated in Figure

2: the system's Interface, the Connection of the interface to data, the Data being exchanged

between systems, and the data's Transport (e.g., protocol, middleware) from system to system.

As an example, consider a computer with a USB keyboard as depicted in Figure 3. Both system

Interfaces, computer and keyboard, expose a USB port where the former inputs keyboard Data

while the later outputs it. It is the Connection of each port together with a USB cable that enables

the concrete Transport of the data from the keyboard to the computer.

Figure 3: System Interoperability Facets Example

5

This thesis introduces the system interoperability facets as the core foundation used to partition

and structure the problem domain as well as the proposed solution. The author selected this

taxonomy, or organization, because each facet encapsulates a distinct interoperability area. This

separation of concerns facilitates the understanding of this thesis and allows for a modular

approach to system interoperability. Figure 2 illustrates these facets and highlights the scope of

this thesis positioning SIDL accordingly.

Thesis Structure

This section introduced the subject of this thesis along with an overview of its contributions. The

rest of the thesis is organized into three main parts. The first part provides the background

information relating to system interoperability. It elaborates a current state of the art of the actual

problems and solutions surrounding system interoperability covering its various aspects. It

provides the rationale for a dedicated language aimed at describing system interfaces. Then

follows the problem statement this thesis tries to address along with the research questions and

objectives. The general approach consisting of generating software artifacts from formal

descriptions of system interfaces is presented. The second part focuses on the methodology and

the results obtained. It covers the System Interface Description Language along with examples

using it. It also details test cases that demonstrate how the proposed methodology can enable

better system interoperability and reuse. Finally, the third part presents a general discussion

regarding the proposed methodology and its improvements over the current state of the art. It also

concludes this thesis with a summary of the contributions made and points to potential ways

forward that could improve upon this research. Following are the details regarding each part:

Part I - Introduction and Background

 Introduction: This is the introductory chapter of this thesis. It provides the background

information required to understand this thesis. It also provides an overview of the

contributions of this work.

 Chapter 1: This chapter presents an in-depth literature review covering both the problem

domain and the existing solutions highlighting areas of improvement.

6

 Chapter 2: This chapter presents the general methodology covering problem statement,

the research questions, as well as the research objectives that this thesis proposes to

address. The general approach is also presented.

Part II - Methodology and Results

 Chapter 3: The System Interface Description Language (SIDL) elements are presented in

this chapter. Each language element is described according to its relationship to the

system interoperability facet that it relates to. Semantic rules are also presented covering

the expected behavior of SIDL compilers. The expected usage of SIDL descriptions is

detailed in the context of automating the system-level data-interchange software.

 Chapter 4: This chapter focuses on the experimental implementation used to create and

validate SIDL. It covers the elaborated SIDL language, compiler, and code generator.

 Chapter 5: This chapter presents the experimental results of using SIDL to address

specific test cases. Each test case is a distributed software application involving the

interoperability of test systems. They are detailed with a particular regard over their data-

interchange software which is generated from SIDL descriptions. It also covers the

experiences of SMEs using SIDL in the development of the test systems.

Part III - Conclusions

 Chapter 6: This chapter presents a general discussion regarding the advances made by this

thesis focusing on their implications and limitations.

 Conclusion: This is the concluding chapter of this thesis. It summarizes the key

contributions made by this thesis and presents potential opportunities for future work.

7

Chapter 1 LITERATURE REVIEW

The delivery of capabilities over a specified platform often requires the integration of

heterogeneous systems by an original equipment manufacturer (OEM). Moreover, from the

perspective of an equipment supplier, the same equipment product line needs to deal with

multiple integration platforms. In this context, this chapter focuses on understanding the span of

the possible system integration issues related to data exchanges, as well as the issues impeding

reuse and interoperability. This is achieved through an in-depth literature review covering both

the problem domain and the existing solutions.

Moreover, the review focuses on two system integration perspectives: distributed simulations and

platforms. The former perspective looks at the issues related to the integration of systems within

distributed simulations such as training devices interacting together within the same training

session. The latter perspective looks at the issues related to the integration of systems on a

platform, for instance, the integration of avionics systems on a training device. From this

perspective, the platform can also be seen as a system of systems.

The review also relates to the system interoperability facets which are illustrated in Figure 2.

These include the system's Interface, the Connection of the interface to data, the Data being

exchanged between systems, and the data's Transport (e.g., protocol, middleware) from system to

system. These facets are used to structure the review since system interoperability conceptually

revolves around them.

1.1 From Simulation to Distributed Simulations

Technology restricted to the domain of research and development, simulation is seen as the tool

to model a platform and the environment in which it operates in the early 1970s [4]. During that

period, advanced simulators have been successfully used in the design and engineering of new

systems. It is with the improvement of simulators that the training community sees a marked

interest in simulation as simulators are tailored to train civilian and military pilots. Unfortunately,

[4] reports that this new type of training focuses only on the acquisition of skills to operate the

simulated vehicle. The complexity required in training involving several aircraft at the same time

8

is so great that this type of training is only done on real planes. [4] explains that it was only

during the mid-1970s that speculation began on the feasibility of distributed interactive

simulations while the benefits of simulation began to be understood.

1.1.1 Simulator Network

In the early 1980s, it is generally recognized that the construction of a low-cost global networked

military training system is virtually impossible [5]. It is a paper of Captain J. A. Thorpe,

according to [5], which changes this by stating that it is not at the level of teaching techniques or

at increased fidelity simulators to look out; Thorpe claims he should rather align training and

actual combat systems to make them indistinguishable to minimize costs and maximize training.

It is this statement which launches in 1983 an initiative dubbed SIMNET (Simulator Network)

[4,5], to build a new generation of realistic distributed simulators at a cost one hundred times less

than the existing generation that still does not allow the complex collective training involving

several human-in-the-loop interactions. After more than 260 interconnected simulators across 11

sites in the United States and Europe, the prototype of SIMNET is seen to be a success. [5] added

that the first SIMNET results of interconnecting worldwide simulators in real-time demonstrate

the importance of practicing collective joint military exercises on a large scale under the same

network infrastructure. Moreover, [5] reports that SIMNET even brings a new dimension to

equipment acquisition practices with the advent of distributed simulations. Not only does

SIMNET change the training industry, but it also changes how the military interacts with the

industry by allowing for ready-to-use commercial off-the-shelf (COTS) components. This

triggers billion dollars investment by the U.S. military to expand its global network of simulators

for collective training and development of combat in the following years. These investments,

according to [5], reflect the need for the Army to reduce costs through further industry

involvement.

1.1.2 Distributed Interactive Simulation

In 1990, SIMNET change its name to Distributed Interactive Simulation (DIS) to eliminate the

abuse of usage of the acronym SIMNET to denote any simulator network rather than the

SIMNET distributed simulation [4]. In 1996, DIS becomes an IEEE standard [6]. It is the need to

interoperate disparate distributed simulations which forces the development of standards

9

according to [7]. But [7] adds the equally important aspect of standards development is the need

to expand business opportunities for simulator component suppliers. The advent of standards

allows vendors to integrate their various simulation solutions under a single distributed

simulation opening the door to new markets and meet the needs of targeted cost reduction by the

U.S. military during the initial initiative with SIMNET (which is also confirmed by [5]).

1.1.3 High-Level Architecture

In the mid-1990s, the current simulation technologies as DIS did not achieve the Modeling &

Simulation (M&S) vision of the U.S. Department of Defense (DoD) as reported by [8]. This

M&S vision states the use of common environments such that the operations and acquisition

domains be able to meet their respective responsibilities. Moreover, this vision requires that these

M&S environments be constructed from affordable, reusable components interoperating through

an open architecture. This is what drives a 1995 effort involving the public, private, and academic

sectors for the development of a new distributed simulation environment in line with DoD's

initial M&S vision, which is the High-Level Architecture (HLA).

According to [9], HLA is based on the premise that no simulation can satisfy all users and all

possible uses, a premise which was not considered during the development of DIS. HLA is

intended to be an interface specification rather than a specific implementation and wants to be

programming language independent. After creating a reference implementation for HLA via its

Defense Modeling and Simulation Office (DMSO), the DoD relies on third parties for providing

commercial implementations and stops expanding its reference implementation always in pursuit

of cost reductions. In 2000, HLA becomes an IEEE standard [10].

New traffic reduction techniques are required to enable the proper operation of large scale

distributed simulations, as explained by [11], in order to meet their ever increasing network

bandwidth needs. [9] explains that the services exposed by HLA's runtime infrastructure help

manage the inherent complexity of communication protocols and thereby abstracting the use of

the latest networking technologies. From [11,12,13,14], it is clear that HLA's exposed interface

for managing data distribution drastically reduces the network traffic through the effective

management of multicast groups.

10

From this point on, a number of other distributed simulation architectures emerged. These

architectures are referenced accordingly throughout the following sections in the scope of system

integration issues. The link from simulation to distributed simulation being established, we can

now delve into distributed simulation interoperability.

1.2 Distributed Simulation Interoperability

A simulation, such as a flight simulation for example, is composed of objects that interact

together. This is illustrated in Figure 1-1 where the objects represent aircrafts. Within this object

model, objects interact with each other, among other things, through the information, or Data

(Figure 2), they exchange.

Figure 1-1: Non-Distributed Simulation

The behavior, position, speed, and acceleration of the aircrafts in Figure 1-1 are examples of the

Data enabling an aircraft pilot to train with other virtual aircrafts. To enable the training of

several pilots in the same training session, different simulators have to be Connected (Figure 2)

together. The interconnection of multiple simulations requires a network exposing a

communications protocol which allows for the same interactions as when there is a single

simulation. That is what Figure 1-2 illustrates by presenting a distributed simulation.

11

Figure 1-2: Distributed Simulation

Excluding communication protocol, or Transport (Figure 2), peculiarities, a fundamental trait of

distributed simulations is that only a subset of the available Data is required to enable the same

interactions as when the simulation is not distributed. This minimum set of data is known as the

Simulation Data Exchange Model (SDEM). As illustrated in Figure 1-2, this minimum set is

composed of the aircraft's position, speed, and acceleration, the behavior not being required to

enable distributed interactions.

It is the need to interconnect different types of distributed simulations that gave rise to the

concept of interoperability and appeared from the very beginning of SIMNET [7].

Interoperability, as defined by [15] is "the transfer of information that preserves the meaning and

relationships of the information exchanged". Typically, according to [16], a gateway is used for

distributed simulations interoperability such that the whole is seen as a single, unified,

simulation. Figure 1-3 presents this interoperability agent which bridges between different

distributed simulations. Here, the agent adapts the information of two simulation data exchange

models, notably SDEM 1 and SDEM 2.

12

Figure 1-3: Achieving Interoperability through an Interoperability Agent

Two solutions, as pointed out by [16], are typically used to interoperate distributed simulations:

adapt the existing applications by modifying their source code, or develop a gateway, i.e., a

software bridge, to fulfill the interoperability needs. The adaptation of existing applications may

be required for technical reasons, such as latency or throughput constraints, or for necessary

migrations as articulated by [13,14,17,18]. Except that it is not always possible either for

technical reasons, such as accreditation or security considerations, or simply for economic

reasons as demonstrated by [19,20,21]. That is why most interoperability problems are solved

using a gateway which is even qualified as a "necessary evil" by [15].

Moreover, it is not always possible to preserve all the Data exchanged. That is the case for the

object B' which is transformed into B" (Figure 1-3) since a subset of the information has no

correspondence in Simulation 1. To preserve the integrity of the Data exchanged as much as

possible, the interoperability logic has to face such eventuality which significantly increases its

complexity. Interoperability agent development often requires case-by-case development because

of the intrinsic characteristics of the distributed simulations to interoperate, and involves multi-

disciplinary teams.

1.3 System Interoperability

A distributed simulation is populated by systems which provide its content. For instance, a

training device is such a system because it exposes a virtual representation of the aircraft it

13

replicates within the distributed simulation. This implies that the distributed simulation is the

artifice which enables systems to interact together. Therefore, “distributed simulation

interoperability” effectively refers to system interoperability. On a larger scale, a distributed

simulation can be seen as a system itself in which case a gateway effectively allows systems, i.e.,

distributed simulations, to interoperate. That is why this thesis generalizes the concept of

distributed simulation interoperability to system interoperability as emphasised by the Interface

facet of Figure 2. Even though distributed simulations exhibit distinct integration issues, they are

seen from the perspective of system interoperability throughout this thesis.

1.4 Multi-Architecture Environments

Modern system integration scenarios typically involve multi-architecture environments. That is,

the systems being integrated together expose interfaces that are not aligned over a single

architecture. Multi-architecture case studies are presented by [1] primarily in the context of Live

Virtual Constructive (LVC) environments. These environments integrate various distributed

simulation architectures such as DIS, HLA, and the Test and Training Enabling Architecture

(TENA). In order to assist the development and the execution of such applications, the authors

propose an overlay to the IEEE Distributed Simulation Engineering and Execution Process

(DSEEP) [22]. This overlay targets specific activities that exhibit multi-architecture issues. The

following sections dig into these issues.

1.5 Meta-Model Incompatibilities

Each architecture essentially has its own meta-model, or way of representing the data being

exchanged. The data being exchanged forms a model which is captured by a meta-model.

Possible meta-model incompatibilities are highlighted by [1] when the simulation data exchange

model (SDEM) is being developed. The authors ideally propose that the SDEM be developed in

an architecture-agnostic way. This would ensure that the semantic meanings of the data

representation in each SDEM be preserved across each architecture. For the time being, they

recommend the use of gateways due to the lack of an architecture neutral meta-model.

Meta-model incompatibilities are the concern of the Data and Transport facets (Figure 2).

Because the meta-model deals with how data is represented within an architecture, i.e., the

14

primitives used to model the data, how the data is serialized, the data's quality of service (QoS)

such as reliability and latency budget.

1.6 Data Incompatibilities

Another multi-architecture issue listed by the authors of [1] is SDEM data incompatibilities. The

data that systems exchange needs to have equivalent semantics across all architectures for

interoperability to occur. A position concept, for instance, needs to be uniformly represented with

the same units and frame of reference. The authors propose to either re-align (i.e. refactor)

systems, which has the greatest cost, or use gateways to bridge the gaps. They even recommend

architecture-agnostic gateways.

Data incompatibilities are primarily the concern of the Data facet because they directly impact

the data itself. But they also touch the system's Interface, since systems exchange Data through

it, and the Connection as that is how the system's Interface is connected to the Data. Data

incompatibilities arise when trying to connect an Interface that uses a different unit of

measurement or frame of reference for instance.

1.7 Lack of Architecture Neutral Meta-Model

The lack of an architecture-agnostic way of expressing data exchange models slows the whole

integration process as highlighted by [2]. It renders the mapping between training and

experimental objectives, along with the data exchange models supporting them, more challenging

and prevents further automation. The authors expose early work on an Architecture Neutral Data

Exchange Model (ANDEM) trying to represent HLA, TENA, DIS and CTIA (Common Training

Instrumentation Architecture) data models into a core one with specific architecture mappings.

The authors also studied the Base Object Model (BOM) template specification [23]. They point

out that BOM can be used to map high-level conceptual models to data exchange models. But as

BOM is focused around HLA, this needs to be generalized. The follow-ups to this work are the

SISO ANDEM Study Group and SISO BOM specification revision which aim at addressing

these issues.

Other early work in this field is presented by [24] which suggests a Neutral SDEM format along

the lines of [25]. That is a SDEM whose format is not associated with any distributed simulation

15

architecture. This ongoing research primarily targets the simplification of gateways which

translate between SDEMs.

1.7.1 The FACE Technical Standard

The Future Airborne Capability Environment (FACE) Technical Standard [26] proposes its own

meta-model in the context of warfighting platform development. The general approach used by

FACE, as highlighted by [27], is to develop a standard for a software computing environment

designed to promote software product lines across different platforms therefore enabling

increased reuse. Ultimately, the goal of FACE is to reduce development and integration costs and

reduce time to field new avionics capabilities. Therefore, FACE proposes a data modeling

methodology covering platform-independent and portable models down to platform-specific

ones. These models are separated into Conceptual, Logical and Platform data models,

respectively, each level refining the previous one with the latter being platform-specific. In this

context, this thesis generalizes the notion of SDEM, which only focuses around simulations, to

that of data exchange model (DEM). This allows platforms and distributed simulations to be seen

from a common perspective. The FACE standard also deals with Interfaces through units of

portability which package full services or mission-level capabilities to systems.

The main problem with FACE’s meta-model is that it does not capture the details of each

individual architecture realizing the models. That is because FACE standardizes a technology

stack specifying details down to the Operating System (OS). Hence, the meta-model does not

need to deal with multi-architecture issues from the perspective of a FACE-compliant platform.

In fact, the meta-model only allows for data variability by providing data conversion and aliasing

mechanisms. Except issues arise as soon as a non-FACE component gets into the picture. From

the perspective of an equipment supplier, the same equipment product line needs to deal with

FACE and non-FACE platforms nevertheless. Another example is performing a joint exercise

with non-FACE platforms which invariably confronts against multi-architecture issues.

1.7.2 Web Services Similarity

A web service is a method of communication between electronic devices over the web. The Web

Services Description Language (WSDL) is an XML format for describing web services [28]. It is

commonly used in large-scale distributed applications particularly with ones based on the

16

Service-Oriented Architecture (SOA). WSDL addresses the need of communication

formalization for web services and formalizes the set of operations services expose as

architecture-neutral service interfaces.

1.7.3 Service versus System

Conceptually, a web service is very similar to a system part of a platform (or a distributed

simulation). Both revolve around the Transport of Data through an explicit Interface. The main

disparity between the two originates from the intent of their interfaces. A system can only interact

with other systems if its Interface is aligned with them, that is if it can be connected to the

available Data. A service, on the other hand, is only concerned with making its Interface

available to its consumers. That is why a service contract is required to capture the interactions

between service providers and consumers as described by [29]. That is why WSDL does not

cover the Connection facet and which must be captured to enable system interoperability. On the

other hand, WSDL allows capturing a service's expected interaction sequences which ensures

coherent service behavior. This is achieved through WSDL's message exchange patterns (MEPs).

Nonetheless, there is a natural fit between the services and systems as they share the other facets.

1.8 Representing Data Exchange Models

Data exchange models represent what is being exchanged between systems. There exists a

multitude of ways for capturing them. The following sections describe some of these ways

highlighting issues, along with limitations, related to capturing Data explicitly.

1.8.1 Lack of Machine-Processable Definitions

Some data exchange models are represented as paper specifications. DIS is such an example and

describes Data through various textual descriptions and tables [6] which are aimed towards

implementers. It is sufficient to say that paper specifications prevent any form of automation.

Moreover, in order to extend capabilities not initially covered by DIS, open constructs are

provided which producers and consumers need to agree on. This implies that these extensions are

captured in varying ways and on a case-by-case basis being left outside the scope of the

specification.

17

Another issue is the presence of definitions within SDEMs which prevent automation by a

software agent. This is particularly problematic when trying to automate the serialization of an

SDEM through code generation. These types of definitions render code generation choices

complex and even un-automatable requiring manual intervention. An example of this is the

encoding attribute of HLA data models which is an open text field [17]. It can be filled with a

pre-defined encoding type in which case the automation is not problematic. Except encoding is

sometimes defined as the set of instructions a developer is expected to read in order to handle the

serialization manually. Such definitions need to be captured in a form entirely processable by

machine as well as exempt from ambiguity and misinterpretation.

1.8.2 XML-Based Format Deficiencies

Most data exchange models are typically captured explicitly in a machine-processable format.

That is the case of the HLA Object Model Template (OMT) standard [17] which provides an

XML format to capture HLA data models. OMT specifies the XML schema [30] used to define

the data available to HLA distributed simulations. The OMT schema provides some form of

validation which XML tools and runtime libraries can use to produce or consume the data

models. For instance, an OMT rule is defined to ensure that a referenced type is defined in the

SDEM. This form of rule is simple to capture with XML Schema. Unfortunately, not all XML

tools and libraries validate these rules, and only a few cover the full spectrum of XML Schema’s

validation capabilities.

Moreover, complex rules cannot be expressed with XML Schema as it focuses around structural

validation. For instance, it is not allowed with OMT to have sibling subclasses with identical

names, or to have user defined type names which start with the letters "HLA". Supporting such

rules could require modification of the schema which is impractical as XML is primarily meant to

be an interchange format. Therefore, one needs to balance between simplicity in validating the

format, and ease in producing or consuming it. Nonetheless, OMT is a modular format enabling

reuse and extension of existing data models in a guided way. For interoperability to occur,

systems must share the same SDEM. Failing to do so require adapting the unaligned data models

and is left out of the scope of the OMT specification.

Another XML format used to represent SDEMs is the BOM standard [23]. It was a response to

the need to increase the level of abstraction of OMT by introducing conceptual modeling

18

capabilities through its patterns of interplay. Being built around HLA currently prevents BOM

from being used to represent other types of SDEMs. Nevertheless, BOM's ability to model

patterns of communication exhibits great value capturing dynamic data exchange details in an

architecture-agnostic way.

WSDL [28] is a standardized XML format used to describe web services. It requires that an

external type system be used in order to describe the messages passed between a service and its

consumers. XML Schema typically fulfills this purpose. The notion of external type system is

interesting, except it creates a burden on WSDL consumers, such as service frameworks, which

need to cope for type system limitations, such as with XML Schema, and variability. As

highlighted by [31], WSDL lacks the real ability to fully capture service data models because of

this. Even so, WSDL provides Message Exchange Patterns (MEPs) similar to BOM's patterns of

interplay which capture the dynamic details of data exchanges.

In the context of ongoing research, the authors of [24] propose an architecture-neutral XML

Schema-based format to represent SDEMs. They identify the key characteristics of SDEMs

which consists in a format, a data structure, and semantics. The format captures how to represent

the information; the data structure describes the content in the specified format; while the

semantics provide meta-information about the data model. The notion of a format agnostic to

architecture as proposed by the authors is interesting, except the authors limit their research to

HLA data models and focus on describing mappings between SDEMs in order to describe

gateways. Alternatively, the authors of [2] are looking towards the semantic web, such as

ontologies, for added semantic capabilities on top of XML in order to capture SDEMs in an

architecture-neutral way. The authors describe how ontologies could be used for this purpose, but

no concrete detail is given as their work is too preliminary. One point emphasized is the need for

human readability and machine understanding. It is important to point out that these requirements

are generally incompatible, one impeding the other.

1.8.3 Language-Based Format Deficiencies

The Interface Definition Language (IDL) [32] is a standardized language used to describe the

interfaces of software components independently from the languages used to implement and use

them. IDL requires a compiler which not only validates IDL definitions, but also transforms them

into other forms. There even exists standard language mappings such as IDL to C++ [33]. This

19

enables IDL to provide strong validation constructs over data models with consistent behavior.

Amongst its users, Data Distribution Service (DDS) [34] middlewares use a subset of IDL to

represent data exchange models. Being a dedicated language enables IDL to provide a clutter-free

view of the data models it captures. DDS uses IDL to automate the data serialization software

through code generation. Unfortunately, IDL only captures the low-level details of data models

being close to their computing platform equivalent. For instance, IDL data types allow the

representation of integer and floating point numbers, but lack the capability to qualify data with

engineering units of measurement or frames of reference. Additionally, some data models, such

as DIS and HLA OMT, require explicit enumeration values which IDL forbids. This prevents

IDL from being used to completely capture these types of data models.

The TENA Definition Language (TDL) [35] is similar to IDL which it actually extends to meet

specific use cases (such as considering local versus remote objects). Besides exhibiting the same

characteristics mentioned above, TDL enumeration identifiers need to be unique and vector

cardinalities cannot be bounded to represent fixed-length arrays [36]. These restrictions simplify

the TENA middleware, except they prevent capturing some types of data models. Nonetheless, it

allows TENA to generate distributed applications from TDL descriptions as noted by [37].

Except interoperating with other architectures still requires gateways which cannot be automated.

The Abstract Syntax Notation One (ASN.1) [38] is a standard notation for describing data along

with the rules for serializing and transmitting it. ASN.1 is principally used in the

telecommunications industry. It shares many traits with IDL by providing an abstract syntax

independent from the languages used to implement and use it [39]. Its type system accounts for

bit representations as one of its primary purposes is to provide compact binary representations. In

regards to system integration, the principal issue with ASN.1 is that it is aimed towards protocol

designers [39]. Moreover, its notation differs in many ways to traditional programming

languages, or from languages such as IDL, which makes ASN.1 less accessible. Additionally, as

opposed to IDL, ASN.1 does not provide guidance on mapping it to programming languages

since it focuses solely on uniform encoding behaviors. It also lacks higher-level abstractions,

such as units of measurement and frames of reference, which typically hamper interoperability.

Conversely, the Architecture Analysis & Design Language (AADL) is an architecture description

language used to model software and hardware architectures of embedded real-time systems [40].

20

AADL represents data through property type declarations which provide a set of values with

characteristics such as units of measurement. Because it is primarily aimed towards analysing

architectures, there exists many ways and scenarios to represent data. This makes AADL

awkward to represent data in the context of describing data exchanges. Moreover, the AADL

grammar is challenging to read even if textual.

1.8.4 Model-Based Format Deficiencies

On the other hand, FACE proposes a model-driven methodology based around UML modeling.

Its three-levels of Data modeling through refinement (i.e., conceptual, logical, and platform)

enable strong data semantics and cover many reuse scenarios. It also accounts for a uniform

mapping from UML models to IDL, as covered by [26], which enables consistent software

artifact generation across FACE platforms and supported programming languages. Unfortunately,

modeling is cumbersome and very repetitive simply to create the required artifacts because each

element needs to be modeled three times. Another model-based format is the Systems Modeling

Language (SysML) which is a general-purpose language for system modeling [41]. SysML

proposes a UML profile, i.e., a subset of UML with extensions, which is meant to be customized

in order to create domain-specific modeling languages such as for the automotive and aerospace

domains.

Unfortunately, the lack of model validity feedback from UML editors is a concern noted by [42]

and impacts both FACE and SysML. The authors also expose scalability problems of UML tools

particularly when dealing with large modeling environments seeing load times exceeding one

hour in some cases. Furthermore, they point out that UML lacks expressiveness making it

challenging to capture information in a natural way.

Additionally, UML models are often persisted in proprietary formats although they can be

exported using the XML Metadata Interchange (XMI) format [43]. Being a XML format, XMI

therefore exhibits the same limitations as the ones presented in Section 1.8.2. Another caveat

with XMI is that most UML tools do not interoperate well even if XMI and UML are standards,

as exposed by [44,45], thus undermining reuse. FACE's IDL heritage also causes the

manifestation of the issues elicited in Section 1.8.3 when using the UML to IDL mapping.

21

1.8.5 Data Type Deficiencies

Data exchange models capture data of varying representations. Most provide data representations,

i.e., data types, aligned with computing platforms. These include representations of numbers,

strings, characters, Booleans, and enumerations. Also available are structures composed of fields

which in turn are of a particular data type. Arrays are found amongst data types and are used to

represent a bounded or unbounded set of values of the same type. Unions, or variants, are often

encountered which are used to represent a value which has a finite set of varying forms such as

for a uniform array of different items.

HLA OMT can express all of the above data types with the exception of unsigned numerical

types [17] which are required when representing positive numbers. Likewise, XML Schema,

IDL, and FACE prevent the association of literal values to enumerators within enumerations

[26,30,32]. Another issue with FACE is that it lacks variant type support [26] which is also the

case for AADL [40]. These issues prevent completely capturing existing data models such as DIS

and HLA OMT.

1.9 Lack of Transport Details

Capturing data exchange models explicitly only addresses the Data facet covering what is

exchanged between systems. The ability to capture how data is transported between systems is

covered by some data exchange model representations. Some representations, such as IDL, do

not cover Transport details at all focusing solely on Data. Conversely, some formats cover many

Transport aspects, except they lack some of the details required to enable system interoperability.

As an example, the author of [31] presses that WSDL fails to capture non-functional service

characteristics, such as quality of service (QoS), which is the root cause of several service

interoperability problems.

Alternatively, ASN.1 covers Transport details by providing reusable means to model how data is

encoded which, in turn, can be changed independently from the abstract data representations.

This separation of Data and Transport is also present in WSDL which enables specific protocol

characteristics to be captured in bindings even if QoS coverage is deficient. Regrettably, ASN.1

protocol designers cannot control the final encoding which is often required in order to

interoperate with existing systems [46].

22

Transport details are not captured within AADL models per se, except AADL provides the

capability to represent a communication link through its conceptual bus construct [40]. For

instance, representing an HLA transport would require creating an HLA bus. Moreover, some

predefined general transport characteristics can be captured through AADL properties.

Unfortunately, these are quite limiting and prevent AADL from capturing the sought transport

details.

Another issue is capturing where data is accessible from. One could argue that this is a concern of

the Connection facet, except the Connection facet is concerned with how systems are logically

connected to one another whereas the Transport facet is concerned with the concrete details

required to realize data exchanges. This is also consistent with WSDL which considers Transport

to be concrete [28]. WSDL provides access to services through endpoints which capture where a

service is accessible from. Moreover, it represents how data is transported between the service

and its clients through bindings which capture the message format and transmission protocol.

Bindings enable WSDL to consider multi-architecture environments by capturing the

peculiarities of each architecture in a distinct binding.

1.9.1 Intermingling Transport with Data

Some data exchange model representations mix Transport directly on Data. This prevents data

reuse within the same architecture and across multiple ones. For instance, Transport attributes,

such as encoding and QoS, are expressed directly on HLA Data [17]. Consequently, reusing

HLA Data can only be achieved within HLA architectures. Furthermore, this can only be realized

by duplicating and by adapting the Data to the various Transport use cases. Transposing the

same data over multiple architectures further duplicates the information. Therefore, there must be

a clear separation between Data and Transport as captured within a data exchange model

representation in order to enable reuse.

1.10 Lack of Interface Details

Most data exchange model representations only focus on capturing Data with some detailing

Transport characteristics. Except, in order to simplify system integration, one also needs to

represent systems as they are the focal point of the integration process. One typical type of

integration issue relates to systems with diverging interfaces. Consider two data types with

23

different units of measurement. From the Data facet's perspective, these two types provide no

indication of possible integration issues. Except systems requiring aligning these two types

together proves otherwise if the systems need to interoperate together. Therefore, an explicit

description of each system's Interface is required in order to capture, and identify, these potential

issues.

Service interfaces can be captured with WSDL [28] where the operations supported by a service

are detailed on an interface element. Interface elements then relate to Data by specifying the

inbound and outbound message types. This enables WSDL to fully describe web services

covering the Interface, Data, and Transport facets.

Conversely, AADL proposes an abstraction of components accounting for application software,

execution platform, and composite components [40]. As an example, AADL can represent

software processes, hardware processors, and memory components. One of the central AADL

component is the system component which is used to model distinct units within an architecture.

System components expose ports enabling them to exchange Data together. As with WSDL,

AADL values the explicit capture of system interfaces. To this end, [47] uses AADL to facilitate

middleware analysis by formally capturing the complete systems to interoperate and by

describing the required behavior of the middleware. The problem with the proposed approach is

that it only works with their architecture as AADL does not model transport which their

architecture compensates for.

As with AADL, FACE proposes a way of capturing system interfaces through its Unit of

Portability (UoP) [26]. Each FACE UoP is composed of ports which makeup its Interface. These

definitions can then be used to automate some of the data exchange software through code

generation. In a similar fashion to FACE, SysML proposes a native Interface element which can

be composed of ports. Therefore, the ability to formally capture system interfaces is key in

describing data exchanges and enabling automation.

1.11 Lack of Connection Details

Capturing the Interface of systems, the Data they exchange, and how this data is Transported

does not account for a full description of system data exchanges. One needs to know how data is

routed between systems, that is, how systems are connected to one another. This is the purpose of

24

the Connection facet. Unfortunately, of all the languages explored, only SysML and AADL

capture system connections by modeling the connections between system ports. Moreover, the

lack of such details renders connections implicit and subject to interpretation by SMEs. This can

cause an SME to input data from the wrong source. These types of issues are quite challenging to

detect and are often found late into the integration phase.

1.12 Subject Matter Expert Modeling Complexity

One of the main problems with the existing solutions is the required knowledge to use them

which is not typically shared amongst subject matter experts (SMEs) and impedes productivity

[42,48] which, in turn, directly impacts system development and integration. As an example, [24]

justifies the use of XML for capturing data exchange models based on the fact that it provides

human readability, machine readability, and existing tool support. Being a human-readable

format does not necessarily make it human-understandable too. This explains why [31] stipulates

for WSDL, an XML format, that "[WSDL] descriptions are machine-readable rather than human-

friendly".

Another example involves SMEs which are expected to directly translate their domain expertise

into a software form [48]. As software programming increases in complexity, there is a

conflicting duality of requiring SMEs to be experts both in their domain and in software. In the

same lines, HLA OMT exposes system experts to protocol details by intermingling Transport

with Data. Except the SMEs' primary concern regards consuming and producing system data. On

the other hand, system integrators are concerned with such details.

Languages, such as IDL and ASN.1, are more restrictive exposing dedicated viewpoints aimed

towards specific SMEs thus hiding complexity from them. Unfortunately, these languages lack

the level of abstraction expected by SMEs focusing solely on a first-degree abstraction from

computing platforms and software protocols. For instance, units of measurement and frames of

reference are not an integral part of IDL. This forces SMEs to deal directly with their computing

platform representations instead. To cope for this, an SME could model an IDL Altitude type as

an altitude Value with its Units and Frame of reference representations as follows:

enum AltitudeUnit
{
 Meter,
 Feet
};

25

enum AltitudeFrame
{
 AboveGround,
 EarthCenter
};
struct Altitude
{
 double Value;
 AltitudeUnit Units;
 AltitudeFrame Frame;
};

Except the Altitude type is no longer a single 64-bit double precision floating-point Value from

IDL's perspective therefore impacting its computing platform representation and transmission

size. Additionally, an IDL compiler cannot help SMEs with units and frame errors as it does not

know about them. In opposition, XML formats cope for this by providing richer representations.

Moreover, XML formats require to be transformed thus eliminate the superfluous information not

required by the computing platform representation.

In contrast, UML provides the capability to create profiles, which are similar to dedicated

languages, exposing rich constructs and abstractions therefore hiding complexity from SMEs.

FACE uses this capability, as presented by [26], as well as SysML, to combine the

aforementioned benefits of both the dedicated languages and the XML formats. Except UML

modeling exhibits many pitfalls when trying to create dedicated languages, i.e., profiles, as

uncovered by [49] which states the lack of framework support, existing tool limitations, and a

complex UML extension mechanism. The lack of expressiveness is also noted by [42] which

proposes domain-specific languages (DSLs) instead. That is because a DSL boasts the

vocabulary richness and expressiveness of a dedicated language aligned with an SME's domain.

1.12.1 Leveraging SME Expertise

The main purpose of a full mission simulator (FMS) is to provide training to aircraft crews. From

a software application perspective, replicating an existing aircraft and its environment involves

the interaction of several systems within the FMS (Figure 1). Each system has its own set of

simulation models, for instance, aircraft system models, such as flight and engines, and models

dealing with the environment surrounding the aircraft, such as weather and air traffic. In addition,

multiple FMSs can be joined together to simulate air traffic. Moreover, system models need to

communicate data to other systems, thus demonstrating particular data interests, in order to

replicate an end function of the aircraft to the pilot. In a nutshell, this technology-agnostic

description represents What (Figure 1-4) SMEs need to build to achieve an FMS. Additionally,

26

because SMEs are experts in a particular domain, abstractions need to be available to them so

they can use resources, such as the hardware, without requiring being experts in these resources.

Figure 1-4: Hiding Software Complexity from SMEs

Next, How to actually implement an FMS involves many different kinds of expertise covering the

whole application’s scope (hardware, software, OS, etc.). Moreover, reusable components

provided by frameworks can be composed together to form the software application

complemented by model-specific user code and parameterizations. This software application is

also subject to multiple configuration parameters and is deployed on hosts interconnected via

diverse networks. Moreover, because system models elicit their communication’s quality of

service (QoS) requirements such as data transfer latency, deployment strategies need to be

considered. For instance, if the expected transfer latency is high, then a strategy involving

network communication might be appropriate. If the latency is low, then system models

communicating together might be required to run on the same host or in the same process.

Furthermore, with a 64-bit OS capable of accessing large amounts of memory, the number of

simulation models per process is likely to increase in order to leverage multi-core CPUs therefore

it becomes important to efficiently address communications within the same process. This

unfolding of the What into the How requires Know-How (Figure 1-4) that is not shared by the

majority of SMEs. As such, there is a need to abstract this complexity in order to leverage the

expertise of SMEs.

1.12.2 Hardware Performance

Another source of complexity to hide from SMEs is the alignment with hardware. Indeed, SMEs

tend to model from abstractions that are close to their corresponding real-world equivalent. For

27

instance, one would model a list of aircraft as an Array of Structure (AoS) (Figure 1-5).

However, in order to fully leverage today’s hardware capabilities, a specific memory layout must

be used by models to efficiently move data in/out of the CPU and to demonstrate the capability to

simultaneously perform multiple computations which Brownsword [50] and Collin [51]

highlight. For instance, the Single Instruction, Multiple Data (SIMD) instructions [52] supported

by modern multi-core CPUs and GPUs process a great deal of data in parallel. An example of an

efficient hardware model is a list of aircraft data structures represented as a Structure of Array

(SoA) (Figure 1-5).

Figure 1-5: Array of Structure vs. Structure of Array

To illustrate the impact of the data memory layout strategy on performance, following AoS and

SoA, we computed the time taken to execute the following kinematic equations on a list of

aircraft data structures considering their position, velocity and acceleration:

 and .

Figure 1-6: Impact of Data Memory Layout on Performance

As shown in Figure 1-6, using a SoA memory layout has significant impact on the speedup when

compared to a single-threaded execution using an AoS memory layout. Moreover, a SoA

28

memory layout allows the use of SIMD instructions and improves the speedup gains of using

multi-threaded execution. Again the Know-How (Figure 1-4) required to store a simulation

model’s data (i.e., What) into a hardware efficient data memory layout (i.e., How) is not shared

by the majority of SMEs. Moreover, such a data memory layout depends on the actual

computations applied to the simulation model. Consequently, each simulation model’s data

memory layout may differ, which leads to suboptimal hardware performance. As such, there is a

need to abstract this complexity with considerations at the level of the whole software

application.

1.12.3 Frameworks

Frameworks are a further source of complexity for SMEs because they offer too much latitude in

the way they can be used [53,54]. Frameworks are programmed using a general-purpose

language, and if SMEs have access to the full expressivity of the language, this increases the

probability that they can introduce software defects, create suboptimal solutions or apply non-

uniform solutions to a recurring problem due to their lack of software expertise. SMEs could also

make technological choices directly within their code that others would have no knowledge of,

which can cause problems with managing technology obsolescence and evolution. Imagine the

difficulty of managing the network resources of an FMS when systems exchange data through the

network without exposing that resource usage.

1.12.4 Domain-Specific Languages

A domain-specific language (DSL) allows SMEs to focus on What (Figure 1-4) needs to be done

while abstracting the complexity of having to specify the full algorithmic details needed to

implement a software application that does the How [55].

An example of a DSL is the Structured Query Language (SQL) designed, among other things, to

insert, update, delete and query data in a relational database. An SQL query allows the user to

describe its data interest, the What, while avoiding the need to describe the necessary operations

to produce the expected results, i.e., the How. For instance, an SQL query to retrieve Books with

a price greater than 100$ would be:

29

SELECT * FROM Book WHERE price > 100.00

As such, this query doesn’t specify the details of the operations needed to locate, retrieve and

filter the expected Books from a persistent storage. This gap between the What and the How

provides users with a simplified experience and gives relational database implementers leeway

for specific optimizations.

In contrast to a general-purpose language used to create a framework, a DSL is a computer

programming language of limited expressivity that focuses on the core concepts and behaviors of

a particular domain. Therefore, SMEs working with a DSL are more restricted in the valid

programs they can create than they would be with a framework [53].

1.12.5 Model Compilers

Following the analogy of a compiler transforming a high-level language such as C++ into a low-

level assembly language, a Model Compiler (Figure 1-4) contains the software knowledge Know-

How needed to transform a model created using DSLs into a software application. Since models

created using DSLs are domain specific, compiling them also requires a domain specific Model

Compiler. More specifically, a Model Compiler generates from a model part or all of the software

assets, like the C++ user code to complement a framework’s reusable components and an

application’s configuration files, needed to obtain an FMS software application. For instance, a

Model Compiler can generate all the C++ code needed to achieve data-level interoperability [56]

between two simulation models for a particular data format and communication protocol. Also,

using a Model Compiler to generate software assets reduces the risk of introducing software

defects, creating suboptimal solutions or applying non-uniform patterns to a given recurring

problem.

Moreover, a Model Compiler can deal with the QoS requirements of communications such as

data transfer latency. Based on the expected data transfer latency between two simulation models,

a Model Compiler can opt to deploy the models separately on different computing nodes or to

combine them in the same process.

Again, similar to a compiler generating assembly code from C++ code but allowing debugging at

the higher-level C++ abstraction, a Model Compiler can generate the code needed to support

debugging using the level of abstraction of DSLs thus hiding complexity from SMEs. In addition,

30

the gap between the What and the How provides potential for a Model Compiler to apply context

specific optimizations. An example of such optimization would be to transform a list of aircraft

modelled from an Array of Structure (AoS) into a list of aircraft stored in memory as a Structure

of Array (SoA) (Figure 1-5).

1.12.6 Code Generation

Code generation is used by existing solutions principally to automate software artifacts such as

source code and configuration data. For instance, FACE and DDS use IDL to automate data

serialization [26,34]. Another example is TENA which uses compiled-in object definitions [57].

The author noted that code generation is used by TENA because it provides strong type

validation, detects errors early, enables better performances, and it conforms to current best

software engineering practices. AADL also enables code generation as demonstrated by [47] for

middleware analysis.

Code generation approaches, particularly the ones using model compilers from DSL models,

offer advantages sought by the approach of this research. First, simplifying the task of software

development by automating some code allows SMEs to limit their work on the problems they are

trying to solve rather than having to expand their knowledge in areas that are in support of their

work. This is the case of the development of interoperability where the real problem to be

addressed is limited to the interconnection of system interfaces and the data they exchange rather

than at the intricacies of data serialization and communication protocols. Second, code generation

can be optimal in order to adapt to the environment in which the generated code is executed. This

allows replacing pieces of code that are too generic to be effective, too long to write to be

optimal, or too difficult to maintain because too broad. Code generation is a potential candidate to

enable better system interoperability.

Nonetheless, it is imperative that SMEs only see what concerns them in order to hide complexity

from them, increase their productivity, and better leverage their expertise [48].

1.13 Model Configuration Management and Governance Deficiencies

Another problem with models created with the existing solutions is identifying changes and

understanding how they evolved. This ability is critical in finding issues early on in the

development and integration processes. This is also particularly significant in enabling model

31

governance which is an integral part of FACE's strategy to reduce software costs [26]. This also

touches configuration management which is handled by revision control systems [58]. Contrast

the differences between multiple revisions of a UML diagram or an XML file to that of a C++ or

Java file under revision control. The latter source code representations enable simpler

understanding of a model’s evolution being clutter-free formats.

That is one of the motivations of [42] for migrating all of their UML models to DSLs. They also

highlight the risk of UML models and source code getting out-of-sync which directly impacts the

outcome of model governance activities: models are updated and source code needs to be in

agreement with the changes. That is why they propose to store models as textual DSL

representations alongside source code and applying the same software engineering practices,

including reusing the same revision control system and configuration management. This is in line

with [59] which proclaims that the model is the code in the context of service models. Treating

DSL models as source code enables simpler understanding of a model’s evolution. That is

because a DSL provides a clutter-free view of the model and therefore allows for easier

understanding, management, and governance.

1.14 Summary

This chapter presented an in-depth literature review covering system integration issues related to

data exchanges, as well as issues impeding reuse and interoperability. As demonstrated, no single

existing solution solves these problems on its own. Except each one offers a piece of the solution

with some pieces intersecting while others diverge in their approach. Moreover, no solution

provides an architecture-agnostic way of capturing system interfaces, i.e., meta-model, nor

addresses multi-architecture considerations. The review also focused around two system

integration perspectives, distributed simulations and platforms, generalizing both under the same

roof.

Moreover, the review segmented the problem domain into the system interoperability facets. The

findings highlight many issues related to the Data facet ranging from meta-model and data

incompatibilities to how data models are captured. Another finding is the complexity incurred on

SMEs when using existing solutions to model system data exchanges and the various aspects

surrounding them. Furthermore, deficiencies of some solutions concerning model configuration

management and governance point to potential areas of improvement and gains in efficiency.

32

The following chapter presents the research questions and objectives, as well as the motivation

behind the proposed methodology.

33

Chapter 2 GENERAL METHODOLOGY

2.1 Research Motivation

Today’s platforms, such as full mission simulators (FMSs), exhibit an unprecedented level of

hardware and software system integration. In this context, system integrators face heterogeneous

system interfaces which need to be aligned and interconnected together in order to deliver a

platform's intended capabilities. The sole aspect of the data systems exchange is problematic

ranging from data misalignment up to multi-architecture environments over varying kinds of

communication protocols. Similar challenges are also faced by integrators when interoperating

multiple platforms together through distributed simulation environments where each platform can

be seen as a system with its own distinct interface. On the other hand, enabling system reuse

across multiple platforms for product line support is challenging for system suppliers, as they

need to adapt system interfaces to heterogeneous platforms therefore facing similar challenges as

integrators. Furthermore, the introduction of system interface changes in order to respond to late

business needs, or unforeseen performance constraints for instance, is even more arduous as

impacts are challenging to predict and their effect are often found late into the integration

process. All these issues highlight the need to simplify system integration and interoperability

in order to reduce their associated costs and increase their effectiveness along with their

efficiency.

2.2 Problem Statement

Today's approach of achieving a high level of integration and interoperability between systems

involves formal interface descriptions. Moreover, multi-architecture environments incur a

duplication of these descriptions as each architecture requires its own representation. Introducing

changes in this context becomes even more challenging as each representation might require a

specific solution to address each change. From the perspective of system integrators, there is a

need to have architecture-agnostic descriptions providing a single architectural viewpoint

overseeing all system interfaces. On the other hand, suppliers require a method to adapt a

system's interface to various platform-specific ones in order to enable reuse and better support

product lines.

34

There exists a multitude of solutions to capture interface descriptions ranging from document

specifications to dedicated languages. Some solutions enable the automation of some of the tasks

involved in achieving system interoperability by generating software artifacts from interface

descriptions. Some suggest using domain-specific languages (DSLs) to model the aspects

relevant to specific stakeholders in the language of their respective domain therefore simplifying

their comprehension.

Unfortunately, no single solution offers a single architectural viewpoint capturing all the details

surrounding data exchanges covering system Interfaces, the Connection of these interfaces to

data, the Data exchanged between systems, and the data’s Transport from system to system

(Figure 2). They also exhibit limited validation capabilities. Moreover, interface descriptions

captured with these solutions are not easily understandable even if some are expressed in human-

readable formats because they do not target the system integrators or the SMEs involved in the

development and integration activities. In turn, identifying changes and understanding how they

evolved becomes challenging. This ability is critical in finding issues early on in the development

and integration processes. This is also particularly significant in enabling interface governance.

Furthermore, no solution addresses multi-architecture environments nor provides the flexibility

required to enable system reuse across multiple platforms in support of product lines.

Therefore, there is a lack of an architecture-agnostic format which captures the details relevant to

system data exchanges down to specific architectures, exhibits flexibility over system interfaces

to enable their reuse, and is at the same time human-understandable by its stakeholders and

machine-processable being exempt from ambiguity in addition to misinterpretation.

Consequently, this thesis tackles the general question of: How should system interface

descriptions be captured, and used, to simplify system integration and interoperability?

2.3 Research Questions

The specific research questions presented in the following sections are meant to bring new

advances in the fields of system integration and system interoperability. Notably, by establishing

a common taxonomy, and by increasing the understanding of system interfaces, the various

aspects impacting system data exchanges, multi-architecture environment considerations, and the

factors enabling interface governance as well as system reuse.

35

2.3.1 What should be Formally Described in Order to Capture System

Interfaces and the Various Aspects Surrounding their Data Exchanges,

and How?

There is a lack of a common taxonomy which can be shared amongst stakeholders, such as

integrators, suppliers, and system experts, when discussing system integration and

interoperability. This taxonomy would allow a better understanding of the elements impacting

system integration and system interoperability. The system interoperability facets (Figure 2)

propose a breakdown based on the specific concerns surrounding system interoperability.

Unfortunately, no single solution covers all of the facets, along with the concepts required to

formally describe system interfaces, on its own. The elements relevant to stakeholders have been

identified in the literature review (Chapter 1) and provide a good starting point for answering this

question.

Additionally, existing solutions each provide a specific way of capturing the elements relevant to

system interface descriptions. A common system interface description interchange format would

enable better communication between stakeholders, simplify interface governance, enable reuse

of system interface descriptions, and provide common grounds for engineering tools.

2.3.2 How should Multi-Architecture Considerations be Captured?

No existing solution addresses multi-architecture considerations which is a key problematic area

of system integration and system interoperability. Identifying a way to capture such detail with

the right level of abstraction would greatly benefit the integration and interoperability activities as

well as further enable their automation. This would also enable easier change propagation

between each architecture's representation of system interface descriptions.

2.3.3 How should System Interface Descriptions be Used to Automate Some of

the Tasks Involved in System Integration and Interoperability?

The tasks involved in achieving system interoperability, such as data serialization or protocol

handling, need to be formalized to remove ambiguity or misinterpretation. Some solutions derive

software artifacts from interface descriptions in order to automate these tasks. Understanding how

36

to further enable the automation of the system integration and interoperability tasks would reduce

costs and improve effectiveness, as well as efficiency, in performing them.

2.4 Research Objectives

The fundamental research objective of this thesis is to automate the system-level data-

interchange software through a system interface description language. To this end, the

following specific objectives have been derived.

2.4.1 Define a System Interface Description Language

This objective aims at defining a language used to describe system interfaces and the various

details surrounding their data exchanges. This language is denoted as the System Interface

Description Language (SIDL).

First, meeting this objective involves answering the research question "What should be Formally

Described in Order to Capture System Interfaces and the Various Aspects Surrounding their Data

Exchanges, and How?" (refer to Section 2.3.1). To this end, all the elements relevant to the

system interoperability facets (Figure 2) are developed in Chapter 3 as the core language

elements of SIDL. Moreover, [42] suggests using DSLs to model and capture the aspects relevant

to specific stakeholders in the language of their respective domain. They also suggest storing

models as textual DSL representations alongside source code to leverage the same software

engineering practices, including reusing the same revision control system and configuration

management. Therefore, the developed language is a textual DSL which is populated from

elements of existing languages and elements derived from the author as well as SME feedback.

Being a DSL, the proposed language is at the same time human-understandable, since in the

language of its stakeholders, and machine-processable thus enabling automation. Therefore, this

simplifies change identification and the understanding of interface evolution. Furthermore, the

use of a model compiler enables strong validation semantics on the system interface descriptions.

Second, this objective also implies addressing the research question "How should Multi-

Architecture Considerations be Captured?" (refer to Section 2.3.2). The language elaborated in

Chapter 3 is architecture-agnostic such that architecture-specific representations can be derived

from this single viewpoint. Because SIDL provides a single architectural viewpoint overseeing

all system interfaces, SIDL is considered an architecture description language [3]. Moreover, in

37

order to address multi-architecture environment considerations, the language models architecture-

specific details. Therefore, the introduction of changes to system interfaces becomes simplified as

changes are automatically propagated down each architecture's own representation being

introduced from a single architectural viewpoint defined in SIDL.

2.4.2 Define a Method to Automate the System-Level Data-Interchange

Software from System Interface Descriptions

Achieving this objective directly answers the research question "How should System Interface

Descriptions be Used to Automate Some of the Tasks Involved in System Integration and

Interoperability?" (refer to Section 2.3.3). One way of simplifying system integration and

interoperability is by automating some of its tasks. Therefore, this objective targets the

automation of the software responsible for system data exchanges from system interface

descriptions.

The general methodology of transforming system interface descriptions into data-interchange

software will be elaborated in Section 3.6. The generated software artifacts that emanate from

this process are largely contextual since they depend on characteristics such as the resulting

software interface presented to the system, the frameworks or libraries which can be used in

support of code generation, the output programming language, etc. This explains the generic trait

of the elaborated method. That is why its experimental implementation is detailed in Chapter 4

which can form the baseline for other implementations.

2.5 General Approach

The System Interface Description Language (SIDL) has been developed along with a method for

automating the data-interface software of systems from descriptions expressed in the elaborated

language. These two results demonstrate the achievement of the specific research objectives

which leads to a better understanding of system integration and interoperability as well as enables

the simplification of their associated activities.

Because of the intrinsic relationships between each research objective, they have all been

approached at the same time with the following iterative methodology:

38

1. Identify use cases

2. Identify and implement test cases, composed of test systems, covering all use cases

3. Define language syntax & semantics

4. Prototype language implementation

4.1. Model test system interfaces and data exchanges in language

4.2. Generate software artifacts realizing data-interchange for each test system

4.3. Refactor test systems

4.4. Validate results

4.5. Improve language

4.6. Go back to 4.1 if all use cases are not achieved or if data-interchange software requires

manual intervention, otherwise stop.

The methodology starts with the identification of use cases which are populated mainly from the

author's experience with support from SME feedback and literature data (detailed in Chapter 1 in

the context of full mission simulators). This enables use cases to be more pragmatic covering

existing system integration and interoperability concerns. Then, a series of test cases, composed

of multiple test systems, are elaborated in order to cover all use cases. Each test case can verify

multiple use cases, and use cases can be verified by more than one test case. This overlap is

intentional and allows for greater certainty over the expected results. At this stage, the data-

interchange software of each test case is manually created with the intent of being automated at a

later stage. A language baseline is created next based on literature data which particularly focuses

on standard languages.

From there on, an iterative approach starts for converging both the language and the data-

interchange software automation until all use cases are demonstrated, and all test cases no longer

require manual intervention to use the generated software interface. Each iteration sees more and

more pieces of the test systems become automated now being modeled with the language. In turn,

this has the effect of modifying the software interface consumed by the test systems which

justifies the need for a refactoring activity to occur. Once the test systems compile, their behavior

is validated to prevent regressions from the expected test results. At this stage, SMEs also

39

validate the language constructs with the primary end goal being to improve its human-

understandability. These results are then injected into the next and final stage which consists of

improving the language based on them.

This general overview of the iterative methodology is revisited in detail in Chapter 4 particularly

when describing the experimental implementation used to meet the research objectives. The

achievement of each research objective is demonstrated in the following sections.

2.5.1 System Interface Description Language

The demonstration of this objective revolves around three aspects: the relevant language

elements, the capture of models described with the language, and addressing the multi-

architecture considerations.

The first aspect revolves around the language elements, i.e., What should formally be described

by the language. This is demonstrated as SIDL covers all the system interoperability facets

(Figure 2) as depicted in its conceptual model (Figure 3-1). Each language element is categorized

under one of the facets notably the system Interfaces, the Connection of these interfaces to data,

the Data exchanged between systems, and the data’s Transport from system to system. As such,

each element targets a specific aspect of system integration and interoperability as described

throughout Chapter 3. This is also demonstrated by the fact that all SIDL elements are derived

from standard language elements dealing with integration and interoperability, notably FACE

[26], WSDL [28], AADL [40], and HLA OMT [17], as well as from the author and SME

feedback.

The second aspect concerns How to capture the language. This is demonstrated since SIDL is

represented as a textual DSL, as such is human-understandable, being in the language of its

stakeholders, and machine-processable being equally considered as source code. Additionally,

being supported by a model compiler (Chapter 4), SIDL demonstrates strong validation

semantics on system interface descriptions as detailed in Section 3.7. The success of its validation

semantics has also been praised by SMEs using it as illustrated in Chapter 5.

The third aspect concerns addressing multi-architecture considerations. This is demonstrated as

SIDL is architecture-agnostic and can model architecture-specific details through its Transport

elements as detailed in Section 3.5. Moreover, architecture-specific representations can be

40

derived from SIDL descriptions as demonstrated in the experimental results detailed in Chapter 5

when generating IDL [32] and HLA OMT [17] data exchange model representations.

2.5.2 System-Level Data-Interchange Software Automation

The demonstration of this objective revolves around the automation of the data-interchange

software used by systems. This is demonstrated by having the data-interchange software of all the

test systems be entirely generated from models described in SIDL. Each test system is

represented in SIDL covering each system interoperability facet, i.e., the test system Interfaces,

the Connection of test systems to data, the Data the test systems exchange, and the Transport of

data between test systems. From these definitions, a code generator creates the corresponding

software artifacts which each test system uses. This process is detailed in Chapter 4 in the context

of the experimental implementation used to demonstrate the research objectives. The generated

software artifacts include:

 the software interface expressed in one of the supported programming languages covering

a representation of the data exchange model and a communication interface supported by

frameworks and libraries

 the data serialization software which is expressed in either one of the supported

programming languages or in a dedicated language such as IDL in the case of DDS

 the communication middleware data exchange model representations such as HLA OMT

data exchange models.

The software artifacts that emanate from this process are specific to the experimental results

hence the objective is only demonstrated in this context. In order to extrapolate and generalize the

demonstration to other contexts, a general methodology of transforming system interface

descriptions into data-interchange software artifacts is elaborated in Section 3.6. Moreover, the

resulting data-interchange software is validated through regression tests as well as objective

criteria instead of empirical measurements. The hypothesis is that the generated artifacts are

equivalent, or better, to the ones an expert would have produced. This is validated as the code

generation process uses code templates produced by experts.

41

2.5.3 Publications

During the course of this work, five conference articles have been published. Each article focuses

on specific aspects related to the research objectives.

 Conference Article #1 ([60]): Study on using code generation from simulation data

exchange model representations and interoperability mapping descriptions to automate the

data-interchange software of gateways for system interoperability. [SISO Fall SIW 2005,

05F-SIW-074]

 Conference Article #2 ([61]): Study on using XML formats for describing simulation data

exchange models and system interoperability mappings by SMEs to automate the data-

interchange software of gateways dynamically through runtime code generation. [SISO

Spring SIW 2006, 06S-SIW-087]

 Conference Article #3 ([62]): Study on performance of gateways created using XML

interoperability descriptions through runtime code generation. [SISO Spring SIW 2006,

06S-SIW-086]

 Conference Article #4 ([48]): Study on hiding software complexity from SMEs in order to

better leverage their expertise. [I/ITSEC 2011, 11236]

 Conference Article #5 ([63]): Study on a system interface description language for

simplifying system integration and interoperability. [SISO Fall SIW 2013, 13F-SIW-021]

42

Part II

METHODOLOGY AND RESULTS

43

Chapter 3 SYSTEM INTERFACE DESCRIPTION LANGUAGE

SIDL is a language used to formally describe system interfaces focusing on the data they

exchange and on the various aspects surrounding them. This information set is captured into one

or more SIDL descriptions. Figure 2 illustrates the facets covered by SIDL descriptions notably

the system Interfaces, the Connection of these interfaces to data, the Data exchanged between

systems, and the data’s Transport from system to system.

The conceptual model of SIDL is illustrated in Figure 3-1. It presents the high-level elements of a

SIDL description and their relationships to one another. The elements are also categorized against

the facet they relate to and are detailed alongside this organization throughout the following

sections. It is important to note that the Interface, Connection, and Data facets are considered

conceptual whereas Transport is concrete. This implies that any conceptual element is designed

to be reusable by other SIDL descriptions. Concrete elements can be reused, but with less extent.

Figure 3-1: SIDL Conceptual Model

SIDL's language elements are primarily derived from FACE [26], WSDL [28], AADL [40], and

HLA OMT [17], while some originate from the author as well as SME feedback. Throughout the

following sections, each element identifies its origin to better position its relationship to system

integration and interoperability.

44

Note that the examples used throughout this section are inspired by RPR-FOM [64]. Moreover,

some examples refer to declarations of previous ones.

3.1 SIDL Grammar

SIDL aims to be a human-understandable language. As such, it reads very similarly to the

English language with the exception of being structured differently. Another difference with

typical programming languages is that SIDL uses English words instead of relying on symbolic

operators. For instance, to denote the type of a field, the as construct is used instead of typical

whitespace or a colon ':' delimiter. The following example illustrates these differences.

// SIDL
Psi as AngleRadian

// C/C++/Java/C#
AngleRadian Psi;

-- ASN.1
Psi AngleRadian

-- AADL
Psi: data AngleRadian;

The preceding example also demonstrates the different single-line comment styles. In addition,

multi-line comment are enclosed between '/*' and '*/' in SIDL as with C, C++, Java, C#, and

ASN.1. Note that AADL does not support multi-line comments.

3.1.1 Control Blocks

Another difference with SIDL is the lack of explicit control block delimiters. SIDL uses

whitespace instead whereas most languages use delimiters such as curly braces '{}', or keywords

such as 'end' paired with a start keyword. One limitation of this approach is that multiple

declarations cannot be provided on the same line. This limitation is overcome with the improved

readability this incurs on SIDL descriptions. The following example illustrates these differences.

// SIDL
entity Orientation:
 Psi as AngleRadian
 Theta as AngleRadian
 Phi as AngleRadian

// C/C++
struct Orientation
{
 AngleRadian Psi;
 AngleRadian Theta;
 AngleRadian Phi;
};

45

// C#
struct Orientation
{
 AngleRadian Psi;
 AngleRadian Theta;
 AngleRadian Phi;
}

// Java
class Orientation
{
 AngleRadian Psi;
 AngleRadian Theta;
 AngleRadian Phi;
}

-- ASN.1
Orientation ::= SET
{
 Psi AngleRadian,
 Theta AngleRadian,
 Phi AngleRadian
}

-- AADL
data Orientation
subcomponents
Psi: data AngleRadian;
Theta: data AngleRadian;
Phi: data AngleRadian;
end Orientation;

3.1.2 Namespaces and Imports

In order to better structure SIDL descriptions, namespaces can be used. A namespace is declared

using the namespace SIDL element, and must appear as the first declaration in a SIDL

description. The following example demonstrates namespaces in SIDL.

namespace Rpr

entity OrientationStruct:
 Psi as AngleRadian
 Theta as AngleRadian
 Phi as AngleRadian

The preceding example attributes the Rpr namespace to the Orientation entity. Therefore,

referencing the orientation entity now requires its fully qualified name which becomes RprFom.

Orientation. In order to simplify referencing SIDL declarations, import declarations can be used.

An import is declared using the import SIDL element. This is demonstrated in the following

example.

import Rpr

entity SpatialStaticStruct:
 Orientation as OrientationStruct

46

3.1.3 SIDL Source File Encoding

All SIDL source files must conform to the UTF-8 character encoding as specified by ISO/IEC

10646-1 [65].

These are the main elements of the SIDL grammar and are used throughout the following

sections when providing SIDL examples. Appendix A provides the full SIDL grammar reference.

3.2 The Data Facet

The data available to be exchanged between systems is the concern of the Data facet. It takes

form as the SIDL Data Model which is illustrated in Figure 3-2.

Figure 3-2: SIDL Data Model

The SIDL data model is derived from the FACE data model as its main purpose is "to provide an

interoperable means of data exchange" [26]. The FACE data model also provides many elements

which increase the semantic meaning of data such as units of measurement and frames of

reference. Moreover, FACE promotes reuse extensively which its data model reflects by enabling

it. For all these reasons, the SIDL data model can be seen as a DSL representation of the FACE

data model. However, some divergences are introduced notably: the addition of facts (Section

3.2.2.1), variations of the supported value types (Section 3.2.3.3), the support for variants

(Section 3.2.3.5), the support for mapping existing data models (Section 3.2.4), and the concept

of a concrete reference data model (Section 3.2.5).

47

The SIDL data model is subdivided into three levels of abstraction being, from highest to lowest,

Conceptual, Logical, and Specific. The following sections describe each level in detail.

3.2.1 Conceptual Data Model

The Conceptual Data Model (CDM) captures the fundamental elements of Data which are

informations and observables. The objective of the CDM is to provide the highest level of

abstraction to data such that it exhibits the highest level of reuse. The CDM is meant to be refined

by the logical data model such that it increases the semantic meaning of the CDM elements.

Therefore, the CDM elements create the unifying link between all of their refined representations.

3.2.1.1 Informations and Observables

An information is “something that is typically not quantified through measurement of the

physical world but is descriptive in nature” [26]. It is declared using the info element followed

by its name. Name, description, and unique identity are information examples. The following

SIDL description presents information examples.

info Name
info Description
info UniqueIdentity
info PartialIdentity

An observable is “something which can be quantified through measurement(s) of the physical

world” [26]. It is declared using the observable element followed by its name. Speed, pressure,

and mass are examples of observables. Examples of observables expressed in SIDL follow.

observable Angle
observable Orientation

Together, informations and observables allow strong semantic links to be established with any of

their logical refinements. For instance, the Angle observable can be used to relate to any angle

representation independently from its computing platform representation, units of measurement,

or frame of reference.

3.2.2 Logical Data Model

The Logical Data Model (LDM) extends the CDM through refinement. The objective of this

refinement is to increase the semantic meaning of CDM elements while offering concrete data

representations of the them to suit specific needs. Notably, the logical elements capture facts and

48

measures which provide the concrete representations of informations and observables

respectively augmented with semantic information such as engineering units and frames of

reference.

3.2.2.1 Facts

A fact is one or more evidences representing an information. It is not part of the FACE data

model and has been introduced by the author. Its purpose is to provide a concrete representation

for an information which FACE does not capture. It is declared using the fact element followed

by its name. The of construct is then used to establish the link between the fact and the

information it concretely refines by specifying the information reference after the construct.

Before delving into the purpose of this link, which is detailed in Section 3.2.2.3, a closer look at

facts is required. Facts are subdivided into two categories: simple and composite.

A simple fact reduces an information to a single evidence. The fact's representation is specified

using the as construct followed by the representation's reference which specifies its concrete

value type (Section 3.2.3.3). Follows is the concrete representation of a partial identity as a 16-bit

unsigned integer fact.

// Simple fact refining the PartialIdentity info
fact IdPart of PartialIdentity as ushort

A composite fact reduces a set of informations to a set of evidences. It is composed of one or

more facts, simple or composite. An entity identifier fact representing a unique identity

information is illustrated next.

// Composite fact composed of simple facts and refining the UniqueIdentity info
fact EntityIdentifier of UniqueIdentity:
 Site as IdPart
 AppId as IdPart
 EntId as IdPart

3.2.2.2 Units, Frames, and Measures

A measure is “one or more quantities representing an observable in a defined frame of reference”

[26]. It is declared using the measure element followed by its name. The of construct is then used

to establish the link between the measure and the observable it concretely refines by specifying

the observable reference after the construct. As measures are the parallel of facts for observables,

this link, which is detailed in Section 3.2.2.3, enables an observable to relate to all of its

49

corresponding measure representations. Additionally, measures are subdivided into two

categories: simple and composite.

A simple measure “reduces an observable to a single quantity that can be recorded” [26]. It

specifies this quantity through its units, frame of reference, and precision. Units of measurement

are declared using the unit element followed by its name. Associating a unit to a simple measure

is done by referencing the unit using the units property on the measure. The same applies to

frames of reference which are declared using the frame element followed by its name, and are

associated to a measure using the frame property. The precision of the measure's value is

expressed with the precision property as a real literal value (i.e., decimal value). The measure's

representation is specified after the as construct which specifies its concrete value type (Section

3.2.3.3). The following example illustrates an angle measure in radians with a True-North

reference frame.

unit Radian
frame TrueNorth

// Simple measure refining the Angle observable
measure AngleRadian of Angle as single:
 units Radian
 frame TrueNorth
 precision 0.000001

A composite measure “reduces a set of observables to a set of quantities that can be recorded”

[26]. A composite measure can be composed of other measures, simple or composite. It can

specify a frame of reference which its composed measures become relative to. The following

example illustrates the concrete representation of an orientation observable as a composition of

angle measures.

// Composite measure composed of simple measures refining the Orientation observable
measure OrientationMeasure of Orientation:
 Psi as AngleRadian
 Theta as AngleRadian
 Phi as AngleRadian

3.2.2.3 Linking Conceptual and Logical Elements

The purpose of linking conceptual and logical elements together is to increase the semantic

meaning of data. As an information/observable is refined concretely by one or more fact/measure

through the of construct, a new semantic link is created that is shared between the fact/measure

with the notion that they all relate to the same information/observable. This is very powerful as

many data exchange models represent the same kind of data except with different computing

50

platform representations or semantics. This particularly impacts heterogeneous system

integration. In the context of multi-architecture environments, it becomes even more essential to

establish and preserve such links as each architecture has its own representation of a data model.

Many interoperability issues originate from the lack of such links.

As an example, consider the concept of unique identity which is present in many data models.

Within the RPR-FOM [64], for instance, there exists many kinds of unique identities notably:

entity identity (EntityIdentifier), object identity (RTIobjectId), and emitter beam identity

(BeamIdentifier). All have different computing platform representations with varying size and

structure. Additionally, no link exists which relates any of them together. Interoperating RPR-

FOM data with other data exchange models adds even more kinds of unrelated unique identities.

This prevents from automatically treating identities with a common pattern. Increasing the

semantic level of data through informations and facts would add the missing links, and could

enable better automation particularly in the context of gateway applications.

Another example is in regards to the semantic meaning of data. One common problem faced in

interoperating data exchange models is with the concept of spatial positions. The typical geodetic

versus geocentric position is always a problematic area because both are often represented with

the exact same computing platform representation, except their semantic meaning are completely

different. Likewise, consider a UUID, which is a universally unique identifier represented as a

128-bit value, and four 32-bit integers. Both types exhibit the same size, i.e., 128-bit, except their

semantic meaning are not aligned. Again, increasing the semantic meaning of data by

establishing links between conceptual and logical elements would prevent these problems.

3.2.3 Specific Data Model

The Specific Data Model (SDM) provides concrete data representations. Its main objective is to

compose logical elements together and expose them as higher-level concepts. Enabling system

reuse is another SDM objective, and is realized through views which enable the adaption of

system interfaces to Data (refer to Section 3.2.3.6). Another objective of the SDM is to enable

the representation of existing data models in SIDL by providing concrete representations aligned

with them (detailed in Section 3.2.4). The principal SDM elements are entities, value types, and

views.

51

3.2.3.1 Entities

An entity is a “non-basis concept that is constructed through composition of basis elements and

other entities” [26]. An entity can be seen as a structure, or fixed record, with fields. Each field

has a name, and is of a specific type which can either be another entity or a basis element. Basis

elements are either facts, measures, or value types. Moreover, an entity is declared using the

entity element followed by its name. Fields are constructed by specifying their name followed

by the type reference using the as construct. The following example demonstrates this.

entity WorldLocationStruct:
 // Value type composition
 X as double
 Y as double
 Z as double

entity BeamAntennaStruct:
 // Composite measure composition
 Orientation as OrientationMeasure

 // Simple measure composition
 AzimuthWidth as AngleRadian
 ElevationWidth as AngleRadian

A cardinality can be specified on a field's type to indicate a bounded or unbounded array, i.e., a

collection of items, using the array construct "(type)". The following SIDL example

demonstrates arrays in SIDL.

entity SphericalAntennaStruct:
 // Unbounded array composition
 OrderACoefficients as (single)

entity MarkingArray11:
 // Bounded array composition
 Items as (byte, 11)

3.2.3.2 Composition Over Polymorphism

As with FACE, SIDL favors composition over polymorphism, i.e., inheritance. This constraint

ensures coherence in views (Section 3.2.3.6) because views navigate the fields of entities.

Supporting polymorphism on entities would create complexity in specifying the navigation paths

particularly when inherited types expose fields of the same name as in derived ones. This

phenomenon, called name hiding, would require SMEs to disambiguate to correct field to select

by having them qualify the field's type. For this reason, SIDL prevents polymorphism. Moreover,

variants can be used to emulate it (refer to Section 3.2.3.5).

52

3.2.3.3 Value Types

A value type specifies a specific data representation aligned with computing platforms. Most

value types have a fixed size in bytes. They are derived from a combination of FACE value types

[26], .NET primitive types [66], and Boo value types [67]. Basically, the value types are aligned

with FACE with the exception of decimal, which comes from .NET and provides a greater

numerical range than long double, and string as well as char which use UTF-8 for Unicode

character support [65]. The type names originate from Boo to make them more succinct, and are

very similar to C# [66] with the exception of single which replaces float providing a more

natural alignment with double. Table 3-1 presents the SIDL value types.

Table 3-1 SIDL Value Types

Value Type Range Size (bytes)

sbyte -128 to 127 1

byte 0 to 255 1

short -2
15

 to (2
15

 - 1) 2

ushort 0 to (2
16

 - 1) 2

int -2
31

 to (2
31

 - 1) 4

uint 0 to (2
32

 - 1) 4

long -2
63

 to (2
63

 - 1) 8

ulong 0 to (2
64

 - 1) 8

single1 ~ ±1.5e-
45

 to ±3.4e
38

 4

double1 ~ ±5.0e-
324

 to ±1.7e
308

 8

decimal2 ~ ±1.0e
-28

 to ±7.9e
28

 16

bool true or false 1

char Unicode character (UTF-8) 1

string Unicode string (UTF-8) Unbounded char sequence

enum 2
32

 identifiers 4

1
 IEEE floating-point numbers (single and double)

2
 .NET System.Decimal number

53

3.2.3.4 Enumerations

An enumeration is "an ordered list of identifiers" [26]. As opposed to the other value types,

enumerations are not predefined in SIDL hence its different color coding which distinguishes it

from the predefined ones. An enumeration is declared using the enum element followed by its

name. An enumeration is a collection of enumerators which are specified using a name.

Optionally, an integer literal value can be associated to an enumerator. The following example

demonstrates enumerations in SIDL.

enum AntennaPatternEnum:
 Beam
 SphericalHarmonic

enum DeadReckoningAlgorithmEnum8:
 Other = 0
 Static = 1
 DRM_FPW = 2
 DRM_RPW = 3
 DRM_RVW = 4
 DRM_FVW = 5
 DRM_FPB = 6
 DRM_RPB = 7
 DRM_RVB = 8
 DRM_FVB = 9

3.2.3.5 Variants

A variant is a special kind of entity. Variants are "discriminated unions of types" [17]. They are

present in many languages such as C, C++, IDL, and HLA OMT. A variant is used to represent a

value which has a finite set of varying forms such as for a uniform array of different items. The

end result is similar to polymorphism (i.e., inheritance). That is primarily why HLA OMT

incorporates such a concept. A variant's fields are called alternatives, and must conform to entity

fields (refer to Section 3.2.3.1). The alternative to use is determined by the variant's discriminant

value which is usually an enumeration.

A variant is declared using the variant element followed by its name. Then follows the reference

to the discriminant's type which is specified using the of construct. The list of alternatives is

specified using case constructs based on the discriminant's range of values. The value associated

to an alternative must not already be specified by another one. A default alternative can be

specified using the otherwise construct, and must appear after all declared alternatives. A variant

must specify at least a single case or otherwise. The following example demonstrates how to

declare a variant in SIDL.

54

variant AntennaPatternType of AntennaPatternEnum:
 // BeamAntenna alternative accessible only when discriminant's value is Beam
 case AntennaPatternEnum.Beam:
 BeamAntenna as BeamAntennaType

 // Otherwise, the SphericalAntenna alternative is accessible
 otherwise:
 SphericalAntenna as SphericalAntennaType

3.2.3.6 Views

A view is a particular way of representing one or more entities. The concept of views originates

from FACE [26]. A view can be seen as a window on entities. It can be used to specify particular

interest in a subset of an entity's fields. It can also be used to adapt data such as units, frames, and

representations. Even names can be adapted with a view which provides an aliasing mechanism

in case where a different notation is required. All these traits make views the pattern of choice

when requiring Data adaptation.

A view is declared using the view element followed by its name. Specific points of interest are

specified through select constructs. This allows navigation within the composed entity's fields

through the dot '.' path delimiter. The end result of selecting an entity's fields is that they become

an integral part of the view. The selected field's name can be changed by specifying the new

name with the alias property on the select construct. Views are particularly well suited to adapt

entities as is demonstrated in the following example.

view AppAndWideEntityNumber:
 // Only interested in EntityIdentifier's AppId and EntId, i.e., ignore Site
 select EntityIdentifier.AppId
 // Adapt EntId's representation from ushort to uint
 select EntityIdentifier.EntId as uint:
 // Adapt name using an alias
 // i.e. EntityNumberWide contains an EntityNumber field
 // instead of EntId as in EntityIdentifier
 alias EntityNumber

In the previous example, the AppAndWideEntityNumber view shows an interest in some of

EntityIdentifier's fields by only selecting a subset of them. The end result is similar to having

defined a AppAndWideEntityNumber entity with AppId and EntId fields. Moreover, the EntId field

is adapted from ushort, i.e., EntityIdentifier's representation, to uint using the as construct.

The field's name is also changed by renaming it to EntityNumber to adapt to a different notation.

Therefore, AppAndWideEntityNumber is equivalent to the following declaration.

entity AppAndWideEntityNumber:
 AppId as ushort
 EntityNumber as uint

55

The BeamAntennaDegrees view shows an interest in BeamAntennaStruct's fields by selecting all its

fields. The end result is similar to having defined a BeamAntennaDegrees entity with AzimuthWidth

and ElevationWidth fields. The following example demonstrates unit adaptation where

BeamAntennaDegrees requires angle specified in degrees instead of radians.

// BeamAntennaStruct uses fields which are angles in radian
entity BeamAntennaStruct:
 AzimuthWidth as AngleRadian
 ElevationWidth as AngleRadian

unit Degree
measure AngleDegree of Angle as single:
 units Degree

// BeamAntennaDegrees uses fields which are angles in degrees
view BeamAntennaDegrees:
 // Adapt an angle in radians to an angle in degrees
 select BeamAntennaStruct.AzimuthWidth as AngleDegree
 select BeamAntennaStruct.ElevationWidth as AngleDegree

Views play an invaluable role in enabling system interoperability as is further discussed in

Section 3.2.5.

3.2.4 Existing Data Model Support

SIDL enables value types to be specified directly on elements, such as entities, simple facts, and

simple measures, which FACE disallows [26]. This support is mandatory in order to map existing

data models. FACE forces the elaboration of strong semantics which is great for new

development. Unfortunately, it is far from being trivial to map existing data exchange models to

observables, informations, and measures for instance. Refactoring existing data models could

also compromise the integrity of already deployed applications. Interoperating with such

applications inevitably requires to represent them as they are. Another barrier to existing data

model support is with enumeration literals which are disallowed to specify a literal value by

FACE. This is primarily because of the IDL baggage which prevents this [32]. Except they are

required by some data exchange models and therefore are captured in SIDL.

3.2.5 Concrete Reference Data Model

The main difference with the FACE data model is that SIDL elements belong to a single level of

abstraction instead of having refined representations over multiple ones. For instance, an entity

only has a Specific SIDL representation for it whereas FACE has Conceptual, Logical, and

Specific ones. FACE’s design decision allows for vaster data variability scenarios. Combined to

56

the fact that FACE governance is only applied at the conceptual and logical levels, this has the

side effect of specific data possibly varying on every FACE platform causing divergences. These

divergences might be required in order to deliver the specific platform, except they should be

minimized. Therefore, constraining refinement in SIDL forces the emergence of a concrete

reference data model because it inherently promotes specific data reuse. It also has the side effect

of simplifying modeling by minimizing the repetitive refinement tasks found in FACE.

An analogy to this would be that SIDL promotes concrete representations whereas FACE

promotes conceptual ones. Both FACE and SIDL promote conceptual and logical data reuse.

Except over time, system integration can become simplified by having more and more systems

adhering to a concrete reference data model dealing with variability only within the systems not

doing so such as with views to support specific platform needs.

As an example, consider a concrete reference data model which suggests using angles in radians

and expressed using double value representations. Derived data models can opt to not use this

definition, except using it enables easier system reuse across platforms.

That is why some logical elements specify a value type as their reference representation in SIDL,

and why some elements are considered specific whereas they have a higher-level of abstraction in

FACE.

3.3 The Interface Facet

The Interface facet is used to capture system interfaces. System interfaces express the data

systems require to consume, and the data they produce. This can be seen as a data-centric system

contract and is captured in SIDL using system elements.

3.3.1 Systems and Ports

The term system is used to refer to entities whose interface is of interest. Moreover, the system

element is the parallel of the interface element of WSDL [28] which is used to describe a service

interface. The word system is used in SIDL instead of interface because it is systems who need to

interoperate, not their interfaces which only need to be aligned.

A system is declared using the system element followed by its name. It is considered a black-box

being solely composed of ports which make up its interface. Ports are similar to fields on entities

57

with the main difference being that a port can either input or output data, or perform both, i.e.,

inout. Following the port's flow is the port's name. The type of the port represents the data that

flows through it in the form of messages. Therefore, a port restricts data to a single kind of

message. The message type is specified using the of construct followed by the reference to the

message type. The of construct distinguishes the port's messaging nature from the as construct

used on fields which denotes their representation. Messages can be seen as instances of types

with specific values.

Figure 3-3: Radar System Example

The following example demonstrates systems in detail and is illustrated in Figure 3-3. The figure

shows a simplified radar system. The aircraft's radar sensor extracts radar cross-section (RCS)

information from entities it acquires within the synthetic environment. The RCS information is

then passed to the processor which determines the ones it detects. The detection information is

finally pushed to the display. The radar display also controls the state of the processor by turning

it on or off. The SIDL description corresponding to the whole example is presented next.

// Entity description which originates from synthetic env. and is captured by the sensor
entity Entity:
 // Entity's unique identity
 EntityIdentifier as EntityIdentifier
 // RCS signature as DB index
 RcsSignatureIndex as short
 // Acoustic signature as DB index
 AcousticSignatureIndex as short

// Represents the RCS of an entity
entity RadarCrossSection:
 // Entity's unique identity
 EntityIdentifier as EntityIdentifier
 // RCS signature as DB index
 SignatureIndex as short

58

// Represents a list of RCS exchanged between the sensor and the processor
entity RcsList:
 // Limit RCS count
 Items as (RadarCrossSection, 500)

// Represents a detection
entity Detection:
 // Detected entity's unique identity
 EntityIdentifier as EntityIdentifier

// Represents a list of detections exchanged between the processor and the display
entity DetectionList:
 // Limit detection count
 Items as (Detection, 20)

// Possible processor states
enum RadarStateEnum:
 Off
 On

// Represents a radar state
entity RadarState:
 State as RadarStateEnum

// Extracts RCS info from entities which are processable by the radar processor
system RadarSensor:
 // Inputs Entity messages
 input Entities of Entity
 // Outputs RCS lists messages
 output RadarCrossSections of RcsList

// Transforms RCSs into detections which can be displayed by the radar display
system RadarProcessor:
 // Inputs radar state messages
 input State of RadarState
 // Inputs RCS lists messages
 input RadarCrossSections of RcsList
 // Outputs detection lists messages
 output Detections of DetectionList

// Displays the radar detections and control the radar's state
system RadarDisplay:
 // Inputs detection lists messages
 input Detections of DetectionList
 // Outputs radar state messages
 output State of RadarState

The preceding example contains two types of declarations: data and systems. The data exchanged

between the radar system's components is captured with entities and value types, such as the

RadarState enumeration. The system interfaces of each radar component are captured with

system elements. Notice the symmetry between the inputs and outputs of systems. From the

preceding SIDL description which captures Data and system Interfaces, we know that systems

share data, because ports use the same types, except we do not know where data actually flows.

3.4 The Connection Facet

Whereas the Data facet is concerned about what data is available to systems and the Interface

facet about which data systems consume or produce, the Connection facet is concerned about

59

where data is routed. Therefore, the Connection facet is used to capture how system interfaces

conceptually connect to one another. This is achieved using bus and channel elements.

3.4.1 Buses and Channels

A bus is a collection of channels which facilitates the connections and communication of systems

as well as enable their interaction. It is inspired by the same concept in AADL [68] with the

difference that the SIDL bus is conceptual. The conceptual links between the Connection, Data,

and Transport facets is illustrated in Figure 3-4.

Figure 3-4: SIDL Conceptual Data Transport

A bus is declared using the bus element followed by its name. Channels are added to a bus using

the channel construct followed by the channel's name. Each channel makes data available in the

form of messages which is specified using the of construct followed by the reference to the

message type. The bus for the radar system follows in SIDL.

bus RadarSystemBus:
 channel Entities of Entity
 channel RadarCrossSections of RcsList
 channel Detections of DetectionList
 channel RadarState of RadarState

The preceding example only captures the radar system's bus structure. In order to route data

between systems, connection information needs to be captured. Systems connect their ports to

channels using the connect construct on a channel followed by the port's reference. Therefore, the

channel establishes the communication the link between all the ports connected to it. The full

radar system's bus, including the system connection information, follows in SIDL.

Transport

60

bus RadarSystemBus:
 channel Entities of Entity:
 connect RadarSensor.Entities

 channel RadarCrossSections of RcsList:
 connect RadarSensor.RadarCrossSections
 connect RadarProcessor.RadarCrossSections

 channel Detections of DetectionList:
 connect RadarProcessor.Detections
 connect RadarDisplay.Detections

 channel RadarState of RadarState:
 connect RadarProcessor.State
 connect RadarDisplay.State

The RadarSystemBus now fully captures the system relationships found in Figure 3-3.

3.4.2 Configurable Routing

Multiple buses can be declared for the same systems with different connection information. This

enables system instances to be configured with specific routing and is particularly useful when

dealing with redundancy. For instance, an aircraft system is often paired with a pilot and co-pilot

instance. Using separate pilot and co-pilot buses enables both instances to reuse the same system

interface and be configured with different routings.

system Egi:
 output Attitudes of Attitude

system Imu:
 output Attitudes of Attitude

system Nav:
 input Attitudes of Attitude

bus LeftBus:
 // Use Egi's attitude
 channel Attitudes of Attitude:
 connect Nav.Attitudes
 connect Egi.Attitudes

bus RightBus:
 // Use Imu's attitude
 channel Attitudes of Attitude:
 connect Nav.Attitudes
 connect Imu.Attitudes

3.5 The Transport Facet

The previous facets have captured what Data is exchanged between systems, which data they

consume as well as produce through their Interface, and where data is routed through the

Connection of their interfaces to data. The missing link required to completely capture system

61

interoperability is how this data gets transported from system to system, and is the concern of the

Transport facet.

The Transport facet establishes the concrete link required to address details such as protocol and

encoding which explains why this facet is considered concrete whereas the others are considered

conceptual (Figure 3-1). For this reason, these elements are primarily targeted towards system

integrators. The transport elements include binding, protocol, network, and endpoint. Basically, a

binding capture the protocol details of buses which a network makes accessible through

endpoints.

In addition, the transport elements are derived directly from WSDL [28]. The only divergence

from WSDL is the service element which is renamed to network in SIDL. The justification for

this is that the word network is more suited in the context of system interoperability whereas

service concerns a different domain.

3.5.1.1 Bindings and Protocols

A binding "describes a concrete message format and transmission protocol which may be used to

define an endpoint" [28]. It defines the implementation details necessary to enable data

exchanges on a bus. This realizes data exchanges because systems are connected on the buses

through their ports.

A binding is declared using the binding element followed by its name. The bus detailed by a

binding is specified using the of construct followed by the bus reference. The protocol to be used

by the bus is specified using the as construct followed by the protocol reference. A binding

declaration example follows in SIDL.

// An HLA 1516-2010 binding for RadarSystemBus
binding HlaBinding of RadarSystemBus as HLA.Protocol1516_2010

A binding allows the configuration of the protocol by specifying aspects such as encoding and

QoS. Each protocol provides properties which can be configured instead of using the default

values (refer to Chapter 4 for a more complete list). The following example demonstrates HLA

and DDS bindings for the radar system (Figure 3-3).

62

// An HLA 1516-2010 binding for RadarSystemBus
binding HlaBinding of RadarSystemBus as HLA.Protocol1516_2010:
 // Configure aspects common to all channels
 channels:
 qos:
 Reliability = BestEffort

 // Configure a specific channel
 channel Detections:
 // Specify QoS for DetectionList.Items
 qos Items:
 Reliability = Reliable
 Order = Receive
 Sharing = PublishSubscribe

 // Specify type encodings
 encode RadarStateEnum as HLAoctet
 encode EntityIdentifyer as HLAfixedRecord

// A DDS 1.2 binding for RadarSystemBus
binding DdsBinding of RadarSystemBus as DDS.Protocol1_2:
 channels:
 qos:
 Reliability.Kind = BestEffort
 Durability.Kind = Volatile

 channel Detections:
 qos:
 Reliability.Kind = Reliable
 Durability.Kind = Transient
 History.Kind = KeepLast

Bindings can configure aspects common to all channels, through its channels property, or for

specific ones, using the channel property as illustrated by the previous example. For instance, the

DdsBinding uses a best-effort reliability kind which makes all channels use this default. The

Detections channel changes this to require reliable communications instead. The qos Items of the

HlaBinding configures the Items field of DetectionList to use reliable communications.

The author considers QoS as sensitive to interoperability and that is why it is modeled instead of

being delegated to external configuration. Moreover, QoS is positioned in bindings because it is

intrinsically protocol-related. The default encoding can be changed with encode. Thus,

RadarStateEnum gets encoded as a single byte, in the HlaBinding, instead of four (Table 3-1).

Protocols are provided through model compiler extensions (Figure 1-4). This is, in essence, the

same way WSDL [28] provides extensibility for service descriptions. Details regarding this

support are provided in Chapter 4. Nonetheless, extensibility is an enabler to fully capturing and

validating the details of system interface descriptions.

63

3.5.1.2 Networks, Endpoints, and Addresses

A network describes a set of endpoints at which a particular implementation of a bus is provided.

In other words, a network provides protocol-bound data access to systems because it realizes the

bus through a binding. The endpoint "associates a network address with a binding" [28]. From the

endpoint's address, systems gain access to the bus. There, data exchanges become bound to the

protocol and characteristics specified by the endpoint's binding. This results in systems being

interconnected. A similar mechanism is used by WSDL [28] for web services. Service clients

gain access to the service interface from a service endpoint that is bound to a protocol.

A network is declared using the network element followed by its name. The bus associated to the

network is declared with the of construct followed by the bus reference. Endpoints are added to

networks using the endpoint element followed by the endpoint's name. The endpoint's binding is

specified using the of construct followed by the binding reference. The address of the endpoint

can also be specified using the address element on the endpoint. It is optional as more often than

not, the address is not known a priori. Additionally, as with protocol details on bindings, address

details are protocol-specific and are discussed in Chapter 4.

The following example shows the radar system network which provides access to the

RadarSystemBus from the bindings previously declared.

network RadarSystemNetwork of RadarSystemBus:
 endpoint Hla of HlaBinding:
 address:
 FederationName = 'Radar System'

 endpoint Dds of DdsBinding:
 address:
 DomainId = 0
 Partition = 'Radar System'

This completes the description of the radar system example (Figure 3-3). The resulting

description captures all the relevant facets surrounding system interoperability. The next section

presents how to use this information particularly for automation purposes.

3.6 Using SIDL Descriptions

The main purpose of SIDL descriptions, from the perspective of this thesis, is to automate the

date-interchange software of systems. In order to accomplish this, a system implementation needs

to refer to two SIDL elements in order to fully capture its interface and the details surrounding its

data exchanges. The two SIDL elements are:

64

 System Reference

 Network Endpoint Reference

First, a system needs the definition of its interface as captured in SIDL which is achieved by

referring to the corresponding system element. The system element links to the Interface facet as

well as the Data facet since the system's ports refer to the data the system exchanges.

Second, a system needs the definition of how the data is exchanged, and from where it is

accessible. This is achieved by referring to the endpoint of a network element. The endpoint

specifies the access point, and its associated binding covers the transport details. Therefore, these

definitions capture the required details concerned by the Transport facet. Moreover, because the

binding associated on the endpoint captures the Transport details of a specific bus, Connection

information becomes available.

Therefore, the data-interchange software of any system implementation can be completely

derived from a SIDL system reference and a network endpoint reference. The following example

demonstrates these two elements for the radar sensor using the HLA binding (Figure 3-3).

system RadarSensor:
 input Entities of Entity
 output RadarCrossSections of RcsList

network RadarSystemNetwork of RadarSystemBus:
 endpoint Hla of HlaBinding:
 address:
 FederationName = 'Radar System'

3.6.1 Data-Interchange Software Automation

The general methodology used to generate the data-interchange software of a system involves a

two-stage workflow. The first stage, which is modeling, is used to model, in SIDL, the system

interfaces capturing all the details related to the system interoperability facets. The second stage,

which is code generation, involves specifying the system and endpoint in order to generate the

corresponding software artifacts.

The author proposes a two-stage workflow in favor of a single-stage one. A single-stage

workflow would see the compiler input SIDL descriptions and generate the corresponding

software artifacts directly. In this context, SIDL descriptions, which are equivalent to source

code, are reused directly instead of being shared through a library. The two-stage workflow

ensures that SIDL descriptions, i.e., the source code, are only reusable through libraries

65

preventing the problems associated to reusing source code directly. The following sections

describe these two stages in detail.

3.6.2 SIDL Modeling Stage

The modeling stage, illustrated in Figure 3-5, is used to create reusable SIDL libraries from SIDL

descriptions. These libraries can be referenced by other SIDL descriptions to share common

definitions, or used in the code generation stage to generate the software artifacts. A SIDL library

is created by a model compiler which inputs SIDL descriptions and ensures their validity before

generating the library. The model compiler is supported by a metadata library containing the

SIDL element definitions. It is used by the compiler to encode the descriptions into a SIDL

library providing common grounds for SIDL model compilers and the code generation stage.

Figure 3-5: SIDL Modeling Stage

3.6.3 SIDL Code Generation Stage

The code generation stage, illustrated in Figure 3-6, is used to generate the software artifacts

realizing the data exchanges of a specific system. The SIDL code generator inputs SIDL libraries

and the reference to a system element as well as to the endpoint of a network element. Because

code generation is largely contextual, the generator also inputs specific settings such as the output

programming language of the software artifacts or preferences impacting the generated software

interface exposed to the system using it. Additionally, the generator shares the same metadata

library as used in the modeling stage simplifying the analysis of SIDL libraries. Frameworks and

libraries can also support the code generation process. For instance, middleware dependencies

66

can be injected in the generated software artifacts. From there, the data-interchange software is

generated and can be added to the system's implementation. Relying on external libraries enables

easier software maintenance as the external library can be changed without requiring the system

implementation to be rebuilt and deployed again. This step could also be done, in whole or in

part, at runtime as is suggested by [60] in the context of dynamically generated gateways using

runtime code generation.

Figure 3-6: SIDL Code Generation Stage

A concrete implementation of the two-stage workflow is documented in Chapter 4.

3.7 SIDL Model Compiler Behavior

This section covers the rules which are not captured by the SIDL grammar (Appendix A) and

which model compilers must enforce. These rules are required in order to make SIDL more

portable and involves consistent compiler behavior.

3.7.1 Identifier Declaration Rules

 A new element's name must be unique in its namespace within its declared library.

3.7.2 Composition Rules

 Composition shall never resolve to circular definitions which are proscribed. This applies

to the following elements: entity, composite fact, composite measure.

67

3.7.3 Fact Rules

 A field's name must be unique within a composite fact.

 A field's type must resolve to any other fact within a composite fact.

3.7.4 Measure Rules

 A simple measure cannot specify a precision when its representation is an enum.

 A simple measure can declare at most a single units, frame, and precision.

 A field's name must be unique within a composite measure.

 A field's type must resolve to any other measure within a composite measure.

3.7.5 Enumeration Rules

 An enumerator's name must be unique within an enum.

3.7.6 Array Rules

 An array's element type when specified as an identifier must reference a valid entity,

measure, or fact.

3.7.7 Entity Rules

 A field's name must be unique within an entity.

 A field's type when specified as an identifier must reference a valid entity, measure, or

fact.

3.7.8 Variant Rules

 A case's value must be unique within a variant.

 An alternative's name must be unique within a variant.

3.7.9 View Rules

 A select's member name, or alias when specified, must be unique within a view.

68

 A select's type when specified as an identifier must reference a valid entity, measure, or

fact.

 A select adapting a type with the of construct when both the referenced entity member's

type and the specified type represent the same type reference shall result in a warning.

3.7.10 System Rules

 A port's name must be unique within a system.

 A port's type when specified as an identifier must reference a valid entity, measure, or

fact.

3.7.11 Bus Rules

 A channel's name must be unique within a bus.

3.7.12 Property Rules

 A property declaration must reference a declared property of the associated protocol.

 A property declaration referencing an identifier must reference a value declared by the

associated protocol.

3.7.13 Binding Rules

 A channel must reference a declared channel on the associated bus.

 A channel's name must be unique within a binding.

 A encode declaration must reference a valid entity, measure, fact, or enum.

 A property declaration affecting previously declared ones has precedence over them

within the same scope (channels or channel) or for future references (channels).

 A key declaration must be unique within a channel.

 A key declaration must resolve to a valid field relative to the channel's associated message

type.

 A qos declaration must be unique within a channel.

69

 A qos declaration must resolve to a valid field relative to the channel's associated message

type.

3.7.14 Network Rules

 An endpoint's name must be unique within a network.

 An endpoint declaration must reference a binding which is associated to the same bus as

the network.

3.7.15 Unspecified Behavior

 A view's select adapting a type with the of construct when both the referenced entity

member's type and the specified type are different shall be implementation specific
3
.

3
 See the Limitations in Section 6.3 for more details on this behavior.

70

Chapter 4 EXPERIMENTAL IMPLEMENTATION

This chapter focuses on the experimental implementation used to elaborate the SIDL language,

the SIDL model compiler, and the SIDL code generator. Section 3.6 presented the general

approach which involved a two-stage workflow. This chapter covers a concrete implementation

of this workflow. Moreover, this chapter covers the implementation challenges faced while

implementing both stages as well as the implementation choices which were made in the context

of this experimentation.

This chapter is separated into two main sections each one covering a distinct perspective:

workflow and system interoperability facets. The workflow perspective examines the various

artifacts, their relationships to one another, and the technological choices supporting the two-

stage workflow's implementation. The perspective of the system interoperability facets examines

the implementation of each facet throughout the iterative methodology (refer to Section 2.5).

Following these two sections is one describing the strategy used to validate the implementation.

4.1 Two-Stage Workflow

The workflow used to create the test applications involves two stages which are generalized in

Section 3.6. The first one is to create SIDL descriptions. The second one is to generate the

associated code. The reason for this is to allow the reuse of the elements declared in SIDL

descriptions. For instance, a SIDL library contained only the data model elements. Other SIDL

descriptions can reuse it to describe their specific system interfaces, data, connections, and

transport.

4.1.1 Modeling Stage Implementation

Figure 4-1 presents the implementation of the SIDL modeling stage. SIDL descriptions are

created using the SharpDevelop [69] text editor. The selection of this tool derives from the choice

of the compiler baseline used to create the SIDL model compiler. The SIDL description compiler,

i.e., model compiler, is embedded within SharpDevelop. It compiles SIDL descriptions into a

SIDL library while validating them a priori.

71

Figure 4-1: SIDL Modeling Stage Implementation

The SIDL model compiler itself is an extension to Boo [70]. Boo is an open source programming

language for .NET platforms [71] featuring strong metaprogramming capabilities. It is

particularly well suited to create DSLs [72]. It was selected over the Eclipse Modeling

Framework [73] principally for its .NET support, simplicity, and integration with text editors,

such as SharpDevelop, which can be embedded in other .NET application stacks. .NET support

was mandatory in the industrial context where this research was held. Moreover, existing

codebases were principally in .NET, and in C++ which .NET is particularly well suited to

interoperate with. The goal of the compiler baseline selection was to select one which did not

require writing a lexical analyser, a grammar parser, and a full-featured compiler stack from

scratch including abstract-syntax tree analysis as well as error handling. Therefore, Boo was the

most suited choice.

The SIDL compiler is defined within the SIDL.Compiler .NET library which is an extension to

Boo. This library is also the implementation of the SIDL Metadata Library illustrated in Figure

3-5 when describing the general approach to the modeling stage. As a Boo extension, this library

intervened within the Boo compilation stages in order to create the SIDL DSL. Therefore, this

implementation makes SIDL an internal DSL [74] as the full Boo language features are still

available to SIDL modelers. This limitation can be addressed by changing Boo's parser stage to

make SIDL an external DSL [74] therefore only presenting SIDL constructs to modelers. This

work was left outside the scope of this research as it does not impact the demonstration of the

research objectives, moreover the elaborated SIDL models only use the SIDL grammar.

Nonetheless, future work can make an external DSL out of SIDL with Boo.

SIDL Description
(SharpDevelop Editor)

SIDL Description Compiler
(Boo)

SIDL Library
(.NET)

Know-How

What

How

72

Boo outputs .NET libraries which, therefore, are used by the SIDL compiler to represent SIDL

libraries. The SIDL compiler transforms SIDL descriptions and maps them to a common

metadata interface with the help of SIDL.Compiler
4
. For instance, this enables a network in a

SIDL description to reference a binding in another SIDL description as well as a bus in a

referenced SIDL library. This methodology is the same one used for typical software

development with the exception that the source code is in SIDL. This enables configuration

management with strong versioning as .NET libraries exhibit strong-names [75].

Furthermore, one could use the SIDL.Compiler library directly to create SIDL descriptions from

C#, or any .NET language, since the library represents all SIDL elements which are used by the

SIDL model compiler. This mechanism is used to expose a protocol to a binding through SIDL

compiler extensions. This facilitates the integration of new protocols as they are left outside of

the SIDL compiler, and can be written in any .NET language. Moreover, protocols implement an

interface defined by SIDL.Compiler as any other SIDL element. In the context of the research,

the following protocols were implemented, using Boo, as SIDL compiler extensions: DDS [34],

HLA [10], and a generic Socket protocol for UDP communication. The Socket protocol is used to

support the implementation of DIS [6].

Additionally, a protocol exposes a list of properties which can be modified by bindings. For

instance, the DDS protocol exposes a Reliability property for the qos of a channel. This value

is defined as an enumeration, containing BestEffort and Reliable choices, and provides the

valid range of values the SIDL compiler can accept. The same pattern applies to an endpoint

address and encode which are protocol-specific and extended the same way as qos.

4.1.2 Code Generation Stage Implementation

With SIDL libraries created from SIDL descriptions, a system and an endpoint can be specified

to generate code from them as illustrated in Figure 4-2. The code generation consists of

transforming the specified inputs into C++ or C# code based on the settings passed to the

generator.

4
 For brevity, the SIDL.Compiler API is not described in this thesis, but can be provided on demand by the author.

73

Figure 4-2: SIDL Code Generation Stage Implementation

The code generator reuses the SIDL.Compiler library to share the core definitions of all the SIDL

elements used by SIDL libraries. This greatly reduces code generation complexity because the

metadata is accessed as strongly-typed SIDL elements rather than as generic metadata or text. For

instance, the RadarSystemNetwork of Section 3.5.1.2 can be accessed as an INetwork object as

declared by SIDL.Compiler. Additionally, one important aspect of the SIDL.Compiler library is

that it allows for a SIDL library to be re-created from a SIDL description. That is because a SIDL

library presents the same metadata as a SIDL description. Therefore, it is possible to re-create a

complete SIDL description from a SIDL library.

The strategy of sharing the SIDL.Compiler library between both stages supports well the iterative

nature of the methodology used (refer to Section 2.5). Extending the language with new concepts

only impacts the compiler until the code generator is ready to use them. This also makes updating

the code generator trivial when the compiler changes since breaking changes are easily

pinpointed in either stage because of the strongly typed information used.

On the code generation side, T4 text templates [76] is used to etch-out the target code skeleton

and fill it based on embedded C# code constructs. Code generation patterns can be used with T4

which simplifies even more this task. As an example, HLA requires the generation of code which

handles code serialization and de-serialization. Because both exhibit the same code generation

structure, a pattern is used handle their common structure while specific implementations fill it

with either serialization or de-serialization code snippets.

The generation of the software artifacts is supported by runtime libraries notably ones

simplifying protocol handling and encoding. This simplifies code generation because the libraries

74

encapsulate complexity that is not required to be generated. For instance, generating the DDS

QoS attributes requires the interaction of many objects which the DDS runtime library simplifies.

The following generated C# example demonstrates this.

// With library support
var qos = participant.TopicQosBuilder()
 .Reliable()
 .Transient()
 .KeepLast()
 .Shared()
 .Build();

// Without library support
DDS.TopicQos qos;
participant.GetDefaultTopicQos(ref qos);
qos.Reliability.Kind = DDS.ReliabilityQosPolicyKind.ReliableReliabilityQos;
qos.Durability.Kind = DDS.DurabilityQosPolicyKind.TransientDurabilityQos;
qos.History.Kind = DDS.HistoryQosPolicyKind.KeepLastHistoryQos;
qos.Ownership.Kind = DDS.OwnershipQosPolicyKind.SharedOwnershipQos;

Generating the software artifacts starts by finding the system and endpoint within the SIDL

libraries provided as input. Then, based on the type of source code to generate, a code-specific

factory is selected. Additionally, based on the type of protocol required by the endpoint, as

defined by its associated binding, a protocol-specific factory is selected. Then, both factories

work hand-in-hand to generate the software artifacts. For instance, the HLA factory generates the

HLA FOM module required by HLA runtimes. Another example is with DDS which requires an

IDL file to be generated. The IDL file is then used by DDS implementations to handle data

serialization. The following example demonstrates a SIDL description with its corresponding

IDL representation.

//
// SIDL
//
enum State:
 StandBy
 Start
 Stop

entity Controller:
 Id as long
 State as State

system ControllerSystem:
 output Controllers of Controller

bus ControlBus:
 channel Controllers of Controller

binding ControlBusDdsBinding of ControlBus as DDS.Protocol1_2:
 channel Controllers:
 key Id

network ControlNetwork of ControlBus:
 endpoint Dds of ControlBusDdsBinding

75

//
// IDL: Generated using above SIDL, System: ControllerSystem, Endpoint: ControlNetwork.Dds
//
enum State
{
 StandBy,
 Start,
 Stop
};

struct Controller
{
 unsigned long long Id;
 State State;
};
#pragma keylist Controller Id

4.2 System Interoperability Facets Implementation

Throughout the implementation of the system interoperability facets, many challenges emerged.

For instance, while elaborating the SIDL language, syntax changes would trigger the most source

code refactorings. Introducing new concepts were less impacting, except changing the language

would have ripple effects down to the systems using the generated software interface. Therefore,

the following sections present how SIDL was implemented covering the language, the compiler,

and the code generation with reference to the system interoperability facets.

4.2.1 Data Facet Implementation

The Data facet was the first one to be implemented as data definitions represent the foundation of

any data exchange. The language side was implemented based on the FACE data model [26] with

the exceptions detailed in Chapter 3. This part of the language was the simplest primarily because

of the abundance of data exchange models. On the code generation side, this would consist of

elaborating the target form of the code required by the test applications, and then automating it.

The data model definitions would cover all of the data model elements, e.g., observables,

measures, informations, facts, entities, variants, views... They would all be transformed into

.NET classes which inherit from a base interface corresponding to their SIDL element

counterpart in SIDL.Compiler. An entity inherits from IEntity, simple measure from

ISimpleMeasure, and so on.

Each iteration of the language would introduce new data elements, revised by SMEs, which the

code generator would transform. For instance, the introduction of measures broke the code

generation because entity fields were now missing from the generated code being modeled as

76

entities prior to the language update. Moreover, some iterations were used only to refine the

generated code because of impacts it would have on systems using it. For instance, simple

measures were transformed into C++ structures at first with a single field representing its value.

Except this would impact the performance of the DDS middleware which was optimal when

replacing structures with their corresponding value type. In other words, the generated software

interface used a double for a speed measure instead of a speed structure containing a double.

Preserving type-safety in the generated code would have been ideal, except it was left outside of

this research not impeding the demonstration of the research objectives. Moreover, these changes

originated from recommendations of the middleware vendor.

The greatest challenge encountered while implementing the Data facet was with views. This

required special handling on the Boo pipeline because a select statement might reference

metadata that is currently being compiled in another SIDL description. This metadata was not yet

available while a view was being processed by Boo. Therefore, a handler was attached to the

stage of the Boo compilation pipeline which made this metadata available
5
. This allowed views

to be properly generated in the output SIDL library, and validated before doing so. Unfortunately,

view support was limited to representing entities due to the lack of conversion support. This

limitation is further discussed in Chapter 6.

4.2.2 Transport Facet Implementation

Implemented next was the Transport facet in order to link the data model to protocols, and enable

preliminary data exchanges. At this point, bindings were simplified, even from their WSDL

counterpart [28], in order to consider the data model directly instead of buses. This was revisited

when implementing the Connection facet with the help of SMEs on the language side. Protocol

implementation was facilitated by the use of extensions on the SIDL description side to

seamlessly introduce new protocols, and by protocol runtimes on the code generation side.

For DDS support, the data model was transformed into IDL which DDS implementations use for

data serialization through their own code generation (IDL to C++ and C#). To simplify code

5
 The AfterStep event of the Boo compilation pipeline is used waiting for the ResolveTypeReferences to complete.

77

generation, DDS helper classes were created in a helper library. This would also reduce the size

of the generated code as common source code was now shared in the helper library.

A socket was also implemented to support a reduced DIS data model. Its elaboration was more

challenging because of the lack of higher-level functionality, as offered by DDS or HLA, and it

required the generation of the code to encode data which was automated by DDS. In order to

simplify code generation, a dedicated serialization library was created incorporating stream

readers and writers. The streams also simplified the handling of endianness through swapping

and non-swapping classes, i.e., StreamWriter and StreamWriterSwapped. DIS expects data to be

serialized in big-endian ordering therefore the target application decided to either use the

swapped or non-swapped version at runtime based on the execution platform's network ordering.

HLA support was the most challenging because of the additional code generation required for

generating the HLA FOM module. HLA applications use FOM modules for data exchanges at

runtime whereas DDS generates the required metadata at compile-time. Additionally, HLA

required the generation of data encoding similar to the socket implementation with the main

difference that data alignment rules exist for predefined encodings. HLA encoding helpers were

not used for FOM encoding because of their reliance on dynamically allocated memory [77].

Nevertheless, they would only have simplified the data alignment rules of the predefined

encodings [17], e.g., HLAfixedRecord, HLAvariantRecord. As with the DDS and socket

implementations, helper classes were used to simplify code generation.

As with views in the Data facet, bindings were the greatest challenge encountered while

implementing the Transport facet because they require metadata that is not yet available when

being processed. The same trick was used to attach a handler to the Boo compilation pipeline and

wait for the right stage to provide the required metadata.

4.2.3 Interface Facet Implementation

Next to follow was the Interface facet's implementation. This required representing systems and

their ports in SIDL libraries which were trivial as it only required the addition of new SIDL

element metadata. Unfortunately, in order to implement the code generation side, the Connection

facet had to be implemented first because no link existed at this point between data, transport,

and interfaces.

78

4.2.4 Connection Facet Implementation

The implementation of the Connection facet was the most challenging and required a major

refactoring of the compiler, the code generator, and the test applications. That is because it is the

glue between all the other facets dealing with the full stack from the system interface down to the

transported data. The compiler side was the most challenging because of the introduction of the

bus element and the connections of system ports to bus channels. Because the language elements

were based on AADL [40], this provided guidance for their introduction.

In the early stage of implementation, the code generator referenced bindings directly to trigger

code generation. Bindings provided the link to data directly since buses were not yet introduced.

The introduction of the bus element broke how data was provided to the code generator therefore

triggering a major refactoring. This resulted in the analysis of the bus channels based on the

selected system to determine which data to use by correlating the connected ports. Moreover,

representing the system's ports in the generated code consisted of generating readers and writers

in the software interface. At the same time, this completed both the Interface and the Connection

facet implementations.

4.2.5 SIDL to DDS Mapping

The SIDL to DDS mapping consists in generating a DDS participant in the software interface. A

DDS topic is generated for each bus channel using the same channel name for the topic. Each

topic's QoS attributes are mapped from the corresponding qos declarations in the corresponding

channel declaration, or channels, in the binding. The endpoint's address, when specified, sets

the DDS domain identifier and partition name of the DDS participant. The generated IDL file

includes all the types referenced by connected channels recursively including their inner

declarations therefore capturing the complete data exchange model. For instance, fields of entities

are recursively analysed to include their declarations. The mapping of SIDL types to IDL types is

presented in Table 4-1. The mapping of value types is based on the size of the SIDL's

representation size (Table 3-1) when no direct correspondence exists in IDL.

79

Table 4-1: SIDL to IDL Type Mapping

SIDL Type IDL Type

Entity struct

View struct

Variant union

Enum enum

Composite Fact struct

Simple Fact IDL value type based on representation

Composite Measure struct

Simple Measure IDL value type based on representation

Bounded Array array

Unbounded Array sequence

Value Type Corresponding IDL value type, otherwise based on size

4.2.6 SIDL to HLA Mapping

The SIDL to HLA mapping consists in generating a HLA RTI federate ambassador in the

software interface. For each bus channel that is connected, when an encoding is specified as

HLA.interactionClass, then an HLA interaction class with the channel's type name is generated,

otherwise it is an object class. Each field of the channel's type is considered a parameter in the

case of an interaction, or a class attribute otherwise. Each topic's QoS attributes are mapped from

the corresponding qos declarations in the corresponding channel declaration, or channels, in the

binding to the parameters/attributes. The mapping of the type of a parameter/attribute is based on

Table 4-2. The mapping of value types is based on the size of the SIDL's representation size

(Table 3-1) when no direct correspondence exists in HLA. Unsigned integer types have been

added to the set of basic data types as HLA only provides signed versions. This lack should be

addressed within the next revision of the standard.

80

Table 4-2: SIDL to HLA Type Mapping

SIDL Type HLA Type Default HLA Encoding

Entity fixedRecord HLAfixedRecord

View fixedRecord HLAfixedRecord

Variant variantRecord HLAvariantRecord

Enum enumeratedData HLAinteger32BE

Composite Fact fixedRecord HLAfixedRecord

Simple Fact simpleData Fact's representation

Composite Measure fixedRecord HLAfixedRecord

Simple Measure simpleData Measure's representation

Bounded Array fixedArray HLAfixedArray

Unbounded Array variableArray HLAvariableArray

Value Type Corresponding HLA basic

type, otherwise based on

size

Determined by selected HLA basic type

The endpoint's address, when specified, sets the HLA federation name. The generated HLA

FOM module is constructed in the same fashion as the DDS IDL file with the exception that it is

an XML file and its content is based on Table 4-2. Moreover, when an encoding is specified, it is

used instead of the default encoding as described in Table 4-2.

4.2.7 SIDL to DIS Mapping

The SIDL to DIS mapping consists in generating a socket participant, as defined in the socket

helper library, in the software interface. A socket topic is generated for each bus channel using

the same channel name for the topic. The generated data exchange model is constructed in the

same fashion as the DDS IDL file, as described in Section 4.2.5, with the exception that it is in

C++ or C#.

4.3 Implementation Validation

As presented in the iterative methodology (Section 2.5), the success criteria of each iteration

involved the demonstration of functional test systems exhibiting the same behavior as the one

defined in the previous iteration.

81

Testing the compiler involved the creation of test cases written in SIDL using all of the language

elements. This would ensure that regressions on the language were captured by these tests.

Testing the compiled SIDL libraries against compiler regressions was found to be the most

complex task as the only decent methodology found was to use the code generator. This involved

ensuring the code generator would cover all of the metadata exposed by the SIDL library. This

proved to be challenging as language elements were introduced faster than they were used by the

code generator. Nonetheless, this strategy caught many breaking changes in the SIDL library

compilation and typically involved major metadata changes.

Because the focus of this research is on data exchanges, regression tests were used to validate

their behavior. The performance aspects of the generated code were not examined as it replicated

what was considered to be the optimal code that a senior software developer would have

manually written. This was also inherent to the iterative methodology used as the code generator

was built against code templates developed by such software experts.

The first kind of regression tests involved the comparison of the generated software artifacts with

the manually created ones. This would ensure that the code generation preserved the same

software elements. It was often required to reformat the manually created source code to enable

better comparison. These tests were applied to both C++ and C# code bases independently

primarily because of the inherent differences in the middleware and helper library interfaces. This

methodology proved to be very effective as many errors were found this way before going any

further.

The second kind of regression tests consisted in interoperating a test system using the updated

software interface with the same system using the software interface of the previous iteration.

Moreover, these tests were done manually using data injection from user interfaces. Because the

comparison tests validated that the same software characteristics were preserved, the

interoperability tests only consisted in visually determining if data was exchanged or not. This

proved to always be sufficient as the identified regressions only came from errors introduced in

the supporting libraries and the protocol runtimes. Once deemed valid, the entire code base was

updated to only preserve the newly created software artifacts.

All of these regression tests have therefore demonstrated the experimental implementation. The

following chapter focuses on the results obtained using this experimental implementation.

82

Chapter 5 EXPERIMENTAL RESULTS

This chapter presents the experimental results of using SIDL to address specific test cases. Each

test case is a distributed software application involving the interoperability of test systems. They

are detailed with a particular regard over their data-interchange software which is generated from

SIDL descriptions. All the test cases and the test applications are detailed in this chapter.

The primary goal of all the test cases is a contract-first approach to the data exchanges. That is,

any data exchanged by the test systems needs to be specified in SIDL. This ensures that special

cases are always dealt with in SIDL instead of being compensated for in the application's

codebase. Moreover, this chapter presents the experience of SMEs modeling system interfaces

and the details surrounding their data exchanges in SIDL, along with using the generated

software artifacts emanating from these models into their code base.

5.1 Test cases

From the start of the experimentation phase of this research, test cases were elaborated in order to

capture the essence of the targeted system integration and interoperability issues emanating from

multiple discussions and refinements with SMEs along with literature data. These culminated

into the research's objectives and resulted in the following test cases. The full SIDL descriptions

used to capture these test cases is provided in Appendix B.

5.1.1 Test Case 1 - Colliding Balls

This test case involved reusing a simple distributed simulation application which basically

involves balls colliding together. The goal of this test case is to have a representative system that

SMEs would develop dealing with the system's inputs and outputs, i.e., its data exchanges. It is

meant to demonstrate the software interface exposed to SMEs as well as their automation from

SIDL descriptions.

In this test case, the balls, represented as rigid spheres of various sizes, bounce in a cubical room

using a frictionless gravity-based model. Each instance of the application, denoted as a collision

system, shares its data with the existing ones by distributing it over a communication

middleware, DDS or HLA. This results in a distributed simulation of colliding balls where each

collision system inputs and outputs balls. Moreover, a collision system extrapolates the positions

83

of balls and only computes the collisions of the balls it produced. In other words, local balls

collide with local or remote balls from the perspective of a collision system. Because it is a

distributed application, the extrapolation model used is the DIS_DRALG_DRM_RVW(4) of the

dead reckoning algorithm [6] which at the same time determines the criteria for outputting data

updates. The resulting test application is illustrated in Figure 5-1.

Figure 5-1: Colliding Balls Test Case

Figure 5-1 shows two test systems, the left one producing a single small ball while the right one

produces two big ones, and a controller system. Each test system contains a 3D display where

balls colored in blue are outputted by a system while the red ones represent inputted ones. The

controller system is used to control the execution of the whole distributed application by

outputting common tick and simulation times as well as a shared simulation state covering the

start-up, pause, run, and stop states. Once the controller is in the run state, the collision systems

execute their model. The collision system's user interface supports many options including the

injection of new balls and the ball count at each injection.

On the architecture side, an Entities data model describes in SIDL the data that is exchanged

between systems. A Control data model does the same for sharing state and time data. A collision

system is loaded by a container which handles its execution. This way, collision systems do not

need to be aware of the control's data exchanges and the containers can load any type of model,

through a common interface, which has been used for all test case systems. All the code bases are

in C++ for this test case.

84

5.1.2 Test Case 2 - Ownership Transfer

This test case is meant to demonstrate the concept of ownership transfer which implies having a

system drive the value of another one such that the other systems see the new values instead of

the original ones. Ownership transfer is a typical function used in distributed simulations. The

test case reuses the collision system previously defined. It consists in having a ball follow

another. To this end, a web front-end allows the selection of master/slave pairs. Once the

ownership is assigned, the ownership system drives the position of the slave with the master's

position offset by a constant. This is illustrated in Figure 5-2.

Figure 5-2: Ownership Transfer Test Case

One can notice that the top-most system sees the effect of the ownership while the bottom one

does not. That is expected as this type of ownership is only visible at the middleware-level which

is DDS here. The ownership system writes the position of the slave using a higher strength QoS

therefore achieving the desired effect.

85

On the architecture side, the web front-end communicates with a C# REST service [78]. A SIDL

ownership service is defined to input the ball descriptions and output the ownership data to the

ownership system. Then, the ownership system, also defined in SIDL, outputs the new position

data thereby demonstrating the ownership transfer. Moreover, an Ownership data model

describes in SIDL the data exchanged between the ownership service and system.

5.1.3 Test Case 3 - DDS-DIS Gateway

This test case is meant to be representative of multi-architecture environment considerations by

demonstrating a gateway application bridging two different architectures, DDS and DIS. The

gateway bridges the Entities data model, used by the Colliding Balls test case, and a DIS subset

modeled in SIDL. It is illustrated in Figure 5-3.

Figure 5-3: DDS-DIS Gateway Test Case

86

In order to reuse the collision systems, two gateway systems are used which share the same SIDL

definition. Basically, each collision system resides in its own SIDL network. This is achieved by

using different DDS partition names. In Figure 5-3, the left collision system resides in the

Entities partition while the right one in the Entities2. In order to bridge both partitions with the

two gateway systems, each gateway connects to either the Entities or Entities2 partition. Then,

each gateway system outputs the resulting DIS data on the same DIS network. Because each

gateway system inputs DIS data from the same DIS network, this triggers the reverse transforms

resulting in the collision system of the opposing network to receive the transformed balls.

Therefore, the full data flow as seen in Figure 5-3 is as follows:

 Left collision system outputs to Entities network

 Left gateway system inputs from Entities network, outputs to DIS network

 Right gateway system inputs from DIS network, outputs to Entities2 network

 Right collision system inputs from Entities2 network.

In addition, the gateway's code base is in C#.

5.2 Modeling System Interface Descriptions

The SME feedback from modeling system interfaces in SIDL is very positive. Its strongest

highlighted force is its expressiveness. SMEs find that SIDL only shows them what they need to.

Its separation of concerns also contributes to their understanding of the data models particularly

as demonstrated by the SIDL descriptions developed for the test cases (Appendix B) which

organizes SIDL descriptions by system interoperability facet (Figure 2). Moreover, most SMEs

do not want to be aware of the transport technicalities which can be encapsulated in isolated

SIDL descriptions and be taken care of by system integrators.

Another noted plus by SMEs is in regards to treating SIDL descriptions as source code. The

SMEs used the same software tools to manage the SIDL files, notably the same revision control

system and comparison tool, which made them "feel at home". They noted that this particularly

contributed to their understanding of the evolution of the data models. The SIDL models are also

stored within the same code base as the test systems.

87

The principal difference on the tooling side SMEs faced is the additional editor introduced to edit

SIDL files. SMEs would have preferred to use a single tool for handling all of their source code.

This tool integration concern was expected, but was left out of the scope of this research not

hindering the demonstrability of the research objectives, and can be addressed by extending the

existing source editor. Additionally, in order to link the SIDL code generation with their code

base, their source code project had to be modified to include pre-build events. This consisted in

providing to the code generator the SIDL system and endpoint references, the SIDL library

references, and the target language. Again, SMEs would have preferred a better integration, but

was required only once.

On the language side, the only criticized aspect of SIDL by SMEs was the array syntax which

uses parentheses instead of the common square brackets. Moreover, SMEs asked for the

inclusion of lower bounds such that they are able to capture lists with a minimum item count.

This is also in line with UML modeling which presents cardinality has having both upper and

lower bounds.

SMEs expressed that the validation messages of the SIDL compiler really helped them

understand and correct their modeling errors. An example of this was the error messages which

exactly pinpointed to the model elements impacted by the introduction of breaking changes, for

instance, such as when renaming an entity as seen in Figure 5-4.

Figure 5-4: Pinpointing a Breaking Change in SIDL

Another example was the notification of the duplication of named elements particularly across

multiple SIDL descriptions. Users even requested additional validation rules to further prevent

88

their typical modeling errors and increase their efficiency. An example of this was the validation

omission of paths specified in the select clauses of a view. Errors were always captured, except

it was by the compiler of the generated code instead of the SIDL model compiler. This

complicated the user’s understanding of the error and was hard to relate to the invalid select.

The SIDL model compiler contextualized such errors.

The code generation capabilities have also been noted as enabling efficiency as it prevented

typical encoding inconsistencies with the data model. Another noted plus was the reuse it

enabled. Many data model refactorings occurred simply to remove duplications, particularly

expressing the same concept except with different names, and to standardize specific data types

as well as units.

One side to improve upon, as noted by users, is code completion, or autocomplete, which has not

been implemented as of this writing. The tooling support is present, but the lack of time

prevented its integration. The same applies to syntax highlighting which was partially

implemented. SMEs considered it less important than code completion as they consider the

language readable as it stands. The following example illustrates the targeted syntax highlighting

versus the actual one.

// Expected syntax highlighting
measure Position_Meter_Double of Position as double:
 units Meter
 precision 0.00001

// Actual syntax highlighting
measure Position_Meter_Double of Position as double:
 units Meter
 precision 0.00001

One major benefit of SIDL, as highlighted by SMEs, was the ability to capture multi-architecture

peculiarities by modeling them in SIDL in a uniform way. They noted that it was particularly

useful while developing the DDS-DIS gateway as every aspect could be captured from a single

viewpoint providing an architectural oversight enabling efficient access to the whole application.

Moreover, it was noted that the configurability of SIDL networks easily helped reuse the same

applications throughout the test cases without modifying them. For instance, the colliding balls

test case could have its endpoint address configured externally allowing it to be reused easily for

the gateway test case.

All in all, the experience of modeling system interfaces in SIDL was very effective and allowed

SMEs to focus on their expertise by hiding software complexity from them. The following

89

chapter elaborates on this as it presents a general discussion over the research questions and the

demonstration of the research objectives.

90

Part III

CONCLUSIONS

91

Chapter 6 GENERAL DISCUSSION

The preceding chapters aimed at contributing to the answer of the research questions, notably: a)

how to capture system interfaces and which elements should be captured, b) how to capture

multi-architecture considerations, and c) how to use system interface descriptions to automate

system interoperability tasks. In this regards, the general methodology proposed to address

specific research objectives. This led to advent of: 1) a new system interface description language

used to capture system interfaces and the various aspects surrounding their data exchanges, and

2) a new method for automating the system-level data-interchange software from system

interface descriptions. These new tools contribute to the simplification of system integration and

interoperability. The following sections present a general discussion regarding these advances,

particularly with reference to the current state of the art, focusing on their implications and

limitations.

6.1 System Interface Description Language

This thesis studied three key aspects relating to system interfaces: the relevant language elements,

modeling system interfaces with the language, and capturing multi-architecture considerations.

6.1.1 Relevant Language Elements

The first aspect studied involved the creation of a new perspective on system interoperability by

introducing the system interoperability facets notably the system Interfaces, the Connection of

these interfaces to data, the Data exchanged between systems, and the data’s Transport from

system to system. Prior to finding the facets, the Levels of Conceptual Interoperability Model

(LCIM) defined by [79] was the only architecture viewpoint overlooking system interoperability,

and was only used to characterize the attainable levels of interoperability between systems.

On the other hand, the system interoperability facets structure the problem domain enabling a

clear separation of concerns, and provide the architectural foundation to a system interoperability

taxonomy. To this end, existing taxonomies were studied principally originating from standards.

It was discovered that no single solution covers the full scope of the interoperability facets.

Therefore, the language elements relevant to describing system interfaces were forged from

existing ones, along with novel additions, into this new taxonomy in order to cover the full

92

spectrum of the system interoperability facets. In turn, this new taxonomy enables a better

understanding of the elements impacting system integration and system interoperability, and the

common language which can be shared amongst stakeholders, such as integrators, suppliers, and

system experts.

6.1.2 Modeling System Interfaces

The second aspect studied involved modeling system interfaces using this new taxonomy. SIDL,

the System Interface Description Language, would become this incarnation as described

throughout Chapter 3. As demonstrated by the study of existing formats, i.e., meta-models, they

primarily focus on Data with most ones only capturing this facet, exhibit limited validation

semantics, or are not easily understandable by the stakeholders targeted by this research even if

some languages are expressed in human-readable formats. The study identified DSLs as potential

candidates for capturing system interfaces and addressing these issues.

Consequently, SIDL was materialized as a textual DSL covering all the system interoperability

facets. Moreover, SIDL simplifies change identification as well as the understanding of interface

evolution by being in the language of its stakeholders as demonstrated in Chapter 5. This is

critical in finding issues early on in the development and integration processes. At the same time,

SIDL provides a common interchange format which facilitates communication between

stakeholders, simplifies interface governance, enables reuse of system interface descriptions, and

provides common grounds for engineering tools. The impacts of the introduction of a new

language to SMEs are counter-balanced by the fact that the language is designed to reflect their

domain as such decreases its learning curve. Furthermore, managing SIDL descriptions as source

code has the added benefit of leveraging the same software engineering practices including

reusing the same revision control system and configuration management. For SMEs, this also

hides complexity from them, increase their productivity, and better leverage their expertise.

6.1.3 Capturing Multi-Architecture Considerations

The third aspect studied focused on capturing multi-architecture considerations. Identifying a

way to capture such detail with the right level of abstraction is a key problematic area of system

integration and system interoperability as no solution currently exists. The study revealed that

there is a general consensus towards an architecture-agnostic format to address these

93

considerations. Unfortunately, only preliminary work has been done, until now, in this area.

Moreover, these research initiatives focus on simplifying gateway solutions which bridge multi-

architecture environments therefore do not tackle the problem at its root. Nevertheless, they do

recognize the need to have at least architecture-neutral representations of the data exchange

models.

Consequently, SIDL was designed as an architecture-agnostic format used to capture, not only

Data, but the full span of the system interoperability facets. Architecture-specific details are

modeled in SIDL through its Transport elements as detailed in Chapter 3. Moreover,

architecture-specific representations can be derived from SIDL descriptions as demonstrated in

the experimental results presented in Chapter 5 particularly when tackling the DDS-DIS gateway.

This implies that SIDL captures the details relevant to system data exchanges down to specific

architectures. At the same this, this simplifies the introduction of changes to system interfaces as

changes are automatically propagated down each architecture's own representation being

introduced from a single architectural viewpoint defined in SIDL. As such, SIDL is an

architecture description language. Additionally, capturing multi-architecture considerations in

SIDL is an enabler to the further automation of system integration and interoperability activities.

6.2 Automation of the System-Level Data-Interchange Software

This thesis studied the automation of the software responsible for system data exchanges as a

way of simplifying the tasks involved in system integration and interoperability. To this end,

code generation techniques were studied and it was found that they are used extensively in the

industry principally for automating software artifacts, such as source code and configuration data.

Moreover, some solutions use these techniques in order to automate data serialization.

Additionally, the study of DSLs revealed that their usage could allow SMEs to limit their work

on the interconnection of system interfaces as well as the data they exchange instead of the

intricacies of data serialization and communication protocols.

This led to the introduction of the SIDL code generator described in Chapter 4. The SIDL code

generator has the novelty of generating the data-interchange software from system interface

descriptions covering all the system interoperability facets. Therefore, this enables the code

generator to take better decisions because it has access to a richer pool of information, notably

from the high-level system relationships down to the low-level protocol and encoding details.

94

Because multi-architecture considerations are captured natively in SIDL, this enables the code

generator to be architecture-agnostic making it reusable in other contexts.

The study of code generation techniques also found that they can be optimal in order to adapt to

the environment in which the generated code is executed. This capability is mandatory in order to

provide the flexibility required by systems to enable their reuse across multiple platforms in

support of product lines. Consequently, the SIDL language was augmented based on these

findings by introducing the concept of views in order to capture system interface variability, as

described in Chapter 3, and enable their automation as described in Chapter 4.

The general methodology of transforming system interface descriptions into data-interchange

software therefore culminates in the combination of the modeling workflow and the code

generation workflow, i.e., the two-stage workflow presented in Chapter 3. This enabled the

automation of the system-level data-interchange software of all the test cases presented in

Chapter 5 and resulted in simpler system interoperability.

6.3 Limitations

The following sections present limitations of the proposed approach to the automation of the

system-level data-interchange software. The limitations cover both the modeling and code

generation workflows as proposed by the two-stage workflow presented in Chapter 3. Moreover,

these limitations, some of which were identified in preceding chapters, principally originate from

the fact that they were not investigated by this research which future work could address.

6.3.1 More than Semantic

SIDL only covers up to the Semantic level of the Levels of Conceptual Interoperability Model

(LCIM) as defined by [79]. Thus, the following levels of the LCIM are covered by SIDL:

 Technical (communication infrastructure)

 Syntactic (message format)

 Semantic (reference model)

The Technical level is covered in SIDL by the Transport elements except for binding which is at

the Syntactic level being the mechanism to format data. The Syntactic level also includes all of

the Data elements except for facts and measures which are at the Semantic level providing strong

95

meaning to data. The other SIDL elements are considered at the Semantic level as they

encompass a reference model.

The current state of SIDL does not cover the following levels of the LCIM which future work

could address:

 Pragmatic (information exchange context)

 Conceptual (fully specified model)

Supporting higher LCIM levels would enable further system interoperability and automation. As

an example, BOM’s patterns of interplay [23] capture mission details making them reach the

Pragmatic level. SIDL buses could be considered to be at the Pragmatic level because they

capture the concrete link between systems, except this information is not used by systems which

would be required to reach this level.

Furthermore, one limitation of SIDL is the ability to completely represent WSDL [28] and TENA

[35] models. Both rely on the concept of operations which are not captured in SIDL. One strategy

could be to extend the system element to include operations in addition to ports. Another one

could be to create higher-level abstractions similar to WSDL's message exchange patterns.

Because operations can always be atomically decomposed into data, whether for requests or

responses, exchange patterns could be introduced in SIDL's data model. This would also bring

SIDL to the Pragmatic level.

6.3.2 Conversion Modeling

As previously mentioned in Section 4.2.1, view support was limited in this research. On the

language side, data adaption was captured by SIDL's model compiler which was able to

recognize if either the types matched or not, i.e., if the referenced type of the select clause and

the type specified with the as construct were equal or not. When both types matched, a warning

was issued since adaptation was not required, and when both differed, a warning was issued

stipulating that the final type was reverted to the referenced type of the select clause since no

conversions were available to validate or perform the adaptation. Therefore, views were treated

as entities by the code generator.

96

FACE supports conversions in its data model as long as they are between units or frames [26].

Moreover, affine conversions, in the form , can be defined, along with descriptive ones

which are meant to be informative and manually implemented by model users.

In order to provide the flexibility required by systems to enable their reuse across multiple

platforms in support of product lines, the implementation of views must cover conversions. To

this end, SIDL's data model could be extended to incorporate conversions which was preliminary

prototyped. The following SIDL code could represent this type of support with affine conversions

along with general purpose conversions which would be defined externally and which code

generators would have to support.

external_conversion GeodeticToGeocentric of Geodetic, Geocentric

affine_conversion DegreesToFahrenheit of Degree, Fahrenheit:
 m: 9/5
 b: 32

6.3.3 Defining External Bus Connections

A bus, in SIDL, captures system connection information by having system ports connected to its

channels. One limitation of this pattern is the requirement that all systems must connect to the

bus at the same time and within the same SIDL description. Moreover, reusing a bus with

different connection information is not possible as it stands and would require the introduction of

an external connection mechanism. This was prototyped in this research, but unfortunately could

not be completed. The following SIDL example demonstrates how the RadarDisplay system

presented in Chapter 3 could be connected to the RadarSystemBus using a new connection

element.

connection RadarDisplayConnection of RadarDisplay:
 connect State in RadarSystemBus.RadarState
 connect Detections in RadarSystemBus.Detections

6.3.4 Configuration in Support of Modeling

It is interesting to note that the elements captured by SIDL descriptions represent the minimal set

of information required to describe system interfaces and their data exchanges. Many information

items are not captured by SIDL and are left as configuration data. For instance, the configuration

of the DDS and HLA runtime libraries, such as multi-cast groups, are not captured but are

97

essential in achieving system interoperability. Moreover, middleware configuration data is often

vendor-specific. This makes their integration in SIDL requiring further standardization.

The rule to determine if an information item should be captured in SIDL or be left out as

configuration data is far from being trivial. Software configuration is so fundamental that FACE

proposes standard configuration services [26]. A simplified rule could be to derive new SIDL

elements from information items only when they are standardized and impact system

interoperability in a uniform way. Nonetheless, this requires further investigation.

6.3.5 Standard SIDL Library Bindings and Metadata Interface

SIDL libraries have been implemented in .NET. It would be interesting to revisit this to

determine if it is the proper interchange format or if other platform bindings should be specified

instead such as a Java binding. This also requires standardizing the content of the SIDL.Compiler

library in order to expose a uniform interface to code generators.

6.3.6 Protocol Extensibility

Another area which would benefit system interoperability is through the standardization of SIDL

protocol extensions. This is not a trivial task as it touches the core grammar and the interface

used to define the protocols. One way of addressing protocol extensibility would be to introduce

a protocol element in SIDL which would only capture its characteristics, as opposed to modeling

the protocol itself, such as its allowed QoS attributes.

All these limitations highlight the potential growth that comes out of the findings of this thesis

and SIDL in particular. Nevertheless, the contributions of this thesis provide a significant step

towards simpler system integration and interoperability laying a path ahead filled with even

further simplifications.

98

CONCLUSION

This thesis has addressed the general problem of simplifying system integration and

interoperability by automating the system-level data-interchange software through a system

interface description language. The current state of the art explored through a comprehensive

survey in Chapter 1 shed light on limitations of existing solutions particularly in capturing the

system interfaces and considering multi-architecture environments for which no solution existed

prior to this work. This literature review also uncovered potential starting points such as using

domain-specific languages and code generation techniques. From there, the general methodology

of this research was formulated in Chapter 2 with the main research objectives tackling a

language for describing system interfaces and the various aspects surrounding their data

exchanges, as well as a method for automating the data-interchange software of systems from

models described in this language.

SIDL, the System Interface Description Language, introduced in Chapter 3, features the relevant

language elements for capturing system interfaces. It covers all the system interoperability facets

notably the system Interfaces, the Connection of these interfaces to data, the Data exchanged

between systems, and the data’s Transport from system to system. The automation of the

software responsible for system data exchanges was achieved through a two-stage workflow

involving modeling and code generation stages. This was described in Chapter 4 along with the

experimental implementations developed covering the language, the model compiler, the code

generator, and their validation. SMEs involved in the system development and integration

activities would use the two-stage workflow to create test applications which consisted in the

experimental results captured in Chapter 5. The contributions made by this thesis are discussed in

detail in Chapter 6 along with limitations which highlight future research directions.

The following sections provide a summary of the contributions made by this thesis along with a

vision of future challenges.

Contributions

This thesis has contributed to the simplification of the tasks involved in system integration and

interoperability with the goal of reducing their associated costs and increasing their effectiveness

along with their efficiency. Even though the primary context of this thesis revolved around full

99

mission simulators interacting within distributed simulations, the problem of formally describing

system interfaces spans more than this context and could apply to other ones such as operational

systems.

This thesis contributed a system interface description language (SIDL) and a method for

automating the system-level data-interchange software using this language. SIDL is an

architecture description language used to formally describe system interfaces focusing on the data

they exchange and on the various aspects surrounding them. As a meta-model, it facilitates

system interoperability and enables further automation of the tasks involved in achieving it

particularly through code generation. Being architecture-agnostic, it provides a single

architectural viewpoint overseeing all system interfaces and capturing multi-architecture

considerations. The advent of SIDL also contributed a new taxonomy providing a comprehensive

perspective over system interoperability.

As a DSL, SIDL provides the richness and expressiveness of a dedicated language to describe

system interfaces. The main values of SIDL reside in the easier validation, evolution, and

governance of system interfaces it enables. This originates from the human-understandability of

the language reflecting the domain of its stakeholders. At the same time, this hides software

complexity from them preventing the conflicting duality of requiring them to be experts both in

their domain and in areas that are in support of their work such as software development and

hardware resource usage. Moreover, acknowledging the current hardware and software trends

emphasizes this need even more. The experiences with these new contributions demonstrated

concrete gains in these directions. Future work can only improve upon this as the way ahead

seems filled with DSLs.

Future Challenges

This section discusses potential ways forward providing a vision over software application

development and in improving SIDL as well as enabling system interoperability even further.

Workflow-Driven Development

As highlighted previously, hiding software complexity from SMEs is quite challenging, but the

results obtained demonstrate that it is imperative to produce more cost-effective, productive and

interoperable software products. Moreover, there is a need to consider the software application as

100

a whole addressing its cross-cutting concerns (Figure 4) which further increases the challenge.

That is why completely hiding software complexity from SMEs following the full product

lifecycle management workflow is one future research area exhibiting many challenges.

Figure 4: Addressing Cross-Cutting Concerns

Multi-DSLs

As an architecture description language, SIDL focuses on system integration and interoperability.

This aspect is one of many others required to fully describe a software application. Since a

software application deals with multiple domains and a DSL focuses on one particular domain,

multiple DSLs need to be combined to define a complete software application. Otherwise stated,

a DSL provides a means to edit a particular aspect, or architectural viewpoint of an application’s

model (Figure 4). For instance, one could use a graphical DSL implementing a domain specific

notation for a coarse-grained cross-cutting concern, like a graphical representation of the

computing complex to address the deployment of the software application, while a textual DSL

would be used to address a finer-grained cross-cutting concern (Figure 4) such as the

mathematical equations involved in the extrapolation of network data to address performance.

101

Several issues are associated with managing multiple DSLs ranging from mixing graphical and

textual DSLs in a single model to integrating multiple DSLs while keeping them as loosely

coupled as possible [54]. To this end, Völter [54] highly recommends managing dependencies

between DSLs such that there is a strict layering with unidirectional dependencies. For instance,

Völter [54] proposes to integrate multiple DSLs by first defining a base DSL on top of an

existing framework to simplify its use by raising its level of abstraction and then building a more

business-domain specific DSL on top of the base DSL. Also, Johansen [53] underlines that

frameworks composition is typically easier because frameworks all use a general purpose

language that acts as a common ground. For DSLs to be composable means this common ground

needs to be designed up-front. For Fowler and Parsons [80], this common ground is the

Application Model (Figure 4) (also referred to as the semantic model).

Model Compilers & Legacy Assets

Again, according to the compiler analogy, no one would change assembly code generated by a

compiler to modify the behavior of a C++ program. Similarly, no one should think of changing

the C++ code generated by a Model Compiler to modify the behavior of a DSL program.

However, this dogmatic approach collides with reality because in practice not all the software

application is auto-generated, such as legacy frameworks and third-party systems. In fact,

integrating legacy code requires manual coding and debugging against the auto-generated code.

As pointed out by Völter [54], this increases the importance for a Model Compiler to generate

documented code having well defined extension points for user code. Another source of difficulty

is the non-uniformity of some existing legacy APIs, forcing a Model Compiler to deviate from its

highly uniform model transformations.

Debugging at the DSL Level

The ability for SMEs to debug software applications using DSL concepts is also subject to

several issues [54]. Again, a software application is also composed of code that isn’t generated by

a Model Compiler. In particular, since an application such as a FMS is deployed on several hosts,

a DSL debugger is required to deal with distributed data. Moreover, some applications are subject

to strict performance requirements forcing a Model Compiler to support the equivalent of Debug

102

and Release builds to avoid the overhead of the additional code needed to enable debugging at

the DSL level.

Towards Hardware-Aware Software

The Application Model (Figure 4) captures several cross-cutting concerns and model-specific

details giving Model Compilers the necessary context and leeway to make better decisions

regarding hardware optimizations. Even though the software application has strong hardware

dependencies, it is the Model Compilers that provide cross-platform portability by adapting the

Application Model towards a specific platform. However, moving towards hardware-aware

software to obtain better performance requires a Know-How (Figure 1-4) of a hardware specific

set of changes to the Application Model that increases the gap between the DSL concepts and the

structure of the associated code. Fortunately, as pointed out by Völter [54], integrating multiple

DSLs via several Model Compilers as part of a transformation chain seems applicable to deal

with this additional complexity.

Modeling Solution

DSLs are designed with the goal of implementing a solution to a specific problem domain. To be

successful, one also needs to consider a particular domain workflow. To this end, the more we

hide software complexity from SMEs, the more we are able to identify and formalize the

fundamental tasks of SMEs which define their workflow. In the end, we are still creating

software that is an economic asset and that needs to deliver the required performances while

being maintainable. This asset, the software application, still needs to be updated with patches

and service packs. Some software quality attributes cannot be hidden from the SMEs because

ultimately they are dealing with software. A major challenge is to provide a productive

infrastructure by maintaining the level of abstraction across DSLs with tools supporting the

SMEs’ workflow which encompasses the full product lifecycle.

Capturing Data Model Mappings

Early work has started to extend SIDL in order to capture the mapping between data models. The

end goal is to simplify gateway creation by providing an architecture-agnostic way of specifying

the mappings. One of the test applications developed was a DDS-DIS gateway to bridge two

103

SIDL networks. It reused the same code generation as their individual DDS and DIS application

counterparts. Preliminary work started to capture these mappings in order to simplify and further

automate this application. This is a natural evolution of SIDL and is in line with system interface

adaptation in order to simplify system integration further.

104

BIBLIOGRAPHY

[1] Robert Lutz et al., "A Systems Engineering Perspective on the Development and Execution

of Multi-Architecture LVC Environments," in Simulation Interoperability Workshop,

Orlando, FL, 2010.

[2] Jeffrey Wallace et al., "Object Model Composability and LVC interoperability Update," in

Fall Simulation Interoperability Workshop, 2009.

[3] "Systems and software engineering - Architecture description," ISO/IEC/IEEE,

ISO/IEC/IEEE 42010:2011, 2011.

[4] Duncan C Miller and Jack A Thorpe, "SIMNET: The advent of simulator networking,"

Proceedings of the IEEE, vol. 83, no. 8, pp. 1114-1123, 1995.

[5] L. N. Cosby, "SIMNET: An Insider's Perspective," IDA-D-1661, 1995. [Online].

https www.dtic.mil dtic tr fulltext u a .pdf

[6] "IEEE Standard for Distributed Interactive Simulation-Application Protocols," IEEE, IEEE

Std 1278.1-2012, 2012.

[7] Ronald C Hofer and Margaret L Loper, "DIS today [Distributed interactive simulation],"

Proceedings of the IEEE, vol. 83, no. 8, pp. 1124-1137, 1995.

[8] J. S. Gansler. (1998) High Level Architecture Module 2 Advanced Topics. [Online].

http://www.ecst.csuchico.edu/~hla/LectureNotes/Policy.pdf

[9] Judith S Dahmann and Katherine L Morse, "High level architecture for simulation: An

update," in Distributed Interactive Simulation and Real-Time Applications, 1998.

Proceedings. 2nd International Workshop on, 1998, pp. 32-40.

[10] "IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -

Framework and Rules," IEEE, IEEE Std 1516-2010, 2010.

https://www.dtic.mil/dtic/tr/fulltext/u2/a294786.pdf‎
http://www.ecst.csuchico.edu/~hla/LectureNotes/Policy.pdf

105

[11] Katherine L Morse, Lubomir Bic, Michael Dillencourt, and Kevin Tsai, "Multicast

grouping for dynamic data distribution management," in Summer Computer Simulation

Conference, 1999, pp. 312-318.

[12] Katherine L Morse, Lubomir Bic, and Michael Dillencourt, "Interest management in large-

scale virtual environments," Presence: Teleoperators & Virtual Environments, vol. 9, no. 1,

pp. 52-68, 2000.

[13] K. L. Morse and M. D. Petty, "Data distribution management migration from DoD 1.3 to

IEEE 1516," in Proceedings Fifth International Workshop on Distributed Simulation and

Real-Time Applications, 2001, pp. 58-65.

[14] Lu Tanchi, Lee Chungnan, Hsia Wenyang, and Lin Mingtang, "Supporting large-scale

distributed simulation using HLA," ACM Transactions on Modeling and Computer

Simulation, vol. 10, no. 3, pp. 268-294, 2000.

[15] David S Dodge, "Gateways, A Necessary Evil?," in Simulation Interoperability Standards

Organization (SISO) Fall Simulation Interoperability Workshop, 2000.

[16] David S Dodge, "Gateways-101," in Military Communications Conference, 2001.

MILCOM 2001. Communications for Network-Centric Operations: Creating the

Information Force. IEEE, vol. 1, 2001, pp. 532-538.

[17] "IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)

Object Model Template (OMT) Specification," IEEE, IEEE Std 1516.2-2010, 2010.

[18] Wesley K. Braudaway and Susan M. Harkrider, "Implementation of the High Level

Architecture into DIS-Based Legacy Simulations," in Simulation Interoperability

Workshop, 1997.

[19] Hakan Savaşan, İldeniz Duman, Mustafa Dinç, and İlker Şahin, "Migrating a Legacy

Simulation to HLA: Lessons Learned Integrating with New Native HLA Simulations," in

106

Simulation Interoperability Workshop, 2003.

[20] Björn Möller and Lennart Olsson, "Practical experiences from HLA 1.3 to HLA IEEE 1516

Interoperability," Simulation Interoperability Standards Organization (SISO), 2004.

[21] A. Cox, D. Wood, M. Petty, and K. Juge, "Integrating DIS and SIMNET into HLA with a

gateway," in DIS Workshop, 1996.

[22] "IEEE Recommended Practice for Distributed Simulation Engineering and Execution

Process (DSEEP)," SISO, IEEE Std 1730-2010, 2011.

[23] "Standard for Base Object Model (BOM) Template Specification," SISO, SISO-STD-003-

2006, 2006.

[24] Xu Xie, Xiaocheng Liu, Ying Cai, and Kedi Huang, "Research on SDEM and Its

Transformation in the Gateway Design," in AsiaSim 2012.: Springer, 2012, pp. 222-230.

[25] Michael J O’Connor, K Lessmann, and DL Drake, "LVCAR Enhancements for Using

Gateways," in Spring Simulation Interoperability Workshop, 2011.

[26] "Technical Standard for Future Airborne Capability Environment (FACE™), Edition .0,"

The Open Group, C137, 2013. [Online]. https://www2.opengroup.org/ogsys/catalog/c137

[27] M. Henry et al., "A comparison of open architecture standards for the development of

complex military systems: GRA, FACE, SCA NeXT (4.0)," in Military Communications

Conference, 2012 - MILCOM 2012, 2012, pp. 1-9.

[28] "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language," W3C,

wsdl20, 2007. [Online]. http://www.w3.org/TR/wsdl20

[29] "Service-Oriented Architecture Ontology," The Open Group, C104, 2010.

[30] "XML Schema Part 2: Datatypes Second Edition," W3C, xmlschema-2, 2004. [Online].

http://www.w3.org/TR/xmlschema-2

https://www2.opengroup.org/ogsys/catalog/c137
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/xmlschema-2

107

[31] Joe McKendrick. (2013, July) 10 steps to avoid cloud vendor lock-in. [Online].

http://www.zdnet.com/10-steps-to-avoid-cloud-vendor-lock-in-7000017971

[32] "Interface Definition Language 3.5," Object Management Group, 2013.

[33] "C++ Language Mapping," Object Management Group, formal/2012-07-02, 2012.

[34] "Data Distribution Service for Real-time Systems Version 1.2," Object Management

Group, formal/07-01-01, 2007.

[35] J. Russell Noseworthy. (2004) The TENA Middleware - Model-Based Distributed

Application Development for High-Reliability DoD Range Systems. [Online].

http://www.omg.org/news/meetings/workshops/RT_2004_Manual/10-3_Noseworthy.pdf

[36] Stacy VanWinkle. (2011) TENA Release 6.0.1 Technical Introduction Course (TIC).

[Online]. https://www.tena-sda.org/download/attachments/6750/TENA-v6.0.1-TIC-2011-

06-16.pdf

[37] J. Russell Noseworthy, "Developing distributed applications rapidly and reliably using the

TENA middleware," in Military Communications Conference, 2005. MILCOM 2005.

IEEE, vol. 3, Atlantic City, NJ, 2005, pp. 1507-1513.

[38] "Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic

notation," International Telecommunication Union, ISO/IEC 8824-1, 2008.

[39] Olivier Dubuisson, ASN. 1: communication between heterogeneous systems.: Morgan

Kaufmann, 2001.

[40] Peter H Feiler and David P Gluch, Model-Based Engineering with AADL: An Introduction

to the SAE Architecture Analysis & Design Language.: Addison-Wesley Professional,

2012.

[41] "OMG Systems Modeling Language (OMG SysML) Version 1.3," Object Management

http://www.zdnet.com/10-steps-to-avoid-cloud-vendor-lock-in-7000017971
http://www.omg.org/news/meetings/workshops/RT_2004_Manual/10-3_Noseworthy.pdf
https://www.tena-sda.org/download/attachments/6750/TENA-v6.0.1-TIC-2011-06-16.pdf
https://www.tena-sda.org/download/attachments/6750/TENA-v6.0.1-TIC-2011-06-16.pdf

108

Group, formal/2012-06-01, 2012.

[42] Moritz Eysholdt and Johannes Rupprecht, "Migrating a large modeling environment from

XML/UML to Xtext/GMF," in Proceedings of the ACM international conference

companion on Object oriented programming systems languages and applications

companion, 2010, pp. 97-104.

[43] "XML Metadata Interchange Specification Version 2.0.1," Object Management Group,

ISO/IEC 19503:2005, 2005.

[44] Holger Eichelberger, Yilmaz Eldogan, and Klaus Schmid, "A Comprehensive Survey of

UML Compliance in Current Modelling Tools," Software Engineering, vol. 143, pp. 39-50,

2009.

[45] Tom Morris. (2008) What's wrong with UML?. [Online].

http://tfmorris.blogspot.ca/2008/10/whats-wrong-with-uml.html

[46] George Mamais, Thanassis Tsiodras, David Lesens, and Maxime Perrotin, "An ASN.1

compiler1 for embedded/space systems," in ERTS, Toulouse, France, 2012.

[47] Thomas Vergnaud, Jerome Hugues, Laurent Pautet, and Fabrice Kordon, "Rapid

development methodology for customized middleware," in Proceedings of the 16th

International Workshop on Rapid System Prototyping (RSP 2005), Montreal, Que., Canada,

2005, pp. 111-117.

[48] Martin Tapp, Sidney Chartrand, and Jean-François Campeau, "Experiences in Leveraging

M&S Expertise by Hiding Software Complexity," in The Interservice/Industry Training,

Simulation & Education Conference (I/ITSEC), Orlando, 2011.

[49] Robert B France, Sudipto Ghosh, Trung Dinh-Trong, and Arnor Solberg, "Model-driven

development using UML 2.0: promises and pitfalls," Computer, vol. 39, no. 2, pp. 59-66,

2006.

http://tfmorris.blogspot.ca/2008/10/whats-wrong-with-uml.html

109

[50] Andrew Brownsword. (2007) A Game Developer's Perspective On Parallelism. [Online].

http://research.microsoft.com/apps/video/default.aspx?id=103943

[51] Daniel Collin. (2010) DICE Publications. [Online].

http://publications.dice.se/attachments/Introduction_to_Data-Oriented_Design.pdf

[52] Intel. (2011) Intel® 64 and IA-32 Architectures Optimization Reference Manual. [Online].

http://www.intel.com/Assets/PDF/manual/248966.pdf

[53] Martin Fagereng Johansen, "Domain Specific Languages versus Frameworks," University

of Oslo, Oslo, Master Thesis 2009. [Online].

http://folk.uio.no/martifag/papers/Johansen2009.pdf

[54] Markus Völter. (2011) MD*/DSL Best Practices. [Online].

http://www.voelter.de/data/pub/DSLBestPractices-2011Update.pdf

[55] Debasish Ghosh, DSLs in Action.: Manning Publications, 2010.

[56] Wenguang Wang, Andreas Tolk, and Weiping Wang, "The levels of conceptual

interoperability model: Applying systems engineering principles to M&S," in Proceedings

of the 2009 Spring Simulation Multiconference, San Diego, 2009.

[57] J. Russell Noseworthy. (2003) The TENA Middleware - Supporting Real-Time Application

Development for the DoD Range Community. [Online].

http://www.omg.org/news/meetings/workshops/RT_2003_Manual/Presentations/2-

2_Noseworthy.pdf

[58] "IEEE Standard for Configuration Management in Systems and Software Engineering,"

IEEE Computer Society, IEEE Std 828-2012, 2012.

[59] César de la Torre Llorente, "Model-Driven SOA with Oslo," The Architecture Journal, vol.

21, pp. 10-15, 2009.

http://research.microsoft.com/apps/video/default.aspx?id=103943
http://publications.dice.se/attachments/Introduction_to_Data-Oriented_Design.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://folk.uio.no/martifag/papers/Johansen2009.pdf
http://www.voelter.de/data/pub/DSLBestPractices-2011Update.pdf
http://www.omg.org/news/meetings/workshops/RT_2003_Manual/Presentations/2-2_Noseworthy.pdf
http://www.omg.org/news/meetings/workshops/RT_2003_Manual/Presentations/2-2_Noseworthy.pdf

110

[60] Martin Tapp, Brian Pages, Gabriela Nicolescu, and El Mostapha Abouhamid, "A

Generalized Approach to Networked Systems Interoperability," in Simulation

Interoperability Workshop, Orlando, 2005, pp. 507-518.

[61] Martin Tapp, Gabriela Nicolescu, and El Mostapha Aboulhamid, "Experiences with an

XML Format & Syntax for Describing Interoperability," in Simulation Interoperability

Workshop, vol. 2, Huntsville, 2006, pp. 601-612.

[62] Martin Tapp, Gabriela Nicolescu, and El Mostapha Aboulhamid, "A Performance

Evaluation of Dynamically Generated Gateways," in Simulation Interoperability

Workshop, 2006.

[63] Martin Tapp, "System Interface Description Language," in Simulation interoperability

Workshop, Orlando, 2013.

[64] "Real-time Platform Reference Federation Object Model," SISO, SISO-STD-001.1-1999,

1999.

[65] "Information technology -- Universal Multiple-Octet Coded Character Set (UCS) -- Part 1:

Architecture and Basic Multilingual Plane," ISO, ISO/IEC 10646-1, 2000.

[66] "C# Language Specification 4th Edition," ECMA International, ISO/IEC 23270:2006,

2006.

[67] rollynoel. (2013) Boo Primer: [Part 02] Variables - List of Value Types. [Online].

https://github.com/bamboo/boo/wiki/Boo-Primer:-%5BPart-02%5D-Variables#wiki-

ListOfValueTypes

[68] Peter H. Feiler, David P. Gluch, and John J. Hudak, "The Architecture Analysis & Design

Language (AADL): An Introduction," Carnegie-Mellon University of Pittsburgh PA

Software Engineering, CMU/SEI-2006-TN-011, 2006.

[69] IC#Code. (2012) The Open Source Development Environment for.NET. [Online].

https://github.com/bamboo/boo/wiki/Boo-Primer:-%5BPart-02%5D-Variables#wiki-ListOfValueTypes
https://github.com/bamboo/boo/wiki/Boo-Primer:-%5BPart-02%5D-Variables#wiki-ListOfValueTypes

111

http://www.icsharpcode.net/OpenSource/SD/

[70] Codehaus. (2009) Boo A wrist friendly language for the CLI. [Online].

http://boo.codehaus.org/

[71] "Common Language Infrastructure (CLI) 6th Edition," ECMA International, ISO/IEC

23271, 2012.

[72] Ayende Rahien, DSLs in Boo: Domain Specific Languages in. NET.: Manning Publications

Co., 2010.

[73] The Eclipse Foundation. (2013) Eclipse Modeling Framework Project (EMF). [Online].

http://www.eclipse.org/modeling/emf/

[74] Martin Fowler. (2005) Language Workbenches: The Killer-App for Domain Specific

Languages? [Online]. http://martinfowler.com/articles/languageWorkbench.html

[75] Microsoft Inc. (2013) Strong-Named Assemblies. [Online]. http://msdn.microsoft.com/en-

us/library/wd40t7ad.aspx

[76] Microsoft Inc. (2013) Code Generation and T4 Text Templates. [Online].

http://msdn.microsoft.com/en-us/library/vstudio/bb126445.aspx

[77] Björn Möller, Mikael Karlsson, and Björn Löfstrand, "Reducing Integration Time and Risk

with the HLA Evolved Encoding Helpers," in 2006 Spring Simulation Interoperability

Workshop, 2006.

[78] Jim Webber, Savas Parastatidis, and Ian Robinson, REST in Practice: Hypermedia and

Systems Architecture.: O'Reilly Media, Inc., 2010.

[79] Andreas Tolk, Charles Turnitsa, and Saikou Diallo, "Implied ontological representation

within the levels of conceptual interoperability model," Intelligent Decision Technologies,

vol. 2, no. 1, pp. 3-19, February 2008.

http://www.icsharpcode.net/OpenSource/SD/
http://boo.codehaus.org/
http://www.eclipse.org/modeling/emf/
http://martinfowler.com/articles/languageWorkbench.html
http://msdn.microsoft.com/en-us/library/wd40t7ad.aspx
http://msdn.microsoft.com/en-us/library/wd40t7ad.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb126445.aspx

112

[80] Martin Fowler and Rebecca Parsons, Domain-Specific Languages.: Addison-Wesley

Professional, 2010.

[81] W3C. (2004) Extensible Markup Language (XML) - Notation. [Online].

http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation

[82] Paul Young, Nabendu Chaki, and Valdis Berzins, "Evaluation of middleware architectures

in achieving system interoperability," in Proceedings 14th IEEE International Workshop

on Rapid Systems Prototyping, San Diego, CA, 2003, pp. 108-116.

[83] Tobias Walter and Jürgen Ebert, "Combining DSLs and ontologies using metamodel

integration," in Domain-Specific Languages, 2009, pp. 148-169.

[84] Tobias Walter, "Combining Domain-Specific Languages and Ontology Technologies,"

Technical Report 2009-566 School of Computing, Queen’s University Kingston, Ontario,

Canada, p. 34, 2009.

[85] Markus Völter. (2011) Type Systems for DSLs. [Online].

http://www.infoq.com/presentations/Type-Systems-for-DSLs

[86] L. van Ruijven, "Ontology for Systems Engineering: Model-Based Systems Engineering,"

in Computer Modeling and Simulation (EMS), 2012 Sixth UKSim/AMSS European

Symposium on, 2012, pp. 371-376.

[87] Axel Uhl, "Model-driven development in the enterprise," IEEE Software, vol. 25, no. 1, pp.

46-49, 2008.

[88] Andreas Tolk, Saikou Y. Diallo, and Charles D. Turnitsa, "Ontology Driven

Interoperability – M&S Applications," in I/ITSEC, Suffolk, 2006.

[89] Vincent Thomson and Mohammad Raffay Zaidi, "Product Interface Management: Methods

for effective modelling of product subsystem interface," McGill University, Master Thesis

2011.

http://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://www.infoq.com/presentations/Type-Systems-for-DSLs

113

[90] Vincent Thomson and Sofiene Boujbel, "Product Interface Management: Developing a

standard ontology to describe product subsystem interfaces," 2010.

[91] Martin Tapp, Michel Patenaude, and Jan Prawdzik, "Instructor Station Challenges Of

Monitoring Distributed Simulations: An XML Solution?," in Simulation Technology and

Training Conference, Melbourne, 2002.

[92] G. Tan, A. Persson, and R. Ayani, "HLA federate migration," in Proceedings. 38th Annual

Simulation Symposium, San Diego, CA, 2005, pp. 243-50.

[93] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro, EMF: eclipse

modeling framework.: Addison-Wesley Professional, 2008.

[94] Thomas Stahl and Markus Voelter, Model-driven software development.: John Wiley &

Sons Chichester, 2006.

[95] Douglas C. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering," Computer,

vol. 39, no. 2, pp. 25-31, 2006.

[96] André L Santos, Kai Koskimies, and Antónia Lopes, "Automated domain-specific

modeling languages for generating framework-based applications," in Software Product

Line Conference, 2008. SPLC'08. 12th International, 2008, pp. 149-158.

[97] Igor Sacevski and Jadranka Veseli, "Introduction to Model Driven Architecture (MDA)," in

Seminar Paper, University of Salzburg, 2007.

[98] James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling Language

Reference Manual.: Pearson Higher Education, 2004.

[99] Keyvan Rahmani and Vincent Thomson, "Ontology based interface design and control

methodology for collaborative product development," Computer-Aided Design, vol. 44, no.

5, pp. 432-444, 2012.

114

[100] Thomas Quinot, Fabrice Kordon, and Laurent Pautet, "From functional to architectural

analysis of a middleware supporting interoperability across heterogeneous distribution

models," in Distributed Objects and Applications, 2001. DOA'01. Proceedings. 3rd

International Symposium on, Rome, Italy, 2001, pp. 165-175.

[101] T. Quinot, F. Kordon, and L. Pautet, "Architecture for a reuseable object-oriented

polymorphic middleware," in Pdpta'2001: Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada,

2001, pp. 1994-2001.

[102] Daniel J Paterson, Eric Anschuetz, Mark Biddle, and Dave Kotick, "An Approach to HLA

Gateway/Middleware Development," in Simulation Interoperability Workshop, 1998.

[103] Daniel J Paterson, Erik S Hougland, and Juan J Sanmiguel, "A Gateway/Middleware HLA

implementation and the extra Services that can be provided to the Simulation," in Fall

Simulation Interoperability Workshop, 2000.

[104] P. E. Papotti, A. F. do Prado, and W. L. de Souza, "An approach to support legacy systems

reengineering to MDD using metaprogramming," in Informatica (CLEI), 2012 XXXVIII

Conferencia Latinoamericana En, 2012, pp. 1-10.

[105] Andreas L. Opdahl, "A Platform for Interoperable Domain-Specific Enterprise Modelling

Based on ISO 15926," in Enterprise Distributed Object Computing Conference Workshops

(EDOCW), 2010 14th IEEE International, 2010, pp. 301-310.

[106] K. L. Morse and M. Zyda, "Multicast grouping for data distribution management,"

Simulation Practice and Theory, vol. 9, no. 3-5, pp. 121-41, 2002.

[107] K. L. Morse and M. D. Petty, "High Level Architecture data distribution management

migration from DoD 1.3 to IEEE 1516," Concurrency and Computation Practice and

Experience, vol. 16, no. 15, pp. 1527-43, 2004.

115

[108] K. L. Morse, M. Lightner, R. Little, B. Lutz, and R. Scrudder, "Enabling simulation

interoperability," Computer, vol. 39, no. 1, pp. 115-17, 2006.

[109] K. L. Morse, "Data and metadata requirements for composable mission space

environments," in Proceedings of the 2004 Winter Simulation Conference, Washington,

DC, 2004, pp. 271-8.

[110] Thom McLean, Richard Fujimoto, and Brad Fitzgibbons, "Middleware for real-time

distributed simulations," Concurrency and Computation: Practice and Experience, vol. 16,

no. 15, pp. 1483-1501, 2004.

[111] Leon McGinnis and Volkan Ustun, "A simple example of SysML-driven simulation," in

Simulation Conference (WSC), Proceedings of the 2009 Winter, 2009, pp. 1703-1710.

[112] Sjouke Mauw, Wouter T Wiersma, and Tim AC Willemse, "Language-driven system

design," in System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii

International Conference on, 2002, pp. 3637-3646.

[113] Anders Mattsson, Björn Lundell, Brian Lings, and Brian Fitzgerald, "Linking model-driven

development and software architecture: A case study," IEEE Transactions on Software

Engineering, vol. 35, no. 1, pp. 83-93, 2009.

[114] Sonja Maier and Daniel Volk, "Facilitating language-oriented game development by the

help of language workbenches," in Proceedings of the 2008 Conference on Future Play:

Research, Play, Share, Toronto, Ontario, Canada, 2008, pp. 224-227.

[115] James Lapalme et al.,".NET Framework - A Solution for the Next Generation Tools for

System-Level Modeling and Simulation," in Design, Automation and Test in Europe

Conference and Exhibition, 2004. Proceedings, vol. 1, 2004, pp. 732-733.

[116] Steven Kelly. (2012) Concrete Syntax Matters. [Online].

http://www.infoq.com/presentations/Language-Design

http://www.infoq.com/presentations/Language-Design

116

[117] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev, "TCS: a DSL for the specification of

textual concrete syntaxes in model engineering," in Proceedings of the 5th international

conference on Generative programming and component engineering, 2006, pp. 249-254.

[118] Andreas Jordan, Georg Grossmann, Wolfgang Mayer, Matt Selway, and Markus

Stumptner, "On the application of software modelling principles on ISO 15926," in

Proceedings of the Modelling of the Physical World Workshop, New York, NY, USA,

2012, p. 3.

[119] Werner Heijstek and Michel RV Chaudron, "The impact of model driven development on

the software architecture process," in Software Engineering and Advanced Applications

(SEAA), 2010 36th EUROMICRO Conference on, 2010, pp. 333-341.

[120] Paul E Hanover, "Transitioning from DIS to HLA in a Distributed Simulation

Environment," in The Interservice/Industry Training, Simulation & Education Conference

(I/ITSEC), vol. 2005, 2005.

[121] Richard C Gronback, Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit.: Addison-Wesley Professional, 2009.

[122] Ian Gorton and Yan Liu, "Advancing software architecture modeling for large scale

heterogeneous systems," in Proceedings of the FSE/SDP workshop on Future of software

engineering research, Santa Fe, New Mexico, USA, 2010, pp. 143-148.

[123] G. Giachetti, F. Valverde, and B. Marin, "Interoperability for model-driven development:

Current state and future challenges," in Research Challenges in Information Science

(RCIS), 2012 Sixth International Conference on, 2012, pp. 1-10.

[124] Bingfeng Ge, Keith W Hipel, Long Li, and Yingwu Chen, "A data-centric executable

modeling approach for system-of-systems architecture," in System of Systems Engineering

(SoSE), 2012 7th International Conference on, 2012, pp. 368-373.

117

[125] T. Gaska, "Optimizing an incremental Modular Open System Approach (MOSA) in

avionics systems for balanced architecture decisions," in Digital Avionics Systems

Conference (DASC), 2012 IEEE/AIAA 31st, 2012, pp. 7D1-1-7D1-19.

[126] Martin Fowler. (2004) ModelDrivenArchitecture. [Online].

http://www.martinfowler.com/bliki/ModelDrivenArchitecture.html

[127] Martin Fowler. (2005) Language Workbenches and Model Driven Architecture. [Online].

http://www.martinfowler.com/articles/mdaLanguageWorkbench.html

[128] Roy T. Fielding. (2008) REST APIs must be hypertext-driven. [Online].

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[129] Roy Thomas Fielding. (2000) Architectural Styles and the Design of Network-based

Software Architectures. Doctoral dissertation.

[130] Peter H Feiler, Jorgen Hansson, Dionisio De Niz, and Lutz Wrage, "System architecture

virtual integration: An industrial case study," DTIC Document, 2009.

[131] Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software.:

Addison-Wesley, 2003.

[132] Thomas A DuBois et al., "Open Networking Technologies for the Integration of Net-Ready

Applications on Rotorcraft," in Annual conference of the American Helicopter Society,

2012.

[133] J. Dingel, D. Garlan, and C. Damon, "Bridging the HLA: problems and solutions," in

Proceedings Sixth IEEE International Workshop on Distributed Simulation and Real-Time

Applications, Fort Worth, TX, 2002, pp. 33-42.

[134] Jesús Sánchez Cuadrado and Jesús García Molina, "Building domain-specific languages for

model-driven development," IEEE Software, vol. 24, no. 5, pp. 48-55, 2007.

http://www.martinfowler.com/bliki/ModelDrivenArchitecture.html
http://www.martinfowler.com/articles/mdaLanguageWorkbench.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

118

[135] Jak Charlton. (2009) DDD: The Ubiquitous Language. [Online].

http://devlicio.us/blogs/casey/archive/2009/02/09/ddd-the-ubiquitous-language.aspx

[136] Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik, "Using ontology in the

development of domain-specific languages," INFORUM 2010, pp. 185-196, 2010.

[137] Fabian Bustamante, Greg Eisenhauer, Karsten Schwan, and Patrick Widener, "Efficient

Wire Formats for High Performance Computing," in Supercomputing, ACM/IEEE 2000

Conference, 2000, pp. 39-39.

[138] Andrew J. Brust. (2010) So Long Oslo, We Hardly Knew Ye. [Online].

http://visualstudiomagazine.com/blogs/redmond-review/2010/09/death-of-oslo.aspx

[139] Benoît Bréholée and Pierre Siron, "Design and Implementation of a HLA Inter-Federation

Bridge," in Proceedings of the 2003 Euro Simulation Interoperability Workshop,

Stockholm, Sweden, 2003.

[140] Zohra Boudjemil, Patrick Phelan, Miguel Ponce de Leon, and Sven van der Meer, "A Case

Study for Defining Interoperable Network Components Using MDD," in Computer

Modeling and Simulation (EMS), 2010 Fourth UKSim European Symposium on, 2010, pp.

381-386.

[141] Jason Bloomberg, The Agile Architecture Revolution: How Cloud Computing, REST-based

SOA, and Mobile Computing are Changing Enterprise IT.: Wiley, 2013.

[142] Michael Bleigh. (2010) REST isn't what you think it is, and that's OK. [Online].

http://intridea.com/2010/4/29/rest-isnt-what-you-think-it-is?blog=company

[143] Ge Bingfeng, K. W. Hipel, Li Long, and Chen Yingwu, "A data-centric executable

modeling approach for system-of-systems architecture," in System of Systems Engineering

(SoSE), 2012 7th International Conference on, 2012, pp. 368-373.

[144] Ashwini Barshikar, "Communication code generation for distributed applications," M.c.s.

http://devlicio.us/blogs/casey/archive/2009/02/09/ddd-the-ubiquitous-language.aspx
http://visualstudiomagazine.com/blogs/redmond-review/2010/09/death-of-oslo.aspx
http://intridea.com/2010/4/29/rest-isnt-what-you-think-it-is?blog=company

119

2001.

[145] Peter Barna, Flavius Frasincar, and Geert-Jan Houben, "A workflow-driven design of web

information systems," in Proceedings of the 6th international conference on Web

engineering, 2006, pp. 321-328.

[146] Ritu Arora and Purushotham Bangalore, "A framework for raising the level of abstraction

of explicit parallelization," in Software Engineering-Companion Volume, 2009. ICSE-

Companion 2009. 31st International Conference on, 2009, pp. 339-342.

[147] Margarida Afonso, Regis Vogel, and Jose Teixeira, "From code centric to model centric

software engineering: practical case study of MDD infusion in a systems integration

company," in Model-Based Development of Computer-Based Systems and Model-Based

Methodologies for Pervasive and Embedded Software, 2006. MBD/MOMPES 2006, 2006,

pp. 10 pp.-134.

[148] El Mostapha Aboulhamid and Frédéric Rousseau, System Level Design with. NET

Technology.: CRC Press, 2009.

[149] "TOGAF Version 9.1," The Open Group, G116, 2011.

[150] "The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol

Specification Version 2.1," Object Management Group, formal/2009-01-05, 2009.

[151] DoD Deputy Chief Information Officer. (2010) The DoDAF Architecture Framework

Version 2.02. [Online]. http://dodcio.defense.gov/dodaf20.aspx

[152] "Systems and software engineering - System life cycle processes," ISO, ISO/IEC

15288:2008, 2008.

[153] "SOA Reference Architecture," The Open Group, C119, 2011.

[154] "SOA Governance Framework," The Open Group, C093, 2009.

http://dodcio.defense.gov/dodaf20.aspx

120

[155] Carnegie Mellon University. (2011) SAE International AS5506A (AADL V2) Syntax

Cheat Sheet. [Online].

http://www.aadl.info/aadl/documents/AADL%20V2.1%20Syntax%20Card.pdf

[156] "OMG Unified Modeling Language (OMG UML), Infrastructure," Object Management

Group, ISO 19505-1:2012, 2011.

[157] "OMG Object Constraint Language (OCL) Version 2.3.1," Object Management Group,

formal/2012-01-01, 2012.

[158] Object Management Group. (2013) OMG Model Driven Architecture. [Online].

http://www.omg.org/mda

[159] "OMG Meta Object Facility (MOF) Core Specification Version 2.4.1," Object

Management Group, ISO 19502:2005, 2011.

[160] "Model Driven Message Interoperability," Object Management Group, formal/2010-03-01,

2010.

[161] "Guide for BOM Use and Implementation," SISO, SISO-STD-003.1-2006, 2006.

[162] "Guidance for Design of Aircraft Equipment and Software for Use in Training Devices,"

ARINC, 610C, 2009.

[163] "ECMAScript Language Specification Edition 5.1," ECMA International, ISO/IEC

16262:2011, 2011.

[164] "Adoption of ISO/IEC 15288:2002 Systems Engineering - System Life Cycle Processes,"

IEEE Computer Society, IEEE Std 15288-2004, 2004.

[165] Robert J. Allen, "A Formal Approach to Software Architecture," Carnegie-mellon

University, Pittsburgh, PA, CMU-CS-97-144, 1997.

http://www.aadl.info/aadl/documents/AADL%20V2.1%20Syntax%20Card.pdf
http://www.omg.org/mda

121

[166] Ivano Malavolta, "Software Architecture Modeling by Reuse, Composition and

Customization," Universita di L’Aquila, L’Aquila, Italy, Thesis 01 .

[167] Massachusetts Institute of Technology. (2009) Lecture 8 – Systems Integration and

Interface Management. [Online]. http://ocw.mit.edu/courses/aeronautics-and-

astronautics/16-842-fundamentals-of-systems-engineering-fall-2009/lecture-

notes/MIT16_842F09_lec08.pdf

[168] B. Sarder and S. Ferreira, "Developing Systems Engineering Ontologies," in System of

Systems Engineering, 2007. SoSE '07. IEEE International Conference on, 2007, pp. 1-6.

[169] Kirsten Mewes, "Domain-specific Modelling of Railway Control Systems with Integrated

Veri," Universit• at Bremen, Thesis 2010.

[170] Marco Brambilla, Jordi Cabot, and Manuel Wimmer, Model-Driven Software Engineering

in Practice.: Morgan & Claypool, 2012.

[171] Amine El Kouhen, Cédric Dumoulin, Sébastien Gerard, and Pierre Boulet, "Evaluation of

Modeling Tools Adaptation," 2012. [Online]. http://hal.archives-ouvertes.fr/hal-00706701

[172] Keith A. Rigby, "Interface Management," in Aircraft Systems Integration of Air-Launched

Weapons.: John Wiley & Sons Ltd., 2013, ch. 8, pp. 111-124.

[173] Saikou Y. Diallo and José J. Padilla, "Military Interoperability Challenges," in Handbook

of Real-world Applications in Modeling and Simulation.: John Wiley & Sons, 2012, vol. 2,

ch. 8.

[174] Tobias Walter, Fernando Silva Parreiras, and Steffen Staab, "Ontodsl: An ontology-based

framework for domain-specific languages," in Model Driven Engineering Languages and

Systems. Denver, CO, USA: Springer, 2009, pp. 408-422.

[175] Matthew Stephan and James R. Cordy, "A Survey of Methods and Applications of Model

Comparison," School of Computing, Queen's University, Kingston, Ontario, Canada,

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2009/lecture-notes/MIT16_842F09_lec08.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2009/lecture-notes/MIT16_842F09_lec08.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2009/lecture-notes/MIT16_842F09_lec08.pdf
http://hal.archives-ouvertes.fr/hal-00706701

122

Technical Report 2011-582 Rev. 3, 2012.

[176] Michael Rauch and Christoph Gutmann. (2013) Model-driven Development in the Context

of Technical SOA. [Online]. http://www.infoq.com/presentations/Model-Driven-SOA

[177] Wikipedia. (2013) List of Unified Modeling Language tools. [Online].

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

[178] Daryl Ralph Hild, "Discrete event system specification (devs) distributed object computing

(doc) modeling and simulation," University of Arizona, Thesis 2000.

[179] "Web Services Architecture," W3C, ws-arch, 2004. [Online]. http://www.w3.org/TR/ws-

arch

[180] "Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts," W3C,

wsdl20-adjuncts, 2007. [Online]. http://www.w3.org/TR/wsdl20-adjuncts

[181] "Web Services Metadata Exchange (WS-MetadataExchange)," W3C, WS-

MetadataExchange, 2011. [Online]. http://www.w3.org/TR/ws-metadata-exchange/

[182] "XML Information Set (Second Edition)," W3C, xml-infoset, 2004. [Online].

http://www.w3.org/TR/xml-infoset

[183] U.S. Department of Defense, "High-Level Architecture Object Model Template

Specification Version 1.3," 1998.

[184] D. Fay, "An Architecture for Distributed Applications on the Internet: Overview of

Microsoft’s.NET Platform," in International Parallel and Distributed Processing

Symposium, 2003.

[185] Microsoft Corporation. (2004) Microsoft.NET Development Center. [Online].

http://msdn.microsoft.com/netframework

[186] (2004) Mono Project. [Online]. http://www.mono-project.com

http://www.infoq.com/presentations/Model-Driven-SOA
http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/ws-metadata-exchange/
http://www.w3.org/TR/xml-infoset
http://msdn.microsoft.com/netframework
http://www.mono-project.com/

123

[187] OneSAF. (2003) OneSAF Testbed Baseline (OTB). [Online]. http://www.onesaf.org

[188] CAE Inc. (2000) STRIVE. [Online]. http://www.cae.com

[189] Michael H. Lutz and Phillip A. Laplante, "C# and the.NET Framework: Ready for Real

Time?," IEEE Software, vol. 20, pp. 74-80, 2003.

[190] "XSL Transformations (XSLT)," W3C, xslt, 1999. [Online]. http://www.w3.org/TR/xslt

[191] "XML Path Language (XPath)," W3C, xpath, 1999.

[192] F. I. Vokolos and E. J. Weyuker, "Performance Testing of Software Systems," in Workshop

on Software and Performance, 1998.

[193] Dan Chen, Bu-Sung Lee, Wentong Cai, and Stephen John Turner, "Design and

Development of a Cluster Gateway for Cluster-based HLA Distributed Virtual Simulation

Environments," in Annual Simulation Symposium, Proceedings of the 36th Annual

Simulation Symposium, 2003, p. 193.

[194] J. Latour and M. Adelantado, "Performance Evaluation of an Intuitive C++ Language for

the Design of HLA Federates and Federations," in Simulation Interoperability Workshop,

2004.

[195] Bradford Dillman, Jason Murphy, and Dan Bleichman, "Effects of high latency wide area

networks in distributed simulation," in Simulation Interoperability Workshop, 2005.

[196] J. Szulinksi and C. Simpkins, "Latency Testing In the USAF Distributed Mission

Operations Environment," in Simulation Interoperability Workshop, 2005.

[197] Microsoft Corp. (2005) Platform Invocation Services - PInvoke and the DllImport

Attribute. [Online]. http://msdn.microsoft.com/library

[198] "C++/CLI Language Specification," ECMA, Standard 372, 2005.

http://www.onesaf.org/
http://www.cae.com/
http://www.w3.org/TR/xslt
http://msdn.microsoft.com/library

124

[199] "Guidance, Rationale, and Interoperability Manual (GRIM) for the Real-time Platform

Reference Federation Object Model (RPR FOM)," SISO, SISO-STD-001-1999, 1999.

125

APPENDIX

 126

APPENDIX A SIDL GRAMMAR REFERENCE

The following provides the SIDL grammar reference. The format used is a simplified version of

the Extended Backus–Naur Form (EBNF) for XML [81] with the following distinctions:

productions use '=' instead of '::='. The presented grammar only focuses on the language

constructs. Therefore, other constructs are possible such as single line comments, which start

with '//', and multi-line comments, which are enclosed within '/*' and '*/'. Moreover, control

blocks are delimited by whitespace which removes the need for explicit delimiters such as curly

braces '{}' in C, C++, and Java. Whitespace includes any character in Unicode class Zs,

horizontal tab (U+0009), vertical tab (U+000B), and form feed (U+000C) [66]. Additionally,

long lines can be broken-up with the line-continuation character which is the backslash '\'.

sidl_description =
 namespace_directive?
 import_directive*
 declaration*

namespace_directive = 'namespace' identifier
import_directive = 'import' identifier ('as' ID)?

declaration =
 data_facet_decl
 | interface_facet_decl
 | connection_facet_decl
 | transport_facet_decl

data_facet_decl =
 observable_decl
 | info_decl
 | unit_decl
 | frame_decl
 | measure_decl
 | fact_decl
 | enum_decl
 | variant_decl
 | entity_decl
 | view_decl

interface_facet_decl =
 system_decl

connection_facet_decl =
 bus_decl

transport_facet_decl =
 binding_decl
 | network_decl

observable_decl = 'observable' ID
info_decl = 'info' ID
unit_decl = 'unit' ID
frame_decl = 'frame' ID

measure_decl =
 simple_measure
 | composite_measure

 127

simple_measure =
 'measure' ID 'of' observable_ref 'as' value_type (':' simple_measure_property+)?

simple_measure_property =
 'units' unit_ref
 | 'frame' frame_ref
 | 'precision' real_literal

composite_measure = 'measure' ID 'of' observable_ref (':' field_decl+)?

observable_ref = identifier
unit_ref = identifier
frame_ref = identifier

fact_decl =
 simple_fact
 | composite_fact

simple_fact = 'fact' ID 'of' info_ref 'as' value_type
composite_fact = 'fact' ID 'of' info_ref (':' field_decl+)?

info_ref = identifier

enum_decl = 'enum' ID ':' enum_literal+
enum_literal = ID ('=' integer_literal)?

variant_decl =
 'variant' ID ':' (case_member+ otherwise_member? | case_member* otherwise_member)
case_member =
 'case' (enum_literal_ref | integer_literal | bool_literal) (':' field_decl)?
otherwise_member = 'otherwise' ':' field_decl
enum_literal_ref = ID '.' identifier

entity_decl = 'entity' ID (':' field_decl+)?

view_decl = 'view' ID (':' select_clause+)?
select_clause = 'select' entity_member_ref ('as' type)? ':' 'alias' ID)?
entity_member_ref = ID '.' identifier

system_decl = 'system' ID (':' port_decl+)?
port_decl = ('input' | 'output' | 'inout') ID 'of' type

bus_decl = 'bus' ID (':' channel_decl)?
channel_decl = 'channel' ID 'of' type (':' bus_connect_decl+)?
bus_connect_decl = 'connect' port_ref
port_ref = system_ref '.' ID
system_ref = identifier

binding_decl = 'binding' ID 'of' bus_ref 'as' protocol_ref (':' binding_member+)?
binding_member = ('channels' | 'channel' ID) (':' channel_member+)?
channel_member =
 key_decl
 | qos_decl
 | encode_decl
bus_ref = identifier
protocol_ref = identifier
key_decl = 'key' ID (',' ID)*
qos_decl = 'qos' ID? (':' property_assignment+)?
encode_decl = 'encode' identifier ('as' type)?
property_assignment = identifier '=' expression

network_decl = 'network' ID 'of' bus_ref (':' endpoint_decl+)?
endpoint_decl = 'endpoint' ID 'of' binding_ref (':' address_decl)?
address_decl = 'address' (':' property_assignment+)?
binding_ref = identifier

field_decl = ID 'as' type

 128

type =
 identifier
 | value_type
 | array_type

array_type = '(' type (',' integer_literal)? ')'

value_type =
 'sbyte'
 | 'byte'
 | 'short'
 | 'ushort'
 | 'int'
 | 'uint'
 | 'long'
 | 'ulong'
 | 'single'
 | 'double'
 | 'decimal'
 | 'bool'
 | 'char'
 | 'string'
 | enum_ref

enum_ref = identifier

expression =
 identifier
 | real_literal
 | integer_literal
 | string_literal
 | bool_literal

identifier = ID ('.' identifier)?
ID = id_start (id_part)*
id_start = letter_character | '_'
id_part =
 letter_character
 | decimal_digit
 | connecting_char
 | combining_char
 | formatting_char
decimal_digit = any Unicode character of the class Nd
connecting_char = any Unicode character of the class Pc
combining_char = any Unicode character of the classes Mn or Mc
formatting_char = any Unicode character of the class Cf

integer_literal = decimal_digits
real_literal =
 decimal_digits ('.' decimal_digits)? exponent_part?
 | '.' decimal_digits exponent_part?
decimal_digits = [0-9]+
exponent_part = ('e'|'E')('+'|'-')? decimal_digits

string_literal = '"' character* '"' | '\'' character* '\''
character = char | escape_sequence
escape_sequence = one of \' \" \\ \0 \a \b \f \n \r \t \v

letter_character = any Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
char = any character except new_line
new_line = one of \r \n \r\n

bool_literal = 'true' | 'false'

 129

APPENDIX B TEST CASE SIDL DESCRIPTIONS

B.1 Common Data Model

namespace Common

info UniqueIdentity
fact UniqueId of UniqueIdentity as ulong

observable Time
observable Position
observable Velocity
observable Acceleration

unit Tick // 1 tick = 100ns
unit Degree
unit Meter
unit MeterPerSecond
unit MeterPerSecondPerSecond

// Coordinated Universal Time
frame UTC
frame EarthCenter

measure TickTime of Time as long:
 units Tick
 frame UTC
 precision 1 // Precision is 1 tick i.e. 100ns

measure Position_Meter_Double of Position as double:
 units Meter
 precision 0.00001
measure Velocity_Meter_Single of Velocity as single:
 units MeterPerSecond
 precision 0.00001
measure Acceleration_Meter_Single of Velocity as single:
 units MeterPerSecondPerSecond
 precision 0.00001

B.2 Control Data Model

namespace Control

import Common

enum State:
 StandBy
 Start
 Pause
 Run
 Stop

entity Timer:
 Tick as TickTime
 ScenarioTime as TickTime

entity Controller:
 State as State

entity Container:
 Id as UniqueId
 State as State

 130

B.3 Entities Data Model

namespace Entities

import Common

measure WorldLocation of Position:
 frame EarthCenter
 X as Position_Meter_Double
 Y as Position_Meter_Double
 Z as Position_Meter_Double

measure LinearVelocity of Velocity:
 X as Velocity_Meter_Single
 Y as Velocity_Meter_Single
 Z as Velocity_Meter_Single

measure AccelerationVector of Acceleration:
 X as Velocity_Meter_Single
 Y as Velocity_Meter_Single
 Z as Velocity_Meter_Single

enum DeadReckoning:
 DIS_DRALG_OTHER = 0
 DIS_DRALG_STATIC = 1
 DIS_DRALG_DRM_FPW = 2
 DIS_DRALG_DRM_RPW = 3
 DIS_DRALG_DRM_RVW = 4
 DIS_DRALG_DRM_FVW = 5
 DIS_DRALG_DRM_FPB = 6
 DIS_DRALG_DRM_RPB = 7
 DIS_DRALG_DRM_RVB = 8
 DIS_DRALG_DRM_FVB = 9

entity EntityType:
 EntityKind as byte
 Domain as byte
 Country as ushort
 Category as byte
 Subcategory as byte
 Specific as byte
 Extra as byte

entity EntityDescription:
 Id as UniqueId
 EntityType as EntityType

entity EntityState:
 Id as UniqueId
 LinearVelocity as LinearVelocity
 Location as WorldLocation
 Acceleration as AccelerationVector
 DeadReckoning as DeadReckoning

B.4 Ownership Data Model

namespace Ownership

import Common

entity Ownership:
 MasterId as UniqueId
 SlaveId as UniqueId

 131

B.5 DIS Data Model

namespace DIS

import Common

enum PduType:
 DIS_PDUTYPE_OTHER = 0
 DIS_PDUTYPE_ENTITY_STATE = 1

enum EntityKind:
 DIS_EKIND_OTHER = 0
 DIS_EKIND_PLATFORM = 1
 DIS_EKIND_MUNITION = 2
 DIS_EKIND_LIFEFORM = 3
 DIS_EKIND_ENVIRON = 4
 DIS_EKIND_CULTURAL = 5
 DIS_EKIND_SUPPLY = 6
 DIS_EKIND_RADIO = 7
 DIS_EKIND_EXPENDABLE = 8
 DIS_EKIND_SENS_EMIT = 9
 DIS_EKIND_LIMIT = 10

enum PlatformDomain:
 DIS_PLATFORM_DOMAIN_OTHER = 0
 DIS_PLATFORM_DOMAIN_LAND = 1
 DIS_PLATFORM_DOMAIN_AIR = 2
 DIS_PLATFORM_DOMAIN_SURFACE = 3
 DIS_PLATFORM_DOMAIN_SUBSURFACE = 4
 DIS_PLATFORM_DOMAIN_SPACE = 5

enum CharSet:
 DIS_MARKING_CHAR_SET_UNUSED = 0
 DIS_MARKING_CHAR_SET_ASCII = 1

enum DeadReckoning:
 DIS_DRALG_OTHER = 0
 DIS_DRALG_STATIC = 1
 DIS_DRALG_DRM_FPW = 2
 DIS_DRALG_DRM_RPW = 3
 DIS_DRALG_DRM_RVW = 4
 DIS_DRALG_DRM_FVW = 5
 DIS_DRALG_DRM_FPB = 6
 DIS_DRALG_DRM_RPB = 7
 DIS_DRALG_DRM_RVB = 8
 DIS_DRALG_DRM_FVB = 9

entity PduHeader:
 ProtocolVersion as byte
 ExerciseIdent as byte
 PduType as PduType
 ProtocolFamily as byte
 TimeStamp as uint
 Length as ushort
 Padding as (byte, 2)

entity EntityIdent:
 Site as ushort
 AppId as ushort
 EntId as ushort

entity EntityType:
 EntityKind as EntityKind
 Domain as PlatformDomain
 Country as ushort
 Category as byte
 Subcategory as byte
 Specific as byte

 132

 Extra as byte

entity Vector:
 X as single
 Y as single
 Z as single

entity Position:
 X as double
 Y as double
 Z as double

entity Euler:
 Phi as single
 Theta as single
 Psy as single

entity Marking:
 CharSet as CharSet
 String as (byte, 11)

entity EntityState:
 PduHeader as PduHeader
 EntityIdent as EntityIdent
 ForceIdent as byte
 PartCount as byte
 EntityType as EntityType
 AlternateType as EntityType
 LinearVelocity as Vector
 Location as Position
 Orientation as Euler
 Appearance as uint
 DeadReckoning as DeadReckoning
 Padding as (byte, 15)
 Acceleration as Vector
 AngularVelocity as Vector
 Marking as Marking
 Capabilities as uint

B.6 Control Systems

import Control

system ControllerSystem:
 input Containers of Container
 output Controller of Controller
 output Timer of Timer

system ContainerSystem:
 input Controller of Controller
 input Timer of Timer
 output Containers of Container

B.7 Collision Test Case Systems

import Entities

system CollisionSystem:
 inout EntityDescriptions of EntityDescription
 inout EntityStates of EntityState

B.8 Ownership Test Case Systems

import Entities

 133

import Ownership

system OwnershipSystem:
 input Ownerships of Ownership
 inout EntityStates of EntityState

system OwnershipService:
 input EntityDescriptions of EntityDescription
 inout Ownerships of Ownership

B.9 Gateway Test Case Systems

import Entities

system GatewaySystem:
 inout EntityDescriptions of EntityDescription
 inout EntityStates of EntityState
 inout Entities of DIS.EntityState

B.10 Control Network

import Control

bus ControlBus:
 channel Controller of Controller:
 connect ControllerSystem.Controller
 connect ContainerSystem.Controller

 channel Timer of Timer:
 connect ControllerSystem.Timer
 connect ContainerSystem.Timer

 channel Containers of Container:
 connect ControllerSystem.Containers
 connect ContainerSystem.Containers

binding ControlBusDdsBinding of ControlBus as DDS.Protocol1_2:
 channel Timer:
 qos:
 Reliability.Kind = BestEffort
 Durability.Kind = Volatile
 channel Containers:
 key Id
 qos:
 Reliability.Kind = Reliable
 Durability.Kind = Transient
 History.Kind = KeepLast
 channel Controller:
 qos:
 Reliability.Kind = Reliable
 Durability.Kind = Transient
 History.Kind = KeepLast

network ControlNetwork of ControlBus:
 endpoint ControlBusDds of ControlBusDdsBinding:
 address:
 DomainId = 0
 Partition = "Control"

B.11 Collision Test Case Network

import Entities

bus EntitiesBus:

 134

 channel EntityDescriptions of EntityDescription:
 connect CollisionSystem.EntityDescriptions
 channel EntityStates of EntityState:
 connect CollisionSystem.EntityStates

binding entities_dds_binding of EntitiesBus as DDS.Protocol1_2:
 channel EntityDescriptions:
 key Id
 qos:
 Reliability.Kind = Reliable
 Durability.Kind = Transient
 History.Kind = KeepLast
 Ownership.Kind = Exclusive
 channel EntityStates:
 key Id
 qos:
 Reliability.Kind = BestEffort
 Durability.Kind = Volatile
 Ownership.Kind = Exclusive

binding entities_hla_binding of EntitiesBus as HLA.Protocol1516_2010:
 channel EntityDescriptions:
 qos:
 Reliability = Reliable
 channel EntityStates:
 qos:
 Reliability = BestEffort

network entities_demo_network of EntitiesBus:
 endpoint entities_dds of entities_dds_binding:
 address:
 DomainId = 0
 Partition = "Entities"
 endpoint entities_hla of entities_hla_binding:
 address:
 FederationName = "Entities"

B.12 Ownership Test Case Network

import Ownership

bus ownerships_bus:
 channel Ownerships of Ownership:
 connect OwnershipSystem.Ownerships
 connect OwnershipService.Ownerships

binding ownerships_dds_binding of ownerships_bus as DDS.Protocol1_2:
 channel Ownerships:
 key MasterId, SlaveId
 qos:
 Reliability.Kind = Reliable
 Durability.Kind = Transient
 History.Kind = KeepLast
 Ownership.Kind = Exclusive

network ownerships_demo_network of ownerships_bus:
 endpoint ownerships of ownerships_dds_binding:
 address:
 DomainId = 0
 Partition = "Entities"

B.13 Gateway Test Case Network

import DIS

bus dis_bus:

 135

 channel Entities of EntityState:
 connect GatewaySystem.Entities

binding dis_binding of dis_bus as Net.SocketProtocol:
 channels:
 encode PduType as byte
 encode EntityKind as byte
 encode PlatformDomain as byte
 encode CharSet as byte
 encode DeadReckoning as byte

network dis_demo_network of dis_bus:
 endpoint entities of dis_binding:
 address:
 Port = 29000

network entities2_demo_network of EntitiesBus:
 endpoint entities_dds of entities_dds_binding:
 address:
 DomainId = 0
 Partition = "Entities2"

	Dedication
	Acknowledgments
	Résumé
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Appendices
	Part I Introduction and Background
	Introduction
	Background - Better System Interoperability and Reuse
	Contributions - Automating System-Level Data-Interchange Software
	System Interoperability Facets
	Thesis Structure

	Chapter 1 Literature Review
	1.1 From Simulation to Distributed Simulations
	1.1.1 Simulator Network
	1.1.2 Distributed Interactive Simulation
	1.1.3 High-Level Architecture

	1.2 Distributed Simulation Interoperability
	1.3 System Interoperability
	1.4 Multi-Architecture Environments
	1.5 Meta-Model Incompatibilities
	1.6 Data Incompatibilities
	1.7 Lack of Architecture Neutral Meta-Model
	1.7.1 The FACE Technical Standard
	1.7.2 Web Services Similarity
	1.7.3 Service versus System

	1.8 Representing Data Exchange Models
	1.8.1 Lack of Machine-Processable Definitions
	1.8.2 XML-Based Format Deficiencies
	1.8.3 Language-Based Format Deficiencies
	1.8.4 Model-Based Format Deficiencies
	1.8.5 Data Type Deficiencies

	1.9 Lack of Transport Details
	1.9.1 Intermingling Transport with Data

	1.10 Lack of Interface Details
	1.11 Lack of Connection Details
	1.12 Subject Matter Expert Modeling Complexity
	1.12.1 Leveraging SME Expertise
	1.12.2 Hardware Performance
	1.12.3 Frameworks
	1.12.4 Domain-Specific Languages
	1.12.5 Model Compilers
	1.12.6 Code Generation

	1.13 Model Configuration Management and Governance Deficiencies
	1.14 Summary

	Chapter 2 General Methodology
	2.1 Research Motivation
	2.2 Problem Statement
	2.3 Research Questions
	2.3.1 What should be Formally Described in Order to Capture System Interfaces and the Various Aspects Surrounding their Data Exchanges, and How?
	2.3.2 How should Multi-Architecture Considerations be Captured?
	2.3.3 How should System Interface Descriptions be Used to Automate Some of the Tasks Involved in System Integration and Interoperability?

	2.4 Research Objectives
	2.4.1 Define a System Interface Description Language
	2.4.2 Define a Method to Automate the System-Level Data-Interchange Software from System Interface Descriptions

	2.5 General Approach
	2.5.1 System Interface Description Language
	2.5.2 System-Level Data-Interchange Software Automation
	2.5.3 Publications

	Part II Methodology and Results
	Chapter 3 System Interface Description Language
	3.1 SIDL Grammar
	3.1.1 Control Blocks
	3.1.2 Namespaces and Imports
	3.1.3 SIDL Source File Encoding

	3.2 The Data Facet
	3.2.1 Conceptual Data Model
	3.2.1.1 Informations and Observables

	3.2.2 Logical Data Model
	3.2.2.1 Facts
	3.2.2.2 Units, Frames, and Measures
	3.2.2.3 Linking Conceptual and Logical Elements

	3.2.3 Specific Data Model
	3.2.3.1 Entities
	3.2.3.2 Composition Over Polymorphism
	3.2.3.3 Value Types
	3.2.3.4 Enumerations
	3.2.3.5 Variants
	3.2.3.6 Views

	3.2.4 Existing Data Model Support
	3.2.5 Concrete Reference Data Model

	3.3 The Interface Facet
	3.3.1 Systems and Ports

	3.4 The Connection Facet
	3.4.1 Buses and Channels
	3.4.2 Configurable Routing

	3.5 The Transport Facet
	3.5.1.1 Bindings and Protocols
	3.5.1.2 Networks, Endpoints, and Addresses

	3.6 Using SIDL Descriptions
	3.6.1 Data-Interchange Software Automation
	3.6.2 SIDL Modeling Stage
	3.6.3 SIDL Code Generation Stage

	3.7 SIDL Model Compiler Behavior
	3.7.1 Identifier Declaration Rules
	3.7.2 Composition Rules
	3.7.3 Fact Rules
	3.7.4 Measure Rules
	3.7.5 Enumeration Rules
	3.7.6 Array Rules
	3.7.7 Entity Rules
	3.7.8 Variant Rules
	3.7.9 View Rules
	3.7.10 System Rules
	3.7.11 Bus Rules
	3.7.12 Property Rules
	3.7.13 Binding Rules
	3.7.14 Network Rules
	3.7.15 Unspecified Behavior

	Chapter 4 Experimental Implementation
	4.1 Two-Stage Workflow
	4.1.1 Modeling Stage Implementation
	4.1.2 Code Generation Stage Implementation

	4.2 System Interoperability Facets Implementation
	4.2.1 Data Facet Implementation
	4.2.2 Transport Facet Implementation
	4.2.3 Interface Facet Implementation
	4.2.4 Connection Facet Implementation
	4.2.5 SIDL to DDS Mapping
	4.2.6 SIDL to HLA Mapping
	4.2.7 SIDL to DIS Mapping

	4.3 Implementation Validation

	Chapter 5 Experimental Results
	5.1 Test cases
	5.1.1 Test Case 1 - Colliding Balls
	5.1.2 Test Case 2 - Ownership Transfer
	5.1.3 Test Case 3 - DDS-DIS Gateway

	5.2 Modeling System Interface Descriptions

	Part III Conclusions
	Chapter 6 General Discussion
	6.1 System Interface Description Language
	6.1.1 Relevant Language Elements
	6.1.2 Modeling System Interfaces
	6.1.3 Capturing Multi-Architecture Considerations

	6.2 Automation of the System-Level Data-Interchange Software
	6.3 Limitations
	6.3.1 More than Semantic
	6.3.2 Conversion Modeling
	6.3.3 Defining External Bus Connections
	6.3.4 Configuration in Support of Modeling
	6.3.5 Standard SIDL Library Bindings and Metadata Interface
	6.3.6 Protocol Extensibility

	Conclusion
	Contributions
	Future Challenges
	Workflow-Driven Development
	Multi-DSLs
	Model Compilers & Legacy Assets
	Debugging at the DSL Level
	Towards Hardware-Aware Software
	Modeling Solution
	Capturing Data Model Mappings

	Bibliography
	Appendix
	Appendix A SIDL Grammar Reference
	Appendix B Test Case SIDL Descriptions
	B.1 Common Data Model
	B.2 Control Data Model
	B.3 Entities Data Model
	B.4 Ownership Data Model
	B.5 DIS Data Model
	B.6 Control Systems
	B.7 Collision Test Case Systems
	B.8 Ownership Test Case Systems
	B.9 Gateway Test Case Systems
	B.10 Control Network
	B.11 Collision Test Case Network
	B.12 Ownership Test Case Network
	B.13 Gateway Test Case Network

