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RÉSUMÉ 

Le présent mémoire porte sur la possibilité d’utiliser des nanoparticules d’alliage or-étain 

à l’eutectique, dont la température de fusion est de 280ºC, pour un procédé via-last de 

remplissage de trous d’interconnexions (TSV – Through Silicon Via). Les principaux objectifs 

sont de déterminer la meilleure approche pour suspendre les nanoparticules dans un solvant ainsi 

que d’analyser et de comprendre le comportement des nanoparticules d’alliage Au-Sn lors de 

traitements thermiques. 

Dans un premier temps, la préparation de suspensions stables de nanoparticules dans un 

solvant a été étudiée. Trois techniques ont été analysées soit de charger les particules, de 

fonctionnaliser leur surface et d’utiliser un surfactant. Puisque les nanoparticules sont 

relativement grosses (de l’ordre de 30 nm) et qu’elles sont agglomérées entre elles, seul l’ajout 

d’un surfactant permet d’obtenir une solution stable et homogène sur une période de plusieurs 

mois. Le surfactant qui a donné les meilleurs résultats est le PVP (PolyVinylPyrrolidone).  

Les nanoparticules Au-Sn préparées par une technique de plasma chaud se devaient 

d’avoir la composition précise de l’alliage eutectique 80Au-20Sn car une légère déviation dans 

leur composition peut faire augmenter considérablement la température de fonte. Des analyses 

XPS ont démontré que les nanoparticules avaient une concentration en or plus élevée que ce qui 

était désiré. Ainsi, la fusion complète des particules, afin de former un matériau uniforme à 

l’intérieur des TSV, s’est avérée impossible pour des températures de recuit compatibles avec un 

procédé via-last. Des mesures de calorimétrie différentielle à balayage (DSC) et de diffraction 

des rayons X (DRX) ont en effet démontré que les nanoparticules n’ont pas toutes la composition 

de l’eutectique. Aussi, l’enthalpie de fusion est 11,5 fois plus faible pour les nanoparticules que 

pour des microparticules du même alliage. Des phases qui n’entrent pas dans la composition de 

l’eutectique ont également été observées lors des mesures. 

Le fait que les nanoparticules ne fusionnent pas, et ce même à une température de 600ºC, 

a été attribué à deux facteurs. Le premier est que la technique de fabrication des nanoparticules ne 

permet pas d’obtenir une composition exacte et uniforme. Des phases riches en étain ainsi que la 

phase d’or non lié à l’étain sont présentes dans les nanoparticules. Le deuxième facteur est que 

les particules sont trop petites pour pouvoir être composées de l’alliage eutectique proprement 



v 

 

dit. En effet, la petite taille fait en sorte que les deux phases de l’eutectique ne sont pas présentes 

dans des proportions adéquates à l’intérieur des nanoparticules. Ce matériau ne peut donc pas 

avoir une température de fusion de 280ºC lorsqu’il est sous la forme de nanoparticules. 
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ABSTRACT 

This master thesis focuses on evaluating the feasibility of using nanoparticles of gold-tin 

alloy at the eutectic composition, for which the melting point is 280 °C, for a via-last through 

silicon via (TSV) filling process. The main objectives are to determine the best approach for 

suspending nanoparticles in a solvent, as well as analyzing and understanding their behavior 

during heat treatments.  

First, the preparation of stable nanoparticle suspensions in a solvent was studied. Three 

approaches were investigated: charging the particles, functionalizing their surface, and using a 

surfactant. As nanoparticles are relatively big (in the order of 30 nm), and because they are 

agglomerated, only the addition of a surfactant produces a stable and homogeneous solution over 

a period of several months. The surfactant which yielded the best results is PVP 

(PolyVinylPyrrolidone).  

The Au-Sn nanoparticles prepared by a hot-plasma technique should have the precise 

composition of the 80Au-20Sn eutectic alloy since a slight deviation in composition can 

considerably increase the melting temperature. X-ray photoelectron spectroscopy (XPS) analyses 

revealed that the nanoparticles had a slightly higher gold content than anticipated. Therefore, the 

complete melting of the particles, required for forming a uniform material inside the TSV, has 

proven impossible for annealing temperatures compatible with a via-last process. Differential 

scanning calorimetric (DSC) and X-ray diffraction (XRD) analyses indeed demonstrated that 

composition of nanoparticles is not exactly that of the eutectic. Also, the enthalpy of fusion is 

11.5 times lower for nanoparticles than microparticles of the same alloy. Phases which do not 

form part of the composition of the eutectic were also observed in these measurements. 

The fact that nanoparticles do not melt, even at temperatures of 600 °C, was attributed to 

two factors. First, the nanoparticle fabrication technique does not allow for a precise and uniform 

composition as tin-rich as well as pure gold phases were detected. Secondly, the results indicate 

that the nanoparticles too small to be composed of the eutectic alloy. Indeed, due to their small 

size, both phases of the eutectic are not present in adequate proportions inside the nanoparticles. 

It is therefore impossible for this material to have a melting point of 280 °C when it is in the form 

of nanoparticles. 
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CHAPITRE 1 INTRODUCTION 

L’utilisation des microsystèmes (MEMS) est en forte croissance depuis les dernières 

années. Leur intégration va des voitures aux jeux vidéo en passant par les têtes d’impression à jet 

d’encre, les montres et, bien entendu, les téléphones cellulaires. Il s’agit d’un marché représentant 

plus de 10 milliards de dollars pour l’année 2012
1
. Cependant, pour que leur intégration dans les 

objets du quotidien soit possible, il est impératif que leur coût soit peu élevé. Il faut donc 

constamment travailler à réduire les coûts de fabrication tout en augmentant la performance. 

De plus, les appareils comprennent souvent plusieurs MEMS. Ceux-ci se doivent d’être 

interconnectés les uns aux autres. La méthode traditionnelle était de les poser côte à côte et de les 

relier par de petits fils métalliques. Depuis quelques années, la tendance est davantage à les 

positionner les uns par-dessus les autres afin de minimiser la taille et d’augmenter la rapidité en 

diminuant la longueur des interconnexions. Cette opération se réalise également à l’intérieur d’un 

MEMS, reliant par exemple la partie mécanique à la partie électrique. Les plus récentes 

technologies de fabrication pour cette étape sont cependant dispendieuses et peu rapides ce qui 

rend leur intégration très difficile dans les procédés de fabrication des MEMS dédiés à des 

produits à grands volumes.  

 

 

1.1 Intégration tridimensionnelle des MEMS 

L’avantage d’avoir plusieurs dispositifs MEMS dans un appareil est de pouvoir utiliser 

plusieurs fonctions complémentaires. Par exemple, l’utilisation dans un cellulaire d’un 

accéléromètre et d’un gyroscope est devenue une pratique courante. Le but ultime, comme le 

montre la figure 1-1, est d’intégrer les microsystèmes avec la microélectronique. Cela permettrait 

entre autres de minimiser l’espace occupé par les différentes puces. De plus, la vitesse 

d’opération serait augmentée puisque les connexions entre celles-ci seraient beaucoup plus 

courtes.  

                                                 

1
 Yole Developpement, 2012 
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Figure 1-1 : L'évolution de l'empaquetage tridimensionnel 
2
 

 

L’empilement des MEMS est déjà réalisé en production de masse. Les techniques 

actuelles sont principalement l’empilement de dés en cascade (stacked dies) ou paquet sur paquet 

(POP – package on package) (figure 1-1). Dans les deux cas, les interconnexions sont faites soit 

avec des petits fils ou bien avec des petites billes de métal  

Les nouvelles technologies consistent à réaliser les interconnexions par des vias passant au 

travers du substrat de silicium (Through Silicon Via, TSV). Cette technique permet d’effectuer 

des connexions à n’importe quel endroit des dispositifs et d’avoir une densité d’interconnexions 

beaucoup plus grande que les technologies précédentes. Les connexions sont également moins 

longues ce qui permet une fréquence d’opération plus élevée en raison de la réduction de 

résistance des interconnexions. Aussi, un grand avantage est que l’empaquetage des dispositifs 

peut se faire au niveau de la tranche (Wafer Level Packaging, WLP). Cela implique que les 

dispositifs sont reliés les uns aux autres avant les étapes de découpage des tranches. Toutes les 

puces sont assemblées en même temps ce qui permet de réduire grandement le temps et les coûts 

de fabrication comparativement aux procédés puce à puce (chip to chip, C2C) et puce à plaquette 

(chip to wafer, C2W). 

                                                 

2
 Yole Developpement, reproduite avec permission 
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Une fois remplis, les vias ont deux principales fonctions. La première est, bien entendu, de 

réaliser un contact électrique entre les différents dispositifs ou les parties constituantes d’un 

même MEMS. Il est donc nécessaire de les remplir avec un matériau ayant faible résistivité 

électrique. La deuxième fonction est d’améliorer la dissipation de la chaleur. En effet, les 

dispositifs chauffent lorsqu’ils sont en fonction et une température trop élevée peut les 

endommager ou réduire leur performance. En les plaçant les uns sur les autres, la dissipation de 

chaleur est plus difficile. Il est donc important que le matériau des vias ait une bonne conductivité 

thermique dans le but d’extirper la chaleur hors des dispositifs. 

 

 

1.2 Remplissages des vias 

La première étape des procédés TSV est de graver des trous verticaux dans le substrat. Ces 

trous peuvent avoir une profondeur jusqu’à 20 fois plus grande que leur largeur. Ensuite, 

plusieurs couches minces de matériaux doivent être déposées. La première est un isolant 

électrique qui empêche le courant traversant les vias d’endommager les dispositifs et évite 

également d’avoir des courants de fuites dans le substrat de silicium. Cela est suivi du dépôt 

d’une barrière de diffusion pour que le matériau conducteur des TSV ne diffuse pas dans le reste 

du substrat. Une troisième couche, appelée couche « seed », est parfois nécessaire. Celle-ci sert 

notamment à faire croître les matériaux par électrochimie ainsi qu’à favoriser l’adhérence et le 

mouillage du matériau de remplissage. Ces différents dépôts sont généralement bien maitrisés. La 

difficulté est surtout au niveau du remplissage rapide et à faible coût des TSV avec un matériau 

conducteur. Le grand facteur de forme des TSV exige de bien choisir la technique de dépôt afin 

qu’ils soient remplis totalement et de façon uniforme. Par exemple, un dépôt par évaporation 

n’est pas une option viable puisque les vias seraient bouchés avant d’être totalement remplis. 

Les vias peuvent être réalisés à différents moments lors du procédé de fabrication des 

MEMS tel que présenté à la figure 1-2. La différence entre les approches se situe principalement 

au niveau du budget thermique, c’est-à-dire la plage de température dans laquelle la réalisation 

des TSV doit être faite. Une température maximum permet de ne pas abîmer les matériaux des 
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étapes précédentes et une température minimum sert de limite pour les étapes subséquentes. Les 

matériaux utilisés et les techniques de dépôt sont donc différents pour chacun des procédés. 

Dans le cas d’un procédé où les vias sont faits au tout début (via first), il n’y a 

essentiellement pas de température limite supérieure pour leur fabrication et remplissage. Par 

contre, les matériaux utilisés doivent résister à une température de 1000 ºC, soit la température 

maximale du début de la microfabrication des MEMS (Front End Of the Line, FEOL). Dans ce 

cas, le matériau généralement utilisé pour le remplissage est le silicium polycristallin fortement 

dopé (ISDP) déposé par dépôt chimique en phase vapeur (CVD). Ce matériau possède une 

résistivité électrique relativement élevée (6,5 x 10
-5

 Ω·cm) comparativement aux métaux tels que 

le cuivre (16 x 10
-9

 Ω·cm) ou l’aluminium (26 x 10
-9

 Ω·cm), ce qui limite la fréquence 

d’utilisation des dispositifs, mais il permet d’obtenir un budget thermique au-dessus de 1000 ºC 

pour les étapes subséquentes de microfabrication. 

 

Figure 1-2 : L'intégration des TSV à différentes étapes des procédés de microfabrication 
3
 

                                                 

3
 Yole Developpement, 2010, reproduite avec permission 
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Pour un procédé via last, les TSV sont réalisés entre 450 ºC, pour la fin des étapes de 

fabrication des MEMS (Back End Of the Line, BEOL), et 250 ºC qui est la température de la 

formation des soudures. Ce budget thermique ne permet pas l’utilisation d’ISDP par CVD. Le 

dépôt se fait plutôt par des techniques de dépôt électrochimique. Par exemple, le remplissage des 

vias avec du cuivre dans un procédé via last est possible avec ce type de dépôt. Ces techniques 

sont toutefois peu rapides et les équipements industriels sont très dispendieux. Elles sont donc 

difficilement applicables dans le domaine des MEMS. Il est alors nécessaire d’élaborer une 

nouvelle technique de dépôt. 

 

 

1.3 Technique de remplissage envisagée 

Le procédé de fabrication envisagé dans le cadre du présent projet est de remplir les TSV 

avec des nanoparticules, du matériau désiré, en suspension dans un solvant. Les nanoparticules en 

suspension sont d’abord déposées dans les vias puis la gaufre de silicium est chauffée à une 

température suffisamment élevée pour faire évaporer le solvant. Il reste alors seulement les 

nanoparticules dans les TSV. Les étapes de remplissage et d’évaporation sont refaites jusqu’à ce 

que les trous soient complètement remplis. Finalement, un recuit, à une température supérieure à 

celle de fusion des nanoparticules, est effectué afin de former le contact métallique.  

Le procédé de fabrication est un procédé via last. Le remplissage des vias est effectué 

après avoir fait toutes les étapes de la formation des MEMS, mais avant les soudures. Cela 

implique donc un budget thermique se situant approximativement entre 375 ºC, pour la fin des 

MEMS ainsi que pour la couche isolante et la barrière de diffusion, et 250 ºC, pour la formation 

des soudures. Seulement trois éléments du tableau périodique ont une température de fusion 

respectant ce budget thermique soit le cadmium, le thallium et le bismuth. Les deux premiers sont 

toxiques et le troisième offre une grande résistance électrique ainsi qu’une mauvaise conductivité 

thermique. Il faut alors se tourner vers un alliage. Un seul alliage binaire possède un eutectique 

dans la plage température recherchée. Il s’agit de l’alliage 80% massique d’or (Au) et 20% 

massique d’étain (Sn) dont la température de fusion théorique est de 278 ºC. Une description 

détaillée de ce matériau est présentée au chapitre 2. 
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1.4 Objectifs du projet de maîtrise 

Le procédé de fabrication qui consiste à remplir des trous d’interconnexions à l’aide de 

nanoparticules est défini par trois principales caractéristiques. Premièrement, il faut que le 

procédé soit rapide pour pouvoir être applicable dans le domaine des MEMS. Deuxièmement, il 

doit être répétable afin d’avoir toujours la même qualité de remplissage. Finalement le procédé 

doit pouvoir se réaliser avec le budget thermique d’un procédé via last. 

Le premier objectif de ce projet de maîtrise est de déterminer la meilleure façon de 

suspendre les nanoparticules dans le solvant. Ces dernières sont fabriquées par une entreprise 

spécialisée, mais elles doivent être mises en suspension dans le cadre du projet. Il faut s’assurer 

de préserver de bonnes propriétés électriques et thermiques pour le matériau, celles-ci pouvant 

être altérées dépendamment de la technique utilisée pour la suspension des nanoparticules. La 

stabilité de la dispersion va également jouer sur la répétabilité du procédé. Un choix judicieux de 

la technique de mise en suspension est donc nécessaire. 

Le deuxième objectif est d’analyser et de comprendre le comportement des nanoparticules 

d’alliage Au-Sn lors d’un traitement thermique. Il est impératif que la température de recuit 

respecte le budget thermique. En effet, il sera démontré que les nanoparticules fournies ne 

changent pas de la phase solide à la phase liquide à la température prévue de 278 ºC. Il est donc 

important d’en déterminer les causes afin que les prochaines générations de nanoparticules 

répondent aux exigences du budget thermique. Il est à noter que a solution de nanoparticules a été 

achetée à un prix de plus de 14 000$ et a été livrée avec un délai de 10 semaines. Pour des raisons 

de coût et temps, il n’était pas justifiable de commander une autre solution. De plus, aucune autre 

compagnie sollicitée n’était en mesure de synthétiser ce type de nanoparticules. 
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CHAPITRE 2 REVUE DE LA LITTÉRATURE 

L’alliage étain-or à l’eutectique 20% massique d’étain est un matériau déjà utilisé dans 

l’industrie de la microfabrication. Sa faible température de fusion en fait un matériau très 

intéressant pour le remplissage des vias ainsi que pour les autres techniques d’empaquetage 

tridimensionnel. Un survol de la littérature est présenté ci-dessous afin de faire ressortir les 

différentes caractéristiques de l’alliage AuSn ainsi que ses différentes utilisations. À ce jour, 

aucune étude ne porte sur ce matériau sous forme de nanoparticules. Une attention particulière 

sera donc portée à l’alliage massif à la section 2.1. 

Aussi, de nombreuses études ont déjà été faites en ce qui concerne les nanoparticules 

métalliques. Les suspensions homogènes et la fonte de ces particules sont des sujets bien traités 

dans la littérature. Les sections 2.2 et 2.3 portent donc sur ces deux aspects afin de pouvoir mieux 

comprendre les enjeux liés à l’utilisation d’un alliage sous forme de nanoparticules pour ce 

projet.  

 

2.1 Métallurgie de l’alliage AuSn 

L’alliage or-étain possède deux eutectiques comme il est possible de le remarquer dans le 

diagramme d’équilibre présenté à la figure 2-1. Le premier est à une composition 20% massique 

d’étain et 80% massique d’or (29 et 71% atomique) et le second à 90% massique d’étain et 10 % 

massique d’or. Les températures de fusion de chacun de ces eutectiques sont respectivement de 

278 et 217 ºC. Comme il a été mentionné précédemment, l’eutectique 80Au-20Sn est un très bon 

candidat pour le remplissage des TSV en fin de procédé (back-end), car la température de fusion 

est non seulement plus basse que les températures des différentes étapes des procédés de 

microfabrication, mais elle est également plus élevée que la température de formation des 

soudures. En ce qui concerne le deuxième eutectique, sa température de fusion en fait un bon 

matériau pour les soudures, mais il est peu utilisé puisque c’est un matériau dispendieux 

comparativement aux autres alliages disponibles sur le marché pouvant servir à faire des 

soudures. Dans le cas du présent projet, seul le premier eutectique est intéressant afin de respecter 

le budget thermique du procédé vias-last. 
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Figure 2-1 : Diagramme d’équilibre de l'alliage AuSn adapté de [1] 

 

Tableau 2.1 : Température de fusion pour différentes concentrations d’étain dans l’or 

% massique 

d’étain 

Température  

de fusion (°C) 

90 217 

82.3 252 

20 278 

61 209 

38.1 419.3 

 

Le diagramme d’équilibre montre qu’une légère déviation de la composition de l’alliage 

80Au-20Sn vers un composé plus riche en or fait en sorte d’augmenter la température de fusion 

considérablement. Celle-ci a une valeur près de 400 ºC si le matériau a seulement 2% massique 

d’étain en moins. Cependant, cela augmente beaucoup moins rapidement dans le cas d’un léger 

surplus d’étain. Une composition la plus exacte possible est donc très importante pour le procédé 

de remplissage des vias. 
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L’alliage eutectique 80Au-20Sn n’est pas un matériau homogène à la température de la 

pièce. Il y a la présence de deux phases solides distinctes soit la phase ζ’, Au5Sn (10,8% massique 

Sn), et la phase δ, AuSn (38% massique Sn) qui peuvent s’agencer de différentes façons selon la 

vitesse de refroidissement comme le montre la figure 2-2. Dans tous les cas, une grande partie du 

matériau forme des lamelles des deux phases en alternance comme c’est généralement le cas lors 

de la solidification d’un matériau biphasé. Plus la température est diminuée lentement, plus il va 

y avoir un regroupement de la phase Au5Sn pour former des dendrites. Lorsque la vitesse de 

refroidissement est très élevée, c’est plutôt la phase AuSn qui va se regrouper et former des 

particules de quelques micromètres de diamètre.  

 

Figure 2-2 : Microstructure de l'alliage eutectique 80Au-20Sn en fonction de la vitesse de  

refroidissement : (a) 2,4 x 10, (b) 4,2 x 10
2
, (c) 9,0 x 10

3
 et (d) 3,5 x 10

4
 K/min [2] 

 

Selon le diagramme d’équilibre la proportion de chacune des phases est : 
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L’alliage eutectique solide devrait donc être composé à 66% massique de Au5Sn et 34% 

massique de AuSn. En sachant que la densité de la phase ζ’ est de 17,081 g/cm
3
 
4
 et que celle de 

la phase δ est de 11,081 g/cm
3
 
5
, il est possible de déterminer la fraction volumique de chacune 

des phases à l’état solide. 

    

   

   

   
   
 
  
  

 

    
      

    
       

    
      

      

              

Cela veut donc dire que 56% du matériau solide devrait être constitué de la phase Au5Sn 

et le reste serait la phase AuSn lorsque l’eutectique 20% massique Sn est observé.  

Lorsque la température de l’alliage eutectique augmente, deux changements de phase ont 

lieu. Le premier se produit à 190 ºC et correspond à un changement d’une phase solide (ζ’ + δ) à 

une autre phase solide (ζ + δ). Le deuxième changement de phase se produit à 278 ºC et 

correspond à la fonte du matériau. Ces deux transitions ont été mesurées par le groupe de Tan et 

al. [2] à l’aide d’une analyse thermique de DSC (voir section 3.2) dont le résultat est présenté à la 

figure 2-3. Le graphique montre bien deux pics endothermiques correspondant aux deux 

changements de phase. Ces derniers ont des enthalpies de fusion, c’est-à-dire la quantité de 

chaleur nécessaire au changement de la phase solide à la phase liquide, d’approximativement 1,5 

et 28 J/g. 

                                                 

4
 Fiche 31-0568 du JCPDS 

5
 Fiche 08-0463 du JCPDS 
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Figure 2-3 : Analyse thermique DSC de l'alliage eutectique 80Au-20Sn [2] 

 

L’eutectique 80Au20Sn possède également plusieurs caractéristiques intéressantes pour la 

microfabrication dont les principales sont énumérées dans le tableau 2.2. Par exemple, sa bonne 

conductivité thermique peut permettre de bien dissiper la chaleur hors des dispositifs, ce qui 

représente souvent un des plus grand défis dans la conception des microdispositifs. Toutes ces 

caractéristiques sont généralement exploitées pour les soudures ou l’empaquetage des dispositifs. 

 

Tableau 2.2 : Caractéristiques de l'alliage 80Au20Sn 

Caractéristique Valeur Référence 

Température de fusion (ºC) 278 [1] 

Résistivité électrique (Ω cm
-1

) 1,64 x 10
-5

 [3] 

Conductivité thermique (Wcm
-1

 ºC
-1

) 0,57 [3] [4] 

Module d’Young (psi) 8.57 x 10
6
 [4] 

Coefficient d’expansion thermique (ppm/ºC) 16 [3] [4] 

Densité (g cm
-3

) 14,51  [4] 

Enthalpie de fusion du massif (J/g) 28  [2] 
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Kuhmann et al. [5] affirment que l’étain ségrégue à la surface du composé eutectique Au-

Sn ce qui implique que la concentration d’étain sera plus élevée à la surface qu’au centre du 

matériau. L’or est un métal noble ce qui fait en sorte qu’il s’oxyde très peu. Dans le composé Au-

Sn c’est donc principalement l’étain qui va créer l’oxyde soit sous la forme SnO2 ou SnO. Ces 

composés ne sont pas désirés lors de la fonte des nanoparticules car la température de fusion sera 

augmentée et les propriétés de l’alliage seront modifiées. Il est alors important d’éliminer l’oxyde 

avant de faire fondre tout le matériau. Les auteurs ont déterminé qu’il était possible de réduire 

l’oxyde présent dans l’alliage Au-Sn à l’aide de l’hydrogène. L’hydrogène va réagir avec 

l’oxygène de la surface du matériau pour former des molécules de H2O. Les auteurs ont montré 

que l’oxyde était réduit après seulement 2 minutes à une température de 250 ºC dans un 

environnement sous vide avec seulement de l’hydrogène. Il ont tout d’abord obtenu un vide de 

10
-9

 Pa pour ensuite augmenter la pression d’un facteur 80 en introduisant de l’hydrogène. Il est à 

noter que cette réduction de l’oxyde se fait alors que le matériau est dans un état solide. 

C’est également cette méthode qui est suggérée par les compagnies qui produisent cet 

alliage, notamment Indium Corporation. Cette compagnie fabrique cet alliage sous différentes 

formes (billes, microparticules, carrés, …) et conseille d’utiliser du gaz réducteur, c’est-à-dire un 

petit pourcentage d’hydrogène (environ 5%) dans de l’azote, pour enlever l’oxyde lors de la fonte 

du matériau. Il n’est donc pas nécessaire d’utiliser de résine de soudure (flux dans la littérature 

anglophone) lors de la fonte ce qui évite la contamination. L’alliage eutectique Au-Sn est 

d’ailleurs souvent catégorisé comme étant un matériau fluxless. 

La réaction entre Au et Sn a déjà été étudiée dans la littérature. Pour ce faire, des couches 

d’or et d’étain ont été déposées sur des substrats et ont subi des cycles de températures permettant 

ainsi d’observer l’évolution des phases AuSn, AuSn2, AuSn4 et Au5Sn. Tsai et al. [6] ont montré 

qu’avec des couches d’or et d’étain d’épaisseur respective de 2,5 et 3,75 µm ils pouvaient obtenir 

un alliage eutectique or-étain en seulement 2 minutes à 290ºC (figure 2-4). Le matériau a l’aspect 

d’une mixture des phases Au5Sn et AuSn. Avec un recuit de 2 minutes à 240ºC, les phases Au5Sn 

et AuSn sont également présentes, mais cette fois-ci sous forme de couches distinctes.  
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Figure 2-4 : Microstructure de l'alliage Au-Sn après un recuit à a) 290 ºC pendant 2 minutes  

et b) 240 ºC pendant 2 minutes 

 

Mori et Yasuda [7] ont étudié la formation de l’alliage Au-Sn pour des nanoparticules. 

Pour ce faire, ils ont tout d’abord fait évaporer de l’or sur un film de carbone amorphe créant 

ainsi des nanoparticules d’or. Par la suite, de l’étain a été évaporé sur le même substrat pour 

former l’alliage. Ils ont observé que les atomes d’étain sont dissouts très rapidement dans la 

matrice d’or des nanoparticules de diamètre initial de 3-4 nm et que l’arrangement final des 

nanoparticules dépendra de la concentration d’étain. Pour un pourcentage atomique d’étain 

inférieur à 18%, l’arrangement est une solution solide, ce qui correspond à une grande 

augmentation de la solubilité solide maximale de l’étain dans l’or par rapport au matériau massif 

(environ 3% atomique à la température de la pièce). Lorsque le pourcentage atomique d’étain se 

situe entre 32 et 40%, une phase amorphe désordonnée est observée. Finalement, pour un 

pourcentage de 46 à 59%, les nanoparticules sont formées du composé AuSn. L’étain est donc 

soluble dans ce composé sous forme de nanoparticules comparativement au massif où la 

solubilité de l’étain est nulle dans la phase AuSn. Cela est représenté par une ligne pour cette 

phase dans le diagramme d’équilibre. 
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2.2 Suspension des nanoparticules métalliques 

Afin de manipuler des nanoparticules, il est requis qu’elles soient en suspension dans un 

solvant, c’est-à-dire qu’elles ne soient pas agglomérées au fond du contenant. L’objectif est donc 

que les particules soient séparées les unes des autres et que la concentration en nanoparticules de 

la solution soit homogène. Il est alors possible d’utiliser une telle solution pour un procédé 

demandant une répétabilité et une constance tel que celui présenté au chapitre 1. Dans un solvant, 

les nanoparticules sont sujettes à un déplacement par mouvement Brownien, c’est-à-dire qu’elles 

se déplacent dans des directions aléatoires, et même, vers le haut. Ce déplacement est lié au fait 

que les nanoparticules entrent en collision avec les molécules du solvant et cette interaction est 

suffisante pour les faires changer de direction. Le déplacement Brownien va augmenter avec la 

diminution de la taille des nanoparticules. Évidemment, il faut que ces particules aient une très 

faible masse pour que le mouvement Brownien puisse contrer la force gravitationnelle.  

Or, si deux nanoparticules se rencontrent, elles auront tendance à rester collées l’une à 

l’autre, ce qui est causé des forces faibles de Van der Waals entre les deux nanoparticules [8]. 

Lorsque l’agglomération des nanoparticules est trop grande, la masse augmente et le mouvement 

Brownien ne permet plus de les maintenir en suspension ce qui fait en sorte qu’elles tombent au 

fond du récipient. Pour pallier l’agglomération des nanoparticules, il faut donc une barrière les 

empêchant de se lier les unes aux autres dans le solvant.  

Pour ce faire, il existe trois principales avenues possibles. La première est de les charger, 

positivement ou négativement, ce qui implique qu’il y aura une force de répulsion entre les 

nanoparticules. La deuxième est de les fonctionnaliser c’est-à-dire, ajouter un composé qui 

effectuera des liaisons chimiques avec la surface et qui les maintiendra en suspension dans un 

solvant donné. Finalement, il est possible d’ajouter un surfactant, généralement une longue 

chaine de polymère, qui créera une enveloppe protectrice autour des nanoparticules. En plus 

d’empêcher l’agglomération, le surfactant va avoir une affinité avec le solvant améliorant ainsi la 

stabilité de la dispersion des nanoparticules.  

À ce jour, il n’y a pas de publications qui énoncent un procédé efficace pour la suspension 

des nanoparticules d’alliage AuSn. La revue littéraire a donc été consacrée à la suspension des 

nanoparticules d’or et d’autres métaux élémentaires. 
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Le fait de charger les nanoparticules ajoute des charges positives ou négatives sur leur 

surface créant alors une force de répulsion entre les différentes particules les empêchant de 

s’agglomérer entre elles. Les nanoparticules peuvent alors rester en suspension grâce au 

mouvement Brownien expliqué précédemment. Pour les charger positivement, il faut utiliser un 

agent oxydant, c’est-à-dire un produit qui va capter les électrons tandis que pour les charger 

négativement, un agent réducteur va permettre de donner des électrons à la surface des 

nanoparticules. 

La force de répulsion va dépendre du potentiel zêta, c’est-à-dire la charge électrique 

entourant les nanoparticules. Plus ce potentiel est élevé, plus la solution sera stable. Jiang et al. 

[8], ont démontré que le pH d’une solution influence directement le potentiel zêta des 

nanoparticules et faisait en sorte que les nanoparticules s’aggloméraient beaucoup moins. Cela 

peut être visualisé par le graphique de la figure 2-5, représentant leurs résultats de l’influence du 

pH sur le potentiel zêta et sur le diamètre moyen des amas de nanoparticules ayant un diamètre 

individuel de 15 nm.  

 

Figure 2-5 : Potentiel zêta et diamètre moyen d'amas de nanoparticules de TiO2  

en fonction du pH d'une solution [8] 

 

Les résultats montrent que plus le pH est négatif, ce qui représente l’utilisation d’un agent 

oxydant, plus le potentiel zêta est élevé, diminuant ainsi le diamètre moyen des amas. À l’inverse, 
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un pH élevé, causé par une base forte, permet d’obtenir également une séparation des 

nanoparticules avec un potentiel zêta approximativement de la même valeur mais négatif. 

Lorsque le pH se rapproche de 6, la charge à la surface n’est pas suffisante pour contrer les forces 

de Van der Waals et les nanoparticules s’agglomèrent pour former de gros amas et tombent au 

fond de la solution dû à la force gravitationnelle selon les auteurs. Toutefois, ces résultats ne 

donnent pas d’information sur la stabilité à long terme de la solution de nanoparticules. 

Des agents oxydants et réducteurs sont couramment utilisés pour la synthèse chimique de 

nanoparticules. Cela sert à ce que les différents composés chimiques réagissent ensemble pour 

former les nanoparticules ainsi qu’à éviter qu’elles ne forment des agrégats. Par exemple, 

Mulfinger et al. [9] ont mélangé du NaBH4 (réducteur) à AgNO3 pour former des nanoparticules 

d’argent d’une taille moyenne d’approximativement 12 nm. Ils ont réussi à faire une solution 

stable en utilisant une quantité exactement deux fois plus élevée de NaBH4. Cependant, ils 

affirment que les conditions de réaction telles que les concentrations et le temps de mélange de la 

solution doivent être très bien contrôlés. Dans le cas contraire, une solution grisâtre est obtenue 

ce qui signifie qu’il y a eu formation d’agrégats. Pour améliorer la stabilité, ils suggèrent 

d’ajouter un surfactant à la solution. 

L’option d’uniquement charger les nanoparticules pour les maintenir en suspension n’est 

pas souvent utilisée dans la littérature. La force de répulsion qui en résulte n’est souvent pas 

suffisante pour empêcher que des agrégats se forment. Cette technique est seulement utilisée pour 

de petites nanoparticules et généralement lors de la synthèse de ces dernières. Cette option ne 

semble pas être efficace lorsque des agrégats sont déjà présents. 

La deuxième technique de suspension des nanoparticules consiste à les fonctionnaliser, ce 

qui se fait généralement à l’aide d’un thiol ou d’un silane. M. Brust et al. [10] ont utilisé cette 

option pour la préparation de nanoparticules d’or. Dans leur cas, ils ont utilisé un thiol comme 

agent de fonctionnalisation. Le thiol est un composé organo-sulfuré, c’est-à-dire qu’il contient un 

atome de carbone lié à un groupement sulfhydryle (-SH) auquel est attaché un groupement alkyl. 

La terminaison –SH s’attache facilement à l’or tandis que le groupement alkyl offre une répulsion 

stérique avec les autres groupements ainsi qu’une interaction accrue avec le solvant favorisant 

ainsi le maintien des nanoparticules en suspension.  
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Dans le cas de M. Brust et al., la formation des nanoparticules a été réalisée par une 

méthode entièrement chimique. Dans ce procédé, AuCl
4-

 est réduit par un agent réducteur, le 

NaBH4. Cette réaction se fait en présence du dodecanethiol (C12H25SH) qui limite la dimension 

des nanoparticules. Les auteurs ont ainsi fait la synthèse de nanoparticules d’or dont le diamètre 

est de l’ordre de 1 à 3 nm. Le tout est, selon les auteurs, stable dans du toluène sur une période de 

plusieurs semaines.  

 

Figure 2-6 : Nanoparticules d'or d’un diamètre de l’ordre de 1 à 3 nm  

recouvertes d'un thiol (C12H25SH) [10] 

 

Selon la littérature, lorsque des nanoparticules sont fabriquées et enrobées par un thiol lors 

de la synthèse, elles sont généralement de petite taille, de l’ordre de quelques nanomètres. De 

plus, le thiol est généralement ajouté pendant la synthèse chimique des nanoparticules. Pour de 

plus grosses nanoparticules, il est possible d’utiliser un thiol auquel un surfactant a été greffé.  

La fonctionnalisation peut également se faire à l’aide d’un silane, c’est-à-dire un composé 

constitué principalement d’un atome de silicium. Ce composé se sert des groupements métal–OH 

d’une surface oxydée comme site de réaction [11]. Pour améliorer la dispersion, un polymère ou 

une chaîne alkyle est généralement attaché au silane. Le choix se fait en fonction du solvant 

utilisé dans le but d’avoir la meilleure interaction et ainsi une bonne dispersion. Les polymères 

qui sont rattachés au silane sont souvent le polyéthylène glycol (PEG), le polyvinylpyrrolidone 

(PVP) et le polyméthacrylate de méthyle (PMMA) [12].  

La fonctionnalisation des nanoparticules avec un thiol ou un silane est une modification de 

la surface qui est principalement utilisée pour augmenter l’affinité avec une chaîne de polymère. 

Selon la littérature, cette technique est principalement utilisée lors de la synthèse chimique de 
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nanoparticules. Lorsqu’elle est utilisée pour des nanoparticules déjà formées, l’ajout d’une chaîne 

de polymère devient nécessaire puisque leur taille est généralement plus grande. 

Finalement, dans le but d’avoir la plus grande concentration de nanoparticules en solution 

stable sur une longue période de temps, il faut généralement avoir recours à des surfactants. Ces 

derniers, qui sont dans la plupart des cas des agents composés d’une longue chaîne de polymère, 

possèdent une partie hydrophile et une hydrophobe. En se liant aux nanoparticules, les surfactants 

forment une couche protectrice les empêchant de s’agglomérer. Également, la composition 

spécifique d’un surfactant permet d’améliorer la stabilité s’il est incorporé dans le solvant pour 

lequel il a une grande affinité. Par exemple, il en existe qui sont idéaux pour les solvants 

organiques, mais qui n’offriront pas de bons résultats pour les solvants non-organiques. Le 

surfactant peut être ajouté pendant la fabrication des nanoparticules, lorsqu’il s’agit par exemple 

d’un procédé de réduction chimique. Dans ce cas, il va permettre de limiter la taille des 

nanoparticules dépendamment de la quantité de surfactant utilisée et de sa masse molaire. Il peut 

également être ajouté après la création des nanoparticules si celles-ci ont été créées par un 

procédé d’évaporation-condensation par exemple.  

C’est cette technique de suspension qui est la plus utilisée pour la fabrication des encres 

métalliques servant pour l’électronique imprimée [13]. Le surfactant le plus souvent employé 

pour ces encres est le poly(N-vinyl-2-pyrrolidone) (PVP). H. Lee et al. [14] ont d’ailleurs 

fabriqué une encre de nanoparticules d’argent avec ce surfactant. Pour ce faire, ils ont une 

méthode de réduction chimique du nitrate d’argent (AgNO3) par le méthanal (CH2O). 

Approximativement 7,95 g de PVP, dont la masse molaire est 40 000 g/mol, pour chaque 

gramme d’argent ont été utilisés. Cela a permis de former des nanoparticules d’environ 50 nm de 

diamètre. Après un traitement de lavage des nanoparticules à l’acétone, ils ont pu obtenir une 

concentration jusqu’à 35% massique de nanoparticules dans un mélange de diéthylène glycol et 

d’eau. Le tout est resté stable, sans précipitation au fond du récipient, pour une durée minimale de 

2 mois.  

Les surfactants permettent donc de maintenir en suspension des nanoparticules de plusieurs 

dizaines de nanomètres de diamètre, et ce, sur une longue période de temps. De plus, il est 

possible d’avoir un pourcentage massique relativement élevé de matériau dans le solvant. Il est 
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cependant important de bien choisir le surfactant pour le solvant utilisé et déterminer s’il sera 

possible de l’utiliser pour les nanoparticules d’alliage or – étain du présent projet. 

 

 

2.3 Fonte des nanoparticules métalliques 

La fonte, appelée aussi fusion, d’un matériau est le passage d’un état solide cristallin avec 

un arrangement d’atomes ordonné vers un état liquide dans lequel les atomes sont désordonnés. 

Cette transition se fait à la température de fusion du matériau. Le matériau utilisé dans le cadre de 

ce projet est un alliage eutectique contenant deux phases distinctes, ce qui rend beaucoup plus 

difficile la compréhension du mécanisme de la fonte. Aussi, l’alliage est sous forme de 

nanoparticules et non d’un matériau massif, ce qui implique un changement des effets physiques 

de la température sur le matériau. 

Le premier phénomène qui se produit lors de l’augmentation de la température des 

nanoparticules est qu’elles vont se lier les unes aux autres. À ce stade, les nanoparticules sont 

seulement en contact et liées par des forces faibles de Van der Waals. Elles forment des 

agglomérats. Par la suite, il y aura la formation d’un pont entre deux nanoparticules (neck dans la 

littérature anglophone). De par les différents mécanismes de transports de la matière, ce pont va 

grossir de façon à diminuer l’énergie de surface des nanoparticules formant ainsi des agrégats. Ce 

phénomène, qui se passe en dessous de la température de fusion du matériau, est appelé le frittage 

et est exploité entre autre pour les dépôts de connexions sur des substrats flexibles [15].  

Si la température est assez élevée, il y aura diffusion de matériau des plus petites 

nanoparticules vers les plus grosses jusqu’à ce que cela forme une plus grosse particule. Ce 

phénomène s’appelle la coalescence. 

 

Figure 2-7 : Effet de l’augmentation de la température sur deux nanoparticules 

    
   

  

Contact Frittage Coalescence 
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Dans la littérature, le sujet de la fonte des nanoparticules traite principalement de la 

diminution de la température de fusion avec la taille des particules. Cette variation dépend du 

matériau, mais est généralement observée pour des nanoparticules ayant un diamètre inférieur à 

50 nm et devient très importante lorsque cette valeur passe sous les 20 nm. Ce phénomène est dû 

à l’augmentation du ratio surface-volume. En effet, les atomes de la surface ont une énergie de 

liaison moins grande que celle des atomes du massif, ce qui permet cette diminution de la 

température de fusion. Plusieurs modèles ont été élaborés dans le but de représenter la 

température de fonte des nanoparticules, qui est approximativement proportionnel l’inverse du 

rayon, mais aucun ne fait l’unanimité dans la littérature [16]. Le même phénomène est également 

observé pour l’enthalpie de fusion des nanoparticules. L’effet de la taille des particules a 

notamment été mesuré pour de l’étain [17] [18]. Dans ce cas, la température de fusion et 

l’enthalpie sont diminuées de façon notable pour des nanoparticules de moins de 20 nm. 

 

 

Figure 2-8 : Point de fusion (gauche) et enthalpie (droite), mesurés (ligne) et calculés (points),  

pour des nanoparticules d'étain de différentes dimensions [17] 

 

Certaines études ont d’ailleurs été faites sur ces deux propriétés afin de créer des 

matériaux pouvant remplacer la soudure au plomb en microélectronique sans toutefois changer la 

température de fusion. Par exemple, pour remplacer le composé SnPb, dont la fusion de 

l’eutectique est se trouve à 183 ºC, il serait possible d’utiliser des nanoparticules de composition 

SnAgCu avec une température de fusion de 179 ºC [19]. 
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Pour les alliages, la diminution de la température de fusion ainsi que de l’enthalpie 

associée ne sont pas les seules différences par rapport au matériau massif. Les expérimentations 

de Yasuda et Mori [20] montrent que le diagramme d’équilibre est modifié lorsqu’il s’agit d’un 

matériau sous forme de nanoparticules. La diminution de la taille fait également en sorte 

d’augmenter la solubilité des phases solides tel que présenté à la figure 2-9 avec l’alliage Au-Sb. 

Dans cet exemple, lorsque la taille des nanoparticules est en dessous de 5 nm, la région de deux 

phases stables fait place à une phase désordonnée. Les auteurs attribuent cela au manque de sites 

de germination pour cette taille de nanoparticules. Ces observations ont également été faites pour 

le composé Au-Sn par ces mêmes auteurs (voir section 2.1) 

 

 

Figure 2-9 : Diagramme d'équilibre du matériau Au-Sb pour a) le massif, b) des nanoparticules 

d’approximativement 10 nm et c) des nanoparticules de moins de 5 nm [20] 
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CHAPITRE 3 TECHNIQUES EXPÉRIMENTALES 

Dans le cadre du présent projet, plusieurs manipulations ont été réalisées sur les 

nanoparticules d’alliage or-étain. Ce chapitre présente les techniques et les équipements utilisés 

pour les analyses ainsi que la caractérisation et les expérimentations faites sur cet alliage. Une 

description, une explication du fonctionnement ainsi que la méthode d’utilisation de chacun des 

appareils sont ici présentées. Finalement, les différents matériaux utilisés sont décrits à la fin du 

chapitre.  

 

3.1 Analyse thermogravimétrique 

L’analyse thermogravimétrique (TGA) mesure, lors d’un traitement thermique, la masse 

d’un échantillon en fonction de la température et du temps dans un environnement contrôlé. Ce 

type d’analyse fournit donc le changement de masse que subit un matériau lors du traitement 

thermique. L’appareil utilisé pour ce projet est le modèle 2950 de la compagnie Thermal Analysis 

Instruments. Un plateau de mesure, en platine dans le cas présent, contenant l’échantillon est 

d’abord suspendu à une microbalance. Une fournaise est par la suite refermée et un flux constant 

d’azote est injecté pour toute la durée de la prise de mesure. Un schéma de la fournaise présentant 

les principales composantes est illustré à la figure 3-1.  

 

Figure 3-1 : Schéma de la fournaise TGA 
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L’appareil permet de chauffer ou de refroidir un échantillon selon une rampe de 

température prédéterminée par l’utilisateur. Il est également possible de laisser l’échantillon à une 

température constante, en isotherme, pendant un temps désiré. Pour toutes les mesures TGA 

faites lors de ce projet de maîtrise, l’échantillon à analyser a été déposé dans une capsule de DSC 

(voir section 3.2) sans couvercle. Ces capsules étaient en aluminium pour la majorité des mesures 

effectuées. Pour une analyse demandant une température supérieure à la température de fusion de 

l’aluminium (660 ºC), la capsule utilisée était en alumine. Une mise à zéro de la microbalance 

était d’abord faite avec le plateau de TGA et la capsule. Puis, l’échantillon était déposé dans la 

capsule et le cycle de température, programmé sur l’ordinateur de contrôle, pouvait ensuite être 

lancé. 

Dans le cadre de ce projet, l’analyse TGA a été utilisée pour deux différentes raisons. 

Dans un premier temps, cela a servi à la préparation des échantillons des analyses DSC (voir 

section 3.2) car l’appareil utilisé pour ces mesures ne permet pas qu’il y ait évaporation de 

quelconque matière. Puisque les nanoparticules étaient dans de l’isopropanol, les échantillons ont 

été chauffés jusqu’à 100 ºC à 10 ºC/min. dans l’appareil de TGA afin de faire évaporer ce 

solvant. Cette manipulation a également permis de minimiser la contamination ainsi que 

l’oxydation du matériau, car le cycle thermique se fait dans une atmosphère d’azote. 

Deuxièmement, des analyses TGA ont été faites pour déterminer la température 

d’évaporation ou de décomposition des surfactants. Pour cela, les échantillons ont été amenés à 

300 et 500 ºC, dépendamment du surfactant, à une vitesse de 10 ºC/min. La température a ensuite 

été maintenue pour une durée de 10 minutes. 

 

 

3.2 Calorimétrie différentielle à balayage 

La calorimétrie différentielle à balayage (DSC) est une technique d’analyse thermique qui 

permet de détecter les réactions se produisant dans un matériau sous l’effet de la chaleur. Dans ce 

type d’appareil, le Q1000 de la compagnie Thermal Analysis Instruments dans le cas présent, 

deux capsules sont positionnées sur des détecteurs contenant chacun un thermocouple. 
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L’échantillon à analyser est préalablement inséré dans l’une de ces capsules tandis que l’autre 

reste vide et sert de référence. La chambre de mesure est refermée puis un gaz de purge, l’azote 

dans ce cas-ci, est inséré à l’intérieur. L’appareil augmente la température, à l’aide d’un élément 

chauffant, à une vitesse déterminée par l’utilisateur et mesure la différence de flux de chaleur 

entre l’échantillon et la référence en fonction de la température et du temps. Un système de 

refroidissement permet de prendre des mesures lors de la diminution de température à une vitesse 

déterminée. Le schéma de la figure 3-2 représente l’enceinte de chauffe de l’appareil DSC. 

 

 

Figure 3-2 : Schéma de l’enceinte d'analyse DSC 

 

Lorsqu’il y a un changement de phase dans le matériau à étudier, celui-ci absorbe ou émet 

une quantité de chaleur selon que la réaction est endothermique ou exothermique. Le système 

doit fournir une énergie supplémentaire ou inférieure afin que l’échantillon et la référence soient 

maintenus à la même température. La figure 3-3 présente les principales observations qui peuvent 

être effectuées sur les résultats d’une analyse DSC. Premièrement, il y a la désorption qui est 

représentée par un large pic endothermique. Par exemple, si l’échantillon adsorbe l’humidité dans 

l’air avant d’être mis dans l’enceinte DSC, ce pic apparaîtra lors de la première rampe de 

température, et ce, en dessous de 100 °C. Lors d’un deuxième passage, ce pic n’est plus observé.  
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Figure 3-3 : Différents phénomènes détectables lors d'une analyse DSC 

 

Ensuite, il y a la transition vitreuse qui se définit par un changement de la capacité 

thermique d’un solide amorphe. Pour les matériaux amorphes, elle représente une transition 

réversible d’un état vitreux à un état caoutchouteux. Cela est notamment observé lors de mesures 

sur des polymères. La fonte et la cristallisation dans un matériau, respectivement des phénomènes 

endothermique et exothermique, sont traduites par des pics très étroits. La cristallisation peut se 

faire lors de l’augmentation ou de la diminution de la température. Le premier cas se produit avec 

un matériau amorphe auquel une énergie suffisante lui est fournie pour qu’il puisse se réorganiser 

en une forme cristalline. Dans le cas d’un matériau cristallin, si la température de fonte a été 

atteinte lors de la chauffe, il y aura recristallisation lors du passage de la phase liquide à la phase 

solide en refroidissant le matériau. Finalement, la décomposition et l’oxydation du matériau 

peuvent être observées. Ces phénomènes sont représentés par une augmentation, ou des 

ondulations, exothermique(s) du flux de chaleur dans l’échantillon. 

Le flux de chaleur dQ/dt, aussi appelé flux thermique, peut être exprimé par : 

 
  

  
      (   ) (1) 
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où Cp est la capacité thermique du matériau analysé, β la vitesse de chauffe et f(t,T) le flux de 

chaleur provenant des processus cinétiques. Ce dernier terme dépend de la température et du 

temps. Le flux de chaleur total est donc constitué d’une partie réversible, liée à la 

thermodynamique du matériau, et d’une partie non-réversible attribuable aux effets cinétiques. 

L’appareil utilisé au cours de ce projet permet de faire des mesures de deux façons 

différentes : en mode standard ou en mode modulé. Dans le premier cas, l’augmentation de la 

température se fait à vitesse constante. Pour la DSC modulée, une oscillation sinusoïdale est 

ajoutée à la rampe de température. Cela peut être visualisé à la figure 3-4. Dans cet exemple, la 

modulation a une amplitude de 1 ºC et une période de 30 secondes. La vitesse d’augmentation de 

la température moyenne, ce qui représente le profil de la DSC non-modulée, est de 1 ºC/min. Par 

contre, la vitesse instantanée d’augmentation de la température de la DSC modulée, qui est la 

dérivée par rapport au temps de la température modulée, est variable, allant de –12 à 14 ºC/min 

dans cet exemple. 

 

 

Figure 3-4 : Profil de l’augmentation de la température pour l'analyse DSC modulée 
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La DSC modulée permet non seulement de mesurer le flux de chaleur total, tout comme la 

DSC standard, mais également les deux composants le constituant (voir l’équation (1)). La 

vitesse de chauffe moyenne permet de déterminer le flux de chaleur total tandis que l’oscillation 

de température permet de déterminer la partie répondant à un changement de vitesse de chauffe 

soit la partie réversible. La partie non-réversible est ensuite obtenue en soustrayant le flux de 

chaleur réversible du total. Avec cette méthode, il est possible de dissocier les évènements liés à 

la thermodynamique du matériau des effets cinétiques. Cependant, si une analyse présente un 

phénomène réversible et un non-réversible à la même température, il pourrait en résulter une 

mauvaise interprétation si la mesure est faite par DSC standard. 

 

 

Figure 3-5 : Exemple des flux de chaleur moyen et modulé obtenus par DSC modulée pour un échantillon de 

5,5 mg de plastique PET chauffé à une vitesse moyenne de 2 ºC/min avec un amplitude de ±1ºC et une période 

de 100 sec. (fait par TA Instruments) [21] 
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Figure 3-6 : Exemple de séparation des courbes réversibles et non-réversible du flux de chaleur lors d’une 

analyse DSC modulée pour un échantillon de 5,5 mg de plastique PET chauffé à une vitesse moyenne 

 de 2 ºC/min avec un amplitude de ±1ºC et une période de 100 sec. (fait par TA Instruments) [21] 

 

Les figures 3-5 et 3-6 permettent de visualiser un résultat typique obtenu par DSC 

modulée. Le premier graphique montre bien l’oscillation du flux de chaleur causée par 

l’oscillation de la température lors de la prise de mesure. La ligne tracée au centre des oscillations 

correspond au résultat obtenu lors d’une DSC standard. Afin de séparer les composantes du flux 

de chaleur, une transformée de Fourier est appliquée, à l’aide du logiciel de traitement, au flux de 

chaleur modulé pour obtenir la capacité thermique du matériau. La courbe du flux de chaleur 

réversible est ensuite obtenue en multipliant cette capacité thermique par la vitesse de chauffe 

moyenne, tel que définie à l’équation (1). Finalement, la courbe du flux de chaleur réversible est 

déterminée en soustrayant la partie réversible au flux de chaleur total, qui n’est que la moyenne 

du flux de chaleur modulé. Un graphique comme celui de la figure 3-6 peut ensuite être tracé. 

Avant d’effectuer les mesures DSC lors de ce projet, l’appareil a d’abord été calibré à 

l’aide d’une petite quantité d’indium, le but étant de mesurer la transition de la phase solide à la 

phase liquide de ce matériau. Les données recueillies sont ensuite entrées dans le logiciel de 

traitement. En comparant avec les valeurs de température et d’enthalpie de fusion de l’indium, il 

est alors possible d’interpréter avec précision les résultats des différentes expériences à effectuer.  
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Après la calibration, l’échantillon et la référence sont insérés dans l’enceinte d’analyse. 

Pour de meilleurs résultats, il est préférable que les masses des capsules vides soient les plus 

semblables possibles. Cela fait en sorte de diminuer l’effet que les capsules peuvent avoir sur les 

mesures de différence de flux de chaleur des échantillons. Néanmoins, avec l’appareil Q1000, il 

est possible d’appliquer une correction sur les mesures de flux de chaleur en fonction de la 

différence de masses, ce qui a été fait pour toutes les analyses DSC du projet. La différence de 

masse des capsules était de moins de 2% pour toutes les analyses réalisées. 

Par la suite, la mesure peut être débutée s’il s’agit d’une DSC régulière. Pour ce qui est de 

la DSC modulée, il faut d’abord déterminer la période et l’amplitude d’oscillation ainsi que la 

vitesse de balayage pour la température définie. Le fabriquant de l’appareil recommande une 

période d’oscillation de 60 secondes lors de l’analyse de transitions de phases et une vitesse 

permettant d’avoir entre 4 et 6 oscillations lors de la transition la plus abrupte (le pic le plus 

étroit) [22]. Cela permet une bonne décomposition du flux de chaleur pour ces transitions. Il est 

donc préférable de réaliser une analyse DSC standard avant d’effectuer une DSC modulée afin 

d’avoir une idée de la largeur des pics, et ainsi, choisir les bons paramètres pour la mesure 

modulée. Finalement, l’amplitude des oscillations A est liée aux deux autres paramètres par : 

     
 

     
 (2) 

où Vb est la vitesse de balayage (vitesse de chauffe de la DSC régulière) et P la période 

d’oscillation. 

Après avoir choisi les paramètres initiaux, il faut maintenir le matériau à une température 

déterminée. En traçant le graphique du flux de chaleur modulé en fonction de la dérivée de la 

température modulée (vitesse de chauffage modulée), il est possible de constater si les paramètres 

sélectionnés sont adéquats pour le matériau à analyser. Si tel est le cas, le graphique montrera une 

ellipse bien définie autour de 0 ºC/min et allant de –Vb à +Vb pour les valeurs de la dérivée de la 

température modulée. Dans le cas contraire, il faut revoir les paramètres de la modulation. Il est 

aussi suggéré de regarder si le flux de chaleur modulé est bien une sinusoïde en fonction du 

temps. Une fois ces vérifications faites, la mesure peut être débutée selon le profil de balayage en 

température désiré. 
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Pour ce projet, des mesures ont été faites en DSC standard et modulée. Les paramètres 

utilisés sont précisés pour chaque mesure au chapitre 4. Toutes les mesures ont été effectuées 

avec des capsules en aluminium à l’exception d’une qui a nécessité des capsules en alumine afin 

de pouvoir chauffer l’échantillon à une température plus élevée. 

 

 

3.3 Microscope électronique à balayage 

Des images ont été prises à l’aide d’un microscope électronique à balayage (MEB) dans le 

but de visualiser la structure de l’alliage obtenu à la suite des différents recuits. Dans un tel 

appareil, des électrons sont accélérés dans une colonne sous vide et dirigés par des lentilles 

électromagnétiques jusqu’à l’échantillon à visualiser. Lorsque ceux-ci entrent en collision avec 

l’échantillon, des électrons secondaires et rétrodiffusés quittent le matériau et sont ensuite 

collectés pour créer une image du matériau. Les électrons rétrodiffusés sont les électrons du 

faisceau primaire qui ont perdu peu d’énergie lors de l’interaction avec un noyau d’atome de 

l’échantillon. La probabilité d’émission de ces électrons augmente avec le numéro atomique de 

l’échantillon à visualiser. Pour ce qui est des électrons secondaires, ce sont des électrons 

faiblement liés des atomes du matériau à imager qui ont absorbé une partie de l’énergie des 

électrons du faisceau primaire. Ces derniers, qui se trouvent dans la bande de conduction des 

atomes de l’échantillon, vont être éjectés du matériau et collectés par le détecteur. 

Dans le cas présent, le microscope utilisé est le modèle S-4700 de la compagnie Hitachi. 

Cet appareil génère les électrons du faisceau primaire à l’aide d’un canon à effet de champ. Un 

sas d’entrée permet l’insertion rapide des échantillons sans briser le vide de la chambre où se 

situe l’échantillon lors de la prise d’images. Dans ce microscope, deux détecteurs sont utilisés 

pour imager l’échantillon. Un premier est situé dans le bas de la chambre à vide et le deuxième 

est situé dans le haut.  

Les échantillons qui ont été imagés à l’aide du MEB dans le cadre de ce projet étaient tous 

des morceaux d’une plaquette de silicium sur lesquels avaient été déposées des nanoparticules de 

l’alliage Au-Sn. Vu leur conductivité, ils ont été observés sans revêtement conducteur 

additionnel. Les conditions d’imagerie sont précisées pour chaque image au chapitre 4. 
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3.4 Spectromètre FTIR 

Un spectromètre FTIR, le Vertex 80v de la compagnie Bruker, a été utilisé pour 

caractériser la suspension des nanoparticules. Ce type d’appareil permet de mesurer l’absorption 

optique en fonction de la longueur d’onde. Pour ce faire, un faisceau polychromatique est dirigé 

dans un interféromètre puis au travers de l’échantillon. Le faisceau transmis, l’interférogramme, 

est recueilli par un détecteur. Une transformée de Fourier est ensuite appliquée au signal afin 

d’obtenir la variation de l’intensité du faisceau en fonction de la longueur d’onde. Contrairement 

à la spectroscopie dispersive, cette technique permet d’avoir un spectre sur toute la plage de 

longueurs d’onde analysée simultanément. Les mesures sont donc beaucoup plus rapides, ce qui 

est important pour des échantillons dont l’absorption change en fonction du temps.  

Le montage utilisé pour ce projet permet d’obtenir le spectre d’absorption de 9000 à 

25 000 cm
-1

. Les échantillons sont d’abord insérés dans des cuvettes en polystyrène. Ces-

dernières sont ensuite placées sur le porte échantillon du spectromètre en s’assurant que le 

faisceau passe toujours à la même hauteur pour tous les échantillons. Les nanoparticules ne 

restent pas en suspension et s’agglomèrent au fond de l’éprouvette. L’absorption, à une hauteur 

donnée, va donc diminuer en fonction du temps. Il est à noter que pour toutes les mesures, un 

spectre sans nanoparticule est soustrait aux mesures afin d’enlever la contribution du solvant et 

des surfactants pour l’absorbance de la solution ainsi que la contribution de la cuvette. 

 

 

3.5 Four de recuit sous atmosphère contrôlée 

Un four de recuit, schématisé à la figure 3-7, a été utilisé dans le but de faire fondre les 

nanoparticules. Il consiste en une chambre à vide dans laquelle un élément chauffant, relié à un 

thermocouple, est branché à un module programmable de contrôle de la température ce qui 

permet de faire des cycles de température prédéterminés. Cet élément chauffant est positionné sur 

un bloc de cuivre directement en contact avec des tuyaux de cuivre dans lesquels circule de l’eau 

de refroidissement.  
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Figure 3-7 : Schéma du four de recuit (vue de haut) 

 

La procédure suivie avant le recuit a été la même pour tous les traitements thermiques 

effectués au cours du projet. Tout d’abord, la chambre est ouverte afin de positionner, sur 

l’élément chauffant, l’échantillon constitué d’un morceau de silicium sur lequel a été déposé le 

matériau à chauffer. La chambre est ensuite refermée et un premier pompage est fait à une 

pression inférieure à 10
-3 

torr à l’aide d’une pompe mécanique. Le gaz utilisé pour le recuit est 

par la suite injecté dans la chambre jusqu’à ce que la pression intérieure atteigne la pression 

atmosphérique. Dans le cadre du projet, les recuits ont été faits dans une atmosphère d’argon ou 

de gaz réducteur c’est-à-dire, un mélange 5% hydrogène – 95% azote. 

Par la suite, un deuxième pompage est effectué et le gaz est réinjecté encore une fois 

jusqu’à une pression de 7,6 x 10
2
 torr. L’objectif de faire deux pompages à vide est de s’assurer 

qu’il n’y ait pas d’oxygène dans la chambre, ce qui pourrait causer l’oxydation du matériau 

pendant le traitement thermique. Finalement, le cycle de recuit, préalablement programmé sur le 

module de contrôle de la température, est lancé. 
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3.6 Diffraction des rayons X 

Lors d’une analyse de diffraction des rayons X (DRX), un faisceau provenant d’une 

source de rayons X est diffracté selon un angle donné par les plans cristallins de l’échantillon et 

est ensuite récolté par un détecteur. L’angle pour lequel il y aura diffraction est appelé angle de 

Bragg et dépend de l’espacement entre les plans cristallographiques de l’échantillon selon 

l’équation de Bragg : 

              ( ) 

où n est l’ordre de diffraction, λ est la longueur d’onde des rayons X, dhkl est la distance entre les 

plans hkl et θ est l’angle de Bragg. Cette technique permet d’identifier les phases présentes dans 

un échantillon puisque les valeurs de dhkl sont caractéristiques de la structure du matériau. 

Deux montages différents ont été utilisés au cours de ce projet. Le premier est l’appareil 

X’PERT MPD de la compagnie Philips qui a été utilisé pour l’acquisition de courbes de 

diffraction avant et après des recuits sur les nanoparticules. Dans cet appareil, la génération des 

rayons X est faite à l’aide de la raie Kα (1,5418 Å) d’une anode de cuivre.  

Pour les mesures, une couche de nanoparticules a été déposée sur un substrat de silicium 

monocristallin. Les analyses ont été faites à angle rasant, c’est-à-dire que la source est immobile à 

un angle faible (5º dans le cas présent) et le détecteur balaye une plage d’angle présélectionnée. 

Une schématisation du montage est présentée à la figure 3-8. En immobilisant la source à un 

angle de 5º par rapport à la surface de l’échantillon, il a été possible d’éviter la diffraction avec 

les différents plans du silicium monocristallin puisqu’ils ne répondaient pas aux conditions de 

Bragg. Néanmoins, il y a de la diffraction avec les nanoparticules, car elles sont orientées dans 

des directions aléatoires. Les conditions de Bragg sont donc respectées pour quelques plans 

cristallins des différentes nanoparticules ce qui permet d’obtenir un cliché de diffraction du 

matériau. 
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Figure 3-8 : Diffraction des rayons X à angle rasant 

 

Le deuxième montage utilisé est situé au laboratoire national de Brookhaven dans l’état 

de New-York. La source de rayon X est un synchrotron qui permet d’avoir un faisceau beaucoup 

plus intense qu’une source de laboratoire. La longueur d’onde sélectionnée pour les analyses est 

de 1,797 Å. La détection des faisceaux diffractés se fait à l’aide d’un détecteur linéaire qui 

permet une acquisition simultanée sur une plage d’angles 2θ de 14º à un taux de deux clichés de 

diffraction à la seconde. 

L’échantillon est positionné dans une chambre semblable à celle de la figure 3-7 à 

l’exception que le porte échantillon est mobile, ce qui permet de l’orienter par rapport à la source. 

Le détecteur, situé à l’extérieur de la chambre à vide, peut être positionné pour une prise de 

mesures sur une plage d’angles désirée. Les rayons X entrent et ressortent de la chambre via des 

fenêtres de béryllium. L’élément chauffant du montage et la rapidité d’acquisition d’un spectre de 

DRX permettent une analyse tout en effectuant un traitement thermique sur l’échantillon. Il est 

alors possible d’observer les changements de phases se produisant dans le matériau en fonction 

de la température. Il est à noter que tous les recuits sont faits sous un flux d’hélium purifié et que 

la chambre est maintenue à une pression légèrement sous la pression atmosphérique. 

Les résultats obtenus avec ce type de mesures sont représentés par des graphiques de 2θ par 

rapport à la température (voir figures 4-10 à 4-12). Les pics de diffraction sont représentés par 

des variations de couleurs allant du bleu, qui définit la ligne de base, au rouge, pour un pic très 

intense. 
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3.7 Matériel expérimental 

3.7.1 Nanoparticules 

La principale caractéristique du procédé de remplissage des trous d’interconnexion est 

d’utiliser une solution contenant des nanoparticules d’alliage métallique. Le fournisseur de ces 

nanoparticules est la compagnie SDC Materials. Pour synthétiser ce matériau, la compagnie a 

recours à une méthode par plasma chaud [23]. Dans un premier temps, elle prend la bonne 

quantité, sous forme de microparticules, de chacun des éléments formant l’alliage. Dans le cas 

présent, 80% massique de microparticules en or et 20% en étain. Le tout est injecté dans un 

plasma chaud, ce qui produit des ions d’or et d’étain. En refroidissant rapidement, il y a 

condensation en nanoparticules. Par la suite, les nanoparticules sont mises dans un solvant. Il est 

à noter qu’aucun autre produit, tel qu’un surfactant, n’a été ajouté à la solution. C’est ce qui est 

communément appelé une « slurry ». 

Pour le projet, 500 ml de solution de nanoparticules d’alliage 80% massique d’or et 20% 

massique d’étain dans de l’isopropanol ont été commandés. La concentration de nanoparticules 

dans le solvant a été fixée à 10% massique. 

 

3.7.2 Microparticules 

Des microparticules ont été achetées afin de comparer les résultats avec ceux obtenus 

avec les nanoparticules. Le fournisseur est la compagnie AIM Solders. Ces particules ont été 

fabriquées par une méthode de disque tournant. Dans un tel procédé, l’alliage désiré est maintenu 

en fusion et est déversé par un petit jet sur le disque tournant. Le métal en fusion est expulsé 

rapidement du disque ce qui forme de petites particules. La température de l’enceinte est 

maintenue sous la température de fusion afin que le matériau refroidisse rapidement et reste sous 

forme de microparticules. 

Les microparticules d’alliage 80% massique d’or et 20% massique d’étain ont été 

commandées sous deux formes : en poudre et en pâte. Dans le cas de la poudre, 10 mg de 

microparticules ont été fournies par la compagnie sans ajout de solvant ou autre produit. Pour la 

pâte de soudure, il s’agit des mêmes microparticules auxquelles ont été ajoutées certains produits 
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non divulgués par le fournisseur permettant, entre autre, un meilleur mouillage sur la surface et 

l’élimination de l’oxydation.  

 

3.7.3 Surfactants 

Les surfactants répertoriés dans le tableau 3.1 ont été utilisés pour mettre les 

nanoparticules en suspension. Les 6 premiers ont tous déjà été utilisés pour suspendre d’autres 

types de nanoparticules. Pour ce qui est du numéro 7, la suggestion vient de la compagnie SDC 

Materials qui l’a déjà employé pour suspendre des nanoparticules métalliques dans un solvant 

organique tel que de l’isopropanol. Finalement, le dernier surfactant en est un qui est souvent 

mentionné dans la littérature entre autre pour la synthèse des encres métalliques contenant des 

nanoparticules. Les quantités utilisées de chacun sont présentées au chapitre 4. 

 

Tableau 3.1 : Caractéristiques des surfactants utilisés pour la suspension des nanoparticules 

# Nom 
Aspect 

physique 

Masse molaire 

(g/mol) 
Fournisseur 

1 Sodium cholate hydrate Poudre 431 Sigma-Aldrich 

2 Dodecylbenzenesulfonic Poudre 348 Sigma-Aldrich 

3 Pluronic F-127 Poudre 12 600 Sigma-Aldrich 

4 
Benzyltriethylammonium 

chloride 
Poudre 246 Sigma-Aldrich 

5 Sodium dodecyl sulfate Poudre 288 Sigma-Aldrich 

6 Triton X-100 Visqueux 625 Sigma-Aldrich 

7 Solsperse 39 000 Visqueux 39 000 Lubrizol 

8 Polyvinylpyrrolidone Poudre 40 000 Alfa Aesar 
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CHAPITRE 4 RÉSULTATS EXPÉRIMENTAUX 

Ce chapitre traite des différents résultats obtenus tout au long du projet de maîtrise dont le 

but principal était de déterminer s’il était possible qu’une solution de nanoparticules d’alliage 

eutectique or-étain pouvait respecter les critères du procédé de remplissage des TSV. La première 

section a pour objectif de caractériser les nanoparticules fournies par SDC Materials. Ces-

dernières ne sont pas dispersées dans le solvant, ce qui ne permet pas de réaliser les objectifs 

principaux du procédé de remplissage des TSV. La deuxième section s’attarde donc à déterminer 

la meilleure façon de disperser les nanoparticules d’alliage or-étain à l’eutectique dans un 

solvant. Dans la troisième section, il est démontré que les nanoparticules ne fondent pas 

totalement à la température désirée. La section 4.3 a pour objectif d’en déterminer les causes et 

d’approfondir la compréhension du processus de fonte de l’alliage métallique. Finalement, la 

dernière section renferme les résultats obtenus sur des microparticules dans le but de comparer 

avec le matériau de départ. 

 

4.1 Caractérisation des nanoparticules 

La première étape du projet a été de caractériser les nanoparticules d’alliage or-étain 

fabriquées par la compagnie SDC Materials. Celle-ci a fourni les images prisent au microscope 

électronique en transmission (MET) présentées à la figure 4-1. Ces images permettent de 

constater que le diamètre des nanoparticules varie approximativement entre quelques nanomètres 

et 50 nanomètres pour cet échantillon. Il y a également une très grande agglomération des 

nanoparticules entre elles formant ainsi de longues chaînes ou de gros amas de nanoparticules. 

Toutefois, cela n’est pas surprenant puisqu’il n’y a pas eu d’ajout de quelconque produit 

empêchant l’agglomération. 

Les analyses de spectroscopie de masse par plasma (ICP-MS : Inductively coupled plasma 

mass spectrometry) fournies par SDC Materials indiquent une composition moyenne de 78% 

massique d’or, 17% massique d’étain et 5% de contamination qui est essentiellement de 

l’oxygène indiquant ainsi qu’il y a de l’oxydation sur les nanoparticules. En émettant l’hypothèse 

que la contamination est uniquement de l’oxygène, cela représente une concentration atomique 

approximative de 46%, 17% et 37% atomique pour respectivement l’or, l’étain et l’oxygène. Le 
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ratio atomique Au/Sn est donc de 2,71 ce qui est plus élevé que la valeur désirée de 2,45 (71% 

atomique d’or et 29% atomique d’étain). Cela implique donc qu’il y a en moyenne plus d’or dans 

le matériau que pour l’eutectique du diagramme d’équilibre.  

De plus, il ne faut pas oublier que cette analyse de la composition moyenne ne donne 

aucune information sur les phases présentes dans le matériau ou dans chacun des nanoparticules. 

Cela ne veut pas dire qu’il y a seulement la présence des phases Au5Sn et AuSn dans les 

nanoparticules tel que désiré et cela ne veut pas dire non plus que les nanoparticules sont 

constituées de ces phases dans les bonnes proportions. L’or en trop peut être lié à l’étain ou 

simplement former des particules d’or. 

 

 

Figure 4-1 : Images au MET des nanoparticules d'alliage or-étain fournies par la compagnie SDC Materials  

 

À la réception des nanoparticules, des analyses ont été réalisées par spectroscopie 

photoélectronique X (XPS) sur deux échantillons différents dans le but de déterminer la 

composition de la surface des nanoparticules. La figure 4-2 présente le premier spectre obtenu et 

le tableau 4.1 identifie et quantifie les différents éléments pour les deux échantillons. 

Évidemment, il y a la présence d’or, d’étain et d’oxygène tel que l’a mentionné le fournisseur. En 

ce qui concerne le carbone, il peut être associé au substrat sur lequel ont été déposées les 

nanoparticules pour l’analyse, c’est-à-dire du graphite pyrolytique fortement orienté (HOPG). 

Finalement, il y a un pic inattendu, celui du zinc, qui n’est pas un artéfact puisque le pic associé à 
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ce matériau était encore présent sur la deuxième mesure. Le zinc fait donc partie des 5% 

d’impuretés mesurées par le fournisseur.  

 

 

Figure 4-2 : Spectre XPS des nanoparticules d'alliage AuSn mesuré à l’aide une source de Mg Kα et 

 une énergie de passage de 100eV sur une surface de 2x3mm 

 

Tableau 4.1 : Quantification des éléments présents dans les nanoparticules 

Élément 

Énergie de 

liaison (eV) 

éch. 1 

Pourcentage 

atomique (%) 

éch. 1 

Énergie de 

liaison (eV) 

éch. 2 

Pourcentage 

atomique (%) 

éch. 2 

Au 4f 85,9 7,2 85,6 7,1 

C 1s 285,2 46,9 285,2 44,4 

Sn 3d5 486,7 11,6 486,8 12,3 

O 1s 531,2 33,4 531,3 34,9 

Zn 2p3 1022,0 0,9 1022,0 1,3 

 

Le tableau 4.1 indique qu’il y a plus d’étain que d’or à la surface des nanoparticules. Le 

ratio atomique Au/Sn est de 0,62 pour le premier échantillon et de 0,58 pour le deuxième. 
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Évidemment, ces ratios ne sont pas ce qui est attendu pour les nanoparticules d’alliage AuSn de 

composition eutectique (2,45), car les analyses XPS sondent seulement la surface, c’est-à-dire 

quelques angströms. Cela donne tout de même une bonne idée de la composition des 

nanoparticules qui font au plus quelques dizaines de nanomètres comparativement à un matériau 

massif. Le ratio concorde toutefois avec ce qui a été mentionné dans le chapitre 2, à savoir que 

l’étain ségrége à la surface de l’alliage Au-Sn. 

Des mesures à haute résolution, présentées à la figure 4-3, ont permis de déterminer les 

types de liens que forment l’or, l’étain et l’oxygène entre eux. L’or nécessite 2 pics pour 

reproduire le signal mesuré. En prenant Au 4f7/2, les deux pics sont à des énergies de 84,3 eV, ce 

qui peut représenter la phase Au ou un mélange Au-Sn, et de 85,1 eV qui est associé à l’oxyde 

Au2O. L’étain aussi est composé de deux pics qui sont, pour Sn 3d5/2, à 486,2 eV et 487,2 eV. Ils 

représentent respectivement la phase Sn ou un mélange Sn-Au et l’oxyde SnO2. Le signal de 

l’oxygène est quant à lui composé de 5 pics dont 3 sont associés à des liaisons avec le carbone et 

1 à de l’eau adsorbée. Le dernier, situé à 531,0 eV, définit les liaisons avec l’or et l’étain. Pour ce 

qui est du carbone, il est essentiellement associé au HOPG et ne fait pas de liaison avec l’or ou 

l’étain. Les pourcentages atomiques de chacun des liens sont présentés dans le tableau 4.2. 

 

Tableau 4.2 : Analyse XPS à haute résolution pour l’échantillon 1 

 de nanoparticules d'alliage Au-Sn 

Élément 

Énergie de 

liaison 

(eV) 

Identification % atomique 

Au 4f7/2 
84,3 Au ou Au-Sn 6,2 

85,1 Au-O (Au2O) 0,9 

Sn 3d5/2 
486,2 Sn(0) ou Sn-Au 3,4 

487,2 Sn(IV) (SnO2) 11,5 

O 1s 531,0 O-Sn et O-Au 22,7 

 

Cette mesure indique que la surface est composée d’or et d’étain sous les formes oxydée 

et non-oxydée puisqu’il y a des pics des deux métaux liés et non liés à l’oxygène. La proportion 
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d’étain oxydé est plus élevée que celle de l’or, ce qui est attendu puisque l’or est un métal noble 

et donc difficilement oxydable. Dans le but de déterminer le composé d’étain présent à la surface 

des nanoparticules, ce qui ne peut pas être fait seulement en mesurant l’énergie du pic de 

photoélectrons, une évaluation du paramètre Auger a été effectuée. Le résultat permet de dire que 

l’étain n’est pas seulement oxydé sous la forme SnO2. En effet, la valeur obtenue pour cet 

échantillon est de 919.63 eV tandis que ce qui est attendu pour SnO2 est plutôt 918,90 eV. 

Cependant, il n’est pas possible de déterminer s’il s’agit d’un mélange avec SnO (920,00 eV) ou 

avec un composé Au-Sn oxydé. 

 

 

Figure 4-3 : Spectres XPS haute résolution des différents éléments présents dans le premier échantillon des 

nanoparticules mesuré à l’aide une source de Mg Kα et une énergie de passage  

de 20eV sur une surface de 2x3mm  
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Aussi, les mesures haute résolution permettent de calculer un rapport atomique entre l’or 

et l’étain de 0,47 pour le premier échantillon et 0,46 pour le deuxième. Cela confirme le fait 

qu’une grande partie de l’étain se retrouve à la surface laissant vraisemblablement une grande 

proportion d’or au centre des nanoparticules.  

Des mesures DSC, présentées à la figure 4-4, ont été effectuées afin de déterminer la 

température de fusion des nanoparticules. Trois chauffes suivies chacune d’un refroidissement 

ont été faites sur le même échantillon dans le but de visualiser la réaction du matériau à plusieurs 

cycles thermiques. Le tout a été effectué à une vitesse de 10 °C/min en DSC standard. Le pic 

endothermique aux alentours de 280 °C sur les trois montées en température correspond au 

changement de phase solide/liquide de l’eutectique pertinent pour le projet. Les autres pics 

endothermiques avant et après 280 °C, particulièrement lors de la première rampe de température, 

sont analysés plus en détail à la section 4.3.2. Ils correspondent à des changements de phase 

solide/liquide d’autres phases de l’alliage Au-Sn. Les courbes de chauffes sont différentes pour 

les trois cycles thermiques ce qui laisse présager un changement dans le matériau après le premier 

cycle. Cela peut également être perçu par le changement de l’enthalpie de fusion qui passe de 

1,991 J/g lors du premier cycle à un peu moins de 3,5 J/g pour les deux autres. Il est à noter que 

ces données sont très inférieures à la valeur théorique de 28 J/g (voir section 2.1). Une analyse 

plus approfondie est présentée à la section 4.3.2.  

Aussi, les courbes de refroidissement montrent plusieurs pics exothermiques entre 245 et 

280 °C ce qui correspond à la solidification du matériau. Cela indique que le changement de 

phase liquide/solide se fait sur une période de température de quelques dizaines de degrés. Le pic 

principal, situé à 277 ºC, fait ressortir la température à laquelle la plus grande partie du matériau 

se solidifie. Il est à noter également que la forme du pic de solidification est la même pour les 

trois cycles thermiques. En ce qui concerne les pics endothermiques lors du refroidissement, ils 

sont caractéristiques d’artéfacts dans la mesure, liés au matériau qui se colle et se décolle des 

parois de la capsule d’aluminium. D’ailleurs, ils ne sont pas observés lors des mesures présentées 

à la section 4.3.2.  
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Figure 4-4 : Première analyse DSC sur un échantillon de 2,8 mg de nanoparticules  

d'alliage Au-Sn à une vitesse de 10 ºC/min 

 

Des analyses DRX réalisées sur les nanoparticules ont permis de déterminer les phases 

présentes dans le matériau. La figure 4-5 montre la courbe obtenue ainsi que les pics de 

diffraction des différentes phases qui constituent ou qui pourraient constituer les nanoparticules. 

La valeur des angles de ces pics sont également disponibles à l’annexe 1 sous forme de tableaux. 

Cette analyse permet de constater qu’il y a bel et bien la présence des phases Au5Sn et AuSn dans 

le matériau. Cependant, cela ne donne aucune information sur la proportion de chacune de ces 

phases à l’intérieur du matériau. La courbe montre également un pic à un angle 2θ près de 44º. Ce 

dernier ne peut être associé qu’à l’or ce qui indique la présence d’or non lié à l’étain dans les 

nanoparticules.  

Aussi, deux petits pics sont présents à des angles de 19º et 21º et représentent les phases 

AuSn2 et AuSn4. Il y a donc des composés riches en étain dans les nanoparticules, ce qui ne 

devait pas être le cas selon le diagramme d’équilibre. 

Finalement, cette courbe ne permet pas de valider la présence de SnO2 contrairement aux 

résultats XPS présentés précédemment. Si tel était le cas, il y aurait minimalement la présence 
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d’un pic à un angle 2θ de 26,6º, ce qui correspond au pic de 100% d’intensité selon la fiche de 

diffraction de cet oxyde (voir annexe 1). Cependant, l’oxyde est bel et bien présent, mais 

vraisemblablement sous la forme amorphe. À la section 4.3.1, il sera démontré qu’un recuit à 

haute température permet de cristalliser l’oxyde qui devient alors visibles lors d’une analyse 

DRX. 

 

 

Figure 4-5 : Courbe DRX des nanoparticules or – étain fournies par SDC Materials avant recuit  

pour une valeur de 2θ entre 15 et 90º à 50kV et 20mA 

 

Ces premières analyses permettent de tirer beaucoup d’informations sur les nanoparticules 

d’alliage or-étain. Le matériau n’a pas la composition précise de l’eutectique et la surface des 

particules est majoritairement oxydée. La mesure DSC montre qu’il y a bel et bien fusion à la 

température attendue, mais la valeur de l’enthalpie est très inférieure à celle répertoriée dans la 

littérature. Cela laisse donc présager que ce n’est pas toutes les particules qui fondent à 280ºC. 
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4.2 Suspension des nanoparticules 

Pour les fins du présent projet de maîtrise, les particules doivent être en suspension dans 

un solvant et le tout doit être homogène pour que le remplissage des vias soit un procédé 

répétable. Cela n’est cependant pas le cas de la mixture de nanoparticules d’or-étain dans de 

l’isopropanol préparée par la compagnie SDC Materials. La majorité des nanoparticules 

s’agglomèrent au fond du contenant en seulement quelques minutes. Un des objectifs du projet a 

donc été de déterminer la meilleure façon de suspendre les nanoparticules dans un solvant en se 

basant sur deux critères soit la stabilité et la pureté de la dispersion. Premièrement, la solution 

finale doit être stable sur une période de temps minimale de quelques jours pour que le procédé 

de remplissage des TSV soit répétable. Deuxièmement, il est essentiel d’ajouter le moins possible 

de matériaux qui pourraient venir changer les propriétés de l’alliage or-étain une fois le recuit fait 

dans les trous d’interconnexions.  

Trois techniques de suspension ont été étudiées soit de charger les nanoparticules 

(positivement ou négativement), de les fonctionnaliser ou bien d’utiliser un surfactant. L’option 

de charger les nanoparticules était favorisée sur la fonctionnalisation qui elle était favorisée par 

rapport à l’ajout d’un surfactant en ce qui concerne la pureté du matériau final dans les vias. 

 

4.2.1 Charger 

En l’absence de documentation sur la suspension de nanoparticules d’alliage Au-Sn, les 

expérimentations ont été inspirées des techniques déjà développées pour d’autres métaux, 

notamment l’or. Pour les charger positivement, l’agent oxydant utilisé a été de l’acide nitrique 

qui est bien connu et souvent utilisé pour ce type d’expérience. Trois concentrations ont été 

testées, soit 10%, 30% et 70% d’acide dans l’eau. Puisque l’acide nitrique réagit fortement avec 

l’isopropanol, les nanoparticules ont d’abord été transférées dans l’eau en les précipitant au fond 

d’une éprouvette à l’aide d’une centrifugeuse. Le surnageant a par la suite été enlevé puis 

remplacé par de l’eau. L’opération a été répétée deux fois afin de s’assurer qu’il n’y avait plus 

d’isopropanol.  

Il est à noter que le simple changement de solvant a eu pour effet d’augmenter la durée de 

la suspension des nanoparticules de plusieurs minutes ce qui peut être dû au fait que l’eau est 
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polaire. Si les nanoparticules sont légèrement chargées, les molécules d’eau pourraient créer une 

couche autour de celles-ci et ainsi rendre plus difficile leur agglomération. Cela les maintiendrait 

donc plus longtemps dispersées dans le solvant. Néanmoins, la majorité des nanoparticules 

étaient tout de même agglomérées au fond en moins d’une heure. 

Ensuite, une petite quantité de nanoparticules, non mesurée pour ces tests préliminaires 

mais de l’ordre de quelques milligrammes, a été ajoutée à chacune des solutions d’acide 

énumérées ci-haut. Dans tous les cas, les nanoparticules ne sont pas restées en suspension plus 

longtemps que dans l’eau. En voyant ces résultats, une dernière tentative a été réalisée, soit de les 

charger avec l’acide nitrique 70% bouilli pendant 60 minutes afin de maximiser le transfert de 

charges entre l’acide et le matériau. Par la suite, la solution a été mise dans un sonicateur pendant 

30 minutes dans le but de séparer le plus possible les nanoparticules les unes des autres puis elles 

ont été transférées dans l’eau après centrifugation.  

Ce procédé n’a pas permis de suspendre les nanoparticules pour une longue période de 

temps. Cependant, le surnageant était d’une teinte rosée et ce même après plusieurs mois. Cela 

est caractéristique de nanoparticules d’or en suspension. De plus, l’acide nitrique avait changé de 

couleur après le traitement. Comme l’or peut résister à cet acide, tout porte à croire que ce 

changement de couleur est dû à une réaction avec l’étain. Cette réaction aurait donc permis à des 

nanoparticules composées d’or uniquement de se séparer et de rester en suspension dans l’eau par 

la suite. 

Pour ce qui est de charger les nanoparticules négativement, l’agent réducteur était le 

NaBH4, un produit couramment utilisé pour ce type de manipulation. Encore une fois ici, le 

solvant se devait d’être de l’eau et non de l’isopropanol, car la dissociation du NaBH4 ne 

s’effectue pas adéquatement dans l’isopropanol. Il n’y aurait donc pas eu de milieu réducteur 

dans ce solvant. La base a été ajoutée en concentration dans l’eau de 3, 15 et 30 mg/ml aux 

nanoparticules dans le but de pouvoir comparer l’effet de différentes concentrations. Dans les 

trois cas, il y a eu une très forte agglomération de la part des nanoparticules. Cela porte à croire 

qu’elles étaient possiblement chargées positivement au départ tel qu’énoncé précédemment. 

L’ajout de la base les aurait déchargées et naturellement elles ont eu tendance à s’agglomérer 

davantage entre elles.  
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4.2.2 Fonctionnaliser 

La suspension des nanoparticules a également été tentée en les fonctionnalisant. Tout 

d’abord, l’ajout d’un thiol, le pentanéthiol dont la formule chimique est CH3(CH2)4SH, a été 

testé. Le but est que la terminaison -SH s’attache aux nanoparticules, sachant qu’elles contiennent 

de l’or, et que le groupement alkyl maintienne les nanoparticules en suspension. Cette suspension 

est due au fait que les groupements alkyls offrent une répulsion entre eux empêchant ainsi les 

nanoparticules de s’agglomérées et interagissent avec le solvant organique pour favoriser la 

dispersion. Cependant, cela n’a pas eu les effets escomptés, car la dispersion des nanoparticules 

n’a pas été améliorée par ce procédé. 

La fonctionnalisation a par la suite été faite à l’aide d’un silane, l’octadecyltrichlorosilane 

dont la formule chimique est CH3(CH2)17SiCl3, en sachant qu’il y a la présence d’oxyde (voir 

section 4.1), et donc de sites –OH, à la surface du matériau. La quantité ajoutée était de 3x10
-3

 

mol/L dans deux solvants différents soit le toluène et l’hexane. Le solvant ne pouvait pas être de 

l’isopropanol car l’eau présente dans cet alcool hydrolyserait les groupements fonctionnels du 

silane beaucoup trop rapidement les forçant ainsi à s’agglomérer entre eux plutôt que de former 

des liens avec les nanoparticules. Les deux solvants apolaires utilisés ont une portion beaucoup 

plus minime d’eau et sont des solvants organiques ce qui justifie leur choix. Dans les deux cas, 

une grande quantité de nanoparticules se sont retrouvées au fond du contenant. Cependant, le 

solvant est demeuré d’une teinte grise pendant quelques heures, ce qui laisse croire qu’il y avait 

une faible proportion de nanoparticules en suspension. Après 24 heures, ces dernières étaient 

toutes retombées au fond.  

 

4.2.3 Utiliser un surfactant 

La troisième et dernière avenue testée pour la suspension des nanoparticules fût 

l’utilisation de surfactant. Des tests préliminaires ont d’abord été faits permettant d’évaluer 

rapidement le potentiel des surfactants de différentes masses molaires à suspendre les 

nanoparticules d’alliage Au-Sn dans l’eau et dans l’isopropanol. Cela a permis de déterminer les 

deux meilleurs, selon le critère de stabilité de la suspension, qui ont fait l’objet d’une analyse plus 

détaillée. 
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Les six premiers surfactants testés sont : Sodium cholate hydrate, Dodecylbenzensulfonic, 

Pluronic F-127, Benzyltriethylammonium, Sodium dodecyl sulfate et Triton X-100. Ces 

surfactants ont été dissouts dans de l’eau à une concentration de 1% volumique c’est-à-dire, 

100μl de Triton X-100 dans 1ml d’eau et 0,01g pour tous les autres surfactant avec la même 

quantité d’eau. Une quantité de quelques milligrammes de nanoparticules, non mesurée pour les 

tests préliminaires mais toujours sensiblement la même, a été ajoutée sans qu’aucun des 

surfactants n’ait d’effet notable sur leur dispersion dans le solvant.  

Trois de ces six surfactants, soit Dodecylbenzensulfonic, Benzyltriethylammonium et 

Triton X-100, se sont avérés solubles dans l’alcool et ont été testés avec de l’isopropanol comme 

solvant et ce à une concentration de 1% volumique. Encore une fois, la suspension des 

nanoparticules n’a pas été améliorée. Ces tests des six surfactants dans l’eau et dans l’alcool ont 

donc permis de les exclure des analyses plus détaillées. 

Finalement, deux autres surfactants, le Polyvinylpyrrolidone (PVP) et le Solsperse 39 000, 

ont été utilisés avec de l’isopropanol comme solvant. Dans le cas du Solsperse 39 000, le solvant 

garde une teinte foncée pour quelques heures, ce qui veut dire que des nanoparticules restent en 

suspension pendant ce temps. Cependant, elles finissent toutes par s’agglomérer au fond après 24 

heures. Il est à noter toutefois qu’un dépôt de particules est observé après seulement quelques 

minutes. Pour ce qui est du PVP, un dépôt est également observé mais seulement après quelques 

heures. Toutefois, une grande quantité de nanoparticules reste en suspension dans le solvant pour 

une durée minimale de plusieurs mois. Cette conclusion est tirée du fait que la solution est très 

opaque pour toute cette période de temps. 

Afin de comparer la qualité de la suspension pour les deux meilleurs surfactants, des 

mesures d’absorbance optique ont été faites sur différents échantillons constitués de la même 

quantité de nanoparticules et de différentes concentrations de surfactant. L’absorbance des 

différentes solutions a été mesurée à l’aide d’un spectromètre à des intervalles de temps réguliers. 

L’absorbance des solutions sans nanoparticules a été soustraite aux mesures afin de présenter 

seulement la contribution des nanoparticules dans ces analyses. De cette façon, une diminution de 

l’absorbance dans le temps peut être interprétée par une diminution des nanoparticules en 

suspension dans l’éprouvette.  
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Aucun pic particulier n’était visible sur les spectres d’absorbance entre 9000 et 25 000 

cm
-1

. La valeur de l’absorbance a donc été comparée à une énergie arbitraire de 16 000 cm
-1

, soit 

une longueur d’onde de 625 nm (dans le rouge), pour chacune des courbes acquises. Les courbes 

d’absorbance normalisée en fonction du temps pour les différentes solutions sont présentées à la 

figure 4-6. La quantité de surfactant ajoutée à approximativement 40 mg de nanoparticules est 

indiquée dans la légende de la figure. 

 

 

Figure 4-6 : Absorbance, à 16 000 cm
-1

, normalisée en fonction du temps pour 

 différentes solutions de nanoparticules 

 

Le graphique montre très clairement que le surfactant PVP offre une bien meilleure 

stabilité des nanoparticules que le Solsperse comme il a été remarqué visuellement. Il est 

également possible de constater que les nanoparticules dans l’isopropanol seulement (sans 

surfactant) restent plus longtemps en suspension que ce qui a été observé auparavant. Le temps 

de mesure a d’ailleurs été basé sur les précédentes observations ce qui explique la courte courbe 

dans le graphique. Cette augmentation du temps de suspension des nanoparticules est due au fait 

que pour pouvoir faire les mesures d’absorbance, il a fallu diluer les différentes solutions 

plusieurs fois. Il y avait donc moins de nanoparticules pour le volume d’isopropanol ce qui leur 
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permettait de bouger beaucoup plus longtemps avant de s’agglomérer entre elles et retomber au 

fond. En fait, en prenant seulement une très petite quantité de nanoparticules dans un grand 

volume d’isopropanol, il aurait été possible d’avoir une bonne suspension sur une période temps 

relativement longue. Cependant, cela n’était pas le but du projet. Il fallait plutôt avoir une grande 

concentration de nanoparticules en suspension afin que le procédé de remplissage des TSV soit 

rapide. 

L’ajout d’un surfactant permet donc d’améliorer la stabilité des nanoparticules. Des 

mesures en TGA, présentées à la figure 4-7, ont été effectuées sur les deux meilleurs surfactants 

afin de déterminer leur dégradation en fonction de la température et ainsi déterminer la pureté du 

matériau une fois que le recuit dans les vias aura été effectué. La figure 4-7 montre la perte de 

masse d’un échantillon des surfactants Solsperse 39 000 et PVP sans solvant pendant un cycle 

thermique. Le premier surfactant commence à être éliminé à un peu plus de 200 ºC et continue à 

disparaître si la température est maintenue au-dessus de cette valeur. Ce surfactant pourrait donc 

être en grande partie (< 70%) éliminé dans un procédé pour lequel la température atteint 300 ºC.  

 

 

Figure 4-7 : Analyse TGA pour la dégradation des surfactants seulement en fonction de la 

 température à une vitesse de 10ºC/min 
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En ce qui concerne le deuxième surfactant, le PVP, l’évaporation débute légèrement en 

dessous de 400 ºC. Le polymère resterait donc entièrement présent dans un procédé n’excédant 

pas 300 ºC. Aussi, le graphique montre qu’à 500°C le PVP n’a pas encore été complètement 

éliminé. En ne considérant pas la masse perdue au début de la chauffe, qui n’est que de 

l’absorption d’humidité de la part du surfactant, il reste approximativement 15% de la masse du 

PVP à 500°C. Si le PVP est utilisé pour la suspension des nanoparticules, celui-ci restera dans les 

TSV une fois le recuit fait pour le procédé via-last envisagé. 

Des mesures de DSC standard, présentées à la figure 4-8, ont été effectuées sur un 

échantillon de nanoparticules avec le surfactant PVP afin de voir si le surfactant avait un effet sur 

la fonte de l’eutectique. Premièrement, il y a la présence d’un grand pic endothermique au début 

de la mesure qui est lié à la désorption d’eau que le surfactant a absorbé dans l’air. Aussi, une 

transition vitreuse apparaît entre 160 et 180 ºC, celle du PVP
6
. 

 

 

Figure 4-8 : Analyse DSC d’un échantillon de 2,06 mg de nanoparticules avec surfactant PVP  

à une vitesse de 10ºC/min 

                                                 

6
 http://en.wikipedia.org/wiki/Polyvinylpyrrolidone, consultée en 2012 
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Ensuite, la courbe associée à la chauffe présente un petit pic à 284,17 ºC, qui est 

vraisemblablement lié à la fonte de l’alliage de composition eutectique, dont la valeur de 

l’enthalpie (0,2867 J/g) est très faible comparativement à ce qui a pu être observé lors des 

mesures DSC des nanoparticules sans surfactant (1,991 J/g) à la figure 4-4. Cependant, les 

valeurs d’enthalpies sont normalisées par la masse de l’échantillon. Or, en considérant que le 

ratio des masses de PVP/nanoparticules est de 6,25 pour cet échantillon, les enthalpies des deux 

mesures sont très semblables. Cela veut donc dire que le surfactant n’a pas d’effets sur la fonte 

des nanoparticules.  

L’ajout d’un surfactant représente la meilleure technique de suspension pour les 

nanoparticules d’or-étain. Elle est plus efficace que de charger les particules ou de fonctionnaliser 

leur surface. Un surfactant s’est avéré plus prometteur que les autres, soit le 

Polyvinylpyrrolidone, qui est souvent utilisé dans la littérature pour la suspension de 

nanoparticules. Il n’empêche pas la fonte des nanoparticules et semble permettre que l’alliage 

puisse former un bon contact électrique une fois un recuit fait (voir section 5.2). Finalement, le 

PVP est en mesure de maintenir en suspension une quantité volumique de nanoparticules de plus 

de 10% dans de l’isopropanol. Cela a été démontré par un autre étudiant du projet, Paul Blondé, 

dont les résultats seront présentés dans son mémoire de maîtrise. Il a également montré que la 

quantité de surfactant pouvait être réduite en effectuant un lavage des nanoparticules avant de les 

remettre dans le solvant. 
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4.3 Fonte des nanoparticules 

L’utilisation de nanoparticules ayant la composition moyenne de l’eutectique Au80-Sn20 

dont le point de fusion est de 280°C pour un matériau massique permet de croire a priori qu’un 

recuit à une température légèrement supérieure à cette valeur mènera à la fonte complète des 

particules et à la formation de TSV de qualité. Or, il sera montré dans les pages qui suivent que la 

fonte de nanoparticules d’alliages est beaucoup plus complexe que ce qui avait été envisagé. En 

effet, les résultats montrent clairement que la majorité des particules reste essentiellement intactes 

après des recuits à 450°C ou même 600°C. Tel que discuté au chapitre 5, ces résultats seront 

interprétés sur la base que les nanoparticules sont suffisamment petites pour ne pas correspondre 

à un mélange eutectique mais plutôt à des phases distinctes. 

Les résultats des analyses sur la fonte des nanoparticules Au-Sn sont présentés dans cette 

section. Ces données pourront être comparées à celles présentées à la section 4.4 pour la fonte de 

microparticules de même composition moyenne. Une analyse approfondie est par la suite 

présentée au chapitre 5. 

La figure 4-9 illustre l’envergure du défi auquel fait face ce projet. Malgré le fait que les 

mesures DSC présentées à la section 4.1 montrent clairement la présence d’un changement de 

phase au voisinage de la température prévue de 280°C, les mesures de microscopie électronique à 

balayage de la figure 4-9 révèlent qu’un recuit de 5 minutes à 310°C dans l’air a peu d’impact sur 

les nanoparticules déposées dans une structure en silicium. 

 

  

Figure 4-9 : Images MEB de nanoparticules d'alliage or-étain avant recuit (gauche) et après un recuit à 

310 °C pendant 5 minutes à l’air libre 
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En effet, le matériau a le même aspect sur les deux images ce qui permet de dire qu’il n’y 

a pas eu de fonte globale de la majorité des nanoparticules. Pour expliquer cela, des analyses 

DRX sont d’abord présentées afin de montrer les phases présentes dans le matériau lors d’un 

traitement thermique. Cela est suivi d’analyses DSC visant à quantifier la proportion des 

différentes phases. Finalement, les résultats de recuits sous atmosphère réductrice ainsi qu’à des 

températures beaucoup plus élevées que la température de fusion théorique de l’eutectique sont 

présentés. 

 

4.3.1 Analyse par diffraction des rayons X 

Des analyses par diffraction des rayons X au synchrotron ont été réalisées sur deux 

échantillons. Premièrement, les nanoparticules Au-Sn, déposées sur un substrat de silicium, ont 

été chauffées à partir de 100 ºC jusqu’à 450 ºC suivant une rampe de 1 ºC·s
-1

. Après 

refroidissement, l’échantillon a été recuit à nouveau selon la même procédure afin d’identifier les 

phénomènes non réversibles. Les figures 4-10 et 4-11 montrent les courbes de diffraction des 

premier et deuxième recuits couvrant les plages d’angle de 15 à 29°.  

Lors de la première montée en température, trois pics de diffraction, à des angles 2θ de 

22,2, 25,5 et 28,3°, sont présents dans la plage d’angles observée. Ils correspondent 

respectivement aux pics AuSn2 (111), AuSn4 (111) et AuSn (100). Ce résultat concorde avec ce 

qui a été observé sur le cliché de diffraction de la figure 4-5 à savoir la présence de phases riches 

en étain en plus des phases de l’eutectique soit AuSn et Au5Sn.  

Lors de la deuxième montée en température, seul le pic de la phase AuSn est présent. La 

disparition des phases riches en étain pourrait être causée par de la diffusion de l’or dans ces 

phases sachant qu’il y a un surplus d’or dans le matériau. Il est à noter également que le pic de la 

figure 4-11 est mieux défini et qu’il disparaît majoritairement à une température inférieure à celle 

du premier recuit. En fait, le pic disparaît à la température de fusion de l’eutectique. Cela laisse 

donc croire que la phase AuSn détectée ici est majoritairement liée à la composition eutectique de 

l’alliage. Comme il a été mentionné à la section 2.1, la phase AuSn compose cet eutectique à 

34% massique. Également, le pic est à la limite de la plage d’angles couverte par le détecteur, ce 

qui peut expliquer qu’il n’est pas bien défini après 280 ºC dans le cas où le matériau n’a pas 

totalement fondu. 
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Figure 4-10 : Cliché de diffraction sur le premier échantillon lors de la première rampe de  

température allant de 100 à 450ºC à une vitesse de 1ºC/s 

 

Figure 4-11 : Cliché de diffraction sur le premier échantillon lors de la deuxième rampe de  

température allant de 100 à 450ºC à une vitesse de 1ºC/s 

 

Des analyses similaires ont été réalisées sur un deuxième échantillon de la même poudre 

de nanoparticules. Cette fois-ci, une seule rampe de 100 à 600°C a été effectuée à 3°C·s
-1

. La 

plage de valeur 2 couverte lors de cette mesure, 40 à 54°, a été choisie afin de pouvoir observer 

les signaux provenant des phases Au5Sn, AuSn et Au. Le cliché de la figure 4-12 montre la 
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présence de quatre pics de diffraction au début de l’expérience. Le premier, un angle 2θ = 42,1°, 

correspond au pic Au5Sn (110). Ce pic devient plus étroit à 425°C et disparaît aux alentours de 

600°C. Le deuxième pic se situe à 44,7° et peut correspondre à Au5Sn (006) et Au (111). Il 

devient lui aussi plus étroit à 425°C, mais s’élargit de nouveau à partir d’environ 525°C. Le 

troisième pic, à 48,0°, peut quant-à-lui correspondre à Au5Sn (113) et/ou AuSn (102). Tout 

comme les deux pics précédents, il devient plus étroit à partir de 425°C. Finalement, le pic 

présent à 52,3° est attribuable à Au (200). Son intensité, très faible au départ, est fortement 

modulée tout au long du recuit. Une baisse de l’intensité est d’abord présente dans la plage 150-

275°C, qui est suivie d’une légère augmentation entre 275-400°C, une nouvelle diminution entre 

400 et 550°C et, finalement, une croissance notable. 

 

Figure 4-12 : Cliché de diffraction du deuxième échantillon chauffé jusqu'à 600°C à  

une vitesse de 3ºC/s 

 

À 280 ºC, soit la température de fusion de l’eutectique, la mesure montre de fortes 

intensités diffractées, indiquant qu’une grande partie du matériau est encore cristallin à cette 

température et donc qu’il n’a pas fondu. Ceci est vrai à des températures au moins égales à 600°C 

(la température maximale atteinte lors des mesures de diffraction au synchrotron). Ce résultat 

suggère (1) que le matériau n’a pas la composition eutectique désirée ou (2) que le mécanisme de 
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fonte des nanoparticules de l’alliage Au-Sn de composition eutectique diffère de ce qui est 

observé dans les matériaux massifs. 

Aussi, il est bon de remarquer qu’entre 275°C et un peu plus de 400°C, le cliché de 

diffraction de la figure 4-12 montre une grande tache bleue pâle sur presque toute la plage 

d’angles analysée. La même observation peut être faite à plus haute température, mais sur section 

plus restreinte du cliché. Cela est caractéristique de la diffraction d’une phase amorphe dans le 

matériau. En se référant au diagramme d’équilibre de la figure 4-13, la première phase amorphe 

peut être associée à un mélange des phases Au5Sn+Liquide (B) et AuSn+Liquide (C). La 

deuxième correspond à la phase Au5Sn+Liquide (B) jusqu’à approximativement 530 ºC et à la 

phase Au+Liquide (A) par la suite. La superposition des pics de diffraction avec les parties 

amorphes indique qu’il n’y a qu’une portion du matériau qui devient liquide. Toutes ces 

observations portent à croire que la composition des nanoparticules n’est pas uniforme. 

 

 

Figure 4-13 : Diagramme d'équilibre de l'alliage Au-Sn 
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Une mesure de DRX en laboratoire a été réalisée à la température ambiante sur les deux 

échantillons ayant subi les recuits décrits ci haut. Les courbes présentées à la figure 4-14 font 

clairement ressortir que les pics sont beaucoup plus étroits dans le cas de l’échantillon recuit à 

600°C, une indication de la plus grande taille de grains dans cet échantillon. Aussi, les largeurs 

de pics dans le cas de l’échantillon recuit à 450°C sont très semblables à celles mesurées dans 

l’échantillon non recuit (figure 4-5). 

Quatre autres différences, identifiées A, B, C et D sur la figure 4-14, peuvent être perçues. 

Les pic identifiés par A et B sont seulement présents après le recuit à 600°C et peuvent être 

attribués à SnO2 (110) et SnO2 (101). Le pic identifié par C correspond à Au (111) et a diminué 

considérablement d’intensité après le recuit à 600°C. Finalement, le pic D qui émerge après un 

recuit à 600°C peut être associé à AuSn (201) ou SnO2 (211). 

 

 

Figure 4-14 : Courbes DRX de l'échantillon recuit 2 fois à 450°C et celui recuit à 600°C  

prisent avec l’équipement de laboratoire (source de Cu à 50kV et 20mA) 

 

Considérant que les mesures XPS indiquent la présence d’oxyde d’étain dans les particules 

non recuites, il semble raisonnable de supposer que cet oxyde est initialement dans une forme 
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amorphe et cristallise lors du recuit. Comme le démontre Senthilkumar dans son article [24], les 

pics de diffraction deviennent bien définis avec un recuit à une température minimale de 500 °C.  

La disparition du pic d’or indique qu’il n’y a plus la présence de la phase Au uniquement 

dans l’échantillon. L’or qui ne formait pas de composé avec l’étain initialement, s’est lié à l’étain 

avec un recuit à 600 ºC et forme maintenant une ou plusieurs phases (possiblement AuSn et/ou 

Au5Sn).  

 

4.3.2 Analyses DSC 

Les résultats de diffraction des rayons X présentés ci haut indiquent clairement que les 

phases Au, AuSn, AuSn2, AuSn4 et Au5Sn sont présentes dans les nanoparticules fournies par 

SDC Materials. Des analyses DSC ont été effectuées dans le but de quantifier leurs proportions. 

Le résultat d’une première analyse DSC, présenté à la figure 4-4, démontre clairement qu’il y a 

un changement de phase aux alentours de 280 ºC. Il y a donc la présence des phases AuSn et 

Au5Sn puisque celles-ci constituent la composition l’eutectique. Certains pics observés lors du 

premier cycle de température pourraient toutefois être des artéfacts lié au matériau qui se colle et 

se décolle des parois de la capsule d’aluminium. De plus, la ligne de base n’est pas très bien 

définie ce qui rend l’interprétation des résultats plus difficile. Des mesures plus détaillées ont 

donc été refaites en mode DSC modulée afin de séparer les effets réversibles de ceux non-

réversibles. Plusieurs cycles de température ont été réalisés afin de visualiser la réaction du 

matériau à ces cycles thermiques. Trois montées en température jusqu’à 400 °C, chacune suivie 

d’un refroidissement jusqu’à 50 °C, ont été effectuées sur le même échantillon de 12,5mg de 

nanoparticules lors de cette prise de mesures. La figure 4-15 présente les courbes pour le premier 

cycle chauffage-refroidissement. 
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Figure 4-15 : Premier cycle de l'analyse DSC modulée sur l'alliage AuSn avec une oscillation de 0,95ºC  

sur une période de 40s à une vitesse de 9ºC/min 

 

Tableau 4.3 : Pics de transition de phase de la courbe  

réversible - premier cycle de température 

# 
Température 

départ (ºC) 

Température 

centrale (ºC) 

Enthalpie 

(J/g) 

1 209 214 0.1380 

2 249 255 0.1498 

3 278 284 1.333 

4 308 314 0.7088 

 

La courbe bleue correspondant aux phénomènes réversibles révèle la présence de 4 pics 

endothermiques associés à 4 changements de phases solide à liquide. Le pic débutant à 278 °C, 

avec une enthalpie de 1,333 J/g, peut facilement être associé au changement de phase de 

l’eutectique 20% massique d’étain dans l’or. En fait, si le matériau analysé était seulement cet 

eutectique, seul ce pic serait présent dans ces mesures. La présence de pics additionnels est donc 



61 

 

en accord avec les résultats DRX qui indiquent que les nanoparticules ne sont pas composées 

uniquement de l’alliage AuSn eutectique.  

Les trois autres pics peuvent vraisemblablement être associés à d’autres points du 

diagramme d’équilibre de l’alliage AuSn. En comparant les températures auxquelles ces pics sont 

observés avec les données présentées au tableau 2.1, il y aurait la présence des phases ε (AuSn2) 

et η (AuSn4) dans les nanoparticules tel qu’observé sur les clichés de diffraction. Il est à noter 

qu’il pourrait également y avoir des composés plus riches en or (entre 0% et 20% d’étain), qui 

ont une température de fusion plus élevée selon le diagramme de phases (figure 2-1), mais 

l’appareil DSC utilisé ne permet pas d’aller au-delà de 400 °C. Cela pourrait expliquer la 

présence des pics de diffraction observés précédemment.  

Aussi, les mesures lors du refroidissement indiquent que le changement de la phase 

liquide à la phase solide s’effectue en deux étapes puisqu’il y a la présence de deux pics distincts 

sur la courbe des phénomènes réversibles. Cela est possiblement lié au fait que l’eutectique est 

composé de deux phases, soit Au5Sn et AuSn, comme le montre le diagramme de phases de la 

figure 2-1. Le tout se fait sur un intervalle d’environ 40 ºC. 

Lors du deuxième cycle (figure 4-16), les deux premiers pics n’apparaissent plus alors que 

le pic principal augmente en intensité comme en témoigne la valeur de l’enthalpie qui est 

maintenant de 2,140 J/g. Le quatrième pic est toujours présent, mais beaucoup plus petit avec une 

enthalpie de 0,0706 J/g. En comparant les résultats obtenus pour les deux cycles, il est possible 

de constater que l’augmentation du pic principal est directement reliée à la disparition des deux 

premiers pics et la diminution du quatrième car la somme des enthalpies de fusion est 

pratiquement la même pour les deux cycles. Cela suggère que, lors de la première rampe de 

température, la proportion d’or augmenterait dans les composés initialement riches en étain pour 

former l’alliage eutectique. Il est aussi à noter que le pic endothermique de la courbe des 

phénomènes non-réversibles ainsi que la recristallisation en deux étapes sont toujours présents 

lors du deuxième cycle. Les mesures lors d’un troisième donnent des résultats en tous points 

semblables à ceux pour le deuxième cycle. 
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Figure 4-16 : Deuxième cycle de l'analyse DSC modulée sur l'alliage AuSn avec une oscillation de 0,95ºC  

sur une période de 40s à une vitesse de 9ºC/min 

 

Compte tenu des résultats mentionnés ci-haut, il a été tenté de mesurer les phénomènes 

ayant lieu à des températures supérieures à 400°C. Pour ce faire, deux cycles jusqu’à 400°C ont, 

dans un premier temps, été effectué à l’aide de l’appareil DSC pour des nanoparticules déposées 

dans une capsule d’alumine. Un traitement thermique devait ensuite être effectué à 450°C dans le 

four décrit à la section 3.5, le tout suivi d’une nouvelle mesure DSC afin de déterminer 

l’enthalpie de fusion. Finalement, la même procédure aurait été répétée pour des températures de 

recuit de 550 et de 1100°C. Cette dernière température est légèrement supérieure au point de 

fusion de l’or (1065°C), la température de transition la plus élevée du diagramme d’équilibre Au-

Sn. 

Malheureusement, cette expérience n’a pas donné les résultats escomptés car les capsules 

d’alumines étaient très poreuses et que les nanoparticules restaient collées sur les parois. 

L’appareil ne pouvait pas faire une bonne lecture puisque son détecteur se trouve sous la capsule 

ce qui fait en sorte que tout le matériau qui se trouvait sur les parois ne contribuait pas à la 

mesure.  
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4.3.3 Recuits sous atmosphère réductrice 

Il a été démontré que les nanoparticules ne fondent pas à la température de fusion de 

l’eutectique lorsque le recuit a lieu dans un milieu non réactif. Afin de clarifier si ce 

comportement est attribuable à la présence d’oxyde à la surface des nanoparticules, des recuits 

dans un milieu réducteur ont été effectués.  

Tout d’abord, un recuit dans une atmosphère contenant 5% d’hydrogène et 95% d’azote a 

été effectué en élevant la température à une vitesse de 20 °C·min
-1

 jusqu’à 300 °C soit légèrement 

au-dessus de la température de fusion de l’eutectique. L’échantillon a été maintenu à cette 

température pendant 5 minutes et refroidi à la même vitesse. Les images de MEB présentées à la 

figure 4-17 montrent un matériau très poreux qui n’est pas différent des nanoparticules n’ayant 

pas été chauffées (voir figure 4-9). Les nanoparticules sont en contact les unes avec les autres 

mais ne semblent pas avoir coalescées. Elles forment plutôt de longues chaînes ce qui donne une 

apparence fibreuse à l’alliage, tel que ce qui pouvait déjà être observé avant le recuit.  

 

  

Figure 4-17 : Image MEB des nanoparticules après un recuit sous atmosphère H2/N2  

pendant 5 minutes à 300 °C 

 

Par la suite, un recuit a été réalisé en utilisant un profil de température typique des 

procédés de soudure sans flux (figure 4-18). Dans ce type de recuit, l’hydrogène a pour rôle 

d’enlever l’oxyde lors de la première étape de recuit réalisée à une température inférieure à la 

température de fusion du matériau de soudure. 
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Figure 4-18 : Cycle de chauffage lors du recuit sous atmosphère H2/N2 

 

Dans son article [5], Kuhmann fait mention que l’oxyde SnO2 peut être éliminé en moins 

de 2 minutes dans une atmosphère H2/N2 à une température de 250 °C. Puisque les analyses XPS 

ont révélé qu’il y avait la présence de ce composé dans les nanoparticules, ce procédé a été testé. 

Aussi, le deuxième plateau a été fixé à 350 °C pour une durée de 10 minutes afin de bien 

dépasser la température de fusion de l’eutectique. Une image MEB de l’échantillon après le cycle 

de chauffage est présentée à la figure 4-19. L’aspect du matériau est légèrement différent de ce 

qui a été obtenu lors des autres recuits puisque la taille des particules est plus grande et le 

matériau semble moins fibreux que précédemment. Cela pourrait laisser croire qu’il y a eu plus 

de coalescence entre les nanoparticules lors de ce recuit. Il est cependant clair que l’ensemble des 

nanoparticules n’a pas fondu. 
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Figure 4-19 : Image MEB des nanoparticules après le cycle de chauffage de la figure 4-18  

dans une atmosphère H2/N2 

 

Les images MEB de la figure 4-20 proviennent d’un échantillon qui a subi à deux reprises 

le traitement thermique décrit précédemment. Malgré le fait que l’image à plus fort grossissement 

indique le frittage des nanoparticules, celles-ci demeurent petites et l’échantillon conserve son 

état fibreux. 

 

  

Figure 4-20 : Image MEB des nanoparticules après 2 cycles de chauffage consécutifs de la figure 4-18 

dans une atmosphère H2/N2 
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Afin d’assurer une réduction la plus complète possible de l’oxyde et pour maximiser la 

fonte des nanoparticules, l’effet des durées et des températures des deux plateaux a également été 

étudié. La figure 4-21 montre que l’augmentation de la température du 2
e
 plateau à 450°C, en 

gardant les autres paramètres fixes, n’a pas impact significatif sur l’apparence des nanoparticules. 

 

 

Figure 4-21 : Image MEB des nanoparticules après 1 cycle de chauffage de la figure 4-18 à une  

température maximale de 450 °C dans une atmosphère H2/N2 

 

Lors des précédents recuits dans une atmosphère H2/N2, le temps qui était laissé pour la 

réduction de l’oxyde était de 5 minutes, ce qui est suffisant selon la littérature. Or, le matériau est 

ici sous forme de nanoparticules et non pas d’une couche mince. La réaction doit se faire tout 

autour des nanoparticules qui sont empilées les unes sur les autres ce qui pourrait augmenter le 

temps requis pour la réduction de l’oxyde. Afin de vérifier cette théorie, deux autres recuits ont 

été faits dans une atmosphère H2/N2. Le cycle de chauffage est resté de la même forme que celui 

présenté à la figure 4-18 à l’exception que la durée du premier plateau, à une température de 

250°C, a été augmentée à 2 heures et 48 heures. La vitesse d’augmentation de la température a 

également été augmentée à 60 °C/min. Les résultats obtenus sont présentés aux figures 4-22 et 

4-23. 
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Figure 4-22 : Recuit 2 heures à 250 ºC et 10 minutes 350 ºC dans une atmosphère H2/N2 

 

  

 

Figure 4-23 : Recuit 48 heures à 250 ºC et 10 minutes 350 ºC dans une atmosphère H2/N2 
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Les deux derniers recuits ne semblent pas avoir eu d’impacts majeurs sur la morphologie 

de l’alliage par rapport aux autres tentatives précédentes. Cependant, en regardant à plus fort 

grossissement (figure 4-23), les nanoparticules sont bien soudées les unes aux autres. 

L’apparence des particules suggère qu’il y ait eu du frittage sous l’effet d’un recuit prolongé. Il 

n’y a donc pas de signes flagrants que l’atmosphère réductrice puisse aider à faire fondre les 

nanoparticules ou à les faire coalescer. Le problème semble davantage provenir de la composition 

même des nanoparticules qui ne sont pas formées uniquement des phases Au5Sn et AuSn, tel 

qu’il a été montré par les analyses de DRX et DSC.  

 

4.3.4 Recuits à haute température 

Des recuits à plus haute température ont été réalisés dans le but de faire fondre les 

nanoparticules. Les images MEB provenant d’un échantillon recuit à 600°C pendant 20 minutes 

sous atmosphère d’argon sont présentées à la figure 4-24. 

 

  

Figure 4-24 : Images MEB du matériau après un recuit de 20 minutes à 600 ºC sous atmosphère d’argon 

 

L’apparence du matériau est bien différente de celles des autres recuits. Il y a maintenant 

la présence de particules faisant quelques micromètres de diamètre et la majorité des particules 

font maintenant plus de 100 nanomètres de diamètre, ce qui est bien plus grand que les 

nanoparticules de départ. Les particules ont également de plus petites particules collées sur leur 
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surface ce qui est un signe de coalescence dans le matériau. Les plus petites particules vont se 

coller aux plus grosses et fusionner avec celles-ci pour former de plus grosses particules. 

Cependant, le matériau ne forme toujours pas une couche uniforme après ce recuit à 600 ºC. Les 

images concordent tout de même avec ce qui a été préalablement observé en XRD puisque les 

pics de diffraction étaient plus étroits après un recuit à cette température. La taille des grains est 

plus grande due à la coalescence dans le matériau.  

Finalement, un recuit à 1100 ºC sous atmosphère d’argon a été effectué, ce qui correspond 

à une température supérieure à celle de fusion de l’or. La température a été élevée à une vitesse 

de 3ºC·s
-1

 et a été maintenue pendant 30 secondes. Le refroidissement de l’échantillon a par la 

suite été réalisé le plus rapidement possible, car certaines des pièces du four sont sensibles à des 

températures aussi élevées. Les images MEB de l’échantillon recuit, présentées à la figure 4-25, 

montrent que la surface de silicium est recouverte de matériau qui a l’apparence d’une couche de 

fibres sur laquelle il y a la présence de particules de différentes grosseurs, certaines allant jusqu’à 

plusieurs micromètres. La surface de ces particules comporte également une multitude de petites 

fibres, ce qui est bien différent de l’aspect des particules qui ont été obtenues avec un recuit à 

600ºC.  

Le recuit à haute température a formé des billes d’alliage plutôt qu’une couche mince 

d’alliage Au-Sn. Cela peut s’expliquer par le fait que l’alliage ne mouille pas la surface. Les 

tensions de surface forcent le matériau à former des billes sur le substrat de silicium.  

Pour ce qui est des fibres, elles s’apparentent à des nanofils formés par une technique 

solide-liquide-solide (SLS) [25]. Cette méthode de croissance consiste à faire le dépôt d’un métal 

sur une surface de silicium et à chauffer à une température suffisamment élevée pour qu’il y ait la 

formation de gouttelettes d’alliage métal-silicium. Par la suite, des atomes de silicium vont 

diffuser du substrat aux gouttelettes jusqu’à ce qu’il y ait saturation en silicium dans le matériau. 

Le silicium va alors précipiter à la surface et former des nanofils. J. H. Lee and R. E. Geer [25] 

ont fait la croissance de nanofils à l’aide de cette technique en déposant de l’or sur une surface de 

silicium et en effectuant par la suite un recuit à 1000 ºC. Les résultats qu’ils ont obtenus sont 

présentés à la figure 4-26 et correspondent à ce qui a été réalisé avec l’alliage or-étain.  
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Figure 4-25 : Images MEB des nanoparticules d'alliage eutectique Au-Sn après un recuit à 1100 ºC  

dans une atmosphère d’argon 

 

 

Figure 4-26 : Nanofils de silicium fabriqués SLS [25] 
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4.4 Fonte des microparticules 

Afin d’avoir un comparatif sur les différents résultats obtenus précédemment, des mesures 

ont été faites sur des particules de plus grande dimension. La taille de ces dernières est en 

moyenne de 45 micromètres de diamètre et elles ont été fabriquées par AIM Solder à l’aide d’une 

méthode de disque tournant (voir section 3.7.2). 

Une analyse DSC a été effectuée en premier lieu afin de vérifier le point de fusion et de 

déterminer l’enthalpie pour ce changement de phase. Puisque ces particules sont beaucoup plus 

grosses, les valeurs obtenues seront considérées comme étant celles du matériau massif. En 

comparant l’enthalpie avec celle obtenue pour les nanoparticules, il sera alors possible de 

déterminer la proportion du matériau sous forme de nanoparticules ne possédant pas la 

composition de l’eutectique, c’est-à-dire 20% massique étain et 80% massique or.  

La mesure DSC a été faite en modulée afin d’obtenir l’enthalpie du pic de fusion de la 

courbe réversible. Cette valeur est plus facilement comparable avec le résultat obtenu pour les 

nanoparticules puisqu’il y avait présence de plusieurs phénomènes non-réversibles lors des 

mesures. Les mesures ont été effectuées avec une oscillation de 0,159 ºC d’amplitude et une 

période de 60 seconde à une vitesse moyenne de 1 ºC/min. La température maximale atteinte est 

de 350 ºC et elle a été maintenue pendant 30 minutes entre chaque montée et descente de 

température. Les figures 4-27 et 4-28 montrent respectivement le premier et le deuxième cycle de 

la mesure DSC effectuée sur un échantillon de 10,96 grammes de microparticules. Elles 

permettent d’observer des pics de changement de phase de l’état solide à l’état liquide à une 

température de 280 °C, en accord avec la température de fusion de l’eutectique à 20% massique 

d’étain indiqué sur le diagramme d’équilibre. Aucun autre pic endothermique n’est présent pour 

ces mesures de DSC modulée.  
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Figure 4-27 : Analyse DSC des particules microscopiques d'alliage or-étain 1
er

 cycle 

 

Figure 4-28 : Analyse MDSC des particules microscopiques d'alliage or-étain 2
e
 cycle 
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Lors du refroidissement, les résultats montrent que le matériau passe de la phase liquide à 

la phase solide en une seule étape contrairement à ce qui a été observé pour les nanoparticules. Le 

pic exothermique débute à un peu plus de 278 ºC et se termine à 275 ºC. Cependant, la valeur 

réversible de l’enthalpie de fusion n’est pas identique à celle de l’enthalpie de solidification, 

contrairement à ce qui est attendu, et ce sur les courbes totales et réversibles des deux figures. 

Cette différence peut être expliquée par le fait que le matériau n’a pas une composition uniforme 

au départ et que de la diffusion a eu lieu à plus haute température dans l’échantillon pour 

l’uniformiser à la composition eutectique. Cependant, une grande différence est perçue entre la 

solidification du premier cycle et la fusion du deuxième cycle, ce qui ne devrait pas être le cas 

théoriquement.  

Afin de vérifier la reproductibilité de ces résultats, une nouvelle mesure a été effectuée sur 

un autre échantillon des mêmes microparticules. Le tout a été fait avec les mêmes paramètres 

expérimentaux pour une meilleure comparaison sur un échantillon de 10,1 grammes et les 

résultats sont présentés aux figures 4-29, 4-30 et 4-31.  

 

Figure 4-29 : Deuxième analyse MDSC des particules microscopiques d'alliage or-étain 1
er

 cycle 
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Figure 4-30 : Deuxième analyse MDSC des particules microscopiques d'alliage or-étain 2
e
 cycle 

 

Figure 4-31 : Deuxième analyse MDSC des particules microscopiques d'alliage or-étain 3
e
 chauffe 
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La deuxième analyse donne des résultats très différents de la première malgré qu’elle ait 

été faite avec les mêmes conditions d’opération. Premièrement, le pic de fusion de la courbe 

réversible est plus grand que celui de la courbe totale et augmente au cours des trois cycles. Les 

mesures ne sont donc pas répétables pour la partie réversible, contrairement à ce qui est attendu, 

ce qui ne permet pas tirer des conclusions à partir de ces données. 

Aussi, le pic exothermique majeur de solidification du matériau n’apparaît pas à la même 

température pour les deux premiers cycles. Dans le premier, le pic se trouve à une température de 

276 °C tandis qu’il se trouve à une température de 260 °C lors du deuxième cycle. Cette 

différence de température de solidification n’a pas été perçue lors de la première prise de 

mesures.  

En ce qui concerne les courbes du flux de chaleur total, elles présentent une enthalpie de 

fusion de l’eutectique semblable pour les deux analyses et pour tous les essais. La moyenne des 

cinq est de 35,26 J/g ce qui est approximativement 11,5 fois plus élevé que ce qui a été mesuré 

lors du deuxième cycle (3,054 J/g) sur les nanoparticules provenant de SDC (la comparaison ne 

peut pas être faite avec le premier cycle, car la ligne de base n’est pas droite). Cela montre donc 

qu’une grande proportion des nanoparticules, c’est-à-dire plus de 90%, n’a pas la composition de 

l’eutectique désiré. La compagnie AIM Solders affirme avoir déjà fait dans le passé des mesures 

DSC sur ce type de particules et avoir obtenu une valeur de 36,29 J/g pour l’enthalpie. Tan et al. 

[2] obtiennent pour leur part une enthalpie de 28,77 J/g et ce pour la même vitesse 

d’augmentation de la température.  

La raison pour laquelle la séparation des phénomènes réversibles et non-réversible n’est 

pas bonne est possiblement dû au fait que l’appareil utilisé ne peut pas gérer des flux de chaleur 

trop élevés lors de prises de mesures en modulée. Afin d’éliminer ce problème, il aurait fallu faire 

les mesures avec une plus petite quantité de matériau (1 à 3 grammes). Il aurait également été 

préférable d’utiliser de l’hélium et non de l’azote à l’intérieur de la chambre. Ce gaz offre un 

meilleur transfert thermique et est donc plus adéquat pour une mesure de DSC modulée. C’est 

d’ailleurs ce que recommande la compagnie TA Instruments. 

Par la suite, un recuit a été fait sur ces microparticules dans le four présenté 

précédemment. Dans une atmosphère H2/N2, la température a été élevée à 320 ºC à une vitesse de 

50 ºC/min et a été maintenue pendant 2 minutes. Des images MEB du résultat sont présentées à la 
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figure 4-32 et montrent que des billes de plusieurs centaines de micromètres ont été créées. 

Cependant le matériau n’a pas fusionné entièrement ensemble ce qui peut s’expliquer par le fait 

que ce dernier ne mouille pas très bien la surface de silicium. Les microparticules restent donc 

sous forme sphérique ce qui ne permet pas d’avoir une coalescence complète de la part de toutes 

les particules. Celles-ci sont tout de même bien liées les unes aux autres comme le montre la 

figure 4-32.  

 

  

Figure 4-32 : Images MEB des microparticules après avoir été chauffées à 320 ºC pendant 2 minutes  

dans une atmosphère de H2/N2 

 

Finalement, un autre recuit a été effectué sur ces microparticules, mais cette fois-ci elles 

étaient dans une pâte de soudure provenant de la compagnie AIM Solder. Il y avait donc présence 

de « flux » pour enlever l’oxydation sur les particules et sur la surface de silicium. Le « flux » 

favorise également la formation d’une bille de soudure formée de toutes les microparticules.  

Pour le recuit, une petite quantité de pâte a été déposée sur un morceau de silicium. Le 

tout a été chauffé dans le même four que celui utilisé précédemment selon un cycle de chauffage 

semblable à celui de la figure 4-18. Le premier plateau se situait à une température de 150 ºC 

pour une durée de 20 secondes afin d’activer le flux et le deuxième à une température de 320 ºC 

pour une durée de 2 minutes. Le tout s’est fait sous une atmosphère d’argon. Cela a eu l’effet 

recherché pour une pâte de soudure, c’est-à-dire la formation d’une seule grosse bille d’alliage 

métallique tel que présenté à la figure 4-33. La bille sur cette image a un diamètre approximatif 

de 1,5 mm. 
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Figure 4-33 : Bille formée par la pâte de soudure AuSn 

 

Les nanoparticules fournies par SDC Materials n’ont pas la bonne composition. Elles ont 

un surplus d’or et ne renferment pas uniquement les phases AuSn et Au5Sn. Il a tout de même été 

possible de les dispersée dans de l’isopropanol avec l’aide du surfactant PVP. Cependant, les 

nanoparticules ne fondent pas. Même à une température de 600ºC, ce qui est plus du double du 

point de fusion de l’eutectique, les pics de diffraction sont toujours présents. Cela veut donc dire 

qu’il reste des phases cristallines et que le matériau n’est pas entièrement en phase liquide. Ce 

résultat a également été confirmé par la faible enthalpie de fusion obtenue par les analyses DSC 

ainsi que par l’aspect visuel suite aux différents recuits dans des atmosphères variés. Pour ce qui 

est des microparticules, il a été possible de les faire fusionner à la bonne température avec une 

enthalpie de fusion beaucoup plus près de ce qui est présent dans la littérature. 
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CHAPITRE 5 DISCUSSION 

Les résultats présentés dans le chapitre précédent montrent qu’il est possible d’obtenir une 

suspension de nanoparticules 80Au20Sn dans l’isopropanol avec l’aide d’un surfactant. 

Cependant, aucun des essais de fonte n’a permis d’obtenir un matériau homogène suite à un cycle 

thermique. Dans le présent chapitre, il sera question des défis associés à la préparation d’une 

suspension stable de nanoparticules ainsi que de l’impact de la taille et de la méthode de 

fabrication de celles-ci sur leur fonte. 

 

5.1 Suspension des nanoparticules 

La technique de fabrication des nanoparticules utilisées par SDC Material d’envoyer 80% 

d’or et 20% d’étain sous forme de microparticules dans un plasma. Puisqu’il n’y avait pas 

d’additifs empêchant les particules de se lier les unes aux autres, elles ont formées des agrégats. 

Cela fait en sorte d’augmenter l’effet ce la force gravitationnelle par rapport au mouvement 

Brownien lorsque ces particules sont mises en solution. La préparation d’une suspension des 

nanoparticules ne fut donc pas une tâche simple. Trois techniques ont été étudiées dans le but 

d’obtenir une homogène soient les charger, les fonctionnaliser et utiliser un surfactant.  

Les deux premières techniques n’ont pas permis d’obtenir une solution stable sur un longue 

période de temps. Cela n’est cependant pas surprenant car selon la littérature, le fait de seulement 

charger ou d’utiliser un thiol sans y attacher une chaîne de polymère permet de suspendre que de 

petites nanoparticules, de l’ordre de 10 nm ou moins. Sans compter le fait qu’elles sont 

agglomérées, la taille moyenne des nanoparticules utilisées est approximativement de 30nm et 

certaines atteignent 50 nm. Ces deux avenues de dispersion sont donc à oublier dans le cas 

présent. 

La meilleure méthode pour la suspension des nanoparticules est l’utilisation d’un 

surfactant. C’est d’ailleurs ce qui est généralement utilisé dans la littérature pour ce type et cette 

taille de nanoparticules. Cela permet non seulement d’avoir une bonne stabilité sur une longue 

période de temps mais également une forte concentration de nanoparticules en solution. Le 

surfactant ayant donné les meilleurs résultats au cours du projet, c’est-à-dire une suspension 

stable sur plusieurs mois selon ce qui a été observé visuellement sur les échantillons, est le PVP. 
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Cependant, ce polymère ne pourrait pas être complètement éliminé pour un procédé de 

fabrication dont la température ne dépasse pas 300 °C, comme c’est le cas dans le procédé de 

remplissage des vias envisagé. Le surfactant PVP restant dans les TSV pour un procédé via-last 

va donc affecter la conductivité des vias. Cela a été observé, entre autres, par H. Lee et al. [14] en 

frittant des nanoparticules d’argent enrobées de PVP. Après un recuit de 3 minutes à une 

température de 250ºC, la résistivité obtenue est de 1,6 x 10
-5

 Ω·cm comparativement à 1,51 x 10
-6

 

Ω·cm pour l’argent massif, ce qui représente une augmentation approximative d’un facteur 10. 

Une telle augmentation pour l’alliage eutectique AuSn permettrait tout de même de garder une 

résistivité acceptable pour les TSV.  

 

 

5.2 Fonte de l’alliage 80Au20Sn 

Tout au long du projet, plusieurs tentatives ont été effectuées dans le but de faire fondre les 

nanoparticules d’alliage eutectique 80Au20Sn fabriquées par SDC Materials. Même si cette tâche 

s’annonçait à priori fort simple, aucune des tentatives de fusion des particules n’a permis 

d’obtenir un matériau uniforme.  

Les mesures faites à la section 4.1 montrent premièrement que les nanoparticules n’ont pas 

la composition eutectique désirée. Il y a au moins la présence des phases AuSn2 et AuSn4 qui ne 

font pas partie de l’eutectique. Cela n’est pas surprenant, à fortiori, vu la technique utilisée pour 

fabriquer les nanoparticules. Des microparticules d’or et d’étain, dont les quantités respectives 

correspondent au matériau eutectique, sont envoyées dans un plasma et la solidification rapide 

créer les nanoparticules. Cette technique est donc aléatoire et donnera la composition voulue sur 

la moyenne des particules et non pour chacune d’entre elles. 

Aussi, l’analyse ICP-MS révèle que le rapport atomique Au/Sn est plus élevé dans les 

nanoparticules (2,71) que la valeur théorique de l’eutectique (2,45) selon le diagramme 

d’équilibre (figure 2-1). La température de fusion d’un matériau massif ayant cette composition 

serait d’approximativement 350 ºC, ce qui est bien supérieure aux 280 ºC de l’eutectique. En 

sachant que le matériau utilisé est sous forme de nanoparticules de compositions diverses et qu’il 

y a la présence de phases riches en étain, ce surplus d’or implique donc qu’il y a des composés 
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très riches en or dans le matériau fourni par SDC Materials. Il est alors normal de ne pas avoir pu 

faire fondre toutes les nanoparticules à une température légèrement supérieure à la température de 

fusion de l’eutectique. D’ailleurs, les analyses DRX ont révélées qu’il y a la présence d’or non 

liée à l’étain dont la température de fusion est supérieure à 1000 ºC. 

La mauvaise composition des nanoparticules est un des facteurs qui n’a pas permis de les 

fusionner à la température désirée. La technique de fabrication par plasma chaud ne semble pas 

appropriée pour obtenir des nanoparticules d’une composition aussi précise que celle de 

l’eutectique 80Au20Sn. La synthèse chimique ou la fabrication de nanoparticules de type « core-

shell » pourraient être des méthodes permettant d’avoir un meilleur contrôle sur la composition et 

la taille des particules. 

Les analyses MDSC sur les nanoparticules (figures 4-15 et 4-16) indiquent que les phases 

riches en étain ne sont plus présentes lors du deuxième cycle de température. Cela impliquerait 

qu’il y a eu diffusion d’or dans ces phases pour créer AuSn et/ou Au5Sn. Dans le but d’exploiter 

ce phénomène, un recuit sous atmosphère réductrice a été fait selon le cycle de chauffage de la 

figure 4-18 mais cette fois-ci le deuxième plateau se trouvait à 450 °C. Tous les autres paramètres 

ont été gardés identiques aux recuits précédents sous atmosphère réductrice. Comme il est 

possible de le voir sur le diagramme d’équilibre (figure 2-1), au-dessus de cette température la 

phase AuSn devrait être entièrement liquide ce qui pourrait augmenter la diffusion de l’or dans le 

reste du matériau et ainsi obtenir un matériau plus homogène. Cela aiderait donc à la coalescence 

des nanoparticules entre elles. Cependant, le résultat (figure 4-21) ne fut pas concluant. Le 

matériau a toujours l’apparence des nanoparticules n’ayant pas été chauffées. 

Le fait que les nanoparticules ne fusionnent pas à la bonne température n’est pas dû 

uniquement à leur composition inadéquate, mais plutôt à la taille de celles-ci. En effet, les 

particules semble être trop petites pour que les deux phases de l’eutectique soient présentes dans 

les bonnes proportions, c’est-à-dire 56% Au5Sn et 44% AuSn (voir section 2.1). Dans sa thèse de 

doctorat, Ho Geon Song [26] observe la microstructure des soudures de composition 80Au20Sn 

sur des couches de Cu et de Cu/Ni/Au. Il montre dans ses expériences que la microstructure de 

cet alliage est très grosse et affirme qu’à des dimensions de quelques dixièmes de micromètres, la 

microstructure n’est pas la même que celle du massif.  
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Figure 5-1 : Joint de soudure de composition eutectique 80Au20Sn sur une couche de cuivre 

présentant les phases Au5Sn (clair) et AuSn (sombre) [26] 

 

 

Figure 5-2 : Bille de soudure de composition eutectique 80Au20Sn sur une couche Au/Ni/Cu  

présentant les phases Au5Sn (clair) et AuSn (sombre) [26] 

 

Sur les figures 5-1 et 5-2, les régions claires sont la phase ζ’ (Au5Sn) tandis que les 

sombres sont la phase δ (AuSn). Les nanoparticules fournies par SDC Materials sont beaucoup 

plus petites que les phases présentent sur ces figures. La structure des nanoparticules n’est 

possiblement pas celle de l’eutectique et donc elles ne fondent pas à une température de 280 ºC. 
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X. Meng Chen et al. [27] ont également des résultats qui vont dans le même sens. Dans 

leur cas, ils utilisent l’alliage eutectique de gallium et 25% massique d’indium dont la 

température de fusion est de 15,5 ºC. Ils ont fabriqué des particules de différentes tailles 

dispersées dans du PMMA et ont fait des mesures de DSC sur celles-ci et sur le matériau massif 

(figure 5-3). Le pic de fusion est présent à la bonne température pour le matériau massif. Pour les 

particules, ce pic devient de moins en moins important et fini par ne plus être présent pour une 

taille de 0,52 µm et moins. Il y a également l’apparition de pics à plus basse température que les 

auteurs attribuent à des phases métastables. Cela montre qu’une diminution de la taille des 

particules provoque la disparition du pic de l’eutectique. Il n’est donc pas possible de faire fondre 

des particules à la température de l’eutectique si leur taille est trop petite.  

Il n’est alors pas surprenant que les mesures de MDSC présentées à la section 4.3.2 aient 

donné des enthalpies de fusion beaucoup plus faibles que ce qui est répertorié dans la littérature 

et également plus faibles que les mesures faites sur les microparticules. Le problème de fusion 

des nanoparticules rencontré lors de ce projet de maîtrise semble donc être plus une question de 

taille que de composition liée à la technique de fabrication de celles-ci. 

Aussi, l’eutectique 80Au20Sn est composé de deux phases stœchiométriques. Il ne faut 

donc pas seulement que les nanoparticules aient la bonne quantité d’or et d’étain mais également 

que les deux composés forment les phases Au5Sn et AuSn dans les bonnes proportions. En 

sachant que des particules de plusieurs centaines de nanomètre d’un eutectique simple, tel que 

75Ga25In, n’ont pas la bonne composition selon des analyses DSC, il va de soi que l’obtention 

de nanoparticules 80Au20Sn sera d’autant plus difficile. Leur taille étant encore plus petite, il est 

alors peu probable qu’elles soient constituées des bonnes phases de l’eutectique et ce dans les 

bonnes proportions. 

Tout porte à croire qu’il n’est pas possible de faire fusionner des nanoparticules d’alliage 

eutectique 80Au20Sn. La taille et la méthode de fabrication des particules sont les deux causes 

qui expliquent que le matériau ne fond pas. Pour utiliser ce matériau, la taille des particules 

devrait plutôt faire plusieurs micromètres. Cependant, cela limiterait dimension des vias pouvant 

être remplis.  
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Figure 5-3 : Courbes de chauffe de DSC à 20 ºC min
-1

 de l’eutectique Ga-25In pour (a) le massif et des 

particules dont la taille moyenne est approximativement (b) 0,88 µm, (c) 0,73 µm,  

(d) 0,58 µm, (e) 0,52 µm et (f) 0,43 µm [27] 
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CHAPITRE 6 CONCLUSION 

Les objectifs ce projet de maîtrise étaient de déterminer la meilleure façon de suspendre 

les nanoparticules de composition eutectique 80Au20Sn dans un solvant et d’analyser le 

comportement de ces nanoparticules lors d’un traitement thermique. Cela permettrait d’avoir une 

solution de nanoparticules pouvant être utilisée pour remplissage des trous d’interconnections 

dans un procédé de microfabrication via-last. 

Des nanoparticules d’alliage or-étain, fabriquées par une technique de plasma chaud, ont 

été fournies par la compagnie SDC Materials. Les premières analyses ont permis de déterminer 

que la composition des particules n’était pas celle demandée, c’est-à-dire l’eutectique à 80% 

massique d’or et 20% massique d’étain. La proportion d’or était plus élevée et il y avait des 

phases non désirées telles que AuSn2 et AuSn4. Les nanoparticules ayant un diamètre 

approximatif de quelques nanomètres jusqu’à 50nm étaient également très agglomérées. 

Il a été démontré que la suspension des nanoparticules ne pouvait être possible qu’en 

utilisant un surfactant. La dimension et l’agglomération de ces dernières ne permettaient pas 

d’obtenir une solution homogène seulement en les chargeant ou en fonctionnalisant leur surface. 

Avec le surfactant PVP, la mixture de nanoparticules dans l’isopropanol obtenue s’est avérée 

stable sur une période de temps d’au moins plusieurs mois. La mise en suspension des 

nanoparticules avec un surfactant était l’avenue la moins désirée car cela ajoute un polymère dans 

les vias qu’il n’est pas possible d’éliminer à basse température. Cependant, selon la littérature, 

une résistivité acceptable devrait tout de même être possible lorsque le tout sera fusionné dans les 

vias. 

La fusion des nanoparticules en un matériau homogène n’a pas pu être réalisée. Plusieurs 

options ont été employées telles que l’utilisation d’un gaz réducteur et des cycles thermiques à 

des températures bien supérieures à la température de fusion de l’alliage. Les analyses ICP-MS 

ont permis de voir qu’il y avait plus d’or que prévu dans les particules. En regardant le 

diagramme d’équilibre, une augmentation d’or signifie une augmentation rapide de la 

température de fusion. Les mesures de DRX ont également montrées qu’il y avait toujours des 

phases cristallines à 600ºC. Aussi, les analyses DSC ont révélé que l’enthalpie de fusion des 

nanoparticules était 11,5 fois moins élevée que la mesure faite sur les microparticules. Tout cela 
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permet de dire que les nanoparticules ne sont pas formées de l’alliage eutectique 80Au20Sn tel 

que désiré. 

Le fait que les nanoparticules ne fondent pas peut être expliqué de deux façons. 

Premièrement, la méthode de fabrication par plasma chaud ne permet pas d’obtenir une 

composition uniforme et exacte pour toutes les nanoparticules. D’ailleurs, les analyses DRX ont 

révélé qu’il y avait les phases AuSn2 et AuSn4 qui ne font pas partie de la composition eutectique 

selon le diagramme d’équilibre. Deuxièmement, les particules sont vraisemblablement trop 

petites pour pouvoir être formées des deux phases (AuSn et Au5Sn) dans les bonnes proportions 

de l’eutectique. Cela est également confirmé par des analyses DSC sur d’autres matériaux dans la 

littérature. 

L’idée de remplir des trous d’interconnections à l’aide de nanoparticules ne devrait pas 

être abandonné. Il faut simplement déterminer le bon matériau à utiliser. Par exemple, il serait 

pensable d’utiliser du zinc dont la température de fusion est de 420ºC et d’exploiter le 

phénomène de diminution du point de fusion des nanoparticules (chapitre 2.3). Cela serait 

envisageable dans ce cas-ci puisque le matériau utilisé ne serait pas un alliage. Le procédé de 

fabrication pourrait également être adapté pour un matériau avec une température de fusion plus 

basse tel que l’étain (232ºC). Dans ce cas, il faudrait ajouter une étape de fabrication pour venir 

fermer les vias afin que le tout reste en place lors des étapes subséquentes. Finalement, le frittage 

des nanoparticules serait également une avenue à envisagée. Dans ce cas, il serait possible 

d’utiliser des matériaux ayant une température de fusion plus élevée que les limites imposées par 

un procédé via-last puisque le frittage consiste à lier les particules les unes aux autres à une 

température inférieure à la température de fusion du matériau. 
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ANNEXE 1 – Fiches de diffraction 

Voici les fiches de diffraction des différentes phases analysées tirées de la base de 

données JCPDS. Ces fiches comprennent les angles 2θ associés aux plans cristallins des phases et 

ce pour les deux longueurs des rayons X utilisées lors des prises de mesures.  

 

Tableau A1.5.1 : Extrait de la fiche de diffraction de la phase Au5Sn (#31-0568) 

Intensité d (Å) 
2θ 

(λ = 1,5406 Å) 

2θ 

(λ = 1,797 Å) 
h     k     l 

2 4,2110 21,080 24,640 1     0     1 

1 3,7540 23,682 27,696 0     1     2 

25 2,5461 35,221 41,329 1     1     0 

27 2,3890 37,621 44,184 0     0     6 

100 2,2468 40,100 47,144 1     1     3 

14 1,7422 52,481 62,092 1     1     6 

14 1,4701 63,199 75,350 3     0     0 

16 1,3501 69,577 83,442 1     1     9 

2 1,2729 74,480 89,800 2     2     0 

15 1,2520 75,941 91,722 3     0     6 

11 1,2301 77,542 93,845 2     2     3 

 

Tableau A1.5.2 : Fiche de diffraction de la phase Au (#04-0784) 

Intensité d (Å) 
2θ 

(λ = 1,5406 Å) 

2θ 

(λ = 1,797 Å) 
h     k     l 

100 2,3550 38,185 44,857 1     1     1 

52 2,0390 44,393 52,292 2     0     0 

32 1,4420 64,578 77,085 2     2     0 

36 1,2300 77,549 93,855 3     1     1 

12 1,1774 81,724 99,480 2     2     2 

6 1,0196 98,137 123,582 4     0     0 

23 0,9358 110,802 147,537 3     3     1 

22 0,9120 115,264 160,259 4     2     0 

23 0,8325 135,423 - 4     2     2 
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Tableau A1.5.3 : Extrait de la fiche de diffraction de la phase AuSn (#08-0463) 

Intensité d (Å) 
2θ 

(λ = 1,5406 Å) 

2θ 

(λ = 1,797 Å) 
h     k     l 

50 3,7400 23,772 27,801 1     0     0 

45 3,0900 28,871 33,809 1     0     1 

100 2,2220 40,568 47,703 1    0     2 

65 2,1610 41,765 49,137 1     1     0 

8 1,8700 48,652 57,434 2     0     0 

10 1,7720 51,533 60,936 2     0     1 

4 1,7020 53,819 63,728 1     1     2 

10 1,6520 55,587 65,897 1     0     3 

25 1,5490 59,642 70,908 2     0     2 

10 1,4150 65,965 78,837 2     1     0 

8 1,3705 68,396 81,930 2     1     1 

4 1,3120 71,906 86,445 2     0     3 

6 1,2950 73,000 87,867 1     0     4 

20 1,2592 75,430 91,049 2     1     2 

8 1,2475 76,264 92,149 3     0     0 

14 1,1637 82,896 101,087 1     1     4 

 

Tableau A1.5.4 : Extrait de la fiche de diffraction de la phase AuSn4 (#28-0441) 

Intensité d (Å) 
2θ 

(λ = 1,5406 Å) 

2θ 

(λ = 1,797 Å) 
h     k     l 

65 5,8000 15.264 17.824 0     0     2 

40 4,2530 20.870 24.393 1     1     1 

3 3,2420 27.490 32.180 0     2     0 

3 3,2230 27.655 32.375 2     0     0 

80 2,9521 30.251 35.439 1     1     3 

25 2,8997 30.811 36.102 0     0     4 

18 2,8298 31.592 37.025 0     2     2 

18 2,8172 31.737 37.197 2     0     2 

65 2,8007 31.929 37.424 2     1     1 

100 2,5912 34.588 40.577 1     2     2 
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Tableau A1.5.5 : Extrait de la fiche de diffraction de la phase AuSn2 (#28-0440) 

Intensité d (Å) 
2θ 

(λ = 1,5406 Å) 

2θ 

(λ = 1,797 Å) 
h     k     l 

100 4.5480 19.503 22.789 1     1     1 

1 4.4840 19.784 23.118 1     0     2 

40 3.7810 23.510 27.494 1     1     2 

1 3.5190 25.289 29.586 0     2     0 

30 3.4540 25.773 30.156 2     0     0 

9 3.3720 26.411 30.907 0     2     1 

65 3.1010 28.766 33.685 2     1     0 

40 3.0210 29.545 34.605 0     2     2 

40 2.9986 29.771 34.872 2     1     1 

1 2.9800 29.961 35.097 2     0     2 

55 2.9470 30.304 35.503 0     0     4 

70 2.7680 32.316 37.883 1     2     2 

4 2.7441 32.605 38.226 2     1     2 

50 2.7106 33.020 38.717 1     0     4 

50 2.6212 34.180 40.093 0     2     3 

4 2.5295 35.459 41.612 1     1     4 

9 2.4648 36.422 42.758 2     2     0 

3 2.4507 36.639 43.016 1     2     3 

10 2.4341 36.898 43.324 2     1     3 

30 2.4127 37.237 43.728 2     2     1 

2 2.2740 39.601 46.547 2     0     4 

20 2.2419 40.192 47.253 2     2     2 

10 2.1827 41.331 48.617 3     1     1 

35 2.1517 41.954 49.363 1     3     1 

3 2.1448 42.096 49.533 3     0     2 

6 2.1361 42.275 49.748 2     1     4 

70 2.1269 42.467 49.978 1     1     5 

35 2.0880 43.298 50.975 2     2     3 

100 2.0784 43.508 51.228 1     3     2 

50 4.5480 44.106 51.946 3     1     2 

  


