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RESUME

L’optimisation est devenue un domaine clé dans I’industrie de transformation pour rester
compétitif sur le marché mondial, s’adapter aux nouvelles contraintes environnementales
et supporter I’augmentation des codts énergétiques. Pour répondre a ces nouvelles
exigences, les industries se doivent d’optimiser leurs installations afin de réduire les
colts d'exploitation, améliorer I'efficacité de la production, répondre aux spécifications
de qualité des produits et sécurité des procedés. Avec le développement de nouvelles
technologies de contr6le, il est aujourd’hui possible de maintenir un procédé a son point

d’opération optimal.

L’optimisation en temps réel (RTO) est un outil permettant d’amener et maintenir un
systeme & son point de fonctionnement optimal. Ce domaine de recherche a recu une
attention considérable dans l'industrie des procedes. Les méthodes d’optimisation en
temps réels permettent de contrdler le comportement d’un procédé en ajustant les points
de consigne des regulateurs de procédé pour suivre les changements de conditions

opératoires et les perturbations externes qui prennent place au sein d’une usine.

Parmi les différentes approches d’optimisation en temps réel, les méthodes de
commande extrémale sont celles qui permettent de satisfaire les conditions nécessaires
d'optimalité. Dans la commande extrémale, l'optimisation est traitée comme un probléme
de contrdle du gradient de la fonction objectif a zéro. La principale différence entre les
diverses méthodes de commande extrémale repose sur la fagon dont le gradient est
estimé. La plupart de ces méthodes impliquent I’application d’une perturbation
temporelle périodique. De plus, afin d’isoler les effets de la dynamique du systeme sur
le gradient estimé, une séparation de plusieurs échelles de temps est requise.

La méthode d’optimisation multi-unités est une méthode de commande extrémale dans
laquelle la perturbation est appliquée entre les unités plutdt que sur un domaine
temporel. Une séparation d'échelle de temps n'est plus nécessaire. La convergence est de

ce fait plus rapide.
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La méthode d’optimisation multi-unités nécessite la présence de plusieurs unités
identiques, chacune d'entre elles fonctionnant a des valeurs d'entrée qui différent par une
constante prédéterminée de décalage. Bien que cette méthode soit utile lorsque le
systeme se compose de plusieurs unités, la convergence au point optimal a seulement été
prouvée pour des unités au sein d’un procédé parfaitement identiques ou lorsqu’il y a
seulement deux unités non identiques. En pratique, cette hypothese est rarement verifiée
puisqu’un procédé industriel réel peut avoir plus de deux unités non identiques. Par
conséquent, dans cette étude, une méthode d'optimisation basée sur I’optimisation multi-
unités est proposée pour repondre a cette problématique. L'algorithme proposé est pour
le cas d'une fonction objectif statique convexe avec deux entrées. L’algorithme comporte
entre autre des corrections successives pour compenser les différences entre les surfaces

statiques des fonctions objectif associées a chaque unité.

La derniére partie de cette these contient I'étude de cas ou la méthode d'optimisation
multi-unités est utilisée pour déterminer la puissance électrique maximale de panneaux
photovoltaiques. L'électricité est principalement produite a partir de combustibles
fossiles, de combustible nucléaire et de ressources renouvelables telles que le soleil, le
vent, I'eau et la biomasse. L'énergie solaire est de plus en plus considérée pour la
production de bioénergie et ce, en raison des récents progrés dans la fabrication de
panneaux solaires et de la volatilité des prix des combustibles fossiles. Un inconvénient
qui freine toutefois l'utilisation de I'énergie solaire est son colt d'investissement élevé.
Une fagon de réduire les colts et d’augmenter la rentabilité des panneaux solaires est
d'améliorer I'efficacité des panneaux photovoltaiques (PV) en termes de puissance

électrique de sortie.

La tension et le courant des panneaux photovoltaiques dépendent de la température, de
I'ensoleillement, de l'angle du rayonnement solaire, et d'autres conditions
atmosphériques. Comme ces parametres sont modifiés régulierement, il est important de
suivre le point de puissance maximale d'exploitation (MPOP) pour garder un maximum
d'efficacité a chaque instant. Ainsi, des ajustements en temps reel de la charge externe
appliquée aux panneaux photovoltaique sont nécessaires afin de prendre en compte la
puissance maximale des panneaux photovoltaiques. Dans cette recherche, la méthode
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d’optimisation multi-unités est appliquee pour résoudre le probléme de suivi du point de
puissance maximale des panneaux photovoltaiques. Les résultats confirment la force de
la méthode d'optimisation multi-unités et permettent de vérifier également le fait que les
différences entre les unités peuvent étre corrigées pour que chacune d’entre elles

atteignent son optimum.
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ABSTRACT

Optimization has become a key area in process industries due to the increasing global
market competition, environmental constraints and energy costs. These factors induce
operating companies to optimize plant operation in order to reduce operating cost,
improve production efficiency, meet product quality specifications, and process safety.
Besides, as better controllers are developed to adequately control a plant; the focus can

be shifted to the solution of controller designs that guarantee optimal plant performance.

Real-time optimization (RTO) is a valuable tool, to bring and maintain a system at its
optimal operating point that has received considerable attention in the process industry.
Real-time optimization methods could monitor the behavior of processes, adjusting the
set points of process controllers to track significant changes in the plant optimum.

Among different approaches of RTO, extremum-seeking control methods are those
which are able to satisfy the necessary conditions of optimality. In other words, in
extremum-seeking control methods, optimization is recast as a problem of controlling
the gradient of objective function to zero. The main difference between the various
extremum-seeking methods lies in the way the gradient is estimated. Most of these
schemes involve injecting a periodic temporal perturbation signal and several time-scale
separations are necessary to isolate the effects of the system dynamics on the estimated

gradient.

Multi-unit optimization is an extremum seeking control method in which the
perturbation is along the unit dimension rather than in time domain so time-scale
separation is not needed and the convergence is faster for slow dynamic processes. This
method requires the presence of multiple identical units, with each of them operated at
input values that differ by a pre-determined constant offset. Although this method is
useful when the system consist of multiple units, convergence to optimal point has been
proven for systems with many identical units or two non-identical units, whereas a real
industrial system model could have more than two non-identical units. Therefore, in this
research, an optimization procedure based on multi-unit method is developed with
respect to the number of units and number of inputs. The proposed algorithm is for the



case of a static convex objective function with two inputs. It consists of sequential
corrections to compensate the differences between static surfaces of the objective

functions related to each unit.

The last part of this thesis contains the case study of the multi-unit optimization method
to track maximum power point of photovoltaic arrays. Electricity is mainly produced
from fossil fuels, nuclear fuel and renewable resources such as sun, wind, water and
biomass. Solar energy is at the forefront of clean and renewable resources and, due to
advances in solar panel manufacturing and because of the volatile fuel costs, its
advantage is increasing. But the actual drawback which still exists in using solar energy
is its high investment cost. One way to reduce costs and increase the profitability of solar
panels turns out to enhance the efficiency of photovoltaic (PV) arrays in terms of output
power. The voltage and current of PV arrays depend on temperature, insolation, angle of
solar irradiance, and other atmospheric conditions. As these parameters are regularly
modified, it’s important to track the maximum power operating point (MPOP) to keep a
maximum efficiency at every instant. Thus, real-time adjustments of the external load
are required to take maximum power from PV panels. In this research, multi-unit is
applied as a recent technique to solve maximum power point tracking problem for PV
arrays. The results confirm the strength of the multi-unit optimization method. It also
verifies the fact that differences between the units can be corrected leading each of them

to their respective optima.
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CHAPTER 1: INTRODUCTION

1.1 Context

In the past two decades, increasing economic, quality, safety and environmental
pressures have led to a greater need than ever for operating companies to explore
possible paths for improving process profitability. Optimization is a key area in control
theory to reduce operating cost and meet product specifications (Zhang and Forbes
2006).

Optimal operation is particularly difficult to achieve when the plant models are
inaccurate or in the presence of process disturbances. In response to these difficulties,
real-time optimization (RTO) has received considerable attention in the process industry.
The RTO effectiveness depends on its ability to quickly and effectively identify/track the
changing optimal plant operation. The ability to track changes in turn, depends on
having sufficient plant information to update parameter estimates, and improving the
model predictions of the process behavior (Pfaff et al. 2006).

Real-time optimization methods can be classified into two categories based on how the
problem is solved: numerical or classical approach and extremum seeking control
(Woodward et al. 2009a). The two-phase or the classical approach is the model-based
repeated optimization where a model is adapted using the available measurements. Then,
a numerical optimization is performed on the updated model. The other approach to real-
time optimization is following the necessary condition of optimality along the evolution
of the system; controlling the gradient to zero in unconstrained problems is such a case

(Srinivasan 2007). This approach is called extremum seeking control.

Extremum seeking control is a model free optimization approach which is significantly
important when there are difficulties in determining the model parameters. In this
approach, optimization is recast as a problem of controlling the gradient of an objective
function to zero. Differences in gradient calculation lead to different forms of extremum

seeking control methods which are mainly categorized in three groups: perturbation,



adaptive extremum seeking, and multi-unit optimization. In perturbation methods,
gradient is computed by applying an input perturbation and using a correlation between
the input and output variations (Krstic and Wang 2000). In adaptive extremum seeking,
the gradient is estimated based on a process model that is updated using available online
measurements (Guay and Zhang 2003). In multi-unit optimization, the gradient is
computed as a finite difference between the outputs of multiple identical units with

slightly different input values (Srinivasan 2007).

In the last method, convergence to the optimal point was proven via Lyapunov analysis
and it was faster than for the perturbation method. But because it was assumed that units
are identical, which was a very strong assumption, in 2007, Woodward et al. analyzed a
case with non-identical units (Woodward et al. 2007). They showed that for process with
two non-identical units, stability is not always guaranteed and moreover the multi-unit
scheme does not necessarily converge to the desired optimum. To avoid instability
problem, correctors were proposed for systems with two non-identical units with one
input (Woodward et al. 2009a; Woodward et al. 2010). However, real systems might
have more than one input and more than two non-identical units. So, following these
researchers, multi-unit optimization method is modified in this work for three non-

identical units and two inputs.

To apply the developed method, photovoltaic array is chosen as a system with multiple
units. The development of clean energy production has grown significantly around the
world. However, several practical issues must be overcome to continue their growth. The
actual drawback which still exists in using solar energy is its high cost (Cabal et al.
2007). Thus, developing methods in order to optimize the efficiency of an existing solar
energy system becomes more and more important. The most readily available solar
technology is the Photovoltaic (PV) array. It consists of multiple photovoltaic cells
providing current-voltage (or 1V) curves depending on temperature, insolation, angle of
solar irradiance, and other atmospheric conditions. As these parameters are regularly
changed, it’s important to track the maximum power point (MPP) to keep a maximum

efficiency at every instant. When the external loads are equal to the internal resistance of



the cell, the maximum power is produced. Thus, real-time adjustments of the external

load are required to produce maximum power by PV arrays.

Regarding these features, in the current research multi-unit optimization method is
developed for three non-identical units and two inputs. The proposition includes a static
optimization problem with a convex objective function of two variables. By means of
adding correction phase to the multi-unit phase, the differences between the units in
three dimensions are compensated. Besides the theoretical aspect, this method is applied

for online maximum power point tracking of PV arrays.

1.2 Problem Statement

The definition of the problem under question in this thesis is as follows:

In some systems such as solar energy and wind systems, the parameter variations are fast
so optimal operating point is varying. To seek for this varying optimal point there is a
need for an online optimization. Real-time optimization (RTO) is a valuable tool is this
area which tries to bring and maintain a system at its optimal operating point. One of the
model free approaches of RTO is extremum seeking control method which has proven
stability. Based on the way the gradient is estimated, extremum seeking control methods
are different from each other. Multi-unit optimization is an extremum seeking control
method in which the gradient is calculated based on differences between the outputs of
each unit when a constant offset is introduced between the units’ inputs. Although this
method is useful when the system consists multiple units, convergence to optimal point

has been proven provided identical units or two non-identical units.

But industrial process has more than two non-identical units and more than one input, so
in this research, an optimization procedure based on multi-unit method is developed with
respect to the number of units and the number of inputs. The optimization problem
considered in this study is local optimization of a static and convex objective function of
two variables i.e. two inputs for each unit. Besides, the multi-unit method is applied to
track the maximum power point of PV arrays. This case study is chosen because of its

natural configuration which consists of multi PV cells.



1.3 Main Objective

e To develop multi-unit optimization method with respect to the number of non-
identical units and the number of inputs and apply it to maximize the power

provided by a PV array.

1.3.1 Specific Objectives

e To develop an optimization procedure based on multi-unit method for three non-
identical units and two inputs.

e To maximize output power of a PV array by applying the multi-unit method.

1.4 Structure of the Thesis

Following chapter one which includes the introduction, chapter two is dedicated to
literature review and has four parts. In part one, real-time optimization (RTO) is
discussed. Following that, in part two, extremum seeking control is explained as an
approach of RTO. At the end of this part, a comparison between classical approach of
RTO and extremum seeking control is done and multi-unit optimization is presented as a
new method of extremum seeking control. Part three is about multi-unit optimization
approach. Finally in part four, PV cell’s modeling and output power maximization are

discussed. At the end of this chapter, a brief critical analysis is done.

Third chapter presents the methodology of this research in which the objectives are
defined and the overall methodology is mentioned. Then the multi-unit optimization
method is explained for the case of two units and some simulation results show the
functionality of this method. Following this part, development of the multi-unit
algorithm for three non-identical units is discussed. The improvement in multi-unit
method is obtained through the proposed adaptation laws applied to a generic
mathematical example. At the end of this chapter, some guidelines for parameter tuning

are addressed following by a brief conclusion of the chapter.

Fourth chapter is devoted to the application of multi-unit method to a PV array. First

modeling of a PV array is described. After that the optimization problem related to PV



arrays is defined. Then the multi-unit optimization method is used to maximize the
output power of PV arrays with different configurations. Both identical and non-identical
cases are considered to perform multi-unit for two units and one input and simulation

results are presented.

Finally, chapter five is dedicated to conclusions, and recommendations for the upcoming

research works.

1.5 Contributions

Multi-unit optimization method is developed for three non-identical units and two inputs.
Besides, the method is applied to the PV case study and maximum power of a PV array

is achieved.



2 CHAPTER 2: RESEARCH REVIEW

2.1 Real-time optimization (RTO)

Many companies are turning to economic optimization to improve their operating
efficiency and hence increase their competitive advantage in the global marketplace.
Real-time optimization (RTO) is one of the tools used in this case (Darby and White
1988). The important factors which allowed optimizing process economics in real-time
are availability of increasingly more powerful computers, improving process modeling
techniques, and evolving advanced control strategies (Zhang and Forbes 2006). In any
process, the optimum plant operating conditions may drift as a result of process changes.
The main role of the RTO is to follow the displacement of the optimum points in the
process in order to maintain the plant at its most profitable operating point. RTO
effectiveness is governed by its ability to quickly and effectively identify the changing

optimal plant operation at any given time (Zhang and Forbes 2000).

A schema presented by Marlin and Hrymak in 1997 showed the place of the RTO in the
supervisory layer of the computer integrated manufacturing (CIM) structure and provided

the bridge between plant scheduling and the control system (Marlin and Hrymak 1997).

2.2 C(Classical RTO structure

A typical structure of model-based RTO system approach is shown in Fig 2-1. The two-
phase approach (Chen and Joseph 1987) is the most widely used method for model

updating and model-based optimization in RTO.
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Fig 2-1: Typical structure of a model-based RTO system approach (Zhang and Forbes 2006)

The RTO loop is an extension of feedback control system and consists of subsystems for
measurement validation, steady-state detection, process model updating, model-based
optimization, and command conditioning (Darby and White 1988). The goal of this
closed-loop adaptation is to drive the operating point towards the actual plant optimum
despite of inevitable structural and parametric model mismatch (Chachuat et al. 2009).
Once the plant operation reaches a steady state, plant data are collected and validated to
avoid gross errors in the process measurements (White 1997).The measurements
themselves might be reconciled using material and energy balances to ensure consistency
of the data set used for model updating. After validation, the measurements are used to
estimate the model parameters to ensure that the model correctly represents the plant at
the current operating point. Then, by using the updated model, the optimum controller
set points are calculated and transferred to the control system after a check by the

command-conditioning subsystem (Marlin and Hrymak 1997; Sequeira et al. 2002).

2.2.1 RTO performance

The performance of RTO depends on its ability to quickly and effectively identify the
changing optimal plant operation. The ability to track changes, in turn, depends on
having sufficient plant information to update parameter estimates and to improve the

model predictions of the process behavior (Pfaff et al. 2006). Some comprehensive



discussions of RTO technology were done in 90’s decade (Marlin and Hrymak 1997,
White 1997; Perkins 1998). Although the two-phase approach attempts to solve the RTO
problem by updating the imperfect model, it will not necessarily converge to the correct
optimum (Durbeck 1965; Biegler et al. 1985; Forbes et al. 1994). Similarly, there has
been some recognition that the traditional two-step algorithm (Chen and Joseph 1987) of
independent phases for model updating and model-based optimization may lead to poor
RTO performance in the presence of plant/model mismatch. To address the plant/model
mismatch issue, some methods have been proposed. These methods can be categorized
into two classes: (1) those that modify the RTO problem directly (Roberts 1979; Becerra
and Roberts 1996) and (2) those that use modified adaptive control ideas to suit RTO
applications e.g. (Bamberger and Isermann 1978; Garcia and Morari 1981; McFarlane
and Bacon 1989; Zhang and Roberts 1991). Although different algorithms for predicting
the optimal plant operation are used in each of these methods, all of them use
perturbation of the manipulated variables as a basis for compensating the plant/model
mismatch. Thus, these approaches are called perturbation based methods (Zhang and
Forbes 2006).

Zhang and Forbes (2000) provided a detailed discussion on RTO performance. They
discussed three factors that involve in RTO system performance: (1) long term offset
from the optimal plant operation, primarily caused by plant/model mismatch; (2)
transmission of measurement noise; and (3) convergence characteristics (transient
behavior) of the RTO system. Each of these factors depends on the process model, the
model updating technique and the optimization algorithm. Besides, they proposed an
RTO performance metric and design criterion called extended design cost which showed
improvement in both transient and steady-state behavior of the closed-loop RTO system
(Zhang and Forbes 2000). Following this work, in 2006, they did a critical performance
comparison of three representative techniques from existing perturbation-based RTO
methods, based on the Extended Design Cost performance criterion. Furthermore, they
presented systematic methods for developing bounds on the two critical performance
characteristics: convergence behavior and performance effects of required perturbations
(Zhang and Forbes 2006).



In a research by Sequeira et al., 2004, the classical approach to RTO and its benefits and
drawbacks were reviewed. Besides, they established a new methodology called real-time
evolution (RTE) as an alternative to classical RTO or on-line model-based optimization
(Sequeira et al. 2002). The difference between their proposed method and RTO lies in
the fact that in RTE waiting for steady state is not necessary. Also, in 2004 they
proposed a method for tuning RTE parameters (Sequeira et al. 2004).

Pfaff et al., 2006, proposed an improvement to RTO performance by integrating
information generation using experimental design techniques into the RTO algorithm to

reduce uncertainty in the final optimization results (Pfaff et al. 2006).

The two main causes of the RTO system not converging to the plant optimum are
plant/model mismatch and uncertainty in the adjustable parameter estimates (Pfaff et al.
2006; Marchetti et al. 2009). Two main classes of optimization methods are available for
handling uncertainty based on measurements availability. In the absence of
measurements, a robust optimization approach is normally used whereas when
measurements are available, an adaptive optimization method is preferred.
Measurement-based adaptive optimization can be classified into explicit and implicit
schemes, depending on whether or not a process model is used online. Fig 2-2 shows
these two schemes. Explicit schemes involve two steps: first, a model update and second,
numerical optimization based on the updated process model. The procedure is also called
repeated optimization. These ideas have been widely discussed in the literature and used
in the context of both static optimization (e.g., RTO) and dynamic optimization (e.g.,
model predictive control, MPC). Implicit schemes use measurements to update the inputs
directly and optimality can be achieved by choosing an appropriate control structure that
meets the necessary conditions of optimality (NCO). NCO tracking is formulated as a
control problem that slowly moves the inputs toward the optimal solution in contrast to
numerical re-optimization that provides input values that jump to the computed optimal
solution. Besides, it has been shown that the use of NCO tracking (implicit scheme) can
greatly simplify the implementation of optimal operation in comparison to explicit

scheme using a process model (Srinivasan and Bonvin 2007).
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Fig 2-2: Explicit and implicit schemes (Srinivasan and Bonvin 2007)

2.2.2 Classification of real-time optimization

2.2.2.1 C(lassification based on type of adaptation

RTO methods can be classified in different ways. Based on the type and the objective of
adaptation, it can be classified into model-parameter adaptation, modifier adaptation, and
direct input adaptation (Chachuat et al. 2009). Model-parameter adaptation updates the
parameters of the process model and repeats the optimization. Modifier adaptation
modifies the constraints and gradients of the optimization problem and repeats the
optimization. Direct input adaptation turns the optimization problem into a feedback
control problem and implements optimality via tracking of appropriate controlled
variables. Classification of real-time optimization approaches based on adaptation
strategy, feasibility and optimality is shown in Table 2-1.The two NCO parts, namely the
active constraints (related to the problem of feasibility) and the reduced gradient (related

to the issue of optimality) are shown in the rows of table (Chachuat et al. 2009).
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Table 2-1: Classification of real-time optimization approaches based on adaptation strategy, feasibility and
optimality (Chachuat et al. 2009)

Real-time optimization
Moggggggg]neter Modifier adaptation Direct input adaptation
Adaptation for | Two step approach Bias Update (Forbesand | active constraint
feasibility (Chen and Joseph, Marlin, 1994) tracking (Maarleveld and
. 1987; Marlin and Constraint adaptation Rijnsdrop, 1970;
Constraints Hrymak, 1997) (Chachuat et al., 2008) Srinivasan et al.,2001)
h Integrated system Self-optimizing control
Two step approac optimization and (Skogestad, 2000;
(Chen and Joseph, L G k and
. . parameter estimation ovatsmark an
Adaptation for 1987; Marlin and ) Skogestad, 2005)
optimalit Hrymak, 1997) (ISOPE) (Roberts, 1970; gestact
P _ y 4 o Tatjewski, 2002; Brdysand | Extremum seeking
Constrg!ntst and Identification for Tatjewski, 2005) (Ariyur and Krstic, 2003)
gradients optimization : ; . .
(Sprinivasan and Gradient correction (Gao | NCO tracking (Francois
Bonvin,2002) and Engell, 2005; Marchetti | et 1., 2005; Srinivasan et
et al., 2009) al., 2008)

2.2.2.2 C(lassification based on the presence of a model

Based on presence of model, RTO methods can be classified into model-based
approach, fix model approach, and model free approach. The classical approach is a
model-based approach that consists of model adaptation using available measurements
and numerical optimization which is performed on the updated model. So, a wealth of
literature has been devoted to model-based RTO e.g. (Marlin and Hrymak 1997; Zhang
et al. 2002). The classical two-step approach works well when there is little structural
plant/model mismatch, and the changing operating conditions provide sufficient
excitation for estimating the uncertain model parameters. As these conditions are rarely
met in practice, fixed-model and model-free methods which do not rely on model-

parameter update have gained in popularity recently (Marchetti et al. 2009).

Fixed-model methods use both a nominal process model and appropriate measurements
to find optimal point by an iterative scheme. The process model is embedded within a
nonlinear programming (NLP) problem that is solved repeatedly. However, the
measurements are used to update the cost and constraint functions in the optimization

problem instead of refining the parameters of a first principles model from one RTO’s




12

iteration to the next. Thus, it achieves a better approximation of the plant cost and
constraints at the current point (Forbes and Marlin 1994; Gao and Engell 2005; Chachuat
et al. 2008; Chachuat et al. 2009).

Model-free methods do not use a process model online to implement the optimization.
These methods can be classified into two approaches. In the first one, successive
operating points are determined by mimicking iterative numerical optimization
algorithms e.g. (Box and Draper 1969; Garcia and Morari 1981). The second approach to
model-free methods consists in recasting the NLP problem into that of choosing outputs
whose optimal values are approximately invariant to uncertainty e.g. (Skogestad 2000;
Francois et al. 2005). The second approach involves directly meeting the NCO along the
evolution of the system and it treats the optimization problem as a control problem with
all the advantages related to sensitivity reduction and disturbance rejection (Srinivasan
2007; Marchetti et al. 2009). This model-free optimization method has been studied
under the name of extremum seeking control, where the basic concept is to reformulate
the unconstrained optimization problem as a problem of controlling the gradient of the
objective function to zero. The method is quite old (Leblanc 1922) but it has received
renewed interest recently (Ariyur and Krstic 2003; Guay and Zhang 2003; Srinivasan
2007). Also, many recent publications have reported successful applications (Ariyur and
Krstic 2003; Popovic et al. 2006).

2.3 Extremum seeking control

The main methods of adaptive control (both linear and nonlinear) deal only with
regulation to known set points or reference trajectories (Landau 1979; Krstic et al. 1995;
loannou and Sun 1996; Khalil 2002). But the control objective could be to optimize an
objective function which can be a function of unknown parameters, or to select the
desired states to keep a performance function at its extremum value. Self optimizing
control and extremum seeking control (ESC) are two methods to handle these kinds of

optimization problems.

Finding a set of controller variables, when kept at constant set-points, which indirectly

lead to near-optimal operation with acceptable loss, is the goal of self-optimizing control
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(Findeisen et al. 1980; Morari et al. 1980; Skogestad 2000). Finding the operating set-
points that maximize or minimize an objective function is the task of extremum seeking
(Guay and Zhang 2003). Based on Astrom definition, ESC istracking a varying
maximum or minimum of an output (performance) function (Astrom and Wittenmark
1994) which has two layers of meaning: first, seeking an extremum of the output
function; secondly, ability to control (stabilize) the system and drive the output to that

extremum.

The early research work on extremum seeking control was in the 1920's (Leblanc 1922).
Extremum seeking control and self-optimizing control were popular in the 1950s and
1960s, much before the theoretical breakthroughs in adaptive linear control of the 1980s.
Besides, many successful applications of extremum seeking control approaches have
been reported, for example, combustion process control for IC engines and gas furnaces
(Sternby 1980; Astrom and Wittenmark 1994), and anti-lock braking system control
(Drakunov et al. 1995).

The uncertainty associated with the objective function in ESC makes it necessary to use
some sort of adaptation and perturbation to search for the optimal operating conditions.
Thus, most of ESC schemes involve injecting a periodic temporal perturbation signal. A
systematic description of the perturbation based extremum seeking control and its
applications were presented in Ariyur and Krstic 2003. Extremum seeking control via
perturbation method by Krstic and Wang 2000 considered a general SISO nonlinear
model x = f(x,u) and y = h(x) where x € R™ is the state, u € R is the input, y € R is
the output, and f:R™ X R - R™and h: R™ — R are smooth. They supposed a known
smooth control law u =« (x,8) parameterized by a scalar parameter 6. Extremum

seeking control via perturbation method is shown in Fig 2-3 (Krstic and Wang 2000).
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Fig 2-3: Extremum-seeking control via perturbation method (Krstic and Wang 2000)

In the method using perturbations, a temporal perturbation (or dither) is injected along
the input and the gradient is estimated by using the correlation between the input and the
output. An integral controller is used to control the gradient to zero. The multiplication
with the perturbation is performed to capture the output that is correlated with the input
and a low pass filter is used to take the average of the oscillations. A high pass filter at
the output of the system is used to remove the bias. Several time scale separations are
necessary to isolate the effects of the system dynamics on the estimated gradient. The
three time scales consist of fastest (for the plant with the stabilizing controller), medium
(for the periodic perturbation), and slow (for the filters in the peak seeking scheme)
(Krstic and Wang 2000).

The first rigorous proof of local stability of perturbation based extremum seeking control
scheme was presented by Krstic and Wang 2000. They used averaging analysis and
singular perturbation, where a high pass filter and slow perturbation signal were
employed to derive the gradient information. Their proof covered only one form of
extremum control (the method with a periodic perturbation) (Krstic and Wang 2000),
besides, the plant had to be very fast (quasi-static) and the adaptation gain had to be
small which means the conditions imposed were restrictive. Following this work, Krstic
presented a tighter analysis which removed these conditions. He proposed dynamic
compensation to provide stability guarantee, fast tracking of changes in the operating
point, and measurement noise rejection (Krstic 2000). This method is limited to the

problems with linear dynamics and it is not useful in other cases.
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In 2002, Choi proposed an extremum seeking control algorithm for discrete-time
systems applied to a class of plants that are represented as a series combination of a
linear input dynamics, a static nonlinearity with an extremum, and a linear output
dynamics. They used the two-time scale averaging theory to derive a mild sufficient
condition under which the plant output exponentially converges to a neighborhood of the

extremum value (Choi et al. 2002).

Recently, several extremum control schemes and stability analysis for extremum seeking
of linear unknown systems and a class of general nonlinear systems are presented (Krstic
2000; Krstic and Wang 2000; Wang et al. 2000). This framework allowed the use of
black-box objective functions with the restriction that the objective value is an available
output for online measurement. Although this technique was proven useful for some
applications (Krstic et al. 1999; Nguang and Chen 2000; Wang et al. 2000), the lack of
guaranteed transient performance of the black-box schemes remained a significant

drawback in its application.

Alternatively, in 2003, Guay and Zhang used an adapted model of the system for
analytical evaluation of the gradient (Guay and Zhang 2003). Their extremum seeking
framework assumes that the objective function is explicitly known as a function of the
system states and uncertain parameters from the system dynamic equations. Only an
estimated value based on parameter estimates is available because parametric
uncertainties make the on-line reconstruction of the true cost impossible. The control
objective was to simultaneously identify and regulate the system to the extremum point,
which depends on the uncertain parameters (Guay and Zhang 2003). The main advantage
of their proposed approach was that some degree of transient performance can be
guaranteed, and the optimization objectives were achieved when a reasonable functional
approximation of the objective function was available. In 2004, Dehaan and Guay
extended this approach to nonlinear systems with unknown parameters whose states
must satisfy a set of known convex constraints (DeHaan and Guay 2004). Then in 2005,
they generalized the approach of Guay and Zhang (2003), and DeHaan and Guay (2004)

to include systems whose states must satisfy a set of known convex inequality



16

constraints and they achieved a nominal guarantee of transient performance by using a

Lyapunov-based approach (DeHaan and Guay 2005).

Adelota et al., in 2004 presented a control algorithm that incorporated real time
optimization and receding horizon control technique in order to solve an extremum
seeking control problem for a class of nonlinear systems with parametric uncertainties
(Adetola et al. 2004). In 2006, Adelota and Guay proposed a control algorithm which
was an integration of real-time optimization and model predictive control to solve an
output feedback extremum seeking control problem for a linear unknown system. The
resulting controller could drive the system states to the desired unknown optimum by
requiring a Lyapunov restriction and a satisfaction of a persistency of excitation
condition (Adetola and Guay 2006). They discussed the problem of parameter
convergence in adaptive extremum seeking control design in 2007. They proposed an
alternate version of the popular persistence of excitation condition for a class of
nonlinear systems with parametric uncertainties. Parameter convergence with minimal
but sufficient level of perturbation was guaranteed by their presented method (Adetola
and Guay 2007).

Banavar in 2003 solved the extremum seeking control problem by assuming that the
performance function can be approximated by a quadratic function with a finite number
of parameters which were estimated on-line. In contrast to traditional approaches, time-
scale separation between the gradient computation and function minimization and the
system dynamics was not needed. A significant advantage of a quadratic function is that
it allows the peak-seeking control loop to be reduced to a linear system. For such a loop,
the wealth of linear system analysis and synthesis tools can be employed (Banavar
2003).

Zhang and Ordonez in 2005 proposed an extremum seeking control scheme for linear
time invariant (LTI) systems. The convergence and robustness of the extremum seeking
scheme were guaranteed by the numerical optimization algorithm, and also a detailed
analysis based on the line search method was addressed (Zhang and Orddnez 2005).

Following the research on numerical optimization-based extremum seeking control, they
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proposed an extremum seeking via a state regulator that drove the state traveling along a
convergent set point sequence generated by a numerical optimization algorithm (Zhang
and Orddnez 2006).

Chioua et al., in 2007 showed that in some particular situations the perturbation based
extremum seeking algorithm may not converge to the optimum but only close to it. The
error for a general nonlinear dynamic system is proportional not only to the square of the
excitation amplitude but also to the square of the frequency of excitation. They
addressed that slower optimization frequency is not only required for stability purposes
but also for accuracy. As a conclusion, they showed that the frequency of excitation
should be low which in turn makes the optimization slower if accuracy is required
(Chioua et al. 2007).

Most of extremum seeking schemes uses deterministic periodic perturbations, but
periodicity can naturally lead to predictability which is not desirable in cases like some
tracking and navigation applications. As a solution to these problems, in 2009, Manzie
and Krstic proposed a method of extremum seeking by using stochastic perturbation.
Convergence towards the extremum of a static map can be guaranteed with their
stochastic extremum seeking algorithm. Besides, they quantified the behavior of a
system with Gaussian-distributed perturbations at the extremum in terms of the

extremum seeking constants and map parameters (Manzie and Krstic 2009).

Based on the literature, in Table 2-2 a brief comparison between classical approach and
extremum seeking control as two main classes of RTO is presented. Both advantages and
disadvantages are shown. Extremum seeking control is a model free approach which
involves directly meeting the NCO. NCO-tracking scheme helps link the framework of
measurement-based optimization to the fields of identification and control (Srinivasan
2007). So, the numerous tools available in the context of identification and control can
provide the mathematical framework necessary for the analysis and design of extremum

seeking control.



18

Table 2-2: Comparison between classical RTO and extremum seeking control

Method Numerical or classical approach Extremum seeking control

e Model free
e  Proper accuracy

e Rapid Convergence (Woodward 2009)
e Apply to large problems o Feedback loop filters the
Advantages (Woodward 2009) measurement noise
e Allow to handle the e  More robust to noise by
constraints more directly tuning the integral gain
(Woodward et al. 2007) e  Sensitivity reduction and

disturbance rejection

e Slow convergence

e Impractical in large problems

e  Wait till the dynamics die
down before the gradient can
be computed

o  Experimentally expensive
(Woodward 2009)

e  Poor precision

e Plant model mismatch

. e |dentification of model

Disadvantages parameters affected by noise
measurements

e Computationally intensive
(Woodward 2009)

2.3.1 Classification of ESC methods

Classification of extremum seeking control methods is based on the method of gradient
estimation. Several techniques for estimating the plant gradients have been proposed,
which differ in terms of their relying on a model or not, as well as their use of steady-
state vs. transient measurement data. Three main classes of ESC methods are
perturbation based, adaptive extremum seeking, and multi-unit optimization (Woodward
et al. 2007).

Perturbation methods (Leblanc 1922; Krstic and Wang 2000), requires direct
measurement of the cost function. They use an input perturbation and compute the
gradient using a correlation between the input and output variations. In adaptive
extremum seeking method (Guay and Zhang 2003), additional measurements and not
necessarily the cost function are needed . Gradient is calculated based on a process
model that is updated using available on-line measurements. In multi-unit optimization
(Srinivasan 2007) the gradient is computed as a finite difference between the outputs of

multiple units with slightly different input values.
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The main difficulty of perturbation method (Krstic and Wang 2000) is the requirement of
a multiple time-scale separation between the system dynamics, the perturbation
frequency and the adaptation rate. The perturbation has to be an order of magnitude
slower than the system dynamics to separate the effect of the perturbation from that of
system dynamics. Also, the adaptation dynamics should be another order of magnitude
slower in order to distinguish the effect of the perturbation from that of adaptation. This
multiple time-scale separation leads to slow convergence. Time-scale separation is not
an issue for processes with fast responses, e.g. electrical or mechanical systems, though,
for slower processes such as the chemical or biological ones, the convergence time could
be prohibitive. Another problem with perturbation method is that the output is not in
phase with the input due to the system dynamics. This phase shift will cause the scheme
to converge elsewhere from the optimum (Srinivasan 2007)

Adaptive extremum seeking (Guay and Zhang 2003) and multi-unit optimization
(Srinivasan 2007) methods were proposed in response to limitation of perturbation based
methods.

2.4 Multi-unit optimization

Multi-unit method was proposed by Srinivasan in 2007. This scheme required the
presence of multiple identical units, with each of them operated at input values that differ
by a pre-determined constant offset. Micro array reactors, production lines and

photovoltaic arrays are examples of such system (Srinivasan 2007).

In Fig 2-4 the schematic of multi-unit optimization is shown. The system has m+1
identical units, where m is the dimension of input of the system. The optimization
problem is formulated considering a dynamic system with state x € R™, and input

u € R™. This system has to be operated to minimize a convex function:
min, J(u,x)s.t.x = F(x,u) =0 Eql

where F(x,u) is the function describing the dynamics of the system, which is assumed

to be stable. The necessary conditions of optimality are given by:
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ﬂ_ﬂ_ﬂ(a_F)‘la_F Eq 2

du du 9x \dx u

The various units are operated with input values that are slightly different. The first unit

is the reference and is operated at the input value u, . For the other unit

U; = Uy + eiA Eq
3

where e; is it" unit vector and i = {1,2, ..., m}.

The gradient is estimated by

a(uo) _ ](xi_ui)_A](xO_uO) Eq
4

J\ -
(E) =9 Eq5

and §; is the i row of gradient vector §. The extremum seeking control law is:

i, = —kg" (uop) Eq
6
——————— ]
| 1 7 _
k Y, J(xo —ug)
—> - 1 i }
| l Unit 0 [ 9
uy ! 1 (g —ug )T
Unit 1l }
—@—HZ —
| 1 1
e 1 ' I
| ' 1
Uy, | TG0 — ) 2
|
e | Process |
- 1

Fig 2-4: Schematic for multi-unit optimization (Woodward et al. 2007)
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In his work, the gradient was computed as a finite difference between the outputs or the
objective functions related to multiple units with slightly different input values
(Srinivasan 2007). Thus, the perturbation was along the unit dimension rather than in
time domain. So, time-scale separation was not needed and the convergence was faster.
Also, he established the convergence of this method rigorously under certain

assumptions (e.g. the convexity) by Lyapunov analysis.

The multi-unit optimization presented by Srinivasan in 2007 required the presence of
multiple identical units which was a very strong assumption and might not be realizable
in practice. So in 2009, Woodward et al., studied the effects of the differences between
the static characteristics on the stability and convergence of the standard multi-unit
optimization scheme. For processes with non-identical units, it was shown that
differences in the static characteristics could lead the equilibrium point to be quite far
away from the desired optimum. Furthermore, they proved that convergence conditions
can be satisfied in two different ways: by choosing the correct sign or a large enough
value for A. While the second option is hard to quantify, the sign adjustment could be

made possible if auxiliary information is available (Woodward et al. 2009a).

To avoid the situation in which the equilibrium point is far away from the desired
optimum, they proposed correctors which compensate for the differences between the
units. Two types of adaptation were analyzed: a sequential approach (Woodward et al.
2009a) where the multi-unit adaptation and the correction were done separately and a
simultaneous approach (Woodward et al. 2010) where both were performed together. In
both cases they showed that the scheme with correctors is locally asymptotically stable
and converges to the respective optimum of each unit. In both approaches, they
considered the single input and two similar units’ case to simplify the presentation of the
method. The units had the same curvature but were shift in “u” and “J” dimensions, so
on one hand they are identical since they have the same static curve, on the other hand,
they are different since their optimal point of operation are not the same. Besides, they
assumed that the dynamics are the same and are very fast compared to the optimization
time-scale so the process can be considered quasi-static. Also no noise effects were

considered, and the functions were convex.
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In sequential approach, correctors 8 and 7 attenuate the effect of the differences in the
optimal points of operation, and in the optimal values of the performance function
respectively. By alternation between the multi-unit method and the calculation of
correctors with two different perturbation signals they derived the update laws for the
estimates (Woodward et al. 2009a; Woodward et al. 2009b). In sequential approach,
optimization and correction for differences are performed alternatively which causes a
discontinuous operation leading to a hybrid dynamics. To avoid such a scenario, an
approach where optimization and correction take place simultaneously, is presented by
Woodward et al., 2010. In the simultaneous approach, the correctors # and 7, are
adapted simultaneously with the evolution of the process to its optimum. Structure of

this method is shown in Fig 2-5.

Correctors

estimation

Fig 2-5: Structure of the multi-unit optimization method with simultaneous adaptive correctors (Woodward
et al. 2010)

Summary of this method is shown in Table 2-3.

Table 2-3: Summary of simultaneous correction for two non-identical units

Synchronization of the two units: U =u-—7+asinwt

A ~
u, =u+§+asinoot—[3

Multi-unit adaptation law: U= _kAﬂ(jz =7

B = —kg(al — 03" — B)

7=k, (@37 - 1 (22" - 7)

Adaptation laws for correctors:
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Besides proposing the correctors, Woodward did experimental verification of the multi-
unit optimization method for the maximum power point tracking of microbial fuel cells.
The sequential adaptation technique was used to correct the difference between the cells.
The experimental results confirmed the main advantage of the multi-unit optimization
method, i.e., a faster convergence to the optimum than methods using temporal
perturbation. Moreover it verified the fact that differences between the units can be
corrected leading each of them to their respective optima (Woodward et al. 2009a;
Woodward et al. 2009b).

Although lots of successful attempts have been made to study multi-unit optimization for
non-identical units, all of them assumed only two non-identical units but industrial

process has more than two units and more than one input.

2.5 Photovoltaic cells

Solar energy is at the forefront of clean and renewable resources and according to
advances in solar panel manufacturing and increasingly volatile fuel costs, its advantage
is rising. The major advantages of using PV system are short lead time for designing and
installing a new system, output power matching with peak load demands, static structure,
no moving parts, longer life, no noise, high power capability per unit of weight,
inexhaustible and pollution free, highly mobile and portable because of its light weight
(Krauter 2006; Petreus et al. 2008; Tsai et al. 2008). But the actual drawback which still
exists in using solar energy is its high cost (Cabal et al. 2007). One way to diminish cost
and increase the profitability of solar panels is efficiency enhancement in terms of output
power. Photovoltaic (PV) cell is the basic device that generates electricity when exposed
to light. The structural parts of solar energy system -from smallest to largest- are PV

cells, PV modules or PV panels, and PV array.

2.6 PV arrays

The single-diode model is the best model fitted for the mono-crystalline PV cell which
has best efficiency among all commercially available technology. But for other

competitive technology of same class (e.g. polycrystalline), two-diode equivalent circuit
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or double exponential model is fitted more properly (Nema et al. 2009). In the other hand
double exponential model is rarely used in the subsequent literatures because of some
limitations to develop expressions for the |-V curve parameters subject to the implicit
and nonlinear nature of the model (Tsai et al. 2008).

Petreus et al., 2008, presented four models for a photovoltaic cell. They evaluated each
model and identified their strengths/weaknesses. The one-diode model, the two-diode
model, the first empirical model, and the second empirical model were investigated
(Petreus et al. 2008).

The mathematical models are more fitted to physics of photovoltaic cells than empirical
models because they are based on the theoretical equations that describe the operation of
the photovoltaic cells. A general mathematical description of I-V output characteristics
for a PV cell has been studied for over the past four decades (Tsai et al. 2008). Several
researchers used single-diode model for their studies on PV cell (Hussein et al. 1995;
Joyce et al. 2001; Cabal et al. 2007; Tsai et al. 2008; Nema et al. 2009; Villalva and
Gazoli 2009; Nema et al. 2010; Chiu et al. 2011) and etc. The schematic of a single-
diode model is shown in Fig 2-6. This equivalent circuit consists of a photo current, a
diode, a parallel resistor expressing a leakage current, and a series resistor describing an

internal resistance to the current flow.

.q 5 .I
LI T +
Iem R /

Fig 2-6: Single-diode model

Since a typical PV cell produces less than 2W at 0.5V-0.8V (depending on the cell
technology) approximately, the cells must be connected in series-parallel configuration

to produce enough voltage and power (Tsai et al. 2008; Nema et al. 2009).
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Solar photovoltaic system consists of PV array, inverter, energy storage (e.g. batteries),
system charge control, load, and balance of system components. There are two major

types of PV systems: stand alone (off Grid), and grid connected showed in Fig 2-7.

MPPT/ Charge
PVamray | 5> controller =2 e ACload
Battery |:> Inverter PV :D Inverter/Power Distribution
- conditioner |:> panel
ACload Electric
utility
Diagram of stand-alone PV system with Diagram of grid-connected photovoltaic system
battery storage powering DC and AC loads

Fig 2-7: Schematic of two general types of PV system

The main function of the solar regulator or solar controller is to keep batteries fully
charged. The solar controller regulates the flow of electricity from a solar panel to the
battery without allowing the battery to be overcharged and at the same time preventing
current flowing back from the battery to the solar panel. PV arrays should be used in
conjunction with Deep cycle batteries. These batteries are designed to be charged and
discharged over a long period of time. They are not the same as car batteries which
provide a large amount of current for a short period of time. The lead-acid battery has
low cost and high capacity features and is widely used in various applications such as
uninterruptible power system (UPS), automotive power system and telecom power
supply, but they have some disadvantages such as poor energy density characteristics,
charging time and lifetime (Bright-Green-Energy 2009; Chiu et al. 2011).

Few works have been done in the literature, e.g. (Joyce et al. 2001), for modeling a PV
system consisting of PV array, charger, and batteries, though Joyce et al., 2001, proposed
models for PV array, batteries, charger, and inverter.
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2.7 Maximum power point tracking

In Fig 2-8, the 1-V and P-V characteristic of a PV array is shown. The most real attainable
power is defined by the greatest possible of voltage and current at an operating point,

which is called maximum power point (MPP).
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Fig 2-8: 1-V and P-V characteristics of a PV cell

The maximum power can be expressed as:

Prax = VinaxImax = YVocloc
Eq7
where V.« and I, are terminal voltage and output current of PV module at maximum

power point (MPP), and y is the cell fill factor which is a measure of cell quality.

Based on Jacobi's law, a power source will deliver its maximum power to a load when the
load has the same impedance as the internal impedance of the power source.
Unfortunately, batteries are far from the ideal load for a solar array and the mismatch
results in major efficiency losses. Maximum power point tracking (MPPT) is designed to
overcome this problem. MPPT presents an ideal load to the PV array allowing it to
operate at its optimum voltage. A variable DC/DC converter in the module automatically
adjusts the DC output from the module to match the battery voltage (Electropaedia 2005;
Petreus et al. 2008). The output current and power of PV cell depend on the cell’s
terminal operating voltage along with temperature, insolation, angle of solar irradiance,
shading, and other atmospheric conditions. For example, with increase of working

temperature, the short-circuit current of the PV cell increases, whereas the maximum


http://www.mpoweruk.com/history.htm#jacobi
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power output decreases. On the other hand, with increase of insolation, the short-circuit
current of the PV module increases, and the maximum power output increases as well
(Tsai et al. 2008).

However it is not enough to match the voltage at the specified maximum power point
(MPP) of the PV array to the varying battery voltage as the battery charges up. Due to
changes in atmospheric condition, the MPP of the PV also changes. Thus, there is a
moving reference point and a moving target. For optimum power transfer, the MPPT
system needs to track the MPP as the temperature and insolation changes in order to

provide a dynamic reference point to the voltage regulator (Electropaedia 2005)

In general, the maximization of the power supplied by PV panel is carried out by two
main methods: mechanical and/or electronic systems (Leyva et al. 2006). Mechanical
methods are based on the improvement of the irradiance conditions on solar cells (e.g.
sun tracking and reduction of optical reflections) and/or on the temperature reduction
during cell operation (e.g. use of cooling device). Electronic/electrical methods are based
on changing load to the optimum load which leads to track maximum power at each
moment, e.g. perturb and observe (P&O) algorithms (Wasynezuk 2007), Incremental
conductance (InC) (Hussein et al. 1995), constant voltage and current (CV) (Andersen
and Alvsten 1995), pilot cell algorithm (Salameh et al. 1991), parasitic capacitance
(Brambilla et al. 1999), model-based algorithms (Bohdrquez et al. 2009) , fuzzy methods
(Won et al. 1994), algorithms based on digital signal processing (Hua et al. 2002), RTO
based on extremum seeking methods (Leyva et al. 2006), adaptive digital MPPT based on

extremum seeking control (Cabal et al. 2007).

According to literature, some of the most prominent MPPT methods for PV systems are
presented in this part. Most of these methods used Eq 8 for evaluating the MPPT
efficiency, where P, ;4 1S the actual or measured power produced by the PV array
under the control of the MPPT, and B, IS the true maximum power the array could

produce under a given temperature and irradiance.

t
n _ f() Pactual(t)
MPPT — &
fo Pinax(t)
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Hussein et al., in 1995, developed an MPPT algorithm, named incremental conductance
or InC. Both results from simulation and experiment showed successfully tracking the
MPP even in cases of rapidly changing atmospheric conditions and had higher efficiency
than ordinary algorithm, such as perturb and observe (Hussein et al. 1995).

In 2002, Hohm et al., compared between the efficiencies of some MPPT algorithms.
Their experimental results showed 97.8% efficiency for P&O (after properly optimized),
97.4% efficiency for InC, and 91.2% for constant voltage (CV) methods. They found
that the P&O method could be highly competitive against other MPPT algorithms.
Incremental conductance performed as well as P&O, but in general it has higher
implementation cost (Hohm and Ropp 2003).

An MPPT system based on extremum seeking control was developed by Leyva et al., in
2006. The MPPT guaranteed the stability of the maximum seeking procedure for large-
signal operation and the theoretical predictions were experimentally validated in a PV

system (Leyva et al. 2006).

An adaptive digital MPPT based on extremum seeking control was developed by Cabal
et al. in 2007. They implemented the extremum seeking control in the PIC18F1220
microcontroller. They achieved a high quality matching between sources and loads by
adjusting continually the static converter duty cycle. The control of the converter
through its duty cycle allowed tracking the MPP when the PV was exposed to the
climatic variation. This system had a high efficiency in steady state but also during

transitory. Results showed the solar panel efficiency of almost 99% (Cabal et al. 2007).

Some works focused on the control of grid-connected photovoltaic arrays e.g. (Bratcu et
al. 2008; Azevedo et al. 2009). The global scope of tracking the maximum power point
under variable conditions of irradiance was achieved by using a simple and robust P&O
extremum seeking control scheme (Bratcu et al. 2008). In 2009, Azevado et al., showed
that the P&O and InC techniques could be improved through the optimum adjustment of
the sampling rate and perturbation size both in accordance with the converter dynamics
(Azevedo et al. 2009).
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A battery charger with MPPT function for low-power PV system applications was
presented in a study by Chiu et al., 2010. The operation and design considerations of the
proposed PV charger were discussed in detail. Experimental results showed that high
MPPT accuracy and conversion efficiency can be simultaneously achieved under high-
frequency operation (Chiu et al. 2011).

In 2010, Enrique et al. developed a method as an analog version of the P&O-oriented
algorithm. They stated that this method maintains P&O main advantages such as
simplicity, reliability, low price and easy practical implementation, and avoids P&O
main disadvantages like inaccuracy and relatively slow response. Once the system has
reached the MPP, the efficiency is superior to 99%, improving the ones obtained by
other methods (P&O, InC, CV) (Enrique et al. 2010).

2.8 Summary

In the first part of this chapter, RTO, its performance, and classification were presented.
RTO is a valuable tool to bring and maintain a system at its optimal operating point that
has received considerable attention in the industry. General properties of two main
classes of RTO methods have been showed in Table 2-2 and pros and cons of each one
have been analyzed. As it has been shown extremum seeking control approach has some
advantages over classical approach of RTO such as proven stability in convergence to

optimal point and its model free properties.

In the second part, extremum seeking control method was explained as a powerful
approach of RTO. Besides, a classification of ESC has been presented. Among extremum
seeking methods, multi-unit optimization has some properties related to the way in which

gradient is calculated such as faster convergence to optimal point.

Third part has been dedicated to multi-unit method. Although this method is useful when
the system consist multiple units, convergence to optimal point has been proven provided
identical units or two non-identical units, whereas a real industrial system model could
have more than two non-identical units. So in this research, an optimization procedure

based on multi-unit method will be developed with respect to the number of units and the
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number of inputs. The optimization problem considered in this study is the local

optimization of a static and continuous system, where the objective function is convex.

In the last part, PV cell and array models were introduced. Besides, the maximum power
point tracking problem was presented to show the importance of solving this optimization
problem in PV arrays. Because of the configuration of PV cells in a PV array, this system
IS a proper test bed for applying the multi-unit algorithm. Besides, the values of PV cell
parameters are not known certainly and can vary between cells from the same production
run (Hohm and Ropp 2003), so model-based MPPT are not practical and multi-unit
method, as a model free one, has some benefits over model-based methods. In most of
algorithms of extremum seeking method MPPT, the stability has not been analytically
proved (Leyva et al. 2006) but in multi-unit method using correctors, in contrast, the
stability for two non-identical units has been analytically proven via Lyapunov approach
(Woodward et al. 2009a).



31

3 CHAPTER 3: METHODOLOGY -LOCAL OPTIMIZATION WITH
MULTI-UNIT METHOD FOR QUADRATIC OBJECTIVE FUNCTIONS

3.1 Main Objective

e To develop multi-unit optimization method with respect to the number of non-
identical units and the number of inputs and apply it to maximize the power

provided by a PV array.

3.2 Specific Objectives

e To develop an optimization procedure based on multi-unit method for three non-
identical units and two inputs.

e To maximize output power of a PV array by applying the multi-unit method.

3.3 Overall Methodology

To achieve the main objective, two specific objectives are defined. For the first specific
objective or to develop the multi-unit optimization procedure for three units and two
inputs, the overall methodology includes three steps which are shown in Fig 3-1. Step
one is explaining the multi-unit method for two units and one input to display how the
algorithm works generally for identical units. Then the idea of correction is investigated
to show its ability to make multi-unit converges to the relative optimal points in the case
of two non-identical unit. In step two, first the multi unit is applied for three identical
units and two inputs and the optimization problem is introduced for an objective function
of two variables. After that the problem of using multi-unit algorithm for three non-
identical units and two inputs is presented. Moreover the extension of correction phase
for three units is expressed and the adaptation laws and the schematic of multi-unit
optimization in the case of three non-identical units are proposed. Following this part,
the functionality of the developed algorithm is verified by applying it on a generic
mathematical function. The third step consists of some guidelines to tune the parameters
and gains in the whole procedure of multi-unit algorithm which is profitable for any user
of multi-unit optimization algorithm. In other words, the priorities in tuning the

parameters are discussed. At the end of this chapter a brief conclusion is mentioned.
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Step 1: Multi-unit for two units and one input

U

Step 2 : Multi-unit for three units and two inputs

4

Step 3: Guidelines to tune parameters in multi-unit algorithm

Fig 3-1: Overall methodology
3.4 Multi-unit optimization for two units and one input
As it is presented in chapter one, in multi-unit optimization gradient is calculated base on
the differences of the outputs of the units which have slightly different inputs. In this part
both cases with two identical/non-identical units are explained via illustrative examples

and the simulation results display how this method works.

3.4.1 Identical units
Fig 3-2 shows the block diagram of multi-unit optimization for two units. Both inputs are

perturbed by A/2 and -A/2.
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Fig 3-2: Schematic for multi-unit optimization for two units (Woodward et al. 2009a)

The optimization problem is to maximize a convex objective function with one input. A

quadratic objective function is chosen as follow min, J(u) in which

Jw =@-2)*+3 Eq9

The first and second units are operated at the input values ul and u2 respectively in
which u; = u—%,and u, = u+§.

Then the gradient and the control law are given by:
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u = Kg(u) Eq 10

g(u) _ ]1(%);]2(“2) Eq 1l

The results of applying multi-unit algorithm for two identical units with objective
function as in Eq 9 is presented in Table 3-1. It is clear that u°?¢ = 2 and J°P* = 3. The

letter N in the table means that the algorithm could not converge to the optimum point in

run 7.
Table 3-1: summary of applying multi-unit without correctors on two identical units
Run K A U u uj u; Ji J5 final g(u)

1 -100 0.25 -1 2 1.875 2.125 3.0156 | 3.0156 | -8.5635e-005
2 -100 0.5 -1 2 1.75 2.25 3.0625 | 3.0625 | -8.5635e-005
3 -100 1 -1 2 15 2.5 3.25 3.25 -8.5635e-005
4 -100 2 -1 2 1 3 4.0001 | 3.9999 | -8.5635e-005
5 -1 0.25 -1 2 1.875 2.125 3.0156 | 3.0156 | -9.9909e-005
6 -100 0.25 5 2 1.875 2.125 3.0156 | 3.0156 | 8.5635e-005
7 -1000 0.25 -1 N N N N N N

u* is the equilibrium point where the multi-unit algorithm converges so the inputs of the
two units would converge to uj = u* —% ,and u; =u’ +§. In other word, both units

inputs keep an offset A from each other. So choosing the offset A has an important role to
make the algorithm converges to a circle around the optimum. If A is chosen too large,
the algorithm converges to the optimum point but the assurance of converging to the
optimum value of J is not obtained. Among different runs in the Table 3-1, run 4 shows

the results with the biggest A.

K or the gain of integrator is another parameter which has to be chosen properly. If there
is no dynamics in the system, K should be a value in which the algorithm converges to
the optimum but |K| should be determined in a way that there is not much moving on the
static curve. If |[K| is too big, it means that it does not let the multi-unit converges or it
may converge to a point which is far from optimum. It is because of the problem arises in
making the system discrete. In other words it is numerical instability rather than control

law instability. In run 7 an example of this fact is seen.

If the system has dynamics, K should not be faster than the system’s dynamics. Besides
these two parameters (A and K), the initial point for u in the algorithm should be set in

the algorithm. In the case of identical units if there is priori knowledge about the system
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optimal point, the initial point for u should be selected not so far from the optimum input.
In other words, if the initial point for v is so far from the optimum input, it has effects on

the algorithm’s convergence, and the time needed for converging to the optimal point.

Fig 3-3, Fig 3-4, and Fig 3-5 show the Run 1, 5, and 6 respectively from Table 3-1. The unit
of horizontal axis in all those graphs is the sample time of discrete system. Fig 3-4 shows
the fact that if |K| is chosen very small, it takes more time for the algorithm to converge
to the optimum point. Comparing the results of run 5 and run 6 in Fig 3-5 displays that if
the distance between u, and u* are fixed, starting the algorithm from the right or left side

of the optimum point on the static curve has no special effect on the convergence.
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Fig 3-3: Multi-unit optimization for two identical units (Run 1)
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3.4.2 Non-identical units

It was noted in research review that one of the main limitation of the multi-unit algorithm
is the requirement of identical units. In this part based on what has been done by
Woodward (Woodward et al. 2009a), the non-identical case is described. Then some

simulation results are presented to express the correction phase effect more clearly.

3.4.2.1 Characterization of the differences between units

It is possible to establish difference between two units in different ways. For the non-
identical case here, it is assumed that the dynamics are the same and very fast compared
to the optimization time-scale so we have quasi-static process. Besides, the objective
functions are convex and there is no noise effect considered. So the differences in units
are from their static curves as it is shown in the Fig 3-6. In the other words, both curves

have approximately similar shape.

In this figure, B = uy?" — 3" and A = J, (ug™") — J1 (wi™"). Besides, uy”" and ug"" are

the optima of unit 1and 2 respectively.

14

12 J;

J{u}

Fig 3-6: Difference between objective functions of two units

Both units follow the same control law and always keep an input offset of A from each
other. Under these conditions, the static characteristics of the two units are represented

using /; (u) and J, (u). The relationship between the two static maps is given by:
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]122(u)=]1(u+ﬁ)+/1+1'(u+ﬁ) Eq

Because both static curves have smooth curvature at the optimum point it can be seen
that:

— aJ
Jw) =02

u

opt = 0 Eq 13
u,

So it is reasonable to assume that in the neighborhood of the optimum J = 0. It was
shown by Woodward that differences in the units cause the multi-unit scheme to a value

away from the desired optimum; and the equilibrium point can be approximated by Eq

14 as follow:
opt opt
« + y)
Ut~ Uy U, oy Eq 14
2 (A+/3)W21

It was also proved by Wood ward that the multi-unit algorithm for non-identical units is
locally converge asymptotically if and only if the parameter A is chosen such that:
AA+B)>0 Eq 15
In the other words, convergence conditions can be satisfied in two different ways: by
choosing the sign of A same as 8 or its absolute value is more than the absolute value of
the .

3.4.2.2 Multi-unit scheme with correction pattern

Adding a correction phase to the multi-unit phase, makes multi-unit algorithm converges
to the optimal point. In this chapter the sequential correction approach is discussed.
Correctors f and 1 attenuate the effect of the differences in the optimal points of
operation, and in the optimal values of the performance function respectively. By
alternation between the multi-unit method and the calculation of correctors with two
different perturbation signals they derived the update laws for the estimates (Woodward
et al. 2009a; Woodward et al. 2009b). Perturbation signals for multi-unit with correctors

are shown in Fig 3-7.
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Fig 3-7: Perturbation signals for multi-unit with correctors (Woodward et al. 2009)

The structure of multi-unit algorithm with sequential correctors is displayed in Fig 3-8. In
the correction phase, the difference between the two inputs, A, is removed. So, the two
units act at the same operating point (corrected by g if any). Then, the corrected output
values should be equal, if the vertical shift (1) is computed correctly. So, the difference

between the corrected outputs provides the adaptation law for .
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Fig 3-8: Structure of the multi-unit optimization method with sequential correctors

Synchronization of the inputs of two units is as following:

A
u =u-— ;dmu + adcorr Eq 16
Uy = U+ > diyy + adeory — B Eq 17

Besides, the adaptation law for multi-unit is modified by this equation in which k,,, is

the gain of integrator in multi-unit scheme.

. kmu 3

U=- (]2 -1 A)dmu Eq 18
Moreover, two correctors are updated base on these adaptation laws:

A k A~
B="L02~J1— Vdeorr Eq 19
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A=l —J1 =)A= dp) Eq 20

kg and k; are the gains for correctors. Choosing the sign and value of these two are
crucial in a general objective function. One way is to choose the starting points or u, for
each unit in the algorithm in a such manner to have 8, = 0. Then based on the shape of
both static curves and the position of B, and A, in relation to the correct values of £ and
A for the optimal points, the sign of each gain could be determined. We can derive the

following equation based on Eq 19:

decorr (]2 _]1 _ /"{) + B(k) Eq 21

a

Bk +1) ~

If By < p, the first statement in Eq 21 should be positive or in other words @ (J, -

J; —A) > 0. We know that the sign of a and d.,, is positive. Then by looking at the
static curve we can estimate the sign of (J, —J; — 1) and this information helps to
choose the correct sign for kz. The same procedure would be helpful to know about the

correct sign of k;.

There is no exact method which can justify how to choose the value for these corrector

gains. It is more intuitive and based on trial and error.

a is the amplitude of perturbation or correction signal which should be fixed in the
algorithm. T; and T, which are the periods for multi-unit and correction phase should be

chosen relatively in such a way that the multi-unit phase has enough time to perform.

When the objective function has dynamics the ratio of these periods (%) has an important
2

role in convergence of multi-unit to the optimum point.
3.4.2.3 Simulation results and discussion for a generic case

To see the importance of correction phase multi-unit algorithm without correction is
applied on two non-identical units with one input. First of all the condition for locally
asymptotically convergence or the Eq 15 is considered. Assume two objective functions

as follow should be maximized:
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= (-2 +3 Eq 22
Jo=—6)%+4 Eq 23
SowPt =2, uPt =6, JP' = 3, JoP* = 4. As a result the correctors are § = —4 and

A =1. Based on Eq 15, the algorithm would be stable if A <0 or A > 4. To give a
better insight of the condition, two different values of A are chosen and the multi-unit
algorithm for identical unit is applied for the case of non-identical unit. Run 1 is with
A=0.25s0A(A+B)<0,andrun2iswithA =5 so A(A+ ) > 0.

In Fig 3-9 the results of run 1 are shown. Both outputs of units are increasing and the
simple algorithm without correction phase is diverging as it is deducted from the
condition for guarantee the stability of the algorithm. Fig 3-10 displays the results of run
2. The algorithm is stable and both outputs of the units are converging but not to the
optimal values. The unit of horizontal axis in all those graphs is the sample time of

discrete system.

x 10" x 10
2 0
E 1 s -2 \
[@)]
0 -4 : :
0 10 20 30 0 10 20 30
x 10°° x 10°°
0 0
s -2 \ 1 s -2 \
4 : : -4 : :
0 10 20 30 0 10 20 30
X 1032 X 1032
10 10
~' 5 ] 1 -~ 5 j
0 : 0 :
0 10 20 30 0 10 20 30

Fig 3-9: Multi-unit optimization without correction for two non-identical units (run 1)
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Fig 3-10: Multi-unit optimization without correction for two non-identical units (run 2)

A summary of the parameters and results for both runs are presented in Table 3-2. If the
multi-unit works properly it is expected that:

opt _

uj =ufP > Eq24

up =ugP* +> Eq25

In runl the multi-unit scheme diverges because the offset parameter A is not in the range
which is necessary to guarantee the stability of the algorithm. In run 2, the multi-unit
scheme converges but not to the expected optimal point which are calculated by Eq 24
and Eq 25, as follow:

ul=2-25=-05

uy=6+25=85

And based on Eq 14 the equilibrium point is:

opt opt
u*:ul tu, /'12:2+6_ 1 — 35
P — — .
2 (A+B)du£ 2 (5-4)x2
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Table 3-2: summary of applying multi-unit without correctors on two non-identical units

Run K A Ug u* u; u; ]1 ]2 g*(u)
1 -100 0.25 -1 N N N N N N
2 -100 5 -1 3.4998 | 0.9998 | 5.9998 4.0005 4.0000 | -9.6081e-005

Now the proposed correction is applied on two non-identical units with objective
functions similar to Eq 22, and Eq 23. Based on Eq 15, convergence conditions can be
satisfied without corrections by sign(A) = sign(B) or |A] > |B]. In the following
simulations both values of A= 5 and A= —2 are used. The initial point is assumed equal
to 4 so the initial correctors are as below:

11=(4—2)2+3=7:>{[30=4—4=0
,b=04-6)?%+4=8 A=8-7=1

The parameters of two runs are shown in Table 3-3. In Table 3-4, the results of using

u0=4:>{

correction phase with multi-unit phase is presented. In both runs, the inputs and outputs
of the two units are converging to the expected optimal points and optimal values.

Besides, the correctors are converging to their ideal values.

Table 3-3: summary of parameters in applying multi-unit with correctors on two non-identical units

Run kmu A a kB kl T1 TZ
1 -0.04 -2 0.5 0.01 0.015 100 100
2 -0.04 5 0.5 0.01 0.015 100 100

Table 3-4: summary of results in applying multi-unit with correctors on two non-identical units

Run | u* uj up Ji I B A
1 2 3 5 4 5 4 1
2 2 -0.5 8.5 9.25 10.25 -4 1

Although in all runs the inputs, outputs, and correctors converge to their expected values,
the results presented for run 1 is more appropriate because |A| is smaller so the optimum
converging values are nearer to the real optimum values. Fig 3-11 shows the graphs for
input signals and the corrector § for the runl of Table 3-4. The graphs for the corrector 4,
output signals, and correction signal in run 1 are displayed in Fig 3-12. Fig 3-13 and Fig
3-14 also presented the same results for the run 2 of Table 3-4. The unit of horizontal axis

in all those graphs is the sample time of discrete system
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Fig 3-11: Input signals and corrector B in multi-unit scheme with correction for two non-identical units

(run 1)
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Fig 3-12: Output signals, corrector A and correction signal in multi-unit scheme with correction for two
non-identical units (run 1)
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Fig 3-14: Output signals, corrector 4, and correction signal in multi-unit scheme with correction for two
non-identical units (run 2)



46

3.5 Multi-unit optimization for three units and two inputs
The multi-unit optimization is discussed for the case of two units in previous part.

Following what have been discussed, in this part the multi-unit optimization for three

units and two inputs is investigated.
3.5.1 Identical units

Figure 3-15 shows the block diagram of multi-unit optimization for three units with two
inputs. Input 1 of the unit two is perturbed by A and input 2 of the unit three is perturbed
by A as well. Then the gradient is calculated by Eq 11, based on the differences between
the outputs of units one and two, and the outputs of units one and three.

Uyr
u .
--------------------- 12_,  Unit1l
k i 1
2 - 1 1
S : .
: Uz,
1
! 3 Unit 2
S Uzz_ .|
1
k | Y2
S :
: 1 Us, -
: ! units |25 s
! o mmeeeee 4 .. - n
: + !
! I
: s !
| !
' I

Fig 3-15: Schematic for multi-unit optimization for three units

The optimization problem is to maximize a convex objective function with two inputs. A

quadratic objective function is chosen as follow min, J(u) in which

J=@; -2+, —3)*+4 Eq 26

So U°rt = [g] and J°Pt = 4, The gradient and control law are given by Eq 10 and Eq 11.

In other words, the negative sign for integrator is inside its gain. The results of applying

multi-unit algorithm for three identical units with objective function as in Eq 26 is



47

presented in Table 3-5. Five runs are presented to show the effect of changing the offset A

and gain of the integrator. In all runs, the initial point is assumed as U, = [ 1]

Table 3-5: Multi-unit optimization for three identical units and two inputs

Run | K | A U; Ji I3 J3 g ()

1 |-05]|01] 7l 95 1. 95 2.051 | 1. 95 4.0050 | 4.0050 | 4.0050 | _ [1075]
2.95 2.95 2.95 3.05 ~ 11075

2 -2 0.1 1.95 1.95 2.05 1.95 4.0050 | 4.0050 | 4.0050 - [1076]
2. 95 2. 95 2. 95 3. 05 ~l10-°

3 -5 0.1 N N N N

4 -2 0.2 [1.9] [1.9] [2.1] [1.9] 4.02 4.02 4.02 ~ [1076]
2.9 2.9 2.9 3.1 10~6

5 -5 0.5 N N N N N N N N

U* shows the equilibrium point where the multi-unit algorithm converges for both inputs.

The inputs of the three units would converge as following: Uy = U* ,U; =U" + [3] and

U;=U0"+ [2] In other words, the A difference between input 1 of unit one and two, and

between input 2 of unit one and three is remaining. K or the gain of the integrator has an
effect on the convergence time; for example by increasing from 0.5 to 2 the time needed
for convergence is decreasing from 80 samples to 30 samples. Besides, choosing the

offset A has an important role similar to the two unit case.

Inrun 1, 2, and 4 all objective functions are fairly well equal to the optimal value which
was 4. Finally gradient is small (approximately zero) which shows that the converging
point is the optimal point. Fig 3-16 shows the inputs of each unit in run 2 from Table 3-5.
In Fig 3-17, the input of the scheme, the output of the units, and the gradient are displayed
for the run 2. The unit of horizontal axis in all those graphs is the sample time of discrete

system.
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Fig 3-16: Input signals of unit in multi-unit optimization for three identical units
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Fig 3-17: Input signal, Output of the units and gradient of unit in multi-unit optimization for three identical

units
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3.5.2 Non-identical units

3.5.2.1 Characterization of the differences between units
The difference between the units is between their static surfaces in three dimensions. Fig

3-18 shows this difference by an illustrative example.

Jiut,ud

Fig 3-18: Differences between the static surfaces

If all the three objective functions are assumed to be convex. The relationships between

the static surfaces of the units can be presented as follow:

J.(U) =1(U+B)+ 2+ ],(U+pB) Eq 27

W) =,U+a)+p+]3(U+a) Eq 28

In which correctors f and « are two vectors, and A and p are two scalars defined as:

Ut - Ut =p = [gl] Eq 29
2

UoPt _ yoPt = g = SZ] Eq 30

PE— Pt =2 Eq 31

2 1
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gpt _ fpt =p Eq 32

Because of the same smooth curvature at the optimal points, it can be derived that

3 aJ. = a7,
Ji2(U3) = 0,52 0 = 0and Jia(U57) = 0,522
2

o0 |yovt = 0. So it is reasonable to

assume that in the neighborhood of the optimums J;, = 0 and J;3 = 0.

3.5.2.2 Multi-unit scheme with correction pattern

Based on the correction phase for the two non-identical units, in this part a schematic is
proposed for three non-identical units and two inputs. In the Fig 3-19 the schematic of

this developed multi-unit scheme is presented. Three different periodic signals are used

to coordinate the static surfaces of three different objective functions. In Fig 3-19 [ = [ﬂ

and e is the i unit vector.
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Fig 3-19: Structure of the multi-unit optimization method with sequential correctors for three units

Periodic signals for correction phase and multi-unit phase are different from what has
been proposed for two units. We need to see the effect of perturbation to make correction
between the output signals. Because the input is a 1 x 2 vector instead of a scalar, there is

a need for two perturbation signals in the correction phase. In Fig 3-20 the perturbation
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signals used for three non-identical units and two inputs are presented. Based on the

multivariable extremum seeking scheme proposed by Ariyur and Krstic in 2002, the

phase shift between these perturbation signals in correction phase is chosen g (Ariyur

and Krstic 2002). Therefore, the correction signals are orthogonal and defined as

following:
deorr1 = Sign <sin (ZT—:t)> Eq 33
Aeorrz = Sign (cos (ZT—:':)> Eq 34

1
mu 1 :
]

1}

1
| ¢ ¢ Multi-unit
i

i adaptation

e - al ] : : i
1 : i 2

corri

d ' T, [ E E i~ Correction

Fig 3-20: perturbation signals for multi-unit with correctors in the case of three non-identical units

In this scheme, synchronization of the input vectors of three units is as following

Ul = :Z;: + adCOT‘T‘l [(]5] + adCOT‘T‘Z [2] Eq 35
U = (o] + b [3] + e [+ adar 9] - |2 £q 36
s = [1] + ek [J] + adeorr [3] + adeor [§] - | 2] Eq 37

Adaptation Laws for the input and correctors are proposed as follow:
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y Kmudmu ]2 _]1 - j:l
Uv=—"—™" ~ Eq 38
T A |
-kﬁldcorrl-
ﬁA = kﬁzdacorrz (]2 _]1 - i) Eq 39
a
[Ka1dcorr]
Q= kazdacorrz (13 —hi- '6) Eq 40
a
A=k(1—dn)U; =] =D Eq 4l
p=lky(1=dm)Us —J1 = P) Eq 42

In the proposed scheme for three non-identical units, choosing the sign and value of the
gains of correctors is more complicated than the case with two non-identical units. Like
before, first of all the parameters A , a , and the multi-unit gain, d,,,,, should be chosen
properly. Though the signs of the gains of correctors can be preset based on the position
of static surfaces related to the objective functions of the units, the proper values of the

gains of correctors are extracted based on trial and error.

3.5.2.3 Simulation results and discussion for a generic case

To see the importance of correction phase, multi-unit algorithm without correction is
applied on three non-identical units with two inputs. Assume three objective functions

as follow should be minimized:

]1 S (ul - 2)2 + (uz - 3)2 + 4 Eq 43
]2 = (u1 - 1)2 + (uZ - 4‘)2 + 6 Eq 44
]3 S (ul - 3)2 + (uz - 5)2 + 3 Eq 45

so upP = [2] ugr =[] U™ = [2], 17 = 4, 57 = 6, J5P* = 3. As a result the

correctors are § = [_11] a= [:3] A=2,andp = —1.
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In the following simulation two different cases are assumed for the parameter A. In run 1
it is assumed that |A| < |B| , and |A| < |a|. Vise versa, in run 2 it is assumed that

|A] > |B|, and |A] > |a]. Assumptions for both runs are as below:

-1

1. runl: U, = [_1

], A=0.1,andK =05

2. run2:U, = [:ﬂ A=3,and K = 0.5

The results of applying multi-unit algorithm without correctors for run 1 are shown in
Fig 3-21, and Fig 3-22. And the results of applying multi-unit algorithm without correctors
for run 2 are shown in Fig 3-23, and Fig 3-24. Both outputs of units are increasing and the

simple algorithm without correction phase is diverging.

x 10°° x 10"
0 0
H T,
- 1 { «, 2
> 5
-2 L L L -4 L . L
0 10 20 30 40 0 10 20 30 40
X 1016 X 1016

u?2l

[N o
P
u 22

N} o

-2 . . . -4 . . .
0 10 20 30 40 0 10 20 30 40
X 1016 X 1016
0 0
H V1.
™, 1 1 ™ 2
> >
-2 . : . -4 . . :
0 10 20 30 40 0 10 20 30 40

Fig 3-21: Input signals of units in multi-unit optimization for three non-identical without correction (run 1)
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Fig 3-22: Input signal, Output of the units and gradient in multi-unit optimization for three non-identical
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Fig 3-23: Input signals of units in multi-unit optimization for three non-identical without correction (run 2)
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Fig 3-24: Input signal, Output of the units and gradient in multi-unit optimization for three non-identical
without correction (run 2)

Now the proposed correction is applied on three non-identical units with objective
functions similar to Eq 43, Eq 44 and Eq 45. In the following simulation two cases are

assumed for the initial conditions:

. Ji=4+9+4=17
1.U0:b}:{2=1+16+6=23
Js=9+25+3 =37

So the initial values for correctors are S, = [8] ay = [8] Ao =23—-17 =6, and

po =37 — 17 = 20.

Ji=1+4+4=9
2.UO=E}={2=0+9+6=15
J

,=4+16+3 =23

So the initial values for correctors are S, = [8] ay = [8] Ao=15-9 =6, and

po=23—-9=14.

Among the numerous runs, 16 runs are selected to show the importance of tuning the

gains and parameters in multi-unit method with correctors for three non-identical units
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and two inputs. First, a proper value for A is chosen based on the difference between the
optimal points on static surfaces of the objective functions in each units. Then the
parameter a is set. After that, the gains of multi-unit and correction phases are chosen
with some trial and error. In all of these runs T; = 100, and T, = 100 is chosen for

periods of perturbation signals.

In Table 3-6, the initial values for inputs and correctors in different runs are shown. The
values of parameters in each run are displayed in Table 3-7. The parameter n shows the
number of oscillations in each period for the two correcting perturbation signals. For

example if n = 4 the perturbation signals would be the same as Fig 3-23.

Table 3-6: summary of initial values for inputs and correctors in multi-unit algorithm with correctors on
three non-identical units

Run Uy Bo o Ao Po
RN
2 [g [8] [g 6 20
3 | Lol | bl | [l e |
4 [g [8] [g 6 20
5 | Lol | Ll | [l e |
3N BN NN NENE
7 N N N 6 20
2N AN NN NENE
9 6 20
o LB e | w
11 [} [8] [g 6 14
N NN N R
13 [g [8] [g 6 20
T T e
15 [g [8] [g 6 20
ST T s
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Fig 3-25: perturbation signals with n=4 oscillations in each period

Table 3-8 shows the optimal points and values, and the values of estimated correctors by
applying the multi-unit with correctors for the 16 runs. The symbol N means that the
algorithm does not converge in the relative run. The true values of the optimal points and
values for each unit, and the true values of the correctors are displayed in Table 3-9 to

evaluate the functionality of multi-unit method.



Table 3-7: summary of parameters in multi-unit algorithm with correctors on three non-identical units

RUN | Ky A a kg K, K, k, n
1 005 | 3 1 [§§§i 888?1’ 001 | 01 1
2 005 | 2 | o9 |[00 [8'88? 001 | 01 1
3 | 0005 | 2 | 09 [8881 [ggg? 001 | 0.1 1
4 | -0005 | 09 | 04 [8:881 [8:88? 001 | 01 1
5 | 0001 | 09 | 04 [8881 [ggg? 001 | 0.1 1
6 | 0005 | 09 | 04 [3:81 [8:88? 001 | 01 1
7 | 0005 | 09 | 04 [8881 [ggi 001 | 0.1 1
8 | -0005 | 09 | 04 [8381 [888? 01 | o1 1
9 | 0005 | 09 | 04 [8831 [8'88? 0.01 1 1
10 | 0005 | 0.7 | 04 [8381 [888? 001 | 01 1
11 | 0005 | 0.7 | 04 [8831 [8'88? 001 | 01 1
12 | 0005 | 0.7 | 04 [8381 [888? 001 | 01 4
13 | 0005 | 06 | 04 [8831 [8'88? 001 | 01 1
14 | 0005 | 06 | 03 [8881 [ggg? 001 | 0.1 1
15 | 0001 | 06 | 03 [8:881 [8:88? 001 | 01 1
16 | -0005 | 06 | 03 [8881 [ggg? 001 | 0.1 4




Table 3-8: summary of results in applying muIti unit with correctors on three non-identical units

Run u3 J1 J2 J3 B a’ A P
1 015407983 [2 oo [ ig‘; 8538 | 1051 | 7369 | [ 001 | | _2160137 1978 | -1.169
2 N N N N N N
T [é o e o S [ e
c [%g% 20 o3 4.359 6'325 3.53 4 05995 [—029070252 2.003 _0. 992
. 2635 | Lzl | Issaal | © - - ~0.995 1999 ] | =0 'N
7 N N N N N N N
= o= oo Rl e o
3926] | 14924 | lssgol | > ' ‘ —1.001) | l-07632] | '
0 | [2O] | [322%] | [2%¢7] | 4242 | ese3 | 32ss | [MO°] | [T0759] | 2002 | -Lots
w | O] | [M302] | [2300] | 4242 | eses | 22 | [0 | [T0077] | 2004 | -Lo14
2 | O] | (2] | [2oe0] | 4243 | e2aa | 3247 | [ 00000 | | [T%70%0] | 2001 | -0.9977
13 [;:22; ; 222 é ;gg 4199 | 6.015 | 3.526 _ngz [_; ggg 2001 | -1.046
14 N N N N N N N N
15 | [ogol | 5 %i : 33;1» 415 | 6421 | 328 | [Qooca] | [Tygge] | 2001 | -0.9569
16 [;;g; [3 o [5 27 | 4178 | Bare | 3 [—tgg}az [‘019999982 2.001 | -0.9985
Table 3-9: summary of real values for the optimal points and correctors
uy u; u; J4 J2 I3 B a P
I I BER=RE
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By comparing the results of run 1 and run 2 form Table 3-8, it can be realized that if the
values of A and a are decreasing but the multi-unit gain does not change relatively, the
algorithm does not converge. Therefore to recover convergence the multi-unit gain
should be decreased by the factor of 5 as it is shown in run 3. However the equilibrium

points in run 1 and run 3 do not necessarily equal to the optimal points for each unit.

Comparison between run 3 and run 4 shows that by decreasing the amount of multi-unit

gain the algorithm converges to near optimal points.

It can be realized from run 4 and run 6 that if the gain of corrector f is increased by the
factor of 10 the algorithm diverges. Besides from run 4 and run 7, it can be deduced that

if the gain of corrector a is increased by the factor of 10 the algorithm diverges, too.

By comparing run 4 and run 8, it is realized that if the gain of corrector A is increased by

the factor of 10 the algorithm still converges to the near of optimal points.

Though increasing the gain of corrector p by the factor of 10, from run 4 to run 9, does
not force the algorithm to diverge but it has significant impact on the convergence of ay

and it leads the algorithm to converge not near the optimal points.

The graphs in Fig 3-26 to Fig 3-28 show the input signals, output signals, and the estimated
correctors for run 10. The input signals, output signals, and the estimated correctors for
run 12 are also displayed in Fig 3-29 to Fig 3-31. Comparing the results of run 10 and run
11 show that changing in initial inputs or the vector
Uy, and as a result changing in initial guess for the correctors A, and p has no significant

impact on the convergence of the algorithm.

Results of run 10 and run 12 display that if more than one oscillation exist in one period
of perturbation signals, such as Fig 3-25, the algorithm still converges to very near to
optimal points. Furthermore, the convergence is faster in run 12 that in run 10.

Run 14 are related to a situation in which the multi-unit algorithm diverges and by some
modifications in run 15 and run 16, it has been tried to make it converge. First by
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decreasing the multi-unit gain by the factor of 5, the algorithm converges in run 15 which
shows the improvement from run 14. After that, by using 4 oscillations in one period of
perturbation signals in run 16, such as Fig 3-25, the algorithm converges to very near
optimal points; it means adding more oscillations improve the multi-unit algorithm
functionality from run 14 to run 16. The graphs in Fig 3-32 to Fig 3-34 show the input
signals, output signals, and the estimated correctors for run 15. The input signals, output

signals, and the estimated correctors for run 16 are also displayed in Fig 3-35 to Fig 3-37.

Another comparison between the results of run 10 in Fig 3-27, and the results of run 15 in
Fig 3-33 shows that although the steady state response is converging faster in run 10 than
in run 15, the inappropriate transient response in run 10 is modified by decreasing the

multi-unit gain in run 15,
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Fig 3-26: Input signals in multi-unit scheme with correction for three non-identical units (run 10)
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Fig 3-27: Output signals in multi-unit scheme with correction for three non-identical units (run 10)
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Fig 3-28: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 10)
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Fig 3-29: Input signals in multi-unit scheme with correction for three non-identical units (run 12)
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Fig 3-30: Output signals in multi-unit scheme with correction for three non-identical units (run 12)
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Fig 3-31: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 12)
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Fig 3-32: Input signals in multi-unit scheme with correction for three non-identical units (run 15)

20

1000

2000

3000

4000

5000

6000

1000

2000

3000

4000

5000

6000

0
0

1000

2000

3000

4000

5000

6000

Fig 3-33: Output signals in multi-unit scheme with correction for three non-identical units (run 15)
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Fig 3-34: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 15)
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Fig 3-35: Input signals in multi-unit scheme with correction for three non-identical units (run 16)
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Fig 3-36: Output signals in multi-unit scheme with correction for three non-identical units (run 16)
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Fig 3-37: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 16)
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3.6 A guideline to tune parameters in multi-unit optimization
algorithm

Based on the attempts made to choose parameters and gains in multi-unit algorithm, some
heuristic rules are found. Although there is no certain method to tune these parameters,
and the value of gains are derived based on trial and error, the following steps could be
useful in running a multi-unit algorithm. It should be mentioned that the priori knowledge

from the system is somehow needed in order to tune the parameters in multi-unit method.

First, based on the position of optimal points on the static curves, the offset A should be
chosen. Next parameter is K,,, or the gain of integrator in multi-unit phase. After that,
the parameter a which shows the amplitude of correction signal, and the periods T;, and
T, should be tuned. Then an initial point should be selected. Following this step, the signs
for gains of correctors should be verified as it is presented in section 3.4.2. Finally the

values for gains of correctors should be found by trial and error.

3.7 Brief Conclusion

As a brief conclusion of the chapter, multi-unit optimization algorithm has been modified
for three non-identical units and two inputs by proposing two suitable correction signals
for the correction phase in the multi-unit scheme. The differences between units have
been characterized and the adaptation laws for the input and correctors have been
proposed in such a way that the algorithm converges to the optimal point. Besides, tuning
the parameters and choosing the sign and values for the gains of correctors have been

investigated.
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4 CHAPTER 4: CASE STUDY

This chapter is dedicated to the second objective that is to apply multi-unit method to

maximize output power of a PV array model.

4.1 Application 1: Two units and one input

4.1.1 PV cell/array modeling

As discussed in the literature review, two main models for PV cell are single-diode model
and double-diode model. Mono-crystalline PV cell has the best efficiency among all
commercially available technology. Because the single-diode model is the best model
fitted for Mono-crystalline PV cell and because of some limitations to develop
expressions for the 1-V curve parameters in two-diode model, single-diode model is
selected for modeling the PV cell/array in this research. A schematic of the single-diode

circuit model is shown in Fig 4-1.

-q 5 .I
o gy +
Iex Rey ¢

Fig 4-1: Single-diode model

According to Kirchhoff’s current law:

I=1Ipy—14—Igy Eq
46

The voltage-current characteristic equation of a solar cell can be derived by following

equations (Vachtsevanos and Kalaitzakis 1987).

PhOtO current: IPH = [ISC + KI(TC - TRef)]/lc Eq
47
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. ) _ qV+IRs)\

Diode current: I; = Ig [exp (_chA ) 1] Eq

48

Cell’s saturati £ I = Tng (1) exp [2Ea (-1 _ 2 E
ell’s saturation current: fg = Igg (Kef) exp E(Kef - T_C> q

49

Shunt current; gy = 2oits Eq 50

Rsn

Ao = — Eq 51

¢ ™ 1000 9

In these equations I is output current (A), V is voltage across the output terminal (V),
Voc 1s PV open-circuit voltage, Igq is short-circuit current at a 25°C and a insolation of
1kW/m?, I is the diode reverse saturation current, E, is the band gap energy (eV), K; is
the cell’s short-circuit current temperature coefficient (mA/°K), Tg.r and T, are the
cell’s reference and current temperatures (°K), G is the insolation or the intensity of solar
radiation (KW/m?), 4 is diode ideality factor (between 1 and 1.5), q is elementary charge
(1.6021x10*°C), and k is Boltzmann's constant(1.3806x10%J/°K).

Since a typical PV cell produces less than 2W at 0.5V-0.8V (depending on the cell
technology) approximately, the cells must be connected in series-parallel configuration
to produce enough voltage and power (Tsai et al. 2008; Nema et al. 2009). A number of
PV cells electrically connected to each other and mounted in a support structure or frame
is called a PV module (panel). Multiple modules can be wired together to form an array.
Fig 4-2 displays the position of PV cell in a PV module and the position of PV module in
a PV array. In general, the larger the area of a module or array, the more electricity will

be produced.
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‘ (panel)
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Fig 4-2: Schematic of PV cell in PV module and PV array (Knier 2002)

If we consider Ns cells in series to make a PV module, the terminal equation for the current and

voltage (I-V) relationship for the PV module is given by:

o (@) . 1] _ (w5rms) £q 52

I = IPH - NPIS KTcA Rert

The terminal equation for the current and voltage of the array arranged in Np parallel and

Ns series becomes: (Tsai et al. 2008)

exp (@) _ 1] _ (i) Eq

I:NPIPH_NPIS KTcA Rsn

53

For the simulation in this chapter, the numerical values for Eq 46 to Eq 50 are picked
from the manufacture’s datasheet of the PV module 215N from Sanyo (Ghaffari et al.

2012). These values are presented in the Table 4-1.

Table 4-1: Numerical values from PV module 215N Sanyo

Rs 0.00248 [Q]

Rgy 8.7 [Q]

E, 1.16 [eV]
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A 1.81

K; 1.96e-3 [mA/°K]
Isc 5.61 [A]

Ins 1.13e-6 [A]

A PV cell is modeled by MATLAB using a single diode model as a basic example.
Current-voltage (I-V) and power-voltage (P-V) characteristics of this PV cell are shown
in the following figures. In Fig 4-3, and Fig 4-4 it is assumed that 1; = 1 and the curves
are shown for different temperatures. It is observable that in fixed insolation, by
increasing the temperature, short-circuit current of the PV cell is increased, whereas the

maximum power point (MPP) is decreased. Therefore, the efficiency is decreased.

I[A]
w
T

0 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
V[V]

Fig 4-3: 1-V characteristics of PV cell for different temperatures and 1; = 1
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Fig 4-4: P-V characteristics of PV cell for different temperatures and 4; = 1

By simulating the model of PV cell, maximum power, optimal load or the resistance
related to the MPP, and the voltage of MPP are found for different temperatures. In the
Table 4-2, the results are presented.

Table 4-2: Optimal power, voltage, and load with 4, = 1

TC [OC] Pmax[w] RL—opt [ﬂ] Vmax [V]
25 3.0696 0.1100 0.5811
50 2.7825 0.1000 0.5275
75 2.4932 0.0900 0.4737
100 2.2052 0.0900 0.4455

In Fig 4-5 and Fig 4-6 it is assumed that T, = 25 °C and the 1-V and P-V curves are
shown for different insolation. By increasing the insolation, the short-circuit current of

the PV module is increased, and the MPP is increased as well.
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Fig 4-5: 1-V characteristics of PV cell for different insolations and T, = 25 °C
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Fig 4-6: P-V characteristics of PV cell for different insolatios and T, = 25 °C
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In the Table 4-3, maximum power, optimal load or the resistance related to the MPP, and

the voltage of MPP are shown for different insolations.
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Table 4-3: Optimal power, voltage, and load with T, = 25 °C

Ao [RW /m2] Prnax[W] Ry —op:[ 2] Vinax [V]
0.2 0.5712 0.4900 0.5291
0.4 1.1753 0.2600 0.5528
0.6 1.7979 0.1800 0.5689
08 2.4296 0.1400 0.5832
1 3.0696 0.1100 0.5811

As it is noted, by connecting PV cells in series and parallel we can achieve more output
power. For example by connecting Ng cells in series, Pmax IS multiplied by Ng
(increasing). Moreover, by connecting Np cells in parallel Pyax is multiplied by Np
(increasing). In Table 4-4, maximum power, optimal load, and the voltage of MPP are
shown for different configuration of PV cells. In these simulation T, = 25 °C and A; =
1. As it is seen, when Ns=2 and Np=2 the maximum power is equal to 12.0063 which is 4
times greater than the maximum power of Ns=1 and Np=1. In the PV module 215N of
Sanyo Ngs=72 and Np=1. We use this module for the optimization problem in this

research.

Table 4-4: Optimal power, voltage, and load for different configuration of PV cells with T, = 25 °C and
AG = 1

NS NP Pmax [W] RL—opt[-Q] Vmax [V]
1 1 3.0016 0.1 0.5479
1 2 6.0032 0.2 1.0957
2 1 6.0032 0.2 1.0957
2 2 12.0063 0.1 1.0957
36 1 110.5450 4.02 21.0806
72 1 221.0905 8.03 42.135
72 2 442.1801 4.02 42.1612

4.1.2 Formulation the optimization problem

Based on Jacobi's law, a power source will deliver its maximum power to a load when
the load has the same impedance as the internal impedance of the power source. But in
general, real loads are far from the ideal load for a PV array and this mismatch results in
major efficiency losses. Besides, the output current of PV arrays depend on atmospheric
conditions such as temperature and insolation. These parameters are regularly changing

so it’s important to track the maximum power point to keep a maximum efficiency at
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every instant. Based on these facts and the PV array model, optimization problem is

formulated as followed:
MaXR va(R) Eq 54

In order to have a suitable problem for applying multi-unit method, in all simulations the
optimization problem is translated to a minimization problem or Ming(—Ppy (R)). So the
objective function is output power and the decision variable or the input of multi-unit
algorithm is the load resistance. The disturbance inputs are ambient temperature (°K) and

insolation (kW/m?).

In Fig 4-7, the power curvature with respect to different loads (P-R curve) is shown for
different temperature and A; = 1. This static curve is convex so we can apply multi-unit

optimization method to obtain the maximum power.

250 T T T T T

27°C
37°C
47°C

P [Watt]

R [ohm]

Fig 4-7: P-R curves for PV module 215N from Sanyo with Ns=72 and Np=1
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4.1.3 Multi-unit optimization for two identical PV arrays

The multi-unit algorithm is used to find the maximum power and optimal load related to
that maximum value. In this part the case of two identical units is discussed. Therefore, it
Is assumed that the configuration of both arrays is the same, and also the conditions
(temperature and insolation) in which they work are similar. Based on the Fig 4-7, the

input of each unit is R and the output of each unit is P.

In Table 4-5 the results of applying multi-unit scheme on different configuration of the
PV module 215N Sanyo with true optimal values extracted by MATLAB optimization
toolbox are shown. In all runs T, = 25 °C and A; = 1. By tuning the gain of integrator
and selecting the offset A properly, the results achieved by multi-unit optimization
method are the same as their real values extracted by “fminunc” or “fminsearch”
functions in MATLAB. The letter N in the table represents the non-convergence multi-

unit scheme.

Table 4-5: Optimal power and load for PV module 215N Sanyo with T, = 25°C ,4; =1

Multi unit fminunc or fminsearch
s W [ Rl [ K A | Puax[W] | Riopl@]
72 1 221.09 8.03 -100 0.3 221.09 8.03
72 2 N N -100 0.5 442.18 4.02
72 2 442.18 4.02 -1.5 0.2 442.18 4.02
72 3 663.27 2.68 -0.5 0.1 663.27 2.68

4.1.4 Multi-unit optimization for two non-identical PV arrays

In this part, the multi-unit algorithm including the correction phase is applied for two

non-identical PV arrays. This algorithm works well for non-identical units when the

shapes of the graphs are the same and they can be somehow fitted to each other by a

slight shifting. To have different PV arrays we define three scenarios for configurations

of PV module 215N Sanyo. The differences could be in their temperature, insolation, or

number of parallel cells. Accordingly these are the defined scenarios:

1. Different 7., same A, , and same Np
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2. Different 2,5, same T, same Np

3. Different Np, same T, same A,

Fig 4-8 shows the power-resistor (P-R) curve for a PV array contains one PV module
215N Sanyo with A, = 1 and different temperatures. This figure is related to the scenario
1. Fig 4-9 shows the PR curve for a PV array which contains one PV module 215N Sanyo
with T, = 25 °C and different insolations. This figure is related to the scenario 2. Finally,
Fig 4-10 shows the P-R curve for a PV array contains different configuration of PV
module 215N Sanyo with T, = 25 °C and A; = 1. This means that the conditions are the

same but the number of parallel cells is different which is related to the scenario 3.
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Fig 4-8: P-R Curves for a PV array with 4; = 1, Ng = 72, Np = 1, and different temperatures
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Fig 4-9: P-R Curves for a PV array with T, = 25 °C, Ng = 72, Np = 1, and different insolations
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Fig 4-10: P-R Curves for a PV array with T = 25 °C, 4;
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Based on Fig 4-8, Fig 4-9, and Fig 4-10, and because of the similarities between the curves,
two curves are chosen from each figure to form the two different units in final scenarios

to apply multi-unit algorithm. Final scenarios are shown in the Table 4-6.

Table 4-6: Final scenarios to apply multi-unit algorithm for two non-identical units

Scenario Ngq Ny, Npq Np; Ty Tc, A1 A2
1 72 72 1 1 30°C 25°C 1 1
2 72 72 1 1 25°C 25°C 0.8 1
3 72 72 4 5 25°C 25°C 1 1

4.1.4.1 Scenario 1

In this part the initial point for multi-unit algorithm is chosen R, = 7Q, so based on the
two P-R curves for scenario 1, the initial values for correctors are 5, = R, — R, = 0, and
Ao = P,(Ry) — Pi(Ry) = 2.3. Among the numerous runs for this scenario, 8 runs are
selected to show the importance of tuning the gains and parameters in multi-unit method
with correctors. First, a proper value for A is chosen based on the difference between the
optimal points on P-R static curves of each units. Then the parameter a is set. After that,
the gains of multi-unit and correction phases are chosen with some trial and error. In
Table 4-7 the values of parameters in each run are displayed. T; and T, are the periods for
correction signals. Table 4-8 shows the optimal points and values, and the values of
estimated correctors by applying the multi-unit with correctors for the 8 runs. The correct
values of the optimal resistors and output powers for each unit which were calculated by
MATLAB optimization toolbox are displayed in Table 4-9 to evaluate the functionality of
multi-unit method. By comparing run 8 and 3, it can be realized that the ratio of A to a is

crucially important to make the algorithm converges to optimal points.

Table 4-7: summary of parameters in applying multi-unit algorithm for two non-identical PV arrays
(scenario 1)

Run kmu A a kB k)t Tl TZ
1 -0.01 0.5 0.5 0.001 | 0.01 200 100
2 -0.01 0.5 0.5 0.01 0.01 200 100
3 -0.01 -0.5 0.5 0.01 0.1 200 100
4 -0.1 0.5 0.5 0.01 0.01 200 100
5 -0.1 0.5 0.5 0.01 0.1 200 100
6 -0.1 0.5 0.2 0.01 0.1 200 50
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7 -0.1

0.5

0.5

0.01

0.1

200

200

8 -0.1

0.5

0.09

0.01

0.1

200

100

Table 4-8: summary of results in applying multi-unit algorithm for two non-identical PV arrays (scenario

1)
Run | R; R; P; P; B 2
1 7.4116 | 7.5429 | 215.3949 | 219.4715 | -0.1312 4.0735
2 7.4287 | 7.6074 | 215.5098 | 219.8871 | -0.1675 3.8224
3 7.4051 | 7.5365 | 215.3501 | 219.4273 | -0.1314 4.0772
4 7.4287 | 7.6074 | 215.5098 | 219.8871 | -0.1675 3.8224
5 7.4110 | 7.5423 | 215.3904 | 219.4675 | -0.1313 4.0772
6 7.7079 | 7.8388 | 216.7577 | 220.8543 | -0.1309 4.0966
7 7.6610 | 8.2923 | 216.6269 | 220.7040 | -0.1313 4.0772
8 7.8174 | 7.9483 | 216.9479 | 221.0475 | -0.1309 4.0996

Table 4-9: summary of results in using MATLAB optimization toolbox for each PV arrays (scenario 1)
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221.1
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4.1

Fig 4-11shows the graphs for input signals or resistors, and the corrector £ for the run 8.

The graphs for the corrector 1, output power signals, and correction signal in run 8 are
displayed in Fig 4-12.
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Fig 4-12: Output power signals, corrector 4, and correction signal in multi-unit scheme with correction for
two non-identical PV arrays (run 8)

4.1.4.2 Scenario 2

In this part the initial point for multi-unit algorithm is chosen R, = 7, so based on the
two P-R curves for scenario 2, the initial values for correctors are 8, = 0, and 1, = 0.
Among the numerous runs for this scenario, 2 runs are selected to show the importance of
tuning the multi-unit gain. In Table 4-10 the values of parameters in each run are
displayed. Table 4-11 shows the optimal points and values, and the values of estimated
correctors by applying the multi-unit with correctors for the 2 runs. Finally, the correct
values of the optimal resistors and output powers for each unit which were calculated by
MATLAB optimization toolbox are displayed in Table 4-12. By comparing Table 4-11,
and Table 4-12 it is realizable that in run 2 the optimal points and values are more near to

their true values than in run 1.

Table 4-10: summary of parameters in applying multi-unit algorithm for two non-identical PV arrays
(scenario 2)

Run | kpy | A | a | kg | Ky T, T,
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1 -0.01 2 0.5 0.001 0.01 200 100

2 -0.1 2 0.5 0.01 0.1 200 100

Table 4-11: summary of results in applying multi-unit algorithm for two non-identical PV arrays (scenario
2)

Run | R, R} P; P; B 2

1 9.0329 | 8.8670 | 171.0585 | 216.4053 | 1.8341 | 45.3468

2 9.3669 | 7.5329 | 174.0551 | 219.4016 | 1.834 | 45.3471

Table 4-12: summary of results in using MATLAB optimization toolbox for each PV arrays (scenario 2)

R; Ry Py P B A

10 8 175 221.1 2 46.1

Fig 4-13 shows the graphs for input signals or resistors, and the corrector § for the run 2.
The graphs for the corrector A, output power signals, and correction signal in run 2 are

displayed in Fig 4-14.
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Fig 4-13: Resistors and corrector B in multi-unit scheme with correction for two non-identical PV arrays
(run 2)
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Fig 4-14: Output power signals, corrector 4, and correction signal in multi-unit scheme with correction for
two non-identical PV arrays (run 2)

4.1.4.3 Scenario 3

In this part the initial point for multi-unit algorithm is chosen R, = 1, so based on the
two P-R curves for scenario 3, the initial values for correctors are g, = 0, and 1, = 200.
Among the numerous runs for this scenario, 6 runs are selected. In Table 4-13 the values
of parameters in each run are displayed. Table 4-14 shows the optimal points and values,
and the values of estimated correctors by applying the multi-unit with correctors for the 6
runs. The symbol N is chosen to show that the algorithm does not converge. The gains
and parameters of the first two runs lead to convergence to optimal points and values. In
run 3, changing the gain of multi-unit causes the algorithm to diverge. In run 4 the
parameter a is decreasing comparing to the run 2 but the other parameters are the same.
In run5 and run 6, the gains of correctors are changed which lead the algorithm not

converging.

The correct values of the optimal resistors and output powers for each unit which were

calculated by MATLAB optimization toolbox are displayed in Table 4-15.
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Table 4-13: summary of parameters in applying multi-unit algorithm for two non-identical PV arrays
(scenario 3)

Run Kmu A a kB k, Ty T,
1 -0.001 1 0.2 0.0005 0.1 200 100
2 -0.001 0.4 0.08 | 0.0005 0.1 200 100
3 -0.01 0.4 0.08 | 0.0005 0.1 200 100
4 -0.001 0.4 0.05 | 0.0005 0.1 200 100
5 -0.001 0.4 0.08 | 0.0005 0.2 200 100
6 -0.001 0.4 0.08 0.001 0.2 200 100

Table 4-14: summary of results in applying multi-unit algorithm for two non-identical PV arrays (scenario
3)

Run | R; R; P; P; B 2
1 1.559 2.146 787 995 0.4126 208
2 1.796 1.805 864 1082 0.3912 219
3 N N N N N N
4 N N N N N N
5 N N N N N N
6 N N N N N N

Table 4-15: summary of results in using MATLAB optimization toolbox for each PV arrays (scenario 3)

Ri Ry Py Py B 4

2 1.6 884.3 1105 0.4 220.7

Fig 4-15 and Fig 4-17 show the graphs for input signals or resistors, and the corrector § for
the run 1 and run 2. The graphs for the corrector A, output power signals, and correction
signal in run 1 and run 2 are displayed in Fig 4-16 and Fig 4-18 respectively. Comparing
the results of these two runs shows that by choosing the smaller A and a in run 2, but
keeping their ratio similar to run 1, the algorithm converges to more accurate optimal

points and values. This ratio is deducted by several trial and errors.
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Fig 4-16: Output power signals, corrector 4, and correction signal in multi-unit scheme with correction for

two non-identical PV arrays (run 1)
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Fig 4-17: Resistors and corrector B in multi-unit scheme with correction for two non-identical PV arrays
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two non-identical PV arrays (run 2)
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4.2 Brief conclusion

In this chapter, a single-diode model for a PV cell and a PV array has been presented.
This model has been made and the IV and PV characteristics of the model have been
simulated by MATLAB. Then the optimization problem regarding to MPPT has been
introduced and the multi-unit algorithm has been applied on the model to solve the

problem in both two identical and non-identical units.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The main focus of this research is looking for possible ways to develop multi-unit
optimization method with respect to the number of units and the number of inputs. There
might be too many ways to think about this topic but we have tried to develop this
algorithm for three non-identical units and two inputs to reach one step ahead of the
previous works. Besides the theoretical aspect we tried to apply this method for PV arrays
which can have many units in its nature. In particular, these are the achievements of this

research:

e Propose an structure for multi unit optimization algorithm in the case of three
non-identical units and two inputs

e Propose two different correction signals to compensate the differences between
the units in the case of three non-identical units and two inputs

e Develop the adaptation laws needed for multi-unit phase and correction phase in

the case of three non-identical units and two inputs
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e Investigate some rule of thumb to tune gains for multi-unit phase and correction
phase

e Find a proper model for different PV cell configuration in a manner that multi-
unit method can be applied on them

e Apply the algorithm for different PV cell configuration in a PV array in the case
of two units and one input

e Successfully find the maximum power point for PV arrays by the multi-unit

algorithm

5.2 Recommendation

The following unexplored topics are recommended for future research:

e Stability analysis for the proposed algorithm in case of three non-identical units
and two inputs
e Find a suitable real case study to apply the developed multi-unit algorithm in the

case of three non-identical units and two inputs.
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