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RÉSUMÉ 

L’optimisation est devenue un domaine clé dans l’industrie de transformation pour rester 

compétitif sur le marché mondial, s’adapter aux nouvelles contraintes environnementales 

et supporter l’augmentation des coûts énergétiques. Pour répondre à ces nouvelles 

exigences, les industries se doivent d’optimiser leurs installations afin de réduire les 

coûts d'exploitation, améliorer l'efficacité de la production, répondre aux spécifications 

de qualité des produits et sécurité des procédés. Avec le développement de nouvelles 

technologies de contrôle, il est aujourd’hui possible de maintenir un procédé à son point 

d’opération optimal. 

L’optimisation en temps réel (RTO) est un outil permettant d’amener et maintenir un 

système à son point de fonctionnement optimal. Ce domaine de recherche a reçu une 

attention considérable dans l'industrie des procédés. Les méthodes d’optimisation en 

temps réels permettent de contrôler le comportement d’un procédé en ajustant les points 

de consigne des régulateurs de procédé pour suivre les changements de conditions 

opératoires et les perturbations externes qui prennent place au sein d’une usine. 

Parmi les différentes approches d’optimisation en temps réel, les méthodes de 

commande extrémale sont celles qui permettent de satisfaire les conditions nécessaires 

d'optimalité. Dans la commande extrémale, l'optimisation est traitée comme un problème 

de contrôle du gradient de la fonction objectif à zéro. La principale différence entre les 

diverses méthodes de commande extrémale repose sur la façon dont le gradient est 

estimé. La plupart de ces méthodes impliquent l’application d’une perturbation 

temporelle périodique. De plus,  afin d’isoler les effets de la dynamique du système sur 

le gradient estimé, une séparation de plusieurs échelles de temps est requise. 

La méthode d’optimisation multi-unités est une méthode de commande extrémale dans 

laquelle la perturbation est appliquée entre les unités plutôt que sur un domaine 

temporel. Une séparation d'échelle de temps n'est plus nécessaire. La convergence est de 

ce fait plus rapide.  
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La méthode d’optimisation multi-unités nécessite la présence de plusieurs unités 

identiques, chacune d'entre elles fonctionnant à des valeurs d'entrée qui diffèrent par une 

constante prédéterminée de décalage. Bien que cette méthode soit utile lorsque le 

système se compose de plusieurs unités, la convergence au point optimal a seulement été 

prouvée pour des unités au sein d’un procédé parfaitement identiques ou lorsqu’il y a 

seulement deux unités non identiques. En pratique, cette hypothèse est rarement vérifiée 

puisqu’un procédé industriel réel peut avoir plus de deux unités non identiques. Par 

conséquent, dans cette étude, une méthode d'optimisation basée sur l’optimisation multi-

unités est proposée pour  répondre à cette problématique. L'algorithme proposé est pour 

le cas d'une fonction objectif statique convexe avec deux entrées. L’algorithme comporte 

entre autre des corrections successives pour compenser les différences entre les surfaces 

statiques des fonctions objectif associées à chaque unité. 

La dernière partie de cette thèse contient l'étude de cas où la méthode d'optimisation 

multi-unités est utilisée pour déterminer la puissance électrique maximale de panneaux 

photovoltaïques. L'électricité est principalement produite à partir de combustibles 

fossiles, de combustible nucléaire et de ressources renouvelables telles que le soleil, le 

vent, l'eau et la biomasse. L'énergie solaire est de plus en plus considérée pour la 

production de bioénergie et ce, en raison des récents progrès dans la fabrication de 

panneaux solaires et de la volatilité des prix des combustibles fossiles. Un inconvénient 

qui freine toutefois l'utilisation de l'énergie solaire est son coût d'investissement élevé. 

Une façon de réduire les coûts et d’augmenter la rentabilité des panneaux solaires est 

d'améliorer l'efficacité des panneaux  photovoltaïques (PV) en termes de puissance 

électrique de sortie. 

La tension et le courant des panneaux photovoltaïques dépendent de la température, de 

l'ensoleillement, de l'angle du rayonnement solaire, et d'autres conditions 

atmosphériques. Comme ces paramètres sont modifiés régulièrement, il est important de 

suivre le point de puissance maximale d'exploitation (MPOP) pour garder un maximum 

d'efficacité à chaque instant. Ainsi, des ajustements en temps réel de la charge externe 

appliquée aux panneaux photovoltaïque sont nécessaires afin de prendre en compte la 

puissance maximale des panneaux photovoltaïques. Dans cette recherche, la méthode 
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d’optimisation multi-unités est appliquée pour résoudre le problème de suivi du point de 

puissance maximale des panneaux photovoltaïques. Les résultats confirment la force de 

la méthode d'optimisation multi-unités et permettent de vérifier également le fait que les 

différences entre les unités peuvent être corrigées pour que chacune d’entre elles 

atteignent son optimum.  
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ABSTRACT 

Optimization has become a key area in process industries due to the increasing global 

market competition, environmental constraints and energy costs. These factors induce 

operating companies to optimize plant operation in order to reduce operating cost, 

improve production efficiency, meet product quality specifications, and process safety. 

Besides, as better controllers are developed to adequately control a plant; the focus can 

be shifted to the solution of controller designs that guarantee optimal plant performance.   

Real-time optimization (RTO) is a valuable tool, to bring and maintain a system at its 

optimal operating point that has received considerable attention in the process industry. 

Real-time optimization methods could monitor the behavior of processes, adjusting the 

set points of process controllers to track significant changes in the plant optimum.  

Among different approaches of RTO, extremum-seeking control methods are those 

which are able to satisfy the necessary conditions of optimality. In other words, in 

extremum-seeking control methods, optimization is recast as a problem of controlling 

the gradient of objective function to zero. The main difference between the various 

extremum-seeking methods lies in the way the gradient is estimated. Most of these 

schemes involve injecting a periodic temporal perturbation signal and several time-scale 

separations are necessary to isolate the effects of the system dynamics on the estimated 

gradient.  

Multi-unit optimization is an extremum seeking control method in which the 

perturbation is along the unit dimension rather than in time domain so time-scale 

separation is not needed and the convergence is faster for slow dynamic processes. This 

method requires the presence of multiple identical units, with each of them operated at 

input values that differ by a pre-determined constant offset. Although this method is 

useful when the system consist of multiple units, convergence to optimal point has been 

proven for systems with many identical units or two non-identical units, whereas a real 

industrial system model could have more than two non-identical units. Therefore, in this 

research, an optimization procedure based on multi-unit method is developed with 

respect to the number of units and number of inputs. The proposed algorithm is for the 



ix 
 

 

case of a static convex objective function with two inputs. It consists of sequential 

corrections to compensate the differences between static surfaces of the objective 

functions related to each unit.    

The last part of this thesis contains the case study of the multi-unit optimization method 

to track maximum power point of photovoltaic arrays. Electricity is mainly produced 

from fossil fuels, nuclear fuel and renewable resources such as sun, wind, water and 

biomass. Solar energy is at the forefront of clean and renewable resources and, due to 

advances in solar panel manufacturing and because of the volatile fuel costs, its 

advantage is increasing. But the actual drawback which still exists in using solar energy 

is its high investment cost. One way to reduce costs and increase the profitability of solar 

panels turns out to enhance the efficiency of photovoltaic (PV) arrays in terms of output 

power.  The voltage and current of PV arrays depend on temperature, insolation, angle of 

solar irradiance, and other atmospheric conditions. As these parameters are regularly 

modified, it’s important to track the maximum power operating point (MPOP) to keep a 

maximum efficiency at every instant. Thus, real-time adjustments of the external load 

are required to take maximum power from PV panels. In this research, multi-unit is 

applied as a recent technique to solve maximum power point tracking problem for PV 

arrays. The results confirm the strength of the multi-unit optimization method. It also 

verifies the fact that differences between the units can be corrected leading each of them 

to their respective optima. 
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𝐼𝑆𝐶  Short circuit current [A] 

𝐼𝑃𝐻 Photo current [A] 

𝐼𝑑 Diode current [A] 

𝑰𝑺 PV cell’s saturation current [A] 

𝑰𝑺𝑯 Shunt current [A] 

𝐼𝑅𝑆 Diode reverse saturation current [A] 

𝐸𝑔 Band gap energy [eV] 

𝐾𝐼  PV cell’s short-circuit current temperature coefficient [mA/°K] 

𝑇𝑅𝑒𝑓 PV cell’s reference temperature [°K] 

𝑇𝐶  PV cell’s current temperatures  [°K] 

𝐺 Insolation or the intensity of solar radiation 

𝐴 Diode ideality factor (between 1 and 1.5) 

𝑞 Elementary charge (1.6021×10-19C) 

𝑘 Boltzmann's constant (1.3806×10-23J/°K) 

𝑃𝑚𝑎𝑥  Maximum power [W] 

𝑉𝑚𝑎𝑥  Voltage of MPP [V] 

𝑅𝐿−𝑜𝑝𝑡 Optimal load or the resistance related to the MPP [Ω] 

I-V Current-voltage characteristic 

P-V Power-voltage characteristic 
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CHAPTER 1: INTRODUCTION 

1.1 Context 

In the past two decades, increasing economic, quality, safety and environmental 

pressures have led to a greater need than ever for operating companies to explore 

possible paths for improving process profitability. Optimization is a key area in control 

theory to reduce operating cost and meet product specifications (Zhang and Forbes 

2006).  

Optimal operation is particularly difficult to achieve when the plant models are 

inaccurate or in the presence of process disturbances.  In response to these difficulties, 

real-time optimization (RTO) has received considerable attention in the process industry. 

The RTO effectiveness depends on its ability to quickly and effectively identify/track the 

changing optimal plant operation.  The ability to track changes in turn, depends on 

having sufficient plant information to update parameter estimates, and improving the 

model predictions of the process behavior (Pfaff et al. 2006).  

Real-time optimization methods can be classified into two categories based on how the 

problem is solved:  numerical or classical approach and extremum seeking control 

(Woodward et al. 2009a). The two-phase or the classical approach is the model-based 

repeated optimization where a model is adapted using the available measurements. Then, 

a numerical optimization is performed on the updated model. The other approach to real-

time optimization is following the necessary condition of optimality along the evolution 

of the system; controlling the gradient to zero in unconstrained problems is such a case 

(Srinivasan 2007). This approach is called extremum seeking control.   

Extremum seeking control is a model free optimization approach which is significantly 

important when there are difficulties in determining the model parameters. In this 

approach, optimization is recast as a problem of controlling the gradient of an objective 

function to zero. Differences in gradient calculation lead to different forms of extremum 

seeking control methods which are mainly categorized in three groups: perturbation, 
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adaptive extremum seeking, and multi-unit optimization. In perturbation methods, 

gradient is computed by applying an input perturbation and using a correlation between 

the input and output variations (Krstic and Wang 2000). In adaptive extremum seeking, 

the gradient is estimated based on a process model that is updated using available online 

measurements (Guay and Zhang 2003). In multi-unit optimization, the gradient is 

computed as a finite difference between the outputs of multiple identical units with 

slightly different input values (Srinivasan 2007).  

In the last method, convergence to the optimal point was proven via Lyapunov analysis 

and it was faster than for the perturbation method. But because it was assumed that units 

are identical, which was a very strong assumption, in 2007, Woodward et al. analyzed  a  

case with non-identical units (Woodward et al. 2007). They showed that for process with 

two non-identical units, stability is not always guaranteed and moreover the multi-unit 

scheme does not necessarily converge to the desired optimum. To avoid instability 

problem, correctors were proposed for systems with two non-identical units with one 

input (Woodward et al. 2009a; Woodward et al. 2010). However, real systems might 

have more than one input and more than two non-identical units. So, following these 

researchers, multi-unit optimization method is modified in this work for three non-

identical units and two inputs. 

To apply the developed method, photovoltaic array is chosen as a system with multiple 

units. The development of clean energy production has grown significantly around the 

world. However, several practical issues must be overcome to continue their growth. The 

actual drawback which still exists in using solar energy is its high cost (Cabal et al. 

2007). Thus, developing methods in order to optimize the efficiency of an existing solar 

energy system becomes more and more important. The most readily available solar 

technology is the Photovoltaic (PV) array. It consists of multiple photovoltaic cells 

providing current-voltage (or IV) curves depending on temperature, insolation, angle of 

solar irradiance, and other atmospheric conditions. As these parameters are regularly 

changed, it’s important to track the maximum power point (MPP) to keep a maximum 

efficiency at every instant. When the external loads are equal to the internal resistance of 
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the cell, the maximum power is produced. Thus, real-time adjustments of the external 

load are required to produce maximum power by PV arrays.  

Regarding these features, in the current research multi-unit optimization method is 

developed for three non-identical units and two inputs. The proposition includes a static 

optimization problem with a convex objective function of two variables. By means of 

adding correction phase to the multi-unit phase, the differences between the units in 

three dimensions are compensated. Besides the theoretical aspect, this method is applied 

for online maximum power point tracking of PV arrays.   

1.2 Problem Statement 

The definition of the problem under question in this thesis is as follows: 

In some systems such as solar energy and wind systems, the parameter variations are fast 

so optimal operating point is varying. To seek for this varying optimal point there is a 

need for an online optimization. Real-time optimization (RTO) is a valuable tool is this 

area which tries to bring and maintain a system at its optimal operating point. One of the 

model free approaches of RTO is extremum seeking control method which has proven 

stability. Based on the way the gradient is estimated, extremum seeking control methods 

are different from each other. Multi-unit optimization is an extremum seeking control 

method in which the gradient is calculated based on differences between the outputs of 

each unit when a constant offset is introduced between the units’ inputs. Although this 

method is useful when the system consists multiple units, convergence to optimal point 

has been proven provided identical units or two non-identical units.  

But industrial process has more than two non-identical units and more than one input, so 

in this research, an optimization procedure based on multi-unit method is developed with 

respect to the number of units and the number of inputs. The optimization problem 

considered in this study is local optimization of a static and convex objective function of 

two variables i.e. two inputs for each unit. Besides, the multi-unit method is applied to 

track the maximum power point of PV arrays. This case study is chosen because of its 

natural configuration which consists of multi PV cells. 



4 
 

 

1.3 Main Objective 

• To develop multi-unit optimization method with respect to the number of non-

identical units and the number of inputs and apply it to maximize the power 

provided by a PV array. 

1.3.1 Specific Objectives 

• To develop an optimization procedure based on multi-unit method for three non-

identical units and two inputs. 

• To maximize output power of a PV array by applying the multi-unit method. 

1.4 Structure of the Thesis 

Following chapter one which includes the introduction, chapter two is dedicated to 

literature review and has four parts. In part one, real-time optimization (RTO) is 

discussed. Following that, in part two, extremum seeking control is explained as an 

approach of RTO. At the end of this part, a comparison between classical approach of 

RTO and extremum seeking control is done and multi-unit optimization is presented as a 

new method of extremum seeking control. Part three is about multi-unit optimization 

approach. Finally in part four, PV cell’s modeling and output power maximization are 

discussed. At the end of this chapter, a brief critical analysis is done.  

Third chapter presents the methodology of this research in which the objectives are 

defined and the overall methodology is mentioned. Then the multi-unit optimization 

method is explained for the case of two units and some simulation results show the 

functionality of this method. Following this part, development of the multi-unit 

algorithm for three non-identical units is discussed. The improvement in multi-unit 

method is obtained through the proposed adaptation laws applied to a generic 

mathematical example. At the end of this chapter, some guidelines for parameter tuning 

are addressed following by a brief conclusion of the chapter. 

Fourth chapter is devoted to the application of multi-unit method to a PV array. First 

modeling of a PV array is described. After that the optimization problem related to PV 



5 
 

 

arrays is defined. Then the multi-unit optimization method is used to maximize the 

output power of PV arrays with different configurations. Both identical and non-identical 

cases are considered to perform multi-unit for two units and one input and simulation 

results are presented.  

Finally, chapter five is dedicated to conclusions, and recommendations for the upcoming 

research works. 

1.5 Contributions 

Multi-unit optimization method is developed for three non-identical units and two inputs. 

Besides, the method is applied to the PV case study and maximum power of a PV array 

is achieved.  
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2 CHAPTER 2: RESEARCH REVIEW 

2.1 Real-time optimization (RTO) 

Many companies are turning to economic optimization to improve their operating 

efficiency and hence increase their competitive advantage in the global marketplace. 

Real-time optimization (RTO) is one of the tools used in this case (Darby and White 

1988). The important factors which allowed optimizing process economics in real-time 

are availability of increasingly more powerful computers, improving process modeling 

techniques, and evolving advanced control strategies (Zhang and Forbes 2006).  In any 

process, the optimum plant operating conditions may drift as a result of process changes. 

The main role of the RTO is to follow the displacement of the optimum points in the 

process in order to maintain the plant at its most profitable operating point. RTO 

effectiveness is governed by its ability to quickly and effectively identify the changing 

optimal plant operation at any given time (Zhang and Forbes 2000). 

A schema presented by Marlin and Hrymak in 1997 showed the place of the RTO in the 

supervisory layer of the computer integrated manufacturing (CIM) structure and provided 

the bridge between plant scheduling and the control system (Marlin and Hrymak 1997). 

2.2 Classical RTO structure  

A typical structure of model-based RTO system approach is shown in Fig  2-1. The two-

phase approach (Chen and Joseph 1987) is the most widely used method for model 

updating and model-based optimization in RTO.  
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Fig  2-1: Typical structure of a model-based RTO system approach (Zhang and Forbes 2006) 

The RTO loop is an extension of feedback control system and consists of subsystems for 

measurement validation, steady-state detection, process model updating, model-based 

optimization, and command conditioning (Darby and White 1988). The goal of this 

closed-loop adaptation is to drive the operating point towards the actual plant optimum 

despite of inevitable structural and parametric model mismatch (Chachuat et al. 2009). 

Once the plant operation reaches a steady state, plant data are collected and validated to 

avoid gross errors in the process measurements (White 1997).The measurements 

themselves might be reconciled using material and energy balances to ensure consistency 

of the data set used for model updating. After validation, the measurements are used to 

estimate the model parameters to ensure that the model correctly represents the plant at 

the current operating point. Then, by using the updated model, the optimum controller 

set points are calculated and transferred to the control system after a check by the 

command-conditioning subsystem (Marlin and Hrymak 1997; Sequeira et al. 2002). 

2.2.1 RTO performance  

The performance of RTO depends on its ability to quickly and effectively identify the 

changing optimal plant operation.  The ability to track changes, in turn, depends on 

having sufficient plant information to update parameter estimates and to improve the 

model predictions of the process behavior (Pfaff et al. 2006). Some comprehensive 
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discussions of RTO technology were done in 90’s decade (Marlin and Hrymak 1997; 

White 1997; Perkins 1998). Although the two-phase approach attempts to solve the RTO 

problem by updating the imperfect model, it will not necessarily converge to the correct 

optimum (Durbeck 1965; Biegler et al. 1985; Forbes et al. 1994). Similarly, there has 

been some recognition that the traditional two-step algorithm (Chen and Joseph 1987) of 

independent phases for model updating and model-based optimization may lead to poor 

RTO performance in the presence of plant/model mismatch. To address the plant/model 

mismatch issue, some methods have been proposed. These methods can be categorized 

into two classes: (1) those that modify the RTO problem directly (Roberts 1979; Becerra 

and Roberts 1996) and (2) those that use modified adaptive control ideas to suit RTO 

applications e.g. (Bamberger and Isermann 1978; Garcia and Morari 1981; McFarlane 

and Bacon 1989; Zhang and Roberts 1991). Although different algorithms for predicting 

the optimal plant operation are used in each of these methods, all of them use 

perturbation of the manipulated variables as a basis for compensating the plant/model 

mismatch. Thus, these approaches are called perturbation based methods (Zhang and 

Forbes 2006). 

Zhang and Forbes (2000) provided a detailed discussion on RTO performance. They 

discussed three factors that involve in RTO system performance: (1) long term offset 

from the optimal plant operation, primarily caused by plant/model mismatch; (2) 

transmission of measurement noise; and (3) convergence characteristics (transient 

behavior) of the RTO system. Each of these factors depends on the process model, the 

model updating technique and the optimization algorithm. Besides, they proposed an 

RTO performance metric and design criterion called extended design cost which showed 

improvement in both transient and steady-state behavior of the closed-loop RTO system 

(Zhang and Forbes 2000). Following this work, in 2006, they did a critical performance 

comparison of three representative techniques from existing perturbation-based RTO 

methods, based on the Extended Design Cost performance criterion. Furthermore, they 

presented systematic methods for developing bounds on the two critical performance 

characteristics: convergence behavior and performance effects of required perturbations 

(Zhang and Forbes 2006). 
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In a research by Sequeira et al., 2004, the classical approach to RTO and its benefits and 

drawbacks were reviewed. Besides, they established a new methodology called real-time 

evolution (RTE) as an alternative to classical RTO or on-line model-based optimization 

(Sequeira et al. 2002). The difference between their proposed method and RTO lies in 

the fact that in RTE waiting for steady state is not necessary. Also, in 2004 they 

proposed a method for tuning RTE parameters (Sequeira et al. 2004). 

Pfaff et al., 2006, proposed an improvement to RTO performance by integrating 

information generation using experimental design techniques into the RTO algorithm to 

reduce uncertainty in the final optimization results (Pfaff et al. 2006). 

The two main causes of the RTO system not converging to the plant optimum are 

plant/model mismatch and uncertainty in the adjustable parameter estimates (Pfaff et al. 

2006; Marchetti et al. 2009). Two main classes of optimization methods are available for 

handling uncertainty based on measurements availability. In the absence of 

measurements, a robust optimization approach is normally used whereas when 

measurements are available, an adaptive optimization method is preferred. 

Measurement-based adaptive optimization can be classified into explicit and implicit 

schemes, depending on whether or not a process model is used online. Fig  2-2 shows 

these two schemes. Explicit schemes involve two steps: first, a model update and second, 

numerical optimization based on the updated process model. The procedure is also called 

repeated optimization. These ideas have been widely discussed in the literature and used 

in the context of both static optimization (e.g., RTO) and dynamic optimization (e.g., 

model predictive control, MPC). Implicit schemes use measurements to update the inputs 

directly and optimality can be achieved by choosing an appropriate control structure that 

meets the necessary conditions of optimality (NCO). NCO tracking is formulated as a 

control problem that slowly moves the inputs toward the optimal solution in contrast to 

numerical re-optimization that provides input values that jump to the computed optimal 

solution. Besides, it has been shown that the use of NCO tracking (implicit scheme) can 

greatly simplify the implementation of optimal operation in comparison to explicit 

scheme using a process model (Srinivasan and Bonvin 2007).   
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Explicit scheme  
(Process model is used online) 

Implicit scheme 
 (Process model is not used online) 

Fig  2-2: Explicit and implicit schemes  (Srinivasan and Bonvin 2007) 
 

2.2.2 Classification of real-time optimization  

2.2.2.1 Classification based on type of adaptation 

RTO methods can be classified in different ways. Based on the type and the objective of 

adaptation, it can be classified into model-parameter adaptation, modifier adaptation, and 

direct input adaptation (Chachuat et al. 2009). Model-parameter adaptation updates the 

parameters of the process model and repeats the optimization. Modifier adaptation 

modifies the constraints and gradients of the optimization problem and repeats the 

optimization. Direct input adaptation turns the optimization problem into a feedback 

control problem and implements optimality via tracking of appropriate controlled 

variables. Classification of real-time optimization approaches based on adaptation 

strategy, feasibility and optimality is shown in Table  2-1.The two NCO parts, namely the 

active constraints (related to the problem of feasibility) and the reduced gradient (related 

to the issue of optimality) are shown in the rows of table (Chachuat et al. 2009). 
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Table  2-1: Classification of real-time optimization approaches based on adaptation strategy, feasibility and 
optimality (Chachuat et al. 2009) 

 Real-time optimization 

 Model parameter 
adaptation Modifier adaptation Direct input adaptation 

Adaptation for 
feasibility 

Constraints 

Two step approach 
(Chen and Joseph, 
1987; Marlin and 
Hrymak, 1997) 

Bias Update (Forbes and 
Marlin, 1994) 

Constraint adaptation 
(Chachuat et al., 2008) 

Active constraint 
tracking (Maarleveld and 
Rijnsdrop, 1970; 
Srinivasan et al.,2001) 

Adaptation for 
optimality 

Constraints and 
gradients 

Two step approach 
(Chen and Joseph, 
1987; Marlin and 
Hrymak, 1997) 

Identification for 
optimization 
(Srinivasan and 
Bonvin,2002) 

Integrated system 
optimization and 
parameter estimation 
(ISOPE) (Roberts, 1970; 
Tatjewski, 2002; Brdys and  
Tatjewski, 2005) 

Gradient correction (Gao 
and Engell, 2005; Marchetti 
et al., 2009) 

Self-optimizing control 
(Skogestad, 2000; 
Govatsmark and 
Skogestad, 2005) 

Extremum seeking 
(Ariyur and Krstic, 2003) 

NCO tracking (Francois 
et al., 2005; Srinivasan et 
al., 2008) 

2.2.2.2 Classification based on the presence of a model 

 Based on presence of model, RTO methods can be classified into model-based 

approach, fix model approach, and model free approach. The classical approach is a 

model-based approach that consists of model adaptation using available measurements 

and numerical optimization which is performed on the updated model. So, a wealth of 

literature has been devoted to model-based RTO e.g. (Marlin and Hrymak 1997; Zhang 

et al. 2002). The classical two-step approach works well when there is little structural 

plant/model mismatch, and the changing operating conditions provide sufficient 

excitation for estimating the uncertain model parameters. As these conditions are rarely 

met in practice, fixed-model and model-free methods which do not rely on model-

parameter update have gained in popularity recently (Marchetti et al. 2009).  

Fixed-model methods use both a nominal process model and appropriate measurements 

to find optimal point by an iterative scheme. The process model is embedded within a 

nonlinear programming (NLP) problem that is solved repeatedly. However, the 

measurements are used to update the cost and constraint functions in the optimization 

problem instead of refining the parameters of a first principles model from one RTO’s 
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iteration to the next. Thus, it achieves a better approximation of the plant cost and 

constraints at the current point (Forbes and Marlin 1994; Gao and Engell 2005; Chachuat 

et al. 2008; Chachuat et al. 2009).  

Model-free methods do not use a process model online to implement the optimization. 

These methods can be classified into two approaches.  In the first one, successive 

operating points are determined by mimicking iterative numerical optimization 

algorithms e.g. (Box and Draper 1969; Garcia and Morari 1981). The second approach to 

model-free methods consists in recasting the NLP problem into that of choosing outputs 

whose optimal values are approximately invariant to uncertainty e.g. (Skogestad 2000; 

François et al. 2005). The second approach involves directly meeting the NCO along the 

evolution of the system and it treats the optimization problem as a control problem with 

all the advantages related to sensitivity reduction and disturbance rejection (Srinivasan 

2007; Marchetti et al. 2009). This model-free optimization method has been studied 

under the name of extremum seeking control, where the basic concept is to reformulate 

the unconstrained optimization problem as a problem of controlling the gradient of the 

objective function to zero. The method is quite old (Leblanc 1922) but it has received 

renewed interest recently (Ariyur and Krstic 2003; Guay and Zhang 2003; Srinivasan 

2007). Also, many recent publications have reported successful applications (Ariyur and 

Krstic 2003; Popovic et al. 2006). 

2.3 Extremum seeking control 

The main methods of adaptive control (both linear and nonlinear) deal only with 

regulation to known set points or reference trajectories (Landau 1979; Krstic et al. 1995; 

Ioannou and Sun 1996; Khalil 2002). But the control objective could be to optimize an 

objective function which can be a function of unknown parameters, or to select the 

desired states to keep a performance function at its extremum value. Self optimizing 

control and extremum seeking control (ESC) are two methods to handle these kinds of 

optimization problems.  

Finding a set of controller variables, when kept at constant set-points, which indirectly 

lead to near-optimal operation with acceptable loss, is the goal of self-optimizing control 
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(Findeisen et al. 1980; Morari et al. 1980; Skogestad 2000). Finding the operating set-

points that maximize or minimize an objective function is the task of extremum seeking 

(Guay and Zhang 2003). Based on Astrom definition, ESC is tracking a varying 

maximum or minimum of an output (performance) function (Astrom and Wittenmark 

1994) which has two layers of meaning: first, seeking an extremum of the output 

function; secondly, ability to control (stabilize) the system and drive the output to that 

extremum.  

The early research work on extremum seeking control was in the 1920's (Leblanc 1922). 

Extremum seeking control and self-optimizing control were popular in the 1950s and 

1960s, much before the theoretical breakthroughs in adaptive linear control of the 1980s. 

Besides, many successful applications of extremum seeking control approaches have 

been reported, for example, combustion process control for IC engines and gas furnaces 

(Sternby 1980; Astrom and Wittenmark 1994), and anti-lock braking system control 

(Drakunov et al. 1995). 

The uncertainty associated with the objective function in ESC makes it necessary to use 

some sort of adaptation and perturbation to search for the optimal operating conditions. 

Thus, most of ESC schemes involve injecting a periodic temporal perturbation signal. A 

systematic description of the perturbation based extremum seeking control and its 

applications were presented in Ariyur and Krstic 2003. Extremum seeking control via 

perturbation method by Krstic and Wang 2000 considered a general SISO nonlinear 

model 𝑥̇ = 𝑓(𝑥,𝑢) 𝑎𝑛𝑑 𝑦 = ℎ(𝑥)  where 𝑥 ∈ 𝑅𝑛 is the state, 𝑢 ∈ 𝑅 is the input, 𝑦 ∈ 𝑅 is 

the output, and 𝑓:𝑅𝑛 × 𝑅 → 𝑅𝑛and ℎ:𝑅𝑛 → 𝑅 are smooth. They supposed a known 

smooth control law 𝑢 =∝ (𝑥,𝜃) parameterized by a scalar parameter 𝜃. Extremum 

seeking control via perturbation method is shown in Fig  2-3 (Krstic and Wang 2000). 
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Fig  2-3: Extremum-seeking control via perturbation method (Krstic and Wang 2000) 

In the method using perturbations, a temporal perturbation (or dither) is injected along 

the input and the gradient is estimated by using the correlation between the input and the 

output.  An integral controller is used to control the gradient to zero. The multiplication 

with the perturbation is performed to capture the output that is correlated with the input 

and a low pass filter is used to take the average of the oscillations. A high pass filter at 

the output of the system is used to remove the bias. Several time scale separations are 

necessary to isolate the effects of the system dynamics on the estimated gradient.  The 

three time scales consist of fastest (for the plant with the stabilizing controller), medium 

(for the periodic perturbation), and slow (for the filters in the peak seeking scheme) 

(Krstic and Wang 2000).  

The first rigorous proof of local stability of perturbation based extremum seeking control 

scheme was presented by Krstic and Wang 2000. They used averaging analysis and 

singular perturbation, where a high pass filter and slow perturbation signal were 

employed to derive the gradient information. Their proof covered only one form of 

extremum control (the method with a periodic perturbation) (Krstic and Wang 2000), 

besides, the plant had to be very fast (quasi-static) and the adaptation gain had to be 

small which means the conditions imposed were restrictive. Following this work, Krstic 

presented a tighter analysis which removed these conditions. He proposed dynamic 

compensation to provide stability guarantee, fast tracking of changes in the operating 

point, and measurement noise rejection (Krstic 2000). This method is limited to the 

problems with linear dynamics and it is not useful in other cases. 
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In 2002, Choi proposed an extremum seeking control algorithm for discrete-time 

systems applied to a class of plants that are represented as a series combination of a 

linear input dynamics, a static nonlinearity with an extremum, and a linear output 

dynamics. They used the two-time scale averaging theory to derive a mild sufficient 

condition under which the plant output exponentially converges to a neighborhood of the 

extremum value (Choi et al. 2002). 

Recently, several extremum control schemes and stability analysis for extremum seeking 

of linear unknown systems and a class of general nonlinear systems are presented (Krstic 

2000; Krstic and Wang 2000; Wang et al. 2000). This framework allowed the use of 

black-box objective functions with the restriction that the objective value is an available 

output for online measurement. Although this technique was proven useful for some 

applications (Krstic et al. 1999; Nguang and Chen 2000; Wang et al. 2000), the lack of 

guaranteed transient performance of the black-box schemes remained a significant 

drawback in its application.   

Alternatively, in 2003, Guay and Zhang used an adapted model of the system for 

analytical evaluation of the gradient  (Guay and Zhang 2003). Their extremum seeking 

framework assumes that the objective function is explicitly known as a function of the 

system states and uncertain parameters from the system dynamic equations. Only an 

estimated value based on parameter estimates is available because parametric 

uncertainties make the on-line reconstruction of the true cost impossible. The control 

objective was to simultaneously identify and regulate the system to the extremum point, 

which depends on the uncertain parameters (Guay and Zhang 2003). The main advantage 

of their proposed approach was that some degree of transient performance can be 

guaranteed, and the optimization objectives were achieved when a reasonable functional 

approximation of the objective function was available. In 2004, Dehaan and Guay 

extended this approach to nonlinear systems with unknown parameters whose states 

must satisfy a set of known convex constraints (DeHaan and Guay 2004). Then in 2005, 

they generalized the approach of Guay and Zhang (2003), and DeHaan and Guay (2004) 

to include systems whose states must satisfy a set of known convex inequality 
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constraints and they achieved a nominal guarantee of transient performance by using a 

Lyapunov-based approach   (DeHaan and Guay 2005). 

Adelota et al., in 2004 presented a control algorithm that incorporated real time 

optimization and receding horizon control technique in order to solve an extremum 

seeking control problem for a class of nonlinear systems with parametric uncertainties 

(Adetola et al. 2004). In 2006, Adelota and Guay proposed a control algorithm which 

was an integration of real-time optimization and model predictive control to solve an 

output feedback extremum seeking control problem for a linear unknown system. The 

resulting controller could drive the system states to the desired unknown optimum by 

requiring a Lyapunov restriction and a satisfaction of a persistency of excitation 

condition (Adetola and Guay 2006). They discussed the problem of parameter 

convergence in adaptive extremum seeking control design in 2007. They proposed an 

alternate version of the popular persistence of excitation condition for a class of 

nonlinear systems with parametric uncertainties. Parameter convergence with minimal 

but sufficient level of perturbation was guaranteed by their presented method (Adetola 

and Guay 2007). 

Banavar in 2003 solved the extremum seeking control problem by assuming that the 

performance function can be approximated by a quadratic function with a finite number 

of parameters which were estimated on-line. In contrast to traditional approaches, time-

scale separation between the gradient computation and function minimization and the 

system dynamics was not needed. A significant advantage of a quadratic function is that 

it allows the peak-seeking control loop to be reduced to a linear system. For such a loop, 

the wealth of linear system analysis and synthesis tools can be employed (Banavar 

2003).  

Zhang and Ordonez in 2005 proposed an extremum seeking control scheme for linear 

time invariant (LTI) systems. The convergence and robustness of the extremum seeking 

scheme were guaranteed by the numerical optimization algorithm, and also a detailed 

analysis based on the line search method was addressed (Zhang and Ordónez 2005). 

Following the research on numerical optimization-based extremum seeking control, they 
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proposed an extremum seeking via a state regulator that drove the state traveling along a 

convergent set point sequence generated by a numerical optimization algorithm (Zhang 

and Ordónez 2006). 

Chioua et al., in 2007 showed that in some particular situations the perturbation based 

extremum seeking algorithm may not converge to the optimum but only close to it. The 

error for a general nonlinear dynamic system is proportional not only to the square of the 

excitation amplitude but also to the square of the frequency of excitation. They 

addressed that slower optimization frequency is not only required for stability purposes 

but also for accuracy. As a conclusion, they showed that the frequency of excitation 

should be low which in turn makes the optimization slower if accuracy is required 

(Chioua et al. 2007). 

Most of extremum seeking schemes uses deterministic periodic perturbations, but 

periodicity can naturally lead to predictability which is not desirable in cases like some 

tracking and navigation applications. As a solution to these problems, in 2009, Manzie 

and Krstic proposed a method of extremum seeking by using stochastic perturbation.  

Convergence towards the extremum of a static map can be guaranteed with their 

stochastic extremum seeking algorithm. Besides, they quantified the behavior of a 

system with Gaussian-distributed perturbations at the extremum in terms of the 

extremum seeking constants and map parameters (Manzie and Krstic 2009). 

Based on the literature, in Table  2-2 a brief comparison between classical approach and 

extremum seeking control as two main classes of RTO is presented. Both advantages and 

disadvantages are shown. Extremum seeking control is a model free approach which 

involves directly meeting the NCO. NCO-tracking scheme helps link the framework of 

measurement-based optimization to the fields of identification and control (Srinivasan 

2007). So, the numerous tools available in the context of identification and control can 

provide the mathematical framework necessary for the analysis and design of extremum 

seeking control. 
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Table  2-2: Comparison between classical RTO and extremum seeking control 

Method Numerical or classical approach Extremum seeking control 

Advantages 

• Rapid Convergence 
• Apply to large problems 

(Woodward 2009)  
• Allow to handle the 

constraints more directly   
(Woodward et al. 2007) 

• Model free 
• Proper accuracy  

(Woodward 2009) 
• Feedback loop filters the 

measurement noise 
• More robust to noise by 

tuning the integral gain 
• Sensitivity reduction and  

disturbance rejection  

Disadvantages 

• Poor precision 
• Plant model mismatch 
• Identification of model 

parameters affected by noise 
measurements 

• Computationally intensive 
(Woodward 2009)  

• Slow convergence 
• Impractical in large problems 
• Wait till the dynamics die 

down before the gradient can 
be computed 

• Experimentally expensive 
(Woodward 2009) 

2.3.1 Classification of ESC methods 

Classification of extremum seeking control methods is based on the method of gradient 

estimation. Several techniques for estimating the plant gradients have been proposed, 

which differ in terms of their relying on a model or not, as well as their use of steady-

state vs. transient measurement data. Three main classes of ESC methods are 

perturbation based, adaptive extremum seeking, and multi-unit optimization (Woodward 

et al. 2007).  

Perturbation methods (Leblanc 1922; Krstic and Wang 2000), requires direct 

measurement of the cost function. They use an input perturbation and compute the 

gradient using a correlation between the input and output variations. In adaptive 

extremum seeking method (Guay and Zhang 2003), additional measurements and not 

necessarily the cost function are needed . Gradient is calculated based on a process 

model that is updated using available on-line measurements.  In multi-unit optimization 

(Srinivasan 2007)  the gradient is computed as a finite difference between the outputs of 

multiple units with slightly different input values.  
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The main difficulty of perturbation method (Krstic and Wang 2000) is the requirement of 

a multiple time-scale separation between the system dynamics, the perturbation 

frequency and the adaptation rate.  The perturbation has to be an order of magnitude 

slower than the system dynamics to separate the effect of the perturbation from that of 

system dynamics. Also, the adaptation dynamics should be another order of magnitude 

slower in order to distinguish the effect of the perturbation from that of adaptation. This 

multiple time-scale separation leads to slow convergence.  Time-scale separation is not 

an issue for processes with fast responses, e.g. electrical or mechanical systems, though, 

for slower processes such as the chemical or biological ones, the convergence time could 

be prohibitive. Another problem with perturbation method is that the output is not in 

phase with the input due to the system dynamics. This phase shift will cause the scheme 

to converge elsewhere from the optimum (Srinivasan 2007) 

Adaptive extremum seeking (Guay and Zhang 2003) and multi-unit optimization 

(Srinivasan 2007) methods were proposed in response to limitation of perturbation based 

methods. 

2.4 Multi-unit optimization 

Multi-unit method was proposed by Srinivasan in 2007. This scheme required the 

presence of multiple identical units, with each of them operated at input values that differ 

by a pre-determined constant offset. Micro array reactors, production lines and 

photovoltaic arrays are examples of such system (Srinivasan 2007).   

In Fig  2-4 the schematic of multi-unit optimization is shown. The system has m+1 

identical units, where m is the dimension of input of the system. The optimization 

problem is formulated considering a dynamic system with state 𝑥 ∈ 𝑅𝑛, and input 

𝑢 ∈ 𝑅𝑚. This system has to be operated to minimize a convex function: 

min𝑢 𝐽(𝑢, 𝑥) 𝑠. 𝑡. 𝑥̇ = 𝐹(𝑥,𝑢) ≡ 0                                                                                Eq 1 

where 𝐹(𝑥,𝑢) is the function describing the dynamics of the system, which is assumed 

to be stable. The necessary conditions of optimality are given by: 
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𝒅𝑱
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𝝏𝒖
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𝝏𝒙
�𝝏𝑭
𝝏𝒙
�
−𝟏 𝝏𝑭

𝝏𝒖
                                                                                                            Eq 2 

The various units are operated with input values that are slightly different. The first unit 

is the reference and is operated at the input value  𝑢0 . For the other unit 

𝒖𝒊 = 𝒖𝟎 + 𝒆𝒊∆                                                                                                                 Eq 
3 

where 𝑒𝑖 is 𝑖𝑡ℎ unit vector and 𝑖 = {1,2, … ,𝑚}.  

The gradient is estimated by 

𝒈�𝒊 �(𝒖𝟎) = 𝑱̅(𝒙𝒊−𝒖𝒊)−𝑱̅(𝒙𝟎−𝒖𝟎)
∆

                                                                                              Eq 
4 
 

�𝒅𝑱̅
𝒅𝒖

�
� = 𝒈��                                                                                                                         Eq 5 

and 𝑔�𝑖 is the ith row of gradient vector 𝑔�. The extremum seeking control law is: 

𝒖𝒊̇ = −𝒌𝒈�𝑻(𝒖𝟎)                                                                                                              Eq 
6 

 

Fig  2-4: Schematic for multi-unit optimization (Woodward et al. 2007) 
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In his work, the gradient was computed as a finite difference between the outputs or the 

objective functions related to multiple units with slightly different input values 

(Srinivasan 2007). Thus, the perturbation was along the unit dimension rather than in 

time domain. So, time-scale separation was not needed and the convergence was faster. 

Also, he established the convergence of this method rigorously under certain 

assumptions (e.g. the convexity) by Lyapunov analysis.  

The multi-unit optimization presented by Srinivasan in 2007 required the presence of 

multiple identical units which was a very strong assumption and might not be realizable 

in practice. So in 2009, Woodward et al., studied the effects of the differences between 

the static characteristics on the stability and convergence of the standard multi-unit 

optimization scheme. For processes with non-identical units, it was shown that 

differences in the static characteristics could lead the equilibrium point to be quite far 

away from the desired optimum. Furthermore, they proved that convergence conditions 

can be satisfied in two different ways: by choosing the correct sign or a large enough 

value for Δ. While the second option is hard to quantify, the sign adjustment could be 

made possible if auxiliary information is available (Woodward et al. 2009a).  

To avoid the situation in which the equilibrium point is far away from the desired 

optimum, they proposed correctors which compensate for the differences between the 

units. Two types of adaptation were analyzed: a sequential approach (Woodward et al. 

2009a) where the multi-unit adaptation and the correction were done separately and a 

simultaneous approach (Woodward et al. 2010) where both were performed together. In 

both cases they showed that the scheme with correctors is locally asymptotically stable 

and converges to the respective optimum of each unit. In both approaches, they 

considered the single input and two similar units’ case to simplify the presentation of the 

method. The units had the same curvature but were shift in “u” and “J” dimensions, so 

on one hand they are identical since they have the same static curve, on the other hand, 

they are different since their optimal point of operation are not the same. Besides, they 

assumed that the dynamics are the same and are very fast compared to the optimization 

time-scale so the process can be considered quasi-static. Also no noise effects were 

considered, and the functions were convex.  
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In sequential approach, correctors 𝛽̂ and 𝛾� attenuate the effect of the differences in the 

optimal points of operation, and in the optimal values of the performance function 

respectively. By alternation between the multi-unit method and the calculation of 

correctors with two different perturbation signals they derived the update laws for the 

estimates (Woodward et al. 2009a; Woodward et al. 2009b). In sequential approach, 

optimization and correction for differences are performed alternatively which causes a 

discontinuous operation leading to a hybrid dynamics. To avoid such a scenario, an 

approach where optimization and correction take place simultaneously, is presented by 

Woodward et al., 2010. In the simultaneous approach, the correctors 𝛽̂ and 𝛾�, are 

adapted simultaneously with the evolution of the process to its optimum. Structure of 

this method is shown in Fig  2-5.  

 

Fig  2-5: Structure of the multi-unit optimization method with simultaneous adaptive correctors (Woodward 
et al. 2010) 

Summary of this method is shown in Table  2-3. 

Table  2-3: Summary of simultaneous correction for two non-identical units 

Synchronization of the two units: 

 

u1 = u −
∆
2

+ asinωt 

u2 = u +
∆
2

+ asinωt − β�  

Multi-unit adaptation law: 𝑢̇ = −
𝑘𝑚𝑢
∆

(𝐽2 − 𝐽1 − 𝛾�) 

Adaptation laws for correctors: 
𝛽̇̂ = −𝑘𝛽�𝑢�1

𝑜𝑝𝑡 − 𝑢�2
𝑜𝑝𝑡 − 𝛽̂� 

𝛾�̇ = −𝑘𝛾�𝐽2�𝑢�2
𝑜𝑝𝑡� − 𝐽1�𝑢�1

𝑜𝑝𝑡� − 𝛾�� 
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Besides proposing the correctors, Woodward did experimental verification of the multi-

unit optimization method for the maximum power point tracking of microbial fuel cells. 

The sequential adaptation technique was used to correct the difference between the cells. 

The experimental results confirmed the main advantage of the multi-unit optimization 

method, i.e., a faster convergence to the optimum than methods using temporal 

perturbation. Moreover it verified the fact that differences between the units can be 

corrected leading each of them to their respective optima (Woodward et al. 2009a; 

Woodward et al. 2009b). 

Although lots of successful attempts have been made to study multi-unit optimization for 

non-identical units, all of them assumed only two non-identical units but industrial 

process has more than two units and more than one input.  

2.5 Photovoltaic cells 

Solar energy is at the forefront of clean and renewable resources and according to 

advances in solar panel manufacturing and increasingly volatile fuel costs, its advantage 

is rising. The major advantages of using PV system are short lead time for designing and 

installing a new system, output power matching with peak load demands, static structure, 

no moving parts, longer life, no noise, high power capability per unit of weight, 

inexhaustible and pollution free, highly mobile and portable because of its light weight 

(Krauter 2006; Petreuş et al. 2008; Tsai et al. 2008). But the actual drawback which still 

exists in using solar energy is its high cost (Cabal et al. 2007). One way to diminish cost 

and increase the profitability of solar panels is efficiency enhancement in terms of output 

power. Photovoltaic (PV) cell is the basic device that generates electricity when exposed 

to light. The structural parts of solar energy system -from smallest to largest- are PV 

cells, PV modules or PV panels, and PV array.  

2.6 PV arrays  

The single-diode model is the best model fitted for the mono-crystalline PV cell which 

has best efficiency among all commercially available technology. But for other 

competitive technology of same class (e.g. polycrystalline), two-diode equivalent circuit 
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or double exponential model is fitted more properly (Nema et al. 2009). In the other hand 

double exponential model is rarely used in the subsequent literatures because of some 

limitations to develop expressions for the I-V curve parameters subject to the implicit 

and nonlinear nature of the model (Tsai et al. 2008). 

Petreuş et al., 2008, presented four models for a photovoltaic cell. They evaluated each 

model and identified their strengths/weaknesses. The one-diode model, the two-diode 

model, the first empirical model, and the second empirical model were investigated 

(Petreuş et al. 2008). 

The mathematical models are more fitted to physics of photovoltaic cells than empirical 

models because they are based on the theoretical equations that describe the operation of 

the photovoltaic cells. A general mathematical description of I-V output characteristics 

for a PV cell has been studied for over the past four decades (Tsai et al. 2008). Several 

researchers used single-diode model for their studies on PV cell (Hussein et al. 1995; 

Joyce et al. 2001; Cabal et al. 2007; Tsai et al. 2008; Nema et al. 2009; Villalva and 

Gazoli 2009; Nema et al. 2010; Chiu et al. 2011) and etc. The schematic of a single-

diode model is shown in Fig  2-6. This equivalent circuit consists of a photo current, a 

diode, a parallel resistor expressing a leakage current, and a series resistor describing an 

internal resistance to the current flow. 

 

Fig  2-6: Single-diode model 

Since a typical PV cell produces less than 2W at 0.5V-0.8V (depending on the cell 

technology) approximately, the cells must be connected in series-parallel configuration 

to produce enough voltage and power (Tsai et al. 2008; Nema et al. 2009).  
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Solar photovoltaic system consists of PV array, inverter, energy storage (e.g. batteries), 

system charge control, load, and balance of system components. There are two major 

types of PV systems: stand alone (off Grid), and grid connected showed in Fig  2-7. 

 
 

Diagram of stand-alone PV system with 

battery storage powering DC and AC loads 

Diagram of grid-connected photovoltaic system 

Fig  2-7: Schematic of two general types of PV system 

The main function of the solar regulator or solar controller is to keep batteries fully 

charged. The solar controller regulates the flow of electricity from a solar panel to the 

battery without allowing the battery to be overcharged and at the same time preventing 

current flowing back from the battery to the solar panel.  PV arrays should be used in 

conjunction with Deep cycle batteries. These batteries are designed to be charged and 

discharged over a long period of time. They are not the same as car batteries which 

provide a large amount of current for a short period of time. The lead-acid battery has 

low cost and high capacity features and is widely used in various applications such as 

uninterruptible power system (UPS), automotive power system and telecom power 

supply, but they have some disadvantages such as poor energy density characteristics, 

charging time and lifetime (Bright-Green-Energy 2009; Chiu et al. 2011).  

Few works have been done in the literature, e.g. (Joyce et al. 2001), for modeling a PV 

system consisting of PV array, charger, and batteries, though Joyce et al., 2001, proposed 

models for PV array, batteries, charger, and inverter. 
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2.7 Maximum power point tracking 

In Fig  2-8, the I-V and P-V characteristic of a PV array is shown. The most real attainable 

power is defined by the greatest possible of voltage and current at an operating point, 

which is called maximum power point (MPP). 

 

Fig  2-8: I-V and P-V characteristics of a PV cell 

The maximum power can be expressed as: 

𝑷𝒎𝒂𝒙 = 𝑽𝒎𝒂𝒙𝑰𝒎𝒂𝒙 = 𝜸𝑽𝑶𝑪𝑰𝑶𝑪                                                                                         
Eq 7 

where Vmax and Imax are terminal voltage and output current of PV module at maximum 

power point (MPP), and γ is the cell fill factor which is a measure of cell quality. 

Based on Jacobi's law, a power source will deliver its maximum power to a load when the 

load has the same impedance as the internal impedance of the power source. 

Unfortunately, batteries are far from the ideal load for a solar array and the mismatch 

results in major efficiency losses. Maximum power point tracking (MPPT) is designed to 

overcome this problem. MPPT presents an ideal load to the PV array allowing it to 

operate at its optimum voltage. A variable DC/DC converter in the module automatically 

adjusts the DC output from the module to match the battery voltage (Electropaedia 2005; 

Petreuş et al. 2008). The output current and power of PV cell depend on the cell’s 

terminal operating voltage along with temperature, insolation, angle of solar irradiance, 

shading, and other atmospheric conditions. For example, with increase of working 

temperature, the short-circuit current of the PV cell increases, whereas the maximum 

http://www.mpoweruk.com/history.htm#jacobi
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power output decreases. On the other hand, with increase of insolation, the short-circuit 

current of the PV module increases, and the maximum power output increases as well 

(Tsai et al. 2008). 

However it is not enough to match the voltage at the specified maximum power point 

(MPP) of the PV array to the varying battery voltage as the battery charges up. Due to 

changes in atmospheric condition, the MPP of the PV also changes. Thus, there is a 

moving reference point and a moving target. For optimum power transfer, the MPPT 

system needs to track the MPP as the temperature and insolation changes in order to 

provide a dynamic reference point to the voltage regulator (Electropaedia 2005) 

In general, the maximization of the power supplied by PV panel is carried out  by two 

main methods:  mechanical and/or electronic systems (Leyva et al. 2006). Mechanical 

methods are based on the improvement of the irradiance conditions on solar cells (e.g. 

sun tracking and reduction of optical reflections) and/or on the temperature reduction 

during cell operation (e.g. use of cooling device). Electronic/electrical methods are based 

on changing load to the optimum load which leads to track maximum power at each 

moment, e.g. perturb and observe (P&O) algorithms (Wasynezuk 2007), Incremental 

conductance (InC) (Hussein et al. 1995), constant voltage and current (CV) (Andersen 

and Alvsten 1995), pilot cell algorithm (Salameh et al. 1991), parasitic capacitance 

(Brambilla et al. 1999), model-based algorithms (Bohórquez et al. 2009) ,  fuzzy methods 

(Won et al. 1994), algorithms based on digital signal processing (Hua et al. 2002), RTO 

based on extremum seeking methods (Leyva et al. 2006), adaptive digital MPPT based on 

extremum seeking control (Cabal et al. 2007). 

According to literature, some of the most prominent MPPT methods for PV systems are 

presented in this part. Most of these methods used Eq 8 for evaluating the MPPT 

efficiency, where 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 is the actual or measured power produced by the PV array 

under the control of the MPPT, and 𝑃𝑚𝑎𝑥 is the true maximum power the array could 

produce under a given temperature and irradiance. 

𝜼𝑴𝑷𝑷𝑻 = ∫ 𝑷𝒂𝒄𝒕𝒖𝒂𝒍
𝒕
𝟎 (𝒕)

∫ 𝑷𝒎𝒂𝒙(𝒕)𝒕
𝟎

                                                                                                     Eq 8       
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Hussein et al., in 1995, developed an MPPT algorithm, named incremental conductance 

or InC. Both results from simulation and experiment showed successfully tracking the 

MPP even in cases of rapidly changing atmospheric conditions and had higher efficiency 

than ordinary algorithm, such as perturb and observe (Hussein et al. 1995). 

In 2002, Hohm et al., compared between the efficiencies of some MPPT algorithms. 

Their experimental results showed 97.8% efficiency for P&O (after properly optimized), 

97.4% efficiency for InC, and 91.2% for constant voltage (CV) methods.  They found 

that the P&O method could be highly competitive against other MPPT algorithms. 

Incremental conductance performed as well as P&O, but in general it has higher 

implementation cost (Hohm and Ropp 2003).  

An MPPT system based on extremum seeking control was developed by Leyva et al., in 

2006. The MPPT guaranteed the stability of the maximum seeking procedure for large-

signal operation and the theoretical predictions were experimentally validated in a PV 

system (Leyva et al. 2006). 

An adaptive digital MPPT based on extremum seeking control was developed by Cabal 

et al. in 2007. They implemented the extremum seeking control in the PIC18F1220 

microcontroller.  They achieved a high quality matching between sources and loads by 

adjusting continually the static converter duty cycle.  The control of the converter 

through its duty cycle allowed tracking the MPP when the PV was exposed to the 

climatic variation. This system had a high efficiency in steady state but also during 

transitory. Results showed the solar panel efficiency of almost 99% (Cabal et al. 2007).  

Some works focused on the control of grid-connected photovoltaic arrays e.g. (Bratcu et 

al. 2008; Azevedo et al. 2009). The global scope of tracking the maximum power point 

under variable conditions of irradiance was achieved by using a simple and robust P&O 

extremum seeking control scheme (Bratcu et al. 2008). In 2009, Azevado et al., showed 

that the P&O and InC techniques could be improved through the optimum adjustment of 

the sampling rate and perturbation size both in accordance with the converter dynamics 

(Azevedo et al. 2009).  
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A battery charger with MPPT function for low-power PV system applications was 

presented in a study by Chiu et al., 2010. The operation and design considerations of the 

proposed PV charger were discussed in detail. Experimental results showed that high 

MPPT accuracy and conversion efficiency can be simultaneously achieved under high-

frequency operation (Chiu et al. 2011). 

In 2010, Enrique et al. developed a method as an analog version of the P&O-oriented 

algorithm. They stated that this method maintains P&O main advantages such as 

simplicity, reliability, low price and easy practical implementation, and avoids P&O 

main disadvantages like inaccuracy and relatively slow response. Once the system has 

reached the MPP, the efficiency is superior to 99%, improving the ones obtained by 

other methods (P&O, InC, CV) (Enrique et al. 2010). 

2.8 Summary  

In the first part of this chapter, RTO, its performance, and classification were presented. 

RTO is a valuable tool to bring and maintain a system at its optimal operating point that 

has received considerable attention in the industry. General properties of two main 

classes of RTO methods have been showed in Table  2-2 and pros and cons of each one 

have been analyzed. As it has been shown extremum seeking control approach has some 

advantages over classical approach of RTO such as proven stability in convergence to 

optimal point and its model free properties. 

In the second part, extremum seeking control method was explained as a powerful 

approach of RTO. Besides, a classification of ESC has been presented. Among extremum 

seeking methods, multi-unit optimization has some properties related to the way in which 

gradient is calculated such as faster convergence to optimal point. 

Third part has been dedicated to multi-unit method. Although this method is useful when 

the system consist multiple units, convergence to optimal point has been proven provided 

identical units or two non-identical units, whereas a real industrial system model could 

have more than two non-identical units. So in this research, an optimization procedure 

based on multi-unit method will be developed with respect to the number of units and the 
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number of inputs. The optimization problem considered in this study is the local 

optimization of a static and continuous system, where the objective function is convex.   

In the last part, PV cell and array models were introduced. Besides, the maximum power 

point tracking problem was presented to show the importance of solving this optimization 

problem in PV arrays. Because of the configuration of PV cells in a PV array, this system 

is a proper test bed for applying the multi-unit algorithm.  Besides, the values of PV cell 

parameters are not known certainly and can vary between cells from the same production 

run (Hohm and Ropp 2003), so model-based MPPT are not practical and multi-unit 

method, as a model free one, has some benefits over model-based methods. In most of 

algorithms of extremum seeking method MPPT, the stability has not been analytically 

proved (Leyva et al. 2006) but in multi-unit method using correctors, in contrast, the 

stability for two non-identical units has been analytically proven via Lyapunov approach 

(Woodward et al. 2009a).  
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3 CHAPTER 3: METHODOLOGY -LOCAL OPTIMIZATION WITH 
MULTI-UNIT METHOD FOR QUADRATIC OBJECTIVE FUNCTIONS 

3.1 Main Objective 

• To develop multi-unit optimization method with respect to the number of non-

identical units and the number of inputs and apply it to maximize the power 

provided by a PV array. 

3.2 Specific Objectives 

• To develop an optimization procedure based on multi-unit method for three non-

identical units and two inputs. 

• To maximize output power of a PV array by applying the multi-unit method. 

3.3 Overall Methodology 

To achieve the main objective, two specific objectives are defined. For the first specific 

objective or to develop the multi-unit optimization procedure for three units and two 

inputs, the overall methodology includes three steps which are shown in Fig  3-1. Step 

one is explaining the multi-unit method for two units and one input to display how the 

algorithm works generally for identical units. Then the idea of correction is investigated 

to show its ability to make multi-unit converges to the relative optimal points in the case 

of two non-identical unit. In step two, first the multi unit is applied for three identical 

units and two inputs and the optimization problem is introduced for an objective function 

of two variables. After that the problem of using multi-unit algorithm for three non-

identical units and two inputs is presented. Moreover the extension of correction phase 

for three units is expressed and the adaptation laws and the schematic of multi-unit 

optimization in the case of three non-identical units are proposed. Following this part, 

the functionality of the developed algorithm is verified by applying it on a generic 

mathematical function. The third step consists of some guidelines to tune the parameters 

and gains in the whole procedure of multi-unit algorithm which is profitable for any user 

of multi-unit optimization algorithm. In other words, the priorities in tuning the 

parameters are discussed. At the end of this chapter a brief conclusion is mentioned. 
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Fig  3-1: Overall methodology 

3.4 Multi-unit optimization for two units and one input 
As it is presented in chapter one, in multi-unit optimization gradient is calculated base on 

the differences of the outputs of the units which have slightly different inputs. In this part 

both cases with two identical/non-identical units are explained via illustrative examples 

and the simulation results display how this method works. 

3.4.1 Identical units 
Fig  3-2 shows the block diagram of multi-unit optimization for two units. Both inputs are 

perturbed by ∆/2 and -∆/2. 

 
Fig  3-2: Schematic for multi-unit optimization for two units (Woodward et al. 2009a) 

 The optimization problem is to maximize a convex objective function with one input. A 

quadratic objective function is chosen as follow minu J(u) in which  

J(u) = (u − 2)2 + 3                                                                                                       Eq 9 

The first and second units are operated at the input values u1 and u2 respectively in 

which  u1 = u − ∆
2
 , and  u2 = u + ∆

2
. 

Then the gradient and the control law are given by: 

Σ

Σ Σ
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+

-
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+
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J2+
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u̇ = Kg�(u)                                                                                                                    Eq 10 

g�(u) = J1(u1)−J2(u2)
∆

                                                                                                       Eq 11 

The results of applying multi-unit algorithm for two identical units with objective 

function as in Eq 9 is presented in Table  3-1. It is clear that 𝑢𝑜𝑝𝑡 = 2 and 𝐽𝑜𝑝𝑡 = 3. The 

letter N in the table means that the algorithm could not converge to the optimum point in 

run 7. 
Table  3-1: summary of applying multi-unit without correctors on two identical units 
Run 𝑲 ∆ 𝐮𝟎 𝒖∗ 𝒖𝟏∗  𝒖𝟐∗  𝑱𝟏∗  𝑱𝟐∗  final  𝐠�(𝐮) 

1 -100 0.25 -1 2 1.875 2.125 3.0156 3.0156 -8.5635e-005 
2 -100 0.5 -1 2 1.75 2.25 3.0625 3.0625 -8.5635e-005 
3 -100 1 -1 2 1.5 2.5 3.25 3.25 -8.5635e-005 
4 -100 2 -1 2 1 3 4.0001 3.9999 -8.5635e-005 
5 -1 0.25 -1 2 1.875 2.125 3.0156 3.0156 -9.9909e-005 
6 -100 0.25 5 2 1.875 2.125 3.0156 3.0156 8.5635e-005 
7 -1000 0.25 -1 N N N N N N 

𝑢∗ is the equilibrium point where the multi-unit algorithm converges so the inputs of the 

two units would converge to 𝑢1∗ = 𝑢∗ − ∆
2
 , and 𝑢2∗ = 𝑢∗ + ∆

2
. In other word, both units 

inputs keep an offset ∆ from each other. So choosing the offset ∆ has an important role to 

make the algorithm converges to a circle around the optimum. If  ∆  is chosen too large, 

the algorithm converges to the optimum point but the assurance of converging to the 

optimum value of J is not obtained. Among different runs in the Table  3-1, run 4 shows 

the results with the biggest ∆. 

K or the gain of integrator is another parameter which has to be chosen properly. If there 

is no dynamics in the system, K should be a value in which the algorithm converges to 

the optimum but |𝐾| should be determined in a way that there is not much moving on the 

static curve. If |𝐾| is too big, it means that it does not let the multi-unit converges or it 

may converge to a point which is far from optimum. It is because of the problem arises in 

making the system discrete. In other words it is numerical instability rather than control 

law instability. In run 7 an example of this fact is seen.  

If the system has dynamics, K should not be faster than the system’s dynamics. Besides 

these two parameters (∆ and K), the initial point for 𝑢 in the algorithm should be set in 

the algorithm. In the case of identical units if there is priori knowledge about the system 
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optimal point, the initial point for 𝑢 should be selected not so far from the optimum input. 

In other words, if the initial point for 𝑢  is so far from the optimum input, it has effects on 

the algorithm’s convergence, and the time needed for converging to the optimal point.  

Fig  3-3, Fig  3-4, and Fig  3-5 show the Run 1, 5, and 6 respectively from Table  3-1. The unit 

of horizontal axis in all those graphs is the sample time of discrete system.  Fig  3-4 shows 

the fact that if |𝐾| is chosen very small, it takes more time for the algorithm to converge 

to the optimum point. Comparing the results of run 5 and run 6 in Fig  3-5 displays that if 

the distance between 𝑢0 and 𝑢∗  are fixed, starting the algorithm from the right or left side 

of the optimum point on the static curve has no special effect on the convergence. 

 
Fig  3-3: Multi-unit optimization for two identical units (Run 1) 
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Fig  3-4: Multi-unit optimization for two identical units (Run 5) 

 

 
Fig  3-5: Multi-unit optimization for two identical units (Run 6) 
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3.4.2 Non-identical units 

It was noted in research review that one of the main limitation of the multi-unit algorithm 

is the requirement of identical units. In this part based on what has been done by 

Woodward (Woodward et al. 2009a), the non-identical case is described. Then some 

simulation results are presented to express the correction phase effect more clearly. 

3.4.2.1 Characterization of the differences between units 

It is possible to establish difference between two units in different ways. For the non-

identical case here, it is assumed that the dynamics are the same and very fast compared 

to the optimization time-scale so we have quasi-static process. Besides, the objective 

functions are convex and there is no noise effect considered. So the differences in units 

are from their static curves as it is shown in the Fig  3-6. In the other words, both curves 

have approximately similar shape.  

In this figure, 𝛽 = 𝑢1
𝑜𝑝𝑡 − 𝑢2

𝑜𝑝𝑡 and 𝜆 = 𝐽2 �𝑢2
𝑜𝑝𝑡� − 𝐽1 �𝑢1

𝑜𝑝𝑡�. Besides, 𝑢1
𝑜𝑝𝑡 and 𝑢2

𝑜𝑝𝑡 are 

the optima of unit 1and 2 respectively. 

 
Fig  3-6: Difference between objective functions of two units 

 
Both units follow the same control law and always keep an input offset of Δ from each 

other. Under these conditions, the static characteristics of the two units are represented 

using 𝐽1(𝑢) and 𝐽2(𝑢). The relationship between the two static maps is given by: 

β

λ

J1

J2
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𝑱𝟐(𝒖) = 𝑱𝟏(𝒖 + 𝜷) + 𝝀 + 𝑱̅(𝒖 + 𝜷)                                                                              Eq 
12 

Because both static curves have smooth curvature at the optimum point it can be seen 

that: 

𝑱̅�𝒖𝟐
𝒐𝒑𝒕� = 𝟎 , � 𝝏𝑱̅

𝝏𝒖
�
𝒖𝟐
𝒐𝒑𝒕 = 𝟎                                                                                             Eq 13 

So it is reasonable to assume that in the neighborhood of the optimum 𝐽 ̅= 0. It was 

shown by Woodward that differences in the units cause the multi-unit scheme to a value 

away from the desired optimum; and the equilibrium point can be approximated by Eq 

14 as follow: 

𝑢∗ ≈ 𝑢1
𝑜𝑝𝑡+𝑢2

𝑜𝑝𝑡

2
− 𝜆

(Δ+𝛽)𝜕
2𝐽1
𝜕𝑢2

                                                                                            Eq 14 

It was also proved by Wood ward that the multi-unit algorithm for non-identical units is 

locally converge asymptotically if and only if the parameter Δ is chosen such that: 

Δ(Δ + 𝛽) > 0                                                                                                               Eq 15 

In the other words, convergence conditions can be satisfied in two different ways: by 

choosing the sign of Δ same as 𝛽 or its absolute value is more than the absolute value of 

the 𝛽. 

3.4.2.2 Multi-unit scheme with correction pattern 

Adding a correction phase to the multi-unit phase, makes multi-unit algorithm converges 

to the optimal point. In this chapter the sequential correction approach is discussed. 

Correctors 𝛽̂ and 𝜆̂ attenuate the effect of the differences in the optimal points of 

operation, and in the optimal values of the performance function respectively. By 

alternation between the multi-unit method and the calculation of correctors with two 

different perturbation signals they derived the update laws for the estimates (Woodward 

et al. 2009a; Woodward et al. 2009b). Perturbation signals for multi-unit with correctors 

are shown in Fig  3-7. 
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Fig  3-7: Perturbation signals for multi-unit with correctors (Woodward et al. 2009) 

The structure of multi-unit algorithm with sequential correctors is displayed in Fig  3-8. In 

the correction phase, the difference between the two inputs, Δ, is removed. So, the two 

units act at the same operating point (corrected by 𝛽̂ if any). Then, the corrected output 

values should be equal, if the vertical shift (𝜆̂) is computed correctly. So, the difference 

between the corrected outputs provides the adaptation law for 𝜆̂.   
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Fig  3-8: Structure of the multi-unit optimization method with sequential correctors 

Synchronization of the inputs of two units is as following: 

u1 = u − ∆
2

dmu + adcorr                                                                                             Eq 16 

u2 = u + ∆
2

dmu + adcorr − β�                                                                                      Eq 17 

Besides, the adaptation law for multi-unit is modified by this equation in which 𝑘𝑚𝑢 is 

the gain of integrator in multi-unit scheme. 

𝑢̇ = 𝑘𝑚𝑢
∆
�𝐽2 − 𝐽1 − 𝜆̂�dmu                                                                                           Eq 18 

Moreover, two correctors are updated base on these adaptation laws: 

𝛽̇̂ = 𝑘𝛽
𝑎
�𝐽2 − 𝐽1 − 𝜆̂�𝑑𝑐𝑜𝑟𝑟                                                                                           Eq 19 
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𝜆̇̂ = 𝑘𝜆�𝐽2 − 𝐽1 − 𝜆̂�(1 − 𝑑𝑚𝑢)                                                                                   Eq 20 

𝑘𝛽  and 𝑘𝜆 are the gains for correctors. Choosing the sign and value of these two are 

crucial in a general objective function. One way is to choose the starting points or 𝑢0 for 

each unit in the algorithm in a such manner to have 𝛽0 = 0. Then based on the shape of 

both static curves and the position of 𝛽0 and 𝜆0  in relation to the correct values of 𝛽 and 

𝜆 for the optimal points, the sign of each gain could be determined. We can derive the 

following equation based on Eq 19: 

𝛽̂(𝑘 + 1) ≈ 𝑘𝛽𝑑𝑐𝑜𝑟𝑟
𝑎

�𝐽2 − 𝐽1 − 𝜆̂� + 𝛽̂(𝑘)                                                                    Eq 21 

If  β0 < 𝛽 , the first statement in Eq 21 should be positive or in other words  
kβdcorr

a
�J2 −

J1 − λ�) > 0. We know that the sign of a and dcorr is positive. Then by looking at the 

static curve we can estimate the sign of �𝐽2 − 𝐽1 − 𝜆̂� and this information helps to 

choose the correct sign for 𝑘𝛽. The same procedure would be helpful to know about the 

correct sign of 𝑘𝜆. 

There is no exact method which can justify how to choose the value for these corrector 

gains. It is more intuitive and based on trial and error.  

𝑎 is the amplitude of perturbation or correction signal which should be fixed in the 

algorithm. 𝑇1 and 𝑇2 which are the periods for multi-unit and correction phase  should be 

chosen relatively in such a way that the multi-unit phase has enough time to perform. 

When the objective function has dynamics the ratio of these periods (𝑇1
𝑇2

) has an important 

role in convergence of multi-unit to the optimum point. 

3.4.2.3 Simulation results and discussion for a generic case  

To see the importance of correction phase multi-unit algorithm without correction is 

applied on two non-identical units with one input.  First of all the condition for locally 

asymptotically convergence or the Eq 15 is considered. Assume two objective functions 

as follow should be maximized: 
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𝐽1 = (𝑢 − 2)2 + 3                                                                                                       Eq 22 

 𝐽2 = (𝑢 − 6)2 + 4                                                                                                      Eq 23 

So 𝑢1
𝑜𝑝𝑡 = 2 , 𝑢2

𝑜𝑝𝑡 = 6, 𝐽1
𝑜𝑝𝑡 = 3, 𝐽2

𝑜𝑝𝑡 = 4. As a result the correctors are 𝛽 = −4 and 

𝜆 = 1.  Based on Eq 15, the algorithm would be stable if Δ < 0 or Δ > 4. To give a 

better insight of the condition, two different values of  Δ are chosen and the multi-unit 

algorithm for identical unit is applied for the case of non-identical unit. Run 1 is with 

Δ = 0.25  so Δ(Δ + β) < 0, and run 2 is with Δ = 5  so  Δ(Δ + β) > 0.  

In Fig  3-9 the results of run 1 are shown. Both outputs of units are increasing and the 

simple algorithm without correction phase is diverging as it is deducted from the 

condition for guarantee the stability of the algorithm. Fig  3-10 displays the results of run 

2. The algorithm is stable and both outputs of the units are converging but not to the 

optimal values. The unit of horizontal axis in all those graphs is the sample time of 

discrete system. 

 
Fig  3-9: Multi-unit optimization without correction for two non-identical units (run 1) 
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Fig  3-10: Multi-unit optimization without correction for two non-identical units (run 2) 
 
A summary of the parameters and results for both runs are presented in Table  3-2. If the 

multi-unit works properly it is expected that:  

𝑢1∗ = 𝑢1
𝑜𝑝𝑡 − ∆

2
     Eq 24 

𝑢2∗ = 𝑢2
𝑜𝑝𝑡 + ∆

2
   Eq 25 

In run1 the multi-unit scheme diverges because the offset parameter ∆ is not in the range 

which is necessary to guarantee the stability of the algorithm. In run 2, the multi-unit 

scheme converges but not to the expected optimal point which are calculated by Eq 24 

and Eq 25, as follow: 

𝑢1∗ = 2 − 2.5 = −0.5     

𝑢2∗ = 6 + 2.5 = 8.5    

 

And based on Eq 14 the equilibrium point is:  

𝑢∗ = 𝑢1
𝑜𝑝𝑡+𝑢2

𝑜𝑝𝑡

2
− 𝜆

(Δ+𝛽)𝑑
2𝐽

𝑑𝑢2

= 2+6
2
− 1

(5−4)×2
= 3.5                                                                                                                                                                                       
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Table  3-2: summary of applying multi-unit without correctors on two non-identical units 
Run 𝑲 ∆ 𝐮𝟎 𝒖∗ 𝒖𝟏∗  𝒖𝟐∗  𝐉𝟏 𝐉𝟐 𝐠�∗(𝐮) 

1 -100 0.25 -1 N N N N N N 
2 -100 5 -1 3.4998 0.9998 5.9998 4.0005 4.0000 -9.6081e-005 

 

Now the proposed correction is applied on two non-identical units with objective 

functions similar to Eq 22, and Eq 23. Based on Eq 15, convergence conditions can be 

satisfied without corrections by sign(Δ) = sign(β) or |Δ| > |β|. In the following 

simulations both values of ∆= 5 and ∆= −2 are used. The initial point is assumed equal 

to 4 so the initial correctors are as below: 

u0 = 4 ⟹ �J1 = (4 − 2)2 + 3 = 7
J2 = (4 − 6)2 + 4 = 8

� ⟹ �β0 = 4 − 4 = 0
λ0 = 8 − 7 = 1

� 

The parameters of two runs are shown in Table  3-3. In Table  3-4, the results of using 

correction phase with multi-unit phase is presented. In both runs, the inputs and outputs 

of the two units are converging to the expected optimal points and optimal values. 

Besides, the correctors are converging to their ideal values. 
Table  3-3: summary of parameters in applying multi-unit with correctors on two non-identical units 
Run 𝐤𝐦𝐮 ∆ 𝐚 𝐤𝛃 𝐤𝛌 𝐓𝟏 𝐓𝟐 

1 -0.04 -2 0.5 0.01 0.015 100 100 
2 -0.04 5 0.5 0.01 0.015 100 100 

 
Table  3-4: summary of results in applying multi-unit with correctors on two non-identical units 
Run 𝒖∗ 𝒖𝟏∗  𝒖𝟐∗  𝑱𝟏∗  𝑱𝟐∗  𝜷�∗ 𝝀�∗ 

1 2 3 5 4 5 -4 1 
2 2 -0.5 8.5 9.25 10.25 -4 1 

Although in all runs the inputs, outputs, and correctors converge to their expected values, 

the results presented for run 1 is more appropriate because |Δ| is smaller so the optimum 

converging values are nearer to the real optimum values.  Fig  3-11 shows the graphs for 

input signals and the corrector 𝛽̂ for the run1 of Table  3-4. The graphs for the corrector 𝜆̂, 

output signals, and correction signal in run 1 are displayed in Fig  3-12. Fig  3-13 and Fig 

 3-14 also presented the same results for the run 2 of Table  3-4. The unit of horizontal axis 

in all those graphs is the sample time of discrete system 
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Fig  3-11: Input signals and corrector 𝜷� in multi-unit scheme with correction for two non-identical units 
(run 1) 

 

 
Fig  3-12: Output signals, corrector 𝝀�  and correction signal in multi-unit scheme with correction for two 

non-identical units (run 1) 
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Fig  3-13: Input signals and corrector 𝜷� in multi-unit scheme with correction for two non-identical units 

(run 2) 
 

 
Fig  3-14: Output signals, corrector 𝝀� , and correction signal in multi-unit scheme with correction for two 

non-identical units (run 2) 
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3.5 Multi-unit optimization for three units and two inputs 
The multi-unit optimization is discussed for the case of two units in previous part. 

Following what have been discussed, in this part the multi-unit optimization for three 

units and two inputs is investigated.  

3.5.1 Identical units 
 
Figure 3-15 shows the block diagram of multi-unit optimization for three units with two 

inputs. Input 1 of the unit two is perturbed by Δ and input 2 of the unit three is perturbed 

by Δ as well. Then the gradient is calculated by Eq 11, based on the differences between 

the outputs of units one and two, and the outputs of units one and three. 

 

Fig  3-15: Schematic for multi-unit optimization for three units 
 
The optimization problem is to maximize a convex objective function with two inputs. A 

quadratic objective function is chosen as follow minu J(u) in which  

 

𝐽 = (𝑢1 − 2)2 + (𝑢2 − 3)2 + 4                                                                                  Eq 26 

 

So 𝑈𝑜𝑝𝑡 = �23� and 𝐽𝑜𝑝𝑡 = 4. The gradient and control law are given by Eq 10 and Eq 11. 

In other words, the negative sign for integrator is inside its gain. The results of applying 

multi-unit algorithm for three identical units with objective function as in Eq 26 is 
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presented in Table  3-5. Five runs are presented to show the effect of changing the offset Δ 

and gain of the integrator. In all runs, the initial point is assumed as 𝑈0 = �−1
−1�. 

Table  3-5: Multi-unit optimization for three identical units and two inputs 
Run 𝑲 ∆ 𝑼∗ 𝑼𝟏

∗  𝑼𝟐
∗  𝑼𝟑

∗  𝑱𝟏∗  𝑱𝟐∗  𝑱𝟑∗  𝐠�∗(𝐮) 
1 -0.5 0.1 �1.95

2.95� �1.95
2.95� �2.05

2.95� �1.95
3.05� 

4.0050 4.0050 4.0050 ≈ �10−5
10−5

� 
2 -2 0.1 �1.95

2.95� �1.95
2.95� �2.05

2.95� �1.95
3.05� 

4.0050 4.0050 4.0050 ≈ �10−6
10−6

� 
3 -5 0.1 N N N N N N N N 
4 -2 0.2 �1.9

2.9� �1.9
2.9� �2.1

2.9� �1.9
3.1� 

4.02 4.02 4.02 ≈ �10−6
10−6

� 
5 -5 0.5 N N N N N N N N 

 

𝑈∗ shows the equilibrium point where the multi-unit algorithm converges for both inputs. 

The inputs of the three units would converge as following: 𝑈1∗ = 𝑈∗ , 𝑈2∗ = 𝑈∗ + �∆0� and 

𝑈3∗ = 𝑈∗ + �0∆�. In other words, the Δ difference between input 1 of unit one and two, and 

between input 2 of unit one and three is remaining. K or the gain of the integrator has an 

effect on the convergence time; for example by increasing from 0.5 to 2 the time needed 

for convergence is decreasing from 80 samples to 30 samples. Besides, choosing the 

offset ∆ has an important role similar to the two unit case.  

In run 1, 2, and 4 all objective functions are fairly well equal to the optimal value which 

was 4. Finally gradient is small (approximately zero) which shows that the converging 

point is the optimal point. Fig  3-16 shows the inputs of each unit in run 2 from Table  3-5. 

In Fig  3-17, the input of the scheme, the output of the units, and the gradient are displayed 

for the run 2. The unit of horizontal axis in all those graphs is the sample time of discrete 

system. 
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Fig  3-16: Input signals of unit in multi-unit optimization for three identical units 

 

 
Fig  3-17: Input signal, Output of the units and gradient of unit in multi-unit optimization for three identical 

units 
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3.5.2 Non-identical units 

3.5.2.1 Characterization of the differences between units 
The difference between the units is between their static surfaces in three dimensions. Fig 

 3-18 shows this difference by an illustrative example. 

 
Fig  3-18: Differences between the static surfaces 

 If all the three objective functions are assumed to be convex. The relationships between 

the static surfaces of the units can be presented as follow: 

𝐽2(𝑈) = 𝐽1(𝑈 + 𝛽) + 𝜆 + 𝐽1̅2(𝑈 + 𝛽)                                                                         Eq 27 

𝐽3(𝑈) = 𝐽1(𝑈 + 𝛼) + 𝜌 + 𝐽1̅3(𝑈 + 𝛼)                                                                         Eq 28 

In which correctors 𝛽 and  𝛼 are two vectors, and 𝜆 and 𝜌 are two scalars defined as: 

𝑈1
𝑜𝑝𝑡 − 𝑈2

𝑜𝑝𝑡 = 𝛽 = �𝛽1𝛽2
�                                                                                              Eq 29 

𝑈1
𝑜𝑝𝑡 − 𝑈3

𝑜𝑝𝑡 = 𝛼 = �
𝛼1
𝛼2�                                                                                              Eq 30 

𝐽2
𝑜𝑝𝑡 − 𝐽1

𝑜𝑝𝑡 = 𝜆                                                                                                             Eq 31 
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𝐽3
𝑜𝑝𝑡 − 𝐽1

𝑜𝑝𝑡 = 𝜌                                                                                                             Eq 32 

Because of the same smooth curvature at the optimal points, it can be derived that 

𝐽1̅2�𝑈2
𝑜𝑝𝑡� = 0 , �𝜕𝐽1̅2

𝜕𝑈
�
𝑈2
𝑜𝑝𝑡 = 0 and  𝐽1̅3�𝑈3

𝑜𝑝𝑡� = 0 , �𝜕𝐽1̅3
𝜕𝑈
�
𝑈3
𝑜𝑝𝑡 = 0. So it is reasonable to 

assume that in the neighborhood of the optimums 𝐽1̅2 = 0 and  𝐽1̅3 = 0 .  

3.5.2.2 Multi-unit scheme with correction pattern 

Based on the correction phase for the two non-identical units, in this part a schematic is 

proposed for three non-identical units and two inputs. In the Fig  3-19 the schematic of 

this developed multi-unit scheme is presented. Three different periodic signals are used 

to coordinate the static surfaces of three different objective functions. In Fig  3-19 𝐼 = �11� 

and ei is the ith unit vector. 

 
Fig  3-19: Structure of the multi-unit optimization method with sequential correctors for three units 

Periodic signals for correction phase and multi-unit phase are different from what has 

been proposed for two units. We need to see the effect of perturbation to make correction 

between the output signals. Because the input is a 1 × 2 vector instead of a scalar, there is 

a need for two perturbation signals in the correction phase. In Fig  3-20 the perturbation 
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signals used for three non-identical units and two inputs are presented. Based on the 

multivariable extremum seeking scheme proposed by Ariyur and Krstic in 2002, the 

phase shift between these perturbation signals in correction phase is chosen  𝜋
2
 (Ariyur 

and Krstic 2002). Therefore, the correction signals are orthogonal and defined as 

following: 

𝑑𝑐𝑜𝑟𝑟1 = 𝑠𝑖𝑔𝑛 �𝑠𝑖𝑛 �2𝜋𝑡
𝑇2
��                                                                                           Eq 33 

𝑑𝑐𝑜𝑟𝑟2 = 𝑠𝑖𝑔𝑛 �𝑐𝑜𝑠 �2𝜋𝑡
𝑇2
��                                                                                          Eq 34 

 

 

  
 

Fig  3-20: perturbation signals for multi-unit with correctors in the case of three non-identical units 
 

In this scheme, synchronization of the input vectors of three units is as following 

𝑈1 = �
𝑢1
𝑢2� + 𝑎𝑑𝑐𝑜𝑟𝑟1 �

1
0� + 𝑎𝑑𝑐𝑜𝑟𝑟2 �

0
1�                                                           Eq 35 

𝑈2 = �
𝑢1
𝑢2� + ∆𝑑𝑚𝑢 �

1
0� + 𝑎𝑑𝑐𝑜𝑟𝑟1 �

1
0� + 𝑎𝑑𝑐𝑜𝑟𝑟2 �

0
1� − �𝛽1

�
𝛽2�
�                           Eq 36 

𝑈3 = �
𝑢1
𝑢2� + ∆𝑑𝑚𝑢 �

0
1� + 𝑎𝑑𝑐𝑜𝑟𝑟1 �

1
0� + 𝑎𝑑𝑐𝑜𝑟𝑟2 �

0
1� − �𝛼1�𝛼2�

�                           Eq 37 

Adaptation Laws for the input and correctors are proposed as follow: 
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𝑈̇ = 𝐾𝑚𝑢𝑑𝑚𝑢
∆

�𝐽2 − 𝐽1 − 𝜆�
𝐽3 − 𝐽1 − 𝜌��                                                                                Eq 38 

 

𝛽̇̂ = �
𝑘𝛽1𝑑𝑐𝑜𝑟𝑟1

𝑎
𝑘𝛽2𝑑𝑐𝑜𝑟𝑟2

𝑎

� (𝐽2 − 𝐽1 − 𝜆�)                                                                           Eq 39 

𝛼�̇ = �
𝑘𝛼1𝑑𝑐𝑜𝑟𝑟1

𝑎
𝑘𝛼2𝑑𝑐𝑜𝑟𝑟2

𝑎

� (𝐽3 − 𝐽1 − 𝜌�)                                                                           Eq 40 

 

𝜆̇̂ = 𝑘𝜆(1 − 𝑑𝑚𝑢)(𝐽2 − 𝐽1 − 𝜆�)                                                                        Eq 41 

𝜌�̇ = 𝑘𝜌(1 − 𝑑𝑚𝑢)(𝐽3 − 𝐽1 − 𝜌�)                                                                       Eq 42 

In the proposed scheme for three non-identical units, choosing the sign and value of the 

gains of correctors is more complicated than the case with two non-identical units. Like 

before, first of all the parameters ∆ , 𝑎 , and the multi-unit gain, 𝑑𝑚𝑢, should be chosen 

properly. Though the signs of the gains of correctors can be preset based on the position 

of static surfaces related to the objective functions of the units, the proper values of the 

gains of correctors are extracted based on trial and error.  

3.5.2.3 Simulation results and discussion for a generic case  

To see the importance of correction phase, multi-unit algorithm without correction is 

applied on three non-identical units with two inputs.  Assume three objective functions 

as follow should be minimized: 

𝐽1 = (𝑢1 − 2)2 + (𝑢2 − 3)2 + 4                                                                                  Eq 43 

𝐽2 = (𝑢1 − 1)2 + (𝑢2 − 4)2 + 6                                                                                  Eq 44 

𝐽3 = (𝑢1 − 3)2 + (𝑢2 − 5)2 + 3                                                                                  Eq 45 

So 𝑈1
𝑜𝑝𝑡 = �23� , 𝑈2

𝑜𝑝𝑡 = �14�, 𝑈3
𝑜𝑝𝑡 = �35�, 𝐽1

𝑜𝑝𝑡 = 4, 𝐽2
𝑜𝑝𝑡 = 6, 𝐽3

𝑜𝑝𝑡 = 3. As a result the 

correctors are 𝛽 = � 1
−1�, 𝛼 = �−1

−2�, 𝜆 = 2, and 𝜌 = −1. 



53 
 

 

In the following simulation two different cases are assumed for the parameter Δ. In run 1 

it is assumed that |Δ| < |β| , and |Δ| < |α|. Vise versa, in run 2 it is assumed that 

|Δ| > |β| , and |Δ| > |α|. Assumptions for both runs are as below: 

1. run1: 𝑈0 = �−1
−1�, Δ = 0.1, and 𝐾 = 0.5 

2. run 2: 𝑈0 = �−1
−1�, Δ = 3, and 𝐾 = 0.5 

The results of applying multi-unit algorithm without correctors for run 1 are shown in 

Fig  3-21, and Fig  3-22. And the results of applying multi-unit algorithm without correctors 

for run 2 are shown in Fig  3-23, and Fig  3-24. Both outputs of units are increasing and the 

simple algorithm without correction phase is diverging.  

 
Fig  3-21: Input signals of units in multi-unit optimization for three non-identical without correction (run 1) 
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Fig  3-22: Input signal, Output of the units and gradient in multi-unit optimization for three non-identical 

without correction (run 1) 
 

 
Fig  3-23: Input signals of units in multi-unit optimization for three non-identical without correction (run 2) 
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Fig  3-24: Input signal, Output of the units and gradient in multi-unit optimization for three non-identical 

without correction (run 2) 

Now the proposed correction is applied on three non-identical units with objective 

functions similar to Eq 43, Eq 44 and Eq 45.  In the following simulation two cases are 

assumed for the initial conditions: 

1. U0 = �00� ⟹ �
𝐽1 = 4 + 9 + 4 = 17
𝐽2 = 1 + 16 + 6 = 23
𝐽3 = 9 + 25 + 3 = 37

� 

So the initial values for correctors are 𝛽0 = �00�, 𝛼0 = �00�,  𝜆0 = 23 − 17 = 6, and 

𝜌0 = 37 − 17 = 20. 

2. U0 = �11� ⟹ �
𝐽1 = 1 + 4 + 4 = 9
𝐽2 = 0 + 9 + 6 = 15
𝐽3 = 4 + 16 + 3 = 23

� 

So the initial values for correctors are 𝛽0 = �00�, 𝛼0 = �00�,  𝜆0 = 15 − 9 = 6, and 

𝜌0 = 23 − 9 = 14. 

Among the numerous runs, 16 runs are selected to show the importance of tuning the 

gains and parameters in multi-unit method with correctors for three non-identical units 
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and two inputs. First, a proper value for ∆ is chosen based on the difference between the 

optimal points on static surfaces of the objective functions in each units. Then the 

parameter 𝑎 is set. After that, the gains of multi-unit and correction phases are chosen 

with some trial and error. In all of these runs T1 = 100, and T2 = 100 is chosen for 

periods of perturbation signals. 

In Table  3-6, the initial values for inputs and correctors in different runs are shown.  The 

values of parameters in each run are displayed in Table 3-7. The parameter n shows the 

number of oscillations in each period for the two correcting perturbation signals. For 

example if n = 4 the perturbation signals would be the same as Fig 3-23. 

Table  3-6: summary of initial values for inputs and correctors in multi-unit algorithm with correctors on 
three non-identical units 

Run 𝐔𝟎 𝛃𝟎 𝛂𝟎 𝛌𝟎 𝛒𝟎 
1 �00� �00� �00� 6 20 

2 �00� �00� �00� 6 20 

3 �00� �00� �00� 6 20 

4 �00� �00� �00� 6 20 

5 �00� �00� �00� 6 20 

6 �00� �00� �00� 6 20 

7 �00� �00� �00� 6 20 

8 �00� �00� �00� 6 20 

9 �00� �00� �00� 6 20 

10 �00� �00� �00� 6 20 

11 �11� �00� �00� 6 14 

12 �00� �00� �00� 6 20 

13 �00� �00� �00� 6 20 

14 �00� �00� �00� 6 20 

15 �00� �00� �00� 6 20 

16 �00� �00� �00� 6 20 
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Fig  3-25: perturbation signals with n=4 oscillations in each period 

 

Table  3-8 shows the optimal points and values, and the values of estimated correctors by 

applying the multi-unit with correctors for the 16 runs. The symbol N means that the 

algorithm does not converge in the relative run. The true values of the optimal points and 

values for each unit, and the true values of the correctors are displayed in Table  3-9 to 

evaluate the functionality of multi-unit method.  
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Table  3-7: summary of parameters in multi-unit algorithm with correctors on three non-identical units 
Run 𝐤𝐦𝐮 ∆ 𝐚 𝐤𝛃 𝐤𝛂 𝐤𝛌 𝐤𝛒 𝐧 

1 -0.05 3 1 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

2 -0.05 2 0.9 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

3 -0.005 2 0.9 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

4 -0.005 0.9 0.4 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

5 -0.001 0.9 0.4 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

6 -0.005 0.9 0.4 �0.01
0.01� �0.003

0.001� 0.01 0.1 1 

7 -0.005 0.9 0.4 �0.001
0.001� �0.03

0.01� 0.01 0.1 1 

8 -0.005 0.9 0.4 �0.001
0.001� �0.003

0.001� 0.1 0.1 1 

9 -0.005 0.9 0.4 �0.001
0.001� �0.003

0.001� 0.01 1 1 

10 -0.005 0.7 0.4 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

11 -0.005 0.7 0.4 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

12 -0.005 0.7 0.4 �0.001
0.001� �0.003

0.001� 0.01 0.1 4 

13 -0.005 0.6 0.4 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

14 -0.005 0.6 0.3 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

15 -0.001 0.6 0.3 �0.001
0.001� �0.003

0.001� 0.01 0.1 1 

16 -0.005 0.6 0.3 �0.001
0.001� �0.003

0.001� 0.01 0.1 4 
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Table  3-8: summary of results in applying multi-unit with correctors on three non-identical units 
Run 𝒖𝟏∗  𝒖𝟐∗  𝒖𝟑∗  𝐉𝟏 𝐉𝟐 𝐉𝟑 𝜷�∗ 𝜶�∗ 𝝀�∗ 𝝆�∗ 

1 �0.5093
1.478 � � 2.5

2.496� �1.539
6.495� 8.538 10.51 7.369 � 1.009

−1.018� � −1.03
−2.017� 1.978 -1.169 

2 N N N N N N N N N N 
3 �0.9998

2.01 � � 2
3.005� �1.977

6.017� 5.98 7.989 5.079 � 0.9998
−0.9955� �−0.9791

−2.007 � 2.009 -0.9159 

4 �1.551
2.562� � 1.45

3.559� �2.929
5.465� 4.394 6.399 3.439 � 1.001

−0.9971� �−0.9831
−2.005 � 2.003 -0.9879 

5 �1.528
2.635� �1.429

3.627� �2.492
5.532� 4.359 6.325 3.534 �0.9993

−0.995� �−0.9722
−1.999 � 2.003 -0.992 

6 N N N N N N N N N N 
7 N N N N N N N N N N 
8 �1.725

2.561� �1.486
3.494� �2.702

5.463� 4.268 6.492 3.303 � −1.138
−0.9394� �−0.9837

−2.003 � 2.221 -0.9713 

9 �1.559
3.926� �1.453

4.924� �1.014
5.589� 5.05 7.063 7.291 � 1.005

−1.001� � 𝑁
−0.7632� 2.01 2.252 

10 �1.655
2.651� �1.352

3.651� �2.647
5.363� 4.242 6.563 3.255 �1.003

−1 � �−0.9936
−2.012 � 2.002 -1.015 

11 �1.655
2.649� �1.352

3.649� �2.651
5.362� 4.242 6.563 3.252 �1.004

−1 � �−0.997
−2.012� 2.004 -1.014 

12 � 1.65
2.654� � 1.35

3.652� �2.648
5.351� 4.243 6.244 3.247 � 0.9996

−0.9984� �−0.9988
−1.998 � 2.001 -0.9977 

13 �1.707
2.663� �1.302

3.666� �2.742
5.289� 4.199 6.015 3.526 � 1.004

−1.002� �−1.035
−2.025� 2.001 -1.046 

14 N N N N N N N N N N 
15 �1.673

2.789� �1.273
3.784� �2.631

5.393� 4.15 6.121 3.28 � 0.9991
−0.9953� �−0.966

−1.996� 2.001 -0.9569 

16 �1.701
2.702� � 1.3

3.702� � 2.7
5.301� 4.178 6.179 3 � 1.001

−0.9992� �−0.9992
−1.998 � 2.001 -0.9985 

 
Table  3-9: summary of real values for the optimal points and correctors 

𝒖𝟏∗  𝒖𝟐∗  𝒖𝟑∗  𝐉𝟏 𝐉𝟐 𝐉𝟑 𝜷 𝜶 𝝀 𝝆 

�23� �14� �35� 
4 6 3 � 1

−1� �−1
−2� 2 -1 
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By comparing the results of run 1 and run 2 form Table  3-8, it can be realized that if the 

values of ∆ and a are decreasing but the multi-unit gain does not change relatively, the 

algorithm does not converge. Therefore to recover convergence the multi-unit gain 

should be decreased by the factor of 5 as it is shown in run 3. However the equilibrium 

points in run 1 and run 3 do not necessarily equal to the optimal points for each unit. 

Comparison between run 3 and run 4 shows that by decreasing the amount of multi-unit 

gain the algorithm converges to near optimal points. 

It can be realized from run 4 and run 6 that if the gain of corrector β is increased by the 

factor of 10 the algorithm diverges. Besides from run 4 and run 7, it can be deduced that 

if the gain of corrector α is increased by the factor of 10 the algorithm diverges, too. 

By comparing run 4 and run 8, it is realized that if the gain of corrector λ is increased by 

the factor of 10 the algorithm still converges to the near of optimal points.  

Though increasing the gain of corrector ρ by the factor of 10, from run 4 to run 9, does 

not force the algorithm to diverge but it has significant impact on the convergence of α1 

and it leads the algorithm to converge not near the optimal points. 

The graphs in Fig  3-26 to Fig  3-28 show the input signals, output signals, and the estimated 

correctors for run 10. The input signals, output signals, and the estimated correctors for 

run 12 are also displayed in Fig  3-29 to Fig  3-31. Comparing the results of run 10 and run 

11 show that changing in initial inputs or the vector 

U0, and as a result changing in initial guess for the correctors λ, and  ρ has no significant 

impact on the convergence of the algorithm.  

Results of run 10 and run 12 display that if more than one oscillation exist in one period 

of perturbation signals, such as Fig  3-25, the algorithm still converges to very near to 

optimal points. Furthermore, the convergence is faster in run 12 that in run 10. 

Run 14 are related to a situation in which the multi-unit algorithm diverges and by some 

modifications in run 15 and run 16, it has been tried to make it converge. First by 
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decreasing the multi-unit gain by the factor of 5, the algorithm converges in run 15 which 

shows the improvement from run 14. After that, by using 4 oscillations in one period of 

perturbation signals in run 16, such as Fig  3-25, the algorithm converges to very near 

optimal points; it means adding more oscillations improve the multi-unit algorithm 

functionality from run 14 to run 16. The graphs in Fig  3-32 to Fig  3-34 show the input 

signals, output signals, and the estimated correctors for run 15. The input signals, output 

signals, and the estimated correctors for run 16 are also displayed in Fig  3-35 to Fig  3-37.  

Another comparison between the results of run 10 in Fig  3-27, and the results of run 15 in 

Fig  3-33 shows that although the steady state response is converging faster in run 10 than 

in run 15, the inappropriate transient response in run 10 is modified by decreasing the 

multi-unit gain in run 15.  
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Fig  3-26: Input signals in multi-unit scheme with correction for three non-identical units (run 10) 

 

 
Fig  3-27: Output signals in multi-unit scheme with correction for three non-identical units (run 10) 
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Fig  3-28: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 10) 

 

 
Fig  3-29: Input signals in multi-unit scheme with correction for three non-identical units (run 12) 
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Fig  3-30: Output signals in multi-unit scheme with correction for three non-identical units (run 12) 

 

 
Fig  3-31: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 12) 
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Fig  3-32: Input signals in multi-unit scheme with correction for three non-identical units (run 15) 

 

 
Fig  3-33: Output signals in multi-unit scheme with correction for three non-identical units (run 15) 
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Fig  3-34: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 15) 

 

 
Fig  3-35: Input signals in multi-unit scheme with correction for three non-identical units (run 16) 
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Fig  3-36: Output signals in multi-unit scheme with correction for three non-identical units (run 16) 

 

 
Fig  3-37: Estimated correctors in multi-unit scheme with correction for three non-identical units (run 16) 
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3.6 A guideline to tune parameters in multi-unit optimization 
algorithm 

Based on the attempts made to choose parameters and gains in multi-unit algorithm, some 

heuristic rules are found. Although there is no certain method to tune these parameters, 

and the value of gains are derived based on trial and error, the following steps could be 

useful in running a multi-unit algorithm. It should be mentioned that the priori knowledge 

from the system is somehow needed in order to tune the parameters in multi-unit method. 

First, based on the position of optimal points on the static curves, the offset ∆ should be 

chosen. Next parameter is 𝐾𝑚𝑢 or the gain of integrator in multi-unit phase. After that, 

the parameter 𝑎 which shows the amplitude of correction signal, and the periods 𝑇1, and 

𝑇2 should be tuned. Then an initial point should be selected. Following this step, the signs 

for gains of correctors should be verified as it is presented in section 3.4.2. Finally the 

values for gains of correctors should be found by trial and error. 

3.7 Brief Conclusion 

As a brief conclusion of the chapter, multi-unit optimization algorithm has been modified 

for three non-identical units and two inputs by proposing two suitable correction signals 

for the correction phase in the multi-unit scheme. The differences between units have 

been characterized and the adaptation laws for the input and correctors have been 

proposed in such a way that the algorithm converges to the optimal point. Besides, tuning 

the parameters and choosing the sign and values for the gains of correctors have been 

investigated. 
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4 CHAPTER 4: CASE STUDY 

This chapter is dedicated to the second objective that is to apply multi-unit method to 

maximize output power of a PV array model.  

4.1 Application 1: Two units and one input 

4.1.1 PV cell/array modeling 

As discussed in the literature review, two main models for PV cell are single-diode model 

and double-diode model. Mono-crystalline PV cell has the best efficiency among all 

commercially available technology. Because the single-diode model is the best model 

fitted for Mono-crystalline PV cell and because of some limitations to develop 

expressions for the I-V curve parameters in two-diode model, single-diode model is 

selected for modeling the PV cell/array in this research. A schematic of the single-diode 

circuit model is shown in Fig  4-1. 

 

Fig  4-1: Single-diode model 

According to Kirchhoff’s current law: 

 𝑰 = 𝑰𝑷𝑯 − 𝑰𝒅 − 𝑰𝑺𝑯                                                                                                      Eq 
46 

The voltage-current characteristic equation of a solar cell can be derived by following 

equations (Vachtsevanos and Kalaitzakis 1987). 

Photo current:  𝑰𝑷𝑯 = �𝑰𝑺𝑪 + 𝑲𝑰�𝑻𝑪 − 𝑻𝑹𝒆𝒇��𝝀𝑮                                                           Eq 

47 
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Diode current:   𝑰𝒅 = 𝑰𝑺 �𝒆𝒙𝒑�
𝒒(𝑽+𝑰𝑹𝑺)
𝒌𝑻𝑪𝑨

� − 𝟏�                                                              Eq 

48 

Cell’s saturation current:  𝑰𝑺 = 𝑰𝑹𝑺 �
𝑻𝑪
𝑻𝑹𝒆𝒇

�
𝟑
𝒆𝒙𝒑 �𝒒𝑬𝒈

𝒌𝑨
� 𝟏
𝑻𝑹𝒆𝒇

− 𝟏
𝑻𝑪
��                               Eq 

49 

Shunt current:  𝑰𝑺𝑯 = 𝑽+𝑰𝑹𝑺
𝑹𝑺𝑯

                                                                                          Eq 50 

𝜆𝐺 = 𝐺
1000

                                                                                                                      Eq 51 

In these equations 𝐼 is output current (A), 𝑉 is voltage across the output terminal (V), 

𝑉𝑂𝐶  is PV open-circuit voltage, 𝐼𝑆𝐶  is short-circuit current at a 25°C and a insolation of 

1kW/m2, 𝐼𝑅𝑆 is the diode reverse saturation current, 𝐸𝑔 is the band gap energy (eV), 𝐾𝐼   is 

the cell’s short-circuit current temperature coefficient (mA/°K), 𝑇𝑅𝑒𝑓 and 𝑇𝐶 are the 

cell’s reference and current temperatures (°K), 𝐺 is the insolation or the intensity of solar 

radiation (kW/m2), 𝐴 is diode ideality factor (between 1 and 1.5), 𝑞 is elementary charge 

(1.6021×10-19C), and 𝑘  is Boltzmann's constant(1.3806×10-23J/°K).  

Since a typical PV cell produces less than 2W at 0.5V-0.8V (depending on the cell 

technology) approximately, the cells must be connected in series-parallel configuration 

to produce enough voltage and power (Tsai et al. 2008; Nema et al. 2009). A number of 

PV cells electrically connected to each other and mounted in a support structure or frame 

is called a PV module (panel). Multiple modules can be wired together to form an array. 

Fig  4-2 displays the position of PV cell in a PV module and the position of PV module in 

a PV array. In general, the larger the area of a module or array, the more electricity will 

be produced.  
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Fig  4-2: Schematic of PV cell in PV module and PV array (Knier 2002) 

If we consider 𝑁𝑆 cells in series to make a PV module, the terminal equation for the current and 

voltage (I-V) relationship for the PV module is given by: 

𝐼 = 𝐼𝑃𝐻 − 𝑁𝑃𝐼𝑆 �𝑒𝑥𝑝 �
𝑞� 𝑉

𝑁𝑆
+𝐼𝑅𝑆�

𝑘𝑇𝐶𝐴
� − 1� −

� 𝑉
𝑁𝑆
+𝐼𝑅𝑆�

𝑅𝑆𝐻
                                                      Eq 52 

 

The terminal equation for the current and voltage of the array arranged in 𝑁𝑃 parallel and 

NS series becomes: (Tsai et al. 2008) 

𝑰 = 𝑵𝑷𝑰𝑷𝑯 − 𝑵𝑷𝑰𝑺 �𝒆𝒙𝒑�
𝒒� 𝑽𝑵𝑺

+𝑰𝑹𝑺𝑵𝑷
�

𝒌𝑻𝑪𝑨
� − 𝟏� −

�𝑵𝑷𝑽𝑵𝑺
+𝑰𝑹𝑺�

𝑹𝑺𝑯
                                                       Eq 

53 
 
For the simulation in this chapter, the numerical values for Eq 46 to Eq 50 are picked 

from the manufacture’s datasheet of the PV module 215N from Sanyo (Ghaffari et al. 

2012). These values are presented in the Table  4-1. 

 
Table  4-1: Numerical values from PV module 215N Sanyo 

𝑅𝑆 0.00248 [Ω] 

𝑅𝑆𝐻 8.7 [Ω] 

𝐸𝑔 1.16 [eV] 

Cell

Module 
(panel)

Array
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𝐴 1.81 

𝐾𝐼 1.96e-3 [mA/°K] 

𝐼𝑆𝐶 5.61 [A] 

𝐼𝑅𝑆 1.13e-6 [A] 

A PV cell is modeled by MATLAB using a single diode model as a basic example. 

Current-voltage (I-V) and power-voltage (P-V) characteristics of this PV cell are shown 

in the following figures. In Fig  4-3, and Fig  4-4 it is assumed that 𝜆𝐺 = 1 and the curves 

are shown for different temperatures. It is observable that in fixed insolation, by 

increasing the temperature, short-circuit current of the PV cell is increased, whereas the 

maximum power point (MPP) is decreased. Therefore, the efficiency is decreased. 

 

 
Fig  4-3: I-V characteristics of PV cell for different temperatures and 𝝀𝑮 = 𝟏 
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Fig  4-4: P-V characteristics of PV cell for different temperatures and 𝝀𝑮 = 𝟏 

By simulating the model of PV cell, maximum power, optimal load or the resistance 

related to the MPP, and the voltage of MPP are found for different temperatures. In the 

Table  4-2, the results are presented. 

Table  4-2: Optimal power, voltage, and load with 𝝀𝑮 = 𝟏 
𝑇𝐶[°𝐶] 𝑷𝒎𝒂𝒙[𝑾] 𝑹𝑳−𝒐𝒑𝒕[𝜴] 𝑽𝒎𝒂𝒙 [𝑽] 

25 3.0696     0.1100     0.5811     

50 2.7825     0.1000     0.5275     

75 2.4932     0.0900     0.4737     

100 2.2052 0.0900 0.4455 

In Fig  4-5 and Fig  4-6 it is assumed that 𝑇𝐶 = 25 °𝐶 and the I-V and P-V curves are 

shown for different insolation. By increasing the insolation, the short-circuit current of 

the PV module is increased, and the MPP is increased as well.  
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Fig  4-5: I-V characteristics of PV cell for different insolations and 𝑻𝑪 = 𝟐𝟓 °𝑪 

 
Fig  4-6: P-V characteristics of PV cell for different insolatios and 𝑻𝑪 = 𝟐𝟓 °𝑪 

In the Table  4-3, maximum power, optimal load or the resistance related to the MPP, and 

the voltage of MPP are shown for different insolations. 
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Table  4-3: Optimal power, voltage, and load with 𝑻𝑪 = 𝟐𝟓 °𝑪 
𝜆𝐺[𝒌𝑾/𝒎𝟐] 𝑷𝒎𝒂𝒙[𝑾] 𝑹𝑳−𝒐𝒑𝒕[𝜴] 𝑽𝒎𝒂𝒙 [𝑽] 

0.2 0.5712 0.4900 0.5291 

0.4 1.1753 0.2600 0.5528 

0.6 1.7979 0.1800 0.5689 

0.8 2.4296 0.1400 0.5832 

1 3.0696 0.1100 0.5811 

As it is noted, by connecting PV cells in series and parallel we can achieve more output 

power. For example by connecting 𝑁𝑆 cells in series, Pmax is multiplied by 𝑁𝑆 

(increasing). Moreover, by connecting 𝑁𝑃 cells in parallel Pmax is multiplied by 𝑁𝑃  

(increasing).  In Table  4-4, maximum power, optimal load, and the voltage of MPP are 

shown for different configuration of PV cells. In these simulation 𝑇𝐶 = 25 °𝐶 and 𝜆𝐺 =

1. As it is seen, when NS=2 and NP=2 the maximum power is equal to 12.0063 which is 4 

times greater than the maximum power of NS=1 and NP=1. In the PV module 215N of 

Sanyo NS=72 and NP=1. We use this module for the optimization problem in this 

research. 

Table  4-4: Optimal power, voltage, and load for different configuration of PV cells with 𝑻𝑪 = 𝟐𝟓 °𝑪 and 
𝝀𝑮 = 𝟏 

𝑵𝑺 𝑵𝑷 𝑷𝒎𝒂𝒙[𝑾] 𝑹𝑳−𝒐𝒑𝒕[𝜴] 𝑽𝒎𝒂𝒙 [𝑽] 

1 1 3.0016 0.1 0.5479 
1 2 6.0032 0.2 1.0957 
2 1 6.0032 0.2 1.0957 
2 2 12.0063 0.1 1.0957 

36 1 110.5450 4.02 21.0806 
72 1 221.0905 8.03 42.135 
72 2 442.1801 4.02 42.1612 

 

4.1.2 Formulation the optimization problem 

Based on Jacobi's law, a power source will deliver its maximum power to a load when 

the load has the same impedance as the internal impedance of the power source. But in 

general, real loads are far from the ideal load for a PV array and this mismatch results in 

major efficiency losses. Besides, the output current of PV arrays depend on atmospheric 

conditions such as temperature and insolation. These parameters are regularly changing 

so it’s important to track the maximum power point to keep a maximum efficiency at 
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every instant. Based on these facts and the PV array model, optimization problem is 

formulated as followed:  

Max𝑅 𝑃𝑃𝑉(𝑅)                                                                                                               Eq 54 

In order to have a suitable problem for applying multi-unit method, in all simulations the 

optimization problem is translated to a minimization problem or Min𝑅(−𝑃𝑃𝑉(𝑅)). So the 

objective function is output power and the decision variable or the input of multi-unit 

algorithm is the load resistance. The disturbance inputs are ambient temperature (°K) and 

insolation (kW/m2). 

In Fig  4-7, the power curvature with respect to different loads (P-R curve) is shown for 

different temperature and 𝜆𝐺 = 1. This static curve is convex so we can apply multi-unit 

optimization method to obtain the maximum power. 

 

Fig  4-7: P-R curves for PV module 215N from Sanyo with NS=72 and NP=1 
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4.1.3 Multi-unit optimization for two identical PV arrays 

The multi-unit algorithm is used to find the maximum power and optimal load related to 

that maximum value. In this part the case of two identical units is discussed. Therefore, it 

is assumed that the configuration of both arrays is the same, and also the conditions 

(temperature and insolation) in which they work are similar. Based on the Fig  4-7, the 

input of each unit is R and the output of each unit is P.  

In Table  4-5 the results of applying multi-unit scheme on different configuration of the 

PV module 215N Sanyo with true optimal values extracted by MATLAB optimization 

toolbox are shown. In all runs 𝑇𝐶 = 25 °𝐶 and 𝜆𝐺 = 1.  By tuning the gain of integrator 

and selecting the offset Δ properly, the results achieved by multi-unit optimization 

method are the same as their real values extracted by “fminunc” or “fminsearch” 

functions in MATLAB. The letter N in the table represents the non-convergence multi-

unit scheme. 

Table  4-5: Optimal power and load for PV module 215N Sanyo with 𝑻𝑪 = 𝟐𝟓 °𝑪 , 𝝀𝑮 = 𝟏 

𝑵𝑺 𝑵𝑷 
Multi unit fminunc or fminsearch 

𝑷𝒎𝒂𝒙[𝑾] 𝑹𝑳−𝒐𝒑𝒕[𝜴] K Δ 𝑷𝒎𝒂𝒙[𝑾] 𝑹𝑳−𝒐𝒑𝒕[𝜴] 

72 1 221.09 8.03 -100 0.3 221.09 8.03 

72 2 N N -100 0.5 442.18 4.02 

72 2 442.18 4.02 -1.5 0.2 442.18 4.02 

72 3 663.27 2.68 -0.5 0.1 663.27 2.68 

4.1.4 Multi-unit optimization for two non-identical PV arrays 

In this part, the multi-unit algorithm including the correction phase is applied for two 

non-identical PV arrays. This algorithm works well for non-identical units when the 

shapes of the graphs are the same and they can be somehow fitted to each other by a 

slight shifting. To have different PV arrays we define three scenarios for configurations 

of PV module 215N Sanyo. The differences could be in their temperature, insolation, or 

number of parallel cells. Accordingly these are the defined scenarios: 

1. Different 𝑇𝐶, same 𝝀𝑮 , and same 𝑁𝑃  
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2. Different 𝝀𝑮, same 𝑇𝐶, same 𝑁𝑃  

3. Different 𝑁𝑃, same 𝑇𝐶, same 𝝀𝑮  

Fig  4-8 shows the power-resistor (P-R) curve for a PV array contains one PV module 

215N Sanyo with 𝜆𝐺 = 1 and different temperatures. This figure is related to the scenario 

1. Fig  4-9 shows the PR curve for a PV array which contains one PV module 215N Sanyo 

with 𝑇𝐶 = 25 °𝐶 and different insolations. This figure is related to the scenario 2. Finally, 

Fig  4-10 shows the P-R curve for a PV array contains different configuration of PV 

module 215N Sanyo with 𝑇𝐶 = 25 °𝐶 and  𝜆𝐺 = 1. This means that the conditions are the 

same but the number of parallel cells is different which is related to the scenario 3. 

 
Fig  4-8: P-R Curves for a PV array with 𝝀𝑮 = 𝟏, 𝑵𝑺 = 𝟕𝟐, 𝑵𝑷 = 𝟏, and different temperatures 
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Fig  4-9: P-R Curves for a PV array with 𝑻𝑪 = 𝟐𝟓 °𝑪, 𝑵𝑺 = 𝟕𝟐, 𝑵𝑷 = 𝟏, and different insolations 

 
 

 
Fig  4-10: P-R Curves for a PV array with 𝑻𝑪 = 𝟐𝟓 °𝑪, 𝝀𝑮 = 𝟏, 𝑵𝑺 = 𝟕𝟐, and different numbers for 

parallel cells 
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Based on Fig  4-8, Fig  4-9, and Fig  4-10, and because of the similarities between the curves, 

two curves are chosen from each figure to form the two different units in final scenarios 

to apply multi-unit algorithm. Final scenarios are shown in the Table  4-6. 

 
Table  4-6: Final scenarios to apply multi-unit algorithm for two non-identical units 
Scenario 𝑵𝑺𝟏 𝑵𝑺𝟐 𝑵𝑷𝟏 𝑵𝑷𝟐 𝑻𝑪𝟏 𝑻𝑪𝟐 𝝀𝑮𝟏 𝝀𝑮𝟐 

1 72 72 1 1 30oC 25oC 1 1 

2 72 72 1 1 25oC 25oC 0.8 1 

3 72 72 4 5 25oC 25oC 1 1 

 

4.1.4.1 Scenario 1 

In this part the initial point for multi-unit algorithm is chosen R0 = 7Ω, so based on the 

two P-R curves for scenario 1, the initial values for correctors are 𝛽0 = R0 − R0 = 0, and 

𝜆0 ≅ P2(R0) − P1(R0) = 2.3. Among the numerous runs for this scenario, 8 runs are 

selected to show the importance of tuning the gains and parameters in multi-unit method 

with correctors. First, a proper value for ∆ is chosen based on the difference between the 

optimal points on P-R static curves of each units. Then the parameter a is set. After that, 

the gains of multi-unit and correction phases are chosen with some trial and error. In 

Table  4-7 the values of parameters in each run are displayed. 𝑇1 and 𝑇2 are the periods for 

correction signals. Table  4-8 shows the optimal points and values, and the values of 

estimated correctors by applying the multi-unit with correctors for the 8 runs. The correct 

values of the optimal resistors and output powers for each unit which were calculated by 

MATLAB optimization toolbox are displayed in Table  4-9 to evaluate the functionality of 

multi-unit method. By comparing run 8 and 3, it can be realized that the ratio of ∆ to a is 

crucially important to make the algorithm converges to optimal points. 

Table  4-7: summary of parameters in applying multi-unit algorithm for two non-identical PV arrays 
(scenario 1) 
Run 𝐤𝐦𝐮 ∆ 𝐚 𝐤𝛃 𝐤𝛌 𝐓𝟏 𝐓𝟐 
1 -0.01 0.5 0.5 0.001 0.01 200 100 
2 -0.01 0.5 0.5 0.01 0.01 200 100 
3 -0.01 -0.5 0.5 0.01 0.1 200 100 
4 -0.1 0.5 0.5 0.01 0.01 200 100 
5 -0.1 0.5 0.5 0.01 0.1 200 100 
6 -0.1 0.5 0.2 0.01 0.1 200 50 
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7 -0.1 0.5 0.5 0.01 0.1 200 200 
8 -0.1 0.5 0.09 0.01 0.1 200 100 

 
Table  4-8: summary of results in applying multi-unit algorithm for two non-identical PV arrays (scenario 
1) 
Run 𝑹𝟏∗  𝑹𝟐∗  𝑷𝟏∗  𝑷𝟐∗  𝜷�∗ 𝝀�∗ 

1 7.4116 7.5429 215.3949 219.4715 -0.1312 4.0735 
2 7.4287 7.6074 215.5098 219.8871 -0.1675 3.8224 
3 7.4051 7.5365 215.3501 219.4273 -0.1314 4.0772 
4 7.4287 7.6074 215.5098 219.8871 -0.1675 3.8224 
5 7.4110 7.5423 215.3904 219.4675 -0.1313 4.0772 
6 7.7079 7.8388 216.7577 220.8543 -0.1309 4.0966 
7 7.6610 8.2923 216.6269 220.7040 -0.1313 4.0772 
8 7.8174 7.9483 216.9479 221.0475 -0.1309 4.0996 

 
Table  4-9: summary of results in using MATLAB optimization toolbox for each PV arrays (scenario 1) 
𝑹𝟏∗  𝑹𝟐∗  𝑷𝟏∗  𝑷𝟐∗  𝜷 𝝀 
7.9 8.1 217 221.1 -0.2 4.1 

Fig  4-11shows the graphs for input signals or resistors, and the corrector 𝛽̂ for the run 8. 
The graphs for the corrector 𝜆̂, output power signals, and correction signal in run 8 are 
displayed in Fig  4-12. 

 
 

 
Fig  4-11: Resistors and corrector 𝜷� in multi-unit scheme with correction for two non-identical PV arrays 

(run 8) 
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Fig  4-12: Output power signals, corrector 𝝀� , and correction signal in multi-unit scheme with correction for 

two non-identical PV arrays (run 8) 
 

4.1.4.2 Scenario 2 

In this part the initial point for multi-unit algorithm is chosen R0 = 7, so based on the 

two P-R curves for scenario 2, the initial values for correctors are 𝛽0 = 0, and 𝜆0 = 0. 

Among the numerous runs for this scenario, 2 runs are selected to show the importance of 

tuning the multi-unit gain. In Table  4-10 the values of parameters in each run are 

displayed. Table  4-11 shows the optimal points and values, and the values of estimated 

correctors by applying the multi-unit with correctors for the 2 runs. Finally, the correct 

values of the optimal resistors and output powers for each unit which were calculated by 

MATLAB optimization toolbox are displayed in Table  4-12. By comparing Table  4-11, 

and Table  4-12 it is realizable that in run 2 the optimal points and values are more near to 

their true values than in run 1. 

Table  4-10: summary of parameters in applying multi-unit algorithm for two non-identical PV arrays 
(scenario 2) 
Run 𝐤𝐦𝐮 ∆ 𝐚 𝐤𝛃 𝐤𝛌 𝐓𝟏 𝐓𝟐 
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1 -0.01 2 0.5 0.001 0.01 200 100 
2 -0.1 2 0.5 0.01 0.1 200 100 

 
Table  4-11: summary of results in applying multi-unit algorithm for two non-identical PV arrays (scenario 
2) 
Run 𝑹𝟏∗  𝑹𝟐∗  𝑷𝟏∗  𝑷𝟐∗  𝜷�∗ 𝝀�∗ 

1 9.0329 8.8670 171.0585 216.4053 1.8341 45.3468 
2 9.3669 7.5329 174.0551 219.4016 1.834 45.3471 

 
Table  4-12: summary of results in using MATLAB optimization toolbox for each PV arrays (scenario 2) 
𝑹𝟏∗  𝑹𝟐∗  𝑷𝟏∗  𝑷𝟐∗  𝜷 𝝀 
10 8 175 221.1 2 46.1 

Fig  4-13 shows the graphs for input signals or resistors, and the corrector 𝛽̂ for the run 2. 

The graphs for the corrector 𝜆̂, output power signals, and correction signal in run 2 are 

displayed in Fig  4-14. 

 
Fig  4-13: Resistors and corrector 𝜷� in multi-unit scheme with correction for two non-identical PV arrays 

(run 2) 
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Fig  4-14: Output power signals, corrector 𝝀� , and correction signal in multi-unit scheme with correction for 

two non-identical PV arrays (run 2) 
 

4.1.4.3 Scenario 3 

In this part the initial point for multi-unit algorithm is chosen R0 = 1, so based on the 

two P-R curves for scenario 3, the initial values for correctors are 𝛽0 = 0, and 𝜆0 = 200. 
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and parameters of the first two runs lead to convergence to optimal points and values. In 

run 3, changing the gain of multi-unit causes the algorithm to diverge. In run 4 the 

parameter a is decreasing comparing to the run 2 but the other parameters are the same. 

In run5 and run 6, the gains of correctors are changed which lead the algorithm not 

converging.  

The correct values of the optimal resistors and output powers for each unit which were 

calculated by MATLAB optimization toolbox are displayed in Table  4-15.  
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Table  4-13: summary of parameters in applying multi-unit algorithm for two non-identical PV arrays 
(scenario 3) 
Run 𝐤𝐦𝐮 ∆ 𝐚 𝐤𝛃 𝐤𝛌 𝐓𝟏 𝐓𝟐 

1 -0.001 1 0.2 0.0005 0.1 200 100 
2 -0.001 0.4 0.08 0.0005 0.1 200 100 
3 -0.01 0.4 0.08 0.0005 0.1 200 100 
4 -0.001 0.4 0.05 0.0005 0.1 200 100 
5 -0.001 0.4 0.08 0.0005 0.2 200 100 
6 -0.001 0.4 0.08 0.001 0.2 200 100 

 
Table  4-14: summary of results in applying multi-unit algorithm for two non-identical PV arrays (scenario 
3) 
Run 𝑹𝟏∗  𝑹𝟐∗  𝑷𝟏∗  𝑷𝟐∗  𝜷�∗ 𝝀�∗ 

1 1.559 2.146 787 995 0.4126 208 
2 1.796 1.805 864 1082 0.3912 219 
3 N N N N N N 
4 N N N N N N 
5 N N N N N N 
6 N N N N N N 

 
Table  4-15: summary of results in using MATLAB optimization toolbox for each PV arrays (scenario 3) 
𝑹𝟏∗  𝑹𝟐∗  𝑷𝟏∗  𝑷𝟐∗  𝜷 𝝀 
2 1.6 884.3 1105 0.4 220.7 

Fig  4-15 and Fig  4-17 show the graphs for input signals or resistors, and the corrector 𝛽̂ for 

the run 1 and run 2. The graphs for the corrector 𝜆̂, output power signals, and correction 

signal in run 1 and run 2 are displayed in Fig  4-16 and Fig  4-18 respectively. Comparing 

the results of these two runs shows that by choosing the smaller ∆ and 𝑎 in run 2, but 

keeping their ratio similar to run 1, the algorithm converges to more accurate optimal 

points and values. This ratio is deducted by several trial and errors. 
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Fig  4-15: Resistors and corrector 𝜷� in multi-unit scheme with correction for two non-identical PV arrays 

(run 1) 
 

 
Fig  4-16: Output power signals, corrector 𝝀� , and correction signal in multi-unit scheme with correction for 

two non-identical PV arrays (run 1) 
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Fig  4-17: Resistors and corrector 𝜷� in multi-unit scheme with correction for two non-identical PV arrays 

(run 2) 

 
Fig  4-18: Output power signals, corrector 𝝀� , and correction signal in multi-unit scheme with correction for 

two non-identical PV arrays (run 2) 
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4.2 Brief conclusion 

In this chapter, a single-diode model for a PV cell and a PV array has been presented. 

This model has been made and the IV and PV characteristics of the model have been 

simulated by MATLAB. Then the optimization problem regarding to MPPT has been 

introduced and the multi-unit algorithm has been applied on the model to solve the 

problem in both two identical and non-identical units.  

 

 
 
 
 
 
 

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

The main focus of this research is looking for possible ways to develop multi-unit 

optimization method with respect to the number of units and the number of inputs. There 

might be too many ways to think about this topic but we have tried to develop this 

algorithm for three non-identical units and two inputs to reach one step ahead of the 

previous works. Besides the theoretical aspect we tried to apply this method for PV arrays 

which can have many units in its nature. In particular, these are the achievements of this 

research: 

• Propose an structure for multi unit optimization algorithm in the case of three 

non-identical units and two inputs 

• Propose two different correction signals to compensate the differences between 

the units in the case of three non-identical units and two inputs 

• Develop the adaptation laws needed for multi-unit phase and correction  phase in 

the case of three non-identical units and two inputs 
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• Investigate some rule of thumb to tune gains for multi-unit phase and correction  

phase 

• Find a proper model for different PV cell configuration in a manner that multi-

unit method can be applied on them 

• Apply the algorithm for different PV cell configuration in a PV array in the case 

of two units and one input 

• Successfully find the maximum power point for PV arrays by the multi-unit 

algorithm 

 

 

5.2 Recommendation 

The following unexplored topics are recommended for future research: 

• Stability analysis for the proposed algorithm in case of three non-identical units 

and two inputs 

• Find a suitable real case study to apply the developed multi-unit algorithm in the 

case of three non-identical units and two inputs. 
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