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TREATMENT OF DEGENERACY IN LINEAR AND QUADRATIC PROGRAMMING

MEHDI TOWHIDI
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ÉCOLE POLYTECHNIQUE DE MONTRÉAL
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RÉSUMÉ

Dans cette thèse, nous considérons la résolution de problèmes d’optimisation quadratique

dégénérés sur base de techniques initialement développées pour l’optimisation linéaire, ca-

pables de tirer avantage de la dégénérescence. Nous commençons par améliorer l’efficacité de

la règle de pivotage positive edge en fournissant une implémentation basée sur le logiciel libre

CLP. Nous proposons ensuite le logiciel de haut niveau CyLP permettant de définir et d’expé-

rimenter facilement avec de nouvelles règles de pivotage pour la méthode du Simplexe. CyLP

offre de plus des services de modélisation puissants réduisant l’effort nécessaire à la modéli-

sation de problèmes linéaires, en variables entières et quadratiques. À l’aide de CyLP, nous

appliquons la règle positive edge à la variante du Simplexe suggérée par Wolfe pour résoudre

les problèmes quadratiques. Nous incorporons également positive edge dans une méthode de

gradient réduit. Nos tests démontrent l’efficacité de positive edge sur les problèmes quadra-

tiques pour lesquels le terme linéaire est dominant. Chaque méthode est capable de fournir

des niveaux substantiels d’accélération sur un certain sous-ensemble de problèmes lorsqu’elle

est équipée de positive edge. Nous suggérons des pistes de recherche pour la conception de

nouvelles méthodes qui incorporent positive edge et accélèrent la résolution sur une plus large

gamme de problèmes.
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ABSTRACT

We consider solving degenerate quadratic programs (QPs) by means of degeneracy-benefiting

techniques designed for linear programs (LPs). Specifically, we use a Simplex pivot method,

called positive edge, that is able to take advantage of degeneracy in LPs. First, we improve

the efficiency of the positive edge method by providing an internal implementation of it using

CLP—an open-source LP solver. In the next stage, we develop a software, called CyLP, which

allows easy definition of, and experimentation with, Simplex pivot rules. In addition, CyLP

has a powerful modeling facility that reduces the effort of modeling LPs, mixed-integer pro-

grams (MIPs), and QPs. Using CyLP, we apply the positive edge rule to Wolfe’s method—a

Simplex-like method for QPs. We also incorporate positive edge into a reduced-gradient me-

thod. Our experiments demonstrate the effectiveness of positive edge on QPs with relatively

large linear terms. Each method is able to yield substantial improvements on a subset of test

problems. We provide research leads to devise novel methods that incorporate the positive

edge rule and are more generally applicable.
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CHAPTER 1

INTRODUCTION

A Quadratic Program (QP) is a mathematical programming problem in which the objec-

tive function is quadratic and the constraints are linear. The importance of QP is twofold ;

first, it occurs naturally in many real life problems, e.g., the linear least-squares problem.

Second, it is used in the solution process of general non-linear problems, e.g., Sequential

Quadratic Programming (SQP) [Powell, 1978]. That is why QP is a central research area in

mathematical programming. Gould and Toint [2008] gathered more than 1000 QP-related

references, from 1943 to 2001.

In convex QPs, the objective function is convex and quadratic. Convex QPs and linear

programs (LPs) share several similarities. Both categories of problems can be solved in polyno-

mial time by way of interior-point methods. Moreover, the simplex method for LP generalizes

to convex QP [Wolfe, 1959]. Active-set methods, which are among those resembling simplex

method, explore faces of the feasible region to attain a solution. Like the simplex method,

those routines struggle when facing degenerate problems.

Recently, constraint aggregation techniques were proven to be efficient on degenerate

LPs [Elhallaoui et al., 2010a]. Those techniques are inspired by the special structure of set-

partitioning problems, and generalize to LPs.

In this research, we use a technique to solve degenerate LPs—the positive edge method—to

solve degenerate QPs.

In the first article, in Chapter 3, we present an implementation of the positive edge rule that

outperforms the original implementation [Raymond et al., 2010a]. In Chapter 4, in the second

article, we introduce a new software, CyLP, that allows easy definition and experimentation

with customized pivot rules. In Chapter 5, we investigate the use of the positive edge method

to solve degenerate QPs. We present a more detailed outline of the thesis in the following

section.



2

1.1 Thesis Outline

Although the original implementation of the positive edge pivot rule, relying heavily on

CPLEX, is efficient on highly degenerate instances, it struggles with relatively less degene-

rate problems. This is caused by implementation restrictions in CPLEX, as it does not allow

user-defined pivots. Therefore the original implementation of positive edge is performed in-

directly by solving a partial LP and having two procedures to supply it with compatible and

incompatible variables (defined in Chapter 3). This causes overhead for the algorithm and

poor performance on the mentioned instances.

Our goal is to use the positive edge rule to solve degenerate QPs. We begin by providing an

efficient implementation of positive edge, using a two-dimensional reduced cost computation

criteria. The idea is to assess the compatibility of a variable at the same time that we price

variables, whether we use Dantzig’s pivot, or steepest edge or a variant of it. In other words,

when we search for a variable with a small-enough reduced cost, we also look for compatible

variables with negative reduced cost. In the end, we choose the entering variable preferably

from among the compatible variables, or else resort to incompatible variables. This preference

is controlled by a parameter.

In order to implement the above strategy, we need an LP solver that allows user-defined

customized Simplex pivot rules. We choose CLP, part of COIN-OR, which is open-source

and free. In addition, its object-oriented structure facilitates development, experimentation,

and modifications. Numerical tests show that on problems with more than 25% degeneracy

the positive edge rule always speeds up the primal Simplex of CLP, with an average speedup

of 2.

On the other hand, to solve a QP with Wolfe’s method, we must implement Wolfe’s pivot

rule. Since CLP is written in the C++ programming language, it requires a knowledge of low-

level programming for a user who wishes to modify it. As a result, the need to implement

multiple pivot rule inspired the second contribution of the thesis. In this part, we developed

an application, called CyLP, built upon CLP, that, among other features, allows us to define

pivot rules in a high-level programming environment: Python. This makes the development

stage shorter, and experimenting with the rule easier. For example, we implemented the

positive edge rule in C++ in 106 lines, while implementing the same method in Python required

only 38. Although this approach causes a slight loss of performance relative to a direct

implementation in CLP, we demonstrate that when we analyze pivot rules, we obtain similar

conclusions about their effectiveness, whether they are implemented in Python or in C++ .
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Another great feature of CyLP that helps us in the next step is its modeling facility. It

promotes modeling based on matrix algebra. We explain the details in Chapter 4, and we

demonstrate how it makes modeling easier when we model Wolfe’s LPs in Chapter 5.

Finally, in the third stage, we apply positive edge on Wolfe’s method and the reduced

gradient method to solve degenerate QPs. Using CyLP, we develop a Wolfe pivot rule that

incorporates positive edge. Numerical tests lead us to identify some of the problem structures

that cause the method to struggle. However, the reduced gradient method equipped with

positive edge produces significant speedups on QPs with relatively large linear terms.
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CHAPTER 2

LITERATURE REVIEW

Separate origins of the subjects that we consider during this research demand distinct

sections devoted to each topic. Consequently, this chapter is organized as follows. In §2.1,

we consider quadratic programs and their solution methods, in particular, the active-set

methods. Afterwards, in §2.2, we provide background on the postive edge method, describing

the research path that led to its introduction, which has its roots in constraint aggregation

in set-partitioning problems.

2.1 Quadratic Program

A quadratic program (QP) is a mathematical optimization problem of the form

minimize
x∈Rn

cTx+ 1
2
xTGx (QP)

s.t. Ax = b

x ≥ 0,

where c ∈ Rn, G ∈ Rn×n and is symmetric, A ∈ Rm×n, b ∈ Rm and the inequality x ≥ 0 is

understood elementwise. Note that any QP with inequality constraints Ax ≥ b can easily be

converted to this form.

A QP is convex if and only if G is positive semi-definite. Convex QPs are considered

easier to solve, in the sense that there exist polynomial algorithms to find a global minimizer

[Vavasis, 1991]. On the other hand, non-convex QPs are NP-hard. In fact, even finding a local

minimizer of a non-convex QP is NP-hard [Vavasis, 1990].

2.1.1 Optimality Conditions

To introduce the optimality conditions, first we form the Lagrangian of (QP)

L(x, y, z) = 1
2
xTGx+ cTx− yT (Ax− b)− zTx, (2.1)

where y ∈ Rm and z ∈ Rn+ are the Lagrange multipliers.
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The necessary conditions for optimality are

∇xL(x, y, z) = Gx+ c− ATy − z = 0 (2.2a)

Ax = b (2.2b)

xizi = 0 for i = 1, 2, . . . , n (2.2c)

(x, z) ≥ 0, (2.2d)

which are the Karush-Kuhn-Tucker (KKT) conditions [Nocedal and Wright, 1999].

When (QP) is convex, (2.2) are necessary and sufficient conditions for optimality in the

sense that any solution to (2.2) is a global minimizer.

2.1.2 Algorithms

In an active-set method [Nocedal and Wright, 1999], at each iteration, we estimate the

active set—the set of indices of the bounds for which equality holds at a solution. This

estimate is based on the information gathered during previous iterations. By forcing equality

on these constraints, we end up with a QP with equality constraints only. We solve this

problem and use the results to correct our estimate of an optimal active set. Thus, at each

iteration of an active-set method we solve an equality-constrained QP. That is why equality-

constrained QP is a key to solving (QP). So we first consider the case of a convex QP with

equality constraints.

For equality constrained QPs, the optimality conditions (2.2) reduce to the linear system[
G AT

A 0

][
x

−y

]
=

[
−c
b

]
. (2.3)

The matrix on the left-hand side of the equation is called the KKT matrix. Note that this

matrix, when m ≥ 1, is always indefinite. There are several methods to solve (2.3). One is to

factorize the KKT matrix and solve (2.3) directly. The Cholesky factorization is not suitable

because of indefiniteness. For this purpose, a symmetric indefinite factorization is prefered

which results in a factorization of the form

P TKP = LBLT , (2.4)
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where K is the KKT matrix, P is a permutation matrix, L is a unit lower triangular matrix

(all the elements on the main diagonal are 1) and B is a block-diagonal matrix with blocks

of size either 1× 1 or 2× 2. So (2.3) can be solved by performing the following steps:

1. Solve Lq = P T

[
−c
b

]
to obtain q.

2. Solve Bq̂ = q to obtain q̂.

3. Solve LT q̄ = q̂ to obtain q̄.

4. Set

[
x

y

]
= P q̄.

It is clear that the linear systems we solve in the first three steps are relatively easy because

of the structures of the coefficient matrices.

There are several other methods to solve (2.3). Among them are the Shur-complement

method, null-space method and the conjugate gradient method [Nocedal and Wright, 1999].

Although they are important numerical methods in practice, they are not necessary to un-

derstand our description of active-set methods.

Solving this system provides us with new primal variables and estimates of the optimal

Lagrange multipliers. These multipliers allow us to either conclude optimality or that our

estimate of the active constraints must be revised. In the second case, we update our estimate

and perform a new iteration.

Another method is Wolfe’s method in which we use a modified Simplex method to solve

(QP). We solve a linear program with (2.2a), (2.2b) and (2.2d) as constraints. For the objec-

tive function, we minimize the values of artificial variables added to the constraints to obtain

an initial point. Solving this LP with Wolfe’s method gives a solution to (QP). Note that, to

satisfy (2.2c), we need to modify the Simplex method so that a variable can only enter the

basis if its dual variable is out of the basis and vice-versa. We explain these methods in the

next chapter.

As in linear programming, degeneracy occurs in QP, but in different situations. For

example, when the unconstrained minimizer of a QP is also the constrained minimizer and

there are active constraints. Another type of degeneracy occurs when at a point, equality

holds for some linearly dependent constraints. This situation may slow the solution pro-

cess or even cause infinite cycling. We illustrate these two situations in Figure 2.1 and give

examples in the numerical results section.
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x∗

c
x∗ x0

x1

c1

c3c2c4

Figure 2.1 Different types of degeneracy in Quadratic Programming

2.1.3 Active-Set Methods

Active-set methods in quadratic programming are developed from both primal and dual

perspectives. Before describing them, we briefly introduce the concepts and tools that are

widely used by both of these methods. Later, we explain the primal and dual approaches and

provide a comparison between them.

To solve (QP), one approach is to search on the faces of the feasible region which is very

much like the Simplex method in linear programming. But note that in QP, optimality can

occur anywhere alongside the faces or even inside the feasible region. Active-set methods

perform such a search by using the active set. As stated earlier, the active set is our estimate

of the bounds that are active at a solution. More precisely, for (QP), active set at x is defined

to be

A(x) = {i | xi = 0}, (2.5)

However, to avoid redundancies in the bounds that we are keeping active and more impor-

tantly, to be able to loosen the active set to allow further displacements, we work with the

working set, W(x)—a subset of the active constraints at x, i.e. W(x) ⊆ {i | xi = 0}. In an

active-set method, at each iteration k, given a working set Wk we solve the problem

minimize
x∈Rn

cTx+ 1
2
xTGx (EP)

s.t. Ax = b

xi = 0 for i ∈ Wk,

which we call the equality problem.

Primal and dual active-set methods use two operators in the course of their solution

process. To explain the operators, we take a look at an approach to solve (2.3). Given that
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the KKT matrix and G are invertible, we can multiply both sides of (2.3) by[
G NT

N 0

]−1

=

[
H (N∗)T

N∗ −
(
NTG−1N

)−1

]
, (2.6)

where N ∈ Rn×|W| and the columns of N are the coefficients of the constraints of (EP) and

H and N∗ are defined as follows:

N∗ = (NTG−1N)−1NTG−1 (2.7)

and

H = G−1(I −NN∗) = G−1 −G−1N(NTG−1N)−1NTG−1. (2.8)

Let x0 and x∗ be a feasible point and the minimizer of (EP) respectively and x∗ = x0 + s.

Also let y0 be the vector of Lagrange multipliers corresponding to the active constraints at

x0. Using (2.6) to solve (2.3) for x∗ and y∗ we have

x∗ = x0 −Hg(x0) (2.9)

y∗ = y0 +N∗g(x0) , (2.10)

where g(x0) is the gradient of the objective function at x0.

In effect, H maps the gradient onto x∗ − x0 and N∗ maps the gradient onto y∗ − y0.

Therefore H and N∗ are used to perform primal and dual steps respectively. That is why

many methods (like those that we explain in the next two sections) use these operators and

the methods to update them when a modification is needed is a key to the performance of

active-set methods.

Primal Active-Set Method

In the primal active-set method at each iteration, we search for a solution to (EP) with

respect to a specific Wk, which is also feasible for (QP). The optimality conditions of (EP)

reduce to

Gx∗ + c− ATy∗ − Ekz∗Wk = 0 (2.11a)

Ax∗ = b (2.11b)

x∗i = 0 for i ∈ Wk, (2.11c)
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where x∗ and y∗ are the primal solution and Lagrange multipliers with respect to the working

setWk and Ek is in Rn×|Wk| all the rows of which are eTi for i ∈ Wk (eTi is the i-th row of the

identity matrix) and finally z∗Wk is in R|Wk| and contains only the variables zi where i ∈ Wk.

Moreover, (x∗, y∗, z∗) is optimal for (QP) if it satisfies (2.11),

z∗Wk ≥ 0, and (2.12)

x∗i ≥ 0 for i /∈ Wk, (2.13)

where we set zi = 0 for i /∈ Wk. Depending on whether or not x∗ is feasible for (QP) different

situations may occur. We summarize a general primal active-set method in Algorithm 2.1.1.

Algorithm 2.1.1 Outline of the Primal Active-Set Algorithm for QP

Step 0. Initialization: An initial feasible point, x0, is given. LetW0 =Wk be a subset
of active constraints at x0.

Step 1. Obtain x∗ and z∗ satisfying (2.11).

Step 2. If x∗ is feasible to (QP):

a) If z∗ ≥ 0 stop ; x∗ is a solution for (QP).

b) Choose a constraint with a corresponding z∗i < 0. Remove it from the working set
and go to Step 1

Step 3. Choose a blocking constraint (a constraint that is not satisfied at x∗, i.e. for
an i we have x∗i < 0) ; add it to the working set and go to Step 1.

Depending on the choice we make in Step 3 of Algorithm 2.1.1, in the presence of redundant

constraints, we might end up cycling in a manner similar to that of linear programming if we

do not use a safe guard, while adding and removing redundant constraints without moving

in the feasible region. But if we manage to avoid this situation, we can prove that a working

set will never be repeated in the process. Since the total number of possible working sets is

finite, the algorithm terminates in a finite number of iterations [Nocedal and Wright, 1999].

Fletcher [1971] proposes a practical method to implement the primal active-set method

by introducing a way to update the operators directly, after the working set is changed. The

downside is that, as all primal active-set algorithms, it might suffer from degeneracy.

Goldfarb [1986] introduces another primal algorithm. The advantage of Goldfarb’s primal

algorithm is that it has the ability to remove multiple constraints at once if necessary, and a

disadvantage is that we still need a feasible constrained minimizer as a starting estimate.
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Primal Active-Set Method and Simplex

It is informative to compare the Simplex method and the primal active-set method. For

this section, consider the LP

minimize
x∈Rn

cTx (2.14)

s.t. Ax = b

x ≥ 0,

where A, b and c are defined as in (QP).

In Table 2.1 we present the comparison where xB, xN , xW and xW ′ are the basic variables,

non-basic variables, variables corresponding to the working set constraints and variables

corresponding toW ′
, respectively (whereW ′

indexes the set of constraints not in the working

set). Four different phases are selected for this comparison: starting phase, the phase in which

a variable enters or leaves the basis and the optimality detection phase. We can verify the

similarities between these two methods by comparing the results of each phase. On the other

hand, there is a major difference. In the Simplex method, a variable enters the basis at

the same time that another one leaves. But in the primal active-set method these occur

independently, as you can see in Step 2.b and Step 3 in Algorithm 2.1.1. This allows an

active-set method to search all the feasible points instead of just the extreme points of the

feasible region.

Dual Active-Set Method

The dual approach starts its search from the minimizer with respect to the equality

constraints. Clearly, if QP has no equality constraints, the unconstrained minimizer x0 =

−G−1c is the starting point. If this point is feasible for (QP), it is the solution to the pro-

blem. Otherwise we start by adding constraints to the working set one by one and remove

them when necessary with the goal of finally obtaining the correct estimate of the active

set at an optimal solution. In the dual approach, at each iteration, the current point is the

minimizer of the objective function of (QP), subject to the active constraints, but it is not

necessarily feasible for (QP).
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Table 2.1 Simplex vs. Primal Active-set Method

Simplex Primal Active-Set Method

Phase Result Phase Result

Start from a basic fea-
sible point.

xN = 0,
xB ≥ 0

Start from a feasible
point with respect to a
working set W .

xW = 0,
xW ′ ≥ 0

Compute the reduced
cost r = c − ATy and
find a variable, xe, with
negative reduced cost to
enter the basis.

xe ≥ 0 Solve (2.3), compute z =
Gx+ c− ATy and find a
constraint, xe = 0, with
negative z to remove
from the working set.

xe ≥ 0

Perform the ratio test
to determine the leaving
variable from the basis,
xl.

xl = 0 Perform the ratio test
to determine a blocking
constraint xl ≥ 0 to
enter the working set.

xl = 0

Detect optimality r ≥ 0 Detect optimality z ≥ 0

The dual of (QP) is

maximize
x,y,z

bTy − 1
2
xTGx (D)

s.t. Gx+ c = ATy + z

z ≥ 0,

where x, y and z are defined as before. Consequently, we call a triplet (x, y, z) to be dual

feasible if it satisfies both constraints of (D).

An outline of the dual active-set method is shown in Algorithm 2.1.2.

From (D) and Algorithms 2.1.1 and 2.1.2, we can interpret comprehensibly the steps taken

in the course of the primal and dual active-set methods ; we are looking for primal and dual

feasibility. In other words, in the dual method, we keep (2.11) satisfied while searching for

a feasible point for (QP). This is in contrast with the primal active-set method where we

keep primal feasibility and (2.11c) holding and search for a point that is dual feasible (that

satisfies (2.11a) and (2.13).
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Algorithm 2.1.2 Outline of the Dual Active-Set Algorithm for QP

Step 0. Initialization: let x be an unconstrained minimizer of (QP).

Step 1. If x is feasible for (QP), stop ; x is optimal.

Step 2. Find an inequality constraint that is not satisfied. Use it (together with the
operators (2.7) and (2.8)) to compute a direction in the primal and in the dual space.

a) If no point along the primal direction can satisfy the violated constraint:

1) If the dual direction never violates the dual-feasibility then stop ; (QP) is
infeasible.

2) Take the largest possible step in the dual space, i.e., until a dual variable
becomes zero. Remove the new inactive constraint from the working set (Note
that this is a pure dual step with no displacement in the primal space). Go to
Step 2.

b) Move in the primal and dual directions and stop whenever we are about to loose
dual-feasibility or have satisfied the violated constraint, whichever comes first. In
the former case remove the new inactive constraint from the working set and go
to Step 2. In the latter, add the new active constraint to the working set and go
to Step 1.

Goldfarb and Idnani [1983] present a dual active-set algorithm. It makes use of the same

operators as (2.7) and (2.8) to obtain the primal and dual directions. One of the great

advantages of the method is that it provides an efficient method to update the two operators

indirectly when adding or removing a constraint. While proven to be highly efficient compared

to Fletcher’s primal method, it has deficiencies when we search for a minimizer that occurs

at a vertex of the feasible region [Goldfarb and Idnani, 1983].

Comparing Active-Set Methods

Figure 2.2 shows different approaches of the primal and dual active-set methods in a QP

with inequality constraints only. The dashed circles show the level curves of a quadratic

function. There are four inequality constraints c1 to c4 which describe the hatched triangular

feasible region. For each constraint, the side of the label specifies the side of the constraint

which is feasible. The primal method (the blue path) is considered to start at a given x0 and

an initial working set W0 = {3}. Note that the initial active set is A0 = {2, 3}. We could

have obtained the solution in the first step had we chosen W0 = {2} or W0 = ∅. It becomes

clear how the choice of working set can affect the primal method. Another observation about

the primal process is that although all the end-points of the path lay on a face of the feasible

region, we may have a displacement that passes through the interior of the feasible region. On
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the other hand, the dual approach (the red path) starts from the unconstrained minimizer of

the QP, xu = −G−1c. We can see that the most violated constraint is not necessarily active

at the solution. In the example c4 is violated the most at x0.

x1

x2

xu

x0

c4

c2

c1

c3

Figure 2.2 Active-set method, primal (the blue path) and dual (the red path)

Numerical Examples

To illustrate the primal and dual active-set methods, we apply them to two degenerate

QPs. In this section we consider QPs of the form

minimize
x∈Rn

cTx+ 1
2
xTGx

s.t. Ax ≥ b.

As mentioned earlier, this formulation is equivalent to (QP).

Example 1

Consider the following QP
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minimize 1
2
x2

1 + 1
2
x2

2

s.t. −2
3
x1 − x2 ≥ −7

3

−x1 − x2 ≥ −3

−1
2
x1 − x2 ≥ −2

− x2 ≥ −1 .

So we have

G =

[
1 0

0 1

]
, A =

[
− 2

3 −1 − 1
2 0

−1 −1 −1 −1

]T
,

c =
[

0 0
]T

and b =
[
− 7

3 −3 −2 −1
]T
.

We solve the problem using the primal active-set method. Suppose that we have x0 =
[

3 0
]T

and W0 = {2}. Steps of the primal active-set method are shown in Table 2.2. In this table

d, t and f denote the direction, the step length and the objective function value respectively ;

W is the working set and z is the vector of Lagrange multipliers.

Figure 2.3 shows the solution process. Dotted circles show the level curves of the objective

function, the blue path shows the displacements and c1 through c4 are the four constraints

of the problem in order.

x1

x2

x∗ x0

x1

x2c4

c1 c2c3

Figure 2.3 Primal active-set method, example 1

Note that during six iterations, there is no change in the objective function. In fact, we

must perform two iterations before we notice that we added the “wrong” constraint to the

working set. Thus, each wrong decision when facing blocking constraints causes to solve (2.11)
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Table 2.2 Primal active-set method, example 1

Iteration x f W z d t Blocking constraints

1

[
3
0

]
9
2
{2} [ −1.5 ]

[
−1.5

1.5

]
2
3

{1, 3, 4}

2

[
2
1

]
5
2
{1, 2}

[
3
−4

] [
0
0

]
- -

3

[
2
1

]
5
2
{1} [ −1.61 ]

[
−0.92

0.61

]
0 {2, 3, 4}

4

[
2
1

]
5
2
{1, 3}

[
−9

8

] [
0
0

]
- -

5

[
2
1

]
5
2
{3} [ −1.6 ]

[
−1.2

0.6

]
0 {1, 2, 4}

6

[
2
1

]
5
2
{3, 4}

[
−4

3

] [
0
0

]
- -

7

[
2
1

]
5
2
{4} [ −1 ]

[
−2

0

]
1 -

8

[
0
1

]
1
2

{} []

[
0
−1

]
1 -

9

[
0
0

]
0 {} []

[
0
0

]
- -
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two times more than necessary. Had we chosen constraint c4 to become active at iteration 2,

we would have saved four iterations.

Note also the chance to cycle infinitely. Since the four constraints of the problem coincide

at
[

2 1
]T

, it is possible to add and remove constraints c1, c2, and c3 to and from the

working set and ignore constraint c4, which is the one that allows displacement.

We also point out that in this example, the dual active-set method finds the solution at

the first iteration since the unconstrained minimizer is the solution.

Example 2

The problem is to

minimize 1
2
x2

1 + 1
2
x2

2 − 2x1

s.t. 2
3
x1 + x2 ≥ 7

3

x1 + x2 ≥ 3
1
2
x1 + x2 ≥ 2

+ x2 ≥ 1 .

We have

G =

[
1 0

0 1

]
, A =

[
2
3 1 1

2 0

1 1 1 1

]T
,

c =
[
−2 0

]T
and b =

[
7
3 3 2 1

]T
.

We solve this problem using the dual active-set method. The process is shown in Table 2.3.

In this table x, f , W and z are defined as in Example 1.

Table 2.3 Dual active-set method, example 2

Iteration x f W z Primal step Dual step Blocking const.

1

[
2
0

]
-2 {} -

[
0.5
0.5

] [
0.5

]
{2}

2

[
2.5
0.5

]
-1.75 {2}

[
0.5

] [
−0.5

0.5

] [
−0.5

1

]
{1, 3, 4}

3

[
2
1

]
-1.5 {2, 4}

[
0
1

]
- - -
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Figure 2.4 shows the solution process. The blue path starts with the unconstrained mini-

mizer, x0, and ends at the solution, x∗.

At iteration 3, where three weakly active constraints exist, we stop the procedure because

all the constraints are satisfied and so the point is feasible. This implies that in the dual

active-set method we simply ignore any weakly active constraint not in the working set at

any given point.

x1

x2

x∗

x0

c4

c1 c2c3

Figure 2.4 Dual active-set method, example 2

Modifications to Active-Set Methods

Moré and Toraldo [1989] present a modification to the standard primal active-set method.

It uses the conjugate gradient method to solve the KKT system arising at each iteration of an

active-set approach for QP problems subject to bounds. It is shown that for non-degenerate

problems, this method reduces the number of iterations by at least a factor of 10 compared

to the standard primal method. On degenerate QP problems, depending on the degree of

degeneracy, it performs less efficiently, but still better than the standard primal method.

As a modification to the mentioned method, Moré and Toraldo [1991] combine their me-

thod with a gradient projection method for the solution of large-scale QPs. While still sear-

ching for a solution with respect to the current working set using the conjugate gradient

method, they move from one working set to another using the gradient projection method

which allows adding multiple constraints to the working set in a single move. Since most
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of the solution time is consumed by solving the linear system (2.3), being able to use that

solution to add more than one constraint whenever possible is an advantage of this method.

2.1.4 Simplex Extensions for QP

To find a solution to (QP) and equivalently a solution to the optimality conditions (2.2),

many Simplex-like methods have been proposed. Among the known methods are Wolfe’s

method [Wolfe, 1959], Dantzig’s method [Dantzig, 1963] and Lemke’s method [Fletcher, 1987].

Here we are more interested in the methods that have a close similarity to the Simplex

method. Wolfe [1959] proposes to consider (2.2a), (2.2b) and (2.2d) as the constraints of an

LP and take care of constraint (2.2c) in the solution process. The linear program, after adding

artificial variables a1 ∈ Rn, a2 ∈ Rm, is

minimize
x,y,z

eT1 a1 + eT2 a2

s.t. Gx− ATy − z + a1 = −c

Ax+ a2 = b (2.15)

(x, z, a1, a2) ≥ 0 ,

where all the elements of e1 (an n-vector) and e2 (an m-vector) are equal to one. In (2.15),

we are looking for a feasible solution rather than minimizing an objective function. In effect,

the goal is to minimize the sum of the artificial variables. From (2.2c), between xi and zi

at least one should be zero at a solution of (QP). For this reason, we call xi and zi to be

the complement of each other. To satisfy the complementary conditions (2.2c), we slightly

modify the selection rule for the variable entering the basis. We choose a variable with the

most negative reduced cost to enter the basis with the condition that its complement is

non-basic or will exit the basis at the same iteration.

When G is positive definite, this method is guaranteed to converge in at most ( 3n
n ) itera-

tions [Wolfe, 1959].
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2.2 Constraint Aggregation

2.2.1 Set-Partitioning Problems

Set-partitioning problems are special cases of MIPs and appear in many real world pro-

blems, such as scheduling problems and vehicle routing problems (VRP). A set-partitioning

problem is an optimization problem of the form

minimize
x∈Rn

cTx (2.16)

s.t. Ax = e

x ∈ Bn,

where B = {0, 1}, c ∈ Rn, A ∈ Bm×n and e is an m-vector with all of its element equal to

one. In a scheduling problem, each constraint corresponds to a task that should be performed

exactly once and each variable represents a way to perform some tasks, e.g. a route or path in

a VRP. A VRP can be represented by a network consisting of nodes corresponding to tasks

that should be performed, and arcs between the nodes showing the possible displacements.

There are vehicles that start from a depot, move along a chosen path and perform the tasks

as they pass the nodes. A cost is associated with each arc and we try to minimize the cost.

For example, consider that we want to service three customers residing in different parts of a

city. We have two vehicles available. Suppose that a vehicle can only use one of the following

paths: the first path that passes by customer 1, the second path that passes by customer 2,

the third path that passes by customers 1 and 3 and finally, the fourth path that passes by

customers 2 and 3. We define variable xi to be 1 if we choose the path i and 0 otherwise. The

cost of using path i is ci. The problem can be stated as the MIP

minimize c1x1 + c2x2 + c3x3 + c4x4

s.t. x1 + x3 = 1

x2 + x4 = 1

x3 + x4 = 1

xi ∈ B for i = 1, 2, 3, 4 .

Note that each constraint corresponds to a task which should be performed exactly once and

each variable corresponds to a path.

Methods to solve (2.16) (e.g. branch and bound methods) need to solve a relaxation of

the problem at each iteration. This relaxation is obtained by replacing constraints x ∈ Bn in
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(2.16) by 0 ≤ x ≤ 1. The relaxation of (2.16) is an LP and we can use the Simplex method

to solve it. However, in practice, set-partitioning problems are highly degenerate, i.e., at any

given iteration, a high percentage of the variables in the Simplex basis are zero. Degeneracy

can cause cycling in the absence of a safeguard or at least stalling in the solution process.

Different methods have been proposed to reduce the effect of degeneracy. Among them,

using constraint aggregation for this purpose is relatively new. Elhallaoui et al. [2005] propose

a method called Dynamic Constraint Aggregation (DCA). The idea of DCA is to remove the

zero variables from the basis. Considering only the positive-valued variables in the basis,

some constraints become identical. We keep one of the identical constraints in the problem

and remove the others temporarily. This way, we work with a smaller basis and as long as

we fix the basic zero variables to zero, we are sure that the removed constraints are satisfied.

Methods to be discussed in this section are modifications to the standard column genera-

tion (CG) method. CG solves a problem (here, for example, a VRP) by iteratively solving a

problem called the master problem and one, or multiple, subproblems. The master problem

is a linear programming problem which consists of a relatively small number of paths. Sub-

problem(s) provide the master problem with profitable paths—those with negative reduced

costs. When no more paths with negative reduced cost exist, we have found the solution.

Subproblems are usually of a type that are relatively easy to solve. For example in a VRP

the subproblem is an elementary shortest path problem.

DCA is based on a definition for equivalence of tasks: two tasks are equivalent if for every

path in a set of paths, C, they are both covered or none of them is covered (the set C is

initially generated from some seemingly good paths that are possibly infeasible). Using this

definition, the tasks are partitioned into several equivalence classes, called clusters. Let L be

the set of these equivalence classes and for all l ∈ L, Wl be the set of tasks belonging to

cluster l. A partition of tasks is defined to be Q = {Wl | l ∈ L}. If a new variable (path) is

about to enter the basis, it should be compatible with this partition in the sense that for each

equivalence class, it should cover all the tasks in the class or none of them. The general idea is

to keep only one constraint representing each cluster in the master problem and temporarily

remove the others. If there are no more compatible variables with the current partition, and

yet there are still negative reduced-cost variables, the partitioning is updated by breaking up

some clusters and adding a subset of incompatible variables.

The process occurs in two nested loops called major and minor iterations. During a minor

iteration, we fix the partition and try to find eligible variables, i.e. with negative reduced cost

and compatible with the current partition, to enter the basis. If this is not possible, a major

iteration is needed, in which we either conclude optimality or change the partition so that
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some eligible but incompatible variables become compatible. The partition is updated when

it is no longer possible to generate compatible variables , or the reduced cost of incompatible

variables are considerably smaller than the compatible variables.

An important detail of the method is the need to recover the dual variables corresponding

the temporarily ignored constraints, in order to compute the reduced costs. All that is known

is the sum of the dual variables of the tasks in each cluster. The process of extracting the

values of the dual variables is called dual disaggregation. This problem is reduced to a shortest

path problem created using the dual constraints. This method aims at finding dual variables

that create positive reduced costs for all the incompatible variables and proving optimality.

Figure 2.5 presents a flowchart of the DCA algorithm.

Elhallaoui et al. [2005] report a speedup of 5 for DCA relative to the traditional column

generation method. An average 39% decrease in the number of constraints and 90% decrease

in the master problem solution time is also reported with specific problems.

One disadvantage of the DCA method is that it does not distinguish between different

incompatible variables. It ignores that some incompatible variables with good reduced costs

may cause the partition size to grow rapidly, while other incompatible variables with less

favorable reduced costs may cause a less speedy grow. To address this issue, Elhallaoui et al.

[2010b] propose a Multi-phase DCA. They define a scale for evaluating the level of incompati-

bility of a variable with the current partition. Then the problem is solved in different phases,

such that in the first phases we only allow variables with very low level of incompatibility to

be introduced and as we go, we allow more incompatible variables to be considered. A fast

method is proposed to estimate the number of incompatibilities of a path while constructing

it.

The advantages we gain through MPDCA can be summarized as follows:

1. The partition is disaggregated slowly.

2. It is more likely to introduce new degenerate variables resulting in further aggregation.

3. When an initial partition from a good feasible point (i.e. with a close-to-optimal objec-

tive value) is created, MPDCA usually finds close-to-optimal point in the first phase.

4. It is proven that the number of expected bases at each iteration is highly reduced

because of the aggregation. This means less degenerate pivots and higher efficiency.

However, since the partition changing process is time consuming, sometimes it may be

more efficient to avoid aggregating the partition too often at the expense of executing

some degenerate pivots [Elhallaoui et al., 2010b].
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(1) Create a partition Q

(2) Update aggregated reduced problem using Q

(3) Solve the reduced problem

(4) Disaggregate the dual variables, compute reduced costs

(5) Negative reduced costs ?
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solution
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(7) Change Q
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Figure 2.5 Dynamic Constraint Aggregation

MPDCA is reported to have a 4.5 average speedup relative to DCA and 23.4 relative to

the standard column generation method Elhallaoui et al. [2010b].

2.2.2 Generalization to Linear Programming

The idea of constraint aggregation is generalized to the linear programming problems.

Elhallaoui et al. [2010a] combine the work of Pan [1998] and Elhallaoui et al. [2008] to

achieve a more efficient way to solve linear programming problems in general. The method

is called Improved Primal Simplex (IPS). IPS starts with a feasible point, possibly acquired

by a phase 1 Simplex algorithm. Afterwards, in the presence of degeneracy, it removes the

constraints associated with degenerate variables. Suppose that we have p non-degenerate

variables. The i-th variable is said to be compatible with the current basis if the i-th column

of A is linearly dependent with the p columns corresponding to the basis.

The process of disaggregation of the dual variables is done by solving a problem which

is named Complementary Problem (CP). This problem is a generalization of the shortest

path method used by Elhallaoui et al. in Elhallaoui et al. [2005], Elhallaoui et al. [2010b] and

Elhallaoui et al. [2008]. It not only proposes a way to disaggregate the dual variables, but

also provides us with some good variables with negative reduced costs. They also propose a

method to change the basis at each iteration in such a way that each time the reduced problem

is solved, a decrease in the objective function is guaranteed, or optimality or unboundedness
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is concluded. If we have m constraints and p positive-valued variables in the basis, it is proven

that entering at most m− p+ 1 variables into the basis is sufficient to decrease the objective

value or conclude unboundedness. These variables have two characteristics: first a convex

combination of their corresponding columns in A is linearly dependent with the columns of

A corresponding to the p positive valued variables and second, the maximum reduced cost of

the variable convex combination with regard to all the bases containing the p positive-value

variables is negative.

An acceleration strategy is also used in the solution process which is similar to the strategy

used in the column generation process. At each iteration, more than one negative reduced

cost variable is introduced to the master problem.

Raymond et al. [2010b] improve IPS to a more efficient method, called IPS2. The first

improvement is to enforce a control on the number of variables entering the reduced problem

(RP). IPS2 reduces the RP even further if it is possible and some conditions hold, e.g. when

we perform multiple pivots without having significant effect on the objective function. The

main idea of IPS2 is to remove dependent constraints from the RP. They propose a method

that allows only independent rows to enter RP. The results show that on certain problems,

IPS2 can perform 12 times faster than CPLEX.

2.2.3 Positive Edge

Inspired by IPS, Raymond et al. [2010a] propose another technique to take advantage of

degeneracy which involves modifying the Simplex pivot rule, called the positive edge method.

They propose an inexpensive procedure that determines compatible variables—a variable

that upon entering the basis, causes an increase in the objective value. Compatibility of each

variable is specified by performing a scalar product. We provide our account of the method

in §3.2 and §4.3.
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École Polytechnique de Montréal & GERAD, Canada

Abstract

This paper presents an implementation of the positive edge pivot rule using COIN-OR’s

CLP, where it has been combined with the Devex pricing criterion. Designed to take advantage

of degeneracy in linear programming, a direct implementation leads to a better understanding

of the full potential of the method. As a result, our implementation improves the performance

of the positive edge method compared to the external implementation reported in the original

paper, which uses an external implementation with CPLEX. To test its robustness, we also

solved a set of linear problems from Mittelmann’s library, which contains instances with a

wide range of degeneracy levels. These computational results show that below a degeneracy

level of 25%, the positive edge pivot rule is on average neutral while above this threshold, it

reaches an average run time speedup of 2.3, with a maximum at 4.2 on an instance with a

75% degeneracy level.
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3.1 Introduction

Introduced by Raymond et al. [2010], the positive edge pivot rule is designed to take

advantage of degeneracy in linear programming. It acts as a filter and helps identifying so-

called compatible variables that yield non-degenerate pivots in the primal Simplex algorithm.

The identification follows from a simple calculation on the original column-vectors of the

matrix of constraints and selecting such a variable with a negative reduced cost strictly

improves the objective function value. Its computational complexity is the same as for the

evaluation of the reduced cost.

The original implementation of the positive edge rule was done using the commercial solver

CPLEX 1. Commercial linear and mixed integer linear programming solvers allow customizing

many pre-specified aspects of the solver’s behavior using callbacks—references to user-defined

functions. For example, users may define customized cuts or a specific branch-and-cut tree

traversal strategy in integer programming, or determine termination conditions and printing

out customized logs in linear programming, by coding their desired action and passing its

reference for the solver to use when appropriate. However, typically, it is not possible to

write and experiment with customized Simplex pivot rules. Instead, commercial softwares

come with a set of predefined, and well optimized, pivot methods one can choose from.

Among them are the smallest reduced cost, or Dantzig’s rule [Dantzig, 1963], the steepest

edge rule [Wolfe and Cutler, 1963, Goldfarb and Reid, 1977, Forrest and Goldfarb, 1992], and

the Devex rule [Harris, 1975].

As a result, the positive edge rule was implemented in CPLEX using a workaround, which

involves solving a partial problem with the help of two external procedures responsible of

finding appropriate variables to be added to it (see §3.4.1 for details). Despite the incurred

overhead, it demonstrates excellent performance on some benchmark problems, e.g., the PDS

set [Carolan et al., 1990]. Nevertheless, it seems to struggle dealing with some others, e.g.,

the FOME instances 2. A direct implementation of this new pivot rule leads to a better

understanding of the full potential of the method. In this paper, we examine the efficiency of

the positive edge rule by implementing it into COIN-OR’s CLP 3. Because, first, it obviously

does not possess the limitations of commercial solvers explained above. Second, it has object-

oriented structure, in C++ , which makes it relatively easy to understand and modify.

1. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

2. http://www.gamsworld.org/performance/plib/

3. https://projects.coin-or.org/Clp

 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.gamsworld.org/performance/plib/
https://projects.coin- or.org/Clp
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This paper is organized as follows. First we present the positive edge rule in §3.2. In §3.3,

we provide some implementation details. We present computational experiments in §3.4.

Finally, we conclude in §3.5.

3.2 The positive edge pivot rule

Consider a linear program (LP) in standard form:

minimize
x∈Rn

c>x s.t. Ax = b, x ≥ 0, (3.1)

where c ∈ Rn, A ∈ Rm×Rn, b ∈ Rm, and m < n. Let N := {1, . . . , n} and M := {1, . . . ,m}.
We denote by 0 a vector or a matrix with null entries of appropriate contextual dimensions.

If B is a subset of an (ordered) index set, xB denotes the sub-vector of x indexed by B.

Similarly, we denote by ARC the |R| × |C| submatrix of A ≡ AMN whose rows and columns

are indexed by R and C, respectively, while R0 := R\{0} is the set of non-zero real numbers.

Let AB be the basis matrix for LP, where B denotes the index set of the basic variables.

Define Q := A−1
B . Let xB = Qb = b̄ be a degenerate solution with 1 ≤ p < m non-zero

variables. Define P := {i | b̄i > 0} as the index set of the p rows where the positive (or non-

degenerate) variables appear as basic and Z := {i | b̄i = 0} as the index set of the m− p rows

corresponding to the degenerate basic variables. Partition the inverse basis Q as

[
QPM

QZM

]
such that b̄P = QPMb > 0 gives the value of the positive variables while b̄Z = QZMb = 0 is

for the degenerate basic variables. Let aj = [aij]i∈M be the j-th column of A and āj = Qaj,

the updated column-vector in the Simplex tableau: āj = [āij]i∈M =

[
āPj

āZj

]
=

[
QPM

QZM

]
aj.

Definition 1. A variable xj, j ∈ N, is compatible with the row-set P if and only if āZj = 0.

A variable xj is compatible with the row-set P if and only if all m − p components of āj

are zero in the row-set Z [Raymond et al., 2010]. A variable xj for which āZj 6= 0 is said

to be incompatible. Positive basic variables are compatible whereas degenerate ones are not.

Non-basic compatible variables yield non-degenerate pivots in the primal Simplex algorithm.

Indeed, if xj is such a variable, the step size ρj, given by the ratio-test, is strictly positive

and only needs to be computed over the row-set P: ρj = min
i∈P|āij>0

{
b̄i
āij

}
> 0. Hence when

variable xj is selected to enter into the basis, the objective function strictly decreases by ρj c̄j

if c̄j < 0, unless āij ≤ 0, ∀i ∈ P, in which case it is unbounded.
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The identification of compatible variables using Definition 1 requires the computation of

the transformed matrix ĀZN = QZBA. For large-scale problems, this can be time consuming.

However, the positive edge rule allows to know if a variable xj is compatible or not without

explicitly computing āZj. The criterion is based on the following observations. Let v ∈ Rm−p0

be a random vector for which all components are different from zero. If xj is compatible, then

āZj = 0 and hence v>āZj = 0. Otherwise xj is incompatible (āZ
j 6= 0) and

v>āZj = 0 if and only if v ⊥ āZj, (3.2)

that is, if and only if the random vector v ∈ Rm−p0 and āZj are orthogonal, which is unlikely

to happen. Let w> := v>QZB. Then ∀j ∈ N, v>āZj = v>QZBaj = w>aj, and one can

use w>aj for a compatibility-test using the original column-vector aj. This is similar to the

replacement of c>B āj by π>aj in the computation of the reduced cost of variable xj, where

π> := c>B A−1
B = c>BQ is the vector of dual variables associated with constraint set Ax = b.

Positive edge criterion. Let v ∈ Rm−p0 be a random vector for which all components are

different from zero. Define w> := v>QZB. The variable xj, j ∈ N, is declared compatible with

the row-set P if and only if w>aj = 0.

There are several ways to integrate the positive edge criterion in a primal Simplex algo-

rithm. The following one uses a two-dimensional rule: for a variable xj, j 6∈ B, the first dimen-

sion computes the usual reduced cost c̄j = cj−π>aj, whereas the second evaluates w>aj. The

positive edge criterion identifies the index set of compatible variables Cw = {j 6∈ B|w>aj = 0}
and the index set of incompatible ones Iw = {j 6∈ B|w>aj 6= 0}. Notice that considering Cw

is solely from a theoretical point of view, while in practice the compatibility of a variable is

only checked for the variables with a negative reduced cost or a subset of them. Let c̄j? be

the smallest reduced cost indexed by j? ∈ Cw ∪ Iw and let c̄jw be the smallest reduced cost

for a compatible variable, indexed by jw ∈ Cw. The current solution is optimal if c̄j? ≥ 0. We

initialize both c̄j? and c̄jw at zero. Compatible variables with negative reduced cost should

be preferred to enter the basis except if c̄j? is much smaller than c̄jw . This can be controlled

with a threshold parameter 0 ≤ ψ < 1. Hence the selection rule becomes:

Two-dimensional positive edge selection rule:

if c̄j? < 0 and c̄jw < ψc̄j? , then select xjw otherwise, select xj? .

Naturally, the above rule can be used in the context of a partial pricing strategy. It can also

be combined with the Devex pricing criterion. Finally, small numerical errors may occur on a
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computer. However, the consequence of selecting an incompatible variable which is identified

as compatible is not important: this simply results in a degenerate pivot, the same situation

as if an incompatible variable xj? , j? ∈ Iw were selected to enter the basis.

3.3 Implementation

In this section, we first present in §3.3.1 some concerns regarding the implementation of

the positive edge rule. In §3.3.2, we provide low-level details of the code behind the imple-

mentation.

3.3.1 Implementation details

Positive edge is designed to reduce the computing time of the primal Simplex algorithm

by reducing the number of iterations. This comes at the cost of adding a time-overhead to

an average iteration, while aiming to perform considerably fewer iterations. A significant

contributor to this overhead is the time necessary to update the partition—redefining the

row-sets P and Z based on the zero (or degenerate) values in the current basic solution point,

generating a random vector v, and computing w> = v>QZB. Therefore, the question is, how

often should we update the partition ?

At a given iteration, when we choose a variable that is compatible with the row-set P as

the entering variable, say xj, then āZj = 0, hence b̄Z remains at zero after the pivot and

the same partition can be reused in the next iteration. Note that in this situation we might

have added zero entries to b̄P which subsequently changes b̄Z. This is one case in which

a partition update is required. On the other hand, if we choose an incompatible variable,

we perform a degenerate pivot and we stay at the same solution point. However, in actual

problems, after carrying out multiple degenerate pivots, we eventually find a basis that allows

for a step that improves the objective value. This step can potentially change the index sets

P and Z substantially, making it another case that calls for a partition update. To detect

these cases, we consider a sudden change in the number of positive elements in the updated

right-hand-side b̄ as a sign of partition update requirement. We call this sudden change a

jump.

To this end, after l pivots, where l is a parameter, we check the number of positive elements

p in b̄ and form sets P and Z. If |p− pold| > k, where k is a positive integer and pold is the

stored value of the number of positive basic variables from the most recent updated row

partition, then we say we have a jump and we need to update the partition. Smaller values
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of k cause more frequent and possibly unnecessary updates while large values of k may result

in incorrect recognition of compatible or incompatible variables, since the partition does not

reflect the current status of b̄. Therefore, there is a trade-off.

In practice, while solving an LP, we observe that there are periods during which the

number of positive variables remains nearly constant, while in other stages this number is

more volatile. Therefore, parameter l should be adjusted dynamically depending on the rate

of change of p. For example, we start by forming b̄P at every l = 100 iterations and we look

for jumps with k = 10. If there are no jumps, we set l := min {300, l + 50}, where 300 is

the maximum acceptable value for l. On the other hand, if a jump is detected, we update l

to be l := max {50, l − 50}. This strategy allows the method to adapt—update the partition

less frequently when it seems that we are updating too often. On the contrary, we update

more often when a jump is identified, signaling that we are likely to update at a slow pace.

Note that using the proposed updating formulas, we always maintain l in a reasonable range,

namely, in our tests 50 ≤ l ≤ 300.

Regarding the choice of the random vector v, we have the following, according to Raymond

et al. [2010]. The random vector v ∈ Rm−p0 is chosen such that all components are independent

and identically distributed: vi ∼ SEM32, i ∈ Z. Definition and some properties of the SEM32

distribution follows.

Definition 2. A floating-point number F with distribution SEM32 is a single precision num-

ber where the sign-bit S, the exponent field E, and the mantissa field M are independent and

follow the discrete uniform distributions S ∼ U [0, 1], E ∼ U [64, 191], and M ∼ U [0, 223− 1].

With SEM32 symmetric around zero, µF = 0 while we derive next a lower bound on

the standard deviation σF . Let V be a random variable following a SEM32 distribution but

without considering the mantissa field. Then, for the exponent field, we have −63 ≤ E−127 ≤
64, and hence V ∈ {±2−63,±2−62, . . . ,±264} with equiprobable events. Therefore

σ2
F > σ2

V =
2

28
(

63∑
k=1

(2−k)2 +
64∑
k=0

(2k)2) >
2

28

64∑
k=0

(22)k.

Let Sn+1(x) =
∑n+1

k=0 x
k. Then Sn+1(x) = 1 + xSn(x) and Sn+1(x) = Sn(x) + xn+1. Hence, for

1 6= x ∈ R, Sn(x) = x(n+1)−1
x−1

and

σ2
F >

2

28
S64(22) =

2

28
× 22(64+1) − 1

22 − 1
=

1

28
× 2

3
× (22(64) × 4− 1) >

22(64)

28
= 2120.
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Hence, σF > 260. The discrete distribution SEM32 is symmetric around zero with a huge

dispersion. Finally, in our implementation, we use a vector v of dimension m where we set

vi = 0,∀i ∈ P whereas vi ∼ SEM32,∀i ∈ Z.

3.3.2 Implementing the positive edge pivot rule within CLP

CLP is an open-source LP solver and a part of the COIN-OR 4 collection. It is equipped

with Simplex and barrier methods. The solver is coded in C++ with an object-oriented design.

This makes it a perfect choice to implement the positive edge rule.

Figure 3.1 shows a partial Unified Modeling Language (UML) Class diagram [Larman,

2001] of CLP. It considers a section of CLP’s structure that is involved in the process of defi-

ning pivots. The ClpModel class is where the essential information and operations regarding

a linear optimization model are defined. Its ClpSimplex subclass contains more Simplex-

related structures. Derived from ClpSimplex are ClpSimplexPrimal and ClpSimplexDual

implementing necessary methods for their respective algorithms.

ClpSimplex has an attribute of type ClpPrimalPivotColumn, displayed by an aggregation

relationship. The latter is the base class for pivots in CLP. For example, the ClpPrimalCo-

lumnDantzig and ClpPrimalColumnSteepest classes, which are predefined in CLP, both

derive from ClpPrimalPivotColumn.

Pivots must implement a virtual method, pivotColumn(), which returns an integer spe-

cifying the index of the variable selected as the entering variable. Similarly, to define the

positive edge pivot rule in CLP, we must subclass ClpPrimalPivotColumn and implement

the rule in the pivotColumn() method.

3.4 Computational Experiments

In §3.4.1, we compare our internal CLP results with those of Raymond et al. [2010],

where the authors use an external CPLEX implementation on different test sets, including

PDS [Carolan et al., 1990] and FOME 5 instances. In §3.4.2, to see how CLP equipped with

positive edge performs on a general set of LPs, we run tests on relatively large instances of

Mittelmann’s LP benchmark 6, i.e., those that are reported to take more than 10 seconds

4. http://www.coin-or.org/

5. http://plato.asu.edu/ftp/lptestset/fome/, (Feb 2011)
6. http://plato.asu.edu/ftp/lpcom.html

http://www.coin-or.org/
http://plato.asu.edu/ftp/lptestset/fome/
http://plato.asu.edu/ftp/lpcom.html
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ClpSimplexPrimal ClpSimplexDual

ClpPrimalColumnPivot
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ClpPrimalColumnDantzig

pivotColumn()

ClpPrimalColumnSteepest

pivotColumn()

Implements the Classical Dantzig Pivot Rule

Implements the Steepest Edge Pivot Rule

Figure 3.1 Partial UML Class Diagram for CLP

to solve using CPLEX. We perform all our experiments using computers with Intel Xeon

2.4GHz quad-core processors.

During the tests, we consider incorporating positive edge into Dantzig’s pivot rule, as

explained in §3.2, and the Devex rule, which is also very similar. In the former, we choose

ψ = 0.1, while in the latter we set ψ = 0.5. The reason is that the Devex rule already avoids

degenerate pivots, or tiny steps, to some extent. Neither of these methods show considerable

sensitivity to small changes in the value of ψ.

3.4.1 A comparison between the external and CLP implementations

In this section, to test the efficiency of the CLP implementation of positive edge we

choose two of the same sets of problems used by Raymond et al. [2010] to analyze their

external CPLEX implemention, the PDS and FOME instances. They are relatively sparse

and degenerate, as shown in Table 3.1. The degeneracy level is measured as the average over

all iterations of 1 − p/m, that is, the number of zero basic variables divided by the number

of constraints. Average degeneracy is only 40% for the FOME problems while it reaches 75%

for the PDS ones.

First of all, we verified that the classical Dantzig pivot rule performance does not come

close to the Devex pricing rule within CLP. The results for two instances, PDS-50 and PDS-

60, are reported in Table 3.2: the Devex criteria is more than 15 times faster. However, the

reader can observe that the use of the positive edge strongly improves the Dantzig’s rule

performance on these instances: the number of iterations (pivots) is approximately reduced

by a factor of 10 while the cpu time is divided by 8. All results reported in the subsequent

tests are obtained using the Devex pricing rule of CLP.
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Table 3.1 PDS and FOME instances

Problem n:Vars m:Cons non-zeros Sparsity Degeneracy

PDS-20 105728 33874 230200 6.43E-05 0.69
PDS-30 154998 49944 337144 4.36E-05 0.72
PDS-40 212859 66844 462128 3.25E-05 0.73
PDS-50 270095 83060 585114 2.61E-05 0.74
PDS-60 329643 99431 712779 2.17E-05 0.74
PDS-70 382311 114944 825771 1.88E-05 0.74
PDS-80 426278 129181 919524 1.67E-05 0.75
PDS-90 466671 142823 1005359 1.51E-05 0.75
PDS-100 505360 156243 1086785 1.38E-05 0.77

FOME12 48920 24284 142528 1.20E-04 0.40
FOME13 97840 48568 285056 6.00E-05 0.38

Table 3.2 Dantzig’s rule vs. Devex pricing

CLP CLP + Positive Edge

Dantzig’s rule Devex pricing Dantzig’s rule Devex pricing
Problem pivots time (s) pivots time (s) pivots time (s) pivots time (s)

PDS-50 2631164 9536.07 238961 579.98 224622 1208.61 74708 155.77
PDS-60 3922444 20045.60 311517 940.59 397185 2730.28 107666 273.64
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For the next comparisons, we use the notion of speedup regarding the number of iterations

or the cpu time. For example, the ratio tclp/tpe in Table 3.3 computes the time speedup, where

tclp is the run time of the CLP’s solver, and tpe is the execution time of the primal Simplex

solver equipped with the positive edge rule. The results are presented in Table 3.3, where the

performance of an external CPLEX implementation [Raymond et al., 2010] appears on the

right-hand side. Essentially, this external implementation works as follows: Given a degenerate

solution, the primal Simplex algorithm of CPLEX solves a partial problem that is supplied

by two external procedures: the first identifies all compatible variables to be included in the

partial problem, if any, otherwise the second brings in all variables with negative reduced

costs.

Table 3.3 Positive Edge implementations: CLP vs. external (CPLEX)

CLP CLP + Positive Edge External (CPLEX)

Problem pivots time pivots time speedup speedup time speedup of
iclp tclp ipe tpe iclp/ipe tclp/tpe Raymond et al. [2010]

PDS-20 14660 7.03 11623 5.97 1.26 1.18 0.83
PDS-30 33622 31.63 25158 20.87 1.34 1.52 0.84
PDS-40 91710 157.91 49210 71.64 1.86 2.20 1.42
PDS-50 238961 579.98 74708 155.77 3.20 3.72 1.92
PDS-60 311517 940.59 107666 273.64 2.89 3.44 1.95
PDS-70 469283 1700.26 152027 508.01 3.09 3.35 1.92
PDS-80 601199 2625.82 173245 620.70 3.47 4.23 1.68
PDS-90 597643 2645.29 211421 875.76 2.83 3.02 1.86
PDS-100 597181 2717.60 196559 856.23 3.04 3.17 1.55

PDS average speedup 2.55 2.87 1.55

FOME12 172518 228.80 165006 150.46 1.05 1.52 0.16
FOME13 433810 1339.79 391839 526.73 1.11 2.54 0.09

FOME average speedup 1.08 2.05 0.13

average speedup 2.29 2.72 1.29

First, we observe how our implementation improves the performance of the positive edge

method compared to the external implementation. The average time speedup of 1.29, reported

by Raymond et al. [2010], rises significantly to 2.72. More specifically, we obtain a speedup

of 1.52 and 2.54 on the FOME instances, compared to 0.16 and 0.09 of the external CPLEX

implementation. Similarly, on smaller problems of the PDS set, PDS-20 and PDS-30, we now

have a more-than-one speedup factor. Finally, the maximum speedup of our implementation

on these test problems is 4.23, considerably larger than 1.95 in the external implementation.
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Regarding the comparison with CLP, the average time speedup is 2.72, a bit larger than

the reduction factor of 2.29 for the number of pivots. Similar results for the PDS instances

are observed, respectively 2.87 for the time speedup and 2.55 for the number of iterations.

Finally, although the number of pivots is about the same for the FOME instances with a

speedup factor of only 1.08, the CLP implementation with the positive edge selection rule is

more than two times faster (2.05).

3.4.2 Results on Mittelmann’s LP instances

Table 3.4 presents dimensional aspects, degeneracy level, and sparsity level of the selected

linear problems of Mittelmann’s LP test set. These problems are sorted by their level of

degeneracy. In Table 3.1, we have already provided the statistics on problems PDS-40, PDS-

100, FOME12, and FOME13, which also belong to this test set.

Table 3.4 Mittelmann’s LP instances

Problem n:Vars m:Cons non-zero Sparsity Degeneracy

cont4 40398 160793 398399 6.13E-05 0
cont1 40398 160793 399991 6.16E-05 6.57E-007
self 7364 960 1148845 1.63E-01 0.002
stat96v4 62212 3173 490472 2.48E-03 0.03
rail4284 1092610 4284 12372358 2.64E-03 0.04
neos 36786 479120 1084461 6.15E-05 0.12
lp22 13434 2959 78994 1.99E-03 0.19
neos1 1892 131582 468094 1.88E-03 0.19
rlfprim 8052 57422 264483 5.72E-04 0.20
mod2 31728 35665 220116 1.95E-04 0.23
stat96v1 197472 5995 588798 4.97E-04 0.23
nug08-3rd 20448 19728 139008 3.45E-04 0.24
world 32734 35511 220748 1.90E-04 0.24
neos2 1560 132569 552596 2.67E-03 0.29
dano3mip 13873 3203 79656 1.79E-03 0.35
nug15 22275 6331 110700 7.85E-04 0.36
neos3 6624 512209 1542816 4.55E-04 0.50
watson 2 671861 352014 1843716 7.80E-06 0.83
ns1688926 16587 32768 1712128 3.15E-03 0.86
dbic1 183235 43200 1038761 1.31E-04 0.88
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Table 3.5 shows the numerical results. Again, the problems are sorted from lower to higher

levels of degeneracy. One the one hand, for all problems with a degeneracy level of less than

25%, the positive edge pivot rule is useless on average, with speedup factors of 1.01 for the

number of pivots and 1.00 for the run time. The worst outcome belongs to rail4284, with

a 4% degeneracy level, where positive edge requires twice the run time to find an optimal

solution. Of course, one can avoid such slowdowns by checking the degeneracy level of a

problem and decide whether it is beneficial or not to use the positive edge rule.

On the other hand, for the 11 instances with a degeneracy level of at least 25%, the time

speedup is always greater than one, with an average value reaching 1.97 while the number of

pivots decreases by an average factor of 1.67. Moreover, 5 of these instances show a run time

reduction by more than 200%. In the case of ns1688926, marked by a star in the table, for

the positive edge test we had to change CLP’s default primal feasibility tolerance from 10−7

to 10−5, otherwise the solution process struggles to obtain primal and dual feasibility at the

same time.

Figure 3.2 illustrates the effect of the positive edge rule on reducing the number of required

pivots to obtain an optimal solution. In the case of dano3mip, shown in Figure 3.2(a), we

perform 46% less pivots, while in that of PDS-100, Figure 3.2(b), we cut the number of pivots

by a factor of 3. Observe that in Figure 3.2(a), the objective function at the beginning of the

solution process is less than the optimal objective value. This occurs because those iterations

are primal infeasible.
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Figure 3.2 Comparing the number of pivots in CLP: Positive Edge vs. Devex

Finally, in Figure 3.3, we plot the time speedup against the level of degeneracy for PDS

[Carolan et al., 1990] and Mittelmann’s LP instances. It demonstrates that on those ins-
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Table 3.5 Positive Edge on Mittelmann’s instances

CLP CLP + Positive Edge

Problem pivots time pivots time speedup speedup
iclp tclp ipe tpe iclp/ipe tclp/tpe

cont4 40602 593.54 40602 552.55 1 1.07
cont1 41283 685.97 41283 750.12 1 0.91
self 12119 196.31 12119 181.43 1 1.08
stat96v4 186295 582.35 190660 635.49 0.98 0.92
rail4284 801367 47762.70 1370343 105049.00 0.58 0.45
neos 194690 1068.16 183044 1000.06 1.06 1.07
lp22 51655 64.36 39059 34.97 1.32 1.84
neos1 3588 18.47 3286 17.57 1.09 1.05
rlfprim 3401 2.30 3088 2.49 1.10 0.92
mod2 177939 337.00 181270 359.80 0.98 0.94
stat96v1 43534 253.36 44054 303.76 0.99 0.83
nug08-3rd 375000 27287.00 429959 31110.70 0.87 0.88
world 213475 389.64 193750 395.48 1.10 0.99

Degeneracy level < 25%: average speedup 1.01 1.00

neos2 6464 46.81 6539 45.33 0.99 1.03
dano3mip 26746 26.99 18373 16.11 1.46 1.68
nug15 137087 847.48 117870 721.83 1.16 1.17
FOME13 631758 1339.79 391839 526.73 1.61 2.54
FOME12 221658 228.80 165006 150.46 1.34 1.52
neos3 769771 34302.50 554988 23435.30 1.39 1.46
PDS-40 91710 157.91 49210 71.64 1.86 2.20
PDS-100 597181 2717.60 196559 856.23 3.04 3.17
watson 2 270607 747.13 232001 412.81 1.17 1.81
ns1688926∗ 48061 744.77 18497 256.24 2.60 2.91
dbic1 30215 86.41 17733 40.15 1.70 2.15

Degeneracy level ≥ 25%: average speedup 1.67 1.97
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tances, positive edge rule becomes more effective as the degeneracy level increases. Below a

degeneracy level of 25%, the method is on average neutral as reported in Table 3.5. Above this

threshold, it reaches an average run time speedup of 2.31 on the combined results of Table 3.3

and Table 3.5, with a maximum at 4.23 on PDS-80, an instance with a 75% degeneracy level.
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Figure 3.3 Effect of the degeneracy level on the time speedup

3.5 Conclusion

In this paper, we presented an efficient implementation of the positive edge pricing rule

within CLP, an open source implementation of the Simplex method for linear programming.

Designed to take advantage of degeneracy, it acts as a filter that identifies non-basic variables

and yields non-degenerate pivots in the primal Simplex algorithm. Tested on PDS [Carolan

et al., 1990] and Mittelmann’s LP instances, the computational results show that below a

degeneracy level of 25%, this pricing rule is on average neutral, while above this threshold,

the average run time of more than two times faster. On specific highly degenerate instances,

namely PDS and FOME test sets, CLP implementation results in a maximum speedup of

more than 4, comparing to a maximum speedup of 2 for the external CPLEX implementation

on the same problems.
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CHAPTER 4
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LINEAR SOLVERS WITH PYTHON
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École Polytechnique de Montréal & GERAD, Canada
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École Polytechnique de Montréal & GERAD, Canada

Abstract

Implementations of the Simplex method differ only in very specific aspects such as the

pivot rule. Similarly, most relaxation methods for mixed-integer programming differ only

in the type of cuts and the exploration of the search tree. Implementing instances of those

frameworks would therefore be more efficient if linear and mixed-integer programming solvers

let users customize such aspects easily. We provide a scripting mechanism to easily implement

and experiment with pivot rules for the Simplex method by building upon COIN-OR’s open-

source linear programming package CLP. Our mechanism enables users to implement pivot

rules in the Python scripting language without explicitly interacting with the underlying

C++ layers of CLP. In the same manner, it allows users to customize the solution process

while solving mixed-integer linear programs using the CBC and CGL COIN-OR packages.

The Cython programming language ensures communication between Python and COIN-OR

libraries and activates user-defined customizations as callbacks. For illustration, we provide

an implementation of a well-known pivot rule as well as the positive edge rule—a new rule

that is particularly efficient on degenerate problems, and demonstrate how to customize

branch-and-cut node selection in the solution of a mixed-integer program.

4.1 Introduction

The Simplex algorithm created by Dantzig is considered by many to be among the top

ten algorithms of the twentieth century in terms of its scientific and practical impact [Cipra,

2000, Dongarra and Sullivan, 2000]. Simplex is a graceful way of solving linear programs
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(LP). Although it is efficient in many situations, it has always struggled in the face of dege-

neracy, whose effects range from causing cycling to significantly impacting the performance.

In order to ensure convergence theoretically one needs to modify an essential component of

the algorithm—the pivot selection (e.g. Bland [1977]). Identifying a pivot selection rule that

is efficient across many degenerate LP instances is still an open subject after more than 60

years of research. The Improved Primal Simplex (IPS) of Elhallaoui et al. [2010] and the

positive edge pivot rule of Raymond et al. [2010] are recent efforts in that direction.

Commercial implementations of Simplex typically do not allow users to plug in custo-

mized pivot rules. Raymond et al. [2010] work around this limitation by solving auxiliary

dynamically-generated LPs at each step—a substantial overhead. A promising alternative is

to modify an open-source Simplex implementation, such as Makhorin’s GLPK or COIN-OR’s

CLP, typically written in a low-level programming language such as C or C++ . Delving into

large-scale open projects in such languages can be a daunting task even for a seasoned pro-

grammer. It does appear however that open-source implementations of Simplex are the ideal

platform to implement and experiment with pivot rules.

In this paper we propose a user-friendly alternative that emphasizes flexibility and ease

of use, and promotes fast development and productivity. CyLP is a tool for researchers

to implement pivot rules in the dynamic high-level Python programming language 1. CyLP

builds upon CLP and provides flexible and easy to use mechanisms to substitute CLP’s built-

in pivot rules with a user-defined pivot rule written in Python. Aside from LP, effective pivot

rules are also crucial in mixed-integer linear programming (MIP). CyLP provides facilities

to customize the solution of MIPs using Python, by allowing users to inject cuts of their

own design. In particular, we interface COIN-OR’s CBC 2 which provides tools to solve MIPs

using branch-and-cut [Hoffman and Padberg, 1993, Padberg and Rinaldi, 1991]. In addition,

CyLP can be used as a modeling environment to formulate and solve LPs and MIPs via

CLP and CBC. Our main motivation for this research is the design of pivot rules suited to

degenerate problems. In follow-up research, we apply such rules to quadratic programs (QP)

and mixed-integer QPs.

The pivot rule is part of the nerve center of any implementation of Simplex since it must be

executed at each iteration. One worry is thus that implementing it in an interpreted language

seriously affects performance. In order to limit the performance hit as much as possible,

our choice is to write the communication layer between Python and CLP in the Cython 3

programming language. Cython is a strongly-typed superset of Python whose main design

1. www.python.org

2. projects.coin-or.org/Cbc

3. www.cython.org

www.python.org
https://projects.coin-or.org/Cbc
www.cython.org
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goal is strictly speed and that eases the interfacing of binary code as well as of source code.

This feature makes it particularly suitable for facilitating communication between Python

and large libraries that users may not wish to recompile. CyLP is composed of three layers:

a few C++ interface classes, a thin Cython layer ensuring fast communication between the

C++ code and the Python programming language, and convenience Python classes. As our

numerical experiments illustrate, not only are we able to maintain competitive execution

speeds, but the gains in flexibility and ease of development far outweigh the performance hit.

CyLP is available as an open-source package from github.com/mpy/CyLP.

The rest of this paper is organized as follows. Section 4.2 gives a brief description of the

Simplex method, common pivot rules typically found in solvers and the need to define and

examine new pivot rules. In Section 4.3 we present the positive edge method, specifically de-

signed for degenerate problems. Section 4.4 describes some implementation details of CyLP,

provides an implementation of Dantzig’s classic pivot rule as an example and shows the es-

sentials of our implementation of the positive edge rule in Python. It also covers how CyLP is

used to solve MIPs, how it can be used to examine different solution strategies scripted in Py-

thon, and summarizes its modeling capabilities. Section 4.5 documents numerical experience.

We conclude and look ahead in §4.6.

Related Research

Two of the major commercial LP solvers, CPLEX 4 and Gurobi 5, offer a Python API and

allow users to interact with the solution process of MIPs using callbacks to customize cut-

generation and the branch-and-cut procedure. They do not appear to let users define pivot

rules.

PuLP is a Python modeler for LP and provides interfaces to existing open-source and

commercial LP solvers such as GLPK, CLP and CPLEX. PyCPX [Koepke, a] is a Cython

interface to CPLEX that leverages the power of Numpy 6—a library defining the standard

array type in Python—and provides more convenient modeling facilities than the default

CPLEX Python API. Pylpsolve [Koepke, b] is a similar interface to lpsolve [Berkelaar] and

Pycoin [Silva, 2005] is a Python interface to CLP. None of them appears to allow users to

customize the solution process.

4. www.cplex.com

5. www.gurobi.com

6. www.numpy.org

https://github.com/mpy/CyLP
www.cplex.com
www.gurobi.com
www.numpy.org
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There is growing interest in Cython as an interface language for projects written in low-

level languages. For example, CyIPOPT [Aides] is a wrapper for the interior-point optimizer

IPOPT [Wächter and Biegler, 2006].

To the best of our knowledge, CyLP is the first toolset that connects with an efficient

implementation of Simplex and permits experimentation with pivot rules in a high-level

language. Like PyCPX, CyLP allows users to exploit the power of Numpy.

Notation

Throughout this paper we use capital latin letters for matrices and lowercase latin letters

for vectors. Calligraphic letters are used to denote index sets. For any matrix M , we denote

the j-th column of M by Mj, the i-th row of M by M i and the i-th element of Mj by mij.

For any vector c, any matrix A and any index set B, cB is the subvector of c indexed by B
and AB is the submatrix of A composed of the columns indexed by B. Similarly AB is the

submatrix of A which contains the rows indexed by B. The only norm used in this paper,

denoted ‖ · ‖, is the Euclidian norm.

4.2 Implementing Simplex Pivot Rules

In this section, we give a high-level, and by no means complete, account of the Simplex

method and an overview of the CLP implementation.

4.2.1 The Simplex Method

The linear programming problem in standard form is

minimize
x∈Rn

cTx s.t. Ax = b, x ≥ 0, (LP)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and the inequality x ≥ 0 is understood elementwise.

Simplex is an iterative method. It divides variables into two categories: basic and non-basic.

Let B be the index set of basic variables, also called the basis, and N be that of the non-basic

variables. At every Simplex iteration, |B| = m and |N | = n−m. Non-basic variables are fixed

to zero because if (LP) has a solution, then there exists a solution with at most m nonzero
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elements [Dantzig, 1963]. Using those index sets, we partition A, x, and c as

A =
[
AB AN

]
, x =

[
xB

xN

]
and c =

[
cB

cN

]
.

For simplicity of exposition, we assume here that the m-by-m submatrix AB is nonsingular

at every iteration. This assumption is not required in practice as all that is required is the

solution of a linear system with coefficient matrix AB.

Upon re-writing the equality constraint in (LP) as ABxB + ANxN = b, we extract xB =

A−1
B (b−ANxN ). In the same manner and using this expression for xB, the objective function

becomes cTx = cTBA
−1
B b + (cN − ATNA−TB cB)TxN . Each iteration of Simplex ensures xB ≥ 0.

Because Simplex fixes xN = 0, these expressions further simplify to xB = A−1
B b and cTx =

cTBA
−1
B b. If an improvement is possible, it has to involve increasing a non-basic variable.

The last expression of cTx shows that unit changes in xN change the objective value at the

rate r = cN − ATNA
−T
B cB. Therefore, if r ≥ 0, (xB, 0) is an optimal solution. The vector

r is called the reduced cost vector. At each Simplex iteration we look for variables with a

negative reduced cost and move one of them—the entering variable—into the basis. Since

we maintain m basic variables at all times, one variable has to leave the basis—the leaving

variable. This process of swapping two variables in and out of the basis is called pivoting. If

we define ĀN := A−1
B AN and b̄ := A−1

B b ≥ 0, the choice of the leaving variable is guided by

the requirement that the next xB = b̄− ĀNxN ≥ 0. For a given entering variable xj (j ∈ N ),

we select the leaving variable xk (k ∈ B) as that allowing the largest increase possible in

the value of xj, i.e., k ∈ argmini∈B{b̄i/āij | āij > 0}. From the definition of reduced cost,

when xj enters the basis the objective function improvement is equal to rj b̄k/ākj where k is

the index of the leaving variable. The Simplex method is outlined in Algorithm 4.2.1. There

are many pivot rules for choosing the entering and the leaving variables [Terlaky and Zhang,

1993]. Moreover, pivot rules can have a significant impact on the practical performance of

the Simplex method.

LP solvers, commercial or free, typically implement several predefined pivot rules. Most

of these rules fall into one of the following two categories. The first category is that of rules

similar to the original pivot rule presented by Dantzig [1963], where at each iteration a non-

basic variable with the smallest negative reduced cost is chosen to enter the basis. Variations

on this method choose a variable with a negative reduced cost that is not necessarily the

minimum—an approach called partial pricing. The second category contains rules based on

the steepest-edge method [Goldfarb and Reid, 1977, Harris, 1975, Forrest and Goldfarb, 1992],

which work with normalized reduced costs.
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Algorithm 4.2.1 Generic outline of the Simplex method.

Step 0. Determine initial B and N by identifying a feasible starting point x = (xB, 0)
with xB ∈ Rm.

Step 1. Compute the reduced cost vector r = cN − ATNA−TB cB. If r ≥ 0, the solution
is (xB, 0). Otherwise choose j such that rj < 0 and set xj as the entering variable.

Step 2. If Āj ≤ 0 then the problem is unbounded. Otherwise, set xk as the leaving
variable where k ∈ argmini∈B

{
b̄i/āij | āij > 0

}
.

Step 3. Pivot: set N ← N \ {j} ∪ {k} and B ← B \ {k} ∪ {j}. Return to Step 1.

It is possible to show that using Dantzig’s rule, the iterate moves from the current vertex

to an adjacent vertex along an edge d of the feasible polyhedron such that the directional

derivative cTd is as negative as possible. By contrast, a steepest edge rule selects an edge d

such that the directional derivative along the normalized edge direction cTd/‖d‖ is as negative

as possible. Steepest edge rules are known to outperform Dantzig’s original pivot selection by

large margins [Wolfe and Cutler, 1963] but require a significantly higher programming effort.

4.2.2 Implementing New Pivot Rules

In Step 2 of Algorithm 4.2.1, the definition of xB implies that b̄ ≥ 0. Therefore, if there

exists a k0 ∈ B such that b̄k0 = 0 then all choices of k are such that b̄k/āij = 0, and from §4.2.1

we know that performing the pivot will cause no improvements in the objective function. This

type of pivot is called a degenerate pivot and an LP for which such pivots occur is said to be

degenerate [Greenberg, 1986]. Simplex may be very slow on degenerate LPs or even fail to

converge because of cycling. Simple modifications to pivot selection can help avoid cycling,

e.g., the method proposed by Bland [1977]. Degeneracy occurs frequently in real-world LPs

including but not limited to large-scale set partitioning problems. Raymond et al. [2010]

report manpower planning problems with a degeneracy level of 80%, i.e. at each iteration of

Simplex we have b̄i = 0 for typically 80% of i ∈ B. Likewise the patient distribution system

(pds) instances of Carolan et al. [1990] have a 80% degeneracy level on average.

In a recent effort to solve large-scale problems with high occurrence of degenerate pivots

efficiently, Raymond et al. [2010] introduce the positive edge rule. One of our initial motiva-

tions for developing CyLP was to implement the positive edge rule for benchmarking purposes

and for application to quadratic and other classes of optimization problems. In the remainder

of this section, we explain how new rules may be implemented in CLP and motivate the need

for the higher-level mechanism provided by CyLP.
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CLP implements both Dantzig’s pivot selection and two variants of steepest edge methods

with optional partial pricing. In CLP, an execution of the Simplex method on a given problem

is abstracted as a C++ class possessing an attribute that represents the pivot selection rule to

be used at each iteration. Users specify the pivot rule of their choice by setting this attribute

appropriately, the value of the attribute being another C++ class that abstracts the pivot rule

itself. New pivot rules may be implemented by subclassing the latter class and overriding

certain of its methods. The definition of such a pivot rule in Python can be significantly shorter

in terms of number of lines of code and easier in terms of development effort. For example,

Dantzig’s pivot rule implementation in CLP takes 58 lines of code while a straightforward

Python implementation takes only 19 lines—see Listing 4.1. A C++ implementation of the

positive edge pivot rule takes 106 lines while we can obtain the same functionality in Python

in 38 more readable lines. Conciseness can be crucial in more complex pivot rules. We estimate

that the steepest edge method, whose implementation takes about 3800 lines of code in CLP,

could be written in less than 500 lines in Python. This makes a Python implementation

remarkably easier to develop and debug. Furthermore, since low-level programming details

such as memory management are no longer a concern, the programmer can focus almost

exclusively on the logic of the pivot rule.

4.3 The Positive Edge Rule

The positive edge rule is a recent method to handle degenerate LPs efficiently. To explain

this method we consider (LP) and the notation from §4.2.1.

We stated in §4.2.2 that if there is a row i for which b̄i = 0 and āij > 0 for some j then we

are facing degeneracy. In large-scale LPs it is possible to spend the majority of the solution

time performing degenerate pivots.

The positive edge criterion of Raymond et al. [2010] allows us to identify degenerate

pivots. Let Q := A−1
B to simplify notation. Define Z = {i = 1, . . . ,m | b̄i = 0} and P = {i =

1, . . . ,m | b̄i > 0}. Note that if Z = ∅, a nondegenerate Simplex iteration is guaranteed to

exist. Accordingly, we partition Q and A row-wise as

Q =

[
QP

QZ

]
and A =

[
AP

AZ

]
,
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where QP ∈ R|P|×m, QZ ∈ R|Z|×m, AP ∈ R|P|×n, and AZ ∈ R|Z|×n. Using a notation similar

to that of §4.2.1, we have[
ĀP

ĀZ

]
:=

[
QPA

QZA

]
=

[
QPAB QPAN

QZAB QZAN

]
=

[
I 0 QPAN

0 I QZAN

]
, (4.1)

where the last equality uses the identity QAB = I.

A variable xj, j ∈ B ∪ N is said to be compatible if and only if

QZAj = ĀZj = 0.

Using the usual identification of B with {1, . . . ,m}, we observe from this definition and (4.1)

that for j ∈ B, xj is compatible if j ∈ P and is incompatible if j ∈ Z. But we are particularly

interested in the nonbasic compatible variables because selecting one of them as the entering

variable ensures a nondegenerate pivot. From the definition of compatibility we deduce that

for a given compatible entering variable xj (j ∈ N ) and a leaving variable xi chosen by the

ratio test (§4.2.1) the improvement in the objective value, rj b̄i/āij, is strictly positive, and a

non-degenerate pivot is performed. But calculating ĀZj for all variables requires the matrix-

matrix product QZA. For positive edge to be efficient we must lower the complexity of this

identification.

For an arbitrary vector v ∈ R|Z|+ , define w = (QZ)Tv. If the variable xj is compatible, we

have

wTAj = vTQZAj = 0. (4.2)

Conversely, if wTAj = 0, can we affirm that xj is compatible, i.e., QZAj = 0 ? There are two

possibilities: either QZAj = 0, in which case xj is compatible, or QZAj ⊥ v. For random

v, the probability of the latter happenning in R|Z| is zero. However, in IEEE double preci-

sion arithmetic, this probability is proven to be 2−62 [Raymond et al., 2010]. Therefore, the

probability that the statement

wTAj = 0 =⇒ xj is compatible

be erroneous is 2−62, and this would result in a single degenerate pivot. Since this method

does not involve the calculation of updated columns Āj its complexity reduces to O(mn)—the

complexity of the dense matrix-vector product wTA.
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The details of the positive edge method are given in Algorithm 4.3.1. In order to obtain

a Simplex algorithm equipped with the positive edge rule, Algorithm 4.3.1 should replace

Step 1 of Algorithm 4.2.1.

The positive edge method has a parameter that specifies the preferability of compatible

variables. We denote this parameter by 0 < ψ < 1. A value ψ = 0.4 means that we prefer

a compatible variable over an incompatible one even if the reduced cost of the former is 0.4

that of the latter.

Algorithm 4.3.1 The Positive Edge Rule

Step 0. If w is not initialized or updating w is required, set P := {i ∈ B | b̄i > ε}
where ε > 0 is a prescribed tolerance. Let v ∈ Rm be a random vector and fix vi = 0
for all i ∈ P . Compute w := A−TB v.

Step 1. Let rmin = rcomp = 0. For each j ∈ N , do:

1. if rj ≥ rcomp, skip to the next variable

2. if |wTAj| < ε (xj is likely compatible) then set rcomp = rj

3. set rmin = min(rmin, rj).

Step 2. If rcomp < ψ rmin, choose the compatible variable corresponding to rcomp to
enter the basis. Otherwise choose the variable corresponding to rmin and demand an
update of w at the next iteration.

At Step 1 of Algorithm 4.3.1, rj denotes the j-th component of the vector of reduced costs

defined in §4.2.1, rcomp is the best reduced cost over compatible variables, and rmin is the best

overall reduced cost found so far. For more information on the design of the positive edge

criterion, we refer the reader to [Raymond et al., 2010].

4.4 Implementation Details and Examples

Commercial implementations of Simplex typically allow users to choose a pivot rule among

a set of predefined rules, but not to plug in customized or experimental pivot rules. It the-

refore appears that open-source solvers are the best option if one is to experiment with new

pivot rules. One of the leading open-source LP solvers, CLP, is part of the COIN-OR project

[Lougee-Heimer, 2003] and has several advantages that make it our solver of choice for the

development of CyLP. Firstly, CLP has an object-oriented structure which makes it conve-

nient to extend or modify. Secondly, CLP is written in C++ , a language for which compilers

are freely available on most platforms. Finally, the large COIN-OR user base gives confi-
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dence that CLP implements the state of the art, and has been exercised and debugged to

satisfaction.

In CLP it is possible to define customized pivot rules but a good understanding of its

internal structure and of C++ are required. To simplify the exposition we show a partial

UML class diagram [Larman, 2001] of CLP in Figure 4.1. A class ClpSimplex implements

the Simplex method. It has an attribute of type ClpPrimalColumnPivot—the base class

common to all pivot rules. Every pivot rule must derive from the latter and implement a

method called pivotColumn() that returns an integer—the index of the entering variable.

Figure 4.1 also shows two pivot rules already implemented in CLP.

ClpModel

ClpSimplex

ClpSimplexPrimal ClpSimplexDual

ClpPrimalColumnPivot

pivotColumn()

ClpPrimalColumnDantzig

pivotColumn()

ClpPrimalColumnSteepest

pivotColumn()

Implements the Classical Dantzig Pivot Rule

Implements the Steepest Edge Pivot Rule

Figure 4.1 Partial UML Class Diagram for CLP

One of the goals of CyLP is to offer users practical and efficient means to implement

pivotColumn() directly in Python or Cython. Pivot rules need full access to different aspects

of a problem, which demands that CyLP wrap a number of components of CLP. In addition,

implementing pivot rules often requires defining and maintaining new data structures, vectors

and matrices. The standard Python modules Numpy and Scipy 7 facilitate such tasks and

make them reasonably efficient. CyLP must therefore be able to interact with those standard

packages.

CyLP consists of three layers. The first layer is the auxiliary C++ layer whose role is to

enable or facilitate the communication between C++ and Cython. This layer is often required

because of technicalities such as the fact that call-by-reference arguments are currently not

supported in Cython. Thus, for Cython to communicate with C++ code, it may be necessary

to wrap certain functions and methods so as to modify their apparent signature or return

value. Consider for example a function that takes an argument by reference, f(A &a) where A

7. www.scipy.org

http://www.scipy.org
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is a C++ class. One way to work with f() in Cython is to interface instead with a C++ wrapper

of f(): void f_wrap(A *a) {f(*a);}. Another example is that of a function that returns

an array generated in C++ , say, in the form of a double*. Although we can use a double*

array directly in Cython, we may prefer working with a Numpy array not only because it

provides the same constant access time to array elements, but also because it is endowed

with a variety of array operations we may need. However, if we require to use the array in

Python, the conversion to a Python-understood type like a Numpy array is inevitable. A role

of the auxiliary C++ layer is to expose the return array to Cython and Python by wrapping

it into a Numpy array data structure. This is achieved by returning the array to Cython as a

PyObject*, i.e., a pointer to a generic Python object, and subsequently casting this pointer

as a pointer to a Numpy array inside Cython. Though it is possible to return a double*

directly and initialize the Numpy array at the Cython level, we decided against this method

for performance reasons.

The second and most important layer is the Cython layer, whose role is to ensure seamless

communication between Python and CLP. A collection of Cython files interfaces CLP either

directly or indirectly via the auxiliary layer. In the Cython layer, special attention is paid to

handling matrices and vectors efficienly while passing them back and forth between C++ and

Python.

The third and final layer is the Python layer. This is where we define the callback functions

that implement custom pivot rules. These functions will be called from the Cython and/or

C++ layers. In a typical use case, we define a pivot rule in Python and pass it over for CLP

to use while iterating. The CyLP layers are illustrated in Figure 4.2. The rest of this section

is devoted to explaining each of these layers in more detail. To simplify the presentation, we

abbreviate ClpPrimalColumnPivot to just Pivot.

In §4.4.1 we go into some of the details of our implementation of CyLP, the reason being

that interfacing a C++ library is not obvious. Moreover, those details may be relevant in other

contexts. A reader who wishes to skip over those details may safely go directly to §4.4.2.

4.4.1 Implementation Details

As a superset of the Python language, Cython is itself object oriented. If Cython suppor-

ted inheritance from C++ classes, we could create a Cython subclass of Pivot and override

pivotColumn(). Unfortunately it is currently not possible (at least in an automated way) to

inherit from a C++ class inside Cython and we have to find a workaround 8. What we want is

8. Based on the idea discussed in tinyurl.com/6sqvd3l

http://tinyurl.com/6sqvd3l
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Pivot

pivotColumn()

PivotBase
obj: PyObject*

runPivotColumn()

CyPivotBase
obj: PyObject*

pivotColumn()

DantzigPivot

pivotColumn()

PositiveEdge

pivotColumn()

CustomPythonPivot

pivotColumn()

PyPositiveEdge

pivotColumn()

C++ Cython Python

callback

Figure 4.2 Schema of the three layers of CyLP

to have a class equivalent to Pivot in Cython, say CyPivot, which has the same functionality,

i.e., users should be able to define Cython subclasses of CyPivot and implement pivot rules

by overriding the pivotColumn() method. The key to achieving this is understanding the

programming concept of name binding, which is roughly the process of associating names

with objects. The difficulty at the CyLP level can be understood by first considering the

following simplification of the definitions in CLP.

1 class Pivot { // Base class for the user to subclass .

2 public :

3 int pivotColumn () { return -1;} // Generic method for the user to override .

4 };

5

6 class Simplex {

7 public :

8 Pivot * pivotMethod ; // User must bind to a pivot method .

9 };

10

11 class MyFirstPivot : public Pivot { // User - defined pivot rule.

12 public :

13 int pivotColumn () { return 0;}

14 };

15

16 class MyOtherPivot : public Pivot { // User - defined pivot rule.

17 public :

18 int pivotColumn () { return 1;}



51

19 };

20

21 int main(void) {

22 Simplex S;

23 S. pivotMethod = new MyFirstPivot ();

24 printf ("%d", S. pivotMethod -> pivotColumn ());

25 S. pivotMethod = new MyOtherPivot ();

26 printf ("%d", S. pivotMethod -> pivotColumn ());

27 }

The main program above outputs -1 twice because both times, the pivotMethod attribute of

S is bound to an object of type Pivot at compile time, not to objects of type MyFirstPivot

or MyOtherPivot. This behavior is called static binding. If we change the signature of the

pivotColumn() method of the Pivot class and declare it virtual, binding will be delayed

until runtime when the actual type of pivotMethod is known, causing the main program to

output 0 and 1. This kind of binding is called dynamic binding. This allows CLP to run a

pivotColumn() of a user-defined pivot rule class.

However, defining a pivot rule class in Cython breaks the inheritance chain—CLP will not

be able to recognize our class as a Pivot type. As a result, we must bind the C++ pivotMethod()

to the Cython implementation inside Cython where its type is known.

For instance suppose we define a class CyDantzigRule and implement the classic Dantzig

pivot rule in its pivotColumn() method. To be able to pass a CyDantzigRule object to C++ —

where CyDantzigRule is not recognized as a type—we make use of generic (void) pointers.

Suppose we have a void pointer ptr, pointing to a CyDantzigRule instance. Because casting

the void pointer is necessary, Cython requires prior knowledge of the user-defined class, here

CyDantzigRule, to execute the corresponding pivotColumn() method, as illustrated in the

following listing:

(< CyDantzigRule >( ptr )). pivotColumn ()

To overcome this limitation we define a Cython class CyPivot which shall be the parent of

every pivot rule implemented in Cython. Now we are certain that the void pointer can safely

be up-cast to a CyPivot pointer. The Cython function defined in the following listing

cdef int RunPivotColumn (void *ptr ):

return (<CyPivot >( ptr )). pivotColumn ()

performs this task and runs the pivotColumn() method. This is where the call to pivotCo-

lumn() is bound (dynamically) to CyDantzigRule.pivotColumn().

Taking an additional step ahead, implementing a pivot rule directly in Python would be

much more convenient. To this end, we define the CustomPythonPivot subclass of CyPivot
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as we would have done had we wanted to define another pivot rule in Cython. At variance

with CyPivot, instances of CustomPythonPivot have a pivotMethod attribute that will be

bound to a user-defined Python object implementing pivotColumn(). This binding occurs

when the user registers their pivot rule for use in the Simplex implementation. This regis-

tration stage is illustrated in §4.4.4. For example suppose a user defines the PyDantzigRule

class and implements a Python version of Dantzig’s pivot rule in the pivotColumn() method.

Upon registering this pivot rule, CustomPythonPivot.pivotColumn() is set to call pivot-

Method.pivotColumn() (instead of implementing a pivot rule itself). In brief, we provide to

CustomPythonPivot a reference to an actual pivot implementation—a callback.

4.4.2 Implementation of a Classic Pivot Rule in Cython and Python

Listing 4.1 gives the definition of the classic Dantzig pivot rule in Python. We use the

Numpy package to gain performance. We define a class deriving from the PyPivot class. In a

method that is (and must be) called pivotColumn() we first fetch the reduced costs. Then,

using the Numpy where() function, we gather indices of the variables that are unbounded

or those which are at their bounds and whose reduced costs are large enough and have a

favorable sign. Among these variables, we choose the one with the maximum absolute value.

1 import numpy as np

2

3 class PyDantzig ( PyPivot ):

4 def pivotColumn (self ):

5 s = self. clpModel

6 rc = s. reducedCosts

7 tol = s. dualTolerance ()

8

9 indicesToConsider = np. where (s. varNotFlagged & s. varNotFixed &

10 s. varNotBasic &

11 ((( rc > tol) & s. varIsAtUpperBound ) |

12 (( rc < -tol) & s. varIsAtLowerBound ) |

13 s. varIsFree ))[0]

14

15 abs_rc = abs(rc[ indicesToConsider ])

16

17 if len( indicesToConsider ) > 0:

18 return indicesToConsider [np. argmax ( abs_rc )]

19 return -1

Listing 4.1 Dantzig’s Pivot Rule in Python

Implementing Dantzig’s pivot rule in Cython is essentially similar to the Python imple-

mentation in Listing 4.1. The major difference is that in Cython the class is defined as cdef

class CyDantzig(CyPivot).
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4.4.3 Implementation of the Positive Edge Rule

In this section we demonstrate how to implement the positive edge rule of §4.3.

The core of the positive edge pivot rule implementation is essentially similar to that of

Dantzig’s rule, illustrated in Listing 4.1. The difference is that it should incorporate Algorithm

4.3.1 into its pivot selection process.

We define the Python class PositiveEdge, a subclass of PyPivot, possessing an updateW()

method used to perform the optional update of w specified in Step 0 of Algorithm 4.3.1, as

shown in Listing 4.2. First this method populates z with indices of the constraints for which

the right-hand-side is smaller in absolute value than self.EPSILON—a predefined threshold.

Then it sets corresponding elements in self.w to a random number. Finally the call to

vectorTimesB_1() multiplies self.w by A−1
B in place.

def updateW (self ):

z = np. where (np.abs(self.rhs) <= self. EPSILON )[0]

self.w[z] = np. random . random (len(z))

s = self. clpModel

s. vectorTimesB_1 (self.w)

Listing 4.2 Updating w

To implement the pivotColumn() method of the postive edge rule we use Dantzig’s rule

implementation in Listing 4.1 as a starting point.

Each variable compatibility check requires a dot product, i.e. ATj w for j ∈ N . Instead, we

choose to check the compatibility of all the non-basic variables at once by performing a vector

by matrix multiplication, i.e. ATNw, which is more efficient. To this end, we use a wrapper of

ClpModel’s transposeTimesSubset() using the call

s. transposeTimesSubset (idx , w, Aw)

which multiplies w by the rows of ATN specified in the list idx. The result is stored in Aw,

which is a Numpy array. To get the indices of compatible variables we can use Numpy’s

function where() once again:

compVars = idx[np. where (abs(Aw[idx ]) < self. EPSILON )[0]]

We next identify a compatible variable with maximum reduced cost:

compRc = abs(rc[ compVars ]) # Reduced costs of the compatible variables

maxCompIdx = compVars [np. argmax ( compRc )]

We compare rc[maxCompIdx] with the reduced cost of the variable chosen by Dantzig’s

method considering the preferability of compatible variables, by the predefined parameter
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ψ, and decide either to choose a compatible or an incompatible variable. If an incompatible

variable is chosen, we call updateW() to reconstruct w before moving on to the next iteration.

As a result, we are able to implement the positive edge method in Python in 38 lines while

the same implementation in C++ takes 106 lines.

4.4.4 A Complete Example Usage of CyLP

Suppose that we have a LP defined in an MPS file lp.mps. To solve this problem in Python

using the positive edge pivot method we use:

1 s = CyClpSimplex ()

2 s. readMps ("lp.mps")

3 s. preSolve (tol =1.0e -8) # Optional presolve step.

4 pivot = PositiveEdgePivot (s)

5 s. setPivotMethod ( pivot )

6 s. primal () # Executes primal Simplex .

Listing 4.3 Using Custom Pivot Rules

where we first create an instance of CyClpSimplex—a class which interfaces CLP’s ClpSim-

plex. After reading the problem from lp.mps, we create an instance of PositiveEdge and

register it with s. Then we solve the model using the CLP’s primal Simplex method.

4.4.5 Modeling Facilities

As an alternative to reading from a file, CyLP provides intuitive modeling facilities to

express linear programming problems. Listing 4.4 shows how to model (4.3), solve it using

primal Simplex, add a new constraint and solve again.

minimize x0 − 2x1 + 3x2 + 2y0 + 2y1

s.t. x0 + 2x1 ≤ 5

x0 + x2 ≤ 2.5

2 ≤ x0 + y0 + 2y1 ≤ 4.2

2 ≤ x2 + y1 ≤ 3

(y0, y1) ≥ 0

1.1 ≤ x1 ≤ 2

1.1 ≤ x2 ≤ 3.5.

(4.3)

1 import numpy as np

2 from CyLP.cy import CyClpSimplex
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3 from CyLP.py. modeling . CyLPModel import CyLPArray

4

5 s = CyClpSimplex ()

6

7 x = s. addVariable (’x’, 3)

8 y = s. addVariable (’y’, 2)

9

10 # Define coefficient matrices and bound vectors .

11 A = np. matrix ([[1. , 2., 0] ,[1. , 0, 1.]])

12 B = np. matrix ([[1. , 0, 0], [0, 0, 1.]])

13 D = np. matrix ([[1. , 2.] ,[0 , 1]])

14 a = CyLPArray ([5 , 2.5])

15 b = CyLPArray ([4.2 , 3])

16 u = CyLPArray ([2. , 3.5])

17

18 # Add constraints and bounds to model .

19 s += A * x <= a

20 s += 2 <= B * x + D * y <= b

21 s += y >= 0

22 s += 1.1 <= x [1:3] <= u

23

24 # Define the objective function

25 c = CyLPArray ([1. , -2., 3.])

26 s. objective = c * x + 2 * y.sum ()

27

28 s. primal () # Solve . Solution : [0.2 2. 1.1 0. 0.9]

29

30 s += x[2] + y[1] >= 2.1 # Add a cut.

31 s. primal () # Warm start . Solution : [ 0. 2. 1.1 0. 1.]

Listing 4.4 Creating and solving an LP using CyLP modeling facility.

The addVariable() method returns a CyLPVar object which we use later to add constraints

and bounds. Lines 11–16 define coefficient matrices and vectors. Vectors are defined using

CyLPArray objects instead of the more familiar Numpy arrays, whereas matrices may be de-

fined using Numpy’s matrix objects. The reason lies in the way Numpy array operators take

precedence. If we compare a CyLPVar object, x with a Numpy array b using the expression b

>= x the >= operator of b is called and returns a Numpy array with the same dimension as b

and all its elements set to False, which is of no significance since b is trying to compare itself

with another object that it does not know of. We would expect, instead, the <= operator of

x to execute, and to save b as the lower bound on x. To this end, we use CyLPArray objects

which are Numpy arrays in most respects except that they concedes performing an operation

if the other operand is a CyLPVar object.

Constraints and variable bounds are declared using the addConstraint() method or the

in-place addition operator as in lines 19–22. The objective function is defined by setting

CyClpSimplex’s objective attribute. Once the LP is defined, the writeMps() method allows
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us to write the problem to file in mps format. This makes the choice of modeling with CyLP

independent of the choice of solver. In CyLP, LPs may be solved using primal or dual Simplex.

The modeling tool also makes it easy to generate a problem dynamically, as in cut-generation

or branch-and-cut techniques in integer programming, by allowing users to add constraints

at any time and re-solve the problem with a warm start, i.e., using the solution of the last

execution as the initial point for the new problem. In the next section we demonstrate how

CyLP can be used to solve MIPs and how users can customize the branch-and-cut process

using Python callbacks.

4.4.6 Mixed Integer Programming with CyLP

Much in the same way as CyLP enables to customize the pivot selection rule in CLP, it also

enables to customize the solution process of MIPs using a branch-and-cut strategy. This is

made possible by interfacing COIN-OR’s CBC library. Specifically, custom cuts may be input

by the user by way of COIN-OR’s CGL Cut-Generation Library 9. CGL supplies generators

for a collection of well-known cuts, such as Gomory, clique and knapsack cover cuts. CyLP

facilitates access to these cut generators. Although the interface is still at a preliminary stage,

it already offers a certain level of flexibility which, when combined with user-designed pivot

rules, may produce powerful variants of the solution process.

In this section, we illustrate how to add integrality restriction to variables, how to solve

a MIP and tune the solution process. Finally, we explain how CyLP can be used to write

Python callbacks to customize the branch-and-cut process.

To mark variables as integers we use the setInteger() method. In the LP of Listing 4.4,

for example, x1 and x2 can be marked as integers by adding s.setInteger(x[1:3]). Once

the MIP is modeled, we solve it using an instance of the CyCbcModel class.

Considering the case of reading the problem from a file, Listing 4.5 illustrates how to

solve a MIP using two cut generators. To obtain the CyLPModel of the problem, instead

of readMps(), we read the LP using extractCyLPModel(). We use the returned model to

access the problem’s variables in line 8, and mark a subset of them as integers in line 9.

Calling getCbcModel() solves the initial relaxation using CLP and returns an instance of

the CyCbcModel class, which is an interface to CBC’s CbcModel class, that implements a

branch-and-cut procedure. We then add two cut generators—one generating Gomory cuts of

at most 100 variables and the other generating knapsack cover cuts. Afterwards, we solve the

problem and print out the solution.

9. projects.coin-or.org/Cgl

https://projects.coin-or.org/Cgl
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1 s = CyClpSimplex ()

2

3 # Read problem from file. To have access to the CyLPModel of

4 # the problem we use extractCyLPModel method instead of readMps .

5 model = s. extractCyLPModel (’lp.mps ’)

6

7 # Mark variables x5 to x9 as integers

8 x = model . getVarByName (’x’)

9 s. setInteger (x [5:10])

10

11 # Solve initial relaxation and obtain a CyCbcModel object .

12 cbcModel = s. getCbcModel ()

13

14 # Create a Gomory cut generator and a Knapsack cover cut generator .

15 gomory = CyCglGomory ( limit =100)

16 knapsack = CyCglKnapsackCover ( maxInKnapsack =50)

17

18 # Add cut generators to CyCbcModel .

19 cbcModel . addCutGenerator (gomory , name=" Gomory ")

20 cbcModel . addCutGenerator (knapsack , name=" Knapsack ")

21

22 cbcModel . branchAndBound () # Solve .

23 print cbcModel . primalVariableSolution

Listing 4.5 Integer Programming with CyLP

CBC provides the capability to customize its branch-and-cut node selection process by

writing C++ callbacks. For this purpose, CyLP enables us to, instead, use Python. Suppose

that we wish to implement a simplistic approach of traversing the branch-and-cut tree. The

strategy is to look for nodes with the least number of unsatisfied integrality constraints. In

case of a tie, at first we select the deepest node (i.e., a depth-first strategy). But whenever

an integer solution is found we break the tie by choosing the highest node (i.e., a breadth-

first strategy). Listing 4.6 illustrates how to implement this strategy by defining a class that

inherits from the relevant base class NodeCompareBase.

Our subclass must implement compare() to determine the preference in node selection,

newSolution(), which will be run by CBC after a solution is found to perform a possible

change of strategy, and every1000Nodes(), which is similar to newSolution() but is called

after CBC has visited 1000 nodes. To use SimpleNodeCompare in Listing 4.6, we set the node

comparison method by registering an instance snc of SimpleNodeCompare with the CbcModel

object using cbcModel.setNodeCompare(snc).

4.5 Numerical Experiments

In this section, we first examine the performance hit caused by implementing a pivot rule

in Python or Cython as opposed to C++ . We choose Dantzig’s pivot selection rule because

it is simple enough to ensure a fair comparison across different implementations. Later, we
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1 class SimpleNodeCompare ( NodeCompareBase ):

2 def __init__ (self ):

3 self. method = ’depth ’ # Default strategy .

4

5 def compare (self , x, y):

6 " Return True if node y is better than node x."

7 if x. nViolated != y. nViolated :

8 return (x. nViolated > y. nViolated )

9 if x. depth == y. depth :

10 return x. breakTie (y) # Break ties consistently .

11 if self. method == ’depth ’:

12 return (x. depth < y. depth )

13 return (x. depth > y. depth )

14

15 def newSolution (self , model , objContinuous , nInfeasContinuous ):

16 "Cbc calls this after a solution is found in a node."

17 self. method = ’breadth ’

18

19 def every1000Nodes (self , model , nNodes ):

20 "Cbc calls this every 1000 nodes for possible change of strategy ."

21 return False # Do not demand a tree re -sort.

Listing 4.6 A simple node comparison impelementation in Python

demonstrate how CyLP can be used to examine the effectiveness of the positive edge pivot

rule.

We choose the Netlib LP benchmark 10 for the first part, which contains 93 LPs of diverse

dimensions and sparsity. All our experiments are conducted on computers with Intel Xeon

2.4GHz CPUs and 49GB of total shared memory. Let tdcpp, t
d
cy and tdpy denote the execution

times of Algorithm 4.2.1 using C++ , Cython and Python versions of Dantzig’s pivot rule,

respectively.

Figure 4.3 show the performance profile [Dolan and Moré, 2002] of the execution times.

The figure illustrates that, as expected, the C++ implementation is always faster but that the

Cython and Python versions are essentially equivalent to one another. It also demonstrates

that for 50% of the instances, the Cython and Python versions are less than 3 times slower

than the C++ version.

We next select those Netlib instances that take more than 5 seconds to solve using the

C++ implementation of Dantzig’s rule and measure the performance hit caused by using Cy-

thon and Python by computing the slowdown factors tdcy/t
d
cpp and tdpy/t

d
cpp. The results are

given in the form of a bar chart in Figure 4.4. Problems are sorted by C++ execution time from

greenbeb, taking 5 seconds, to dfl001, taking 9729 seconds. The average slowdown is 2.3

and in the most difficult instance, dfl001, is about 1.4. Our observation is that as problems

become moderately large, the performance gap shrinks to a point where it no longer has a

significant impact.

10. www.netlib.org/lp/data

http://www.netlib.org/lp/data


59

�� �� �� ��
���

���

���

���

���

���

	��
	���
�

���
�

Figure 4.3 Performance profile for the execution time of the primal Simplex Algorithm using
the C++ , Cython and Python implementations of Dantzig’s pivot rule.
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For the second part of the numerical tests we choose from among the pds instances

from Mittlemann’s benchmark [Carolan et al., 1990], which are large, sparse and highly

degenerate—good target problems for the positive edge method.

Let tpcpp and tppy be the execution times of the positive edge method using C++ and Python

implementations, respectively. We compute tdcpp/t
p
cpp and tdpy/t

p
py which indicate the speedups

gained by using the positive edge rule relative to Dantzig’s rule in C++ and Python. Results

of these tests appear in Table 4.1. In this table, n and m denote the number of variables and

constraints of the instance, respectively, id and ip are the numbers of iterations necessary to

solve the instance using Dantzig’s pivot rule and the positive edge rule, respectively. Python

reports higher speedups than C++ but the iteration reductions are identical. The reason is

that positive edge is adding an almost equal overhead to each iteration in C++ and Python.

For example in pds-06, the average C++ iteration time is 0.0002 seconds for Dantzig and

0.0004 seconds for positive edge. As for Python, the average iteration time is 0.0019 seconds

for Dantzig and 0.0017 seconds for positive edge. This means that positive edge is adding an

extra 0.0002 seconds on average to each Dantzig iteration which is relatively more costly for

C++ . This also shows that a careful implementation of the positive edge rule in Python runs

at almost the same speed as in C++ , each iteration taking 3× 10−6 seconds longer.

Table 4.1 demonstrates the superiority of the positive edge method over Dantzig’s pivot

rule for larger pds instances. In fact, increasing speedups for both implementations show that

the effectiveness of the positive edge rule increases as the problem size grows, both in terms

of run time and in terms of number of pivots.

Table 4.1 Speedup of the positive edge method relative to Dantzig’s rule.

Instance n m id ip C++ speedup Python speedup

pds-02 7535 2953 553 583 0.32 0.78
pds-06 28655 9881 7759 2816 1.03 2.85
pds-10 48763 16558 37939 6890 2.50 6.12
pds-20 105728 33874 293668 31584 3.92 9.78
pds-30 154998 49944 597447 65657 4.20 9.75
pds-40 212859 66844 1504587 139376 5.20 10.85
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4.6 Discussion and Future Work

CyLP, available from github.com/mpy/CyLP, provides a high-level scripting framework to

define and customize aspects of the solution process of LPs and MIPs using COIN-OR’s CLP

and CBC. It uses callback methods to let users define new pivot rules in Python and have CLP

use them during primal Simplex. We demonstrated this feature by implementing the positive

edge pivot rule in C++ and Python. We feel that the ease of programming and flexibility

offered by implementing pivot rules in Python outweigh the slowdown caused by using a

high-level interpreted programming language. Moreover, this slowdown becomes minor as

problem size grows.

Besides the pivot selection rules discussed throughout this paper, we also implemented

the Last In First Out and the Most Often Selected rules described by Terlaky and Zhang

[1993], each in less than 30 lines of code. However, those rules also demand to restrict the

leaving variable selection, which is not currently possible in CyLP. The reason is that in

CLP, entering variable selection is designed to be customized by users and is defined in

separate classes whereas a leaving variables rule is built into CLP’s ClpSimplexPrimal class.

Nevertheless, future improvements to CyLP will remove this limitation.

Currently, custom pivot rules may only be passed to the primal Simplex solver. In the

future, we wish to provide facilities to implement dual pivot rules in Python. As an impro-

vement to the integer programming facilities—where we are already capable of defining the

branch-and-cut node comparison rule in Python—we will consider adding the capability to

script cut generators in the same manner.

In follow-up research, we consider Wolfe’s pivot rule to solve the KKT system of a convex

quadratic program [Wolfe, 1959]. The KKT system of a QP is a set of linear equations if we

set aside the complementarity conditions. Wolfe proposes to solve an LP to find a feasible

point for this system by using a specific pivot strategy to take care of complementarity. Our

goal in doing so will be to investigate the application of the positive edge rule and of the

constraint aggregation techniques of Elhallaoui et al. [2010] to convex quadratic programming.

The interface to CLP described in the present paper will let us implement Wolfe’s rule and

construct modified linear programs easily. We hope other users find CyLP equally valuable

in their research.

Cython is a powerful intermediate language to enable interaction between low-level high-

performance libraries and Python. We expect that other types of optimization solvers would

benefit from similar scripting capabilities. In nonconvex optimization, the flexibility and

power of solvers such as IPOPT [Wächter and Biegler, 2006] would, in our opinion, be greatly

https://github.com/mpy/CyLP
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enhanced were users able to plug in their own linear system solver or barrier parameter update

using Python.
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CHAPTER 5

EXTENSIONS OF POSITIVE EDGE IN QUADRATIC PROGRAMMING

5.1 Introduction

Degeneracy arises in quadratic programs (QP) as it does in linear programs (LP) ; when

we have dependent equality constraints or the strict complementarity fails for the inequa-

lity constraints. Unless equipped with appropriate measures, QP solvers may struggle when

dealing with degeneracy, which can cause infinite loops or critical slowdowns in the solution

process.

QP solution techniques can be divided into two distinct categories, active-set methods

and interior-point methods. In this chapter we exclusively consider solving degenerate QPs by

means of active-set-based methods. Gould et al. [2011] provide an insight into QP degeneracy

from an interior-point perspective.

The similar nature of QP’s active-set methods and LP’s Simplex method, in that they

both move from one point to another on the faces of the feasible region, makes it natural

to generalize degeneracy techniques for LP to QP. For example, the well-known Bland’s

rule [Bland, 1977], which guarantees termination of the Simplex method in a finite number

of iterations, is extended by Chang and Cottle [1980] to QPs. In a comparable pattern, a

technique to resolve degeneracy by Fletcher [1988] is adapted for QPs by Fletcher [1993].

Following the same paradigm, in this chapter we inspect the extension of the positive edge

rule [Raymond et al., 2010] to solve degenerate QPs.

The positive edge method defines a pivot selection rule for the Simplex algorithm that is

proved to be effective especially on large-scale degenerate LPs. We incorporate positive edge

into two Simplex-like QP methods: one by Wolfe [1959], which involves slight modifications

to normal Simplex pivot rules, and a reduced gradient approach [Bazaraa et al., 2006].

This chapter is organized as follows. Background on the quadratic Simplex, degeneracy,

and the positive edge pivot rule appears in §5.2. In §5.3, we equip Wolfe’s QP technique with

the positive edge rule, in what we refer to as the WP method. For the implementation, we

require an LP solver that allows the definition of pivot methods. We choose a software called

CyLP , which is built upon CLP, and provides a framework to implement pivot methods in

the Python programming language (Chapter 4).
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Afterwards, in §5.4, we integrate positive edge into the reduced gradient method, avai-

lable in CLP. Finally in §5.5, we investigate a scaling technique that aims to “reduce the

nonlinearity” of general QPs.

Notation

Throughout this chapter we denote matrices and vectors by capital and small letters

respectively. For index sets we use capital letters in a calligraphic font, e.g. B and N . For a

matrix M , MB is the submatrix of M containing those columns indexed in B. In the same

manner we use superscripts, e.g., MB to denote row submatrices. The j-th column of M is

Mj, whose i-th element is denoted by mij.

5.2 Background

5.2.1 Quadratic Simplex

We consider solving convex quadratic programs (QP) of the form

minimize
x∈Rn

cTx+ 1
2
xTGx s.t. Ax = b, x ≥ 0. (QP)

where c ∈ Rn, G ∈ Rn×n is symmetric and positive semi-definite, A ∈ Rm×n and b ∈ Rm.

The optimality conditions of (QP) can be written as

Gx− ATy − z = −c (5.1a)

Ax = b (5.1b)

(x, z) ≥ 0 (5.1c)

zTx = 0. (5.1d)

In the QP literature, the name“quadratic simplex”vaguely refers to a wide range of active-

set methods that resemble the Simplex method. During this project, we experimented with

two methods in this category, namely Wolfe’s method [Wolfe, 1959], and a reduced gradient

method [Bazaraa et al., 2006, §10.8]. We describe these approaches in the following sections.
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5.2.2 Degeneracy

A QP is called degenerate if it has linearly dependent equality constraints, or if strict

complementarity fails at a given point. We say that strict complementarity fails at x0 ∈ Rn

if there exists an i for which x0i = z0i = 0 where (x0, z0) satisfy (5.1). Figure 5.1 shows

two examples of degeneracy in QPs. In both figures, x∗ is the unconstrained minimizer, and

lines c1 to c4 correspond to linear inequality constraints with signs chosen such that x∗ is

feasible. In the left plot, x∗ satisfies the constraint as equality but removing the constraint

from the problem will not affect the solution. In the right plot, at x0, only constraints c1 and

c2 are enough to specify the feasible region, but all four constraints are active at that point,

making it difficult for an active-set method to guess the right active set—one that permits

non-zero steps towards the solution ; in this example {c1}. Degeneracy is common and has

a significant effect on the performance of QP solvers. Gould et al. [2011] gather degeneracy-

related statistics about test problems of two QP benchmarks by Maros and Meszaros [1999]

and Gould et al. [2003].

x∗

c
x∗ x0

x1

c1

c3c2c4

Figure 5.1 Degeneracy in quadratic programming

5.2.3 Positive Edge

Dealing with degeneracy in LPs typically involves either perturbation, e.g., lexicographic

rule [Dantzig et al., 1955], or a modification to the Simplex pivot selection rule, e.g., Blan-

d’s rule [Bland, 1977]. Contributing to the latter type, Raymond et al. [2010] propose the

positive edge rule—a method that detects degenerate pivots at each Simplex iteration with

a reasonable complexity. In the rest of this section we first briefly explain Simplex [Dantzig,

1963]. Afterwards we describe the positive edge method in detail.

Consider an LP of the form
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minimize
x∈Rn

cTx s.t. Ax = b, x ≥ 0, (LP)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n. Simplex fixes n − m variables to zero and calls them

nonbasic and considers the rest of the variables as basic. At each iteration, it swaps basic and

nonbasic variables, in what is called pivoting, until it obtains a solution.

Denote the index set of the basic variables by B, and that of the non-basic variables by

N . Substituting x by (xB, xN ) in Ax = b and multiplying both sides by A−1
B we can express

the basic variables in terms of the non-basic variables as xB = A−1
B (b − ANxN ). Replacing

this in the objective function we have cTx = cTBA
−1
B b+ (cN − ATNA−TB cB)TxN . Consequently,

we can predict the changes in the objective function based on the changes of the nonbasic

variables, i.e. each unit change of variable xj, j ∈ N alters the value of the objective function

exactly rj = cj − ATj A−TB cB units—which is called the reduced cost of xj. Therefore, At each

iteration of Simplex, we search for a variable with a negative reduced cost, say xj, to reduce

the objective function. However, increasing the value of xj is restricted by the positivity

constraint x ≥ 0. We raise the value of xj until a basic variable, say xk, vanishes. More

specifically, we choose xk as the leaving variable where k = argmini∈B{b̄i/āij | āij > 0} where

Ā = A−1
B A and b̄ = A−1

B b. By replacing xj in the basis, we have xj = b̄k/ākj and thus the

objective function improvement of rj b̄k/ākj. Therefore, if there exists i ∈ B where b̄i = 0 and

āij > 0 then the iteration will not change the objective function value, and so it is called a

degenerate pivot. In the light of this, Positive Edge avoids degenerate pivots by choosing the

entering variable, xj, from the set {xj | ∀i ∈ {1, 2, ...,m} if b̄i = 0 then āij = 0}, which leads

to the definition of compatible variables.

Let Z := {i = 1, . . . ,m | b̄i = 0} and P := {i = 1, . . . ,m | b̄i > 0}.

Definition 3. Variable xj, j ∈ {1, 2, ..., n} is compatible if and only if ĀZj = 0.

Partitioning Ā by its rows and defining Q := A−1
B we have

Ā =

[
ĀP

ĀZ

]
=

[
QPA

QZA

]
=

[
QPAB QPAN

QZAB QZAN

]
=

[
I 0 QPAN

0 I QZAN

]
. (5.2)

We infer from the compatibility definition and (5.2) that xj is compatible for j ∈ P and

incompatible for j ∈ Z. But for the entering variable choice, we must search for nonbasic

compatible variables, xj, j ∈ N . The cost of finding all these variables is to perform a matrix-

by-matrix operation, QZAN , at each iteration of Simplex, which is too expensive.
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To lower the complexity of the compatible variable search, we define a random vector

v ∈ R|Z|+ and let wT := vTQZ . If xj is compatible, then we have wTAj = vTQZAj = 0. But is

it true that if wTAj = 0 then xj is compatible and QZAj = 0 ? If wTAj = 0 then we must have

either QZAj = 0 or QZAj ⊥ vT . Raymond et al. [2010] prove that the probability of the latter

to happen in double precision is 2−62 if v is populated by a bitwise Bernoulli random generator

explained in detail in the mentioned article. Therefore, if wTAj = 0 then with a probability

of 1− 2−62 we have QZAj = 0. In a situation where this statement becomes untrue we might

detect an incompatible variable as compatible and perform a single degenerate iteration.

5.2.4 CyLP

In the course of implementing WP, we must develop and combine two pivot methods:

Wolfe and positive edge. Therefore, we require a Simplex LP solver that allows user-defined

pivot rules. Commercial LP solvers often come with several well-known predefined pivots,

e.g. the classic Dantzig pivot [Dantzig, 1963], the steepest edge rule [Wolfe and Cutler, 1963,

Goldfarb and Reid, 1977, Forrest and Goldfarb, 1992], and the DEVEX rule [Harris, 1975].

But in our case we need an open-source application, such as CLP 1, which permits defining

pivot rules. COIN-OR’s CLP has an object-oriented design which makes it a good option

for modifications of any sort, including pivot rule definition. But being written in C++ , we

have to be familiar with low-level programming techniques in order to develop and debug

the code. As a result, we use the framework provided by CyLP that allows us to define the

CLP’s pivot rule in the high-level programming environment of Python. We explain CyLP

in more details in Chapter 4.

5.3 Step One: Positive Edge and Wolfe’s Method

5.3.1 Wolfe’s Method

Wolfe proposes to solve (5.1) by solving an LP comprising (5.1a), (5.1b) and (5.1c) as

constraints:

minimize
x,y,z,a1,a2

1Tna1 + 1Tma2

s.t. Gx− ATy − z + a1 = −c

Ax+ a2 = b

1. https://projects.coin-or.org/Clp

https://projects.coin- or.org/Clp
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(x, z, a1, a2) ≥ 0,

where 1k ∈ Rk is a vector with all of its elements equal to 1. By modifying the normal

Simplex pivot rule we can also take (5.1d), the complementarity conditions, into account.

The rule is simple: A variable can enter the basis only if its complement is not in the basis

or its complement will leave the basis in the same iteration.

Wolfe proposes to first solve an LP,

minimize
a1

eT1 a1

s.t. Gx− ATy − z + s1 − s2 = −c (W1)

Ax+ a1 = b

(x, z, a1, s1, s2) ≥ 0

y = z = 0,

where a1 ∈ Rm is the vector of artificial variables and s1 ∈ Rn and s2 ∈ Rn are slack and

surplus variables to relax the dual-feasibility condition. The solution of (W1) is a feasible

point satisfying Ax = b only if the corresponding objective function value is zero. To ensure

that this solution also satisfies the complementarity conditions we set z = 0, and to simplify

further we also set y = 0, by removing z and y from (W1). Then we solve the following

problem using the optimal basis of (W1) as the initial basis.

minimize
s1,s2,x,y,z

eT1 s1 + eT2 s2

s.t. Gx− ATy − z + s1 − s2 = −c

Ax = b (W2)

(x, z, s1, s2) ≥ 0

The missing complementarity conditions, xT z = 0, are satisfied at every Simplex iteration

by using Wolfe’s pivot rule. Wolfe [1959] proves that for strictly convex QPs, i.e. when G

is positive definite, this procedure ends in finite number of iterations, a maximum of ( 3n
n ) .

However, when G is positive semi-definite, one needs to apply regularization to ensure finite

termination.
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5.3.2 Algorithm

Implementation of WP requires modifying Dantzig’s classic entering variable selection to

Algorithm 5.3.1. Subscripts a, c, and e are used to signify, respectively, the variable with the

best reduced cost, the compatible variable with the best reduced cost, and the current pivot’s

entering variable.

Algorithm 5.3.1 The Positive Edge Rule Combined with Wolfe’s method

Step 0. Find a variable, xa, with the best reduced cost, ra.

Step 1. Find a compatible variable, xc, with the best reduced cost among the compa-
tible variables, rc.

Step 2. Choose the entering variable, xe, to be xc, if ψra > rc, and xa otherwise,
where 0 < ψ < 1 determines how strongly we favor compatible variables.

Step 3. If the complement of xe is in the basis and will not leave the basis at the same
iteration, i.e. it will not be chosen by the ratio test, we reject xe, and ban it from being
chosen again before a successful iteration is performed. Go to Step 0. Otherwise declare
xe as the entering variable.

In Step 0 we use Dantzig’s rule to find a variable with the best reduced cost. Then, in

Step 1, we examine compatible variables with negative reduced costs. In Step 2 we decide

whether or not we prefer a compatible variable over an incompatible one, even if its reduced

cost is worse, determined by the value of a predefined parameter, 0 < ψ < 1. For example,

ψ = 0.1 means that we prefer a compatible variable if its reduced cost is at least a tenth of

the best reduced cost. Finally in Step 3, we check if proceeding with the selected entering

variable will cause violation of the complementarity constraints, i.e. its complement is in

the basis and the ratio test will not choose the complement as the leaving variable in the

same iteration, in which case we reject the entering variable. This process is repeated until

optimality is reached. Since Wolfe’s method’s termination does not depend on the order in

which we choose entering variables, and all that positive edge does is to give higher priority

to compatible variables as entering variable candidates, WP terminates in a finite number of

iterations following the same convergence results as Wolfe’s original approach.

In the following section, we examine a general QP structure which is unfavorable to WP’s

performance.
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A Case where WP Fails

In Algorithm 5.3.1, Step 3, we risk rejecting compatible variables suggested by the positive

edge rule. This contradiction becomes a critical disadvantage of the method for particular

problems. To examine further, consider solving a QP of the form

minimize
x∈Rn

cTx+ 1
2
xTx s.t. x ≥ 0, (5.3)

using Wolfe’s method. We readily have a solution to (W1), x = z = 0. On the other hand,

problem (W2) becomes

minimize
s1,s2,x,z

eT1 s1 + eT2 s2

s.t. x− z + s1 − s2 = −c

(x, z, s1, s2) ≥ 0,

where zTx = 0. Notice that here, the constraint matrix A ∈ Rn×4n is equal to[
In −In In −In

]
We claim that variable xj is compatible if and only if zj is compatible. To prove this, we use

the same notation as in §5.2.3. In addition, for a given variable xj,we denote its corresponding

column in A and Ā by Axj and Āxj respectively. For every variable xj and its complement

zj, we have

ĀZxj = A−1
B Ij = A−1

B (−aZzj) = −ĀZzj . (5.4)

Therefore āZxj = 0 if and only if āZzj = 0, hence the result follows.

Let Bx ⊂ B and Bz ⊂ B index the basic x’s and z’s respectively. A non-basic variable xk

is compatible only if k ∈ Bz. Similarly, a non-basic variable zl is compatible only if l ∈ Bx.
From the definition of Wolfe’s algorithm, we know that such compatible pivots will be rejected

unless the entering variable replaces its complement in the basis at the same iteration—which

seldom happens in our observations.

On the other hand, the objective function makes s1 and s2 unfavorable to enter the basis.

Therefore, in a typical Simplex iteration, there exists no compatible variable that passes

Wolfe’s test. In practice, in this particular kind of problem, Wolfe’s method rejects close to

100% of the compatible variables.
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To solve (5.3) using WP, a workaround is to restate problem (5.3) equivalently as

minimize
x∈Rn

cTx+ 1
2
xTx s.t. x− w = 0, w ≥ 0. (5.5)

The solution to (W1) is (x,w) = (0, 0). We start from this point to solve (W2) which is to

minimize
s1,s2,x,z,k

eT1 s1 + eT2 s2 + eT3 s3 + eT4 s4

s.t. x − Iy + s1 − s2 = −c
+ Iy − z + s3 − s4 = 0

x − w = 0

(x, z, s1, s2, s3, s4) ≥ 0 ,

where zTw = 0 and s3 ∈ Rn and s4 ∈ Rn have the same role as s1 and s2. Notice that the

compatible variables, z and w, do not appear in the same constraint. Therefore, Equation

(5.4) does not hold for ĀZzj and ĀZwj
, where j is an arbitrary index. As a result, by solving (5.5)

instead of (5.3), we avoid the high rate of compatible-variable rejection situation explained

above. Of course, this is from a theoretical point of view, whereas in practice, (5.5) has n

more constraints than (5.3) which has a significant negative effect on the performance.

5.3.3 Implementing Wolfe with Positive Edge

In this section we first explain the use of CyLP to implement pivot rules and some im-

plementation details specific to WP. Later we describe how we model (W1) and (W2) using

CyLP to solve QPs.

Towhidi and Orban [2012] provide description of how to implement pivot rules in CyLP.

First, we create a class derived from PivotPythonBase. Then we implement a call-back

method called pivotColumn() that returns the index of the entering variable. However, this

procedure is not enough for Wolfe’s method because our decision on whether or not to accept

an entering variable could be delayed until we find the corresponding leaving variable. To

consider this, we implement another callback method called isPivotAcceptable() which

CyLP calls at each iteration just before the actual pivot occurs, giving the user a last chance

to reject a pivot. In the case of Wolfe’s method, the implementation of isPivotAcceptable()

is shown in Listing 5.1.

def isPivotAcceptable (self ):

s = self. clpModel

cl = self. complementarityList

...
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# if the complement is basic and not leaving the basis

if s. getVarStatus (cl[ enteringIndex ]) == 1 and \

cl[ enteringIndex ] != leavingVarIndex :

# Mark the variable before rejection

self. Banned [ enteringIndex ] = True

return False

# The pivot is accepted , reset the marked variables

self. Banned = np. array (self.dim * [ False ], np.bool)

return True

Listing 5.1 Accepting or rejecting a pivot in Wolfe’s pivot rule

Wolfe’s QP solution method consists of two stages. First we create and solve an LP,

(W1), the solution of which is a feasible point for (QP). In the second stage, we add the

dual variables, y and z, along with their constraints, to the problem to obtain (W2). We

solve (W2) using the special pivot method explained earlier in this section to guarantee the

satisfaction of complementarity conditions. We demonstrate these two steps more clearly in

Listing 5.2. Notice that WolfePivotPE is the class implementing the WP method.

s = CyLPSimplex ()

x = s. addVariable (’x’, nVars )

# Modeling (W1), Primal feasibility constraints

m += A * x == b

s += x >= 0

# solving (W1)

s. primal ()

# Modeling (W2)

# Adding dual variables

z = s. addVariable (’z’, nVars )

y = s. addVariable (’y’, nEquality )

sp = s. addVariable (’sp ’, nVars )

sm = s. addVariable (’sm ’, nVars )

# Dual feasibility constraints

s += G * x - A.T * y - z + sp - sm == -c

# Positivity

s += z >= 0

s += sp >= 0

s += sm >= 0

# Objective function

s. objective = sp.sum () + sm.sum ()

# Changing the pivot rule , setting complementarity constraints for x, z

p = WolfePivotPE (s)

p. setComplement (s. cyLPModel , x, z)
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s. setPivotMethod (p)

s. primal () # Solving (W2)

Listing 5.2 Solving a QP using Wolfe’s method

5.3.4 Numerical Experiments

In this section we compare our implementations of the Wolfe and WP methods.

First, we explain how we choose appropriate test problems. In linear problems, positive

edge is efficient on problems having certain properties, namely, when they are highly sparse

and degenerate. In QP, we have additional constraints on the problems structure for positive

edge to be efficient, one of which was discussed in §5.3.2. Therefore, we create a random QP

generator that generates problems meeting these requirements.

The QP generator creates problems with set-covering-like constraints and a convex qua-

dratic objective function. It also has a parameter to control the number of non-zero elements

in each column. For the tests that we present here, we generated problems with 500 and

800 variables, with Hessian equal to the identity matrix, and no bounds on their variables.

They only differ by the number of constraints, m, and the number of non-zero elements per

column, which we set to m/10.

If we denote the execution time of Wolfe and WP by tw and twp, the speedup is defined as

tw/twp. In the same manner, we define iteration reduction to be iw/iwp where iw and iwp are

the number of iterations of Wolfe and WP methods respectively.

In Figure 5.2(a), we demonstrate the speedup gained by WP with respect to Wolfe’s

method in problems with 500 variables. It is clear that WP is particularly more efficient on

problems with close to 500 constraints. The reason is that in (W2) we have both A and AT

in the constraints, therefore each variables or constraint in QP contributes to the number of

constraints is (W2). Figure 5.2(c) which exhibits the speedup of WP in problems with 800

variables also confirms WP’s relatively higher efficiency on square problems.

In Figure 5.2(a) the maximum speedup is close to 20, while in Figure 5.2(c) we are able

to obtain about 40 showing that the performance of WP becomes more distinguishable on

larger problems with more variables.
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Figure 5.2 The effect of Wolfe+PE on specially generated QPs



77

5.4 Step Two: Positive Edge and the Reduced Gradient Method

Reduced Gradient Method

In the optimality conditions of (QP), equality (5.1a) can be rewritten as

r = Gx+ c− ATy ≥ 0,

where r is called the reduced gradient. Note that in the special where G = 0, an LP, the

reduced gradient becomes the reduced cost. This motivates us to find a solution to (5.1)

using a simplex-like approach. To find an improving direction at a given feasible point, we

look for increasing the values of variables xj where rj < 0. Depending on the number of

nonbasic variables that we allow to change at the same time we obtain different variations

of the method. The reduced gradient method [Bazaraa et al., 2006, §10.6] allows all nonbasic

variables to change at once, which often results in small steps to maintain primal feasibility.

On the other hand, the convex-simplex method of Zangwill [Bazaraa et al., 2006, §10.7] lets

only one nonbasic variable become positive, similarly to the Simplex method, and usually

requires more iterations to solve the problem. In a trade-off, more efficient variants allow

a subset of nonbasic variables to change at a single iteration [Bazaraa et al., 2006, §10.8].

Contrary to Wolfe’s method, here, we solve an LP with the same constraints as QP, Ax =

b, x ≥ 0.

Since a solution to QP may have more than m positive values, we use the notion of super

basic, variables indexed by S, which is a subset of nonbasic variables that are strictly positive.

Let B and N index basic and nonbasic variables, where AB ∈ Rm×m is nonsingular, and

for i ∈ B ∪ N we have xi ≥ 0. Notice that we are not forcing nonbasic variables to zero.

At iteration k, we are interested in moving from the current point xk to another point

xk+1 such that f(xk+1) ≤ f(xk), where f(x) = cTx + 1
2
xTGx. We define the direction as

d := xk+1−xk. For d to be a feasible direction, we must have Ad = A(xk+1−xk) = b− b = 0,

so Ad = ABdB + ANdN = 0, and therefore

dB = −A−1
B ANdN . (5.6)

For d to be a descent direction, we must have ∇f(xk)Td < 0. Using (5.6) we obtain

∇f(xk)Td = ∇xBf(xk)TdB +∇xN f(xk)TdN

=
[
∇xN f(xk)T −∇xBf(xk)TA−1

B AN
]
dN
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= rTNdN . (5.7)

where rTN :=
[
∇xN f(xk)T −∇xBf(xk)TA−1

B AN
]

is called the reduced gradient.

Therefore, for d to be a descent direction we must have rTNdN < 0. In addition, we demand

that dj ≥ 0 if xj = 0 to avoid zero steps. An evident choice for dN is to define its elements,

dj, j ∈ N as

dj :=

{
−rj if rj ≤ 0

−xjrj if rj > 0.
(5.8)

This definition prevents performing short steps by downscaling dj in cases where rj > 0

and xj is a small positive number. If d = 0, then xk is a KKT point and we stop. Otherwise,

we compute a step length by solving a line search problem,

minimize
λ

f(xk + λd)

s.t. 0 ≤ λ ≤ λmax,

where

λmax :=

 min
j
{−x

k
j

dj
} if d � 0

∞ if d ≥ 0.

By repeating this procedure, xk converges to a KKT point [Bazaraa et al., 2006, Theorem

10.6.3].

More efficient variants of the reduced gradient method, allow only a subset of nonbasic

variables, which are called super basic variables, to have nonzero values and fix others to

zero. As a result, the direction vector d has fewer nonzero entries which makes it more likely

to have larger steps. At each iteration, we make maximum improvement using only the basic

and super basic variables. Then we look for a nonbasic variable xj with the smallest rj. We

change its status to super basic and we repeat the procedure.
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5.4.1 Implementation

To test positive edge combined with a reduced gradient method we use CLP, as it contains

a QP Simplex. The class implementing this method is called ClpSimplexNonlinear. We

modify method DirectionVector(), where a nonbasic variable with the smallest reduced

gradient is chosen to become super basic, to consider compatibility of a variable as a decision

factor. Therefore, in addition to searching for a variable, say xk, with the smallest reduced

gradients, rk, we look for a compatible variable, e.g. xc, with the smallest reduced gradient, rc.

If rc < ψrk, where 0 < ψ < 1, we choose xc, otherwise we select xk. As before, the parameter

ψ controls the preferability of a compatible variable over an incompatible one. Notice that

this rule does not affect the convergence as we always look among all the variables for negative

reduced gradients.

In the numerical tests, we refer to this implementation as CLP+PE.

5.4.2 Numerical Results

The fact that in reduced gradient methods we solve a system with m constraints—

compared to the n + m constraints of Wolfe’s method— allows us to experiment with QPs

of larger dimension. To generate test problems, we choose the degenerate LPs of the PDS

instances, and add a quadratic term to their objective function. This is inspired by schedu-

ling problems in which we assign tasks to workers or machines, while we require that the

schedules of different workers be fairly balanced, i.e. even though the main objective is to

assign every task, we prefer a schedule in which a worker is not assigned many more tasks

than the others. We may introduce quadratic terms to the objective function to minimize the

variation between schedules.

To test the effect of a quadratic term in the objective function, we simply add diagonal

matrices as the Hessian of the objective function, i.e. Hii = s for i ∈ {0, 1, ..., u} where s and

u are parameters. We choose s ∈ {0.1, 1, 10} and u ∈ {0.1n, 0.2n, 0.3n, 0.4n, 0.5n}, where n

is the number of variables and the values of u are rounded to the closest integer. We solve

the problems once with CLP’s reduced gradient method and compute the execution time tclp.

Then, we solve the problem using CLP+PE and call the execution time tpe. We define the

speedup to be tclp/tpe. Figure 5.3 shows the result of these tests on pds-10 and pds-20. We

observe that lower densities of the Hessian lead to better performance of CLP+PE. Moreover,

with the smallest tested s, 0.1, we obtain significant speedups for smaller values of u. Also,

with s = 0.1, the speedup is always greater than or equal to 1.



80

0:1£n 0:2£n 0:3£n 0:4£n 0:5£n
u

2-1

20

21

22

23

24

sp
e
e
d
u
p

s=0.1
s=1
s=10

(a) pds-10

0:1£n 0:2£n 0:3£n 0:4£n 0:5£n
u

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

sp
e
e
d
u
p

s=0.1
s=1
s=10

(b) pds-20

Figure 5.3 CLP vs CLP+PE on modified PDS instances
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The observation that weaker quadratic terms cause better performance in CLP+PE, mo-

tivates a natural scaling technique that we explain in the next section.

5.5 Step Three: Scaling

We know that positive edge improves the performance of the primal Simplex method on

linear problems. On the other hand, on QPs, attempts to apply positive edge on Simplex-like

methods are not consistently conclusive. Here, we present an idea to scale a QP so that it

becomes more “linear”, i.e. according to a chosen norm, the quadratic part is less significant

than the linear term.

We define x̃ := αx and substitute it in QP to obtain

minimize
x̃∈Rn

c̃T x̃+ 1
2
x̃T G̃x̃ s.t. Ãx̃ = b, x̃ ≥ 0. (5.9)

where c̃ = 1
α
c, G̃ = 1

α2G, and Ã = 1
α
A. If we find a solution to (5.9), x̃∗, then x∗ = 1

α
x̃∗

is a solution to (QP). Nevertheless, notice that in (5.9), the linear term is multiplied by
1
α

while the quadratic part is multiplied by 1
α2 . Therefore, a careful choice of α could make

quadratic part less significant relative to the linear term, and thus presumably more favorable

to positive edge.

We consider l2-norm to measure the vector of linear coefficients and the Frobenius norm

for the Hessian matrix. Now, for example, if we want ‖G̃‖F/‖c̃‖ = 1/10, we choose α :=

10‖G‖F/‖c‖. In the next section, we present numerical results to observe the effect that

different values of α have on the solution process.

5.5.1 Numerical Results

We test scaling QPs by running CLP+PE on the original and the scaled version of instances

of Maros and Meszaros [1999]. Figure 5.4 demonstrates the result in the form of a color map.

The vertical axis represents the instances sorted by their ratio of ‖G‖F/‖c‖, which varies

from about 0.001 to 6.7× 106. The horizontal axis shows 12 different settings for α, the first

corresponding to the original problem, and the next 11 to scaled problems with increasing

values of α. We use different shades of gray to show different speedups we obtain relative to

CLP’s original reduced gradient method, invoked in CLP by using the primal simplex option

on a QP. The white color corresponds to instances with less than 1 speedup or, in other
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words, a slowdown. Darker shades of gray signify higher speedups, and finally the black color

is for speedups between 3 and 5000.
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Figure 5.4 CLP+PE Speedup compared to CLP for different values of α

In Figure 5.4 we observe many gray cells which prove the positive effect of scaling over

positive edge given the right value for α. On the other hand, no obvious pattern emerges

from the figure. The figure gives no knowledge as to how to choose an α for a problem with

a specific ‖G‖F/‖c‖ so that positive edge would be effective.

Nevertheless, if we consider individual problems, we find interesting instances. We select

some of these problems in Table 5.1. The column corresponding problem DTOC3, shows a

clear advantage of using large values of α, as we see a monotonic increase in speedup. Setting

α = 100 results in CLP+PE to run a remarkable 4703 times faster than CLP’s original primal

simplex QP solver—from 993 seconds down to 0.21 seconds. However, in other instances,

although we obtained extraordinary speedups, the choice of α is not as obvious.
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Table 5.1 The effect of scaling on positive edge speedup over selected QP instances

speedup

α A
U

G
2D

A
U

G
3D

C

D
T

O
C

3

D
U

A
L

1

G
O

U
L

D
Q

P
2

L
IS

W
E

T
3

L
IS

W
E

T
6

M
O

S
A

R
Q

P
1

M
O

S
A

R
Q

P
2

P
R

IM
A

L
C

8

Q
P

C
S
T

A
IR

V
A

L
U

E
S

0.01 0.81 0.88 0.7 0.76 242.82 1.55 0.6 0 0 1.48 9.04 1
0.02 0.75 0.88 0.53 1 166.94 1.46 0.61 0.22 0 1 0.13 1
0.1 0.98 0.93 0.85 1.45 242.82 1.38 0.36 1.09 0 1.19 3.51 1.31
0.2 0.98 0.59 1.31 1.45 445.17 0.63 0.51 1.23 0.22 0.67 0.7 1
0.5 1.05 1.08 1.6 1.45 445.17 0.52 1.25 0.67 1.24 31 1.48 1
1 1.09 1.08 2.31 1.45 2671 0.69 0.69 1.32 0.01 0.51 5.27 1
2 1.15 1.16 2.82 1.45 2671 0.55 102.55 0.65 1.29 31 0.46 1
5 1.14 1.08 1308.45 2.67 2671 2.64 0.11 0.99 0.03 0.01 6.31 1.31
10 1.19 1.08 1400.34 1.45 2671 1.11 4.72 1.22 1.6 0.08 2 1
50 1.12 1.27 1440.81 2.67 242.82 4.61 0.41 3.1 34.33 5.17 2.21 3.5
100 1.48 1.39 4703.03 2.67 242.82 20.75 15.99 4.19 24.24 5.17 9.31 3.5

5.5.2 Discussion

Here, we tried to specify an α based on the ratio ‖G‖F/‖c‖, while there might be other

properties of each instance—unknown to us at this point—that we could consider to syste-

matically obtain an α that leads to considerable speedups.
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CHAPTER 6

GENERAL DISCUSSION

We prepared the way to investigate the possibility of utilizing LP degeneracy techniques

on degenerate QPs. To this end, we took three steps.

In Chapter 3, we demonstrated the full potential of the positive edge pivot rule for the

Simplex method by providing an efficient implementation.

To incorporate positive edge into a QP method we chose Wolfe’s QP approach. Being

a Simplex-like method, it requires a modification to the primal Simplex pivot rule. The

recurrent need to implement and test pivot rules motivated us to create a framework in

which these rules can be defined easily in a high-level programming language and passed to

a solver, which is often written in a low-level programming environment. This resulted in

the creation of open-source software called CyLP. In addition to its original purpose, CyLP

enables customization of the solution process in MIPs, by defining specialized cuts and tree

traversal strategy in branch and cut techniques, using Python. It is also equipped with a

modeling tool that simplifies the definition of LPs and MIPs.

Wolfe’s method proved to be inefficient on QPs, due to the large number of constraints

it considers to solve a problem. On top of this, Wolfe’s approach contains a procedure that

accepts or rejects a pivot. In the tests, Wolfe’s method usually rejected compatible pivots

proposed by positive edge and thus nullified its effectiveness. On a second try, we considered

reduced gradient methods, of which the Simplex method can be considered a special case.

It outperforms Wolfe’s method on general QPs by a remarkable margin. Combined with the

positive edge rule, it demonstrates an inconsistent enhancement of performance on general

test problems, making it difficult to draw a general conclusion about its behavior. However,

if we add relatively small quadratic terms to the degenerate LPs—those on which we obtain

noticeable speedups using positive edge— the reduced gradient method combined with po-

sitive edge is reporting faster execution times. The speedup diminishes as the norm of the

quadratic part increases, motivating us to use scaling to alter the relative strength of the

quadratic part against the linear section.

Scaling reduces the execution time of the reduced gradient method as well as the reduced

gradient equipped with positive edge. However, we were unable to provide a systematic way
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of determining the scale factor, based on the ratio of the Hessian norm to the norm of the

linear coefficients.

In this research, we considered incorporating the postive edge method into QP solution

techniques, Wolfe’s method and the reduced gradient method. These methods were our first

choice because of their similarity to the Simplex method. Another approach would have been

to choose the method of Goldfarb [1986], which is an efficient primal active-set method, and

build a positive-edge-like technique on it that is able to take advantage of the problem’s

degeneracy.
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CHAPTER 7

CONCLUSION

In Chapter 3, we described the development of an efficient implementation of the positive

edge pivot rule for the Simplex method. Positive edge improves the well-known Devex pivot

method significantly, reducing the solution time by a maximum factor of 4.23 on instances

with 75% degeneracy. We also observed that, on average, it does not cause slow-downs on

problems with less than 25% degeneracy.

In this thesis, we developed open-source software, called CyLP, that is built upon CLP

and allows definition of pivot rules in Python. It includes a modeling tool that, we believe,

is easier to use than other available modeling options.

A natural continuation of this thesis would be to search for a conclusive result on the

use of LP’s degeneracy techniques on QPs. While we obtained good speedups with specific

problems, we proved that techniques like positive edge are inefficient on particular problems.

Therefore, a general statement about when and how positive edge should be applied on a QP

remains to be found.

An interesting area of research is to investigate the application of the positive edge rule

on methods that solve LPs iteratively in their process. One example of such methods is

Sequential Linear Programming (SLP) for nonlinear programming (NLP) [Bazaraa et al.,

2006]. At each step of this approach, the problem is linearized around the current point. The

resulting LP is then solved to determine a step, subject to trust-region bounds. Updating

the trust region based on the accuracy of the LP model guarantees convergence. If an NLP

has linearly dependent constraints at its solution, it is likely that its linear model is also

degenerate near the solution. Therefore, positive edge can be used to solve the linear model

faster, reducing the iteration time and hence decreasing the total execution time.

Another example is the SLP-EQP method, proposed by Fletcher and de la Maza [1989] and

improved by Byrd et al. [2003] to solve large-scale nonlinear programs. Consider a nonlinear

problem with equality and inequality constraints. At each iteration, the step is computed in

two stages. In the first stage, we solve an LP, the solution of which provides an estimate of

the active set at the solution, or a working set. In stage two, using the working set, we solve

a QP model of the problem, while we impose equality on the constraints in the working set



89

(EQP). Again, we can use positive edge to reduce the computation time of the first stage

and, as a result, the total run time.

On the computational side, CyLP could be improved by allowing customization of the

dual Simplex method. This is essential in the context of MIP, where we often use the dual

Simplex method to solve the relaxation of the problem at each branch-and-cut node.
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Montréal, Québec, Canada, 2011. To appear in Mathematical Programming Computation.

H. J. Greenberg. An analysis of degeneracy. Naval Research Logistics Quarterly, 33:635–655,

1986.

P. M. J. Harris. Pivot selection methods of the Devex LP code. In R. W. Cottle, L. C. W.

Dixon, B. Korte, M. J. Todd, E. L. Allgower, W. H. Cunningham, J. E. Dennis, B. C.

Eaves, R. Fletcher, D. Goldfarb, J.-B. Hiriart-Urruty, M. Iri, R. G. Jeroslow, D. S. John-

son, C. Lemarechal, L. Lovasz, L. McLinden, M. J. D. Powell, W. R. Pulleyblank, A. H. G.

Rinnooy Kan, K. Ritter, R. W. H. Sargent, D. F. Shanno, L. E. Trotter, H. Tuy, R. J. B.

Wets, E. M. L. Beale, G. B. Dantzig, L. V. Kantorovich, T. C. Koopmans, A. W. Tucker,

P. Wolfe, M. L. Balinski, and Eli Hellerman, editors, Computational Practice in Mathema-

tical Programming, volume 4 of Mathematical Programming Studies, pages 30–57. Springer

Berlin Heidelberg, 1975. ISBN 978-3-642-00766-8. DOI: 10.1007/BFb0120710.

K. L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-and-cut.

Management Science, 39:675–682, June 1993. DOI: 10.1287/mnsc.39.6.657.

http://dx.doi.org/10.1007/BF01581089
http://dx.doi.org/10.1007/BF01593804
http://dx.doi.org/10.1145/962437.962439
http://dx.doi.org/10.1007/BFb0120710
http://dx.doi.org/10.1287/mnsc.39.6.657


93

H. Koepke. Cython wrapper for CPLEX. http://www.stat.washington.edu/~hoytak/

code/pycpx/index.html, a. [Online ; accessed 2-November-2011].

H. Koepke. Cython wrapper for lpsolve. http://www.stat.washington.edu/~hoytak/

code/pylpsolve/index.html, b. [Online ; accessed 2-November-2011].

C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process, 2nd Edition. Prentice Hall, 2001.

R. Lougee-Heimer. The common optimization interface for operations research. IBM Journal

of Research and Development, 47(1):57–66, 2003. DOI: 10.1147/rd.471.0057. URL www.

COIN-OR.org.

A. Makhorin. GLPK, GNU Linear Programming Kit. http://www.gnu.org/s/glpk. [On-

line ; accessed 2-November-2011].

I. Maros and C. Meszaros. A repository of convex quadratic programming problems. Op-

timization Methods & software, 11-2(1-4, SI):671–681, 1999. ISSN 1055-6788. DOI:

10.1080/10556789908805768.
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