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RÉSUMÉ 

De nombreux procédés de raffinage et de pétrochimie sont réalisés dans des réacteurs agités ou 

dans les lits fluidisés qui impliquent des fluides polyphasiques dans des conditions extrêmes. 

L'utilisation de haute température et / ou haute pression lors de la conversion et la manipulation 

de fluides, se traduit par des conditions de traitement extrêmes pour lesquelles l'hydrodynamique 

demeure inconnu. En conséquence, avec seulement quelques études à haute température et très 

peu à haute température et haute pression, le développement de nouveaux modèles et de critères 

de conception lors de l'utilisation de conditions extrêmes est donc d'un intérêt immédiat pour 

Total, le partenaire industriel de cette chaire de recherche.  

L’objectif de ce mémoire est d'examiner, ainsi que de comparer les modèles déjà publiés sur la 

fluidisation dans des conditions ambiantes et extrêmes, tout en mettant l'accent sur les 

informations nécessaires à la conception de réacteurs gaz-solide. Par conséquent, une conception 

détaillée d'un lit fluidisé qui permettrait un fonctionnement flexible à haute température et à haute 

pression sous plusieurs vitesses de gaz sera menée afin de servir pour le futur développement de 

nouveaux modèles hydrodynamiques.  

Afin d'illustrer la nécessité de ce réacteur pilote, les effets résultant de l'utilisation de conditions 

d'opération extrêmes (haute température, pression et vitesse) sur la fluidisation et plus 

précisément la taille des bulles ont été démontrées. Ainsi, trois corrélations de taille de bulles ont 

été choisies: la première pour avoir été modélisée à haute pression et vitesse, la deuxième pour 

avoir été développée à haute température et la troisième pour avoir été une des corrélations les 

plus couramment citée dans les livres de conception de réacteur à lit fluidisé. Aucun de ces 

modèles a fourni des valeurs acceptables au-delà de sa plage désignée. En outre, l’effet de 

diamètre de bulles sur le transfert de masse, ainsi que sur la conversion, le taux d’entraînement et 

la hauteur limite de désengagement (TDH) a été étudiée tout en appliquant chacun des différents 

modèles de taille de bulles. Ainsi, plusieurs divergences ont été notées entre les résultats obtenus 

et les tendances attendues. En utilisant des représentations graphiques de l’entrainement en 

fonction de la hauteur au dessus du lit, TDH a été jugée indépendant de la taille des bulles. De 

plus, celui-ci varie avec la température, la pression et la vitesse, ce qui est contraire à plusieurs 

corrélations existantes. Par ailleurs, à des vitesses élevées, malgré l'obtention d'une grande valeur 

du TDH à la fois graphiquement et en utilisant les différents modèles existants, les changements 
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globaux dans le taux d’entrainement total sont négligeables. Par conséquent, dimensionner la 

zone de désengagement a partir de TDH tel que suggéré par la plupart des livres de conception de 

réacteurs à lits fluidisés, pourrait ne pas être rentable. De plus, en utilisant différents diamètres de 

bulles lors du calcul de la conversion du méthane dans la réaction de reformage, ce besoin de 

développer de nouveaux modèles a été une autre fois démontré à travers l’obtention de résultats 

qui diffèrent des valeurs attendues lorsque les paramètres d’opération sont changés.  

Ainsi, avec ce besoin de développer de nouveaux modèles de fluidisation aux conditions 

extrêmes illustrées, la conception complète d'un réacteur à lit fluidisé et son procédé a été menée. 

Les conditions d’opération ont été choisis afin de servir en tant qu’une extrapolation adéquate à la 

réalité industrielle. Les dimensions du réacteur ont été choisis afin de permettre la comparaison 

avec un réacteur qui fonctionne à haute température existant actuellement dans notre laboratoire. 

En outre, ces conditions ont également été choisies tout en respectant les contraintes définies par 

le compresseur ainsi que les limites départementales liées à l'installation de ce réacteur au sein de 

l’université. Ce réacteur sera donc opéré à des températures de 25 à 1000°C et des pressions entre 

1 et 20 atm, avec  un diamètre de 15 cm à la base et 50 cm pour la zone de désengagement. La 

vitesse du gaz sera comprise entre 0,1 m/s et 2 m/s afin de couvrir le régime bouillonnant ainsi 

que le régime turbulent.  Du sable ou autre type de catalyseur sera utilisé en tant que matière du 

lit. La taille de particule moyenne sera donc comprise entre 60 um et 500 um, de manière à 

inclure les particules de type Geldart A et B, avec une densité allant de 1 à 2.5g/cm3. De l’air 

comprimé provenant de trois différents compresseurs sera utilisé en tant que gaz de fluidisation. 

Afin de chauffer le réacteur aux températures requises, un système de chauffage a été conçu. Ce 

système comprend une conduite isolée où un appareil de chauffage électrique à haute pression 

capable de résister à des faibles débits sera attaché. Cet appareil de chauffage électrique sera 

utilisé pour préchauffer la conduite jusqu'à ce que la température d'auto-inflammation du gaz 

naturel est atteinte. À ce moment, le gaz naturel sera introduit avec l'air comprimé à travers des 

ports situés le long de la conduite. Ce système de chauffage est alors relié à la boîte à vent qui a 

été conçue pour permettre une conversion du méthane de plus de 99% afin d’assurer une 

réduction  maximale de la concentration du monoxyde de carbone résultant de la combustion du 

gaz naturel.  

De plus, pour s’assurer d’obtenir une fluidisation équitable à travers le lit, un distributeur à 

tuyères a été conçu afin de permettre une flexibilité d’opération sous les conditions choisies. Pour 
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empêcher l'entraînement des particules hors du réacteur, un cyclone ainsi qu’un filtre à haute 

température seront placés en série à l'intérieur de la zone de désengagement. Enfin, afin d'assurer 

que les vannes de régulation en aval du réacteur ne soit pas soumises à des températures 

supérieures à 300C, de l'eau distillée provenant d’un réservoir sous pression, sera pompée dans 

un purgeur vapeur à la sortie du réacteur. 

 

Ainsi, l'atteinte de l'objectif de ce travail consistant en la conception d'un réacteur gaz-solide à lit 

fluidisé pour un fonctionnement souple sous des conditions ambiantes et extrêmes, a été réalisé à 

travers une description détaillée du procédé et une procédure d'opération. 
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ABSTRACT 

Numerous processes of refining and petro chemistry involve multiphase fluids at extreme 

conditions, and are realized in agitated reactors or in fluidized beds. The use of high temperature 

and/or high pressure during conversion and handling of high viscosity materials and/or viscosity 

ratios results in extreme processing conditions for which the multiphase process hydrodynamics 

are completely unknown. Subsequently, with only a few studies at high temperature and almost 

none at high temperature and high pressure, general and reliable design criteria for the use of 

extreme conditions are scarce and therefore are of immediate interest to Total, the industrial 

partner of this research chair.  

The aim of this work is to review and compare the already published models on fluidization at 

ambient and extreme conditions with emphasis on the information necessary for designing gas-

solid reactors. Consequently, a detailed design of a fluidized bed reactor that would allow flexible 

operation at high temperature and high pressure at several gas velocities will be conducted in 

order to serve for the future development of new hydrodynamic models.  

In order to illustrate the need for this laboratory scale reactor, the effect of using extreme 

operating conditions (high temperature, pressure and velocity) on fluidization and more 

specifically bubble size were demonstrated. Three bubble size correlations were chosen: the first 

for being respectively modeled at high pressure and velocity, the second for being modeled at 

high temperature and the third for being one of the most commonly used models in design books. 

None of these correlations provided acceptable values beyond their designated range. 

Furthermore, the impact of bubble diameter on mass transfer, reaction conversion, entrainment 

and the transport disengaging height (TDH) were studied through the application of each of these 

bubble size models.  By doing so, several discrepancies between the obtained results and the 

expected trends were highlighted. Using entrainment plots, TDH was found to be independent of 

bubble size and vary with temperature, pressure and velocity, which is contrary to several 

existing correlations.  Moreover, at high velocities, despite obtaining a large TDH value both 

graphically and by using the existing models, the overall changes in the total flux are negligible 

which would imply that sizing the freeboard accordingly, as suggested by most design books, 

might not be profitable.  
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By using different bubble diameters while computing the conversion of methane in the methane 

steam reforming reaction, the need for new models was once more demonstrated with different 

operating conditions providing different results from the expected trends.  

With the need for new fluidization models at extreme conditions illustrated, the complete design 

of a fluidized bed reactor and its respective process was conducted. The operating conditions 

were chosen as an adequate extrapolation to industrial reality, while the reactor dimensions were 

chosen based on an existent reactor currently operating at high temperature in our laboratory. 

Furthermore, these conditions were also chosen while respecting the constraints defined by the 

compressor and the inherent limitations of the university experimental facility. The temperature 

of operation will be varied from room temperature to 1000 oC and the pressure will range from 

atmospheric pressure up to 20 atm. The reactor’s bed diameter is 15 cm at the bottom with a 

freeboard diameter of 50cm. The gas velocity will range from 0.1 m/s up to 2 m/s in order to 

cover the bubbling and turbulent regime. The bed material will be sand or another type of catalyst 

with a mean particle size ranging from 60 μm up to 500 μm, so as to cover Geldart A and B 

particles, and a specific gravity ranging from 1 to 2.5g/cm3. The chosen fluidization medium will 

be compressed air that will be provided by three different compressors.  

In order to heat up the reactor to the required temperatures, a heating system was designed. This 

heating system comprises of an insulated pipe where a high pressure electric heater capable of 

withstanding low flowrates is attached. This electrical heater will be used to preheat the pipe until 

the auto-ignition temperature of natural gas is achieved. At this point, natural gas will be fed to 

the pipe along with the compressed air. This heating system will be connected to the windbox 

which was designed to allow over 99% conversion of methane to ensure that carbon monoxide 

concentration resulting from the natural gas combustion is at a minimum.  

In order to provide even fluidization, a bubble cap distributor was designed to allow flexibility 

and freedom of operation under the chosen conditions. To prevent solid entrainment out of the 

reactor, a cyclone and high temperature filter will be placed in series inside the freeboard. 

Finally, in order to ensure that the control valve downstream of the reactor would not be 

subjected to temperature higher than 300C, distilled water from a pressurized tank will be 

pumped in a steam trap at the reactor exit in order to reduce the temperature of the gas.  



xi 

 

With a detailed process description and operating procedure provided, the objective of this work 

of designing a gas-solid fluidized bed reactor and its utilities for flexible operation from ambient 

conditions up to high temperature and high pressure, were successfully met. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement and Motivation 

In the mining and petro chemical industries, numerous conversion processes involve the use of 

catalysts, and are realized in fluidized bed reactors[1, 2] because of their many advantages, such 

as good solid mixing and good temperature control[3]. 

Despite being considered today as an ideal solution for many industrial applications[1], gas-solid 

fluidized bed reactors can vary significantly depending on the nature of the gas, the solids, and 

the operating conditions, which can lead to different hydrodynamic behaviours and therefore 

requires the use of very different flow models[2].   

With feedstocks changing rapidly in the fuel and power fields due to the shortage of conventional 

resources; new sources, such as biomass, coal, and petcoke are emerging as future industrial 

solutions. However, their diversity and complex nature requires the use of extreme conditions 

during their handling and processing in fluidized bed reactors. In fact, most industrial gas–solid 

fluidized bed reactors operate at temperatures well above ambient, and some also operate at 

elevated pressures (pressured gasification, production of polyolefins…etc)[4]. While most design 

correlation are developed at ambient conditions, the effect of high temperature and high pressure 

have been found to cause modifications in the structure and dynamics of fluidized beds which are 

overlooked when only the gas properties in the equations are altered. In order to develop more 

appropriate hydrodynamic models, designing a bench scale fluidized bed reactor that would 

operate at high temperature and/or high pressure is indispensable to compensate for the lack of 

experimental results that exists today.  

In fact, only a few laboratory scale fluidized bed reactors have been recorded to run at extreme 

conditions, with most of them operating at high temperature or high pressure. 

Designing a reactor that operates at high temperature and high pressure is therefore of great 

bearing as it will contribute to the understanding of fundamental fluidization phenomena at 

extreme conditions by illustrating the effects of both temperature and pressure on hydrodynamics. 

Improvements in this field will not only have a significant impact on investments and revenues 

generated in the oil, petrochemical, and energy businesses; but it will also give invaluable insight 

on the design of fluidized bed reactors when more extreme conditions are present. 
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1.2 Objectives 

The purpose of this thesis is to review and compare the already published models on fluidization 

at ambient and extreme conditions with emphasis on the information necessary for designing gas-

solid reactors. Consequently, a detailed design of a fluidized bed that would allow flexible 

operation at high temperature and high pressure at several gas velocities will be conducted in 

order to serve for the future development of new hydrodynamic models. In order to accomplish 

this feat, the following objectives will be completed: 

1- Study and Conduct a background study on fluidized bed technology and its application in 

industry as well as the different fluidization regimes. 

2- Study and Conduct a full literature review on fluidization in order to illustrate the 

fundamental design variables, their respective correlations at extreme conditions and their 

limitations. 

3- Design the fluidized bed reactor and its utilities, for flexible operation from ambient 

conditions up to high temperature and high pressure based on design books and papers. 

4- Design a complete control process and operating procedure that would allow safe 

operation of this reactor. 

The following chapters present the accomplishment of these objectives. At first, chapter 2 is a full 

literature review where the principles of fluidization and fluidized beds will be presented along 

with their applications. In Chapter 3, the influence of the use of extreme conditions on, bubble 

size, entrainment and mass transfer will be discussed. Furthermore, the impact of temperature and 

pressure on reaction conversion using a dynamic two-phase hydrodynamic model (DTP) will also 

be presented in this section. Chapter 4 is a detailed design the bench scale fluidized bed that 

would operate from ambient to high temperature (1000°C) and high pressure (20atm) at several 

gas velocities (from 0.1 to 2m/s) in order to serve for the future development of new 

hydrodynamic models. Chapter 5 presents the process used for the operation of the fluidized bed 

reactor and its utilities. Finally, in Chapter 6 the conclusion of this work as well as 

recommendations for future studies will be discussed. All references used can be found at the end 

of Chapter 6. 
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CHAPTER 2 LITTERATURE REVIEW 

2.1 Fluidized Bed Principles 

As the name would suggest, fluidized bed reactors use the principles of fluidization where gas is 

passed through a distributor on which granular solid materials lie (usually a catalyst) at high 

enough velocities to suspend the solid and cause it to behave like a fluid by subjecting it to 

pressure gradients. These properties result in many advantages, among which uniform particle 

distribution, gas solid contact and intense mixing, high conversion per unit mass of catalyst, 

uniform temperature gradient and continuous state operation.[5] 

Before proceeding any further, it is of the upmost importance to define the different parts of a 

fluidized bed reactor. At the beginning, gas is passed through a grid, also known as a gas 

distributor, which provides stable and even fluidization across the reactor’s cross-section by 

creating a pressure drop. A plenum chamber is usually placed under the grid in order to pre-

distribute the gas uniformly before it flows through the distributor. The solids placed above the 

grid constitute the bed whose level, also known as the bed height, may vary based on the 

operating conditions of the reactor; such as gas velocity, gas properties and solid properties. The 

vertical space above the bed height which takes the larger volume of the whole unit is referred to 

by the freeboard and has the main task of preventing large amounts of the bed material from 

being carried out of the reactor by the gas stream.  

A solid collection device such as a cyclone or filters is usually placed inside the freeboard in 

order to return entrained material to the bed[5]. These different sections are illustrated in Figure 1 

below.  

When gas flows through the bed, two distinct parts can be observed; the bubble phase and the 

emulsion phase. Voids, also referred to as bubbles, constitute the bubble phase and are created as 

a result of gas flowing through the bed. As gas velocity is increased these bubbles often lose their 

shape as they move upward to burst at the bed surface which induces particle ejection into the 

freeboard. The emulsion phase refers to the solid rich part of the bed. As particles are injected 

into the freeboard, their concentration will decay with height, as some will fall back into the bed, 

before becoming constant. The distance between the point where solids’ concentration becomes 
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constant and the surface of the fluidized bed is referred to as the Transport Disengaging Height 

(TDH) [6] and is illustrated in Figure 2. 

 

 

Figure 1- Fluid Bed Sections 

As far as the designing of fluidized beds is concerned, the freeboard must be dimensioned to have 

a height of at least the TDH in order to reduce carryovers with any further height increase having 

little impact on entrainment. This can prove itself to be a hard task when dealing with high 

temperature and pressure as the determination of TDH tend to be more difficult. 

In the literature, two distinct TDH values have been reported depending on the type of used 

particles: coarse or fine. Due to their terminal velocity being larger than the superficial gas 

velocity, coarse particles are ejected out of the bed by the bursting bubbles before falling back. 

The height they reach is referred to as the splash height or TDH(C). Fines on the other hand, have 

terminal velocities smaller than the gas and therefore reach more important heights which are 

referred to as TDH(F). In most design applications TDH(F) is simply referred to as TDH due to 

its higher value, and therefore this terminology will be used throughout this work.   
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Several research papers have been dedicated to the study and prediction of the transport 

disengaging height based on different influencing parameters such as the superficial gas velocity, 

bubble and column diameter, and solids and gas properties. Tannous et al (2008) [7] cited that the 

relationships to predict the TDH can be observed clearly in an extensive review outlined in three 

categories: graphical correlations, semi-empirical models, and empirical correlations[8-10]. 

 

 

Figure 2- Transport Disengaging Height 

2.2 Fluidization Regimes 

Fluidization behaviour may differ based on the operating conditions of the reactor; such as gas 

velocity and gas and solid properties. Upon these observations, researchers have long established 

the existence of different fluidization regimes which are illustrated in Figure 3. 

The state of fluidization begins at the minimum fluidization velocity Umf. As the gas flow across 

the bed is increased, there exists a velocity known as the minimum fluidization velocity, Umf, at 

which the resulting pressure drop is high enough to lift and suspend the solids by balancing the 

weight of the bed.  

When the gas flow is further increased, the bubbling regime is reached. This regime starts when a 

minimum bubbling velocity, Umb, is reached, where bubbles appear and a distinction between the 
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bubble and emulsion phase can be established. As these bubbles move upward in the bed, they 

tend to burst at the bed surface; ejecting particles into the freeboard. 

The turbulent regime is reached when the terminal velocity of the ejected particles, UC, is 

surpassed by the gas and the bed material no longer falls back as it is entrained out of the reactor. 

A solid particle collection device such as a cyclone or filters is usually placed at a high enough 

height to ensure particles recirculation and avoid depletion of the bed as the velocity is increased.  

Under these conditions, despite bubbles often losing their shape, beds with recognizable surfaces 

are referred to as turbulent fluidized beds. 

The fast fluidization regime is characterized by the dominance of the gas phase as the bed level 

disappears due to a further increase in gas velocity. The transition velocity from the turbulent to 

the fast fluidization regime is referred to as the transport velocity, Utr, with reactors operating 

under these conditions known as fast fluidization fluidized bed reactors. Finally the pneumatic 

transport is reached when all of the bed is depleted. 

Depending on the desired product or the wanted effect, fluidized bed reactors can be operated in 

any of the aforementioned regimes. For instance, due to many distinct advantages, turbulent 

fluidized bed reactors are sometimes preferred to both bubbling and fast fluidization reactors 

because of their dynamic gas-solids contacting, high solids holdup, high exchange rate of the gas 

between the void and the emulsion phases, and relative spatial uniformity in flow properties. 

Industrial examples include Fischer-Tropsch synthesis, acrylonitrile production and FCC 

regeneration. 

 

Figure 3- Fluidization regimes 
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2.3 Effects of Particle Size and Density 

The behaviour of fluidized solids have been divided into four groups by Geldart (1973) based on 

the difference in density between the fluidizing gas and the used particles, (ρp-ρg) and by the 

mean particle size dp as illustrated on Figure 4. 

Geldart C Particles: This group is characterized by cohesive or very fine particles (usually less 

than 20 microns). Due to their large surface area combined with low mass, interparticle forces 

tend to be greater than those resulting from the action of the gas which in turns renders 

fluidization extremely difficult. As a result, particles fail to flow in a manner that produces 

bubbles and the bed is unable to expend. 

Geldart A Particles: In this group, particles are characterized as aeratable with a small mean 

particle size or/and low particle density. In fact, manufactured catalysts often belong to this group 

with particle sizes ranging from 20 to 100 microns. Due to the slightly cohesive structure of these 

particles, gas velocity must be increased beyond Umf in order for bubbles to occur. 

Geldart B Particles: These particles are characterized by being like sand with a mean particle 

diameter of about 150 microns. Due to the non cohesiveness of these particles, bubbles appear as 

soon as fluidization starts (ie Umf=Umb) shifting the bed’s behaviour to the bubbling regime. 

Geldart D Particles: These are large and/or dense particles in the order of 1 or more millimetres. 

When velocity is increased, a jet is formed in the bed creating a spouting motion.   

 

Figure 4- Geldart Particles 
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2.4 Solid Mixing and Entrainment 

In most fluidized bed applications, the freeboard occupies the largest volume of the reactor and 

thus particular care must be taken when designing it. As the freeboard has the main task of 

preventing large amounts of the bed material from being carried out of the reactor by the gas 

stream, understanding solid entrainment above the bed (the flux of solids carried out of the 

fluidized bed by the gas) is fundamental in the sizing of this section. Furthermore, understanding 

the influence of the freeboard diameter, particle properties and operating conditions can play a 

fundamental role in the design of the solid separation unit that will be installed. 

While there is a general agreement on the importance of bubbles in the projection of particle from 

the bed into the freeboard[11], the exact mechanism behind this phenomena remains an area of 

dispute. 

After ejection of the particles into the freeboard, their velocity will gradually decelerate which 

would lead to one of two scenarios: the solids will either be entrained out of the reactor or will 

fall back into the bed.  

The most generally used model to predict the entrainment rate was created by Large et al (1976) 

[12]. According to Large et al, modelling of the entrainment flux, for a given particle size i, 

consists of the addition of two fluxes. The first flux involved in the modelling of the total 

entrainment according to Large et al is that of the continuously flowing solids from the bed 

surface to the outlet of the reactor, also known as the elutriation flux.  

The second flux involved in the modelling of the total entrainment according to Large et al is that 

of the solids which tend to fall back into the bed.  

Furthermore, Large et al reported that the bed surface flux decreases exponentially with 

increasing height above the bed surface. Despite agreement between researchers on the format of 

the model of Large et al, developing suitable correlations to predict both the elutriation flux and 

the bed surface flux remains an area of dispute due to the influence of pressure and temperature 

on entrainment as will be presented in Chapter 3. 
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2.5 Application of High Temperature and Pressure 

Since 1922 when fluidization was first introduced in a coal gasification process, the use of 

fluidized beds have significantly increased over a wide spectrum of applications due to their 

many advantages such as good solid mixing, high heat and mass transfer and good temperature 

control[13]. Despite these advantages, fewer fluidized beds are being operated today under 

ambient conditions due the competitive nature of the market as well as the constant need of 

developing more efficient solutions, which has lead to a wide interest in high temperature and 

pressure operation. In fact, operation under extreme conditions has been proven to be of 

fundamental importance in different industrial cases. For instance, in the fuel and power fields, 

the diversity and complex nature of new sources, such as biomass, coal, and petcoke require the 

use of extreme conditions during their handling and processing in fluidized bed reactors. Another 

good example where high temperature and pressure are used can be found in the mining industry. 

With the nature of ore becoming more complex and harder to refine due to the presence of 

carbonaceous matters or sulfides that renders gold extraction more difficult, significant pre-

treatment is required to achieve feasible extraction processes.  A key component to eliminate 

carbonaceous maters in the pre-treatment process is oxidation at high temperature and pressure. 

Furthermore, roasting, which is used to induce a reaction and the expelling of volatile matter 

without causing fusion, is commonly done in fluidized bed reactors operating at high temperature 

and pressure. 

The use of extreme conditions can also result in higher revenues. A good testament of that is 

pressurized gasification.  

In gasification, when pressure is increased, the material and mechanical problems associated with 

the gasifier are also increased not to mention that most of the combustion reactions are favored at 

low pressure. By looking at these restrictions, it is difficult to understand why high pressure is 

used or how it can generate higher revenues. In fact, when pressure is increased, one of its effects 

is the reduction in the required volumes which represent 30 to 40% of the fixed capital 

investment[14]. Moreover, an increase in pressure also results in a faster reaction rate which in 

turns further reduces the required equipment sizes. Another benefit of using pressurized 

gasification is the elimination of the costly compression steps downstream of the 

combustion/pyrolysis step as illustrated in Figure 5. CO2 emissions from coal-burning power 
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plants have also been reported to drop when pressurized fluidized bed boilers are used since they 

use less fuel to produce the same amount of power. 

Brown et al (1979)[15] conducted a comparative study between a high pressure and a low 

pressure process where ammonia is produced from coal and a high pressure and a low pressure 

process for the production of methanol. They concluded that the high pressure processes resulted 

in an increase in coal consumption not to mention a reduction in compressor power 

consumptions, and much more compact gas cleaning equipment. 

 

 

Figure 5- Gasification process 

 

Many other examples, where extreme conditions are used, exist today in industry; some of which 

are illustrated in table 1 below. 

Table 1- Applications of high temperature and pressure in industrial fluidized beds 

Process Pressure range (atm) Temperature range (C) 

Fischer–Tropsch [16, 17]  18-30 300-350 

Ammonia synthesis [17, 18] 20-100 300-600 

Methanol synthesis [17, 19]  40-100 220-280 

PFBC Combined Cycle for coal 

combustion [17, 20] 

10-16 600-1300 

Coal gas desulfurization process [21] 1-25 300-900 
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CHAPTER 3 INFLUENCE OF USING EXTREME OPERATING 

CONDITIONS ON FLUIDIZED BED REACTORS 

When dealing with gas-solid fluidized bed reactors at elevated temperatures and 

pressures, it is important to understand the influence of operating under extreme conditions in 

order to be able to improve upon what exists today; whether it be attaining rapid rates of chemical 

reaction (e.g. gasification of coal, combustion of solid fuels and fuel additives, reduction of 

mineral ores, synthesis of industrially useful chemicals via surface catalysis), or controlling or 

suppressing the resulting reactions (corrosion, gasification, or embrittlement of structural 

components or containment materials). Several papers and articles have been dedicated to study 

the effect of elevated temperature and pressure on the performance of fluidized bed reactors. In 

fact, operating under extreme conditions has been reported to alter fluidization behaviour and 

bubble size with the latter considered as one of, if not the most important variable related to 

reactor performance. 

The purpose of the following section as the title would suggest, is to demonstrate the effect of 

using extreme operating conditions (high temperature, pressure and velocity) on fluidization and 

more specifically bubble size. Subsequently, the impact of bubble size on mass transfer, reaction 

conversion and the transport disengaging height (TDH) will be studied. By doing so, the aim of 

this section is to illustrate the limitations of some of the most common correlations found in the 

literature, and to demonstrate the need of developing new models at high temperature, pressure 

and velocity.      

In section 3.1, some of the reported trends of the influence of high pressure and temperature on 

fluidization will be presented. In section 3.2, some of the different findings and correlations 

developed to estimate bubble size will be presented along with the influence of temperature, 

pressure and velocity on three different correlations. This section will be followed by a study of 

entrainment under extreme conditions and more specifically the different existing correlations to 

predict the transport disengaging height in section 3.3.  Section 3.4 will then present a review on 

mass transfer in fluidized bed reactors. Finally, the methane steam reforming reaction, which was 

chosen for this study, will be presented in section 3.5 along with its kinetics. A detailed study 

using the same three bubble size correlations will then be conducted in order to illustrate the 
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influence of temperature, pressure and velocity on conversion. Finally, the conclusions of this 

chapter will be listed in section 3.6. 

3.1 Influence of extreme conditions on fluidization 

In process engineering, the effects of temperature and pressure have long interested researchers 

for many different reasons: whether it is to attain rapid rates of chemical reactions (e.g. 

gasification of coal, combustion of solid fuels and fuel additives, reduction of mineral ores, 

synthesis of industrially useful chemicals via surface catalysis), or to control or suppress the 

resulting reactions (corrosion, gasification, or embrittlement of structural components or 

containment materials), the ability to improve upon what exists is dependent upon understanding 

the effects related to the operating conditions[22]. Henceforth, when dealing with gas-solid 

fluidized bed reactors at elevated temperatures and pressures, understanding the influence of 

operating under these conditions on fluidization is fundamental. In fact, many research papers 

have been dedicated to studying the effects of pressure and temperature individually on fluidized 

beds. 

For instance, an increase in pressure in a gaseous reaction has been reported to increase the 

number of collisions between reactants which in turns influences the rate constant that may 

change the rate of reaction and can therefore be used to improve selectivity. Pressure has also 

been found to have a major influence when gas-solid reactions with porous catalysts are involved, 

as it can alter the gas film resistance at the surface of the catalyst which in turns affects the 

diffusion of the reactants through the pores. The aforementioned effects have long intrigued 

researchers as to their influence on fluidization. For instance, at elevated pressures, many 

researchers concluded that fluidized bed reactors can be characterized by smaller bubbles [23, 

24], a higher heat transfer rate[25], and a decrease in particle segregation[26]. Interestingly, Li et 

al. (2002) observed a wider range of particulate flow regime at higher pressures[4]. Lie et al. also 

reported a stronger effect of pressure on a bed of Geldart A particles than that of Geldart B and 

D[27]. Notable effects were also observed on flow patterns when subjected to high pressure. Lie 

et al. noted a more homogeneous structure near the turbulent regime and reported that under these 

conditions, the particle–fluid interactions intensified while the particle-particle interactions were 

suppressed allowing the gas–solid flow structure to form a more homogeneous flow. Moreover, 
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they also concluded that the extension in the uniform fluidization regime led to a shortening in 

the width of the bubbling regime[4].  

Industrially, with most gas-solid fluidized beds operating within the temperature range of 

ambient to 1100oC, the effect of temperature has also received great interest from researchers 

who studied the influence it presents on different fluidization parameters, such as mean velocities 

and diffusivity of particles, by affecting gas density and viscosity. In fact, variations of these two 

parameters were until recently believed to be the only variables that determine the effect of 

temperature on gas-solid systems. Today however, it is believed that changes in density and 

viscosity of the gas are not sufficient to account for the observed deviation from classical models 

at high temperature [28-30]. These observations include changes in the bed’s behaviour as well as 

in the physical properties of the particles [28, 29]. In fact, Cui et al. (2003) have observed that for 

FCC particles, the bed behaviour would shift significantly from Geldart A towards Geldart B [29] 

while Lettieri et al. (2000) showed how interparticle forces at high temperature can cause the 

transition of the fluidization behavior from Geldart A to Geldart C [31]. Sanaei et al. (2010) 

[32]explained how temperature affected emulsion surface tension which led to an increase in 

solid mixing and particle diffusivity when the temperature was increased from ambient to around 

300◦C, followed by a decrease beyond that temperature. 

3.2 Bubble size under extreme conditions 

Bubble size has been reported to be one of, if not the most important variable related to reactor 

performance. It has been proven to control the most fundamental fluidization parameters such as 

bubble rising velocity, gas interchange rate between phases, particle circulation rate, heat 

transfer, and elutriation of fine particles from the bed surface[33]. Therefore it is of the upmost 

importance to be able to model and understand the impact that operation under extreme 

conditions has on bubble size. In the literature, many papers and articles have been dedicated to 

the study of bubbling behaviour with some reporting the observed trends at high temperature, 

pressure and velocity.  

High pressure has been reported to yield smaller maximum stable bubble size and reduced bubble 

frequency[34]. In fact, Varadi et al (1978) [35] explained that an increase in pressure induces a 

decrease in the apparent viscosity of the emulsion phase which in turns causes bubble splitting by 

division from the roof and therefore a reduction in bubble size. Interestingly, Varadi et al (1978) 
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[35], Row et al (1984) [36], and Cai et al (1989) [37] reported that at low gas velocities, a slight 

increase in bubble size can be observed in the lower pressure range (less or much less than 10 

bar) followed by a decrease in the upper pressure range. With velocity clearly affecting bubble 

size, several sources reported its effects to differ based on the operating flow regime. Bubble size 

was found to increase with velocity under the bubbling regime,[38, 39] and decrease with 

velocity under the turbulent regime [37, 40]. 

With the effects of pressure and velocity agreed upon between most researchers, the effects of 

temperature have yielded more debates.  

While some such as Tone et al. (1974) [41], Geldart and Kapoor (1976) [42],  and Zhang et al. 

(1982)  [43] reported that bubble diameter decreases with increasing temperature, others such as 

Chan and Knowlton (1987) [23] reported that bubble size is independent of temperature.  

Sanaei et al (2012)[44], evaluated bubble diameters at high temperature and observed that 

bubbles can grow up to a maximum diameter by increasing the temperature up to 300 ºC after 

which the diameter of the bubbles is decreased. They explained this observation by the effect of 

interparticle forces on bubble size. In fact, at temperatures below 300 an increase in the gas 

viscosity is dominant in comparison with gas density decrease whereas at higher temperatures the 

decrease in gas density is more effective. As a result, the drag force decreases after increasing 

initially, therefore explaining how a first increase in temperature facilitates bubble growth while 

further increase leads to a decrease in bubble diameter. 

With these bubble size trends reported with respect to temperature, pressure and gas velocity, it is 

important to have a model where these observations are manifested. 

Several bubble diameter correlations have been proposed in the literature with unfortunately most 

providing inconsistent results when high temperature, pressure and velocity are applied [33, 45]. 

Gogolek and Grace (1995) [46] presented an overview of different correlations to find the 

average bubble size at high pressure. They wrote that a reliable correlation to estimate the mean 

bubble size, db was proposed by Mori and Wen (1975) [47] for Geldart A and B powders where 

db is a function of the initial and maximum bubble size. Furthermore, this correlation has been 

cited in various design and fluidization books and can be considered as one of the most 

commonly used models to predict bubble size [1, 9, 48]: 
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𝑑𝑏(𝑧) = (𝑑𝑏∞ − 𝑑𝑏0)𝑒𝑥𝑝 �
−0.3𝑧
𝐷𝑡

� 

 

Where, both the initial and maximum bubble diameters db0 and db∞ can be predicted using the 

following correlations: 

𝑑𝑏∞ = 0.941�𝜋𝐷𝑡2�𝑈 − 𝑈𝑚𝑓��
0.4

 

 

𝑑𝑏0 = 0.872�𝐴𝑡�𝑈 − 𝑈𝑚𝑓��
0.4

 

 

Cai et al (1994) [45] presented a good revue on some of the existing correlations that take into 

account the effects of pressure and velocity on bubble size and emphasized on the contradictory 

results that they offered due to several experimental factors.  

In fact, Cai et al [45] observed that almost all the currently available bubble size correlations 

predict a monotonic increase in bubble size with gas velocity and pressure. In order to have the 

same trends as those observed by other researches with respect to bubble size, Cai et al developed 

their own correlation based on different experimental results with a wide range of velocities, 

pressures and particle diameters. 

𝑑𝑏 = 0.38𝑧0.8𝑃0.06�𝑈 − 𝑈𝑚𝑓�
0.42𝑒𝑥𝑝 �−1.4. 10−4𝑃2 − 0.25�𝑈 − 𝑈𝑚𝑓�

2 − 0.1𝑃�𝑈 − 𝑈𝑚𝑓�� 

Cai’s correlation however was not modelled to take into account temperature due to what they 

considered uncertainties with respect to its effects. 

Horio and Nonaka (1987) [33] developed their own bubble diameter correlation for Geldart A 

and B powders that takes into account the effects of temperature based on the observations of 

Tone et al (1974) [41]. 

𝑑𝑏 =
𝐷𝑡[−𝛾𝑀 + (𝛾𝑀2 + 4𝑑𝑏𝑀/𝐷𝑡)0.5]2

4
 

Where  
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𝑑𝑏𝑀 = 2.59𝑔−0.2��𝑈0 − 𝑈𝑚𝑓�𝐴𝑡�
0.4

 

𝛾𝑀 = 2.56 × 10−2
(𝐷𝑡/𝑔)0.5

𝑈𝑚𝑓
 

 

In all of the aforementioned correlations, Umf can be calculated by the correlation developed by 

Wen and Yu [49]. Their equation relates the particle Reynolds number at minimum fluidization 

velocity, Remf, to the Archimedes number, Ar.  

Remf =
𝑑𝑝.𝑈𝑚𝑓.𝜌𝑔

𝜇
= (1135.7 + 0.0408Ar)0.5 − 33.7 

Where 

𝐴𝑟 = 𝑑𝑝
3𝜌𝑔�𝜌𝑝 − 𝜌𝑔�𝑔/𝜇2 

 

In order to verify the efficiency of the aforementioned models with regards to extreme operating 

conditions, each correlation was plotted in the following sections and compared to experimental 

results from different sources. The applicability range of these correlations can be found in table 

2 below. 

 

Table 2- Applicability range of the bubble size correlations by Mori and Wen (1975), Horio and 

Nonaka (1987) and Cai et al (1994) 

Correlation Dt (m) T (C) U-Umf (m/s) P (atm) 

Mori and Wen (1975) 0.3-1.3 25 0.008-0.5 1 

Horio and Nonaka (1987) 0.079-1.3 30-650 0.008-0.5 1 

Cai et al (1994) 0.13-0.4 25 0.028-0.6 1-70 
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3.2.1 Effect of velocity on bubble size 

In order to evaluate the efficiency of the chosen correlations with respect to velocity, they were 

plotted in Figure 6 and compared to the experimental values of Yamazaki et al (1991)[50] whose 

specifications are listed in table 3 below. 

 

Table 3- Specifications of the experimental results of Yamazaki et al (1991) 

Parameter Value 

Dt (m) 0.2 

H (m) 0.5 

dp (μm) 64 

ρp (kg/m3) 850 

P(atm) 1 

T(C) 25 

U(m/s) 0.45-1.1 

Experimental method Optical fiber probe 

Parameter studied Void rise velocity 
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Figure 6-Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with the experimental values of Yamazaki et al (1991) with 

respect to velocity at ambient pressure and temperature. 

 

In Figure 6, the effects of velocity on bubble size can be divided on two regions: low velocity 

(0.1-0.6m/s) and high velocity (>0.6m/s). 

At low velocities, all three correlations predict an increase in bubble size with the model by Cai 

et al overestimating bubble diameter by up to twice the experimental value. At these velocities, 

the correlation by Mori and Wen provides the best results with a percentage error ranging 

between 7 and 20%. The percentage error from Horio and Nonaka is between 45 and 80%. 

As velocity is increased however, Yamazaki et al show experimentally that bubble size starts to 

decrease. This trend is in fact consistent with the observations of Rowe et al [38], Weimer et al 

[39] and Sellakumar and V. Zakkay [40] who reported that the effects of velocity on bubble size 

differ based on the operating flow regime where the bubble diameter increases in the bubbling 

regime and decreases in the turbulent regime. This decrease is inconsistent with the correlation of 

Mori and Wen and that of Horio and Nonaka which predict an increase in bubble size over the 

whole velocity range.  
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This decrease in bubble size can be observed by the correlation of Cai et al at a higher velocity of 

0.8m/s. The obtained results from this model, albeit offering the same trend as the experimental 

findings, still presented a very large percent error ranging from 50 to 57%.  

3.2.2 Effect of pressure on bubble size 

In order to assess the ability of each model to efficiently predict bubble size with respect to the 

applied pressure, each correlation was plotted in Figures 7 and 8 and compared to the 

experimental values of Hoffmann and Yates (1985)[51] whose specifications are listed in table 4 

below. 

Table 4- Specifications of the experimental results of Hoffmann and Yates (1985) 

Parameter Value 

Dt (m) 0.17 

H (m) 0.4 

dp (μm) 45 

ρp (kg/m3) 1417 

U(m/s) 0.12 

T(C) 25 

P(atm) 1-81 

Experimental method X-rays imaging 

Parameter studied Bubble silhouettes 
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Figure 7-Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with the experimental values of Hoffman and Yates (1985) 

with respect to pressure at ambient temperature and a gas velocity of 0.12m/s 

 

Figure 8-Comparison of the bubble size correlations by Mori and Wen  (1975) and Cai et al 

(1994) with the experimental values of Hoffman and Yates (1985) with respect to pressure at 

ambient temperature and a gas velocity of 0.12m/s 
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At first glance, it is clear that the correlation by Horio and Nonaka greatly overestimates bubble 

size when compared to the experimental values of Hoffman and Yates by more than 300%.  

In Figure 8, only the correlation by Mori and Wen and that of Cai et al have been plotted with the 

experimental values of Hoffman and Yates. The effects of pressure on bubble size can be divided 

into two regions: form 1 to 17atm and from 17 to 70atm. 

In the first region, both correlations predict an increase in bubble size with the model by Mori 

and Wen providing a larger percent error ranging from 36 to 43% compared to 15 to 30% for the 

model by Cai et al. 

When pressure is increased further, Hoffman and Yates showed that bubble size decreases. This 

trend has been reported by many researchers [37, 51, 52], among which Cai et al, who reported 

that at constant temperature and velocity, bubble size decreases with increasing pressure in both 

the bubbling and turbulent regimes except at very low gas velocities. 

This decrease is inconsistent with the correlation of Mori and Wen and that of Horio and Nonaka 

which predict an increase in bubble size over the whole pressure range. Furthermore, as pressure 

is raised, the percent error of the obtained results from the correlation of Cai et al decreases to 

10% despite yielding initially much higher percentages (30% at 17atm).  

3.2.3 Effect of temperature on bubble size 

In order to evaluate the influence of temperature on bubble size, the chosen correlations were 

plotted in Figures 9 to 13 and compared to the experimental values of  Sanaei et al (2012)[44] 

whose specifications can be found in table 5. 
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Table 5- Specifications of the experimental results of Sanaei et al (2012) 

Parameter Value 

Dt (m) 0.078 

H (m) 0.2 

dp (μm) 250 

ρp (kg/m3) 2650 

U (m/s) 0.38 

P(atm) 1 

T(C) 25-600 

Experimental method Radio-active particle tracking 

Parameter studied Time-position trajectory of particle 
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Figure 9- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with the experimental values of Sanaei et al (2012) with 

respect to temperature at ambient pressure and a velocity of 0.38m/s 

 

Figure 10- Bubble size vs temperature (adapted by Sanaei et al (2012)) at ambient pressure and a 

velocity of 0.38m/s 
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Figure 11- Bubble size vs temperature (according to the correlation by Cai et al (1994)) at 

ambient pressure and a velocity of 0.38m/s at ambient pressure and a velocity of 0.38m/s 

 

 

Figure 12- Bubble size vs temperature (according to the correlation by Mori and Wen (1975)) at 

ambient pressure and a velocity of 0.38m/s 
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Figure 13- Bubble size vs temperature (according to the correlation by Horio and Nonaka (1987)) 

at ambient pressure and a velocity of 0.38m/s 

 

All three correlations overpredict bubble size with respect to temperature. Furthermore the 

correlation by Mori and Wen and that by Cai et al seem to predict a monotonic increase in bubble 
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bubbles grow up to a maximum diameter of 1.35cm at 300 ºC after which their diameter 

decreases. This trend is observed in the correlation by Horio and Nonaka which however 

overestimates bubble size by almost 800%. It is clear that more work needs to be done on bubble 

size models with respect to temperature since the closest obtained values were those by the 

correlation of Mori and Wen which overestimates bubble size by 50%. 

Finally, it is interesting to note that despite these opposite trends, the magnitude of the change in 
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3.3 Influence of Extreme Operating Conditions on Entrainment and TDH 

As explained in section 2.4, when bubbles reach the bed surface, particles are ejected into the 

freeboard where their concentration decays before becoming constant at the transport 

disengagement height, TDH [6].  This height plays an important role in fluidized bed design 

since it must equal that of the freeboard to reduce carryovers, with any further increase not 

affecting entrainment. Unfortunately, there is no commonly accepted method for the calculation 

of the TDH [6], but only several empirical correlations which were developed under ambient 

conditions. Furthermore, with very little studies showing the effects of temperature, pressure and 

velocity on TDH, finding experimental results can be a real challenge. Nevertheless, the effects 

of operating under extreme conditions have received a lot of interest in entrainment modelling. 

Therefore, with the appropriate entrainment plot, one may graphically estimate TDH. 

In the next section, different entrainment models will be plotted versus height with the 

consequent effect of temperature, pressure and velocity studied. Moreover, the impact of using 

different bubble size correlations on entrainment will also be presented along with a graphical 

estimation of TDH. Finally, the obtained values and trends will be compared to some of the 

existing TDH correlations.  

3.3.1 Entrainment modelling 

Several papers have recorded the effects of temperature on entrainment. Choi et al. (1998)[53] 

studied the effects of temperature on the entrainment rate for a fluidized bed and observed that 

the plot of the entrainment rate vs. temperature yielded a positive parabolic curve.  Wouters and 

Geldart(1998) [54], while reporting a similar trend for a plot of elutriation rate constant vs 

temperature, did not find a minimum when they plotted entrainment rate vs. temperature. 

The effect of pressure on entrainment has also been studied by several authors. Chan and 

Knowlton (1984) [55] studied the effect of pressure (up to 31bar) on sand fluidization and 

observed a significant increase in TDH and entrainment with pressure and velocity.  These 

findings were confirmed by Pemberton and Davidson (1984) [56] who explained the observed 

entrainment increase by the fact that entrainment in inversely proportional to bubble size which 

decreases at high pressures.[57] 
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As seen in Chapter 2, Large et al (1976) [12] developed the most generally used model to predict 

entrainment rate, Eih: 

𝐸𝑖ℎ = 𝐸𝑖∞ + 𝐸𝑖0′. 

Where 𝐸𝑖∞ is the elutriation flux and 𝐸𝑖0′, the solid entrainment flux at the surface of the bed. 

Despite agreement between researchers on the format of this model, several correlations exist in 

order to predict the elutriation flux and the solid entrainment flux at the surface of the bed 

because of the influence of pressure and temperature on entrainment. 

Elutriation flux, Ei∞ 

Zenz and Weil (1958) [58] defined the elutriation flux, Ei∞, as the product of the mass fraction xi 

of the particles in the bed and the elutriation rate constant Ki∞. This simply signifies that, for all 

particle size classes, a mass flux at least equal to Ei∞ is ejected from the bed into the freeboard. A 

very good revue of the different correlations to find Ei∞ and Ki∞ can be found in the handbook of 

fluidization and fluid-particle systems[6]. These correlations, with the exception of Choi et al 

(1999) [59], whose correlation is presented in table 6 below,  were developed under ambient 

conditions as a function of velocity, bed diameter and particle size and therefore might not be 

applicable when high temperature and pressure are involved.  

Bed surface flux, Ei0 

This flux is calculated based on the solid entrainment flux at the surface of the bed, Ei0’.  

Multiple equations have been developed to calculate Ei0’ with respect to bubble size, frequency 

and velocity.  Many of these correlations can again be found in the handbook of fluidization and 

fluid-particle systems [6], with the correlation by Choi et al (1999) [59] (presented in table 6) 

being the only one suitable for high temperature and high pressure systems.  

Furthermore, as mentioned earlier in Chapter 2, Large et al reported that the bed surface flux 

decreases exponentially with increasing height, z, above the bed surface as a function of a 

constant, referred to as the decay constant, ai, such as: 

𝐸𝑖0 = 𝐸𝑖0′𝑒𝑥𝑝(−𝑎𝑖𝑧). 

The total entrainment flux model by Large et al can therefore be expressed as: 
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𝐸𝑖ℎ = 𝐸𝑖∞ + 𝐸𝑖0𝑒𝑥𝑝(−𝑎𝑖𝑧). 

There is disagreement however between researchers on the magnitude and dependencies of the 

decay constant, a. In fact, different values can be found in the literature for fluidized beds under 

ambient conditions ranging from 0.5 to 6.4m-1 [46, 60, 61].  The only available correlation 

predicting the decay constant was again developed by Choi et al and can also be found in table 6.  

 

Table 6- Choi et al (1991) correlation for entrainment rate (applicable for a velocity range from 

0.3 to 7m/s, a particle diameter range of 0.005 to 1mm and a reactor diameter for 0.06 to 1m) 

Variable Correlation 

Elutriation flux 

Elutriation rate 
𝐾𝑖∞ =

𝜇
𝑑𝑝
𝐴𝑟0.5𝑒𝑥𝑝 �6.92 − 2.11𝐹𝑔0.303 −

13.1
𝐹𝑑0.902� 

Gravity force per projection area 𝐹𝑔 = 𝑔.𝑑𝑝�𝜌𝑝 − 𝜌𝑔� 

Drag force per projection area 
𝐹𝑑 = 𝐶𝑑

𝜌𝑔.𝑈2

2
 

Elutriation flux 𝐸𝑖∞ = 𝑥𝑖𝐾𝑖∞ 

Bed Surface Flux 

Original bed surface flux 
𝐸𝑖0′ = 9.6 𝐴𝑡 �𝑈 − 𝑈𝑚𝑓�

2.5𝑑𝑏 �
298
𝑇
�
3.5

 

Decay constant 
𝑎 = 1

𝑑𝑝
𝑒𝑥𝑝 �−11.2 +  210 𝑑𝑝

𝐷𝑡−𝑑𝑝
�   �

𝑑𝑝 𝜌𝑔�𝑈−𝑈𝑚𝑓�

𝜇
�
−0.492

� 𝑑𝑝𝑔 𝜌𝑝
𝜌𝑔�𝑈−𝑈𝑚𝑓�

2�
0.725

�𝜌𝑝−𝜌𝑔
𝜌𝑔

�
0.731

𝐶𝑑−1.47  

Bed Surface Flux 𝐸𝑖0 = 𝐸𝑖0′𝑒𝑥𝑝(−𝑎𝑖𝑧) 

 

In Choi’s correlation, Cd is the drag coefficient and can be have different values for different 

particle Reynolds numbers, Rep. These values were presented by Choi et al (1999) [59] and are 

listed in table 7 below: 
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Table 7- Drag Coefficient for different Reynolds numbers 

Range Correlation 

𝑹𝒆𝒑 ≤ 𝟓.𝟖 𝐶𝑑 = 24/𝑅𝑒𝑝 

𝟓.𝟖 < 𝑹𝒆𝒑 ≤ 𝟓𝟒𝟎 𝐶𝑑 = 10/𝑅𝑒𝑝0.5 

𝟓𝟒𝟎 < 𝑹𝒆𝒑 𝐶𝑑 = 0.43 

 

Choi et al’s correlation has been confirmed to be valid in predicting the particle entrainment rate 

at the freeboard gas exit for the experimental range listed in table 8. 

 

Table 8-Validity range of the entrainment correlation by Choi et al. (1999) 

Variable Range 

Particle diameter 21-710 μm 

Particle density 2400-6158 kg/m3 

Gas velocity 0.15-2.8 m/s 

Temperature 12-600 °C 

Pressure 1-31 atm 

Column diameter 0.1-0.91 m 

Column height 1.97-9.1 m 
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In order to study the effects of extreme conditions on entrainment, the correlation of Choi et al 

has been plotted versus height for several temperatures, pressures and velocities within the stated 

range in table 8. The purpose of this simulation is to verify whether all the aforementioned effects 

of operating under extreme conditions are represented through the correlation of Choi et al. 

Furthermore, with the original bed surface flux a function of bubble size, the three studied 

correlations in the previous section will be used in this study, with their respective impacts on 

entrainment analyzed. Finally, the height at which entrainment stabilizes will be taken as the 

TDH. The used variables in this simulation can be found in table 9 below.  Six plots were 

conducted in total. In figure 14 and 15, entrainment was plotted versus height at ambient 

temperature and pressure and superficial gas velocities of 0.3m/s and 1.3m/s respectively in order 

to cover both the bubbling and turbulent regimes. In figure 16 and 17, entrainment was plotted 

versus height at ambient temperature, a pressure of 20atm and superficial gas velocities of 0.3m/s 

and 1.3m/s respectively in order to study the effect of pressure under both regimes. At last, in 

figure 18 and 19, entrainment was plotted versus height at ambient pressure, a temperature of 

600C and superficial gas velocities of 0.3m/s and 1.3m/s respectively in order to study the effect 

of temperature under both regimes. Unfortunately, due to the limited access to experimental 

results under these conditions, only the results of the simulation will be shown. 

  



31 

 

Table 9-Specifications used in the simulation where the effect of the bubble size correlations by 

Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) with respect to velocity at 

high temperature and pressure on the entrainment rate model by Choi et al (1999) 

Variable Range 

Particle diameter 250μm 

Particle density 2560 kg/m3 

Gas velocity 0.3-1.3 m/s 

Temperature 25-600 °C 

Pressure 1-20 atm 

Column diameter 0.2 m 

Minimum bed height 1 m 
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Figure 14- Comparison of the entrainment rate with respect to height above the bed using the 

bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) 

at ambient temperature and pressure and a superficial gas velocity of 0.3m/s 

 

Figure 15- Comparison of the entrainment rate with respect to height above the bed using the 

bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) 

at ambient temperature and pressure and a superficial gas velocity of 1.3m/s 
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Figure 16- Comparison of the entrainment rate with respect to height above the bed using the 

bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) 

at ambient temperature, a pressure of 20atm and a superficial gas velocity of 0.3m/s 

 

Figure 17- Comparison of the entrainment rate with respect to height above the bed using the 

bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) 

at ambient temperature, a pressure of 20atm and a superficial gas velocity of 1.3m/s 
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Figure 18- Comparison of the entrainment rate with respect to height above the bed using the 

bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) 

at ambient pressure, a temperature of 600°C and a superficial gas velocity of 0.3m/s 

 

Figure 19- Comparison of the entrainment rate with respect to height above the bed using the 

bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) 

at ambient pressure, a temperature of 600°C and a superficial gas velocity of 1.3m/s 
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3.3.1.1 Effect of velocity on entrainment 

Similarly to the observations of Chan and Knowlton (1984) [55], when comparing Figure 14 and 

Figure 15, the total entrainment rate was correctly modeled by Choi et al to increase with velocity 

regardless of the used bubble size correlation. Bubble size however, seems to affect the 

magnitude of the total entrainment rate depending on the gas superficial velocity. For instance, at 

the bed surface when a gas velocity of 1.3m/s is used, the bubble size correlation by Horio and 

Nonaka predicted an entrainment rate 5% larger than the one obtained from the model of Mori 

and Wen. However, in case of a smaller superficial velocity of 0.3m/s, applying the correlation 

by Horio and Nonaka results in an entrainment rate 13 times larger than when the bubble size 

model of Mori and Wen is used.   

This observation is due to the effect of velocity on the drag coefficient. In fact, at low velocities 

most particles fall back into the bed with the total entrainment rate mainly depending on the 

original bed surface flux. Since the latter is directly related to bubble size, using different 

correlations would therefore lead to different entrainment rate values. As velocity is increased 

however, the drag coefficient increases independently of bubble size until the elutriation rate 

reaches a maximal value that is solely a function of the solid and gas properties. As a result, 

fewer particles tend to fall back into the bed as the original bed surface flux becomes negligible. 

One may therefore conclude that the impact of bubble size on entrainment decreases as velocity 

is increased. 

By using these plots to determine the value of the TDH, several observations can also be made. 

Despite using different bubble size correlations, all three curves converged at the same value for 

a given velocity which might suggest that TDH is independent of bubble diameter. When 

velocity was varied, TDH was found to increase. This observation is in agreement with Chan and 

Knowlton (1984) [55]  and  Pemberton and Davidson (1984) [56] who reported TDH to linearly 

increase with velocity. Zenz and Othmer (1960)[62] provided a diagram of TDH versus velocity 

for different bed diameters based on industrial values which clearly illustrates the increase in 

TDH with respect to velocity. This diagram is usually used as a first guess for industrial fluidized 

bed reactors. Finally, at high velocities, despite observing a decrease in entrainment with respect 

to height until a constant value is reached, the overall changes in the total flux are negligible with 

a difference of less than 5%. Therefore, despite graphically obtaining a TDH value of 4m, sizing 
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the freeboard accordingly might not be beneficial. A more specific definition of TDH with 

respect to entrainment is therefore needed. 

3.3.1.2 Effect of pressure on entrainment 

When comparing Figures 16 and 17 with Figures 14 and 15 in the previous section, it is clear that 

entrainment increases with pressure for every used bubble size correlation. The magnitude 

however seems to be greatly affected by the superficial gas velocity. For instance, at a low 

velocity of 0.3m/s, the total entrainment rate is 2.6 times larger when the pressure is increased 

from ambient to 20 atm. On the other hand, for a higher velocity of 1.3m/s, the entrainment rate 

increases by up to 4.3 times. This trend agrees with Chan and Knowlton (1984) [55] who 

reported a significant increase in entrainment with pressure. Furthermore, they observed that the 

dependence of entrainment on gas velocity increased with pressure. This can be explained by the 

effect of pressure on gas density which when raised increases the elutriation flux and the bed 

surface flux by increasing the gravity force per projection area and the Archimedes number. 

When Figures 16 and 17 are compared in order to study the effect of using different bubble size 

correlations, several observations can be made. The bubble size by Horio and Nonaka seems to 

yield the highest rate while the correlation of Mori and Wen results in the lowest. Similarly to the 

previous study on the effect of velocity, the impact of bubble size on entrainment decreased as 

velocity was increased. At high velocities, the additional effect of pressure resulted in a smaller 

difference of 1.2% between the obtained entrainment rates using the model of Mori and Wen and 

Horio and Nonaka when compared to the observed difference at ambient conditions. 

Interestingly, at low velocities, the opposite is observed as a larger difference of 17.6% is 

obtained between the used models at high pressure when compared to the results at ambient 

conditions. This could again be explained by the fact that at low velocities the total entrainment 

rate depends mainly on the original bed surface flux which is directly related to bubble size. As 

presented in section 3.2.2, when pressure is increased, the correlation by Horio and Nonaka 

resulted in the largest bubble diameter while that of Mori and Wen resulted in the smallest, 

therefore explaining the smaller difference at ambient conditions.  One can therefore conclude 

that in the bubbling regime, using different bubble size correlations can result in large differences 

in entrainment rate. At higher velocities, the latter increases with pressure but offers no 
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significant differences when different bubble size correlations are used due to the dominance of 

the elutriation rate compared to the bed surface flux.   

By using these plots to determine the value of the TDH, similar observations to that with respect 

to velocity can be made. Despite using different bubble size correlations, all three curves 

converged at the same value for a given pressure which would suggest once more that TDH is 

independent of bubble diameter. When pressure was increased, TDH was also found to follow the 

same trend. This observation is in agreement with Chan and Knowlton (1984) [55]  and  

Pemberton and Davidson (1984) [56] who stated that TDH increased with pressure due to the 

resulting elevation in gas density and thus decrease in single particle terminal velocity. Finally, at 

high pressure and velocity, despite observing a decrease in entrainment with respect to height 

until a constant value is reached, the overall changes in the total flux are negligible with a 

difference of less than 2%. Therefore, with a graphically obtained TDH value of 15m, sizing the 

freeboard accordingly might not be profitable. One might conclude once more that a more 

specific definition of TDH with respect to entrainment is needed. 

3.3.1.3 Effect of temperature on entrainment 

Similarly to the previous study on the effects of pressure, Figures 18 and 19 were compared with 

Figures 14 and 15 in order to study the impacts of temperature on entrainment. By doing so, it is 

clear that based on the correlation of Choi et al for a given bubble size model, the total 

entrainment rate seems to decrease with temperature at low velocity by up to 26 times. This can 

be explained once more by the dominance of the bed surface flux at low velocities, which 

decreases with temperature and is greatly affected by bubble size as seen in the previous sections. 

At a higher velocity of 1.3m/s, the opposite is however observed with the total entrainment rate 

increasing by 2.5 times for a given bubble size correlation. In fact, Choi et al investigated the 

qualitative effect of temperature on the particle entrainment rate at the freeboard gas exit of a gas 

fluidized bed at high velocities (1.2 to 1.8m/s).  According to their results, the particle 

entrainment rate increased with temperature, after an initial decrease. Their justification for this 

observation resides in the decrease in gas density and increase in gas viscosity with temperature. 

The opposite trend was however observed by Wouters and Geldart (1998)[63] who, using small 

particles (7 to 48 μm), reported a decrease of the total entrainment rate with an increase in 

temperature up to 400 °C. In their paper, Choi et al (2007)[64] explained that their correlation did 
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not take into account interparticle forces which caused the decrease in entrainment for the case of 

Wouters and Geldart (1998) due to the small particle size used. 

Furthermore, similarly to the previous studies on the effect of bubble size on entrainment at high 

velocities, the correlations by Mori and Wen, Cai et al and Horio and Nonaka, offered little to no 

significant difference (less than 1%) when temperature was raised. 

Once more, one may conclude that in the bubbling regime, using different bubble size 

correlations can result in large differences in entrainment rate. At higher velocities, entrainment 

increases with temperature but offers no significant differences when different bubble size 

correlations are used due to the dominance of the elutriation rate compared to the bed surface 

flux.  This is however not the case for small particles (less than 48 μm) were entrainment 

decreases with temperature due to the influence of interparticle forces. With the correlation of 

Choi not taking into account the latter, more work needs to be done on developing an entrainment 

model that would account for the smaller particles and fines. 

When these plots are used to determine the value of the TDH, more observations could be 

reported with respect to temperature. Despite using different bubble size correlations, all three 

curves converged once again at the same value for a given temperature, suggesting that TDH is 

not a function of bubble diameter. When temperature was raised however, a slight increase in 

TDH was observed. Finally, at high temperature and velocity, despite observing a decrease in 

entrainment with respect to height until a constant value is reached, the overall changes in the 

total flux are negligible with a difference of less than 1%. Therefore, with a graphically obtained 

TDH value of 5m, sizing the freeboard accordingly might once again not be profitable.  

3.3.2 TDH modelling and influence of extreme conditions 

As stated in chapter 2, in most fluidized bed applications, the freeboard occupies the largest 

volume of the reactor and therefore its design can be crucial since it has the main task of 

preventing large amounts of the bed material from being carried out by the gas stream. With any 

further height increase having little impact on entrainment, most design books have required the 

freeboard to have a height of at least the TDH in order to reduce carryovers [1, 9, 48]. 

Unfortunately, there is no commonly accepted method for the calculation of the TDH [6], but 

only several empirical correlations which were developed under ambient conditions.  Therefore, 
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the entrainment plots presented in the previous section were used in order to graphically estimate 

TDH and study the resulting impact of operating under extreme conditions. The respective results 

are presented in table 10 below, based on the solid properties stated in table 9.  With the expected 

trends with regards to temperature pressure and velocity reported in the last section, the purpose 

of this study is to observe and highlight any discrepancies between the existing TDH correlations 

and the obtained results from the entrainment plots of Choi et al. Some of the most common TDH 

correlations that are used in design books can be found in table 11 below. 

 

Table 10- TDH values based on the plot of the entrainment correlation of Choi et al (1999) 

Pressure (atm) Temperature (°C) Velocity (m/s) Estimated TDH (m) 

1 25 0.3 0.25 

1 25 1.3 4 

1 600 0.3 0.3 

1 600 1.3 5 

20 25 0.3 0.8 

20 25 1.3 15 
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Table 11- Common TDH correlation as reported in the handbook of fluidization and fluid-particle 

systems[6] 

Author Correlation 

Correlations not based on bubble size  

Fournol et al (1973) [65] 
𝑇𝐷𝐻 = 1000

𝑈2

𝑔
 

Chan and Knowlton (1984) [55] 𝑇𝐷𝐻 = 0.85𝑈1.2(7.33 − 1.2𝑙𝑜𝑔10𝑈) 

Sciazko et al (1991) [66] 

 
𝑇𝐷𝐻 =

1500𝐻𝑏𝑅𝑒𝑝
𝐴𝑟

 

Correlations based on bubble size  

Horio et al (1980) [67] 𝑇𝐷𝐻 = 4.47𝑑𝑏0.5 

Fung and Hamdullahpur (1993) [68] 𝑇𝐷𝐻 = 13.8𝑑𝑏 

Smolders and Baeyens (1997) [69] 𝑇𝐷𝐻 = 6��𝑈 − 𝑈𝑚𝑓�𝑑𝑏�
0.6

 

 

Despite the entrainment model of Choi et al resulting in TDH values that are independent of 

bubble size, three of the correlations in table 11 are directly based on the average bubble 

diameter: These are the models by Horio et al (1980), Fung and Hamdullahpur (1993) and 

Smolders and Baeyens (1997). In their case, TDH is expected to follow the same trend as bubble 

size with respect to temperature, pressure and velocity. This is in fact contradictory to the 

expected TDH trend since the latter was reported to linearly increase with velocity and pressure. 

Furthermore, the correlations by Fournol et al (1973) and Chan and Knowlton (1984) are only a 

function of velocity and therefore will not exhibit any changes in the TDH when temperature and 

pressure are varied. 
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With only the correlation by Sciazko et al (1993) based on velocity, pressure and temperature 

through the bed height and the particle Reynolds number, a comparison of its results with the 

obtained TDH values from the entrainment correlation of Choi et al can be found in Table 12 

below. 

 

Table 12- Comparison of the TDH values obtained using the entrainment model of Choi et al and 

the correlation of Sciazko et al 

Pressure 

(atm) 

Temperature 

(°C) 

Velocity 

(m/s) 

TDH (m) from the 

entrainment 

correlation of Choi et 

al 

TDH (m) from the 

correlation of 

Sciazko et al (1991) 

% 

error 

1 25 0.3 0.25 6.7 2580 

1 25 1.3 4 42 950 

1 600 0.3 0.3 14 4567 

1 600 1.3 5 88.7 1674 

20 25 0.3 0.8 6.8 750 

20 25 1.3 15 42 180 

 

With the correlation of Sciazko et al (1991) greatly overestimating TDH when compared to the 

obtained results form the entrainment model of Choi et al, one may conclude that none of the 

correlations presented in table 11 can accurately estimate TDH. Moreover, all of these 

correlations will provide a very large TDH values at high velocities despite entrainment 

decreasing by as little as (0.05%). As far as design purposes are concerned, a new TDH model 

must be developed with respect to temperature and pressure. 
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3.4 Mass Transfer in Fluidized Beds 

As explained earlier, when gas flows through the bed, two distinct parts can be observed; the 

bubble phase and the emulsion phase. As opposed to gas-liquid systems, an interchange of gas 

occurs between the bubble and dense phase; a phenomena that many have tempted to describe. In 

fact, this inter-phase mass transfer have been reported to influence the reaction rate per unit bed 

volume as well as process efficiency by reducing the bypassing of unreacted gas in the bubble 

phase to the freeboard [70]. 

In the literature, mass exchange has been measured experimentally by varying tracer 

concentration with time and analyzing the results for two cases: single bubbles and freely 

bubbling beds.  

In case of single bubbles, they are introduced in a fluidized bed with a known concentration of a 

non-reactive tracer. By measuring the concentration, a differential mass balance can be 

performed relating the concentration of the tracer in the bubble and emulsion phase, and the 

vertical location [71, 72]. 

In case of freely bubbling beds, the tracer is introduced as a step-input or pulse with its 

concentration measured above the point of injection. An issue however that has been highlighted 

when using this method is the absence of a universally acceptable hydrodynamic model since a 

suitable one has to be used to analyse the measured response.  

Several researchers using the freely bubbling beds and the single bubble methods have developed 

expressions for the estimation of the interphase mass exchange coefficient [1, 73]. Sit and Grace 

(1981) [73] reviewed some of the available expressions and classified them into three groups of 

models: 1- Diffusion controlled models, 2- Additive convective and diffusive transfer models, 3- 

Interaction models. 

In diffusion controlled models, diffusion across the cloud boundary is assumed to be solely 

controlling the interphase mass transfer. These models were reported to consistently 

underestimate the overall mass transfer by an order of magnitude. 

In additive convective and diffusive transfer models, two mechanisms are reported to control 

mass transfer: 1- diffusion, and 2- convection or bubble “throughflow”. These two mechanisms 
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are each evaluated and then summed. Sit and Grace reported that these models seemed to 

correctly evaluate mass transfer coefficient with respect to experimental values. 

In interaction models, diffusion, and convection are also assumed to control mass transfer. In this 

case, the main difference lies in the assumption that both diffusive and convective mass transfer 

interact and therefore the overall mass transfer coefficient can be less than the sum of the two 

effects in isolation. This method, despite yielding great results for some cases, seems to lack 

consistency over the whole range of particle size examined.  

The most commonly used additive convective and diffusive transfer model was developed by 

Davidson and Harrison (1963) [74] who obtained an expression for mass interchange coefficient 

per unit bubble volume.  

𝐾𝐵𝐸 = 4.5 �
𝑈𝑚𝑓
𝑑𝑏

� + 5.85�
𝐷0.5𝑔0.25

𝑑𝐵
1.25 � 

Where KBE is the interchange coefficient, Umf is the minimum fluidization velocity, db is the 

bubble diameter and D is the molecular diffusivity of the gas. The diffusive transfer is illustrated 

by the second term on the right hand side of the equation, while the convective transfer is 

represented by the first term. 

In a review article, Sit and Grace (1978) reported that this model underpredicts mass transfer 

coefficient values and subsequently presented later their own correlation for single spherical 

three-dimensional bubbles: 

𝐾𝐵𝐸 =
2𝑈𝑚𝑓
𝑑𝑏

+ 6.77�
𝐷. 𝜀𝑚𝑓.𝑈𝑏

𝑑𝑏
3 �

1/2

 

Where Ub is the bubble velocity, εmf is the voidage at minimum fluidization and Umf is the 

minimum fluidization velocity. 

Thus, it is clear that the overall transfer coefficient KBE is directly related to bubble diameter in 

both models. In the following section, the three bubble size correlation studied thus far will be 

again used to illustrate the effect of pressure, temperature and velocity on the overall mass 

transfer coefficient. The model of Clift and Grace (1985)[75] will be used in order to compute the 

bubble velocity: 
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𝑈𝑏 =

⎩
⎪
⎨

⎪
⎧ 0.711�𝑔.𝑑𝑏          𝑓𝑜𝑟 𝑑𝑏 ≤ 0.125𝐷𝑡

0.803�𝑔.𝑑𝑏 exp �−
𝑑𝑏
𝐷𝑡
�   𝑓𝑜𝑟 0.125𝐷𝑡 < 𝑑𝑏 ≤ 0.6𝐷𝑡

0.35�𝑔.𝐷𝑡     𝑓𝑜𝑟 𝑑𝑏 > 0.6𝐷𝑡 ⎭
⎪
⎬

⎪
⎫

 

3.4.1 Effect of velocity on mass transfer 

The effect of velocity has been well documented with researchers agreeing that mass transfer 

increases with velocity [76-79]. Unfortunately, very few articles have been dedicated to studying 

the effect of velocity on the mass transfer interchange coefficient, KBE. Kunni and Levenspiel 

(1991) [1] explained that the product of the mass transfer coefficient of a single particle, kg, and 

the surface area of solid per volume of solid, a’, is inversely proportional to the overall 

interchange transfer coefficient, KBE, by the bubble fraction, δ, which they reported to increase 

with velocity. It is therefore possible to conclude that the overall interchange transfer coefficient 

KBE, might decrease with velocity. With this in mind, the purpose of this section is to illustrate 

the impact of using different bubble size correlation on the estimated overall mass transfer 

coefficient for the correlation of Sit and Grace (1978). In order to conduct this study, the 

interchange mass transfer coefficient was plotted in Figures 20 and 21 for every bubble size 

correlation based on the specifications used in table 3. The molecular diffusivity of CO2 (2x10-5 

m2/s)[81] was used in this simulation. 
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Figure 20- Comparison of the interchange mass transfer coefficient with respect to superficial 

velocity using the bubble size correlations by Mori and Wen (1975) and Horio and Nonaka 

(1987)  

 

Figure 21- Interchange mass transfer coefficient with respect to superficial velocity using the 

bubble size correlations by Cai et al (1999)  

  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 0,5 1 1,5 

KB
E(

s-
1)

 

U0(m/s) 

Bubble size correlation by Mori 
and Wen (1975) 

Bubble size correlation by Horio 
and Nonaka (1987) 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0 0,5 1 1,5 

K BE
(s

-1
) 

U0(m/s) 

Bubble size correlation by Cai et 
al (1994) 



46 

 

It is clear from Figures 20 and 21 that using different bubble size correlations lead to different 

trends in the total mass transfer interchange coefficient with respect to velocity. At low velocities 

(0-0.6m/s), all three bubble size models predicted a decrease in the total interchange coefficient, 

which agrees with the observations of most researchers [76-79]. As we recall, under these 

velocities, all correlations predicted an increase in bubble size which would explain this observed 

decrease in KBE. Furthermore, bubble size seems to affect the magnitude of the interchange 

coefficient depending on the gas superficial velocity. For instance, at a velocity of 0.1m/s, the 

bubble size correlation of Horio and Nonaka (1987) predicted a bubble diameter 6 times smaller 

than that predicted by Cai et al (1994). Subsequently, due to the inverse relation between db and 

KBE, using the model of Horio and Nonaka (1987) resulted in an interchange coefficient 11 times 

larger than when the correlation of Cai et al (1994) was used.  

Interestingly, when velocity is increased further, the correlation of Cai et al (1994) predicted an 

increase in the total interchange coefficient. In fact, as we recall, when the turbulent regime is 

reached, smaller bubbles are formed, resulting in an increase in KBE. This increase was not 

observed by the correlations of Horio and Nonaka (1987) and Mori and Wen (1975) who 

predicted a monotone increase in bubble size. Moreover, despite greatly affecting the magnitude 

of the interchange coefficient at low velocities, bubble size seems to have a less pronounced 

effect at higher velocities. This can be observed as all three bubble size models seem to converge. 

3.4.2 Effect of pressure on mass transfer 

Similarly to velocity, the effect of pressure has been studied by several researchers. Sechenov et 

al (1966) [82]has reported that the mass transfer coefficient, kg, decreases when pressure is 

increased. A similar conclusion was made by Zhang et al (2013)[83] who also reported a 

decrease in mass transfer when pressure is increased which they explained to be the result of a 

sharp decrease in the diffusion coefficient as well as a larger ratio of convective mass transfer 

because of smaller bubbles and larger average bed voidage. Unfortunately, no studies have been 

dedicated to the effect of pressure or bubble size on KBE with the only available experimental 

data with respect to pressure on the mass transfer coefficient, kg  [82, 83]. It is therefore the 

objective of this section to study the impact of using different bubble size models at different 

pressures on the estimated overall interchange transfer coefficient for the correlation of Sit and 
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Grace (1978). The resulting plots are presented in Figure 22 below and are based on the 

specifications in table 4. 

In regards to the effect of pressure on the diffusion coefficient, Zhang et al (2013)[83] 

demonstrated that it followed a decreasing trend. In fact, Sechenov et al (1966) [82] reported that 

the diffusion coefficient D decreases in inverse proportion to the pressure increase. Cussler 

(1997)[84] correlated the change in the molecular diffusion as: 

𝐷 = 𝐷0
𝑃0
𝑃

  

Where D and D0 are the diffusion coefficient at P and P0 respectively 

The molecular diffusivity of CO2 [81] was again used in this simulation. 

 

Figure 22- Comparison of the interchange mass transfer coefficient with respect to pressure using 

the bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al 

(1994)  

  

0 

2 

4 

6 

8 

10 

12 

0 20 40 60 80 

K BE
(s

-1
) 

P(atm)  

Bubble size correlation by Mori 
and Wen (1975) 

Bubble size correlation by Horio 
and Nonaka (1987) 

Bubble size correlation by Cai et 
al (1994) 



48 

 

Similarly to the conducted study on the effects of velocity, using different bubble size 

correlations seems to result in different trends in the total mass transfer interchange coefficient 

with respect to pressure.  Both bubble size correlations by Mori and Wen (1975) and Horio and 

Nonaka (1987) predict a decrease in KBE with respect to pressure. In fact, as pressure increases, 

the minimum fluidization velocity[85] and the diffusivity coefficient decrease. The effect of the 

latter in addition to the predicted increase in bubble size from both correlations, explain the 

observed decreasing trend in KBE. In the case of the correlation by Cai et al (1994), an initial 

decrease can be seen, followed by an increase in the total mass interchange coefficient. This 

observation is directly related to the predicted bubble size trend. As we recall, the correlation of 

Cai et al predicts an increase followed by a decrease in bubble size as pressure increases. This 

shift in behaviour explains the observed mass interchange coefficient trend by being inversely 

proportional to bubble size at high pressures.  

Interestingly, at lower pressures despite accounting for the observed trend, bubble size does not 

seem to be inversely proportional to KBE. For instance, while the correlation of Horio and Nonaka 

(1987) predicts the largest bubble size at ambient pressure, the expected mass interchange 

coefficient is not the lowest. This can be explained by the dependence of the bubbling velocity on 

bubble size at lower bubble diameters. As the latter is increased however, the bubble velocity is 

predicted to reach a constant value as illustrated by the used correlation of Clift and Grace 

(1985)[75].   

3.4.3 Effect of temperature on mass transfer 

Similarly to velocity and pressure, the effect of temperature on mass interchange has been studied 

by several researchers[70, 86]. Wu et al reported that KEB decreases as temperature is increased 

over a range of ambient to 500C.  

Once again, the impact of using different bubble size correlation on the estimated overall mass 

transfer coefficient for the correlation of Sit and Grace (1978) was presented and compared with 

the expected trends with respect to temperature. The interchange mass transfer coefficient was 

plotted in Figure 23 for every bubble size correlation based on the specifications used in table 5.  

According to the Stokes-Einstein law, the diffusion coefficient is a function of temperature and 

can be approximated in the following manner:  
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𝐷 = 𝐷0
𝑇
𝑇0

𝜇𝑇0
𝜇𝑇

 

Where μT0 and μT are the viscosities at T0 and T respectively 

The molecular diffusivity of CO2 [81] was again used in this simulation. 

 

Figure 23- Comparison of the interchange mass transfer coefficient with respect to temperature 

using the bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et 

al (1994)  

 

Contrary to the conducted studies on the effects of velocity and pressure, using different bubble 

size correlations seems to result in the same decreasing trend in the mass transfer interchange 

coefficient with respect to temperature. Despite the correlations of Mori and Wen (1975) and Cai 

et al (1994) predicting an increase in bubble size while the correlation of Horio and Nonaka 

resulted in a decrease, KBE seems unaffected by these trends. In fact as we recall, the magnitude 

of the change in bubble size due to the effect of temperature was very small when compared to 

the changes obtained from varying pressure or velocity. Due to this observation, the increase in 

Umf and the decrease in D are the major contributors to the observed changes in KBE with respect 

to temperature. Moreover, Wu et al (2003)[70] explained that this competing effect is the reason 

for the observed small change in KBE when temperature is varied. 
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3.5 Effect of Extreme Conditions on Reaction Conversion 

With the effects of temperature, pressure and velocity on bubble size, entrainment and mass 

transfer presented in the previous sections, developing an understanding of reaction conversion is 

fundamental for most engineering processes. Similarly to the previous studies, the purpose of the 

following section is to demonstrate the effect of using extreme operating conditions on reaction 

conversion, and the consequent impact of using different bubble size correlations. 

3.5.1 Methane steam reforming kinetics 

Oil consumption has become more and more important over the past 50 years with a projected 

33% increase by 2020 [87]. In fact, at this rate of usage, researchers predict most known oil and 

fossil fuel reserves to be depleted by 2038. Furthermore, additional environmental concerns 

related to oil consumption have risen over the years with the energy industry contributing to 

about 22 billion tons of carbon dioxide (CO2) and other greenhouse gases into the earth’s 

atmosphere each year [87]. An alternative solution to fossil fuels is hydrogen which when reacted 

with oxygen releases energy [88]. Hydrogen production methods such as steam reforming, has 

therefore attracted a lot of attention. Methane reforming constitutes today the predominant 

hydrogen production method (95% in the USA) [89] because of its low cost compared to all 

hydrogen production pathways [90]. Methane steam reforming is a series of reactions that take 

place at high temperatures (700 – 1100 °C) in the presence of a metal-based catalyst (nickel) 

[91].  

Our interest in this reaction process has come from its industrial application at elevated 

temperatures and pressures. In fact, it was reported that while high temperature increases 

conversion, high pressure tends to have the opposite effect [92]. Good understanding of the effect 

of pressure and temperature in this case can prove to be crucial. Furthermore, with fluidized bed 

reformers receiving a lot of interest because of their high rate of heat transfer, methane 

conversion and hydrogen yield [92-94], this process is of great relevance to this work. 

Methane steam reforming has been thoroughly studied [92-94] in the literature and consists 

majorly of 2 highly endothermic reforming reactions (1) and (2) and a moderately exothermic 

reaction: the water gas shift reaction (3) [88], producing CO, CO2 and H2. Furthermore, methane 

can also undergo oxidation to produce CO, CO2 and H2O according to reaction (4). These 
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reactions are presented in table 13 below. Hough and Hughes (2000) [91] presented a widely 

used kinetic model for reactions (1) to (3) over a Ni/a-Al2O catalyst , while Yermakova et al 

(1993) [95] studied and modelled reaction (4). These models along with their respective reactions 

are summarized in table 13 and the kinetic parameters are presented in table 14. 

 

Table 13- Methane steam reforming reactions and kinetic models 

# Reaction Kinetic Model 

1 𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 
𝑟1 =

𝑘1�𝑃𝐶𝐻4𝑃𝐻2𝑂
0.5/𝑃𝐻2

1.25� �1 − �𝑃𝐶𝑂𝑃𝐻2
3/𝐾1𝑃𝐶𝐻4𝑃𝐻2𝑂��

𝐷𝐸𝑁2  

2 𝐶𝐻4 + 2𝐻2𝑂 ↔ 𝐶𝑂2 + 4𝐻2 
𝑟2 =

𝑘2�𝑃𝐶𝑂𝑃𝐻2𝑂
0.5/𝑃𝐻2

0.5� �1 − �𝑃𝐶𝑂2𝑃𝐻2/𝐾2𝑃𝐶𝑂𝑃𝐻2𝑂��
𝐷𝐸𝑁2  

3 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 
𝑟3 =

𝑘3�𝑃𝐶𝐻4𝑃𝐻2𝑂/𝑃𝐻2
1.75� �1 − �𝑃𝐶𝑂2𝑃𝐻2/𝐾3𝑃𝐶𝐻4𝑃𝐻2𝑂

2��
𝐷𝐸𝑁2  

 

4 𝐶𝐻4 + �2 −
𝛼
2�𝑂2 ↔ 𝛼𝐶𝑂 + (1 − 𝛼)𝐶𝑂2 + 2𝐻2𝑂 𝑟4 = 𝐾4𝑌𝐶𝐻4

𝑚𝑌𝑂2
𝑛 
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Table 14- Kinetic parameters 

Kinetic Parameters Units 

𝑫𝑬𝑵 = 𝟏 + 𝑲𝑪𝑶𝑷𝑪𝑶 + 𝑲𝑯𝟐𝑷𝑯𝟐
𝟎.𝟓 + 𝑲𝑯𝟐𝑶 �

𝑷𝑯𝟐𝑶
𝑷𝑯𝟐

� 
- 

𝑲𝟏 = 𝟏.𝟏𝟗𝟖.𝟏𝟎𝟏𝟕𝐞𝐱𝐩 �
−𝟐𝟔𝟖𝟑𝟎

𝑻 � 𝑘𝑃𝑎2 

𝑲𝟐 = 𝟏.𝟕𝟔𝟕.𝟏𝟎−𝟐𝐞𝐱𝐩 �
𝟒𝟒𝟎𝟎
𝑻 � 𝑘𝑃𝑎0 

𝑲𝟑 = 𝟐.𝟏𝟏𝟕.𝟏𝟎𝟏𝟓𝐞𝐱𝐩 �
−𝟐𝟐𝟒𝟑𝟎

𝑻 � 𝑘𝑃𝑎2 

𝒌𝟏 = 𝟓.𝟗𝟐𝟐.𝟏𝟎𝟖𝐞𝐱𝐩 �
−𝑬𝒂𝟏
𝑹.𝑻 � 𝑘𝑔 𝑐𝑎𝑡. 𝑠. 𝑘𝑃𝑎0.25 

𝑬𝒂𝟏 = 𝟐𝟎𝟗.𝟐 kJ/mol 

𝒌𝟐 = 𝟔.𝟎𝟐𝟖.𝟏𝟎−𝟒𝐞𝐱𝐩 �
−𝑬𝒂𝟐
𝑹.𝑻 � 𝑘𝑔 𝑐𝑎𝑡. 𝑠.𝑘𝑃𝑎  

𝑬𝒂𝟐 = 𝟏𝟓.𝟒 kJ/mol 

𝒌𝟑 = 𝟏.𝟎𝟗𝟑.𝟏𝟎𝟑𝐞𝐱𝐩 �
−𝑬𝒂𝟑
𝑹.𝑻 � 𝑘𝑔 𝑐𝑎𝑡. 𝑠. 𝑘𝑃𝑎0.25 

𝑬𝒂𝟑 = 𝟏𝟎𝟗.𝟒 kJ/mol 

𝑲𝑪𝑶 = 𝟓.𝟏𝟐𝟕.𝟏𝟎−𝟏𝟑𝐞𝐱𝐩 �
−∆𝑯𝑪𝑶

𝑹.𝑻 � 𝑘𝑃𝑎−1 

∆𝑯𝑪𝑶 = −𝟏𝟒𝟎 kJ/mol 

𝑲𝑯𝟐 = 𝟓.𝟔𝟖.𝟏𝟎−𝟏𝟎𝐞𝐱𝐩 �
−∆𝑯𝑯𝟐
𝑹.𝑻 � 𝑘𝑃𝑎−0.5 
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∆𝑯𝑯𝟐 = −𝟗𝟑.𝟒 kJ/mol 

𝑲𝑯𝟐𝑶 = 𝟗.𝟐𝟓𝟏 𝐞𝐱𝐩 �
−∆𝑯𝑯𝟐𝑶

𝑹.𝑻 � 𝑘𝑃𝑎 

∆𝑯𝑯𝟐𝑶 = 𝟏𝟓.𝟗 kJ/mol 

 

3.5.2 Methane steam reforming modelling 

In order to study the influence of using extreme operating conditions on reaction conversion in 

fluidized bed reactors, a suitable hydrodynamic model that would allow flexibility in the 

operating conditions must be chosen. Different models have been developed for fluidized reactor, 

most of which are only applicable for one fluidization regime. Based on the work of Mostoufi 

and Cui (2001) [96] a dynamic two-phase (DTP) model was chosen as it was proven to cover 

both the bubbling and the turbulent regime. This model considers the reaction to occur in both the 

bubble and emulsion phase which does not remain at the minimum fluidization conditions. This 

model also considers that as the superficial gas velocity varies; the phase fractions as well as the 

mean voidage of the bubble and emulsion phase changes.  Mostoufi and Cui (2001) evaluated the 

aforementioned hydrodynamic parameters based on correlations given by Cui et al [97] that are 

applicable for both Geldart A and B particles.  

In this work, the fluidized bed steam reformer is simulated using the DTP model. The state 

equations for this model are listed in table 15.  
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Table 15- State Equations for the Dynamic Two- Phase Structure Model (DTP) 

  

Mole balance for species A in the 

emulsion phase  

𝑑𝐶𝐴𝑒
𝑑𝑧

=
𝑅𝐴𝑒(1 − 𝜀𝑒)𝜌𝑠(1 − 𝛿) + 𝐾𝐵𝐸𝛿(𝐶𝐴𝑏 − 𝐶𝐴𝑒)

𝑈𝑒(1 − 𝛿)  

Mole balance for species A in the 

bubble phase 

𝑑𝐶𝐴𝑏
𝑑𝑧

=
𝑅𝐴𝑏(1 − 𝜀𝑏)𝜌𝑠 − 𝐾𝐵𝐸(𝐶𝐴𝑏 − 𝐶𝐴𝑒)

𝑈𝑏
 

Mean concentration of species A 
𝐶𝐴 =

𝑈𝑒(1 − 𝛿)
𝑈

𝐶𝐴𝑒 +
𝑈𝑏𝛿
𝑈

𝐶𝐴𝑏 

Average emulsion voidage [97] 𝜀𝑒 = 𝜀𝑚𝑓 + 0.00061𝑒𝑥𝑝 �
𝑈 − 𝑈𝑚𝑓

0.262 � 

Average bubble voidage [97] 𝜀𝑏 = 0.784 − 0.139𝑒𝑥𝑝 �
𝑈 − 𝑈𝑚𝑓

0.272 � 

Bubble fraction [97] 𝛿 = 1 − 𝑒𝑥𝑝 �−
𝑈 − 𝑈𝑚𝑓

0.62 � 

Emulsion velocity 
𝑈𝑒 =

𝑈 − 𝛿𝑈𝑏
1 − 𝛿

 

Average bed voidage 𝜀 = (1 − 𝛿)𝜀𝑒 + 𝛿𝜀𝑏 

 

The experimental methane reforming reactor of Roy et al (1999) [92] was used in this study 

along with the gas composition and the bed properties. A commercial steam methane reforming 

catalyst (United Catalyst Inc., C11-9-02) was assumed in this work. All of these values can be 

found in table 16 below. 
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Table 16- Methane steam reform simulation input 

Variable Value 

Dt(m) 0.0972 

Hb(m) 0.35 

dp(μm) 180 

ρp (kg/m3) 1100 

DCH4 (m2/s) 2.064 x 10-5 

DH2O (m2/s) 2.178 x 10-5 

DCO (m2/s) 1.92 x 10-5 

DH2 (m2/s) 6.34 x 10-5 

DO2 (m2/s) 1.53 x 10-5 

DCO2 (m2/s) 1.381 x 10-5 

 

3.5.2.1 Effect of pressure on conversion 

Roy et al (1999) [92] studied the effect of pressure on the steam methane reform reactions and 

concluded that conversion decreased with pressure over a range of 0.35 to 0.6MPa. Using the 

DTP model and the values in table 16, conversion was plotted versus pressure for each of the 

three bubble size correlations presented earlier, and compared to the experimental finding of Roy 

et al (1999) [92]. Furthermore, in order to provide an explanation for the observed trends, a plot 

of bubble size versus pressure was also conducted for each of the three bubble size correlations. 
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Figure 24- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with respect to pressure at U=0.07m/s and T=650C 

 

Figure 25- Comparison of the methane conversion with respect to pressure using the bubble size 

correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al (1994) with the 

experimental values of Roy et al (1999) at U=0.07m/s and T=650C 
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From Figure 25, it is clear that despite following the same decreasing trend with respect to 

pressure, all correlations overpredict conversion by at least 12%. One can also observe that the 

curves obtained using different bubble sizes seem to be parallel. This could be explained by the 

bubble size plots obtained in Figure 24, which predict no change in bubble diameter with respect 

to pressure. In fact, it is clear that the given pressure range is too narrow to observe the trends 

discussed in section 3.22, such as the decrease in bubble size by the correlation of Cai et al 

(1994). It is also evident that bubble diameter is inversely proportional to the conversion of 

methane, since the correlation of Horio and Nonaka (1987) which predicted the largest bubbles, 

resulted in the smallest conversion. The opposite could also be reported for the correlation of 

Mori and Wen which predicted the smallest bubbles and the largest conversion. 

In order to test this theory, conversion was plotted versus pressure in Figure 27 over a wider 

range (0.3 to 6MPa) to allow changes in bubble diameter. 

 

 

Figure 26- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) over a pressure range of (0.3 to 6MPa) at U=0.07m/s and 

T=650C 
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Figure 27- Comparison of the methane conversion over a pressure range of (0.3 to 6MPa) using 

the bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al 

(1994) at U=0.07m/s and T=650C 

 

In Figure 26, when bubble diameter was plotted over a wider pressure range the same reported 

trends in section 3.2.2 were observed. Interestingly, one can note that as bubble size decreased 

according to the correlation of Cai et al (1994), its respective conversion plot increased. 

Furthermore, as the estimated bubble diameter by the correlation of Cai et al approached that by 

Mori and Wen, their respective conversion plots also converged. It seems therefore once more 

that conversion is inversely related to bubble size with respect to pressure. 

Finally, with the experiment of Roy et al (1999) conducted under the bubbling regime in order to 

achieve a high conversion, the DTP model was used to study the impact of pressure under the 

turbulent regime. Using the values in table 16, conversion was plotted versus pressure for each of 

the three bubble size correlations at a superficial velocity of 1.3m/s. 
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Figure 28- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) over a pressure range of (0.3 to 6MPa) at U=1.3m/s and 

T=650C 

 

Figure 29- Comparison of the methane conversion over a pressure range of (0.3 to 6MPa) using 

the bubble size correlations by Mori and Wen (1975), Horio and Nonaka (1987) and Cai et al 

(1994) at U=1.3m/s and T=650C 
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Under the turbulent regime, bubble size doesn’t seem to affect conversion based on the obtained 

results from the correlation of Mori and Wen (1975) and Horio and Nonaka (1987). A completely 

different trend is however observed by the model of Cai et al (1994). This correlation predicted 

an initial decrease in bubble size over the pressure range of 0.3 to 2.8MPa, followed by an 

increase over the pressure range of 2.8 to 5MPa then a decrease. This fluctuation with respect to 

pressure, suggests that the relation between bubble size and conversion is not as simply predicted 

earlier. Furthermore, despite the correlation by Cai et al being developed under high pressure and 

velocity, its combination with the DTP model resulted in curious results. It is therefore evident 

that additional work must be performed to study the effects of pressure on conversion under the 

turbulent regime. 

3.5.2.2 Effect of temperature on conversion 

Similarly to pressure, Roy et al (1999) [92] studied the effect of temperature on the steam 

methane reform reactions and concluded that conversion increased with temperature over a range 

of 575 to 675C. Using the DTP model and the values in table 16, conversion was plotted versus 

temperature for each of the three bubble size correlations, and compared to the experimental 

finding of Roy et al (1999) [92]. Furthermore, in order to provide an explanation for the observed 

trends, a plot of bubble diameter versus temperature was also plotted for each bubble size model 

used. 
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Figure 30-  Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with respect to temperature at U=0.07m/s and P=0.55MPa 

 

 

Figure 31- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with the experimental values of Roy et al (1999) with respect 

to temperature at U=0.07m/s and P=0.55MPa 
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From Figure 31, it is clear that despite following the same increasing trend with respect to 

temperature, all correlations overpredict conversion by at least 25%. One can also observe that 

the curves obtained using different bubble sizes seem to be parallel. This could be explained by 

the bubble size plots obtained in Figure 30, which predict no change in bubble diameter with 

respect to temperature. Similarly to the observation made with respect to pressure, it seems that 

bubble diameter is inversely proportional to the conversion of methane, since the correlation of 

Horio and Nonaka (1987) which predicted the largest bubbles, resulted in the smallest 

conversion. The opposite could also be reported for the correlation of Mori and Wen which 

predicted the smallest bubbles and the largest conversion.  

Finally, with the experiment of Roy et al (1999) conducted under the bubbling regime in order to 

achieve a high conversion, the DTP model was used to study the impact of temperature under the 

turbulent regime. Using the values in table 16, conversion was plotted versus temperature for 

each of the three bubble size correlations at a superficial velocity of 1.3m/s. 

 

 

Figure 32- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with respect to temperature at U=1.3m/s and P=0.55MPa 
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Figure 33- Comparison of the bubble size correlations by Mori and Wen  (1975), Horio and 

Nonaka (1987) and Cai et al (1994) with respect to temperature at U=1.3m/s and P=0.55MPa 

 

Under the turbulent regime, bubble size doesn’t seem to affect conversion based on the obtained 

results from the correlation of Mori and Wen (1975) and Horio and Nonaka (1987) and Cai et al 

(1994). Despite yielding a higher bubble size, the correlation of Horio and Nonaka still leads to 

the same methane conversion as that predicted by the model of Cai et al (1994) and Mori and 

Wen (1975). 
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3.6 Conclusion 

The purpose of this chapter was to demonstrate the effect of using extreme operating conditions 

(high temperature, pressure and velocity) on fluidization and more specifically bubble size.  

Three bubble size correlations were chosen in this section: Cai et al (1994) for being modeled at 

high pressure and velocity, Horio and Nonaka(1987) for being developed under high temperature 

and Mori and Wen (1975) for being one of the most commonly used correlations in design books.  

Each of these correlations was compared to the reported trends in the literature with the results 

presented in table 17 below. 
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Table 17- Comparison of the predicted bubble size using the correlations by Mori and Wen  

(1975), Horio and Nonaka (1987) and Cai et al (1994) with the expected trends in the literature at 

high temperature, pressure and velocity. 

 db trend from the 

literature 

Db by Mori 

and Wen 

(1975) 

db by Hori and 

Nonaka (1987) 

db by Cai et al (1994) 

P db decreases with 

increasing pressure in 

both the bubbling and 

turbulent regimes. At very 

low gas velocities a slight 

initial increase in bubble 

size can be observed. 

 

db increases 

over the whole 

pressure range. 

db increases over the 

whole pressure 

range. 

Followed the expected 

trend with a percent 

error between 30 at low 

pressures and 10% at 

higher pressures. 

T db increases up to a 

maximum then decreases. 

db increases 

over the whole 

temperature 

range. 

Followed the 

expected trend but 

overestimated 

bubble size by 

almost 800% 

db increases over the 

whole temperature 

range. 

U db increases in the 

bubbling regime and 

decreases in the turbulent 

regime. 

 

db increases 

over the whole 

velocity range. 

db increases over the 

whole velocity 

range. 

Followed the expected 

trend but overestimated 

bubble size by up to 

twice the experimental 

value. 
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Subsequently, the impact of bubble size on mass transfer, reaction conversion and the transport 

disengaging height (TDH) were studied through the application of each of the aforementioned 

models. By doing so, the limitations of some of these correlations were highlighted, and the need 

of developing new models and a better understanding of fluidization under high temperature, 

pressure and velocity was demonstrated.      

The total entrainment rate was found to increase with velocity and pressure regardless of the used 

bubble size correlation which only affected its magnitude. The impact of bubble size on 

entrainment however was found to decrease as velocity increased. As for the effect of 

temperature, the total entrainment rate decreased with temperature at low velocities and increased 

at higher velocities.  

Using entrainment plots, TDH was found to be independent of the used bubble size correlation 

and vary with temperature, pressure and velocity.  Furthermore, by comparing the graphically 

estimated TDH values to some of the most common correlations, it was concluded that while 

many did not exhibit the expected dependencies, none provided acceptable values. Moreover, at 

high velocities, despite obtaining a large TDH value both graphically and by using the existing 

models, the overall changes in the total flux are negligible which suggests that sizing the 

freeboard accordingly might not be profitable. 

The need for further studies at extreme conditions was further illustrated through the use of the 

different bubble size correlations while computing the mass transfer interchange coefficient. This 

led to different results that sometimes opposed the expected trends from the literature. 

Finally, reviewing the effects of pressure and temperature on the conversion of methane in 

methane steam reforming with respect to each of the bubble size correlations emphasized the 

need of additional studies. From this simulation, it was observed once more that depending on the 

operating conditions and the used bubble size correlation, the obtained results could greatly differ 

from the expected trends.  

It is therefore safe to conclude that more work needs to be done on fluidization under high 

temperature, pressure and velocity, making the design of a reactor capable of operating under 

extreme conditions of great bearing. 
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CHAPTER 4 DESIGN OF THE FLUIDIZED BED REACTOR 

In this chapter, the complete and detailed design of the fluidized bed reactor will be presented. In 

section 4.1, the operating and design conditions will be presented. Section 4.2 will give a detailed 

description of the techniques and procedures used in the design while identifying the different 

reactor parts. Finally, section 4.3 will present a general description of the proposed process 

control of this reactor. 

4.1 Operating and Design Conditions  

As mentioned earlier, the main objective of this work is to design of a fluidized bed reactor that 

would allow flexible operation at high temperature and high pressure at several gas velocities in 

order to serve for the future development of new hydrodynamic models. To do so, a set of 

operating conditions as well as dimensions have been chosen prior to starting the design 

procedure. The operating conditions were chosen as an adequate extrapolation to industrial 

reality, while the reactor dimensions were chosen based on an existent reactor currently operating 

at high temperature in our laboratory while respecting the constraints defined by the compressor 

and the inherent limitations of the university experimental facility. The reactor’s operating 

conditions and dimensions are therefore as follows: 

The temperature will be varied from room temperature to 1000 oC and the pressure will range 

from atmospheric pressure up to 20 atm. The reactor’s bed diameter is 15 cm at the bottom with a 

freeboard diameter of 50cm. The gas velocity will range from 0.1 m/s up to 2 m/s in order to 

cover the bubbling and turbulent regime. The bed material will be sand or another type of catalyst 

with a mean particle size ranging from 60 μm up to 500 μm, so as to cover Geldart A and B 

particles, and a specific gravity ranging from 1 to 2.5g/cm3. The chosen fluidization medium will 

be compressed air which may or may not be mixed with other gases.  
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4.2 Reactor Design: Techniques and Procedures 

4.2.1 Windbox/Plenum Design 

4.2.1.1 Gas distribution  

If we start describing the different parts of a fluidized bed reactor by following the path of the 

gas, the first section that we will encounter is the plenum chamber or the wind box located under 

the distributor plate. 

The purpose of this section is to pre-distribute the gas uniformly before it passes the distributor 

plate [98]. Based on the location of the gas entry into the wind box, certain design maybe 

preferred over others [99]. Litz (1972) [100] developed correlations for horizontal and vertical 

gas entries. He assumed that a high velocity gas stream entering the plenum horizontally expands 

as a conical-free jet until it dissipates itself, hits the opposite wall, or have its upper edge strike 

the bottom of the distributor plate which can cause maldistribution. In case of vertical entry 

through a nozzle centered in the bottom, the high velocity gas stream would also expand as a 

conical-free jet until it dissipates itself, have its diameter coincide with the vessel diameter or hit 

a central portion of the plate causing maldistribution. In order to ensure uniform distribution of 

the gas, the gas entry point must be separated from the distributor plate by a distance Hplenum 

based on the criteria presented in table 18. 
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Table 18- Plenum Design Equations 

Gas Entry Condition Equation 

Horizontal  Dentry>Dplenum/100  

 

Hplenum = 0.2Dplenum + 0.5Dentry 

Dentry<Dplenum/100  

 

Hplenum = 18Dentry 

Vertical Dentry>Dplenum/36  

 

Hplenum = 3�Dplenum − Dentry� 

Dentry<Dplenum/36  

 

Hplenum = 100Dentry 

 

Litz used the assumption that gas enters the plenum chamber with a half angle of about 10 deg. 

The importance of plenum design has long been debated. While many believes that plenum 

design might not be critical if the bed-pressure-drop–to–grid-pressure-drop ratio is high enough 

[99], others such as Kage et al (1991) [101] believes that it plays a critical role as it can be used 

to predict bubble formation and eruption. 

4.2.1.2 Natural gas combustion 

As will be discussed in section 4.2.5, the windbox will also be used to burn natural gas at high 

pressure and therefore its volume must ensure total combustion in order to reduce CO emissions. 

Knowledge of the kinetics of natural gas combustion is therefore very important. 

Many different kinetic models can be found in the literature. For simplicity purposes, the global 

two-step reaction model by Dryer and Glassman [102] was used: 
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Table 19- Natural gas combustion reactions and kinetic models 

# Reaction Kinetic Model Kinetic Parameter 

1 𝐶𝐻4 +
3
2𝑂2 → 𝐶𝑂 + 2𝐻2𝑂 𝑟1 = 𝑘𝐶𝐻4𝐶𝐶𝐻40.7𝐶𝑂20.8 𝑘𝐶𝐻4 = 235𝑒𝑥𝑝 �−

198000
𝑅 �

1
𝑇 −

1
973�� 

2 𝐶𝑂 +
1
2𝑂2 → 𝐶𝑂2 𝑟2 = 𝑘𝐶𝑂 𝐶𝐶𝑂 𝐶𝑂20.25𝐶𝐶𝑂20.5 𝑘𝐶𝑂 = 371000𝑒𝑥𝑝 �−

171000
𝑅 �

1
𝑇 −

1
973�� 

 

4.2.2 Distributor Design 

Once the gas is pre-distributed uniformly in the wind box, it passes the distributor plate. 

In a fluidized bed reactor, the gas distributor or grid, serves many purposes and its design is often 

a key component for hydrodynamic studies. While having to provide stable and even fluidization 

across the reactor’s cross-section, the distributor must also minimize attrition of the solids and 

prevent them from falling into the wind box beneath. The distributor must also be capable of 

supporting the bed’s weight during shutdown and start-up [99].  Multiple research papers have 

been published on distributors, however very few have addressed its design at high temperature 

and high pressure. Before getting into the specific design criteria related to high temperature and 

high pressure, it is important to define some of the fundamental properties of gas distributors. 

Many different distributor models exist today with some used more than others depending on the 

reactor’s operating variables. Nonetheless, all distributors can be divided into three types based 

on the direction of the gas entry: upwardly, laterally, or downwardly.  

The most common type of distributor is the perforated plate which has an upwardly-directed flow 

[103]. Although used in many applications because of its simple fabrication, low price and easy 

design, the perforated plate was proven on many occasions to allow bed weepage to the wind 

box. While laterally and downwardly directed flow distributors, such as bubble cape or spargers, 

have been used to reduce weepage, their higher price has always been a major disadvantage [5]. 

Currently in our laboratory, a high temperature fluidized bed reactor is being operated efficiently 

with a bubble cap distributor and therefore for comparison purposes, and due to the advantages 
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that it has over perforated plates, the design of a bubble cap distributor will be presented in the 

following section along with a detailed design procedure.  

4.2.2.1 Distributor pressure drop 

Many variables have to be considered when designing a distributor plate. The first and upmost 

important variable is the pressure drop across the distributor, commonly known as ΔPd.  As 

explained earlier, fluidization occurs when a pressure drop is high enough to lift and suspend the 

solids by balancing the weight of the bed. This pressure drop must also be sufficient in order to 

provide equal distribution of gas flow through all pores and prevent temporary orifice blockage. 

One can therefore understand that a minimum pressure drop must exist across the distributor in 

order for the aforementioned conditions to be met. In most design books [5, 103], the pressure 

drop across the distributor is expressed as follows: 

ΔPd ≥ K ΔPb 

Where K is the grid pressure drop coefficient and ΔPb is the pressure drop across the bed which is 

a function of the minimum bed height, Lmf, the solid density, ρp, and the minimum bed voidage, 

εmf, defined as:  

∆Pb = g × ρp × Lmf(1 − εmf) 

At minimum fluidization, the bed voidage, εmf, corresponds to the loosest packing of a packed 

bed, which is cubic for uniform spheres and can be estimated as 0.476 [103]. Kunii and 

Levenspiel [1] summarized the effect of pressure and temperature on fluidization behavior 

observed by several researchers for beds of porous carbon powder, coal, char and uniformly sized 

glass beads: εmf was observed to increase slightly (1-4%) with a rise in operating pressure (up to 

80 bar) and with temperature for fine particles (up to 8% for temperatures up to 500 °C). εmf 

seemed however unaffected by T for coarse particles. One can therefore conclude that in our 

operating conditions, εmf can be safely considered constant with a value of 0.476. 

Many researchers have tried to identify the value of K and have concluded that it depends on 

different factors such as the distributor type, the reactor diameter, the minimum bed height, etc.  

The most common value of K that can be found in the literature [103] is that of Zenz (1969) who 

recommends the ratio of distributor to bed pressure drop be 0.3 for bubbling fluidized beds with 

upwardly and laterally directed flow and 0.1 for downwardly directed flow [104].  
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Quershi and Creasy[105] on the other hand reported that for pilot scale reactors, such as the one 

in question,  K tends to be a lot smaller. Using values obtained from prototypes and pilot scale 

plants, they found that in order for all holes to be operational, the pressure drop should obey the 

following rule for Geldart B: 

∆Pd
∆Pb

≥ 0.01 + 0.2 �1 − exp (
−0.5Dt

Lmf
)� 

With the value of K now known, it is important to be able to relate the pressure drop across the 

distributor to some of the fundamental design variables such as the number of holes, holes’ 

diameter, operating conditions, etc… in order to be able to design the most flexible distributor for 

our operating range. 

In order to relate the number of holes with the pressure drop across the distributor, the first 

variable to consider is the gas velocity, Uh, across one hole: 

𝑈ℎ = CD�
2ΔPgrid

ρg
 

  

CD is the discharge coefficient which can be found graphically to be about 0.6 for a shape edged 

orifice. However, since grids are not shaped-edged, CD has a higher value of about 0.8 [99].  

The second variable to consider is the volumetric flow rate of the gas, Q, which can be can be 

expressed as a function of the number of holes, N, holes’ diameter, dh, and the gas velocity Uh as 

follow: 

𝑄 = N
π dh2

4
Uh 

By combining this relation with the definition of the gas velocity across one hole, we can obtain a 

relation for the pressure drop across the distributor with respect to the operating variables. 

∆𝑃𝑑 = �
4Q

Nπdh2CD
�
2

�
ρg
2 �
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Since temperature, pressure and gas velocity will be varied depending on the intended 

experiment, it is fundamental to know how each of the variables in this equation is affected by 

the operating conditions. 

While Q is directly proportional to the velocity, the gas density, ρg, is proportional to the pressure 

and inversely proportional to the temperature. One can therefore conclude that the pressure drop 

across the distributor, ∆Pd, is proportional to the pressure, the square of the velocity, and 

inversely proportional to the temperature. 

Using this equation, the value of dh or N can be found by fixing the other. However, in order to 

do so, it is important to be aware of any existing restrictions on the number of holes and hole 

diameter. 

Concerns regarding hole diameters differ based on the nature of the used distributor. For bubble 

cap distributors, in order to ensure that the pressure drop across the header is at an acceptable 

level, the following criteria should be met [103]: 

�
Dh

2

Nhdh
2�

2

> 5 

Where Dh is the diameter of the header.  

4.2.2.2 Bubble cap distributor dimensioning and spacing 

Very limited information exists on the exact equations used in the sizing of bubble cap 

distributors, with most researchers basing their design on previous existing models. Sandersson 

(2002) [106] wrote in his thesis that for comparison of results, distributors must be geometrically 

similar. The schematics of the bubble cap distributor currently used in our laboratory can be 

found in Figure 34 below. 
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Figure 34- Schematics of bubble cap distributor 

 

Despite the remark of Sandersson, multiple variables such as the plate thickness, the distance 

between the bubble caps and the wall, and the holes of the distributor cannot be designed simply 

by geometric similarities and require different design techniques due to their dependency on 

temperature, pressure and velocity. Therefore, in order to design our new bubble cap distributor, 

a procedure must be developed for each of these variables in addition to that of dh and Dh 

discussed earlier. 

4.2.2.2.1 Bubble cap spacing 

The manner in which the gas flows through the distributor can have a significant impact on its 

design. Gas flowing from the holes is usually in the form of a continuous jet. The jet length is 

important in order to determine how far to keep internals and minimize erosion. Karri (1991) 

[103, 107] noted that the jet penetrations for various orientations at both ambient and extreme 

conditions can be approximated by: 

Lup ~ 2 Lhor ~ 3 Ldown 
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Figure 35- Jet configurations 

 

Many different correlations have been developed over the years for different orientations and 

operating conditions. In his thesis, Sauriol (2011) [108], cited many of the different jet 

correlations along with their respective conditions.  One correlation that is of great interest to this 

design is that by Blake et al (1990) [109] for upwardly directed jets which seems to be applicable 

for high temperature (20-700 °C), high pressure (1, 3. 4-51 atm) and for Geldart A, B and D 

particles. 

Lup
dh

= 110�
Uh
2

g dh
�
0.304

�
𝜌𝑔
𝜌𝑝
�
0.513

 �
𝜌𝑠 𝑈ℎ 𝑑𝑝

𝜇 �
−0.189

 

Being that this correlation is for upwardly directed jets, a combination with the relation of Kari 

(1991) described earlier, can provide results for all jet configurations. 

Consequently, knowing the holes diameter and height can lead to the determination of the 

required spacing between each cap and the wall to minimize erosion by using simple geometry. 

4.2.2.2.2 Plate thickness, A 

The plate should be able to carry the weight of the solids during start-up and shutdown, and 

handle the maximum pressure drop during operation. The thickness calculations will be 

performed based on which ever of these two applied forces is higher. 

The force due to the weight of the solids, W, can be calculated by: 

𝑊 = ρpLmfAt(1 − εmf)g 
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The force due to the pressure drop, F∆P, can be calculated by: 

𝐹∆𝑝 = ∆PdAt 

Several methods exist in order to determine the minimum required plate thickness to support this 

load, two of which are presented below.  

The first method was developed for perforated plates used in shell and tube heat exchangers 

[110]: 

tp = CphDt�
∆Pd
λfp

 

Where λ is the ligament efficiency which represents the material between the holes that holds 

them together: λ=(Lh-dh)/ Lh 

fp is the maximum allowable design stress for the plate which can be approximated by (1/3.5) 

times the yield strength [111]. 

Cph is the design factor which depends on the edge support of the grid (clamped, supported, etc.) 

and can be approximated to 0.4 for clamped plates [111].  

The second method used was developed for circular supported plates [110]. 

σ =
3∆Pdr2(3 + ν)

8 tp2
 

Where r is the plate radius, ν is Poisson’s ratio, and σ, the applied stress on the plate. This 

equation can be applied with the yield strength of the plate material in order to determine the 

minimum required thickness to avoid any permanent deformation.  

For safety purposes, the largest thickness obtained, using both methods, will be chosen in the 

design. 
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4.2.3 Particle Separation 

Once the gas is uniformly injected into the reactor by the distributor plate, fluidization starts. As 

mentioned earlier, bursting of bubbles at the surface of the bed ejects particles into the freeboard 

to various heights. In order to prevent the bed from being depleted, a solid collection device is 

usually placed inside the freeboard so that entrained material can be returned to the bed. Two 

types of gas-particle separation units are often recommended in the literature; these are cyclones 

and filters [112]. Cyclones have been globally renowned because of their simple structure, low 

cost and ease of operation despite their low efficiencies for small particles [113]. Filters, despite 

remaining a new concept in fluidized beds [114], has emerged as a promising technology for the 

separation of small particles. Therefore, in order to allow flexibility of our reactor, an internal 

cyclone and filter will be placed in series in the freeboard as illustrated in Figure 36.  

 

Figure 36- Cyclone and filter disposition in the freeboard 

 

A review on both cyclone and filters is presented below, along with their design procedure.  

However, before presenting these design procedures, it is important to introduce another variable, 

the dust concentration, c (g/m3), which is fundamental in the design of both cyclone and filter. 
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4.2.3.1 Dust loading 

As we recall in Chapter 3, Ei is the entrainment rate which can be calculated based on several 

parameters, among which the diameter of the reactor. In order to reduce the amount of entrained 

solids out of the reactor, in addition of having a particle separation device, a common practice is 

to increase the diameter of the freeboard [115, 116]. As observed by Smolders and Baeyens 

(1997) [69], increasing the freeboard diameter reduces the gas velocity by a factor (Dt/Dfb)2. This 

reduction in velocity leads to a significant reduction of the entrainment flux.  

Using the relation by Smolders and Baeyens (1997), it is possible to obtain an equation that 

relates the dust load, c, the entrainment rate, Ei, the reactor diameter, Dt, and the freeboard 

diameter, Dfb, as follows: 

𝑐 =
𝐸𝑖𝜌𝑔
𝑈

�
𝐷𝑡
𝐷𝑓𝑏

�
2

 

4.2.3.2 Cyclones 

A gas cyclone is a gas-particle separation device where the gas-solid stream is introduced 

tangentially into a cylindrical body, therefore creating a vortex which in turns pushes any particle 

denser than the carrier gas towards the walls of the cyclone while the gas exits at the top. A 

typical cyclone separator can be viewed in Figure 37. 

 

Figure 37- Typical cyclone configuration 
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Several cyclone models have been reported in the literature [117, 118] with the most common 

listed in table 20. 

 

Table 20- Most common cyclone dimensions 

  High Efficiency Conventional High Throughput 

Model number  (1)           (2) (3)         (4) (5)           (6) 

Body Diameter Dcyc/Dcyc 1 1 1 1 1 1 

Height of Inlet  Hcyc/Dcyc 0.5 0.44 0.5 0.5 0.75 0.8 

Width of Inlet  Wcyc/Dcyc 0.2 0.21 0.25 0.25 0.375 0.35 

Diameter of Gas Outlet  Decyc/Dcyc 0.5 0.4 0.5 0.5 0.75 0.75 

Length of Vortex Finder Scyc/Dcyc 0.5 0.5 0.625 0.6 0.6 0.875 

Length of Body Lbcyc/Dcyc 1.5 0.4 2 1.75 1.5 1.7 

Length of Cone Lccyc/Dcyc 2.5 2.5 2 2 2.5 2 

Diameter of Dust Outlet Ddcyc/Dcyc 0.375 0.4 0.25 0.4 0.375 0.4 

 

As can be clearly seen, all cyclone dimensions are directly related to the cyclone body diameter, 

Dcyc. In order to determine this diameter so as to design the most efficient cyclone, several key 

parameters must be calculated. 

The pressure drop across the cyclone is often regarded as one of the most important performance 

parameters as it is directly related to the separation efficiency.  

Generally, the pressure drop is defined as the difference of static pressure between the inlet and 

the outlet of the cyclone and is usually related to the square of the gas flowrate by a 

dimensionless group referred to as the Euler number, Eu. 

∆𝑃𝑐𝑦𝑐 = 8𝜌𝑔𝐸𝑢 �
𝑄

𝜋𝐷𝑐𝑦𝑐2
�
2

 

The Euler number, also known as the resistance coefficient, represents the ratio of pressure to 

inertial forces acting on the gas flow and is constant for a given cyclone geometry or design.  Eu 
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is usually measured experimentally with clean air; however, in case of the lack of test data, 

different correlations exist in the literature.  

Leith and Mehta [119] reviewed several theoretical expressions and concluded that the 

correlation by Shepherd and Lapple [120] (given below) was the best available due to its 

simplicity and high accuracy. 

𝐸𝑢 = 𝜋2 �
𝐷𝑐𝑦𝑐
𝐿𝑐𝑦𝑐

� �
𝐷𝑐𝑦𝑐
𝐻𝑐𝑦𝑐

� �
𝐷𝑐𝑦𝑐
𝐷𝑒𝑐𝑦𝑐

�
2

 

Interestingly, Eu tends to decrease when significant amounts of solids are present. In order to 

account for this effect, several researchers have tempted to develop correlations relating Eu with 

the dust concentration, c (g/m3) [121, 122]. According to Romeo et al [121], the best available 

method to account for dust loading was developed by Baskakov et al (1990) [122] and is 

presented below.  

𝐸𝑢 = 𝐸𝑢𝑐 �
1

3.1𝑐0.7 + 0.67𝑐� 

Euc refers to the Euler number calculated previously using the correlation by Shepherd and 

Lapple. 

Furthermore, Romeo et al observed that Eu dropped after time due to fouling by a factor, Kfouling, 

from 0.7 to 0.9, and concluded that Eu can be expressed as: 

𝐸𝑢 = 𝐸𝑢𝑐 �
1

3.1𝑐0.7 + 0.67𝑐�𝐾𝑓𝑜𝑢𝑙𝑖𝑛𝑔 

The second key parameter needed in order to determine the cyclone body diameter Dcyc, is the 

cyclone efficiency, η. 

𝜂𝑖 =
𝑥𝑖

1 + (𝑑𝑝50/𝑑𝑝𝑖)
 

Where xi is the particle size fraction, which can be obtained from the particle size distribution. 

dp50, which represents the cut size for which 50 percent of solids of a given size are collected 

[118], is related to a dimensionless group referred to as the Stokes number, Stk50 as follows: 

𝑆𝑡𝑘50 =
4𝑑𝑝50

2𝜌𝑝𝑄
18𝜇𝜋𝐷𝑐𝑦𝑐3
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The Stokes number, Stk50, is defined as the ratio of the centrifugal (less buoyancy) to the drag 

force, both acting on a particle of size dp50. Finally, a direct relation exists between Eu and Stk50 

[9] as follows: 

𝐸𝑢 = �
1

𝑆𝑡𝑘50
 

4.2.3.3 Filters 

Following the cyclone, a filter will be placed in series. The most important parameter in gas-solid 

filters is the pore size which is directly proportional to filter efficiency. Coagulation of particles 

and filter cake, have also been reported to affect filter efficiency [114]. 

It is however important to note that due to the high temperature nature of our reactor, very few 

information have been reported in the literature regarding gas-solid filters at elevated 

temperatures.    

A gas filter manufacturing company was therefore contacted in order to provide invaluable 

insight on the different available filters. The specification of the chosen filter can be found in 

section 5.1.3. 

4.2.4 Reactor Shell and Refractory Design 

The thickness of the reactor metal shell will be computed based on the restrictions by the 

American Society of Mechanical Engineers (ASME) which dictates that for cylindrical vessels 

and piping under high pressure [123], the minimum allowable thickness should be taken as the 

greater value between the one obtained under circumferential stress and the one calculated for 

longitudinal stress. The equation to compute both methods are listed below in table 21. 
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Table 21- Circumferential and longitudinal stress equations 

Stress Type Equation 

Circumferential 𝑡𝑠ℎ𝑒𝑙𝑙 =
𝑃. 𝑟

σ.𝐸 − 0.6𝑃
 

Longitudinal 𝑡𝑠ℎ𝑒𝑙𝑙 =
𝑃. 𝑟

2σ.𝐸 + 0.4𝑃
 

 

It is however important to note that certain rules apply in order to use this method. At high 

pressure, the American Society of Mechanical Engineers restricts shell surface temperatures to 

specific values depending on the nature of the metal. Special care must therefore be taken when 

choosing the appropriate refractory in order to ensure that this limit is not exceeded.  

Straight forward heat flux balances (table 22) are used in order to determine the required 

thickness of the different refractory, by modelling the reactor as a cylinder with multiple layers 

(Figure 38).  

Gas at Ta TW at the wallKAKBKCKD

H

Ta

r0

rA

rB

rD

rC

T1
T2

T3 Tw

T0

T∞

r0 : Internal radius of reactor
A : Refractory 1
B : Refractory 2
C : Refractory 3
D : Metal wall
H : Height of reactor
Ta: Gas temperature
Tw: Wall temperature
T∞: Ambient temperature 
K : Thermal conductivity  

Figure 38- Reactor Shell Modeling 
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Table 22- Heat Flux Balance 

Layer Heat flux balance 

Refractory 1 
𝑇0 − 𝑇1 =

𝑟0𝑞0𝑙𝑛 �
𝑟𝐴
𝑟0
�

𝑘𝐴
= 𝑟0𝑞0𝑅𝐴 

Refractory 2 
𝑇1 − 𝑇2 =

𝑟0𝑞0𝑙𝑛 �
𝑟𝐵
𝑟𝐴
�

𝑘𝐵
= 𝑟0𝑞0𝑅𝐵 

Refractory 3 
𝑇2 − 𝑇3 =

𝑟0𝑞0𝑙𝑛 �
𝑟𝐶
𝑟𝐵
�

𝑘𝐶
= 𝑟0𝑞0𝑅𝐶 

Carbon steel 
𝑇3 − 𝑇4 =

𝑟0𝑞0𝑙𝑛 �
𝑟𝐷
𝑟𝐶
�

𝑘𝐷
= 𝑟0𝑞0𝑅𝐷 

Metal Wall  𝑇𝑤 − 𝑇∞ =
𝑞0
ℎ
𝑟0
𝑟𝐷

= 𝑟0𝑞0𝑅∞ 

h is the natural convection coefficient 

 

4.2.5 Reactor Heating System 

In order to achieve the required operating temperatures, a suitable heating system must be used. 

Currently in our laboratories, a high temperature fluidized bed reactor is being operated using a 

natural gas burner. In order to achieve higher temperatures inside the reactor, natural gas or 

propane is directly burned inside the bed. Unfortunately, due to large expenses related with high 

pressure burners, this system can not be applied to a reactor at elevated pressures. Furthermore, 

with electrical heaters also proving to be very expensive when covering the full gas velocity 

range in question, a cheaper heating method had to be improvised.  
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Combining both of the aforementioned technologies, a high pressure heating system was 

designed and will be connected to the windbox. This heating system, shown in Figure 39, 

comprises of an insulated pipe where a high pressure electric heater capable of withstanding low 

flowrates is attached. This electrical heater will be used to preheat the pipe until the auto-ignition 

temperature of natural gas is achieved. At this point, natural gas will be fed to the pipe along with 

compressed air. The amount of natural gas will be varied automatically until the desired 

temperature is achieved inside the windbox. Several injection ports will be located on the pipe to 

allow flexible temperature control and ensure that the design temperature is not exceeded in the 

pipe. 

Natural Gas Ports

Electric Heater

Air Ports

Air Ports

 

Figure 39- Heating System schematics 

 

In order to design such a system, knowledge of the flame length can be crucial. In fact, in any 

burner system design, the flame’s ability to burn persistently at a given position is characteristic 

of its stability [124]. The heating pipe must therefore be designed to have at least the same length 

as the flame. Blake et al (1999) [125] found a relation between the flame length, Lflame, and a 

variable called the theoretical flame dimension, dflame. 

Blake et al (1999) modelled the theoretical flame dimension, dflame, as a function of the mass 

flowrate of the gas, mgas, the density of the flame product, ρfp, the momentum of the fuel jet, J, 

and the Shvab-Zek’dovich variable, Zf. 
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𝑑𝑓𝑙𝑎𝑚𝑒 =
2𝑚𝑔𝑎𝑠

𝑍𝑓�𝜋𝜌𝑓𝑝𝐽�
0.5 

Where J is the fuel jet momentum, defined as the product of the mass flowrate of the gas, mgas, 

and the velocity of the fuel, Ufuel 

The Shvab-Zek’dovich variable, Zf, is directly related to the stoichiometric air-fuel ratio, AFR 

such as: 

𝑍𝑓 =
1

1 + 𝐴𝐹𝑅
 

Blake et al (1999) related the flame length, Lflame, and the theoretical flame dimension, dflame, by 

the Froude number, Fd such as 

𝐹𝑑 =
4𝐽

𝜋𝜌∞𝑑𝑓𝑙𝑎𝑚𝑒
3 

Where ρ∞ is the unperturbed density of the gas 

𝐿𝑓𝑙𝑎𝑚𝑒 = �6𝑑𝑓𝑙𝑎𝑚𝑒 × 𝐹𝑑
1
5          𝑓𝑜𝑟 𝐹𝑑 < 10

11𝐹𝑑                          𝑓𝑜𝑟 𝐹𝑑 ≥ 10
� 

4.3 Process Description 

Due to its elevated pressure and temperature, extra precautions must be taken when operating the 

reactor and therefore an understanding of the operating process is fundamental. With the design 

of the fluidized bed reactor and its heating system presented in the previous section, the next step 

is their integration in the process.  

Compressed air will be provided by one to two compressors capable of pressurizing the reactor 

and compensate for the pressure drop created by the distributor plate. The compressors will feed 

a tank that will be used to deliver a constant pressure of 30 bars, via pressure regulator, V-101. In 

order to obtain the desired gas flowrate inside reactor, a valve V-140 will be adjusted by several 

transmitters. By using a valve downstream of the reactor, V-120, the pressure of the gas will be 

controlled.   
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Solid particles will be inserted inside the reactor prior to operation in order to achieve the desired 

static bed height. In case of operation under atmospheric conditions and a superficial gas velocity 

of 0.1 m/s, the solids could also be injected in the freeboard region. 

As mentioned in the previous section, in order to heat up the fluidized bed reactor, a heating 

system was developed and will be connected to the windbox. This heating system comprises of 

an insulated pipe where a high pressure electric heater capable of withstanding low flowrates is 

attached. This electrical heater will be used to preheat the pipe until the auto-ignition temperature 

of natural gas is achieved. At this point, natural gas from a pressurized cylinder (~2260 psia that 

will be controlled with a pressure regulator) will be fed to the insulated cylinder along with the 

compressed air from the compressors. The amount of natural gas will be varied automatically 

until the desired temperature is achieved inside the windbox.  

In order to reach a fluidized bed temperature of 1000oC, natural gas from a second pressurized 

cylinder will be injected directly inside the bed of solids.  This natural gas injection will only be 

performed in case the detected bed temperature is equal or above 800oC as specified by the 

National Fire Protection Association (NFPA 85) [126]. The mass flow rate of the injected natural 

gas inside the bed will therefore be controlled via two temperature measurements inside the 

fluidized bed as well as oxygen measurement from a gas analyzer located downstream of the 

reactor. 

In order to prevent or minimize particle elutriation out of the reactor, a cyclone and a high 

pressure filter will be used in series inside the freeboard. The cyclone will remove most particles 

(~95 - 99%) and its efficiency will increase with increasing gas flow rate. On the other hand, the 

high-temperature filter will remove most of the smaller particles and fines. If clogging of the 

filters occurs, the fluidized bed reactor system will be shutdown (compressors, heating system, 

etc) and a manual backwash will be performed to clean the filters.   

The exhaust gas will be purged via the existing gas manifold inside the lab, which operates at a 

slightly sub-atmospheric pressure with a fan and discharges onto the roof of the building. 

Under high temperature and high pressure operation, water atomizing nozzles will be used to cool 

down the gas at the reactor outlet. Water injection will occur in a steam trap upstream of the 

valve controlling the reactor pressure. Downstream of this valve, the temperature will quickly 

drop to acceptable levels prior to reaching the fan. 
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Finally, in order to separate this quantity of water from the air, a detention or flash tank will be 

placed downstream of the reactor, where by lowering the gas pressure to atmospheric, 

condensation will occur. The gas outflow of the tank will be connected to the existing manifold 

that discharges to the atmosphere. An overview of the process can be seen in the process flow 

diagram below (Figure 40). 
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Figure 40- Process Flow Diagram 
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CHAPTER 5 FINAL REACTOR DESIGN AND PROCESS 

DESCRIPTION 

In section 5.1, the final reactor design results will be presented and discussed. A detailed 

description of the process introduced in chapter 4 will be presented in section 5.2, followed by 

the reactor operating procedure in section 5.3.  

5.1 Final Reactor Dimensions 

5.1.1 Windbox final dimensions 

For comparison purposes, the windbox height was taken as the same as that of the existent high 

temperature reactor currently in operation in the lab (Hplennum=0.25m). However, due to the 

restrictions presented earlier, this height had to be verified using the design equation in section 

4.2.1. Having that combustion conversion increases with temperature and decreases with 

velocity, the natural gas combustion kinetics were used in order to determine methane conversion 

in the chosen windbox volume at a temperature of 800C (the lowest permissible combustion 

temperature according to NFPA 85 [126]) , a superficial gas velocity of 2m/s and different 

pressures. The purpose of this simulation is to verify whether the volume obtained using the 

chosen height is enough to achieve complete combustion using a CSTR model at the worst 

conditions. A summary of these findings is presented in table 23 below. 

Table 23- Methane combustion conversion with respect to pressure 

P(atm) Methane Conversion (%) 

1 99.996 

10 99.957 

20 99.952 

Judging by the results, it is clear that the combustion reaction occurs to completion in the chosen 

volume. 
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Furthermore, with the gas introduced horizontally, the equation of Litz was also used to confirm 

the chosen dimensions. As we recall, this equation is used to compute the minimum necessary 

plenum height in order to ensure gas distribution. With a gas entry diameter of 0.051m (2inches), 

the equation of Litz resulted in a minimum windbox height of 0.085m which is largely inferior to 

the chosen 0.25m. This further confirms that the final windbox height obeys the gas distribution 

rule and provides complete natural gas combustion.  

5.1.2 Distributor final dimensions 

5.1.2.1 Holes final dimensions 

As we recall from chapter 3, the first and upmost important variable is the pressure drop across 

the distributor, ΔPd, which is defined for bubble cap as:  ∆Pd
∆Pb

≥ K 

Where 𝐾 = 0.01 + 0.2 �1 − exp (−0.5D
Lmf

)� and ∆Pb = g × ρs × Lmf(1 − ϵmf) 

With a minimum bed height, Lmf, of 1m, and sand particles with a density of 2560kg/m3, K was 

found to equal 0.024.  

Currently a bubble cap distributor with 9 risers, each containing 4 holes, is being used in the 

existing high temperature fluidized bed reactor in our lab. For comparison purposes, the number 

of caps in our high temperature and pressure reactor was also taken as 9 with 4 holes each. 

Therefore, with K and N known dh could be computed using the definition of ΔPd 

∆𝑃𝑑 = �
4Q

Nπdh2CD
�
2

�
ρg
2 �

 

A first reflex might be to calculate dh by ensuring that the lowest pressure drop (T=1000C, 

P=1atm, U=0.1m/s) is at least equal to K. Unfortunately, with ∆Pd proportional to the pressure, 

the square of the velocity, and inversely proportional to the temperature, this practice will result 

in an extremely large maximum pressure drop at a temperature of 25C, a pressure of 20atm and a 

superficial gas velocity of 2m/s. With a maximum allowable pressure drop of only 6atm 

throughout the reactor due to the compressor restrictions, it is clear that a single distributor plate 

might not be able to cover all of the suggested operation range. Accordingly, a Matlab program 

was constructed to provide the optimal design conditions that would cover the largest operation 
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range while respecting the aforementioned restrictions. Since the pressure drop across the cyclone 

is directly related to its design (section 5.1.3), it had to be incorporated in the Matlab program as 

well, in order to respect the maximum the pressure drop value of 6atm across the reactor. Using 

this simulation, dh was calculated as 2.9mm and Dh as 8.72mm. In Appendix 6, a series of tables 

are provided, where the total pressure drop across the reactor for every temperature, pressure and 

velocity within the operation range is presented. The operating conditions, where ΔPd/ΔPb falls 

under K, are highlighted in yellow in these tables. 

5.1.2.2 Final bubble cap spacing and dimensions 

As explained in section 4.2.2.2, geometric similarity was used in order to determine the hole 

height, B, illustrated in Figure 34. In order to determine the necessary distance between the 

bubble caps and the wall, the fist step was to calculate the maximal horizontal jet length using the 

equation of Blake et al (1990). Based on this equation, jet length is highest at a pressure of 

20atm, a velocity of 2m/s and a temperature of 25C and has a value of 0.054m. Unfortunately due 

to physical restrictions related to the chosen diameter of the reactor, such a distance could not be 

fulfilled and another solution had to be determined to avoid erosion of the refractory. In order to 

deal with this restriction, a tilt angle could be applied to ensure that the jet would not be indirect 

contact with the walls. Furthermore, by doing so, it is also possible to minimize stagnant zones 

during fluidization [127]. With the distributor currently in use in the lab having a tilt angle of 30°, 

this same angle was chosen for this design as illustrated in Figure 41 below.  

 

Figure 41- Final bubble cap dimensions 
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5.1.2.3 Final distributor thickness 

As we recall in 4.2.2.2.2, the plate should be able to carry the weight of the solids, and handle the 

maximum pressure drop during operation. Using a minimum bed height of 1m and a maximum 

pressure drop of 5atm, the force due to the latter was found to be an order of magnitude higher 

than that due to the weight of the solids (9kN compared to 0.2kN). Using the force due to the 

highest pressure drop, different thicknesses were calculated and compared based on each of the 

methods presented in section 4.2.2.2.2 (shell and tube heat exchangers perforated plate method 

and the circular supported plate method). Using stainless steel as the material of construction, the 

values presented in table 24 were applied in both methods. Furthermore, Chen, Young and Uy 

(2006) [128] studied the behaviour of high strength structural steel at elevated temperatures and 

showed that at 900C, yield strength can is reduced by a factor of up to 91%. This factor was also 

incorporated in our calculations. 

Table 24- Stainless steel properties 

 

 

Using the shell and tube heat exchangers perforated plate method and the circular supported plate 

method yielded thicknesses of 2 cm and 1cm respectively. For safety purposes, the largest value 

was selected. With an additional 20% safety factor, a final plate thickness of 1inch (2.54cm) was 

chosen. A schematic of the distributor were provided by our technician can be seen in Appendix 

1. 

  

Material of construction Stainless steel 

Poissons ratio ν 0.305 

Yield strength 502MPa 

Yield strength at 900C 45MPa 
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5.1.3 Cyclone and filter final dimensions 

As mentioned in section 4.2.3, a cyclone and a filter will be placed in series in order to efficiently 

cover the whole particle size range. After contacting several filter companies, the best option for 

an operating temperature of 1000C is the Fecralloy Metal Fiber filter which can provide 100% 

separation efficiency at 6μm. This filter has an outside diameter of 4.7 inch, a total length of 39 

inch and a maximum pressure drop of 1psi over the superficial velocity range of 0.1 to 2m/s. 

As far as the cyclone is concerned, the entrained mass flux was computed for both sand and FCC 

particles using the entrainment model of Choi presented in Chapter 3.  As we recall, based on this 

correlation, entrainment was found to increase with gas velocity and pressure and decrease with 

temperature. Moreover, for safety purposes, the bubble size correlation of Cai et al (1994) 

introduced in that same chapter was used due to its application at high velocity and pressure. 

Accordingly, the highest and lowest mass flux values of sand and FCC are therefore presented in 

table 25.  

With these values known, the equations in section 4.2.3.1 were used to design the cyclone.  In 

order to achieve the highest separation efficiency, model (1) in table 20 was chosen. Furthermore, 

with a maximum allowable pressure drop of 6atm across the reactor, a Matlab program was 

constructed to provide the optimal cyclone design. However, since the pressure drop across the 

distributor is directly related to its design (section 5.1.2), the latter had to be incorporated in the 

Matlab program as well in order to respect the aforementioned pressure drop restrictions. 

Finally, using the computed cyclone dimensions presented in Figure 42 below, the collection 

efficiency was calculated and is also presented in table 25.  

As mentioned earlier, in Appendix 6, a series of tables are provided for the pressure drop across 

the reactor for every temperature, pressure and velocity within the operation range. Once more, 

the operating conditions, where ΔPd/ΔPb falls under K, are highlighted in these tables. 
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Table 25- Cyclone simulation results 

Temperature 

(C) 

Pressure 

(atm) 

Velocity 

(m/s) 

Solid 

Type 

Particle 

density 

(kg/m3) 

Average 

particle 

size (μm) 

Mass 

flux 

(kg/m2s) 

Collection 

Efficiency 

(%) 

25 20 2 FCC 1450 60 4.1 e-1 98.4 

1000 1 0.1 FCC 1450 60 ~0 95.2 

25 20 2 Sand 2560 300 1.9e-1 99.73 

1000 1 0.1 Sand 2560 300 ~0 99.2 

 

 

Figure 42- Final cyclone dimensions 
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5.1.4 Reactor shell and refractory final dimensions 

Carbon steel was chosen as the reactor shell material of construction with all relevant design 

variables stated in table 26 below. The thickness of the reactor metal shell was computed based 

on the restrictions by the American Society of Mechanical Engineers (ASME) presented in table 

21. For safety reasons, a design pressure of 30atm was used. Furthermore, the ASME also 

dictates that under elevated pressures, carbon steel temperature must not exceed 260C, and 

therefore the material properties were taken under this condition.  

In order to ensure that this temperature is never reached at the wall, an insulation layer must be 

applied. With the high temperature fluidized bed currently in use in the lab being operated at up 

to 1000C, the same three refractory layers were chosen for this reactor due to their proven 

reliability. They are respectively: Kricon30, Kawool700 and Dynaguard Microporous insulation 

(table 27). A Matlab program was constructed to find the optimum and cheapest combination of 

these insulation layers to prevent the reactor wall temperature from reaching 260C. The final 

results are listed in table 27 below. In order to design for the worst possible case, temperature was 

assumed to only vary in the axial direction, and a 20% safety factor was used (T=1200C). 

Furthermore, the temperature at the inner wall was taken as the operating temperature. A full 

schematic of the reactor was provided by the university’s technician and is presented in Appendix 

1. 
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Table 26- Carbon steel properties 

Material of construction Stainless steel 

Poissons ratio ν 0.29 

Modulus of elasticity, E 202GPa 

Modulus of elasticity, E at 260C 194GPa 

Yield strength 207MPa 

Yield strength at 260C 197MPa 

 

 

Table 27- Reactor wall and refractory thickness simulation results 

Layer Thermal Conductivity 

(W/m.K) 

Thickness(m) Temperature 

(C) 

Kricon30 3.317 0.057 1170 

Kawool 700 0.1 0.051 532 

Dynaguard Microporous 

insulation 

0.027 0.011 111 

Carbon Steel 33 0.02 111 
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5.1.5 Heating system final dimensions 

The high pressure heating system comprises of an insulated pipe where an electric heater capable 

of withstanding low gas flowrates will be used until the auto-ignition temperature of natural gas 

is achieved. At this point natural gas will be fed to the pipe along with compressed air. The 

chosen electric heater has a diameter of 2inches and is capable of providing 900C at 30atm and 

11SCFM. Similarly to the reactor shell, the outer wall temperature of the heating element must be 

lower than 260C. However, due to the size of the windbox on which the heater will be attached 

horizontally, the chosen insulation thickness must be as small as possible. Furthermore, similarly 

to the reactor, the shell was designed according to the ASME specification listed in table 21 and 

the metal properties in table 26. In order to comply with these criteria, two layers of refractory 

were chosen: BTU-block and Rescocast 8 (table 28). A Matlab program was constructed to find 

the optimum and cheapest combination of these insulation layers to prevent the reactor wall 

temperature from reaching 260C while limiting the total thickness to 6inch. The final results are 

listed in table 28. In order to account for the worst possible case, the design temperature was 

taken as 1200C at the inner wall and was once again assumed to only vary in the axial direction.  

 

Table 28- Heating system wall and refractory thickness simulation results 

Layer Thermal Conductivity (W/m.K) Thickness(m) Temperature (C) 

Rescocast 8 0.51 0025 1063 

BTU-Block 0.04 0.023 104 

Carbon Steel 33 0.013 104 

 

With the insulation chosen, the next step was to determine the length of the heating system. Since 

methane was proven to undergo complete combustion in the windbox (section 5.1.2.3), the main 

design criteria of the heating system length is the flame size.   
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Using the equation presented in section 4.2.5, a Matlab program was constructed to compute the 

maximum flame temperature while taken into consideration heat loss across the refractory layers. 

The resulting maximum flame length was calculated as 0.73m at atmospheric pressure, a gas 

superficial velocity of 2m/s inside the reactor, and a stoichiometric air-fuel ratio of 16.8. 

Finally, in order to allow flexible temperature control, several injection ports were placed along 

the heating pipe. The final dimensions of the heating system are presented in Appendix 2. Once 

again the schematics were provided by the university’s technician.  

5.2 Detailed Process Description 

After conducting a Hazard and Operability study (HAZOP), piping and instrumentation diagrams 

were constructed for this reactor and are located in Appendix 3. The process description is 

divided into several parts, each referring to one of the P&IDs. A list of all stream lines, valves, 

transmitters and equipments is located in Appendix 4 along with their specifications.  

For a more general process summary, please refer back to section 4.3.  

5.2.1 P&ID0001: Compressor System 

The first P&ID is the compressor system which will be used to achieve the required high 

pressure. In this system, 3 reciprocating compressors, C-101/C-102/C-103, are each equipped 

with a sound level silencer to reduce the noise level to 68 dB(A). Air flows out of the 

compressors through a high pressure filter F-101 to ensure that gas is lube and oil free before 

being fed to the tank T-101.To ensure that the pressure limits are respected, T-101 is equipped 

with a pressure switch high PSH 1 and a pressure switch low PSL 1. In case of an uncontrolled 

pressure increase, T-101 is also equipped with a pressure relief valve, V-102. Downstream of T-

101, the pressure is regulated using the pressure regulator V-101 on stream 300 CS 001. This 

valve will be set to a fixed discharge pressure of 30 barg. Downstream of this valve, the pressure, 

temperature and flow will be monitored respectively by the transmitters TT14, PT4 and FT1. An 

oil water separator S-101 is located on the drain stream downstream of the compressors and the 

tank T-101 in order to ensure that water can be disposed of safely. Stream 300 CS 001 is dived in 

two streams (300 CS 003 toward the fluidized bed reactor and 300 CS 002 towards another 
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system) using a 3 way valve V-108. 300 CS 003 is connected to the high-pressure heating system 

H-101 which is attached to the windbox of the fluidized bed reactor. 

5.2.2 P&ID0002: Fluidized Bed Heater and Windbox 

The second P&ID comprises of the fluidized bed heater and windbox. In this diagram, two 

natural gas trains can be observed. Train 1 (300 CS 004) provides natural gas from a pressurized 

cylinder (2260 psig). The pressure downstream of this cylinder is controlled via a pressure 

regulator V-109 while the flow is regulated by a solenoid valve V-139.  

A sequence of valves are located on stream 300 CS 004 as recommended by NFPA 85 for safety: 

A ball valves V-110 is placed for manual control of the natural gas flow and a safety shut-off 

valves (V-111), controlled by a pressure switch low and a pressure switch high, is also present in 

order to automatically shut-off the gas when pressure is outside the acceptable limits. A venting 

line (300 CS 028) is located downstream of V-109 to prevent backflow towards the natural gas 

cylinders. An automated valve V-146 is located on 300 CS 028 and will be switched on 

whenever the natural gas flow is off.  

The train of natural gas (train1) is fed to the heating system H-101 along with the compressed air 

from the compressors (300 CS 003). This heating system comprises of an insulated pipe where a 

high pressure electric heater EH-101 is attached. EH-101 is only capable of withstanding low 

flowrates and will be used to preheat the pipe until the auto-ignition temperature of natural gas is 

achieved as recommended by NFPA 85. At this point, temperature transmitters (TT1, TT2, TT3) 

and a temperature switch (TSL1) will automatically control the flow of natural gas by adjusting 

the solenoid valve V-139 to achieve the desired temperature in the windbox. Furthermore, due to 

the existence of a maximal flowrate that EH-101 can withstand, the flow across EH-101 is fixed 

by a flow switch FSH1 which controls a solenoid valve V-140. When a higher flow is required, 

this switch will open the solenoid valve V-116 which will enable air to be introduced through 

ports on H-101. V-140 will also be used to regulate the flow inside the reactor. This valve will be 

controlled by the PLC based on the pressure drop recorded by several pressure, temperature and 

flow transmitters (TT14, PT4, FT1, TT3, TT2, PT7, PT8, PT9, PT10, PT11, PT12, PT13, PT14). 

In order to avoid having a very high flame temperature, a temperature switch TSH1 along with 

the temperature transmitter TT1, turns on the solenoid valves V-117, V-149, V-130 and V-112 to 
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dilute the flame temperature. If the temperature inside H-101 is however still higher than 1200C 

(the heating system is designed to withstand up to 1400C), a temperature switch TSH2 will 

automatically close V-111, therefore shutting off the natural gas feed. On another hand, to avoid 

decreasing the temperature below the auto-ignition of natural gas, the temperature switch TSL1, 

will open V-139 to increase the flow of natural gas. 

As mentioned in the general process description in section 4.3, in order to reach fluidized bed 

temperatures of 900oC to 1000oC, natural gas will be injected (non-premixed injection) and 

burned directly inside the reactor. This injection will only be performed when the bed 

temperature is equal to or above 800oC as recommended by NFPA 85. In order to be introduced 

inside the fluidized bed, natural gas will be fed from the second natural gas train (300 CS 006), 

which is provided from a second pressurized cylinder (2260 psig). The pressure downstream of 

the cylinder is automatically adjusted with a gas regulator V-113. Based on the desired 

temperature of the bed, temperature transmitters along the reactor (TT4, TT5) will control the 

flow of natural gas out of the solenoid valve V-138. When the bed temperature is below the 

threshold value of 800oC, the different temperature transmitters will send a signal to the 

automated valve (V-138) to stop the flow of natural gas to the bed.   

Prior to reaching the reactor, a sequence of valves is located on stream 300 CS 006 to allow safe 

operation as recommended by NFPA 85. A ball valve V-114 is used for manual control over the 

natural gas flow a safety shut-off valves (V-115), controlled by a pressure switch low and a 

pressure switch high, is also present in order to automatically shut-off the gas when the pressure 

is outside the acceptable limits. A venting line (300 CS 029) is located downstream of V-113 to 

prevent backflow towards the natural gas cylinders, while an automated valve V-147 is located 

on 300 CS 029 and will be switched on whenever the natural gas flow is off.    

When natural gas is not injected in the bed, a flow of compressed air (300 CS 025) will be 

continuously fed in order to prevent any solid particles from blocking the gas entry. The flow of 

compressed air will be adjusted by a pressure transmitter PT24 and a flow transmitter FT4 that 

will control a solenoid valve V-124. The temperature transmitters (TT2, TT3, TT4 and TT5) 

along the reactor will also serve as monitors in order to detect any damages that may occur to the 

refractory. 
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5.2.3 P&ID0003: Fluidized Bed Freeboard and Gas Sampling 

In order to ensure that particles are not elutriated out of the reactor and into the vent, a cyclone 

CU-101, followed by a high pressure filter F-101 in a small chamber, are used in series inside the 

freeboard region. 

Four lines are connected to the outlet of the fluidized bed reactor: a solid feed line and 3 outlet 

streams: 

a. Stream 300 CS 027. 

b. Stream 300 CS 008. 

c. Stream 300 CS 007. 

Stream 300 CS 027 is the main gas exit stream where the main pressure control valve V-120 is 

located. This solenoid valve will be used to control the pressure inside the reactor and will be 

adjusted by several pressure transmitters (PT7, PT8, PT9, PT10, PT11, PT12 across the reactor, 

PT13 on 300 CS 027 prior to water injection and PT14 after water injection).  

When the reactor is operated at high temperature and pressure, distilled water will be pumped out 

of pressurized tank and fed to a water atomizing nozzles in stream 300 CS 027. With V-120 able 

to withstand a maximum of 300C, injection of water will be done in order to reduce the gas 

temperature. In order to avoid blocking the lines in case of gas saturation, water injection will be 

performed in a U-shaped steam trap. 

In order to control the hot gas temperature, a valve, V-148, is located on the water injection line 

300 CS 011. If the temperature is however still high after water injection, a temperature switch 

high will automatically shut off the natural gas flow by closing V-139 on train1 and V-138 on 

train2. 

A gas analyzer will be placed prior to V-120 to allow gas sampling, gas analysis and control of 

natural gas injection in the fluidized bed. 

Stream 300 CS 007 contains a rupture disk RD-101 which will open in case of an uncontrolled 

pressure increase above a specific threshold. In this case, the opening of RD-101 will produce a 

complete decompression of the system and a complete and safe disposal to the atmosphere. In 

case of a mal function with the auto decompression, a panic button can be manually activated. 

Valve V-142 located on 300 CS 008 will then open automatically to decompress the reactor. 
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Finally, in order to allow safe operation of the reactor, a manual valve V-121 equipped with a 

lock is located on line 300 CS 010 downstream of the reactor to ensure that only one reactor in 

the laboratory is operational at a time. 

5.2.4 P&ID0004: Water Injection System 

As mentioned in the previous section, in order to reduce the temperature prior to reaching V-120 

(P&ID0003) water will be directly injected into the gas stream. Aiming to achieve a temperature 

of 250C, the required amount of cooling water was plotted versus pressure in Figure 43 in order 

to determine the necessary pump flowrate.  

 
Figure 43- System pressure as a function of the required Amount of Cooling Water to reduce the 

gas temperature from 1000 to 250C 

With a maximum required flow of 3.5L/min, a pump, P-101, with a capacity of 10L/min, will be 

used to inject distilled water at the reactor gas discharge form a pressurized Tank T-102. This 

tank will be manually filled prior to operation. 

The water flow into the atomizing nozzles will be controlled by an automated 3-way valve V-126 

on line 300 CS 012. This valve separates 300 CS 012 to 300 CS 011 toward the fluidized bed 

reactor discharge and 300 CS 015 toward another system. This valve can be turned on or off by 

the temperature transmitter TT6 at the fluidized bed outlet (300 CS 027, P&ID 0003).   
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In order to control the amount of pumped water into the fluidized bed outlet, TT6 also acts on a 

solenoid valve V-125 which controls a recycle stream 300 CS 013 back to T-102. The lower the 

temperature of the gas at the reactor outlet, the higher the water recycle will be. 

In order to prevent pressurized hot gas from flowing towards the pump P-101 in case of a 

malfunction, a check valve (V-122) is located on stream 300 CS 012 downstream of the pump. 

A solenoid valve V-123 is also located on stream 300 CS 012 and will be controlled by a flow 

switch low FSL1 in case of a malfunction with the pump or in case the tank is empty. FSL1 will 

also prevent the return of hot gas toward the pump. 

5.2.5 P&ID0005: Detention Tank and Discharge Manifold 

Due to the high exhaust gas temperatures and injection of water, steam will be present in the 

fluidized bed reactor exhaust gas. To separate this steam from the air prior to disposal in the gas 

manifold, stream 300 CS 010 is connected to a detention tank (flash tank) (T-103). At this tank 

the gas pressure is lowered to atmospheric and water condenses. T-103 has a drain with a manual 

valve V-138. 

Downstream of T-103, the gas line 150 CS 023 will be connected to the existing manifold 

150 SS 024 that discharges to the atmosphere via a fan. Gas temperature will quickly drop to 

acceptable levels prior to reaching the fan. 

5.3 Operating Procedure 

The following is a procedure that will be followed when operating the fluidized bed reactor under 

high temperature and pressure. 

5.3.1 Operating Procedure 

1- Perform an inspection of the fluidized bed reactor: 

a. Check that the fluidized bed reactor system is OFF: 

i. The compressors are OFF. 

ii. The natural gas lines are closed. 

iii. The water injection line is closed. 

b. Install all probes and diagnostic systems for the experiments. 
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c. Start the computer and acquisition systems. 

d. Make sure that the temperature and pressure readings are realistic. 

e. Inspect the fluidized bed reactor and make sure there are no open ports, flanges or 

connection. 

f. Close all open ports, flanges and connections. 

2- Manually backwash the filter using Ecole Polytechnique’s sharp air through the 

designated backwash port on the top flange. Disconnect the ports from Ecole 

Polytechnique’s sharp air.  

3- Open the drain valve at the bottom of the windbox to empty the windbox of solids. Close 

the drain valve. 

4- Start the compressors. 

5- Inject a small flow of air inside the fluidized bed reactor (Ug = 0.4 m/s) at ambient 

temperature and ambient pressure (over the fluidized bed region). Note that the gas 

velocity and pressure are controlled by pressure regulator V-101 and valvesV-140 and 

V-120. 

6- Wait for 7 minutes to make sure that the reactor is completely purged of natural gas. 

7- Check that the temperature and pressure readings are acceptable. 

8- Use SNOOP to check for leaks on the ports, flanges and connections. 

9- Inject the solid particles inside the reactor through the port on the top flange. 

10- Verify from the pressure readings that the bed is fluidized. 

11- Specify in the control computer the target operating conditions: 

a. Superficial gas velocity (Ug) 

b. Fluidized bed temperature (TBED) 

c. Fluidized bed pressure (PBED) 

12- The control system adjusts the superficial gas velocity to the target value and to a 

maximum of 11 SCFM (Ug = 0.3 m/s @ 20oC & 1 atm). 

13- If the target fluidized bed temperature is ≤ 800oC, go to step 14 

If the target fluidized bed temperature is > 800oC, go to step 19 
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5.3.2 Reactor heating at ambient pressure (TBED≤ 800oC) 

14- If the desired bed temperature is above ambient values, the electrical heater (H-101) 

connected to the hybrid heating system will be initiated. This heater can increase the air 

temperature up to 900oC for a flowrate of up to 11 SCFM (Ug = 0.3 m/s @ 20oC & 

1 atm). The system will await the fluidized bed reactor to reach steady state. 

15- If the bed temperature is not sufficiently high, natural gas is injected in the hybrid heating 

system. The temperature at the outlet of H-101 and the first natural gas injection location 

must be above 800oC (an interlock on the thermocouples prevents natural gas injection if 

this condition is not satisfied). Note that a maximum natural gas flow rate is set by the 

control system based on two criteria: 

(1) the local temperature in the hybrid heating system must remain below 1200oC 

(if this criterion is reached, the control system will open V-117 and V-149). 

(2) the mass flow rate of air and natural gas (10% excess air minimum). 

The system will await the fluidized bed reactor to reach steady state. 

16- If the bed temperature has been reached, go to step 21. 

17- If the bed temperature has not been reached and the target Ug is higher than 11 SCFM, the 

control system will open valve V-117 and V-149 to inject more air inside the hybrid 

heating system in order to reach the desired Ug. With additional air, additional natural gas 

can be injected through valve V-112. The system will await the fluidized bed reactor to 

reach steady state. 

18- If the bed temperature has been reached, go to step 21.  

5.3.3 REACTOR HEATING AT AMBIENT PRESSURE (800oC < TBED ≤ 

1000oC) 

19- Follow steps 14 to 17. 

20- Once the fluidized bed temperature has reached 800oC (or higher), the control system will 

initiate natural gas injection in the fluidized bed. The flow of natural gas to the hybrid 

burner is turned off and the flow of natural gas to the fluidized bed is adjusted to obtain 

the target temperature. The system will await the fluidized bed reactor to reach steady 

state. 
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5.3.4 INCREASING THE PRESSURE 

21- Once the target fluidized bed temperature and superficial gas temperature have been 

reached, the control system gradually (in increment) increases the pressure. Valves V-140 

and V-120 are used to increase the pressure while maintaining the superficial gas velocity 

constant. The flow rate of natural is adjusted to keep the temperature constant. The system 

will await the fluidized bed reactor to reach steady state. 

22- Once the target pressure, temperature and superficial gas velocity have been reached, 

experiments can start. 

5.3.5 REACTOR SHUTDOWN 

23- The control system is set to “reactor shutdown”. Natural gas injection is stopped. The 

pressure over the fluidized bed is slowly decreased to ambient and the gas velocity is 

lowered (Ug = 0.1 m/s at operating temperature) to limit the decrease in temperature and 

maximize the life of the refractory. The system will await the fluidized bed reactor to 

reach steady state. 

24- Once the reactor has reached ambient temperature (it should already be at ambient 

pressure), shutdown the compressors. 

25-  Perform an inspection of the fluidized bed reactor: 

a. Check that the fluidized bed reactor system is OFF: 

i. The compressors are OFF. 

ii. The natural gas lines are closed. 

iii. The water injection line is closed. 

b. Uninstall all probes and diagnostic systems for the experiments. 

26- Clean the lab space.  
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This study provided important information and data to better understand the importance of 

developing a high pressure and temperature fluidized bed reactor. The attainments and 

conclusions of this thesis were compliant with the objectives described in Chapter 1 and are as 

follows.  

Objective 1: Study and Conduct a background study on fluidized bed technology and its 

application in industry as well as the different fluidization regimes. 

Conclusion 1: In Chapter 2, some of the most important fluidization properties and definitions 

were introduced. By presenting the different fluidization regimes and the effects of particle size 

and density, a better understanding of the chosen operating conditions for our reactor was 

generated. Furthermore, the section on solid mixing and entrainment helped build the necessary 

background information for the design of the cyclone in Chapter 4 and the impact of temperature 

and pressure in Chapter 3. Finally, in Chapter 2, some of the applications of high temperature and 

pressure in fluidization were introduced in order to highlight the relevance and importance of this 

work to the industrial sector.    

Objective 2: Study and Conduct a full literature review on fluidization in order to illustrate the 

fundamental design variables, their respective correlations at extreme conditions and their 

limitations. 

Conclusion 2: This objective was completed throughout Chapter 2 and 3. In Chapter 2, a full 

literature review on fluidization was provided. In Chapter 3, the effect of using extreme operating 

conditions (high temperature, pressure and velocity) on fluidization and more specifically bubble 

size was demonstrated. In this section, three bubble size correlations were chosen: the first for 

being respectively modeled at high pressure and velocity, the second for being modeled at high 

temperature and the third for being one of the most commonly used correlations in design books. 

Subsequently, the impact of bubble size on mass transfer, reaction conversion, entrainment and 

the transport disengaging height (TDH) were studied through the application of each of the 

aforementioned models. By doing so, the limitations of these correlations along with others were 
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highlighted, and the need of developing new models and a better understanding of fluidization 

under high temperature, pressure and velocity was demonstrated.  

 

Objective 3: Design the fluidized bed reactor and its utilities, for flexible operation from ambient 

conditions up to high temperature and high pressure based on design books and papers. 

 

Conclusion 3: In Chapter 4, the complete and detailed design procedure of a fluidized bed reactor 

at high temperature and pressure was presented. In this chapter, the different reactor parts were 

introduced along with their respective design correlations. The design procedure of several 

utilities such as the gas distributor, the cyclone and the heating system were also treated in this 

Chapter. Furthermore, the design of the high pressure heating system has lead to remarkable 

reductions in costs and can prove to be beneficial for future purposes. In Chapter 5, the results of 

were presented and discussed. This Chapter dealt with multiple limitations and restrictions such 

as the distributor pressure drop and the metal surface temperature.  

 

Objective 4: Design a complete control process and operating procedure that would allow safe 

operation of this reactor. 

Conclusion 4: After conducting a Hazard and Operability study (HAZOP), a complete control 

process was designed in Chapter 5 along with its respective procedure piping and instrumentation 

diagrams in Appendix 3. A safe operating procedure was also developed for the reactor and is 

explained in this Chapter. Furthermore, multiple safety procedures from pressure relief valves to 

water pumps to cool down the gas are presented and discussed in the detailed process description 

section of this same Chapter. A second HAZOP was performed to ensure that all relevant 

changes have been made. 
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6.2 Recommendations 

In this work, the need of developing new fluidization models under extreme condition was 

demonstrated in Chapter 3, along with the design procedure and results of a fluidized bed reactor 

and its operating process in Chapters 4 and 5 respectively. Despite achieving the objective of this 

thesis, several difficulties and constraints were encountered and multiple recommendations have 

been reported throughout. 

In Chapter 3, due to the limited scope of this work, the impact of several variables such as reactor 

diameter and bed height were not considered in the simulations and should be studied under high 

temperature and pressure. Moreover, due to the limited available experimental data, this Chapter 

only dealt with the effects of pressure or temperature and never both at the same time. With this 

reactor in place, a more detailed study on the combined effects of pressure and temperature 

would be greatly beneficial and is therefore recommended. In addition, several key correlations 

were studied in this section with their limitations highlighted. Due to the different observed 

trends in mass transfer, reaction conversion and bubble diameter, developing a bubble size 

correlation that would cover larger operation ranges is fundamental for future applications. 

Furthermore, with none of the existing TDH models in design books providing acceptable results 

and suggesting very large freeboard sections at high velocities despite a very small change in 

entrainment, more suitable correlations must be developed. Another recommendation can be 

made when studying the conversion of methane under pressure where curious trends were 

observed. These results suggest that more work needs to be done under these conditions in 

addition to the development of new hydrodynamic models where more acceptable values could 

be obtained. 

Finally, in Chapter 4, when designing the gas distributor, the model of Quershi and Creasy[105] 

was used to estimate the minimum required pressure drop necessary to sustain even fluidization 

in the bed. Since this correlation was developed under ambient conditions, verification of its 

results will be important when operating this reactor. In case a higher value is obtained, another 

distributor must be designed to ensure more flexibility and freedom of operation. 
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Appendix1: Reactor, Cyclone and Distributor Schematics 
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Appendix2: Heating System Schematic 
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Appendix 3: Piping and Instrumentation Diagrams 
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Appendix 4: Process Tables 

P&ID 0001: Compressor System 

Lines 

Line 

number 

Line location Fluid Nature Function 

300 CS 001 Downstream of T-

101 

Compressed 

air 

Compressed air from compressors 

300 CS 002 Downstream of V-

108 

Compressed 

air 

Compressed air to other system 

300 CS 003 Downstream of V-

108 

Compressed 

air 

Compressed air to fluidized bed heater P&ID 

0002 

 

Valves 

Valve 

number 

Valve 

location 

Valve type Function Temperature 

range 

V-101 300 CS 001 Pressure 

regulation 

valve 

Regulates flow out of T-101 Ambient 

V-102 T-101 Pressure 

relief valve 

Releases gas if pressure increases critical value Ambient 

V-103 C-101/A Drain Valve Drains C-101/A Ambient 

V-104 C-101/B Drain Valve Drains C-101/B Ambient 
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V-105 C-102 Drain Valve Drains C-102 Ambient 

V-106 T-101 Drain Valve Drains T-101 Ambient 

V-107 300 CS 001 Manual 

Valve 

Manually controls the flow out of T-101 Ambient 

V-108 300 CS 001 3-way valve Separates 300 CS 001 to 300 CS 002 (toward 

other system) and 300 CS 003 (towards 

fluidized bed) 

Ambient 

Transmitters 

Transmitter Location Function 

PT1 C-101/A Controls the pressure out of C-101/A 

PT2 C-101/B Controls the pressure out of C-101/B 

PT3 C-102 Controls the pressure out of C-102 

PT4 300 CS 001 Monitors the pressure out of T-101 

FT1 300 CS 001 Monitors the flow out of T-101 

PSH1 T-101 Switches off the compressor in case of an excess pressure in T-101 

PSL1 T-101 Switches on the compressor in case the pressure in the Tank falls 

below the required value 

TT14 300 CS 001 Monitors the temperature out of T-101 
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P&ID 0002: Fluidized Bed Heater & Windbox 

Lines 

Line number Line location Fluid Nature Function 

300 CS 003 Upstream of H-101 Compressed air Air feed to H-101 

300 CS 004 Natural gas train 1 Natural gas Natural gas feed to H-101 

300 CS 005 Upstream of H-101 Compressed air Air dilution stream to H-101 

300 CS 006 Natural gas train 2 Natural gas Natural gas feed inside the bed 

300 CS 025 Upstream of V-141 Compressed air Air stream to V-141 

300 CS 026 Downstream of V-141 Compressed air Air to gas manifold 

300 CS 014 Downstream of V-141 Natural gas Natural gas feed to the bed 

300 CS 028 Downstream of V-146 Hot Air Venting line 

300 CS 029 Downstream of V-147 Hot Air Venting line 

 

Valves 

Valve 

number 

Valve 

location 

Valve type Function Temperature 

range 

V-109 300 CS 004 Pressure 

regulation 

valve 

Regulates pressure downstream of gas 

cylinder on Train1 

Ambient 
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V-110 300 CS 004 Manual valve Manually controls the flow 

downstream of gas cylinder on Train1 

Ambient 

V-111 300 CS 004 Emergency 

shutdown 

valve 

Shuts down in case the pressure 

exceeds or drop the critical values 

Ambient 

V-112 300 CS 004 Solenoid valve Controls the natural gas injection flow 

to make sure that the temperature 

inside the heater does not exceed the 

design temperature  or drop below the 

auto ignition temperature 

Ambient 

V-113 300 CS 006 Pressure 

regulation 

valve 

Regulates pressure downstream of gas 

cylinder on Train2 

Ambient 

V-114 300 CS 006 Manual valve Manually controls the flow 

downstream of gas cylinder on Train2 

Ambient 

V-115 300 CS 006 Emergency 

shutdown 

valve 

Shuts down in case the pressure 

exceeds or drop the critical values 

Ambient 

V-116 300 CS 005 Solenoid valve Opens when the flow in 300 CS 003 

exceed the flow design value of the 

Sylvania electric heater 

Ambient 

V-117 300 CS 005 Solenoid valve Controls the dilution air flow to make 

sure that the temperature inside the 

heater does not exceed the design 

temperature or drop below the auto 

ignition temperature 

Ambient 
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V-124 300 CS 025 Solenoid valve Controls the continuous air flow that 

will prevent solids from blocking the 

entrance if natural gas is not injected 

in the bed 

Ambient 

V-138 300 CS 006 Solenoid valve Controls the flow of natural gas to 

achieve the desired temperature in the 

bed Gas train 2 

Ambient 

V-139 300 CS 004 Solenoid valve Controls the flow of natural gas to 

achieve the desired temperature in the 

windbox Gas train 1 

Ambient 

V-140 300 CS 003 Solenoid valve Ensure that the flow through the 

Sylvania electric heater will not exceed 

the allowed design value. Controls the 

flowrate inside the reactor 

Ambient 

V-141 300 CS 025 Ball valve Ensure that if natural gas is not 

injected in the bed, a continuous air 

flow will prevent solids from blocking 

the entrance 

Ambient 

V-146 300 CS 028 Solenoid valve Opens when natural gas is off to 

prevent backflow from the reactor 

towards the cylinders 

Ambient-1000C 

V-147 300 CS 029 Solenoid valve Opens when natural gas is off to 

prevent backflow from the reactor 

towards the cylinders 

Ambient-1000C 

V-149 300 CS 005 Solenoid valve Controls the dilution air flow to make 

sure that the temperature inside the 

Ambient 
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heater does not exceed the design 

temperature or drop below the auto 

ignition temperature 

Transmitters 

Transmitter Location Function 

PT5 300 CS 004 Regulates the pressure out of V-139 

PSH2 300 CS 004 Turns off V-111 in case of the pressure coming out of the cylinder 

exceeds the reactor design pressure 

PSL2 300 CS 004 Turns off V-111 in case the cylinder is empty to prevent a low flow 

and therefore the possibility of a back flow. 

TSL1 H-101 Turns on Natural gas (V-139) if temperature inside the heater is low 

(almost lower than auto ignition temperature) 

TSH1 H-101 Turns on V-117 and V-112 to dilute the flame temperature 

TT1 H-101 Controls the amount of dilution required by adjusting V-112 and V-

117 

TSH2 H-101 Turns off Natural gas (V-139) if the temperature out of the heater is 

still above the reactor design temperature 

PI1 Gas Cylinder 

Train1 

Monitors the gas pressure inside the cylinder 

PI2 Gas Cylinder 

Train1 

Monitors the gas pressure after the pressure regulation valve V-109 

PI3 Gas Cylinder 

Train2 

Monitors the gas pressure inside the cylinder 
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PI4 Gas Cylinder 

Train2 

Monitors the gas pressure after the pressure regulation valve V-113 

PT6 300 CS 006 Regulates the pressure out of V-138 

PSH3 300 CS 006 Turns off V-115 in case of the pressure coming out of the cylinder 

exceeds the reactor design pressure 

PSL3 300 CS 006 Turns off V-115 in case the cylinder is empty to prevent a low flow 

and therefore the possibility of a back flow. 

FT2 300 CS 004 Regulates the flow out of V-139 

FT3 300 CS 006 Regulates the flow out of V-138 

FT4 300 CS 025 Regulates the flow out of V-124 

FSH1 300 CS 003 Turn on V-116 to allow air to flow through 300 CS 005 due to the 

flow restrictions of the Sylvania heater. This switch will also limit the 

flow through V-140 by adjusting its opening 

TT2 Windbox Controls the amount of natural gas from train 1 to reach the desired 

temperature inside the windbox 

TT3 Windbox Controls the amount of natural gas from train 1 to reach the desired 

temperature inside the windbox 

TT4 Bed Controls the amount of natural gas from train 2 to reach the desired 

temperature inside the windbox 

TT5 Bed Controls the amount of natural gas from train 2 to reach the desired 

temperature inside the windbox 

TT17 H-101 Controls the amount of dilution required by adjusting V-112 and V-
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117 

TT18 H-101 Controls the amount of dilution required by adjusting V-112 and V-

117 

TT19 H-101 Controls the amount of dilution required by adjusting V-112 and V-

117 

PT7 Windbox Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT8 Windbox Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT9 Bed Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT10 Bed Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT24 300 CS 025 Regulates the pressure out of V-124 

P&ID 0003: Fluidized Bed Freeboard & Gas Sampling 

Lines 

Line 

number 

Line location Fluid Nature Function 

300 CS 007 Upstream of rupture disk Hot compressed air Gas safety stream in case of reactor 

overpressure 

300 CS 008 Upstream of safety valve  Hot compressed air Gas safety stream in case of failure of 

rupture disk 
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300 CS 009 Downstream of rupture 

disk 

Ambient air Gas disposal to manifold P&ID 0007 

300 CS 010 Main gas line fluidized bed 

after water injection 

Compressed air and 

water vapour 

Gas outlet of reactor to detention 

tank P&ID 0007 

300 CS 011 Prior to analyzer Water Cools down the temperature of the 

air out of the reactor 

300 CS 027 Prior to water injection 

point 

Hot compressed air Gas outlet of reactor 

300 CS 030 On water injection line Hot compressed air Venting line 

300 CS 032 On steam trap Water Drain 

Valves 

Valve 

number 

Valve location Valve 

type 

Function Temperature 

range 

V-118 300 CS 010 Manual 

valve 

Used to manually allow gas flow through the 

analyzer 

Ambient-300C 

V-119 300 CS 010 Sampling 

valve 

Allows sampling Ambient-300C 

V-120 300 CS 010 Solenoid 

valve 

Controls the pressure inside the reactor Ambient-300C 

V-121 300 CS 010 Manual 

valve 

Valve with lock to ensure isolation of reactor 

during operation 

Ambient 

RD-101 300 CS 007 Rupture Rupture if pressure exceeds critical pressure Ambient-300C 
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disk 

V-142 300 CS 008 Safety 

valve 

Will be open by using a panic button if the 

rupture disk fails to open 

Ambient-300C 

V-148 300 CS 011 Solenoid 

valve 

Will open to reduce hot gas temperature Ambient 

V-151 300 CS 032 Manual 

Valve 

Will be opened manually after experiment is 

over to remove all condensed vapour 

Ambient 

Transmitters 

Transmitter Location Function 

PT11 Freeboard Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT12 Freeboard Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT13 300 CS 027 Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

PT14 300 CS 010 Used to control the pressure out of the compressor, natural gas 

cylinders, flow rate inside the reactor, etc 

TT6 300 CS 027 Controls the amount of injected water by adjusting V-125 in P&ID 0004 

to achieve a temperature below 300C in 300 CS 010. Also used to turn 

on or off V-126 

TT7 300 CS 010 Monitors the temperature of air after water injection 

PI4 analyzer Monitors the pressure at the sampling valve V-119 
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TSH3 300 CS 010 Turns off both natural gas valves if temperature is still above 300C 

P&ID 0004: Water Injection System 

Lines 

Line number Line location Fluid Nature Function 

300 CS 011 Downstream of V-126 Water Cools down the temperature of the 

air out of the fluidized bed P&ID 0003 

300 CS 012 Downstream of pump P-101 Water Water from reservoir 

300 CS 013 Upstream of T-102 Water Water recycle stream 

300 CS 015 Downstream of V-126 Water Towards other system 

Valves 

Valve 

number 

Valve 

location 

Valve type Function Temperature 

range 

V-122 300 CS 012 Check valve Prevents back flow toward the tank Ambient 

V-123 300 CS 012 Emergency 

shutdown valve 

Shuts down if insufficient flow is 

detected to prevent backflow 

toward the tank 

Ambient 

V-125 300 CS 013 Solenoid valve Adjust the amount of recycle water 

to regulate the temperature at the 

outlet of the fluidized bed 

Ambient 

V-126 300 CS 012 3-way valve Separates 300 CS 012 into 300 CS 

011 which is used to cool down the 

gas coming out of the fluidized bed 

Ambient 
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V-127 T-102 Manual Valve Manually fills the tank with water Ambient 

V-128 T-102 Drain valve Drains T-102 Ambient 

V-143 T-102 Pressure relief 

valve 

Releases gas if pressure increases 

critical value 

Ambient 

Transmitters 

Transmitter Location Function 

FSL1 300 CS 012 Prevents the return of hot gas at high pressure to the pump and 

the water tank by adjusting V-123 

P&ID 0005: Detention Tank & Discharge Manifold 

Lines 

Line number Line location Fluid Nature Function 

300 CS 009 Downstream of fluidized bed 

rupture disk 

Ambient air Gas disposal to manifold 

300 CS 010 Main gas line fluidized bed after 

water injection 

Compressed air 

and water vapour 

Gas outlet of fluidized bed 

to detention tank 

150 SS 023 Downstream of T-103 Ambient air Ambient air to Gas 

manifold 

150 SS 024 Downstream of T-103 Ambient air Gas manifold 

Valves 

Valve number Valve location Valve type Function Temperature range 
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V-138 T-103 Drain valve Drains T-103 Ambient 

Transmitters 

Transmitter Location Function 

TT13 150 SS 023 Monitors the temperature out of the detention tank T-103 
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Appendix 5: Equipment List 

Number Equipment Location Dimension (mm) 

C-101/A Lubricated Piston Compressor P&ID 0001 LxWxH(1268x682x815) 

C-101/B Lubricated Piston Compressor P&ID 0001 LxWxH(1268x682x815) 

C-102 Lubricated Piston Compressor P&ID 0001 LxWxH(1016x619x699) 

F-101 High Pressure Filter ACS 0285G P&ID 0001 LxWxH(122x116x423) 

T-101 High Pressure Tank P&ID 0001 (D=914, L=2362) 

S-101 Oil/Water Separator P&ID 0001 LxWxH(470x165x600) 

EH-101 Electrical Heater P&ID 0002 (D=43.18, L=559) 

H-101 Burner/Heater Hybrid for Fluidized Bed P&ID 0002 (D=172, L=762) 

CU-101 Internal Cyclone P&ID 0003 (Dcylinder=94, Lcylinder=135, 

Lcone=225) 

F-102 Internal High Temperature Filter P&ID 0003 (D=120, L=991) 

P-101 Water Pump P&ID 0004  LxWxH(462x241x216) 

T-102 Pressurized Water Reservoir P&ID 0004 (D=914, L=2362) 

T-103 Detention Tank/Flash Tank P&ID 0005 (D=219, L=1391) 
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Appendix 6: Distributor Pressure Drop 

All pressure drop values are in atm 

Yellow Highlighted Section: Pressure drop across the distributor falls below K∆Pb 

U(m/s) 0.1 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.132 0.135 0.138 0.141 0.143 0.145 0.147 0.149 0.150 0.152 0.153 

2 0.133 0.136 0.139 0.142 0.144 0.146 0.148 0.149 0.151 0.152 0.154 

3 0.135 0.137 0.140 0.142 0.145 0.146 0.148 0.150 0.151 0.153 0.154 

4 0.136 0.138 0.141 0.143 0.145 0.147 0.149 0.150 0.152 0.153 0.154 

5 0.137 0.139 0.142 0.144 0.146 0.147 0.149 0.151 0.152 0.153 0.155 

6 0.139 0.141 0.143 0.145 0.146 0.148 0.150 0.151 0.152 0.154 0.155 

7 0.140 0.142 0.143 0.145 0.147 0.148 0.150 0.151 0.153 0.154 0.155 

8 0.141 0.143 0.144 0.146 0.147 0.149 0.150 0.152 0.153 0.154 0.156 

9 0.143 0.144 0.145 0.147 0.148 0.150 0.151 0.152 0.153 0.155 0.156 

10 0.144 0.145 0.146 0.147 0.149 0.150 0.151 0.153 0.154 0.155 0.156 

11 0.145 0.146 0.147 0.148 0.149 0.151 0.152 0.153 0.154 0.155 0.157 

12 0.147 0.147 0.148 0.149 0.150 0.151 0.152 0.153 0.155 0.156 0.157 

13 0.148 0.148 0.148 0.149 0.150 0.152 0.153 0.154 0.155 0.156 0.157 

14 0.150 0.149 0.149 0.150 0.151 0.152 0.153 0.154 0.155 0.156 0.157 

15 0.151 0.150 0.150 0.151 0.152 0.153 0.154 0.155 0.156 0.157 0.158 

16 0.152 0.151 0.151 0.151 0.152 0.153 0.154 0.155 0.156 0.157 0.158 

17 0.154 0.152 0.152 0.152 0.153 0.154 0.155 0.156 0.156 0.157 0.158 

18 0.155 0.153 0.153 0.153 0.153 0.154 0.155 0.156 0.157 0.158 0.159 

19 0.156 0.154 0.153 0.153 0.154 0.155 0.156 0.156 0.157 0.158 0.159 

20 0.158 0.155 0.154 0.154 0.155 0.155 0.156 0.157 0.158 0.159 0.159 

  



  

                                   142 

 

U(m/s) 0.2 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.135 0.142 0.148 0.153 0.157 0.161 0.165 0.168 0.171 0.174 0.177 

2 0.138 0.144 0.150 0.155 0.159 0.163 0.166 0.169 0.172 0.175 0.178 

3 0.142 0.147 0.152 0.156 0.160 0.164 0.167 0.170 0.173 0.176 0.179 

4 0.145 0.149 0.154 0.158 0.162 0.165 0.168 0.171 0.174 0.177 0.179 

5 0.148 0.152 0.156 0.160 0.163 0.167 0.170 0.172 0.175 0.178 0.180 

6 0.152 0.155 0.158 0.161 0.165 0.168 0.171 0.174 0.176 0.179 0.181 

7 0.155 0.157 0.160 0.163 0.166 0.169 0.172 0.175 0.177 0.180 0.182 

8 0.159 0.160 0.162 0.165 0.168 0.170 0.173 0.176 0.178 0.180 0.183 

9 0.162 0.162 0.164 0.167 0.169 0.172 0.174 0.177 0.179 0.181 0.184 

10 0.166 0.165 0.166 0.168 0.171 0.173 0.175 0.178 0.180 0.182 0.184 

11 0.169 0.168 0.169 0.170 0.172 0.174 0.177 0.179 0.181 0.183 0.185 

12 0.173 0.170 0.171 0.172 0.174 0.176 0.178 0.180 0.182 0.184 0.186 

13 0.176 0.173 0.173 0.174 0.175 0.177 0.179 0.181 0.183 0.185 0.187 

14 0.180 0.175 0.175 0.175 0.177 0.178 0.180 0.182 0.184 0.186 0.188 

15 0.183 0.178 0.177 0.177 0.178 0.180 0.181 0.183 0.185 0.187 0.188 

16 0.186 0.181 0.179 0.179 0.180 0.181 0.182 0.184 0.186 0.187 0.189 

17 0.190 0.183 0.181 0.181 0.181 0.182 0.184 0.185 0.187 0.188 0.190 

18 0.193 0.186 0.183 0.182 0.183 0.184 0.185 0.186 0.188 0.189 0.191 

19 0.197 0.188 0.185 0.184 0.184 0.185 0.186 0.187 0.189 0.190 0.192 

20 0.200 0.191 0.187 0.186 0.186 0.186 0.187 0.188 0.190 0.191 0.192 
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U(m/s) 0.3 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.139 0.149 0.158 0.165 0.172 0.178 0.183 0.188 0.193 0.197 0.201 

2 0.146 0.154 0.162 0.169 0.175 0.180 0.185 0.190 0.195 0.199 0.203 

3 0.153 0.159 0.166 0.172 0.178 0.183 0.188 0.192 0.196 0.201 0.204 

4 0.160 0.164 0.170 0.176 0.181 0.186 0.190 0.194 0.198 0.202 0.206 

5 0.167 0.170 0.174 0.179 0.184 0.188 0.192 0.196 0.200 0.204 0.208 

6 0.173 0.175 0.179 0.183 0.187 0.191 0.195 0.199 0.202 0.206 0.209 

7 0.180 0.180 0.183 0.186 0.190 0.193 0.197 0.201 0.204 0.208 0.211 

8 0.187 0.185 0.187 0.190 0.193 0.196 0.199 0.203 0.206 0.209 0.212 

9 0.194 0.191 0.191 0.193 0.196 0.199 0.202 0.205 0.208 0.211 0.214 

10 0.201 0.196 0.195 0.197 0.199 0.201 0.204 0.207 0.210 0.213 0.216 

11 0.208 0.201 0.200 0.200 0.202 0.204 0.206 0.209 0.212 0.215 0.217 

12 0.215 0.206 0.204 0.204 0.205 0.207 0.209 0.211 0.214 0.216 0.219 

13 0.222 0.211 0.208 0.207 0.208 0.209 0.211 0.213 0.216 0.218 0.221 

14 0.229 0.217 0.212 0.211 0.211 0.212 0.213 0.215 0.218 0.220 0.222 

15 0.236 0.222 0.216 0.214 0.214 0.215 0.216 0.218 0.219 0.222 0.224 

16 0.243 0.227 0.221 0.218 0.217 0.217 0.218 0.220 0.221 0.223 0.225 

17 0.250 0.232 0.225 0.221 0.220 0.220 0.221 0.222 0.223 0.225 0.227 

18 0.257 0.238 0.229 0.225 0.223 0.222 0.223 0.224 0.225 0.227 0.229 

19 0.264 0.243 0.233 0.228 0.226 0.225 0.225 0.226 0.227 0.229 0.230 

20 0.271 0.248 0.237 0.232 0.229 0.228 0.228 0.228 0.229 0.230 0.232 
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U(m/s) 0.4 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.144 0.157 0.168 0.178 0.187 0.195 0.202 0.208 0.214 0.220 0.226 

2 0.156 0.166 0.176 0.184 0.192 0.199 0.206 0.212 0.218 0.223 0.228 

3 0.168 0.175 0.183 0.190 0.197 0.204 0.210 0.215 0.221 0.226 0.231 

4 0.180 0.184 0.190 0.196 0.202 0.208 0.214 0.219 0.224 0.229 0.234 

5 0.192 0.193 0.197 0.202 0.207 0.213 0.218 0.223 0.227 0.232 0.237 

6 0.203 0.202 0.204 0.208 0.212 0.217 0.222 0.226 0.231 0.235 0.239 

7 0.215 0.210 0.211 0.214 0.218 0.222 0.226 0.230 0.234 0.238 0.242 

8 0.227 0.219 0.218 0.220 0.223 0.226 0.230 0.233 0.237 0.241 0.245 

9 0.239 0.228 0.226 0.226 0.228 0.230 0.234 0.237 0.240 0.244 0.248 

10 0.251 0.237 0.233 0.232 0.233 0.235 0.238 0.241 0.244 0.247 0.250 

11 0.262 0.246 0.240 0.238 0.238 0.239 0.242 0.244 0.247 0.250 0.253 

12 0.274 0.255 0.247 0.244 0.243 0.244 0.246 0.248 0.250 0.253 0.256 

13 0.286 0.264 0.254 0.250 0.248 0.248 0.250 0.251 0.253 0.256 0.259 

14 0.298 0.273 0.261 0.256 0.253 0.253 0.253 0.255 0.257 0.259 0.261 

15 0.310 0.282 0.268 0.262 0.258 0.257 0.257 0.258 0.260 0.262 0.264 

16 0.321 0.290 0.276 0.268 0.264 0.262 0.261 0.262 0.263 0.265 0.267 

17 0.333 0.299 0.283 0.274 0.269 0.266 0.265 0.266 0.267 0.268 0.270 

18 0.345 0.308 0.290 0.280 0.274 0.271 0.269 0.269 0.270 0.271 0.272 

19 0.357 0.317 0.297 0.285 0.279 0.275 0.273 0.273 0.273 0.274 0.275 

20 0.369 0.326 0.304 0.291 0.284 0.280 0.277 0.276 0.276 0.277 0.278 
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U(m/s) 0.5 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.151 0.166 0.180 0.192 0.203 0.212 0.221 0.229 0.236 0.244 0.250 

2 0.169 0.180 0.191 0.201 0.210 0.219 0.227 0.234 0.241 0.248 0.254 

3 0.187 0.194 0.202 0.210 0.218 0.226 0.233 0.240 0.246 0.253 0.259 

4 0.206 0.207 0.213 0.219 0.226 0.233 0.239 0.245 0.251 0.257 0.263 

5 0.224 0.221 0.224 0.229 0.234 0.240 0.245 0.251 0.256 0.262 0.267 

6 0.242 0.234 0.235 0.238 0.242 0.246 0.251 0.256 0.261 0.266 0.271 

7 0.260 0.248 0.246 0.247 0.250 0.253 0.257 0.262 0.266 0.271 0.276 

8 0.278 0.262 0.257 0.256 0.257 0.260 0.263 0.267 0.271 0.276 0.280 

9 0.296 0.275 0.268 0.265 0.265 0.267 0.270 0.273 0.276 0.280 0.284 

10 0.314 0.289 0.278 0.274 0.273 0.274 0.276 0.278 0.281 0.285 0.288 

11 0.332 0.302 0.289 0.283 0.281 0.281 0.282 0.284 0.286 0.289 0.292 

12 0.350 0.316 0.300 0.292 0.289 0.287 0.288 0.289 0.291 0.294 0.297 

13 0.368 0.330 0.311 0.301 0.296 0.294 0.294 0.295 0.296 0.298 0.301 

14 0.386 0.343 0.322 0.311 0.304 0.301 0.300 0.300 0.301 0.303 0.305 

15 0.404 0.357 0.333 0.320 0.312 0.308 0.306 0.306 0.306 0.308 0.309 

16 0.422 0.371 0.344 0.329 0.320 0.315 0.312 0.311 0.311 0.312 0.314 

17 0.440 0.384 0.355 0.338 0.328 0.322 0.318 0.317 0.316 0.317 0.318 

18 0.459 0.398 0.366 0.347 0.336 0.329 0.324 0.322 0.321 0.321 0.322 

19 0.477 0.411 0.377 0.356 0.343 0.335 0.330 0.328 0.326 0.326 0.326 

20 0.495 0.425 0.388 0.365 0.351 0.342 0.337 0.333 0.331 0.330 0.330 
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U(m/s) 0.6 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.160 0.177 0.193 0.207 0.219 0.230 0.240 0.250 0.259 0.267 0.275 

2 0.185 0.196 0.208 0.220 0.230 0.240 0.249 0.258 0.266 0.274 0.281 

3 0.211 0.216 0.224 0.233 0.241 0.250 0.258 0.266 0.273 0.280 0.287 

4 0.237 0.235 0.239 0.246 0.252 0.259 0.266 0.273 0.280 0.287 0.293 

5 0.263 0.254 0.255 0.259 0.263 0.269 0.275 0.281 0.287 0.293 0.299 

6 0.288 0.274 0.270 0.271 0.275 0.279 0.284 0.289 0.294 0.300 0.305 

7 0.314 0.293 0.286 0.284 0.286 0.289 0.292 0.297 0.301 0.306 0.311 

8 0.340 0.312 0.301 0.297 0.297 0.298 0.301 0.305 0.309 0.313 0.317 

9 0.366 0.332 0.317 0.310 0.308 0.308 0.310 0.312 0.316 0.319 0.323 

10 0.391 0.351 0.333 0.323 0.319 0.318 0.318 0.320 0.323 0.326 0.329 

11 0.417 0.370 0.348 0.336 0.330 0.328 0.327 0.328 0.330 0.332 0.335 

12 0.443 0.390 0.364 0.349 0.341 0.337 0.336 0.336 0.337 0.339 0.341 

13 0.468 0.409 0.379 0.362 0.353 0.347 0.344 0.344 0.344 0.345 0.347 

14 0.494 0.429 0.395 0.375 0.364 0.357 0.353 0.351 0.351 0.352 0.353 

15 0.520 0.448 0.410 0.388 0.375 0.367 0.362 0.359 0.358 0.358 0.359 

16 0.546 0.467 0.426 0.401 0.386 0.376 0.370 0.367 0.365 0.365 0.365 

17 0.571 0.487 0.441 0.414 0.397 0.386 0.379 0.375 0.372 0.371 0.371 

18 0.597 0.506 0.457 0.427 0.408 0.396 0.388 0.383 0.380 0.378 0.377 

19 0.623 0.525 0.472 0.440 0.419 0.406 0.396 0.390 0.387 0.385 0.384 

20 0.648 0.545 0.488 0.453 0.430 0.415 0.405 0.398 0.394 0.391 0.390 
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U(m/s) 0.7 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.169 0.188 0.206 0.222 0.236 0.249 0.260 0.271 0.282 0.291 0.301 

2 0.204 0.214 0.227 0.239 0.251 0.262 0.272 0.282 0.291 0.300 0.309 

3 0.239 0.241 0.248 0.257 0.266 0.275 0.284 0.292 0.301 0.309 0.317 

4 0.274 0.267 0.269 0.274 0.281 0.288 0.296 0.303 0.310 0.318 0.325 

5 0.309 0.293 0.290 0.292 0.296 0.301 0.307 0.314 0.320 0.327 0.333 

6 0.343 0.319 0.311 0.309 0.311 0.315 0.319 0.324 0.330 0.335 0.341 

7 0.378 0.345 0.332 0.327 0.326 0.328 0.331 0.335 0.339 0.344 0.349 

8 0.413 0.371 0.353 0.345 0.341 0.341 0.342 0.345 0.349 0.353 0.358 

9 0.448 0.398 0.374 0.362 0.356 0.354 0.354 0.356 0.358 0.362 0.366 

10 0.482 0.424 0.395 0.380 0.371 0.367 0.366 0.366 0.368 0.371 0.374 

11 0.517 0.450 0.416 0.397 0.386 0.380 0.378 0.377 0.378 0.379 0.382 

12 0.552 0.476 0.437 0.415 0.401 0.394 0.389 0.387 0.387 0.388 0.390 

13 0.587 0.502 0.458 0.432 0.416 0.407 0.401 0.398 0.397 0.397 0.398 

14 0.621 0.528 0.479 0.450 0.431 0.420 0.413 0.409 0.406 0.406 0.406 

15 0.656 0.555 0.500 0.467 0.446 0.433 0.424 0.419 0.416 0.415 0.414 

16 0.691 0.581 0.521 0.485 0.461 0.446 0.436 0.430 0.426 0.423 0.423 

17 0.726 0.607 0.542 0.502 0.477 0.459 0.448 0.440 0.435 0.432 0.431 

18 0.760 0.633 0.563 0.520 0.492 0.473 0.460 0.451 0.445 0.441 0.439 

19 0.795 0.659 0.584 0.537 0.507 0.486 0.471 0.461 0.454 0.450 0.447 

20 0.830 0.685 0.605 0.555 0.522 0.499 0.483 0.472 0.464 0.459 0.455 

            
            
              



  

                                   148 

 

U(m/s) 0.8 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.181 0.201 0.220 0.238 0.253 0.268 0.281 0.293 0.305 0.316 0.326 

2 0.226 0.235 0.248 0.261 0.273 0.285 0.296 0.307 0.317 0.327 0.337 

3 0.271 0.269 0.275 0.283 0.293 0.302 0.311 0.321 0.330 0.339 0.347 

4 0.316 0.303 0.302 0.306 0.312 0.319 0.327 0.334 0.342 0.350 0.358 

5 0.361 0.337 0.329 0.329 0.332 0.336 0.342 0.348 0.355 0.362 0.369 

6 0.407 0.371 0.357 0.352 0.351 0.353 0.357 0.362 0.367 0.373 0.379 

7 0.452 0.405 0.384 0.374 0.371 0.371 0.372 0.376 0.380 0.385 0.390 

8 0.497 0.439 0.411 0.397 0.390 0.388 0.388 0.389 0.392 0.396 0.400 

9 0.542 0.473 0.439 0.420 0.410 0.405 0.403 0.403 0.405 0.407 0.411 

10 0.587 0.507 0.466 0.443 0.429 0.422 0.418 0.417 0.417 0.419 0.421 

11 0.633 0.541 0.493 0.466 0.449 0.439 0.433 0.430 0.430 0.430 0.432 

12 0.678 0.575 0.520 0.488 0.468 0.456 0.449 0.444 0.442 0.442 0.443 

13 0.723 0.609 0.548 0.511 0.488 0.473 0.464 0.458 0.455 0.453 0.453 

14 0.768 0.643 0.575 0.534 0.508 0.490 0.479 0.472 0.467 0.465 0.464 

15 0.813 0.677 0.602 0.557 0.527 0.507 0.494 0.485 0.480 0.476 0.474 

16 0.859 0.711 0.630 0.579 0.547 0.525 0.509 0.499 0.492 0.488 0.485 

17 0.904 0.745 0.657 0.602 0.566 0.542 0.525 0.513 0.505 0.499 0.495 

18 0.949 0.779 0.684 0.625 0.586 0.559 0.540 0.526 0.517 0.510 0.506 

19 0.994 0.813 0.711 0.648 0.605 0.576 0.555 0.540 0.529 0.522 0.517 

20 1.039 0.847 0.739 0.671 0.625 0.593 0.570 0.554 0.542 0.533 0.527 

            
            
              



  

                                   149 

 

U(m/s) 0.9 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.193 0.214 0.235 0.254 0.272 0.287 0.302 0.316 0.329 0.341 0.352 

2 0.250 0.257 0.270 0.283 0.296 0.309 0.321 0.333 0.344 0.355 0.366 

3 0.307 0.300 0.304 0.312 0.321 0.331 0.340 0.350 0.360 0.370 0.379 

4 0.364 0.343 0.339 0.341 0.346 0.352 0.360 0.368 0.376 0.384 0.392 

5 0.421 0.386 0.373 0.369 0.370 0.374 0.379 0.385 0.391 0.398 0.406 

6 0.478 0.429 0.408 0.398 0.395 0.395 0.398 0.402 0.407 0.413 0.419 

7 0.535 0.472 0.442 0.427 0.420 0.417 0.417 0.419 0.423 0.427 0.432 

8 0.592 0.515 0.476 0.456 0.444 0.439 0.436 0.437 0.439 0.442 0.446 

9 0.649 0.558 0.511 0.484 0.469 0.460 0.456 0.454 0.454 0.456 0.459 

10 0.706 0.600 0.545 0.513 0.494 0.482 0.475 0.471 0.470 0.471 0.472 

11 0.763 0.643 0.580 0.542 0.518 0.503 0.494 0.489 0.486 0.485 0.486 

12 0.820 0.686 0.614 0.570 0.543 0.525 0.513 0.506 0.502 0.499 0.499 

13 0.877 0.729 0.648 0.599 0.568 0.547 0.533 0.523 0.517 0.514 0.512 

14 0.934 0.772 0.683 0.628 0.592 0.568 0.552 0.541 0.533 0.528 0.526 

15 0.991 0.815 0.717 0.657 0.617 0.590 0.571 0.558 0.549 0.543 0.539 

16 1.048 0.858 0.752 0.685 0.641 0.611 0.590 0.575 0.565 0.557 0.552 

17 1.105 0.901 0.786 0.714 0.666 0.633 0.609 0.592 0.580 0.572 0.566 

18 1.162 0.944 0.821 0.743 0.691 0.655 0.629 0.610 0.596 0.586 0.579 

19 1.219 0.987 0.855 0.772 0.715 0.676 0.648 0.627 0.612 0.601 0.592 

20 1.276 1.030 0.889 0.800 0.740 0.698 0.667 0.644 0.628 0.615 0.606 

 

  



  

                                   150 

 

U(m/s) 1 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.207 0.229 0.251 0.272 0.290 0.307 0.323 0.338 0.352 0.366 0.379 

2 0.277 0.282 0.294 0.307 0.321 0.334 0.347 0.360 0.372 0.384 0.395 

3 0.348 0.335 0.336 0.342 0.351 0.361 0.371 0.381 0.391 0.401 0.412 

4 0.418 0.387 0.378 0.378 0.381 0.387 0.394 0.402 0.411 0.419 0.428 

5 0.488 0.440 0.421 0.413 0.412 0.414 0.418 0.424 0.430 0.437 0.444 

6 0.558 0.493 0.463 0.449 0.442 0.440 0.442 0.445 0.449 0.455 0.461 

7 0.629 0.546 0.506 0.484 0.473 0.467 0.465 0.466 0.469 0.473 0.477 

8 0.699 0.599 0.548 0.519 0.503 0.494 0.489 0.488 0.488 0.490 0.494 

9 0.769 0.652 0.590 0.555 0.533 0.520 0.513 0.509 0.508 0.508 0.510 

10 0.839 0.705 0.633 0.590 0.564 0.547 0.536 0.530 0.527 0.526 0.526 

11 0.910 0.757 0.675 0.626 0.594 0.574 0.560 0.552 0.546 0.544 0.543 

12 0.980 0.810 0.718 0.661 0.624 0.600 0.584 0.573 0.566 0.561 0.559 

13 1.050 0.863 0.760 0.696 0.655 0.627 0.607 0.594 0.585 0.579 0.576 

14 1.120 0.916 0.802 0.732 0.685 0.653 0.631 0.615 0.605 0.597 0.592 

15 1.190 0.969 0.845 0.767 0.716 0.680 0.655 0.637 0.624 0.615 0.609 

16 1.260 1.022 0.887 0.803 0.746 0.707 0.678 0.658 0.643 0.633 0.625 

17 1.330 1.074 0.930 0.838 0.776 0.733 0.702 0.679 0.663 0.650 0.641 

18 1.401 1.127 0.972 0.873 0.807 0.760 0.726 0.701 0.682 0.668 0.658 

19 1.471 1.180 1.014 0.909 0.837 0.786 0.749 0.722 0.701 0.686 0.674 

20 1.541 1.233 1.057 0.944 0.867 0.813 0.773 0.743 0.721 0.704 0.691 

            
            
              



  

                                   151 

 

U(m/s) 1.1 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.222 0.244 0.268 0.290 0.310 0.328 0.345 0.362 0.377 0.391 0.405 

2 0.307 0.308 0.319 0.332 0.346 0.360 0.374 0.387 0.400 0.413 0.425 

3 0.392 0.372 0.370 0.375 0.383 0.392 0.402 0.413 0.424 0.434 0.445 

4 0.477 0.436 0.422 0.418 0.420 0.424 0.431 0.439 0.447 0.456 0.465 

5 0.562 0.500 0.473 0.461 0.456 0.457 0.460 0.465 0.471 0.477 0.485 

6 0.647 0.564 0.524 0.503 0.493 0.489 0.488 0.490 0.494 0.499 0.505 

7 0.732 0.627 0.575 0.546 0.530 0.521 0.517 0.516 0.517 0.520 0.524 

8 0.816 0.691 0.626 0.589 0.566 0.553 0.545 0.542 0.541 0.542 0.544 

9 0.901 0.755 0.678 0.632 0.603 0.585 0.574 0.568 0.564 0.563 0.564 

10 0.986 0.819 0.729 0.674 0.640 0.617 0.603 0.593 0.588 0.585 0.584 

11 1.071 0.883 0.780 0.717 0.677 0.649 0.631 0.619 0.611 0.606 0.604 

12 1.156 0.947 0.831 0.760 0.713 0.682 0.660 0.645 0.634 0.628 0.624 

13 1.240 1.011 0.883 0.803 0.750 0.714 0.688 0.670 0.658 0.649 0.643 

14 1.325 1.074 0.934 0.845 0.787 0.746 0.717 0.696 0.681 0.671 0.663 

15 1.410 1.138 0.985 0.888 0.823 0.778 0.746 0.722 0.705 0.692 0.683 

16 1.494 1.202 1.036 0.931 0.860 0.810 0.774 0.748 0.728 0.714 0.703 

17 1.579 1.266 1.087 0.974 0.897 0.842 0.803 0.773 0.752 0.735 0.723 

18 1.664 1.330 1.139 1.016 0.933 0.874 0.831 0.799 0.775 0.757 0.742 

19 1.749 1.394 1.190 1.059 0.970 0.907 0.860 0.825 0.798 0.778 0.762 

20 1.833 1.457 1.241 1.102 1.007 0.939 0.889 0.851 0.822 0.799 0.782 

            
            
              



  

                                   152 

 

U(m/s) 1.2 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.239 0.261 0.285 0.308 0.330 0.349 0.368 0.385 0.402 0.417 0.432 

2 0.340 0.337 0.346 0.359 0.373 0.387 0.402 0.416 0.429 0.443 0.456 

3 0.441 0.413 0.407 0.410 0.417 0.426 0.436 0.446 0.457 0.468 0.480 

4 0.542 0.489 0.468 0.461 0.460 0.464 0.470 0.477 0.485 0.494 0.503 

5 0.643 0.565 0.529 0.512 0.504 0.502 0.504 0.508 0.513 0.519 0.527 

6 0.743 0.640 0.590 0.562 0.548 0.540 0.538 0.538 0.541 0.545 0.550 

7 0.844 0.716 0.651 0.613 0.591 0.578 0.572 0.569 0.569 0.570 0.574 

8 0.945 0.792 0.712 0.664 0.635 0.617 0.606 0.599 0.596 0.596 0.597 

9 1.046 0.868 0.772 0.715 0.678 0.655 0.640 0.630 0.624 0.622 0.621 

10 1.147 0.944 0.833 0.766 0.722 0.693 0.674 0.661 0.652 0.647 0.644 

11 1.247 1.020 0.894 0.817 0.766 0.731 0.708 0.691 0.680 0.673 0.668 

12 1.348 1.096 0.955 0.867 0.809 0.769 0.741 0.722 0.708 0.698 0.692 

13 1.449 1.172 1.016 0.918 0.853 0.808 0.775 0.752 0.736 0.724 0.715 

14 1.549 1.247 1.077 0.969 0.897 0.846 0.809 0.783 0.763 0.749 0.739 

15 1.650 1.323 1.138 1.020 0.940 0.884 0.843 0.814 0.791 0.775 0.762 

16 1.751 1.399 1.199 1.071 0.984 0.922 0.877 0.844 0.819 0.800 0.786 

17 1.851 1.475 1.259 1.121 1.027 0.960 0.911 0.875 0.847 0.826 0.809 

18 1.952 1.551 1.320 1.172 1.071 0.999 0.945 0.905 0.875 0.851 0.833 

19 2.053 1.627 1.381 1.223 1.115 1.037 0.979 0.936 0.903 0.877 0.857 

20 2.153 1.703 1.442 1.274 1.158 1.075 1.013 0.967 0.930 0.902 0.880 

            
            
              



  

                                   153 

 

U(m/s) 1.3 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.257 0.279 0.304 0.328 0.350 0.371 0.391 0.409 0.427 0.444 0.460 

2 0.376 0.368 0.375 0.387 0.401 0.416 0.430 0.445 0.459 0.474 0.487 

3 0.494 0.457 0.447 0.447 0.452 0.460 0.470 0.481 0.492 0.503 0.515 

4 0.612 0.546 0.518 0.507 0.503 0.505 0.510 0.517 0.525 0.533 0.543 

5 0.730 0.635 0.589 0.566 0.555 0.550 0.550 0.553 0.557 0.563 0.570 

6 0.848 0.724 0.661 0.626 0.606 0.595 0.590 0.589 0.590 0.593 0.598 

7 0.967 0.813 0.732 0.685 0.657 0.640 0.630 0.624 0.623 0.623 0.625 

8 1.085 0.901 0.803 0.745 0.708 0.684 0.669 0.660 0.655 0.653 0.653 

9 1.203 0.990 0.875 0.804 0.759 0.729 0.709 0.696 0.688 0.683 0.681 

10 1.321 1.079 0.946 0.864 0.810 0.774 0.749 0.732 0.720 0.713 0.708 

11 1.439 1.168 1.018 0.924 0.861 0.819 0.789 0.768 0.753 0.743 0.736 

12 1.557 1.257 1.089 0.983 0.913 0.864 0.829 0.804 0.786 0.773 0.764 

13 1.675 1.346 1.160 1.043 0.964 0.908 0.869 0.840 0.818 0.803 0.791 

14 1.793 1.435 1.232 1.102 1.015 0.953 0.908 0.876 0.851 0.833 0.819 

15 1.911 1.524 1.303 1.162 1.066 0.998 0.948 0.911 0.884 0.863 0.847 

16 2.029 1.613 1.374 1.221 1.117 1.043 0.988 0.947 0.916 0.892 0.874 

17 2.147 1.702 1.446 1.281 1.168 1.088 1.028 0.983 0.949 0.922 0.902 

18 2.265 1.791 1.517 1.341 1.219 1.132 1.068 1.019 0.982 0.952 0.929 

19 2.383 1.880 1.588 1.400 1.270 1.177 1.108 1.055 1.014 0.982 0.957 

20 2.501 1.969 1.660 1.460 1.322 1.222 1.148 1.091 1.047 1.012 0.985 

            
            
              



  

                                   154 

 

U(m/s) 1.4 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.277 0.297 0.323 0.348 0.371 0.393 0.414 0.434 0.452 0.470 0.487 

2 0.414 0.401 0.406 0.417 0.430 0.445 0.460 0.475 0.490 0.505 0.519 

3 0.551 0.504 0.489 0.486 0.490 0.497 0.506 0.517 0.528 0.540 0.551 

4 0.688 0.607 0.571 0.555 0.549 0.549 0.552 0.558 0.566 0.574 0.583 

5 0.825 0.710 0.654 0.624 0.608 0.601 0.599 0.600 0.604 0.609 0.615 

6 0.962 0.813 0.737 0.693 0.667 0.653 0.645 0.641 0.641 0.644 0.647 

7 1.099 0.916 0.819 0.762 0.727 0.705 0.691 0.683 0.679 0.678 0.679 

8 1.236 1.019 0.902 0.831 0.786 0.756 0.737 0.725 0.717 0.713 0.711 

9 1.372 1.122 0.985 0.900 0.845 0.808 0.783 0.766 0.755 0.748 0.744 

10 1.509 1.225 1.067 0.969 0.905 0.860 0.829 0.808 0.793 0.782 0.776 

11 1.646 1.328 1.150 1.038 0.964 0.912 0.876 0.849 0.830 0.817 0.808 

12 1.783 1.431 1.233 1.107 1.023 0.964 0.922 0.891 0.868 0.852 0.840 

13 1.920 1.535 1.316 1.176 1.082 1.016 0.968 0.932 0.906 0.886 0.872 

14 2.056 1.638 1.398 1.245 1.142 1.068 1.014 0.974 0.944 0.921 0.904 

15 2.193 1.741 1.481 1.314 1.201 1.120 1.060 1.016 0.982 0.956 0.936 

16 2.330 1.844 1.564 1.384 1.260 1.172 1.106 1.057 1.020 0.990 0.968 

17 2.467 1.947 1.646 1.453 1.319 1.224 1.153 1.099 1.057 1.025 1.000 

18 2.604 2.050 1.729 1.522 1.379 1.275 1.199 1.140 1.095 1.060 1.032 

19 2.740 2.153 1.812 1.591 1.438 1.327 1.245 1.182 1.133 1.094 1.064 

20 2.877 2.256 1.894 1.660 1.497 1.379 1.291 1.224 1.171 1.129 1.096 
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U(m/s) 1.5 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.298 0.317 0.343 0.369 0.393 0.416 0.438 0.458 0.478 0.497 0.515 

2 0.455 0.435 0.438 0.448 0.461 0.475 0.491 0.506 0.522 0.537 0.552 

3 0.612 0.554 0.533 0.527 0.529 0.535 0.544 0.554 0.565 0.577 0.589 

4 0.769 0.672 0.628 0.606 0.597 0.595 0.597 0.601 0.608 0.616 0.626 

5 0.926 0.790 0.723 0.686 0.665 0.654 0.650 0.649 0.652 0.656 0.662 

6 1.083 0.909 0.818 0.765 0.733 0.714 0.703 0.697 0.695 0.696 0.699 

7 1.240 1.027 0.912 0.844 0.801 0.773 0.755 0.745 0.738 0.736 0.736 

8 1.397 1.145 1.007 0.923 0.869 0.833 0.808 0.792 0.782 0.776 0.772 

9 1.554 1.263 1.102 1.002 0.937 0.892 0.861 0.840 0.825 0.815 0.809 

10 1.711 1.382 1.197 1.082 1.005 0.952 0.914 0.888 0.869 0.855 0.846 

11 1.868 1.500 1.292 1.161 1.073 1.011 0.967 0.935 0.912 0.895 0.883 

12 2.025 1.618 1.387 1.240 1.141 1.071 1.020 0.983 0.955 0.935 0.919 

13 2.182 1.736 1.482 1.319 1.209 1.130 1.073 1.031 0.999 0.975 0.956 

14 2.339 1.855 1.577 1.398 1.277 1.190 1.126 1.078 1.042 1.014 0.993 

15 2.496 1.973 1.671 1.478 1.345 1.249 1.179 1.126 1.086 1.054 1.030 

16 2.653 2.091 1.766 1.557 1.413 1.309 1.232 1.174 1.129 1.094 1.066 

17 2.810 2.210 1.861 1.636 1.481 1.369 1.285 1.222 1.172 1.134 1.103 

18 2.967 2.328 1.956 1.715 1.549 1.428 1.338 1.269 1.216 1.173 1.140 

19 3.124 2.446 2.051 1.794 1.617 1.488 1.391 1.317 1.259 1.213 1.177 

20 3.281 2.564 2.146 1.874 1.685 1.547 1.444 1.365 1.302 1.253 1.213 
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U(m/s) 1.6 

          P(atm)/T(C) 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 25 

1 0.338 0.364 0.390 0.415 0.439 0.462 0.484 0.504 0.524 0.544 0.344 

2 0.473 0.472 0.480 0.493 0.507 0.522 0.538 0.554 0.570 0.585 0.545 

3 0.607 0.580 0.570 0.570 0.575 0.582 0.592 0.603 0.615 0.627 0.747 

4 0.742 0.688 0.660 0.647 0.642 0.643 0.646 0.652 0.660 0.669 0.949 

5 0.876 0.796 0.751 0.725 0.710 0.703 0.701 0.702 0.705 0.711 1.150 

6 1.011 0.904 0.841 0.802 0.778 0.763 0.755 0.751 0.751 0.752 1.352 

7 1.145 1.011 0.931 0.879 0.845 0.823 0.809 0.800 0.796 0.794 1.553 

8 1.279 1.119 1.021 0.956 0.913 0.884 0.863 0.850 0.841 0.836 1.754 

9 1.414 1.227 1.111 1.034 0.981 0.944 0.918 0.899 0.886 0.878 1.956 

10 1.548 1.335 1.201 1.111 1.049 1.004 0.972 0.948 0.932 0.920 2.157 

11 1.683 1.443 1.291 1.188 1.116 1.064 1.026 0.998 0.977 0.961 2.359 

12 1.817 1.551 1.381 1.266 1.184 1.124 1.080 1.047 1.022 1.003 2.560 

13 1.952 1.659 1.471 1.343 1.252 1.185 1.135 1.096 1.067 1.045 2.761 

14 2.086 1.767 1.561 1.420 1.319 1.245 1.189 1.146 1.113 1.087 2.963 

15 2.221 1.875 1.651 1.498 1.387 1.305 1.243 1.195 1.158 1.129 3.164 

16 2.356 1.982 1.741 1.575 1.455 1.365 1.297 1.245 1.203 1.170 3.366 

17 2.490 2.090 1.831 1.652 1.523 1.426 1.352 1.294 1.248 1.212 3.567 

18 2.625 2.198 1.921 1.729 1.590 1.486 1.406 1.343 1.294 1.254 3.768 

19 2.759 2.306 2.012 1.807 1.658 1.546 1.460 1.393 1.339 1.296 3.970 

20 2.894 2.414 2.102 1.884 1.726 1.606 1.514 1.442 1.384 1.337 4.171 

            
            
              



  

                                   157 

 

U(m/s) 1.7 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.344 0.360 0.386 0.412 0.438 0.463 0.487 0.509 0.531 0.552 0.572 

2 0.545 0.512 0.508 0.514 0.525 0.539 0.555 0.571 0.587 0.603 0.619 

3 0.747 0.663 0.629 0.616 0.613 0.616 0.623 0.632 0.642 0.654 0.667 

4 0.949 0.815 0.751 0.717 0.700 0.692 0.691 0.693 0.698 0.705 0.714 

5 1.150 0.967 0.873 0.819 0.787 0.769 0.759 0.754 0.754 0.756 0.761 

6 1.352 1.119 0.995 0.921 0.874 0.845 0.827 0.815 0.809 0.807 0.808 

7 1.553 1.270 1.116 1.022 0.962 0.921 0.894 0.877 0.865 0.858 0.855 

8 1.754 1.422 1.238 1.124 1.049 0.998 0.962 0.938 0.921 0.909 0.902 

9 1.956 1.574 1.360 1.226 1.136 1.074 1.030 0.999 0.977 0.960 0.949 

10 2.157 1.726 1.482 1.327 1.223 1.151 1.098 1.060 1.032 1.012 0.997 

11 2.359 1.878 1.603 1.429 1.311 1.227 1.166 1.121 1.088 1.063 1.044 

12 2.560 2.029 1.725 1.530 1.398 1.303 1.234 1.183 1.144 1.114 1.091 

13 2.761 2.181 1.847 1.632 1.485 1.380 1.302 1.244 1.199 1.165 1.138 

14 2.963 2.333 1.969 1.734 1.572 1.456 1.370 1.305 1.255 1.216 1.185 

15 3.164 2.485 2.090 1.835 1.659 1.533 1.438 1.366 1.311 1.267 1.232 

16 3.366 2.636 2.212 1.937 1.747 1.609 1.506 1.427 1.366 1.318 1.279 

17 3.567 2.788 2.334 2.039 1.834 1.685 1.574 1.489 1.422 1.369 1.327 

18 3.768 2.940 2.456 2.140 1.921 1.762 1.642 1.550 1.478 1.420 1.374 

19 3.970 3.092 2.577 2.242 2.008 1.838 1.710 1.611 1.533 1.471 1.421 

20 4.171 3.244 2.699 2.344 2.096 1.915 1.778 1.672 1.589 1.522 1.468 
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U(m/s) 1.8 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.369 0.383 0.408 0.435 0.462 0.487 0.512 0.535 0.558 0.580 0.601 

2 0.595 0.553 0.545 0.549 0.560 0.573 0.588 0.604 0.621 0.637 0.654 

3 0.821 0.723 0.681 0.663 0.657 0.659 0.664 0.673 0.683 0.695 0.707 

4 1.047 0.893 0.818 0.777 0.755 0.744 0.740 0.741 0.745 0.752 0.760 

5 1.272 1.063 0.954 0.891 0.853 0.830 0.817 0.810 0.808 0.809 0.813 

6 1.498 1.233 1.091 1.005 0.951 0.915 0.893 0.878 0.870 0.866 0.865 

7 1.724 1.403 1.227 1.119 1.048 1.001 0.969 0.947 0.933 0.923 0.918 

8 1.950 1.573 1.364 1.233 1.146 1.087 1.045 1.016 0.995 0.981 0.971 

9 2.175 1.743 1.500 1.347 1.244 1.172 1.121 1.084 1.057 1.038 1.024 

10 2.401 1.914 1.636 1.460 1.342 1.258 1.197 1.153 1.120 1.095 1.077 

11 2.627 2.084 1.773 1.574 1.439 1.344 1.274 1.221 1.182 1.152 1.130 

12 2.852 2.254 1.909 1.688 1.537 1.429 1.350 1.290 1.245 1.209 1.182 

13 3.078 2.424 2.046 1.802 1.635 1.515 1.426 1.359 1.307 1.267 1.235 

14 3.304 2.594 2.182 1.916 1.733 1.600 1.502 1.427 1.369 1.324 1.288 

15 3.530 2.764 2.319 2.030 1.830 1.686 1.578 1.496 1.432 1.381 1.341 

16 3.755 2.934 2.455 2.144 1.928 1.772 1.654 1.564 1.494 1.438 1.394 

17 3.981 3.104 2.592 2.258 2.026 1.857 1.731 1.633 1.556 1.496 1.447 

18 4.207 3.274 2.728 2.372 2.124 1.943 1.807 1.702 1.619 1.553 1.499 

19 4.432 3.444 2.864 2.486 2.222 2.029 1.883 1.770 1.681 1.610 1.552 

20 4.658 3.615 3.001 2.600 2.319 2.114 1.959 1.839 1.744 1.667 1.605 
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U(m/s) 1.9 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.395 0.407 0.432 0.459 0.486 0.512 0.538 0.562 0.586 0.608 0.630 

2 0.647 0.596 0.584 0.586 0.595 0.608 0.622 0.638 0.655 0.672 0.689 

3 0.898 0.786 0.736 0.713 0.704 0.703 0.707 0.715 0.725 0.736 0.748 

4 1.150 0.975 0.888 0.840 0.813 0.798 0.792 0.791 0.794 0.800 0.807 

5 1.402 1.165 1.040 0.966 0.921 0.894 0.877 0.868 0.864 0.863 0.866 

6 1.653 1.354 1.192 1.093 1.030 0.989 0.962 0.944 0.933 0.927 0.925 

7 1.905 1.543 1.344 1.220 1.139 1.084 1.047 1.020 1.003 0.991 0.984 

8 2.156 1.733 1.496 1.347 1.248 1.180 1.131 1.097 1.072 1.055 1.042 

9 2.407 1.922 1.648 1.474 1.357 1.275 1.216 1.173 1.142 1.118 1.101 

10 2.659 2.112 1.800 1.601 1.466 1.371 1.301 1.250 1.211 1.182 1.160 

11 2.910 2.301 1.952 1.728 1.575 1.466 1.386 1.326 1.281 1.246 1.219 

12 3.162 2.491 2.104 1.855 1.684 1.561 1.471 1.402 1.350 1.309 1.278 

13 3.413 2.680 2.256 1.981 1.793 1.657 1.556 1.479 1.420 1.373 1.337 

14 3.664 2.870 2.408 2.108 1.902 1.752 1.641 1.555 1.489 1.437 1.395 

15 3.916 3.059 2.560 2.235 2.010 1.847 1.725 1.632 1.559 1.501 1.454 

16 4.167 3.249 2.712 2.362 2.119 1.943 1.810 1.708 1.628 1.564 1.513 

17 4.419 3.438 2.864 2.489 2.228 2.038 1.895 1.785 1.698 1.628 1.572 

18 4.670 3.628 3.016 2.616 2.337 2.134 1.980 1.861 1.767 1.692 1.631 

19 4.921 3.817 3.167 2.743 2.446 2.229 2.065 1.937 1.837 1.756 1.690 

20 5.173 4.006 3.319 2.870 2.555 2.324 2.150 2.014 1.906 1.819 1.749 
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U(m/s) 2 

          P(atm)/T(C) 25 122.5 220 317.5 415 512.5 610 707.5 805 902.5 1000 

1 0.423 0.432 0.456 0.483 0.511 0.538 0.564 0.589 0.613 0.637 0.660 

2 0.702 0.642 0.625 0.624 0.631 0.643 0.658 0.674 0.690 0.708 0.725 

3 0.981 0.851 0.793 0.764 0.752 0.749 0.752 0.758 0.767 0.778 0.790 

4 1.259 1.061 0.961 0.905 0.873 0.854 0.846 0.843 0.844 0.849 0.856 

5 1.538 1.271 1.130 1.045 0.993 0.960 0.940 0.928 0.921 0.920 0.921 

6 1.816 1.481 1.298 1.186 1.114 1.066 1.034 1.012 0.998 0.990 0.986 

7 2.095 1.691 1.466 1.327 1.234 1.171 1.128 1.097 1.075 1.061 1.051 

8 2.373 1.901 1.635 1.467 1.355 1.277 1.222 1.181 1.152 1.131 1.116 

9 2.652 2.111 1.803 1.608 1.476 1.383 1.316 1.266 1.229 1.202 1.182 

10 2.930 2.321 1.971 1.748 1.596 1.488 1.410 1.351 1.306 1.273 1.247 

11 3.209 2.530 2.140 1.889 1.717 1.594 1.504 1.435 1.383 1.343 1.312 

12 3.487 2.740 2.308 2.029 1.838 1.700 1.598 1.520 1.460 1.414 1.377 

13 3.766 2.950 2.476 2.170 1.958 1.805 1.692 1.605 1.537 1.484 1.442 

14 4.044 3.160 2.645 2.310 2.079 1.911 1.785 1.689 1.614 1.555 1.508 

15 4.323 3.370 2.813 2.451 2.199 2.017 1.879 1.774 1.691 1.626 1.573 

16 4.601 3.580 2.981 2.591 2.320 2.122 1.973 1.859 1.768 1.696 1.638 

17 4.880 3.790 3.150 2.732 2.441 2.228 2.067 1.943 1.845 1.767 1.703 

18 5.158 4.000 3.318 2.873 2.561 2.334 2.161 2.028 1.922 1.837 1.768 

19 5.437 4.209 3.487 3.013 2.682 2.439 2.255 2.113 1.999 1.908 1.833 

20 5.715 4.419 3.655 3.154 2.803 2.545 2.349 2.197 2.076 1.979 1.899 
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