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RÉSUMÉ 

 

L’extrême prématurité et les cardiopathies congénitales sont associées à un risque élevé de lésions 

cérébrales induisant des troubles neurocognitifs sévères. Jusqu’à récemment, l’examen de ces 

lésions reposait sur des techniques neuroanatomiques, offrant peu d’informations quant à leurs 

conséquences sur le plan fonctionnel. En ce sens, l’analyse des réseaux neuronaux en état de repos 

par IRM fonctionnelle constitue une approche prometteuse pour mieux comprendre l’effet de ces 

lésions. De plus ils commencent à apparaître dès le troisième trimestre de gestation, avec de fortes 

perturbations lors d’une naissance prématurée. Sur le plan clinique, l’impact des atteintes 

cérébrales sur les différents réseaux en état de repos, offrirait des avancées en termes de pronostic 

puisque ces atteintes, quoique présentes dans les premiers mois de vie, n’ont une expression 

clinique que plusieurs années après la naissance. Malgré les possibilités offertes par IRM 

fonctionnel en état de repos, son application pose divers défis méthodologiques. La qualité des 

images peut être altérée par le mouvement de la tête, pouvant conduire à des données inutilisables, 

et que l’on découvre à posteriori pendant les étapes de traitement d’images, car une inspection 

visuelle des données est impossible due au grand volume de données acquises. De plus, le 

traitement des données RS néonatales est très complexe. Des outils permettant le preprocessing des 

données existent chez l’adulte, mais ceci est difficilement applicable au nouveau-né à cause de 

l’inversion du contraste matière blanche/grise dû au processus de myélinisation ou de la constante 

croissance. 

Pour pallier à ces limitations, il est nécessaire d’acquérir des images d’excellente qualité ainsi que 

le développement d’outils adaptés aux besoins des images des nouveau-nés. Car, pour réussir le 

pretraitement des données IRM fonctionnel en état de repos néonatales, chaque bébé doit être traité 

de façon individuelle et avec beaucoup d’attention. Ce projet porte donc sur le développement d’un 

protocole optimisé pour le nouveau-né ainsi que l’évaluation du mouvement de la tête en temps 

réel (pendant que le bébé est encore dans l’IRM) afin de décider si les données acquises passent 

les critères de qualité ou si des données additionnelles doivent être collectées avant de sortir le bébé 

de l’IRM. Ceci permet d’acquérir des données de qualité, réduisant ainsi le nombre de sujets rejetés 

dans une étude. Enfin, afin de permettre aux différents centres de traiter leurs données de façon 

rapide et efficace, nous avons développé un outil open-source appelé NeoRS, permettant le 
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pretraitement individuel des données néonatales. NeoRS répond aux spécificités du pretraitement 

des images néonatales en accordant une attention particulière au recalage, y compris à l’atlas 

néonatal, ainsi qu’aux paramètres tels que les différences de contraste dues à la myélinisation et de 

taille de la tête. Nous espérons que NeoRS permettra à un plus grand nombre de centres de pretraiter 

leurs ensembles de données, contribuant ainsi à produire un plus grand nombre d’études. Cela 

permettra, à terme, de développer des applications pour l’utilisation des réseaux en état de repos 

comme biomarqueur de l’intégrité cérébrale. 
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ABSTRACT 

 

Extreme prematurity and congenital heart disease are associated with a high risk of brain damage 

leading to severe neurocognitive disorders. Until recently, these lesions were examined based on 

neuroanatomical techniques, offering little information about their functional consequences. In this 

sense, the resting-state networks analysis by functional MRI is a promising approach to better 

understanding these lesions’ effects. Moreover, they appear as early as the third trimester of 

gestation, with strong disruptions during a premature birth. From a clinical point of view, the 

impact of brain damage on the different resting-state networks could help prognosticate the impact 

of the injury since this damage, although present during the first months of life, does not have a 

clinical expression until several years after birth. Despite the possibilities offered by resting-state 

functional MRI, its application poses various methodological challenges. For example, the head 

movement can alter the image quality, leading to unusable data, usually discovered afterward 

during the image preprocessing steps. Indeed, visual inspection of the data is impossible due to the 

large volume of acquired data. Moreover, the preprocessing of neonatal resting-state data is very 

complex. Image preprocessing tools exist for adults, but this is difficult to apply to neonates 

because of the inversion of the white matter/gray contrast due to the myelination process or the 

constant growth. 

To overcome these limitations, it is necessary to acquire excellent quality images and develop tools 

adapted to the needs of newborn data. To do so, each baby must be considered individually and 

with great care. Therefore, this project focuses on developing a protocol optimized for neonates 

and the evaluation of the head movement in real-time (while the baby is still in the MRI) to decide 

if the acquired data passes the quality criteria or if additional data has to be collected before the 

baby leaves the MRI room. This enables the acquisition of high-quality data with low motion, 

decreasing the number of discarded subjects in a study. Finally, we developed an open-source tool 

called NeoRS for neonatal data to allow the different centers to preprocess their data quickly and 

efficiently. NeoRS addresses the specificities of neonatal image preprocessing by paying particular 

attention to image registration, including neonatal atlas and parameters like differences in contrast 

due to myelination and different head sizes. We hope NeoRS will allow more centers to preprocess 
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their datasets, contributing to producing a higher number of studies. Ultimately, this will enable 

the development of applications for using resting-state networks as a biomarker of brain integrity.  
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 INTRODUCTION 

 

The newborn brain is especially vulnerable to extreme prematurity and congenital heart disease 

(CHD). These are often associated with an increased risk of brain damage that can result in severe 

neurodevelopmental disability and long-term complications, such as cerebral palsy, autism, 

hyperactivity or neurocognitive delay (Brossard-Racine et al., 2016; Franz et al., 2018; 

Limperopoulos et al., 2008; Volpe, 2009).  

Magnetic Resonance Imaging (MRI) showed that very preterm infants (born at ≤ 32 weeks of 

gestation) presented different types of white matter injury, such as periventricular leukomalacia, 

which is the most common form of brain injury in premature births (Smyser, Wheelock, Limbrick, 

& Neil, 2019). Furthermore, ultrasounds in Canada revealed that approximately 21% of very 

preterm infants presented structural brain anomalies such as intraventricular hemorrhage, the 

second most common form of preterm brain injury (Ryan, Lacaze-Masmonteil, & Mohammad, 

2019). Moreover, CHD is also a significant cause of perinatal brain injury, with around 8 in 1000 

births per year in Canada (Irvine, Luo, & Leon, 2015), and consists of structural malformations of 

the heart and vessels, resulting in blood flow impairment. This blood flow impairment reduces 

cerebral oxygen during brain maturation, leading to poor development (Kelly et al., 2017) and 

increased risk of injury during heart surgery (Newburger & Bellinger, 2006). 

While it is well known that perinatal brain injury has devastating long-term effects on the infant’s 

brain, the consequences may differ for each individual. Until recently, the examination of these 

lesions and the functional impact was based on neuroanatomical techniques offering little 

information on the evolution of the disease. Therefore, intending to improve the long-term life 

quality of these infants, it is warranted to find new brain integrity biomarkers that are reliable and 

non-invasive, allowing thereafter prompt brain injury diagnosis to apply therapy to minimize future 

complications.  

A promising approach is the study of resting-state functional connectivity (RS-FC), as it would 

provide complementary information to structural imaging related to brain physiology. In this sense, 

the analysis of resting-state neural networks is encouraging since they have been shown to emerge 

as early as the third trimester of gestation (Doria et al., 2010) with substantial disruptions during 
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preterm birth (Enguix, Ding, & Lodygensky, 2018). Furthermore, clinically, the impact of brain 

damage on the different resting-state networks (RSN) would offer advances in prognosis since 

these impairments, although present at birth, are usually expressed at school age.  

Several neuroimaging techniques exist to study functional connectivity. Nonetheless, the main 

focus of this project is on resting-state functional Magnetic Resonance Imaging (rs-fMRI), as it has 

already shown its potential in the study of this clinical population (W. Gao, Lin, Grewen, & 

Gilmore, 2017; Grayson & Fair, 2017; Keunen, Counsell, & Benders, 2017; Power, Fair, 

Schlaggar, & Petersen, 2010; Smyser & Neil, 2015; H. Zhang, Shen, & Lin, 2019). Moreover, rs-

fMRI is a good technique for studying newborns as it is non-invasive and doesn’t need participant 

collaboration. Also, MRI allows access to the deeper layers of the brain, providing consistent 

information about the high-order associative and low-level sensory resting-state networks. It also 

presents a good compromise between spatial resolution/signal-to-noise ratio (SNR) and an 

acceptable temporal resolution when using advanced acquisition techniques such as multi-band 

excitations. Furthermore, MRI allows multimodal acquisitions in a single scanning session 

providing information about the brain function and structure (i.e., T2-weighted, T1-weighted, 

diffusion tensor imaging). 

Nevertheless, despite the great possibilities of rs-fMRI, the study of the newborn brain presents 

several methodological challenges related to data acquisition, preprocessing, and analysis that must 

be addressed. First, infants present higher head motion levels than adults, meaning that head 

movement artifacts might alter data quality. Image preprocessing tools exist for adults, but they are 

challenging to apply to neonates because of the constant growth or the inversion of the white/gray 

matter contrasts due to myelination, making neonatal image preprocessing very complex. 

To overcome the challenges mentioned above, this project aims to shed light on the different 

approaches needed to acquire and preprocess neonatal resting-state data successfully. It includes 

an acquisition protocol, a real-time head motion quality control procedure, and NeoRS, an open-

source pipeline to preprocess neonatal rs-fMRI data from different datasets. Additionally, a rs-

fMRI study performed on youth born with congenital heart disease was carried out initially to 

understand the state-of-the-art preprocessing methods in mature brains. Furthermore, this study 

provides insights into the potential long-term effects that congenital heart malformations may have 

on resting-state networks.
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 LITERATURE REVIEW 

 

2.1 Functional neuroimaging techniques 

Functional neuroimaging is a biomedical imaging technique detecting changes in brain metabolism 

and blood flow to understand brain activity. Between the most used functional neuroimaging 

techniques we can distinguish functional MRI (fMRI), functional positron emission tomography 

(functional PET), electroencephalography (EEG), magnetoencephalography (MEG), and 

functional near-infrared imaging system (fNIRS).  

 Functional positron emission tomography 

Positron emission tomography (PET) provides information about brain function based on 

metabolic activity while performing a task or in a resting-state. Intravenous injection introduces a 

glucose molecule into the body labeled with a positron-emitter radionuclide, typically [18F] 

fluorodeoxyglucose. The positron-emitter radionuclide is called a PET-tracer. During this process, 

the radionuclide emits positrons interacting with the immediate environment, annihilating the 

surrounding electrons. The electron-positron annihilation results in a pair of γ-photons of 511 keV 

traveling in opposite directions (Schaart, 2021)(Figure 2.1). To create the functional map, the 

scanner measures these photons to identify the region where the metabolic activity comes from (A. 

Kumar & Chugani, 2013). PET has been widely used in adults to explore the resting-state networks 

in different brain diseases such as neuropsychiatric disorders (Savio et al., 2017), depression (Fang 

et al., 2016) or Alzheimer’s disease (Toussaint et al., 2012). However, despite having several 

clinical applications, the most common use of PET is in oncologic imaging for tumor detection 

(Anand, Singh, & Dash, 2009). In newborns, very few resting-state functional connectivity studies 

using PET exist (Thorngren-Jerneck et al., 2001). Probably, due to ethical concerns regarding 

exposure to radioactive products. PET offers a spatial resolution of 4 mm and a temporal resolution 

of 60 seconds or less (Jamadar et al., 2020). In contrast to conventional PET, this temporal 

resolution can be achieved by constant infusion of the PET-tracer (Li et al., 2020).  
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Figure 2.1.  Representation of the positron-electron annihilation, creating two opposite direction 

photons of 511 KeV. 

 

 Functional MRI  

fMRI allows for mapping the brain activity between different brain areas based on slow frequency 

changes associated with the Blood-Oxygen-Level-Dependent (BOLD) signal (Ogawa, Lee, Kay, 

& Tank, 1990; Ogawa et al., 1993). In contrast to diffusion tensor imaging, which provides micro-

structural connectivity maps (Babaeeghazvini, Rueda-Delgado, Gooijers, Swinnen, & 

Daffertshofer, 2021), fMRI measures brain activity of different regions working simultaneously, 

providing information related to brain function. When performing fMRI acquisitions, we can 

distinguish between task-based and resting-state modalities. Task-based fMRI consists of 

demanding the subject to perform a task to observe brain activity while performing the task. In 

contrast with task-based fMRI, resting-state fMRI measures brain activity while the subject is not 

performing any task (Smitha et al., 2017). As asking a newborn to complete a task is not easy, we 

mainly use the resting-state approach. Furthermore, resting-state fMRI allows obtaining, from a 

single acquisition, global information about the brain’s functional connectivity (Smyser et al., 

2019). 

The most common clinical, yet rare, applications of resting-state fMRI are preoperative mapping 

for brain tumor surgery (V. A. Kumar et al., 2020; Lee, Smyser, & Shimony, 2013; Smirnov et al., 

2020; D. Zhang et al., 2009). Furthermore, it is also used to perform between-group comparisons 

to understand psychiatric diseases such as autism spectrum disorder, schizophrenia, and 
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Alzheimer’s disease (Lee et al., 2013). In neonates, the available studies have concentrated on 

prematurity and hypoxic-ischemic encephalopathy (Smyser et al., 2019). Resting-state fMRI also 

allowed in-utero functional connectivity acquisition, showing the presence of the resting-state 

networks before birth (van den Heuvel & Thomason, 2016). Different neonatal studies also 

confirmed the existence of the resting-state networks from the third trimester of gestation (Doria 

et al., 2010) and that they can be modeled for extreme prematurity cases by adequate neonatal 

intense care (Smyser et al., 2013). Also, it has been shown that healthy neonatal brains present the 

same functional connectivity network patterns (Fransson et al., 2007). Finally, resting-state fMRI 

has a spatial resolution of around 2-3 mm and a temporal resolution of about 2-3 seconds when 

using single-band acquisitions and < 1 second when using multi-band acquisition techniques. 

 Electroencephalography 

EEG measures the spontaneous electrical signal through electrodes placed on the scalp directly 

produced by neuronal activity (Biasiucci, Franceschiello, & Murray, 2019). Similarly to resting-

state fMRI, EEG can be performed in a resting-state (Xue et al., 2020); however, few studies have 

been performed in resting-state. Until now, infant resting-state EEG has been used to study autism 

spectrum disorders (Bosl, Tierney, Tager-Flusberg, & Nelson, 2011; Tierney, Gabard-Durnam, 

Vogel-Farley, Tager-Flusberg, & Nelson, 2012). As awake EEG, it presents a temporal resolution 

in the millisecond range and a spatial resolution of around 2-3 cm. But, despite its excellent 

temporal resolution, the biggest limitation of EEG to measure functional connectivity is its bad 

spatial resolution and that it only provides information about the potential difference between two 

separate regions (Mohammadi-Nejad et al., 2018). 

 Magnetoencephalography 

MEG is a functional imaging technique that measures neural activity through small magnetic fields 

created by the electrical currents produced by neural activity (Alhourani et al., 2016). It can be 

done task-based or in a resting-state. Similar to EEG acquisitions, MEG allows a direct measure of 

brain activity based on electrical signals, but with the advantage of being less affected by muscular 

activity and skull conductivity (Tamilia, Madsen, Grant, Pearl, & Papadelis, 2017). Furthermore, 

it doesn’t require sensors to be connected to the head. Still, despite these advantages, MEG presents 

some drawbacks. First, it only measures cortical signals (Singh, 2014). The system has to be 
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adapted to the head size to obtain a suitable signal-to-noise ratio in infants (T. P. Roberts et al., 

2014). Finally, MEG offers an excellent temporal resolution of less than 1 ms and a sub-millimeter 

spatial resolution (Mohammadi-Nejad et al., 2018). 

 Functional Near Infrared Spectroscopy 

fNIRS is an optical neuroimaging system that uses near-infrared spectroscopy to measure brain 

activity through the hemodynamic response. It measures the local concentration of oxyhemoglobin 

and deoxyhemoglobin based on their different reflectance coefficients (Boas, Dale, & 

Franceschini, 2004). Furthermore, it allows measuring through the skull, which is crucial in clinical 

conditions. Several studies on neonates using fNIRS showed that resting-state networks could 

provide diagnostic and prognostic information on newborn brain development (Homae et al., 2010; 

Imai et al., 2014; White, Liao, Ferradal, Inder, & Culver, 2012). This technique is appropriate for 

neonates for its portability and non-invasiveness; however, the biggest drawback of fNIRS is the 

limited access to superficial layers of the brain (Peng & Hou, 2021). fNIRS offers a temporal 

resolution of 20 ms and a spatial resolution of 1-3 cm. 

 Final comparisons 

PET imaging is widely used for oncology, neurosurgery, or cardiac diagnosis. It allows the study 

of the deep layers of the brain and presents a spatial resolution of around 4 mm, and its temporal 

resolution is between 30 and 40 s (Table 2.1). However, requiring radioactive product 

administration limits its utilization in newborns, especially in research settings. 

Like PET imaging, resting-state fMRI also allows access to the deep layers of the brain, which is 

not the case for EEG, MEG, and fNIRS. Access to the deeper brain regions implies further and 

more complete characterization of the resting-state network topology, which could provide crucial 

information about brain development. Furthermore, resting-state fMRI offers a spatial resolution 

of around 2-3 mm, depending on the strength of the magnetic field. fMRI good spatial resolution 

provides more detailed images than EEG (2-3 cm) and fNIRS (1-3 cm). Also, even if resting-state 

fMRI spatial resolution is not optimal for image segmentation, it is easy to acquire high-resolution 

T2-weighted images to obtain optimal data for segmentation without changing the patient’s 

position. 
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Additionally, multi-band acquisition techniques can dramatically improve temporal resolution. For 

example, the data acquired in the Developing Human Connectome Project (dHCP) presented a TR 

of 0.4 s (Edwards et al., 2022). The biggest drawback of resting-state fMRI, when compared to 

EEG, MEG, and fNIRS, is its complexity and price. Despite the advantages of rs-fMRI, like fNIRS, 

rs-fMRI doesn’t measure direct brain activity, as it is based on delayed hemodynamic activity. 

Nonetheless, resting-state fMRI seems to be the most adapted functional neuroimaging technique 

for studying neonatal resting-state networks. It is the most complete of the aforementioned 

neuroimaging systems. It is non-invasive, allows access to the deep layers of the brain, and presents 

adequate spatial and temporal resolution. 

 

Table 2.1.  Comparison of resting-state functional neuroimaging techniques (Mohammadi-Nejad 

et al., 2018). 

Resting-state neuroimaging 

technique 

Spatial 
resolution 

Temporal 
resolution 

Image obtained by Deep brain 
access 

Functional PET 4 mm ~12-60 s Metabolic activity Yes 

Functional MRI 2-3 mm ~1 s Hemodynamic 
activity 

Yes 

Electroencephalography 
(EEG) 

2-3 cm < 1 ms Electrical neural 
signals 

No 

Magnetoencephalography 
(MEG) 

< 1 mm < 1 ms Magnetic neural 
signals 

No 

Functional Near Infrared 
Imaging System (fNIRS) 

1-3 cm 20 ms Hemodynamic 
activity 

No 

 

2.2 MRI Basic principles 

A brief explanation of the fundamental MRI concepts is presented in this section to understand 

better its basic principles, tissue properties, acquisition parameters, and pulse sequences. 
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MRI allows the exploration of body tissue based on the magnetic properties of protons in the atomic 

nuclei of the hydrogen contained in the water molecules. The atomic nuclei present specific energy 

levels related to the quantum property spin (quantum number S). For example, the hydrogen proton 

has a spin quantum number of 1/2 and two different energy states -1/2 and +1/2, being the number 

of energy states defined as: 

Number of energy states = 2S +1 

These protons are constantly spinning and have their own small magnetic fields. Each of these local 

magnetic fields is called a magnetic dipole moment and are randomly arranged to cancel each other 

out, resulting in a null net magnetic field. Therefore, for the MRI to work, a net magnetic field is 

needed. To achieve this, spins are placed under a strong magnetic field (B0) that forces them to 

align with the stronger magnetic field. As a result, slightly more protons are aligned with B0 than 

against it, resulting in a net magnetization (M0) in the B0 direction (Figure 2.2). Furthermore, these 

spins precess within B0 at a frequency called the Larmor frequency described by the equation:  

𝑓! =γ·B0 
 

Where f0 is the precession frequency, and γ the gyromagnetic ratio of the hydrogen nucleus (45.58 

MHz/Tesla). 

 

Figure 2.2. Vector representation of the spins aligned through the main magnetic field (B0), 

creating a net magnetization (M0). 

The protons will then be excited by a radiofrequency (RF) pulse whose frequency matches the 

Larmor frequency. This is when resonance occurs and results in added energy to the protons. 

Protons are then flipped, creating a magnetization vector in the x-y plane (Mxy). After applying 

the RF pulse, the protons will return to their original state. During this relaxation process, data 

acquisition will be performed by measuring the signal induced by the relaxing protons. Different 
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magnetic field gradients in the three planes are employed to spatially locate the origin of every 

signal to create a 3D image. 

It is important to note that the strength of the main magnetic field plays an essential role in MRI 

image quality. Stronger magnetic fields allow better signal-to-noise and contrast-to-noise ratio, 

allowing to observe smaller structures; however, they also present several challenges, such as 

enhanced susceptibility artifacts, non-uniform radiofrequency fields, or a higher deposit of energy 

(Ladd et al., 2018). 

 T1, T2 and T2* relaxation times 

During the relaxation process, the spins return to their original energy state by releasing the energy 

received from the radiofrequency pulse. Therefore, we can distinguish between two types of 

relaxation, T1 relaxation, also called longitudinal or spin-lattice relaxation and T2 relaxation, also 

called transverse relaxation or spin-spin relaxation. T1 relaxation time corresponds to the necessary 

time required to recover the net magnetization (M0) to 67% of its initial value and can be described 

by the expression 1 − 𝑒"#/%&. T2 relaxation time corresponds to the time required for the transverse 

magnetization to decay to approximately 37% of its initial value and can be described by the 

expression 𝑒"#/%' (Figure 2.3). 

 

 

Figure 2.3. Curves describing the relaxation times T1 and T2, respectively. 

 

Finally, the T2* relaxation time corresponds to the spin-spin interactions of the tissue as for T2, 

plus the main magnetic field inhomogeneities effect. This effect is never fixed as it depends on B0 

homogeneity and produces a faster decay than T2. This effect can be expressed as: 

1
𝑇2∗ =

1
𝑇2 +

1
T2i 
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Where 1/T2i = γΔBi corresponds to the relaxation rate produced by the magnetic field 

inhomogeneities across a voxel. 

 TE, TR and tissue contrast 

The previously mentioned process must be repeated several times to create an image. This is where 

echo time (TE) and repetition time (TR) come into play. In contrast to T1 and T2 relaxation times 

that are directly related to tissue properties, the TE and TR can be controlled by the user to acquire 

images with different weighting, such as T1-weighted, T2-weighted or spin-density. 

Multiple RF pulses are usually applied to perform the entire acquisition. The time between two RF 

pulses is the TR. On the other hand, the TE corresponds to the time after excitation before the 

signal is measured, so the transverse magnetization decay is compensated to create an echo at TE. 

If we measure right after the RF pulse is applied, the signal would equal the original magnetization 

M0. As the longitudinal magnetization recovery and the transverse magnetization decay occur at 

the same time, we need to combine both effects to obtain the desired signal intensity for a given 

tissue, which for a classic spin-echo (SE) is described as: 

𝑆)* = 𝑀0	 /1 − 𝑒"
%+
%&0 (𝑒"

%*
%') 

Where M0 is the Boltzmann magnetization constant corresponding to the spin density. 

We can note from the previous equation that when TE is made very short when compared to T2, 

TE/T2 would be approximately zero and e0 = 1, nullifying the T2 weighting. Contrary to this, if TR 

is made long when compared to T1, then  𝑒"%+/%& would tend to zero canceling this way, the T1 

weighting. In summary, to obtain T1-weighted images, short TR and TE are required. To get T2-

weighted or T2*-weighted images, long TR and TE are needed, and finally, if very long TR and 

short TE are employed, both T1 and T2 effects would disappear, resulting in an image of the proton 

density of the tissue. 

 Pulse sequences 

A pulse sequence consists of a sequence of RF pulses that are applied repeatedly. Here, three of 

the most popular pulse sequences will be briefly described as they are highly interesting for 

understanding this project. 
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2.2.3.1 Spin-echo 

The spin-echo pulse sequence is one of the first developed and is still commonly used. This pulse 

sequence consists of the application of a 90º RF pulse followed by a 180º refocusing pulse allowing 

to eliminate the effect of the magnetic field inhomogeneities. 

2.2.3.2 Gradient-recalled echo (GRE) 

Another commonly used pulse sequence is the gradient echo. This is an alternative to spin echo as 

the use of smaller flip angles allows the use of a very short TR value decreasing this way the scan 

time, being the scan time defined as:  

𝑆𝑐𝑎𝑛	𝑡𝑖𝑚𝑒 = 𝑇𝑅 ∗ 𝑁𝑦 ∗ 𝑁𝐸𝑋 

Being TR the repetition time, Ny the number of phase encoding steps (usually selected to achieve 

a specific resolution), and NEX the number of excitations (typically employed to achieve a certain 

SNR).  

The idea of the GRE is to select the smallest TR while still being able to receive enough echo to 

create an image. With this aim, small flip angles are used. The Ernst angle is the flip angle that 

maximizes tissue signal (Ernst & Anderson, 1966). For instance, the signal in GRE-EPI is defined 

as: 

𝑆,+* = 𝑀0	𝑒"
%*
%'∗

(1 − 𝑒"
%+
%&) sin 𝜃

1 − 𝑒"
%+
%& 	cos 𝜃

 

Being 𝜃 the flip angle. 

Suppose a 90º flip angle is employed with a very short TR. In that case, the longitudinal 

magnetization has not enough time to recover to a suitable value, and a very low SNR is obtained. 

2.2.3.3 Echo Planar Imaging 

Echo planar imaging is one of the fastest MRI sequences and requires high-performance gradients 

to allow rapid switches. There exist two types of EPI sequences, single-shot EPI and multi-shot 

EPI. Single-shot EPI allows the acquisition of the whole k-space in a single TR. Originally, this 

was performed by employing a constant phase encoding gradient producing a zig-zag filling of the 

k-space and producing some artifacts after Fourier Transformation. Therefore, a blipped phase 
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encoding gradient is used to correct these artifacts instead of utilizing a continuous phase encoding 

gradient. There is, therefore, a short time of around 100 μs between every step that allows jumping 

from line to line to avoid zig-zag trajectories (Figure 2.4). 

 

Figure 2.4. K-space trajectories for single-shot and blipped EPI. 

 

The other form of EPI sequence is the multishot EPI, where the readout is divided into multiple 

shots allowing the acquisition of the whole k-space in a few segments. The number of echoes or 

lines of the k-space acquired every shot is called the echo train length. Compared to single-shot 

EPI, this technique creates less stress in the gradients. However, the acquisition is slower, being 

more susceptible to motion artifacts. 

2.3 Resting-state fMRI 

 Blood-Oxygen-Level-Dependent signal 

Resting-state fMRI measures brain activity based on slow frequency fluctuations (<0.1 Hz) in the 

BOLD signal (Ogawa et al., 1990; Ogawa et al., 1993). It consists of measuring localized changes 

in the deoxyhemoglobin produced by blood oxygenation (Drew, 2019). Brain activity in a specific 

region is directly linked to an increased blood flow in that region, providing higher quantities of 

oxygen and glucose for neuronal activity (Vincent, Moore, Kennedy, & Tracey, 2009). This local 

increase in blood flow is known as the hemodynamic response (Rangaprakash, Tadayonnejad, 
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Deshpande, O'Neill, & Feusner, 2021) (Figure 2.5). In addition, the local oxygenation produces 

changes in the magnetic field homogeneity that can be measured using T2* sensitive sequences.  

 

 

Figure 2.5.  Hemodynamic response function (Rangaprakash et al., 2021). 

 

 EPI contrast 

As previously mentioned, single-shot EPI is one of the fastest MRI sequences. Therefore, it is 

suitable for BOLD signal acquisition when setting the TE as close as possible to the T2* of the 

gray matter, being, thus, the state-of-the-art pulse sequence to acquire rs-fMRI data. 

 The contrast of EPI is determined by the excitation pulse, which can also be called the root pulse 

sequence, which is applied before the EPI module. Some of the possibilities are  

- SE-EPI: 90º - 180º - It allows to overcome magnetic field inhomogeneities and provides 

T2 weighting. 

- GRE-EPI: αº - It doesn’t use the 180º pulse providing T2* weighting. This technique is 

faster and, therefore, the most suitable for resting-state fMRI acquisitions. 

Other possibilities exist, such as inversion recovery-EPI or diffusion weighted-EPI, but they are 

outside this project’s scope. 
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 GRE-EPI artifacts 

GRE-EPI is the most suitable for resting-state fMRI for allowing high-speed acquisition, providing 

a decent temporal resolution, minimizing head motion artifacts, and being susceptible to BOLD 

signals. However, one of the technical problems of this technique is the high susceptibility to 

artifacts. Amongst the most commonly observed when using single-shot GRE-EPI are 

susceptibility artifacts, chemical shift, and Nyquist ghost artifacts (Figure 2.6 and Figure 2.7). 

Susceptibility artifacts consist of a signal loss in the air/tissue interfaces, mainly in the sinuses 

(Newton, 2016), in the phase encoding direction. They can be minimized by proper shimming, TE 

reduction, or post-acquisition distortion correction approaches that we will discuss further. The 

chemical shift in EPI also occurs along the phase encoding direction and consists of a phase 

difference between the water and fat. To correct it, it is possible to decrease echo spacing, 

undersample the k-space or use fat suppression. Finally, Nyquist ghost artifacts involve signal 

displacement in the phase encoding direction. The causes of this artifact might be due to poor 

shimming, heating of the gradient coils, or head motion. However, the most common cause of 

Nyquist ghost artifact is the induction of eddy currents in the coils due to the rapid gradient changes 

that produce distortions in B0, adding phase shifts to the data. Some methods to reduce Nyquist 

ghost artifacts are shimming, lowering the phase encoding resolution, or using parallel imaging 

acceleration to increase the bandwidth per pixel along the phase encoding direction, shortening the 

readout time (Bammer et al., 2001; Griswold et al., 1999). Finally, if the artifacts persist, proper 

tuning of the gradients can also help. 
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Figure 2.6. Example of GRE-EPI images presenting susceptibility and ghost artifact. 

 

 

Figure 2.7. Graphical representation of the chemical shift artifact. 

 

 Multi-band EPI 

Multi-band EPI acquisition, also called simultaneous multislice acquisition technique, is a recently 

adopted technique for resting-state fMRI acquisitions, which consists of simultaneously exciting 

and acquiring signals from several slices depending on the selected multi-band factor. For example, 

a multi-band factor of 8 means that eight slices will be simultaneously excited. The multi-band-
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EPI acquisition allows shorter TR, resulting in improved temporal resolution and an increased 

number of acquired time points for a given acquisition time (Risk et al., 2021). It is also less 

susceptible to head motion and allows the possibility to improve spatial resolution. However, the 

major drawback of multi-band rs-fMRI is the degradation of the SNR due to the non-uniform noise 

created by the geometrical arrangement of the receiver coil (g-factor). This creates different levels 

of SNR in the different regions of the brain (Bouyagoub, Dowell, Gabel, & Cercignani, 2021; 

Robson et al., 2008). Yet, results have shown negligible differences when analyzing rs-fMRI and 

multi-band rs-fMRI data (Smitha et al., 2018). 

 Multi-echo rs-fMRI 

A single RF excitation pulse is used to acquire a whole brain volume when using single-shot GRE-

EPI rs-fMRI. Also, as previously mentioned, the TE is centered around the T2* of the gray matter, 

so every RF pulse data is acquired at a single time delay (TE); this acquisition approach is called 

single-echo rs-fMRI. Recently, an alternative approach is multi-echo rs-fMRI which consists in 

acquiring several TE per RF excitation pulse. The acquisition of several TE would allow obtaining 

information about the non-neural sources of signal, such as head motion, cardiac, respiratory, or 

hardware-related signals to be eliminated as they are not TE dependent. Furthermore, it is possible 

to approximate the signal at a voxel as a monoexponential decay of the form:  

𝑆(𝑡) = 𝑆!𝑒
" #
%'∗ 

Where S0 is the signal intensity after the RF pulse when t=0. When performing single-echo rs-

fMRI, it is impossible to determine if the signal changes in a voxel from volume to volume are due 

to a change in the decay rate 1/T2* or a change in S0. However, by acquiring several TE, it is 

possible to determine whether the signal change is S0 or 1/T2* related, as neural signals mainly 

produce changes in 1/T2* and non-neural signals produce changes in S0 (Power et al., 2018).  

Multi-echo acquisitions also improve the statistical power of regions with short T2* where 

typically there is signal dropout due to selected TE. Using a weighted average from the combination 

of several echoes results in a dramatic reduction of the signal dropouts, however, increased TR is 

needed to perform the equivalent single-echo rs-fMRI as additional echoes require a longer time 

(Kundu et al., 2017).  
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 Functional connectivity and resting-state networks 

Resting-state functional connectivity measures the temporal correlation of spontaneous BOLD 

signals between different brain regions. The regions with correlated activity create functional 

networks, and these functional networks are what we call a resting-state network (Woodward & 

Cascio, 2015). It is important to mention that other measures of brain connectivity exist such as 

structural and effective connectivity. Structural connectivity refers to anatomically connected brain 

regions by white matter tracts (Babaeeghazvini et al., 2021). Effective connectivity can be 

described as a combination of structural and functional connectivity. It describes the causal 

influence between neural units (Z. Liu et al., 2017; Stephan & Friston, 2010). However, in this 

literature review, we will only focus on functional connectivity as the other measures of 

connectivity are outside of the scope of this project. 

Along with other functional neuroimaging techniques, resting-state fMRI has been able to 

consistently identify and reproduce resting-state networks of healthy subjects across the lifespan. 

Resting-state fMRI also allowed the characterization of the canonical resting-state networks 

including the default mode, the executive control, the salience, the sensorimotor, the auditory, and 

the visual network (Hausman et al., 2020; Heine et al., 2012). The default mode network includes 

the medial prefrontal cortex, the posterior cingulate cortex, and the angular gyrus and is related to 

internal and self-related processes (Whitfield-Gabrieli et al., 2011). The executive control network 

includes the dorsolateral prefrontal cortex and the anterior cingulate cortex and was observed to 

appear lateralized. The left executive control was shown to be related to language and cognition, 

and the right executive control to perceptual, nociception, and somesthetic processing (Laird et al., 

2011; Smith et al., 2009). The salience network includes the anterior cingulate and fronto-insular 

cortex with connections to limbic structures. It is related to conflict monitoring, response selection, 

and information integration (Cole & Schneider, 2007; K. L. Roberts & Hall, 2008). The 

sensorimotor network includes the supplementary motor, the primary motor cortex, and the 

bilateral mid-frontal gyri, and shows the activation patterns observed in motor tasks (Biswal, 

Yetkin, Haughton, & Hyde, 1995). The auditory network includes the bilateral superior temporal 

gyri, the posterior insular cortex, and Heschl’s gyrus and is associated to pitch and tone 

discrimination and speech (Laird et al., 2011). Finally, the visual network can be divided into three 

networks. The lateral or secondary visual network, including the peristriate area and the superior 

occipital and lateral gyrus, is related to complex emotional stimuli. The medial or primary visual 
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network, including the striate and parastriate regions, is important to simple visualization. And the 

occipital visual network, including the occipital pole, is related to high-level visual processing such 

as orthography (Heine et al., 2012; Wang et al., 2020). 

 Related works 

Several neonatal rs-fMRI studies have shown the potential of this neuroimaging technique, and 

significant steps have been made in the last decade. Thus, it could be applied in the neonatal period 

to develop new neuroprotective drugs. Furthermore, as we will see in older infant studies, rs-fMRI 

has been able to detect the impact of diseases in very difficult to diagnose mental disorders. Some 

examples are attention deficit, hyperactivity, autism, or the Syndrome of Tourette. This section 

presents the recent findings on clinical neonatal resting-state networks. 

 Clinical neonatal rs-fMRI 

We define the resting-state network as the different brain regions that show synchronous activity. 

They can also be called intrinsic connectivity networks or functional brain systems (Seitzman, 

Snyder, Leuthardt, & Shimony, 2019) and allow the characterization of brain function. In recent 

years the study of resting-state networks has exponentially increased due to their versatility and 

potential to identify and predict the progression of brain diseases (J. J. Chen, Herman, Keilholz, & 

Thompson, 2020; Westphal et al., 2017). Indeed, since the discovery of resting-state networks in 

1995 (Biswal et al., 1995), rs-fMRI studies have led to a better understanding of brain architecture 

and brain development (W. Gao et al., 2017; Grayson & Fair, 2017; Keunen et al., 2017; Power et 

al., 2010; Smyser & Neil, 2015; H. Zhang et al., 2019). Furthermore, resting-state networks in 

newborns are consistently observed and present a high resemblance to adult networks (Figure 2.8) 

(Ciarrusta et al., 2020; Fransson et al., 2009; Fransson et al., 2007; W. Gao et al., 2009). 

Interestingly, rs-fMRI allowed the in-utero acquisition, showing the presence of resting-state 

networks before birth and prompt signs of vulnerability (van den Heuvel & Thomason, 2016).  

Different neonatal studies also confirmed the existence of resting-state networks from the third 

trimester of gestation (Doria et al., 2010). When studying the motor cortex, Smyser et al. found 

that the effect of white matter injury on the BOLD signal was proportional to injury severity. Also, 

they proved the viability of using rs-fMRI to explore the resting-state networks alterations 

associated with premature birth and white matter injury (Smyser et al., 2013). Furthermore, 
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alterations of the ventral attention and default mode networks at birth were shown to be related to 

behavioral inhibition at two years old (Sylvester et al., 2018), which opens the opportunity for early 

diagnostics and treatment. Also, in older infants, rs-fMRI found aberrant functional connectivity 

in different mental disorders such as hyperactivity disorder, autism spectrum disorder, or Tourette 

Syndrome (Church et al., 2009; Fair et al., 2010; T. B. Jones et al., 2010). Finally, Smyser et al. 

showed that term and preterm babies scanned at comparable postmenstrual age presented 

differences in high-order networks (language, default mode, and frontoparietal networks), 

suggesting that rs-fMRI may be a convenient tool for identifying prematurely born infants at risk 

of neurodevelopmental impairment (Smyser et al., 2016). 

 

 

Figure 2.8.  Neonatal resting-state networks characterized using independent component analysis 

(Ciarrusta et al., 2020). 

 

 Challenges on neonates 

Even if the study of resting-state networks in neonates is a promising approach, its clinical 

application presents diverse methodological challenges. It is well known that the resting-state 
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networks signal is very stable across subjects (Lee et al., 2013); however, different artifacts and 

confounders can easily affect it. Amongst the most common, we can find susceptibility distortions, 

head motion (Maknojia, Churchill, Schweizer, & Graham, 2019), and or cerebrospinal fluid (CSF) 

and white matter (WM) signals (Jo et al., 2013; Power et al., 2014). For these reasons, robust data 

preprocessing is imperative to limit the undesirable effects of the signals coming from non-neural 

sources so the resting-state networks can be assessed appropriately (Giove, Gili, Iacovella, 

Macaluso, & Maraviglia, 2009; Lund, Madsen, Sidaros, Luo, & Nichols, 2006).  

There are available tools to preprocess resting-state fMRI data in the adult brain. Still, 

preprocessing the newborn resting-state fMRI data requires using modified methods (Smyser & 

Neil, 2015). For example, the newborn brain size varies depending on the participant’s age at the 

scan (Smyser & Neil, 2015), making adult skull-stripping tools less robust for newborns. Also, 

different age-specific templates are needed for precise segmentations, normalization, and seed-

based connectivity analysis. Furthermore, when scanning newborns, choosing the different 

acquisition parameters is particularly critical. The baby’s brain has more water and lower lipid 

content due to myelination and synaptic formations. Hence, T2-weighted images are necessary to 

produce sufficient contrast for tissue segmentation (Askin Incebacak et al., 2022) (Figure 2.9). Yet, 

increasing the TE to increase the T2 effect results in a lower signal because transverse 

magnetization has time to fall to low values. Moreover, newborns present higher levels of motion 

and must be handled using specific tools (Badke D'Andrea et al., 2022; Smyser & Neil, 2015). 

Real-time motion monitoring technologies, such as FIRMM (Dosenbach et al., 2017), can be 

employed, although open-source solutions are not yet available. 
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Figure 2.9.  Contrast differences between neonates and adults using MRI. 

2.4 Image preprocessing 

Image preprocessing refers to the operations of images at the most basic level. It aims to improve 

the image by reducing unwanted distortions or enhancing specific features important for 

subsequent analysis steps.  

As previously mentioned, several tools exist to preprocess adult resting-state fMRI data. Amongst 

the most employed toolkits in which nearly all pipelines lie, we find SPM 

(https://www.fil.ion.ucl.ac.uk/spm/), AFNI (Cox, 1996) and FSL (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich et al., 2009). SPM, AFNI, and FSL are 

open-source software libraries containing tools to preprocess and display neuroimaging data. SPM 

is a Matlab based software package developed for fMRI, EEG, MEG, PET, and single photon 

emission computed tomography data analysis. In contrast to SPM, AFNI was developed based on 

C, Python, R, and shell scripts mainly for the data analysis of the different MRI modalities, 

including anatomical MRI, functional MRI, and diffusion-weighted imaging. Like AFNI, FSL was 

conceived for the analysis of the different MRI neuroimaging modalities; however, this one was 

developed using C++ and shell scripts. 

Several straightforward pipelines for adult brains were developed based on the previously 

mentioned toolkits to automatize, standardize, and simplify the data preprocessing procedure. They 

allow the easy preprocess of resting-state fMRI data, and their fundamental steps include 

coregistration, template normalization, distortion correction, segmentation, slice timing correction, 
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and skull stripping. Furthermore, some of them include tools for performing temporal denoising 

strategies to control residual physiological signals and motion artifacts (Figure 2.10). 

 

 

Figure 2.10. Workflow of a basic rs-fMRI pipeline (Mohammadi-Nejad et al., 2018). 

 

Amongst the most used pipelines, we can find the Conn toolbox (CONN) (Whitfield-Gabrieli & 

Nieto-Castanon, 2012), fmriprep (Esteban et al., 2019), and the Human Connectome Pipeline 

(HCP) (Glasser et al., 2013). However, to the best of my knowledge, the only existing open-source 

pipeline to preprocess neonatal rs-fMRI data is the dHCP pipeline which was mainly conceived to 

preprocess the high-quality data from the dHCP dataset (Fitzgibbon et al., 2020) 

 Conn toolbox 

CONN was developed to compute, display and analyze task-based and resting-state fMRI adult 

data, and the software is based on Matlab/SPM. Furthermore, it includes quality controls and allows 

multiple functional connectivity analyses such as Seed-based correlations (SBC), Independent 

Component Analysis (ICA), and graph theory analysis. Finally, the software includes group-level 

and population-level inferences.  
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 FMRIPrep 

FMRIPrep is a minimal preprocessing pipeline based on a combination of state-of-the-art tools that 

are all open-source, which includes AFNI, FSL, ANTs (https://stnava.github.io/ANTs/), and 

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). Similarly to CONN, fMRIPrep also provides 

quality control reports for outlier identification; however, fMRIPrep is focused on robust and easy 

data preprocessing and doesn’t provide further denoising steps, data analysis, or statistical tools. 

 Human Connectome Project Pipeline 

The HCP pipelines consist of a combination of tools, mainly shell scripts, to preprocess the high-

quality data from the HCP project dataset, making it harder to adapt to different datasets. The 

structural data preprocessing lies on FreeSurfer and denoising on ICA-FIX. As fMRIPrep, this 

pipeline doesn’t allow for further data analysis and doesn’t include statistical tools. Nevertheless, 

it is the best pipeline for HCP data-related studies as the tools are fully adapted for the dataset and 

provide a large variety of data quality controls. 

 Developing Human Connectome Project Pipeline 

As the HCP pipeline, the dHCP pipeline has demonstrated outstanding results when preprocessing 

their datasets; however, its implementation on clinical or smaller datasets remains difficult as large 

datasets are required for independent components denoising. Moreover, because the dHCP pipeline 

was specifically developed and optimized for the dHCP database, it can be challenging to set up 

for cohorts collected at different centers with different tools and parameters. For instance, in the 

dHCP denoising process, independent correlated signals that can be categorized as neural or non-

neural signals are separated using spatial independent component analysis (sICA). When the 

dimensionality is correctly selected, this denoising technique has been demonstrated to deliver 

superior outcomes in adults and infants (Alfaro-Almagro et al., 2018; Griffanti et al., 2017). 

However, classifying the identified signals as structured noise or neural signals is often done 

manually and is difficult to automate. To address this constraint, the dHCP pipeline uses a machine 

learning approach (ICA-based Xnoiseifier) (Salimi-Khorshidi et al., 2014) to separate the identified 

components as neural signals or noise. Thus, to train the machine learning algorithm, at least 35 

manually labeled individuals must be used, which requires a specialist and, in most cases, is not 

achievable in smaller cohorts (Fitzgibbon et al., 2020). 
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2.5 Data analysis 

The approach used for resting-state fMRI data analysis is functional connectivity, which consists 

of a temporal linear correlation measure between different brain regions (Smitha et al., 2017). We 

can distinguish seed-based correlations analysis, independent component analysis, and graph 

theory among the most used functional connectivity approaches. 

 Seed-based correlations 

It was the method adopted by Bharat Biswal for the first resting-state functional connectivity 

analysis (Biswal et al., 1995). It measures the average time series of a region of interest (ROI) or 

seed region. The average signal of the ROI is then used to evaluate linear correlation with the other 

brain voxels. This straightforward method is often employed when one or several pre-defined 

regions want to be explored with respect to the rest of the brain. It is a hypothesis-driven method 

and requires previous knowledge for ROI selection. Overall brain connectivity can also be 

evaluated using this method by performing seed-to-seed connectivity and visualizing the 

correlation matrix (Figure 2.11). The main advantage of seed-based functional connectivity is its 

simplicity and ease of interpreting the results. However, its main drawback is that it depends on 

the seed position, making it vulnerable to bias (Lv et al., 2018). 

 

Figure 2.11. Seed-to-seed correlation matrix. 
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 Seed-based functional connectivity maps are computed as the Fisher transformed Pearson 

correlation coefficients (r) between an ROI/seed average time series and every other voxel of the 

brain: 

𝑟(𝑥) =
∫ 𝑆(𝑥, 𝑡) 𝑅(𝑡)𝑑𝑡

I∫𝑅'(𝑡)𝑑𝑡	 ∫ 𝑆'(𝑥, 𝑡)𝑑𝑡
 

𝑧(𝑥) = 𝑡𝑎𝑛ℎ"&(𝑟(𝑥)) 

Where S corresponds to the BOLD time series of every voxel, R corresponds to the average BOLD 

time series of an ROI/seed and r is the functional connectivity map of Pearson correlation 

coefficients, and z is the Fisher transformed r. 

 Independent Components Analysis 

Similarly to seed-based correlation analysis, the independent components analysis approach allows 

the study of the correlated brain regions. It uses multivariate decomposition to extract the different 

resting-state networks from the BOLD signal. To create spatial maps, it decomposes the signal 

from every brain voxel that is temporally and spatially independent. The independent components 

analysis is a data-driven approach. It presents the advantage of not needing prior knowledge about 

the source signal, which makes it ideal for whole-brain blind evaluations (McKeown et al., 1998). 

Furthermore, it has a high test-retest reliability (Zuo et al., 2010). However, the number of 

independent components in which the signal is decomposed has to be defined a priori. This greatly 

impacts the results, as depending on the number of components, a resting-state network could be 

broken into sub-networks (Lv et al., 2018). Furthermore, another drawback is that neural signals 

need to be separated from the noise, which usually has to be done by experience or prior knowledge 

(Smitha et al., 2017). 

 Graph theory 

Graph theory is employed to construct mathematical models of the whole brain networks for 

analyzing brain networks topology. The study of these brain networks is based on different edges 

(connections) and nodes (ROIs) that together create a graph (Figure 2.12).  



26 

 

 

Figure 2.12. Graph analysis based on connections (gray lines) and nodes (red ROIs)(Lv et al., 

2018). 

 

In contrast with SBC and ICA, which provide information about the ROI/voxel correlation within 

the rest of the brain, graph theory allows for the exploration of different functional connectivity 

metrics that might be complementary to one of the previously cited analysis methods. The most 

employed metrics of this method are clustering coefficient, path length, degree of a node, and 

centrality.  

- The clustering coefficient represents a measure of local integration and allows characterization 

of the degree of connection between a node and the neighboring ones.  

- The path length is defined as the shortest distance between two nodes. In other words, it is the 

minimum number of edges traversed to go from one node to another.  

- The degree of a node corresponds to that node’s total number of connections.  

- Centrality represents the number of shortest-path neighbors of a node (Smitha et al., 2017). 

The main advantage of graph theory is that it allows the characterization of the whole brain 

topology; however, the results are not intuitive and may be difficult to interpret (Lv et al., 2018). 
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In conclusion, today, there is no gold-standard method, and each method can be employed 

individually or combined based on the type of study that wants to be performed. Seed-based 

correlation is a hypothesis-driven approach. It is straightforward to use, is simple, and the results 

are easy to interpret; however, it requires previous knowledge. It is ideal to evaluate functional 

connectivity when having a previous hypothesis. Independent components analysis is a data-driven 

approach and doesn’t need prior knowledge. However, there is no consensus on the choice of the 

number of independent components, which may affect the results. It is most of the time employed 

for global brain exploration. Indeed, Doria et .al in their study about the emergence of resting-state 

networks in the preterm brain showed that the seed-based correlation and the independent 

components approach produced similar results for the different evaluated resting-state networks 

when both applied correctly (Doria et al., 2010). Finally, graph theory can be used alone or to 

provide complementary information to functional connectivity measures such as topological 

organization measurements (Achard & Bullmore, 2007; He et al., 2009; Meunier, Achard, 

Morcom, & Bullmore, 2009; Rubinov & Sporns, 2010).  

 Measures of correlation 

When looking at the resting-state functional connectivity literature, we can observe that the results 

are presented using different units for the correlation strength. For instance, amongst the most 

common scores used to show functional connectivity, we find the Pearson correlation, the Fisher 

transformed correlation, and the standard z-score. 

2.5.4.1 Pearson correlation coefficient: r 

Pearson correlation is the most basic correlation coefficient from which the following two scores 

are derived. It is denoted as r and measures the strength of a linear association between two 

variables. It ranges from -1 to +1, being 0, a value indicating no association between both variables. 

The Pearson correlation coefficient between two paired variables ‘x’ and ‘y’ can be calculated as 

follows 

𝑟-,/ =
∑ (𝑥0 − �̅�)(𝑦0 − 𝑦N)1
02&

I∑ (𝑥0 − �̅�)'1
02& I∑ (𝑦0 − 𝑦N)'1

02&
 

Where n is the sample size, x and y are the individual sample points, and �̅� and 𝑦N are the samples 

mean. 
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An example of a study showing Pearson correlation values is Gao et al. 2015 in Cerebral Cortex 

(W. Gao et al., 2015). They showed resting-state networks of infants of different ages and adults 

using a seed-based correlation approach (Figure 2.13). 

 

 

Figure 2.13. Group mean rs-fMRI correlation maps for different resting-state networks. 

Correlation maps are shown using Pearson correlation values r (W. Gao et al., 2015). 

 

2.5.4.2 Fisher transformed correlation values: z(r) 

Fisher transformation is used to perform a hypothesis test about the Pearson correlation coefficient 

r between two variables.  

𝑧(𝑥) =
1
2 ln	(

1 + 𝑟
1 − 𝑟) = 𝑡𝑎𝑛ℎ"&(𝑟(𝑥)) 

This transformation is applied to obtain an approximately normal distribution of the correlation 

coefficients (Figure 2.14).   
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Figure 2.14.  Representation of the Fisher transformation. 

 

A study showing z(r) values is Smyser et al. 2016 in Cerebral Cortex (Smyser et al., 2016). They 

evaluated the effect of prematurity in the neonatal period. Resting-state networks were computed 

using a seed-based correlation and presented for different ages (Figure 2.15). 
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Figure 2.15. Group mean rs-fMRI correlation maps for different resting-state networks at term 

(A) and preterm (B). Correlation maps are shown using Fisher’s z-transformed correlation 

coefficient z(r). (Smyser et al., 2016). 
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2.5.4.3 Standard Z-score: Z 

Another score to measure functional connectivity is the standard z-score. It tells about the deviation 

from the mean of the Fisher transformed values.  

𝑍 = 	
𝑥 − 𝜇
𝜎  

Where x is z(r), 𝜇 is the mean, and 𝜎 is the standard deviation. 

This is useful to standardize the raw scores of a normal distribution enabling the comparison of 

two scores from different samples (Figure 2.16). For instance, if a Z-score equals 0, it is on the 

mean, and a positive Z-score indicates that the score is over the mean. A Z-score of +1 means one 

standard deviation above the mean. 

 

 

Figure 2.16.  Gaussian distribution probability density plot. 

 

Let’s assume a 95% confidence level. Its associated p-value is 0.05. In this case, the associated 

critical Z-scores are -1.96 and +1.96. If the Z-score found is between those values, the p-value is 

higher than 0.05, and the null hypothesis can’t be rejected. On the other hand, if the Z-scores fall 

outside that range, it is possible to reject the null hypothesis, meaning that the observed results are 

not likely to arise from random chance. 

An example of a study showing standard Z-scores is Fransson et al. 2007 in PNAS  (Fransson et 

al., 2007). Using an independent components analysis approach, they evaluated group resting-state 

networks in infants born extremely preterm and scanned at term-equivalent age. 
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Figure 2.17. Group mean rs-fMRI correlation maps for different resting-state networks in 

extremely preterm infants scanned at term-equivalent age. (A) Somatosensory and motor, (B) 

temporal/inferior parietal cortex encompassing the primary auditory cortex (C), posterior lateral 

and midline parts of the parietal cortex as well as the lateral aspects of the cerebellum (D), and 

medial and lateral sections of the anterior prefrontal cortex (E). Correlation maps are shown using 

standard Z-scores (Fransson et al., 2007). 

2.5.4.4 Recommendations 

Functional connectivity maps of Pearson correlation values or Fisher transformed r values can be 

used when showing a single subject. However, if multiple subjects’ average correlations are 

studied, then Fisher transformed values are recommended. Using Monte Carlo simulation, Silver 
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et al. evaluated the behavior of averaging Pearson correlation values versus averaging Fisher’s 

transformed values. They showed that differences in standard errors were negligible when the 

sample size was 30. However, notable benefits appeared by transforming Pearson correlation 

coefficients to Fisher’s z for smaller sample sizes. For these reasons, it is recommended to use 

Fisher transformed values for average correlations (Silver & Dunlap, 1987). Finally, if comparisons 

want to be done between different samples, the most appropriate metric would be the standard Z-

score. It allows the translation of individual z(r) values into terms of deviation from the population 

mean, allowing the comparison of values in different normal distributions.  

Three different studies of the same resting-state network, using different measures of correlation, 

are shown in Figure 2.18 (Ciarrusta et al., 2020; W. Gao et al., 2015; Smyser et al., 2016). 

 

 

Figure 2.18. Group mean rs-fMRI correlation maps of the somatosensory network.
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 PROJECT ORGANIZATION 

 

The present work summarizes the research conducted as part of the Ph.D. program in Biomedical 

Engineering at Polytechnique of Montreal. The research was carried out at the Neuropoly lab under 

the supervision of Dr. Julien Cohen-Adad (Department of Biomedical Engineering) and at the 

Research Center of the CHU Sainte-Justine co-supervised by Dr. Gregory Lodygensky 

(Department of Pediatrics). This project was also done with the collaboration of Dr. Christopher 

Smyser, Dr. Jeffrey Neil, and Jeanette Kenley from the Washington University School of Medicine, 

Saint Louis. 

 

Based on the literature review previously presented in Chapter 2, we have seen that different 

approaches need to be employed when compared to adults to characterize the neonatal resting-state 

networks. For example, several factors may influence the neonatal acquisition, such as differences 

in head size depending on age, head motion, or myelination. Also, we observed that no open-source 

tools are available to preprocess neonatal resting-state fMRI data, which leads to a reduced number 

of researchers performing neonatal rs-fMRI studies. The issues found in the literature review 

suggest that new approaches are needed to successfully acquire neonatal rs-fMRI data, such as real-

time head motion quality controls and open-source tools to preprocess the acquired data.  

 

3.1 Objectives and impact of the contributions 

This project has two main objectives: 

 

 O1. Set up a multicenter neonatal resting-state fMRI acquisition protocol adapted to clinical 

conditions, which include real-time head motion quality control. This will guide every center 

aiming to perform neonatal rs-fMRI in clinical conditions where acquisition time is minimal, and 

parameters such as the Specific Absorption Rate (SAR) are crucial. 
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 O2. Provide an open-source tool to preprocess neonatal resting-state fMRI data. This will 

enable the community to implement a straightforward computational infrastructure and preprocess 

their data immediately after scanning sessions. As a result, more centers will be able to work 

together and preprocess their datasets thanks to the democratization of rs-fMRI preprocessing, 

which will hopefully advance the development of clinical biomarker applications. 

 

3.2 Thesis overview 

The thesis is divided into eight different chapters. Chapter 1 includes the context and the facts that 

motivated the fulfillment of this project, followed by a review of the literature in Chapter 2. The 

literature review presents the different functional neuroimaging tools and why rs-fMRI was chosen 

over the other neuroimaging techniques for developing this thesis. The various available tools to 

preprocess rs-fMRI data, mainly for adults, are presented in the literature review, and the 

challenges of preprocessing neonatal resting-state functional MRI.  

Chapter 3 presents the main objectives and an overview of the thesis. 

Chapter 4 consists of a rs-fMRI study performed on young adults that had surgery for congenital 

heart disease at birth. It describes the methods employed to preprocess and analyze adult rs-fMRI 

and provides insights into the long-lasting effect of congenital heart disease in resting-state 

networks. 

Chapter 5 presents the specificities and existing challenges of scanning neonates, especially the 

head motion issue. It includes a real-time head motion quality control approach to ensure that the 

acquired data has the required quality.  

Chapter 6 presents NeoRS, the pipeline developed as a part of this project, to preprocess neonatal 

rs-fMRI data. It also shows the different methods and tools employed to create this open-source 

pipeline. 

Finally, Chapters 7 and 8 correspond to the general discussion, where the main results are 

summarized and discussed, and the conclusion. 
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This article has been published in PlosOne, 15 April 2022 (Enguix, Easson, et al., 2022). 

4.1 Abstract 

Congenital heart disease (CHD) has been associated with structural brain growth impairments and 

long-term developmental impairments, including deficits in learning, memory, and executive 

functions.  However, it is unclear if early life brain alterations alter the development of the brain’s 

functional connectivity networks in survivors of complex CHD. Therefore, this study aimed to 

compare resting-state functional connectivity networks associated with executive function deficits 

between youth (16 to 24 years old) with complex CHD (mean age=20.13; SD=2.35) who 

underwent open-heart surgery during infancy and age- and sex-matched controls (mean age=20.41; 

SD=2.05). Using the Behavior Rating Inventory of Executive Function – Adult Version 

questionnaire, we found that participants with CHD presented with poorer performance on the 

inhibit, initiate, emotional control, working memory, self-monitor, and organization of materials 

clinical scales than healthy controls. We then compared the resting-state networks theoretically 

corresponding to these impaired functions, namely the default mode, dorsal attention, fronto-

parietal, fronto-orbital, and amygdalar networks, between the two groups. Participants with CHD 

presented with decreased functional connectivity between the fronto-orbital cortex and the 

hippocampal regions and between the amygdala and the frontal pole. Increased functional 

connectivity was observed within the default mode network, the dorsal attention network, and the 

fronto-parietal network. Overall, our results suggest that youth with CHD present with disrupted 

resting-state functional connectivity in widespread networks and regions associated with altered 

executive functioning, which may be a consequence of early life brain maldevelopment. 

Keywords: Congenital heart disease, resting-state functional connectivity, adolescents 

 

4.2 Introduction 

Congenital heart disease (CHD) refers to the presence of structural malformation(s) of the heart 

walls, valves, main blood vessels, and their relationships, resulting in impaired blood flow. With 

an incidence of 0.85% live births per year in Canada, CHD is the most common neonatal defect 

(Bernier, Stefanescu, Samoukovic, & Tchervenkov, 2010). The standard of care practice for most 

complex CHD lesions is to perform open-heart surgery utilizing cardiopulmonary bypass during 
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infancy, resulting in a significant improvement in life expectancy (Reid et al., 2006). Although 

these individuals are now expected to live well into adulthood, a large variety of 

neurodevelopmental impairments are reported during childhood and adolescence. Among these, 

difficulties with language, social cognition, and higher order cognitive abilities have been widely 

reported (Easson et al., 2019; Latal et al., 2016; Marelli, Miller, Marino, Jefferson, & Newburger, 

2016; Tyagi et al., 2017). Moreover, the emerging literature in older children, adolescents, and 

adults with CHD converge in reporting specific difficulties with executive functions associated 

with poorer psychosocial health status and quality of life (Calderon & Bellinger, 2015; Cassidy, 

White, DeMaso, Newburger, & Bellinger, 2015; Latal et al., 2016; Marelli et al., 2016; Tyagi et 

al., 2017). 

It is now well recognized that CHD impacts brain development during the antenatal and neonatal 

periods (Brossard-Racine et al., 2016). Magnetic Resonance Imaging (MRI) has contributed to our 

understanding of cerebral pathophysiological mechanisms in CHD. Indeed, a growing body of 

quantitative structural MRI studies have reported the presence of regional alterations in brain 

development in adolescents and young adults with complex CHD (Bolduc, Lambert, 

Ganeshamoorthy, & Brossard-Racine, 2018). Differences reported include smaller volumes or 

morphometric variations in the cortical and subcortical grey matter (Fontes et al., 2020; Fontes et 

al., 2019; Latal et al., 2016; Watson et al., 2016), as well as microstructural alterations 

predominantly in the association tracts and frontal regions (Easson et al., 2020; Ehrler, Latal, 

Kretschmar, von Rhein, & O'Gorman Tuura, 2020). Moreover, previous findings have reported 

associations between regional structural alterations and cognitive functions; however, these 

relationships were generally small in magnitude (Fontes et al., 2019; Latal et al., 2016; von Rhein 

et al., 2014).  

When examining brain functional connectivity in CHD, results are scarce. Resting-state functional 

MRI (rs-fMRI) is a neuroimaging technique that evaluates regional brain interactions occurring 

while the participant is at rest (i.e., not performing any task). This technique allows the 

investigation of resting-state networks, which provide information about inherent brain function 

during normal development or following injury. Resting-state networks are described as low 

frequency fluctuations (<0.1 Hz) in the blood-oxygen-level-dependent (BOLD) signal that can be 

reproducible across subjects (Lee et al., 2013). Since the discovery of resting-state networks, rs-

fMRI studies have provided new insights into the understanding of typical and atypical brain 
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functioning at rest when studying various pediatric and adult brain pathologies, including autism 

spectrum disorder, schizophrenia, and Alzheimer’s disease (Figueroa et al., 2017; Hojjati, 

Ebrahimzadeh, & Babajani-Feremi, 2019; Wang et al., 2019). To the best of our knowledge, only 

one study to date has examined functional connectivity using rs-fMRI in individuals with CHD. 

The authors reported that neonates with complex CHD, prior to open-heart surgery, presented with 

preserved global functional network organization, but altered regional functional connectivity, 

when compared to healthy controls (De Asis-Cruz, Donofrio, Vezina, & Limperopoulos, 2018). 

More precisely, altered functional connectivity was found in subcortical regions, including the 

putamen, caudate nucleus, globus pallidus, and thalamus, and in various cortical regions, especially 

in frontal, parietal, and temporal areas. Although this first study provides valuable insight into 

functional network topology and regional functional connectivity, it remains unknown if these 

functional connectivity deficits remain present beyond the post-surgical period. Moreover, whether 

these connectivity alterations are associated with later-developing cognitive functions remains to 

be determined. The current study aimed to fill these gaps. To do so, we sought to compare 

functional connectivity between youth with complex CHD who had undergone open-heart surgery 

during infancy and healthy peers, targeting networks associated with at-risk executive functions. 

We hypothesized that youth with complex CHD would exhibit altered functional connectivity in 

networks associated with executive functioning. As a secondary objective, we also explored the 

direct relationships between functional network connectivity and altered executive functions. A 

better understanding of the neural correlates of cognitive difficulties in youth with complex CHD 

will provide insight into the development and implications of the disease.   

4.3 Materials and methods 

 Participants 

French- and English-speaking youth aged 16 to 24 years old born with complex CHD who 

underwent open-heart surgery (OHS) using cardiopulmonary bypass during the first year after birth 

were enrolled in this study. Participants born preterm (<37 weeks of gestation), with documented 

congenital infection, a known chromosomal or genetic abnormality, or multiorgan dysmorphic 

features were excluded. Participants with CHD were recruited from the pediatric and the adult 
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cardiology units of the McGill University Health Center (MUHC) as previously reported (Fontes 

et al., 2019). 

A control group, matched for age and sex, was recruited from local colleges, universities, and the 

community through advertisements and word of mouth. Controls were considered healthy if they 

had no history of brain tumor or malformation, traumatic brain injury, developmental or neurologic 

conditions and had not received rehabilitation or special education services during childhood or 

adolescence. Written informed consent was obtained from the participant, or legal guardians when 

younger than 18 years old. The study was approved by the MUHC Pediatric Research Ethics Board. 

 Individual and clinical variables 

All the participants underwent a single study visit at the Montreal Children’s Hospital to complete 

a brain MRI. Height and weight were measured before the MRI to compute body mass index 

(BMI).  Socioeconomic status (SES) was measured using the Hollingshead Four-Factor Index 

questionnaire (Hollingshead, 1975) and relevant clinical information, such as cardiac diagnosis, 

age at first surgery, and number of open-heart surgeries, was extracted from the medical records of 

the CHD participants. 

 Executive function and self-regulation 

On the day of the MRI, participants completed the Behavior Rating Inventory of Executive 

Function – Adult Scale (BRIEF-A) a norm-referenced, self-reported questionnaire that evaluates 

executive function and self-regulation (Rouel, Raman, Hay, & Smith, 2016). This test is composed 

of nine clinical scales: inhibit, shift, emotional control, self-monitor, initiate, working memory, 

plan/organize, task monitor, and organization of materials, which together provide a total score for 

metacognition and behavioral regulation. On the BRIEF-A, higher scores represent poorer 

executive functioning. 

 MRI data acquisition 

Participants underwent a single brain MRI on a 3.0 T MRI (Achieva X-series, Philips Healthcare) 

using a 32-channel head coil. The acquisition protocol included three-dimensional 1 mm isotropic 

T1-weighted images (TE = 3.7 ms, TR = 8.1 ms, TI = 1010 ms, pixel bandwidth = 191.4 Hz/pixel, 

FOV = 240x240 mm, slice thickness =1 mm, flip angle = 8º) and a gradient-echo echo planar 
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imaging (EPI) sequence (TE =30 ms, TR=2600ms, pixel bandwidth = 2197.48 Hz/pixel, 

FOV=240x240 mm, acquisition matrix=80x80, slice thickness = 3 mm, flip angle = 70º, 47 

slices/volume, interleaved, no gap). During the resting-state sequence, participants were awake and 

instructed to keep their eyes closed. The anatomical images were reviewed for overt brain 

anomalies by an experienced neuroradiologist, who was blinded to the clinical history of the 

participants.  

 MRI data processing 

Before pre-processing, T1-weighted and EPI images were visually inspected for possible artifacts 

(e.g., spikes, signal loss, aliasing). Spatial pre-processing of images was first performed and 

included the following steps: functional cross-realignment for head motion correction, slice timing 

correction, outlier scrubbing (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), normalization 

to Montreal Neurological Institute (MNI) 152 space, and outlier detection using the Artifact 

Detection Tool (ART) (www.nitrc.org/projects/artifact_detect). Afterwards, data were spatially 

smoothed with an 8 mm full-width half-maximum gaussian kernel (Motoyama et al., 2019).  

We used a gaussian kernel of 2-3 times the voxel size, as this has been shown to be optimal to 

correct for truncation artifacts (Lindquist & Wager, 2008), to increase signal-to-noise ratio, and to 

reduce the influence of residual variability and gyral anatomy across subjects. After spatial pre-

processing, realigned images in MNI space were visually inspected by overlapping the MNI 

structures over structural and functional data to confirm optimal realignment.  

The BOLD signal of interest may be altered by macrovessel signal, mainly those located in the pial 

surface, as well as by some non-physiological signals, such as head motion. To correct for these 

nuisance variables, temporal processing was performed using a component-based noise correction 

method (Behzadi, Restom, Liau, & Liu, 2007; Friston, Williams, Howard, Frackowiak, & Turner, 

1996; Power et al., 2014). From the T1-weighted images, white matter and cerebrospinal fluid were 

segmented using SPM12 (www.fil.ion.ucl.ac.uk/spm) and used in a subsequent step to remove the 

temporal confounding factors. Nuisance variables were based on cerebrospinal fluid signal, white 

matter signal, motion, and realignment parameters (Friston et al., 1996). Potential outliers were 

identified from subject motion and observed global BOLD signal using ART. Volumes with 

framewise displacement higher than 0.5 mm and/or that presented global signal changes above 3 

standard deviations were identified as outliers. The anatomical CompCor method was used for 
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nuisance correction (Behzadi et al., 2007; Muschelli et al., 2014), as it has been shown to be as 

efficient as global signal regression-based methods, but without inducing undue anti-correlations 

(Behzadi et al., 2007; Murphy, Birn, Handwerker, Jones, & Bandettini, 2009). Functional data were 

linearly detrended and band-pass filtered [0.008 – 0.09Hz] to adjust for low frequency fluctuations 

related to very slow head displacements, scanner-related drifts, and high frequency noise effects 

(Alonazi et al., 2019; Tomiyama et al., 2019; Wehrle et al., 2018; Whitfield-Gabrieli & Nieto-

Castanon, 2012). 

A quality control plot was created to detect outliers after denoising, consisting of a voxel-to-voxel 

correlation histogram. Before denoising, functional connectivity distribution values within the 

whole brain showed highly positively skewed distributions and appeared to be very different across 

subjects due to the influence of large-scale physiological signals and head motion effects. After 

having corrected for the aforementioned confounders, functional connectivity distributions 

appeared to be well centered and very similar across subjects, suggesting that the noise effect had 

been appropriately removed (see Appendix A - Figure A. 1). To achieve the desired denoising data 

quality, we employed for every subject: white matter (5 components), cerebrospinal fluid (5 

components), scrubbing (one per identified outlier volume), motion (6 components + 1st order 

derivatives). After this step, as the degrees of freedom of every participant were still high, we 

decided to include the quadratic effects to the realignment component to improve motion related 

denoising. Finally, we used the number of degrees of freedom remaining after the denoising process 

as an exclusion factor, excluding subjects with less than 15 degrees of freedom. All the participants 

presented with centered and normalized data and enough degrees of freedom to be analyzed. 

To process and analyze the resting-state fMRI data, we used the CONN Toolbox 18.b 

(http://nitrc.org/projects/conn), based on SPM12 and running in MATLAB R2018a (MathWorks, 

Inc, Natick, MA, USA) on an Ubuntu 18.04 machine.  

 Seed selection 

Seed-based functional connectivity (SBC) analysis was performed to identify differences in brain 

functional connectivity between the CHD and control groups. Considering the increasingly 

recognized functional challenges reported in adolescents and young adults with CHD, we chose to 

use a hypothesis-driven approach over a data-driven approach to compare functional connectivity 

in networks related to executive function as identified by the BRIEF-A. Seeds for each region and 
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network were placed using the probabilistic Harvard-Oxford atlas 

(http://neuro.debian.net/pkgs/fsl-harvard-oxford-atlases.html). The selected seeds corresponded to 

brain regions or networks known to be involved in executive functions that were found to be 

significantly different in our group comparisons of the BRIEF-A clinical scales. In line with these 

findings, we analyzed the default mode network (internal modes of cognition) (Davey, Pujol, & 

Harrison, 2016), the dorsal attention network (attentional capabilities) (Rohr et al., 2017), the 

fronto-parietal (Figueroa-Vargas et al., 2020) and fronto-orbital networks (high-level cognition 

function) (Barbey, Koenigs, & Grafman, 2011; Ross, LoPresti, Schon, & Stern, 2013), and the 

amygdalar network (emotional control) (Frank et al., 2014; LeDoux, 2007). To assess the different 

networks, seeds were placed as specified in the Conn toolbox (Whitfield-Gabrieli & Nieto-

Castanon, 2012). The medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC) 

were chosen to assess the default mode network (DMN), the intra-parietal sulcus (IPS) and the 

frontal eye fields (FEF) to assess the dorsal attention network (DAN), and the lateral prefrontal 

cortex (LPFC) and the parietal cortex (PPC) to assess the fronto-parietal network (FPN). The 

fronto-orbital network was added to the analyses given its link with executive functions and the 

amygdalar network was added for playing an important role in emotional control, with seeds placed 

in the fronto-orbital cortex and in the amygdala, respectively. 

 Statistical analysis 

4.3.7.1 Participants’ characteristics and BRIEF-A scores 

Participants’ characteristics were compared between the CHD and control groups using 

independent sample t-tests or chi-square tests, as appropriate. Variables that showed significant 

group differences were considered potential confounders and included in subsequent analyses. 

Analyses of covariance (ANCOVA) were performed for each clinical scale of the BRIEF-A, using 

potential confounders as covariates when relevant. The only significantly different confounder 

between the CHD and control groups was socioeconomic status, which was included as a covariate 

in subsequent analyses. In all analyses, the alpha level was set at 0.05.  

4.3.7.2 Resting-state functional connectivity  

The average time series of each single seed was computed across each seed region in each 

participant, and then correlated with the time series of every other voxel in the brain. Correlation 
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maps were calculated using the standard Pearson product-moment formula as described in Biswal 

et al. (Biswal et al., 1995). Correlation coefficients were normalized by Fisher’s z-transformation. 

Group differences in functional connectivity between CHD and controls were assessed using 

ANCOVA, using socioeconomic status as a covariate. Statistical significance between groups was 

established as p < 0.001 (uncorrected) at the voxel level and as p < 0.05 (corrected for family wise 

error [FWE]) at the cluster level (W. Liu, Hu, An, Zhou, & Gong, 2019; L. Zhang et al., 2020).  

Additionally, to explore the direct associations between network functional connectivity and 

executive function deficits, we performed two-tailed Pearson correlations between functional 

connectivity and BRIEF-A scores, focusing on the BRIEF-A scales previously identified to be 

significantly different between the two groups. These correlation analyses were performed 

separately in the control and CHD groups. The level of statistical significance as set at p < 0.05. 

We did not correct for multiple comparisons considering the exploratory nature of these analyses.  

4.4 Results 

 Participants’ characteristics 

In total, we collected 43 rs-fMRI acquisitions in the CHD group and 47 in the control group. Of 

these, five participants from the CHD group and two from the control group were excluded from 

the analysis for not having a complete rs-fMRI acquisition. Another CHD participant was excluded 

from the analysis for not passing the aforementioned quality assessment. Our final sample for 

analysis consisted of 37 participants with CHD (14/37 male) and 45 controls (19/45 male). Of the 

37 participants with CHD, 32 (86.49%) presented with a two-ventricular cardiac physiology: 

dextro-transposition of the great arteries (n = 13), Tetralogy of Fallot (n = 10), total anomalous 

pulmonary venous connection (n = 2), ventricular and atrial septal defects (n = 5), and truncus 

arteriosus type I (n = 2). Only 5/37 (13.51%) presented with a univentricular physiology: double 

outlet right ventricle (n = 1), pulmonary atresia (n = 3), and hypoplastic left heart syndrome (n = 

1). CHD participants had between one and four open-heart surgeries (median 1) at the time of the 

study visit. Mean age at first surgery was 68.65 days old, with a range from zero to 293 days after 

birth. Socioeconomic status was found to be significantly higher in the control group when 

compared to the CHD group and was consequently included as a covariate in subsequent analyses. 

No other significant group differences were found for age at MRI, sex, and BMI (Table 4.1).  
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Table 4.1 Participants’ characteristics. 

Variables; mean [SEM], N (%) CHD (n=37) CTL (n=45) p-value 

Age at MRI, years 20.13 [0.38] 20.41 [0.30] 0.34 

Age first surgery, days 68.65 [15.51] - - 

Sex   0.80 

     Male 14 (37.8%) 19 (42.2%)  

     Female 23 (62.2%) 26 (57.8%)  

Body mass index 23.31 [0.67] 23.92 [0.56] 0.23 

Socioeconomic status 39.95 [2.07] 50.73 [1.54] <0.001 

Type of CHD    

     Single ventricle 5/37 (13.5%) - - 

     Tetralogy of Fallot  10/37 (27.0%) - - 

     Transposition of great arteries 13/37 (35.1%) - - 

     Other two-ventricle physiology    

        Ventricular/atrial septal defects 5/37(13.5%) - - 

        Truncus arteriosus type I 2/37(5.4%) - - 

         Total anomalous pulmonary 2/37(5.4%) - - 

         venous connection 134.5 [8.57] - - 
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Legend: CHD: congenital heart disease, CTL: control, SEM: standard error of the mean.  

 

Brain anomalies on conventional MRI likely from an acquired origin were detected in 7/37 

(18.92%) CHD participants and 4/45 (8.89%) of the controls, which was not statistically different 

(p=0.210) These anomalies included: One CHD participant with cystic dilation of the perivascular 

spaces; two CHD participants with periventricular white matter injury; two CHD participants and 

three controls with susceptibility artifact, likely representing blood deposition or calcification; and 

two CHD participants and one control with asymmetrical ventricles. Brain anomalies likely from 

a developmental origin were found in 6/37 (16.22%) CHD participants and 2/45 (4.44%) controls, 

(p=0.123).  These anomalies included: Three CHD participants and one control with gray matter 

heterotopia; two CHD participants and two controls with developmental venous anomalies; one 

CHD participant with cortical developmental anomaly; and one CHD participant with Chiari I 

malformation. The observed anomalies were all considered to be mild and from a remote origin, 

and none of the brain anomalies detected on conventional MRI overlapped with any of the 

connectivity networks analyzed. 

 Executive functions 

After controlling for SES, participants with CHD demonstrated significantly poorer performance 

than control participants on the inhibit (F(1,76) = 7.16; p = 0.009), emotional control (F(1,76) = 

7.24; p = 0.009), self-monitor (F(1,76) = 7.09; p = 0.009), initiate (F(1,76) = 4.22; p = 0.04), 

working memory (F(1,76) = 5.25; p = 0.025), and organization of materials (F(1,76) = 18.51; 

p<0.001) clinical scales of the BRIEF-A. By contrast, there were no significant differences between 

Total surgery time (min)   

Aortic cross clamp time (min) 76.59 [6.09] - - 

Deep hypothermia time (min) 19.28 [4.06] - - 

Catheterizations 22/32 (68.75%) - - 

Balloon atrial septostomy before 

surgery 8/15 (53.33%) - - 
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groups for the shift (F(1,76) = 1.21; p = 0.27), plan/organize (F(1,76) = 3.40; p = 0.07), and task 

monitor (F(1,76)=3.53; p=0.06) clinical scales. Scores for BRIEF-A scales are summarized in 

Table 4.2. Participants were classified as having a clinically significant deficit on a given clinical 

scale when having a score ≥ 65. On average, a greater percentage of participants with CHD had 

clinically significant executive function deficits as compared to controls (6 – 40% in CHD vs. 0 – 

13.6% in controls) across the different clinical scales. Differences in the prevalence of clinically 

significant deficits were statistically significant for the inhibit (c2 = 14.23; p < 0.001), working 

memory (c2 = 7.1; p = 0.008), and organization of materials (c2 = 11.09; p < 0.001) clinical scales 

(see Appendix A -  Table A. 1). 

 

Table 4.2 BRIEF-A scales results 

Mean (SEM) CHD (n=35) CTL (n=44) p-value 

Inhibit** 55.6 (2.21) 50.4 (2.04) 0.009 

Shift 53.6 (2.15) 51.5 (2.41) 0.27 

Emotional control** 56.9 (1.93) 49.5 (2.57) 0.009 

Self-monitor** 54.1 (2.28) 46.5 (2.19) 0.009 

Initiate* 54.9(1.80) 51.2 (2.42) 0.04 

Working memory* 59.1 (2.11) 53.0 (2.34) 0.02 

Plan/ Organize 53.5 (1.62) 50.5 (1.93) 0.07 

Task monitor 57.0 (2.02) 52.8(2.86) 0.06 

Organization of materials*** 55.2 (2.19) 46.6 (2.76) <0.001 

Legend: * p < 0.05; ** p < 0.01; ***p < 0.001.  NB: Higher scores of BRIEF-A indicate poorer 

performance. 
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 Resting-state Functional Connectivity 

We performed comparisons of seed-based functional connectivity between the two groups for the 

default mode, dorsal attention, fronto-parietal, fronto-orbital, and amygdalar networks. For each 

analysis, the threshold of statistical significance as set to p < 0.001 (uncorrected) at the voxel level 

and p < 0.05 (corrected for family wise error [FWE]) at the cluster level. Voxels that did not survive 

the threshold were not displayed.  

4.4.3.1 Decreased functional connectivity  

Fronto-orbital network: Our analyses revealed lower inter-network functional connectivity in the 

CHD group when compared to controls between the right fronto-orbital cortex and the left 

hippocampus and between the left fronto-orbital cortex and bilateral (Figure 4.1, Table 4.3). 

Amygdalar network: We found significantly lower inter-network functional connectivity in the 

CHD group compared to controls between the left amygdala and the right frontal pole and between 

the left amygdala and the right cingulate and paracingulate gyrus (Figure 4.1, Table 4.3). 
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Figure 4.1 Functional connectivity differences between CHD and control groups where CHD 

presented lower functional connectivity. 

Legend: CHD: congenital heart disease, CTL: controls, F.Orb: fronto-orbital network, Amyg: 

amygdalar network. 
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Table 4.3 Functional connectivity differences between CHD and control groups where CHD 

participants presented with lower functional connectivity than controls. 

 Affected region Cluster 

size 

Peak  

p-uncorrected 

Cluster 

p<FWE 

CHD lower FC than CTL     

F.Orb (right cortex) Left hippocampus 113 <0.001 0.03 

F.Orb (left cortex) Right and left hippocampus 185 <0.001 <0.01 

Amyg (left amygdala) Frontal pole right 270 <0.001 <0.001 

Amyg (left amygdala) Cingulate and paracingulate 

gyrus right 

134 <0.001 0.01 

Legend: FC: functional connectivity, CHD: congenital heart disease, CTL: controls, F.Orb: fronto-

orbital network, Amyg: amygdalar network. 

 

4.4.3.2 Increased functional connectivity  

Default mode network: When compared to controls, participants with CHD presented with higher 

intra-network functional connectivity between the medial prefrontal cortex and the posterior 

cingulate cortex (Figure 4.2, Table 4.4).  

Dorsal attention network: Similar to the DMN, our analyses showed significantly higher inter-

network functional connectivity in participants with CHD when compared to controls between the 

left intraparietal sulcus (ips_l) and the bilateral hippocampal and parahippocampal regions, but also 

between the right intraparietal sulcus (ips_r) and the right hippocampal and parahippocampal 

regions (Figure 4.2, Table 4.4). No significant differences were found for the frontal eye fields. 

Fronto-parietal network: We observed significantly higher inter-network functional connectivity 

in the CHD group when compared to controls between the left parietal cortex (ppc_l) and the left 

caudate, left accumbens, and left putamen, and between the ppc_l and the right crus of the 
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cerebellum (Figure 4.2, Table 4.4). No significant differences were found for the lateral prefrontal 

cortex. 

 

Figure 4.2 Functional connectivity differences between CHD and control groups where CHD 

participants presented with higher functional connectivity than controls. 

Legend:  CHD: congenital heart disease, CTL: controls, DMN: default mode network, DAN: dorsal 

attention network, FPN: fronto-parietal network. 
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Table 4.4 Functional connectivity differences between CHD and control groups where CHD 

participants presented with higher functional connectivity than controls. 

 Affected region Cluster 

size 

Peak  

p-uncorrected 

Cluster 

p<FWE 

CHD higher FC than CTL     

DMN (medial prefrontal 

cortex) 

Posterior cingulate cortex 133 <0.001 0.018 

DAN (intraparietal sulcus 

left) 

Right hippocampal and 

parahippocampal regions 

405 <0.001 <0.001 

DAN (intraparietal sulcus 

left) 

Left hippocampal and 

parahippocampal regions 

263 <0.001 <0.001 

DAN (intraparietal sulcus 

right) 

Right hippocampal and 

parahippocampal regions 

348 <0.001 <0.001 

FP (parietal cortex left) Left caudate, left accumbens 

and left putamen 

161 <0.001 0.01 

FP (parietal cortex left) Cerebellum Crus 1-2 right 151 <0.001 0.01 

Legend: FC: functional connectivity, CHD: congenital heart disease, CTL: controls, DMN: default 

mode network; DAN: dorsal attention network; FPN: fronto-parietal network.  

 

 Correlations between functional connectivity and BRIEF-A scores 

We observed two different sets of significant correlations between functional connectivity and 

BRIEF-A scores in the CHD participants and in the control participants. In the CHD group, 

significant correlations were found between right frontal orbital – left hippocampus functional 

connectivity and the inhibit scale (r = -0.36, p = 0.03), as well as between medial prefrontal cortex 

– posterior cingulate functional connectivity and the organization of materials scale (r = 0.35, p = 
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0.038). In the control group, significant correlations were observed between left intraparietal sulcus 

– right hippocampus functional connectivity and the emotional control scale (r = 0.36, p = 0.014), 

as well as between left amygdala – cingulate/paracingulate gyrus functional connectivity and the 

organization of materials scale (r = -0.35, p = 0.019).  

4.5 Discussion 

The present study investigated cerebral functional connectivity in brain networks associated with 

executive functioning in youth born with complex CHD who had undergone open-heart surgery 

using cardiopulmonary bypass during infancy. Our evaluation of function-specific resting-state 

networks revealed statistically significant differences in functional connectivity in youth born with 

complex CHD, when compared to healthy peers, with significant alterations of functional 

connectivity within the fronto-orbital cortex, amygdala, default mode, dorsal attention, and fronto-

parietal networks.  

To the best of our knowledge, this is the first resting-state functional connectivity study on post-

operative CHD patients. The only other previous study of resting-state functional connectivity in 

this population was performed in neonates with complex CHD prior to open-heart surgery (De 

Asis-Cruz et al., 2018). This prior study reported that pre-operative CHD neonates exhibited 

reduced rich club network organization in functional brain network connectivity when compared 

to healthy term-born neonates, as well as reduced sub-network connectivity, predominantly 

implicating the subcortical areas, such as the caudate, putamen, and thalamus, and their connections 

to the contralateral frontal, parietal, and temporal cortices. They also reported reduced functional 

connectivity within the hippocampus and other brain structures, in line with our current findings. 

Indeed, we found decreased functional connectivity in youth with CHD between the fronto-orbital 

network and the hippocampus. Taken together, these observations may suggest that alterations in 

hippocampal functional connectivity that are present prior to open-heart surgery likely persist 

during development and after cerebral hemodynamics have been restored following cardiac 

surgery. Our results also converge with previous findings from anatomical studies that have 

demonstrated smaller hippocampal volumes and morphometric differences in adolescents and 

young adults with CHD, associated with poorer memory and executive functioning (Fontes et al., 

2019; Latal et al., 2016). Future fMRI studies using the hippocampal structural input as a seed in 
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network analysis could clarify the relationship between the structural alterations and functional 

connectivity alterations reported in youth with CHD.  

Participants with complex CHD in our study also presented with decreased functional connectivity 

between the amygdala and frontal and cingulate regions. The amygdala’s interaction with the 

frontal cortex plays a crucial role in the regulation of emotion (Banks, Eddy, Angstadt, Nathan, & 

Phan, 2007), known to be vulnerable in CHD survivors and found to be significantly different from 

controls on the associated BRIEF-A clinical scale. Elevated rates of anxiety disorders, attention 

deficit hyperactivity disorder, and depression have been reported in adolescents and adults with 

complex CHD (DeMaso et al., 2017; Pike et al., 2018), which could theoretically be related to 

amygdala dysfunction. In adolescents with major depressive disorders, studies have previously 

shown decreased amygdala functional connectivity (Cullen et al., 2014; Tang et al., 2018). A recent 

study reported that adults with complex CHD are more likely than controls to present with some 

personality traits, in particular neuroticism (i.e., experiencing emotional negativity and instability) 

(Skoczek et al., 2019). However, whether these psychiatric symptoms are present in youth with 

CHD and are related to altered functional amygdalar connectivity will need to be further 

investigated, considering that we did not specifically evaluate mental health. 

An unexpected finding was the observation of increased functional connectivity of the DMN in 

participants with CHD when compared to controls. The DMN has been extensively studied in the 

healthy populations and in various psychiatric, neurological, and neurodevelopmental conditions 

(Bauml et al., 2019; Davey et al., 2016; Gardini et al., 2015; Sheline et al., 2009; L. Zhang et al., 

2020). While decreased functional connectivity within the DMN has been widely reported in 

pathologies such as autism spectrum disorder, schizophrenia, and Alzheimer’s disease (Buckner, 

Andrews-Hanna, & Schacter, 2008), an increased functional connectivity between the mPFC and 

the PCC has been demonstrated in patients with mild cognitive impairment (Gardini et al., 2015). 

This is particularly of interest considering that there is emerging literature suggesting that seniors 

living with CHD are at greater risk of early onset dementia (Bagge et al., 2018; Keir et al., 2019). 

Moreover, the DMN is engaged in self-referential (internal) thinking and is disengaged during 

attentional-demanding (external) processes (Sheline et al., 2009). Thus, greater activity within the 

DMN when individuals are at rest is thought to be reflective of difficulties in switching from 

internal to external thoughts (Bozhilova, Michelini, Kuntsi, & Asherson, 2018). In participants 

with CHD, this may reflect their cognitive and attentional dysfunction in daily life (Batra, 
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Alexander, & Silka, 2012; Holst et al., 2020; Pierick, Lynn, McCracken, Oster, & Iannucci, 2021), 

as they may experience difficulties switching from internal to external stimulation. However, 

considering that we have not evaluated attention and hyperactivity, this hypothesis remains 

speculative. Similarly, altered amygdalar connectivity, combined with DMN dysfunction, may 

underlie in part some of the difficulties in regulating emotions or internal states that are frequently 

observed in individuals with CHD (Bauml et al., 2019) 

Participants with CHD also demonstrated increased functional connectivity in the dorsal attention 

network and the fronto-parietal network when compared to controls.  The dorsal attention network 

is known to be engaged during externally directed attentional tasks and its activity is increased 

when individuals must focus their attention on external stimuli. Its level of activity is thought to 

reflect and predict attentional skills (Rohr et al., 2017). Although we did not evaluate attention 

specifically, participants with CHD presented with lower scores on the organization of materials 

scale, likely reflecting difficulty when handling more than one stimulus at the same time, which is 

driven in part by attentional skills.  Regarding the fronto-parietal network differences, increased 

resting-state functional connectivity was specifically observed in the CHD group between the 

parietal cortex and the cerebellar Crus 1 and Crus 2 regions. Theses cerebellar regions are known 

to be involved in executive functions, coherent with our findings (Z. Gao, Liu, Zhang, Liu, & Hao, 

2020). 

When performing correlations between functional connectivity and BRIEF-A scores, we observed 

different modest correlations in the two groups. Interestingly, we observed a negative correlation 

between amygdala – cingulate/paracingulate gyrus connectivity and the organization of materials 

scale in the control group, while a positive correlation between the default mode intra-network 

functional connectivity and this scale was detected in the CHD group. Higher levels of inhibition 

have been shown to correlate with decreased amygdala – cingulate functional connectivity 

(Blackford et al., 2014). However, we could not find previous reports of a relationship of 

organizational cognitive tasks with amygdala – cingulate or default mode network functional 

connectivity. The lack of strong associations in these exploratory analyses may have been mitigated 

by the use of a self-reported questionnaire to measure executive functioning, which may have 

induced some bias. Although the BRIEF-A has been demonstrated to be valid and reliable for 

measuring executive function in various clinical populations (Rouel et al., 2016), standardized 

batteries may be more objective in examining a wider range of higher-order cognitive performance. 
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Abnormalities in functional connectivity may reflect alterations of the structural organization of 

white matter tracts. Indeed, several diffusion tensor imaging studies have detected lower fractional 

anisotropy in adolescents with CHD (Brewster, King, Burns, Drossner, & Mahle, 2015; Easson et 

al., 2020; Ehrler et al., 2020; Rivkin et al., 2013; Watson et al., 2018). These findings may reflect 

potential alterations to numerous facets of white matter microstructure, including alterations to 

myelination, axon density, axon diameter, axon orientation, or cell membrane permeability (D. K. 

Jones, Knosche, & Turner, 2013). Additionally, we recently applied neurite orientation dispersion 

and density imaging, an advanced diffusion MRI modelling technique, in this cohort of CHD 

survivors, detecting widespread reductions in the neurite density index, reflecting a lower density 

of axon packing (Easson et al., 2020). Altered regions included frontal and limbic white matter 

tracts, in line with the altered functional connectivity we describe in these regions. Nevertheless, 

future multi-modal MRI studies combining structural and functional connectivity analyses are 

needed to disentangle these complex relationships. 

 Limitations  

Our results should be considered within the context of their limitations. It is important to highlight 

that our sample of CHD participants included a mixed cohort of different CHD physiologies, and 

therefore cannot be generalized to a specific subtype. Nevertheless, the fact that we included 

participants with a variety of complex CHD physiologies operated during infancy is representative 

of the clinical diversity of this condition.  Lastly, the differences found in socioeconomic status 

between the two groups may be a limitation of the study; however, we carefully corrected for this 

potential confounder in our analyses. 

4.6 Conclusion 

The current study provides the first evidence supporting the presence of altered functional 

connectivity in youth born with complex CHD. Specifically, we found atypical functional 

connectivity in youth with CHD in the fronto-orbital cortex, amygdala, default mode, dorsal 

attention, and fronto-parietal networks. In this new era of open-science, future studies using 

longitudinal imaging in large multi-center cohorts will strengthen our understanding of long-term 

altered connectivity and how to measure the risk for these alterations at an individual level, in order 

to better identify at-risk children and adolescents that could benefit from targeted therapies 
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 NEONATAL RS-FMRI ACQUISITION  

 

This chapter describes the neonatal rs-fMRI acquisition protocol set up for the 3T GE Discovery 

MR750 from the CHU Sainte-Justine. It also provides a real-time head motion quality control to 

ensure that enough low motion rs-fMRI data have been collected before the baby leaves the MRI 

room. The rs-fMRI acquisition consists of two 5-minutes single-shot interleaved GRE-EPI and the 

quality control is performed right after each 5-minutes acquisition. 

 

5.1  CHU Sainte-Justine research neonatal acquisition protocol 

Data is acquired using an MRI 3T GE Discovery MR750 using a 32-channel head coil. The 

acquisition protocol includes a 3D Fast Spoiled Gradient BRAVO, a 3D T2 CUBE, a 32-directions 

diffusion tensor imaging, two reversed phase encoding polarity 26-directions diffusion basis 

spectrum imaging, and two reversed phase encoding direction GRE-EPI rs-fMRI. Only T2-

weighted and rs-fMRI sequences will be further discussed in this section, as the rest of the 

sequences are outside this project’s scope. Nonetheless, it is convenient to present every sequence 

in the acquisition protocol as the acquisition time, the sequence order, or the energy deposit per 

mass may influence the whole acquisition protocol. 

Structural 3D T1- and T2-weighted images are acquired to ensure high-resolution data to identify 

the different brain structures. T1-weighted images are acquired as a part of the protocol to identify 

specific brain injuries, such as punctate white matter lesions (Nguyen et al., 2019). However, as 

previously mentioned, for the neonatal population, the most appropriate in terms of contrast are 

T2-weighted images, as the brain is not fully myelinated. The high-resolution T2-weighted images 

will serve as a reference for further data preprocessing of the functional data and will allow proper 

tissue segmentation. The CUBE T2 sequence was selected as it enables contiguous sub-millimeter 

high SNR data acquisition by replacing several 2D slice acquisitions with a single 3D volume. 

Furthermore, 3D Fast SE reduces energy deposit as the scanning time is reduced and, more 

importantly, presents reduced flip angles compared to traditional SE. Traditional SE 180º pulses 

require fast switching of the magnetic field gradients, increasing this way the SAR. The SAR 
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corresponds to the energy deposit in the body tissue by the radiofrequency field, and it’s given in 

watts/kg. It can be described as 

𝑆𝐴𝑅 = (𝜎𝐴'𝜔'𝐵3'D)/2𝜌 

Where 𝜎 is the tissue conductivity, A is the body cross-sectional area, 𝜔 is the RF frequency, Bl is 

the mean amplitude of the RF pulse, D is the duty cycle, which corresponds to the percentage of 

time the RF is activated, and 𝜌 is the body mass. 

We can observe that SAR increases with the volume, being the deposit of energy in neonates a 

fourfold of the deposit in adults because of the reduced tissue volume. However, SAR is essential 

when scanning neonates for being much more vulnerable. SAR produces an elevation of the tissue 

temperature of approximately 1ºC/hour for a SAR of 1 watt/kg, which may produce heat-induced 

injury. For example, a commonly used T2-weighted acquisition sequence in clinical MRI is SE 

PROPELLER. This sequence allows oversampling the center of the k-space to obtain high SNR 

and contrast; however, it also presents a high SAR, limiting the acquisition to a few slices to avoid 

overheating. For instance, the SE PROPELLER used in clinical MRI at the CHU Sainte-Justine 

produces 1.96 watts/kg in contrast to the 1.31 watts/kg produced by the 3D CUBE.  

The rs-fMRI acquisition consists of two single-shot interleaved GRE-EPI with reversed phase 

encoding polarity to perform distortion correction. One hundred volumes plus five dummies are 

acquired per acquisition, and each acquisition takes 5 min and 15 seconds, for a total of 200 

volumes (10 min 30 s). The employed TE is 30 ms as it provides decent values of SNR while 

staying centered close to the T2* value of the main resting-state networks (Rajasilta et al., 2020; 

Rogers et al., 2017; Smyser et al., 2010; Smyser et al., 2016). A TR of 3 seconds is employed, and 

a flip angle of 70º. We decided to keep the acquisition parameters unaltered to perform group 

comparisons with the previously acquired neonates; however, some possible improvements in the 

acquisition protocol will be further discussed. 

5.2 Real-time head motion monitoring and MRI acquisition 

Resting-state fMRI is a 4D acquisition technique, making it susceptible to head motion. Head 

motion produces mismatches between the different acquired volumes and can create false 

correlations that don’t correspond to neural signals. Currently, due to high levels of head motion, 

approximately half of the acquired pediatric data cannot be analyzed. To address this challenge in 
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the CHU Sainte-Justine, a real-time head motion monitoring protocol was developed as a part of 

this project. The head motion real-time quality control allows us to determine whether or not the 

acquired neonatal rs-fMRI data is of enough quality to be further analyzed. If the collected data 

doesn’t pass the quality control the baby is re-scanned. 

To set up the real time head motion quality control in the CHU Sainte-Justine, we decided to 

perform two 5-minute GRE-EPI with reversed phase encoding polarity instead of one acquisition 

of 10-minutes plus several volumes in reversed phase encoding polarity for several reasons. First, 

the software of the 3T GE Discovery MR750 from CHU Sainte-Justine doesn’t allow for real-time 

data extraction. Therefore, performing two shorter consecutive GRE-EPI allows us to complete the 

head motion quality control of the first acquisition while the next 5 minutes are collected. This 

optimizes the time in the MRI. But most importantly, it enables us to immediately re-scan the baby 

if the first acquisition didn’t pass the quality controls. Also, acquiring two consecutive GRE-EPI 

of the same length reduces distortions in the anterior and posterior regions as they appear averaged. 

The quality control is based on functional cross realignment of the rs-fMRI data. This technique 

consists of 6 degrees of freedom image registration between every acquired volume and the 

reference volume. The 6 degrees of freedom correspond to 3 rotations around the x-axis (pitch), y-

axis (yaw), and z-axis (roll), and 3 translations in x-(left/right), y- (anterior/posterior), and z-axes 

(inferior/superior). The registration parameters for every volume are saved as a matrix and then 

employed to compute the framewise displacement of every volume. This metric described by 

Power et al. 2012 allows to index the head movement from one volume to the next and can be 

described as the addition of the absolute value of the 6 registration parameters (Power et al., 2012). 

To determine the acceptable levels of head motion, we preprocessed N=16 babies from the CHU 

Sainte-Justine dataset and N=11 from the Baby Connectome Project (Howell et al., 2019). We 

evaluated several metrics, including the total number of volumes, the number of volumes with 

excessive motion (framewise displacement > 0.25mm)(Smyser et al., 2016), and the average 

framewise displacement of the whole run. Finally, the average framewise displacement was 

selected as the main metric for quality control as it provides information about the whole run. It is 

easy to interpret, as it doesn’t depend on other factors such as the TR and showed linear correlation 

with the proportion of bad volumes over the total number of acquired volumes [r (CHU Sainte-

Justine dataset)=0.92; r(Baby Connectome Project dataset)=0.89]. Finally, we performed seed-
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based correlation to explore different resting-state networks: language, motor, visual primary, and 

default mode networks. A single seed region was used to characterize each resting-state network. 

The average time series of every seed region was extracted and then correlated with the rest of the 

voxels of the brain to obtain the Pearson correlation values. The Pearson correlation values were 

Fisher transformed and thresholded between 0.5 and 1.5. We then evaluated the results of both 

cohorts through qualitative assessment to determine the limit values of average framewise 

displacement. 

For the CHU Sainte-Justine dataset, we could distinguish the aforementioned resting-state 

networks when at least two 5-minute acquisitions presented an average framewise displacement 

inferior to 0.25 mm per acquisition. For very low framewise displacement sequences, 5-minutes 

seemed enough to characterize the resting-state networks. The Baby Connectome Project dataset 

needed only a 5-minute acquisition to characterize the resting-state networks. This is probably 

because of the higher number of samples per 5 minutes acquired, being 420 samples/run for the 

Baby Connectome Project dataset versus 100 samples/run for the CHU Sainte-Justine. The Baby 

Connectome Project uses a TR of 0.72 seconds compared to our TR of 3 seconds, which explains 

the higher number of samples for the same scanning time. Interestingly, the observed average 

framewise displacement limit was 0.25 mm for both datasets. 

When evaluating the different resting-state networks, preterm and term-equivalent age subjects 

were employed when analyzing the CHU Sainte-Justine dataset. Full-term infants were evaluated 

in the Baby Connectome Project dataset. This may also explain slight differences in the resting-

state networks due to development, such as network bilaterality.  

Motion in newborns from the CHU Sainte-Justine dataset with different levels of average 

framewise displacement (noted as FD) for the language, motor, primary visual, and default mode 

are presented in Figure 5.1. 
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Figure 5.1. CHU Sainte-Justine resting-state networks for different average framewise 

displacements (FD). 

 

Motion in newborns from the Baby Connectome Project dataset with different levels of average 

framewise displacement (noted as FD) for the language, motor, primary visual, and default mode 

are presented in Figure 5.2. 
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Figure 5.2. Baby Connectome Project resting-state networks for different average framewise 

displacements (FD). 

 

5.3 Protocol optimization 

We observed that at the beginning of the acquisition procedure, babies presented lower levels of 

motion as they were still completely sleeping. Also, we observed that they tolerate EPI acquisitions 

very well. Therefore, doing rs-fMRI at the beginning of the acquisition protocol minimized head 

motion and improved data quality. Also, as mentioned in the previous section, real-time head 

motion monitoring is crucial to ensure that good quality rs-fMRI data has been acquired and that it 

will be possible to analyze. As it has been shown, acquiring more than 10 minutes of rs-fMRI can 

significantly improve reliability not only due to the increased number of time points but also 

because of the increased total scan duration (Anderson, Ferguson, Lopez-Larson, & Yurgelun-

Todd, 2011; Birn et al., 2013). Performing three scans of 5 minutes would improve the reliability 
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and ensure that at least 10 minutes of data would present the required quality to be analyzed. As 

mentioned before, with the current setup, head motion assessment has to be performed while the 

following sequence is being acquired and can’t be performed in real-time. Though, the 

implementation of this procedure improved the overall data quality allowing us to process a higher 

number of babies that other ways would have been discarded. The intention is to perform the quality 

control of the first scan during the acquisition of the second one and then perform the quality control 

of the second scan during the acquisition of the third one. If scan one or two don’t pass the quality 

control, additional scans could be added until having at least 10 minutes of good quality data. 

The TR is the second parameter that needs to be optimized in our acquisition protocol. Even if 

multi-band acquisitions can’t be performed with the current setup due to MRI software-related 

incompatibilities specified by the GE technical service, the TR could also be improved. For 

example, let’s compare the neonatal resting-state acquisition from the CHU Sainte-Justine with the 

acquisition performed by De Asis Cruz et al. (De Asis-Cruz, Bouyssi-Kobar, Evangelou, Vezina, 

& Limperopoulos, 2015) using the same scanner [Table 5.1]. We observed that achieving the same 

number of slices with similar acquisition parameters requires a TR of 2000 ms instead of 3000 ms. 

This improves temporal resolution, reduces head motion artifacts, and allows the acquisition of 

more time points in the same amount of time. Ideally, a multi-band sequence would allow 

improving the spatial resolution to 2x2x2 mm while keeping a TR of less than 1000 ms, with the 

aforementioned benefits from a lower TR, and allowing to skip the slice timing correction 

preprocessing step due to the high sampling frequency (Glasser et al., 2013).  

Furthermore, the flip angle could also be optimized to match the Ernst angle to maximize the SNR 

(Glasser et al., 2013). In such a way, the equation presented in the literature review could be 

employed to determine the flip angle that maximizes the signal value in GRE-EPI. Another 

potential improvement would be the reduction of the flip angle under the Ernst angle value. 

Gonzalo-Castillo et al. showed that a reduction of the flip angle under the Ernst value for the study 

of gray matter using sequences such as gradient echo for fMRI could significantly reduce the RF 

power, reducing this way the risk of heat-induced injury without compromising the signal 

(Gonzalez-Castillo, Roopchansingh, Bandettini, & Bodurka, 2011).  
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Table 5.1. Single-band rs-fMRI acquisition between centers comparison 
 

CHU Sainte Justine De Asis Cruz et al. 
MRI GE Discovery MR750 GE Discovery MR750 
Magnetic Field 3 T 3 T 
Subjects scanned Neonates Neonates 
#slices ~ 32 ~ 34 
Slice thickness 3 mm 3 mm 
Matrix size 64 x 64 64 x 64 
Voxel size 3 x 3 mm 3.125 x 3.125 mm 
TR 3000 ms 2000 ms 
TE 30 ms 35 ms 
Flip angle 70˚ 60˚ 

 

Two SE-EPI reversed phase encoding polarity containing only a few volumes could be performed 

to improve the distortion correction preprocessing step instead of using the GRE-EPI. This would 

allow a more accurate distortion correction as GRE-EPI is much more susceptible to signal 

dropouts than SE-EPI. However, this might increase scan time which is very limited. 

Finally, multi-echo rs-fMRI could be employed to improve the denoising process as it helps 

determine whether the signal intensity changes in a voxel were produced due to a T2* variation or 

motion.



72 

ARTICLE 2: NEORS: A NEONATAL RESTING STATE 

FMRI DATA PREPROCESSING PIPELINE 

Authors: V. Enguix1,2,3*, J. Kenley4, D. Luck,1,3, J. Cohen-Adad2,5,6, G.A. Lodygensky1,3. 

1. Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Canada

2. NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Canada

3. Canadian Neonatal Brain Platform, Canada

4. Washington University School of Medicine, Saint Louis, USA

5. Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada

6. Mila – Quebec AI Institute, Montreal, QC, Canada

This article has been published in Frontiers in Neuroinformatics, 17 June 2022 (Enguix, Kenley, 

Luck, Cohen-Adad, & Lodygensky, 2022). 

6.1 Abstract 

Resting-state functional MRI (rs-fMRI) has been shown to be a promising tool to study intrinsic 

brain functional connectivity and assess its integrity in cerebral development. In neonates, where 

functional MRI is limited to very few paradigms, rs-fMRI was shown to be a relevant tool to 

explore regional interactions of brain networks. However, to identify the resting-state networks, 

data needs to be carefully processed to reduce artifacts compromising the interpretation of results. 

Because of the non-collaborative nature of the neonates, the differences in brain size and the 

reversed contrast compared to adults due to myelination, neonates can’t be processed with the 

existing adult pipelines, as they are not adapted. Therefore, we developed NeoRS, a rs-fMRI 

pipeline for neonates. The pipeline relies on popular neuroimaging tools (FSL, AFNI, SPM) and is 

optimized for the neonatal brain. The main processing steps include image registration to an atlas, 



73 

 

skull stripping, tissue segmentation, slice timing and head motion correction and regression of 

confounds which compromise functional data interpretation. To address the specificity of neonatal 

brain imaging, particular attention was given to registration including neonatal atlas type and 

parameters, such as brain size variations, and contrast differences compared to adults. Furthermore, 

head motion was scrutinized, and motion management optimized, as it is a major issue when 

processing neonatal rs-fMRI data. The pipeline includes quality control using visual assessment 

checkpoints. To assess the effectiveness of NeoRS processing steps we used the neonatal data from 

the Baby Connectome Project dataset including a total of 10 neonates. NeoRS was designed to 

work on both multi-band and single-band acquisitions and is applicable on smaller datasets. NeoRS 

also includes popular functional connectivity analysis features such as seed-to-seed or seed-to-

voxel correlations. Language, default mode, dorsal attention, visual, ventral attention, motor and 

fronto-parietal networks were evaluated. Topology found the different analyzed networks were in 

agreement with previously published studies in the neonate. NeoRS is coded in Matlab and allows 

parallel computing to reduce computational times; it is open-source and available on GitHub 

[https://github.com/venguix/NeoRS]. NeoRS allows robust image processing of the neonatal rs-

fMRI data that can be readily customized to different datasets.  

Keywords:  Resting-state, fMRI, neonates, preprocessing, pipeline. 

 

6.2 Introduction 

The analysis of resting-state functional connectivity (RS-FC) constitutes a promising tool as it 

provides complementary information to structural imaging related to brain physiology. Indeed, 

since its discovery in 1995 (Biswal et al., 1995) rs-fMRI studies have provided new insights in the 

understanding of brain architecture and cerebral development (W. Gao et al., 2017; Grayson & 

Fair, 2017; Keunen et al., 2017; Power et al., 2010; Smyser & Neil, 2015; H. Zhang et al., 2019). 

Smyser et. al  demonstrated the feasibility of using rs-fMRI to explore the alterations in resting-

state networks (RSN) associated with preterm birth and white matter injury (Smyser et al., 2013). 

Alterations of the default mode and ventral attention networks at birth, are associated with 

behavioral inhibition at age of two years, (Sylvester et al., 2018) which suggests early alterations 

of the RSN present a correlation with clinical manifestations, and opens the opportunity of early 

diagnostics and treatment. Additionally, neonatal RSN are consistently identifiable and present 
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with high similarities to older populations (Fransson et al., 2009; Fransson et al., 2007; W. Gao et 

al., 2009). RS-FC is based on low frequency regional fluctuations (<0.1 Hz) in the Blood-Oxygen-

Level-Dependent (BOLD) (Ogawa et al., 1990; Ogawa et al., 1993) signal while the participant is 

not performing any task, a useful feature when evaluating neonates (Smyser & Neil, 2015). RSN 

signal is very stable across subjects (Lee et al., 2013), but vulnerable to several artifacts such as  

head-motion (Maknojia et al., 2019), susceptibility distortions and or white matter (WM) and 

cerebrospinal fluid (CSF) signals (Jo et al., 2013; Power et al., 2014). Robust rs-fMRI data 

processing is key to reduce the nuisance effects of the non-neural signals in the data to identify 

reliable resting-state activity (Giove et al., 2009; Lund et al., 2006). Its clinical potential and 

implementation present several methodological challenges that need to be addressed before 

considering its use to develop a new generation of biomarkers. For this reason, straightforward to 

use and open-source tools for the neonatal rs-fMRI data processing need to be readily available. 

Tools for mature brains already exist to process rs-fMRI data, but analyzing the neonatal brain 

presents challenges that need to be addressed with new approaches (Smyser & Neil, 2015). There 

are several straightforward rs-fMRI data processing pipelines developed for adults such as Conn 

toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012),fmriprep (Esteban et al., 2019), the Human 

Connectome Pipeline (HCP) (Glasser et al., 2013), the Resting-state Analysis Toolkit (REST) 

(Rubinov & Sporns, 2010), or the Connectome Computation System (CCS) (Xu, Yang, Jiang, 

Xing, & Zuo, 2015), however, those are not adapted to the newborn brain which presents additional 

challenges, such as different contrast due to myelination (Enguix et al., 2018). T2-weighted images 

are usually needed for tissue segmentation in place of T1-weighted images. Further, varying brain 

sizes between subjects (Smyser & Neil, 2015)  makes adult skull stripping less robust on the 

neonatal brain. Additionally, different age specific atlases and tissue probability maps are required 

for accurate segmentations, common space normalization and seed-based analysis. 

To the best of our knowledge the only existing open-access pipeline to process neonatal rs-fMRI 

data is the one developed by the developing Human Connectome Project (dHCP) (Fitzgibbon et 

al., 2020). While this pipeline has proven to provide excellent results with the dHCP data, its 

implementation on smaller or clinical datasets remains challenging, as it requires large datasets for 

independent component (IC) denoising. Furthermore, the dHCP pipeline can be difficult to set up 

for cohorts acquired at other centers, because the pipeline was developed/optimized from the dHCP 

database specifically. For example, the dHCP denoising step is based on spatial independent 
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component analysis (sICA), which separates independent correlating signals that can be classified 

as neural or non-neural signal. This denoising technique has been shown to provide superior results 

in adults and infants when the dimensionality is accurately set (Alfaro-Almagro et al., 2018; 

Griffanti et al., 2017). However, the identified signals need to be classified as neural signal or 

structured noise, which in most cases is performed manually and a difficult process to automate. 

To overcome this limitation, the dHCP pipeline uses a machine learning approach (ICA-based 

Xnoiseifier) (Salimi-Khorshidi et al., 2014) to classify the independent components as neural 

signals or noise. The machine learning algorithm requires a minimum of 35 manually labelled 

subjects to be trained, which is not always possible in smaller cohorts and requires specialists to 

manually classify the independent components (Fitzgibbon et al., 2020). 

To overcome the aforementioned challenges, we developed NeoRS, with the goal of creating a 

robust open-source pipeline containing the necessary tools to preprocess rs-fMRI data. The main 

advantages of NeoRS are it has been developed specifically for neonates, simple to implement and 

flexible to process different datasets. Additionally, it can process single subject data, utilizes 

parallelizable environment and includes visual quality control checkpoints at each step. 

The data processing steps include T2-weighted image alignment to a common space, slice timing 

correction and segmentation, and rs-fMRI procedures are slice timing, distortion correction using 

reversed phase encoding polarity acquisitions, alignment in a common space, motion correction, 

removal of nuisance confounds and noise compromising functional data interpretation. Further, 

simple resting-state functional connectivity cross-correlations based on seed-to-voxel and seed-to-

seed approaches are incorporated. 

6.3 Materials and Methods 

 Data 

NeoRS has been evaluated on neonates (7+/-1.4 weeks old) from the Baby Connectome Project 

(BCP) (Howell et al., 2019) dataset. For this study only participants scanned at 9 weeks old or less 

and contained T2-weighted images and rs-fMRI were used (N=10). Participants were naturally 

sleeping and were scanned on a 3.0 T MRI Prisma from Siemens using a 32-channel head coil. 

This study included a T2-weighted structural image (TE = 564 ms, TR = 3200 ms, matrix=320x320 

mm, FOV = 256x256 mm, resolution = 0.8 x 0.8 x 0.8 mm, flip angle = variable, in-plane 
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acceleration factor=2, acquisition time = 5 min 57 s), two gradient-echo (GRE)  echo-planar 

imaging (EPI) blip-up/blip-down (TE =37 ms, TR=800 ms, matrix=104x91 mm, FOV = 208x182 

mm, resolution = 2x2x2 mm, flip angle = 52°, multi-band acceleration factor=8, acquisition time 

= 5 min 47 s, 420 volumes), and two spin-echo (SE) EPI blip-up/blip-down for distortion correction 

purpose (TE =66 ms, TR=8000 ms, matrix=104x91 mm, FOV = 208x182 mm, resolution = 2x2x2 

mm, flip angle = 52°, multi-band acceleration factor=1, acquisition time = 33 s, 3 volumes).  

 Data structure 

To facilitate collaborations, NeoRS uses the Brain Imaging Data Structure (BIDS) format as 

described in https://bids.neuroimaging.io/. See (Figure 6.1) for an example of data naming and 

organization for NeoRS. 

 

 

Figure 6.1. Example of data naming and organization for NeoRS. 

 

 Pipeline overview 

NeoRS is a neonatal rs-fMRI data processing pipeline developed on Matlab and calls for commands 

developed on well-known open-source neuroimaging tools, such as FSL 6.0.3.1 (Jenkinson et al., 

2012; Smith et al., 2004; Woolrich et al., 2009), AFNI 20.2.10 (Cox, 1996) and SPM 12 

(https://www.fil.ion.ucl.ac.uk/spm/). It runs on both MacOS and Linux operating systems. NeoRS 
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has been tested on a MacBook pro 2015 with operating system High Sierra and on a Linux 

computer using Ubuntu 18.04.5 by running the pipeline from the beginning to end on different 

subjects on both computers. NeoRS is built to accommodate MRI data acquired with different 

manufacturers. The pipeline was tested using the aforementioned BCP data, as well as the not 

publicly available data from CHU Sainte-Justine acquired on a GE 3T MR750, but this manuscript 

focuses only on BCP results. Furthermore, the pipeline has single subject capabilities.  NeoRS has 

been developed to accommodate a parallelizable environment, allowing several subjects to be 

simultaneously processed depending on the number of selected cores. To investigate, two subjects 

were processed on an early 2015 MacBook pro with 2.7 GHz Intel Core i5 processor and 8 GB 

1867 MHz DDR3 memory by using a single core vs 2 parallel cores and found a reduction of 

computing time of 1.8 times when using the 2 parallel cores. This function is optional and requires 

the Matlab parallel toolbox. 

 

See NeoRS workflow in (Figure 6.2). 

 

Figure 6.2. NeoRS workflow for neonatal resting-state functional connectivity processing and 

denoising. 
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To ensure images align to the orientation of the standard template a reorientation to standard is 

performed in both structural and functional data prior to other data processing procedures by 

employing fslreorient2std from FSL. Furthermore, to guarantee the accurate performance of 

NeoRS, output files for each processing step are saved in a folder called Output_files. Processing 

steps are dependent from previous outputs and should be inspected carefully. In case of fail, the 

user can parameterize the specific function, as specified later on. Various operations are not 

mandatory, such as slice-timing correction or distortion correction, and can be manually turned-off 

by setting the function parameter to 0 in the main file. See (Figure 6.3) for an example of inputs 

configuration. 

 

Figure 6.3. Example of NeoRS input parameters. 

 

6.4 Data Processing 

 Structural 

6.4.1.1 T2-weighted Image Registration  

NeoRS uses the term age stereotaxic space (Smyser et al., 2010) from Washington University – 

School of Medicine. The template is available in Talairach space (Talairach, 1988) 1mm and 3mm 

isotropic resolutions. Image registration in NeoRS is performed using FSL flirt and is implemented 

in a single step with 12 degrees of freedom and not applying the resampling blur when down 
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sampling. These parameters can be modified by the user in the function anat2std.m. High resolution 

T2-weighted images are registered to a 1mm and 3 mm isotropic template. 

6.4.1.2 Skull Stripping 

Skull stripping plays an important role in image processing, as it is mandatory for different 

processing functionalities, such as tissue segmentation, and requires special attention to avoid 

further complications in the process. NeoRS skull stripping step utilizes the FSL (Jenkinson et al., 

2012) function bet2 and has been optimized for term neonatal brains.  Skull stripping is performed 

after image registration to obtain consistent results independent of brain size. Furthermore, visual 

quality control is available in a file containing the brain with the skull and the overlay of the contour 

of the intracranial cavity. If the user is not satisfied with the results, modify the fractional intensity 

threshold, “-f”, and vertical gradient in fractional intensity threshold, “-g”, to properly adjust skull 

stripping in the Matlab function skull_stripping.m. 

6.4.1.3 Segmentation 

Extracted T2-weighted intracranial content is then segmented to create different tissue probability 

maps corresponding to each brain structure. Tissue segmentation is crucial in image processing as 

the outputs will be used for regression of confounds. For brain segmentation NeoRS applies 

Morphologically Adaptive Neonatal Tissue Segmentation: Mantis (Beare et al., 2016). Mantis is 

an SPM based toolbox and allows T2-weighted image segmentation based on template adaptation 

via topological filters and morphological segmentation tools, resulting in eight different tissue 

probability maps. The segmentation process is fully integrated in the NeoRS pipeline and has been 

tested on three different datasets (BCP, and CHU Sainte-Justine). After segmentation, the eight 

tissue probability maps are automatically combined, thresholded and binarized to create three 

different binary masks needed to run downstream processing. The masks correspond to white 

matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). The masks are resampled to 3-mm 

isotropic to match functional image space resolution.  
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 Functional 

6.4.2.1 Slice Timing Correction 

A common acquisition technique for rs-fMRI is the single-shot Gradient-Echo (GRE) Echo-Planar 

Imaging (EPI). In this acquisition sequence, slices are acquired at varying intervals, which need to 

be addressed. The NeoRS function for slice timing correction is FSL slicetimer and can 

automatically read the slice order from the .json file, if available. If the .json file is not available, 

the user can manually define the slice order or use one of the predefined options from fsl (i.e: 

interleaved ascending) in the configuration file. 

6.4.2.2 Functional Cross Realignment 

To correct for head movement, it is necessary to obtain a motion estimation based on 6 movement 

parameters (three rotation and 3 translation parameters). This is done by rigid-body registration (6 

degrees of freedom) between the different volumes with respect to a reference, in NeoRS, the 

reference is the first volume from the rs-fMRI, but can be easily altered by the user if desired. This 

NeoRS function is performed using FSL mcflirt (Jenkinson, Bannister, Brady, & Smith, 2002) and 

works the same as for adults, however we set the smoothness level to 0, as smoothing occurs later 

in the pipeline, and used sinc interpolation. Parameters for cross realignment can be customized in 

the Matlab function cross_realign2.m. For quality control purposes, NeoRS creates a .png file 

where the total rotations, translations and framewise displacement (FD) for each volume can be 

evaluated. Framewise displacement is calculated as previously described  by Power et al.(Power et 

al., 2012). To take into account head size differences, the calculations were done using a 35 mm 

radius sphere instead of 50 mm which approximately corresponds to the mean distance from the 

cerebral cortex to the center of the head in neonates. After motion correction, the motion parameters 

are saved in a text file that will be further used for denoising purposes. 

6.4.2.3 Functional Best Resting-state Section Selection 

NeoRS incorporates the possibility to analyze sub sections of long time series (i.e 20 minutes). 

This tool is deactivated by default but can be activated by setting options.best_volumes = 1 in the 

configuration file. The sectional analysis tool automatically identifies a section of the time-series 

(i.e 5 minutes) with the lowest average FD, which is recommended to use on very long acquisitions 
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that present a higher average FD than the threshold. The length of the section can be modified by 

the user, but it is recommended the duration remain above five minutes (Sylvester et al., 2018). To 

note, the average FD threshold has a default of 0.25mm, but can also be tailored as needed by 

altering options.FDaverage in the configuration file. NeoRS chooses only the best sections of the 

time-series, which reduces computational times drastically. 

6.4.2.4 Functional Distortion Correction 

The EPI sequence is considerably sensitive to off-resonance fields due to susceptibility variations 

of participants. To address these distortions a typical approach is to use two SE-EPI reversed 

polarity acquisitions (reversed phase encoding direction) to estimate the distortion field. This field 

is implemented to correct for distortions in the original GRE EPI images. Directly using two 

reversed polarity GRE EPI to estimate the distortion field instead of two reversed polarity SE EPI 

is possible, but not recommended because GRE-EPI sequences are hampered by signal dropouts 

caused by intravoxel dephasing. Providing reversed phase encoding polarity SE EPI images and 

activating the distortion correction option (options.fmap=1) in NeoRS, allows users to estimate 

these distortions utilizing FSL topup (J. L. Andersson, Skare, & Ashburner, 2003; Graham, 

Drobnjak, Jenkinson, & Zhang, 2017; Smith et al., 2004). Such as specified in the topup 

documentation, a text file containing the encoding directions and total readout time needs to be 

included in the fmap folder to perform distortion corrections. If the .json file is found in the fmap 

folder, the text file will be automatically created by NeoRS. Distortion estimates are rectified with 

FSL applytopup for each EPI volume by applying the output from topup. 

6.4.2.5 Functional Image Registration 

Functional images are registered to the same stereotaxic space template from the Washington 

University – School of Medicine as the T2-weighted image registration procedure. Initially, a two-

step registration was performed. First, a rigid body registration between the mean rs-fMRI volume 

and T2-weighted images was calculated, followed by affine transformation between T2-weighted 

and the template. Finally, the output affine transformation matrices from each process were applied 

to the rs-fMRI images to align to the 3 mm isotropic template. Additionally, a single step 

registration approach was investigated, where the rs-fMRI images were aligned directly to the 3 

mm isotropic template using 12 degrees of freedom. This registration approach was comparable to 

the 2-step registration process and was chosen as it was accurate and faster. Down-sampling blur, 



82 

 

by default is set to off in NeoRS, however, if needed, the parameters can be customized in the 

Matlab function epi2std2.m. 

 Denoising 

6.4.3.1 Motion Censoring  

Before the regression of the confounding signals, volumes with excessive motion are removed 

based on the framewise displacement metric described by Power et al (Power et al., 2012). NeoRS 

performs linear detrending and computes framewise displacement after functional cross 

realignment based on 6 motion parameters in radians (3 rotation parameters + 3 translation 

parameters). This step also automatically removes the first five volumes.   

FD = |rot_x| + |rot_y| + |rot_z| + |trans_x| + |trans_y| + |trans_z| 

Where rot_x/rot_y/rot_z are rotations converted from radians to mm and trans_x/trans_y/trans_z 

are translations in mm. Once the FD is computed, a text file containing the information of volumes 

exceeding the FD threshold plus the first 5 frames, is created and head motion plots are saved and 

can be reviewed. The FD threshold is automatically set to FD < 0.25 mm (Smyser et al., 2016), so 

volumes with FD higher than or equal to 0.25 mm are excluded. Excluded volumes are set to zero 

value and no interpolation is applied to avoid artificial correlations. 

6.4.3.2 High Motion Subjects 

High motion acquisitions are source of artifacts and may confound neural correlations with non-

neural signals. Apart from single frame motion censoring based on FD NeoRS evaluates the 

average FD for every BOLD run. By default, NeoRS was set to discard acquisitions with an average 

FD higher than 0.25 mm.  The average FD threshold can be altered in the configuration file by 

defining options.FDaverage. 

6.4.3.3 Regression of Confounds 

Variables identified as potential confounders of the estimated BOLD signal are merged in a single 

file. To avoid frequency mismatch in the regression process, the file is used to compute linear 

regression in a single step with frequency filtering. This process is performed utilizing AFNI 

3dTproject. 
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6.4.3.4 Motion Parameters 

Head motion is considered as a rigid body moving in a 3D space with 6 degrees of freedom. In 

cartesian coordinates we can describe it with 3 translations x- (left/right), y- (anterior/posterior), 

and z-axes (inferior/superior), and 3 rotations around the x-axis (pitch), y-axis (yaw), and z-axis 

(roll). To address the residual motion related signal variance after a suboptimal rigid body 

registration, NeoRS uses a linear regression strategy based on the 6 aforementioned estimated 

motion parameters. Those parameters are considered as nuisance effects of the signal and are then 

removed. NeoRS allows various options including: 6 motion parameters, 12 (including temporal 

derivatives)(Power et al., 2012) or 24 (including temporal derivatives and their squares) (Friston et 

al., 1996) which can be defined in the configuration file parameter options.motion. 

6.4.3.5 White Matter, Cerebrospinal Fluid and Global Signals 

White matter and cerebrospinal fluid signals are highly confounding and need to be removed from 

the rs-fMRI (Smyser et al., 2016). Signals for regression of confounds are extracted from the WM 

and CSF masks generated previously in the pipeline from the segmentation. Masks are created in 

a conservative way by selecting voxels from the tissue probability masks with higher probability 

than 0.5. The voxels of the white matter are eroded by one voxel to ensure the mask doesn’t include 

any gray matter. Two files containing the average signal of the WM and CSF masks are created. 

Finally, global signal is approximated by averaging the signal in a gray matter mask (Vos de Wael, 

Hyder, & Thompson, 2017) and used by default in NeoRS, as it improves data quality by reducing 

motion artifacts (cardiac, respiration, head motion) (Smyser et al., 2016).  

6.4.3.6 Frequency Filter 

Temporal frequencies outside the frequency range of [0.01 - 0.1] Hz are removed from the BOLD 

signal to correct for slow frequency drifts, reduce motion artifacts and other physiological noises 

while preserving the frequencies of resting-state networks (Power et al., 2014). The use of a low-

pass filter could drastically reduce the degrees of freedom of the time series in acquisitions with 

very short TR. For those cases, it is recommend to set the value of options.BPF=[HPH, LPF], to 

[0.01, 999] in the configuration file. 
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 Smoothing 

6.4.4.1 Functional Smoothing 

Functional smoothing is the last processing procedure. After denoising the rs-fMRI signal is 

convolved with a gaussian kernel. This reduces the effect of misregistration between functional 

regions and slightly increases the signal to noise ratio. Gaussian smoothing is performed 

implementing fslmaths from FSL. The size of the gaussian kernel is customizable in the NeoRS 

pipeline by modifying options.fwhm in the configuration file, which is 6 mm by default. 

6.5 Data Analysis - Functional Connectivity 

Prior to further data analysis, like ROI to ROI (region of interest) correlations, all the processed 

BOLD runs are merged together into a single 4D-file. NeoRS offers basic single subject data 

analysis, including seed based and seed to seed correlations, so the user can further assess data has 

been correctly processed.  

 Seed-Based Correlations (SBC) 

Seed-based functional connectivity identifies correlation between a defined ROI, also called a seed, 

and the rest of the brain. This metric facilitates the observation of simultaneously activated regions 

with the pre-defined ROI. The NeoRS pipeline provides 31 template seeds representing some of 

the most common resting-state networks including: language, default mode, dorsal attention, 

visual, ventral attention, motor and fronto-parietal networks. An excel file 

(Perceptron_ROI_list.xlsx) can be found in the documentation with all the information related to 

seed positioning (Smyser et al., 2016). 

6.5.1.1 Seed-to-seed measurements 

Seed-to-seed data analysis provides measurements of functional connectivity between all the 

different pairs of seeds demonstrating a more global perspective about networks compared to seed-

based functional connectivity. NeoRS performs Pearson correlation between the different ROIs to 

create a correlation matrix. 
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6.6 Results 

 Image Registration  

Image registration results of the T2-weighted and BOLD images to the template for a representative 

subject are demonstrated in Figure 6.4, an example of a user checkpoint. Yellow lines represent 

the segmented cerebrospinal fluid and is added as an overlay to the T2-weighted images, BOLD 

and template. After visual inspection, a correct alignment within the template for both registrations 

were observed for each test participant. 

 

 

Figure 6.4. T2-weighted and BOLD image registration to stereotaxic space.  

 

When comparing single step registration versus a 2-step registration approach for rs-fMRI there 

were no discernible differences between both registrations and final functional connectivity results 

presented the same correlation strengths and topology. The main difference between the two 

approaches was computational times, which were higher for the 2-step registration method. 
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 Skull stripping 

Figure 6.5 illustrates the default skull stripping segmentations versus NeoRS adapted parameters 

for neonates. With the default settings we observed skull stripping was failing for some of the 

subjects with different brain sizes, in contrast, when using NeoRS parameters, skull stripping 

remained robust for all the processed subjects. 

 

 

Figure 6.5. Skull stripping parameters comparing default bet2 settings in neonates and NeoRS 

settings optimized for neonates. 

 

 Segmentation and Mask Creation 

Figure 6.6 displays the 1 mm isotropic binary masks created by NeoRS from Mantis tissue 

probability maps. The output contains three different binary files corresponding to white matter, 
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cerebrospinal fluid and gray matter. Figure 6.7 demonstrates the 3 mm isotropic masks for the 

regression of confounds process. 

 

 

Figure 6.6. One millimeter isotropic masks created from the tissue probability maps obtained 

with Mantis. White matter (red), CSF (yellow), gray matter (blue). 

 

 

Figure 6.7. White matter, cerebrospinal fluid, and gray matter masks for regression of confounds. 
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 Functional Distortion Correction 

Functional susceptibility-induced magnetic field inhomogeneity correction for a representative 

subject is shown in Figure 6.8. GRE EPI images, independent of brain size are distorted in the 

phase encoding direction whether they are acquired AP or PA but present those distortions in both 

areas of the brain. After susceptibility-induced magnetic field inhomogeneity distortion correction, 

the two acquisitions (AP and PA) present a similar morphology and a more accurate brain shape 

with respect to the undistorted T2-weighted image.  

 

 

Figure 6.8. Susceptibility-induced magnetic field inhomogeneity causing geometric distortions 

along the phase encoding direction.  

 (A) Original T2-weighted image without distortion, shown as reference; (B) original GRE-EPI 

acquired in anterior-posterior phase encoding direction (AP); (C) original GRE-EPI acquired in 
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posterior-anterior phase encoding direction (PA); (D) corrected GRE-EPI AP; (E) corrected GRE 

EPI PA. 

 

 Head Motion 

After functional cross-realignment, an output graph is provided by NeoRS containing information 

concerning rotations and translations applied to cross-realign for each volume of the rs-fMRI, as 

well as the computed framewise displacement (Figure 6.9). 

 

 

Figure 6.9. Example of head motion plots from a single subject. Plots are generated for each bold 

run and contain three different graphs per run. 

 

Figure 6.10 is an example of a single subject with 2 different rs-fMRI acquisitions with different 

amounts of motion. In the seed-based functional connectivity results of the motor network, the 

correlation differences between an acquisition with an average framewise displacement higher than 

0.25 mm (run 1) and an acquisition with an average framewise displacement lower than 0.25 mm 
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(run 2). High motion acquisition presented increased amounts of noise and the network topology 

was difficult to identify. 

 

 

Figure 6.10. Two acquisitions of a high motion subject, run 1 excluded for having an average FD 

  0.25 mm, run 2 kept with an average FD < 0.25 mm. 
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 Resting-state Networks - Seed-Based Correlations 

Figure 6.11 illustrates, seven of the most common resting-state networks after NeoRS processing 

employing a seed-based correlation approach.  

 

 

Figure 6.11. Example resting-state networks obtained by seed-based functional connectivity after 

image processing with NeoRS. 
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Figure 6.12 is a single subject example of the 31 seeds included in NeoRS. 

 

Figure 6.12. Representative subject resting-state network example seed-to-seed functional 

connectivity correlations. 

 

6.7 Discussion 

NeoRS is an open-source image processing pipeline dedicated to neonatal rs-fMRI. It includes 

seed-based and seed-to-seed 1st level analysis. NeoRS has neonatal brain templates for term in 

1mm and 3mm Talairach space, as well as a set of 31 seed regions defining seven common resting-

state networks. NeoRS relies on the open-source neuroimaging pipelines: SPM, FSL and AFNI 

and encompasses robust methods to segment, register and denoise neonatal rs-fMRI data. Each of 

the various processing steps were evaluated separately. Output was carefully inspected to ensure 

the best quality products, by optimizing skull stripping, image registration, head motion and 

denoising related results. Additionally, functional connectivity of the motor, visual, default mode, 

language, dorsal attention, ventral attention and fronto-parietal networks using seed-based 

functional connectivity analysis were demonstrated.  
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Image registration to the atlas was meticulously inspected for every subject and no significant 

misalignments were observed for T2-weighted or rs-fMRI images for affine registration. We 

compared single step to two-step registration for accuracy and computational times. The single step 

registration was chosen, as this process required less computational time and demonstrated no 

substantial variation when compared to the two-step counterpart.  

In contrast with some of the most common adult pipelines, image registration is implemented prior 

to skull stripping, as alignment quality results were identical. Further, performing image 

registration preceding skull stripping produced vastly robust skull stripping results across varying 

brain sizes. This was not the case employing traditional skull stripping before image registration. 

Skull stripping of the T2-weighted images was found to be a crucial step when working with 

neonates because poor stripping lead to misclassification of segmented data and ultimately 

unreliable representation of RSN because of misregistrations.  Additionally, image registration 

prior to skull stripping facilitated brain extraction without any user intervention. Furthermore, if 

the brain was previously aligned to an atlas, bet2 was implemented on the subject specific atlas 

aligned data instead of applying an atlas brain mask to avoid subtle geometric inaccuracies. This 

procedure is critical and needs to be properly assessed. For this reason, an output for the skull 

stripping is provided which contains the image of the non-skull stripped mask with an overlay of 

the contour of the skull stripped brain.  

After skull stripping, tissue segmentation is performed using Mantis, without the need of any 

further intervention. Mantis is integrated into the NeoRS pipeline as it provided robust results for 

disparate brain sizes using only T2-weighted images. Contrary to the adult brain that uses T1-

weighted images for brain segmentation, it is fundamental in neonates to provide the pipeline with 

T2-weighted images as the water/cholesterol ratio is reversed with respect to adults due to lack of 

myelination. Neonatal T2-weighted images present a better contrast between brain structures 

(McArdle et al., 1987). While Mantis needs to be installed to use the NeoRS pipeline, no additional 

setup steps are required as it is fully assimilated in NeoRS. The results showed the binary masks 

created from Mantis tissue probability maps are perfectly aligned with their corresponding 

structures for various subjects without any manual intervention.  

It is well known the GRE-EPI sequence for rs-fMRI is prone to susceptibility-induced magnetic 

field inhomogeneity (Czervionke et al., 1988). The artifact primarily appears close to the extrema 
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portions of the brain in the phase encoding direction (J. L. R. Andersson, Graham, Drobnjak, 

Zhang, & Campbell, 2018) and needs to be properly corrected. While several methods have been 

successfully used in these settings (Cusack, Brett, & Osswald, 2003; Jezzard & Balaban, 1995), 

NeoRS operates the standard topup/applytopup method.  Two reversed phase encoding direction 

images are involved to correct for the deformations. (Holland, Kuperman, & Dale, 2010) The 

method is simple to implement in the acquisition protocol, provides high quality results and 

acquisition sequences require very short duration times.  

Slice timing correction remains a controversial step when a very short repetition time (TR) is 

deployed (Parker & Razlighi, 2019). However, as it has been shown it can significantly improve 

z-scores  (Parker & Razlighi, 2019) and as the aim was to make NeoRS work with the maximum 

number of datasets, it is included as an option. Slice timing correction can be deactivated for multi-

band sequences with very low TR, as in this kind of low TR sequence, all slices in each volume 

are acquired very closer together (Glasser et al., 2013).  

After data preprocessing, confounding signals and motion effects are removed. First, the framewise 

displacement threshold is defined as 0.25 mm, as performed by Smyser et al. on their neonatal 

study and shown to provide accurate results (Sylvester et al., 2018). Volumes with FD higher than 

0.25 mm were  removed from the time-series as described per Power et al.(Power et al., 2012). 

Motion censoring was performed prior to filtering to prevent spikes from passing through band-

pass filtering, as this could introduce artifacts such as Gibb’s ringing and or skew correlation 

coefficients. Furthermore, extremely high motion acquisitions shouldn’t be taken into account as 

they can lead to inflated results. To do so, different metrics can be adopted, such as maximum 

framewise displacement, minimum number of low motion volumes or average framewise 

displacement. In NeoRS, acquisitions with average FD higher than 0.25 mm were introducing 

augmented correlations related to motion and improper denoising. Those acquisitions were 

completely removed. Therefore, the average framewise displacement was employed as the metric 

for exclusion.  

To correct for nuisance variables NeoRS implements a traditional denoising strategy that performs 

global signal, white matter and cerebrospinal fluid signal regression, motion parameter regression 

and a band-pass filter. This simple approach provides robust results (Smyser et al., 2016), and 

doesn’t require manual intervention or large datasets for denoising purposes. In contrast to the 
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aforementioned independent components denoising techniques, (Alfaro-Almagro et al., 2018; 

Griffanti et al., 2017) such as the one employed in the dHCP pipeline.  

Finally, NeoRS incorporates seed-based functional connectivity analysis tools to assist the user in 

assessing initial results. Seed-based results across subjects showed patterns very similar to those 

observed in the literature for all the analyzed resting-state networks (Damaraju et al., 2010; 

Fransson et al., 2009) (Figure 6.11). Further data analysis can be carried out on the fully processed 

data, final_BOLD.nii, if desired.  

 Limitations and Future Directions 

NeoRS was fully vetted on the BCP, and CHU (results not shown) cohorts for neonates less than 9 

weeks old. Expanding NeoRS to a larger cohort in both size and neonatal age variation, i.e. preterm, 

would only further demonstrate its novelty and application, but the current number of subjects is a 

limitation. Obviously, this expansion would also necessitate additional age specific atlases. 

Additionally, the pipeline requires a usable T2-weighted structural image and would benefit from 

the adaptability of the option of using a T1-weighted image, especially for younger neonates older 

than 9 weeks where tissue boundaries may begin to vary. NeoRS has been developed based on a 

traditional denoising strategy which includes band-pass filtering. This is a limitation on data 

acquired with very low TR, such as the dHCP data, as the degrees of freedom might be highly 

reduced. In the Fourier domain, the maximum sample rate corresponds to the frequency of Nyquist, 

fmax = 1/ 2TR, and the frequency spacing Δf=1/tmax, where tmax is the total scan duration. If there are 

two data sets with the same total acquisition time, but different TR, the one with the lower TR will 

lose more degrees of freedom when filtering (Bright, Tench, & Murphy, 2017).  Another limitation 

of the pipeline is brains with significant malformations or injury. While a high range of brain sizes 

is accepted in the pipeline, anomalies such as neonatal hydrocephalus may require special attention, 

as part of the automated process could fail, such as cortical extraction. To overcome this limitation 

the user should perform rigorous individual image quality control of those brains and may adjust 

parameters, such as the head radius. Furthermore, it is known that a fundamental factor for 

measuring interindividual differences is reliability (Zuo et al., 2014) which is highly related to 

reproducibility. For this reason, performing a test-retest reliability approach should have been 

considered (Noble, Scheinost, & Constable, 2019). However, measuring the test-retest reliability 

is a challenge in this population. As mentioned by Xi-Nian Zuo et al. 2019 (Zuo, Xu, & Milham, 
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2019),  at least 20-30 min of data are needed to perform functional connectivity reliability 

measurements which can be challenging. Moreover, performing multiple sessions is also a 

challenge because of the fast brain development. Additionally, neonates also present higher levels 

of motion, which compromises reliability (Zuo & Xing, 2014). To overcome this issue, we think 

that we should focus on acquiring high quality data by using real-time head motion monitoring 

tools such as FIRMM (Dosenbach et al., 2017). Finally, we are currently working on the inclusion 

of second-level analysis to allow the users to make group-level inference about networks. The 

possibility to perform Independent Component Analysis will also be available in the next release. 

Further functionalities such as the characterization of the networks and lifespan developmental 

trajectories of cortical thickness and surface area, as described by Xu Ting et al. 2015 (Xu et al., 

2015) might be of particular interest as it would allow the study of the maturation process of the 

neonatal brain and the resting-state networks. The characterization of the resting-state networks 

over time is especially important on newborns as a deeper knowledge on networks development 

might help detecting possible outliers in a given population, bringing neonatal rs-fMRI one step 

closer of being a brain integrity biomarker.  

6.8 Conclusion 

NeoRS [https://github.com/venguix/NeoRS] is an open-source, straightforward to use rs-fMRI data 

processing pipeline for the neonatal brain which relies on the open-source neuroimaging pipelines 

FSL, AFNI and SPM. NeoRS works with neuroimaging nifti format, BIDS folder structures and has 

been developed to work with different MRI vendors and diverse acquisition parameters with 

minimal user implication. After image processing with NeoRS, we observed resting-state networks 

were in agreement with previously published studies at term age. Each processing step is easy to 

inspect to ensure consistent results through quality control checkpoint figures.  

An open-source, rudimentary to use pipeline for neonatal resting-state image processing will allow 

the community to process their data immediately after scanning sessions implementing a simple 

computational infrastructure. The democratization of rs-fMRI processing will allow a higher 

number of centers to collaborate and process their datasets and optimistically bring the clinical 

biomarker application one step closer. 
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 GENERAL DISCUSSION 

 

This project aimed to provide the tools to acquire and preprocess neonatal resting-state fMRI data. 

The first goal of this project was to set up an acquisition and head motion quality control protocol 

for the 3T clinical MRI of the CHU Sainte-Justine. This project describes all the details about the 

acquisition and quality control protocols and offers improvements for future works. The second 

goal was to provide the tools to preprocess neonatal resting-state fMRI data as it presents 

substantial differences from adults. NeoRS, a neonatal rs-fMRI data preprocessing pipeline, was 

developed and made open-source. In this chapter, the main results are summarized and discussed 

with a particular emphasis on the challenges and future directions of the research. 

 

7.1 Resting-state fMRI in young adults born with congenital heart disease 

This study was carried out at the beginning of my thesis to master state-of-the-art methods, tools, 

and challenges in preprocessing adult rs-fMRI data. Furthermore, while it is well known that youth 

operated from congenital heart disease at birth present altered executive function compared to a 

control group (Fontes et al., 2019), there was little information about the long-term effects on 

functional connectivity. Therefore, this study offered the first evidence supporting that this 

population present disrupted functional connectivity. We found abnormal connectivity in the 

amygdala, fronto-orbital cortex, dorsal attention, fronto-parietal, and default-mode networks. We 

proved that functional connectivity alterations persisted over the past years, and that can be 

observed using rs-fMRI. This suggests that characterization of the resting-state networks over time 

could provide information about functional connectivity alterations and future neurocognitive 

disorders. Nevertheless, much work still needs to be done to characterize single-subject resting-

state networks, bringing neonatal rs-fMRI one step closer to being a biomarker. 

7.2 Neonatal resting-state fMRI acquisition 

In Chapter 5 of this thesis, I described the acquisition protocol that was set up for the 3T clinical 

MRI from the CHU Sainte-Justine (GE Discovery MR750). The protocol contains the necessary 
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information to successfully perform neonatal rs-fMRI in the aforementioned scanner and includes 

structural, functional, and distortion correction purpose sequences. We built a protocol that 

provides high-resolution T2-weighted images while keeping a low SAR, allowing distortion 

corrections in further image preprocessing steps. The rs-fMRI acquisition parameters are similar 

to De Asis-Cruz (De Asis-Cruz et al., 2015). However, they employed a relatively lower TR 

(TR=2000 ms) compared to ours (TR=3000 ms), allowing the whole baby brain acquisition while 

having a better temporal resolution. We decided to provisionally keep the TR=3000 ms as the first 

acquisitions of some of the ongoing projects were acquired this way, and results won’t be 

comparable if changed. One of the biggest limitations we found when setting up the acquisition 

protocol was that the MRI software and hardware didn’t allow us to perform multi-band 

acquisitions. This provides significant advantages with few drawbacks, as explained in Chapter 4. 

As previously shown in the literature of Smyser et al., head motion plays an important role when 

acquiring neonatal resting-state fMRI data. We observed that about half of the scanned newborns 

couldn’t be analyzed due to excessive levels of head motion. This was consistently observed after 

the scanning session, making a re-scan impossible. For this reason, real-time head motion quality 

controls seem a promising approach to ensure low levels of motion. Therefore, we used the average 

framewise displacement to evaluate two different datasets to set up a real-time quality control 

protocol in the CHU Sainte-Justine that could potentially be employed in other institutions. 

Moreover, after discussions with the Washington University School of Medicine in Saint Louis, 

they recently published an article using average framewise displacement to evaluate real-time head 

motion in infants (Badke D'Andrea et al., 2022). This may confirm its use as a valid metric for 

assessing head motion when combined with other metrics, such as the total number of good frames, 

as we did in our study. 

We observed that when the average framewise displacement was inferior to 0.25 mm for both 

datasets, we could observe resting-state networks in agreement with the literature when the 

scanning time was sufficiently long (B. Chen et al., 2021; Fransson et al., 2007). 

Furthermore, we observed that at least 5 minutes of data were required when TR was lower than 1 

second and that in most cases when TR was 3 seconds, slightly more than 5 minutes of acquisition 

were required, probably due to the lower number of time points. For subjects presenting average 

framewise displacement lower than 0.25mm, the required scan duration was in agreement with the 
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literature, where around 6 minutes of acquisition were needed to evaluate functional connectivity 

(Van Dijk et al., 2010). Moreover, Birn et al. showed that between-sessions and test-retest 

reliability could be improved by increasing the acquisition time to 9-13 minutes or longer (Birn et 

al., 2013). Real-time head motion monitoring allows immediate re-scan of the baby while still in 

the MRI room; however, a big limitation of this approach is that once the baby is fully awake, it 

becomes impossible to continue with the acquisition. Thereby, as resting-state fMRI is very 

susceptible to head motion, the first easy solution would be to perform the rs-fMRI acquisition at 

the beginning of the acquisition protocol when the baby is completely sleeping. Finally, more 

advanced acquisition and denoising strategies, such as multi-echo acquisition, should be considered 

in future projects to reduce motion signals (Power et al., 2018). 

7.3 NeoRS – resting-state fMRI image preprocessing pipeline 

Until now, no open-source pipelines were available to preprocess neonatal resting-state fMRI data, 

and researchers had to develop their in-house codes or adapt adult pipelines, requiring specific 

atlases, time, and knowledge. NeoRS aims to provide the community with a pipeline that addresses 

the specificity of neonatal brain imaging and is easy to use and customize. The pipeline 

preprocessing steps include image registration to an atlas, skull stripping, tissue segmentation, slice 

timing, head motion and distortion corrections, spatial smoothing, and confounds regression. It also 

provides an atlas and a set of seed regions for neonates. NeoRS also allows basic seed-based 

correlation analysis, and we are currently working on implementing independent component 

analysis for the next release. It includes quality control using visual assessment checkpoints. 

Furthermore, it has unique functionalities, such as the possibility of automatically discarding data 

with a high global head motion. This functionality was implemented based on the previously 

mentioned study about average framewise displacement. Also, it includes the capability to analyze 

short time segments in a long time series. For example, it can automatically detect from a whole 

acquisition (i.e., 10 min) the 3 min segment with the lowest average framewise displacement. It 

also includes robust skull-stripping for infants from 27 to 44 weeks postmenstrual age. This is 

achieved by previously aligning data through an atlas. Data is aligned by affine registration, so a 

simple binary mask couldn’t be applied to simplify the skull stripping process. A non-rigid 

registration would be needed in this case. However, non-linear registration tools are not robust 
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enough to be implemented in automatized pipelines. This was also observed by the developers of 

dHCP (Fitzgibbon et al., 2020). 

Nevertheless, despite the advantages and simplicity of NeoRS, some limitations need to be 

addressed. One of the biggest limitations of NeoRS is that it uses traditional denoising strategies, 

including band-pass filtering, which may notoriously reduce the degrees of freedom on data with 

very low TR, as specified in the NeoRS article. Independent components denoising strategies could 

be employed for denoising purposes; however, it would require manual separation of neural and 

non-neural components. A machine learning approach could also be used, as done by the 

Developing Human Connectome Project, to differentiate between noise and neural signals with an 

adequate sample size (Fitzgibbon et al., 2020). To improve NeoRS, more sophisticated data 

analysis tools could be added, such as independent component analysis or graph theory. 

NeoRS was developed for resting-state fMRI applications. However, I’ve found out that structural 

preprocessing could be very useful in other applications. For example, some machine-learning 

algorithms require skull-stripping, segmentation, or template alignment before training. So, I 

decided to build a separate module that includes reorientation, registration, skull stripping and 

segmentation. Finally, I think NeoRS is having a big impact on the community. Since its 

publication in July 2022, the article already has 2074 views, and I’ve already been able to assist 

SickKids hospital in implementing it. Hopefully, this will encourage other institutions to perform 

neonatal rs-fMRI studies. An area that I look forward to see expand in the future are new metrics 

to evaluate resting-state networks, especially at the single subject level. Moreover, rs-fMRI studies 

with straightforward statistical analysis studying the potential to predict motor, cognition and 

behavior outcomes still need to be performed on large cohorts. Ultimately, this knowledge will be 

used for individual level evaluations and rs-fMRI could be used as a predictive biomarker. 
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 CONCLUSION 

 

Resting-state networks are a powerful tool for understanding neonatal brain injury in premature 

babies with a high risk of brain damage. The evaluation of brain functional connectivity provides 

meaningful information about brain physiology that can’t be observed using standard 

neuroanatomical techniques. Clinically, the impact of brain injury on the different resting-state 

networks offers advances in terms of prognosis since prematurity-related impairments, although 

present at birth, are generally expressed at school age. However, its application poses several 

methodological challenges. For instance, the head motion alters data quality leading to unusable 

data. Moreover, neonatal resting-state data preprocessing is very complex and presents substantial 

differences from adults. Hence, the two main goals of this project were to set up an acquisition 

protocol and head motion quality control to scan neonatal rs-fMRI data successfully and to provide 

an open-source pipeline to preprocess neonatal rs-fMRI data.  

During the first part of this project, the focus was on learning the state-of-the-art methods to 

preprocess and analyze resting-state fMRI data. This helped me to get a further understanding of 

the existing tools. To do so, we preprocessed and analyzed rs-fMRI data of young adults born with 

congenital heart disease. This study also provided insights into the potential long-term effects of 

congenital heart disease on resting-state networks. 

The second part of this project was focused on neonatal rs-fMRI acquisition. A scanning protocol 

was implemented for the clinical 3T MRI of the CHU Sainte-Justine, and possible improvements 

were also discussed. We showed that the average framewise displacement could be used as a 

quality control metric for head motion and provided a real-time head motion assessment strategy.  

After establishing the acquisition protocol, a pipeline to preprocess neonatal resting-state fMRI 

data was developed based on gold-standard open-source neuroimaging toolkits. The developed 

pipeline was called NeoRS and is open-source and fully available on git-hub. NeoRS uses nifti 

neuroimaging format, BIDS data structure and works with different MRI constructors. It provides 

an atlas as well as a set of seed regions. Parameters are easily customizable and allow single- and 

multi-band data preprocessing with minimal user implications. Furthermore, to ensure consistent 

results, it provides quality control checkpoint figures. NeoRS aims to allow a higher number of 
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laboratories and hospitals to collaborate and preprocess their neonatal datasets to hopefully 

promote the use of rs-fMRI to understand brain development and disruptors.  
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APPENDIX A  SUPPLEMENTARY MATERIALS ARTICLE 1 

 

 

Figure A. 1. Example of connectivity distribution histogram plot. 

 

Table A. 1. Results BRIEF-A > 65. 

Number (and percentage) of participants with a score >65 (abnormal) on the BRIEF-A scales for 

CHD and controls (CTL). Chi-squared test for proportions comparison. ** p< 0.01; ***p<0.001.   

N (%) CHD (n=35) CTL (n=44) p-value 

Inhibit*** 10 (28.6) 0.0 (0.0) < 0.001 

Shift 6 (17.1) 4 (9.1) 0.29 

Emotional control 6 (17.1) 4 (9.1) 0.29 

Self-monitor 7 (20.0) 3 (6.8) 0.08 

Initiate 6 (17.1) 5 (11.4) 0.47 

Working memory** 14 (40.0) 6 (13.6) 0.008 
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Plan/ Organize 2 (5.7) 2 (4.5) 0.81 

Task monitor 9 (25.7) 6 (13.6) 0.18 

Organization of materials*** 10 (28.6) 1 (2.3) < 0.001 

 

Overall a greater percentage of youths with CHD performed below clinical cutoff (i.e., >65) than 

control (5.7 – 40.0% in CHD vs. 0 – 13.6% in controls) reaching statistical difference for the inhibit 

(X2=14.23; p< 0.001), working memory (X2=7.1; p=0.008) and organization of material 

(X2=11.09; p< 0.001) scales (Table 3). 

 




