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RÉSUMÉ

En raison de l’étendue actuelle des systèmes informatiques, il existe un réel besoin de dé-
tecter efficacement toute déviation de leur comportement attendu. En effet, les interactions
complexes entre le matériel et les logiciels entraînent souvent des comportements nouveaux
et inattendus, y compris des comportements courants tels que des mises à jour logicielles, de
nouveaux utilisateurs et des requêtes rares, mais aussi des anomalies telles que de mauvaises
configurations, des latences, des intrusions, et des bogues.

Le traçage est une approche légère et efficace pour enregistrer le comportement des systèmes
informatiques au moment de l’exécution en collectant des événements de bas niveau générés
chaque fois qu’une instruction spécifique appelée point de trace est exécutée. En particulier,
cette thèse étudie un sous-ensemble d’événements générés par le noyau Linux appelés ap-
pels système. Les appels système comprennent un nom et plusieurs arguments tels qu’un
horodatage et un identifiant de processus, et correspondent à des requêtes d’applications
s’exécutant dans l’espace utilisateur vers le noyau afin d’accéder à des ressources telles que
la mémoire ou le réseau. Le principal avantage des appels système est qu’ils exposent le
comportement de l’ensemble du système sans avoir à modifier le code source, car le noyau
Linux a déjà été instrumenté avec des points de trace. De nos jours, de nombreux chercheurs
considèrent les appels système comme la source d’informations la plus détaillée et la plus
précise pour analyser les systèmes informatiques.

La première contribution de cette thèse est une méthode pour extraire le comportement
interne des requêtes Web et une chaîne de traitement pour détecter les problèmes de perfor-
mances qui permet également d’identifier leur cause. Tout d’abord, des informations de bas
niveau sont collectées en traçant les espaces utilisateur et noyau du serveur Web. Ensuite,
le chemin critique de chaque requête est calculé à partir duquel des attributs de plus haut
niveau appelés états d’exécution sont extraits. Les valeurs aberrantes sont détectées et re-
groupées sur la base de ces caractéristiques, et le comportement de chaque groupe de valeurs
aberrantes est analysé séparément. Les expériences réalisées ont révélé que ce pipeline est
capable de détecter les requêtes Web lentes et de fournir des informations sur leurs causes.
Notamment, un véritable problème de conflit de cache PHP a été découvert en utilisant
l’approche proposée.

Les attributs fabriqués à la main par des experts sont connus pour être sous-optimaux,
comme en témoigne le succès des réseaux de neurones qui apprennent automatiquement la
représentation des attributs adaptée pour le problème. Par conséquent, les chercheurs ont
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proposé des réseaux de neurones qui apprennent une représentation compacte des appels
système appelée plongement lexical. Cependant, l’efficacité de ces représentations est limitée
par l’omission des arguments des appels système. La raison principale est que la communauté
n’a pas de représentation compacte et de dimension fixe des arguments des appels système
qui est adaptée à l’apprentissage profond. En guise de solution, la deuxième contribution
de cette thèse est une approche générale pour apprendre une représentation des noms des
appels système avec leurs arguments en utilisant à la fois le plongement lexical et l’encodage.
La méthode proposée est facilement applicable à la plupart des réseaux de neurones et est
indépendante de la tâche. Les expériences ont montré que notre approche améliorait la
performance jusqu’à 11,3% sur deux tâches de modélisation de langage non supervisées avec
deux réseaux de neurones largement utilisés, le LSTM et le Transformer.

Enfin, la troisième contribution de cette thèse étend la seconde en introduisant une méthodolo-
gie de détection de nouveauté qui repose sur une distribution de probabilité des séquences
d’appels système, que l’on peut interpréter comme un modèle de langage. Les modèles de lan-
gage permettent d’estimer la probabilité des séquences, et puisque les nouveautés divergent
des comportements précédemment observés par définition, elles sont peu probables d’après le
modèle. Suivant la majorité de la littérature, la méthodologie proposée a été évaluée avec un
LSTM. Étant donné que les traces du noyau sont généralement beaucoup plus longues que
le contexte des LSTM, la méthodologie proposée a aussi été évaluée avec un Transformer qui
est capable de modéliser des dépendances de longueur arbitraire au prix d’une complexité
quadratique par rapport à la longueur de la séquence. Pour alléger la charge de calcul, un
Transformer de complexité linéaire appelé Longformer a été choisi en fonction des motifs
d’attention appris par le Transformer. Les réseaux de neurones nécessitent généralement une
grande quantité de données pour être entraînés efficacement, et à notre connaissance, aucun
ensemble de données moderne et massif de traces du noyau n’a été rendu public. Afin de
remédier à cette limitation, un nouvel ensemble de données de traces du noyau comprenant
plus de 2 millions de requêtes Web avec sept comportements distincts a été collecté et rendu
disponible. La méthodologie proposée atteint un F-score et une AuROC supérieurs à 95%
sur la plupart des nouveautés tout en étant indépendante du type de donnée et de nouveauté,
en plus de nécessiter le moins possible un expert.
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ABSTRACT

Due to the current extent of computer systems, there is a genuine need to effectively and effi-
ciently detect deviations from their expected behavior. Indeed, complex interactions between
hardware and software often result in novel and unexpected behaviors, including common
behaviors such as software updates, new users, and rare queries, as well as anomalies such as
misconfigurations, latency, intrusions, and bugs.

Tracing is a lightweight approach to recording the behavior of computer systems at runtime
by collecting low-level events generated whenever a specific instruction called tracepoint
is executed. This research focuses mainly on a subset of events generated by the Linux
kernel called system calls. System calls comprise a name and multiple arguments, such as
a timestamp and a process id, and correspond to requests from applications running in the
userspace to the kernel in order to access resources such as memory or network. The main
benefit of system calls is that they expose the behavior of the whole system without having to
modify the source code, as the Linux kernel has already been instrumented with tracepoints.
Nowadays, many researchers consider system calls to be the most fine-grained and accurate
source of information to investigate computer systems.

The first contribution of this thesis introduces a method to extract the internal behavior of
web requests and a pipeline to detect performance issues that also provide insights into their
root cause. First, low-level and fine-grained information is collected by tracing the user and
kernel spaces of the web server. Then, the critical path of each request is computed from
which higher-level features called execution states are extracted. Outliers are detected and
clustered based on these handcrafted features, and the behavior of each group of outliers
is analyzed separately. Experiments revealed that this pipeline is able to detect slow web
requests and provide additional insights into their true root causes. Notably, a real PHP
cache contention issue was discovered using our proposed approach.

Features handcrafted by experts are known to be suboptimal, as demonstrated by the tremen-
dous success of neural networks, which automatically learn the representation of the features
for the task at hand. Accordingly, researchers have proposed neural networks that learn
dense representations of system call names called embeddings. However, the effectiveness of
these representations has been hindered by omitting the system calls arguments. The main
reason is that the community does not have an appropriate compact and fixed-dimensional
representation of the system call arguments. As a solution, the second contribution of this
thesis introduces a general approach to learning a representation of the event names along
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with their arguments using both embedding and encoding. The proposed method is readily
applicable to most neural networks and is task-agnostic. Experiments showed that our ap-
proach improved the performance by up to 11.3% on two unsupervised language modeling
tasks with two widely-used neural networks, namely the LSTM and the Transformer.

Finally, the third contribution of this thesis extends over the second by introducing a novelty
detection methodology that relies on a probability distribution over sequences of system
calls, which one may interpret as a language model. Language models allow estimating the
likelihood of sequences, and since novelties deviate from previously observed behaviors by
definition, they are unlikely under the model. Following most of the literature, the proposed
methodology was evaluated on an LSTM. Since kernel traces are typically much longer than
the effective context length of LSTMs, the proposed methodology was also evaluated on a
Transformer, which is able to model arbitrary-length dependencies at the cost of a quadratic
complexity with respect to the sequence length. In order to mitigate this computational
burden, a lower-complexity Transformer called the Longformer was chosen based on the
attention patterns learned by the Transformer. Large neural networks typically require a
massive amount of data to be trained effectively, and to the best of our knowledge, no
modern and massive datasets of kernel traces are publicly available. In order to address this
limitation, a new open-source dataset of kernel traces comprising over 2 million web requests
with seven distinct behaviors is introduced. The proposed methodology achieves an F-score
and AuROC greater than 95% on most novelties while being data- and task-agnostic, besides
requiring minimal expert handcrafting.
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CHAPTER 1 INTRODUCTION

Since the introduction of modern computers by Alan Turing in 1936, computer systems
have become ever more complex. Even though they remain virtually deterministic, intricate
interactions between hardware and software often result in novel behaviors. This research
defines novel behaviors to be any deviation from previously observed behaviors. As such,
novel behaviors include not only anomalies such as misconfigurations, latency, intrusions,
hardware failures, and bugs but also common behaviors such as component upgrades, software
updates, new users, and rare queries. Nowadays, computer systems are omnipresent in our
society and essential in our daily lives, from medical diagnosis to banking systems. As a
result, there is a genuine need to ensure the behavior of computer systems and thus to
efficiently and effectively detect, classify, and explain novel behaviors.

The behavior of computer programs is often investigated with debuggers and profilers. How-
ever, debuggers require stopping the program execution, which is not able to reveal issues
related to latency, while profilers aggregate the collected metrics, which hides outliers. In-
stead, tracing is a lightweight approach to recording the behavior of computer systems at
runtime by collecting low-level events generated whenever a specific instruction called trace-
point is executed. Such low-level events are either generated in the user space by applications
or in the kernel space by the operating system. This research focuses on kernel events since
they expose the system’s behavior without requiring to manually instrument the source code,
as most kernels already comprise tracepoints. In particular, this research relies on system
calls that correspond to requests from applications running in the userspace to the kernel in
order to access resources that would otherwise be inaccessible. As mentioned by Spinellis [1],
the behavior of computer programs is mostly defined by its interactions with the operating
system and errors can often be explained in terms of the system calls that were or were not
issued. Nowadays, many researchers consider system calls to be the most fine-grained and
accurate source of information to investigate computer systems.

Let us further describe the system calls and illustrate how they allow the detection of a
resource contention and a bug causing a latency. System calls are events generated by the
operating system and comprise a name and possibly many arguments. Several arguments
are common to all system calls, such as the process id, the thread id, and the timestamp,
while most are specific to each system call. For instance, the system call read comprises a
file descriptor fd and the number of bytes count to be read in addition to the process id
pid, the thread id tid, and the timestamp timestamp. Figure 1.1 illustrates three system
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calls as displayed by Babeltrace1. Some novelties and anomalies are identifiable with simple
statistics, such as the number of system calls. For instance, a resource contention caused by
multiple threads trying to access a shared cache concurrently will generate numerous system
calls fcntl related to file control operations. However, most anomalies require considering
the arguments. For instance, a bug causing a latency will increase the elapsed time between
the system calls inside the critical path, and system calls with the highest increase in elapsed
time may indicate the root cause of the bug. The critical path, also referred to as the active
path, corresponds to the longest path between the elements of a network. In the case of
project management, the critical path corresponds to the longest sequence of tasks that must
be achieved to complete a project. In the case of traces, the critical path corresponds to
the longest path of dependencies between the threads and resources. Figure 1.2 illustrate a
toy critical path using Trace Compass2. However, most real-world anomalies and novelties
require a more complex analysis.

timestamp stream context event context event fieldsevent namehostnameFigure 1.1 System calls as displayed by Babeltrace. The first two lines correspond to the start
and end of the execution of the system call close requested by the process Web Content.

Figure 1.2 Critical path as displayed by Trace Compass.

Kernel traces are a formidable source of low-level information, and their manual inspection
with tools such as Trace Compass may reveal insights about the system’s behavior that would
otherwise be inaccessible. However, their manual analysis is tedious and often prohibitive in
practice. Indeed, due to the computational speed of modern computers, operating systems
often execute hundreds of system calls every second. As a result, practitioners and researchers
often must analyze traces automatically.

1https://babeltrace.org
2https://www.eclipse.org/tracecompass/

https://babeltrace.org
https://www.eclipse.org/tracecompass/
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In addition to the high troughput of modern operating systems, hardware and software
frequently evolve. For instance, a new CPU architecture is released every two to three years,
and the Linux kernel is updated every two months. Therefore, detecting unexpected or
unknown behaviors in such ever-changing environments is challenging to specify manually.
Instead, machine learning techniques that learn how to solve a task from examples are better
suited to analyze traces. Accordingly, this thesis investigates effective and efficient machine
learning approaches to detect deviations from the expected behavior with kernel traces.

1.1 Research Objectives

Computer systems handle many critical applications, thus ensuring their behavior has be-
come necessary. For instance, autonomous cars require the software and hardware to behave
precisely and consistently as expected, or the consequences may be tragic. Therefore, nu-
merous approaches have been explored to automatically detect and explore deviations in the
behaviors of computer systems, most prominently unsupervised machine learning methods
to detect anomalies. Nonetheless, detecting anomalies or novelties with kernel traces re-
mains an open problem due to the size and complexity of the data. Accordingly, the three
objectives of this research aim to investigate interesting novel machine learning approaches
to detect anomalies and novelties. More specifically, this research is organized around three
contributions:

1. Anomaly detection with high-level features and off-the-shelf unsupervised
methods. In order to become familiar with the data and task at hand, the method-
ology of the first contribution closely follows the literature by introducing an approach
to detect anomalies in web requests with high-level features and off-the-shelf unsuper-
vised methods. Specifically, the execution states of each thread that contributes to the
response time of each request are extracted from the critical path. These high-level
features represent the internal behavior of the web requests and include running, inter-
rupt handling, waiting for disk, waiting for network, waiting for a timer, and waiting
for another task. The features are visualized with isometric mapping (ISOMAP), which
already highlights some outliers. Density-based spatial clustering of applications with
noise (DBSCAN) is applied to the handcrafted features to automatically detect out-
liers. The outliers are subsequently grouped into three clusters with k-means. Each
group of deviations is analyzed separately with n-grams and simple metrics on the re-
quests, allowing for the explanation of two out of the three groups of anomalies. The
methodology is efficient as it was able to process about 50,000 requests in less than a
minute while requiring minimal implementation since it relies on off-the-shelf methods.
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2. General approach to learning a representation of the event names along with
their arguments. Although the first contribution is efficient and effective in detecting
latency, the methodology relies on handcrafted features which are often specific to
the data or task, time-consuming, error-prone, and suboptimal. Instead of relying on
handcrafted features, neural networks learn to extract relevant features for the task,
thereby reducing the need for an expert and improving the model performance in most
cases. Therefore, researchers have leveraged neural networks to learn an embedding of
system call names. However, the effectiveness of the representation has been limited
by discarding the arguments, arguably a valuable source of information. As a solution,
the second contribution introduces a method for learning a representation of the event
names along with their arguments that is readily applicable to most neural networks and
is task-agnostic. Specifically, the proposed representation learns an embedding of the
inherently meaningful arguments, such as the process name, and encodes the arguments
whose meaning depends on the context, such as the process id. The impact of the
arguments is quantified by means of an ablation study conducted on two datasets with
two widely-used neural networks (LSTM and Transformer) and two language modeling
tasks (left-to-right and masked LM). Experiments showed that the arguments improved
the performance by up to 11.3%.

3. Language models for novelty detection in kernel traces. As revealed by the
second contribution, learning a joint representation of the event names along with their
arguments improves the effectiveness of neural networks, at least on language modeling
tasks. A language model is a probability distribution over sequences of tokens, often
words or characters, that allows estimating the likelihood of sequences. Since novel-
ties deviate from previously observed behaviors by definition, they would have a low
likelihood under a language model trained to maximize the likelihood of known be-
haviors. Therefore, the third contribution introduces a novelty detection methodology
that relies on a probability distribution over sequences of system calls embedded with
the representation technique introduced by the second contribution. The methodology
is evaluated with three neural networks. Following the majority of the recent liter-
ature, the first network is based on the LSTM architecture. Since kernel traces are
typically much longer than the effective context length of LSTMs, potentially limiting
their effectiveness, a second model capable of modeling arbitrary-length dependencies
called the Transformer is considered. The major benefit of Transformers comes at the
cost of a quadratic complexity with respect to the sequence length. As a solution to
the computational cost of the Transformer, a lower-complexity alternative called the
Longformer has been selected based on the patterns learned by the Transformer. State-
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of-the-art models, especially for natural language processing (NLP), have grown ever
larger in terms of parameters. However, large neural networks typically require a con-
siderable amount of data to be trained effectively, and to the best of our knowledge, no
modern and massive datasets of kernel traces are publicly available. This limitation is
addressed with a new open-source dataset of kernel traces comprising over 2 million web
requests with seven distinct behaviors. The three neural networks achieve an F-score
and AuROC greater than 95% on most novelties and are able to detect small latencies.

1.2 Thesis Outline

The remainder of this manuscript is organized as follows. Chapter 2 provides a critical
review of the data collection and representation techniques, the machine learning models, and
the actual anomaly or novelty detection schemes. Chapter 3 extends the literature review
by extensively investigating techniques to improve the efficiency of state-of-the-art neural
networks for sequence processing. Chapter 4 details the organization of this thesis. Chapter 5
introduces a simple anomaly detection approach with high-level features and off-the-shelf
unsupervised methods. Chapter 6 introduces a methodology to learn a joint representation
of event names and their arguments. Chapter 7 introduces a methodology to detect novelties
with a language model that exploits the aforementioned joint representation. Chapter 8
provides a summary of the works and discusses the limitations and threats to validity. Finally,
Chapter 9 concludes this thesis and proposes future research directions.

1.3 Publications

Chapters 3, 5, 6, and 7 of this thesis include the following articles, respectively.

• Quentin Fournier, Gaétan Marceau Caron and Daniel Aloise, “A Practical Survey on
Faster and Lighter Transformers,” ACM Computing Surveys, 2022, accepted with minor
modifications.

• Quentin Fournier, Naser Ezzati-jivan, Daniel Aloise and Michel R. Dagenais, “Auto-
matic Cause Detection of Performance Problems in Web Applications,” 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW),
2019, pp. 398-405, doi: 10.1109/ISSREW.2019.00102.

• Quentin Fournier, Daniel Aloise, Seyed Vahid Azhari and François Tetreault, “On Im-
proving Deep Learning Trace Analysis with System Call Arguments,” 2021 IEEE/ACM
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18th International Conference on Mining Software Repositories (MSR), 2021, pp. 120-
130, doi: 10.1109/MSR52588.2021.00025.

• Quentin Fournier, Daniel Aloise and Leandro Costa, “Language Models for Novelty
Detection in Kernel Traces,” Transactions on Modeling and Performance Evaluation of
Computing Systems, 2022, under review.

Furthermore, collaborations during this research produced the following articles.

• Naser Ezzati-Jivan, Quentin Fournier, Michel R. Dagenais and Abdelwahab Hamou-
Lhadj, “DepGraph: Localizing Performance Bottlenecks in Multi-Core Applications
Using Waiting Dependency Graphs and Software Tracing,” 2020 IEEE 20th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM), 2020,
pp. 149-159, doi: 10.1109/SCAM51674.2020.00022.

• Sneh Patel, Brendan Park, Naser Ezzati-Jivan and Quentin Fournier, “Automated
Cause Analysis of Latency Outliers Using System-Level Dependency Graphs,” 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
(QRS), 2021, pp. 422-433, doi: 10.1109/QRS54544.2021.00054.

• Hervé Kabamba, Quentin Fournier and Michel R. Dagenais, “NodeCompass: Perfor-
mance Analysis of Event-driven Multi- layered Single-threaded Systems,” Transactions
on Modeling and Performance Evaluation of Computing Systems, 2022, under review.

• Pierre-Frédérick Denys, Quentin Fournier and Michel R. Dagenais, “Distributed Com-
putation of the Critical Path from Execution Traces,” Software: Practice and Experi-
ence, 2022, under review.

• Mohammad Khanahmadi, Alireza Shameli-Sendi, Masoume Jabbarifar, Quentin
Fournier and Michel R. Dagenais, “Detection of Microservice-Based Software Anoma-
lies Based on Opentracing in Cloud,” Software: Practice and Experience, 2022, under
review.

• Ehsan Khodayarseresht, Alireza Shameli-Sendi, Quentin Fournier and Michel R. Da-
genais, “DeEnergy and Carbon-Aware Initial VM Placement in Geographically Dis-
tributed Cloud Data Centers,” Sustainable Computing: Informatics and Systems, 2022,
under review.
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CHAPTER 2 LITERATURE REVIEW

The research reported in this manuscript belongs to the field of artificial intelligence for IT
operations1 (AIOps), which is the use of artificial intelligence approaches such as machine
learning models and natural language processing techniques to automate IT workflows. As
such, this research is at the crossroad between software engineering and machine learning
and comprises three fundamental aspects: (1) the data collection and representation, (2)
the machine learning model, and (3) the actual anomaly or novelty detection scheme. This
chapter presents a critical review of these three aspects, while the next chapter discusses
the shortcomings of recurrent neural networks, describes the architecture of the Transformer,
and extensively studies techniques to improve its efficiency. Although a comprehensive and
critical literature review is provided in Chapters 2 and 3, please note that this manuscript is
composed of self-contained chapters that include specific and detailed literature reviews.

Before proceeding further, let us preface the remainder of this section by discussing the dis-
tinction between anomaly and novelty. As defined in Chapter 1, novelties correspond to any
deviation from previously observed behaviors and include common behaviors such as com-
ponent upgrades, software updates, new users, and rare queries, as well as anomalies such
as misconfigurations, latency, intrusions, hardware failures, and bugs. Even though novel-
ties include anomalies, and their detection is therefore a broader problem, the literature has
prominently focused on anomalies. As of the writing of this manuscript, one of the most
popular approaches to detecting anomalies is to learn a “normal” behavior from the data
and identify any deviations from this behavior as abnormal [2, 3, 4, 5, 6]. In our opinion,
such approaches would be better framed as novelty detection methods. Furthermore, an ad-
ditional mechanism would be necessary to determine whether the novel behaviors correspond
to anomalies. Nonetheless, please note that this section follows the same terminology as the
papers surveyed in order to be consistent with the literature.

2.1 Data Collection and Representation

2.1.1 Profilers, Debuggers, and Tracers

Profilers, debuggers, and tracers are the most commonly used tools by developers to inves-
tigate anomalies and novelties. This section briefly introduces each approach along with its
strengths and limitations.

1https://www.ibm.com/cloud/learn/aiops

https://www.ibm.com/cloud/learn/aiops
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Debuggers are built into most integrated development environments (IDEs) and allow ver-
ifying the correctness of a piece of code. As explained by Araki et al. [7], debugging is an
iterative process of developing and testing hypotheses, such as the expected behavior of a
program or the location of a bug. First, developers must manually insert specific instruc-
tions called breakpoints into the source code. Then, the debugger stops the execution of the
software every time a breakpoint is encountered and exposes the current variables. Next, the
execution is either stopped, continued step by step, or resumed until another breakpoint is en-
countered. Although debuggers provide great insights into the internal behavior of software,
they require to stop the execution, which makes them inappropriate for real-time applications
and most performance anomalies. Besides, debuggers impose a significant overhead that may
cause undesired latency.

Profilers are usually the tool of choice to quantify the resource usage of a piece of code and
identify bottlenecks. First, profilers collect metrics at runtime about the software, for in-
stance, the number of function calls or their duration. Note that profilers may also collect
metrics about the system and hardware, such as the CPU time and the number of stalls.
Then, once the execution is over, profilers output a statistical summary of the collected met-
rics called a profile. Profiling is efficient, thereby allowing to continuously profile production
systems with minimal perturbations [8]. Nonetheless, the aggregation of the metrics may
hide novelties, including the ones only occurring when some conditions are met. Further-
more, the root cause of novelties is often hidden by the aggregation or outside the scope of
profilers.

Tracers address these shortcomings by collecting low-level events generated whenever a spe-
cific instruction called tracepoint is encountered at runtime. Simply put, tracing corresponds
to system-wide and low-level logging with an enormous throughput since modern operating
systems typically generate thousands of events per second. Traces provide insights into the
execution of a piece of code and have been extensively used to detect and investigate novelties
and anomalies. Unlike debuggers and profilers, tracers do not stop the execution nor aggre-
gate the events. These advantages come at the expense of larger files, and although they can
manually be explored similarly to logs, they often have to be automatically analyzed. The
reader is referred to the comprehensive survey of Gebai and Dagenais [9] for an analysis of the
design, implementation, and overhead of the most common tracers. Notably, this research
relies on a lightweight and efficient open-source tracer developed at Polytechnique Montréal
called the Linux Trace Toolkit: next generation (LTTng) [10].
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2.1.2 User and Kernel Spaces

As previously explained, trace events are generated when a specific instruction called tra-
cepoint is encountered at runtime. Specifically, a tracepoint or instrumentation point is an
instruction that provides a hook to a light function specified at runtime called a probe. A
probe is called whenever the hooked tracepoint is encountered, provided that it is enabled,
to perform a custom task that is either implemented by the tracer or the user [9, 11]. De-
pending on the location of the tracepoint, events are either generated from the user space or
the kernel space.

User space events are generated by tracepoints that have been added to the source code
of the application prior to compilation (static instrumentation) or that have been inserted
into the binary executable after compilation (dynamic instrumentation) [12]. The former
requires access to the source code, while the latter is significantly more complex to implement.
In both cases, developers must add and maintain the user space tracepoints themselves.
Furthermore, user space instrumentation is unable to expose the behavior of the operating
system (OS), which is instrumental in detecting some novelties and identifying their root
cause. Indeed, several actions cannot be performed in the user space, including extending
the process memory, opening a socket, locking a file, and waking up a thread. Moreover, user
space events often greatly differ from one application to another as user space events are ad
hoc.

Kernel space events are generated by tracepoints located in the kernel of the operating system.
In particular, the Linux kernel has already been instrumented with over a thousand distinct
tracepoints [9]. The main advantages of kernel space events are: (1) software developers
do not need to instrument their code, (2) events are generic and consistent, and (3) the
whole system is exposed [1]. Furthermore, kernel events are necessary to detect performance
anomalies whose cause is external to the application, such as networking issues, database
design issues, resource contentions, and hardware failures. However, kernel events correspond
to low-level actions or changes in the system that cannot easily be linked to application-level
operations. Besides, their throughput is typically greater than user space events as they
correspond to the lowest level of information.

Tracers collect events from a single space or both spaces. In this work, only kernel events
are considered due to their readiness, generality, and visibility of the system. In particular,
a subset of kernel events known as system calls will be put under the microscope. System
calls, or syscalls for short, are the entry points into the kernel for software to request a
service from the operating system. In other words, system calls correspond to requests
from applications running in the userspace to the kernel in order to access resources such
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as memory, network, or other devices that would otherwise be inaccessible. Note that a
system call usually generates two events, one at the start and one at the end of its execution.
Nowadays, many researchers consider system calls to be the most fine-grained and accurate
source of information to analyze computer systems [2]. Appendix A provides the system call
sequence associated with the simple echo "Hello World" command.

2.1.3 Natural Language Perspective and Challenges

Kernel traces are discrete sequences of events traditionally modeled with classical techniques
such as high-level hand-crafted features and density plots [13] or fixed length patterns and
rule-based models [14, 15]. The first contribution of this thesis follows the traditional ap-
proach by modeling kernel traces with execution states and off-the-shelf unsupervised meth-
ods.

Nonetheless, kernel traces also closely resemble natural languages in that they comprise both
syntax and semantics. For instance, a file or a socket cannot be written into before it was open
(syntax), and the system call open has a clear inherent meaning (semantic), which may vary
depending on the arguments (polysemy). Therefore, kernel traces may be interpreted as a
language, albeit not a natural one. In that case, traces correspond to documents, requests or
spans correspond to sentences, and individual events correspond to words. Such a linguistic
interpretation of kernel traces poses two challenges compared to natural languages.

The first challenge arises from the high throughput of modern operating systems. Indeed,
since hundreds of events may be generated each second, a simple web request may comprise
thousands of events, whereas natural language sentences typically comprise less than a hun-
dred words. As a result, kernel traces may comprise dependencies that span much farther
than in natural languages, making them more complex and expensive to model. Furthermore,
the vocabulary size of kernel traces is much greater than that of natural languages, provided
that arguments are included. For instance, the Linux kernel only comprises about 300 sys-
tem calls, but each may comprise several arguments with a wide range of values. Although
kernel traces are much more complex than natural languages, they are well-defined, stable,
and easily collected.

The second challenge arises from the parallel nature of most modern computer systems.
Indeed, CPU cores may execute system calls concurrently. Thanks to the high precision of
the timestamp, two events are highly unlikely to be generated with the exact same timestamp.
Nonetheless, two consecutive events generated by two distinct cores may be swapped in the
trace without changing the meaning or behavior of the sequence. One way to address such
high variability is to collect significantly more samples in order to learn which permutations
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are impactful.

2.1.4 Trace Representation

Kernel traces typically contain millions of low-level events with several arguments. Due to
the high volume and complexity of kernel traces, researchers and practitioners have traded
compactness over fine-grained information by discarding most arguments, aggregating events
across time, and extracting higher-level features.

As of the writing of this thesis, most novelty and anomaly detection methodologies consider
the event names but ignore the arguments, such as the process name, the process id, and
the return value. However, the arguments are valuable information that allows the model to
make more informed and, ultimately, more accurate predictions. Most prominently, temporal
information encapsulated in some of the arguments, such as the timestamp, is essential
to detecting performance issues. Consequently, several researchers considered with great
success temporal information such as the timestamp [16], the duration [3], and the response
time [17, 18]. Alternatively, Ezeme et al. [19] compressed the values of the arguments by
encoding the characters using ASCII values and considering the frequency distribution of
these values for each argument. Nonetheless, the second contribution of this research revealed
the benefit of considering the actual values of multiple system call arguments, at least for
neural language models [16].

In addition to reducing the number of arguments, several novelty and anomaly detection
methods aggregate the events across time, thereby trading ordering information for a more
compact representation. The most common approach is called bag-of-words (BoW), also
known as system call counts vector [20], frequency counts of system call names [21] and bag
of system calls [22]. Bag-of-words is a representation that corresponds to the number of
occurrences of each element of a vocabulary in a document. For instance, the bag-of-word
representation of the sequence w = {a, c, c, c, a, c} given the vocabulary V = {a, b, c} is
{2, 0, 4}. Nonetheless, the ordering information is critical to detecting some anomalies, such
as intrusions. Consequently, researchers have introduced methodologies that preserve part
of the ordering. The most common technique is called n-gram, which makes the Markov
assumption that events only depend on the n−1 previous events instead of all previous ones,
thereby preserving only a short and local ordering. In particular, n-gram has been extensively
used for intrusion detection as they are more expressive [21, 23, 24, 25]. Alternatively,
Dymshits et al. [20] aggregated system calls on a short span, resulting in a sequence of
system call counts. Nevertheless, numerous approaches do not aggregate events across time
in order to preserve the complete ordering [2, 4, 17, 26, 13]
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Independently of the aggregation level, the features provided to the machine learning algo-
rithm are either: (1) straightforward, such as a one-hot-encoding [26] or a bag-of-words [20,
21, 22] of the system call names; (2) learned from the data, such as an embedding of the
system call names [2, 4]; or (3) hand-crafted by an expert, such as states of kernel mod-
ules [13] or execution states [27]. Although carefully hand-crafted higher-level features may
deliver excellent performance, they discard the fine-grained information that makes traces
valuable to investigate the behavior of computer systems. Moreover, features are typically
hand-crafted for a specific task and often do not perform well on other tasks and, as explained
by Goodfellow et al. [28], “manually designing features for a complex task requires a great
deal of human time and effort; it can take decades for an entire community of researchers.”
Instead of relying on hand-crafted features, learning a relevant input representation for the
task from data reduce the need for an expert, thereby reducing the human labor and risk of
error while improving the performance in most cases.

2.2 Machine Learning Model

Let us clarify the distinction between the concepts of artificial intelligence (AI), machine
learning (ML), and deep learning (DL).

Artificial intelligence is the oldest and most general concept of the three. Founded in the early
’50s by the research of Alan Turing [29], the Oxford Dictionary defines artificial intelligence
as “the theory and development of computer systems able to perform tasks normally requiring
human intelligence [...]”.

Machine learning, coined by Arthur Samuel in the late ’50s [30], is a subset of artificial
intelligence corresponding to the methods that learn to solve a task from data. Tom Mitchell
defines machine learning in the eponym book as: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with experience E.” [31].

Deep learning is, in turn, a subset of machine learning restricted to multi-layer neural net-
works. Such models learn a hierarchy of increasingly more complex concepts, each defined
through its relation to the simpler ones. Contrary to popular belief, deep learning is not a
modern concept: while the term was first used in 1986 [32], the first deep neural network was
published in 1965 by Ivakhnenko and Lapa [33].

Since the turn of the millenium, numerous machine learning techniques have been explored
to detect anomalies and novelties in logs and traces, including rule-based algorithms [14, 15],
naive Bayes [34, 35], decision trees [35, 36], hidden Markov models [24, 35], and support
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vector machines (SVM) [35]. Due to the tremendous success of deep learning, researchers
have recently shifted toward a family of neural networks called recurrent neural networks
(RNNs) [37]. The most popular recurrent neural network is the LSTM [38] due to its ability
to learn dependencies across a large number of time steps. The LSTM has been extensively
and successfully used across many fields, including to detect anomalies and novelties in
logs and traces. As of the writing of this survey, the LSTM is by far the most popular
neural network to analyze traces [2, 17, 18, 19, 20, 36]. Alternatively, Lv et al. [26] used a
gated recurrent unit (GRU) [39], which behaves similarly to the LSTM while requiring fewer
parameters.

Chapter 3 describes the limitations of recurrent neural networks and discusses solutions that
have been published, including the alignment between the input and output sequences solved
with the sequence-to-sequence framework [40], the information bottleneck of the fixed-size-
context [41] solved with the inter-attention mechanism [42], and the limited parallelizability
solved with the introduction of another architecture called Transformer [43]. Nonetheless,
the Transformer addresses the aforementioned limitations of the recurrent neural networks
at the cost of a quadratic complexity with respect to the sequence length. Consequently,
the following chapter further extensively surveys the approaches proposed to improve the
efficiency of the Transformer.

2.3 Anomaly and Novelty Detection Scheme

Real-world anomalies and novelties are typically unknown. Indeed, developers usually solve
anomalies after identifying them, while novelties are unknown by definition. Besides, man-
ually labeling them afterward would be time-consuming and error-prone. As a result, their
detection belongs to the unsupervised setting. However, a few supervised methods have been
explored. Notably, Asmitha and Vinod [34] evaluated several supervised machine learning
models, including naive Bayes, AdaBoost, and random forest, on a small labeled dataset.
Furthermore, synthetic anomalies and novelties may be generated by injecting faults into the
system. Nevertheless, the vast majority of the literature follows the unsupervised paradigm
and the remainder of this section discusses the unsupervised detection schemes that have
been explored.

A wide range of unsupervised anomaly and novelty detection methods output an outlier score
quantifying how abnormal, novel, or outlier a sample is. By convention, the outlier score
increases with the outlierness [44]. However, several studies proposed methods to measure
such scores as the likelihood of sequences, which instead decreases with the outlierness as
novelties and anomalies are unlikely. Therefore, note that the scores discussed hereafter may
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not correspond stricto sensu to outlier scores.

Numerous outlier scores have been explored, including the number of rule violations [14, 15],
the number of event mispredictions [36, 6], the ratio of misspredictions [5], the probability of
kernel states [13], the sequence negative log-likelihood [2]. In addition to the event mispre-
dictions, prediction error of temporal information such as the timestamp [3] and the response
time [17, 4] have been considered.

Once the outlier score has been computed, the decision is often made with a simple threshold
on the outlier score. The threshold is often empirically computed on a validation set to
maximize a metric such as accuracy or precision. Instead, Ezeme et al. [19] proposed a
fancier way to compute the threshold based on the Bienaymé-Chebyshev inequality.

2.4 Discussion

In the literature, a wide range of machine learning algorithms have been applied to a wide
range of features to detect specific anomalies. For instance, Murtaza et al. [13] explored states
of kernel modules and density plots to detect host-based intrusions, while Murtaza et al. [35]
explored the likelihood of some kernel events and decision trees to detect bugs in applications.
The first contribution of this thesis follows this classical approach by investigating a novel
combination of hand-crafted features and off-the-shelf machine learning methods to detect
performance anomalies in web requests.

Nonetheless, researchers have recently moved away from hand-crafted features and instead
focused on deep learning methods that learn a representation of the data for the task. Even
though some techniques have considered the duration [3] and the response time [17, 18],
no methods considered the actual value of multiple arguments. As explained by Dymshits
et al. [20], the main reason for this shortcoming is that the community does “[...] not have a
compact fixed-dimensional representation for system call arguments suitable for large-volume
training and classification.” The second contribution of this thesis addresses this shortcoming
with a method to learn a joint representation of the system call names and their arguments.
Following the vast majority of the literature, the representation was evaluated on the LSTM.
However, this recurrent neural network has been replaced by the Transformer for many
sequence processing tasks, including the detection of anomalies in logs [6]. Still, the Trans-
former has yet to be explored to detect novelties or anomalies in kernel traces. Therefore,
the third contribution of this thesis also evaluates the representation with a Transformer.

Several researchers have explored language models to detect various anomalies in kernel
traces. Most prominently, Kim et al. [2] learned a language model of the system call names
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with LSTMs to detect intrusions based on the negative log-likelihood. The third contribution
of this thesis extends the scope to novelty detection and improves over existing approaches
based on language models in three ways. Firstly, the quality and quantity of data have been
drastically improved, which is instrumental to scaling the neural networks. Secondly, neural
networks that are able to learn extremely long dependencies are investigated, which could
be instrumental in modeling some novelties. Thirdly, the novelty detection scheme relies on
a metric that takes into account the sequence length called the perplexity.

Finally, the Transformer is a resource-intensive method due to its complexity. Therefore,
a plethora of lighter and faster alternatives have been proposed and are described in the
following chapter. Such models would be necessary to deploy the Transformer on real-world
traces that may comprise thousands of events. Consequently, the third contribution also
explores one such efficient alternative.
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Abstract Recurrent neural networks are effective models to process sequences. However,
they are unable to learn long-term dependencies because of their inherent sequential na-
ture. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the
attention mechanism that is able to relate any two positions of the input sequence, hence
modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art
across numerous sequence modelling tasks. However, its effectiveness comes at the expense
of a quadratic computational and memory complexity with respect to the sequence length,
hindering its adoption. Fortunately, the deep learning community has always been interested
in improving the models’ efficiency, leading to a plethora of solutions such as parameter shar-
ing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly
addressed the Transformer’s limitation by designing lower-complexity alternatives such as
the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of
solutions, it has become challenging for researchers and practitioners to determine which
methods to apply in practice in order to meet the desired trade-off between capacity, compu-
tation, and memory. This survey addresses this issue by investigating popular approaches to
make Transformers faster and lighter and by providing a comprehensive explanation of the
methods’ strengths, limitations, and underlying assumptions.

Keywords Deep Learning, Efficient Transformer, Self-Attention, Survey

3.1 Introduction

Sequences arise naturally in a wide range of domains, notably in natural language, biology,
and software executions. Rumelhart et al. [37] introduced a family of models called recurrent
neural networks (RNNs) based on the idea of parameter sharing to process variable-length
sequences. Given an input sequence X comprising n tokens x(i) of dimension d, recurrent
neural networks iteratively construct a sequence of hidden representations h(i) and produce
a sequence of outputs y(i) as illustrated in Figure 3.1. Unfortunately, vanilla RNNs often
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suffer from vanishing or exploding gradients, which prevent them from learning long-term
dependencies. Hochreiter and Schmidhuber [38] addressed this limitation with the now widely
popular long short-term memory (LSTM) network, which circumvents the gradient issues
with paths through time. Cho et al. [39] later improved over the LSTM with the simpler
gated recurrent unit (GRU).

...

Figure 3.1 The computational graph of a recurrent neural network. The input and output
sequences are depicted in blue and red, respectively. The position, also known as the time-
step, is indicated in superscript. The weight matrices W , U , and V are shared across all
positions. Reproduced with permission [16]. Copyright 2021 IEEE.

Recurrent neural networks align the input and output sequences, that is, there is a one-to-one
mapping between the two sequences. Depending on the task, this property of RNNs may be
too restrictive: for instance, translation requires outputting a sequence whose size is often
different from that of the input while aligning tokens at different positions. Sutskever et al.
[40] addressed this limitation by introducing the sequence-to-sequence framework in which
a first network (encoder) processes the entire input sequence and returns its last hidden
representation h(n), effectively encoding the input into a fixed-size vector called context. The
context then serves as the initial state for a second network (decoder), which generates the
output sequence in an autoregressive manner. The decoding stops when a special end-of-
sequence token is generated. Figure 3.2 illustrates the sequence-to-sequence framework.

In practice, the fixed-size nature of the hidden representation hinders the effectiveness of
recurrent neural networks [41]. Indeed, as the input sequence is processed, information is
iteratively stored into the hidden representation that may be too small to retain all the
relevant information for the task. In that case, useful data is inevitably lost, which may
significantly impact the model’s performance. Bahdanau et al. [45] introduced an alignment
mechanism called inter-attention to overcome the bottleneck of the sequence-to-sequence
framework. This attention mechanism computes a different representation of the input for
each output step, effectively allowing the decoder to “look at” the relevant part(s) of the input
for each output step. Thereby, the inter-attention alleviates the encoder’s burden to encode
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...

Encoder

_

...

Decoder

Figure 3.2 The sequence-to-sequence framework where the encoder and decoder are recurrent
neural networks. The input sequence (blue) is encoded into a fixed-size context h(n) (red),
which serves as the initial state of the decoder.

all information about the input sequence into a fixed-size vector. Formally, the context is
the weighted sum of the encoder’s hidden representations hi, for i = 1, . . . , n, where the
weights are computed with a feed-forward neural network. For a comprehensive survey of
the attention mechanism, we refer the reader to Galassi et al. [46] and Weng [47]. Figure 3.3
illustrates the inter-attention mechanism.

Moreover, recurrent neural networks do not scale efficiently to longer sequences due to their
iterative nature [43]. In particular, RNNs struggle to learn dependencies between distant
positions. One measure of this limitation is the relative effective context length (RECL)
introduced by Dai et al. [48]. The RECL is the largest context length that leads to a
substantial relative gain over the best model. In other words, increasing the context length
over the RECL yields a negligible increase in performance over the best model. The authors
estimated that the relative effective context length of LSTMs on natural language data is
limited to approximately 400 words. Besides, Khandelwal et al. [49] empirically observed
that LSTMs sharply model recent positions but only vaguely remember the distant past.

3.1.1 Transformer

This inherent limitation of recurrent neural networks has prevented them from being success-
fully applied to domains that require processing long sequences such as DNA. To overcome
this limitation, Vaswani et al. [43] introduced the Transformer, a sequence-to-sequence model
built without recurrences. Instead, the Transformer relies solely on the attention mechanism:
the inter-attention between the encoder and decoder (see Figure 3.3), and the self-attention,
also known as intra-attention, within the encoder and decoder. The self-attention’s main
advantage is its ability to relate any two positions of the input sequence regardless of their
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distance, thus increasing performance significantly on a wide range of tasks, including nat-
ural language processing (NLP) [50, 51, 43], computer vision [52, 53, 54], speech recogni-
tion [55, 56, 57], and biological sequence analysis [58]. Karita et al. [59] evaluated a Trans-
former against a sequence-to-sequence Bi-LSTM baseline on automatic speech recognition
(ASR), speech translation (ST), and text-to-speech (TTS). The attention-based models out-
performed the baseline on 13 corpora out of 15 for monolingual ASR and realized more than
10% relative improvement in 8 languages out of 10 for multilingual ASR. The Transformer
improved the BLEU score from 16.5 for the baseline to 17.2 on ST while performing on par for
TTS. Table 3.1 reports the performance improvements brought by popular Transformer ar-
chitectures over previous state-of-the-art models across different domains. As of this paper’s
writing, the Transformer has become the de facto model for numerous sequence processing
tasks.

...

Encoder

Decoder

...

...

...

Figure 3.3 The inter-attention mechanism. The attention weight α
(t)
i depicts the strength

with which the i-th encoder hidden representation h(i) contributes to the context of t-th
decoder step. Reproduced with permission [16]. Copyright 2021 IEEE.

As an illustration of an end-to-end application of the Transformer, let us consider the speech
recognition task. In hybrid approaches, the recognition system consists of independently
trained machine learning components, often an acoustic model, a pronunciation model, and
a language model. Instead, in end-to-end approaches, the recognition system consists of

3Bilingual evaluation understudy (BLEU), higher is better.
4Matthews correlation (MC) coefficient, higher is better.
5Word error rate (WER), lower is better.
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Table 3.1 Relative improvements brought by popular Transformer architectures over previous
state-of-the-art models. Absolute differences are reported between parenthesis. Sources are:
[43] for machine translation, [53] for image classification, [51, 60] for text classification, and
[61] for speech-to-text.
Task Dataset Previous SOTA Transformer’s Architecture Relative Improvement

Machine Translation newstest2014 (EN-to-DE) MoE (GNMT) [62] Vanilla [43] 9.1% (+2.37 BLEU3)
newstest2014 (EN-to-FR) 3.1% (+1.24 BLEU)

Image Classification

ImageNet Noisy Student (EfficientNet-L2) [63] ViT [53] 0.2% (+0.15% Acc)
CIFAR-10 BiT-L (ResNet152x4) [64] 0.1% (+0.13% Acc)
CIFAR-100 1.1% (+1.04% Acc)
VTAB (19 tasks) 1.8% (+1.34% Acc)

Text Classification SST2 Sparse byte mLSTM [65] BERT[51] 1.8% (+1.70% Acc)
CoLA Single-task BiLSTM + ELMo + Attn [66] 72.9% (+25.5 MC4)

Speech-to-text librispeech (test-clean) LAS (LSTM) [67, 68] Convformer [55] 13.6% (-0.3 WER5)
librispeech (test-other) 25.0% (-1.3 WER)

a single model comprising several parts trained together. Zhang et al. [57] introduced an
end-to-end speech recognition model based on Transformer encoders called the Transformer
Transducer that outperformed previous hybrid and end-to-end approaches on the LibriSpeech
benchmarks.

The Transformer’s capacity comes at the cost of a quadratic computational and memory
complexity with respect to the sequence length. Therefore, training large Transformers is
prohibitively slow and expensive. For instance, Liu et al. [69] introduced RoBERTa, which
was pre-trained on 1024 high-end V100 graphics processing units (GPUs) for approximately
a day. Although numerous large pre-trained Transformers have been publicly released, fine-
tuning them on the tasks of interest is still computationally expensive. Furthermore, the
sequence lengths are restricted by the amount of memory available. Indeed, practitioners
typically use large mini-batches with relatively short sequences because the Transformer’s
optimization is known to be particularly unstable with small mini-batches. Typically, a
GPU with 16 GB of memory handles sequences up to 512 words. Consequently, there exists
an actual need for lighter and faster Transformers as only a few large organizations can afford
to train massive models. As of the writing of this paper, the largest dense Transformer is
GPT-3 [50] which requires 355 years to train on a V100 GPU, costing around 4,600,000$ of
cloud instances1.

3.1.2 Lighter and Faster Transformers

Over the years, numerous approaches have been proposed to reduce the computational and
memory costs of neural networks, many of which have been applied to Transformers. In this
paper, such methods are referred to as general since they apply, and have been applied, to

1https://lambdalabs.com/blog/demystifying-gpt-3

https://lambdalabs.com/blog/demystifying-gpt-3
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a wide range of models. General methods are often orthogonal, and consequently, several
of them may be combined to precisely fine-tune the network’s capacity, computational cost,
and memory usage. However, general methods may be insufficient as the model complexity
typically remains unchanged. Therefore, many works introduced lower-complexity variations
of the Transformer, referred to as x-formers. In this survey, the Transformer’s alternatives
are categorized depending on whether they sparsify the attention, factorize it, or modify
the network’s architecture. Please note that this survey aims to provide a comprehensive
summary of the methods that improve the Transformer’s efficiency and that fine-grained
taxonomies have already been proposed by Tay et al. [70] and Lin et al. [71]. Accordingly,
our taxonomy will remain purposefully coarse.

Recently, Tolstikhin et al. [72] and Liu et al. [73] amongst others argued that the powerful
yet expensive self-attention mechanism is not necessary to achieve state-of-the-art results and
thus challenged the preconception that the self-attention is the source of the Transformer’s
success. Consequently, they introduced networks without self-attention that are competitive
with Transformers for image classification and language modelling at the same computational
cost. Yu et al. [74] expanded on this idea with a more general and flexible architecture
called MetaFormer where the mechanism to relate the tokens is not specified while the other
components are kept the same as the Transformer. Despite the recent success of attention-
free architectures, such networks are outside the scope of this paper as they arguably remove
the Transformer’s core mechanism and are discussed in the supplementary material.

The remainder of this survey is organized as follows. Section 3.2 introduces the Transformer’s
architecture and the origin of the quadratic complexity. Section 3.3 investigates the popular
general methods that have been applied to Transformers to reduce the computations and
memory footprint. Section 3.4 explores the recent lower-complexity Transformers. Section 3.5
explains the limitations of the different approaches and the current evaluation methodology,
Section 3.6 provides a discussion on the broader impact of lighter and faster Transformers,
and Section 3.7 points out potential future research directions. Finally, Section 3.8 concludes
this survey. Practitioners and researchers can find detailed practical guidelines regarding the
general and specialized methods in the supplementary material, as well as a discussion about
some of the most popular attention-free alternatives.

3.2 Transformer

This section formally introduces the attention mechanism, the Transformer’s architecture,
and the root cause of its quadratic complexity.
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Figure 3.4 The Transformer’s computational graph [43]. From left to right, the scaled dot
product self-attention, the encoder, and the decoder. Note that both the encoder and decoder
comprise L identical layers, of which only one is depicted.

3.2.1 Attention Mechanism

The attention mechanism relies on three matrices, namely Q, K, V ∈ Rn×d, commonly
referred to as “queries”, “keys”, and “values”, respectively. The attention outputs the sum
of the values weighted by a compatibility or alignment score between each token, which is
computed with the function Score(Q, K) ∈ Rn×n. Intuitively, if the i-th query is highly
compatible with the j-th key, then the j-th value greatly contributes to the i-th attention’s
output. The attention mechanism may be written as:

Attention(Q, K, V ) = Score(Q, K)V . (3.1)

Since the compatibility score directly controls the alignment between the tokens, many func-
tions have been proposed. In the original paper, the Transformer relies on the scaled dot
product attention. The dot product refers to the computation of the compatibility score be-
tween a single query and a single key. In practice, however, the compatibility scores are
computed simultaneously for every query and key by multiplying Q with K⊤. Indeed, the
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(i, j) entry of the QK⊤ multiplication is equal to the dot product between the i-th query
and the j-th key. In order to obtain a probability distribution over the positions, referred
to as attention weights, each row of QK⊤ is passed through a Softmax function defined as
follows:

Softmax(x)i = exi∑n
j=1 exj

for i = 1, . . . , n. (3.2)

where x ∈ Rn. Since the dot product grows large in magnitude for large values of d, thereby
pushing the Softmax into a region of small gradients, a scaling factor

√
d is introduced. Thus,

the scaled dot product attention is given by:

Attention(Q, K, V ) = Softmax
(

QK⊤
√

d

)
V . (3.3)

Nonetheless, the attention presented above may not be flexible enough if the relevant infor-
mation for the task is scattered across different regions of the input space. That is due in
part to the Softmax being exponential, which amplifies the differences between the values.
As a result, only a few attention weights are large, i.e., only a few positions are strongly
attended. Vaswani et al. [43] addressed this limitation with the multi-head attention. The
d-dimensional queries, keys and values matrices are first linearly projected h times with dis-
tinct, learned projections to dk, dk and dv dimensions, respectively. On each projection, an
independent attention instance called head is applied, and the output of each attention head
is concatenated before being linearly projected. The Transformer’s multi-head scaled dot
product attention is given by:

MultiHead(Q, K, V ) = [head1; ...; headh]W O. (3.4)

headi = Softmax
(

QW Q
i (KW K

i )⊤
√

dk

)
V W V

i . (3.5)

where W Q
i ∈ Rd×dk , W K

i ∈ Rd×dk , W V
i ∈ Rd×dv are the matrices that project the queries,

keys, and values into the i-th subspace, respectively, and where W O ∈ Rhdv×d is the matrix
that computes a linear transformation of the heads. Typically, dk = d/h where d is the input
and output dimension, and h is the number of heads. For the sake of clarity, methods that
modify the attention will be explained in the context of a single head (see Equation 3.3).

Thus far, the attention mechanism has been described as a general method. The Transformer
relies on two specific instances of this mechanism: the intra-attention, popularly known as
self-attention, and the inter-attention, sometimes referred to as cross-attention. In the case
of inter-attention, the queries correspond to the decoder’s hidden representations, and the
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keys and values are the encoder’s outputs. It allows the decoder to look at the relevant parts
of the input to produce the output. In the case of self-attention, the three matrices are linear
projections of the layer’s input, which allows the encoder and decoder to focus on the relevant
part of the sequence for each position, similarly to the inter-attention depicted in Figure 3.3.

3.2.2 Encoder

The Transformer’s encoder is a function defined as the composition of L identical layers
or blocks, each composed of two sub-layers. The first sub-layer is the aforementioned self-
attention mechanism. The second sub-layer is a simple fully connected feed-forward network
applied position-wise, that is, independently and identically to every position. The feed-
forward network increases the encoder’s expressiveness and transforms the self-attention’s
output for the next layer.

Inspired by ResNet [75], a skip connection, shortcut connection, or residual connection is
applied around each sub-layer to create a direct path for the gradient to flow throughout
the network. Notably, residual connections make the training of very deep neural networks
more stable. Additionally, both sub-layers’ outputs are normalized after the residual connec-
tion with the layer normalization technique, referred to as LayerNorm [76]. Normalization
is a widely adopted technique in deep learning that enables faster and more stable training.
Although the rationale behind the normalization’s empirical success is not yet fully under-
stood [77], it has been conjectured that this results from a smoother optimization landscape,
and to a lesser extent, from a reduction in internal covariance shift [78]. Figure 3.4 depicts
the computational graph of an encoder’s layer.

In natural language processing, the input sequence X would typically represent a sentence
or a paragraph, and the token x(i) would be its i-th word or subword embedding. Each
encoder’s layer is given by:

XA = LayerNorm(Attention(Q, K, V ) + X) (3.6)

XB = LayerNorm(FFN(XA) + XA) (3.7)

where X and XB are the layer’s input and output, respectively, and Q, K, and V are linear
projections of X.

The feed-forward network is given by:

FFN(x) = max(0, xW 1 + b1)W 2 + b2 (3.8)
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where W 1 ∈ Rd×df and W 2 ∈ Rdf ×d, and where df is the dimension of the hidden layer. Note
that the feed-forward network is defined for a row vector since it is applied position-wise,
that is, it is independently and identically applied to every position or row.

Finally, the position-wise layer normalization is given by:

LayerNorm(x) = g ⊙ x − µ√
σ2 + ϵ

+ b (3.9)

where ⊙ denotes the element-wise (Hadamard) product, where the average µ and the standard
deviation σ are computed from all of the summed inputs, where the gain g and the bias b

are learned parameters of dimension d, and where ϵ is a small constant used in practice for
numerical stability.

3.2.3 Decoder

The decoder is also composed of L identical layers. Although it is common for the decoder
to have the same number of layers as the encoder, one may adjust their depth independently.
Each decoder’s layer comprises three sub-layers. The first sub-layer is the self-attention
mechanism, as in the encoder, except that future positions are masked. Indeed, while the
encoder is allowed to look at future positions since the input sequence is entirely available,
the decoder is autoregressive and thus cannot look at future positions since they have not
yet been predicted. Therefore, the i-th position may only attend to positions less than i.
The second sub-layer is the inter-attention mechanism, which helps the decoder focus on the
relevant parts of the input. Finally, the third sub-layer is a simple feed-forward network. As
for the encoder, a residual connection and a layer normalization are applied to each sub-layer.

Note that the decoder may be safely omitted when the task does not require the sequence-to-
sequence framework, such as sentiment analysis, which predicts whether a sentence is positive.
One of the most popular encoder-only Transformers is the Bidirectional Encoder Represen-
tations from Transformers (BERT) [51], a state-of-the-art language model that learns con-
textualized embeddings. Nonetheless, autoregressive tasks such as machine translation still
require the sequence-to-sequence framework.

3.2.4 Complexity

Intuitively, the quadratic complexity emerges from the computation of the compatibility
score between every pair of positions. More precisely, the QK⊤ multiplication requires n2

computations and memory. Such attention is said to be full since any output position is
able to attend to any input position. The attention pattern is visualized by means of a
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connectivity matrix, which indicates the input positions that each output position is able to
attend (see Figure 3.5).
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Figure 3.5 The connectivity matrix of the full attention. The i-th output position attends to
the j-th input position if, and only if, the cell (i, j) is coloured. The diagonal is highlighted
to ease the reading.

What justifies such efforts from the community to improve the Transformer’s efficiency? In
our opinion, there are three primary motivations: affordability, scalability, and ecology.

The foremost reason is affordability. The Transformer has largely surpassed convolutional
and recurrent neural networks and achieved new state-of-the-art results across many tasks.
However, those networks have a linear complexity with respect to the sequence length [43],
making them affordable to most researchers and practitioners. As explained by Strubell et al.
[79], this creates three major issues: (1) it stifles creativity as researchers and practitioners
that do not have access to considerable resources are not able to experiment with Transform-
ers, (2) it reinforces the “rich get richer” cycle where successful labs and companies receive
more funding due to their existing accomplishments with Transformers, and (3) it forces
smaller labs and companies to rely on private cloud services that end up more expensive.

The second reason is scalability. The quadratic complexity prevents researchers and prac-
titioners, even those with access to considerable resources, from applying Transformers on
long sequences such as entire chapters or books, high-resolution images or videos, and DNA.

The third reason is ecology. It is now more apparent than ever that we must cut carbon
dioxide (CO2) emissions in half over the next decade to limit global warming. The large-
scale infrastructures used by the deep learning community consume a considerable amount
of electricity, which is mainly produced by non-renewable sources such as coal or gas [80].

Thereby, the following sections investigate popular and novel methods to make Transformers
faster and lighter.
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3.3 General Approaches

Computational resources have always been a limiting factor for deep learning models [81].
Therefore, numerous approaches have been proposed throughout the years to design faster
and lighter models. This section introduces the most popular techniques that apply to
virtually all neural networks.

Gradient Checkpointing [82]: Intermediate results computed during the forward pass,
also referred to as activations, are required to compute the gradients during the backward
pass; therefore, they are stored in memory. Activations typically account for most of the
memory during training: given an l-layer network, the number of intermediate results is
proportional to the number of layers (O(l)). With gradient checkpointing, also known as
rematerialization, activations are stored only for a subset of the layers. However, they must
be recomputed during the backward pass, trading memory for computations. In the extreme
case where no activations are stored, the memory usage becomes constant (O(1)) at the
cost of a quadratic number of computations with respect to the number of layers (O(l2)).
Chen et al. [82] designed a scheme to select the preserved values that reduces the memory
requirement from O(l) to O(

√
l) at the cost of a single additional forward pass per mini-

batch. OpenAI implementation of gradient checkpointing [83] obtains an impressive 10×
reduction in memory at the cost of a 20% increase in computation time.

Reversible Layers [84, 80, 85, 86]: As explained above, the back-propagation requires the
activations of all intermediate layers, which are either stored in memory during the forward
pass or recomputed during the backward pass. As a solution to the latter case, reversible
layers allow their activation to be reconstructed exactly from the next layer; therefore, ac-
tivations must only be stored for one layer and their memory cost becomes independent of
the network’s depth. More formally, each reversible layer takes as input (x1, x2) and outputs
(y1, y2) such that y1 = x1 + f(x2) and y2 = x2 + g(y1). Each layer’s activations are easily
reconstructed as x2 = y2 − g(y1) and x1 = y1 − f(x2).

Kitaev et al. [87] used reversible layers in their Transformer, called the Reformer, by com-
bining the attention and feed-forward sub-layers inside a reversible layer. Specifically, f(.)
and g(.) were the Attention(.) and FFN(.) functions, respectively. The authors observed
that reversible layers reduced the memory usage of a 3-layer Transformer without degrading
its performance. Nonetheless, reversible layers add numerical errors that accumulate over
multiple layers and may degrade the model performance. Therefore, they are not suited for
very deep networks.

Gradient checkpointing and reversible layers are very much alike in that they trade com-
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putations for memory by recomputing activations during backpropagation. This trade-off is
sometimes necessary: although computation bottlenecks entail longer running times, memory
bottlenecks are critical as they prevent using the model altogether.

Parameter Sharing: A simple approach to reduce the number of trainable parameters
is to impose sets of parameters to be equal in different parts of the network. In other
words, the same parameters are used for multiple operations but need to be stored only once
in memory. Such a technique is often referred to as parameter sharing, weight tying, or
weight replication. As explained in Section 3.1 and illustrated in Figure 3.1, recurrent neural
networks are built around this idea of parameter sharing to process variable-length sequences.
Parameter sharing has also been applied to Transformers. For instance, the Linformer [88]
shares projection matrices across heads and layers, and the Reformer [87] shares its queries
and keys parameters, that is, W Q = W K . Both authors investigated the impact of parameter
sharing and concluded that it did not degrade their respective models’ performance on their
tasks. Lan et al. [89] shared all parameters between layers, which drastically reduced the
number of parameters but also decreased the performance by up to 2.5% on average. They
observed that sharing only the attention parameters resulted in a slight drop in performance
of 0.7% on average. The decrease in performance is to be expected since parameter sharing
reduces the number of free parameters, hence the model’s capacity.

Pruning [81]: Smaller neural networks are not only faster and lighter, but they are also more
likely to generalize better than larger models because they presumably extract underlying
explanatory factors without redundancy. To reduce the model size, weights with a small
saliency, that is, whose deletion have a small effect on the loss, may be removed from large
models after training. Methods that consider individual weights are said to be unstructured,
and methods that consider pieces of the network structure such as attention heads or layers
are said to be structured. Many structured and unstructured pruning schemes have been
proposed, several of which have been applied to Transformers. For instance, Sajjad et al. [90]
reduced the size of BERT by 40% by dropping complete layers while retaining between 97 and
98% of its original performance, and Michel et al. [91] pruned away between 20% and 40%
of BERT attention heads without any significant loss in performance. Recently, the lottery
ticket hypothesis has brought a new justification to pruning neural networks. As introduced
by Frankle and Carbin [92], the hypothesis states that a “randomly-initialized, dense neural
network contains a subnetwork that is initialized such that – when trained in isolation – it can
match the test accuracy of the original network after training for at most the same number
of iterations.”. Prasanna et al. [93] successfully verified this hypothesis on BERT, even
noticing that BERT worst subnetworks remain highly trainable. Nonetheless, pruning has
two limitations: a large model must be trained, and unstructured pruning schemes produce
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sparse models unoptimized for modern GPUs and tensor processing units (TPUs).

Knowledge Distillation [94, 95]: The knowledge of a large model or an ensemble of mod-
els (teacher) is transferred to a single smaller model (student) by training the student to
reproduce the teacher’s outputs or its internal behaviour. The cumbersome teacher is then
discarded, and the student is used at inference time. Given a parameter budget, networks
trained with knowledge distillation usually outperform models directly trained on the task.
Sanh et al. [96], Tsai et al. [97], and Jiao et al. [98] applied different knowledge distillation
schemes on the original BERT [51] to obtain lighter and faster models called DistilBERT,
MiniBERT, and TinyBERT, respectively. Table 3.2 reports their compression, speed-up,
and performance. Although knowledge distillation achieves impressive compression ratios
and performance trade-offs, a large teacher model still needs to be trained, and the student
may perform significantly worse than the teacher. For instance, BERTBASE achieves an accu-
racy of 52.8% on the CoLA task [99], while DistilBERT and TinyBERT only achieve 32.8%
and 44.1%, respectively, according to Jiao et al. [98].

Table 3.2 Multiple knowledge distillations of BERTBASE. Speed-ups are evaluated on GPUs.

Model Compression Speed-up Mean Relative Performance
BERTBASE [51] 1.0× 1.0× 100%
DistilBERT [96] 1.7× 1.6× 97%
MiniBERT [97] 6.0× 2.6 − 4.3× 97 − 99%
TinyBERT [98] 7.5× 9.4× 97%

Mixed-Precision [100]: Modern GPUs and TPUs perform at least twice as many half-
precision (16 bits) float operations as single-precision (32 bits) ones. A popular approach to
accelerate training and reduce memory consumption is storing and computing the weights,
activations, and gradients in half-precision. A master copy of the weights is stored in single-
precision for numerical stability and minimal performance loss. Thanks to NVIDIA’s Auto-
matic Mixed-Precision included in some of the most popular deep learning libraries, namely
TensorFlow, PyTorch, and MXNet, using mixed precision can be as simple as adding one
line of code. Consequently, we highly recommend mixed-precision. Jacob et al. [101] im-
proved over this approach by quantizing both weights and activations as 8-bit integers and
biases as 32-bit integers, effectively allowing inference to be performed using integer-only
arithmetic. Given a parameter matrix W , N -bit quantization rounds each parameter to one
of 2N codewords corresponding to bins evenly spaced by a scale factor s and shifted by a bias
z computed as follows:

s = max W − min W

2N − 1 and z = round
(

min W

s

)
(3.10)
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Each parameter Wi,j is quantized to its nearest codeword, and dequantized as:

Ŵi,j =
(

round
(

Wi,j

s
+ z

)
− z

)
× s (3.11)

In order to mitigate the performance loss associated with the low-precision approximation,
Quantization Aware Training (QAT) [101] quantizes the parameters during training. Since
quantization is not differentiable, gradients are approximated with a straight-through ap-
proximator [102]. Notably, Zafrir et al. [103] quantized all matrix product operations in
BERT fully connected and embedding layers during training, reducing the memory footprint
by 4× while retaining 99% of the original accuracy on the GLUE [66] and SQuAD [104] tasks.
Stock et al. [105] achieved an even higher compression ratio with iterative product quantiza-
tion (iPQ), which replaces vectors of weights by their assigned centroid, and quantization of
those centroids. The authors reduced the size of a 16-layer Transformer by 25×, making the
model only 14 MB, while retaining 87% of the original performance on the Wikitext-103 [106]
benchmark.

While pruning and knowledge distillation achieve faster and lighter models by reducing the
number of parameters, mixed-precision and quantization instead reduce the number of bits
per parameter.

Micro-Batching [107]: Increasing model capacity and data throughput are efficient strate-
gies for improving performances in deep learning. However, increasing data throughput
requires transferring large mini-batches to the accelerators’ memory6, which is also used
to store the model. One way to partially avoid the trade-off between mini-batch size and
model size is to use model parallelism. GPipe [107] is a model parallelism library that en-
ables users to distribute a model by grouping layers into cells assigned to accelerators. To
avoid the communication bottleneck between accelerators due to the forward and backward
operations, the authors proposed a novel batch-splitting algorithm that further splits the
mini-batch into micro-batches. As soon as the first accelerator finishes the forward operation
of the layers assigned to it for a micro-batch, it sends the result over the communication link
and starts processing the next micro-batch. After finishing the last micro-batch’s forward
operation, the accelerators wait for the first micro-batch’s backwards operation results. This
waiting time can be used to recompute the forward operation and further reduce memory
usage, known as rematerialization. Finally, once the backward operation is completed on the
last micro-batch, the algorithm sums all micro-batch’s gradients to obtain the mini-batch’s
gradient (see Figure 3.6). However, the result is not exact with layers that compute statistics

6An accelerator denotes any device that accelerates computation, such as a graphics or tensor processing
unit.
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across all mini-batch examples, such as a batch normalization layer [108]. Finally, GPipe is
compatible with data parallelism, where multiple mini-batches are processed in parallel.

Huang et al. [107] empirically demonstrated that GPipe allows the maximum Transformer
size to scale linearly with the number of accelerators. For instance, a TPU v3 with 16Gb
of memory can only fit a 3-layer Transformer. With GPipe, the same TPU is able to fit
13 layers, while 128 TPUs are able to fit 1663 layers, which is 127.9× more. Additionally,
the authors distributed a 48-layer Transformer across 8 TPUs and reported that the training
throughput was 4.8 times higher with 32 micro-batches than with a single one.
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Device 1
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Update
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Waiting
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Figure 3.6 Micro-Batching applied to a model distributed across three devices [107]. Fi

and Bi denotes the sequential forward and backward operations, respectively, performed by
the i-th device. Computation on a device may start as soon as the previous device in the
computational graph has processed the first micro-batch. Therefore, micro-batching reduces
the waiting time of each device at the cost of inter-device communications. Note that the
model update is done synchronously at the end.

Mixture of Experts [109]: The core idea is to train multiple networks called experts, each
of which specializes only in a subset of the data, and a manager or router, which forwards
the input to the corresponding experts. A single network is used in practice, whose layers
are composed of multiple subsets of parameters (experts), effectively resulting in a sparsely
activated model as illustrated in Figure 3.7. Increasing the number of experts keeps the
computational cost constant since the model always selects the same number of experts for
each input regardless of the number of experts. Therefore, the mixture of experts (MoE)
approach allows for massive models and is particularly efficient for distributed systems in
which experts are spread across devices. In that case, the number of experts, and there-
fore parameters, scales with the number of devices available. Despite these advantages, the
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mixture of experts has not yet been widely adopted as the method is complex to deploy in
practice. It imposes a communication cost between the devices, a computation cost to select
the experts for each input position, and makes training unstable. Recently, Fedus et al. [110]
introduced the Switch Transformer based on a carefully crafted mixture of experts. Notably,
given a fixed amount of computation per input position, the Switch Transformer reached the
same quality threshold as a vanilla Transformer five times faster (wall-clock time) on average.
Additionally, when trained further, the Switch Transformer outperformed the vanilla base-
line. However, this approach assumes that multiple regimes with distinct input to output
relations produce the data.

LayerNorm

Switch FFN

LayerNorm

Attention

FFN2 FFN3

Router

FFN1 FFN2

Router

Encoder's 
layer

FFN3FFN1

Figure 3.7 The computational graph of a single layer of the Switch Transformer’s en-
coder [110]. The Transformer’s feed-forward network (FFN) has been replaced by a Switch
FFN which independently routes each position to an expert. The expert’s output is multi-
plied by the gate value. Note that the computational cost is independent of the number of
experts since a single expert is active for each position.

Difficult tasks often require large models to achieve the desired performance. However, such
models require powerful and expensive accelerators. Both micro-batching and the mixture
of experts offer an alternative to train such models on many relatively weak and inexpensive
GPUs at the cost of complex implementation.

Sample-Efficient Objective [111]: Large neural networks, especially Transformers, ben-
efit from being pre-trained with an unsupervised objective before being fine-tuned on the
task of interest, also called the downstream task. The core idea is to leverage large unla-
belled datasets that are easy to automatically collect in order to learn the data underlying
explanatory factors and ultimately improve the model performance. Concretely, pre-training
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initializes the network’s weights in a “good” region of space. As pre-training of large mod-
els is often more compute-intensive than fine-tuning, researchers regularly share pre-trained
models to facilitate their adoption. Most notably, Hugging Face [112] is an open-source li-
brary that contains an extensive collection of pre-trained Transformers under a unified API.
Nonetheless, researchers must sometimes pre-train models themselves due to the peculiar
nature of the data or the problem at hand. In that case, a sample-efficient objective will
reduce the computation required.

Recently, Devlin et al. [51] popularized the Cloze procedure [113] for pre-training under the
name of masked language model (MLM), which independently estimates the probability of
masked words given the rest of the sequence. Practically, 15% of the words are randomly
selected, of which 80% are masked, 10% are replaced by a random word, and 10% are left
unchanged. This task is analogous to the reconstruction of corrupted input. Figure 3.8
illustrates the masked language model objective.

the cooks bird meal

Generator 
(large Transformer)

MASK

the chef cooks a meal

chef prediction

masked
sequence

Figure 3.8 The masked language model objective [51]. The masked words are depicted in red.
The model makes a prediction only for the masked words; thus, MLM is computationally
inefficient.

Clark et al. [111] introduced the replaced token detection objective to speed up pre-training;
a small network (generator) first generates a plausible alternative for each masked word,
then the large model (discriminator) predicts whether each word has been replaced (see
Figure 3.9). While the masked language model makes a prediction only for the masked works,
the replaced token detection makes a prediction for every word. Therefore, the latter is more
computationally efficient than the former; in other words, less pre-training computations are
required to achieve the same performance on downstream tasks. Additionally, the authors
reported that the representations learned with their objective outperformed those learned
with MLM given the same model size, data, and computation. Most notably, they were able
to outperform GPT on the GLUE benchmark with 30× fewer computations.

Parameter Initialization Strategies: Optimizing deep networks is challenging in part
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Figure 3.9 The replaced token detection objective [111]. A plausible alternative of each
masked word is sampled from a small generator network. Then a discriminator predicts
whether each word has been replaced.

because of the considerable influence of the initial point on the iterative process. Notably,
the initial point determines whether the algorithms converge at all and, if it does converge,
the speed at which it converges as well as the quality of the solution [28]. Transformers
are notoriously difficult to train, typically requiring carefully tuned optimizers with adaptive
learning rates, learning rate schedulers, and large batches. Even then, convergence is not
guaranteed. Consequently, Liu et al. [114] and Huang et al. [115] concurrently proposed
initialization schemes for the Transformer that promise a smoother and faster optimization
as well as better generalization performances.

Liu et al. [114] identified an amplification effect that significantly influences training: each
layer heavily depends on its residual branch7, making the optimization unstable as it am-
plifies small parameter perturbations. Ultimately, the amplification effect may produce a
notable change in the Transformer’s output. Nonetheless, the authors observed that heavy
dependencies on the residual branches are necessary to unlock the Transformer’s potential
and achieve better results. In order to mitigate the amplification effect, Liu et al. [114] intro-
duced the Adaptive Model Initialization strategy, or Admin, that controls the dependency
on the residual connections in the early stage of training with a new parameter ω. Formally,

7For a residual block f(x) + x, the residual branch refers to f(x) and the skip connection, shortcut
connection, or residual connection refers to x.
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the i-th sub-layer output is given by

X i = LayerNorm(fi(X i−1) + X i−1 ⊙ ωi), (3.12)

where fi(X), X i−1, and X i, denote the function, input, and output of the i-th sub-layer,
respectively. Although this is equivalent to rescaling some model parameters, the authors
observed that rescaling leads to unstable training in half-precision.

The proposed initialization strategy requires three steps. First, the model parameters are
initialized with a standard method such as the Xavier initialization [116] and the Admin
parameter ω with ones. Then, one or a small number of mini-batches are forward propagated
without updating the parameters and record the output variance of each residual branch
Var[fi(X i−1)]. Finally, the Admin parameter is initialized as ωi =

√∑
j<i Var[fj(Xj−1)].

Once the model has been trained, ω may be discarded.

The amplification effect is, however, not the only mechanism that makes Transformers noto-
riously difficult to train. Huang et al. [115] addressed two other issues: (i) Transformers are
typically trained with optimizers that rely on adaptive learning rates as conventional SGD
fails to train them effectively. However, adaptive learning rates have a problematically large
variance in the early stages of optimization, resulting in convergence issues [117]; and (ii) the
magnitude of the error signal propagated through LayerNorm is inversely proportional to the
magnitude of the input [118]. Specifically, the norm of the layer normalization gradient is
proportional to: ∥∥∥∥∥∂LayerNorm(x)

∂x

∥∥∥∥∥ = O
( √

d

∥x∥

)
(3.13)

Consequently, if the input norm ∥x∥ is larger than
√

d, backpropagating through layer nor-
malization reduces the gradient magnitude for layers closer to the input. As a solution to
both problems, Huang et al. [115] proposed an initialization strategy called T-Fixup that
restricts the magnitude of the updates in the early stages of training, thus mitigating the
vanishing gradient issue while eliminating the need for layer normalization and warmup.

While Liu et al. [114] and Huang et al. [115] claim faster convergence, they omitted to report
the improvement.

Architecture Search: One of the most challenging goals in deep learning is to automatically
design networks. Indeed, the problem of finding architectures that achieve the best perfor-
mance with the fewest operations and lowest memory footprint in a discrete search space is an
NP-hard combinatorial optimization problem. Over the years, multiple approaches to Neu-
ral Architecture Search (NAS) have been proposed, including reinforcement learning [119],
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evolutionary algorithms [120], and bilevel optimization [121]. Notably, Zoph et al. [122]
demonstrated that NAS is able to surpass human-designed architectures on ImageNet by
1.2% top-1 accuracy while using 28% fewer computations. Nonetheless, neural architecture
search methods are computationally expensive as they usually require training each candi-
date model from scratch. As a solution, Pham et al. [123] proposed Efficient NAS (ENAS),
which constrains all candidates to be subgraphs of a single computational graph, that is, to
share parameters. Therefore, the ENAS’s controller decides which operations are activated
and relies on the models’ ability to adapt, similarly to dropout [124]. Efficient NAS reduces
the search computational budget by 1,000× over the original NAS [119]. Alternatively, Liu
et al. [121] proposed the Differentiable Architecture Search (DARTS), which casts the NAS
problem as a differentiable bilevel optimization problem. The first level consists of a contin-
uous relaxation of the discrete search space using a Softmax function over a list of candidate
operations, and the second level involves the model’s weights. However, the bilevel formula-
tion requires training the weights to convergence to evaluate the architecture gradient. To
avoid this substantial cost, the authors made the approximation of taking a single gradi-
ent step of the weights for one gradient step of the architecture parameters. The authors
obtained comparable performances to non-differentiable NAS methods on ImageNet in the
mobile setting using only 4 GPU-days, compared to 3,150 for evolutionary algorithms [120]
and 2,000 for NAS [122]. Differentiable Architecture Search obtained comparable results to
ENAS with a similar computational budget. We refer the reader to Elsken et al. [125] survey
for further detail on architecture search methods.

Nevertheless, neural architecture search methods are challenging to apply on Transformers
due to the memory requirements and training time. Therefore, recent works introduced
methods better suited for the Transformer. So et al. [126] modified the tournament selec-
tion evolutionary architecture search [120] with Progressive Dynamic Hurdles (PDH), which
dynamically allocates resources to more promising architectures according to their perfor-
mances. With PDH, the authors optimized transformer architectures directly on the WMT’14
En-De task [127] which requires 10 hours of computation on a Google TPU v2 for the base
Transformer model. Training directly on this dataset is essential since the authors did not
find a smaller surrogate dataset that transfers well, such as CIFAR-10 for ImageNet. The
Evolved Transformer matched the vanilla Transformer’s performance with only 78% of its
parameters. Recently, Tsai et al. [128] profiled the Transformer’s components on a TPU v2
and observed that some mechanisms substantially impact inference time: attention queries,
keys, and values dimensions, width and depth of feed-forward layers, number of attention
heads, and layer normalization mean computation. By decomposing these components into
building blocks and using binary variables, the authors perform a one-shot search for both
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the architecture and the parameters with a single loss. They optimized this loss with gradient
descent on a continuous relaxation of the binary variables and used policy gradient algorithm.
Tsai et al. [128] were able to make miniBERT 1.7× faster with a performance drop smaller
than 0.3%. Compared to the original BERT, this is 33 to 36× faster.

Neural architecture search is a promising tool to design lighter and faster Transformers au-
tomatically. Nonetheless, NAS imposes a high computational and memory cost, which may
be avoided by carefully engineering the architecture instead. For instance, the Lite Trans-
former [129] leverages the Long-Short Range Attention (LSRA), where a convolutional layer
is applied in parallel to the self-attention in order to learn the local dependencies separately.
The carefully handcrafted Lite Transformer outperforms the Evolved Transformer [126] for
the mobile NLP setting while requiring about 14,000× less GPU time.

Conditional Computing [130]: Although large models are necessary for hard examples,
smaller models are likely to perform as well, if not better, on simpler ones. For instance,
many words such as “car” are easy to translate, while a few such as “can” require careful
consideration of the context8. As of this survey’s writing, most architectures apply a fixed
number of operations to all examples regardless of their difficulty. A more efficient approach
would be to reduce the amount of computation for simple examples. As a solution, Bengio
[130] introduced conditional computing, which dynamically adapts the model’s computational
graph as a function of the input.

One way to implement conditional computing is with a mixture of experts, as introduced
previously. In that case, only a subset of the parameters is used for a given input, making
the computational graph sparse and the computation time almost constant with respect to
the model size. Another approach consists of keeping the number of parameters constant
and letting the model adjust its computation time separately for each input (according to the
input’s value). This approach is called Adaptive Computation Time (ACT) [131] and uses a
recurrent mechanism to transform the representations until a halting probability exceeds a
given threshold. The model learns to control this probability to minimize both the prediction
error and the number of iterations, called the ponder cost, which prevents the model from
using an infinite amount of computation before making a prediction. One shortcoming of the
Adaptive Computation Time is its sensitivity to the ponder cost, which controls the trade-off
between speed and accuracy.

Dehghani et al. [132] applied ACT to a Transformer with a recurrent mechanism for the
architecture’s depth. To implement this mechanism, the authors defined encoder and decoder

8Depending on the context, the word “can” has various meanings, including “be able to”, “may”, “jail”,
and “metal container”. See https://www.wordreference.com/definition/can.

https://www.wordreference.com/definition/can
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blocks similar to the original Transformer, except that each block is recurrent, sending its
output back as its input until the ponder cost becomes too high. Note that a fixed number of
recurrent steps is equivalent to a Transformer with tied parameters across all layers. With this
new architecture called Universal Transformer, the authors claimed that it is computationally
universal (Turing-complete) given enough memory. This property may help Transformers
generalize to sequences longer than the ones seen during training. The authors obtained state-
of-the-art results on algorithmic and language understanding tasks. ACT and the Universal
Transformer apply the same layers iteratively, which may not be sufficiently flexible. Elbayad
et al. [133] addressed this limitation with the Depth-Adaptive Transformer (DAT), which
applies different layers at every depth. The DAT matches the performance of a well-tuned
Transformer baseline while reducing the computation by up to 76%. However, the authors
did not provide a comparison between the Universal Transformer and DAT.

In the same way that complex examples may require more computations, some may require
access to a longer context. As a solution, Sukhbaatar et al. [134] dynamically adjusted the
attention span, that is, the context length, by learning to mask the compatibility scores
depending on the input. Their approach achieved state-of-the-art on text8 and enwik8 [135]
while requiring significantly fewer computations. Alternatively, Li et al. [136] introduced the
Decoder-end Adaptive Computation Steps (DACS), which monotonically computes halting
probabilities along with the encoder states and stops the decoder computations in order to
produce an output when the accumulation of probabilities exceeds a given threshold. In
other words, each decoder step only looks at the necessary information as measured by the
halting probabilities instead of looking at the entire input sequence.

3.4 Specialized Approaches

Since the Transformer’s quadratic complexity comes from the attention mechanism, most
specialized methods rely on a fast and light approximation of the original full attention.
As will be explained in greater detail in the rest of this section, the attention weight ma-
trix is dominated by a few large values and is approximately low-rank. These observations
justify two distinct lines of work: sparse attention and factorized attention. Alternatively,
the complexity may be reduced without altering the original attention mechanism and thus
the Transformer’s capacity by directly modifying the network’s architecture. Let us first
investigate the approaches that rely on sparse attention.

Note that some approaches only consider autoregressive tasks, such as the left-to-right lan-
guage model, and in that case, the connectivity matrix is lower triangular as it is not per-
mitted to attend to future positions. Whenever possible, such works have been extended
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to the more general case where attending to future positions is allowed in order to ease the
comparison between the different approaches.

3.4.1 Sparse Attention

Due to the exponential nature of the Softmax, only a few positions are strongly attended
to. Consequently, a conceptually simple way of reducing the Transformer’s complexity is to
make the matrix QK⊤ sparse9, in other words, to only allow each position to attend to a
subset of the positions. Let us investigate sparse patterns that are (i) fixed and random, (ii)
learned and adaptive, and (iii) identified with clustering and locality sensitive hashing.

Fixed and Random Sparse Patterns [137, 138, 139, 140, 141, 142, 58]: One of the
first models to consider fixed sparse patterns is the Star-Transformer introduced by Guo
et al. [137], which reduced the complexity from quadratic to linear by only allowing attention
between adjacent positions. In order to preserve the Transformer’s ability to model long-term
dependency, the authors relied on a single global token. Global tokens, also known as shared
relay nodes, can attend to every position, and every position can attend to global tokens. Let
us assume that the global token is located at position 0. The i-th output position is allowed
to attend to every input position if i = 0, otherwise, it is allowed to attend to the j-th input
positions for j = 0 and if i − 1 ≤ j ≤ i + 1. Figure 3.10 illustrates the Star-Transformer
attention pattern.
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Figure 3.10 The connectivity matrices of the Star-Transformer [137].

Concurrently, Child et al. [138] introduced the Sparse Transformer which reduced the com-
plexity to O(n

√
n) with two different sparse attention patterns: strided and fixed. Strided

attention allows the i-th output position to attend to the j-th input position if one of the two
following conditions is satisfied: (i + s) > j > (i − s) or (i − j) mod s = 0, where the stride

9Since the matrix QK⊤ is passed through a Softmax function, the masked values are set to minus infinity,
effectively setting their contribution to e−∞ = 0.
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s is chosen to be close to
√

n. Similarly, fixed attention allows i to attend to j if one of the
two following conditions is satisfied: floor(j/s) = floor(i/s) or (j mod s) ≥ (s − c), where c

is an hyperparameter. Figure 3.11 illustrates the strided and fixed attention patterns.
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Figure 3.11 The connectivity matrices of the Sparse Transformer Child et al. [138]. (Left)
Strided attention with a stride of 3. (Right) Fixed attention with a stride of 3 and c = 1.

Alternatively, Wang et al. [139] introduced the Cascade Transformer, which relies on sliding
window attention whose size grows exponentially with the number of layers. More specifically,
the number of cascade connections at the layer l is equal to 2.b.ml − 1, where b is the base
window size and m is the cardinal number; therefore reducing the complexity to O(n.b.ml).
Cascade attention is well suited for shallow networks, but its complexity tends to that of the
full attention in deep networks as depicted by the connectivity matrices in Figure 3.12.

Li et al. [140] introduced the LogSparse-Transformer for forecasting fine-grained time se-
ries with strong long-term dependencies. The LogSparse-Transformer relies on the eponym
attention that allows the i-th output to attend to the j-th inputs for j ∈ {−2⌊log2 i⌋, i −
2⌊log2 i⌋−1, . . . , i − 21, i − 20, i, i + 20, i + 21, . . . , i + 2⌊log2(n−i)⌋−1, i + 2⌊log2(n−i)⌋} where ⌊.⌋ de-
notes the floor operation and N denotes the sequence length. Figure 3.13 illustrates the
connectivity matrix of the LogSparse attention. Since only O(log n) positions are attended
to by each of the n positions, the complexity of the LogSparse attention is O(n log n). Addi-
tionally, the authors proposed two alternatives: (1) to allow the i-th output to attend to the
first k input positions, after which the LogSparse attention is resumed, and (2) to divide the
input sequence into subsequences, and to apply the LogSparse attention on each of them.

Qiu et al. [141] introduced BlockBERT, which relies on the block-wise attention: the input
sequence is split into nb non-overlapping blocks, and positions in block i are only allowed
to attend to positions in block π(i), where π denotes a permutation. The author chose to
generate the permutations by simply shifting the positions. For instance, the possible permu-
tations of {1, 2, 3} are {1, 2, 3}, {3, 1, 2}, and {2, 3, 1}. The permutation {2, 3, 1} means that
the first block attends to the second block, the second block attends to the third block, and
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Figure 3.12 The connectivity matrices of the Cascade attention [139] for the first four layers
with a base window b = 1 and a cardinal number m = 2. For instance, the window size of
the third layer (l = 2) is equal to 2 × b × ml − 1 = 7.

the third block attends to the first block. In the multi-head setting, a different permutation10

is assigned to each head. More formally, the output position i is only allowed to attend to
input j if the following condition is satisfied:

π

(⌊
(i − 1)nb

n
+ 1

⌋)
=
⌊

(j − 1)nb

n
+ 1

⌋
(3.14)
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Figure 3.13 The connectivity matrix of the LogSparse attention Li et al. [140].

10Note that if the number of heads is greater than the number of permutations, multiple heads must be
assigned the same permutation.
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Figure 3.14 illustrates the connectivity matrix of the block-wise attention where a sequence
of length n = 12 is split into nb = 3 blocks. Although the block-wise attention reduces
the memory and computational cost by a factor nb, the complexity remains quadratic with
respect to the sequence length.
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Figure 3.14 The connectivity matrices of the block-wise attention [141] for nb = 3 blocks.
The corresponding permutations are written below the connectivity matrices.

Beltagy et al. [142] introduced the Longformer which further reduces the complexity to O(n)
using a combination of sliding window and global attentions (see Figure 3.15). The assump-
tion behind the sliding window attention is that the most useful information is located in each
position’s neighbourhood. The sliding window attention is limited in that it requires O(

√
n)

layers to model long-range dependencies. Thus, a few preselected tokens have a global atten-
tion: they can attend to every position and be attended by every position. Consequently, the
maximum path length between any two positions is equal to 2. Zaheer et al. [58] introduced
BigBird, which also achieves a linear complexity using a combination of random, sliding win-
dow, and global attentions (see Figure 3.15). BigBird has two configurations that the authors
referred to as internal transformer construction (ITC) and extended transformer construction
(ETC). Similarly to the Longformer, the former uses existing positions for global attention,
while the latter uses additional tokens, increasing the model’s capacity and performance. In-
terestingly, the extra location of ETC may be seen as a form of memory. The authors proved
that their sparse factorization preserves the theoretical properties of Transformers with the
full attention: the model is both a universal approximator of sequence functions and Turing
complete. However, BigBird without random attention outperformed BigBird with it in most
of their experiments.

Learned and Adaptive Sparse Patterns [143, 144, 145]: Fixed and random patterns are
handcrafted and may not be suitable for the data and task at hand. One may instead learn
the relevant patterns and adapt them based on the content.

In order to increase the flexibility of the block-wise attention, Tay et al. [143] introduced the
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Figure 3.15 The connectivity matrices of two sparse attention schemes. (Left) Long-
former [142]. (Right) BigBird [58]. The attention is the combination of sliding window
attention (blue), global attention (green), and random attention (orange).

sparse Sinkhorn attention, which is equivalent to the block-wise attention whose keys have
been sorted in a block-wise fashion. In other words, the permutations are learned. More
specifically, the sparse Sinkhorn attention transforms the input sequence X ∈ Rn×d into
X ′ ∈ Rnb×d where nb is the number of blocks, and where X ′

i is equal to the sum of the input
in that block. A simple feed-forward network then learns a mapping Ri ∈ Rnb from the i-th
block X ′

i to all blocks. In order to obtain a sorting matrix from R ∈ Rnb×nb , that is, a matrix
comprising only 0s and 1s, and whose rows and column sum to one, the rows and columns
are iteratively normalized. The sorting matrix is then used to permute the keys, effectively
learning which block to attend (see Figure 3.16). The sparse Sinkhorn attention reduces the
complexity to O(n2

b). Nonetheless, since the block size is constant in the original paper, the
complexity remains quadratic with respect to the sequence length. Additionally, the authors
proposed a truncated version of the sparse Sinkhorn attention, which selects a few keys after
sorting them, further reducing the complexity to O(n).
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Figure 3.16 The connectivity matrix of the sparse Sinkorn attention [143].

Recently, Shi et al. [144] put under the microscope the attention patterns learned by
BERT [51] and observed that the diagonal elements are less important compared to other
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positions, that is, they contribute the least to the output, while neighbourhood positions
and special tokens are prominent. To confirm their observations, they dropped the diagonal
element in BERT’s attention such that each position is not allowed to attend to itself and
noted that the performance remains comparable to the original model. Additionally, they
observed that models for different tasks have various degrees of redundancy and hence can
achieve various sparsity levels before significantly dropping performance. Consequently, Shi
et al. [144] proposed to learn sparsity patterns for each task in an end-to-end fashion with the
Differentiable Attention Mask (DAM) algorithm. Let us denote the attention score between
the i-th output position (query) and j-th input position (key) as αi,j. They proposed to
compute the attention mask Mi,j as the Gumbel-Sigmoid [146] of the attention score αi,j:

Mi,j = Gumbel-Sigmoid(αi,j) = Sigmoid
(

αi,j + G1 − G2

τ

)
(3.15)

where G1, G2 are independent Gumbel noises Gk = − log(− log(Uk)) generated from a uni-
form distribution Uk ∼ U(0, 1), and where τ is a temperature hyperparameter. Note that
the Gumbel-Sigmoid becomes binary as τ approaches 0. A penalty term λ∥M∥1 is added
to the loss to control the trade-off between performance and sparsity. The resulting model
called SparseBERT achieved 91.2% sparsity while maintaining an average score of 80.9% on
GLUE, i.e., only 3% lower than the full BERT. Such an approach deviates from previous
sparse attention whose patterns have been manually handcrafted. To avoid learning com-
pletely unstructured sparsity patterns, the authors proposed to enforce the first and last
row/column of the attention mask to be active and all positions on each line parallel to the
diagonal to share their mask parameters.

As mentioned above, due to the exponential nature of the Softmax, most positions are lightly
attended to. In other words, most attention weights are small but non-zero. Instead, Correia
et al. [145] introduced the Adaptively Sparse Transformer that replaces the Softmax by the
α-entmax function, a differentiable generalization of the Softmax that pushes small weights
to be exactly zero. Formally, the α-entmax function is defined as:

α-entmax(z) = argmax
p∈∆d

p⊤z + HT
α(p), (3.16)

where ∆d = {p ∈ Rd : ∑i pi = 1} and, for α ≥ 1, HT
α is the Tsallis continuous family of

entropies:

HT
α(p) =


1

α(α−1)
∑

j(pj − pα
j ), α ̸= 1

−∑
j pj log pj, α = 1.

(3.17)
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The authors showed that the solution to the equation 3.16 is

α-entmax(z) = [(α − 1)z − λ1]
1

α−1
+ , (3.18)

where []+ denotes the ReLU function, 1 denotes the vector of ones, and λ is the Lagrange
multiplier corresponding to the ∑i pi = 1 constraint.

Interestingly, when α = 1, the α-entmax is equivalent to the Softmax, and the attention is
dense, and when α > 1, the output is permitted to be sparse. In their experiments, a scalar
parameter ai,j is learned for the j-th attention head of the i-th layer, and αi,j is computed
as:

αi,j = 1 + sigmoid(ai,j) ∈ ]1, 2[ (3.19)

Nonetheless, the Adaptively Sparse Transformer computes the attention score for each pair
of queries and keys. Consequently, the sparsity cannot be leveraged to improve the memory
and computation, resulting in a model that is 25% slower than the original Transformer in
terms of tokens per second.

As of this survey’s writing, unstructured sparse attention (whether fixed, random or learned)
does not benefit from efficient implementations and therefore cannot result in memory and
computational improvements. Nonetheless, there are exciting researches in that direction, as
noted by Hooker [147]. In contrast, some structured sparsity patterns benefit from efficient
implementations. Recently, NVIDIA introduced its Ampere architecture which efficiently
compresses 2:4 structured sparsity on rows, that is, two non-zero values in every four entries.

Clustering and Locality-Sensitive Hashing [87, 148]: The Softmax function is domi-
nated by the largest values, that is, by the keys and queries that have the largest dot product.
Therefore, the attention may be approximated by only comparing the most similar keys and
queries. Although this approach is a form of adaptive sparsity as the patterns depend on the
data, they are presented separately due to their conceptual difference.

Kitaev et al. [87] introduced the Reformer, which selects the set of keys that the query can
attend to by grouping them with an angular multi-round locality-sensitive hashing (LSH).
Such hashing scheme has a high probability of assigning the same value to similar vectors.
Formally, queries and keys are shared (Q = K) and bucketed using b hash values obtained
as follows:

p = [x⊤R; −x⊤R] (3.20)

h(x) = argmax
i

(pi) (3.21)
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where ; denotes the concatenation operation, and where x ∈ Rd is a query/key and R ∈
Rd×b/2 is a random rotation matrix. Output positions are only allowed to attend to input
positions that are in the same bucket. They are, however, not allowed to attend to themselves
because the dot product of a vector with himself will almost always be greater than the dot
product with other positions.

The authors chose a constant bucket size lB, resulting in a number of buckets nB = n/lB.
The attention complexity is O(nB × l2

B) which simplifies as O(n). This does not take into
account the computation of the hash values for each position. As only log nB bits are required
to encode nB buckets, the complexity of computing hash values is given by O(n log nB),
which simplifies as O(n log n). Consequently, the complexity of the Reformer’s attention is
O(n log n).
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Figure 3.17 The connectivity matrix of the Reformer [87]. Queries and keys are bucketed
using LSH then sorted by their bucket. Therefore, the i-th row of the connectivity matrix
may not correspond to the i-th position in the input sequence. Units can only attend other
units in the same bucket, but not themselves because queries and keys are equal. The colour
represents buckets.

The Maximum Inner Product Search (MIPS) problem is the task of searching for the vector
Kj in K = {K1, K2, · · · , Kn} that maximizes the dot product with a given vector Qi. Note
that the MIPS problem is particularly useful for the attention mechanism as Q⊤

i Kj is directly
proportional to the contribution of the j-th value for the i-th attention’s output. There are
multiple approaches to approximately solve this problem, including tree-based and LSH-
based. When the norm of every Kj is constant, the problem is equivalent to the Nearest
Neighbour Search (NNS). Motivated by this observation and to avoid the computational cost
of learning sparsity patterns, Roy et al. [148] proposed the Routing Transformer that relies
on an online mini-batch version of k-means and a set of centroids learned along the rest of
the parameters. Like the Reformer, queries can only attend to keys from the same cluster,
inducing an adaptive or content-based sparsity pattern.
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3.4.2 Factorized Attention

Wang et al. [88] demonstrated that the attention matrix Softmax
(
QK⊤/

√
d
)

is approxi-
mately low rank. Consequently, another approach to reduce the Transformer’s complexity is
to approximate the attention by factorizing it into the product of two matrices with lower
dimensions.

Low-Rank Factorization [88, 149, 150]: Wang et al. [88] introduced the Linformer, a
linear complexity model that approximates the attention with a low-rank factorization by
first projecting each key to a lower dimension before performing the dot product, thereby
saving time and memory. Formally, the low-rank attention is given by:

Attention(X) = Softmax
(

QK⊤
√

d

)
︸ ︷︷ ︸

n×n

V︸︷︷︸
n×d

≈ Softmax
(

Q(EK)⊤
√

d

)
︸ ︷︷ ︸

n×k

F V︸ ︷︷ ︸
k×d

(3.22)

where E, F ∈ Rk×n, with k ≪ n, are two linear projection matrices learned during training.
The authors showed that E and F could be shared across heads and layers with virtually no
performance penalty.

Tay et al. [149] introduced a family of models called Synthesizers that learn the compatibility
scores without computing the pairwise dot products between the queries and keys. For
instance, the Dense Synthesizer learns the compatibility scores with a simple position-wise
feed-forward network that projects each of the n rows of X from R1×d to R1×n:

F(X i) = max(0, X iW 1 + b1)W 2 + b2 (3.23)

where W 1 ∈ Rd×d and W 2 ∈ Rd×n. Finally, the attention is given by:

Attention(X) = Softmax(F (X))G(X) (3.24)

where G(·) : Rn×d → Rn×d is a projection of the input akin to the values. In order to improve
the efficiency, the authors proposed the Factorized Dense Synthesizer which first project the
input X with two feed-forward networks:

A = FA(X) ∈ Rn×a and B = FB(X) ∈ Rn×b, (3.25)

such that a × b = n. Then, two tiling functions HA(·) : Rn×a → Rn×(a.b) and HB(·) : Rn×b →
Rn×(b.a) are applied to A and B, respectively. Note that a tiling function simply repeats a
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vector multiple times. Finally, the attention of the Factorized Dense Synthesizer is given by:

Attention(X) = Softmax(HA(A)HB(B)⊤)G(X) (3.26)

Additionally, the authors proposed a baseline called the Factorized Random Synthesizer,
whose compatibility scores are independent of the input. Formally, the Factorized Random
Synthesizer’s attention is given by:

Attention(X) = Softmax(R1R
⊤
2 )G(X) (3.27)

where R1, R2 ∈ Rn×k are two low-rank matrices learned during training. Although the
Synthesizers eliminate the need to compute the pairwise dot products, which speed up the
model in practice, the complexity remains quadratic with respect to the sequence length.

The Nyströmformer [150] relies on the Nyström method to generate a low-rank approximation
of the Softmax matrix. However, applying the Nyström method directly to the Softmax would
require to compute the QK⊤ product, which requires O(n2) computations and memory. As a
solution, the Nyströmformer creates two subsets K̃ and Q̃ of columns, called landmarks, from
K and Q, respectively. The authors applied the segment-means approach, which computes
the landmarks as the averages over predefined spans of keys and queries. Let SAB denotes
Softmax(AB⊤/

√
d) for any matrix A and B. The Nyströmformer approximates the Softmax

matrix as:
Softmax

(
QK⊤

√
d

)
≈ SQK̃S+

Q̃K̃
SQ̃K (3.28)

where the superscript + denotes the Moore-Penrose inverse typically computed with the
singular value decomposition (SVD). Since the SVD is inefficient on GPU, the authors relied
on an iterative method that approximate S+

Q̃K̃
as Z+. Finally, the Nyströmformer’s attention

is given by:
Attention(X) ≈ SQK̃Z+SQ̃KV (3.29)

which can be efficiently encoded in a computational graph.

Provided that the number of landmarks is constant and much smaller than the sequence
length, the Nyströmformer complexity is O(n). Depending on the number of landmarks and
the sequence length, the authors reported substantial gains over the Linformer and Long-
former on the masked language model and sentence order prediction objectives. Additionally,
the representations learned by the Nyströmformer appear to transfer as well as BERT to dif-
ferent NLP tasks. Nonetheless, a more extensive evaluation of the Nyströmformer remains
necessary.
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Kernel Attention [151, 152]: A kernel K(·, ·) is a function that takes two vectors as argu-
ments and returns the product of their projection by a feature map ϕ(·):

K(x, y) = ϕ(x)⊤ϕ(y) (3.30)

Katharopoulos et al. [152] interpreted the Softmax as a kernel, decomposed it as an inner
product in the right space, and rearrange the computations in a clever way to reduce the
complexity. More specifically, the self-attention of a given query Qi may be rewritten using
a mapping ϕ(·):

Softmax
(
Q⊤

i K⊤
)
V =

∑n

j=1 exp
(

Q⊤
i Kj

)
V j∑n

j=1 exp
(

Q⊤
i Kj

) =
∑n

j=1 ϕ

(
Qi

)⊤
ϕ

(
Kj

)
V j∑n

j=1 ϕ

(
Qi

)⊤
ϕ

(
Kj

) =
ϕ

(
Qi

)⊤∑n

j=1 ϕ

(
Kj

)
V ⊤

j

ϕ

(
Qi

)⊤∑n

j=1 ϕ

(
Kj

) (3.31)

where the scaling factor
√

d has been omitted for the sake of readability. The authors
noted that ∑n

j=1 ϕ
(
Kj

)
V ⊤

j and ∑n
j=1 ϕ

(
Kj

)
must only be computed a single time, therefore

reducing the complexity from quadratic to linear both in terms of memory and computation.
The vectorized formulation of the numerator makes it simpler to see:

ϕ
(
Q
)

︸ ︷︷ ︸
n×p

(
ϕ
(
K
)⊤

︸ ︷︷ ︸
p×n

V︸︷︷︸
n×d

)
(3.32)

where the mapping ϕ(·) : Rd → Rp is applied position-wise. Unfortunately, the feature map
of the exponential kernel is infinite dimensional. Hence, any finite kernel is an approximation
of the attention matrix and may be interpreted as a low-rank factorization. However, they
are presented separately here due to their conceptual difference. Katharopoulos et al. [152]
approximated the attention matrix in the Linear Transformer with the feature map ϕ(x) =
elu(x) + 1, where the function elu(·) denotes the exponential linear unit given by:

elu(x) =

 α(ex − 1), x < 0
x, x ≥ 0

(3.33)

where α is an hyperparameter. The Linear Transformer performed on par with the vanilla
Transformer on autoregressive image generation, but poorly on automatic speech recognition.

Choromanski et al. [151] later demonstrated that the exponential is equivalent to a kernel
with a randomized mapping:

exp(x⊤y) = Ew∼N (0,Id)

[
exp

(
w⊤x

∥x∥2

2

)
exp

(
w⊤y

∥y∥2

2

)]
(3.34)
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Consequently, the authors introduced the Performer, a linear complexity model that approx-
imates the attention by means of a kernel with the following feature mapping:

ϕ(x) = exp(−∥x∥2/2)√
2p

[
exp

(
w⊤

1 x
)
; . . . ; exp

(
w⊤

p x
)
; exp

(
− w⊤

1 x
)
; . . . ; exp

(
− w⊤

p x
)]

(3.35)

where wi ∼ N (0, Id). To further reduce the variance of the estimator, wi are constrained to be
exactly orthogonal, which is achieved with the Gram-Schmidt process. The hyperparameter p

corresponds to the number of random features and controls the quality of the approximation.

Clustering and Locality-Sensitive Hashing [153]: As previously explained, clustering
can uncover sparse patterns by grouping queries and keys and only computing the atten-
tion between positions within the same cluster. Alternatively, Vyas et al. [153] proposed
to factorize the attention with clustering by grouping queries into a fixed number of non-
overlapping clusters and by computing the attention between the cluster’s centroids and the
keys. Consequently, the attention score is only computed once per group of similar queries
and broadcasted to all, resulting in linear complexity. Since queries may be clustered differ-
ently across attention heads and since the attention sub-layer includes a residual connection,
two queries in the same cluster can have different output representations. The authors proved
that the approximation error for a given query is bounded by its distance to its centroid mul-
tiplied by the spectral norm of the keys matrix. As such, the K-Means algorithm can be
used for minimizing the approximation error. However, K-Means in the original space would
be slow to compute as Lloyd algorithm has a complexity of O(ncdl), where c is the num-
ber of clusters and l is the number of Lloyd iterations. Instead, the authors first used a
locality-sensitive hashing scheme on the queries before applying K-Means with the Hamming
distance, which reduces the complexity to O(ncl + cbl + ndb), where b is the number of bits
used for hashing.

To further improve the approximation, Vyas et al. [153] proposed the improved cluster atten-
tion that separately consider the k keys with the highest attention for each cluster. Intuitively,
keys with high approximated attention may have low attention for some queries, resulting in
a large approximation error. As a solution, the dot product between these top-k keys and all
queries belonging to the corresponding cluster is computed. Then, the attention is rescaled
by the total probability mass assigned to these top-k keys.

Compared to the Reformer, Vyas et al. [153] method is significantly faster (43% lower epoch
time) while being significantly more accurate (35% lower phone error rate) for speech recog-
nition on the Wall Street Journal.
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3.4.3 Architectural Change

Finally, the Transformer’s complexity may also be reduced by modifying the model’s ar-
chitecture and preserving the original attention mechanism. Let us investigate (i) the
Transformer-XL and the Compressive Transformer that rely on memory, and (ii) then the
Funnel-Transformer that iteratively compresses sequences.

Memory [48, 154]: The block-wise approach splits the input sequence into small non-
overlapping subsequences called windows, blocks, or chunks, which are processed indepen-
dently; therefore, the maximum dependency length is equal to that of the subsequence. To
leverage information from previous windows, Dai et al. [48] introduced the Transformer-XL,
which relies on segment-based recurrence between windows. This recurrence mechanism is
implemented by storing the representations of the previous window in a first-in first-out mem-
ory (FIFO). Then, the attention mechanism can attend to the representations located in this
memory, but the gradients are not computed for the attention on these elements. Although
this model achieves a RECL four times greater than the vanilla Transformer with the same
parameter budget, it cannot capture dependencies outside the FIFO memory range. Further-
more, this model is only compatible with autoregressive tasks. This technique is analogous to
truncated backpropagation through time (BPTT), except that a sequence of hidden states is
considered instead of the previous one. Figure 3.18 illustrates the segment-based recurrence
of the Transformer-XL.

In order to further increase the range of dependencies considered by the Transformer-XL,
Rae et al. [154] proposed the Compressive Transformer, which adds a compressed memory
to the original FIFO memory. Representations of past windows are first stored in the stan-
dard FIFO memory, like the Transformer-XL. Then, when this memory is full, the oldest
representations are compressed with a user-defined function and stored in the compressed
FIFO memory instead of being discarded. The number of elements considered in the original
FIFO memory to generate the compressed memory depends on the chosen function. The
authors propose using max/mean pooling, 1D convolution, dilated convolutions, or the most
attended representations by the attention. They also proposed to learn the compression
function with an auxiliary auto-encoding loss and a variant called attention-reconstruction
loss, which typically reconstructs the original memory from the compressed ones. They show
a clear advantage over the Transformer-XL on NLP tasks and comparable results on speech
modelling.

Sequence Compression [155]: Many tasks such as image classification and sentiment anal-
ysis only require producing a single output for the whole sequence. Dai et al. [155] argued
that the full-length sequence of hidden states may contain significant redundancy and that
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Figure 3.18 Segment-based recurrence, which is similar to truncated BPTT. The window
size is equal to two, and only the previous window is considered. For the sake of clarity,
parameters from and to states that do not contribute are omitted.

the model may not have to preserve token-level information. Consequently, they proposed
the Funnel-Transformer, whose encoder reduces the computational cost by gradually reducing
the length of the hidden states sequence with pooling. Note that instead of directly feeding
the pooled sequence into the attention layer, it is only used to construct the query matrix,
while the unpooled sequence is used to construct the key and value matrices. Additionally,
the authors proposed to recover the original sequence length by up-sampling the compressed
sequence of hidden states to address the common pre-training objectives, such as MLM,
that require separate representation for each token. Although the Funnel-Transformer effec-
tively reduces the computational and memory cost of the encoder, the complexity remains
quadratic, and the best performances are achieved on tasks that only require sequence-level
representation.

3.5 Shortcomings

This section discusses the lack of understanding of the self-attention inner workings and
the limitation of the Transformer evaluation methodology, including the lack of standard
benchmarks for long-range dependencies.

Self-attention is a relatively new mechanism that has been quickly and widely adopted due to
its remarkable empirical success. Nonetheless, the self-attention inner workings are not yet
fully understood, and many questions remain unanswered, including why it works, what it
learns, and whether it is interpretable. Answering those questions is crucial to designing faster
and lighter Transformers that are competitive with the original model. As of this paper’s
writing, the deep learning community actively investigates self-attention and have proposed
preliminary answers to the aforementioned questions. For instance, evidence supporting
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both the self-attention interpretability [156, 157] and non-interpretability [158] have been
published. Tay et al. [149] empirically evaluated the dot product impact on natural language
processing tasks and concluded that query-keys interaction is “useful but not that important”.
Kitaev et al. [87] investigated the impact of sharing queries and keys, and concluded that “it
turns out that sharing QK does not affect the performance of Transformer”.

Despite our current limited understanding of the self-attention mechanism, a wide range of
faster and lighter Transformers have been introduced in a short amount of time, each claiming
comparable or superior performance to the vanilla Transformer. Since there is no consensus
on how to evaluate the proposed approaches [159], researchers often have to evaluate their
method on a small range of tasks. However, different tasks may require different assumptions,
which means that one method may work well on a specific task but poorly on others. For
instance, Tay et al. [149] showed that a simple Synthesizer is highly competitive with the
vanilla Transformer across a range of natural language processing tasks, including machine
translation, language modelling, and text generation. However, Tay et al. [159] later showed
that the vanilla Transformer outperforms the Synthesizer on the more difficult Long-Range
Arena benchmark. Long-Range Arena [159] is a suite of five general and challenging tasks
designed to evaluate how well Transformers capture long-term dependencies from different
modalities such as text, natural and synthetic images, and mathematical expressions. Ta-
ble 3.3 compiles the Long-Range Arena results of the models discussed in the survey. For a
complete description of the objectives and datasets, we refer the reader to the original paper.

Furthermore, due to Transformers large training cost, researchers often evaluate their ap-
proach against a limited number of models on the tasks of interest. For instance, [87] only
evaluated the Reformer against three distinct vanilla Transformers [43, 160] on three tasks.
Standardized suites of benchmarks such as GLUE and the recent Long-Range Arena allow
researchers and practitioners to evaluate only their method and compare it against a public
leaderboard. Consequently, we highly recommend that researchers consider such benchmarks.

Although standardized benchmarks such as Long-Range Arena would help compare the mod-
els, the results should be taken with caution since the performance depends on the model
size and hyperparameters, the speed depends on the implementation and hardware, and the
memory footprint depends on the implementation and general methods used. For instance,
the Switch Transformer uses a mixture of experts, mixed-precision, expert dropout, knowl-
edge distillation, and a careful initialization. Therefore, it is difficult to isolate the benefit of
a single modification.

Finally, the complexity is not always representative of the practical efficiency. For instance,
the Reformer achieves an asymptotic complexity of O(n log n) but is significantly slower than
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the vanilla Transformer on small sequences, as shown in Table 3.3. This slow down is due to
large constants hidden in the complexity. Even when there are no hidden constants, there is
a distinction between theoretical complexity and what is achievable in practice. For instance,
sparse matrix multiplication may reduce the complexity from quadratic to linear in theory.
However, it is well known that GPUs and TPUs are not designed to perform such operations
efficiently [161] and, in practice, sparse matrix multiplication is often slower than dense ones.
We encourage researchers to explicitly report the complexity as well as the number of floating
operations (FLOPs), the wall-clock time with the hardware, and the memory footprint of
their method.

Table 3.3 Long-Range Arena benchmark [159]. Results have been compiled from the original
paper. Benchmarks are run on 4x4 TPU V3 chips, and the memory is reported per device.

Models Average score (%) Steps per second Peak memory (GB)
1K 4K 1K 4K

Transformer [43] 54.39 8.1 1.4 0.85 9.48
Sparse Transformer10 [138] 51.24
Longformer10 [142] 53.46
BigBird [58] 55.01 7.4 1.5 0.77 2.88
Sinkhorn Transformer [143] 51.39 9.1 5.3 0.47 1.48
Reformer [87] 50.67 4.4 1.1 0.48 2.28
Linformer [88] 51.36 9.3 7.7 0.37 0.99
Synthesizer [149] 51.39 8.7 1.9 0.65 6.99
Linear Transformer [152] 50.55 9.1 7.8 0.37 1.03
Performer [151] 51.41 9.5 8.0 0.37 1.06

3.6 Broader Impact of Efficient Transformer

This section extends the three motivations and potential impacts of lighter and faster Trans-
formers briefly discussed in Section 3.2.4.

First and foremost, computational resources are not only finite but also expensive. Con-
sequently, there are severe inequalities between research groups and between companies.
Indeed, many researchers do not have access to GPU or TPU farms, and most companies
cannot afford to spend thousands or millions of dollars on dedicated hardware, especially if
deep learning is not their primary focus. At this time, the resources disparities have increased
dramatically to a point where only a few parties can afford to train massive state-of-the-art

10The Sparse Transformer and Longformer depends on CUDA kernels that are difficult to implement on
TPUs. Therefore, Tay et al. [159] used equivalent implementations to emulate their performance and did not
report their efficiency.
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models. A prime example of this cleavage is the Transformer. Indeed, the largest Transform-
ers are so expensive to train, even for large companies such as Microsoft, that they are only
trained once. For instance, Brown et al. [50] noticed an issue in their pre-processing after
training GPT-3. As the author explained, they could not train their model again due to the
massive cost and therefore published their results with a known issue. Resources inequalities
also hinder creativity as researchers with promising ideas may not be able to implement them,
thus reinforcing the vicious “rich get richer” circle, where well-funded groups and companies
that have access to more resources are more likely to achieve state-of-the-art results and
receive more fundings [79].

Additionally, lower-complexity Transformers enable novel applications as extremely long se-
quences cannot be processed in a reasonable amount of time by the quadratic complexity
vanilla Transformer. For instance, Choromanski et al. [151] observed the Performer’s poten-
tial impact on biology, and Zaheer et al. [58] evaluated BigBird on genomics tasks that take
fragments of DNA as input. Huang et al. [162] were able to generate minute-long musical
compositions with a Transformer that leverage the block-wise approach and an efficient com-
putation of the relative attention. Note that contrary to the attention introduced by [43],
the relative attention [163] explicitly models the input positions. The range of applications
will surely expand as researchers design ever-lighter and -faster Transformers.

Finally, recent research made it clear that we must cut carbon dioxide (CO2) emissions in
half over the next decade to limit global warming. The large-scale infrastructures used by
the deep learning community consume a considerable amount of electricity, which is mainly
produced by non-renewable sources such as coal or gas [80]. Strubell et al. [79] estimated
that training a Transformer with neural architecture search generates up to 284,000 kg of
CO2. For reference, the average American emits 16,400 kg of CO2 per year, and the average
car emits about 57,200 kg during its lifetime11 (fuel included). The authors estimated that
training a single instance of BERT [51] on GPU produces about the same amount of CO2
as a trans-American flight. Although lighter and faster models require fewer resources and
therefore produce less carbon dioxide, they are also more accessible, so we would expect more
models to be trained. Overall, it is difficult to know whether lighter and faster Transformers
will positively impact the environment. Nonetheless, researchers and practitioners ought
to have in mind the significant environmental impact of their experiments, which can be
estimated with the Machine Learning Emissions Calculator12 developed by Luccioni et al.
[164].

11A product lifetime or lifecycle typically includes material production, manufacturing, usage, and end-
of-life disposal.

12https://mlco2.github.io/impact/

https://mlco2.github.io/impact/
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3.7 Future Research Directions

In our opinion, the current research directions follow one of two purposes: (i) efficiency
and affordability or (ii) generalization performance. Since this survey addresses approaches
to yield faster and lighter Transformers, let us start with the efficiency and affordability
objective.

3.7.1 Efficiency and Affordability

To the best of our knowledge, researchers and practitioners have not yet identified a spe-
cialized approach that improves the Transformer’s efficiency for every task, dataset, and
hardware, as explained in Section 3.5. In our opinion, one of the most promising avenues
is to learn adaptively sparse patterns that are structured for the available hardware. Let us
justify our claim.

The Softmax function only contains a few large values due to its exponential nature. There-
fore, it can be effectively approximated by masking the positions with small weights. In the-
ory, the computation and memory reduction is linearly proportional to the ratio of masked
positions. In practice, however, the improvement depends on the hardware. As of this sur-
vey’s writing, NVIDIA is the first and only manufacturer to offer an architecture that natively
supports sparse operations, resulting in a virtually perfect speed-up. One may reasonably
expect other manufacturers to follow this direction due to the prevalence of sparse operations
in deep learning. Therefore, the sparse patterns should be structured such that the hardware
natively supports them. Handcrafting features or patterns based on prior knowledge is known
to be suboptimal. Instead, the model should learn the patterns from the data for the task at
hand. Additionally, individual samples are likely to require different attention patterns, and
hence, the patterns should be adaptative (content-based). Finally, we believe it is beneficial
to include global tokens since they allow any position to attend to any other position in two
layers, thus preserving the attention’s expressiveness.

3.7.2 Generalization Performance

A second research venue consists in improving the network generalization performance.
Since the deep learning renaissance associated with greedy layer-wise unsupervised pre-
training [28], there has been a clear trend towards scaling up neural networks. As a result,
researchers and practitioners have been able to leverage ever-larger datasets and ultimately
improve the network’s performance. In this setting, scaling is performed typically by increas-
ing the number of layers, the number of attention heads, the input embedding dimension,



57

and the feedforward network width.

Amongst others, Radford et al. [165] introduced a large Transformer called GPT-2 and eval-
uated various model sizes on language modelling tasks in a zero-shot setting. The authors
reported that the performance significantly increased with the model size ranging from 117M
to 1.5B parameters. Recently, Brown et al. [50] introduced GPT-3 based on the GPT-2
architecture and considered an even wider span of model sizes, ranging from 125M to 175B
parameters. The authors reported that the model performance smoothly increased with the
model size in most cases and suggested that this trend should extend to even larger models.
Furthermore, Devlin et al. [51] investigated the effect of BERT size on the GLUE benchmark
and concluded that “larger models lead to a strict accuracy improvement across all four
datasets, even for MRPC which only has 3,600 labeled training examples, and is substantially
different from the pre-training tasks”.

These observations suggest that researchers and practitioners must scale their model to pur-
sue the generalization performance objective. Inherently, scaling is resource-expensive and
goes against the affordability sought in this survey. Nonetheless, there are research direc-
tions to improve the generalization capability of deep learning models that are orthogonal to
scaling and thus compatible with efficiency. A promising avenue is structural inductive bi-
ases. A recent structural inductive bias inspired by independent mechanisms in the causality
literature consists of designing an architecture that learns sparsely interacting modules, each
one of them specialized in a different mechanism [166]. Ideally, individual modules should be
robust to changes in the aspects of the world that are unrelated to this module, such as in
the case of distributional shift. Lamb et al. [167] applied this idea to Transformers by intro-
ducing the Transformers with Independent Mechanisms (TIM). The authors observed that
TIM layers could be combined with the mixture of experts approach, allowing the switching
to be specific to distinct aspects of the data.

Combining universally effective and efficient approaches such as the aforementioned sparse
patterns with conditional computing and the independent mechanisms prior appears to be
promising to tackle complex tasks without relying on large-scale resources.

3.8 Conclusion

Transformers have quickly become the de facto model for processing sequences, notably
achieving state-of-the-art in most natural language processing tasks at the cost of quadratic
complexity. As a result, researchers have leveraged numerous techniques to mitigate this
memory and computational burden. This survey investigated popular general methods to
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make neural networks lighter and faster and discussed their strengths and limitations. No-
tably, we advised researchers and practitioners to use mixed-precision and gradient check-
pointing due to their simplicity and overall benefits. Often, these general techniques are not
sufficient to mitigate the Transformer’s complexity. Consequently, this survey reviewed the
lower-complexity variations of the Transformer and discussed their assumptions, justification
and shortcomings. Notably, we advised researchers and practitioners to rely on pre-trained
models whenever possible. Otherwise, we recommend training a small vanilla Transformer
with mixed-precision and gradient checkpointing to apprehend the dependencies required for
the task and select the appropriate models accordingly. Additionally, we discussed the poten-
tial impacts of affordable Transformers, including improving the state-of-the-art, extending
the range of applications, increasing the equity between researchers, and potentially reducing
the environmental impact. Finally, we highlighted promising future research directions for
this exciting architecture.
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CHAPTER 4 ORGANIZATION OF THE THESIS

In addition to the aforementioned survey, this thesis is composed of three articles presented
in chronological order of their submission in Chapters 5, 6, and 7. These chapters address
each one of the research objectives defined in Chapter 1. Let us briefly describe how the
three chapters fit together.

In Chapter 5, the scope is first reduced to performance anomalies, also referred to as latency,
in order to become familiar with the task and subject at hand. This decision is motivated by
the interest of the partnering company as well as the interests of the community, as indicated
by the high number of publications on this subject. The first contribution of this thesis follows
the literature while remaining simple: the proposed approach relies on popular off-the-shelf
machine learning techniques and hand-crafted features. Albeit simple, the approach is able
to effectively detect latency and provide insight into their potential underlying root cause.
Most notably, the approach identified a genuine PHP cache contention issue responsible for
real-world latency. Nonetheless, hand-crafted features are often specific to the data and task
considered while being suboptimal, time-consuming, and error-prone.

In Chapter 6, the aforementioned limitations of the hand-crafted features are addressed by
proposing a method to automatically learn a representation of the system calls along with
their arguments. Instead of addressing the anomaly or novelty detection task, the second
contribution of this thesis focuses exclusively on proposing a representation method and
investigating which aspects of the system calls are instrumental in improving the performance
of neural networks. Nonetheless, in anticipation of the third contribution of this thesis, the
proposed representation technique has been evaluated on two natural language processing
tasks with two popular neural networks that could subsequently be used to detect novelties.
Furthermore, a modern and large dataset of web requests has been collected to evaluate the
proposed approach and released for researchers to explore.

In Chapter 7, the scope is broadened to the detection of novelties defined as any deviation
from previously observed behaviors. The third contribution of this thesis leverages the afore
representation, as well as three prevalent neural networks for sequence processing and the
left-to-right language modeling task, whose objective is to predict each token knowing the
previous ones. The left-to-right LM allows computing the likelihood of sequences, thereby
detecting novelties based on the idea that they would have a low likelihood under the model
since they deviate from previously observed behaviors by definition. Notably, the proposed
methodology is evaluated on the Transformer to investigate whether the ability to learn
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extremely long-term dependencies is beneficial and a lighter model that would enable scaling
the approach to longer sequences. Furthermore, the third contribution of this thesis also
extends on the second one regarding the dataset by releasing a larger dataset of web requests
that comprises multiple behaviors, which is required to evaluate the novelty detection.
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CHAPTER 5 ARTICLE 2: AUTOMATIC CAUSE DETECTION OF
PERFORMANCE PROBLEMS IN WEB APPLICATIONS

Authors Quentin Fournier, Naser Ezzati-jivan, Daniel Aloise, and Michel R. Dagenais.

Published at 3rd International Workshop on Software Faults (30 October 2019)

5.1 Preface

As the two papers included in Chapters 5 and 6 need to be more explicit about how the
traces were collected and subsequently split into sets, let us clarify these essential steps here.
Please note that this section is not part of the following paper.

The first paper relies on DBSCAN and k-means, two clustering algorithms. Such unsuper-
vised methods do not require splitting the data into multiple sets. Consequently, a single
trace was collected at runtime, and the algorithms were applied to all the requests.

The second paper relies on neural networks to learn a language model. Such self-supervised
methods require splitting the data into three sets: (1) a training set to learn the parameters,
(2) a validation set to estimate the generalization, allowing for the hyperparameters to be
updated accordingly, and (3) a test set held out for the final evaluation. Consequently,
two traces were collected one after the other in order to prevent any unexpected overlap.
Furthermore, the server was restarted to reset the process and thread ids. The first trace
was entirely used for training, while the second trace was randomly split into a validation
set (25%) and a test set (75%). Importantly, there is no overlap between the two evaluation
sets, and no extensive hyperparameter search was conducted, which could have resulted in an
adaptation to the validation set. The same approach was applied to obtain Ciena’s datasets.

Abstract The execution of similar units can be compared by their internal behaviors to
determine the causes of their potential performance issues. For instance, by examining the
internal behaviors of different fast or slow web requests more closely, and by clustering and
comparing their internal executions, one can determine what causes some requests to run
slowly or behave in unexpected ways. In this paper, we propose a method of extracting the
internal behavior of web requests as well as introduce a pipeline that detects performance
issues in web requests and provides insights into their root causes. First, low-level and fine-
grained information regarding each request is gathered by tracing both the user space and
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the kernel space. Second, further information is extracted and fed into an outlier detector.
Finally, these outliers are then clustered by their behavior, and each group is analyzed sep-
arately. Experiments revealed that this pipeline is indeed able to detect slow web requests
and provide additional insights into their true root causes. Notably, we were able to identify
a real PHP cache contention issue using the proposed approach.

Keywords Performance Analysis, Cause Analysis, Tracing, Machine Learning, Clustering,
Web Application.

5.2 Introduction

While it is crucial to identify performance issues, they can also be extremely difficult to
detect [168] as they are rare and hard to reproduce. Additionally, detection techniques
usually require specifying an unknown normal behavior.

Once a performance issue has been detected, developers often use debuggers and profilers to
analyze the issue and identify its root cause. However, debuggers are rarely applicable as
they operate by stopping the world — the program — which may, in fact, mask problems
related to latency or race conditions. Profilers are also ineffective as they operate by averaging
metrics, which hides outliers.

Execution tracing overcomes the drawbacks of debuggers and profilers by instrumenting the
system at different levels and by collecting information at run time. It works by executing a
macro that generates an event for each instance of tracepoints met during execution. Trac-
ing permits low-level and fine-grained information to remain on the system, which aids in
discovering the root cause of the problem. However, the size of the collected trace may be
enormous in complex, modern systems.

As the size and complexity of trace data continue to increase, the need for automated analysis
becomes equally as important. However, automating this process is complex. A system may
perform slowly for numerous reasons: an improper configuration, a change in the environ-
ment, unusual and possibly malicious network traffic, a software bug, or simply an inefficient
code modification. An expert is only able to dissociate the aforementioned performance issues
by comparing the anomaly with normal executions.

Detecting whether a given request is normal or abnormal is a challenging task. Some may
assume that only a request response time is relevant to examine and, therefore, believe it
is a trivial task. Yet, response time is not the sole factor to be considered. For example,
two requests with the same time duration can have different internal behaviors (e.g., they
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generate different numbers of page faults, or they behave differently when they access the
disk). Although they have identical response time, the one with an abnormal behavior can
foreshadow an impending problem. Therefore, a general method of grouping requests based
on their internal behavior is necessary. This grouping will be used for post-mortem root
cause analysis.

This observation brings two research questions: (1) Can anomalies be efficiently and auto-
matically detected from trace data? (2) Can the root cause of the anomaly be identified by
comparing its internal run time behavior to that of a normal one? We restrict the scope
of this paper to the requests, that we consider to be any task separated by a specific start
and end event. Valid examples are web requests, database requests, and multiple calls to
the same function in any application. In particular, we would like to discover which internal
action or behavior causes a web request to run slowly.

Our main contributions are: (1) Tracing different levels of requests executions and extracting
their internal behavior by following all notable threads along the critical path, rather than
merely a single thread. (2) A proposed pipeline to detect outliers, and cluster them according
to their run time behavior, which will enable comparison and evaluation. We show that the
extracted features are especially useful for detecting outliers.

The remaining part of the paper is organized as follows. Section 5.3 presents the related
work. Section 5.4 introduces our proposed approach to extract meaningful features, detect
anomalies, and subsequently identify their root cause. Section 5.5 details our results and
meticulously analyzes the complexity of the proposed approach. Finally, Section 5.6 concludes
this work.

5.3 Related Work

Dynamic analysis through execution tracing is used to analyze software behavior [169, 170].
The analysis of kernel tracing data is studied in [171], while the processing of system call
traces are studied in [169, 172]. The visibility of most of the existing works is, however,
limited to only a single layer of the system, while one would typically need visibility of
multiple layers (e.g., application, system calls, network, etc.) in order to completely analyze
internal software behaviors [13]. In this paper, we analyze traces collected from both the
application and kernel layers, further allowing for more effective insights into the software
run time behavior.

As the complexity and variety of modern systems increase, so does the need to automa-
tize their analysis. Recent progress in machine learning (ML) contributes interesting results
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for automating diagnosis tasks like intrusion and malware detection [2] or code correlation
and optimization [173]. These techniques can be used to automatically detect changes in
code [174], configuration, environment, run time behavior, and performance [175, 168]. Un-
fortunately, the variety of tracing formats, the large size of run time data, as well as their
unstructured nature present additional challenges in both the data modeling and processing
steps which require special care.

In the literature, kernel traces are represented in a variety of methods, but two primary
approaches emerge. The first one preserves the ordering and the temporal information.
These representations are sequences of system call names, learned system call embedding [2],
and kernel states [13]. The second approach aggregates the sequences, trading the temporal
information for a more compact representation. The main example of this approach is called
bag-of-word, also known as system call counts vector [20], frequency counts of system call
names [21] or bag of system calls [22]. N-gram is a technique which lies in between the two
approaches as it preserves only a short and local ordering. This method has been extensively
used for anomaly detection and intrusion detection as they are more expressive [21, 23, 25].
This work falls into the second approach, with the exception that duration is used in addition
to counts.

Clustering anomalies based on their behavior helps to better understand, predict, and main-
tain them. Ideally, one would prefer to cluster anomalies based on their underlying and
unknown root cause. A practical approach is to cluster them based on system resources con-
sumption behaviors, thus grouping the faulty behaviors based on the extent to which they
compete over resources to serve user requests. In a recent work, Nemati et al. [176] extracted
high-level features from low-level traces of virtual machines and grouped them using two-
stage k-means. Their method provided insights into the different behaviors and potential
anomalies. Their work, however, relies on data collected from only one layer, which restricts
the overall visibility.

This paper addresses the above-mentioned limitation by proposing an approach based on a
multi-level data collection policy to ensure maximum visibility while undertaking the root
cause analysis. Collecting data from different levels provides a more complete view of the
system dynamics (application, operating system, network, etc.) and ensures that a broad
range of anomaly can be detected. Indeed, although the application may be bug-free, a
contention for resources between instances of the same application can be the source of
inexplicable latencies. Such a complication is only visible from the operating system level.

Furthermore, our data collection process exceeds the simple tracing of single threads, which is
the case in most of the aforementioned research works. Our method follows a request across
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all interacting threads, and possibly across different machines, to ensure that all required
levels of details are collected.

Although using off-the-shelf, standard, unsupervised techniques, this new approach, with a
pipeline to detect, cluster and analyze anomalies in requests, has not been proposed earlier,
to the best of our knowledge.

5.4 Proposed Approach

5.4.1 Data Collection

Gathering applicable data is the first step in the proposed pipeline, as summarized in Fig-
ure 5.1. To that extent, we used the Linux Trace Toolkit Next Generation (LTTng) [177],
a low-overhead open-source tracing tool that collects data from several layers. Data was
acquired from the user space level, to distinguish the start and end of each request, as well
as from the kernel level, to collect information regarding what actually occurs within the
system during each request.

User space tracers typically work by instrumenting the source code (i.e., the web application
source code) or the language core (i.e., the PHP core). In this work, the latter is instrumented
because it adds a new tracing extension that inserts tracing macros in different entry points
(function calls, request entry and exit, etc.). This ensures that users do not need to change
their own source code. Each time the execution in the language core reaches a tracepoint,
the associated macro is executed, generating an event that is stored in the corresponding
CPU buffer. Table 5.1 shows all the events that the PHP tracer is able to collect. This PHP
extension is open-source and publicly available1.

Table 5.1 Tracepoints in the developed PHP tracing extension.

Trace Event Description
request_start Fires when a new PHP request is arrived.
request_exit Fires when the handing of a PHP request is completed.
function_start Fires when a function is called.
function_exit Fires when a function exits.

Kernel tracers, on the other hand, usually work by instrumenting the different parts of the
operating system. Luckily, the Linux kernel is already instrumented and has over two hun-
dred incorporated tracepoints. The LTTng tracer attaches to these tracepoints and gathers

1https://github.com/naser/LTTng-enabled-PHP
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(1) Data Collection (2) Feature Extraction (3) Outlier Detection (4) Outlier Clustering (5) Outlier Analysis

Figure 5.1 The proposed pipeline for anomaly detection.

data on system calls, processes, file systems, disk accesses, memory accesses, network layers,
interrupts, timers, and other relevant areas.

5.4.2 Feature Extraction

The raw collected trace data is initially in a semi-structured, multi-dimensional, and multi-
level format which needs to be projected in a lower-dimensional vector space before being
analyzed. Indeed, most clustering algorithms accept only fixed-size arrays and are sensitive
to the quality and compactness of the representation2.

First, the trace must be divided into individual requests. The collected trace contains events
from multiple web requests concurrently received by the server. Only two events from user
space, namely request_start and request_exit, are required to correctly identify the
boundaries of each request, received by a web server like Apache, and are passed on to the
PHP Engine. Intuitively, request_start is fired when the PHP Engine accepts a request
and request_exit when its handling is completed.

The next step is to collect detailed metrics from the kernel trace data to create a feature
set for each request. A request can be handled by a single thread or, as it is the case
with the majority of existing servers, by multiple threads. For instance, the latter can be
the collaboration of a web server (e.g., Apache web Server or Nginx), a web application
(e.g., PHP or Node), and a database (e.g., MySQL or SQL Server). Our analysis is based on
features extracted from the critical path of each request, which spans across different threads.
Figure 5.2 shows the critical path of a typical web request. The request time is broken into
five intervals across four interacting threads, showing the detailed contribution of each thread
to the total response time.

To discover the critical path of each request, we rely on the algorithm introduced by Giraldeau
et al. [178]. They proposed an algorithm that would extract the active execution path across
threads which possibly run on distant machines. Their method extracts various execution
states for each thread, including running, interrupt handling, waiting for disk, waiting for
network, waiting for timer, and waiting for another task. The algorithm first builds an
execution graph showing all interactions between threads. Then the critical path – the

2See the curse of dimensionality for an example of a bad representation.
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Figure 5.2 Critical path of a single web request spanning four threads.

minimal active path – is extracted by replacing recursively the waiting edges of a thread
by the edges of the waking thread, from within the execution graph. In the final graph, for
which an example is shown in Figure 5.2, vertical edges denote the waker/wakee relationships
between the threads while the horizontal edges represent the different execution states within
a thread.

The method proposed by Giraldeau et al. [178] was adapted to retrieve metrics regarding the
different execution states that contribute to the response time of each request. Notably, the
following execution states are considered:

• Running in system call mode (RS)

• Running in user mode (RU)

• Blocked for disk I/O (BD)

• Blocked for network (BN)

• Blocked for CPU (preempted) (BP)

• Blocked for another task (BT)

• Blocked for futex (BF)

• Blocked for interrupt (BI)

• Blocked for timer (BS)

• Total request time (TT)

Table 5.2 shows the four different feature sets that were created for each request based on
the above execution states.
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Table 5.2 Request feature sets used for clustering.

Feature set Example
System calls sequence open, seek, read, close...
Execution states sequence RU, RS, BD, BT, BP...
Execution states count 15, 0, 1, 23, 110...
Execution states total duration 0.12, 0.0, 0.01, 0.85...

5.4.3 Outlier Detection

In order to automatically detect performance issues, one method includes first detecting
outliers – out-of-distribution data points – then applying domain-specific tools to discover
the root cause of the anomaly. However, the detection of outliers is highly dependent upon
the data representation. In this paper, we propose a framework to cluster abnormal requests
based on the features previously extracted. This section corresponds to the pipeline third
step.

Clustering algorithms minimize the inter-point distance within a cluster while simultaneously
maximizing the distance between clusters. However, choosing the right number of clusters is
not a trivial task. Moreover, because the points of interest are abnormal, the method needs
to provide an efficient clustering of outliers.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [179] is a well-known
clustering algorithm which does not require the number of clusters to be specified. Instead, it
accepts two parameters: ϵ the maximum distance for two points to be considered neighbors
and m the minimum number of points required in order to create a cluster. DBSCAN works
by first selecting a point X at random. If X has at least m neighbors, then a cluster is created
with X and all of its neighbors. The cluster is expanded by then considering the neighbors
of X. If X has less than m neighbors and is not part of a cluster, then it is considered an
outlier. The process continues until all points are considered.

DBSCAN presents three key advantages: (1) the number of clusters is implicit, (2) an arbi-
trary shape of clusters are created, and (3) outliers are automatically separated. However,
DBSCAN is sensible to its two parameters – ϵ and m. Those parameters can be set man-
ually or estimated with a random search. Furthermore, DBSCAN can only be applied to
multi-dimensional data of a fixed size. Thus, the variable-length sequences of system calls
and features must be converted to a fixed size array.

One approach to representing a variable-length sequence with a fixed size vector is to count
the number of occurrences of each event. This technique is called "bag-of-word" (BoW) and
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has been extensively used in natural language processing. One may argue that events that
appear across all executions carry little information. The term "frequency-inverse document
frequency" (TF-IDF) is a popular technique to measure bag-of-word according to the impor-
tance of each event. More formally:

tf-idfi,j = tfi,j × log
(

|D|
|dj : ti ∈ dj|

)
(5.1)

where tfi,j is the frequency of the i-th event in the j-th sequence, |D| is the total number of
sequence, and |dj : ti ∈ dj| is the number of sequence containing the i-th event.

Specific methods such as Markov Models have been developed to detect outliers within se-
quences. However, those methods assume that events are regularly generated, (i.e., there is a
fixed duration between events). This crucial assumption does not hold true in the context of
traces. Moreover, those techniques are computationally expensive. For those reasons, they
are not included in the proposed framework.

5.4.4 Outlier Clustering and Analysis

Outliers are rare by definition, yet they may be numerous enough to require clustering before
they can be analyzed. This corresponds to the optional fourth step in our pipeline.

The objective is to separate different types of abnormal behavior. To that extent, feature
counts are more informative than feature duration. Indeed, a slow request has either a high
count of non-blocking events or a small count of blocking ones. However, consider that a
fast request may also have a high number of non-blocking system calls like fnctl3, surely
indicating that something is behaving incorrectly.

K-means is a simple yet efficient clustering algorithm that has been widely used because
of its ability to find tight spherical clusters. However, k-means is a distance-based method
which means it is sensitive to data scale. To mitigate this effect, the feature counts have been
standardized. The elbow method [180] was applied in order to find the appropriate number
of clusters. This is an ambiguous heuristic stating that one should choose the number of
clusters, as long as it does not substantially decrease the inertia.

Once outliers have been clustered, each group is separately analyzed. This is the last step
in our pipeline. As an example of a typical analysis, statistics about requests and average
n-grams were computed independently, for each cluster of outliers as well as for non-outlier

3fnctl is the system calls that manipulate a file descriptor. For more information, see: http://man7.
org/linux/man-pages/man2/fcntl.2.html

http://man7.org/linux/man-pages/man2/fcntl.2.html
http://man7.org/linux/man-pages/man2/fcntl.2.html
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requests. Finally, we were able to link those results with real anomalies, confirming that
the proposed pipeline is indeed able to detect outliers, group them appropriately, and bring
forward useful information regarding the root cause of the anomaly.

5.5 Results

The complete project including the code, data, parameters, and results is available on
GitHub4.

As a proof of concept, around 50,000 requests were generated using the Apache benchmark
suite5. The experiment was performed using anywhere from 1 to 1,000 clients. In the PHP
tracing module, only the two tracepoints that collect the start and end of each request were
enabled. This gave a window for which we collected detailed kernel events.

5.5.1 Outlier Detection

Once requests were generated and features extracted, DBSCAN was applied to the different
representations discussed in section 5.4. The parameters ϵ and m were set manually for each
experiment.

The outlier detection was first evaluated qualitatively by comparing the distribution of du-
rations for outlying and non-outlying requests. One would expect little overlap between the
two groups as we know that slow requests are abnormal, hence outliers, and that fast ones
are largely normal.

System call counts and feature counts did not provide a clear separation of the two distribu-
tions (Fig. 5.3). TF-IDF did not yield better results, because some events are so common that
their weight is almost null. Only the feature duration was able to provide a clear separation,
with little overlap between the outliers duration distribution and the non-outliers.

The outlier detection was then evaluated quantitatively by looking at two statistics:

1. The median duration of outlying requests. The median is preferred to the mean as it
is less sensitive to a few miss-classified normal requests. One would expect the median
duration of outliers to be significantly higher than for the whole data set.

2. The probability of a detected outlying request having a duration above 200, 250, and
300 milliseconds. Those values are possible thresholds to detect slow requests, also

4https://github.com/qfournier/request_analysis
5https://httpd.apache.org/docs/2.4/fr/programs/ab.html

https://github.com/qfournier/request_analysis
https://httpd.apache.org/docs/2.4/fr/programs/ab.html
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Figure 5.3 Distribution of the duration of outlying and non-outlying requests. DBSCAN was
applied on three different requests representations: (left) system call counts, (middle) feature
counts, and (right) feature duration. The size of each cluster is specified between parenthesis
in the legend.

known as anomalies. One would expect the probability to be high, but not equal to
100% as some fast requests could also have an abnormal behavior.

Table 5.3 Outlying requests’ statistics.

System calls Features
BoW TF-IDF BoW TF-IDF Duration

Number of outliers 200 362 228 236 157
Median duration 147 115 168 155 554
P (d > 200) 0.36 0.163 0.408 0.390 0.968
P (d > 250) 0.28 0.108 0.316 0.305 0.924
P (d > 300) 0.26 0.940 0.276 0.267 0.892

DBSCAN yielded an outlier detection rate lower than one percent for each representation,
which is reasonable (Table 5.3). The median duration for the whole data set is 122 ms,
which is close to every outliers median duration, except for outliers detected from the feature
duration. Those same outliers have a probability of being slower than 250 ms of 92.4%,
which is about what is expected. The quantitative results concur with the qualitative results:
DBSCAN works more efficiently with feature duration to detect outlying requests. Only those
outliers are considered in the rest of this paper. For simplicity, the non-outlying requests –
the ones not detected as outliers by DBSCAN – are called normal requests even if they may
contain anomalies.

As a short ablation study, DBSCAN was replaced with another outlier detection method
called isolation forest. Similar results were obtained, and the same conclusions could be
drawn. This indicates that it is not merely a preference of DBSCAN but rather the feature
duration that is retaining useful information to detect outlying requests.
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5.5.2 Outlier Clustering and Analysis

K-means was applied to the feature counts of the outliers detected with DBSCAN. Two to
ten clusters were studied. Using the elbow rule, three clusters were selected.

Figure 5.4 The average feature count in every cluster. The standard deviation is represented
with a horizontal black line. There are three different types of outliers which depend on
different resources.

Table 5.4 Statistics of each cluster.

Normal Cluster 1 Cluster 2 Cluster 3
Duration (ms) 126 479 15512 559
Number of system calls 246 312 298 2690
Distinct system calls 26.0 26.4 26.1 29.0

The clustering can be visualized by plotting the feature count histogram of each cluster and
of normal requests (Fig. 5.4). In addition, Table 5.4 compares statistics relating to requests
in each group. Even though requests in the first cluster (blue) are nearly four times slower
than the normal clusters, feature counts alone are not sufficient to set them apart. The high
standard deviation of usermode counts indicates that this cluster is heterogeneous. The sec-
ond cluster (orange) is composed of the slowest requests, which have a higher count than the
normal ones, especially for blocked states. Finally, the last cluster (green) is characterized
by an extremely high number of counts, especially for usermode and systemcall states.
Although these are not the slowest requests, they have on average ten times more system
calls and three more distinct system calls than the normal requests.

Table 5.5 shows differences in average n-grams between the normal requests and each clus-
ter. They have been handpicked as they are unique to each cluster and explanatory of the
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Table 5.5 Average unigrams, bigrams, and trigrams distinctive of each cluster.

Average n-gram Normal Cluster 1 Cluster 2 Cluster 3
write 1.0 2.3 1.1 1.6
write write 0.0 1.3 0.1 0.6
write write write 0.0 0.9 0.1 0.4
cnnct 1.0 1.0 5.3 1.0
cnnct cnnct 0.0 0.0 4.3 0.0
cnnct cnnct cnnct 0.0 0.0 3.7 0.0
fcntl 7.0 7.0 7.0 419.0
fcntl fcntl 2.0 2.0 2.0 305.0
fcntl fcntl fcntl 0.0 0.0 0.0 193.0

underlying problem. Note that connect is shortened as cnnct. The complete list of n-grams
is available on GitHub.

Requests in the first cluster differ from the normal ones only by their number of write system
calls. It is not sufficient to draw any conclusion. One would need to apply domain-specific
methods in order to determine the root cause or to show that those requests are false positives
– outliers that have normal behavior.

Requests in the second cluster are characterized by a high number of connect and its repe-
tition. Note that if the flag O_NONBLOCK is not set, connect is a blocking system call. This
indicates that PHP cannot initiate a connection on a socket.

The third cluster is compelling as it explains cache issues. Further investigation into the
PHP engine source code reveals that the fcntl system call is used for locking purposes.
This, in fact, shows that there are unexpected blocking and waiting occurrences, hence some
issues in the PHP processes while handling specific requests. At its core, PHP employs a
cache mechanism called OPcache (OpCode Cache) to cache compiled script byte-codes in a
shared memory for improved request handling performance. Whenever a script is compiled,
the process checks the OPcache on the shared memory for an already-compiled code. If the
code is missing, the PHP process compiles the code and writes the resulting byte-code to
memory. However, when one process is writing into the shared memory, other processes must
wait for the first one to release the lock before obtaining access and writing in the OPcache
itself. This was the case for requests in the third cluster: PHP processes blocked each other
to access the OPchache shared memory. A detailed analysis using a Critical Path View [171]
in Trace Compass (an open-source trace analysis tool6, confirms that there are issues among
the PHP processes (shown in Figure 5.5) when concurrent requests are handled in the server.

6https://tracecompass.org
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Figure 5.5 Critical Path analysis showing the contention between PHP processes.

5.5.3 Visualization

A qualitative display of the feature-duration space was obtained by reducing the dimension-
ality using isometric feature mapping (Isomap) [181]. Isomap is a non-linear dimensionality
reduction method that learns an embedding that preserves the intrinsic geometry of the data.
This projection can be utilized to set a threshold duration, after which all requests are con-
sidered abnormal, speeding up outlier detection. As the cluster gathers requests up to 300
ms, it is a reasonable choice.

Figure 5.6 Visualization of the feature-duration space using ISOMAP. The color indicates
the duration of the request in milliseconds. There are about 10 clear outliers outside of the
window. Note the log scale on both axes.
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5.5.4 Computational Cost

The proposed method for clustering normal and abnormal requests, based on kernel-level fea-
tures from thread interaction in the critical path, will prove useful only if it can be efficiently
scaled.

Experiments were conducted on a modern computer equipped with a 6-core processor and 32
GB of main memory. Requests were generated using a Wordpress website running on Linux
18.04 with PHP 7.0.32 and Apache 2.4.18. The trace was collected using LTTng 2.11.

Tracing Cost

Experiments were performed using between 1 and 1,000 clients with the following tracing
configurations:

• No tracing.

• Minimal tracing: only a small subset of events required for analysis is enabled.

• Full tracing: all kernel space and user space events are enabled.

The capacity of the server to handle requests per second is shown in Figure 5.7, using the
above tracing configurations. When all kernel space and user space events are enabled,
tracing has a significant impact on the performance, with a slowdown of 29.6 ± 2.0%. This
is mostly due to the kernel tracing, since it collects and stores a large amount of system
execution details to the disk. However, the proposed analysis does not require enabling all
the tracepoints. In user space (i.e., PHP core), only two events are enabled: request_start

and request_end. In kernel space, only scheduling, system call, timer, and waking up events
are necessary to extract all the essential execution states. With this minimal setup, the
overhead is reduced to 5.1 ± 1.9%, coming mostly from the kernel-enabled events.

Analysis Cost

Note that the analysis is written in Python and is not parallelized unless explicitly specified.
Much faster run times could be achieved with a C or C++ implementation.

Creating the feature bag-of-word took 1.17 ± 0.12s, as it is linear in the number of examples.
It is not included in Table 5.6 since the feature duration was used instead. Furthermore, as
the bag-of-word matrix is often sparse, it can be efficiently stored in memory.
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Figure 5.7 Cost of the different tracing configurations, measured by the number of request
per second.

Table 5.6 Average run time of each step plus or minus the standard deviation. Each step was
run ten times.

Step Run time
Feature extraction 29.31 ± 1.08s
Outlier detection 5.69 ± 0.83s
Outlier clustering 0.04 ± 0.00s
N-gram analysis 17.59 ± 0.16s

The run time complexity of DBSCAN is O(nlogn), assuming it uses an indexing structure and
an ϵ which gives logn neighbors an average [179]. The parallelized scikit-learn implementation
of DBSCAN was used.

K-means is known to be an efficient method, with an average complexity of O(knT ) where
k is the number of neighbors and T is the number of iterations. The parallelized scikit-learn
implementation of k-means was also used.

Even though n-gram is merely counting, and there are a limited number of possibilities (31
unigrams, 135 bigrams, and 334 trigrams in detected outliers), this is the slowest step as the
results were stored in a data frame before being displayed and saved. This makes the data
manipulation easier, although it is not necessary and can be optimized for production.

5.6 Conclusion and Future Work

In this paper, we introduced a pipeline for the automatic detection of performance issues in
web requests. This includes both user space and kernel space feature extraction methods,
which proved to be useful for detecting outliers and clustering them in a relevant manner.
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To answer our first research question: it is indeed possible to automatically and efficiently
detect anomalies from trace data. A simple statistical analysis was able to guide us to the
root cause of two different anomalies. This indicates that comparing run time behavior gives
meaningful insights into the root cause.

As future work, we would like to compare our method with ones specifically designed for
sequences, even if some assumptions are broken. Notably, Hidden Markov Models and SE-
QDBSCAN – an extension of DBSCAN for sequences – seem promising. We would also like
to extend the cluster analysis to context calling trees (CCT) or enhanced context calling
trees (ECCT) [168] in order to determine if the first cluster in Figure 5.4 and Table 5.4 is a
group of normal requests with a different behavior, or merely a group of unknown anomalies.
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Abstract Kernel traces are sequences of low-level events comprising a name and multiple
arguments, including a timestamp, a process id, and a return value, depending on the event.
Their analysis helps uncover intrusions, identify bugs, and find latency causes. However, their
effectiveness is hindered by omitting the event arguments. To remedy this limitation, we in-
troduce a general approach to learning a representation of the event names along with their
arguments using both embedding and encoding. The proposed method is readily applicable
to most neural networks and is task-agnostic. The benefit is quantified by conducting an
ablation study on three groups of arguments: call-related, process-related, and time-related.
Experiments were conducted on a novel web request dataset and validated on a second
dataset collected on pre-production servers by Ciena, our partnering company. By lever-
aging additional information, we were able to increase the performance of two widely-used
neural networks, an LSTM and a Transformer, by up to 11.3% on two unsupervised language
modelling tasks. Such tasks may be used to detect anomalies, pre-train neural networks to
improve their performance, and extract a contextual representation of the events.

Keywords Tracing, Machine Learning, Deep Learning.

6.1 Introduction

In recent years, deep learning has been successfully applied to an ever-growing range of
supervised and unsupervised tasks. This trend has been enabled by the ever-increasing
computational resources and the novel techniques introduced to take advantage of these
resources. As of today, the largest model for natural language processing (NLP) comprises 175
billion parameters and has been trained on half a terabyte of curated text [50]. The authors
showed that the model performance scales consistently with the number of parameters and
the amount of available data.
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A technique that surely generates a large amount of data is tracing. Tracing is the act of
collecting a trace which is a sequence of low-level events. Such events are produced whenever
a specific instruction called tracepoint is encountered at runtime and comprises a name, a
precise timestamp, and possibly many arguments. Figure 6.1 depicts three trace events.

timestamp stream context event context event fieldsevent namehostname

Figure 6.1 Trace events as displayed by Babeltrace2. The arguments are all the values except
the event name. In this example, the arguments are from left to right: the timestamp, the
hostname, the CPU id, the process name, the process id, the thread id, the file descriptor,
and the return value.

Traces provide insights on the execution of a piece of code and have been extensively used
to detect intrusions, identify bugs, and find the root cause of latency issues. The main
advantages of tracers are (1) they do not require to stop the execution contrary to debuggers,
and (2) they do not aggregate events or metrics contrary to loggers.

In this paper, we consider the events generated by the operating system also known as kernel
events. The benefit of such events is two-fold: (1) tracepoints are already implemented in
the Linux kernel, which allows tracing virtually any Linux system without having to modify
the source code, and (2) the behaviour of the whole system is visible from the kernel. In this
paper, we focus on a subset of the kernel events called system calls. System calls are the only
way for an application to communicate with the operating system.

Although the manual inspection of traces may reveal insights that are virtually impossible to
extract automatically, the amount of human labour required is often prohibitive. Indeed, the
operating system produces thousands of events every second, most of which may be collected.
The sheer size of traces is the primary reason why automatic analysis is required. Traces are
used to detect unknown intrusions, to identify unknown bugs, or to locate the unknown root
cause of anomalies, making their analysis often challenging to specify in practice. Therefore,
machine learning techniques, that is, techniques that learn how to solve a task from examples,
are well suited to analyse traces.

Most machine learning methods take a vector of numerical features as input. Hand-crafted
features of traces have been proposed, but no representation seems to work universally well
or to encapsulate the true underlying explanatory factors [13, 176, 27]. Instead of relying on
hand-crafted features, neural networks learn how to extract meaningful features for the task.

2https://babeltrace.org

https://babeltrace.org
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By finding a relevant input representation for the task, neural networks reduce the need for
an expert, and the model performance is improved in most cases.

Although a wide range of deep learning techniques has been applied on traces by previous
works, only a small fraction of the accessible information has been considered. The event
arguments and, in certain cases, the event ordering inside the trace, have been left out in the
literature. Section 6.2 discusses in more detail the related works and their limitations. We
argue that the increase in resources and the improvement of deep learning techniques allow
fully exploiting traces.

A trace is a sequence of discrete values arguably comprising a syntax and a semantic. Due to
their resemblance to natural language, the most common approach is to apply deep learning
techniques from natural language processing. Our methodology follows the previous works by
considering the widely used Long Short-Term Memory (LSTM) [38]. A recent alternative to
LSTM for processing variable-length sequences called the Transformer [43] is also evaluated.
Although this model is omnipresent in NLP, it has not yet been applied on traces. The two
models were evaluated on two unsupervised objectives: (1) left-2-right language model (LM)
that allows computing the likelihood of a sequence, and therefore, detecting anomalies, and
(2) masked language model (MLM) that is used for pre-training [51].

This paper’s first contribution is the introduction in Section 6.3 of a novel method to learn
a single representation of the system call names with their arguments. Results are detailed
in Section 6.5 and an ablation study is conducted to investigate the impact of three groups
of arguments: call-related, process-related, and time-related.

The second contribution of this paper is the introduction of a novel dataset comprising
around 250,000 web requests. The actual dataset is provided, but most importantly, the
data generation methodology is explained in Section 6.4. One may argue that our dataset is
too simple or that it inaccurately represents actual web servers. Therefore, every experiment
is validated on a second dataset collected on pre-production servers by Ciena, the partnering
company of this research.

Finally, Section 6.6 discusses the possible threats to validity, and Section 6.7 answers inter-
esting questions about the pertinence of the proposed approach and future works.

6.2 Related Work

Over the last two decades, a wide range of machine learning techniques has been applied to
analyze traces, including naive Bayes [34], random forest [36], and hidden Markov models
[24]. Recently, the trend has shifted toward more flexible approaches, and especially toward
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deep learning methods. Model flexibility relates to the space of functions that the model
is able to learn and increases with the number of parameters. Therefore, highly flexible
methods, such as large neural networks, are able to learn complex solutions that typically
perform better than less flexible ones. This section provides an overview of the main neural
networks that have been studied in the tracing literature as well as their limitations.

Recurrent neural networks (RNNs) allow processing variable-length sequences with a fixed
number of parameters. Such a network produces an output at every time step and is depicted
in figure 6.2. The Long Short-Term Memory (LSTM) [38] is a recurrent neural network
specifically designed to learn dependencies across a large number of time steps. This network
has been extensively and successfully used across many fields. Tracing is no exception, and
LSTM is by far the most popular neural network to analyze traces [36, 20, 2, 17, 19].

...

Figure 6.2 The unrolled computational graph of a recurrent neural network. The input and
output sequences are depicted in blue and red, respectively. The time step is indicated
in exponent and between parenthesis. Note that the network parameters W , U , and V ,
are replicated at every time step. Therefore, the network can process variable-length input
sequences.

Dymshits et al. [20] trained a unidirectional and a bidirectional LSTM on sequences of system
call count vectors. Such vectors are bag-of-words, that is to say, the normalized counts of
system call names, from a fixed-duration window. This aggregation is a trade-off between
computational efficiency and performance, and is controlled by the window size. The authors
also trained an Inception-like net consisting of multiple LSTMs with tied weights. They found
that simpler LSTMs performs on par with the more complex ones.

Kim et al. [2] trained an ensemble of LSTMs on sequences of system call names. Ensemble
techniques improve the performance, although not significantly, and the robustness of the
chosen method. While ensemble techniques may be necessary for industry products, this
paper will not leverage them as the main objective is to show the relative impact of the
arguments rather than the approach’s absolute performance.
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Song et al. [36] compared an LSTM with less flexible machine learning techniques to detect
and explain anomalies from streams of traces. They did not, however, explicitly say which
events were considered or describe their preprocessing.

Recurrent neural networks output a vector at every time step, so the output sequence must
have the same length as the input sequence (see Figure 6.2). This property of RNNs may
become a constraint depending on the task. To overcome this limitation, Sutskever et al.
[40] introduced the sequence-to-sequence framework where a first network (encoder) encodes
the input sequence into a fixed-size context. A second network (decoder) then generates the
output sequences based on this context. This framework allows outputting a variable-length
sequence independently of the input sequence length and is illustrated in Figure 6.3.

...

Encoder

_

...

Decoder

Figure 6.3 Sequence-to-sequence framework. A first network (encoder) encodes the input se-
quence into a fixed-size context h(n) shown in red, then a second network (decoder) generates
the output sequences based on this context.

Lv et al. [26] used a gated recurrent unit3 (GRU) [39] in a sequence-to-sequence fashion to
extend sequences of system calls names and increase the accuracy of intrusion detection.

Recurrent networks, including LSTMs and GRUs, suffer from an issue related to memory
compression [41]. As the input sequence gets processed, information must be stored in the
fixed-size hidden representation h. Either h is too large and computational resources are
wasted, or h is too small and information is lost. In the latter case, the model performance
might be significantly impacted. Bahdanau et al. [42] introduced an alignment mechanism
called inter-attention to mitigate the effect of memory compression. This mechanism com-
putes a different representation of the input for each output step, effectively allowing the
decoder to “look at” the relevant part(s) of the input for each output step. Figure 6.4
illustrates the inter-attention mechanism.

3GRU is similar to LSTM but requires fewer parameters.
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Figure 6.4 Inter-attention mechanism. The attention weight α
(t)
i corresponds to the strength

with which the i-th encoder hidden representation h(i) contributes to the context of the t-th
decoder step.

Brown et al. [4] augmented an LSTM with the dot-product inter-attention and explored
different ways of computing the attention: fixed, position-based (syntax attention), and
context-based (semantic attention). For the task of system log anomaly detection, every
attention yielded comparable results.

Finally, due to their sequential nature, recurrent networks do not scale efficiently to longer
sequences [43]. Dai et al. [48] introduced the relative effective context length (RECL), the
largest context length that leads to a substantial relative gain over the best model. Simply
put, increasing the context length over the RECL yields a negligible increase in performance;
thus, RECL indicates the maximum dependency length that the model is able to learn. They
showed that the RECL of LSTM is limited to around 400 time-steps. This is problematic for
trace analysis since hundreds of events may be generated every second.

To overcome this limitation, Vaswani et al. [43] introduced the Transformer, a sequence-
to-sequence model based solely on the inter-attention and self-attention mechanisms. The
self-attention allows relating any two positions in a sequence regardless of their distance thus
allowing for a significant increase in performance in most natural language processing tasks
at the cost of a quadratic complexity with respect to the sequence length. To the best of our
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knowledge, this model has not been applied on traces but has been included considering its
ubiquity in NLP.

None of the aforementioned works considered the system call arguments. Arguably, the main
reason is that the community does “[...] not have a compact fixed-dimensional representation
for system call arguments suitable for large-volume training and classification.” Dymshits
et al. [20].

Nonetheless, Nedelkoski et al. [17] used a bimodal LSTM that is the concatenation of two
LSTM hidden representations trained on the real-valued duration and one-hot-encoded texts,
respectively. Albeit their work considered logs rather than traces, one may view their method
as leveraging a temporal argument. The neural network proposed by Ezeme et al. [19] is the
closest to actually considering multiple arguments values. The authors trained an LSTM
using the system call name, the CPU cycles count, and the distribution of characters in the
arguments’ values.

As far as we know, only two works by Tandon and Chan [15, 15] considered the actual values
of multiple system call arguments. The authors trained a conditional rule-learning algorithm
called LERAD, which, contrary to neural networks, does not require to learn a fixed-size
representation of the arguments.

6.3 Proposed Approach

Before introducing the proposed approach, let us clarify the different categories of system
call arguments. One may group them depending on whether they are part of the stream
context, the event context, or the event fields (see Figure 6.1). In this work, the arguments
are grouped based on their semantic. The first category comprises all call-related arguments
such as the return value, the file descriptor, the type of futex operation, and the number
of bytes to write – depending on the event. The second category consists of all process-
related arguments such as the process name, the thread id, and the process id. Note that
this category corresponds exactly to the event context. Finally, the third group consists of
time-related arguments such as the timestamp and the timeout duration.

The scope of this work is limited to the arguments that are common to virtually all system
calls. Namely, the return value (ret), whether the event corresponds to the start or end of a
system call execution (entry), the process name (procname), the thread id (tid), the process
id (pid), and the timestamp (timestamp). As explained later, extending this work to other
arguments is simple but may require a substantially larger dataset. Table 6.1 recapitulates
the considered arguments.
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Table 6.1 The studied system call arguments.

Category Argument Notation Type

call-related return value ret integer
start/end of execution entry boolean

process-related
process name procname string
process id pid integer
thread id tid integer

time-related timestamp timestamp integer

In order to determine how to represent the arguments, one must identify the intrinsically
meaningful ones. In other words, one has to assess whether the argument values convey
meaning in themselves – without any context. As an example, let us consider the process
name “apache”. This value means that an Apache web server has generated the system call,
hence procname is inherently meaningful. On the contrary, the process id “12523” is only
meaningful in the context of the trace. Indeed, the pid allows relating events that have been
generated by the same process; the value “12523”, however, may well be associated with two
distinct processes at different points in time.

The procname, the return value, and the entry are intrinsically meaningful arguments,
and hence, an embedding will be learned for them. On the contrary, the pid, the tid, and
the timestamp are not inherently meaningful and an encoding will be applied.

6.3.1 Embedding

One way to represent textual words is through a sparse binary vector called one-hot-encoding.
The i-th word of the vocabulary is mapped to a row vector ewi

whose dimension is equal to
the size of the vocabulary. Such vector is filled with 0 except for the i-th position which is
equal to 1. Given a toy vocabulary of three system call names {open, close, timer}, their
one-hot-encoding would be [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively.

One-hot-encoding has two major drawbacks: (1) the vector dimension is equal to the
vocabulary size which may be large, and (2) the encoding of any two distinct words
are perpendicular, meaning that words are equidistant. For instance, one would expect
dist(eopen, eclose) < dist(eopen, etimer) as open is semantically closer to close than to timer.

A better representation is expected to be more compact and to encapsulate semantic knowl-
edge about the word. Such representation is called an embedding. Note that in the natural
language processing community, an embedding refers to both the general mapping from a
textual space to a semantic vector space and the actual dense vectorial representation of a
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word.

Formally, an embedding is defined by a dense matrix W ∈ Rdv×de with dv the size of the
vocabulary and de the dimension of the embedding such as de ≪ dv. The embedding xwi

of
the word wi is computed by multiplying its one-hot-encoding ewi

with the embedding matrix
W which effectively acts as a lookup table (see example below). The embedding matrix is
typically treated as any other model parameter in that it is randomly initialized and learned
with gradient descent.

[ 0 0 1 0 ]︸ ︷︷ ︸
One-hot vector ewi

×


5 6 2 1 4
0 1 7 3 1
4 8 1 6 9
3 1 2 8 2


︸ ︷︷ ︸

Embedding matrix W

= [ 4 8 1 6 9 ]︸ ︷︷ ︸
Word embedding xwi

6.3.2 Encoding

It would be ill-advised to learn an embedding of a value that is not inherently meaningful –
whose interpretation depends entirely on the context. Instead, one should use a deterministic
transformation without any parameter that is called an encoding.

Once more, let us consider the process id. Neural networks take as input a vector of numerical
values. Therefore one may provide the actual pid as input. It is, however, a best practice
to normalize the input vector to mitigate numerical instabilities, help training, and improve
the model performance. Since the pid is not inherently meaningful in general4, any bijection
from the argument space to a small interval such as [0, 1] or [−1, 1] works well. The simplest
solution would be to map the pid uniformly to real values between [0, 1]. In practice, the
number of distinct pid within a trace varies and is often unknown beforehand.

A practical way to encode a numerical value is to apply the cosine function. Indeed, the
codomain is [−1, 1], and the function requires no knowledge about the distribution or the
extremum of the input variable. The cosine function is not, however, a bijection. As a result,
collisions may occur: two different values assigned to the same encoding. Consider x = 1
and x′ = 1 + 4π:

cos(1) = cos(1 + 4π)

The number of collisions may be reduced by dividing x by an appropriately large number

4There are exceptions. Notably, pid 0, pid 1, and kernel-reserved pids are meaningful and could be
considered separately.
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which effectively controls the period of the cosine function. Note that if the denominator is
too small, collisions may still occur.

cos(1/2) = cos((1 + 4π)/2)

If the denominator is too large, the encodings will be extremely close, hence difficult for a
model to distinguish.

cos(1/1000) ≈ 0.9999995

cos((1 + 4π)/1000) ≈ 0.99991

Instead, the denominator should be equal to the estimated maximum value that x can take.

The number of collisions may be further reduced by applying multiple cosine functions with
different periods. In that case, the encoding is a vector comprising the output of each cosine
function. In other words, the output of every cosine function is concatenated into a vector
which is the encoding.

Our approach relies on the encoding proposed by Vaswani et al. [43] which leverages an
alternation of cosine and sine functions with an increasing denominator. More formally, the
encoding of a numerical value x is a vector pex of dimension d whose j-th value is given
either by equation 6.1 or 6.2 depending on whether j is even (j = 2i) or odd (j = 2i + 1),
respectively.

pex,2i = sin(x/100002i/d) (6.1)

pex,2i+1 = cos(x/100002i/d) (6.2)

As the authors underlined, there exists a linear relation between the pex and pex+k, which
they hypothesized should facilitate learning. Figure 6.5 illustrates the encoding.

6.3.3 Addition or Concatenation

Let us now investigate how to combine the arguments embedding and encoding into a single
event representation. The two most common approaches are the addition and the concate-
nation.

One may describe the addition of two vectors x and y as the translation of a point x by a
vector y – or equally a point y by a vector x. Let us consider the system call name and
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Figure 6.5 Encoding of the value x = 80 using Vaswani et al. [43] formula and a dimension
d = 4.

the argument entry which has two possible values, “entry” and “exit”. Furthermore, let us
consider the system call name embedding as a point and the entry embedding as a vector.
The addition effectively shifts the system call name embedding depending on whether the
event corresponds to the start or the end of the system call execution. As illustrated by
figure 6.6, the relation has been explicitly modelled in the same space as the embedding of
the system call name, which simplifies their visualization and interpretation.

open

close

entry_open

entry_close
exit_open

exit_close

Explicit relation

Implicit relation

Figure 6.6 The embedding of the system call names “open” and “close”. The green and
red dashed lines represent the explicitly modelled “entry” and “exit” relations, respectively.
The blue dotted line represents the implicitly modelled relation between the two system call
names.

The addition preserves the dimension, which may be too small to store all the information,
thus creating a bottleneck. Instead, the concatenation allows combining vectors without such
a bottleneck. Indeed, the dimension of the resulting vector is the sum of the dimensions of
the concatenated vectors. That may, however, be a drawback if the model size scales with
the input dimension as larger models are computationally expensive to train and prone to
overfitting. One may mitigate the overfitting by collecting a sufficiently large dataset.

Although the embedding visualization is outside of the scope of this work, we believe inter-
esting to model the system call name, the argument entry, and the argument ret in the
same space. One may gain insights into the system by investigating the relations between
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those vectors. Therefore, only those values will be added, and the remaining arguments will
be concatenated. Note that it would be ill-advised to add an encoding to an embedding since
the former is not inherently meaningful.

6.3.4 Event Representation

sysname entry ret

Addition

procname pid tid

Concatenation

Concatenationtimestamp

time-related

process-relatedcall-related

Event
representation

Figure 6.7 Computational graph of the event representation. Blue rounded rectangles rep-
resent the arguments. Green rectangles indicate that the transformation is learned (em-
bedding), and the parametrization is noted next to the incoming arrow. White rectangle
indicates that the transformation is not learned (encoding, addition, or concatenation).

Figure 6.7 illustrates the computational graph of the event representation. For the call-related
arguments, the embedding of the sysname, the entry, and the ret are added. Note that
the return value is simplified to either “success” if the numerical value is greater or equal to
zero, or “failure” otherwise. For the process-related arguments, the procname embedding is
concatenated with the pid and tid encodings. For the time-related argument, the timestamp
is converted from nanoseconds to microseconds and is encoded. Finally, the representation
of each category of arguments is concatenated.

Neural networks take numerical values as input that may be arranged as vectors, matrices,
or, more generally, tensors. In the case of traces, the network’s input is typically a sequence of
vectors corresponding to the events. Such vectors may be the one-hot encoding of system call
names, or better, their embedding. The proposed approach outputs a vectorial representation
of the event with its arguments; therefore, it applies to most deep learning models.
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The proposed event representation is non-contextual: a system call with its arguments will
have the same representation regardless of the other trace events. Some tasks greatly benefit
from a contextual representation which may be obtained with a Transformer trained on the
masked language model objective [51]. Although such a model has been evaluated, contextual
representations are outside the scope of this paper.

6.4 Data Collection

Over the years, many tracing datasets have been explored; however, most of them are not
publicly available. Consequently, the now-obsolete UNM [182] and KDD98 [183] datasets
are still widely used [13]. Those datasets were collected more than two decades ago and
are clearly not representative of modern systems anymore. Therefore, they should not be
used to evaluate recent approaches. In 2013, Murtaza et al. [13] and Creech and Hu [184]
addressed this issue by introducing two new datasets: FirefoxDS and ADFA-LD, respectively.
Unfortunately, the former is unavailable, and the system call arguments were omitted from
the latter.

As indicated by Brown et al. [50], increasing the size of language models greatly improves their
performance regardless of the task. As larger models require more data to be properly trained,
the dataset must not only be modern but also massive. To the best of our knowledge, no
massive and modern datasets comprising the system call arguments are publicly available. To
that extent, we propose to generate such a dataset using requests. A request is a task delimited
by specific start and end events. Examples include database queries, micro-services, and
application functions. Notably, web requests have been extensively studied in the literature
as they are ubiquitous. We introduce a methodology to generate a massive dataset of web
request traces using a simple client-server framework (see Figure 6.8). The source code and
the dataset are publicly available on GitHub5 and Zenodo6, respectively.

6.4.1 Methodology

On the client-side, a benchmark tool is used to send many concurrent requests to the server
via the hypertext transfer protocol (HTTP). We chose wrk27, an open-source multithreaded
equivalent of the Apache benchmark, as it guarantees a constant throughput load with an
accuracy up to 99.9999% for sufficiently long runs. Moreover, wrk2 yields a latency summary
which allows extracting statistics about the dataset without processing it.

5https://github.com/qfournier/syscall_args
6https://zenodo.org/record/4091287#.X4hhGNjpNQI
7https://github.com/giltene/wrk2

https://github.com/qfournier/syscall_args
https://zenodo.org/record/4091287#.X4hhGNjpNQI
https://github.com/giltene/wrk2
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Figure 6.8 Client-server framework. The client and the server are two distinct physical
machines that communicate over the network. The server may be executing other software
while handling a request which is considered to be noise from a request point of view.

On the server-side, a web server handles the client requests and communicates with a database
to retrieve the necessary information. For the web server, we chose Apache2 for its omnipres-
ence and its modularity. Indeed, Apache2 is the most popular web server since 1996, and its
vast community has developed many optional modules, including app servers and database
connection managers. For the database, we chose MySQL for its ease of use and performance.
MySQL is filled with the Sakila Sample Database8 which includes an author table comprising
ids, first names, and last names. Finally, PHP was installed as an Apache module to query
the database.

One may be interested in simulating different behaviours such as slow or abnormal requests.
In order to increase the likelihood of such requests, the server must be overloaded, which is
done by restricting the amount or speed of the resources (CPU, memory, network, and disk).
Consequently, Apache2 is deployed in a virtual machine using Virtual Box.

Physical servers often execute multiple tasks simultaneously. Since our server was dedicated,
Firefox was automatically and randomly called from the console to take screenshots of ran-
dom Wikipedia pages. The monitoring tools htop and bmon were also running in separate
terminals. This allows creating a load on the CPU, the disk, and the network, as well as
generating random events in the trace which adds variability.

In this work, we focus on the server-side since it is the source of most delays. A single trace
is collected during the entire benchmark, therefore containing many individual requests.
Depending on the task at hand, one may consider the whole trace as a single sequence or
individual requests as separate sequences. Several tracers are available; however, the Linux

8https://dev.mysql.com/doc/sakila

https://dev.mysql.com/doc/sakila
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Tracing Toolkit: next generation (LTTng) [10] is often the prefered choice given its lightweight
and rapidity. Although only some system calls arguments are considered in this work, all
arguments have been collected in order to have a complete view of the system.

6.4.2 Dataset Analysis

The server was deployed on a virtual machine with two cores from an Intel Core i7-8700 (up
to 4.6 GHz), 1 Gb of DDR4 RAM, and an NVME SSD. The operating system was Ubuntu
18.04. Different throughputs were used to simulate different usages: idle, low, medium, and
high. High usage means that the server is barely able to handle requests in real-time and
that some end up with a timeout. Note that the training set and the test set were collected
separately using different throughputs to avoid any overlap.

We collected around 250,000 requests which amount to almost 150 million system calls. One
would likely have to collect a larger dataset in order to consider additional arguments such
as the file descriptor without overfitting.

Figure 6.9 depicts the distribution of process names. As expected, the three most frequent
processes are those that handle requests, namely the web server, its workers, and the database.
Note that Firefox is responsible for issuing 13% of the system calls.

Figure 6.9 Distribution of process names.

Figure 6.10 depicts the distribution of system call names. The two most frequent system
calls are futex and poll which provide a method for waiting until a condition becomes true
and until a file descriptor becomes available to perform IO operations, respectively. This
behaviour is to be expected in networked multicore systems, especially when many remote
requests are being handled concurrently.
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Figure 6.10 Distribution of system calls.

For an equivalent analysis of Ciena’s dataset, we refer the reader to the GitHub repository.

6.5 Computational Experiments

This section introduces the neural networks and objectives on which the system call argu-
ments’ impact was evaluated. The source code, hyperparameters, and trained models are
publicly available on GitHub9.

6.5.1 Networks

The first model evaluated is a deep unidirectional Long Short-Term Memory (LSTM) network
with two hidden layers comprising 96 units. The vast majority of existing works to analyze
traces apply an LSTM on system call names only [36, 20, 2, 17, 19]; therefore, those methods
would require almost no modification to leverage the arguments with the proposed approach.

The second model evaluated is a Transformer. Transformers are highly parallelizable and are
able to learn dependencies across an unlimited number of steps at the price of quadratic com-
plexity. Many works address this limitation; however, since this paper aims to demonstrate
the usefulness of the system call arguments, we settled for the vanilla Transformer introduced
by Vaswani et al. [43]. In particular, the network consists of six layers, each comprising 8
attention heads and a feedforward network with 128 units.

Contrary to LSTMs, Transformers are agnostic to the event position in the sequence. To solve
this shortcoming, Vaswani et al. [43] injected positional knowledge by summing a positional

9https://github.com/qfournier/syscall_args

https://github.com/qfournier/syscall_args
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encoding with the embedding. In our experiments, the model achieved better results when
the positional encoding was concatenated to the event embedding.

The dimensions of the arguments embedding and encoding have a significant impact on the
model performance; thus, various configurations were evaluated. The following dimensions
performed well in all experiments: 32 for the sysname, entry, and ret, 16 for the procname,
4 for the pid and tid, and 8 for the timestamp. Consequently, the dimension of the whole
event representation is 64. Note that the dimension of the positional encoding was equal to
that of the timestamp.

6.5.2 Objectives

The first objective is the left-to-right language model (LM), which predicts the conditional
probability of the next system call name given the previous system calls. The chain rule
allows computing the joint probability of the whole sequence, that is, its likelihood, and
therefore may be used to detect changes in the system behaviour, intrusions, and anomalies.
Notably, Kim et al. [2] used language modelling for host-based intrusion detection.

The second objective is the masked language model (MLM), which independently estimates
the probability of masked words given the rest of the sequence. The more events are masked,
the less context is available, and the more difficult is the training. In practice, MLM is
often used to pre-train neural networks, and it has been shown to improve the model per-
formance on downstream tasks, that is, the tasks of interest. Therefore, we evaluated the
pre-trained model on LM in a zero-shot manner and determined that masking 25% of the
events performed reasonably well on both datasets (see Table 6.5). In particular, we followed
the methodology of Devlin et al. [51] by randomly selecting 25% of the events, of which 80%
were entirely masked, 10% were replaced by a random system call name with the same argu-
ment values, and 10% were left unchanged. Randomly replacing the selected events generates
noise which increases the robustness of the model. The proportion of random events is iden-
tical to Devlin et al. [51] as their ablation study showed it worked well for pre-training. Note
that masked LMs are technically not language models as they are not trained to maximize
the joint probability of sentences. Figure 6.11 illustrates the masked language model.

6.5.3 Data

Due to memory constraints on the graphics processing unit (GPU), the models must be
trained on small sequences. Therefore, the traces were split into non-overlapping sequences
of 256 events. Note that those sequences do not correspond to requests. One would need to
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Figure 6.11 Masked language model. Events in green have been randomly selected, and
system call names in red are the predictions independently considered.

implement the proposed approach with a lower computational complexity model in order to
process whole requests as they usually contain thousands of events.

The first dataset studied has been introduced in Section 6.4 and comprises 318,674 training
sequences and 258,190 test sequences. The second dataset has been collected by Ciena on pre-
production servers executing proprietary software and comprises 190,924 training sequences
and 64,628 test sequences. Although smaller, this dataset is designed to be representative of
a real-world use case.

A quarter of each test set was randomly selected to create a validation set on which the hy-
perparameters were fine-tuned, and the model was evaluated at train time for early stopping.

6.5.4 Results

For each combination of datasets, objectives, and neural networks, two event representations
have been compared: the system call name without any argument (none) and with every
argument as described in Figure 6.7 (all).

Arguments may affect the performance differently; however, the computational cost of evalu-
ating the impact of each argument, or worse, each combination of arguments, is prohibitive in
practice. Instead, we evaluated the global impact of three groups of arguments: call-related
(entry and ret), process-related (procname, pid, and tid), and time-related (timestamp).

Because the arguments embedding and encoding are concatenated, considering additional
arguments increases the event representation dimension, which also increases the model size.
On one side, the additional information allows the network to be larger without overfitting;
hence one may see the increase in size as a byproduct of the arguments. On the other side,
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one may argue that a larger model only considering the system call name would perform
better. In order to test these hypotheses, a compensated model considering no argument is
evaluated (none cmp.). The dimension of the sysname embedding is increased from 32 to
64, which is the event representation’s dimension when all the arguments are considered.

The model performance was measured in terms of cross-entropy (lower is better) and top-1
accuracy (higher is better). The cross-entropy is a measure of the difference between two
distributions, in our case, the model output and the label. In the usual case of one-hot
labels, the cross-entropy is defined as the negative logarithm of the correct event’s predicted
probability. The top-1 accuracy is the percentage of correct predictions, where a prediction is
the system call name with the highest predicted probability. Results are detailed in Table 6.2.

Table 6.2 Impact of three categories of system call arguments (cross-entropy / accuracy).

none none cmp. time call process all

Web
Requests

LM LSTM 0.528 / 83.1 0.529 / 83.1 0.526 / 83.2 0.451 / 85.6 0.443 / 85.7 0.423 / 86.4
Transformer 0.609 / 80.3 0.506 / 83.3 0.599 / 80.6 0.489 / 84.3 0.452 / 85.0 0.380 / 87.3

MLM Transformer 0.535 / 81.7 0.485 / 82.8 0.524 / 81.8 0.400 / 87.2 0.423 / 85.0 0.182 / 94.1

Ciena LM LSTM 0.294 / 91.8 0.301 / 91.5 0.301 / 91.6 0.277 / 92.2 0.283 / 91.9 0.264 / 92.4
Transformer 0.323 / 90.4 0.292 / 91.3 0.310 / 90.8 0.290 / 91.5 0.271 / 91.9 0.238 / 92.8

MLM Transformer 0.285 / 90.8 0.264 / 91.3 0.270 / 91.2 0.202 / 94.0 0.245 / 91.8 0.125 / 96.2

In every experiment, the models that consider all the arguments achieved the lowest cross-
entropy and the highest accuracy. The compensated models perform on par or better than
their smaller counterpart; however, they are systematically outperformed by the models
considering all the arguments. These results indicate that the increase in performance is not
only due to the increase in model size but also to the additional arguments. Therefore, the
arguments must contain useful information for language modelling tasks. Interestingly, the
masked language model objective benefits more from call-related arguments than process-
related ones.

The time-related argument has a negligible impact on the LSTMs; consequently, the tem-
porality must be of little use for the left-to-right language model objective. Nonetheless,
Transformers appear to benefit from the timestamp and, as a result, an ablation study of the
timestamp and the position was conducted to quantify their impact. The results shown in
table 6.3 reveal that timestamp does increase the performance over a model without any ar-
guments, although not as much as the position, which indicates that Transformers are able
to leverage the redundancy of the positional information embedded in the timestamp. How-
ever, with an equal number of parameters, a model considering only the position performs
on par or better than one considering both values. Such behaviour is to be expected since
the positional information in the timestamp is harder to extract. One may be tempted to
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dismiss the timestamp; however, it should be noted that some downstream tasks, including
latency detection, may greatly benefit from the timestamp.

Table 6.3 Impact of the event’s position and timestamp encoding dimensions on the Trans-
former without arguments (cross-entropy/accuracy). A dimension of zero is equivalent to
omitting the argument.

timestamp position Web Requests Ciena
0 0 0.730 / 76.9 0.444 / 86.9
8 0 0.661 / 78.4 0.337 / 89.8
0 8 0.609 / 80.3 0.323 / 90.4
8 8 0.599 / 80.6 0.310 / 90.8
0 16 0.587 / 80.9 0.313 / 90.8

As shown in Table 6.4, the computational overhead imposed by the additional arguments
was negligible compared to the overall training cost, making the proposed approach suitable
for real-world applications. This is to be expected as the embedding is simply a matrix
multiplication, and the encoding is only a small number of cosine and sine functions.

Table 6.4 Average epochs time (± std) in milliseconds of the Transformers trained on the
web requests.

LM MLM
none 99.3 (± 2.0) 232.2 (± 8.2)
none cmp. 102.2 (± 1.6) 232.8 (± 5.3)
time 104.1 (± 2.6) 228.5 (± 3.8)
call 102.4 (± 2.1) 227.0 (± 6.6)
process 103.6 (± 1.7) 234.3 (± 6.9)
all 106.0 (± 2.4) 238.5 (± 4.5)

Table 6.5 Impact of the percentage of selected events for pre-training the Transformer with
all arguments as evaluated on LM (cross-entropy/accuracy).

pmask Web Requests Ciena
0.05 3.826 / 54.6 1.738 / 80.1
0.10 3.881 / 55.7 1.641 / 80.2
0.15 3.314 / 56.7 1.639 / 80.2
0.20 3.543 / 56.1 1.617 / 80.4
0.25 3.334 / 56.1 1.647 / 80.4
0.30 3.387 / 56.3 1.548 / 80.2
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6.6 Threats to Validity

The main threat to validity is the limited scope of the evaluation. Indeed, the approach
has only been evaluated on two unsupervised language modelling tasks due to the lack of a
publicly available dataset comprising the system call arguments. To mitigate this limitation,
we provide the source code as well as the trained models for researchers and practitioners to
evaluate our approach to their task.

The second threat to validity is the simplicity of the environment on which our dataset was
collected. Consequently, the dataset may not represent real-world use cases and may not
reflect the approach’s actual benefit. This limitation is addressed by evaluating the two
objectives on a second dataset collected by Ciena on pre-production servers. Additionally,
our dataset is unlabelled. Consequently, it is challenging to use for supervised tasks such
as anomaly detection. To alleviate this shortcoming, we provide a tutorial and the scripts
required to generate the dataset such that users can produce their own labels.

Finally, although the proposed approach’s computational overhead is negligible, neural net-
works still require powerful GPUs to be trained. The models’ average training time described
in Table 6.2 was less than 2 hours, with the slowest model taking about 5 hours on a single
NVIDIA RTX2080Ti and two Intel Xeon Bronze 3104 1.7Ghz. Therefore, the experiments
are easily reproducible with modest computational resources.

6.7 Concluding Remarks

In practice, it is often difficult to determine whether a specific deep learning approach is
beneficial for the task at hand. In this section, we answer two general questions to help
researchers and practitioners decide whether to adopt the proposed method.

Do the arguments invariably increase the model performance? We argue that the performance
either improves or remains the same, provided two conditions. Firstly, the model must
be flexible enough to be able to extract relevant information from the arguments. Such a
model would be able to leverage the additional information in order to make more informed
predictions, hence more accurate. If the arguments only contain irrelevant information to
the task, the performance cannot increase. It may, however, decrease. Indeed, larger inputs
translate into larger embeddings, which increase the model size, hence its flexibility. As the
model flexibility increases, it becomes prone to overfitting, that is, to learn peculiarities from
the dataset that do not reflect real explanatory factors. It is well-known that the difference
between training and generalization errors grows with the model flexibility and shrinks with
the number of training examples [28]. Therefore, the second condition is that enough samples
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must be available to prevent the model from overfitting. Large datasets of traces are typically
easy to obtain, so the amount of data is not a limiting factor. Notably, this work introduced
a methodology to generate a massive dataset of requests. Furthermore, many techniques
such as dropout [124], batch normalization [108], and early stopping [185] allow mitigating
the overfitting that may occur. Nonetheless, the arguments should be omitted if one knows
beforehand that the information is irrelevant to the task. For instance, if a single thread is
recorded, the tid is constant and may be safely omitted.

In practice, how does one know when to consider additional arguments? It seems that one
would need to estimate a priori (1) if the model is complex enough, (2) if the dataset is
large enough, and (3) if the arguments could be relevant to the task at hand. Fortunately,
in the case of neural networks, the models are generally more flexible than necessary – they
contain many more parameters than there are samples in the dataset [185]. As explained
above, collecting large datasets of traces is often trivial, and the risk of overfitting may
be significantly reduced. When possible, we recommend considering the arguments and
comparing the model with a baseline that does not.

In this work, we introduced a massive dataset of web requests and a general approach to
learning a representation of the system call names along with their arguments. By leveraging
the left-out information, we were able to systematically increase the performance of two
neural networks on two language-modelling tasks at a negligible computational cost. Possible
future works include extending the embedding to userspace events, applying the models to
downstream tasks such as anomaly detection, and applying the embedding to the many
previous works that rely on LSTMs.
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Abstract Due to the complexity of modern computer systems, novel and unexpected be-
haviors frequently occur. Such deviations are either normal such as software updates and
new users, or abnormal such as misconfigurations, latency, intrusions, and bugs. Regardless,
novel behaviors are of great interest to developers, and there is a genuine need for efficient
and effective methods to detect them. Nowadays, several researchers consider system calls
to be the most fine-grained and accurate source of information to investigate the behavior
of computer systems. Accordingly, this paper introduces a novelty detection methodology
that relies on a probability distribution over sequences of system calls, which can be seen
as a language model. Language models allow estimating the likelihood of sequences, and
since novelties deviate from previously observed behaviors by definition, they would be un-
likely under the model. Due to the success of neural networks, notably for language models,
three architectures are evaluated in this work: the widespread LSTM, the state-of-the-art
Transformer, and the lower-complexity Longformer. Large neural networks typically require
a massive amount of data to be trained effectively, and to the best of our knowledge, no
modern and massive datasets of kernel traces are publicly available. In order to address this
limitation, this paper introduces a new open-source dataset of kernel traces comprising over
2 million web requests with seven distinct behaviors. The proposed methodology requires
minimal expert hand-crafting and achieves an F-score and AuROC greater than 95% on most
novelties while being data- and task-agnostic.

Keywords AIOps, Novelty Detection, Anomaly Detection, Deep Learning, Natural Lan-
guage Processing, Language Models, LSTM, Transformer.

7.1 Introduction

Despite the fact that computer systems are virtually deterministic, complex interactions be-
tween hardware and software often result in novel and unexpected behaviors. Novel behaviors



101

correspond to any deviation from what has been previously observed and include common
behaviors such as component upgrades, software updates, new users, and rare queries, as well
as anomalies such as misconfigurations, latency, intrusions, hardware failures, and bugs. This
research focuses on detecting novelties rather than anomalies since it is a broader problem
and since normal yet novel behaviors such as significant changes in user habits are often of
interest to practitioners. Moreover, anomaly detection methods may be ineffective in detect-
ing clever attacks designed to resemble legitimate users, which may still be detected as novel
behaviors.

A non-intrusive and lightweight approach to recording the behavior of computer systems
is to trace them. Tracing is the act of collecting low-level events generated whenever a
specific instruction called tracepoint is encountered at runtime. This research considers
events generated by the operating system called kernel events since they expose the behavior
of the whole system [186]. Furthermore, kernel events allow tracing virtually any Linux
system without modifying the source code since tracepoints are already implemented in
the Linux kernel. In particular, this paper focuses on a subset of the kernel events named
system calls or syscall. System calls correspond to requests from applications running in
the userspace to the kernel in order to access resources such as memory, network, or other
devices that would otherwise be inaccessible. In short, system calls are the only way for
an application to communicate with the operating system. As mentioned by Kim et al. [2],
many researchers consider system calls to be the most fine-grained and accurate source of
information to analyze computer systems.

Due to the computational speed of modern computers, operating systems often execute hun-
dreds of system calls every second, making the manual analysis of a collection of kernel traces
with tools such as Trace Compass1 too time-consuming. As a result, practitioners and re-
searchers often analyze traces automatically [178]. Since novel behaviors are unexpected and
unknown by definition, their detection is difficult to specify in practice. Consequently, novel
behaviors are typically detected with machine learning techniques since they learn to solve
the task from examples [14, 34, 35]. Nonetheless, most machine learning algorithms benefit
from or require carefully hand-crafted features [13, 27]. For the past decade, the majority of
research has focused on neural networks [2, 20, 17] since they automatically learn to extract
meaningful features for the task, thereby reducing the need for an expert and ultimately
improving the performance. Since traces are sequences of discrete values comprising a syn-
tax and a semantic akin to natural languages [16], deep learning techniques from natural
language processing (NLP) are particularly well suited for traces.

1https://www.eclipse.org/tracecompass/

https://www.eclipse.org/tracecompass/
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Natural language processing is the use of natural language by a computer and includes various
tasks such as question answering, machine translation, summarization, sentiment analysis,
and image captioning. A wide range of NLP applications rely on a probability distribution
over sequences of tokens, often words or characters, called a language model (LM) [28]. One
of the most popular approaches to learning a language model is the left-to-right LM, whose
objective is to predict the conditional probability of each token knowing the previous ones.
Formally, given a sequence of N tokens w = {w1, w2, . . . , wN}, the left-to-right language
model computes for each token wi the conditional probability P (wi|wi−1, . . . , w1). The chain
rule of probability states that the joint probability of the entire sequence is the product of
all the conditional probabilities:

P (w1, w2, . . . , wN) =
N∏

i=1
P (wi|wi−1, . . . , w1) (7.1)

Neural network language models typically minimize the cross-entropy loss, which is equivalent
to maximizing the joint probability of the sequence. In other words, such language models
maximize the likelihood of the known behaviors. By definition, novel behaviors deviate
from what has been previously observed. Therefore, they have a low likelihood under a
language model trained on known behaviors. The proposed approach is novelty-agnostic,
that is, suitable for detecting any deviations from previously observed behavior, including
misconfigurations, bugs, intrusions, and latency. Moreover, the approach is data-agnostic,
that is, suitable for a wide range of data, including userspace traces, kernel traces, and logs.

Previous research studied log and trace language models for anomaly and novelty detection [2,
4, 3, 5]. Our approach improves over and diverges from existing approaches in three critical
points: (1) the quality and quantity of the data are drastically improved, (2) neural networks
that are able to learn extremely long dependencies are investigated, and (3) the novelty
detection methodology takes into account the sequence length. We next expand on these
three contributions.

First, deep learning approaches are known to greatly depend on the quality and quantity
of the data [28]. Nonetheless, the public datasets considered by current research such as
UNM [182], KDD98 [183], and ADFA-LD [184] are small and obsolete as explained by Creech
and Hu [184] and Murtaza et al. [13]. Furthermore, these datasets lack the system call
arguments, a valuable piece of information that has been shown to improve the performance
of neural networks for language models [16]. As a result, these datasets are inadequate for
effectively training large neural networks and are not representative of modern systems. As
a solution, this paper introduces a massive dataset of kernel traces that includes system call
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arguments and comprises more than 2 million web requests from seven realistic scenarios,
including misconfigurations and latencies. Notably, our dataset enables training larger neural
networks, such as the Transformer, that have become state-of-the-art in other fields. The
dataset has been made public, as well as the data collection methodology and the scripts for
reproducibility.

Second, current anomaly and novelty detection approaches rely on recurrent neural networks
(RNNs), most often the Long Short-Term Memory [38] (LSTM) network. However, recur-
rent networks are unable to efficiently model long-term dependencies due to their iterative
nature. As explained by Khandelwal et al. [49], LSTM language models sharply distinguish
recent positions but only vaguely remember the distant past. Dai et al. [48] estimated that
the relative effective context length (RECL) of LSTMs on natural language is between 200
and 400 tokens, which is consistent with Khandelwal et al. [49] estimation. This inher-
ent limitation of recurrent networks is analyzed in the case of kernel traces since they are
typically much longer. In particular, this paper investigates the state-of-the-art network
for sequence processing called the Transformer [43], whose main advantage is the ability to
model dependencies of arbitrary length. However, this flexibility comes at the expense of a
quadratic complexity with respect to the sequence length. Consequently, a linear-complexity
alternative called the Longformer [142] is also investigated.

Third, anomaly and novelty detections are typically performed with a top-k on the individual
conditional probabilities [3, 17, 5] or a threshold on the joint probability of the sequence [2, 4].
However, conditional probabilities are only able to detect deviations of single events, also
known as point outliers, while the joint probability does not take into account the sequence
length. As a solution, our methodology leverages the perplexity, a prevalent measure of how
well a probability model predicts a sample [43, 51].

The remainder of this paper is organized as follows. Section 7.2 surveys the related works.
Section 7.3 introduces the proposed novelty detection methodology. Section 7.4 presents the
dataset collection methodology and analyzes the dataset. Section 7.5 details the experiments
and reports the results of the proposed approach on the collected dataset. Section 7.6 ac-
knowledges the threats to internal and external validity. Section 7.7 discusses the strengths
and limitations of the proposed methodologies as well as suggests interesting future research
avenues. Finally, Section 7.8 concludes this paper.
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7.2 Related Work

Let us preface the related works by discussing the distinction between anomaly and novelty.
As defined in Section 7.1, a novelty is any deviation from previously observed behaviors.
Novelties include anomalies since they are typically unknown and unexpected, but not all
novelties are anomalies. For instance, new users and rare queries are novel yet normal behav-
iors. The vast majority of the literature focuses on anomalies, and one of the most popular
approaches is learning a “normal” behavior from the data and identifying any deviations
from this behavior as abnormal [2, 3, 4, 5, 6]. We argue that these approaches would be
better framed as novelty detection methods as an additional mechanism would be necessary
to determine whether the novel behaviors are normal or abnormal. For that reason, even
though this paper focuses on novelty detection, most of the approaches discussed in this
section were published under the anomaly detection paradigm.

This section surveys the fundamental aspects of the relevant related works: (1) the trace
representation, (2) the machine learning model, and (3) the anomaly or novelty detection
scheme.

7.2.1 Trace Representation

A trace usually comprises millions of low-level events, each containing multiple arguments,
making them resource-intensive to handle. As a result, researchers have traded information
for compactness in three ways: reducing the number of arguments, aggregating the events
across time, and extracting higher-level features.

The first and foremost approach is to reduce the number of arguments. Current research often
exclusively considers the event names and ignores the arguments, such as the process name
and the return value. However, arguments are valuable data that allow the model to make
more informed and, ultimately, more accurate predictions. Indeed, temporal information
such as the response time [17, 18], the timestamp [16], and the duration [3] has recently been
considered with great success. Instead of reducing the number of arguments, Ezeme et al.
[19] compressed the values of the arguments by encoding the characters using ASCII values
and considering the frequency distribution of these values for each argument. Nonetheless,
contemporary research demonstrated the benefit of considering the actual values of multiple
system call arguments for neural language models [16].

The second approach is to aggregate the events across time. The main example of this
approach is called bag-of-words, also known as system call counts vector [20], frequency counts
of system call names [21] or bag of system calls [22]. A bag-of-words is a representation that
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describes the number of occurrences of each token within a document. For instance, consider a
vocabulary V = {a, b, c} and a sequence w = {a, c, c, c, a, c}. The bag-of-word representation
of this sequence is [2, 0, 4]. The aggregation trades the ordering and fine-grained temporal
information for a more compact representation. However, temporal information may be
critical to detecting some novelties, such as latency.

The third approach is to extract higher-level features from the trace, such as states of kernel
modules [13] or execution states [27]. Although carefully hand-crafted higher-level features
may deliver excellent performance, they discard the fine-grained information that makes
traces so valuable. Moreover, they are time-consuming, error-prone, and potentially subop-
timal since they must often be hand-crafted specifically for the task considered.

7.2.2 Machine Learning Model

Due to the widespread use of computer systems and the importance of detecting anomalies
and novel behaviors, a wide range of machine learning techniques have been explored, in-
cluding rule-based algorithms [14, 15], naive Bayes [34, 35], decision trees [36, 35], hidden
Markov models [24, 35], and support vector machines (SVM) [35]. Given the great success
of deep learning, researchers have recently shifted toward a family of neural networks called
recurrent neural networks (RNNs) [37].

Recurrent neural networks iteratively process variable-size sequences by sharing the param-
eters at each position, as illustrated in Figure 7.1. They have been successfully applied to a
wide range of applications, including speech recognition [187, 188], image captioning [189],
machine translation [40], and anomaly detection [2, 3]. RNNs have the advantage of it-
eratively storing information into their memory, also referred to as hidden representation,
allowing information from prior input tokens to influence the current output. In other words,
the RNN output depends on the previous tokens within the sequence. More formally, let us
consider a recurrent neural network that processes the i-th token xi from the input sequence
x = {x1, x2, x3, . . . , xN}. The model builds a hidden representation hi as a function of the
current token xi and the previous hidden representation hi−1, which encapsulates information
from all previous tokens. The model then produces the i-th output yi as a function of the
hidden representation hi and proceeds to the next token xi+1.

Due to vanishing and exploding gradient issues, vanilla RNNs are unable to learn long-term
dependencies [190]. As a solution, Hochreiter and Schmidhuber [38] introduced the now
widely popular long short-term memory (LSTM) network, which mitigates these shortcom-
ings with paths through time. Alternatively, Cho et al. [39] introduced the gated recurrent
unit (GRU), which behaves and performs similarly to the LSTM while requiring fewer pa-
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Figure 7.1 The unrolled computational graph of a recurrent neural network. There is a one-
to-one mapping between the input sequence x = {x1, x2, x3, . . . , xN} and the corresponding
output sequence y = {y1, y2, y3, . . . , yN}. The weight matrices U , V , and W are shared
across all positions.

rameters.

The LSTM and GRU have been at the core of numerous anomaly and novelty detection
approaches. For instance, Kim et al. [2] detected host-based intrusions with an ensemble of
LSTMs trained on sequences of system call names. Dymshits et al. [20] identified changes in
the behavior of processes with unidirectional and bidirectional LSTMs trained on sequences
of bag-of-words. Song et al. [36] identified and explained anomalies with an LSTM trained
on time-series data obtained from traces. Nedelkoski et al. [17] detected anomalies with a
multimodal network made of the concatenation of the hidden representations of two LSTMs
trained on textual logs and real-valued response time. Lv et al. [26] detected intrusions by
extending sequences with a GRU in a sequence-to-sequence fashion.

Recurrent neural networks process sequences iteratively, as illustrated by Figure 7.1. As a
result, RNNs suffer from memory compression [41] and are unable to model very long-term
dependencies. In particular, LSTM language models only vaguely remember the distant
past [49] and are unable to model dependencies that span more than 200 to 400 tokens [49, 48].
One solution is to augment the LSTM with an attention mechanism. Ezeme et al. [19] and
Brown et al. [4] detected anomalies with LSTMs augmented with inter-attention. However,
their inherently sequential nature prevents parallelizing them.

As of the writing of this research, recurrent neural networks, including the more complex
LSTM and GRU, have been surpassed and frequently replaced by the Transformer [43]. As
illustrated by Figure 7.2, the Transformer is a simple network architecture based solely on
two attention mechanisms: the inter-attention and the self-attention. In particular, self-
attention enables relating tokens in the input sequence and, as such, replaces the role of
recurrences in RNNs. Specifically, the self-attention mechanism computes a pairwise com-
patibility score between tokens corresponding to how much each token contributes to each
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output. Consequently, the Transformer is able to model arbitrary length dependencies. Fur-
thermore, since this compatibility score is computed independently for each pair of tokens,
the Transformer processes entire sequences simultaneously and can be efficiently parallelized.
However, these major benefits come at the cost of quadratic complexity with respect to the
sequence length. Consequently, a plethora of efficient alternatives have been proposed, such
as the Longformer [142], the Linformer [88], the Reformer [87], and Big Bird [64]
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Figure 7.2 The computational graph of the Transformer, which comprises an encoder and a
decoder. The encoder first processes the entire input sequence and produces a representation
of each token attended by the decoder to generate the output sequence in an autoregressive
manner.

Despite the clear advantages and successes of the Transformer, researchers have not yet
investigated this architecture to detect novelties in traces. Nonetheless, the Transformer
has been considered for related tasks such as the evaluation of the system call embedding
proposed in [16] and for related data such as logs anomaly detection [6, 5]. Note that there
is a clear distinction between logs and traces since the former are significantly higher-level
than the latter, requiring distinct analyses with unique challenges. However, to the best
of our knowledge, no lower-complexity Transformer has been applied to detect novelties or
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anomalies in traces or logs. For complementary information on the attention mechanisms
and efficient Transformers, we refer the reader to the many extensive and comprehensive
surveys that have been published [46, 47, 70, 191].

7.2.3 Detection Scheme

Real-world datasets are often unlabeled regarding anomalies since they are typically unknown
beforehand. Besides, manually labeling them afterward is generally time-consuming and
error-prone. Consequently, the vast majority of approaches fall into the self-supervised or
unsupervised setting. This paper focuses on language models such as the left-to-right LM that
outputs the conditional probability of every possible token for each token in the sequence.
In the literature, there are two distinct detection schemes based on the idea that novelties
correspond to mispredictions.

The first scheme assumes that a misprediction occurs when the correct token does not appear
in the top-k most likely predictions. Guo et al. [6] considered a sequence as anomalous if
it contains more than a certain number of mispredictions, whereas Bogatinovski et al. [5]
considered the ratio of mispredictions. Temporal information is decisive in detecting some
novelties, such as latencies. Consequently, in addition to the token mispredictions, Du et al.
[3] and Nedelkoski et al. [17] predicted the timestamp and the response time, respectively.

The second scheme considers that a misprediction occurs when the conditional or joint prob-
ability is lower than a given threshold. Notably, Kim et al. [2] and Brown et al. [4] detected
anomalies with a threshold on the negative log-likelihood of the whole sequence.

7.3 Methodology to Detect Novelties With Neural Language Models

This section introduces the proposed methodology and focuses on the same fundamental
aspects as the literature review: (1) the trace representation, (2) the machine learning model,
and (3) the novelty detection scheme.

7.3.1 Trace Representation

Neural networks learn to extract the relevant features for a task and thus typically benefit
from richer inputs. Accordingly, this paper follows the methodology proposed in [16] and re-
lies on a joint representation of the system call name (sysname), the timestamp (timestamp),
and five context fields that are added to all system calls by LTTng, namely the return value
(ret), the process name (procname), the thread id (tid), the process id (pid), and whether
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the event corresponds to the start or the end of a system call execution (entry).

To determine how to represent the arguments, one must first identify the inherently meaning-
ful ones – whose values convey meaning in themselves without any context. For explanatory
purposes, let us consider a system call whose process name is mysql and whose process id
is 15371. The process name indicates that a MySQL database emitted the call, while the
process id does not provide knowledge but allows relating the events emitted by the same
process in the context of the trace. Out of the considered arguments, the sysname, ret,
entry, and procname are inherently meaningful, while the tid, pid, and timestamp are
not2.

The semantic knowledge contained in the values of the inherently meaningful arguments
is encapsulated in a compact vectorial representation called embedding. An embedding
effectively acts as a lookup table, as illustrated by Figure 7.3, and is defined by a dense
matrix W ∈ Rdv×de where dv is the size of the vocabulary and de is an hyperparameter
corresponding to the dimension of the embedding such that de ≪ dv.

[ 0 0 0 0 1 0 ]︸ ︷︷ ︸
One-hot vector indicating

the token’s position in the vocabulary

×



4.3 1.1 4.9
2.1 8.6 8.5
6.8 7.5 0.1
1.9 1.0 3.0
2.2 1.1 8.5
6.2 3.6 9.7


︸ ︷︷ ︸
Embedding matrix W

= [ 2.2 1.1 8.5 ]︸ ︷︷ ︸
Embedding

Figure 7.3 The embedding of the fifth element in a vocabulary comprising dv = 6 elements.
The embedding has a dimension de = 3 and is hence a more compact representation of the
token.

The values of the context-dependent arguments, such as the pid or tid, could be directly
provided to the network as they are numerical values. However, it is best practice to normalize
the input to mitigate potential numerical instabilities and speed up training [192]. As a result,
the context-dependent arguments are encoded with a succession of cosine and sine functions,
as proposed by Vaswani et al. [43]. Formally, the encoding of a numerical value x is a vector

2There are exceptions, such as pid 0 and 1, which are meaningful.
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pex of dimension d computed as follows:

pex,i =


sin

(
x/1000000i/d

)
if i is even,

cos
(
x/1000000i−1/d

)
otherwise,

(7.2)

where d is a hyperparameter.

In order to produce a joint representation of the system calls with their arguments and to
provide a single input to the network, the embeddings and encodings must be combined.
As mentioned in [16], the addition requires the vectors to have the same dimension and
preserves that dimension, which may be too small to store all the information, thus creating
a bottleneck. Consequently, the concatenation of the embeddings and encodings vectors is
preferred, as shown in Figure 7.4.

Our methodology diverges from that of [16] and [43] in three aspects. First, the timestamps
are converted into elapsed times between two consecutive system calls to avoid numerical
instabilities as they exceed the largest value that can be stored on 32 bits. Indeed, POSIX
timestamps are defined as the number of nanoseconds since January 1, 1970. Second, the
denominator of the encoding is increased from 104 to 106 (see Equation 7.2), as the values
encoded are larger than in the work of Vaswani et al. [43]. Finally, the embeddings and
encodings are all concatenated since this empirically resulted in more effective models for our
data and task.

7.3.2 Neural Networks

The proposed methodology was evaluated on a simple n-gram baseline, the widespread
LSTM, the state-of-the-art Transformer, and the lower-complexity Longformer. Let us briefly
introduce and justify each method.

The n-gram model makes the Markov assumption that the conditional probability may be
approximated by only considering the n − 1 tokens instead of all previous tokens. In other
words, the n-gram model approximates the conditional probability P (wi|wi−1, wi−2, . . . , w1)
as P (wi|wi−1, wi−2, . . . , wi−(n−1)), which is computed in practice as the number of times that
{wi−1, wi−2, . . . , wi−(n−1)} is followed by wi out of all the occurrences of
{wi−1, wi−2, . . . , wi−(n−1)} in the dataset.

Following the vast majority of literature, the proposed methodology was evaluated using a
unidirectional multi-layer LSTM. Since this architecture is well known and ubiquitous in the
literature, the reader is referred to the original paper by Hochreiter and Schmidhuber [38]
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Figure 7.4 The computational graph of the system call representation. The rounded blue
rectangles represent the considered arguments. The green rectangles represent the learned
transformations (embedding), for which the parametrization is annotated next to the incom-
ing arrow. The white rectangle transformations are not learned (encoding and concatenation).

and the reference book of Goodfellow et al. [28] for a comprehensive description and analysis
of the model.

However, as discussed in the introduction, kernel traces are typically much longer than the
effective context length of LSTMs. As such, they may contain dependencies that the LSTM is
unable to model. In order to investigate this potential limitation, the proposed methodology
was evaluated on a vanilla Transformer.

The Transformer is a model that is able to process variable-length sequences without recur-
rences, relying instead on the self-attention mechanism. As said in Section 7.2, the Trans-
former has quickly become state-of-the-art for sequence processing due to its capacity to
model arbitrary length dependencies. However, the flexibility of the Transformer comes at
the cost of a quadratic complexity with respect to the sequence length. In practice, even
with multiple GPUs, mixed precision, and gradient checkpointing, the Transformer is unable
to handle entire kernel traces. Consequently, sequences were truncated. As a result, the
model was only able to compute an estimate of the joint probability. In order to determine
whether truncating sequences is a potential issue for kernel traces and to propose a solu-
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tion that is more easily deployable in practice, a lower-complexity Transformer called the
Longformer [142] was selected based on the attention patterns learned by the Transformer.

The quadratic complexity of the Transformer originates from the computation of the pairwise
compatibility score between each pair of tokens. As a solution, the Longformer achieves a
linear complexity by replacing the self-attention mechanism with a combination of two sparse
attention mechanisms called global tokens and sliding windows. Since the objective of the
left-to-right language model is to predict the next token given the previous ones, future
tokens are masked to prevent the model from looking ahead at the solution. Instead of
looking at all previous tokens, the sliding window attention only considers the past k tokens,
similar to the n-gram model. Since only a fixed number of positions are considered for
each token, the complexity of the window attention is linear with respect to the sequence
length. Additionally, the global tokens are able to attend to every position and be attended
by every position. Given that there is a fixed number of global tokens, each considering
every token in the sequence, the complexity of global tokens is also linear with respect to
the sequence length. Figure 7.5 depicts the full attention of the original Transformer and the
sparse attention mechanisms of the Longformer. For complementary information, the reader
is referred to the comprehensive surveys published on efficient Transformers [70, 191].
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Figure 7.5 (Left) The connectivity matrix of the Transformer’s full attention. (Right) The
connectivity matrix of the Longformer’s sparse attention. The window attention and global
tokens are depicted in blue and green, respectively. The i-th output position attends to the
j-th input position if, and only if, the cell (i, j) is colored. The diagonal is highlighted to ease
the reading. The matrices are lower triangular as future positions are masked to prevent the
model from looking ahead at the solution.

7.3.3 Novelty Detection Scheme

The proposed methodology assumes that the distribution of system calls encapsulates the be-
havior of the system and that deviations from the known distribution correspond to novelties.
As explained in Section 7.1, a language model is a probability distribution over sequences of



113

tokens. Consequently, the neural networks are trained with the left-to-right language model,
whose task is to predict the next token knowing the previous ones.

Given an input sequence w = {w1, w2, . . . , wN} comprising N tokens from a vo-
cabulary V, a neural left-to-right language model outputs the conditional probability
P (w∗|wi−1, . . . , w1) for each w∗ in the vocabulary and for each position i = 1, . . . , N , such
that ∑w∗∈V P (w∗|wi−1, . . . , w1) = 1. The joint probability P (w1, w2, . . . , wN) is given by
the chain rule of probability as P (w1, w2, . . . , wN) = ∏N

i=1 P (wi|wi−1, . . . , w1). Figure 7.6
illustrates the neural left-to-right language model with a toy sequence w = {a, c, c, a} and
vocabulary {a, b, c}.

Neural Left-to-Right Language Model

a c
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0.8

0.1

c a

0.7

0.3

0.0

0.4

0.5

0.1

0.2

0.6

0.2 0.13

Figure 7.6 Neural left-to-right language model.

However, since the conditional probabilities are lower than 1 in practice, longer sequences
are more likely to have a lower joint probability. Let us consider an operating system that
produces 200 system calls per second and two requests of 80 ms and 120 ms. Let us assume
that the variation in response time is normal and that the events are all equally likely, with a
conditional probability of 95%. The two requests comprise 200×0.08 = 16 and 200×0.12 = 24
system calls, respectively. Consequently, their likelihood is 0.9516 = 44% and 0.9524 = 29%,
respectively. As a result, the likelihood of sequences is not well suited for novelty detection,
as the throughput of system calls is high, and the sequence lengths may greatly vary.

The perplexity of a language model is a widely popular metric [43, 51] that measures its
degree of uncertainty when a new token is generated, averaged over very long sequences. In
order to describe the perplexity, let us first look at the per-word entropy H of a sequence of
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word {w1, w2, . . . , wN} generated by a language model:

H = lim
N→∞

− 1
N

∑
w1,w2,...,wN

P (w1, w2, . . . , wN) log2 P (w1, w2, . . . , wN) (7.3)

Assuming ergodicity, in other words, that a sufficiently large set of samples generated by a
random process is able to represent the average statistical properties of the entire process,
the summation may be discarded:

H = lim
N→∞

− 1
N

log2 P (w1, w2, . . . , wN) (7.4)

Given a large enough value of N , the entropy can be approximated as:

Ĥ = − 1
N

log2 P (w1, w2, . . . , wN) (7.5)

Finally, the perplexity is defined as:

PP = 2Ĥ = P (w1, w2, . . . , wN)−1/N (7.6)

where N is the sequence length. In the above example, the perplexities of both requests are
equal to 0.95− 16

16 = 0.95− 24
24 = 1.05.

A sequence with a higher perplexity than the sequences in the training set is less likely
under the model and can therefore be detected as a novelty. In practice, a simple threshold
is efficient and provides excellent results. The threshold is empirically determined for each
novel behavior with the in-distribution and out-of-distribution datasets to maximize the F-
score.

7.4 Data Collection

Real-world traces are seldom released due to security and privacy concerns. Consequently,
researchers often rely on the UNM [182] and KDD98 [183] datasets. Nonetheless, these two
datasets are more than twenty years old and thus fail to represent modern systems [184,
13]. As a solution, Creech and Hu [184] introduced ADFA-LD for host-based intrusion
detection. However, ADFA-LD comprises only a few thousand samples without the system
call arguments, which is too small for training large neural networks. Alternatively, Murtaza
et al. [13] introduced the much larger FirefoxDS dataset. Unfortunately, FirefoxDS is no
longer available at the time of writing.

Neural networks, especially neural language models, greatly benefit from scaling, as revealed
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by the current race toward ever-larger models [50, 193]. However, large neural networks
greatly benefit from massive datasets [194], and to the best of our knowledge, no modern
and massive datasets of kernel traces are publicly available. In order to address this limi-
tation, this paper introduces a novel open-source dataset of kernel traces comprising over 2
million web requests with seven distinct behaviors. The dataset includes all the system calls
arguments, and the requests are well delimited by userspace events and labeled according to
their behavior.

The remainder of this section explains the data collection methodology in detail and analyzes
the collected dataset.

7.4.1 Methodology

Similar to the methodology of [16], a benchmark tool sends numerous concurrent requests
from the client to the server via the hypertext transfer protocol (HTTP). A web server
receives the requests and calls PHP to query an SQL database and create the requested
dynamic web page. The simple client-server architecture is depicted in Figure 7.7.

wrk2

Thread

Thread

Thread

Thread

Client

Apache 2

Connection

Connection

Server

MySQL

Query

Query

Network

Query

QueryConnection

Connection

Figure 7.7 The client-server architecture. The client sends numerous concurrent HTTP re-
quests over the network to the server. The web server queries an SQL database for each
request to build a dynamic web page.

Let us briefly describe and justify the choice of software for the client-server architecture.
On the client side, the requests were emitted with the wrk23 benchmark tool as it is an
open-source and multithreaded alternative to the Apache benchmark that guarantees a sta-
ble throughput for sufficiently long execution times. On the server side, the requests were
handled with the Apache24 web server as it is widely used in modern systems thanks to its
modular design. Note that Apache2 was manually instrumented with two user-space events

3https://github.com/giltene/wrk2
4https://httpd.apache.org

https://github.com/giltene/wrk2
https://httpd.apache.org


116

httpd:enter_event_handler and httpd:exit_event_handler that delimit each request.
The requested dynamic web pages were created by querying MySQL5 with PHP installed
as an Apache2 module. MySQL was chosen since it is an open-source relational database
management system commonly used with Apache2. Finally, the database was filled with the
Sakila sample database6, as it is intended to provide a standard schema that can be used
across numerous examples. Notably, this database comprises an author table with unique
ids, first names, and last names.

Since developers rarely have access to the client side, this paper focuses on the server side,
from where most novelties, such as latency and misconfigurations, indeed originate. The
system calls as well as the user-space events that delimit each request were collected on the
server with the Linux Trace Toolkit: next generation (LTTng) [10] due to its lightweight and
rapidity [9].

Since the proposed methodology aims at detecting novelties with a language model, a set
of known behaviors referred to as in-distribution (ID) must be available, as well as sets
of novelties referred to as out-of-distribution (OOD). Accordingly, three in-distribution sets
were collected with a typical configuration under nominal load (train ID, validation ID, and
test ID), and two out-of-distribution sets were collected for each of the server-side novelties
(validation OOD, test OOD). We describe next the six novel behaviors considered in this
work:

• CPU: The workload generator tool stress-ng7 overloads the CPU by performing nu-
merous matrix multiplications. This behavior simulates a compute-intensive process
competing for resources with the web server, which may arise from a cryptocurrency-
mining procedure deployed by an intruder, for instance.

• OPcache: The server is misconfigured by disabling PHP’s OPcache, which stores pre-
compiled script bytecode in memory to speed up the response time of requests. Simply
put, PHP compiles and stores in memory the binary of scripts without executing them
such that the scripts do not have to be recompiled every time they must be executed.
This behavior may arise from a developer who disabled the cache during development
and forgot to enable it afterwards.

• Dump IO: The highest level of Apache2 log is enabled and stored into a log file with
the dump_io mod8. Such detailed information is valuable for investigating the server

5https://dev.mysql.com
6https://dev.mysql.com/doc/sakila/en/
7https://github.com/ColinIanKing/stress-ng
8https://httpd.apache.org/docs/2.4/en/mod/mod_dumpio.html

https://dev.mysql.com
https://dev.mysql.com/doc/sakila/en/
https://github.com/ColinIanKing/stress-ng
https://httpd.apache.org/docs/2.4/en/mod/mod_dumpio.html
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behavior during debugging but requires writing enormous log files. As a result, this
novel behavior heavily uses storage resources and lead to longer request response times.
Similar to OPcache, this behavior may arise when a developer enables logging during
development, but forgets to disable it afterwards.

• Connection: By default, Apache2 is configured to support 150 concurrent connections.
However, it will start dropping requests as the traffic increases and the number of
maximum concurrent connections is not increased. This behavior was reproduced by
reducing the number of concurrent connections instead of increasing the traffic, as the
server would be IO-bounded before requiring more connections. Besides, this decision
allows the traffic to remain consistent with the other behaviors.

• Socket: With Apache2 KeepAlive enabled, the web server and browsers agree to reuse
the same socket to transfer multiple files, thereby reducing the CPU usage at the cost
of higher memory usage. By default, KeepAlive is enabled as CPU usage is typically
the main limiting factor. For this out-of-distribution behavior, KeepAlive is disabled,
which may arise when the Apache2 is redeployed from a memory-limited machine to a
CPU-limited one.

• SSL: The secure sockets layer (SSL) is a protocol for establishing secure connections
between the web server and browsers. For this novel behavior, SSL is disabled, which
is a significant security issue due to misconfiguration.

7.4.2 Dataset Analysis

The Apache2 web server was deployed on an Ubuntu 21.04 machine equipped with 16-core
Intel E5640 (up to 2.67 GHz) and 192 Gb of RAM. In order to load the server properly, the
client relies on the wrk2 benchmark tool to perform 1000 requests per second.

The web server was traced for 1,000s for the in-distribution training set and 100s for the in-
distribution and out-of-distribution validation and test sets. The datasets are balanced since
there are as many positive samples (i.e., out-of-distribution or novel) as negative ones (i.e., in-
distribution or known). However, in real-world applications, novelties are rare. Consequently,
the number of positive samples is expected to be much smaller than that of negative samples,
which may affect the evaluation. This decision is explained in the threat to validity section.

In this work, requests comprise all the system calls generated between their start
and end as delimited by the userspace events httpd:enter_event_handler and
httpd:exit_event_handler regardless of their thread ids (see Figure 7.8). Consequently,
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system calls may be added to multiple requests since they are concurrent. The primary
reason behind this decision is that we want requests to include the events associated with
the root cause of the novelties. For instance, let us assume that an unexpected process is
taking CPU time, thus creating latency. To detect the root cause of this behavior, the events
generated by this abnormal process must be included in the request, even though they do
not have the same thread id. The main drawback of this approach is that requests contain
significantly more events, making them more resource-intensive to process and increasing the
noise.

Figure 7.8 Sample from a toy trace collected on a multicore server. Since the requests are
defined to comprise all the system calls generated between their start and end, as delimited
by two userspace events, request A includes requests B and part of request C.

Table 7.1 reports statistics on the requests of each set after discarding the first second, which
corresponds to the initialization of LTTng. The significantly lower number of requests for
the CPU behavior is due to the server’s inability to maintain the throughput due to the lack
of CPU.
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Table 7.1 Statistics on the requests in each dataset.

Behavior Dataset Number of Requests Request Length Request Duration (ms)
min mean max min mean max

ID
Train 999,063 238 1105.7 ± 244.8 4,645 0.28 1.68 ± 0.65 53.61
Validation 99,058 30 1107.3 ± 244.9 2,803 0.03 1.67 ± 0.59 11.69
Test 99,065 240 1108.7 ± 247.1 2,683 0.91 1.67 ± 0.61 12.36

Connection Validation 99,016 246 1125.7 ± 243.0 2,882 0.94 1.66 ± 0.60 15.02
Test 99,019 158 1125.0 ± 243.3 2,792 0.27 1.66 ± 0.60 11.83

CPU Validation 57,616 258 1910.6 ± 607.6 6,221 1.31 13.25 ± 6.06 52.10
Test 56,191 222 1913.8 ± 596.0 6,363 0.51 13.58 ± 5.81 35.69

IO Validation 98,974 350 1827.7 ± 323.4 6,155 1.27 2.13 ± 3.23 349.33
Test 98,980 392 1821.1 ± 321.0 6,967 1.25 2.10 ± 1.23 103.69

OPcache Validation 99,069 256 1162.9 ± 244.2 2,824 0.99 1.78 ± 0.60 14.79
Test 99,057 250 1160.6 ± 245.9 2,896 0.96 1.77 ± 0.60 11.94

Socket Validation 99,074 216 2082.0 ± 362.5 8,463 0.83 6.89 ± 0.73 48.79
Test 99,084 679 2081.8 ± 355.7 7,032 3.63 6.89 ± 0.64 19.61

SSL Validation 99,072 16 1058.1 ± 229.1 3,230 0.04 1.48 ± 0.36 15.92
Test 99,067 238 1054.8 ± 230.2 3,855 0.80 1.47 ± 0.38 22.23

Figures 7.9 and 7.10 display the distributions of system call names and process names, re-
spectively, for the in-distribution training set and OPcache out-of-distribution validation
set. Interestingly, both datasets present similar distributions in which the most frequent
system calls are recvfrom and read, and the most common processes are php-fpm, httpd,
connection, and mysqld. As a result, a simple model of the system call names and process
names distributions would not be able to distinguish the two behaviors. Nonetheless, as we
will present in the next section, our methodology achieves an F-score greater than 98% on
that novelty. The readers are referred to the GitHub repository9 for equivalent and additional
analysis on all studied datasets.

Figure 7.9 Distributions of system calls names in the in-distribution training set and OPcache
out-of-distribution validation set.

9https://github.com/qfournier/syscall_novelty_detection

https://github.com/qfournier/syscall_novelty_detection
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Figure 7.10 Distributions of process names in the in-distribution training set and OPcache
out-of-distribution validation set.

7.5 Results

7.5.1 Language Models

The experiments were conducted on a modern server with 2 x Intel Gold 6148 Skylake @ 2.4
GHz, 4 x Nvidia V100SXM2 (16G memory), and 64G of memory. The source code and logs
are publicly available on GitHub10.

Due to the simplicity of implementing NVIDIA’s Automatic Mixed-Precision, all the neu-
ral networks were trained with mixed precision, accelerating training and reducing mem-
ory consumption by storing and computing the weights, activations, and gradients in half-
precision [100].

Due to the quadratic complexity of the Transformer with respect to the sequence length,
Transformers were trained with gradient checkpointing, which trades memory for computa-
tion by recomputing the activations during the backward pass instead of storing them in
memory during the forward pass [82]. Additionally, the few sequences longer than 2048
system calls were truncated to avoid exceeding the memory available.

Due to the computational cost and environmental impact of extensively tuning the hyper-
parameters with a grid search or a random search [195], the hyperparameters were manually
selected in a greedy fashion. The hyperparameters considered for the three networks are the
depth and width of the models, the embedding size, the optimizer, the warmup steps, the
label smoothing weight, the dropout probability, the number of updates without improve-
ments before reducing the learning rate, and the number of updates before early stopping.
Additionally, the number of heads, the SwiGLU activation function [196], and the T-fixup

10https://github.com/qfournier/syscall_novelty_detection

https://github.com/qfournier/syscall_novelty_detection
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initialization [115] were considered for the Transformer and the Longformer. Furthermore,
the window size, the dilation, and the number of global tokens were also considered for the
latter. More than 80 distinct neural network configurations were evaluated in total, each
requiring more than a day of computation on the server described above. The exhaustive list
of hyperparameters for each model is available on GitHub.

In order to learn a language model of the system calls, the networks were optimized with the
left-to-right LM objective. Simply put, the networks predict the name of each system call
given the previous system calls in each sequence and their arguments. Since the left-to-right
LM objective is a multi-class classification problem, the loss function L(x, y) minimized is
the cross-entropy defined as follows:

L(x, y) = − 1
N

N∑
n=1

log exp xn,yn∑C
i=1 exp xn,i

(7.7)

where N denotes the numbers of tokens in the sequence, C denotes the numbers of classes or
system call names in the vocabulary, xn,c denotes the unnormalized conditional probability
predicted by the model, and yn denotes the true class or the index of the correct system
call name. In addition to the cross-entropy, the top-1 accuracy is also reported. This work
defines accuracy as the fraction of correctly predicted tokens. In other words, the accuracy
corresponds to the number of times the most probable system call name corresponds to the
actual one, divided by the total number of predictions.

Table 7.2 reports the average cross-entropy and top-1 accuracy of the three neural networks on
the in-distribution and out-of-distribution sets. Each experiment was reproduced five times
with different seeds to mitigate the stochasticity. The cross-entropy on the in-distribution
sets is consistently and significantly lower than on the out-of-distribution sets, indicating that
the networks have a higher degree of uncertainty when modeling the novel behaviors. The
LSTM outperforms the two attention-based networks in terms of cross-entropy and accuracy,
although they have the advantage of learning arbitrary length dependencies. As expected,
increasing the width and depth of the two attention-based models significantly improved
their performance in terms of cross-entropy and accuracy. For instance, increasing the depth
from 2 to 6 layers and the width from 672 to 896 allowed reducing the cross-entropy of the
Transformer from 0.907 to 0.719 on the in-distribution test set, outperforming the LSTM.
However, although larger models were better at generalizing due to their higher flexibility,
they performed poorly on our downstream novelty detection task since they assigned a high
likelihood to all behaviors. Since our goal is to detect novelties, only the smaller models are
reported in Table 7.2 and thereafter.
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Table 7.2 Training Performance of the Neural Networks.
LSTM Transformer Longformer

Dataset Cross-Entropy Accuracy Cross-Entropy Accuracy Cross-Entropy Accuracy
Train 0.714 ± 0.002 0.764 ± 0.000 0.891 ± 0.039 0.701 ± 0.013 0.875 ± 0.008 0.712 ± 0.003
Test ID 0.720 ± 0.002 0.762 ± 0.000 0.907 ± 0.038 0.696 ± 0.012 0.885 ± 0.010 0.708 ± 0.004
Test OOD (Connection) 0.812 ± 0.017 0.737 ± 0.006 1.274 ± 0.103 0.605 ± 0.025 1.105 ± 0.018 0.651 ± 0.006
Test OOD (CPU) 0.961 ± 0.027 0.736 ± 0.010 1.155 ± 0.056 0.685 ± 0.012 0.940 ± 0.022 0.744 ± 0.005
Test OOD (IO) 2.287 ± 0.185 0.366 ± 0.037 2.993 ± 0.307 0.232 ± 0.042 2.082 ± 0.150 0.391 ± 0.036
Test OOD (OPcache) 1.127 ± 0.019 0.669 ± 0.005 1.302 ± 0.052 0.607 ± 0.013 1.254 ± 0.024 0.630 ± 0.007
Test OOD (Socket) 1.008 ± 0.033 0.699 ± 0.007 1.573 ± 0.138 0.549 ± 0.029 1.223 ± 0.033 0.636 ± 0.012
Test OOD (SSL) 0.906 ± 0.018 0.716 ± 0.007 1.495 ± 0.105 0.550 ± 0.030 1.245 ± 0.027 0.619 ± 0.010

Once trained, the language models allow estimating the perplexity of the requests. Fig-
ure 7.11, 7.12, and 7.13 depict the distribution of the perplexity of the request in the in-
distribution test set and out-of-distribution OPcache test set computed with the LSTM. Al-
though the distributions of the length and duration of the request are similar, the networks
assign a higher perplexity to the out-of-distribution requests, indicating that the networks
are able to leverage complex interactions between system calls instead of relying on simple
metrics such as the length or duration of the requests. Equivalent figures for all datasets are
available on GitHub.

Figure 7.11 Distribution of the perplexity of the request in the in-distribution (blue) and
out-of-distribution OPcache (orange) test sets computed with the LSTM.
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Figure 7.12 Distribution of the perplexity of the request in the in-distribution (blue) and
out-of-distribution OPcache (orange) test sets with respect to the request length computed
with the LSTM.

Figure 7.13 Distribution of the perplexity of the request in the in-distribution (blue) and out-
of-distribution OPcache (orange) test sets with respect to the request duration computed with
the LSTM.

7.5.2 Novelty Detection

The novelty detection task is a binary classification problem as requests are either in-
distribution or out-of-distribution. The two outcomes of binary classification problems are
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referred to as positive and negative, with the former corresponding to the class of interest
by convention. Thus, the positive class corresponds to the novelties or out-of-distribution
sequences. A binary classifier may successfully predict novel behaviors as positives or known
behaviors as negatives, such cases are called true positives (TP) and true negatives (TN),
respectively, or misclassify novel behaviors as negatives or known behaviors as positives, the
so-called false negative (FN) and false positive (FP), respectively. Binary classifiers are most
often evaluated in terms of precision and recall, with the precision defined as the fraction of
actual positives among the predicted positives and the recall defined as the fraction of actual
positives correctly predicted:

precision = TP

TP + FP
and recall = TP

TP + FN
(7.8)

In order to have a single measure, the harmonic mean of these values, denoted F-score or
F-measure, is instead reported:

F-score = 2 × precision × recall
precision + recall (7.9)

As explained in Section 7.3.3, the classification is performed with a simple threshold on the
perplexity, which acts as a novelty score. In practice, the threshold that maximizes the F-
score is empirically determined for each validation set. Then, the F-score is computed for
each test set with that threshold.

Instead of selecting a threshold to maximize a given metric, the receiver operating character-
istic (ROC) curve evaluates the ratio of true positives against the ratio of false positives at
various thresholds values. In order to have a single measure, the area under the ROC curve
(AuROC) is computed. The reader is referred to Zou et al. [197] for additional information
on the ROC curve.

Table 7.3 reports the AuROC and F-score of the 4-gram baseline and the three neural net-
works. As we can observe, the simple baseline was unable to detect the novel behaviors
accurately, with the surprising exception of the IO behavior. The simplicity of detecting this
behavior arise from the out-of-distribution requests having a wildly different distribution of
system call names compared to the in-distribution request. Indeed, the two most common
system calls in the training set are recvfrom (15%) and read (10%), while they are write
(17%) and getpid (17%) for the IO dataset.

Due to the recent successes of the Transformer over the LSTM, one would have expected
the former to outperform the latter. However, that is not the case: the LSTM performed on
par or better than the attention-based networks in terms of AuROC and F-score on 3 out of
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Table 7.3 Novelty Detection Performance of the Language Models.
4-gram LSTM Transformer Longformer

Dataset AuROC F-score AuROC F-score AuROC F-score AuROC F-score
Test OOD (Connection) 51.5 66.7 79.9 ± 3.8 74.8 ± 2.9 97.8 ± 1.6 94.3 ± 2.9 93.6 ± 1.4 87.6 ± 1.8
Test OOD (CPU) 0.9 53.2 98.5 ± 0.6 93.6 ± 2.1 94.8 ± 1.8 85.1 ± 3.4 67.9 ± 7.7 59.6 ± 4.1
Test OOD (IO) 98.6 94.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Test OOD (OPcache) 65.2 67.5 99.7 ± 0.1 98.3 ± 0.2 99.1 ± 0.2 96.7 ± 0.4 98.9 ± 0.2 96.2 ± 0.4
Test OOD (Socket) 22.6 66.7 98.8 ± 0.6 94.7 ± 2.3 99.9 ± 0.1 99.1 ± 0.6 99.1 ± 0.4 96.4 ± 1.3
Test OOD (SSL) 50.5 66.7 91.9 ± 1.7 85.4 ± 2.0 99.7 ± 0.2 98.5 ± 0.9 98.4 ± 0.5 94.5 ± 0.9

6 behaviors. Figure 7.14 illustrates the attention activation patterns of the Transformer on
the in-distribution validation set, which corresponds to the known and expected behavior.
Interestingly, the dependencies modeled by the Transformer are mostly local since most of
the attention learnt is along the diagonal. This observation justifies the choice of the less
complex Longformer which relies on the window attention mechanism, thus assuming local
dependencies. Furthermore, this observation explains the performance of the LSTM since
RNNs are inherently biased toward local dependencies due to their iterative nature, making
them well suited for this use case. Nonetheless, in cases where longer-term dependencies must
be modeled or when a wide range of behaviors must be learned, we expect the Transformer
or its lower-complexity alternative to perform better.

Figure 7.14 Attention activation patterns of the two layers of the Transformer on the in-
distribution validation set. For the sake of readability, the attention activation patterns are
shown for the first 1024 positions and are compensated by multiplying each row with the
number of unmasked positions.

The Longformer performed significantly worse than the LSTM and the Transformer on the
CPU out-of-distribution behavior. The attention patterns learned by the Transformer on
this behavior depicted in Figure 7.15 reveal that the Transformer learns dependencies that
span further than the window size of the Longformer. In other words, this lower-complexity
network is unable to model the dependencies learnt by the Transformer. Nonetheless, most
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of the dependencies learned by the Transformer span less than 400 tokens, which is still in
the range of what the LSTM can model [48, 49].

Figure 7.15 Attention activation patterns of the second layer of the Transformer (left) and
Longformer (right) on the CPU out-of-distribution validation set. The Transformer leverages
positions that the Longformer masks. For the sake of readability, the attention activation
patterns are compensated by multiplying each row with the number of unmasked positions.

In order to assess whether the proposed methodology is able to detect small latencies, small
delays from 1 microsecond to 1 millisecond were introduced independently at random posi-
tions of an in-distribution sample from the validation set. Let us briefly describe the experi-
ment. First, a sample comprising N system calls is drawn from the in-distribution validation
set. The perplexity of the original sample (without delay) is evaluated as a baseline. Then,
the sample is duplicated d × p times, where d is the number of delays and p is the number
of positions considered. Then, each of the d delays are added to the duration of the system
calls corresponding to each of the p positions, thereby allowing to compute of the average
perplexity for a given delay. Figure 7.16 depicts the perplexity averaged across positions as a
function of the delay. Additional figures for other in-distribution samples and language mod-
els are available on GitHub. The average perplexity is always above the baseline depicted by
the red horizontal line and increases with the delay. As a result, the proposed methodology
is indeed able to detect small latencies, and the detection becomes more effective as delays
increase. The lower impact of delays between 105 and 106 nanoseconds on the perplexity may
be caused by the encoding and would necessitate further investigation depending on the use
case.

7.5.3 Efficiency

The proposed novelty detection methodology must be efficient to be widely adopted by the
community. Table 7.4 reports metrics on the efficiency of the neural networks. The LSTM
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Figure 7.16 The average perplexity of an in-distribution request from the validation set as
100 delays from 1 microsecond to 1 millisecond are introduced at 100 random positions. The
shade indicates the standard deviation of the perplexity. The red horizontal line indicates
the perplexity of the request without delays.

is the lightest method, only requiring 0.6 Gb of memory, and the Longformer is the fastest
method, converging in about 3 hours and processing a batch of 16 samples in only 16 ms
at inference time. As expected, the Transformer is the slowest model per batch and has
the largest memory footprint due to its quadratic complexity. Nonetheless, the inference for
a batch of 16 sequences takes less than 100ms on a single GPU, regardless of the neural
network. Consequently, we can claim that the methods are suited to detect novel behaviors
in a timely fashion.

Table 7.4 Efficiency Analysis of the Neural Networks.

Convergence Time Batch Training (4 GPUs) Batch Inference (1 GPU) Memory
LSTM 23h19 ± 1h22 209 ± 4 ms 43 ± 0 ms 0.6 Gb
Transformer 15h51 ± 3h10 397 ± 8 ms 89 ± 1 ms 5.6 Gb
Longformer 3h08 ± 0h07 57 ± 3 ms 16 ± 0 ms 1.8 Gb

7.6 Threats to Validity

This section acknowledges the threats to the validity of the proposed datasets and method-
ology.
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7.6.1 Threats to Internal Validity

Threats to internal validity relate to the soundness of the evaluation methodology and the
ability to draw conclusions from the results.

The first two threats to internal validity arise from evaluating the novelty detection method-
ology on datasets collected for that purpose. First, the in-distribution and out-of-distribution
sets may comprise unforeseen differences that facilitated the detection of novel behaviors, thus
overestimating the methodology’s performance. Second, the in-distribution validation and
test sets may contain behaviors that were not in the training set, thus underestimating the
methodology’s performance. For instance, the in-distribution validation set would comprise
a novel behavior if an unexpected network issue occurred at collection time. These threats
are due to the cost of manually investigating each dataset. As a mitigation, the datasets were
collected in a carefully controlled environment with dedicated machines and compared with
simple metrics on the requests, as shown in Table 7.1. Furthermore, the scripts and datasets
have been publicly released for researchers and practitioners to investigate.

The third threat to internal validity arises from the balanced nature of the validation and
test sets. As explained in Section 7.4.2, novelties are rare in practice. Consequently, the
number of positive samples in practice is expected to be much smaller than that of negative
samples, which may affect the evaluation. Since the ratio of novelties greatly depends on the
use case, we leave it to researchers to sample positive instances based on their use case, and
this research considers that novelties occur as frequently as known behavior.

The final threat to internal validity arises from manually tuning the neural networks in-
stead of conducting a grid or random search [195]. The primary reason behind this decision
is to reduce the computational cost of the experiments, thereby making them more easily
reproducible and reducing the environmental impact of this research. However, the hyperpa-
rameters may be suboptimal, and a carefully tuned Transformer may consistently outperform
the LSTM. Despite the limited manually tuning, all the evaluated neural networks performed
exceptionally well. As a mitigation, the code has been made publicly available and easily
reproducible for researchers and practitioners to investigate alternative architectures and
hyperparameters.

7.6.2 Threats to External Validity

Threats to external validity relate to the ability to generalize the proposed approach to other
use cases. The datasets may not illustrate real world use cases and may not be diverse
enough, thus overestimating the performance of the methodology on other real cases. This
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threat is due to the lack of publicly available modern and massive datasets of kernel traces.
In [16], the authors reported that the LSTM and the Transformer achieved comparable
language model accuracy on a dataset similar to ours and on a real-world dataset collected
by Ciena, indicating that the collected dataset is representative of some real-world use cases.
Unfortunately, these two datasets contain a single behavior and are thus not suited to evaluate
our novelty detection methodology. As a mitigation, the use cases were designed to be realistic
and of genuine interest. Additionally, the entire project and the trained models have been
made public for researchers and practitioners to evaluate on their private datasets.

7.7 Discussion

This section discusses the strengths and acknowledges the limitations of the proposed method-
ologies that may hinder their adoption.

7.7.1 Strengths and Benefits

This section briefly discusses the three main benefits of the proposed methodology.

First, the proposed approach is data agnostic since a language model is a probability distri-
bution over sequences of tokens. This work focused on system calls as they expose the system
behavior and do not require manually instrumenting the applications considered. Nonethe-
less, tokens need not be system calls. One may learn a language model of userspace events,
scheduler events, log lines, or whatever is suited for the use case at hand.

Second, the approach is novelty agnostic since the detection relies on the perplexity of the
sequence under the model. Any deviation from previously observed behavior is likely to
increase the perplexity and is thus detectable, including component upgrades, software up-
dates, new users, rare queries, misconfigurations, latency, intrusions, hardware failures, and
bugs.

Finally, the approach does not heavily depend on an expert after the data collection to
annotate the data with labels that are error-prone or to extract high-level features from
the trace that are often suboptimal. Although the neural networks have hyperparameters
that must be tuned beforehand to achieve the best performance, multiple techniques such as
random search [195] have been proposed to find them automatically.
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7.7.2 Limitations and Shortcomings

The primary limitations and shortcomings of the proposed methodology are the limited
interpretability, the risk of leaking information, the sensitivity to repeated strings attacks,
and the potentially high environmental impact.

Neural networks are often considered black boxes because their decisions are hard to explain.
Interpretability is an active research avenue: for instance, researchers still debate whether
attention weights are interpretable [157, 158, 156]. Although the proposed approach is unable
to justify the detection, the predicted conditional probability of the individual system calls
may indicate the location of the root cause of the novelty.

As explained by Carlini et al. [198], large language models may leak exact training samples.
Indeed, by asking the model to generate sequences, exact samples from the training set
may be generated since their likelihood has been maximized during training. However, this
potential privacy issue is not severe, in our opinion, as one would need access to the model
to generate samples and there is no indication which of the generated samples are actually
part of the training data. Furthermore, the networks are only able to generate sequences of
system call names without their arguments.

The Transformer is known to be sensitive to false negatives that are samples containing
repeated strings [199], which means that a carefully designed attack that would repeat many
times a sequence of events may not be detected. However, these types of attacks could be
easily detected with simple metrics such as the number of system calls or the duration of the
request.

Finally, neural networks are costly and emit a significant amount of carbon dioxide (CO2).
Strubell et al. [79] estimated that training a Transformer with neural architecture search
generates up to 284,000 kg of CO2. For reference, the average American emits 16,400 kg of
CO2 annually, and the average car emits about 57,200 kg during its lifetime (fuel included).

7.7.3 Future Work

This section discusses some of the most exciting and promising research directions that would
be necessary to deploy the proposed methodology.

The behavior of computer systems frequently evolves. In other words, the set of known
behaviors is continuously expanding, and consequently, the language models should be con-
tinuously updated. Tsimpoukelli et al. [200] observed that “when trained at sufficient scale,
autoregressive language models exhibit the notable ability to learn a new language task after
being prompted with just a few examples.” Accordingly, the first research avenue is to scale
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the language models and train them on significantly more behaviors to assess whether they
are able to assimilate new behaviors with just a few samples.

Novel behavior should be detected as they occur. However, scaling neural networks typi-
cally increases the amount of computation and memory required. Consequently, the second
research avenue is to scale the neural networks without increasing the amount of computa-
tion with a mixture of experts [109]. The idea is to train multiple networks called experts
and a router that forwards the input to a fixed number of relevant experts. As a result,
increasing the number of experts increases the model size while keeping the computational
cost constant.

Finally, the models should be interpretable and robust. Attention weights may not explain the
output, at least not in a straightforward manner, but there have been attempts at improving
their interpretability, notably by averaging attention scores [201]. Robustness has always
been a concern, and multiple techniques have been proposed. One of the most interesting,
in our opinion, is sharpness-aware minimization (SAM) [202] which seeks parameters in
neighborhoods with uniformly low loss.

7.8 Conclusion

This paper introduces a data and novelty-agnostic language model-based approach to detect-
ing novelties from system call sequences. The proposed methodology was evaluated using
three neural networks: the widely popular LSTM, the state-of-the-art Transformer, and the
lower-complexity Longformer. The three models were able to detect six novel behaviors ef-
fectively. Interestingly, the inductive bias of the LSTM toward local dependencies helped the
model achieve better novelty detection performance on 3 out of 6 behaviors when compared
to the more flexible Transformer and Longformer. Crucially, this observation applies solely
to our dataset and may arise from the short nature of the requests collected.

Finally, this paper also introduces a new open-source dataset of kernel traces comprising over
2 million web requests with seven distinct behaviors, as large neural networks are known to
benefit greatly from larger datasets. Due to the lack of publicly available equivalent datasets,
the data collection scripts, the trained models, and the source code have been publicly released
for researchers and practitioners to evaluate the proposed approach on their use cases.
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CHAPTER 8 GENERAL DISCUSSION

First, this chapter summarizes the three contributions of this thesis that aim at detecting
anomalies and novelties in computer systems from kernel traces. Then, this chapter acknowl-
edges and discusses the shortcomings of the three contributions and, more broadly, of this
thesis.

8.1 Summary of Works

In Chapter 5, the execution states of the threads that contribute to the response time of
requests are first extracted from the critical path. Then, based on these hand-crafted higher-
level features, abnormal requests are identified with DBSCAN and subsequently grouped
with k-means. Finally, each cluster of outliers is investigated separately with simple yet
effective statistics on the requests, such as the number of distinct system calls and n-grams.
The limited scope of the first contribution of this thesis allowed getting familiar with the data
and task at hand while identifying latency issues and revealing their potential root cause.
Most notably, the proposed approach correctly identified a genuine PHP contention issue.

In Chapter 6, a joint representation of the system call names along with their arguments is
learned using both embedding and encoding. The additional information allowed the neu-
ral networks to make more informed and, ultimately, more precise predictions. Indeed, the
language modeling performance of two widely popular neural networks is significantly im-
proved by leveraging the additional information that is readily available. The ablation study
revealed that the improvement could not be explained solely by the increase in embedding
size, indicating that the networks were indeed able to leverage the arguments. Notably, the
cross-entropy of the Transformer on the masked language model, a popular pre-training ob-
jective, decreased from 0.485 to 0.182 (-62.5%), while the accuracy increased from 82.8%
to 94.1% (+13.6%). As expected, arguments relating to the process that issued the call
produced the highest overall impact on the performance. Most importantly, the increase in
size yielded a reasonable impact on the inference speed. For instance, the epoch time of the
Transformer during optimization for the masked language model increased from 232.2ms to
238.5ms1 (+2.7%).

In Chapter 7, the representation introduced by the second contribution is employed to detect
novelties in kernel traces with a language model of the system calls. The proposed approach

1Please note that the code has not been heavily optimized.
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benefits from minimal expert hand-crafting while being data- and novelty-agnostic. Three
neural networks have been investigated with the left-to-right language model: the LSTM, the
Transformer, and the Longformer. Each model effectively detected the six novelties collected
with an area under the ROC curve and an F-score greater than 95% in most experiments.
Furthermore, the models were able to detect small latencies ranging from 1 microsecond to 1
millisecond randomly inserted into the requests, indicating that our approach is suitable for
detecting performance issues. Contrary to our expectations, the LSTM performed similarly to
the Transformer, although the latter has the ability to model arbitrary-length dependencies.
A visualization of the activation patterns of the Transformer’s attention revealed that the
dependencies learned were primarily local, indicating that the dataset contains few extremely
long dependencies. Nonetheless, researchers and practitioners are encouraged to assess the
type of dependencies in their data before discarding the more flexible networks.

8.2 Limitations

The first and foremost limitation of this research is that most experiments were conducted
on datasets collected by ourselves. This decision comes from the lack of publicly available
large and modern datasets of kernel traces. Indeed, the usual datasets such as UNM [182],
KDD98 [183], and ADFA-LD [184] are small and obsolete as explained by Creech and Hu
[184] and Murtaza et al. [13]. Furthermore, they omit the arguments of the system calls,
which have been at the core of the second and third contributions of this thesis. Collecting
the dataset ourselves poses a threat to this research’s internal and external validity. Indeed,
the traces may not represent real-world use cases or contain unexpected behaviors that would
impact the evaluation. As a mitigation, the partnering company was frequently involved in
this research to attest to the soundness of the collected datasets and proposed methodologies.
Furthermore, the approaches were evaluated whenever possible on datasets collected by the
partnering company on in-production servers.

Due to the exploratory nature of this research, the proposed methodologies would necessitate
additional development before their real-world deployment. Discussions with the partnering
company revealed three critical aspects of the proposed approaches that must be improved
in order for them to be adopted: efficiency, robustness, and explainability. Indeed, each
neural network has been trained on multiple high-end GPUs for up to 3 days, making the
approaches resource-intensive and expensive to deploy in practice. Moreover, the neural
networks are sensitive to their hyperparameters, to noise, and to attacks such as adversarial
samples or repeated strings in the case of the Transformer [199]. Nonetheless, we believe that
these potential issues are not severe as the former requires the attacker to access the model’s
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parameters, while the latter could be detected with simple metrics such as the number of
system calls. Finally, neural networks are often described as black-box due to the difficulty
of explaining their decision. The lack of transparency has been one of the most common
complaints from practitioners who typically require strong guarantees.

As briefly mentioned, neural networks require significant computational resources, which
come at a high price but also have a high impact on the environment. For instance, Strubell
et al. [79] estimated that training a single large Transformer called BERT [51] on GPU pro-
duces about the same amount of CO2 as a trans-American flight. Due to the exploratory
nature of this research, constraints on the computational resources, and environmental con-
siderations, no extensive grid search or random search was conducted. As a consequence, the
models may be suboptimal, and the performance reported may be significantly lower than
what could be achieved with more resources.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

In response to the aforementioned limitations, this section concludes this thesis by discussing
the promising research avenues to extend and improve this research.

Let us first discuss interesting research avenues to address the limitations raised by the part-
nering company: the robustness, efficiency, and explainability of the neural networks. One of
the most straightforward techniques to improve the robustness of machine learning models is
ensembling, also referred to as ensemble methods. The core idea behind ensembling is that
the aggregation of multiple machine learning models achieves a better performance than any
individual model. In the case of this research, multiple neural networks could be randomly
initiated with distinct seeds and potentially trained on a subset of the samples and features.
Then, the average of the perplexities estimated by each model should be more robust to noise.
Notably, ensembling has already been used with great success to improve the robustness of an
LSTM-based intrusion detection method from kernel traces [2]. Another promising technique
for neural networks is sharpness-aware minimization (SAM) [202], which seeks parameters
that lie in neighborhoods having uniformly low loss, thereby making the model less sensi-
tive to noise. Numerous techniques have been proposed to improve the efficiency of neural
networks, as extensively investigated in Chapter 3. In our opinion, researchers should first
explore straightforward techniques compatible with ensembling, such as a good initialization
strategy and knowledge distillation. The latter technique transfers the knowledge from a large
model or an ensemble of models called teacher(s) to a single, typically smaller, model called
the student by training the student to reproduce the output of the teacher. Furthermore,
quantization may be an interesting research avenue depending on the hardware available.
Finally, the explainability of neural networks remains an open problem as of the writing
of this thesis. One of the most active research directions is whether attention weights are
interpretable [157, 158, 156]. In our opinion, attention weights and activation patterns are
helpful as insight rather than explanation. Nonetheless, they should be taken with caution
and further investigated.

Finally, computer systems and their behaviors continuously evolve. In other words, the set of
known behaviors is continuously expanding. Accordingly, machine learning models should be
continuously updated to take into account the latest behaviors. The fields of online learning,
continual learning, and open-set learning have been particularly active in recent years, and
numerous approaches have been proposed. Interestingly, one potential solution came from
scaling the neural networks. Evidently, increasing the number of parameters has been shown
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to improve the performance of neural networks, especially for natural language processing [50,
193]. Furthermore, sufficiently large language models have exhibited the interesting ability to
learn a new language after being prompted with just a few examples. Therefore, scaling the
system call language model at the core of the second and third contributions could provide
a simple approach to adapting to new behaviors with limited resources.
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APPENDIX A SYSTEM CALL SEQUENCE OF A SIMPLE COMMAND

The following system calls sequence was generated by the execution of the command echo
"Hello World" and collected by the strace tool. Note that strace only displays the first
few arguments and interprets the raw value of the arguments to ease the reading.

Table A.1 System calls sequence corresponding to the execution of the echo "Hello World"
command and collected by strace.
System call name Arguments Return value
execve "/usr/bin/echo", ["echo", "Hello World"], 0x7ffe615a2e48 /* 24 vars */ 0
brk NULL 0x5597cd90a000
arch_prctl 0x3001 /* ARCH_??? */, 0x7ffe1620e090 -1 EINVAL (Invalid argument)
mmap NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0 0x7f5aaba0b000
access "/etc/ld.so.preload", R_OK -1 ENOENT (No such file or directory)
openat AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC 3
newfstatat 3, "", st_mode=S_IFREG|0644, st_size=60603, ..., AT_EMPTY_PATH 0
mmap NULL, 60603, PROT_READ, MAP_PRIVATE, 3, 0 0x7f5aab9fc000
close 3 0
openat AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC 3
read 3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\237\2\0\0\0\0\0"..., 832 832
pread64 3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64 784
pread64 3, "\4\0\0\0 \0\0\0\5\0\0\0GNU\0\2\0\0\300\4\0\0\0\3\0\0\0\0\0\0\0"..., 48, 848 48
pread64 3, "\4\0\0\0\24\0\0\0\3\0\0\0GNU\0i8\235HZ\227\223\333\350s\360\352,\223\340."..., 68, 896 68
newfstatat 3, "", st_mode=S_IFREG|0644, st_size=2216304, ..., AT_EMPTY_PATH 0
pread64 3, "\6\0\0\0\4\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0@\0\0\0\0\0\0\0"..., 784, 64 784
mmap NULL, 2260560, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0 0x7f5aab7d4000
mmap 0x7f5aab7fc000, 1658880, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x28000 0x7f5aab7fc000
mmap 0x7f5aab991000, 360448, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1bd000 0x7f5aab991000
mmap 0x7f5aab9e9000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x214000 0x7f5aab9e9000
mmap 0x7f5aab9ef000, 52816, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0 0x7f5aab9ef000
close 3 0
mmap NULL, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0 0x7f5aab7d1000
arch_prctl ARCH_SET_FS, 0x7f5aab7d1740 0
set_tid_address 0x7f5aab7d1a10 146836
set_robust_list 0x7f5aab7d1a20, 24 0
rseq 0x7f5aab7d20e0, 0x20, 0, 0x53053053 0
mprotect 0x7f5aab9e9000, 16384, PROT_READ 0
mprotect 0x5597cce70000, 4096, PROT_READ 0
mprotect 0x7f5aaba45000, 8192, PROT_READ 0
prlimit64 0, RLIMIT_STACK, NULL, rlim_cur=8192*1024, rlim_max=RLIM64_INFINITY 0
munmap 0x7f5aab9fc000, 60603 0
getrandom "\xa9\x6c\x39\xbe\xff\xb3\xb0\x8e", 8, GRND_NONBLOCK 8
brk NULL 0x5597cd90a000
brk 0x5597cd92b000 0x5597cd92b000
openat AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC 3
newfstatat 3, "", st_mode=S_IFREG|0644, st_size=5712208, ..., AT_EMPTY_PATH 0
mmap NULL, 5712208, PROT_READ, MAP_PRIVATE, 3, 0 0x7f5aab25e000
close 3 0
newfstatat 1, "", st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0), ..., AT_EMPTY_PATH 0
write 1, "Hello World\n", 12Hello World 12
close 1 0
close 2 0
exit_group 0 ?
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APPENDIX B INTRODUCTION TO MACHINE LEARNING

At the dawn of artificial intelligence (AI), researchers rapidly tackled and solved problems
that were challenging for humans but relatively straightforward for computers in that they
could be described as a set of rules. Chess may certainly be the epitome of such complex
tasks solved brilliantly by artificial intelligence. Nonetheless, despite the achievements of
AI, simpler tasks that humans solve instinctively proved to be much more challenging as
they are not easily expressed formally. Amongst others, speech and object recognition were
– and still are to some extent – challenging problems to solve for computers. Machine
learning (ML) provides a solution to intuitive problems by allowing computers to learn from
experience instead of relying on human knowledge to specify the tasks or their solution.
The seemingly ever-increasing amount of data produced every day has enabled machine
learning to become suitable and successful for a wide range of simple and complex problems.
Since the renaissance of deep learning (DL) associated with greedy layer-wise pre-training,
neural networks have become the most popular family of algorithms for machine learning
as they learn a hierarchy of concepts, with each concept defined through its relation to
simpler concepts. As of the writing of this survey, deep learning, and more generally artificial
intelligence, has become a thriving field with numerous practical applications that directly
impact countless human lives, from medical diagnoses to movie recommendations.
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APPENDIX C PRACTICAL GUIDELINES - GENERAL METHODS

The general approaches presented in Section 3.3 apply to the original Transformer as well
as its lower-complexity alternatives. Therefore, they are discussed before introducing the
specialized approaches in Section 3.4. In particular, this section provides practitioners and
researchers with a series of guidelines on which methods to apply depending on the bottleneck
and whether it occurs during optimization or inference. The distinction between optimization
(i.e. pre-training and training) and inference is motivated by the former being significantly
more resource-intensive than the latter.

The primary focus of this survey is to make Transformers more efficient and ultimately
more affordable. Therefore, only substantial performance losses will be mentioned, along
with other significant drawbacks such as incompatibilities and instabilities. Unless specified
otherwise, the methods are readily available in PyTorch [203] and Tensorflow [204], two
standard deep-learning libraries.

C.1 Optimization

Optimization is the most resource-intensive phase, prominently due to the iterative nature
of the process, the quadratic complexity of the attention mechanism, and the in-memory
recording of intermediate values during the forward pass. Consequently, most of the above
approaches to reduce computation, memory, or both, focus on optimization.

C.1.1 Computation Savings

Recently, the undeniable success of pre-trained Transformers such as BERT [51], ViT [53], and
GPT-3 [50] has confirmed the benefits of unsupervised pre-training. As previously mentioned,
pre-training initializes the network’s weights in a “good” region of space that allows the
model to converge faster. Therefore, we advise practitioners and researchers to build upon
pre-trained models like the ones available on the open-source library Hugging Face [112].

Nonetheless, pre-trained models are typically only available for “conventional” data and tasks
such as translation, summarization, question answering, text-to-speech, image classification,
and object detection. As for data and tasks without pre-trained models, we recommend
initializing the model with a principled strategy such as Admin or T-Fixup and using a
sample-efficient objective. Those techniques are not yet implemented in standard libraries,
therfore we suggest using T-Fixup as it is simpler than Admin.
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C.1.2 Memory Savings

As discussed before, although time may limit one’s experiments, memory bottlenecks are
much more critical. Since the intermediates values are responsible for a substantial part of
the memory footprint, the first method to apply whenever memory is the main limiting factor
during optimization is gradient checkpointing. The approach has two significant advantages:
(i) the trade-off between memory and computation controlled by the number of intermediate
values kept in memory is highly adjustable, and (ii) the method is straightforward to use
in TensorFlow1 and PyTorch2. Nevertheless, gradient checkpointing has some caveats with
multiple GPUs, even on a single machine. For instance, as of the writing of this survey,
gradient checkpointing interferes with PyTorch’s Distributed and Data Parallel API, leading
to instabilities3.

Alternatively to gradient checkpointing, reversible layers provide a mechanism to recompute
the intermediate values during the backward pass, thereby decoupling the model’s depth from
the amount of memory required by the activations. Although the increase in computation
is reasonable, reversible layers produce numerical errors that may accumulate layers after
layers to the point that they become an issue. Additionally, reversible layers are not yet part
of standard libraries and require manually writing the forward and backward operations.

In addition to gradient checkpointing or reversible layers, parameter sharing allows further
reducing the memory and is straightforward. However, unlike the other approaches, param-
eter sharing reduces the model’s capacity. Fortunately, the trade-off between capacity and
memory/computation savings is highly customizable, depending on the number of parameters
shared.

Finally, a mixture of experts potentially with micro batching is expected to allow many
memory-limited GPUs to train a Transformer even if each GPU is individually too small.
However, both approaches require substantial effort to implement and impose a communica-
tion cost.

C.2 Inference

Sometimes, researchers have the resources to train large models during the development
phase due to public or academic infrastructures, but they do not have the resources to
deploy them. In such cases, one may do a neural architecture search to find the best model

1https://github.com/cybertronai/gradient-checkpointing
2https://pytorch.org/docs/stable/checkpoint.html
3https://discuss.pytorch.org/t/ddp-and-gradient-checkpointing/132244/2

https://github.com/cybertronai/gradient-checkpointing
https://pytorch.org/docs/stable/checkpoint.html
https://discuss.pytorch.org/t/ddp-and-gradient-checkpointing/132244/2


164

within a parameter budget during training, preferably with So et al. [126]’s approach. As of
this survey’s writing, neural architecture search is not part of standard libraries.

Alternatively or additionally to NAS, structured pruning and distillation reduce the amount
of memory and computations with fine-grained control. While structured pruning is already
implemented, distillation is as easy as building a second model that predicts the teacher’s
output. As the aforementioned results suggest [90, 91, 96, 97, 98], the Transformer’s perfor-
mance does not significantly degrade when the model is pruned or distilled. Therefore, to
reduce the amount of energy consumed by the model, we suggest applying those methods
even when resources are sufficient during inference.

C.3 Optimization and Inference

The first and foremost method for faster and lighter models is automatic mixed-precision.
Mixed-precision is compatible with virtually every neural network, combines with every other
approach, reduces the memory footprint and accelerates computations on modern GPUs.
Additionally, this method is one of the simplest to implement, only requiring a few lines of
code in PyTorch4 and TensorFlow5.

Although 8-bit quantization may seem similar to 16-bit mixed-precision, the former is pri-
marily used to speed up inference and is not as readily available as the latter. In particular,
PyTorch does not provide quantized operators for GPU as of the writing of this survey, and
Tensorflow warns users that “different hardware may have preferences and restrictions that
may cause slight deviations when implementing the spec that result in implementations that
are not bit-exact”6. Due to the finicky nature of 8-bit quantization, we suggest reserving this
approach to specific hardware and use-cases such as the mobile setting.

4https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
5https://www.tensorflow.org/guide/mixed_precision
6https://www.tensorflow.org/lite/performance/quantization_spec#specification_summary

https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
https://www.tensorflow.org/guide/mixed_precision
https://www.tensorflow.org/lite/performance/quantization_spec#specification_summary
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APPENDIX D PRACTICAL GUIDELINES - SPECIALIZED METHODS

With limitations mentioned in Section 3.5 in mind, let us examine the results of [159] and
draw some broad guidelines.

The first observation is that every model is lighter than the original Transformer. Nonetheless,
for memory-limited environments, the Synthesizer is the least advisable alternative as the
model only reduces the memory by 24 to 26% regardless of the sequence length, which is
consistent with its quadratic complexity. Instead, the Linformer, Performer, and Linear
Transformer are better suited to address memory bottlenecks as they are at least 56% and
88% lighter than the original Transformer for input sequences of 1,000 and 4,000 tokens,
respectively, which is also consistent with their linear complexity.

The second observation is that, on TPU V3 chips, the Synthesizer, the Reformer and BigBird
perform roughly the same number of steps per second as the original Transformer regardless
of the sequence length. In contrast, the Linformer, Performer, Sinkhorn Transformer and
Linear Transformer are significantly faster than the original Transformer for input sequences
of 4,000 tokens while performing on par for sequences of 1,000 tokens. Consequently, those
models are better suited for computation-limited environments. We do not wish to overstate
our claims here since TPUs and GPUs differ on some key aspects1, and speed-ups may
significantly vary, as observed by Wang et al. [205] and Wang et al. [206]. Although the
data processing pipeline and the model implementation are outside this survey’s scope, they
should be tuned for the exact hardware used as it may significantly impact the performance.

Nonetheless, it would seem that the Linformer, Performer, and Linear Transformer are excel-
lent options to improve memory and computation, with the Linformer standing out consider-
ing the simplicity of its implementation. However, those models also have serious drawbacks.
The Linformer requires instantiating the projection matrices E and F of dimension k × n,
and thus can only process fixed-sized input sequences. Therefore, sequences must be padded
to the size of the largest one in the dataset, which may significantly degrade the model’s
efficiency. The Performer and Linear Transformer are challenging to be efficiently imple-
mented. Besides, they perform noticeably worse than the original Transformer on average.
In some cases, such as byte-level text classification, they manage to outperform the original
Transformer. In other cases, however, they might critically underperform. For instance, in

1Compared to modern GPUs with Tensor Cores, TPUs typically perform more FLOPs but have a lower
memory bandwidth, have fewer but larger tiles, and apply the activation function within the matrix multi-
plication.
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a longer variant of the ListOps task [207] that consist of modelling hierarchically structured
data, they achieve less than 50% of the original Transformer’s performance.

In contrast, sparse Transformers suffer less performance degradation on average, as measured
on the Long-Range Arena benchmark. Notably, the LongFormer and BigBird achieved the
same accuracy as the original Transformer for the ListOps task. Sparse models have, however,
two major shortcomings. First, the sparsity must be structured in order to be efficiently
implemented and yield practical improvements. Otherwise, the sparse model may be slower
than its dense equivalent. Furthermore, CUDA kernels require considerable effort to be
efficiently implemented and are specific to GPUs. Implementing equivalent kernels on TPUs
is challenging, or even impossible, due to the disparity in supported primitives and operations.
Secondly, dependencies that must be modelled to solve the task accurately should not be
masked. Otherwise, the performance will be critically impacted. To select the appropriate
sparse model, we recommend that one train a small vanilla Transformer with mixed-precision
and gradient checkpointing, and then analyze the activation patterns of each layer’s attention.

Nonetheless, in a recent paper, Narang et al. [208] investigated the impact of numerous mod-
ifications to the Transformer architecture, including changes in activation, normalization,
depth, embeddings, and Softmax, on three NLP benchmarks, namely SuperGLUE [209],
XSum [210], and WebQ [211]. The authors also evaluated several methods studied in this
paper, including parameter sharing, Synthesizers, the Switch Transformer, and the Universal
Transformer. They observed that no modification was able to improve the performance signif-
icantly. After ruling out various explanations, the authors conjectured that “modifications to
the Transformer architecture often do not transfer across implementations and applications”,
which may explain why no modification has been widely adopted.

In conclusion, there seem to be no simple and universal guidelines regarding the current
Transformer alternatives. If the data and task are standard, we recommend looking in the
literature or on the Papers With Code website for references on how the different methods
compare and experiment with already pre-trained models. Otherwise, we recommend using
a small vanilla Transformer with mixed-precision and gradient checkpointing as baseline,
then experimenting with already implemented lower-complexity models. As a side note,
one may also want to combine multiple specialized approaches. For instance, BigBird-ETC
relies on additional tokens for global attention, a form of memory similar to the Compressive
Transformer. Nonetheless, many combinations are unprincipled at best. For instance, one
should not factorize a sparse attention: the complexity will be similar to that of the same
factorization of the full attention, and the sparsity may lose valuable information that the
factorization could have preserved.

https://paperswithcode.com
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APPENDIX E ALTERNATIVES TO SELF-ATTENTION

Recently, attention-free alternatives to the Transformer have been proposed, putting Vaswani
et al. [43] original paper title Attention Is All You Need to the test. Such architectures have
not been explored in the core of this survey as they arguably remove the Transformer’s core
mechanism. Nonetheless, it is important to mention some of the most popular and promising
alternatives.

Tolstikhin et al. [72] argued that self-attention is not required for image classification. They
introduced a model called MLP-Mixer solely based on a succession of two multilayer per-
ceptrons applied independently to image patches and channels, respectively, which achieved
comparable accuracy to the ViT [53] on ImageNet.

Likewise, Liu et al. [73] argued that self-attention is not critical for computer vision and
language modelling. They introduced a network called gMLP that models the interactions
with Spatial Gating Units (SGU) instead of self-attention. Their model achieved the same
accuracy as the ViT [53] on ImageNet, and the same perplexity of BERT [51] on a subset of
C4.

Alternatively, Bello [212] proposed to replace the Transformer’s self-attention with Lambda
layers. Long-range content and position-based interactions are captured by transforming the
context into linear functions, i.e. matrices, and applying them to each input independently.
LambdaNetworks achieved comparable results to relatively small Transformers on ImageNet
classification. While the memory complexity of Lambda layers remains quadratic with respect
to the sequence length, it does not scale with the batch size. Additionally, the author proposed
a multi-query variant that scales down the complexity by a factor.

Finally, Yu et al. [74] argued that the architecture of the Transformer is more valuable to the
performance than the specific mechanism to relate the tokens. To illustrate their claim, the
authors introduced the PoolFormer, a network that performs similarly to vision Transformers
while replacing the self-attention mechanism with pooling, a simple non-parametric operator.
Furthermore, the authors expanded on this idea with a more general and flexible architecture
called MetaFormer, where the mechanism to relate the tokens is not specified while the other
components are kept the same as the Transformer.
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APPENDIX F SUMMARY OF THE SPECIALIZED APPROACHES

Table F.1 Summary of the specialized methods and their associated models.

Category Approach Model

Sparse

Fixed and Random Patterns

Star-Transformer [137]

Sparse Transformer [138]

Cascade Transformer [139]

LogSparse-Transformer [140]

BlockBERT [141]

Longformer [142]

BigBird [58]

Learned and Adaptive Patterns
Sinkhorn Transformer [143]

SparseBERT [144]

Adaptively Sparse Transformer [145]

Clustering and Locality-Sensitive Hashing
Reformer [87]

Routing Transformer [148]

Factorized Attention

Low-Rank Factorization
Linformer [88]

Synthesizers [149]

Nyströmformer [150]

Kernel Attention
Linear Transformer [152]

Performer [151]

Clustering and Locality-Sensitive Hashing Transformer with clustered attention [153]

Architectural Change
Memory

Transformer-X Dai et al. [48]

Compressive Transformer Rae et al. [154]

Sequence Compression Funnel-Transformer Dai et al. [155]
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