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RÉSUMÉ

Le transport de marchandises est un processus physique de transport de marchandises et 

d'expéditions entre différents terminaux par voie maritime, aérienne ou terrestre entre différentes 

zones. Cette thèse porte sur un réseau Many-to-One-to-Many (M1M), un cadre décisionnel où un 

côté du système comprend de nombreux expéditeurs, producteurs, grossistes, distributeurs, 

prestataires de services logistiques, etc. -demandes de demande de transport efficace en termes de 

coûts et de temps de chargements de produits. De l'autre côté du système M1M, de 

nombreux transporteurs font des offres de capacité de transporteur pour le transport, 

demandant des chargements rentables. Dans ce contexte, les transporteurs peuvent être des 

fournisseurs de services de transport de divers modes, par exemple, les chemins de fer, les 

compagnies aériennes, la navigation fluviale et océanique, et différents types, par exemple, des 

transporteurs complets ou partiels. Le modèle proposé considère un réseau de corridor à 

segment unique comprenant de nombreuses demandes de demande des expéditeurs à 

transférer d'un terminal d'origine à un terminal de destination, qui ont tous deux une capacité 

d'entreposage à toutes les périodes. Pour résoudre le modèle proposé, une solution initiale est 

construite par un algorithme heuristique. Ensuite, cette solution est améliorée par une 

Recherche Adaptive Large Voisinage (ALNS) combinant une recherche locale utilisant huit 

opérateurs de suppression pour détruire une solution et quatre opérateurs d'insertion pour la 

réparer. Enfin, l'algorithme proposé est testé sur différents benchmarks et analysé avec soin 

pour évaluer les performances de chaque opérateur et de l'algorithme heuristique 

constructif. L'une des principales conclusions de la comparaison d'algorithmes est que 

l'ALNS proposé peut obtenir des solutions avec un écart d'optimalité de 11 % pour résoudre de 

très grands ensembles de données en moins d'une minute. Cependant, le solveur exact peut 

trouver les solutions en une heure environ pour résoudre les données mentionnées ou ne peut pas 

les obtenir dans les délais. Les solutions obtenues par ALNS montrent des écarts d'environ 10%, 

et ce fait signifie que l'ALNS n'a pas été très efficace pour résoudre notre problème. 
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ABSTRACT 

Freight transportation is a physical process for the transportation of commodities and shipments 

among different terminals by sea, air, or land between different zones. This thesis focuses on a 

Many-to-One-to-Many (M1M) networks, a decision-making framework where one side of 

the system includes many shippers, producers, wholesalers, distributors, logistics service providers 

and so on, making shipper-demand requests for cost and time-efficient transportation of product 

loads. On the other side of the M1M system, many carriers make carrier-capacity offers for 

transportation, requesting profitable loads. In this context, carriers may be transportation 

service providers of diverse modes, e.g., railroads, airlines, river and ocean navigation, and 

different types, e.g., full or less-than-truckload carriers. The proposed model considers a 

single-segment corridor network including many shipper-demand requests to be transferred from 

an origin terminal to a destination terminal, both of which have a warehousing capacity in all 

time periods. To solve the proposed model, an initial solution is constructed by a heuristic 

algorithm. Then, this solution is improved by an Adaptive Large Neighborhood Search (ALNS) 

combining a local search using eight removal operators to destroy a solution and four insertion 

operators to repair it. Finally, the proposed algorithm is tested on different benchmarks and 

analyzed carefully to assess the performance of each operator and of the constructive heuristic 

algorithm. One main finding of the algorithm comparison is that the proposed ALNS can 

achieve solutions with an 11% optimality gap for solving very large data sets in less than one 

minute. However, the exact solver either can find the solutions in around one hour for solving the 

mentioned data or cannot get them in time limitation. The solutions obtained by ALNS shows 

gaps around 10% and this fact represents that the ALNS was not very efficient for addressing our 

problem. 
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INTRODUCTION 

1.1 Motivation 

Nowadays, there is a great deal of interest in the development of optimization models and 

intelligent solution algorithms to tackle real-world transportation and logistics problems [1]. To 

improve the performance of logistics activities, such studies are highly important. For example, in 

2019, around 18 billion tons of commodities, as reported by U.S. Department of Transportation 

[2], with a value of 18.5$ trillion, were moved by logistics companies and the role of optimization 

models and intelligent solution algorithms is undeniable.  

The business environment is very competitive for businesses especially for logistics companies. In 

this regard, the speed in designing, manufacturing, and distributing products, transportation, and 

logistics activities, forces them to always look for ways to improve operations, planning and 

coordination of supply chain members [3]. Planning and scheduling processes in the transportation 

and logistics network, can reduce the cost, and many researchers and industrialists made efforts to 

develop efficient planning tools for logistics and transportation activities [4]. Hence, the 

development of new and practical optimization models and solution algorithms can help companies 

to create decision support systems to improve their performance in operations and stay competitive. 

This study is based on the idea of Many-to-One-to-Many (M1M) systems proposed earlier by 

Crainic et al. [49] and Taherkhani et al. [10]. The M1M system includes carriers, shippers, and an 

Intelligent Decision Support Platform (IDSP) for handling different decision-making problems for 

a freight transportation system. While the supply side for the M1M system is the carriers that offer 

different services for transportation of shipments, the demand side is the shippers. We integrate the 

decisions from both sides of M1M system using an IDSP for making the tactical planning on a 

single-segment corridor network. The IDSP automates the planning and optimizing the M1M 

system to increase the profitability while satisfying the demands from both stakeholders. The inputs 

to the IDSP are the time-dependent shipper-demand requests and the carrier-capacity offers which 

are available at different time periods. After receiving the requests, the IDSP optimizes operations 

to accept or reject request as well as selected services, the assignment of shipments to these 

services, and create itineraries of accepted requests through the time-space network. With regards 

to the carriers, a transportation service has some characteristics including the origin, destination, 

capacity of vehicles and the carrier-predefined timetable as well as the fixed cost, variable costs, 

duration, and a time attribute as scheduling. In the proposed transportation system, we have a 
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capacity limitation for the execution arcs and the capacity of terminals. A service network design 

specifies the movements of shipments through a time-space network for the transportation of time-

dependent shipper-demand requests by a single-leg service. The time-stamped service arcs are 

called service legs. Each service has a departure time from its origin and an arrival time to its 

destination.  

The last characteristic of each service is the duration from departure time to the arrival time to 

represent the total travel time. The travel time is directly related to distance between the origin and 

destination terminals. Based on these time attributes of each transportation service, one decision is 

to create a set of scheduled services which can be used to transfer a shipper-demand request 

between two terminals. The scheduled services are divided into fast or regular services. As may be 

understood from their names, a fast service has the lowest travel time in comparison with the 

regular services.  

Another side of M1M system is the shippers which are divided into two types, i.e., contract-based, 

and non-contract. Most studies in the literature, only consider one type of shipper-demand request 

known as contract-based requests. In this case, there is a long-term contract ensuring the required 

capacity for the carriers. In a real-world setting, there are also some irregular potential shippers in 

addition to the contract-based shippers; the requests of shippers are called non-contract-based 

requests; If both types of requests are accepted, their shipments are transferred from their origins 

to their destinations. Based on these facts, one challenging optimization decision is to select non- 

contract-based requests to increase the maximum profit.  

In addition to the classification of shippers, the demand is divided into two types, i.e., standard, 

and urgent. Based on their names, the duration delivery for the urgent requests must be lower than 

for the standard ones. Therefore, each shipment from the side of shippers, may be a contract-based 

or non-contract and the demand may be classified as urgent or standard. The shipments from 

different shippers are consolidated and transferred to the vehicles for addressing the selection of 

shipper-  

demand requests among contract and non-contract ones, and the choice itineraries of shipments 

and routes of carriers through a time-space network. For both types of requests, if the shipper- 

demand request is accepted, the shipment is picked up at its origin and delivered to its destination 

within the predefined time window by the selected scheduled services.  
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Based on the both types of requests, the proposed optimization model makes this decision to accept 

contract-based and non-contract requests where there is a large penalty for unaccepted contract-

based requests. In this regard, another decision is to consider the opportunity cost for unaccepted 

requests based on revenue management. The last decision is to design the itinerary of each accepted 

shipment to maximize the revenue while avoiding incurring penalties related to the time windows 

of shipments. All these activities must be managed at a single-segment corridor network design 

problem. 

1.2 Research questions  

This thesis focuses on the development of a single-segment corridor network using an optimization 

model and a metaheuristic algorithm. The single-segment corridor network is defined by a set of 

shipper-demand requests which must be transferred from the origin to the destination where the 

selection of contract-based or non-contract requests, assignment of services and the planning of 

itineraries of shipments, are the main decision variables. Based on this fact, this research aims to 

address the following research questions: 

• Using the decision variables from our optimization model, which one of requests should be

accepted? Is it possible to accept all shipper-demand requests? 

• Using the decision variables from our optimization model, for each accepted shipper- 

demand request, which transportation services should be assigned to them? What is the optimal 

itinerary from the origin to the destination? 

• Using the proposed metaheuristic algorithm, how we can solve the proposed problem in

large-scale transportation networks? 

• Using the proposed metaheuristic algorithm, how we can destroy a solution and construct

it efficiently? 

• Using the proposed metaheuristic algorithm, how we can find a new optimal solution and

escape from the local optimum solution? 

1.3 Research objectives 

To address the aforementioned research questions, this research has the following objectives: 

• Adapting the optimization model of multi-stakeholder freight transportation system for the

single-segment corridor network. 
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• Considering different contract-based or non-contract-based requests which should be

transferred from the origin terminal to the destination terminal. 

• Contributing to the concept of ad-hoc arcs or the extra capacity for unaccepted shipper- 

demand requests. 

• Based on revenue management concepts, the objective is to maximize the net profit for all

accepted requests, while considering the fixed costs, transportation costs and penalty costs if the 

schedule does not meet the time window.  

• Proposing an efficient metaheuristic algorithm using adaptive large neighborhood search

algorithm, simulated annealing, and the local search operator to solve the model. 

1.4 Expected contribution 

Although our concepts for the development of an optimization model for a multi-stakeholder 

freight transportation system considering different shippers, carriers and demand requests which 

can be a contract-based or non-contract-based request, have been introduced earlier, the main 

contribution of this research is to introduce an efficient metaheuristic algorithm based on adaptive 

large neighborhood search for addressing a single segment corridor network design problem in a 

many-to-one-to-many system. This algorithm uses a strong constructive heuristic algorithm and set 

of removal and insertion operators as well as a decision rule from the simulated annealing in 

addition to a local search operator as subloop. The proposed model defines for the first time the 

opportunity cost for unaccepted requests to consider the concept of revenue management 

comprehensively. 

1.5 Summary of other chapters 

This introduction chapter is followed by five chapters. In Chapter 2, we describe the problem 

context and define all elements of the problem statement including freight transportation, IDSP, 

planning levels, physical network, time-space network, many-to-one-to-many systems, shippers, 

and carriers. Chapter 3 aims to provide a literature review to define the basic models and solution 

algorithms in the literature as well as studies and research gaps. Chapter 4 establishes an 

optimization model to illustrate the problem definition mathematically. Chapter 5 introduces an 

efficient adaptive large neighborhood search algorithm. Chapter 6 does an extensive analysis to 

validate the solutions of our metaheuristic and compares it while analyzing the performance of its 
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components. In addition, some sensitivity analyses are performed on the key parameters of the 

applied optimization model to show its efficiency for real-world settings. Finally, Chapter 7 

provides a conclusion for this paper with findings, limitations, and recommendations for the future 

works. 
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PROBLEM SETTING AND DEFINITIONS 

The proposed problem aims to model an effective tactical planning for transportation over a single-

segment corridor M1M system. A decision-making framework, known as an IDSP, is implemented 

for this M1M where the demand side is a set of shippers, and the supply side is a set of carriers. 

The goal of IDSP is to coordinate these shippers and carriers while making the decisions for the 

selection of contract-based and non-contract requests, the assignment of shipments to the selected 

services and make itinerary of requests. 

The proposed single-segment corridor network includes only one terminal as the origin and another 

terminal for the destination. The supply side of our single-segment corridor network is the set of 

carriers that offer the services to move the shipments from the origin to the destination over the 

time-space network. Another side of M1M is the shippers where each shipper-demand request 

which should be transferred from its origin to its destination is characterized by some time and 

economic attributes where the volume, origin, and destination and time window indicating a release 

time, for the pickup time and the due date for the delivery time can be considered. Furthermore, 

the shipper-demand requests are divided into two groups, i.e., standard, and urgent. The duration 

delivery of urgent requests is lower than for the standard ones. 

In real-world setting, it might not be possible to satisfy all shipper-demand requests within their 

specified time window. This study allows requests to be shipped earlier or later than the time 

window with a penalty cost. If the created schedule does not meet the time window for a shipment, 

there is an early or late pick-up, or an early or late delivery time. A penalty cost is defined to address 

these situations accordingly. Based on revenue management concepts, this study aims to maximize 

the net profits from accepted shipper-demand requests by assigning them to the selected services. 

In conclusion, the optimization model creates a tactical planning level for the demand side 

(shippers) and the supply side (carriers) with the aim of maximizing the profitability of the system. 

The demand side aims to select the shippers for non-contract requests to increase the net profit 

based on the remaining capacity and satisfy them. It is that the proposed model can accept or reject 

both contract-based and non-contract requests where there is a big penalty of unaccepted contract-

based requests. This thesis aims to model a single-segment corridor network design where the 

possibility of extra capacity or ad-hoc arcs, is contributed for unaccepted requests. The goal is to 

select the individual services and to design the itineraries based on the services capacity, duration, 
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and other attributes. These decisions need some input parameters including the net profit, time 

window, volume, origin, and destination for both contract-based and non-contract requests.  

In this chapter, we focused on the main elements of proposed problem including a freight 

transportation in Section 2.1. Then, we explain our M1M system generally with a focus on the 

proposed single-segment corridor network in Section 2.2. The shipper-demand requests have been 

explained in Section 2.3. The carrier-capacity offers are studied in Section 2.4. Finally, the planning 

levels are illustrated in Section 2.5. 

2.1 Freight transportation 

The proposed single-segment corridor network is a customized freight transportation system which 

is generally a process for the transportation of commodities and shipments among different 

terminals by sea, air, or land from different zones. In this process, many carriers and shippers 

should be coordinated to improve the economic attributes of freight transportation which is 

responsible for a substantial increase in air pollution that originates from fossil fuels. With the 

growing concern towards the environment and to sustain nature, various measures are taken to 

reduce harmful gas emissions [1-4]. Besides, the selection of transportation services considering 

different vehicles and air transport facilities has a significant factor to optimize the cost of the 

system [3-8]. Based on these difficulties, the optimization of transportation systems is one of the 

challenging issues in both developed and developing countries. 

Optimization models for the freight transportation usually minimize the transportation costs while 

addressing the real-life constraints for transferring shipments from different origins to different 

destination by vehicles, trucks, ships, trains, or planes [9-12]. If a freight transportation system has 

more than one mode of transportation, it is called a multi-modal freight transportation system. The 

main difficulty is to manage all decisions in such systems while improving the quality of solutions 

and meeting the freight transportation’s constraints [13-15]. In this regard, the role of a logistics 

company is undeniable to improve the performance of transportation operations [3-4]. In 2019, 

more than 17.9 billion tons of commodities with a value around $18.2 trillion were moved by 

logistics companies [5-6]. To get closer to real-world setting, a logistics company should work with 

different stakeholders and schedule the shipper-demand requests from shippers and offer the 

carrier-capacity planning to define the routing decisions regarding the time windows for sending a 
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 set of commodities from origins to destinations [6]. Generally, the freight transportation network 

operates as follows: 

• A shipper-demand request is picked up at a shipper’s location.

• Then, this shipment is transported to one of the origin terminals.

• Lads brought at terminals may be either transferred (unloaded, cross-dock moved and

loaded) to an outgoing vehicle or classified (re-classified, eventually unloaded, sorted,

moved, and loaded into the outgoing vehicle).

• Next, the request is transported from its origin terminals to its destination terminals.

• At the destination terminal, the shipments are unloaded, freight is potentially separated and

loaded into vehicles for efficient “local” delivery.

2.2 M1M system in a single-segment corridor network 

Here, a general definition of the M1M system is explained and then it is customized for the 

proposed single-segment corridor network. The graphical presentation of the M1M system can be 

shown in Figure 2.1. It comprises three main elements including shippers, carriers, and a decision 

maker as the IDSP [13-17] illustrated in Figure 2.1 

On the one side of the M1M system, many shippers, producers, wholesalers, distributers, logistics- 

service providers and so on, make the shipper-demand requests for cost and time-efficient 

transportation for product loads. Warehousing services will be included in later problem setting. 

Each shipment is to sort at a given shipper location and must travel to be delivered to a consignee 

location. Notice that IDSP is not explicitly represented in the problem setting since its elements are 

explained here.   
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One the other side of the M1M system, many carriers make carrier-capacity offers 

for the transportation, requesting profitable loads. In this context, carriers may be transportation 

service providers of diverse modes, e.g., railroads, airlines, river, and ocean navigation. In 

conclusion, the coordination of shippers and carriers in the M1M system, is made by the IDSP. The 

graphical presentation of this IDSP framework and our decisions is shown in Figure 2.1 to illustrate 

the connections for the IDSP with shippers and carriers to make the decisions while monitoring all 

transportation activities simultaneously. In addition, carriers are providing different transportation 

services with diverse modes and types like carriers of motors, maritime, rivers, airlines and 

railroads while offering different capacities for the transportation [16-18]. Each shipment starts 

from the origin terminal and ends to the destination terminal. Large shipper-demand requests 

usually sign long-term contracts and classified as the contract-based requests, and they must be 

accepted [19-20]. Carriers should have enough capacity for the transportation services to cover 

them. However, small shipper-demand requests usually do not sign a long-term contract but may 

use transportation services if they are accepted [21-23]. The IDSP must provide transportation 

services which are offered by the carriers for all accepted shipper-demand requests even they are 

non-contract requests.  

Possibly, there is conflict of interest between shippers and carriers [23-24]. High-quality 

transportation services which are safety and able to meet the time window of shipper-demand 

requests. However, the carriers would like to increase their revenue to accept more requests with 

less transportation services [24-28]. The IDSP is an automated planning platform for the M1M 

system to satisfy all the shippers, carriers, and platform’s interests. This system optimizes a 

Figure 2-1 The M1M system structure, framework and decisions in the logistics 

company [10]. 
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mathematical model to accept requests while defining the itineraries of shipments with regards to 

their predefined time window.  

To customize the M1M system for the proposed problem, the introduced single-segment corridor 

network has efficiency and profitability which are resulted from sharing resources in an integrated 

IDSP. Having the best system performance yielding a four-win situation, the IDSP helps the 

carriers to earn additional revenue instead of moving air, the shippers to see their delivery costs 

decrease, the intermediary to earn on each transaction and the society to benefit from consolidation 

through less vehicles on the road and less pollution. 

The proposed problem focuses on a single-segment corridor network where the shipments are 

transferred from the origin terminal to the destination terminal. It is a type of M1M system where 

the possibility of extra capacity or ad-hoc services exist. The proposed network includes two 

terminals which are the origin and the destination. There are several shippers as the demand side 

of M1M system where they have a set of shipments which should be transferred from one region 

to another region. Transportation activities takes place between two major terminals, where one of 

them is the origin and another one is the destination terminal to deliver the shipments. The pickup 

and distribution activities within these terminals are not explicitly considered in the problem 

setting. Carriers are the supply side of the M1M system that are the service providers to handle all 

transportation activities in the system. To manage both sides of M1M system and making the 

tactical decisions, the IDSP is developed to plan and optimize operations, improve profitably and 

simultaneously satisfy the needs of both categories of stakeholders. 

2.3 Shipper-demand requests for transportation  

In the proposed problem, we have defined the customers as the shippers who are on the demand 

side of our M1M system. Shipper-demand requests are characterized by their volume, origin, and 

destination. It is assumed that the demand of each shipper request is non-split and, accordingly, the  

accepted shipments are picked up from their origin and delivered to their destination as a whole. 

One main characteristic of accepted shipper-demand requests is the time window to indicate the 

release time, when the shipper makes the request available for the pickup and the due date which 

is the preferable delivery time for requests [28-30]. 

In the problem under study, the shippers are divided into two types, i.e., contract-based, and non- 

contract. Most studies in the literature, only consider one type of shipper-demand requests, known 
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as contract-based requests [31-33]. In this case, there is a long-term contract to let the IDSP ensure 

the required capacity for the carriers. In a real-world setting, there are some irregular potential 

shippers in addition to the contract-based shippers and in this respect, there is a short-notice 

between these shippers and the IDSP, therefore, these shippers are called as non-contract-based 

requests. If both types of requests are accepted, their shipments are transferred from their origins 

to their destinations. In addition to the classification of shippers, the demand is divided into two 

types, i.e., standard, and urgent. According to their names, the duration delivery in the urgent 

requests is lower than the standard ones. Therefore, each shipment from the side of shippers, may 

be a contract-based or non-contract and the demand may be classified as urgent or standard [32- 

35].  

As occurred in real-world setting, it is not possible to satisfy all demand requests within their 

specified time window. In this regard, this study considers a soft time-window to allow carriers to 

move earlier or later than the time window with a penalty cost. Such information is provided by 

shippers to the IDSP. If the generated schedule does not meet the time window for a shipment, in 

this case, there is an early or late pick-up or an early or late delivery time. In the problem under 

study, the IDSP should pay the penalty costs to the shippers. Based on the revenue management 

concept, the IDSP tries to set a schedule to meet the time window for all accepted shipper-demand 

requests as much as possible. It is obvious that the penalty cost is lower than the net profit for each 

shipper-demand request [36-38].  

In conclusion, this study aims to maximize the revenue among all accepted shipper-demand 

requests in the IDSP. There is a total revenue as the net profit for each shipper-demand request. 

This revenue depends on some factors including the demand types (which are urgent or standard), 

product characteristics (e.g., weight volume of shipments) and the distance between the origin and 

the destination terminals. The objective function covers the opportunity cost where unaccepted 

non-contract requests are considered as a benefit based on the revenue management concept.  

2.4 Carrier capacity offers   

In the considered single-segment corridor network, the supply side is carriers offering different 

services for transportation of shipments. Each transportation service has some characteristics 

including its origin, destination, capacity, duration, and timetable attributes, i.e., arrival and 

departure times as well as economic attributes, e.g., fixed, and variable costs [39-42]. The main 
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difference of a single-segment corridor with other networks is that all the shipments are transferred 

from the origin terminal to the destination terminal by services that have only one leg as single-leg 

services.  

In the proposed transportation system, we have three types of capacity limitations, i.e., the capacity 

of origin and destination terminals as well as transportation services’ capacity [41-44]. A service 

network design specifies the movements of shipments through a time-space network for the 

transportation of time-dependent requests [45-46]. As such, each service is defined in a time-space 

network labelled by different time and economic attributes. In the proposed single-segment 

corridor, we have different arcs corresponding to different services connecting the origin and the 

destination in a time-space network. A time-stamped service leg is based on the carrier-predefined 

timetable to show departure and arrival times. Each service leg has a departure time from its origin 

and an arrival time to its destination. Another characteristic of each service is the duration from 

departure time to the arrival time to represent the total travel time [47-48].  

By another point of view, the travel time in the single-segment corridor is directly related to the 

time for transferring from one origin to one destination. Based on the travel time of services, each 

service has a set of time attributes as named as a scheduled service. There are two types of 

scheduled services, i.e., fast, or regular services. What we can understand from their names is that 

a fast service is quicker than the regular ones while a fast service is more expensive than a regular 

one and these differences provide diverse economic solutions for the IDSP [49- 50].  

The economic performance of carrier capacity offers is assessed by the total cost including two 

terms, i.e., a fixed cost for selecting a service and its capacity as well as a unit of transportation 

which is variable based on the volume of shipments offered by shippers. All these costs are paid 

from the IDSP to the carriers who offered all services. It should be noted that the origin and the 

destination terminals have the possibility of warehousing to storage the shipments which are not 

handled yet by the services, or we should wait for their availability time based on the time window 

of shipments.  

2.5 Tactical planning of M1M system  

The plan of IDSP optimizes the operations and transportation activities of M1M system where in 

this study, a tactical planning aims to propose economic solutions for the medium-term decisions 

for accepted shipper-demand requests, the assignment of shipments to transportation services and 
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designing the itineraries of shipments. The tactical planning helps to simplify the operations of 

M1M system while improving its profitability. By another point of view, the tactical level planning 

is directly related to the time representation where multi-period networks are operations research 

tools and instruments to model as well as address the planning level. Academically, these 

information and decisions, are made up the planning level to make medium-term planning horizon 

in a single-segment corridor network.  

To study the time representation in multi-period networks, humans at least in most societies, have 

a continuous and discrete versions representation of time such as seconds, minutes, hours, days, 

etc., which are using currently. A continuous illustration of time in operations research is based on 

the time definition of the human society (given the part of the world where the system under study 

performs). This variant can be converted to the discrete time points e.g., date, hour, minute and so 

on for a transferring a shipper-demand request using carrier-capacity offers in the proposed 

problem setting [51-52]. We instead adopt the classical discreet time representation, which is more 

amendable to optimization. In this case, the time is represented by a sequence (T= {1,2, …, T}) 

[53-54]. Then, given a time instance t ∈ T, the associated (time) period t represents the duration 

from instant t to its successor instant t + 1. Periods are equal of duration in the considered time-

space network. The decisions for the scheduling of services and routing of shipper-demand requests 

made at time t, and associated to period t, are generally implemented, that is, they are not to be 

changed at the mentioned time period t and are transmitted to the appropriate stakeholders and 

departments of IDSP for execution. The following periods from t+1 to period T belong to the look 

ahead component as the planning horizon. Most decisions of these periods are temporary in nature 

and rather serve to evaluate within the optimization model in a mathematical way.  

Remark that we should estimate all the parameters of our optimization model in the tactical 

planning level. For example, we should estimate the volume, total revenue, opportunity cost and 

time window for both contract-based and non-contract requests which should be transferred from 

the origin terminal to the destination terminal in a single-segment corridor network. 

In this study, a tactical level planning for the studied M1M system under study is to design the 

demand side (shippers) and supply side (carriers) with an objective function to maximize the 

profitability of the IDSP. For the demand side, the IDSP selects the requests even they are contract-

based or non-contract ones to maximize the total profit with regards to the capacity and time 

limitations. For unaccepted contract-based requests, there is a big penalty cost. However, for 
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unaccepted non-contract requests, we may have an opportunity loss cost. The goal is to assign the 

accepted requests to the selected transportation services with regards to the departure and arrival 

times of services and their capacity, duration, and other properties. Based on these assignments, 

we design the itineraries of each accepted request considering their net profit, time window, 

volume, origin, and destination which are available in all periods for the IDSP.  

To sum up, since all elements in the problem under consideration are time-related features, the 

proposed problem is time-dependent. In this case, the time-space networks are tools and 

instruments which can be used to model our proposed network. Hence, this study introduces a 

scheduled service network design model for making the tactical planning level of M1M system 

through time-space network where the decisions are made at different time periods.  
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 LITERATURE REVIEW 

In this chapter, we focus on the relevant and recent studies for the M1M system. This chapter 

focuses on deterministic optimization models for service network design and multi-commodity 

network design problems. To optimize the plans for M1M systems, algorithms based on exact, 

heuristic, and metaheuristic solution approaches have been proposed. 

Here, we first consider different metaheuristic algorithms existing in the literature and review exact 

methods where most of them were applied to multi-commodity network design problems (Section 

3.1). Next, different contributions to the Service Network Design (SND) models and algorithms 

have been studied (Section 3.2). Finally, the main differences between our thesis and the existing 

literature review and the research gaps are identified (Section 3.3).  

3.1 Multi-commodity network design studies 

The multi-commodity network design problem is an extension to the fixed-charge network design 

problems where much simpler fixed-charge networks have been around since the early 1960's [7]. 

Most metaheuristic and exact algorithms have been applied to solve multi-commodity network 

design problem and its variations [53-56]. The literature contains several problems which are very 

close to the multi-commodity network design problem including but not limited to the single- 

commodity piecewise linear network design problem [57], multi-commodity piecewise convex 

network design problem [58], unsplittable multi-commodity piecewise linear network design 

problem [59], multi-commodity piecewise linear network design problem with integer flows [48]. 

A comprehensive review paper in 2000, Crainic [7] defined the service network design as a 

complicated case of multi-commodity network design for the selection and scheduling of services, 

specification of terminal operations, and routing of freight and reviewed service network design 

models and suggested innovative solutions for the network design. This review also confirms that 

heuristic and metaheuristic algorithms were at that time the best approaches to tackle large network 

design instances. Among these, Ghamlouche et al. [43] proposed an efficient tabu search algorithm 

that used specialized cycle-based neighborhoods. These cycle-based operators were also applied in 

a path-relinking algorithm in another study (Ghamlouche et al. [44]). Furthermore, a multi-level 

cooperative framework was also proposed for the multi-commodity network design problem by 

Crainic et al. [45]. Scatter search was first introduced by Crainic and Gendreau [46] in this research 

area. In another study, Pedersen et al. [54] defined a new optimization model for the service 
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network design problem considering asset positioning and utilization through constraints on asset 

availability at terminals. Their model was a generalization of the multi-commodity network design 

problem and both arc- and cycle-based formulations were presented. For solving it, an efficient 

metaheuristic based on tabu search was developed. Paraskevopoulos et al. [47] proposed an 

innovative evolutionary algorithm for solving a generic multi-commodity network design problem. 

Their metaheuristic uses a scatter search in its main loop as well as a local search algorithm and 

cycle-based neighborhoods to generate more high-quality solutions compared to existing methods. 

In addition to metaheuristics, several exact and heuristic methods were developed for solving 

service network design or multi-commodity network design problems. Gendron et al. [48] 

combined an iterative linear programming method and slope scaling heuristics for solving a multi- 

commodity capacitated network design problem. Chouman et al. [49] revised iterative branch-and- 

cut (B&C) based on local search strategies for solving the multi-commodity fixed charge network 

design problem. In another paper, Kazemzadeh et al. [52] suggested a node-based Lagrangian 

relaxation-based algorithm for solving the multi-commodity fixed-charge network design problem. 

Last but not least in this group of studies, Agarwal et al. [53] proposed valid inequalities to 

reformulate the base model for fixed-charge network design problems efficiently.  

3.2 Service network design studies 

Solving SND models are computationally challenging as they are more complex than the 

traditional multi-commodity network design problems [53-54]. One of the computational 

challenges associated with solving instances of SND models inspired by real-world operations is 

that the time-space networks on which these instances are growing very large increasingly [55-56]. 

As a result, the numbers of variables that model supply side and demand side simultaneously 

through this network in those instances are very large as well, leaving mathematical programs that 

are too large to be solved in a reasonable time [57-59]. The network reduction techniques proposed 

in Kim et al. [60] in 1999 applied the specifics of that logistics context in an attempt to mitigate 

this issue.  

Later in 2002, Armacost et al. [61] studied another SND using an integer programming model 

where their initial formulation was not able to model package flows directly. In this regard, they 

extended their model based solely on design variables representing aircraft routes, while supporting 

sufficient capacity to transport all package demands, even though those demands are not explicitly 
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modeled. They called this specific design of variables as a composite variable, encoding the 

selection of multiple aircraft routes.  

In 2009, Jarrah et al. [62] formulated the SND in the context of the less-than-truckload freight 

transportation industry. They considered the single path per shipment policy desired by carriers 

and developed a new mixed integer programming model. Specifically, since the paths, for 

shipments delivered to the same terminal, must induce a directed in-tree rooted at that terminal, the 

problem can be formulated with variables that represent flows on such trees. Their proposed 

solution approach generates destination in-trees in a column generation-fashion in the context of a 

heuristic scheme. In 2013, for a similar study, Erera et al. [63] proposed a new SND in the context 

of a matheuristic scheme which at each iteration chooses a destination terminal and then solved an 

integer program to route freight designed for that terminal, holding fixed the routes for freight 

destined for other terminals.  

Service network design models can be applied to a multi-modal transportation system where 

different transportation modes, like trains, trucks, ships, and airplanes can be used for transferring 

the shipments. They can provide different alternatives for the capacity and costs of transportation 

and different timetables for the departure and arrival times of services. SteadieSeifi et al. [19] in 

2014 reviewed all the relevant articles for multi-modal transportation for all the planning levels 

from strategic, tactical, and operational decision-making levels.  

Another computational challenge often encountered when solving either SNDs or Scheduled SNDs 

(SSNDs) inspired by real-world operations, is that the number of shipments to be transported can 

be very large. This in turn can yield a large number of shipment flow variables and a mathematical 

program that is too large to be solved in reasonable run-times. One solution approach is a Benders 

decomposition-based method, wherein design decisions are made by a master problem based on 

estimates of the shipment’s routing costs [64]. These estimates are reflected in a constraint set in 

the master problem that is iteratively added to as new designs are discovered. The downside of this 

type of approach is that these estimates are typically very poor in the early stages of the algorithm. 

That is why heuristics and metaheuristics are still the best alternatives to address this challenge of 

solving SNDs or SSNDs.  

With the development of a local search-based metaheuristic algorithm, van Riessen et al. [24] 

considered synchro-modality in the area of service network design where a product development 

based on criteria of price and lead time, is contributed and the transportation services are considered 
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to transfer these new products. They applied their model to European Gateway Services where the 

objective was to maximize the revenue from transferring products from their origin to their 

destination. They defined a local search-based metaheuristic algorithm to final the global solution 

iteratively in the search space. To make the service network design more complex, Christiansen et 

al. [16] defined a new version of service network design as the liner shipping network design 

including a set of demands which have a specific origin terminal, destination terminal, and time 

limitations and a set of weekly services as well as a set of vessels with variable capacity. Their 

model defines the itinerary of each demand while maximizing the revenue of transported demands. 

Their solution algorithm was based on a two-stage heuristic to first design the suitable services and 

then select a subset of services to satisfy the demands.  

The design of a single-segment corridor network is a special case of SND, which was first proposed 

by Crainic et al. [8] in 2021 in the context of planning at the operational level. In this paper, the 

authors consider a multi-period bin packing problem for the consolidation of shipments that must 

move from their origin terminal to their destination terminal. Constructive heuristic algorithms 

were applied for solving the resulting model. As far as we know, there is no other study that has 

contributed to the single-segment corridor network design problem similar to this study for tactical 

level planning.  

More recently in 2022, Belgian et al. [25] integrated the revenue management and service network 

design model for the tactical level planning where intermodal consolidation-based freight 

transportation carriers have been considered in their optimization model. The objective function 

was the maximization of the net profit of carriers when there are a large number of customers 

distributed in different zones. They analyzed the distribution of demand nodes, network topology, 

and the quality of services in their results to show the impact of this integration on the optimality 

of solutions and values of decision variables.  

Finally, Taherkhani et al. [10] in 2022 studied planning at the tactical level of a multi-stakeholder 

system and proposed an SSND model over a time-space network. Their model is the maximization 

of profit, accounting for revenues, transportation costs, warehousing costs, penalties, etc. One result 

of this paper was the implementation of the tactical planning level for an M1M system while 

integrating the demand and supply sides using an IDSP. They analyzed their SSND on a hyper 

corridor network where many terminals and zones existed in the time-space network and the main 

difficulty was to schedule services to satisfy the shipper-demand requests as much as possible. 
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3.3 Research gaps and contributions  

To be more precise, the optimization problem in this thesis is a variation of the base model proposed 

in Taherkhani et al. [10]. First, their optimization model was based on revenue management to 

maximize the profits from accepted shipper-demand requests. In our optimization model, we have 

considered the same idea to maximize the profit minus the total cost for both sides of carriers and 

shippers within a single-segment corridor network including one pair of origin-destination 

terminals. Most notably, the proposed model considers the decision variable of extra capacity as 

ad-hoc services for unaccepted shipper-demand requests which are revenue as the opportunity loss 

cost in the proposed model. The original model did not contribute to the opportunity loss cost 

concept.  

From the side of carriers in [10], the authors assumed that the transportation services could be 

bundled or individual. Another difference between our optimization model with their model is to 

consider only individual transportation services. In addition, the mentioned paper also considered 

the possibility of warehousing space to store the products temporarily for accepted shipper-demand 

requests. In this thesis, we have also the warehousing capacity in a different way where there is no 

decision variable to establish the warehouse centers. In this thesis, the terminals also play the role 

of warehouse centers. In another difference of our thesis refers to the services; while Takerhani et 

al. [10] consider both single-leg and multi-leg services because they study more complex network 

structures, our work focuses on single-leg services.  

Regarding shipper-demand requests, the main difference is that in the model presented by 

Taherkhani et al. [10], it was assumed that all contract-based requests must be accepted. However, 

in this research, the proposed model can accept or reject both types of requests. In this regard, there 

is an opportunity cost for unaccepted non-contract requests and there is a big penalty cost for 

unaccepted contract-based requests. At last, but not least, the original model recognizes the 

possibility of split and unsplit shipment-flow versions of the problem, while the problem under 

study is not able to split them. It means that they are picked up from their origin and delivered to 

their destination as a whole.  

Although many heuristics and metaheuristics have been applied to the service network design and 

multi-commodity network design problem [43-49], ALNS has not been applied yet. In a recent 

review paper, Mara et al. [55] in 2022 studied different applications of ALNS especially for routing 
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optimization. 252 articles from 2006 to 2021 were reviewed, but none of these papers considered 

the service network design.  

To fill this research gap, finally, this study proposes an innovative solution method based on the 

ALNS where eight removal and four insertion operators are developed to improve them by a local 

search algorithm and SA for escaping from local solutions. As far as we know, there are no removal 

and insertion operators in the area of SND and our suggested operators are novel and can be 

improved by future studies in this field.  
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 MODELLING  

In this chapter, the main scope is to model the proposed single-segment corridor network design 

problem in an M1M system under the tactical planning level. In this regard, a comprehensive 

problem definition with regards to key assumptions, is defined. Notations are then introduced to 

define sets, parameters, and decision variables. Finally, the main objective of this chapter is to 

offer an optimization model while formulating the proposed single-segment corridor network 

using the concept of extra capacity or ad-hoc arcs for all alternative requests through the network.  

4.1 Problem definition  

The proposed network optimization model is defined for a Scheduled Service Network Design 

(SSND) on a single-segment network to make tactical planning of M1M system to be performed 

over planning horizon where the possibility of extra capacity or ad-hoc services is contributed. The 

proposed network includes two terminals which are the origin and the destination where there 

exists a segment to connect them directly. Figure 4.1 defines a graphical example of a single- 

segment corridor network where the demands are aggregated at the origin terminal and after 

delivering the shipments to the destination terminal, they are distributed to their final destination. 

This study formulates the single-segment corridor network to address the tactical planning of M1M 

system where it has one supply side (carriers), one demand side (shippers) and one IDSP to make 

the tactical decisions and integrate both supply and demand sides. There are several shippers on 

the demand side of the M1M system where they have a set of shipments that should be transferred 

from one origin to one destination. Transportation activities using services offered by the supply 

side take place between the origin and destination terminals. It should be noted that the pickup and 

delivery activities within these terminals are not explicitly considered in the problem definition. 

To manage both sides of the M1M system and implement a tactical planning level, the IDSP is 

developed to plan and optimize operations, improve profitably and simultaneously satisfy the 

needs of both categories of these stakeholders. This tactical planning is performed for a certain 

schedule length (e.g., one week), dividing into time periods of equal length (e.g., one day). This 

schedule length is then repeated over a certain medium-term planning horizon. Given the set of all 

shipper-demand requests (i.e., the demand) and carriers (i.e., the supply), the objective is to 
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consider both accepted and non-accepted requests, the selection of scheduled services, and the 

assignment of shipments to these services while finding the maximum overall profit entire 

schedule length. The main novelty of the proposed model is to consider the opportunity loss cost 

which is another revenue for unaccepted requests.  

To have more details for the attributes of demand side of M1M system, there are two different 

types of shipper-demand requests in this problem, i.e., contract-based, and non-contract requests. 

Each request is characterized by many attributes including the volume, the revenue, the time 

window involving of release time for the pickup and due date for the preferred delivery time, the 

origin, and the destination where shipments must be unsplit. The goal is to choose both types of 

shipper-demand requests by our optimization model to make more profit for IDSP and satisfy them 

with regards to their time window. In this regard, the proposed model can accept or reject both 

types of requests where there is a big penalty cost for unaccepted contract-based requests and there 

is an opportunity cost for unaccepted requests.  

As such, for the supply side, the goal is to select the transportation services to define the demand 

itineraries. Services are offered by carriers to satisfy the shipper-demand requests based on the 

available capacity of these selected services and their timetable in the most cost-efficient way. 

Every service is available at a certain point at the original terminal where the IDSP can use such 

services for a certain period time to travel the requests. As services have different attributes with 

each other including capacity, fixed and transportation costs, travel time, departure time, arrival 

time through origin and destination, i.e., there is only one origin-destination pair in the single-

segment corridor network.  

 

 

Figure 4-1: Single-segment corridor network 
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Based on the above problem definition, the proposed model covers the following assumptions: 

• All transportation services offered by carriers are single-leg also called a single-segment 

corridor composed of a single long-haul segment and feeder segments in which each of the 

feeders are linked to both origin and destination terminals and there is one or more zones 

around each node where the shipments should be merged or distributed. That is to say that 

there is only one origin and one destination in the SSND. 

• Carriers can provide transportation services to the IDSP only individually to match the 

demand side with the supply side for moving the shipper-demand requests. 

• There is an opportunity loss cost as revenue for unaccepted shipper-demand requests.  

• Carriers offer only transportation services with capacity limitations.   

• There is the warehousing capacity for the origin and destination terminals. 

• All shipments in this single-segment corridor network are unsplit. 

4.2 Mathematical modelling  

The proposed network is modelled by a set of nodes as terminals and a set of arcs which have time 

attributes as time-stamped arcs to transfer the shipments between these nodes. In this network, we 

have execution arcs to move the shipments and ad-hoc arcs where they have the extra capacity to 

artificially transfer unaccepted shipments. These ad-hoc arcs directly connect a shipment from its 

origin terminal to its destination. There is a very big penalty for contract-based requests while the 

opportunity loss cost is considered for the non-contract requests.  

The capacity limitation is the main constraint of the proposed optimization model to make this 

SSND to be NP-hard [8] where there are three capacity limitations for the proposed model. First 

of all, as mentioned earlier, the transportation services have a limitation of capacity. Second, the 

stored shipments at the original terminal are limited by the warehousing capacity. Third, the 

destination terminal is limited by the capacity which is fixed for all the time periods. There is also 

a variable cost of holding for these shipments which are stored at the origin and destination 

terminals. Other main costs of the proposed model include two different fixed and variable costs 

relying on the either using services or not using them.  

The total cost is the sum of transportation cost, i.e., fixed, and variable costs of services, holding 

cost of shipments and penalty cost if we have early and late pick-up and delivery of shipments the 
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request in both sides at its origin and destination. In addition to these costs, the proposed model 

maximizes the total revenue of accepted requests and the opportunity cost of non-accepted 

requests.  

To illustrate how to model our single-segment corridor network graphically, see Figure 4.2 where 

there are two terminals the origin and the destination as well as a time-space network including 

four periods. The first and third itineraries are execution arcs in the time-space network. The 

second itinerary is an ad-hoc arc to define the opportunity loss cost for this unaccepted request 

instead of its net profit. As an example, we have one non-contract request and there are three 

alternatives as itineraries, where there are two potential transportation services as the execution 

arcs including green and blue services to move a shipment from the origin to the destination in a 

time-space network where T=4. The blue dash-line in itinerary 1, holds the shipment from t=1 to 

t=2 at the warehousing space of the origin terminal and then, transfer it to terminal B in time t=4. 

The green services known as itinerary 3, transfer the shipments from t=1 to t=3 and hold them 

from t=3 to t=4 at the warehousing space of the destination terminal. The last alternative is the use 

of ad-hoc arc (here, the red service) to transfer the shipments directly from the origin to the 

destination. This non-contract shipper request is not satisfied by this service.   

 
𝐼𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑟𝑦 1

= {𝐴𝐸 = (𝐴2 → 𝐵4)

𝐴𝐷 = {∅}
}  

𝐼𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦 2

= {
𝐴𝐸 = {∅}

𝐴𝐷 = (𝐴1 → 𝐵4)
} 

𝐼𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦 3

= {𝐴𝐸 = (𝐴1 → 𝐵3)

𝐴𝐷 = {∅}
} 

 

Figure 4-2: A graphical solution for the single-segment corridor network, G in which T=6 

4.2.1 Notations  

To establish an integer programming model for the proposed single-segment corridor network 

problem, the following notations should be used:  
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Sets: 

𝒦𝐶 Set of contract-based shipper-demand requests where 𝑘 ∈ 𝒦𝐶 ,

𝒦𝑁𝐶 Set of non-contract shipper-demand requests where 𝑘 ∈ 𝒦𝑁𝐶,

𝒦 Set of all shipper-demand requests where 𝒦 = 𝒦𝐶 ∪ 𝒦𝑁𝐶,

𝑇 Set of time periods where 𝑡 ∈ 𝑇,  

𝒜𝐸 Set of execution arcs or transportation services, where 𝑎 ∈ 𝒜𝐸 ,

𝒜𝐷 Set of ad-hoc arcs or the extra capacity, where 𝑎 ∈ 𝒜𝐷,

𝒜 Set of all arcs in the time-space network, where 𝒜 = 𝒜𝐷 ∪ 𝒜𝐸 ,

Parameters: 

𝑜(𝑘) Origin terminal for the shipment k represented by 𝑛 ∈ 𝑁,  

𝑑(𝑘) Destination terminal for the shipment k represented by 𝑛 ∈ 𝑁, 

𝜌𝑘 Total revenue of a shipper-demand request k,  

𝑤𝑘 Volume of a shipper-demand request k, 

(𝛼(𝑘), 𝛽(𝑘)) Desired time period for picking up and dropping off a request k from the origin 𝑜(𝑘) and at the

destination 𝑑(𝑘),

𝛼(𝑎) Departure time of a transportation service a from the origin terminal,  

𝛽(𝑎) Arrival time of a transportation service a to the destination terminal, 

𝑓𝑎 Fixed cost of selecting a transportation service a,  

𝑐𝑎
𝑘 Total variable cost of a transportation service a for a shipper-demand request k,  

𝑐(̅𝑜(𝑘),𝑡)
𝑘

Total variable cost of holding a shipment k at the origin terminal 𝑜(𝑘) at time t,

𝑐(̅𝑑(𝑘),𝑡)
𝑘

Total variable cost of holding a shipment k at the destination terminal 𝑑(𝑘) at time t,

𝑢(𝑜(𝑘),𝑡)
𝑀𝐻

Capacity of the origin terminal 𝑜(𝑘) in time t,

𝑢(𝑑(𝑘),𝑡)
𝑀𝐻

Capacity of the destination terminal 𝑑(𝑘) in time t,

𝑜𝑐𝑎
𝑘 Opportunity loss cost for an unaccepted request k using an ad-hoc arc a ∈ 𝐴𝐷,

𝜓(𝑜(𝑘),𝑡)
𝑘

Penalty cost for an earliness or lateness pickup of shipment k from the origin terminal 𝑜(𝑘) at time t,

𝜓(𝑑(𝑘),𝑡)
𝑘 Penalty cost for an earliness or lateness delivery of shipment k from the origin terminal 𝑑(𝑘) at time t,

𝑢𝑎 Capacity of a transportation service a ∈ 𝐴𝐸,

Decision variables: 

𝑥𝑎
𝑘 1, if a shipper-demand request k ∈ 𝐾 is travelling on arc 𝑎 ∈ 𝒜𝐸 , 0, otherwise.

𝑦𝑎 1, if a transportation service a ∈ 𝒜𝐸  is selected. 0, otherwise.

𝑠𝑎
𝑘 1, if an unaccepted request k ∈ 𝐾 is assigned to an ad-hoc arc 𝑎 ∈ 𝒜𝐷, 0, otherwise.

𝑟(𝑜(𝑘),𝑡)
𝑘 1, if a shipper-demand request k ∈ 𝐾 is kept from its origin 𝑜(𝑘) at time t ∈ 𝑇, 0, otherwise.

4.2.2 Formulation   

The proposed optimization model for a single-segment corridor network design problem 

considering the possibility of extra capacity is developed as follows:   
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max  ∑ 𝜌𝑘 ∑ 𝑥𝑎
𝑘

𝑎∈𝒜𝐸𝑘∈𝒦

+ ∑ ∑ 𝑜𝑐𝑎
𝑘𝑠𝑎

𝑘

𝑎∈𝒜𝐷𝑘∈𝒦

− ( ∑ 𝑓𝑎𝑦𝑎

𝑎∈𝒜𝐸

+ ∑ ∑ 𝑐𝑎
𝑘 . 𝑥𝑎

𝑘

𝑎∈𝒜𝐸𝑘∈𝒦

+ ∑ ∑ [𝑐(̅𝑜(𝑘),𝑡)
𝑘 𝑟(𝑜(𝑘),𝑡)

𝑘 + 𝑐(̅𝑑(𝑘),𝑡)
𝑘 𝑟(𝑑(𝑘),𝑡)

𝑘 ]

𝑡∈𝒯𝑘∈𝒦

+ ∑ ∑ [𝜓(𝑜(𝑘),𝑡)
𝑘 ∑ 𝛼(𝑎)𝑥𝑎

𝑘

𝑎∈𝒜𝐸

+ 𝜓(𝑑(𝑘),𝑡)
𝑘 ∑ 𝛽(𝑎)𝑥𝑎

𝑘

𝑎∈𝒜𝐸

]

𝑡∈𝒯𝑘∈𝒦

) 

(4-1) 

s.t

∑ 𝑥𝑎
𝑘

𝑎∈𝒜𝐸

+ 𝑠𝑎
𝑘 = 1  𝑘 ∈ 𝒦, 𝑎 ∈ 𝒜𝐷 

(4-2) 

∑ 𝑤𝑘𝑥𝑎
𝑘 ≤ 𝑢𝑎𝑦𝑎

𝑘∈𝐾

 𝑎 ∈ 𝒜𝐸  (4-3) 

∑ 𝑤𝑘𝑟(𝑜(𝑘),𝑡)
𝑘 ≤ 𝑢(𝑜(𝑘),𝑡)

𝑀𝐻

𝑘∈𝐾

 𝑜(𝑘) ∈ 𝑁, 𝑡 ∈ 𝑇 (4-4) 

∑ 𝑤𝑘𝑟(𝑑(𝑘),𝑡)
𝑘 ≤ 𝑢(𝑑(𝑘),𝑡)

𝑀𝐻

𝑘∈𝐾

  𝑑(𝑘) ∈ 𝑁, 𝑡 ∈ 𝑇 (4-5) 

|𝒯|𝑟(𝑜(𝑘),𝑡)
𝑘 ≥ ∑ 𝑥𝑎

𝑘(𝛼(𝑎) − 𝑡)

𝑎∈𝒜𝐸

 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯, 𝑡 ≥ 𝛼(𝑘) (4-6) 

|𝒯|𝑟(𝑑(𝑘),𝑡)
𝑘 ≥ ∑ 𝑥𝑎

𝑘(𝑡 − 𝛽(𝑎))

𝑎∈𝒜𝐸

 𝑘 ∈ 𝒦, 𝑡 ∈ 𝒯, 𝑡 ≤ 𝛽(𝑘) 
(4-7) 

𝑥𝑎
𝑘 = {0, 1}  𝑘 ∈ 𝒦, 𝑎 ∈ 𝒜𝐸  (4-8) 

𝑦𝑎 = {0, 1}    𝑎 ∈ 𝒜𝐸  (4-9) 

𝑠𝑎
𝑘 = {0, 1}   𝑘 ∈ 𝒦, 𝑎 ∈ 𝒜𝐷 (4-10) 

𝑟(𝑜(𝑘),𝑡)
𝑘 = {0, 1}  𝑜(𝑘) ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝒦 (4-11) 

𝑟(𝑑(𝑘),𝑡)
𝑘 = {0, 1}  𝑑(𝑘) ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑘 ∈ 𝒦 (4-12) 

The objective function is given in Eq. (4-1), while constraints are given in Eqs. (4-2) to (4-12). 

The objective function consists of six expressions. The first is the net profit for each shipment 

based on the total volume. The second term is the total cost of the opportunity loss for all shipper-

demand requests which are not accepted. The third term is a fixed fee for choosing transportation 

services. The fourth term is the total shipping cost. The fifth term is the total holding cost at origin 

and/or destination. The last one is the cost of penalty for pickup and delivery. 



27 

 

 

The proposed model is limited by a set of constraints where we start with the constraint set (4-2) 

to confirm that each shipment must be shipped by an ad-hoc service if this request is not accepted. 

Constraints (4-3) to (4-5) confirm that there is a capacity constraint for transportation services, the 

terminal of origin, and the terminal of destination. The constraint set (4-3) means that the total 

flow of shipments cannot exceed the capacity of the selected service. Thus, constraints (4-4) and 

(4-5) mean that the total number of shipments that can be kept at a terminal cannot exceed its 

capacity. Constraints (4-6) and (4-7) confirm that if the time of departure and arrival time of the 

transport services are not favorable by the time window, the consignment must be stored at the 

terminals of origin and destination, respectively. The decision variables are defined in relationships 

(4-8) to (4-12). 
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 SOLUTION ALGORITHM  

This thesis proposes an Adaptive Large Neighborhood Search (ALNS) using a local search and 

Simulated Annealing (SA) as our problem-solving method. Originally, Large Neighborhood 

Search (LNS) was first introduced by Shaw [1] inspired by the principle of removal and insertion 

[2] in which the main idea of LNS is to destroy the current solution and then reconstruct it 

exploratory. Based on these heuristics, the algorithm can explore and exploit a new solution. 

Exploring the optimal solutions found by the algorithm depends directly on the number of 

removal-insertion operators. Furthermore, exploiting new solutions depends on the quality of 

operators and local search coherence. The main difference between ALNS and the original LNS 

is having an adaptive strategy to consider and update the weight of each operator. This study 

focuses on exploring new solutions and then exploiting optimal ones using removal-insertion 

operators, local search-based strategies such as SA, and evolutionary mechanisms such as roulette 

wheel selection. To reconstruct this solution, one of the advantages of our heuristic methods is that 

they have less computational time while optimizing the improved ALNS which is combined with 

SA and a local search heuristic.  

This hybrid ALSN-SA-based algorithm considering local search uses a selection method to choose 

one pair of removal-insertion operators based on their weights and then, probability is computed 

by the normalized weights. Finally, an evolutionary mechanism, such as the selection of a roulette 

wheel [3] or a tournament operator [4], can be used to select each pair of removal and construction 

operators in each iteration. It should be noted that in the first iteration, the weight of all operators 

and their probability is the same. Based on the recorded performance of the operators, after each 

iteration, their weights are updated and adjusted repeatedly, and their probabilities are calculated. 

For example, after several repetitions, consider selecting a roulette wheel in which there are two 

operators with probabilities of 0.7 and 0.3, respectively. Then, the cumulative weight for each 

operator is calculated as [0, 0.7] and [0.7, 1]. The roulette wheel selects a random number between 

zero and one (e.g., 0.46). In this case, the first operator is assumed to be 0.46 in the range [0, 0.7]. 

The main contributions of our solution are the development of various creative and efficient 

removal and insertion operators. The most important part of removing is our eight operators which 

eliminating some useless services or requests while deleting even one solution is considered. 

Although alternatives to random selection for available services exist, costly and underused items 
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are involved with related requests. Useless requests focus on low-profit request-based removal, 

low-volume request-based removal, cluster- based removal operators, and random-based requests. 

A hybrid destruction method relates to both inefficient services and less useful requests as a 

removal method. This destruction operator takes advantage of two efficient operators for selecting 

low-utility service and eliminating a bunch of non-contract requests from the shipper. We also 

remove the services randomly, low-utilization and high-cost as the criteria for removing them. 

After the removal phase, there are four repair operators, one of them will offer a new service with 

lower cost if the current open services do not have enough capacity to add a new request. The rest 

focuses on submitting a request among unaccepted them based on the criteria of maximum net 

profit or maximum volume of requests while meeting capacity constraints, as well as a random 

request-service operator. The final step is to have a local search operator for this new solution 

found by the pair of the insertion-removal operators, at each iteration, we have sub-iteration for 

the local search operator. In this regard, small changes to remove one or two requests and add them 

for escaping from local optimum, are made. After this phase, the algorithm checks the termination 

criterion. 

In the following, we first explain the solution representation and search space for our metaheuristic 

algorithm (Section 5.1). The full algorithmic framework for the proposed hybrid metaheuristic is 

explained later (Section 5.2). A constructive heuristic algorithm for creating an initial solution is 

developed (Section 5.3). Next, the neighborhood procedures including our removal (Section 5.4) 

and insertion (Section 5.5) operators, are defined, and illustrated mathematically. Finally, the local 

search operator as a sub-loop of our metaheuristic is presented (Section 5.6).   

5.1 Solution representation and search space 

In the proposed metaheuristic algorithm, the search space includes all the feasible solutions 𝑠 ∈

𝑆 where the global optimum (𝑠∗) is expected to be found. In the developed metaheuristic, the 

search space covers different alternatives of assignment variables (𝑖. 𝑒. , 𝑥𝑎
𝑘) to show that each 

accepted request has been assigned to which transportation service. The proposed algorithm 

explores and exploits new neighborhoods from the search space defined by the main design 

variable (𝑖. 𝑒. , 𝑥𝑎
𝑘). Neighborhoods are found by removal and insertion operators in the search 

space at each iteration (𝑙 ∈ {1, 2, … , 𝑀𝑎𝑥𝐼𝑡}). The search space in the developed metaheuristic 



30 

should be designed by execution (𝑎 ∈ 𝐴𝐸) and ad-hoc arcs (𝑎 ∈ 𝐴𝐷) to pick the shipments up from

their origin and deliver them to their destination while satisfying the desired time window and 

considering the capacity of services and terminals. In addition to 𝑥𝑎
𝑘, other variables are defined

by this variable as will be explained in the following.  

To present the solution while having less computational time, we add a new auxiliary variable 

depending on 𝑥𝑎
𝑘. In this regard, the selection of requests is defined to make our solution reasonable

as follows:  

𝑧�̅� = {
1 𝐼𝑓 ∑ 𝑥𝑎

𝑘

𝑎∈𝒜𝐸

= 1, ∀𝑘 ∈ 𝐾 

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

(5-1) 

where 𝑧𝑘 defines the status of accepted or rejected requests. In addition, the search space does not 

include 𝑦𝑎 = �̅�𝑎 as there is an implicit relationship between 𝑦𝑎 and 𝑥𝑎
𝑘 for any feasible solution.

Note that �̅�𝑎  shows the value for the decision variable 𝑦𝑎 . Therefore, the search space focuses on 

𝑥𝑎
𝑘 and we can get the value of 𝑦𝑎 = �̅�𝑎 using the following relation:

�̅�𝑎 = {
1 𝑖𝑓 ∑ 𝑥𝑎

𝑘 ≥ 1,

𝑘∈𝐾

 ∀𝑎 ∈ 𝐴𝐸

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

(5-2)

Based on the triple vectors of 𝑥𝑎
𝑘, 𝑦𝑎 and 𝑧𝑘, the following conditions should be met to address a

feasible solution: 

 𝑧𝑘 = {0,1} ∀𝑘 ∈ 𝐾 (5-3) 

𝑥𝑎
𝑘 ≤ 𝑧𝑘 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾 (5-4) 

𝑥𝑎
𝑘 ≤ 𝑦𝑎 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾 (5-5) 

[{𝑥𝑎
𝑘|𝑥𝑎

𝑘 = 1, ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾} defines a valid itinerary including one or more services to

pick up the shipment (𝑤𝑘) from 𝑜(𝑘) and deliver to 𝑑(𝑘) in the time-space network] 

(5-6) 

To show an example of the values 𝑧𝑘, 𝑦𝑎  and 𝑥𝑎
𝑘, Fig. 5.1(a) shows a feasible solution for 𝑧𝑘 = 𝑧�̅�

where there are five contract-based and non-contract requests in this example. A feasible solution 

for 𝑦𝑎 = �̅�𝑎 is shown in Fig. 5.1(b) where there are six transportation services and four of them are 

used. Finally, a feasible solution for 𝑥𝑎
𝑘 = �̅�𝑎

𝑘 is displayed in Fig. 5.1(c).
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𝐾𝐶(Set of contract − based requests) 𝐾𝑁𝐶(Set of non − contract requests) 

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 𝑧9 𝑧10 

𝑧𝑘➔ 1 1 1 1 1 0 1 1 0 1 

(a) The selection of requests 

 
𝐴𝐸(Set of execution arcs or transportation services)   

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 

𝑦𝑎➔ 1 0 1 1 0 1 

(b) The selection of transportation services  

  
𝐾𝐶 𝐾𝑁𝐶 

 𝑧1 … 𝑧5 𝑧6 … 𝑧10 

𝑦1 1 … 0 0 … 0 

𝑥𝑎
𝑘
➔ 𝑦2 0 … 0 0 … 0 

 … … … … … … … 

𝑦6 0 … 0 0 … 1 
(c) The assignment of accepted requests to the transportation services  

Figure 5-1: The search space of design vectors for a random feasible solution 

In conclusion, our solution includes three main binary variables (𝑧𝑘, 𝑦𝑎 and 𝑥𝑎
𝑘) and three 

dependent variables (𝑟(𝑜(𝑘),𝑡)
𝑘  and 𝑟(𝑑(𝑘),𝑡)

𝑘 , 𝑠𝑎
𝑘), where these dependent variables for holding the 

shipments at the origin and destination terminals and ad-hoc arcs are computed by replacing the 

main variables after solving (𝑧𝑘 = 𝑧�̅�, 𝑦𝑎 = �̅�𝑎, 𝑥𝑎
𝑘 = �̅�𝑎

𝑘) based on the constraints in the 

mathematical model. We define the extra capacity or ad-hoc arcs (𝐴𝐷) for both contract-based 

(𝐾𝐶) and non-contract (𝐾𝑁𝐶) shipper-demand requests. These arcs are made up 𝑎 ∈ 𝐴𝐷 to create 

a direct connection for all pairs of origin-destination of requests. The search space for all possible 

solutions is to design 𝑥𝑎
𝑘 where a set of transportation services should be selected for each shipment 

or an ad-hoc arc (𝑠𝑎
𝑘) should be replaced to define the opportunity loss cost for unaccepted requests. 

The computation of a solution representation confirms its feasibility where the capacity constraints 

(4-3) to (4-5) have been met by the removal and insertion operators. In the proposed metaheuristic 

algorithm, a positive value of the objective function means that all contract-based requests have 

been accepted. However, a negative value means that one or more contract-based requests are 

rejected.  
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5.2 Full algorithmic framework 

The hybrid ALNS-SA-based algorithm starts with an initial solution from our constructive 

heuristic algorithm which will be illustrated in Section 5.3 as the Step 0 where we call this initial 

solution as 𝑆0 which is the current best solution (𝑆𝑏𝑒𝑠𝑡). In the first iteration, the weights of all 

eight removal operators (𝑟𝑤𝑖
−) where 𝑖 ∈ 𝐼 are the same and equal to one. As such, the weights of

all four insertion operators (𝑖𝑤𝑗
+) where 𝑗 ∈ 𝐽 are the same in the first iteration and equal to one.

Next, the probability for the selection of each of these operators is computed as below:  

𝑃𝑖
𝑟𝑤 =

𝑟𝑤𝑖
−

∑ 𝑟𝑤𝑖
−

𝑖
 ∀𝑖 ∈ 𝐼 

(5-7)

𝑃𝑗
𝑖𝑤 =

𝑖𝑤𝑗
+

∑ 𝑖𝑤𝑗
+

𝑗
 ∀𝑗 ∈ 𝐽 

(5-8)

Next, the roulette wheel selection is employed to select one of these removal and insertion 

operators. Based on the recorded performance of operators after each iteration, their weights are 

updated and adjusted iteratively, and their probabilities are computed as given in Eq. (5-7) and (5-

8).  Cumulative probability must be computed after updating the probability of operators. In this 

regard, to update the weights, we should give a score (Ω) to the operators as follows:  

Ω = {

𝜛1 𝐼𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑆𝑛𝑒𝑤)𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑔𝑙𝑜𝑎𝑏𝑙 𝑏𝑒𝑠𝑡 (𝑆𝑏𝑒𝑠𝑡).
𝜛2 𝐼𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑.
𝜛3 𝐼𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑.

} 

(5-9) 

 where 𝜛1, 𝜛2 and 𝜛3 are the parameters and we have the following relation: 𝜛1≥ 𝜛2≥𝜛3. For 

example, these parameters can be set as 0.5, 0.3, and 0.2 for 𝜛1, 𝜛2 and, 𝜛3 respectively. If 𝜆 ∈

[0,1] is a decay parameter, the weights are updated as follows:  

𝑟𝑤𝑖
− = 𝜆 × 𝑟𝑤𝑖

− + (1 − 𝜆)Ω  ∀𝑖 ∈ 𝐼 (5-10) 

𝑖𝑤𝑗
+ = 𝜆 × 𝑖𝑤𝑗

+ + (1 − 𝜆)Ω  ∀𝑗 ∈ 𝐽 (5-11) 

After doing both removal and insertion operators, the new solution is called as 𝑆𝑛𝑒𝑤. If this solution 

is better than the best solution ever found, it should be replaced. Otherwise, it may be accepted or 

rejected based on a probability calculated as follows: 

𝑝 = 𝑒−∆/𝑇𝑒𝑚          𝑤ℎ𝑒𝑟𝑒   ∆= |𝑓(𝑆𝑛𝑒𝑤) − 𝑓(𝑆𝑏𝑒𝑠𝑡)| (5-12)

In Eq. (5-12) parameter Tem is the current temperature and updated at each iteration as follows: 
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𝑇𝑒𝑚 = 𝑟𝑒𝑑𝑢 × 𝑇𝑒𝑚        (5-13) 

In Eq. (5-13) parameter 𝑟𝑒𝑑𝑢 is the damping rate of the initial Tem. The above decision rule is 

taken by SA to give a chance to a solution if it is not better than the best solution ever found. 

Otherwise, the algorithm goes to the next phase where there are several sub-iterations using a local 

search operator to improve this new solution found by the algorithm. We want to have some minor 

changes under the current solution using a local search operator by removing one or two requests 

and adding them randomly. The hybrid ALNS-SA-based algorithm checks the termination 

criterion where the algorithm should satisfy the maximum number of iterations (𝑀𝑎𝑥𝐼𝑡). Finally, 

a brief review of the proposed hybrid ALNS-SA-based is shown in the pseudo-code given in Fig. 

5.2. The developed metaheuristic has the following steps generally:  

Step 0: Set the weights of operators and create a feasible solution (𝑆𝑜) which is the current best 

solution (𝑆𝑏𝑒𝑠𝑡). This solution is found by the constructive heuristic algorithm as given in Section 

5.3. This step is shown in lines 1 to 7 in the pseudo-code of our metaheuristic algorithm. 

Step 1: Define the probabilities of each operator and select a pair of removal-insertion operators 

considering the roulette wheel selection. This step is done in lines 9 to 10 in the pseudo-code of 

our metaheuristic algorithm. 

Step 2: Apply these operators and make a new solution (𝑆𝑛𝑒𝑤). This step is done in lines 11 and 

12 in the pseudo-code of our metaheuristic algorithm. 

Step 3: Apply the decision rule to accept or reject 𝑆𝑛𝑒𝑤 using the current temperature and damping 

ratio and update the current best solution ever found (𝑆𝑏𝑒𝑠𝑡). This step refers to lines 13 to 20 in 

the pseudo-code of our metaheuristic algorithm.  

Step 4: Determine the score of employed operators referring to line 22 in the pseudo-code of our 

metaheuristic algorithm.  

Step 5: Apply the local search operator to improve the current best-known solution ever found 

(𝑆𝑏𝑒𝑠𝑡). This step refers to lines 24 to 27 in the pseudo-code of our metaheuristic algorithm.  

Step 6: Update the weight of operators where this step is done in line 29 in the pseudo-code of our 

metaheuristic algorithm. 

Step 7: If the algorithm is terminated, output the current best-known solution ever found (𝑆𝑏𝑒𝑠𝑡). 

Otherwise, go to Step 1. This step is written in lines 30 to 31 for the pseudo-code of our 

metaheuristic algorithm.  
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1: Set the maximum number of iterations (MaxIt) and sub-iterations (SubIt)   

2: Run the constructive heuristic algorithm to define a feasible solution (𝑆𝑜).

3: Define the initial weights 𝑟𝑤𝑖
− = 1 where 𝑖 ∈ 𝐼 and 𝑖𝑤𝑗

+ = 1 where j ∈ 𝐽;

4: 𝑆𝑏𝑒𝑠𝑡 = 𝑆0;
5: It1=0;  

6: T=Tem; 

7: 𝛼 = 𝑟𝑒𝑑𝑢; 
8: While  It1< 𝑀𝑎𝑥𝐼𝑡  

9:    Run Eqs. (5-7) and (5-8) to compute 𝑃𝑖
𝑟𝑤 and 𝑃𝑗

𝑖𝑤;

10:  Run the roulette wheel selection for removal (𝑃𝑖
𝑟𝑤) and insertion (𝑃𝑗

𝑖𝑤) operators;

11:  Apply these selected removal and insertion operators.  

12:  Build a new optimal solution as 𝑆𝑛𝑒𝑤 .
13:     If 𝑓(𝑆𝑛𝑒𝑤) > 𝑓(𝑆𝑏𝑒𝑠𝑡)
14:  𝑆𝑏𝑒𝑠𝑡 = 𝑆𝑛𝑒𝑤 ;
15:    Elseif 𝑓(𝑆𝑛𝑒𝑤) < 𝑓(𝑆𝑏𝑒𝑠𝑡)
16: ∆= |𝑓(𝑆𝑛𝑒𝑤) − 𝑓(𝑆𝑏𝑒𝑠𝑡)|

17: 𝑝 = 𝑒−∆/𝑇

18:  If 𝑟𝑎𝑛𝑑 ≤ 𝑝 

19:  𝑆𝑏𝑒𝑠𝑡 = 𝑆𝑛𝑒𝑤 ;
20:  Endif 

21:    Endif 

22:   Write the score of these selected removal and insertion operators as given in Eq. (5-9). 

23:  It2=0; 

24:  While  It2< 𝑆𝑢𝑏𝐼𝑡 

25:  Apply the local search operator to improve the current best-known solution found 

(𝑆𝑏𝑒𝑠𝑡).

26:         𝐼𝑡2 = 𝐼𝑡2 + 1; 
27:   Endwhile  

28:  𝐼𝑡1 = 𝐼𝑡1 + 1; 
29:    Update the weights (𝑟𝑤𝑖

−;  𝑖𝑤𝑗
+) using Eqs. (5-10) and (5-11).

30: Endwhile 

31: Output the best-known solution ever found (𝑆𝑏𝑒𝑠𝑡).

Figure 5-2: The pseudo-code for the proposed ALNS-SA-based metaheuristic algorithm 

5.3 A constructive heuristic algorithm 

One of the disadvantages of neighborhood-based metaheuristics such as ALNS and SA is that their 

performance is strongly related to the quality of initial solutions [6-7]. In this regard, this study 

proposes a constructive exploration of the proposed problem to create an initial solution which is 

the Step 0 for the main metaheuristic algorithm written in Section 5.2. To define a solution and 

design 𝑥𝑎
𝑘, we first sort the volume of requests from largest to smallest. In this way, we sort the

capacity of transportation services from the largest to the smallest. Generally, we not only sort the 

volume of requests but also the capacity of transportation services. In this order, we consider the 

shipper-demand requests, first the contract-based requests, and then the non-contract requests. 
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Since all requests and services are transferred from terminal A (origin) to terminal B (destination) 

in the single-segment corridor network, an innovative priority-based algorithm is proposed for 

assigning shipments to transportation services (𝑥𝑎
𝑘), and arcs ad-hoc (𝑠𝑎

𝑘). The proposed algorithm 

is generally a development of the exploratory algorithm for the bin-packing problem proposed by 

Crainic et al. [8]. The main principles of the proposed priority-based heuristic are working with 

the following criteria:  

• Sort the volume of shipments and the available capacity of transportation services.  

• Among the available services, choose a service that has the lowest time interval based on 

the comparison of timetable of services with the time window of shipments.  

1: Generate a test problem and define its time-space network.  

2: Define the order of shipper-demand requests from contract-based (𝐾𝐶) to non-contract 

(𝐾𝑁𝐶) with the highest volume (𝑤𝑘).  

3: Call the redefined order of requests as 𝐾.  

4: For each 𝑘 ∈ 𝐾 

5:     For each 𝑎 ∈ 𝐴𝐸 

6:            While 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑠 𝑒𝑛𝑜𝑢𝑔ℎ 

7:               Assign the request k to this transportation service.   

8:               Update (𝑧𝑘 = 𝑧�̅�, 𝑦𝑎 = �̅�𝑎, 𝑥𝑎
𝑘 = �̅�𝑎

𝑘). 
9:             Endwhile  

10:           Compute the remaining capacity of this execution arc.  

11:    Endfor 

12:           If the request k ∈ 𝐾𝑁𝐶 is not assigned to any execution arc. 

13:                Assign it to an ad-hoc arc (𝑠𝑎
𝑘 = 𝑠𝑎

𝑘).  

14:                 𝑧�̅�=1;  

15:           Endif 

16: Compute the holding variables (𝑟(𝑜(𝑘),𝑡)
𝑘 , 𝑟(𝑑(𝑘),𝑡)

𝑘 ) to reduce the penalty cost 

(𝜓(𝑜(𝑘),𝑡)
𝑘 , 𝜓(𝑑(𝑘),𝑡)

𝑘 ) or link the pickup to the delivery.  

17: Endfor 

18: Compute the total profit for all accepted requests (𝑧𝑘 = 𝑧�̅�).  

 

Figure 5-3: The pseudo-code of the constructive heuristic algorithm 

To explain the procedures of our constructive heuristic algorithm, Fig. 5.3 shows the pseudo-code 

for this constrictive heuristic. To illustrate how we apply this heuristic algorithm, an example is 

provided here to explain lines 6 to 15 where a priority-based heuristic algorithm from Crainic et 

al. [8] is applied. Note that there are six shipper-demand requests and the requests with the index 

of “1” to “4” are contract-based, i.e., 𝑘 = {1, 2, 3, 4} ∈ 𝐾𝐶  and the requests with the index of “5” 

to “6” are the non-contract ones, i.e., 𝑘 = {5, 6} ∈ 𝐾𝑁𝐶. As such, there are only three transportation 

services with the index of “1” to “3”, i.e., 𝑎 = {1,2,3} ∈ 𝐴𝐸. These numbers show the index of the 



36 

requests and transportation services. As such, there is a priority based on the volume of requests 

and the capacity of services. The priority of contract-based requests is {1, 6, 5, 3} ∈ 𝐾𝐶 . In

addition, the priority of non-contract requests is {2, 4} ∈ 𝐾𝑁𝐶. Lastly, the priority of transportation

services is {1,3, 2} ∈ 𝐴𝐸 . Finally, we assign requests to services based on their priority for our time

window. In addition to the capacity of transportation services, the heuristic algorithm also focuses 

on the deviation of departure time from the desired pickup time and service arrival time from the 

delivery time of shipments. This criterion is called time interval and less value is preferred while 

the highest capacity is preferred in another criterion. If the capacity of the two transportation 

services is the same, the algorithm assigns a transportation service that has less time interval 

calculated in the following formula: 

�̂� = {�̂� ∈ 𝐴𝐸|𝑎𝑟𝑔𝑚𝑖𝑛 (|𝛼(𝑎) − 𝛼(𝑘)| + |𝛽(𝑎) − 𝛽(𝑘)|) ∀𝑘 ∈ 𝐾} (5-14) 

Having more justifications and clarifications for the proposed priority-based heuristic algorithm 

focusing on available capacity and time interval, an illustrative example explained later, is detailed 

here to present how this allocation is performed, as shown in Figure 5.4. To solve this example, 

we have six stages to define a solution.  
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1 6 5 3 2 4  Priority

1 2 3 4 5 6  Index

The stages for the assignment of shipper-demand requests to the transportation services are as follows: 

6 5 3 2 4  Priority

2 3 4 5 6  Index

Stage 1: The first shipper-demand request (k=1) with the priority “1” is assigned to the first transportation service 

(𝑎 = 1) and the remaining capacity is updated (𝑥1
1 = 1).

6 5 2 4  Priority

2 3 5 6  Index

Stage 2: The fourth shipper-demand request (𝑘 = 4) with the priority “3” is assigned to the first transportation service 

(𝑎 = 1) because the volume of request (k=4) is smaller than remaining capacity of service (a=1). In this regard, 𝑥1
4 = 1

and the remaining capacity is updated.  

6 2 4  Priority

2 5 6  Index

Stage 3: The third shipper-demand request (𝑘 = 3) with the priority “5” is assigned to the first transportation service 

(𝑎 = 1). In this regard, 𝑥1
3 = 1 and the remaining capacity is updated. Since the remaining capacity is not enough to add

another request, the next shipper-demand request is assigned to the next service.  

2 4 3  Priority

5 6 2  Index

Stage 4: The second shipper-demand request (𝑘 = 2) with the priority “6” is assigned to the third transportation service 

(𝑎 = 3) with the smallest time interval. In this regard, 𝑥3
2 = 1 and the remaining capacity is updated.

4  Priority

6  Index

Stage 5: The fifth shipper-demand request (𝑘 = 5) with the priority “2” is assigned to the third transportation service 

(𝑎 = 3) because the volume of request (k=5) is smaller than remaining capacity of service (a=3).  In this regard, 𝑥3
5 = 1

and the remaining capacity is updated. Since the remaining capacity is not enough to add another request, the next 

shipper-demand request is assigned to the next service.  

Stage 6: The sixth shipper-demand request (𝑘 = 6) with the priority “4” is assigned to the second transportation service 

(𝑎 = 2) with the smallest time interval. In this regard, 𝑥2
6 = 1 and the remaining capacity is updated.

Figure 5-4: Priority-based heuristic algorithm for the assignment of shipper-demand requests to 

the transportation services 

Having an example displayed in Figure 5.4, the priority of contract-based requests was {1,6,5,3} 

for 𝑘 ∈ {1, 4, 3, 2} ∈ 𝐾𝐶   respectively and the priority of non-contract requests was {2,4} for 𝑘 ∈

{5,6} ∈ 𝐾𝑁𝐶, respectively. This new sort of shipper-demand request is defined, 𝐾′′, as the

redefined order. The priority-based heuristic works with a new set of assignment priorities. For 

example, if the set of shipper-demand requests is K=KC∪ KNC, the redefined order of requests is 

defined as 𝐾′′. In another way, the algorithm works with a new sort of transportation services

based on the largest capacity and smallest time interval as computed in Eq. (5-14). In the same 

way, the algorithm works with a new sort of transportation service. Accordingly, the priority of 

transportation services was 𝑎 ∈ {1,3,2} ∈ 𝐴𝐸 . All contract-based shipper-demand requests have

been assigned to the available transportation services. If a non-contract shipper-demand request is 
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available and there was no transportation service with enough remaining capacity (�̅�𝑎
𝑘 = 0), this

request should be assigned to an ad-hoc arc (𝑠𝑎
𝑘). The main criteria to terminate the algorithm are

to have either no remaining capacity to add an unaccepted request to the available transportation 

services which were sorted in a priority-based concept, or all the requests have been accepted. If a 

shipper-demand request is assigned to the ad-hoc arc (�̅�𝑎
𝑘=1), the opportunity loss cost (𝑜𝑐𝑎

𝑘) is

considered as the revenue and added to the objective function. Based on the constraint set (4-2), if 

a shipper-demand request is assigned to an ad-hoc arc (�̅�𝑎
𝑘 = 1), this request is not approved (𝑧�̅� =

0). For each unaccepted request, there is an ad-hoc arc using Eq. (5-15):  

𝑧�̅� = 0,    𝑖𝑓 �̅�𝑎
𝑘 = 1, ∀𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴𝐷 (5-15)

After the assignment of execution arcs by 𝑥𝑎
𝑘, while avoiding the case of early and late pickup and

delivery for the accepted requests (�̅�𝑎
𝑘 = 1), the shipments should be kept at their origin terminal

(𝑟(𝑜(𝑘),𝑡)
𝑘 ) and their destination terminal (𝑟(𝑑(𝑘),𝑡)

𝑘 ). In this regard, the open execution arcs are 

recognized by Eq. (5-16): 

�̅�𝑎 = {
1 𝑖𝑓 ∑ 𝑥𝑎

𝑘 ≥ 1,

𝑘∈𝐾

 ∀𝑎 ∈ 𝐴𝐸

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

(5-16)

Based on the transferred shipper-demand requests, the initial solution of 𝑧𝑘 = 𝑧�̅� is computed as 

follows:  

𝑧�̅� = {
1 𝑖𝑓 ∑ 𝑥𝑎

𝑘 = 1,

𝑎∈𝐴𝐸

 ∀𝑘 ∈ 𝐾

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

(5-17)

Finally, we define the penalty cost for the pickup and delivery times if an accepted shipper-demand 

request (𝑧�̅� = 1) does not meet the desired time window. After the calculation of penalty costs 

(∑ ∑ [𝜓(𝑜(𝑘),𝑡)
𝑘 ∑ 𝛼(𝑎)𝑥𝑎

𝑘
𝑎∈𝒜𝐸 + 𝜓(𝑑(𝑘),𝑡)

𝑘 ∑ 𝛽(𝑎)𝑥𝑎
𝑘

𝑎∈𝒜𝐸 ]𝑡∈𝒯𝑘∈𝒦 ), and solving all decision variables, the

objective function in Eq. (4-1), is calculated. Aforementioned procedures are done in lines 12 to 

18 in the pseudo-code of our constructive heuristic algorithm shown in Figure 5.3. 

5.4 Removal operators 

Since the proposed metaheuristic has a two-phase framework to destroy a solution and then repair 

it heuristically, here, the removal operators are defined to remove either services or requests or 
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both in a systematical way. In this regard, a percentage of requests or services or both is considered 

to be removed randomly or based on some criteria like cost, utilization, efficiency and so on. This 

partial destruction may transform our current feasible solution to be an infeasible one.  

To make these removal operators, we should define 𝑙 ∈ {1, 2, … , 𝑀𝑎𝑥𝐼𝑡} as the index of iterations 

by the algorithm where at the first iteration (l=1), the current solution is taken from the constructive 

heuristic algorithm (𝑆𝑏𝑒𝑠𝑡 = 𝑆0). Since the independent variable 𝑥𝑎
𝑘 is the main part of the solution

representation, the removal operators update this variable at the iteration l, as 𝑥𝑎
𝑘𝑙 .

One important factor which has a high impact on the optimality of a solution is the cost of open 

services.  Hence, removal operators may select a percentage of open services to remove them from 

the current solution. In this regard, there is a subset of open services (𝐴𝑙) which can be defined as

follows: 

𝐴𝑙 = {𝑎 ∈ 𝐴𝐸| ∑ 𝑥𝑎
𝑘𝑙 ≥ 1}

𝑘∈𝐾

(5-18)

The removal operators should deduct the set of 𝐴𝑙 in each iteration l and reconstruct the set of 𝐴𝑙+1

for the next iteration 𝑙 + 1 to make the tentative solution 𝑥𝑎
𝑘,𝑙+1

.

Another important factor for a removal operator is to select subset of requests which are accepted 

(�̂�) at iteration l. Accordingly, we can define the variable of 𝑧𝑘
𝑙  as follows:  

𝑧𝑘
𝑙 = {

1 𝑖𝑓 ∑ 𝑥𝑎
𝑘𝑙 = 1,    ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿

𝑎∈𝐴𝐸

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

(5-19)

 𝑧𝑘
𝑙  shows that at the iteration l, which requests have been accepted and rejected. The proposed 

metaheuristic from iteration l to l+1 should decide on 𝑧𝑘
𝑙  to choose that which set of requests 

𝑧𝑘
𝑙+1should be selected in the next iteration.

Having a summary of the main elements of removal operators, we focus on two sub-sets of services 

and requests defined respectively in Eqs. (5-18) and (5-19) to remove some random elements of a 

solution. To destroy a solution, there is one parameter to show the percentage of elements which 

must be removed and can be set between zero and one. All in all, this study uses the following 

removal operators:  
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5.4.1 Random service-based removal 

For the random service-based removal operator, a bunch of open services from the set of �̂�𝑎
𝑙  , would 

be randomly selected. In this regard, we select �̂�𝑎
𝑙  meaning the arc is open at this iteration as given 

in the following equation:  

�̂�𝑎
𝑙 = {

1 𝑖𝑓 ∑ 𝑥𝑎
𝑘𝑙 ≥ 1,

𝑘∈𝐾

 ∀𝑎 ∈ 𝐴𝐸 , 𝑙 ∈ 𝐿

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 

(5-20)

The number of deleted services is a random number between one and the maximum number of 

open services. It should be noted that all requests related to this service are then deleted. Among 

them, contract-based requests should be assigned to other services while constructing a feasible 

solution. 

5.4.2 High-cost service-based removal 

The high-cost service removal operator focuses on removing some members from set 𝐴𝑙 on the

dependent design variable (�̂�𝑎
𝑙 ). In this regard, the algorithm focuses on variables linking with arcs 

where each of them is corresponding to one or more shipper-demand requests (�̂�𝑎
𝑙 ). We should 

compute the total cost of each open transportation service (𝑎 ∈ 𝐴𝐸) per unit of capacity as follows:

𝑡𝑐𝑎 = (∑ 𝑐𝑎
𝑘�̅�𝑎

𝑘

𝑘∈𝐾

+ 𝑓𝑎�̅�𝑎)/𝑢𝑎,  ∀𝑎 ∈ 𝐴𝐸 (5-21)

A bunch of services 𝑎𝑙
′ which have the highest total cost, is selected as follows:

�̂�𝑙  = {𝑎 ∈ 𝐴𝑙| argmax(𝑡𝑐𝑎)  𝑖𝑓�̂�𝑎
𝑙 = 1} (5-22)

The number of removed services from the set  �̂�𝑙  is a random number between one and the

maximum number of open services. This set shows a subset of services for which the value of their 

total cost is the highest. Based on this strategy, one or more arcs from the set of �̂�𝑙 is removed and

then, if one of the shipper-demand requests is not satisfied by removing this service, an ad-hoc arc 

is added to the solution to escape from infeasibility (𝑠𝑎
𝑘 = 1) and this arc defines the opportunity

loss cost to the objective function (𝑜𝑐𝑎
𝑘). It should be noted that if the set �̂�𝑎

𝑙  from Eq. (5-18) has

still one arc which is responsible for one of shipper-demand requests, the service-based removal 

is possible.  
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5.4.3 Low-utilization service-based removal 

This removal operator identifies highly active services that may match more than one for 

transportation of shipments. Since the fixed cost of services is very high, it is efficient if each 

service handles more than one request. In this regard, contrary to efficient ones, we need to identify 

a transportation service that is useless. This means that it has the least usage based on the following 

equation:  

𝑎𝑙
′ = {𝑎 ∈ 𝐴𝑙| argmin ((∑ 𝑥𝑎

𝑘𝑙)/|𝐾|

𝑘∈𝐾

)} 
(5-23)

A number of services from the set of 𝑎𝑙
′ is selected. The number of removed services from the set

𝑎𝑙
′ is a random number between one and the maximum number of open services.  In this regard,

the current solution is destroyed.  

5.4.4 Low-profit request-based removal 

Another destruction operator is the low-profit request-based removal. To destroy the current 

solution, we can remove a bunch of non-contracts which are accepted shipper-demand requests, 

abbreviated as �̂� which is a sub-set of 𝐾 = 𝐾𝐶 ∪ 𝐾𝑁𝐶. The algorithm removes some orders which

has the lowest net profit (𝜌𝑘) among the accepted non-contract requests. In this regard, at each 

iteration l, we can define the following sub-set:  

�̂�𝑙 = {𝑘 ∈ �̂�|𝑧𝑘
𝑙 = 1, 𝑘 ∈ 𝐾} (5-24) 

where �̂�𝑙 shows the set of accepted requests at iteration l. Among them, a bunch of requests which

have the lowest net profit, would be selected and them removed from the set of �̂�𝑙In this regard,

the following formula is defined:  

𝑘′′′ = {𝑘 ∈ �̂�𝑙| argmin(𝜌𝑘) } (5-25) 

where 𝑘′′′ is sub-set of non-contract requests which must be removed from the current solution

and this operator cannot be used if the set of �̂�𝑙is empty.
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5.4.5 Low-volume request-based removal  

Another destruction operator is the low-volume request-based removal. This time, we should select 

a bunch of requests randomly which have the lowest volume. These requests would be selected 

and them removed from the set of �̂�𝑙 . In this regard, the following formula is defined:  

𝑘 = {𝑘 ∈ �̂�𝑙| argmin(𝑤𝑘) } (5-26) 

where 𝑘 is sub-set of non-contract requests with the lowest volume which must be removed from 

the current solution and this operator cannot be used if the set of �̂�𝑙 is empty. 

5.4.6 Cluster request-based removal  

In this operator, the destruction of one of the open services with the maximum accepted non-

contract shipper-demand requests, is chosen. Then, a bunch of requests related to this service 

should be removed. This cluster contains a set of requests where pickup and delivery times of non-

contract requests are as follows: 

𝑘 = {𝑘, 𝑘′ ∈ �̂�𝑙||𝛼𝑘 − 𝛼𝑘′| + |𝛽𝑘 − 𝛽𝑘′| ≤ Δ and ∑ 𝑥𝑎
𝑘𝑙 + ∑ 𝑥𝑎

𝑘′𝑙

𝑘′∈�̂�𝑙

= 1,

𝑘∈�̂�𝑙

} 
(5-27) 

where 𝑘, 𝑘′are the sub-set of �̂�𝑙defining a cluster of shipper-demand requests which have a 

deviation of Δ which are assigned to the same service meaning their pickup and delivery times are 

close to each other. For example, we have four non-contract requests (𝑘1, 𝑘2, 𝑘3, 𝑘4) associated 

with a service a, in a time-space network where T=12. Their pickup and delivery times are (4, 6), 

(2, 9), (4, 7) and (5, 11) if the maximum allowable deviation is Δ = 4. In this regard, the cluster of 

(𝑘1, 𝑘3) is selected to be removed from this service.  

5.4.7 Hybrid service-request-based removal  

Another removal operator is a combination of the above efficient ideas of other removal operators. 

In this regard, we have considered their advantages for selecting a service and deleting a bunch of 

requests based on the following principles: 

• Minimum service usage should be found. As given in Eq. (5-23), the service that has fewer 

requests for the sender is selected. Such services are not efficient for designing a service 

network schedule. 
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• Selection of requests is based on satisfaction of the time windows which are close with

each other. For a service, if the time window of requests is close to each other, they are

grouped in a cluster similar to Eq. (5-27).

In summary, hybrid service-based deletion is defined as follows: First, a low-utilization service 

given in Eq. (5-23) is selected. Then, a group of requests that have a very close time window in 

this service are selected to be removed from Eq. (5-27).   

5.4.8 Random-request-based removal 

Finally, the last removal operator selects the requests randomly to destroy a solution. In this regard, 

a bunch of requests removed have been selected randomly. Accordingly, we select �̂�𝑙 meaning the

request is accepted at an iteration as given in the Eq. (5-24). These requests would be selected 

randomly and them removed from the set of �̂�𝑙 . In this regard, the following formula is defined:

�̌� = {𝑘 ∈ �̂�𝑙| 𝑧𝑘
𝑙 = 1 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 } (5-28) 

where �̌� is sub-set of 𝐾 = 𝐾𝐶 ∪ 𝐾𝑁𝐶. The number of removed requests is a random number

between one and the maximum number of requests. It should be noted that contract-based requests 

must be assigned to other services in the insertion operators. 

5.5 Insertion operators 

After destroying the current solution, the requests and/or services which are not the part of current 

solution, either because they are just removed or there was no feasible place for them, are 

considered for reconstruction, here in our insertion operators. Then, this repaired solution is 

compared with the best-known solution in the current iteration based on Eq. (5-9) to update this 

best-known solution ever found in the algorithm. Here, there are four insert operators, two of which 

focus on requests and one of which focuses on services and the last one considers both requests 

and services randomly.  

5.5.1 Maximum-volume request insertion  

This insertion operator aims to insert new requests which may be contract-based or non-contract 

requests which have not been accepted. For this purpose, the following set of requests that have 

the maximum volume is selected as follows: 
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𝑘 = {𝑘 ∈ 𝐾| argmax(𝑤𝑘)  𝑖𝑓𝑧𝑘
𝑙 = 0} (5-29) 

The number of selected shipments from the above set is based on the authorized capacity of open 

services. The assignment of requests to services is based on the priority algorithm presented in 

Figure 5.3, in which the type of requests is available to the transportation services based on the 

maximum volume. The other decision variables are updated as described in the pseudocode in 

Figure 5.4.  

5.5.2 Maximum-net profit request insertion 

Here, this operator aims to insert new requests that may be contract-based or non-contract requests 

which have not yet been accepted in this iteration. For this purpose, we have defined the following 

subset: 

𝑘 = {𝑘 ∈ 𝐾| argmax(𝜌𝑘)  𝑖𝑓𝑧𝑘
𝑙 = 0} (5-30) 

As done in the previous insertion operator, the number of selected sender requests is based on the 

authorized capacity of the open service. This allocation is done by the priority-based algorithm 

presented in Figure 5.3 based on the maximum net profit of the requests. The rest of the decision 

variables are evaluated similarly in Figure 5.4.  

5.5.3 Minimum-cost service insertion 

If the current services do not have enough capacity to insert a new shipment, we need to open a 

number of existing bunch services separately, and based on this, we can apply the minimum service 

operator to repair this solution. In this regard, among the shipments from the set of constraints (4-

2), if a service is available and not open with the lowest service cost, a transportation service is 

replaced. This new transportation service can be found with the following equation: 

�̌�𝑙  = {𝑎 ∈ (𝐴𝐸 − 𝐴𝑙)| argmin(𝑡𝑐𝑎)  𝑖𝑓 ∑ 𝑥𝑎
𝑘𝑙

𝑘∈𝐾

= 0} (5-31) 

After this allocation, the other decision variables are updated, and the solution is calculated as 

shown in Figure 5.4.  
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5.5.4 Random request-service insertion 

The latest operator helps to add requests and services randomly. In this method, we must first 

assign contract-based requests that have been deleted by the removal operators to the services. If 

the available services have the required capacity, the requests will be randomly assigned to one of 

these services where we first consider the contract-based and then non-contract ones. Otherwise, 

another service that closes in this iteration is randomly selected to be open. For all allocations, the 

algorithm first examines the remaining capacity of the services and then the time interval as shown 

in Figure 5.4. 

5.6 Local search operator 

As mentioned earlier, the proposed ALNS-SA-based algorithm also uses a local search operator 

to make very small changes on the current best-known solution ever found by the pair of removal-

insertion operator in each iteration. In this regard, there is a maximum number of sub-iterations in 

the main loop of the proposed algorithm to exploit current solution while giving this chance to 

escape from local optimal solutions found by the pairs of removal-insertion operator. The main 

components of the proposed local search operator are to remove one or two requests randomly and 

then insert them to make a small change to the current best-known solution. The following steps 

are done in the local search operator:  

Step 1: Specify one or two requests which should be removed from the current accepted 

requests in the set 𝑧𝑘
𝑙 = 1.  

Step 2: Update the decision variables for 𝑥𝑎
𝑘𝑙, 𝑧𝑘

𝑙  and �̂�𝑎
𝑙 .

Step 3: Assign the contract-based requests which are not accepted yet to a service randomly 

where the remaining capacity should meet the volume of such shipments and consider the time 

interval of departure, and arrival times of services.   

Step 4: Assign one or two non-contract requests randomly to a service where the remaining 

capacity should meet the volume of such shipments and consider the time interval of services for 

the departure and arrival time.  

Step 5: Update auxiliary  decision variables and the objective function for this solution. 
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Step 6: Exchange this new solution with the current best-known solution ever found (𝑆𝑏𝑒𝑠𝑡) if 

it is better. Otherwise, go to Step 7 to check the termination criterion.  

Step 7: If the local search operator is terminated, output the best solution ever found (𝑆𝑏𝑒𝑠𝑡). 

Otherwise, go to Step 1. 
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COMPUTATIONAL EXPERIMENTS 

A comprehensive analysis is done to assess the performance of our metaheuristic and its 

components. Firstly, the test problems are studied and generated on different scales and levels. 

Then, the performance of our constructive heuristic algorithm is evaluated by the solution quality, 

i.e., the value of the objective function and its deviation to the final solution obtained by the ALNS

metaheuristic. We then analyze the efficiency of removal and insertion operators while studying 

the solution quality and CPU time. It should be noted that all the data and codes of heuristics, 

operators and metaheuristics were run on MATLAB software R2013a using a 64-bit 2.5 GHz Intel 

(R) Core (TM) i7 operating system and 8 GB of memory.

6.1 Test instances 

This thesis generates different test instances while analyzing the complexity of our optimization 

model and showing the performance of the solution algorithm. To have an unbiased comparison 

of our metaheuristic algorithm, different sets of instances must be used, i.e., sets A and B. Hence, 

these sets of instances are used where both of them have the same sizes using their random 

functions to generate the parameters. In addition, to show the high performance of algorithm, we 

consider two versions of this algorithm, i.e., random and calibrated versions where the calibrated 

version is resulted from solving the set of instances A. These versions are employed to compare 

the results of our metaheuristic algorithm with the exact solver. To have a general view on our 

instances solved and analyzed in Section 6.2 and 6.3, the following justifications must be clarified: 

• Two sets of instances including A and B are generated randomly which have the same

size (Table 6.1) while using random distribution functions (Table 6.2).

• The calibration of parameters for our metaheuristic is done by using the instances A.

In this regard, the parameters of our metaheuristic are tuned to find the best

performance of our metaheuristic algorithm using instances A (See Section 6.2).

• Evaluation of components of our metaheuristic algorithm is done by using instances A

similar to calibration section (See Section 6.3.1 and 6.3.2).

• For the comparison of our metaheuristic with the exact solver, this study uses the

instances B which have been generated randomly in a same size as done in the instances
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A. These instances are solved in Section 6.3.3 to have unbiased comparison for our

metaheuristic algorithm where the main metaheuristic is divided into two cases, i.e., 

random, and tuned versions of our metaheuristic algorithm.  

Each set of instances, i.e., A and B includes 13 random tests in different sizes including small, 

medium, large, and very large sizes. In this regard, four complexity levels from small, medium, 

large, and very large scales using P1 to P3; P4 to P6; P7 to P9 and P10 to P13 are respectively 

considered where Table 6.1 reports the size of test problems. For these scales, 40, 80, 120, 140, 

and 160 requests are applied. As such, the total number of services is 170, 210, 250, 270 and 290 

for these tests. The number of time periods is set as 7, 14, and 21 periods. We have considered 30 

percent of requests for urgent requests and the rest of them are the standard ones. The same 

classification is considered for fast and regular transportation services. 

The data generation is explained in Table 6.2 to show how the parameters are valued and simulated 

for all instances in both sets of A and B. In this regard, the functions of MATLAB software were 

employed. To make our test problems reliable, their logic is taken from the base paper of 

Taherkhani et al. [10]. For example, the travel time for urgent requests is lower than the individual 

ones. The fixed cost of transportation services is greater than the transportation costs. The data 

generation reported in Table 6.2 is feasible. There is no redundancy in data generation since there 

is a reasonable logic for producing all input parameters. The range of parameters is based on the 

time-space to be logical with regards to the problem definition and problem settings presented 

earlier.  
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Table 6-1 Size of test problems for both sets of A and B 

Complexity 
levels 

Tests 
Number of requests 

𝐴𝐸 |𝑇| |𝐾𝐶| |𝐾𝑁𝐶| 
Standard Urgent Standard Urgent 

Small 

P1 
30 10 

170 7 
21 9 21 9 

P2 
10 30 

170 7 
7 3 7 3 

P3 
20 20 

170 7 
14 6 14 6 

Medium 

P4 
50 30 

210 14 
35 15 35 15 

P5 
30 50 

210 14 
21 9 21 9 

P6 
40 40 

210 14 
28 12 28 12 

Large 

P7 
90 30 

250 21 
63 27 63 27 

P8 
30 90 

250 21 
21 9 21 9 

P9 
60 60 

250 21 
42 18 42 18 

Very large 

P10 
100 40 

270 7 
50 50 50 50 

P11 
80 60 

270 7 
40 40 40 40 

P12 
60 80 

270 7 
30 30 30 30 

P13 
110 50 

290 7 
55 55 55 55 
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Table 6-2 Range of parameters for both sets 

 

Parameters Range 

𝜌𝑘  1000+2000*rand(1,K) 
𝑤𝑘  (0.8+0.5*rand(1,K)).* 𝜌𝑘/10 
𝛼𝑘 randi([1 T-1],1,K) 

𝛽𝑘  for standard requests min(𝛼𝑘+randi([floor(T/5),ceil(T/3)],1,1),T) 
𝛽𝑘  for urgent requests 𝛼𝑘 +min(𝛼𝑘 +randi([floor(T/10),ceil(T/5)],1,1),T) 

𝜓(𝑜(𝑘),𝑡)
𝑘  (0.2+0.3*rand(1,1))* 𝑤𝑘  

𝜓(𝑑(𝑘),𝑡)
𝑘  (0.2+0.3*rand(1,1))* 𝑤𝑘  

𝑓𝑎 200+200*rand(1,A) 
𝑐𝑎

𝑘  0.5+1.5*rand(1,A)).* 𝑤𝑘  
𝑐�̅�

𝑘  (0.1+0.2*rand(1,1))* 𝑤𝑘  
𝑜𝑐𝑎

𝑘  0.3*(max(𝑐𝑎
𝑘)+max(𝑓𝑎)- 𝜌𝑘) 

𝑢𝑎 (2+2*rand(1,A))*sum(𝑤𝑘)/A 

𝑢(𝑜(𝑘),𝑡)
𝑀𝐻 , 𝑢(𝑑(𝑘),𝑡)

𝑀𝐻  0.25*sum(𝑤𝑘) 

𝛼(𝑎) randi([1 T-1],1,A) 
𝛽(𝑎) min(𝛼(𝑎) +randi([1,2]),T) 

 

*rand is a function to generate random continuous numbers between zero and one.  

*randi is a function to generate random integer numbers between a lower bound and an upper 

bound. 

*sum is a function to sum a matrix.  

*round is a function to transform continuous numbers to integer ones while rounding them. 

* floor is a function to transform continuous numbers to integer ones while cutting them 

minimally. 

* ciel is a function to transform continuous numbers to integer ones while cutting them 

maximally.  

* min is a function to select the minimum array in a matrix.  

* max is a function to select the maximum array in a matrix.  

 

6.2 Parameter settings  

Generally, in any paper to use a metaheuristic for solving an optimization model, it is important to 

tune its parameters [51-52]. A well-tuned metaheuristic shows the highest level of efficiency for 

solving the test problems on average [53-54]. Generally, the ALNS is very sensitive to the scores 

based on the performance record and the calibration seems necessary in the literature before the 

comparison of its overall performance with an exact solver or other metaheuristics [55-56]. From  

another point of view, one disadvantage of the proposed ALNS-SA-based metaheuristic is to have 

many input parameters which they can be listed as follows: 
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𝑀𝑎𝑥𝐼𝑡 Maximum number of iterations  

SubIt Maximum number of sub-iterations  

𝑟𝑒𝑑𝑢 Rate of reduction of temperature  

𝑇𝑒𝑚 Initial temperature  

Q Percentage of removed requests or services 

𝜛1 Score for the first case  

𝜛2 Score for the second case  

𝜛3 Score for the third case where 𝜛3=1 − 𝜛1 − 𝜛2; 

Based on the above notations, the proposed metaheuristic algorithm has eight parameters where 

the third case of score parameter is dependent on other cases and cannot be considered as an 

independent main parameter. Therefore, we have seven main parameters and if we consider three 

candidate values for each of them, the total number of experiments using a full factorial method is 

37=2187. It is not logical to run the algorithm 2187 times for each test. To this end, this study 

applies the Taguchi experimental design method defined in the paper of Taguchi and Jugulum [9] 

to reduce the number of runs for each test. The Taguchi method works with a set of predefined 

orthogonal arrays while using two popular metrics to analyze the performance of a tuned level of 

metaheuristic algorithm. In this regard, Signal to Noise (S/N) and Relative Percentage Deviation 

(RPD) are two metrics to control the quality of candidate values for the algorithm’s parameters. 

For a maximization optimization model like our model, the S/N ratio is computed as follows:  

𝑆 𝑁⁄ = 10 log10(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)2 (6-1)

where the objective function is the amount of average objective functions for all the test problems. 

A higher value of S/N ratio is preferable in our analyses.   

In addition, addition, the RPD metric is employed to analyze the efficiency of a tuned level of 

metaheuristic algorithm. For the proposed optimization problem as a maximization problem, the 

RPD is formulated as follows:  

𝑅𝑃𝐷 =
𝑀𝑎𝑥𝑠𝑜𝑙 − 𝐴𝑙𝑔𝑠𝑜𝑙

𝑀𝑎𝑥𝑠𝑜𝑙

(6-2)
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For each run of the metaheuristic algorithm (i.e., there are 27 runs total), we want to solve all the 

tests, i.e., P1 to P9 and then its average of the objective function is considered. 𝑀𝑎𝑥𝑠𝑜𝑙 is the 

maximum value among all the average of test problems while 𝐴𝑙𝑔𝑠𝑜𝑙 is the output of our 

metaheuristic algorithm for each experiment. A lower value for the RPD is preferable for a tuned 

level of a metaheuristic. 

As mentioned earlier, the proposed algorithm has seven main parameters and if we consider three 

candidate values for each parameter, Table 6.3 defines the values of each candidate value where 

the Taguchi method suggests the orthogonal array L27 for the levels of our metaheuristic in this 

table. In this regard, we should run each test problem 27 times based on the orthogonal array. After 

running them, the results of tuning are provided in Table 6.4 to study the average of RPD and S/N 

ratio in the proposed problem. It should be noted that all these runs were implemented on the test 

instances from the set instance of A.  

Table 6-3 The list of parameters of ALNS-SA-based algorithm 

Parameter  
Levels 

1 2 3 

𝑀𝑎𝑥𝐼𝑡 500 1000 2000 

SubIt 20 30 50 

𝑟𝑒𝑑𝑢 0.9 0.99 0.999 

𝑇𝑒𝑚 10000 15000 20000 

Q 0.1 0.3 0.5 

𝜛1 0.2 0.4 0.6 

𝜛2 0.1 0.3 0.4 
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Table 6-4 . Experiments of tuning of ALNS-SA-based metaheuristic using the orthogonal array 

Number of 

experiments 

Parameters and their levels 
Mean RPD Mean S/N 

𝑀𝑎𝑥𝐼𝑡 SubIt 𝑟𝑒𝑑𝑢 𝑇𝑒𝑚 Q 𝜛1 𝜛2

L1 1 1 1 1 1 1 1 0.145436 90.71379 

L2 1 1 1 1 2 2 2 0.168041 90.48094 

L3 1 1 1 1 3 3 3 0.146809 90.69983 

L4 1 2 2 2 1 1 1 0.126381 90.90534 

L5 1 2 2 2 2 2 2 0.140304 90.7658 

L6 1 2 2 2 3 3 3 0.12838 90.88544 

L7 1 3 3 3 1 1 1 0.087035 91.28798 

L8 1 3 3 3 2 2 2 0.07917 91.3625 

L9 1 3 3 3 3 3 3 0.088988 91.26938 

L10 2 1 2 3 1 2 3 0.105347 91.11199 

L11 2 1 2 3 2 3 1 0.103312 91.13173 

L12 2 1 2 3 3 1 2 0.117483 90.99336 

L13 2 2 3 1 1 2 3 0 92.0789 

L14 2 2 3 1 2 3 1 0.093936 91.22208 

L15 2 2 3 1 3 1 2 0.08953 91.26421 

L16 2 3 1 2 1 2 3 0.078804 91.36594 

L17 2 3 1 2 2 3 1 0.063706 91.50714 

L18 2 3 1 2 3 1 2 0.070892 91.44023 

L19 3 1 3 2 1 3 2 0.074078 91.41039 

L20 3 1 3 2 2 1 3 0.071467 91.43485 

L21 3 1 3 2 3 2 1 0.086067 91.29719 

L22 3 2 1 3 1 3 2 0.054117 91.59565 

L23 3 2 1 3 2 1 3 0.051332 91.62118 

L24 3 2 1 3 3 2 1 0.071293 91.43648 

L25 3 3 2 1 1 3 2 0.044896 91.67991 

L26 3 3 2 1 2 1 3 0.042308 91.70342 

L27 3 3 2 1 3 2 1 0.04795 91.6521 

To study which value of the parameters has the highest performance, we should compute the mean 

RPD and S/N ratio for each level for the parameters of our metaheuristic algorithm. The results of 

our analyses are shown in Figure 6.1 and 6.2 where a higher value of S/N ratio is preferable while 

a lower value of RPD brings a better capability for the proposed algorithm. After looking at these 

figures, we can determine which level is the most suitable and efficient for the proposed algorithm. 

Based on our evaluations, the tuned value of each parameter is reported in Table 6.5. 
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Figure 6-1 The behavior of ALNS-SA-based in the term of S/N ratio 

Figure 6-2 The behavior of ALNS-SA-based in the term of RPD 
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Table 6-5 Tuned values of our metaheuristic’s parameters 

Metaheuristic Parameter Best level 

ALNS-SA-

based 

algorithm 

𝑀𝑎𝑥𝐼𝑡  2000 

SubIt 50 

𝑟𝑒𝑑𝑢 0.999 

 𝑇𝑒𝑚 20000 

Q 0.1 

𝜛1 0.4 

𝜛2 0.4 

𝜛3 0.2 

6.3 Evaluation of algorithmic components 

After the confirmation to have a well-tuned metaheuristic, we can run it while doing some 

sensitivity analyses for evaluating its performance. Here, we first analyze the performance of our 

constructive heuristic while studying the solutions’ quality of the metaheuristic algorithm and then, 

comparing the solution of the constructive heuristic with the final solution obtained by the full 

algorithm. Then, a comprehensive analysis to evaluate the efficiency of removal and insertion 

operators to show the performance of operators individually. Finally, the overall performance of 

our ALNS- SA-based algorithm is evaluated by the exact solver and then convergence analysis to 

the optimality for each test problem is done. It should be noted that to have an unbiased 

comparison, we have used the instances set B instead of A which has been used for the calibration. 

6.3.1 Evaluation of our constructive heuristic algorithm   

Based on the concept of ad-hoc arcs or the extra capacity, we have defined a very large negative 

value of the objective function for unaccepted contract-based requests. It means that a negative 

value of the objective function for a solution means that it includes one or more unaccepted 

contract-based requests. However, a positive value for a solution means that all contract-based 

requests have been accepted. For the proposed constructive heuristic algorithm, it is possible to 

have some negative values for the objective function of initial solutions as presented in Table 6.6. 

Here, we first check if the initial solution found by the constructive heuristic is positive or negative. 

Then, the improvement in the table means that we check that how this initial solution is close or 
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far from the final solution obtained by the metaheuristic. It is computed by the relative deviation 

of the initial solution from the final solution obtained by the ALNS.  

From the results presented in Table 6.6, the constructive heuristic algorithm is able to find high-

quality solutions in small instances, i.e., P1 to P3. However, for large-scale test problems, the 

initial solution obtained by the constructive heuristic is not as good as small ones since there are 

some contract-based requests which are not accepted. This highlights the role of our search space 

using the removal-insertion operators to improve this initial solution by our metaheuristic 

algorithm. This table also reported the final solution obtained by the proposed metaheuristic and 

the CPU time for all iterations. Having a look at the results, we can compare check the quality of 

solutions in the proposed metaheuristic algorithm. 

Another important criterion is to analyze the amount of improvement by the main metaheuristic 

on this initial solution. To compute this improvement, we compute the gap between the solution 

from the constructive heuristic and the one obtained by the metaheuristic algorithm. If the initial 

solution will be close to the final solution found by the metaheuristic, it confirms its high 

performance. The gap between the heuristic and the final solution from the metaheuristic in very 

large scales, i.e., P10 to P13, is around 0.2. Based on these evaluations, Figure 6.3 shows this fact 

that the initial solutions for P1, P2, P3 and P6 as well as P10 to P13 test problems, are optimal and 

close to the final solution obtained by the metaheuristic. 
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Table 6-6 Evaluation of our constructive heuristic and the overall ALNS-SA-based 

metaheuristic. 

Number 

of tests 

problem 

Constructive heuristic algorithm Metaheuristic algorithm 

Solution Improvement done by the metaheuristic Solution CPU time (Seconds) 

P1 39176 5.79% 41583 41.70 

P2 28919 27.44% 39857 41.25 

P3 41278 13.05% 47476 40.83 

P4 -6500.6 114.77% 44001 57.22 

P5 -13779 131.61% 43588 57.22 

P6 4929.4 90.23% 50460 62.02 

P7 -141300 592.52% 28688 69.61 

P8 -141750 612.31% 27669 65.73 

P9 -109300 509.25% 26708 72.53 

P10 147796 19.32% 183180.3 38.01 

P11 145972 20.30% 183150.6 36.09 

P12 132906 20.41% 166994.5 36.99 

P13 158745 22.18% 203990.4 42.70 

Figure 6-3 The evaluation of the gap improved by the metaheuristic. 
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6.3.2 Comparison of removal-insertion operators    

One significant contribution of our metaheuristic algorithm is to have different removal and 

insertion operators to destroy a solution and then repair it efficiently. One open question is that 

among these operators, which one is the most efficient and has the key role to help the main 

algorithm for finding an optimal solution. The goal of this sub-section is to analyze each pair of 

removal-insertion operators and select the most efficient ones. It should be noted that the 

comparison of removal and insertion operators individually, is done in the literature review of 

ALNS multiple times [55-56].  

In this regard, one test problem, here, P5 as a medium-size test problem is selected to do these 

analyses. Based on the literature of ALNS, a medium-size test problem can better evaluate the 

performance of the proposed algorithm [55-56]. To do our sensitivity analyses, we redesign the 

tuned metaheuristic’s parameters to use one pair of removal-insertion operators in all run times. 

Since there are eight removal operators and four insertion operators, there are 32 times for our 

sensitivity analyses on the performance of removal-insertion operators. Table 6.7 are the results of 

our analyses accordingly. We have three main criteria for each analysis including the objective 

function, CPU time and the amount of improvement done by the metaheuristic in comparison with 

the initial solution.  

The variations of the solutions obtained by the pair of removal-insertion operators show that there 

is no significant difference between the CPU time. However, to analyze the performance of each 

operator, Fig. 6.4 shows the comparison for each pair of removal-insertion operators based on the 

solution quality while analyzing the improvement done by the main algorithm.  
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Table 6-7 Comparison of removal-insertion operators 

Index of runs Removal operators Insertion operators 

Objective 

function 

CPU 

Time 

(Seconds) 

Relative changes of 

the solutions by the 

pair of removal- 

insertion operator 

T1 

Random service-based removal 

Maximum-volume request 

insertion 
4.3708e+04 54.41 1.33 

T2 

Maximum-net profit request 

insertion 4.4400e+04 
58.11 1.32 

T3 Minimum-service cost insertion 4.8739e+04 61.45 1.28 

T4 Random request-service insertion 4.4422e+04 56.16 1.31 

T5 

High-cost service-based removal 

Maximum-volume request 

insertion 
4.4536e+04 55.67 1.31 

T6 

Maximum-net profit request 

insertion 4.2703e+04 
56.87 1.32 

T7 Minimum-service cost insertion 4.6831e+04 55.70 1.30 

T8 Random request-service insertion 4.5418e+04 45.79 1.32 

T9 

Low-utilization service-based       

removal 

Maximum-volume request 

insertion 
4.4365e+04 46.56 1.32 

T10 

Maximum-net profit request 

insertion 4.6307e+04 
51.73 1.29 

T11 Minimum-service cost insertion 4.9313e+04 51.72 1.27 

T12 Random request-service insertion 4.3711e+04 49.70 1.32 

T13 
Low-profit request-based 

removal 

Maximum-volume request 

insertion 
4.5288e+04 50.63 1.32 
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Table 6-7: Comparison of removal-insertion operators (cont'd) 

T14 
Low-profit request-based 

removal 

Maximum-net profit request 

insertion 4.4952e+04 
51.24 1.29 

T15 Minimum-service cost insertion 4.6616e+04 50.64 1.32 

T16 Random request-service insertion 4.3855e+04 51.09 1.33 

T17 

Low-volume request-based 

removal 

Maximum-volume request 

insertion 
4.5043e+04 50.37 1.32 

T18 

Maximum-net profit request 

insertion 4.3603e+04 
56.81 1.32 

T19 Minimum-service cost insertion 4.8284e+04 58.02 1.26 

T20 Random request-service insertion 4.5020e+04 50.30 1.31 

T21 

Cluster request-based 

removal 

Maximum-volume request 

insertion 
4.5060e+04 50.39 1.31 

T22 

Maximum-net profit request 

insertion 4.5888e+04 
50.90 1.31 

T23 Minimum-service cost insertion 4.6405e+04 50.11 1.28 

T24 Random request-service insertion 4.4990e+04 49.90 1.32 

T25 

Hybrid service-request-based 

removal 

Maximum-volume request 

insertion 
4.5539e+04 58.52 1.30 

T26 

Maximum-net profit request 

insertion 4.5423e+04 
55.69 1.29 

T27 Minimum-service cost insertion 4.7207e+04 55.65 1.28 

T28 Random request-service insertion 4.3644e+04 56.03 1.31 

T29 

Random request-based removal 

Maximum-volume request 

insertion 
4.4454e+04 56.05 1.31 

T30 

Maximum-net profit request 

insertion 4.4439e+04 
56.00 1.32 
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Table 6-7 Comparison of removal-insertion operators (cont'd and end)

T31 

Random request-based removal 

Minimum-service cost insertion 4.6818e+04 56.21 1.30 

T32 Random request-service insertion 4.3679e+04 57.14 1.31 
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Figure 6.4 is divided into three sub-figures where we first compare each pair of removal-insertion 

operators with to gather (Figure 6.4(A)), then study the performance of removal (Figure 6.4(B)) 

and insertion operators (Figure 6.4(C)) individually. 

As shown in Figure 6.4(A), sometimes, the combination of removal and insertion operators is not 

successful and cannot improve the quality of a solution. Among 32 runs as reported in Table 6.7, 

the combination of low-volume request-based removal with the minimum-service cost insertion 

has the weakest performance in comparison with other combinations. Contrary to this 

combination, the solution from the low-volume request-based removal with the minimum-service 

cost insertion operators, is highly efficient and outperforms other pairs of removal-insertion 

operators. To analyze each operator individually, we computed the average of results for each 

operator as reported in Table 6.7. 

What can be concluded from Figure 6.4(B) is that the performance of hybrid service-request-based 

removal operator has the lowest performance in comparison with other operators. However, the 

low-profit request-based removal has the highest efficiency in this comparison.  

As indicated in Figure 6.4(C), the performance of minimum service cost insertion operator has the 

lowest efficient case. However, the maximum-volume request insertion operator shows the highest 

performance in this comparison. In the next section, we will compare the final algorithm with the 

exact solver.   
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Figure 6-4 Comparison of operators based on the solution quality 
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Figure 6-5 Comparison of operators based on the solution quality (cont’d and end) 

6.4 Comparison with the exact solver  

Here, we compare the proposed metaheuristic algorithm with the exact solver. As mentioned 

earlier, there are two versions for the proposed metaheuristic algorithm where the first one is the 

tuned version, and the second one is our metaheuristic with random values of parameters. For the 

random set of parameters, we have defined the values of parameters as reported in Table 6.8.  
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Table 6-10 The random set of parameters of our metaheuristic algorithm 

Metaheuristic Parameter Value 

ALNS-SA-

based 

algorithm 

𝑀𝑎𝑥𝐼𝑡  2000 

SubIt 30 

𝑟𝑒𝑑𝑢 0.9 

 𝑇𝑒𝑚 10000 

Q 0.5 

𝜛1 0.2 

𝜛2 0.4 

𝜛3 0.4 

To have a fair and unbiased comparison, all the test problems have been generated randomly where 

the number of time periods is set to seven. This set of instances is called as set of B. If we can 

consider the test problems generated for Table 6.4 and 6.5 using as the set of A, the test problems 

here solved in Table 6.9 can be considered as the instance set B which has the same size in 

comparison with the instance set of A which had been used for the calibration. We have used the 

random set of parameters for the instance set B which was presented in Table 6.8. We should say 

that both sets of instances are different since they are using random functions given in Table 6.2.  

For the instance set B, we also should say that our exact solver was so time-consuming for solving 

such test problems with more than seven time periods that is why we have generated all the test 

problems. The termination criterion was 3600 seconds for the exact solver, and we can find an 

optimal solution with no absolute gap between the upper and upper bounds. It should be noted that 

the exact solver was implemented by the CPLEX solver from GAMS 24.7.4 software.  

To analyze our metaheuristics statistically, for each instance, we have run the algorithms for 

experience. From the literature, since the metaheuristics are random, we should run them for more 

than 5 times to have a reliable result [55]. From these run times, we have reported the best, the 

worst, the average and the standard deviation of our solutions. It means that among these run times, 

the best solution is the maximum solution ever found during these solutions. The worst solution is 

the minimum one. The average and standard deviation of these solutions is also reported. 

Moreover, the average CPU time and optimality gap in comparison with the solution found by the 

exact solver is provided. Although a higher value for the best solution, worst solution, and average 
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solution, is preferred, a lower value for the standard deviation, CPU time and the optimality gap 

are in our interest. All these results are provided in Table 6.9.  

Having a general overview, in Table 6.9, we can find that our metaheuristic in both cases of random 

version and tuned version create very high-quality solutions. The criteria of CPU time and 

optimality gap are analyzed in Figure 6.5. To show that the CPU time of our metaheuristic is 

reasonable in comparison with the exact solver, Fig. 6.5(a) is referred. To confirm that both random 

and tuned versions of our metaheuristic can find strong solutions with low optimality gap, Figure 

6.5(b) is available. To analyze the robustness of our solutions, the best solution ever found by our 

metaheuristic, is studied in Figure 6.6. Finally, to study the accuracy of our metaheuristic in both 

versions, some statistical analyses using 95% confidence level where the standard deviation of our 

solutions is normalized and accordingly, the interval plot shows in Figure 6.7. It should be noted 

that our solutions for P7 and P9 are feasible but may not be optimal as the exact solver was not 

able to find the optimal one.   
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Table 6-11 . The comparison of proposed metaheuristic with the exact solver (the CPU time is in seconds) 

 
 

Instances 

Exact solver Proposed metaheuristic algorithm 

 
Solution 

Average 

CPU 

time 

Random values of parameters Tuned values of parameters 

Best 

solution 

Worst 

solution 

Average 

solution 

Standard 

deviation 

Average 

CPU time 

Optimality 

gap 

Best 

solution* 

Worst 

solution* 

Average 

solution 

Standard 

deviation 

Average 

CPU time 

Optimality   

gap 

P1 55018.00 10.99 48186.62 44380.34 46415.83 1323.53 22.57 0.12 48688.67 47487.25 48181.73 443.73 34.72 0.12 

P2 47994.00 10.97 41793.48 37856.74 38639.22 1357.04 21.91 0.13 41711.86 39317.81 40733.10 735.68 34.50 0.13 

P3 50618.00 9.70 42013.43 40171.80 40666.70 514.82 22.31 0.17 43487.92 41922.08 42743.44 513.16 35.37 0.14 

P4 114923.00 40.39 100326.70 99025.82 99730.07 460.63 29.38 0.13 100732.20 99671.84 100195.40 367.98 45.79 0.12 

P5 111927.00 96.00 97408.37 92502.05 93751.07 1589.61 31.34 0.13 96495.90 94097.13 95485.40 655.51 44.44 0.14 

P6 108779.00 45.34 93978.73 91878.73 92807.36 704.36 34.09 0.14 94082.44 91902.58 93117.70 659.29 52.15 0.14 

P7* 175268.11 3610.00 154622.60 151808.50 153316.40 948.78 42.25 0.11 155016.10 153151.90 154209.90 563.28 63.33 0.11 

P8 178151.00 523.00 154769.60 153023.10 153975.20 572.53 39.12 0.13 156326.40 154017.80 155529.80 706.47 61.62 0.12 

P9*  171138.67 3615.00 151217.90 148766.40 150068.50 842.64 35.15 0.11 151404.50 148927.90 150604.10 762.62 53.80 0.11 

P10 208721.10 1650.00 182459.90 180325.00 181592.70 735.82 25.93 0.13 184184.00 182327.30 183180.30 794.57 38.01 0.12 

P11 209104.10 1810.00 182651.80 180939.50 182087.60 612.21 24.94 0.13 184760.40 181683.20 183150.60 781.80 36.09 0.12 

P12* 195581.70 3610.00 166450.80 164851.00 165843.40 560.08 24.69 0.15 167681.20 166059.60 166994.50 662.82 36.99 0.14 

P13* 231349.50 3656.00 203137.80 201332.60 202046.50 700.14 29.93 0.12 205267.60 202315.20 203990.40 910.48 42.70 0.11 

*t*Those are the best feasible solutions not optimal.    
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In Figure 6.5(a), for large-scale instances like P8 and very large-scale instances like P10 to P13, 

the exact solver is too time-consuming where there is a clear difference between the CPU time of 

our metaheuristic in both versions with the exact solver. However, there is no big difference 

between our metaheuristics and the exact solver in other test problems. In most of test problems, 

we can understand that the random version of our metaheuristic algorithm is faster than the tuned 

version. The main finding from this chart is that our metaheuristic algorithm is able to find an 

optimal solution quicker than the exact solver. 

What can be envisaged from Figure 6.5(b) is that both versions of our metaheuristic have an 

acceptable optimality gap which is lower than 0.2 in all instances. For small instances, the 

optimality gap for the tuned version is significantly better than the optimality gap for the random 

version. Although in all instances, the optimality gap for the tuned version is lower than the one 

obtained by the random version, their difference in medium and large instances is not significant. 

For very large-scale instances, the optimality gap is around 10 to 14 percent which is acceptable 

for solving a very complex optimization problem like SSND for our proposed ALNS.  
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    (a) 

 

(b) 

Figure 6-6 Behavior of our proposed metaheuristic based on CPU time (a) and optimality gap (b) 

 

Having a look at Figure 6.6, the main finding is that the quality of our metaheuristic is acceptable 

as the best solution ever found is very close to the one obtained by the exact solver. Another 

important finding from this chart is that our metaheuristic algorithm is robust, and it can find a 

high-quality solution even if it was not tuned. From this chart, we can see that if the algorithm was 

run ten times, the best solution is very close to each other. In this regard, for solving very large-
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scale instances, we can see that the best solution from tuned and random versions, is very close to 

each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7 Comparison of best solution ever found with the exact solver 

What is evident from Figure 6.7 is that the accuracy of our tuned version is much higher than the 

random version where a lower value for the plot is preferable. This plot was computed by the 

normalized standard deviations of solutions and the main finding is that if we have used the tuned 

version of our metaheuristic, the accuracy for finding the optimal solution is higher than the one 

obtained by the random version of our metaheuristic algorithm. 
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Figure 6-8 Interval plot based on 95% confidence level for normalized standard deviation of 

solutions 

In conclusion, there are two main results from the comparison of the exact solver with our proposed 

hybrid ALNS-SA-based metaheuristic algorithm in both random and tuned versions. The first one 

is that in both versions, we can find an optimal solution by our metaheuristic if we run it ten times 

minimally. For example, the optimality gap for very large-scale instances is around 11% for our 

metaheuristic algorithms which can be acceptable for solving a very complex optimization problem 

like the SSND. The last one is that a tuned version of our metaheuristic has better accuracy, and it 

usually finds the optimal solution in most instances. 

6.5 Evolution of the best solution  

In this sub-section, more analyses on the performance of the proposed metaheuristic were done by 

the convergence analysis. Based on the tuned values, the behavior of the proposed algorithm is 

shown in Figure 6.8 where the behavior of the proposed algorithm is different in each test problem. 

For small scales, the convergence rate of the proposed algorithm is robust except for P2 where 

there are some variations in the last iterations. For medium sizes, i.e., P4 to P6, the behavior of our 

algorithm for solving the proposed model shows a strong convergence rate. The same conclusion 

can be stated for the large-scale tests, i.e., P7 to P9 where the results are stronger than the medium 

sizes. Generally, one result is that the proposed algorithm is highly efficient especially for large- 

scale networks when there are many alternatives transportation services and requests on the 

planning horizon.  
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Figure 6-9 Convergence rate of our hybrid ALNS-SA-based metaheuristic in each test problem. 

6.6 Discussions  

Academically, one general goal of the SSND is to coordinate a set of shippers and carriers while 

satisfying the requests by a set of alternative decision variables. Although many studies have been 

done to formulate the SSND, there is no optimization model to formulate a single-segment corridor 

network design while considering the possibility of extra capacity or ad-hoc arcs for unaccepted 

requests to define the opportunity loss cost. The proposed maximization model has the option to 
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accept or reject the requests where there is a big penalty for unaccepted contract-based requests 

(i.e., their solution has a negative sign) and there is the opportunity loss cost for unaccepted non-

contract requests (i.e., their solution has a positive sign). In addition to the development of a new 

optimization model, a novel metaheuristic based on the combination of ALNS, SA, and local search 

operator. As far as we reviewed in the literature, there is no study in the area of SSND to employ 

the ALNS.  

The solution is able to select the non-contract requests while considering the opportunity loss cost 

for unaccepted ones. The solution is also assigned the transportation services based on the capacity 

constraint and the time interval. In this regard, the proposed ALNS-SA-based metaheuristic starts 

with an initial solution from a constructive heuristic algorithm. Then, eight removal operators are 

employed to destroy a solution and then repair it by four insertion operators. This solution is 

evaluated by the decision rule from SA. Then, a subloop is designed to improve this solution 

iteratively using minor changes for removing requests and adding them randomly. Based on these 

characteristics, we can confirm that the proposed metaheuristic is new and has been never applied 

to solve an optimization problem.  

In this section, different test problems were generated in different scales (Table 6.1) and using 

random numbers generated by MATLAB software (Table 6.2). Since the proposed ALNS-SA- 

based algorithm has many input parameters, it is essential to tune it to improve its performance 

(Table 6.3). In this regard, the Taguchi experimental design method was applied to select 27 

experiments among 2187 ones for each test problem (Table 6.4). The RPD and S/N ratio metrics 

were employed to find the most optimal value for each parameter of our ALNS-SA-based algorithm 

(Table 6.5).  

We first compared the solution quality for our constructive heuristic algorithm in comparison with 

the proposed metaheuristic to show how the proposed metaheuristic was successful to improve the 

initial solution (Table 6.6). Then, the proposed algorithm was run for each pair of insertion- 

removal operator individually as reported in Table 6.7. Based on the performance of each pair, all 

the removal and insertion operators were analyzed and one finding is that low-profit request-based 

removal (Fig. 6.3) and maximum-volume request insertion (Fig. 6.4) are the most efficient ones. 

Another important part of this was the comparison of our metaheuristic with the exact solver as 

reported in Table 6.8. To confirm that the proposed metaheuristic is strong even it was tuned or a 
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random set of parameters, i.e., the proposed metaheuristic is divided into two versions. The criteria 

of CPU time and optimality gap were analyzed in Figure 6.5. To show that the CPU time of our 

metaheuristic is reasonable Fig. 6.5(a) was provided. To confirm that both random and tuned 

versions of our metaheuristic can find strong solutions with low optimality gap, Figure 6.5(b) was 

available. We can see that our metaheuristic algorithm has an optimality gap around 11% for 

solving very large-scale instances fast while the CPU time of the exact solver is very high and 

unreasonable. Therefore, we can say that the proposed algorithm was not very good at solving the 

proposed SSND. To analyze the robustness of our solutions, the best solution ever found by our 

metaheuristic, was studied in Figure 6.6. To study the accuracy of our metaheuristic in both 

versions, some statistical analyses using 95% confidence level for the normalized standard 

deviation of our solutions, the tuned version of our metaheuristic was more accurate than the one 

obtained by the random version as shown in Figure 6.7. Finally, the convergence analysis was done 

to see the behavior of the proposed algorithm in each test problem (Fig. 6.8).  
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 CONCLUSION AND RECOMMENDATIONS 

This thesis developed an ALNS metaheuristic algorithm for a single-segment corridor network in 

an M1M system for planning at the tactical level. This system including a set of shippers and 

carriers was modeled to plan the shipments which must be picked up at the origin terminal and 

delivered at the destination terminal where IDSP was used to manage this M1M system. 

The scope of this thesis refers to optimization for the freight transportation system where our 

problem was considered as a scheduled service network design model on a time-space network to 

be performed over the planning horizon. Our model formulated as a single-segment corridor 

network by selecting profitable requests from contract-based and non-contract requests, choosing 

a set of individuals of scheduled services, and identifying the itineraries of shipper-demand 

requests, and keeping them at the warehouse capacity of terminals. 

This thesis employed the concept of revenue management for the single-segment corridor network 

where the main objective is to maximize the total profit for all accepted requests and the 

opportunity loss cost for unaccepted ones while considering the fixed costs, transportation costs 

and penalty costs if the schedule does not meet the time window. 

The main challenge of this thesis is the solving of our single-segment corridor network in a 

reasonable time. The complexity results from time-space network and the number of shipments, 

i.e., contract-based, and non-contract requests in large-scale instances. Therefore, exact algorithms 

are not efficient to solve service network design problems where this thesis for the first time applies 

an ALNS metaheuristic combining SA and the local search for solving the mentioned problem. 

This thesis focused on the development of a new metaheuristic that considers ALNS as the main 

loop while SA and local search methods are assigned as sub-loops. A general statement is that the 

proposed algorithm based on ALNS, and SA was acceptable in solving the single segment corridor 

network problem considering execution and ad-hoc arcs for solving very large-scale instances. It 

starts with an initial solution of a constructive heuristic algorithm in which a priority-based decision 

rule is designed. Then, the most important parts were the eight removal operators to destroy some 

selected services and accepted requests from the current solution as well as four insertion operators 

to repair it. Among all removal and insertion operators, the removal based on low-profit requests 

and maximum volume request insertion operators is the most efficient. 
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After studying the performance of our constructive heuristic algorithm and the components of our 

removal and insertion operators, we analyzed our metaheuristic algorithm in both versions of 

random-based and calibrated ones statistically in terms of computational time as well as optimality 

gap in comparison with the exact solver. The main finding is that the proposed algorithm finds 

solutions with the optimality gap which is around 11% for solving very large-scale instances. Most 

importantly, CPU time of our ALNS metaheuristic algorithm is less than one minute while the 

exact solver needs around one hour or more. Therefore, the proposed ALNS cannot find high-

quality solutions. The solutions returned by ALNS display gaps higher than 10%, which is 

disappointing to be very efficient for solving our SSND. Generally, the exact method returns a 

better solution in comparison with the ALNS in all instances.  

Although this thesis made a significant contribution to the development of a new solution approach 

based on ALNS, SA, and local search for solving a single-segment corridor network design 

problem, some limitations could be addressed in our future work. Firstly, the proposed algorithm 

may be improved by the adaptive memory search operator to change the removal or insertion 

operator in each iteration using a tabu list. Secondly, several prioritized time windows can be 

considered as constraints to increase the complexity of the proposed model. Finally, different 

characteristics of transportation services can be designed as a decision variable instead of an input 

parameter in the proposed model. 
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