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RÉSUMÉ

En 2012, en Californie, seulement après 11 mois de fonctionnement, un arrêt définitif non
planifié des unités 2 et 3 de la centrale nucléaire de San Onofre (SONGS) a été effectué. Cet
arrêt était le résultat d’une usure de tube et d’une fuite induites par des vibrations dans
les générateurs de vapeur (GV) de remplacement. Les chocs inter-tubes étaient le résultat
de violentes vibrations des tubes induites par l’instabilité fluidélastique (IFE) dans le plan
découverte par la suite. L’instabilité fluidélastique est connue pour être une cause potentielle
de défaillance des tubes dans les générateurs de vapeur. Cependant, il est historiquement
connu que l’instabilité est plus susceptible de se produire dans la direction transverse à
l’écoulement c’est à dire dans la direction hors du plan que dans le plan des tubes en U
de GV. Des contre-mesures, appelées barres antivibratoires, sont désormais couramment
installées dans les GV pour lutter contre l’instabilité hors du plan. L’instabilité dans le
plan n’était pas connue pour être un problème pour les générateurs de vapeur. Avant 2012,
l’instabilité dans le plan était connue pour se produire dans des expériences de laboratoire,
mais n’a jamais été sérieusement considérée comme un risque pour le fonctionnement du
générateur de vapeur. L’intérêt cette instabilité était plutôt limitée et peu de chercheurs se
sont penchés sur ce phénomène. Cependant, l’incident de 2012 a montré que cette instabilité
ne peut être ignorée et doit être prise en compte lors de la conception des GV. Dans le cadre
d’une étude sur les instabilités fluidélastiques induites par les écoulements monophasiques
et diphasiques, plusieurs géométries de faisceaux de tubes ont été étudiées, avec un accent
particulier sur les dispositions triangulaires des faisceaux et les géométries régulières des
faisceaux carrés. Ce sont les géométries les plus courantes dans l’industrie. Des études ont
montré le caractère instable de ces faisceaux, où l’instabilité se retrouve principalement dans
la direction transversale. En plus du problème de l’instabilité fluidélastique dans le plan lui-
même, il est intéressant d’étudier le comportement de stabilité d’autre géométrie de faisceaux,
plus particulièrement de celle du faisceau de géométrie ‘carré tourné’ (rotated square (RS)
geometry). Il y a un regain d’intérêt pour l’étude du comportement de stabilité d’autres
géométries de faisceau. Le faisceau RS est particulièrement intéressant. Cette géométrie de
faisceau se retrouve dans certaines modèles de GV. Comparé à d’autres géométries, le faisceau
RS a des propriétés dynamiques uniques. Par exemple, il s’avère généralement plus stable
que les autres, en écoulement diphasique. En revanche, en écoulement monophasique, ce
faisceau présente un comportement dynamique plus complexe. Le comportement prometteur
(en termes de stabilité) du faisceau RS a motivé l’étude de la dynamique fluidélastique du
faisceau dans ce travail. De plus, le besoin industriel fait partie des raisons de l’étude de
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comportement de ce faisceau vu qu’il est actuellement utilisé dans des générateurs de vapeur.

Cette thèse présente une étude approfondie de la dynamique du faisceau RS soumis à un
écoulement transversal monophasique et diphasique. L’objectif principal de cette étude est de
comprendre le comportement des vibrations induites par l’écoulement (flow-induced vibration
(FIV)) du faisceau RS pour différentes de conditions d’écoulement. La première partie de
cette thèse étudie la réponse FIV du faisceau lorsqu’il est soumis à un écoulement d’eau.
Dans cette étude, l’effet de la variation de la flexibilité du faisceau a été étudié, en effectuant
des tests avec différents nombres de tubes flexibles. On a constaté que les tubes dans un
écoulement d’eau vibraient de manière significative en raison des périodicités de l’écoulement,
provoquant un verrouillage (lock-in) clair entre la fréquence naturelle du faisceau de tubes et
la fréquence du délestage tourbillonnaire. Cette vibration violente est due à la formation de
forts tourbillons dans les sillages des tubes. On a constaté que la plage de lock-in et l’intensité
de la résonance sont plus élevées dans le faisceau RS par rapport à d’autres géométries (telles
que la forme triangulaire tournée). Les nombres de Strouhal obtenus à partir des résultats
expérimentaux sont cohérents avec ceux rapportés dans la littérature. Cependant, la présente
étude a confirmé l’existence d’une troisième périodicité. Un test spécial a été réalisé en
installant un brise-vortex dans le sillage du tube pour confirmer l’excitation du vortex dans
le faisceau. Il a été démontré que le brise-tourbillon élimine les vibrations du tube. A’ l’aide de
simulations numériques, l’existence des deux principaux nombres de Strouhal trouvés dans les
expériences a été confirmée numériquement, et ça par les structures du champ d’écoulement
et l’analyse de fréquence correspondante. En outre, les simulations numériques ont aussi
permis la reproduction du troisième nombre de Strouhal, qui est nettement inférieur.

Afin de déterminer la stabilité du faisceau en écoulement diphasique, des tests d’instabilité
fluidélastique ont été réalisés dans la plage de 40 à 90% de taux de vide, suivis d’un essai
spécial à un taux de vide très élevé de 97%. La flexibilité du faisceau a été ajustée dans
l’une des deux directions : transversale ou dans le sens de l’écoulement. Les résultats de
cette série d’expériences montrent que ce faisceau est généralement stable dans les deux
sens. Cependant, le test à 97% de taux de vide a montré une légère augmentation des
vibrations du tube pour un seul tube flexible au sein d’un faisceau rigide. On a constaté que
les vibrations augmentent continûment à mesure que le nombre de degrés de liberté (tubes
flexibles) dans le faisceau augmente. Cependant, les vibrations n’ont pas été maintenues à
toutes des vitesses d’écoulement plus grandes. Contrairement au comportement d’instabilité
fluidélastique "typique ou classique", le faisceau se stabilise à des vitesses d’écoulement élevées.
Parmi les observations faites figure le taux d’amortissement de l’écoulement, qui augmente
rapidement avec la vitesse d’écoulement. Il s’est avéré clairement que la stabilité du faisceau
résultait d’un amortissement supplémentaire significatif dans l’écoulement diphasique. Le
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changement de dynamique à forts taux de vide a rendu nécessaire l’étude des cas extrêmes de
100% de taux de vide ou d’écoulement d’air. Les essais d’écoulement d’air ont été réalisés dans
une soufflerie pour différents arrangements de tubes flexibles. Les variations du nombre de
tubes flexibles et de leurs positions ont été considérées pour élucider le seuil d’instabilité et les
mécanismes qui le gouvernent. Les forces de couplage transversal entre les tubes adjacents de
la matrice ont induit une instabilité fluidélastique dans le sens de l’écoulement. Les résultats
ont indiqué que le mécanisme de contrôle de la rigidité est le mécanisme d’instabilité dominant
dans le faisceau RS dans un flux d’air transversal et non le mécanisme d’amortissement négatif
qui est produit dans le faisceau triangulaire rotatif.

Pour une compréhension approfondie du comportement dynamique du faisceau, les forces
hydrodynamiques quasi-statiques ont été mesurées pour toutes les conditions d’écoulement
dans les directions de portance et de traînée, chaque direction en soi. Ces forces sont les
entrées essentielles au modèle quasi-statique, y compris les effets de synchronisation. Le
coefficient de la force de portance par rapport au déplacement transversal du tube a été
mesuré, aussi bien que le coefficient de la force de traînée par rapport au déplacement du
tube dans le sens du courant. En outre, les dérivés de la force du fluide de couplage croisé ont
également été mesurés en instrumentant les tubes entourant le tube central. La dérivée du
coefficient de la force de portance s’avère positive pour l’écoulement de l’eau, et presque nulle
pour l’écoulement diphasique. Le modèle quasi-stationnaire a prédit un comportement stable
pour ce faisceau en écoulement diphasique avec un seul tube flexible, en confirmant l’absence
de mécanisme d’instabilité à amortissement négatif dans le sens de l’écoulement et dans le
sens transversal. L’instabilité en mode couplé de plusieurs tubes flexibles n’a pas été trouvée
dans la plage pratique de vitesse d’écoulement dans les deux sens en écoulement diphasique
et dans la plage de taux de vide de 40% à 90%. Dans un écoulement d’eau, le faisceau de
tubes flexibles multiples est potentiellement instable. Cependant, l’instabilité a été dissimulée
lors des tests de vibration par une résonance de basculement induite par le détachement de
tourbillons au voisinage de la vitesse critique d’instabilité fluidélastique. Contrairement au
scénario verrouillage classique, les tubes ne se sont jamais stabilisés après la désynchronisation
des fréquences entre les tubes et les vortex. La réponse soutenue de grande amplitude au-delà
du lock-in a été attribuée à l’instabilité fluidélastique, déclenchée à une vitesse d’écoulement
qui se situe dans la plage de lock-in du détachement vortex. Une analyse quasi-stationnaire
confirme que l’amortissement de l’écoulement diphasique augmente de manière monotone sur
la majeure partie de taux de vide. Il est intéressant de noter que l’amortissement du fluide
est invariant avec la vitesse d’écoulement à 97% de taux de vide. Cela explique en partie la
condition "d’instabilité transversale apparente" qui a été constatée lors des essais de vibration
avec un taux de vide de 97%. Dans le même temps, il est apparu clairement que les lim-



viii

ites du modèle quasi-stationnaire ne permettaient pas d’expliquer complètement l’instabilité
apparente. Il est devenu nécessaire d’utiliser un modèle transitoire plus sophistiqué. Une
étude plus approfondie a donc été effectuée par des mesures de force instationnaire réalisées
dans les mêmes conditions d’écoulement que les tests de stabilité. L’angle de phase entre le
mouvement du tube et les forces du fluide a été extrait pour une large gamme de vitesses
d’écoulement réduites. Ceci est réalisé en faisant varier à la fois la vitesse d’écoulement et la
fréquence d’excitation dynamique du tube. On a observé que l’angle de phase à 97% de taux
de vide augment d’abord à de faibles vitesses d’écoulement, puis diminue à des vitesses plus
élevées. Cela conduit à une diminution initiale de l’amortissement et de l’instabilité induits
par l’écoulement. L’amortissement augmente par la suite, et donc le tube se stabilise à des
vitesses d’écoulement élevées. Ces résultats sont directement corrélés aux observations faites
dans les tests dynamiques et expliquent "l’instabilité apparente" (telle que déjà mentionnée).
En effet, les résultats obtenus ici confirment l’existence d’une instabilité appelée "instabilité
à vitesse limitée", qui diffère de l’instabilité fluidélastique classique qui ne présente pas de
restabilisation pour les vitesses d’écoulement élevées.

Les résultats de cette étude ont contribué à la compréhension de la stabilité du générateur de
vapeur du réacteur APR1400. Comme le faisceau de tubes dans le générateur de vapeur est
géométriquement hybride, une géométrie triangulaire tournée avec P/D=1,33 a été étudiée
pour compléter le tableau de ce générateur de vapeur à géométrie hybride. Pour le faisceau
triangulaire tourné, l’instabilité fluidélastique dans le sens de l’écoulement n’a pas été trouvée
que pour le faisceau entièrement flexible. Alors même, le début de l’instabilité correspond à
une constante de Connors élevée. Celui-ci indique que le faisceau est presque stable dans la
direction du flux sur la plage des conditions de fonctionnement du GV.

Malgré la confirmation par expériences en laboratoire, de l’instabilité fluidélastique dans le
plan et les défaillances du GV de SONGS, il n’existe toujours pas des directives formelles
de conception de l’instabilité fluidélastique dans le plan proposé par l’industrie. Cette étude
a contribué en proposant des directives de conception pour l’instabilité fluidélastique dans
le plan des faisceaux de tubes des générateurs de vapeur. En plus des résultats de cette
étude, les données mondiales sur l’IFE dans le plan rapportées dans la littérature ont été
compilées et analysées. Les résultats ont montré que la limite de stabilité avec une constante
de Connors K = 6,5 convient à l’instabilité fluidélastique dans le plan. Cette limite indique
également que l’instabilité fluidélastique dans le plan est rare et peut être évitée avec des
considérations de conception appropriées.
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ABSTRACT

In 2012, in California, after only 11 months of operation, an unplanned permanent shut
down of the San Onofre Nuclear Generating Station (SONGS) power plant Units 2 and 3
was effected. This shut down was the result of a vibration-induced tube wear and leakage
within the replacement steam generators. Tube-to-tube impacting was the result of violent
tube vibrations caused by what was later discovered to be in-plane fluidelastic instability
(IPFEI). Fluidelastic instability has been known to be a potential course of tube failure in
steam generators. The instability was, however, historically known to be most likely to occur
in the direction transverse to the flow, or the out-of-plane (OOP) direction relative to the
plane in the SG U-tubes. Counter-measures known as anti-vibration bars (AVBs) are now
routinely installed in SG to counter out-of-plane instability. In-plane fluidelastic instability
(IPFEI) was not known to be an issue for steam generators. Prior to 2012, IPFEI was known
to occur in lab experiments but was never seriously considered a risk for operating steam
generators and partly for this reason. Interest in in-plane fluidelastic instability has been
quite limited, with only a few researchers work on the phenomenon. However, the 2012
incident showed that this instability cannot be ignored and must be considered in SG design.
In research on fluidelastic instability induced by single and two-phase flows, several tube
array geometries have been studied, with particular focus on the triangular array layout and
the normal square array geometry. These are the geometries most commonly encountered in
industry. The studies showed the unstable nature of these arrays, where the instability was
found to be predominantly in the transverse direction. In addition to the problem of in-plane
fluidelastic instability itself, there is renewed interest in the study of the stability behavior
of other array geometries. Of particular interest is the rotated square array. This array
geometry is found in a few SG designs. Compared to the other array geometries, this array
has unique dynamic characteristics. For instance, the array has been found to be generally
more stable than other arrays in two-phase flow. In single phase flow, however, the array
presents dynamic behavior which is considerably more complex. The promising behaviour
(from a stability viewpoint) of the rotated square array was a motivation to investigate the
array fluidelastic dynamics in this work. In addition, there is an industrial need to investigate
the rotated square array behaviour since it is presently used in currently operating steam
generators.

This thesis presents an indepth study of the dynamics of the rotated square array subjected
to single phase and two-phase cross-flow. The main objective of the current study is to
understand the array flow-induced vibration (FIV) behaviour for a wide range of flow condi-
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tions. In the first part of this thesis, the FIV response of the array when subjected to water
flow is studied. In the study, the effect of varying array flexibility is investigated by testing
with different numbers of flexible tubes. In water flow, the tubes were found to significantly
vibrate due to flow periodicities that cause a clear lock-in between tube array natural fre-
quency and the vortex shedding frequency. This violent vibration is due to the formation of
strong flow vortices in the tube wakes. Compared to the other array geometries (e.g. the
rotated triangle geometry), the lock-in range and intensity of resonance in this array were
found to be considerably more significant. Vortex shedding Strouhal numbers obtained the
experimental results and were found to match what was reported in the literature. However,
the existence of a third periodicity was confirmed in the present work. A special test was
conducted to unequivocally confirm the vortex excitation in the array by installing a vortex
breaker in the tube wake. The vortex breaker was shown to eliminate the lock-in induced
tube vibrations. With the use of Computational Fluid Dynamics (CFD) simulations to solve
the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations, the existence of the two
main Strouhal numbers found in the experiments was numerically confirmed by the flow field
structures and related frequency analysis. In addition, the significantly lower third Strouhal
number could also be reproduced in the numerical simulations.

In order to determine the stability of the array in two-phase flow, fluidelastic instability tests
were conducted in the range of 40%-90% void fraction, followed by a special test at a very
high 97% void fraction. Array flexibility was set in one of two directions, in the transverse,
or in the streamwise direction. The results of these set of experiments revealed the generally
stable nature of this array in both the streamwise and transverse directions. However, the
special test of 97% void fraction showed a moderate increase in tube vibrations for the case of
a single flexible tube in an otherwise rigid array. The vibrations were found to continuously
increase with the increase in the number of degrees-of-freedom (flexible tubes) in the array.
The vibrations were, however, not sustained for all higher flow velocities. Unlike ‘typical’
fluidelastic instability behavior, the array was found to restabilize for high flow velocities.
The observations made included the flow damping ratio that were seen to rapidly increase
with the flow velocity. It became clear that the stable nature of the array resulted from
a significant added damping in the two-phase flow. The change in dynamics at high void
fractions made it necessary to investigate the extreme case of 100% void fraction or air flow.
The air flow tests were performed in a wind tunnel for various flexible tube arrangements. A
variation of the number of flexible tubes and tubes locations were considered to elucidate the
instability threshold and the governing mechanisms. Cross-coupling forces between adjacent
tubes in the array induced streamwise fluidelastic instability. The results revealed that the
stiffness-controlled mechanism is the dominant instability mechanism in the rotated square
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array in air cross-flow, rather than the negative-damping mechanism that is encountered in
the rotated triangular array.

For an indepth understanding of the array dynamic behaviour, the quasi-static fluid forces
were measured for all flow conditions in the lift and drag directions separately. These forces
are the necessary inputs for a quasi-steady model including the time delay effect. The lift
force coefficient with respect to tube transverse displacement was measured. Similarly, the
drag force coefficient with respect to the tube streamwise displacement. In addition, the
cross-coupling fluid force derivatives were also measured via instrumenting the tubes sur-
rounding the central tube. The lift force coefficient derivative was found to be positive in
water flow, and nearly vanishes in two-phase flow. The quasi-steady model predicted a stable
behaviour for this array in two-phase flow when having a single flexible tube, confirming the
finding of the absence of the negative-damping instability mechanism in the streamwise and
transverse directions. Multiple flexible tubes coupled-mode instability was not found in the
practical range of flow velocity in both directions in two-phase flow in the void fraction range
40% - 90%. In water flow, a multiple flexible tube array was found to be potentially unstable.
The instability was, however, concealed in the vibration tests as a result by vortex-shedding
induced lock-in resonance in the vicinity of the fluidelastic instability critical velocity. Unlike
the classical lock-in scenario, tubes never stabilized after vortex-tube frequencies desynchro-
nized. The sustained large amplitude response beyond lock-in was attributed to fluidelastic
instability, triggered at a flow velocity which falls within the vortex-shedding lock-in range.
The quasi-steady analysis confirmed the monotonic damping increase in two-phase flow for
most void fractions. Interestingly, fluid damping was found to be invariant with flow ve-
locity for 97% void fraction. This partially explained the condition of "apparent transverse
instability" that was found at the 97% void fraction vibration tests. At the same time, it be-
came clear that the limitations of the quasi-steady model made it impossible to fully explain
the apparent instability. It became necessary to call upon the more sophisticated unsteady
model. Further investigation was therefore done via unsteady force measurements which were
conducted for the same flow conditions as the stability tests. The phase angle between the
tube motion and the fluid forces was extracted for a wide range of reduced flow velocities.
This is accomplished by varying both the flow velocity and the tube dynamic excitation
frequency. The phase angle was seen in the 97% void fraction to initially increase at low
reduced flow velocity, and then decrease at higher velocities. This translates into an initial
decrease in the flow-induced damping thus leading to instability followed by an increase in
damping and consequently tube restabilization for high flow velocities. This directly cor-
relates with the observations made in the dynamics tests and this explains the ‘apparent
instability’ described above. Indeed the results here confirm the existence of the instability
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we term ‘velocity limited’ instability which, differs from the classical fluidelastic instability
which shows no restabilization for high flow velocities.

The results of this study have contributed to the understanding of the stability of the
APR1400 reactor steam generator. As the tube bundle in the steam generator is geomet-
rically hybrid, a rotated triangular geometry with P/D=1.33 was studied to complete the
picture for this hybrid geometry steam generator. For the rotated triangle array, streamwise
fluidelastic instability was only found for the fully flexible array. Even then, the instability
onset corresponded to a high Connors constant, indicating that the array is practically stable
in the streamwise direction in the range of SG operating flow conditions.

Despite the confirmation of in-plane fluidelastic instability in lab experiments and the SONGS
SG failures, there are still no formal in-plane FEI design guideline put forth by the indus-
try. This study has contributed by proposing a design guideline for the in-plane fluidelastic
instability of tube bundles of the steam generators. In addition to the findings of this study,
world data on in-plane FEI reported in the literature was compiled and analyzed. The results
showed that a stability boundary with a Connors constant K=6.5 is suitable for in-plane flu-
idelastic instability. This boundary also shows that in-plane fluidelastic instability should be
rare and can be avoided with proper design considerations.
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CHAPTER 1 INTRODUCTION

Numerous engineering applications have structures subjected to high-speed fluid flows. In
many of these applications, structures under fluid force excitation behave, either statically
or dynamically, as part of a coupled fluid-structure system. This coupling has become of
interest as a subject of study for designers and researchers. Vibrating structures, under
certain circumstances, may fail. One of the most critical components that is subjected to
cross flow is the tube bundle in industrial heat exchangers such as boilers, condensers, and
most importantly, nuclear steam generators. Due to fluid-structure coupling, vibrations are
induced in the tubes that are subjected to cooling fluid flow. These vibrations can potentially
cause structure failures due to internal and external stresses that result in fatigue, tube wear
or tube support failures.
Failures in steam generators due to tube bundle vibrations were considered to be a result of
flow vorticity shedding before the 1960s. Since then, a large number of studies have conducted
on this topic to provide a deeper understanding of this behaviour and to set guidelines for
designers.
Tube bundles are known to be flexible in both directions; in the same direction of the flow
stream, which is known as the in-plane (IP) direction (strictly, this consists of two directions
within the plane of the U-tube), and transverse to the flow stream, which is commonly known
as the out-of-plane direction (OOP). The out-of-plane direction (transverse to the flow and
out of the plane of the tube U-bend) was found to be generally more unstable. Consequently,
steam generators were fitted with so-called anti-vibration bars (AVBs), which effectively limit
tube vibration in the out-of-plane direction. In January 2012, workers at the SONGS nuclear
generating station in California observed a leak in one of the steam generators. A shut
down was necessary to investigate the reasons and consequences of the leak. After further
investigation, it was found that the leakage occurred because of an instability in the in-flow
direction. IP instability in this tube bundle was wholly unexpected.

In steam generators, water flows across long supported bundles of tubes that contain con-
taminated flow. Water flows from the inlet at the bottom of the steam generator to cross the
tube bundle at a high velocity in order to increase the heat transfer between the tubes and
cooling water. During this process, the water temperature increases and gradually starts to
vaporise and become a mixture of water and vapour. Figure 1.1 shows a typical design of a
steam generator.
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Figure 1.1 Schematic drawing showing the internal structure of a steam generator (Source:
www.unene.ca/essentialcandu)

Previous studies have shown that there are three main sources of vibrations in tube bun-
dles: Fluidelastic Instability (FEI), Vortex Shedding, and Flow Turbulence, also known as
"Turbulent Buffeting". Compared to flow turbulence, both fluidelastic instability and vortex
shedding produce high amplitude vibrations. However, Fluidelastic Instability (FEI) is rec-
ognized as the most important excitation mechanism that must be avoided in nuclear steam



3

generators (SGs) as it results in tube bundle failure within hours in extreme cases. This
source of vibration, while physically well understood, remains a challenge to predict without
experimentation. On the other hand, the understanding of the mechanism inducing flow
periodicity (vortex shedding) in cylinder arrays is still limited.

For heat exchanger designers, it is essential to be aware of the tube array configuration effect
on its fluid-structural response. Researchers have studied several arrays to provide design
guidelines for new equipment. These studies covered well the common array geometries,
except for rotated square arrays (this is discussed in detail in Chapter 2). Although this
array shows promising dynamic stability behaviour and a more stable response in most cases,
this finding is yet to be fully verified or modelled.
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Figure 1.2 Schematic drawing showing internal details of the APR1400 steam generator [1]
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1.1 Research Motivation and Objectives

During the course of the last 40 years, triangular arrays - both normal and rotated con-
figurations - besides the normal square array have been studied extensively. The dynamic
behaviour of these arrays is now generally well understood. On the other hand, rotated
square array dynamic behaviour is more complex and less well understood. The published
literature does not yet provide comprehensive information on the array dynamics. As the
rotated square array has shown, in some previous research work, unique characteristics, in
particular a tendency to be more stable than the other arrays, the motivation of this research
work is to clarify further whether the rotated square array is generally stable or unstable
and to what extent compared to the other arrays. This should guide designers on whether to
consider this array in future steam generator tube bundle designs. The rotated square array
geometry is unique due to the large spacing downstream each tube in the array. Furthermore,
it has been found that random turbulence excitation in this array is significant compared to
the other arrays. What is known so far is the complexity of its dynamic behaviour. Neverthe-
less, could this array be more suitable for stream generator tube bundles from a fluidelastic
instability point of view?

The primary objective of this study is to contribute to the missing part of knowledge on
the fluidelastic instability of tube bundles by examining a "new" rotated square array having
P/D=1.64. Experiments are carried out in an attempt to shed new light on the missing
details in the dynamic behaviour and the fluidelastic instability modelling of the rotated
square array in cross-flow. This array with this exact pitch spacing is practically used in a
currently operating steam generator. As part of an industrial project, the array is analyzed
to provide a comprehensive understanding to its dynamic behaviour when it is subjected to
cross-flow.

In order to provide these insights, an experimental program is proposed to study the dynamic
behaviour of the rotated square array. A test loop design and construction is required to
perform the experiments in water as well as air-water two-phase cross-flow. A stability
analysis is needed to further investigate the dynamic behaviour of the array. Investigation
of the effect of the number of flexible tubes on the array behaviour provides valuable insight
into the instability mechanisms in the array. Another phase of the study aims to extend the
fluidelastic instability measurements to the array subjected to air cross-flow, and through the
analysis, investigate the fluidelastic instability behaviour of the array with various flexible
tube configurations.

Another objective of this research is to analyze the array analytically and verify the applica-
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bility of the quasi-steady model to predict the dynamic behaviour of this array. This requires
measuring the quasi-static fluid forces in both streamwise and transverse directions in water
as well as two-phase flow. The force derivatives are the key inputs needed in the model. The
multiple-degrees-of-freedom model will be included by measuring the cross-coupling forces
in the array. Additional experiments will provide the unsteady fluid forces which are key to
determining damping variation in the array.

Specific Objectives

The specific objectives of this research project are to:

1. Experimentally study the flow-induced vibrations (FIV) of the rotated square array in
single phase (water) flow to investigate the possibility of fluidelastic instability (FEI)
occurrence in the in-plane and out-of-plane directions.

2. Perform fluidelastic instability vibration tests in two-phase cross-flow as the dynamic
behaviour of the rotated square array in two-phase flow is poorly known compared to
the other array geometries. Furthermore, to study the array behaviour in air cross-flow.

3. Experimentally measure the time-averaged forces on a static cylinder displaced in differ-
ent locations as well as the unsteady hydrodynamic forces for the rotated square array.
The measurements will be performed in both in-plane and out-of-plane directions. Hy-
drodynamic interaction in the array will be investigated for the tubes surrounding the
main instrumented tube. The results will be in the form of fluid force coefficients, the
phase between cylinder motion and fluid forces generated, and the fluid damping which
are fundamental inputs in fluidelastic instability modelling.

4. Incorporate measured forces into a quasi-steady model to perform analysis for indepth
understanding of fluidelastic behaviour of the rotated square array, concluding on its
stability in various flow conditions in both in-plane and out-of-plane directions.

5. Report on the stability of the APR1400 steam generator shown in figure 1.2, especially
concerning the in-plane fluidelastic instability (IPFEI). This requires studying an ad-
ditional array with a rotated triangular geometry and P/D=1.33 in single phase and
two-phase cross-flow.

6. Utilize the results of this study, in addition to the data provided in the literature, to
propose a new design guideline for the in-plane fluidelastic instability of tube bundles
operating in two-phase flow.



7

1.2 Thesis Outline

This thesis is divided into 8 chapters. Chapter 2 presents a detailed review of the fluidelastic
instability and vortex induced vibration research for all tube array configurations, with a
detailed review of work on the rotated square array. The research results are presented in
the form of Journal publications. Chapter 3 presents the vortex induced vibration test results
and array behaviour and dynamics in water cross-flow. The results are supported with CFD
simulations showing flow structure details and verifying the test results. Array dynamics and
complete fluidelastic instability analysis in two-phase flow is presented in Chapter 4. The
study also showed the complexity of the array behaviour when subjected to air flow. Chapter
5 presents the fluid forces measured in this array in water and two-phase flow. The force
measurement study included single tube forces and hydrodynamic coupling forces between
the tubes. The measured forces are incorporated into a model to predict the fluidelastic insta-
bility onset of the array. Chapter 6 presents additional analysis and findings from unsteady
measured fluid forces. A general discussion, in addition to a proposed in-plane fluidelastic
instability design guideline are presented in Chapter 7. Finally, Chapter 8 addresses the
conclusions, contributions, and recommended future work. The rotated triangular array test
results are presented in Appendix A.
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CHAPTER 2 LITERATURE REVIEW

Compared to all excitation mechanisms, FEI is considered the most crucial as it causes high
amplitude vibrations that lead to tube failure in a short time. Thus, significant research
effort was directed to understanding this problem and providing design guidelines to obviate
instability of tube bundles. In 1962, Roberts [5] provided a study on single and double rows
of tubes subjected to cross-flow. This study is considered one of the first research studies
in self-excitation vibrations of tube bundles. Every tube bundle is characterised by mainly
two geometrical parameters. The first is tube configuration, which defines the arrangements
of the tubes in the array, and the second is the spacing between tubes. There are four
tube arrangements that are commonly used in steam generators: normal triangle, rotated
triangle, normal square, and rotated square (see figure 2.1). Cross sectional configuration is
not the only factor that defines the array; the other factor is "pitch-to-diameter ratio", which
is denoted by "P/D" (commonly referred to as pitch ratio), where P is the distance between
tubes centers, and D is the outer tube diameter. This ratio represents the compactness of the
array, which defines the spacing between the tubes. Common pitch ratios in steam generators
are in the range of 1.2 to 1.8.

Figure 2.1 Basic cross-sectional tube array configurations: (a) normal triangle, (b) rotated
triangle, (c) normal square, (d) rotated square

Flow pitch velocity (or sometimes called gap velocity) is usually used in flow calculations
instead of flow upstream velocity, and it is expressed as a function of the upstream velocity,
which is an easily measurable value (in experiments). Based on the continuity equation, flow
accelerates while entering the bundle to keep its mass flow rate constant. Hence, its velocity
increases as it crosses smaller area between the tubes. The pitch velocity is considered a
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better approximation of the real velocity value that is being used in FEI and vortex induced
vibration (VIV) calculations,

Vp = P

P −D
V∞ (2.1)

where, Vp is the flow pitch velocity, V∞, the flow upstream velocity, P , the pitch distance and
D, the tube outer diameter. A first study by "Connors" in 1970 [26] introduced experimental
work on a single row of cylinders and introduced the first equation that is still being used to
describe the instability of flexible tubes.

Vcr

fD
= K( mδ

ρD2 )n (2.2)

Equation 2.2 is known as the "Connors" equation. The left hand side of the equation refers to
the relative magnitude of the critical flow velocity to the tube vibration velocity. The right
hand side contains the "Connors" constant (K), mass ratio, and logarithmic decrement of
damping. The mass ratio is the ratio between the tube mass per unit length (including added
mass) and the equivalent displaced fluid mass by the vibrating tube, which is considered the
tube’s inertia to moving fluid inertia. The last parameter is the logarithmic decrement (δ),
which represents the amount of energy dissipated in the array by tube energy damping.

2.1 Tube Excitation Mechanisms

Forced vibrations, self-controlled vibrations, and self-excited vibrations are considered the
three main steady flow-induced vibration categories, which correspond to steady state re-
sponse, resonance, and instability, respectively. Paidoussis [27] classified the instability mech-
anisms into two classes: fluid damping-controlled mechanism and fluid stiffness-controlled
mechanism. The fluid damping-controlled mechanism is dominant for low mass damping pa-
rameter and is induced by negative damping, while the fluid stiffness-controlled mechanism
is dominant for high mass damping parameter and is dependent on phase difference and
coupling between flexible tubes.

Tubes inside a tube bundle are affected by random turbulence excitations, or "turbulent
buffeting". Rottmann and Popp [28] found that increasing turbulence intensity level inside a
tube array increases the instability of the array, which reduces the flow critical velocity value.
Some previous research in the literature concluded that turbulence intensity is much higher
for rows deep inside the array than for upstream rows. On the other hand, Rzentkowski
and Lever [29] concluded that turbulent buffeting increases tube vibrations linearly with flow
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velocity but does not affect fluidelastic instability threshold.

Figure 2.2 Common tube dynamic response in cross flow

Due to turbulence, vibration amplitude increases linearly with flow velocity until flow period-
icity excites the tube with a relatively small amplitude. After that, it keeps increasing until
the flow velocity reaches its critical value. We notice a significant increase in tube vibrations
then. Figure 2.2 shows a typical instability behaviour of a flexible tube subjected to cross
flow. Critical gap velocity of fluid-elastic instability: is when the room mean square (rms)
displacement of the tube shows a sharp increase with respect to a small increase of the gap
velocity.

2.2 Vortex Shedding Excitation

Vortex shedding is considered a self-controlled excitation mechanism. It is a periodic exci-
tation in which the frequency changes linearly with flow velocity. The drag force fluctuates
due to Von Karman vortices with double the frequency of lift force fluctuations [4]. Allowing
the tube to move can cause some changes in the vorticity frequency. Based on Bishop and
Hassan [30] this changes the shedding frequency, causing it to move to the tube’s natural
frequency. The effect is called synchronization, or more commonly known as "Lock-in". This
effect can occur over a flow velocity range of ± 20 % of the exact resonance velocity. Tube
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vibration in the transverse direction to the flow stream at a frequency close to the shedding
frequency increases the ability of the tube’s vibration to synchronize with the vortex shed-
ding. It was also noticed that large amplitude vibrations can shift the shedding frequency
by up to 40% [31],

ωn =
√
K

M
(2.3)

Vortex shedding excitation is sometimes known as Strouhal excitation. One of the common
numbers used to quantify vortex shedding is the "Strouhal Number"

Su = fvD

U
(2.4)

where fv is the periodicity frequency, and D is the characteristic diameter of the body, and
U is flow velocity. fv can also be the frequency of lift coefficient on a stationary cylinder.
In tube bundle FIV studies, D is taken as the tube diameter. For tube arrays, the Strouhal
number usually varies from 0.2 to 0.7 based on the pitch velocity, while it is constant for fixed
cylinders over a wide range of Reynolds number with a value of 0.2. Tube vibration amplitude
varies inversely with damping ratio and mass ratio: A ∝ [(ζ) × (m/ρD2)]−1, hence, lightly
damped structures are more likely to vibrate with higher amplitudes which might cause
damage more rapidly. The vortex shedding frequency follows the rule of constant Strouhal
number (Su = fvD/U). For a constant Strouhal number, shedding frequency increases lin-
early with flow speed. As the flow speed is increased, the shedding frequency approaches the
tube natural frequency and lock-in occurs. In this velocity regime, shedding frequency no
longer follows the linear relationship with flow speed based on the Strouhal number equation.

The relationship between streamwise and transverse vortex-induced vibration was studied
by Vandiver and Jong [32]. It was found that vibrations in both directions are strongly
related and a quadratic relationship between vibrations in both directions exists during lock-
in and non lock-in periods. This result provides an explanation for the doubled frequency
phenomena in streamwise and transverse vibration directions. Experiments were conducted
on symmetric cantilevered long cylinders with the same vibrational characteristics in both
directions. The authors also observed that during the non lock-in period, spectral peak
frequencies in the streamwise direction are totally equal to the summation of two spectral
peak frequencies in the transverse direction, while during the lock-in, the frequency is always
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doubled. By having the cross-flow time series data and nonlinear transfer function of the
system, it is easy to predict the streamwise vibration.

Assi et al. [2] studied the wake-induced vibrations (WIV) of a flexible cylinder positioned
in the wake of a fixed one. The authors concluded that WIV is not a resonance-induced
vibration as the vibration amplitude keeps increasing when the vortex frequency is larger
than the tube’s natural frequency. This occurs when the energy is transferred from the fluid
to the structure when the phase lag is between 0o and 180o. An elastically mounted cylinder
was placed in the shear flow, and as can be seen in figure 2.3, without vortices, shear flow
cannot excite a cylinder into WIV.

Figure 2.3 Comparison between WIV, VIV response and downstream flexible cylinder in
shear flow [2]

2.3 Models of Vortex Induced Vibrations of Cylinders

Vortex shedding is known in the literature as periodicity, periodic wake shedding, or vorticity
shedding. Flow periodicity causes an increase in tube vibrations in a narrow region of the
operating velocity range. It becomes a problem only when the shedding frequency coincides
with tubes’ structural frequencies, as resonance occurs and vibration amplitude increases sig-
nificantly. Vortex shedding becomes a major concern when it forces tube bundles to resonate.
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However, this was observed to happen only in uniform liquid cross flow. In heat exchangers,
tube bundles are subjected to cross flow at the entrance, which is normally a turbulent flow,
and at the top of the bundle, which is normally more uniform. This lowers the chances of
periodicity resonance to occur at the entrance as turbulence inhibits flow vorticity [33]. Avail-
able literature does not provide enough information in the area of modelling and estimating
vortex shedding forces on flexible tubes. It is recommended in the case of resonance to have
tube rms deflection of less than 2%D [34].

There are several semi-empirical models that have been developed over years. All developed
models are trials to solve single cylinder (either rigid or flexible) forces, but previous research
does not explain how that is affected if the cylinder is mounted in an array.

A nonlinear model based on experimental results was developed by Blevins [35] for a single
flexible cylinder in water flow. The lift coefficient is divided into two components, in-phase
and out-of-phase with cylinder motion. These two distinct coefficients, along with the mean
drag coefficient, are extracted from experimental data. The model is in good agreement with
transient time series data for a single cylinder in steady flow. The only difficulty with this
model is that it requires a large set of experiments to cover a wide range of flow velocities and
tube amplitude vibrations as VIV is known to be dependent on initial vibration amplitudes.
However, the derived equation of motion can be extended to cover multiple mode responses,
and force coefficients can be numerically or experimentally estimated. Model equations are
shown in chapter 6.

2.3.1 Wake–oscillator models

This concept was first introduced by Birkhof [36]. Birkhof noticed that the wake oscillates
from side to side, so he used a linear oscillator to describe the angle between the wake axis and
the flow direction. Bishop and Hassan [30] confirmed that the wake behaves as an oscillator,
and lift and drag forces respond to excitation forces as simple oscillators.

Hartlen and Currie [37] modelled the model structure system using a van der Pol nonlinear
fluid oscillator using two non-dimensional differential equations, for the structure displace-
ment,x , and lift coefficient, CL:

ẍ+ 2ζẋ+ x = aω2
oCL (2.5)

C̈L + αωoĊL( γ

αω2
o

ĊL
2 − 1) + ω2

oCL = βẋ (2.6)
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Where, ζ is the damping ratio, ωo is vortex shedding frequency to natural frequency ratio,
α, β and γ are evaluated experimentally. This model is one of the empirical models that
requires a single forcing function; hence, it is considered a single-degree-of-freedom model.
The advantage of these empirical models is that they provide a relatively well-accepted so-
lution to the fluid-structure coupled system as they are based mainly on experimental data.
However, they lack the understanding of problem physics.

Benaroya and Wei [38] extended Hamilton’s principle to model external flow-structure in-
teraction. Some of the new model functions are experimentally based. A single equation of
motion is developed assuming that system configuration is not prescribed at the end times
to simplify the model. Therefore, if this assumption is not used, a series of equations can be
derived to solve problems involving more complicated flow patterns.

Ogink and Metrikine [39] introduced an improved wake oscillator model to cover both free and
forced vibration cases using frequency dependent coupling. The authors used the proposed
modification that includes forced vibration experiments in order to search for the system non-
linearities. The frequency dependent coupling helps to reproduce the hydrodynamic forces on
the cylinder, and a convolution integral is used to represent the coupling in the time domain.

2.3.2 Single-degree-of-freedom (SDOF) models

SDOF models use a differential equation of single-degree-of-freedom system to describe the
tube oscillatory behavior.

m(ẍ+ 2ζωnẋ+ ω2
n) = F (x, ẋ, ẍ, ωst) (2.7)

A model was developed based on unsteady flow theory by Chen et al. in [40] in order to
predict tube structural response and lock-in frequency. The model is based on modelling the
tube as a SDOF system with excitation hydrodynamic force that includes fluid damping,
and fluid stiffness effects from experimental results. Chen defined clearly the hydrodynamic
forces in the lift and drag directions in two separate equations as function of added mass, fluid
damping and fluid stiffness coefficients. Using experimental results, fluid force coefficients
are determined using flexible tube response in water tunnel tests. Different spacings between
tubes in a row are included in the study in order to show the validity of the model with
different fluid forces in comparison with a single tube. This paper could not at the end
predict tubes’ response and compare them with experimental results. However, the work
showed that the unsteady flow theory is a valid way to find a solution to the problem.
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2.3.3 Force–decomposition models

The first force-decomposition model was introduced by Sarpkaya [41]. In this model, as it
is called, the lift force is decomposed into fluid inertia force and fluid damping components.
Sarpkaya performed a parametric study and concluded that if the mass damping parameter
is larger than unity, it governs the maximum response of the cylinder. This parameter is
defined as the ratio of the structural damping to mass ratio and is known as the Skop-Griffin
parameter.

Later, Griffin in [42] studied a resonantly vibrating cylindrical body by vortex shedding and
characterized the fluid forces inducing this vibration into: the exciting force, damping force,
the added mass force, and fluid inertia force. These components can be measured separately
or evaluated from total hydrodynamic forces. The equation of motion of the flexible cylinder
is written as [42,43]:

ÿ + 2ωnζsẏ + ω2
ny = µω2

st(CL − CR) (2.8)

where CL is the lift coefficient, CR is the reaction coefficient, µ is Skop-Griffin parameter
reciprocal, and ζs is the viscous damping coefficient.

Wang et al [44] studied a single flexible cylinder subjected to cross-flow. Based on this
study, a non-linear fluid force model was developed assuming the cylinder to be fixed at
both ends. The equations of motion were obtained from Euler-Bernoulli beam theory. Auto-
regressive moving average (ARMA) technique was used to obtain the fluid-force components
from experimental results of the freely vibrating cylinder.

As shown in the previously discussed research papers, vortex-induced vibration of circular
cylinders has been studied in order to investigate the factors influencing of lock-in, such as
mass and damping, and to model the problem. The majority of these studies model the
unsteady dynamic forces due to vortex shedding, including the phase of the forces relative to
the cylinder deflection or velocity. As VIV is inherently nonlinear, several attempts to predict
flexible tube response have been developed, but none is yet able to include the fluid-coupling
effect in tube bundles. It was also noted that different models give different results, which
shows that this problem is not yet fully solved.

2.4 Vibrations in Two-phase Flow

Most heat exchangers work in two-phase flow condition. Hence, it is very important to have
a well-defined and clear understanding of the relation between two-phase flow parameters
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and structural dynamics. Fluidelastic excitation and flow turbulence are the main excitation
mechanisms known so far in two phase flow. Taylor et al. [45] indicated that flow vorticity
shedding forces are absent in two-phase flow, especially in high void fractions (above 15%
VF). Two-phase flow parameter measurements are more difficult than single phase. Instead,
flow models are used to calculate these parameters. The simplest is the homogeneous model.
This model is based on the assumption of uniformity of flow with equal velocity of air and
water. In two-phase flow, flow velocity can be expressed as a function of the volumetric flow
rate of water and air:

V∞ = ρgΦg + ρlΦl

ρhA
(2.9)

ρh = βρg + (1 − β)ρl (2.10)

where, ρ is flow density, Φ is volumetric flow rate, A is the cross sectional area of the
flow channel, subscript h indicates homogeneous quantity. For simplicity, the homogeneous
model is also used by researchers to model flow mixture density in two-phase flow. The main
parameter defines the state of any two phase mixture is the "Void Fraction". In two-phase
flow, flow volumetric quality is calculated as the volumetric flow fraction of gas to the total
of gas and liquid

β = Φg

Φl + Φg

(2.11)

In the homogeneous model, The flow void fraction, ϵ, is assumed to be equal to the flow
volumetric quality, β.

Feenstra et al [46] developed an improved model for two-phase flow by including the velocity
ratio between gas and water. This ratio is known as the Slip Ratio

S = Ug/Ul = 1 + 25.7
P/D

√
Ri× Cap (2.12)

where, Ri is the Richardson number, which is the ratio between the buoyancy force and the
inertial force, and Cap is the Capillary number that represents the ratio between the viscous
force and the surface tension force, such that

Ri = ∆ρ2ga/G2
p (2.13)
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where, ∆ρ2 is the square difference of the liquid-gas densities, g is the gravity acceleration,
a is the gap between the tubes, and Gp is the pitch mass flux, and

Cap = ηlUg/σ (2.14)

where, ηl is the liquid viscosity, and σ is the surface tension. These two parameters are
required to calculate the Capillary number. Then, by knowing the gas-liquid velocity ratio,
the two-phase flow void fraction is derived from the linear combination of the continuity
equation of each phase

ϵ = (1 + S
ρg

ρl

( 1
x

− 1))−1 (2.15)

where, x is the flow quality, S the slipping ratio, and ϵ is the void fraction. The gas phase
velocity requires a known flow void fraction such that

Ug = xGp

ϵρg

(2.16)

The solution is therefore requires an iterative procedure. This model agreed well with exper-
imental measurements of Refrigerant 11 and air water mixture.

2.5 Damping Estimation

Damping is a very important parameter in FEI studies. In air, damping ratio, ζ, is usually
less than 0.2 %. Damping ratio is defined as the ratio between actual damping and critical
damping. Damping ratio can also be expressed as a function of logarithmic decrement, δ.

At mass fluxes before FEI threshold, tube damping decreases due to coupling between hy-
drodynamic forces and tube vibration. This is called "negative damping" [3]. It is a challenge
to estimate the damping without the effect of negative damping. Pettigrew et al. [3] reported
that damping in the lift direction decreases while it increases in the drag direction with
increasing of mass flux.

A single degree-of-freedom system can be used to model the vibration response spectrum of
a vibrating tube. Several methods are being used in order to estimate the damping ratio of
tube bundle flexible tubes: Half-power bandwidth method (HPBW), Exponential fit method,
and Frequency Response Function (FRF) fit method. Although HPBW and Exponential fit
methods provide acceptable damping estimations, FRF fit method is the most accurate one.

A direct curve fit of the FRF norm can be performed, as will be shown in later sections,
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|H(jω)| = 1
k
√

(1 − r2)2 + (2ζr)2
(2.17)

where, ζ is tubes damping ratio, r = ω/ωn, ω = 2πf . This method can be used in all single
phase and two-phase flow tests.

Figure 2.4 FRF fit method [3]

The half-power bandwidth method also utilizes the power spectrum in the damping estima-
tion by calculating the quality factor, Q that represents the frequency spectrum width at half
the maximum frequency response (Amax/2) from a PSD, or at 1/

√
2 the maximum frequency

response from a Fast Fourier Transform (FFT)

Q = 1
2ζ = ωn

ω2 − ω1
(2.18)

where, ωn is the system’s "damped" natural frequency, assuming it is the frequency with the
maximum power. For a SDOF system, the maximum power occurs at the damped natural
frequency. Hence, the assumption of the quality factor is accurate for low damping values
(i.e., ζ < 0.05). This method requires the frequency resolution to be relatively high in case
of measuring small damping ratios, otherwise, the accuracy of the damping estimation will
be significantly affected. If the damped free vibration response is known, the exponential fit
method can be used as a second method to estimate the damping by having the decaying
oscillation.

Generally, damping is the main energy dissipation mechanism in fluid-structure interaction
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problems. There are several damping sources, but the main components may be divided into:
material (structural) damping, viscous damping between tubes and fluid, flow dependent
damping due to the flow surrounding the vibrating tubes, and two-phase flow damping, and
when considering the tube-support interaction, the friction damping is also considerable. It
is difficult to separate flow dependent energy dissipation from fluidelastic forces. However,
it was shown that below the critical velocity, damping ratio is normally not affected by flow
velocity [47]. Damping ratio in two-phase flow is significant compared to water and air flow.
It is more complex to determine accurate damping values in two-phase flow due to measuring
under some flow, the dependency on void fraction, and dependency on flow regime.

2.6 Added Mass

Commonly referred to as "hydrodynamic mass", mh, may be interpreted as the equivalent
"external mass" of fluid moving with the vibrating tube

mh = mt[(
fa

fw
)2 − 1] (2.19)

where, mt is the mass per unit length of the tube, fa the tube natural frequency in air, and
fw the tube natural frequency in water, or in the two-phase mixture.

Rogers et al. [48] developed a theory based on the equivalent diameter (De) to calculate
the hydrodynamic mass for two phase flow. The equation agrees well with the experimental
measurements except for high void fractions :

mh = ρπD2

4
[(De/D)2 + 1]
[(De/D)2 − 1] (2.20)

where, De/D can be estimated from the equation

De/D =


(0.96 + 0.5P/D)P/D for triangle tube bundle

(1.07 + 0.56P/D)P/D for square tube bundle
(2.21)

For high void fractions (above 80%), the added mass is very small since the equivalent density
of the mixture is low. However, if the slip ratio, S, is high, this leads to misleading prediction
of added mass from the homogeneous model, which results in a lower added mass than
actually exists. Literature also showed that there is no significant difference between added
mass in the streamwise and transverse directions.
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2.7 Fluidelastic Instability in Tube Bundles

Fluidelastic instability is a self-excited mechanism in which the fluid forces are dependent
on structure velocity and displacement. This phenomenon occurs when there is an abrupt
increase in tube response with small increase in flow velocity. Tubes in heat exchangers
are susceptible to extensive damage and failure if fluidelastic instability occurs. In a tube
bundle, dynamic instability usually occurs when the negative fluid damping exceeds the
positive damping in the system. This results in a net negative damping, thus a significant
increase in tube vibrations as a result of the system energy increase. The hydrodynamic force
acting on a flexible tube in an array is affected by its motion as well as neighbouring tubes
motion. If this interaction causes a hydrodynamic forces proportional to tube displacements
and in-phase with tube velocity, dynamic instability occurs.

Another phenomenon observed in tube bundles is static instability, also some times called
"divergence". This occurs when fluid negative stiffness exceeds structural stiffness, which
leads to total negative stiffness of the system. The tube natural frequency is then effectively
zero. Compared to dynamic instability, this type of instability is rarely observed in tube
bundles.

Figure 2.5 Fluidelastic stability threshold for tube bundles in heat exchangers [4]

Results reported in the literature are presented in this chapter for each configuration sepa-
rately. Most studies are concerned with the single flexible tube, but some studied multiple
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flexible tubes in an array. In the literature, upstream velocity is sometimes used instead of
pitch velocity (gap velocity).

The unsteady models rely on directly measured dynamic fluid forces on the oscillating cylin-
der. Tanaka and Takahara [49, 50] measured the unsteady fluid forces on a centred tube in
an in-line tube array. This tube was excited harmonically, and the fluid forces acting on the
surrounding tubes were measured. They assumed that the fluid forces affecting a tube in the
array are a function of the tube motion as well as that of the immediate surrounding tubes
only. The experiments were conducted to measure the force amplitude and phase in the lift
and drag directions.

A discontinuity in the stability boundary curves was observed for mass damping parameters
in the range of 50 ≤ m/ρD2 ≤ 500, and authors concluded that the instability mechanism
is different between below and above this range. Later, Tanaka et al. [51] showed that this
discontinuity is not due to a fundamental change in the instability mechanisms by conduct-
ing unsteady force measurements on a single flexible tube oscillating in the lift direction.
Although Tanaka and Takahara’s model showed good agreement with experimental mea-
surements, this model is not feasible due to the effort required, which makes it unpractical
for industrial applications.

Chen [52,53] coupled the fluid forces with the tube equations of motion to develop a mathe-
matical model from Tanaka and Takahara [49]. Chen predicted the multiple stability regions
and his results were in good agreement with experimental data from Tanaka and Takahara’s
work. The author found that there are two main dynamic instability mechanisms in tube
arrays subjected to cross-flow. One is controlled by fluid damping (commonly known as the
velocity mechanism) and the other is controlled by fluid-elastic forces (commonly known as
the displacement mechanism). When the modal damping becomes negative, the energy is
transferred from the fluid to the tube’s velocity, and the system becomes unstable. When
energy is transferred from fluid to cylinder to increase its displacement, stiffness-controlled
instability occurs, and modal damping decreases with tube velocity increase. When modal
damping becomes zero, the system becomes unstable.

2.7.1 Jet-switching model

This is the first model that was developed by Roberts [54] to analyse the fluidelastic instability
of tube arrays subjected to cross flow. This model is based on some key assumptions, such
as assuming the pressure difference across the jet to be constant due to constant pressure
in the wake area. Also, as shown in figure 2.6, flow separation point is at the minimum
gap between cylinder centers. These assumptions are also necessary beside considering the
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jet flow nonviscous. Jet- Switching model doesn’t estimate the critical velocity accurately.
However, the credit for identifying the first explanation as this instability is a self excited
phenomenon goes to Roberts. Instability condition here is the synchronization between tube
motion and jet-switching mechanism so net energy is absorbed by oscillating tube.

Figure 2.6 Jet-flow model between two cylinders [5]

2.7.2 Quasi-steady model

Since several theoretical results in the literature are based on the quasi-steady approach,
it is important to outline some of its key features. Quasi-steady models are based on the
assumption that both coefficients of lift and drag are the same for flexible and rigid cylinders.
In this model, moving structure fluid-dynamic characteristics with varying and constant
velocities are equal. This assumption is reasonable if the cylinder deflection is relatively
small. Price and Paidoussis [55] assumed that the force coefficients vary linearly with the
tube displacement, the neighbouring tubes displacements and incidence flow angle. Force
coefficients sensitivity to flow incidence is related directly to sensitivity of tube deflection,
which is based on Price [56], might be an incorrect relation.

Price and Paidoussis [57–59] and Price et al. [60] refined this model by suggesting that the
fluid forces on any cylinder in an array are directly influenced only by the cylinder’s own
motion and its immediate neighbours. A time delay between the tube motion and the fluid
response was incorporated based on the time required for the flow to travel one row and the
inclination of the wake shed from a cylinder due to its transverse motion. Price and Paidoussis
multiplied the cylinder displacement by a factor, e−λµD/U to consider the retardation of the
flow approaching a cylinder, where λ, is the eigenvalue, and µ, the flow retardation parameter.

Granger and Paidoussis [6] modified the quasi-steady model proposed by Price and Paidoussis
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[55], leading to the quasi-unsteady model. This model provides a better prediction of the
fluidelastic behaviour of single tube in an otherwise rigid array. Granger and Paidoussis based
their model on the Navier-Stokes equations. The study included a comparison between both
the model and experimental results of the normal square and triangle arrays. While this
new model proposes more accurate solution to the fluidelastic instability problem, it is more
complicated and requires experimental study to provide time delay parameters. Authors
concluded that disturbance is transferred from vibrating tubes to the surrounding flow field
due to an existence of a finite layer of vortices. Unlike the quasi-steady model, quasi-unsteady
model proposes the memory effect in the flow instead of assuming an abrupt delay effect (see
figure 2.7). Although the quasi-unsteady model gives better agreement with experimental
data for the fluidelastic instability critical velocity, it is limited to single-flexible cylinder
analysis.

(a) (b)

Figure 2.7 Lift coefficient transient variation: (a) in quasi-steady model, (b) in quasi-unsteady
model [6]

Sawadogo [61] measured both the unsteady and quasi-static fluid forces in water and two-
phase air-water cross-flow in a rotated triangular array. A novel method was developed to
estimate the time delay. The limitation in the function limits the experimental data to be
used in a very narrow range of excitation frequencies and flow velocities. The quasi-steady
stability analysis results showed fairly good agreement with experimental dynamic stability
tests in the lift direction only at the high void fractions. A similar approach was adopted
by Olala [62] in the streamwise direction. The study included multiple instrumented tubes
to model the cross-coupling forces in the same rotated triangular array. It was necessary
to model the two-phase flow using Feenestra model to have compact phase and magnitude
data for the neighbouring tubes. Compared to the other models, the quasi-steady model
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requires less experimental data as an input and has good agreement with the experimental
measurements.

2.7.3 Analytical models

The advantage of using analytical models compared to quasi-steady and unsteady models is
that they require no experimental data. Paidoussis et al [63] developed a model based on
the potential flow theory. The model determined the instability threshold by considering the
velocity dependent fluid-damping effect. The time lag between fluid forces and tube motion
response was accounted for by adding a time delay term. The model was developed to predict
the instability for a single-degree-of-freedom system. In order to extend the theory to include
multiple tubes, the fluid-stiffness terms were added for better agreement with experimental
data in the cost of adding empirical inputs to the model [64].

Another SDOF model was developed by Leaver and Weaver [7,65] that does not require any
empirical data (see figure 2.8). By using the unsteady Bernoulli equation and introducing
the time delay effect into the model, a single flexible tube instability was predicted only
in the transverse direction. The model lacked the fluid-stiffness forces effect. However, the
multiple instability bands that were found to exist experimentally were first predicted using
a numerical model. In a later study, Hassan and Weaver [66] included the streamwise tube
motion in a newly developed model version. The transverse-to-streamwise natural frequency
ratio could be changed in the array. Agreement with experimental data was acceptable for
the rotated triangular geometry with a specific pitch ratio. To include other geometries, the
model was extended to include normal square, normal triangle, and rotated square arrays [67].
Variable tube pitch ratio and mass damping parameters in the model could generalize the
results exported from the simulations.

Figure 2.8 The unit cell used in the model to describe the FEI mechanism [7]
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2.7.4 Nonlinear models

Due to the imperfections in manufacturing the steam generator parts, in addition to the
design tolerance that may allow vibration gaps between tubes and the supports, the post-
instability vibrations have been studied in the literature by several researchers for the tube
arrays subjected to cross-flow. The vibrational unstable mode transition may occur as a
result of the post instability contact with inactive supports. This may lead to an early
fretting wear that reduces the steam generator tubes’ life time. Nonlinear quasi-steady forces
are incorporated in a nonlinear model developed by Price and Valerio [68]. The developed
equation of motion represents a single flexible tube model, flexible only in the transverse
direction. The linearized theory agreed very well with the nonlinear theory results for three
different arrays. The experiments performed by Lever and Rzentkowski [69] showed that the
hysteresis occurs only when the array contains multiple flexible tubes. This also agreed with
the nonlinear analysis in Price’s model. Meskell and Fitzpatrick [70] compared the linearized
model results with experimental test results for two normal triangular arrays. It was found
that the nonlinear effect is clear in the denser array, which has led to developing an empirical
model. A good agreement of the critical velocity was shown from the model, but not the
limit cycle that was over estimated. Nonlinear analysis considering tube-to-support contact
has been done [71–73].

2.8 FEI of Rotated Square Array (θ = 45o)

In recent work, Nakamura and Tsujita [15] presented test results of rotated square arrays of
different pitch-to-diameter ratios (from 1.2 to 1.5) in a wind tunnel. The authors reported
the existence of fluidelastic instability only in the in-plane (streamwise) direction for all the
pitch ratios studied. Tube vibration amplitudes increased in the streamwise direction more
than in the transverse direction. A test velocity where an increase in response occurred was
reported to be the instability velocity. Due to test facility limitations, higher test velocities
could not be attained.
A larger array of rotated square tubes was studied by Price et al. [74]. This study performed
both air- and water-flow experiments on a single flexible tube in a rigid array as well as a fully
flexible array of pitch ratio 2.12. Results showed that fluidelastic instability does not occur
in both the in-flow and cross-flow directions. However, the tube response showed a sudden
increase in water flow. The authors confirmed this to be the result of a resonance effect from
the lock-in between the tube natural frequency and the vorticity shedding frequency.

Price et al. [75] conducted new experiments on a single flexible tube in an array with the
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same pitch-to-diameter ratio of 2.12 in a wind tunnel, in an array with two tube rows and
another array with three tube rows. The flexible tube was made of a rigid cylinder attached
to the walls by a piano wire at both ends, and response was recorded for both in-flow and
cross-flow directions. The wires were connected to mechanical dampers in order to have the
ability to vary tube damping. It was found that for the two rows array, the monitored tube
remained stable for all damping values. However, the monitored tube became unstable when
located in the third row only when the logarithmic decrement of damping was < 0.08. With
the addition of a damping fourth row, although the monitored tube is still in the third row,
it goes back to a stable state. This shows how sensitive the stability behaviour is to the tube
location and number of rows in the array.

Paidoussis et al [14] presented experimental results for a rotated square array of 1.5 pitch ratio
in air and water flow. The study was performed on a single flexible cylinder in an otherwise
rigid array. The authors observed the static instability in this array for the first time, or as
it was called, "divergence". This divergence might cause wear to deflected tubes as cylinders
might chatter due to the new location in the array. Strouhal periodicities were found in the
array with close frequencies to what was reported by Chen and Weaver, and with weaker
coupling with the tubes. The sudden increase in tube vibration amplitude was attributed by
the authors to a Strouhal periodicity. No clear fluidelastic instability was reported for the
array.

Price et al [76] conducted flow visualization experiments for normal triangle and rotated
square arrays of 1.375 and 1.5 pitch ratios, respectively. The study was done on a rigid tube
array. For the rotated square array, symmetric vortices were clearly detected attached to all
tubes in the array at low Re. Strouhal numbers are in good agreement with what was found
in the literature. Strouhal number decrease was observed with flow velocity increase, but
these changes are very minor. The authors suggest that flow periodicities in cylinder array
might be a result of multiple mechanisms superposition effect.

Recently, an array, similar to the one reported in the current project, having 1.633 pitch ratio
was studied by Chung and Chu [77]. The study covered a wide range of two-phase flow void
fractions for normal and rotated square array configurations. Large amplitude vibrations of
the rotated square array were attributed to hydrodynamic coupling between the tubes in the
flow direction. It was found that vortex shedding exists in this array up to 50% VF as the
main source of vibration. A Connors constant of 14 was reported. However, there was no
clear FEI. The authors attributed this high constant to hydrodynamic coupling between the
tubes.

Kuran [78] conducted a FEI study on a rotated square array of 2.12 pitch ratio in a wind
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Figure 2.9 Periodicity frequencies vs. flow velocity [8]

tunnel. He confirmed that a single flexible tube in an otherwise rigid array is stable, and
instability occurs when the number of flexible tubes is three or more for the studied array.
Based on this result, fluid-stiffness controlled mechanism was deduced to be the cause of the
flexible tube vibration. When Kuran tested multiple flexible tubes, he located two flexible
tubes inside the array each time at different relative locations. It was found that fluidelastic
coupling between the tubes changes significantly and that tube relocation in the array affects
this interaction strength. Fluid coupling decreases significantly for flexible tubes positioned
deep inside the array when compared to when they are positioned in the first few rows. Static
instability (divergence) was observed in this array after observing the clear loss in transverse
vibrations, which indicates a loss of stiffness.

Weaver et al. [8] studied vortex shedding in a rotated square array geometry over a wide range
of pitch ratios (from 1.21 to 2.83) using hot wire measurements and flow visualization. The
authors presented a comparison with previous data from the literature. It was found that
two clear periodicities exist and can be detected in the first two rows of the array. For the
tubes deep inside the array, it was easy to detect one of the frequencies due to the difference
in local flow velocity. The authors presented a graphical representation for all periodicities
captured in the tested arrays and concluded that there always exist two periodicities. It was
also concluded that vortex shedding depends on row depth and Reynolds number. Figure 2.9
shows the two periodicities detected in the arrays over a wide range of flow velocities. This
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Figure 2.10 Streamwise and transverse response of single tube in rotated square array of
P/D=1.7 in water cross flow [9].

study uses upstream velocity in all calculations instead of flow gap velocity.

The results of Scott [9] agreed with those of Weaver [8] who conducted water flow experi-
ments on a rotated square array of pitch ratio 1.70. The single flexible tube and the fully
flexible array showed similar behaviour. The response increases gradually and the vortex
shedding frequency coincides with the tube frequency at a velocity very close to that where
the vibration amplitude increases. It was not clear whether this was a resonance effect or
fluidelastic instability, or both, occurring at very close velocities, as reported by the author.
However, knowing that the locking effect starts even before vortex shedding and tube fre-
quency completely match gives a different explanation, as this array might vibrate with high
amplitudes due to resonance.

Generally, the rotated square array shows unique features and complex behaviour, as detailed
in the research papers discussed in the foregoing. Apparently, rotated square arrays seem to
be generally more stable than other arrays. Most of the experimental results in the literature
showed more stable behaviour for the rotated square array over a wide range of pitch ratios.
However, some research work in the literature could not clearly state the stability of the
tested arrays. Also, the dynamic behaviour of the array in two-phase flow is still ambiguous.
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2.9 FEI of Other Array Geometries

2.9.1 Rotated triangular array (θ = 60o)

A rotated triangular array was experimentally studied by Olala et al. [79] for a pitch-to-
diameter ratio of 1.5. A quasi-steady fluidelastic instability analysis was performed in this
work. Four flexible tubes were tested in an array of fixed tubes. Experimental results showed
the record of lift and drag coefficients with streamwise dimensionless displacement of the
mid tube in the array. Apparently, the drag force coefficient increases for the central tube
starting from 0% void fraction up to around 50 %, then decreases again at high values of void
fraction. The drag coefficient was found to increase when the tube is moved downstream,
while it decreases when the tube is moved upstream. As the results showed, the lift force
coefficient does not show any changes by moving the tube. The drag coefficient of the
downstream neighbouring tube in the array was found to have a reversed variation with
central tube displacement compared to the upstream tube. Results also showed that for
larger number of flexible tubes, critical flow velocity has lower values.

Scott [9] conducted experiments on two arrays, one with 1.73 and the other with 1.375 pitch
ratio. A single flexible tube in the compact array became unstable with a clear critical velocity
and a slight shift in the tube frequency, while for the narrow spaced array a critical velocity
was less clearly defined; however, instability is observed. A fully flexible array was also
unstable, but with higher fluid cross-coupling between the tubes, which showed an increase
in the tube vibration response with flow velocity. This coupling also results in changes in
tube frequency, partly due to its effect on added mass.

Mureithi et al [10] conducted experiments on a rotated triangular array of 1.37 pitch ratio,
with tubes of 40.4 mm outer diameter in air flow. The experiments are concerned with
the instability in the in-flow direction as the tested array is already known to be inherently
unstable in the transverse direction. The array showed an expected behaviour of tubes
instability. The paper confirmed that a single flexible tube can not undergo single degree-
of-freedom fluidelastic instability - in streamwise direction - in the rotated triangular arrays.
Figure 2.11 shows that instability is more likely to happen with the increase in flexible tubes
in the array.
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Figure 2.11 Number of flexible tubes in the array shows how this affects tubes dynamic
behaviour: △, one tube flexible; ∗, two tubes flexible; □ , one column flexible; ×, seven
tubes flexible; and ♢ , all tubes flexible [10].

Weaver and Elkashlan [80] conducted experiments in a wind tunnel on a rotated square array
of 1.375 pitch ratio to study how stability behaviour changes with tube damping and mass
ratio. It was noticed that damping in the in-flow direction is more sensitive to flow velocity.
However, total damping increases gradually with flow velocity and reaches its maximum value
at around 0.5 Vc, and then decreases again till it approaches zero. The authors indicated
that the Connors equation is not the most adequate to define the stability threshold of a
tube bundle as they found that the critical velocity is less dependent on tubes damping and
mass damping parameters than indicated by Connors equation.

Austermann and Popp [81] tested rotated triangular arrays of 1.375 and 1.25 pitch ratios in
a wind tunnel. The compact spacing array showed instability for the tube in the first row,
while single tubes tested in other rows vibrated due to turbulence. The large spacing array
of 1.375 pitch ratio was compared with the one tested in Weaver and Elkashlan [80] of the
same pitch ratio. Both found that the single flexible tube located in the third row reaches
instability before tubes in other rows. Tubes with low mass damping parameter had several
instability thresholds, and those with higher mass damping parameter did not show high
amplitude vibrations.
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2.9.2 Normal triangular array (θ = 30o)

Normal triangular arrays with small pitch ratio do not usually show fluidelastic instability
for the case of single flexible tube [82]. Scott [9] studied normal triangular arrays of 1.33
and 1.5 pitch ratios with a 25.4 mm tube diameter and with rigid tubes made of acrylic.
For a single flexible tube in an otherwise rigid array, no FEI was observed, but only a small
increase in tube vibrations due to flow turbulence. For fully flexible array of 5 rows and 17
columns, a single peak showed up with an increase in tube’s frequency. That was explained
by Scott as a possibility of switching in vibration modes.

Meskell and Fitzpatrick [70] conducted an experiment on two normal triangular arrays of
1.32 and 1.58 pitch ratios. Instability was observed for a case of a single flexible tube. Using
nonlinear curve fitting, fluid forces were linearly modelled and agreed well with instability
threshold of 1.58 pitch spacing array. However, predicted results did not agree with the array
of 1.32 pitch ratio. This was explained by the significance of the nonlinear relation between
fluid forces and tube motion in the 1.32 array; the model used was a linearized model.

Polak and Weaver [83] studied vortex shedding in normal triangular arrays for a wide range
of pitch ratios between 1.4 and 2.67 using hot-wire measurements. This study is very similar
to that by Weaver et al. [8] but with a different array configuration. This fundamental study
provided a Strouhal number change with pitch ratio and a comparison with results from the
literature. While spectral peak frequency increases linearly with flow velocity, it was found
that a high frequency periodicity shows up in the first row and decays gradually deeper into
the array, and totally disappears in the fourth row. For a large pitch ratio array of 2.67, the
calculated Strouhal numbers are 0.492 and 0.349. This study shows that the first or second
row in the array is the source of the vortex shedding, and some vortex shedding dissipates
inside the array. For pitch ratios <2, only first row periodicity exists, but for wide spacing
arrays with pitch ratios ≥ 2, second row periodicity also exists but with lower frequency and
lower intensity. Note that all flow velocities used in the work of Weaver are upstream flow
velocities.

2.9.3 Normal square array (θ = 90o)

Feenstra et al. [84] studied a group of 12 tubes in a normal square array with a pitch ratio of
1.485. The operating fluid was Refrigerant 11, and vapour was generated by heating up the
fluid using electric heaters. Both single flexible and fully flexible array tests were performed
in single phase and two-phase flow. A single flexible tube was observed to be unstable in
the lift direction, while in the drag direction, symmetric vortex shedding caused an increase



32

in tube response, but no instability was observed. A fully flexible tube array test was also
conducted, and instability occurred in both lift and drag directions. The stability threshold
of the fully flexible array was 25% less than the single flexible tube threshold. Tubes response
in the drag direction was quite high (up to 6% D) due to vortex shedding for the case of the
fully flexible array. Two-phase flow tests did not show instability in the case of a single flexible
tube. However, they showed instability for all tested void fractions in the fully flexible array,
which means that the instability mechanism in this case is due to hydrodynamic coupling
between neighbouring tubes (negative stiffness mechanism).

Weaver and Abd-Rabbo [85] conducted a flow visualization study on another normal square
array of 1.5 pitch ratio, as well as instability analysis. Large vibration response resulted
from vortex shedding resonance and resulted in 6%D vibration amplitudes in water. Flow
visualization results of the first two rows showed different flow patterns from those deep rows
inside the array.

Weaver and Young in [86] conducted a water tunnel experiment on a 1.5 pitch ratio square
array. The array could be rotated from 0o to 45o, so both normal and rotated square geome-
tries were tested. The array consisted of four rows of flexible tubes. With the change of the
incidence angle, the flow periodicity frequency was observed to change.

Price and Paidoussis [87] conducted experiments to study the instability of a normal square
array of 1.5 pitch ratio in air and water flows. The study covered several locations for the
flexible tube inside the array. For all locations, tube was unstable in the transverse direction,
and changing tube’s location had negligible effect on tube stability. Moreover, critical velocity
was insensitive in water flow. Vortex shedding with low frequency occurred in air and water
flows with Strouhal number less than 0.1.

2.10 Numerical Solutions of Fluidelastic Instability

The majority of the research work in the numerical area of solving this problem and investi-
gating fluidelastic instability has studied the instability in the flow transverse direction. The
reason is that instability is dominant in this direction even in the case of a single flexible-
centered cylinder. Shinde et al. [88] performed a LES simulation with a comparison to
experimental results of his own test section. LES is still a challenge for high Re as it requires
expensive computational power, hence, this paper studied the instability for low range of
Re. Again, recent research work shows that a single flexible tube in either a set of fixed or
flexible array of cylinders will have the same critical velocity. The domain is discretized into
25.3 million elements (structured mesh) to perform this LES simulation.
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Shinde et al. [89] showed numerical simulation results of the same problem for high Re (up
to Re = 20, 000). The NSMB (Navier–Stokes Multi Block) code was used in the simulation
of the "CEA-DIVA" configuration, which is composed of 20 cylinders with P/D=1.5. The
authors simply explained the instability to occur by change of sign of the phase difference
between the fluid force and the cylinder movement when the transverse flow velocity increases.
A 2-D simulation here is performed to predict the unsteady forces for a static tube array.
Unsteady loads on the central cylinder is presented vs. time for different turbulence models.
The phase lag can be easily predicted by the numerical simulation, as was shown in the results.
For high Reynolds numbers, 3-D simulation more efficiently predicts the instability due to
the existence of highly turbulent flow. The authors, at the end, showed that 3-D simulation
can efficiently estimate the displacement amplitudes better than the 2-D simulation.

Hassan et al. [90] predicted the fluidelastic instability numerically for inline square and normal
triangle tube arrays. This paper provided a good explanation of the problem with a neat
literature survey. Tanaka and Takahara’s unsteady flow model in [50] requires the availability
of fluid force coefficients. While these coefficients are usually investigated experimentally,
they are estimated numerically in this work. The authors suggested using CFD simulations
to predict the parameters of fluid forces for theoretical FEI models, as simulating such an
unsteady problem using CFD is computationally very expensive. However, in this paper,
CFD is coupled with UFM to get the unsteady fluid forces and coefficients. ANSYS-CFX
is used to perform these simulations. The pitch to diameter ratios of the studied arrays are
1.33 and 1.35 for square and normal triangle arrays, respectively.

For a pitch-to-diameter ratio of 1.28, Tan et al. [20] performed another LES numerical sim-
ulation using CFX to verify their own experimental results. Tube natural frequency and
damping were measured in air, while in water it was difficult for the authors to do so. In-
stead of measuring in water, damping was numerically estimated by CFD. Tube motion was
assumed to be rigidly moving and supported by a spring with stiffness k. Spring coefficient
k was calculated as k = ω2m. Results showed good agreement between experimental and
numerical results, however, the match is not good enough.

Jafari et al. [91] predicted the threshold of fluidelastic instability of a normal triangular
array. The solver used is a finite volume based algorithm. This algorithm is validated by
results presented in the literature. Geometry and dynamic conditions are chosen based on
previously published experimental work. The flow field is two-dimensional, viscous, unsteady,
and turbulent, with density of 1000kg/m3 (water flow). The fluid-structure coupling is solved
by including feedback between the flow field and structure equations of motion at each time
step, which is done by getting the flow-induced forces by solving a RANS model. Then, by
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Figure 2.12 FIV regimes with and without splitter plate for single cylinder [11]

solving the equations of motion of the structure, and based on the new position of each node
in the domain, the mesh is refined. The time step used is 1 ms. The dynamic properties of
the flexible cylinder are chosen based on an experiment from the literature (with Re of 104).

Flow induced vibration (FIV) was studied by Sahu et al. [11] for a wide range of flow velocities.
This study has been numerically conducted on a single cylinder with and without a splitter
plate. Several splitter plates have been used to show the effect of plate length and width
on the wake area. As shown in figure 2.12, FIV regimes are defined as VIV, steady and
galloping regimes. As expected, the vibration response of an isolated cylinder increases due
to lock-in. During lock-in, the vibration frequency is close to the cylinder natural frequency.
Numerical results showed a significant reduction in cylinder peak amplitude response due to
the existence of the splitter plate in the wake region.

Longatte et al. [92] presented a newly built numerical tool to predict tube vibration in fluid
at rest and in cross-flow. Numerical simulations were carried out on Granger’s test results on
a normal square array [93] of 9 rows and 7 columns of fixed tubes except for a central flexible
tube that is moving due to hydrodynamic forces. Simulation was carried out first for the
tube in water at rest in order to evaluate added mass and damping. Numerical simulation
results were compared fairly to those conducted experimentally.

2.11 Concluding Remarks

Over the last 40 years, experimental studies have been done on normal and rotated triangular
arrays, and some on normal square arrays. Rotated square arrays have not received significant
attention from researchers. This has led to a lack of knowledge of this array’s dynamic
behaviour. Thus, a reliable prediction of fluidelastic instability in the rotated square array
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has not yet been achieved. Previously discussed studies on the rotated square array showed
more stable behaviour than for other configurations. However, no one is yet able to confirm
its stability in single phase and two-phase flow. Although some studies observed a change in
the critical flow velocity with increasing the number of flexible tubes, no one could provide
details on the existence of multiple tubes instability condition as in some cases, a single
flexible tube does not undergo instability.
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CHAPTER 3 ARTICLE 1: FLOW-INDUCED VIBRATIONS OF A 
ROTATED SQUARE TUBE ARRAY SUBJECTED TO SINGLE-PHASE 

CROSS-FLOW

Sameh Darwish, Abdallah Hadji, H.P. Pham, Njuki Mureithi, Minki Cho

This article was published in the "Journal of Pressure Vessel Technology", volume 144(4), pages 
041405, January 13, 2022.

In this chapter, the flow-induced vibration (FIV) of the rotated square array is studied in 
water flow. This is to meet the specific objectives to:

• Investigate the susceptibility of the array to streamwise and/or transverse fluidelastic
instability in water flow.

• Study the vortex-induced vibration (VIV) of the tube array and find the Strouhal
numbers.

The paper presents a series of flow-induced vibration tests in water cross-flow. Single and 
multiple flexible tubes were examined in both the transverse and streamwise directions sepa-
rately. It was found that a flexible tube frequency synchronizes with the flow vortex shedding 
frequency. This synchronization results in a strong lock-in causing the tube to violently vi-
brate. Despite of the strong vibrations, no transverse or streamwise fluidelastic instability 
was reported. Similar observation was made when tested a column of flexible tubes. In the 
case of fully flexible array, at low range of flow velocities, same behaviour was seen. In the 
transverse direction, however, no reduction in the tubes vibration amplitudes was noticed 
after the flow periodicity de-synchronized with the tube natural frequency. This was further 
discussed in detail in chapter 5. Using Computational Fluid Dynamics (CFD), the measured 
Strouhal numbers were confirmed using unsteady simulations. A third low Strouhal number 
was found. However, it is less concerning as it never interferes with the tube frequency at 
the practical operating range of flow velocities.
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Abstract

This paper investigates the flow-induced vibration (FIV) and possibility of fluidelastic in-
stability occurrence in a rotated square geometry tube array through a series of experimental
tests. All experiments presented here were conducted in water cross-flow. The array’s pitch
spacing ratio of approximately P/D=1.64 is somewhat larger than that commonly found in
typical steam generators. The stability of a single flexible tube as well as multiple flexible tubes
were investigated. The tubes were free to vibrate purely in the streamwise direction or the
transverse direction relative to the upstream flow. A single flexible tube, in the otherwise rigid
tube array, was found to undergo large amplitude vibrations (up to 40% D) in the transverse
direction. Tube vibration frequency analysis indicated the presence of two frequency compo-
nents related to vorticity shedding in the array. This potential vorticity-induced-vibrations
(VIV) and potential coupling between VIV and FEI are discussed in the paper. Test results
for streamwise flow-induced vibrations are also presented. Results in water flow show a pos-
sible effect related to flow periodicity at low velocity. At significantly high flow velocities,
the tubes are found to fully restabilize. This restabilization after VIV locking has not been
previously reported as an unlocking result. The present results suggest that the flow-induced
vibration of tubes in a rotated square array configuration is significantly more complex than
in other geometries, particularly for the streamwise vibration case.

3.1 Introduction

Shell-and-tube heat exchangers are subjected to high-speed flows, which may result in large
amplitude structural oscillations and possibly tube failure when supports are ineffective. Tube
bundles are susceptible to fluidelastic instability (FEI), vortex shedding and flow turbulence
as three main sources of vibrations in fluid cross-flow. Compared to flow turbulence, both
fluidelastic instability and vortex shedding can produce high amplitude vibrations. Fluidelas-
tic instability (FEI) is recognized as the most important excitation mechanism that must be
avoided in nuclear steam generators (SGs). The instability has been the subject of study over
the past 50 years. The transverse direction (transverse to the flow, and out of the plane of
the tube U-bend) was found to be generally more unstable. Consequently, steam generators
are fitted with so-called anti-vibration bars (AVBs) which effectively limit tube vibration in
the transverse direction. The failure of the SONGS steam generators in 2012 [94] confirmed
for the first time the possibility of streamwise (in-plane) fluidelastic instability (IPFEI) in an
operating steam generator.
Vorticity shedding and associated flow periodicity is the second potentially important cause
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of flow-induced vibration in tube arrays. In SGs, vortex shedding excitation is important
in the single phase flow regions. As detailed further below, vortex shedding in tube arrays
is strongly dependent on tube array geometry. Rotated square arrays with large tube pitch
spacings have been found to be particularly susceptible to vortex shedding resonance. While
vortex shedding excitation is generally considered as a resonance excitation distinct from
fluidelastic instability, some recent work [95,96] has suggested the excitation (lock-in) can be
modelled as a coupled mode flutter phenomenon based on a linear wake oscillator model. In
this case, however, one of the degrees-of-freedom derives from the fluid (lift force coefficient).
While the problem of flow-induced vibration has been intensively studied experimentally
and modeled analytically for normal triangular, rotated triangular and normal square arrays,
fewer studies to date have dealt with rotated square arrays in details. The dynamic behaviour
of this array geometry in different flow conditions and for different pitch ratios remains, at
best, only partially understood.

In recent work, Nakamura and Tsujita [15] presented wind tunnel test results for rotated
square arrays of different pitch-to-diameter ratios (from 1.2 to 1.5). The authors reported
the existence of streamwise fluidelastic instability for all the pitch ratios studied. Tube vibra-
tion amplitudes increased in the streamwise direction more than in the transverse direction.
A test velocity where an increase in response occurred was reported to be the instability
velocity. The possibility of vortex shedding resonance was not investigated. Due to test
facility limitations, higher test velocities could not be attained. A larger array of rotated
square tubes was studied by Price et al. [97]. This study performed both air and water flow
turbulence measurements as well as flow induced vibration experiments on a single flexible
tube in an otherwise rigid array of pitch ratio 2.12. Results showed that fluidelastic instabil-
ity does not occur, in either the in-flow or cross-flow direction. The tube response, however,
showed large amplitude vibrations in water flow. The authors confirmed this to be the result
of a resonance effect from the lock-in between the tube natural frequency and a vorticity
shedding frequency. Price et al. [98] conducted further experiments on a single flexible tube
with the same pitch-to-diameter ratio of 2.12, in an array with two tube rows and a second
three tube row array. It was found that for two rows, the monitored tube remained stable,
however, instability existed in the transverse direction when the tube was located in the
third row. With the tube in a middle row, the tube showed stable behaviour. No streamwise
instability was reported for any array configuration or tube damping. Static instability (or
divergence) was first experimentally observed by Paidoussis et al. [14] in a rotated square
array of 1.5 pitch ratio in air and water flow tests, in both in-flow and transverse directions.
Fluidelastic instability was observed in air tests for different mass damping parameters, and
different locations for the flexible tube in the array. For water flow, the sudden increase
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in tube vibration amplitude was attributed to a Strouhal periodicity by the authors. No
clear fluidelastic instability was reported for the array. Price et al. [99] conducted flow vi-
sualization experiments for normal triangle and rotated square arrays of 1.375 and 1.5 pitch
ratios, respectively. The study was done on rigid tube arrays. For the rotated square array,
symmetric vortices were clearly detected attached to all tubes in the array, for low Re.

Recently, an array, similar to that reported here, having 1.633 pitch ratio was studied by
Chung and Chu [77]. The study covered a wide range of two-phase flow void fractions for
normal and rotated square array configurations. Large amplitude vibrations of the rotated
square array were attributed to hydrodynamic coupling between the tubes in the flow direc-
tion. Weaver et al. [8] studied vortex shedding in rotated square array over a wide range
of pitch ratios (from 1.21 to 2.83). The authors also presented a comparison with previous
data from the literature. It was found that two clear periodicities exist and can be detected
in the first two rows of the array. The results agreed with those by Scott [9] who conducted
water flow experiments on a rotated square array of pitch ratio 1.70. The single flexible tube
and the fully flexible array showed similar behaviour. The response increases gradually and
vortex shedding frequency coincides with the tube frequency at a velocity very close to that
where the vibration amplitude increases. It was not clear whether this was a resonance effect
or fluidelastic instability, or both occurring at very close velocities. Generally, the rotated
square array shows unique features and complex behaviour as detailed in the papers cited in
the foregoing. Theoretically, Price and Paidoussis [100] showed that the occurrence of fluide-
lastic instability in a rotated square array of 2.12 pitch ratio requires the existence of multiple
flexible tubes (at least two degrees-of-freedom). This was later confirmed by Price and Ku-
ran [13], where the instability mechanism found in the same array subjected to air cross-flow
is the stiffness mechanism. This conclusion was based on the occurrence of instability when
multiple flexible tubes are tested, while a single flexible tube did not undergo instability. A
closely packed array was studied by Abd Rabbo and Weaver [101] of a 1.41 pitch ratio. The
work included a flow visualization study. The authors reported that both single and multiple
flexible cases showed became unstable, although the observed periodicities in the array.

Based on the findings discussed in the previous section, It is clear that much remains to be
done for a clear understanding of the rotated square array behaviour. The present study
contributes results on a rotated square array of pitch ratio 1.64 in water cross-flow. Both
streamwise and transverse direction tube responses are measured. Different configurations
of the flexible tubes are studied to investigate the array behaviour with different number of
flexible tubes.

In order to arrive to a clear conclusion about the dynamic behaviour of the tube bundle in
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the steam generator, two-phase flow and air flow tests are necessary. The present research
work is part of a test program which includes test results for a range of flow conditions. The
results of tests in water flow are presented here.

3.2 Experimental Apparatus

The experiments are conducted in a water tunnel loop with water circulated by a 7.5 HP
pump, with a capacity of 25 l/sec (see Fig. 3.1). An electromagnetic water flowmeter is
installed in the loop for accurate flowrate monitoring. The flow loop is instrumented with a
thermocouple to monitor fluid temperature during the tests. The tube bundle is mounted in
a test section of cross sectional dimensions 220x190.5 mm2.

The tube array consists of 32 tubes, either rigid or flexible, arranged in 9 rows an 9 columns,
Fig. 3.2. This allows for a wide range of test configurations. Side half tubes are mounted on
both side walls of the test section to reduce wall effect. All flexible tubes are instrumented
with full bridge strain gauges type 2 (Tee Rosette). This type of bridge contains 4 active ele-
ments. The chosen setup is sensitive to bending only (rejects axial strain), is compensated for
temperature, compensated for aggregate material (due to Poisson’s ratio), and compensated
for lead resistance.

(a) (b)

Figure 3.1 Test loop showing: (a) loop components and (b) test section with tube bundle
assembly
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Figure 3.2 Schematic of the rotated square array tubes layout

Figure 3.3 Flexible tube design with its mounting

The ’flexible tubes’ consist of a rigid tube made of Inconel alloy, mounted on a flexible
Aluminium support plate, Fig. 3.3. Due to the rectangular plate having a small thickness-
to-width ratio, the flexible tubes vibrate in only one direction, either streamwise or transverse,
depending on support plate orientation relative to the flow. The normal direction frequency is
five times higher and thus effectively rigid. Each flexible tube is fixed to the test section using
a tube housing to mount the rectangular plate for the purpose of subjecting the cylindrical
part only to the flow. The natural frequency and damping ratio of all flexible tubes are
measured in air prior to the the tests in order to have well tuned tubes with the same
dynamic properties. Fig. 3.4 shows the tube in-air response and frequency spectrum. The
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(a) (b)

Figure 3.4 Sample of tube response and frequency spectrum in air

average tubes damping ratio is 0.23 % damping ratio in air (δ=0.0145), with mass damping
parameter (mδ/ρD2) of 20.6 in air, and 0.24 in water.

Three different configurations of flexible tubes are studied in order to give better understand-
ing to the array in water cross-flow direction: (i) single flexible tube, located in the middle
column, surrounded by rigid tubes. In this test the tube was located in the 4th row and in a
later test in the 6th row. (ii) column of four flexible tubes, (iii) fully flexible array of 32 flex-
ible tubes. Figure 3.2 shows a schematic drawing of monitored flexible tubes locations in the
array. The numbered flexible tubes located in the 2nd, 4th, 6th, and 8th rows are monitored.
Before the tubes are mounted into the test section, all instrumented tubes are calibrated to
have a relation between strain and displacement using CMCP610 benchtop calibrator.

To present the tube dynamic behaviour, the root mean square (rms) of tube tip dynamic
displacement is used. All flow velocity values used in the analysis correspond to the pitch
flow velocity (Vp). This velocity is related to the upstream velocity (V∞) by

Vp = V∞
P/D

P/D − 1 (3.1)

where, P is the pitch gap between the tubes, D is the tube (outer) diameter, and V∞ is the
upstream flow velocity entering the test section. This equation is based on the continuity
equation and most commonly used in the literature to describe the mean interstitial flow
velocity for all the arrays. All velocity values are presented in the non-dimensional form.
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Figure 3.5 Vortex-induced vibrations of a transverse single flexible tube located in the 6th
row

The dimensionless flow velocity V̄p is defined as

Vp = Vp

fD
(3.2)

The dimensionless flow velocity is often be referred to as the ’reduced velocity’. A high (2kHz)
sampling rate is used in the flow-induced vibration tests. Strain and flow velocity data were
collected using a calibrated data acquisition system, along with the water temperature and
pressure gauge for monitoring. Before the tubes are mounted into the test section, strain-
to-displacement factor is accurately measured using a calibrated device, and used to present
the tube dynamic response as a ratio of its outer diameter (%D). All tests are conducted up
to the flow capacity of the test loop.

3.3 Experimental Results

3.3.1 Transverse FIV results

Single flexible tube

The single flexible tube in an otherwise rigid array was tested first. The effect of the tube
location in the array was also investigated. The flexible tube was first located in the 4th
row and later in the 6th row (this corresponds to tube numbers of 2 and 3 in Fig.3.2,
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Figure 3.6 Response spectra of single flexible tube in the transverse direction - 6th row

respectively). The rms response of a single flexible tube located in the sixth row is plotted
against flow velocity in Fig. 3.5. In the transverse direction, tube response is found to be low
in the (reduced) velocity range 0.8 to 3. For velocities above 3.3, the tube response increases
significantly. An initial, possible, explanation for this might be the occurrence of fluidelastic
instability at this flow velocity. When the flow velocity increases after velocity of 4.5, the
tube vibration amplitude was found to be reduced.

The tube response frequency spectres, Fig. 3.6, provide insight into the observed tube re-
sponse. The response PSDs show that, in addition to the response at the natural frequency,
a second periodicity exists. This flow periodicity frequency approaches the tube natural fre-
quency as flow velocity increases. The Strouhal number for this periodicity, calculated based
on the flow pitch velocity, is Sp=0.26, based on the definition

Sp = fvD

Vp

(3.3)

where, fv is vortex shedding frequency, D is tube diameter, and Vp is flow pitch velocity.
Figure 3.7 confirms this Strouhal number when the periodicity frequency and tube (natural)
vibration frequency are plotted versus the flow velocity. Based on the results presented in
Fig. 3.5 and Fig. 3.7 , in addition to the PSDs in Fig. 3.6, it is clear that lock-in occurs
between the vorticity shedding frequency and the tube natural frequency. Lock-in starts near
a reduced velocity of 3.3 and causes a significant increase in tube dynamic response which



45

Figure 3.7 Natural frequency of the tube and periodicity frequency in the transverse direction

peaks near reduced velocity of 4. The frequency lock-in is clearly in Fig. 3.7 for the velocity
range 3.7 < Vp/fD < 5.9. This is also the range of the highest response in Fig. 3.5. For
Vp/fD > 6 the vortex shedding frequency separates from the tube natural frequency, fn.
Coincidentally, the tube response decreases to below 5%D. The foregoing strongly suggests
that the large amplitude tube vibrations in Figs. 3.5 and 3.6 are mostly likely onset by
flow periodicity rather than the fluidelastic instability. In a later section in this paper, CFD
simulation results of the flow in the tube array are presented. The results provide further
evidence supporting flow periodicity excitation rather than the fluidelastic instability. The
periodicity frequency cannot be clearly detected beyond Vp/fD = 3.3 as it merges with the
tube frequency at higher velocities.

When the flexible tube was placed in the 4th row, a similar dynamic response was observed.
However, the lock-in occurrence was relatively earlier as seen in Fig. 3.8. This is attributed
to the existence of a second flow periodicity at a higher frequency. This also explains the
moderate tube vibration change at Vp/fD = 4.5. Figures 3.9 and 3.10 depict the two
periodicities having Strouhal numbers 0.27 and 0.4, respectively, observed in the 4th row.

Four flexible tubes - column configuration

The second array configuration tested had four flexible tubes, all instrumented and aligned
in a column as shown in Fig. 3.2. Tubes are referred to as tube 1 ,2 ,3 and 4, respectively,
according to the row location in the array. The vibration response of the four tubes is
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Figure 3.8 Vortex-induced vibrations of a transverse single flexible tube located in the 4th
row

Figure 3.9 Response spectra of single flexible tube in the transverse direction - 4th row

presented in Fig. 3.11. The increase in the rms response for all four tubes is seen to start at
a reduced flow velocity of 2.5, reaching a maximum value at 4.5, followed by the same sudden
decrease in the vibration amplitude observed in the single flexible tube case. Compared to
the single flexible tube, the large excitation onset velocity decreased to 2.5 from 3.3. In
addition to this, an early peak showed up at a reduced velocity of 3 before the tube reaches
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Figure 3.10 Natural frequency of the tube and periodicity frequency in the transverse direction

its maximum vibration amplitude at 4.5. This is apparent in Fig. 3.12a, which shows the
response PSDs for tube 2.

The nature of the flow excitation mechanism can be inferred from Fig. 3.13 where similar
Strouhal numbers to the case of the single flexible tube (Sp=0.25) are found in this test. In
addition, a second flow periodicity appears, but only in the frequency spectra of the first
two flexible tubes (Sp= 0.39). This second frequency approaches the tube frequency near
Vp/fD=2.5; this is also observed in the frequency spectra in Fig. 3.12. The result closely
agrees with what Weaver et al. [8] reported by capturing the two periodicities found in their
experiment in the first few rows, and also only one of the periodicities further inside the array.
The two Strouhal numbers also agree well with those reported by Scott [9] and Weaver et
al. [8] for an array of pitch ratio 1.7.

We note a slight increase in the two Strouhal numbers compared to those reported in these
two related works. This is an expected behavior as Strouhal numbers typically increase with
decreasing pitch ratio. A remarkable finding is that a third periodicity is observed at very
low frequency corresponding to Sp=0.15, as shown in Fig. 3.13. However, this low frequency
perturbation did not have noticeable excitation on the tubes; the expected lock-in velocity
was higher than the maximum velocity possible in the test loop. Results show that the vortex
shedding at Sp=0.25 or 0.26 has significant higher strength than the others. The dominant
peak response frequencies obtained from the test results and plotted in Fig. 3.14. It is
apparent that the divergence of tube dominant frequencies ends at Vp/fD=2.5 flow velocity
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Figure 3.11 Dynamic behaviour of four flexible tubes in the transverse direction

(a) (b)

Figure 3.12 Frequency spectra for the column configuration of : (a) tube 2, (b) tube 3

and all tubes start resonating with a single frequency for higher reduced velocities. The
coalescence of the tube response frequencies is directly coincident with the lock-in phenomena
for Sp=25.

Fully flexible array

The FIV behaviour of the fully flexible array was also investigated. The response of the
tubes in the post lock-in velocity range is completely different for the array of flexible tubes.
Strong hydrodynamic coupling violently excites the tubes and, even for high flow velocity,
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(a) (b)

(c) (d)

Figure 3.13 Flow periodicity frequencies and tubes natural frequencies; (a) tube 1, (b) tube
2, (c) tube 3, and (d) tube 4

the vibrations did not go below 30%D, see Fig. 3.15. In this test, tube frequencies decoupled
from the shedding frequency, such that the vortex shedding frequency was clearly detected,
in the post lock-in velocity range (for reduced velocities above 4.4) as shown in Fig. 3.16b.
However, large amplitude vibrations in this test above a reduced velocity of 5 is attributed to
strong coupling in the water due to the large number of flexible tubes. Figure 3.17 shows the
effect of array flexibility on the lock-in range and coupling velocity in the transverse direction
for the tube located in the same location (4th row). Compared to the column case discussed
earlier, the vibrations start at a flow velocity of Vp/fD = 2 instead of 2.5. Frequency analysis
showed the similar vortex shedding as previously discussed in the column test.
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Figure 3.14 Response frequencies vs. flow velocity, for the flexible tubes in a column, vibrating
in the transverse direction

3.3.2 Streamwise FIV results

Single flexible tube

The tube behavior in the streamwise direction, on the other hand, is stable as seen in Fig.
3.18 and 3.19. We do remark, however, some mild increase in vibration response which
occurs near the reduced velocity of Vp/fD = 3.0. The tube response remains, however, much

Figure 3.15 Fully flexible bundle behaviour in the transverse direction
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(a) (b)

Figure 3.16 Frequency analysis of tube 2 in the fully flexible array : (a) frequency spectra at
low velocities, (b) tube natural frequency syncronization with shedding frequencies

Figure 3.17 Flexible tube dynamic response in different arrangements

lower than that found in the transverse direction. In the streamwise direction, there is no
strong vorticity shedding-induced excitation detected in the array. The presence of the flow
periodicity, responsible for strong transverse resonance is lower, but clearly detected in the
streamwise direction tests. Similar Strouhal number of 0.23 is detected clearly in Fig. 3.20.
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Figure 3.18 Vortex-induced vibrations of a streamwise single flexible tube located in the 6th
row

Four flexible tubes - column configuration

The same configuration of four tubes flexible in the streamwise direction was also tested.
The rms tube vibration response is presented in Fig. 3.21. The effect of the two flow
periodicities shown in Fig. 3.23 is clearly manifested in the response of first two (upstream)
flexible tubes via the sudden increase in tubes 1 and 2 rms response values near Vp/fD = 2.5.
Downstream tubes, 3 and 4, responses show a rapid increase at the coincidence of the second
flow periodicity frequency with the tube frequencies, near the reduced velocity of 3.3. This
second periodicity-induced response increase also occurs for the first two (upstream) flexible
tubes.The coupling strength in both flexibility directions is depicted in Fig. 3.22. It is clear
that due to flow pressure perturbations, tubes are more excited in the transverse direction,
with a clear longer lock-in velocity range. Strong coupling (or lock-in) is observed between
the flow periodicity frequency and tube frequencies occurs in the velocity range from 2.7 to
4.2 as seen in Fig. 3.24. In this velocity range, the four flexible tubes vibrate with the same
frequency due to the coupling with the flow periodicity. It can be seen that tube response in
the flow direction is less than that observed in the transverse direction.

Fully flexible array

The behaviour of the array in the streamwise direction is similar to what was found in the
transverse direction experiment except that the bundle shows a sudden decrease in the post
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Figure 3.19 Response spectra of single flexible tube in the streamwise direction

Figure 3.20 Vortex-induced vibrations of a streamwise single flexible tube located in the 6th
row

lock-in region, see Fig. 3.25. In the streamwise direction, the peak vibration velocity is
shifted from around 3.8 with 4 flexible tubes to 4.5 with the 32 flexible tubes case.

Compared to the transverse direction, it seems that tube lock-in strength is greatly affected
by the number of flexible tubes. Fig. 3.27 shows that a single flexible tube does not undergo
large amplitude vibrations, however, with the 4 and 32 flexible tubes vibrations significantly



54

Figure 3.21 Dynamic behaviour of four
flexible tubes in the streamwise direction

Figure 3.22 Flexible tube in a column lo-
cated in the 6th row

Figure 3.23 Flow periodicity frequencies
of tube 1. Only the smaller Strouhal num-
ber is found for the other tubes in the ar-
ray

Figure 3.24 Response frequencies, of all
flexible tubes in a column, in the stream-
wise direction vs. flow velocity

increased. Furthermore, it is noticed that when the full array of flexible tubes are tested,
peak-vibration velocity differed from the column case and the lock-in range became slightly
wider. In the streamwise direction, tube located in the 6th row always synchronizes with a
vortex associated with Strouhal number of 0.22, compared to 0.26 for the rest of the tubes.
In the column case, all the four tubes vibration peaks correspond to Sp = 0.26, while in the
full bundle, vibration peaks correspond to Sp = 0.22. Apparently, the increase in the number
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Figure 3.25 Fully flexible bundle be-
haviour in the streamwise direction

Figure 3.26 Frequency spectra of tube 2
in the fully flexible configuration

of flexible tubes could lead to a slight shift in the syncronization frequency. However, the
reason behind this is still not very clear. This was not noticed in the transverse tests as
transverse tube vibration near the shedding frequency organizes the wake and increases the
vortices strength.

3.4 Investigation/Further Evidence of Excitation Mechanisms

3.4.1 Effect of splitter plate on single flexible tube - transverse response

The single flexible tube underwent large amplitude transverse vibrations starting at a re-
duced flow velocity coinciding with the lock-in between a flow periodicity frequency and the
tube natural frequency. To ascertain that the large amplitude response is due to a lock-in
resonance, a flow splitter was designed and installed to reduce the vorticity shedding effect
in the wake region of the flexible tube. The splitter is a thin flat plate that is fixed on
the rigid tube downstream the flexible tested tube, see Fig. 3.28. With the splitter plate
in place, Fig. 3.29 shows that the rms amplitude of vibration does not exceed 4% of tube
diameter. This is significantly lower than the response of the flexible tube behavior in the
same location without the splitter. The corresponding vibration response spectra are shown
in Fig. 3.30 for a wide range of pitch velocities. In contrast to the case with the flow splitter,
the vibration amplitude goes up to 40% without the splitter. The results provide additional
confirmation that flow periodicity lock-in is the mechanism underlying the observed large
vibration amplitudes.
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Figure 3.27 Flexible tube dynamic response in different arrangements in the streamwise
directions

Figure 3.28 Splitter Plate downstream flexible tube to suppress vortex induced vibrations

The physical nature of the lock-in phenomenon is complected. Therefore, more detailed
analysis could be able to provide insights into the details of the interstitial flow in the array.

3.4.2 Numerical results

The tube vibration, especially in the transverse direction, affects the vortex shedding by al-
tering the phase and pattern of the vortex street in the tube wake area. Hence, the generated
periodicities in the interstitial flow through the array ought to be investigated when using
stationary cylinders.
A numerical study of the presented tube array was conducted to investigate the flow peri-
odicity and related frequencies. The Unsteady Reynolds Averaged Navier-Stokes (URANS)
equations have been solved to calculate the time dependent flow pressure and velocity, using
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Figure 3.29 Dynamic behaviour of single flexible tube followed by a splitter plate in transverse
direction vs its behaviour without the splitter

Figure 3.30 Vibration spectra in the cross-flow direction of the single tube configuration using
a plate splitter

the commercial package ANSYS-FLUENT. The solver equations adopted to solve similar
problems have been severally presented in the literature [90,102].
A velocity inlet is chosen as the boundary condition at the domain inlet. The flow velocity is
chosen to be relatively low (upstream velocity V∞/fnD = 0.8) in order to have a subcritical
Reynolds number. In this range, the vortex shedding is strong and periodic. This allows
the numerical solver to easily capture the pressure fluctuations downstream of the tubes.
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At higher velocities, vortex shedding may become disrupted and have a broad frequency
spectrum [31]. Side walls of the domain are defines as walls with zero shear stress in order
to reduce the wall effect. Tube surfaces are stationary and treated as walls with a no slip
condition. The domain outlet boundary condition is pressure outlet. The real tube diameter
and pitch spacing between the tubes is implemented here in the numerical model.

(a) (b)

(c)

Figure 3.31 Grid overview: (a) inflation layer around cylinders, (b) computational domain
meshing, (c) grid independence study

The domain simulation mesh is presented in Fig. 3.31 with details in the tube vicinity shown.
In order to provide a grid-independent results, a mesh resolution study was performed as
shown in Fig. 3.31(c). This showed that for a finer grid than a 200k cells grid, No change
is seen to the mean force coefficient in the flow direction. Hence, the number of elements
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Figure 3.32 Domain and boundary conditions of the CFD model

Figure 3.33 Flow vorticity field inside the array (Re = 10702, Vp/fD = 2.1)

used in the simulation is approximately 281k. The domain elements around the tubes are
very fine relative to the average cell sizes in the domain and inflated in order to properly
model the boundary layer on the tubes surfaces. The array geometry considered is shown
in Fig. 3.32. In order to reduce the domain size and the required computational power, the
number of tubes in the array is reduced. Time step is a significant parameter in the unsteady
simulations for the accuracy of the results. Therefore, based on the expected vortex shedding
frequency, a 0.5 ms time step is adopted in this work. This is to ensure the accurate capturing
of the flow periodicity frequencies in the array. While considering 30 sample points per vortex
cycle is satisfactory (see [103]), having 2000 sample points per second makes it possible to
capture periodicity frequencies up to 60 Hz with high resolution.
The turbulence model selected for the simulations is the Shear Stress Transport (SST) model
developed by Menter [104]. This model has been widely adopted in similar problems due to
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(a) (b)

Figure 3.34 Time sample of tube 2 unsteady (a) lift coefficient and (b) drag coefficient

Table 3.1 Central tubes numerical results

Coefficient Tube 1 Tube 2 Tube 3 Sp

CL,rms 0.27 1.06 0.87 ——–
fl1 2.96 Hz 2.86 Hz 2.90 Hz 0.11
fl2 7.72 Hz 7.72 Hz 7.72 Hz 0.29
fl3 9.55 Hz 9.55 Hz 9.55 Hz 0.36
fd1 ——– 6.68 Hz ——– ——–
fd2 10.59 Hz 10.59 Hz 10.59 Hz ——–
fd3 ——– 15.14 Hz 15.14 Hz ——–

its applicability in the near wall regions. Furthermore, in the free stream region, the k − ϵ

turbulence model is employed in the SST formulation to avoid the ω formulation sensitivity
to free stream turbulence.

Figure 3.33 shows the instantaneous vorticity field in the tube array. Clearly seen are the
sharply defined vortices in the wakes of nearly all the tubes in the array. For tubes in the first
three rows, clear formation and shedding of large vortices is evident. Deeper in the array, the
vortices are smaller and appear to break up. From the complex vortex structures, multiple
frequencies can be expected following vortex breakdown.

The wake oscillation throughout the array is clearly apparent and provides clear evidence of
periodic vorticity shedding and associated pressure perturbations in the array. Additional
analysis was performed for the pressure field around the tubes in the center column; these
tubes are identified as tube 1 to 3 starting with the upstream-most tube. The computed tube
unsteady lift coefficient frequency spectra along with the corresponding drag coefficients are
presented in Fig. 3.34. Tab. 3.1 summarizes the flow periodicity frequencies extracted from
the frequency spectra in the lift direction, fli, and the drag direction ,fdi, where i denotes
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the tube number in the array.

(a) (b)

(c) (d)

(e) (f)

Figure 3.35 Fluid forces frequency spectra of the central tubes: (a & b) tube 1, (c & d) tube
2, (e & f) tube 3

The frequencies obtained from the unsteady lift spectra correspond to the experimentally
measured frequencies. The two higher frequencies (7.72 Hz and 9.55 Hz) yield the Strouhal
numbers of 0.29 and 0.36 which match the experimentally measured Strouhal numbers (see
Fig. 3.13). In addition to these two main frequencies, a third frequency at approximately 2.9
Hz was also found. The related Strouhal number for this low frequency is Sp = 0.11. This
weak periodicity was detected in the second row of the array. However, it was not observed
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Figure 3.36 Domain grid showing splitter plate placed between tube 2 and tube 3

(a)

(b)

Figure 3.37 Comparison of the lift coefficient signals for the same flow velocity
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in the downstream flexible tubes region. An initial explanation is this periodicity is obscured
by tube vibration. However, it might be showing only at very low flow velocities. Clearly,
this weak periodicity does not affect the tube vibration response during the tests.
The frequency spectra of Fig. 3.35 show all periodicity frequencies in the transverse (lift)
and streamwise (drag) directions. While oscillations in the transverse direction occur at
the shedding frequency, streamwise periodicities have double the shedding frequencies in the
transverse direction. This is true for tubes 2 and 3. For the tube 1, the drag frequency is
not double the lift frequency. This suggests that the tube 1 drag frequency may be related
to the upstream forces of tube 1.

A splitter plate can suppress or weaken vortex shedding. Hence, a thin splitter plate was
placed between tubes 2 and 3 as shown in Fig. 3.36 investigate this. The plate is defined
as a wall with components of shear stress are equal to zero in the CFD model. This allows
consideration of the effect of the plate as only a separate of the domain which prevents flow
pressure perturbations without adding any additional shear stresses. Results showed that
the central tube (tube 2) lift coefficient rms value dropped from 1.06 to 0.642. Frequency
spectra of lift and drag coefficients of tubes 2 and 3 show the same frequency with lower
amplitude values.

3.5 Conclusions

In the work reported here, the dynamic behaviour of a large spacing (P/D=1.64) rotated
square tube array subjected to water flow was investigated experimentally. The test results
showed that the vortex shedding was the dominant excitation mechanism in this array. The
array was found to violently vibrate in the transverse direction when lock-in occurred. The
vortex shedding resonance was found to be strongly dependent on array flexibility. Tube array
flexibility clearly enhanced the strength of vortex shedding. Lower vibration amplitudes were
observed in the streamwise direction as expected. Frequency analysis revealed the existence of
up to three distinct flow periodicity modes with associated Strouhal numbers also confirmed
by CFD analysis. The numerical simulations also showed the existence of well defined vortex
shedding, facilitated by the large tube pitch spacing. The strength of the vorticity shedding
was such that successive lock-ins occurred as two of the Strouhal frequencies approached the
tube natural frequency. Multiple lock-ins were found for the case of multiple flexible tubes
but not in the case of a single flexible tube. No fluidelastic instability (static or dynamic) was
found for this array. The present results confirm previous observations that rotated square
arrays have unique and complex behaviour compared to the normal square and triangular
arrays. Based on the findings in this paper, in conjunction with related literature work, this
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array deserves further study. Future work should also include fluidelastic instability studies
of this array in two-phase flow.
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CHAPTER 4 ARTICLE 2: EXPERIMENTAL INVESTIGATION OF 
FLUIDELASTIC INSTABILITY OF A ROTATED SQUARE ARRAY 

SUBJECTED TO TWO-PHASE AND AIR CROSS-FLOW

Sameh Darwish, Njuki Mureithi, Abdallah Hadji, Minki Cho

This article has been submitted to “Journal of Nuclear Engineering and Design”, is accepted 
pending revision. This is the revised version. It was submitted on October 15, 2022.

In this chapter, the fluidelastic instability (FEI) of the rotated square array is studied in 
two-phase (air-water) cross-flow. This is to meet the specific objectives to:

• Investigate the susceptibility of the array to streamwise and/or transverse fluidelastic
instability in two-phase flow.

• Investigate the array fluidelastic behaviour in the streamwise and transverse directions
in air flow.

• Determine the instability mechanism by testing multiple configurations of flexible tubes.

The paper presents a series of fluidelastic instability tests in air-water two-phase cross-flow. 
The tests covered a wide range of two-phase flow void fractions up to 97%. A single and 
multiple flexible tubes were examined in both flexibility directions, streamwise and transverse 
to the flow. It was found that a single flexible tube never becomes unstable in the tested 
range of flow velocities, either in the flow direction or transverse to the flow. Similarly, the 
fully flexible bundle never became unstable in the streamwise direction. However, the flexible 
bundle in the transverse tests, only in the 97%, showed an increase in tube vibrations. This 
increase is gradual, followed by a decrease in tube vibrations at high flow velocities. Maximum 
vibration amplitude was seen to be a function of the number of flexible tubes, the more 
flexible tubes existed, the higher the vibration amplitude is. As a complementary work, air 
flow experiments were also conducted. Results showed that an in-plane instability arises only 
when the number of flexible tubes are more than four. Also, instability occurrence is sensitive 
to tube location in the array. When tubes are located in the upstream rows, instability 
arises. The coupling between the tubes show that the stiffness-controlled mechanism is the 
mechanism leading the instability in this array.
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Abstract

This paper reports laboratory experiments to investigate the fluidelastic instability of a rotated
square array with a pitch ratio of 1.64 subjected to cross-flow. A series of air-water two-phase
flow, as well as air flow, experiments were conducted. Test done for a range of array flexibil-
ities yielded valuable insight into the array dynamics over a wide range of flow void fractions
from 40% to 97%. The study revealed the existence of transverse fluidelastic instability for
97% void fraction, with variable vibration strength based on the number of flexible tubes, and
stable behaviour for lower void fractions. Generally, a significant increase in fluid damping
was noted in the transverse and streamwise directions in two-phase flow. In air flow, a se-
ries of experimental tests showed complex fluidelastic behaviour for this array. Fluidelastic
instability was found in air flow tests in the streamwise direction only, while divergence, as-
sociated with negative fluid stiffness force, was observed in the transverse direction. Dynamic
instability in air required coupling between adjacent tubes; confirming the stiffness controlled
instability mechanism. For air flow, fluidelastic behaviour was strongly dependent on tube
location within the array.

4.1 Introduction

For the first time in a nuclear steam generator in service, fluidelastic instability (FEI) in the
in-plane (streamwise) direction was reported in the San Onofre Nuclear Generating Station
(SONGS) in the steam generator (SG) U-bend region. The instability resulted in significant
tube-to-tube wear (TTW) [94]. The instability resulted from high flow velocity at high flow
void fractions, combined with insufficient contact forces between tubes and anti-vibration
bars (AVBs). This has led to increased focus on the risk of streamwise fluidelastic instability
in other operating SGs. Fluidelastic instability is classified as the most significant potential
cause of tube failure in heat exchangers. Tube arrays in commercial heat exchangers have
simple geometrical patterns, either based on a square or triangular layout. This is used to
classify the tube array geometry, hence, its dynamical properties. Besides the array lay-
out, the tube pitch spacing to tube diameter ratio (P/D) is a second important parameter
classifying the array. Based on these two parameters, a heat exchanger tube array dynamic
characteristics is defined. Over the past decades, considerable effort has been made to ex-
perimentally investigate the fluidelastic stability behaviour of various tube array geometries.
Much of the current literature focused on the triangular and normal-square arrays, however,
far too little attention has been paid to the dynamics of the rotated square (RS) geometry.

Early work investigating the in-plane fluidelastic instability (IPFEI) was presented by Weaver
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and Schneider [105]. The flat bar supports effect on The U-tubes was studied in a wind tunnel
with different sets of supporting conditions. Results showed that the out-of-plane modes were
more critical, and no IPFEI has occurred even when increasing the flow velocity significantly
above the expected in-plane critical velocity. Haslinger and Steininger [106] also performed
experiments on U-tubes supported with AVBs. The out-of-plane vibrations were found to be
always higher than the in-plane. Despite the increase in the in-plane vibrations with the flow
velocity, no FEI was observed in the IP direction. In water flow, Weaver and Yeung [107]
studied the vorticity response variation with the tube mass damping parameter in a RS array
with P/D=1.5. The Connors-type instability relationship was found not to be applicable in
the provided test results. This was followed by a more detailed study for a closely packed
array with P/D=1.41 using flow visualization by Abd-Rabbo and Weaver [101]. The study
reported on all the Strouhal numbers that were found in the array. Later, work on a RS array
with spacing ratio P/D=2.12 was reported by Price and Kuran [13]. According to the authors,
a single flexible tube in this array did not undergo fluidelastic instability; instability was only
triggered in the case having three or more flexible tubes in the array. The results provided
strong evidence of a fluid stiffness-controlled instability as the underlying mechanism in the
tested array. The stiffness mechanism requires coupling between multiple degrees-of-freedom
(typically adjacent tubes) in the array. It was found that combining tube structural damping
and nondimensional mass could be a misconception since the critical flow velocity was found
to strongly vary depending on tube mass, compared to mechanical damping that has much
lower effect. The authors also indicated that natural frequency reduction of one tube in
a group of unstable tubes led to an early (lower flow velocity) FEI onset. Furthermore,
static instability (or "divergence"), which is rare in other array geometries, was observed in
the rotated square array. Price et al [75] found that, in a RS array of 2.12 pitch ratio, a
downstream single flexible tube was stable in a double row array. Interestingly, when the
array was extended with a third row, and when the flexible tube was placed in this row,
fluidelastic instability occurred. In a later study [74], the same array was tested with more
downstream tubes, and results showed that a single flexible tube never went unstable. In
contrast to the earlier findings, Païdoussis et al. [14] confirmed the existence of dynamic
fluidelastic instability of a single flexible tube subjected to air flow, located in the first or
second row, in an otherwise rigid array for a RS array of pitch ratio 1.5. All the previously
mentioned studies conducted the experiments with axis-symmetric tubes, indicating that the
instability is observed predominantly in the flow direction, particularly in the first few rows
of the array. Rotated square arrays are generally found to be dynamically unstable in air.
Previous work by Nakamura and Tsujita [15] focused on RS arrays having pitch ratios 1.2-
1.5, in air flow, for both in-flow and transverse direction flexibility. Strong instability in the
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in-flow direction was found. The largest array spacing showed a significantly high Connor’s
constant compared to the tighter arrays. The instability was attributed to change of the
flow path in the rotated square array, compared to the normal square and normal triangle
geometries. The experimental data showed strong vibrations in the upstream rows, while
downstream tubes did not vibrate violently. For a more tightly spaced array, Austermann
and Popp [81] investigated the single tube dynamics in an array of P/D=1.25 in air flow.
The tube response was studied for the first four rows, and turbulence buffeting was found
to be the only source of vibration in the array. Chung and Chu [77] tested normal and
rotated square arrays with pitch ratio 1.63. In the case of the normal square array, the
instability was observed in the transverse direction only with two instability regions. This
transition in the stability region was attributed to the change in the two-phase flow regime.
On the other hand, the rotated square array showed a more stable behaviour. However, the
authors reported an instability for mid void fractions. This could be a result of calculating
the tube vibrations from the total frequency spectrum. When the array was part of a U-bend
structure, and by subjecting the whole array to two-phase flow, instability was observed at
void fractions higher than 65%.

The analysis by Price and Païdoussis [100] agreed with the previously discussed experimental
results. Also, Price and Païdoussis [108] experimentally discovered that a single degree-of-
freedom did not induce instability, in addition to the findings by Kuran and Price where
dynamic instability was found only in a multiple degree of freedom array [13]. In Lever
and Weaver theoretical analysis [7, 65], the existence of fluidelastic instability of a single
tube in the rotated square arrays was predicted regardless of the array pitch ratio. The
negative damping mechanism in the theoretical modelling, that requires only one flexible
tube to develop instability, was considered, presumably it is the only mechanism leading to
instability.

The studies presented thus far show that the rotated square geometry generally remains a
complex and not fully understood area in the experimental fluidelastic instability research.
An experimental program has therefore been developed with the goal of shedding more light
on the fluidelastic behaviour of this array geometry. The aim of the work reported here is
to experimentally investigate the dynamic behaviour of a rotated square array of pitch ratio
1.64 in two-phase, as well as, air cross-flow, see Fig. 4.1. The same array has been studied
in water flow in previous research work [12].
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4.2 Experimental Apparatus

The fluidelastic instability experiments were conducted in both air-water and air flows in
different test loops. The two-phase flow experiments were conducted in a test loop fed by
compressed air with flow rate up to 260 l/s in standard conditions, and water provided by a
7.5 HP (5.6 kW) centrifugal pump provides up to 25 l/s. Both air and water flow are mixed
upstream of the test section, passing by a double honeycomb mixer for flow homogeneity.
Flows entering the test section are measured using an electromagnetic water flowmeter and air
flowmeter. Water temperature is monitored using a Kimo Instruments T-type thermocouple
probe. All air flow characteristics (pressure, temperature, and flow rate) are measured for
flow monitoring during the tests.
The air experiments were conducted in a recirculating subsonic wind tunnel (Model 407-B,
ELD, Lake City, MN, USA) with a 60 x 60 cm2 test section in the Fluid-Structure Interaction
Laboratory of Polytechnique Montréal. This large cross-section was reduced using reduction
panels to maintain the array internal dimensions. Air flow dynamic pressure was monitored
using a pitot tube attached to a Dwyer 647 calibrated differential pressure transmitter. The
test section was designed to monitor the number of flexible tubes in order to allow variation
of the number of flexible tubes, see Fig. 4.1. The cross section area of the test section is
0.04191 m2. In both test setups, tubes are arranged in 9 rows and 9 columns with half tubes
attached to the test section wall to reduce wall effect.

Flexible tubes are composed of straight Inconel cylinders mounted on a flexible beam with a
rectangular cross-section as shown in Fig. 4.2. This allows for tube flexibility in one direction,
whether in-flow or cross-flow depending on the tube orientation, while effectively rigid in the
normal direction. Tube vibration signal is measured via strain gauges. The flexible tube
logarithmic decrement of damping was measured in air and resulted in an average tube mass
damping parameter (mδ/ρD2) of 20.6. The average mass damping parameter in water was
found to be 0.24.

In the following sections, flow velocity used in the analysis is the pitch velocity, defined as,

Vp = V∞
P/D

P/D − 1 (4.1)

where V∞ is the homogeneous free-stream velocity at the test section entrance, and P/D the
array pitch-to-diameter ratio. The homogeneous flow velocity is determined by dividing the
flow rate by the test section cross-sectional area.

The homogeneous void fraction β is calculated from the air and water volumetric flow rates
to determine the mixture properties. The homogeneous model assumes uniform two-phase
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Figure 4.1 Tube array layout showing flow direction.

Figure 4.2 Test section showing tube bundle and flexible tube structure.
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flow across the test section.

β = Qg

Qg +Ql

(4.2)

where, Q is the volumetric flow rate, and g and l subscripts denoting the gas and water,
respectively. The time-averaged homogeneous two-phase flow density, ρh is calculated by

ρh = βρg + ρl(1 − β) (4.3)

where, ρh is flow mixture density, and g and l subscripts denoting the gas and water, respec-
tively.

4.3 Array Dynamics in Two-phase Flow

In two-phase flow, three main configurations are examined: (i) a single flexible tube, sur-
rounded by rigid tubes, located in the fourth row, (ii) a column of four flexible tubes located
in the centre of the array arranged in the flow direction, and (iii) a full bundle of 32 flexible
tubes. In the last configuration, the responses of the four tubes in the central column are
monitored. A given test is performed by subjecting the tube bundle to gradually increasing
two-phase flow while keeping the (homogeneous) void fraction constant. The flow velocity
is increased in sufficiently small increments in order to capture the instability onset accu-
rately. The results are presented as tube root mean square (rms) vibration response versus
non-dimensional pitch flow velocity (Vp/fD).

4.3.1 Transverse vibration response

Single flexible tube

For single phase flow (Fig. 4.3(a)), large amplitude vibrations reaching 50%D are found.
This was found to be the result of vortex shedding lock-in as reported in [12]. At low flow
velocity, tube dominant frequency and vorticity shedding frequencies are clearly distinct. Two
vortices are captured by the tube vibrations, with frequencies linearly increasing with flow
velocity, until the vorticity with the high Strouhal number coincides with the tube vibration
frequency at velocity near 2.4. The evolution of vortex shedding with flow velocity is seen in
the frequency spectra in Fig. 4.3(b) at low flow velocity (before lock-in), and for the full range
of flow velocity in Fig. 4.3(c). Figures 4.4 and 4.5 show the vibration response of the single
flexible tube located in the fourth row for all void fractions tested. The stable behaviour
for two-phase flow tests is very clear up to the maximum velocity tested. For the mid range
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(a) (b)

(c)

Figure 4.3 Transverse vibration response of a single flexible tube in water flow [12]: (a) non-
dimensional tube rms tip vibrations, (b) frequency spectra at low flow velocities showing
vortex shedding frequency, and (c) frequency spectra for the full range of flow velocity in log
scale.

two-phase flow void fractions (40-60%), Fig. 4.4(a), tube rms values did not exceed 10% of
the tube diameter. This is also the case for high void fractions (70-97%), Fig. 4.5(a). These
low amplitude random vibrations are attributed to two-phase flow turbulence excitation only.
For the highest void fraction (97%), an increase in tube vibration is visible near Vp/fD=25,
suggesting a possible fluidelastic unstable behaviour of the tube at this void fraction, which is
however, relatively weak. This is followed by a decrease in the tube rms vibration amplitude.
Compared to the lower void fractions, the frequency response in the 97% test is significantly
different (Fig. 4.5(b)). The PSDs show that starting at Vp/fD=10, the tube response peak is
increasingly sharp and does not correspond to a wide-banded turbulence excitation response
as was found for lower void fractions. This is a characteristic of the fluidelastic instability
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(a)

(b)

Figure 4.4 Single flexible tube vibrations in the transverse direction when surrounded with
rigid tubes in mid void fractions (40-60%): (a) non-dimensional tube rms tip vibrations, (b)
frequency spectra in 50% void fraction

occurrence, where the fluidelastic forces become dominant. Therefore, the dynamic response
of the single tube in the transverse direction at 97% void fraction is considered to show weak
unstable behaviour, with fluidelastic forces only causing relative low amplitude vibration. As
the tube response does not undergo a sudden increase at a well defined critical velocity, the
apparent tube damping values are used to estimate a critical velocity, when the damping
becomes lower than 1%, in addition to the critical velocity estimated from the rms response
graphs, when the rms value becomes higher than 10%D (turbulence excitation level of the
tubes in the two-phase flow). The final critical velocity is an averaged value of the estimated
critical velocities from the damping ratio and the tube vibration response graphs. It is noted,
however, that for higher flow velocity, the tube damping ratio dramatically increased. At
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Figure 4.5 Single flexible tube vibrations in the transverse direction when surrounded with
rigid tubes in high void fractions (70-97%): (a) non-dimensional tube rms tip vibrations, (b)
frequency spectra of 97% void fraction, and (c) damping ratio of 97% void fraction

the highest flow velocity the damping reached 6 times its value at low flow velocity (see Fig.
4.5c).

Column dynamics

Tests with the central column of four flexible tubes were performed using the same flexi-
ble tubes having the same dynamic characteristics (with standard deviation of the natural
frequency and damping ratio of 0.1 Hz and 0.07%, respectively). Results obtained for this
configuration are very similar to the single flexible tube case, except that at 97% void frac-
tion, tube vibration rms showed slightly higher increase. This is explained by increased fluid
coupling between the tubes. No instability is observed for lower void fractions in the trans-
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(a) (b)

Figure 4.6 Column of flexible tubes vibrations in the transverse direction for 80% void frac-
tion: (a) tube rms vibrations, (b) frequency spectra.

verse direction for this configuration. Fig. 4.6 shows an example of test results for 80% void
fraction.

Flexible bundle dynamics

The large amplitude vibrations in water flow (Fig. 4.7) are here also attributed to vortex
induced vibrations (VIV) as detailed in [12]. The water flow results are included here for
completeness. For 40% void fraction, the results show a small increase in tube vibration
starting near a reduced velocity of 4. As in water flow, this increase in vibration is attributed
to flow periodicity, related to vorticity shedding for liquid flow. This is a remnant of vortex
shedding, weakened by two-phase flow. For 50%-90% void fraction, no fluidelastic instability
is observed, see Figs. 4.8 and 4.9. Unlike the single and flexible column cases, the fully
flexible bundle showed a significant increase in vibration amplitudes when subjected to 97%
void fraction flow as shown in Fig. 4.10. The response amplitude increases monotonically,
reaching as high as 40%D near a reduced velocity of 30. These violent vibrations indicate that
the array is fluidelastically unstable. We remark, however, that the instability (amplitude)
growth rate with flow velocity is very slow, reaching maximum amplitude at approximately
three times the critical velocity. As the flow velocity increases, the vibration amplitude shows
a gradual decrease, indicating gradual restabilization but for very high velocities above 30.
Since the variation of mass-damping parameter in this study is via changing the void fraction,
the decrease in tube response might be a result of the change in flow regime. For a better
estimation of flow critical velocity, damping analysis is used, along with tube rms response, to
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(a) (b)

Figure 4.7 Fully flexible array vibrations in the transverse direction in water flow [12]: (a)
non-dimensional tube rms tip vibrations, (b) non-dimensional tube rms tip vibrations, (c)
frequency spectra at low flow velocities showing vortex shedding frequency

assess in accurately estimate the stability onset, as previously discussed in the single flexible
tube results. The vibration mode of the tube bundle is shown in Fig. 4.11 at the reduced
velocity of the maximum vibration amplitude (V/fD=30). The mode shape is determined
from the phase angles of the tubes. The phase angles are obtained form the cross power
spectral density at the dominant vibration frequency. For a practical representation, all
phase angles are estimated in reference to the central tube, tube 2. In Fig. 4.11 white dot
circles represent the tubes equilibrium position, and the solid white circles represent the
tube position at an arbitrary time. Tube movement direction is illustrated by the arrows.
Tube movement limits represent a sine wave angles with maximum and minimum vibration
amplitudes. The sign of the phase angle is an indication whether the tube leads or lags the
motion of tube 2. The pattern of the bundle vibration is clearly seen to be well defined.
Tubes in the central column are almost out of phase.

4.3.2 Streamwise vibration response

Flexible bundle dynamics

Figs. 4.12 and 4.13 depict the response of the tube located in the fourth row in a fully flexible
bundle. No fluidelastic instability occurred in this array in the streamwise direction. The
90% void fraction test result shows an increase in tube rms vibrations, however, this does
not indicate any occurrence of fluidelastic instability. This is confirmed from the frequency
spectrum analysis that shows a wide frequency band response of the tubes. Since this study
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Figure 4.8 Fully flexible array vibrations in the transverse direction in mid void fractions
(40-60%): (a) non-dimensional tube rms tip vibrations, (b) frequency spectra in 60% void
fraction

focuses mainly on the fluidelastic instability, it is worth mentioning that all rms response in
the streamwise direction is calculated in a small frequency band at the tube natural frequency.
This is in order to exclude the quasi-periodic excitation of the tubes at low frequency. In this
set of experiments, the tubes are quasi-periodically excited at a nondimensional frequency
near 0.25 as shown in Fig. 4.14. As these periodic forces excite the tubes at a frequency
clearly distinguished from natural frequency vibration in two-phase flow, the existence of
such a vibration excitation mechanism should be excluded in the analysis of a fluidelastic
instability. Pettigrew et al. [109] showed the existence of large swings in void distribution
inside a rotated triangle array. This was shown to lead the strong fluctuating (quasi-periodic)
fluid forces. More detailed studies and test results of the same array were presented by Zhang
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Figure 4.9 Fully flexible array vibrations in the transverse direction in high void fractions
(70-90%): (a) non-dimensional tube rms tip vibrations, (b) frequency spectra in 80% void
fraction.

et al. [110,111].

4.4 Array Dynamics in Air Flow

Different configurations of flexible tubes were tested in air, starting from a single flexible
tube, to fully flexible tube array. All test configuration results are discussed below, however,
for brevity, only the most significant results are graphically presented.
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Figure 4.10 Fully flexible array vibrations in the transverse direction in the 97% void fraction
test: (a) tube rms vibrations, (b) frequency spectra in 80% void fraction, (c) damping ratio
variation with non-dimensional flow velocity.

4.4.1 Streamwise direction dynamics

The tested array configurations and flexible tube IDs are presented in Fig. 4.15. Multiple
test configurations were tested, primarily in the streamwise direction.

In the first set of experiments, all tubes were rigid with only one flexible tube mounted in
different rows in the array; this is to investigate the effect of the tube location in the array
on its dynamic behaviour. A single flexible tube positioned in any of the first 6 rows as
the one shown in Fig. 4.15a did not become fluidelastically unstable, see Fig. 4.16(a). In
Fig. 4.16(b) the frequency spectra of the tube located deep in the array is presented. A
significant difference in the tube static deflection is observed for the first two rows, compared
to rows deeper in the array. By increasing the number of flexible tubes to two or three,
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Figure 4.11 Vibration mode and phase angles referenced to tube 2 in 97% void fraction at
V/fD=30.

positioned in the first two rows, it seems very apparent that the array will not become
unstable. However, in the case of three flexible tubes, low amplitude random vibrations
showed up above V/fD=117. A column of flexible tubes also did not undergo instability
(Fig. 4.17(a)).

Other experiments were done with multiple flexible tubes, arranged in a diamond, placed in
the upstream rows as shown in Fig. 4.15e. In this case, fluidelastic instability was observed
at relatively high flow velocity near 140. A direct comparison was made to compare the same
configuration but with 4 tubes instead of 9. It was found that adding more flexible tubes
downstream delays the instability. The main difference was the pattern of tube motion as
downstream tubes were noticed to be stabilizing the upstream tubes, causing multi stage
instability as shown in Fig. 4.17(b). When the tubes are regrouped to form a cluster as
shown in Fig. 4.15f, the array underwent fluidelastic instability at fairly high flow velocity
V/fD=118, see Fig. 4.18(a).

It should be mentioned that, when fluidelastic instability occurs, tubes vibrations are seen
to be violent to the extent that they impact each other in such a wide spacing array. Fur-
thermore, once instability is initiated, it cannot be stopped unless the test loop is shut down
and air flow stops.
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(a)
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Figure 4.12 Fully flexible array vibrations in the streamwise direction in mid void fractions
(40-60%): (a) non-dimensional tube rms tip vibrations, (b) frequency spectra in 50% void
fraction.

Following the cluster configuration tests, experiments with more flexible tubes were per-
formed. A partially flexible array (Fig.4.15g) with flexible tubes placed in the 5 upstream
rows, followed by 4 rows of rigid tubes, was tested. The array was fluidelastically unsta-
ble at a reduced velocity of 75. For tests on the fully flexible array (Fig. 4.15h), a slight
decrease in the instability threshold was observed; where the array became unstable at a
reduced velocity of 72, see Fig. 4.18. The importance of the effect of tube-tube coupling
on fluidelastic instability is clearly evident. The tests suggest that fluidelastic instability is
predominant in the upstream rows. To further investigate this, an experiment was repeated
with the upstream tube row fixed. The resulting instability onset was significantly delayed
as shown in Fig. 4.18(c), with approximately 78% increase in the reduced velocity. The
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(a)

(b)

Figure 4.13 Fully flexible array vibrations in the streamwise direction in high void fractions
(70-90%): (a) non-dimensional tube rms tip vibrations, (b) frequency spectra in 90% void
fraction.

vibration mode of the fully flexible array is shown in Fig. 4.20. In this figure the phase of
all tubes is referenced to tube 3. Tubes in adjacent columns and same row seem to have
similar phase angle. This is clearly noticed in rows 1 and 3. However, in the central column,
downstream tube always leads the upstream one with the same phase angle except tube 8.
Note that tube 8 is not significantly affected by the fluidelastic instability forces and can not
be confirmed to be unstable.

The results are very significant, since array stabilization is achieved by fixing the upstream
tube row in this case. The streamwise fluidelastic instability requires synchronized motion
between the flexible tubes. The stiffness-controlled instability, that requires coupling motion
between the tubes, is confirmed to be the fluidelastic instability mechanism for this array.
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Figure 4.14 Frequency spectrum of a tube in the fully flexible array flexible in the flow
direction.

This agrees well with results from the literature for larger spaced arrays with the same array
geometry.

Further analysis revealed that several distinct flow periodicities exist in this array with a wide
range of Strouhal numbers. For comparability of the test results, Strouhal numbers here are
calculated based on the upstream flow velocity (Su = fvD/Vu). Generally, three periodicity
frequencies could be observed, (however, not necessarily at the same flow velocity), that
correspond to Su of 0.10, 0.19, and 0.32. Figure 4.21 shows the frequency spectrum at two
different flow velocities with the three flow periodicities. In these results that are obtained in
air flow, there is no resonance-like vibrations observed. Price et al. [74] also reported three
periodicities in a wider RS array with pitch ratio of 2.12. These periodicities correspond
to low Strouhal numbers. This was attributed to the limitation in the minimum flow speed
achievable in the wind tunnel. It is worth mentioning that these results are obtained from the
streamwise tests, as flow periodicity frequencies could not be picked up from the transverse
vibration test frequency spectra.

4.4.2 Transverse direction dynamics

Generally, transverse vibration tests did not reveal any existence of "dynamic" instability in
this array. A single flexible tube located in the 4th row was first tested and found to be
dynamically stable. Similarly, when a full bundle of flexible tubes was tested, no dynamic
instability was observed. The configurations tested are presented in Fig. 4.22. The fully
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Figure 4.15 Configurations of the tubes flexible in the streamwise directions experimented in
air flow.

flexible array was found to be dynamically stable as seen in Fig. 4.23. However, a sudden
static deflection was observed for tube 3 (tube located in the 2nd row) near V/fD=85. Fig.
4.23c shows that tube 3 frequency gradually decreased for high flow velocity. This indicates
that a loss of net stiffness caused negative fluid stiffness forces, leading to a static instability
(divergence) in the array, and suggesting the onset of static instability for this tube. The
fluid stiffness effect in the first few rows of the array is therefore significant.
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(a) (b)

Figure 4.16 Tube vibrations of a single tube in the streamwise direction: (a) dynamic vibra-
tions, (b) frequency spectra of the tube located in 4th row

(a) (b)

Figure 4.17 Tube vibrations in the streamwise direction : (a) column configuration, (b)
diamond configuration

4.4.3 Discussion

The Connors equation expresses the relationship between the non-dimensional (or reduced)
critical pitch velocity and "tube mass-damping parameter". The equation takes the form

Vpc

fD
= K

√
mδ

ρD2 (4.4)

The tube rms response and response PSD presented above confirmed the occurrence of trans-
verse direction FEI for 97% void fraction. Damping analysis was used along with tube re-
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(c) (d)

Figure 4.18 Tube vibrations in the streamwise direction : (a) cluster of flexible tube located in
the upstream rows of the array, (b) fully flexible array, (c) flexible array located downstream
a rigid row of tubes, (d) bundle with the upstream 5 flexible rows and downstream rigid array

sponse data to determine the average critical velocity. For the fully flexible array, a Connors
constant of K=4.4 was estimated for Vpcr/fD=13.2. For the single flexible tube and flexible
column configurations, values of K= 5.3 and 4.9, were respectively, obtained.

Figure 4.24 shows two flow regime maps proposed by Noghrehkar et al. [112] and Ulbrich and
Mewes [113]. The experimental test conditions are also superposed on maps. Noghrehkar
et al. [112] distinguished three different flow regimes by analysing the two-phase flow void
fraction probability density: Bubbly, Intermittent, and Dispersed flow. Since these maps to
do not correspond to the rotated square array studied in the present work, they provide an
estimate of the expected flow pattern. Figure 4.24 shows that for void fractions of 40% -
60%, the flow pattern is primarily bubbly flow. For 70%-80% void fraction, the flow pattern
is at the transition boundary between bubbly and intermittent flow patterns (according to
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Figure 4.19 Frequency spectra of tube 3 in the fully flexible array configuration.

Figure 4.20 Vibration mode and phase angles referenced to tube 3 in air flow at at the post
instability flow velocity.

Ulbrich and Mewes [113] ) particularly in the mid-velocity range. For the void fractions of
90% and 97%, the flow conditions are primarily in the intermittent flow regime; for 97% void
fraction the highest velocity conditions approach the transition boundary to dispersed flow.
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(a) (b)

Figure 4.21 Frequency spectra of the flexible tube in the streamwise direction located in the
third row for: (a) Vu/fD=4.86, (b) Vu/fD=7.64

(a) (b)

Figure 4.22 Configurations of the tubes flexible in the transverse directions experimented in
air flow

The reduced critical velocity for the two-phase flow and air flow unstable cases are plotted
in Fig. 4.25 as a function of mass damping parameter, mδ/ρD2. In addition to the test
results presented above, previously published data is included in Fig. 4.25 for comparison.
The published data includes a range of pitch spacings and flow types.

In Fig. 4.26, the same data is plotted to show the relation between the stability constant K
and array spacing ration P/D. Due to the complexity of the dynamic behaviour in air flow
compared to water and two-phase flow, the diagrams shown in Figs. 4.25 and 4.26 show
only arrays tested in air. It is apparent, from the current work and previous work from the
literature, that a single flexible tube is stable in this layout, and fluidelastic stiffness coupling
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Figure 4.23 Tube vibrations of a fully flexible array in the transverse direction: (a) dynamic
vibrations, (b) static deflection, (c) frequency variation, (d) frequency spectra of tube 3.

is necessary for instability. For the fully flexible array, the critical reduced velocity increases
rapidly with pitch spacing, reaching its maximum value near P/D=1.6 as reported in [17],
then it does not show a clear increase at higher pitch ratios. This can not be confirmed yet
as there is very few data published for this layout with wide spacing in air flow.

Single flexible tube array, as well as partially flexible arrays, have delayed instability onset
due to the relatively weak tube-tube coupling. This is incomparable to the fully flexible array
cases where the array could become unstable at lower velocity due to the strong fluidelastic
coupling between the tubes. Hence, data showing fully flexible array instability in Fig. 4.25
are distinguished with filled symbols. Price and Kuran [13] provided data for up to four
flexible tubes, located in the upstream rows. For such a small number of flexible tubes, and
widely spaced array (P/D=2.12), the critical velocity is found to be the highest among the
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Figure 4.24 Flow regime map for transverse direction.

Figure 4.25 Stability map of the fluidelastic instability experimental data: (△,◁,⃝) present
study in 97% void fraction (transverse direction), and in air flow in the streamwise direction:
(▽,∗,⋆) present study (P/D=1.64), (⃝) Price and Kuran (P/D=2.12) [13], (♢) Païdoussis et
al. (P/D=1.5) [14], (■) Nakamura and Tsujita (P/D=1.2, 1.33, 1.5) [15], (▲) Hartlen (P/D=1.3,
1.414, 1.56) [16] , (◀) Soper (P/D=1.27, 1.35, 1.52, 1.78) [17], (▶) Elkashlan (P/D=1.4, 1.7) [18];
open symbols represent data from single and partially flexible arrays, filled symbols represent data
from fully flexible arrays

data in the literature. This was also the case for the present tighter array; where a cluster of
four flexible tubes becomes unstable at much higher critical reduced velocity than the fully
flexible case.
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Figure 4.26 Instability constant variation with tubes mass-damping parameter and array
pitch spacing for fully flexible array in air flow in the streamwise direction: (⋆) present study
(P/D=1.64), (■) Nakamura and Tsujita (P/D=1.2, 1.33, 1.5) [15], (▲) Hartlen (P/D=1.3, 1.414,
1.56) [16] , (◀) Soper (P/D=1.27, 1.35, 1.52, 1.78) [17], (▶) Elkashlan (P/D=1.4, 1.7) [18]

The pitch ratio is a key parameter affecting the stability threshold. For the rotated square
array, this effect is significant. As seen in Fig. 4.26, the critical velocity increases for large
spacing arrays when the mass damping parameter is relatively small (MDP<30), while this
increase is considerably small for large mass damping parameters. Soper [17] and Harlten [16]
test results are conducted for different mass damping parameters, 50 and 166 respectively,
and stability constant does not vary significantly for multiple pitch ratios, compared to lower
mass damping parameters.

4.5 Conclusions

A fundamental experimental program was carried out to investigate the stability behaviour
of a rotated square tube array of pitch ratio P/D=1.64. The study is comprised of extensive
fluidelastic vibration experiments in air-water two-phase flow, as well as air flow. In two-
phase flow, of up to 90% void fraction, with single or multiple flexible tubes, the array was
found to be fluidelastically stable in both transverse and streamwise directions. For a very
high void fraction of 97%, unstable behaviour in the transverse direction was induced by the
flow. The strength of the vibrations varied depending on the number of flexible tubes in the
array. The amplitude growth rate with flow velocity was low compared to typically observed
fluidelastic instability. Damping analysis showed a significant increase in damping ratio in the
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streamwise direction. This explains the strongly stable behaviour in the streamwise direction
for this array in two-phase flow.

In air flow, a single flexible tube was found to be stable in both the transverse and streamwise
directions. This led to the conclusion that the damping controlled mechanism is incapable
of inducing fluidelastic instability in this array. Experiments with multiple tubes flexible in
the streamwise direction showed stable dynamic behaviour, unless more than two flexible
tubes are located in the first row. However, by increasing the number of degrees-of-freedom,
upstream rows underwent fluidelastic instability, with instability threshold related to the
number of flexible tubes. Transverse fluidelastic loss of stiffness was observed in the second
row that led to a 30% drop in natural frequency, accompanied by static deflection, indicating
the possibility of static instability (divergence) in this array. Taken together, results show
that the leading instability mechanism in this array is the stiffness-controlled fluidelastic
instability mechanism for air flow. In the array, streamwise fluidelastic instability (in air
flow) could be restrained by fixing the upstream tube row. For two-phase flow, the array is
fluidelastically stable in the streamwise direction.
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CHAPTER 5 ARTICLE 3: STABILITY BEHAVIOUR OF A ROTATED 
SQUARE TUBE ARRAY SUBJECTED TO TWO-PHASE CROSS-FLOW

Sameh Darwish, Njuki Mureithi, Minki Cho

This article has been submitted to the “Journal of Nuclear Engineering and Design” on October 
26, 2022.

In this chapter, the stability analysis of the rotated square array is performed in single phase 
(water) and two-phase (air-water) cross-flow. This is to meet the specific objectives to:

• Measure the quasi-static fluid forces of the tubes in the array in the lift and drag
directions.

• Perform stability analysis of the array to study its fluidelastic behaviour.

• Verify the applicability of the quasi-steady model to the rotated square array in two-
phase flow.

The paper presents the time-averaged quasi-static fluid force measurements of the rotated 
square array in single and two-phase flow. A test apparatus is designed to measure the forces 
in both the transverse and streamwise directions. Central tube is instrumented using an 
accurate force sensor to measure the fluid forces. This tube is mounted on a mechanism 
with a feedback and a laser sensor to control its displacement. Cross-coupling fluid forces 
were also measured by instrumenting the neighbouring tubes with strain gauges. Lift and 
drag force coefficients are measured at high reduced velocity for each void fraction. Results 
show that lift force coefficient derivative is positive in water flow, while it is 
significantly low in two-phase flow. Results are compared with a rotated triangular array 
fluid forces, an array that is known to be inherently unstable, especially in the transverse 
direction. The measured fluid forces were incorporated into a quasi-steady model to study 
the array stability behaviour. The model confirmed that the array is generally stable in 
both the transverse and streamwise directions in two-phase flow. Despite the stable 
behaviour in two-phase flow, instability was detected when a multiple flexible tubes existed in 
the array in water cross-flow. This observation made it clear that the previously reported 
vibrations in water cross-flow at high flow velocity when fully flexible array is tested 
resulted from fluidelastic instability. The complex behaviour in water flow due to the 
tube-vortex interaction made it unclear to predict the fluidelastic instability. 
Interestingly, the model was able to predict the fluid damping variation with the flow 
velocity.



94

Abstract

Theoretical analysis of fluidelastic instability of tube arrays operating in two-phase flow, in
particular, for rotated square arrays, remains limited. In this paper, an experimental program
was carried out to gain insight into the rotated square array fluidelastic forces. The quasi-
steady model is used to predict the fluidelastic behaviour of a rotated square array having pitch
spacing ratio P/D=1.64. A test apparatus is designed to measure the quasi-static fluid forces
in single phase (water) and two-phase (air-water) flow for a wide range of void fractions. Both
streamwise and transverse directions are considered in the study by measuring the forces and
their derivatives with respect to tube finite displacement in both the lift and drag directions.
The cross coupling fluid forces are incorporated into the quasi-steady model to investigate the
existence of the stiffness-controlled instability mechanism in this array. The results of the
theoretical analysis were compared with fluidelastic instability experimental data for the same
array. Agreement between the theoretical results and the experiment is shown to be good. In
general, the stable behaviour of this array in two-phase flow was confirmed. The analysis
showed the vulnerability of this array to transverse fluidelastic instability in water flow in the
case of the fully flexible array. This analysis is also used to investigate the array behaviour in
the 97% void fraction and results are compared with those exported experimentally. Compared
to the lower void fractions, the damping is, uniquely in the 97%, invariably behaving with the
flow velocity increase. This is relatively consistent with the observed fluidelastic instability
from the experiments.

5.1 Introduction

Fluidelastic instability (FEI) in steam generators has been a major concern in the last decade
due to an unexpected repeat occurrence. In 2012, two steam generators in the San Onofre
Nuclear Generating Station (SONGS) in California suffered significant tube failures due to
fluidelastic instability induced vibrations. Despite the extensive experimental effort and sig-
nificant advances in understanding tube arrays dynamics in two-phase flow, significant work
is still needed to develop theoretical models to predict the fluidelastic instability for differ-
ent tube arrangements. To elucidate the physics of the problem, Roberts [5] provided the
first modeling approach by considering a jet switching mechanism in the tube bundle and
assuming that flow separation occurs at minimal inter-tube gaps while pressure is constant in
the wake regions of the tubes. Robert’s theory could not, however, predict transverse fluide-
lastic instability, although research has shown this to be the dominant instability direction.
A different approach was followed in the quasi-static model developed by Connors [26] and
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Blevins [114] who proposed using measured quasi-static fluid forces on a tube. The model
assumes that fluid forces exerted on a flexible tube could be predicted (approximately) by
statically displacing the tube relative to its neighbours. This assumption allowed the ex-
perimental measurement of the fluid force coefficients using a rigid tube in an array. In the
quasi-static model, the flow adjusts to tube motion with no retardation. Considering the
retardation of the flow approaching the cylinder, a significant improvement was proposed by
Price and Paidoussis [55, 57, 115] by including the resulting time lag between tube motion
and fluid forces. Granger and Paidoussis [6] and Meskell [116] introduced the quasi-unsteady
model by modelling the memory effect. This improvement has led to better agreement with
the experimental FEI test results. However, it introduced more parameters to be determined,
which are array-dependent.

The general unsteady model was developed by Tanaka and Takahara [49,50], and Chen [117].
The method is based on unsteady fluid forces measured on an oscillating cylinder. Despite
the method’s accuracy predicting the 1 d.o.f damping-controlled induced FEI, the method
encounters challenges predicting stiffness-controlled instabilities for two-phase flow. This
is due to the difficulty measuring dynamic (cross-coupling) forces in two-phase flow which
requires strong coherence between the tube motion and the neighbouring tubes cross-coupling
forces. Nakamura et al. [118], Mureithi et al. [119], and Hirota et al. [120] applied the
unsteady model and presented the time-frequency analysis developed to calculate the tube
displacement-fluid force phase difference. Despite the difficulty in measuring the time delay
in two-phase flow due to high flow turbulence, Sawadogo and Mureithi [25, 121] showed
that the time delay could be deduced by equating the quasi-steady with a time delay to
measured unsteady fluid forces. While their work was innovative, difficulties were, however,
encountered when extracting the time delay parameter from the deduced equation for some
test flow velocities and excitation frequencies.

Lever and Weaver [7] developed a tube-in-channel model to describe the transverse dynamics
in tube bundles. The model is based on the analysis of a single flexible tube in a so-called
unit cell consisting of a wake and channel region. The model considered only single degree-
of-freedom (SDOF) instability, where transverse and streamwise motions are mechanically
decoupled. With some later modifications reported in Lever and Weaver [65], static instability
(divergence) and streamwise instability were taken into account in a modified version of the
equations. Later, Hassan and Weaver [66] extended the theory with a simplified model
to couple the streamwise and transverse motion of the tubes in a flexible bundle. This
improvement allows the theory to predict FEI due to the stiffness mechanism (FEI with
coupled multiple degrees-of-freedom). The authors later studied the stability behaviour of
the rotated square array in the streamwise direction [122]. Simulations were carried out to



96

compare a single flexible tube in an otherwise rigid array with experimental results. The work
cited in the foregoing is a small subset of the work done on fluidelastic instability. Price [56]
did an excellent review addressing the historical progress of FEI model development for tube
arrays, discussing in details the relative strengths and limitations of the various models.

Staggered arrays, especially the rotated square, have shown complex dynamic behaviour in
single and two-phase flows. Previous experimental results revealed that the rotated square
array has an even higher level of dynamic complexity when subjected to air cross-flow. Yet,
the data existing for this array, in addition to modelling research in the literature is scarce.
The only theoretical study comprising experimentally measured forces in a rotated square
array was performed by Kuran [123] for air flow. The results were incorporated into a multi-
degree-of-freedom quasi steady model. However, the model provided by the author could not
fully reveal the physical mechanisms governing several phenomena observed in the array.

The purpose of the present work is to contribute to a deeper understanding of the complex
dynamics of the rotated square array. The main objectives of the work is to explicitly
determine the fluid force coefficients in the array in the streamwise as well as the transverse
directions, and to verify the applicability of the simple quasi-steady model in predicting the
FEI onset for the rotated square array. Fluidelastic instability tests performed in single and
two-phase flow form the basis for the work presented here. In addition to stability testing, a
careful study is needed to measure the fluid forces acting on a flexible tube in this array. In
the case of multiple flexible tubes, the fluid coupling resulting from tube motion is significant
based on previous findings for this array. In the present study, the time-averaged quasi-static
forces acting on a bundle of rigid tubes as a function of tube displacement are measured in
a rotated square array of pitch spacing ratio P/D = 1.64. The study is conducted for both
the transverse and streamwise directions in water flow, and two-phase flow for void fractions
ranging from 40% to 97%. These results are used in the quasi-steady model to predict the
fluidelastic instability boundary.

5.2 Theoretical Formulation

The quasi-steady model is used in this work in view of its moderate complexity and appli-
cability in predicting the fluidelastic instability onset for different arrays for a wide range of
mass damping parameters. The quasi-steady model is based on the following assumptions:
tube non-dimensional displacement (y0/D or x0/D) is small, flow reduced velocity (V/fD)
is high, implying that tube velocity is relatively small compared to flow pitch velocity, and a
time delay exists between tube displacement and fluid forces. One main advantage of using
the quasi-steady model is to model the multi-degree-of-freedom array. This is achieved by
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measuring the fluid forces on the surrounding tubes resulting from central tube displace-
ment. This is easily done when measuring the steady fluid forces. It is significantly more
difficult to measure dynamic forces (for the unsteady model) due to weak correlation of the
cross-coupling forces on the surrounding tubes.

5.2.1 Quasi-steady model formulation

In the following, the equations governing the motion of a tube that is assumed to be flexible in
one direction only are presented. In this formulation the x- and y-directions are mechanically
decoupled. This is also the case for the multiple flexible tubes conditions. Here, the quasi-
static lift and drag coefficients are determined using the pitch flow velocity for practical
purposes. All equations that follow are also based on the pitch flow velocity defined as

Vp = V∞
P/D

P/D − 1 (5.1)

where V∞ is the homogeneous free-stream velocity at the test section entrance and P/D the
array pitch-to-diameter ratio. Due to the vibrational motion of the flexible tube, the velocity
vector becomes at an induced angle, α, relative to the tube as shown in Fig. 5.1(b). The
velocity relative to the tube motion can be expressed as:

Vr =
√

(Vp − ẋ)2 + ẏ2 (5.2)

By neglecting the higher order terms

Vr

Vp − ẋ
=
√

1 + ( ẏ

Vp − ẋ
)2 ≃ 1 (5.3)

For small displacements, the angle of incidence can be defined as

α ≃ ẏ

Vr

; cosα = Vp − ẋ

Vr

≃ 1 (5.4)

The quasi-steady fluid forces in the x- and y- directions can be expressed as

Fx = FD cosα + FL sinα

Fy = FL cosα− FD sinα
(5.5)

where the drag and lift forces are
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(a) (b)

Figure 5.1 Schematic showing of the array layout and neighbouring tubes numbers.

FD = 1
2ρhV

2
r DCD

FL = 1
2ρhV

2
r DCL

(5.6)

By combining equations 5.4, 5.5, and 5.6, the expression of the fluid forces in the streamwise
direction can be written as

Fx = 1
2ρhV

2
p D[CD − 2

Vp

CDẋ+ CL
ẏ

Vp

] (5.7)

and in the transverse direction as

Fy = 1
2ρhV

2
p D[CL − 2

Vp

CLẋ− CD
ẏ

Vp

] (5.8)

Considering an array having N flexible tubes, the drag and lift coefficients can be described
using first order Taylor’s approximation
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CDi = CD0i +
n∑

i=1

∂CDi

∂xj

xj +
n∑

j=1

∂CDi

∂yj

yj

CLi = CL0i +
n∑

i=1

∂CLi

∂yj

yj +
n∑

j=1

∂CLi

∂xj

xj

(5.9)

where, the CDi and CLi are the drag and lift coefficients for tube i, xj and yj are the streamwise
and transverse tube displacements of tube j. Thus, the linearized streamwise fluid force per
tube unit length, for a tube in figure 5.1(a), may be expressed as:

Fx = 1
2ρhV

2
p D

[
CD0 + ∂CD

∂x
x− 2

Vp

CD0ẋ

]
(5.10)

Similarly in the transverse direction

Fy = 1
2ρhV

2
p D

[
∂CL

∂y
y − CD0

Vp

ẏ

]
(5.11)

where, ρh is the homogeneous fluid density, D is the tube outer diameter, CL is the lift
coefficient, CD is the drag coefficient, CD0 is the drag coefficient at the tube central location.
The equation of motion of the tube array flexible in the transverse direction, considering
linearized quasi-steady fluidelastic forces, can be written as

([Ms] + [Mfy ])[¨⃗y] + ([Cs] + [Cfy ])[ ˙⃗y] + ([Ks] + [Kfy ])[y⃗] = 0 (5.12)

and in the streamwise direction

([Ms] + [Mfx ])[¨⃗x] + ([Cs] + [Cfx ])[ ˙⃗x] + ([Ks] + [Kfx ])[x⃗] = 0 (5.13)

where:

[Ms] = ms[I]nxn; [Mf ] = mf [I]nxn;Cs = 2ωζms[I]nxn; [Ks] = msω
2[I]nxn;

where, m is the mass, K is the stiffness, and C is the damping, and subscripts s and f

indicate structure and fluid quantities, respectively, ω is tube natural frequency, and ζ is
tube damping. The fluid damping induced by the flow drag force on the tube flexible in the
transverse direction in the array is

[Cfy ] = 1
2ρhDVpCD0[I]nxn (5.14)
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and for the tube flexible in the streamwise direction

[Cfx ] = ρhDVpCD0[I]nxn (5.15)

This flow dependent damping always has a positive value as CD0 is always positive. A
time lag is introduced into the fluid forces that describes the delay between fluid adjusting
continuously around the tube due to changing location of the vibrating cylinder. In the
case of a single flexible tube, previous work has shown that the time delay is necessary to
predict the fluidelastic instability that is induced by the damping controlled mechanism.
For a simplified first order model, the time lag between the fluid dynamic force and tube
displacement can be expressed as [57]

τ = µ
D

U
(5.16)

where µ is the time lag parameter estimated to be of order of magnitude of 1. Recent
measurements by Sawadogo and Mureithi [121] found values of µ in the range 1.2 ≤ µ ≤ 2.7
for a rotated triangular array in two-phase flow of void fractions in the range 60%-90%.
Generally, fluid force measurements of the rotated square arrays have not been reported in
the literature except for the quasi-static forces measured in air flow by Kuran [123]. Taking
into account the time delay, the fluid stiffness in the transverse direction is written as

[Kfy ]i,j = −1
2ρhV

2
p D

[
∂CLi

∂yj

]
e−iωτ (5.17)

while in the streamwise direction

[Kfx ]i,j = −1
2ρhV

2
p D

[
∂CDi

∂xj

]
e−iωτ (5.18)

The fluid stiffness is composed of a real and imaginary parts introduced from the e−ωτ

term. This generates an additional fluid damping term proportional to ∂CL/∂y or ∂CD/∂x

depending on the flexibility direction. Considering an array having n flexible tubes, with all
tubes flexible in one direction only, the equation of motion of tube i flexible in the streamwise
direction will be expressed as
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ẍi +
[
δ

π
ωn + ρV D

m
CD0

]
ẋi +

[
ω2

n − 1
2
ρV 2D

m

∂CDi

∂xi

e−iωτ

]
xi −

1
2
ρV 2D

m
e−iωτ

n∑
j=1
j ̸=i

∂CDi

∂xj

xj = 0

(5.19)
and in the transverse direction

ÿi +
[
δ

π
ωn + 1

2
ρV D

m
CD0

]
ẏi +

[
ω2

n − 1
2
ρV 2D

m

∂CLi

∂yi

e−iωτ

]
yi −

1
2
ρV 2D

m
e−iωτ

n∑
j=1
j ̸=i

∂CLi

∂yj

 yj = 0

(5.20)

From 5.20, assuming one degree-of-freedom transverse vibration, y = yoe
iωt, the total damp-

ing becomes

ζtot = 1
2ωn

ω ( δ
π
ωn + 1

2
ρV D

m
CD0

)
+ 1

2
ρV 2D

m

∂CL

∂y
sinωτ

 (5.21)

For the damping controlled instability to occur, the flow-induced negative damping must be
negative enough to overcome the structural damping and flow independent damping expressed
in equations 5.14 and 5.15 [124]. The last terms in equations 5.19 and 5.20 represents the
coupling factor in the model. It is noteworthy to mention that the fluid damping and fluid
stiffness are flow velocity dependent values and clearly on the damped harmonic frequency
of the tubes.

5.2.2 Derivatives of fluid force coefficients

The drag and lift force coefficients are defined as

CD = FD

0.5ρhV 2
p A

CL = FL

0.5ρhV 2
p A

(5.22)

From the symmetry of the array, one may deduce that

CLi0 = CLc0 = 0 (5.23)

In addition, the lift coefficient remains invariant as the tube is displaced in the streamwise
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direction. The drag coefficient on the other hand is symmetrical with respect to tube dis-
placement in the transverse direction. This leads to the relation

∂CDi

∂yi

= ∂CDc

∂yc

= 0

∂CLi

∂xi

= ∂CLc

∂xc

= 0
(5.24)

In the force measurement tests, only the central tube in the array is displaced. The force
derivatives of the neighbouring tubes as well as the central tube are deduced from tests
with central tube displacement. Tubes C, 1-5 (Fig. 5.1(a)) are instrumented for force mea-
surements. Array symmetry is used to determine force derivatives on the non-instrumented
tubes 6-8, as well as all cross-coupling force derivatives for all the nine tubes in Fig. 5.1(a).
Tables 5.1 and 5.2 show the force coefficient derivative relations deduced from array symme-
try. The fluid induced stiffness is determined based on the derivatives, which determine the
tube-to-tube fluid stiffness coupling.

It should be noted that the quasi-steady model implemented here does not explicitly consider
unsteady fluid effects. Also, it assumes that the two-phase flow is perfectly homogeneous
inside the tube array. The homogeneous model is used to provide the estimate of the two-
phase flow condition, while the model utilized here does not make any assumption on the
flow distribution.

5.3 Experimental Apparatus

A two-phase flow test section was designed to run stability experiments as well as the force
measurement tests. The test section is supported by two steel columns to ensure its rigidity.
Air is injected into the test section with a capacity of up to 500 scfm, while a 7.5 HP
centrifugal pump is connected to the loop to circulate the water flow with a flow rate up
to 25 l/s. Water flow rate is measured with MAG500 magnetic flow meter. Air flow rate,
in addition to air pressure and temperature, are measured and monitored during the tests
using Rosemount 3095 flow meter. The static pressure of the mixture is measured at the
inlet of the test section using a differential pressure transducer to accurately correct for air
flow compressibility in the two-phase flow rate measurement. Both the air and water streams
are mixed upstream of the test section entrance by a two-stage two-phase flow honeycomb
mixer to ensure homogeneity of the flow across the test section.

The test section measures 220 x 190.5 mm2 in cross-section. Rigid tubes in the array are
arranged in 9 rows and 9 columns. Half tubes are mounted on the side walls to reduce the
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Table 5.1 Transverse fluid force deriva-
tives.

Measured variable Equivalent
∂CLc

∂Yc

∂CLi

∂Yi
∂CL2
∂Yc

-∂CL8
∂Yc

∂CL3
∂Yc

-∂CL7
∂Yc

∂CL4
∂Yc

-∂CL6
∂Yc

Table 5.2 Streamwise fluid force deriva-
tives.

Measured variable Equivalent
∂CDc

∂Xc

∂CDi

∂Xi
∂CD2
∂Xc

∂CD8
∂Xc

∂CD3
∂Xc

∂CD7
∂Xc

∂CD4
∂Xc

∂CD6
∂Xc

(a) (b)

Figure 5.2 Experimental test setup showing: (a) linear motor mechanism, (b) test section.

wall effects. The test apparatus is designed to operate with tube vibration in the transverse
and streamwise directions. For the force measurement tests the central tube is located in
the fourth row and is surrounded by rigid tubes. This tube is mounted on a linear motor
delivering up to 3KN peak force and 660 N of continuous force. The motor is controlled
by an Aries smart AR-04CE servo-drive. This motor is designed to generate a direct linear
motion. A linear magnetic encoder ensures motor motion with an accuracy of ±30 µm.
The quasi-static force measurement is done by moving the tube with predefined finite static
displacements of 0.25 mm (0.013D). In the case of a transverse displacement of the tube, this
shows the variation of the lift and drag coefficients of the tubes with the transverse movement
of the central tube (yc). The same applies to the streamwise direction by determining the
force coefficients variation with central tube streamwise displacement. Force measurement
tests are performed for single phase flow (water flow, 0% void fraction), and two-phase flow
with void fractions from 40% to 97%. During the test, the steady-state condition of the fluid
force is attained by allowing enough time at each tube location.
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Figure 5.3 Instrumented neighbouring tubes showing strain gauges fixed at tube root.

Figure 5.4 Test Section.

Figure 5.2 shows the test section and the tube mounted on the force sensor. The central
tube is surrounded by eight instrumented tubes. These tube are effectively rigid in order
to avoid any vibration and coupling between the neighbouring tubes and the central tube.
The neighbouring tubes are made of plexiglass, and hydrodynamic forces are measured using
strain gauges mounted near tube root as shown in Fig. 5.3. Considering the symmetry in the
tube array, the force measurements are only preformed on tubes labeled 1-5 in Fig. 5.1(a).

The quasi-static forces are measured using an ATI Nano17 force transducer. The transducer
has high signal-to-noise ratio via using silicon strain gauges technology. The force resolution
by the sensor is 0.0125 N. Tube location and time dependent vibratory displacement is
measured using an optical sensor. All signals are monitored via an inhouse Labview program
and collected through National Instruments Data Acquisition System (DAQ) with a high
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sampling rate of 2 kHz. All instrumentation transducers and devices are calibrated to ensure
the validity of the collected data.

Two-phase flow parameters

The homogeneous void fraction, β, is calculated from the air and water volumetric flow rates
to determine the mixture properties. The homogeneous model assumed uniform two-phase
flow across the test section.

β = Qg

Qg +Ql

(5.25)

where, Q is the volumetric flow rate, and g and l subscripts denoting the gas and water,
respectively. The time-averaged homogeneous two-phase flow density, ρh is calculated by

ρh = βρg + ρl(1 − β) (5.26)

where, ρh is flow mixture density, and g and l subscripts denoting the gas and water, respec-
tively. The two-phase flow Reynolds number (Re) is determined as

Re = ρhV D

µh

(5.27)

µh =
[
x

µg

+ (1 − x)
µl

]−1

(5.28)

x = β

β + (1 − β)ρl/ρg

(5.29)

where, x is mass quality, and µl and µg are the fluid dynamic viscosity, for the liquid phase
and the gas phase, respectively.

5.4 Experimental Results

5.4.1 Quasi-static force measurements

The procedure followed for the tests starts with determining the test velocity for each void
fraction. All tests performed here are done for Re ≃ 1 × 104. Quasi-static force coefficients
are the key inputs needed in the quasi-steady model. Roshko [125] has shown that the
drag coefficient decreases at low Reynolds number, and reaches an approximately constant
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Figure 5.5 Variation of the lift coefficient derivative with Reynolds number.

Figure 5.6 Variation of the drag coefficient with Reynolds number.

value at mid and high Reynolds number. Recently, it was shown that quasi-static force
coefficients have near constant value for a rotated triangular array of P/D=1.5 in single
phase for Shahriary et al. [126], and two-phase flow Sawadogo and Mureithi [127], for high Re.
Similarly, Tanaka and Takahara [49] showed that tube phase and lift force coefficient change
with tube transverse displacement for an in-line square array having pitch ratio P/D=1.33.

In the present work, the effect of the flow velocity on the quasi-static force coefficients is
studied. The variation of the force coefficients is investigated in single (water) and two-phase
flow. Figure 5.5 presents the lift coefficient derivative dependence on reduced flow velocity.
The derivative is seen to be nearly constant for mid and high flow velocities. The drag
coefficient at the tube central position is plotted versus reduced velocity in Fig. 5.6. It is
clear that the drag coefficient tends to be constant at high flow velocity.

The variation of the lift coefficient, CL, with respect to tube non-dimensional displacement
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(a) (b)

Figure 5.7 Variation of tube C lift coefficient with transverse displacement (Y/D) for: (a)
single and two-phase flow for void fractions in the range 0 ≤ β ≤ 97%, (b) two-phase flow
for 40% ≤ β ≤ 97%.

in the lift direction, Y/D, in water flow and two-phase flow is presented in Fig. 5.7, for
0%-97% void fractions, Fig. 5.7a. The variation was considered over a displacement range
of the central tube of −0.2 to 0.2. In water flow (β = 0%), the change in CL is large
and positive, so lift force is directed away from tube equilibrium position. For two-phase
flow (Fig. 5.7b), CL is much lower. Figure 5.8 shows the derivative (CL,Y/D) of the lift
force coefficient with respect to the tube non-dimensional displacement, Y/D. It is seen
that the derivative changes from positive in water flow to negative in two-phase flow having
significantly lower values in the latter case. The same trend was observed by Sawadogo and
Mureithi [121] and Shahriary et al. [126]. The lift derivative is the main indicator of stabilizing
or destabilizing fluid forces in the array, for a single flexible tube case. Results show that in
water flow, a large positive lift derivative is measured. It was previously suggested that the
magnitude of the lift derivative must be large and the sign must be negative in order for the
damping controlled fluidelastic instability to occur based on the quasi-steady model [124].
This would imply that the negative-damping induced instability may not be possible in this
array, in particular, for water flow. However, in a recent study by Li and Mureithi [128],
the negative lift coefficient instability condition was shown not to be necessarily true in
general. A new time delay formulation improving on the constant time delay model showed
that negative-damping induced instability was even for positive CL,Y/D, when the Re effect
is considered. Hence, the instability of the present RS array cannot be judged simply from
the force coefficient derivative, and stability analysis is required to determine the dynamic
behaviour of the array. Solving the system of governing equations presented above is necessary
to determine the stability behaviour of the array.

Drag force coefficient variations are less complex due to the direct interaction between central
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Figure 5.8 Variation of the lift coefficient derivative of tube C with respect to Y/D for void
fractions 0 ≤ β ≤ 97%, with a close-up view for 40 ≤ β ≤ 97%.

Figure 5.9 Variation of tube C drag coefficient with streamwise displacement (X/D) for void
fractions 0 ≤ β ≤ 97%.

tube motion and neighbouring tube forces in the flow direction. The variation of the central
tube drag force coefficient with respect to its streamwise displacement is presented in Fig.
5.9 for all void fractions. CD shows a slightly increasing trend with displacement (X/D) in
the streamwise direction. The slope of the drag coefficient is found to be positive in this
array. This was also the case for the rotated triangle array (see Olala and Mureithi [19] and
Shahriary et al. [126]). Figure 5.10 presents the variation of the drag coefficient derivative
(CD,X/D) with flow void fraction. The highest value of the derivative is in water flow. In
two-phase flow it is generally low with an approximately constant value of 1.

Figure 5.11 compares the lift and drag derivatives of the central tube with respect to its
displacement, for the present RS array versus those for a rotated triangular array having
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Figure 5.10 Variation of tube C drag coefficient derivative with respect to X/D for void
fractions 0 ≤ β ≤ 97%.

(a) (b)

Figure 5.11 Variation of the lift and drag coefficients derivatives for different arrays with flow
void fraction in the: (a) transverse and (b) streamwise directions

P/D=1.5. Rotated triangular arrays are known to be strongly fluidelastically unstable in
the transverse direction. From a quasi-steady model point of view, this is reflected in the
magnitude of the lift force derivative. The derivative magnitude indicates the strength of
fluid-structure coupling. The sign indicates whether fluid damping is positive or negative
(when the Re effects are small). This observation is valid when the damping mechanism
drives the stability behaviour. The test results here show that for the present rotated square
array with moderately large spacing, the lift force derivatives in two-phase flow vary near
zero (Fig. 5.11(a)). By comparison the rotated triangular array (P/D=1.5) has a maximum
magnitude of 10. This is a significant reduction in fluid-structure coupling for the rotated
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square array. The result suggests higher transverse direction stability for a single flexible
tube in the RS array, more specifically a tube in the RS array has weak susceptibility to 1
d.o.f damping controlled instability.

The drag force coefficients have the same trend found for the rotated triangular array. Drag
coefficient derivatives have values in water and two-phase flow with an overall reduction near
50% versus the rotated triangular array (Fig. 5.11(b)). This significant reduction suggests
that a single tube is likely to be more stable in the flow direction within a rotated square
array than in a rotated triangular array due to the weaker fluidelastic excitation forces.

For an array with multiple flexible tubes (multi degrees-of-freedom), cross-coupling forces
must be considered. Figure 5.12 presents the variation of the quasi-static lift and drag force
coefficients of tubes 2-4 (defined in Fig. 5.1(a)) with respect to the normalized transverse
displacement (Yc/D) of the central tube. The corresponding force coefficients for streamwise
tube C displacement are presented in Fig. 5.13. Measurement with respect to tube C
displacement is somewhat easier and less complex than displacing all the tubes and measuring
the central tube fluid forces as was done in previous tests by Kuran [123]. The lift coefficient
derivatives with respect to tube C displacement are plotted together in Fig. 5.14. The
results obtained from these measurements provide the fluid stiffness information required in
the quasi-steady model. From the symmetry of the array, non-instrumented tube fluid force
derivatives can be inferred as shown in Table 5.1.

Figures 5.12 and 5.13 show a clear change in the lift force direction with respect to tube
displacement at around 60% void fraction. For the downstream tubes (tubes 1 and 2) lift
forces change near 80% void fraction. Tube 3 is the least sensitive to tube C transverse
displacement (Fig. 5.12c). The lift coefficient derivative for tube 4 is positive for all void
fractions (Fig. 5.12e). The upstream tube (tube 5) shows similar coupling behaviour to that
observed for tube 3.

For streamwise tube C displacement (Fig. 5.13), drag force coefficient derivatives are the
lowest for the downstream tubes (1-3). Downstream neighbouring tubes drag force derivatives
are the least sensitive to tube motion, while the upstream tubes derivatives decreases with
the increase of flow void fraction. Tube 3 is also not significantly affected by central tube
motion except at high void fractions of 90% and 97%. Upstream tubes, on the other hand, are
more significantly affected at the lower void fractions. In comparison with a rotated triangular
array with P/D=1.5 [19], Fig. 5.16 shows the variation of the drag force coefficient derivatives
for both rotated square array and the rotated triangle. The comparison is addressed between
tubes having the same location relative to the central tube is each array. The cross coupling
fluid force drags the downstream tube (tube 1) in the rotated square array, while this effect is
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reversed in the rotated triangle. The same observation is noticed in the downstream diagonal
tube (tube 2) in water flow only. Generally, there is a significant difference between both
arrays in the downstream tubes drag force cross coupling, as the rotated square array has
lower drag force coefficient derivative. Tube 3 in this array could not be compared to the
rotated triangle due to the geometrical differences. Upstream tubes (tubes 4 and 5) do not
show clear differences in comparison with the rotated triangle geometry, except tube 4 in two-
phase flow in the range 20%<β<70%. Apparently, in the rotated square array, the change in
the upstream tube location in the flow direction does not significantly affect its downstream
neighbour drag coefficient (at least compared to the rotated triangle array). Nevertheless,
the opposite occurs with the upstream tubes where downstream tube position clearly affects
the fluid drag force.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12 Fluid lift and drag coefficients variation with respect to the central tube transverse
displacement Yc/D : (a) & (b) Tube 2, (c) & (d) Tube 3 , (e) & (f) Tube 4
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13 Fluid drag and lift coefficients variation with respect to the central tube stream-
wise displacement Xc/D : (a) & (b) Tube 2, (c) & (d) Tube 3 , (e) & (f) Tube 4
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Figure 5.14 Variation of the lift coefficient derivative of the neighbouring tubes for different
void fractions.

Figure 5.15 Variation of the drag coefficient derivative of the neighbouring tubes for different
void fractions.
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(a) (b)

(c) (d)

Figure 5.16 Variation of the neighbouring tube drag force coefficient derivatives for the present
RS array in comparison with derivatives for a triangular array [19].

5.5 Fluidelastic Stability Analysis

Equations 5.19 and 5.20 can be expressed in the generalized coordinate system, z̃, as

[M ]¨̃z(t) + [C] ˙̃z(t) + [K]z̃(t) = 0 (5.30)

In equation 5.30, z(t) = [x1(t), x2(t), ...]T for the streamwise vibration case, while z(t) =
[y1(t), y2(t), ...]T for the transverse vibration case. In the same equation, M is the total mass
matrix, C is the total damping matrix, and K is the total stiffness matrix. The matrices are
defined as [M ] = [Ms] + [Mf ], [C] = [Cs] + [Cf ], and [K] = [Ks] + [Kf ]. Consider the case of
an array with 3 flexible tubes (e.g. 1-3 in Fig. 5.1(a)) free to vibrate in the transverse (y)
direction. The matrices M, C, K in Eq. 5.30 are then 3 × 3 matrices. For harmonic motions,
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y = y0e
iωt, this yields

− ω2
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0 ms +ma 0
0 0 ms +ma
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(5.31)

Equation 5.30 can be reduced to first order by introducing the state vector

Υ⃗ = [ ˙⃗z z⃗], ˙⃗Υ = [¨⃗z ˙⃗z] (5.32)

Then equation 5.30 expressed in state space becomes

˙⃗Υ[I] − Υ⃗[A] = 0 (5.33)

where the matrix A2N×2N is defined as

A =
−M−1C I

0 −M−1K

 (5.34)

In Eq. 5.34, 0 and I are the (N × N) zero and identity matrices, respectively. Assuming a
solution of Eq. 5.33 of the form Υ⃗(t) = ψeλt leads to the following eigenvalue problem

(A− λI){ψ} = {0} (5.35)

The eigen-solution is the set of eigenvalues and eigenvectors

λi, λ
∗
i

ψi, ψ
∗
i

 , : i=1,2,...,N (5.36)
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where each eigenvector ψi is of the form

ψi =



ψi,1

ψi,2
...

ψi,N


N×1

(5.37)

For the present fluidelastic system the eigenvalue pair (λi, λ
∗
i ) can be represented in the

general form

(λi, λ
∗
i ) = ζiωi ± iωi

√
1 − ζ2

i = −ζiωi ± jωd,i (5.38)

where the ζi and ωi are the modal damping ratio and the natural frequency. These can be
explicitly obtained from the eigenvalues as

ωi = |λi| =
√

ℜ(λi)2 + ℑ(λi)2 (5.39)

and

ζi = −ℜ(λi)
ωi

= − 1√
1 +

(
ℑ(λi)
ℜ(λi)

)2
(5.40)

ωd,i = ωi

√
1 − ζ2

i (5.41)

where ωd,i is the damped natural frequency.

Equation 5.35 is solved as a standard eigenvalue problem to determine the critical flow
velocity at which the real part of the eigenvalue, ℜ(λi), vanishes, which corresponds to zero
effective tube array modal damping. This velocity defines the onset of fluidelastic instability.

The quasi-steady model is applied over a wide range of mass-damping parameters (mδ/ρD2)
varying based on the void fraction for the same tubes modal parameters. The results of
the theoretical prediction are presented and discussed in two separate parts, for the trans-
verse, and the streamwise vibration results. The Connors equation expresses the relationship
between the non-dimensional (or reduced) critical pitch velocity and tube mass-damping
parameter. The equation takes the form
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(a) (b) (c) (d)

Figure 5.17 Configurations of flexible tubes - stability analysis.

(a) (b)

Figure 5.18 Evolution of the eigenvalues with flow velocity of the single flexible tube in the
transverse direction for: (a) β =70%, and (b) β =90%

Vpc

fD
= K

√
mδ

ρD2 (5.42)

The equation provides a convenient basis for presentation of the analysis results and for
comparison with previous work.

5.5.1 Transverse direction stability behaviour

The quasi-steady model presented above, with the force coefficients presented in Sec. 5.5,
was used to perform a stability analysis of the tube array for both single and two-phase flows.
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(a) (b)

Figure 5.19 Dynamic response in transverse direction in water flow showing: (a) tube vibra-
tion amplitude, (b) dominant vibration frequency and periodicity frequencies.

Single flexible tube dynamics in the transverse direction

Figure 5.18 shows the real part, ℜ(λ), from an eigenvalue analysis for the case of the single
flexible tube in two-phase flow for 70% and 90% void fractions. For a single flexible tube,
the total damping vanishes at the threshold of instability for a sufficiently large reduced
velocity (Vp/fD). The damping is related to ℜ(λ) by Eq. 5.40. Increasingly negative
ℜ(λ) translates into increasing stability of the single flexible tube with reduced flow velocity.
For this array then, no fluidelastic instability of the single flexible tube is predicted in the
transverse direction; at least within what could be considered a practical flow velocity range
that may be encountered, for instance, in an operating steam generator. The quasi-steady
model predicts transverse direction stability for the single flexible tube for both single phase
and two-phase flow conditions. This was verified by solving the eigenvalue problem for all
void fractions.

Flexible array dynamics in the transverse direction

For the case of multiple flexible tubes, the stiffness-controlled instability mechanism comes
into play, in addition to the 1 d.o.f damping controlled mechanism. The stiffness mechanism
requires strong fluid cross-coupling between the adjacent tubes. Several cases of multiple
flexible tubes are studied as shown in Fig. 5.17 (b-d). The fully flexible array can be
represented by a cluster of 9 flexible tubes, Fig. 5.17 (d).

Figure 5.20 presents the eigenvalue evolution with flow reduced velocity for the flexible cluster.
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(a) (b)

(c) (d)

Figure 5.20 Evolution of the eigenvalues with flow velocity of the cluster case (9 flexible
tubes) in the transverse direction in water flow

The corresponding (lowest mode) damping and frequency evolution with reduced velocity are
also presented in the figure. Results show that one of the eigenvalues (and thus the damping)
vanishes at a reduced velocity Vp/fD=4.3, Fig. 5.20 (a,c). This suggests that for this array
at least, the cross-coupling forces are significant and effective to cause transverse fluidelastic
instability in water flow. A comparison between the different configurations is depicted in
Fig. 5.21. As discussed above, a single flexible tube was found to be fluidelastically sta-
ble. The presence of multiple flexible tubes therefore renders the tube array fluidelastically
unstable in water flow. The case of 2 and 3 flexible tubes show that fluidelastic instability
will occur, but at considerably higher reduced flow velocities of 6.4 and 6.2, respectively,
compared to the flexible cluster case. As shown in Fig. 5.22, the modal damping ratio is
strongly dependent on the level of array flexibility or number of degrees-of-freedom of the
array.
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Figure 5.21 Evolution of eigenvalues for multiple cases in water flow. Tubes are free to vibrate
in the transverse direction.

Figure 5.22 Evolution of damping ratio for multiple cases in water flow. Tubes are free to
vibrate in the transverse direction.

Experimental results on the stability behavior of the present array in water flow have been
reported by the authors in [12]. Figure 5.19a presents the measured vibration response of
the tube array for the case of a single flexible tube and a fully flexible array. For both arrays,
the tube response is found to rapidly increase to amplitudes as high as 40% of the tube
diameter. For the single flexible tube case, high amplitude response subsequently drops to
below 10%D for reduced velocities Vp/fD>5. The large amplitude response of the single
flexible tube was shown to be vortex-induced vibration (VIV) resulting from lock-in between
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(a) (b)

(c)

Figure 5.23 Evolution of the eigenvalues with two-phase flow velocity of a single flexible and
multiple flexible tubes in the transverse direction for: (a) β =40%, (b) β =70%, and (c)
β =97%

vortex shedding frequencies in the tube array and the tube natural frequency. This lock-in
behavior is confirmed in Fig. 5.19b where two flow periodicity (vortex shedding) frequencies
(having Strouhal numbers 0.40 and 0.27) increase with flow velocity and locks into the nat-
ural frequency starting near Vp/fD=2.0. The drop in amplitude for the single flexible tube
marks the decoupling between the flow periodicity and tube natural frequencies. Unlike the
single flexible tube, the fully flexible array response was found to remain high well beyond
the lock-in velocity range. This suggested the possible existence of a second excitation mech-
anism, perhaps fluidelastic instability. However, the experimental test could not confirm this
possibility. The stability analysis results for the flexible cluster (simulating a fully flexible
array) predicts a reduced critical velocity Vp/fD=4.3. This reduced velocity just at the end
of the lock-in velocity range in Fig. 5.19b. Fluidelastic instability at this reduced velocity
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would sustain the high amplitude response for high reduced velocity beyond the VIV lock-in
range. The theoretical model provides a plausible explanation for the sustained tube response
which is explained by the occurrence of fluidelastic instability at the correct velocity range for
sustained tube vibration. The model furthermore predicts the stability of the single flexible
tube case thus also demonstrating its predictive capability.

A stability analysis of the tube array when subjected to two-phase flow was also done. Figure
5.23 presents the evolution of ℜ(λ), with reduced flow velocity for 40%, 70% and 97% void
fractions for arrays with multiple flexible tubes, free to vibrate in the transverse direction.
The results for the single flexible tube are also included for comparison. The cases with 2 or 3
flexible tubes are predicted to be more stable (with higher damping) than the single flexible
tube for lower void fractions in the range 40% - 70% . However, for high void fractions
(>90%), the 2 and 3 flexible tube arrays are predicted to undergo fluidelastic instability.
The flexible tube cluster is predicted to undergo instability for all void fractions analyzed.
The critical instability velocities predicted by the model are, however, very high as discussed
below.

Using the quasi-steady model solution, the damping ratio of the tube flexible in the transverse
direction was extracted to further investigate the possible tube dynamic behaviour. Figure
5.24 shows the calculated damping ratio for a single flexible tube for 60%, 90%, and 97%
void fractions plotted versus reduced flow velocity. The rate of increase (slope) of damping
with reduced velocity shows a large drop between the 60% and 90% void fraction cases. As
the void fraction reaches 97% the flow appears to add no damping at all despite increasing
flow velocity. This void fraction seems to be a limiting case from a damping or stability
point of view, according to the model. The predicted stable behavior of the single flexible
tube in 60% and 90% void fraction two-phase flow is confirmed experimentally in the work of
Darwish et al. [129]. The limiting stability behavior for 97% void fraction is also supported
by experiments. The tests results for this void fraction showed a tendency to fluidelastic
instability (a slight increase in vibration response above background turbulence excitation)
but without growth to large amplitude vibrations for single flexible tube. In practice this
means that the damping does become marginally negative in the experiments, in the range
of 20<Vp/fD<30, however, this level of precision is not caught by the present theoretical
model. The 9 tube cluster, approximating a fully flexible array is predicted to be strongly
unstable compared to the single flexible tube case. This is confirmed by the experimental
test where tube vibration amplitudes of up to 40%D were measured for the unstable array.

The instability data is summarized in the stability map in Fig. 5.25, presenting the threshold
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Figure 5.24 Damping ratio variation with flow reduced velocity in the transverse direction
for various flow void fractions.

of instability detected by the model for all void fractions. The results show that the reduced
critical velocity decreases with increasing the number of flexible tubes. The so-called Connors
constant K indicated in the figure appears in the commonly used stability boundary equation
(Eq. 5.42). The Connors constant serves as a convenient basis for comparison of stability of
tube arrays. For square and triangular array geometries, this constant is typical found to be
in the range K=4-5. The Values of K=9 in water flow and above K=18 in two-phase flow
indicate that the present rotated square array is highly stable when compared to other array
geometries.

5.5.2 Streamwise direction stability behaviour

Array dynamics for 1-3 flexible tubes

A single flexible tube, as well as multiple flexible tubes of 2,3 and a cluster of 9 flexible tubes,
are analyzed for the streamwise direction instability. Figure 5.26 presents the eigenvalues
evolution for a single flexible tube for 80% and 97% void fractions. The results show that
a single flexible tube in the streamwise direction remains stable up to high flow velocities.
Fluid damping was found to increase monotonically with flow velocity. Figure 5.27 presents
the eigenvalues for the cases of 2 or 3 flexible tubes, compared with the 1 flexible tube case.
The same stable behavior found for the single flexible tube is replicated for the cases of 2 or
3 flexible tubes where no instability is predicted.
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Figure 5.25 Instability map showing the predicted reduced critical velocity for the transverse
direction case of a cluster of flexible tubes.

(a) (b)

Figure 5.26 Evolution of the eigenvalues with flow velocity of the single flexible tube in the
streamwise direction for: (a) β =80%, and (b) β =97%

Flexible array dynamics

When the array is fully flexible, streamwise instability is predicted to occur at very high
flow velocities. Figure 5.28 shows the eigenvalue evolution for the 80% void fraction. The
predicted critical velocity is well beyond the flow velocities that would be found in practical
application (e.g. in a steam generator). However, the threshold of instability detected at
very high flow velocity is reported here for completeness.

The stability map showing the threshold of instability predicted by the present model is
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(a) (b)

Figure 5.27 Evolution of the eigenvalues with flow velocity of a single flexible and multiple
flexible tubes in the streamwise direction for: (a) β =50% and (b) β =80%

(a) (b)

Figure 5.28 Evolution of the eigenvalues with flow velocity of the cluster case (9 flexible
tubes) in the streamwise direction for β =80%

presented in Fig. 5.29. For reference, the stability boundary expressed using the Connors
equation corresponds to K=15. The time delay parameter, µ, plays a determining role in
tube array stability. This parameter was estimated to be equal to one for lack of more precise
data. To investigate the sensitivity of the instability threshold to the time delay constant,
analysis was also done varying µ by ±20%. The results are included in Fig. 5.29. It is clearly
seen that the time delay constant does not have a significant effect on flow critical velocity
in two-phase flow. For water flow, the critical velocity varied depending on the value of µ by
approximately 9%.



127

Figure 5.29 Stability map showing the predicted streamwise reduced critical velocity for the
cluster of flexible tubes.

Quasi-steady model damping prediction

For the stable cases, the accuracy of the quasi-steady model results can be verified by com-
paring the predicted damping ratio from the model with the experimental damping results.
The experimental damping values were extracted from the available experimental data col-
lected from flow-induced vibration tests in two-phase flow. The data was analyzed to obtain
the tube damping values and trends over a wide range of flow velocities. The experimental
damping was found to continuously increase with flow velocity as shown in Fig. 5.30 where
it is compared with model prediction. While the quasi-steady model estimated damping
is slightly higher, the agreement between the experimental data and model estimations is
considered very good. This finding is important as it confirms the applicability of the quasi-
steady model in its current form in the rotated square array, for the streamwise direction
fluidelastic dynamics. The results presented above support the experimental results which
showed the rotated square array to be particularly stable when compared to other tube
arrays, e.g .the rotated triangle array of similar spacing ratio under the same flow conditions.

5.6 Conclusions

A quasi-steady fluidelastic instability model was employed to study the stability behaviour
of a rotated square tube array in single and two-phase flow. To complete the model, a test
apparatus was designed to measure the quasi-static fluid forces for both streamwise and
transverse direction motion. The simple quasi-steady model form was utilized with a time
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(a) (b)

(c)

Figure 5.30 Damping in the streamwise direction for: (a) β =40%, (b) β =80%, and (c)
β =90%

delay constant µ=1. The occurrence of the stiffness controlled mechanism instability in the
rotated square array in both directions was also investigated in this study. This allowed the
prediction of the fluidelastic instability onset of single and multiple flexible tubes. The results
of the quasi-static force measurements showed significantly small lift force variation with the
tube displacement compared to what was previously observed for rotated triangular arrays.
The linear change of the lift coefficient over a large tube displacement differs from the rotated
triangular array which shows a change in lift coefficient slope for similar tube displacement.
The quasi-steady analysis confirmed that a single flexible tube in this array is fluidelastically
stable in both the streamwise and transverse directions. The absence of the negative damping
instability mechanism in this array is a clear difference from the rotated triangle array.
Analysis results showed substantial difference between the fluidelastic behaviour of a single
tube and multiple flexible tubes in the rotated square array. A cluster of tubes allowed to
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vibrate in the transverse direction was found to be stable in the practical (steam generator
operating) range of flow velocities in two-phase flow. However, when the velocity is practically
very high, instability is detected. A group of flexible tubes was found to be unstable in water
flow. The transverse and streamwise instability in this array is mainly controlled by the
fluidelastic stiffness mechanism. For two-phase flow, it was found that single and multiple
flexible tubes are fluidelastically stable, and a cluster of flexible tubes are also stable in the
reasonable range of practical flow velocities in steam generators. Experimental and analytical
results show that the rotated square array is, in general, effectively stable in both streamwise
and transverse directions.
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CHAPTER 6 UNSTEADY FORCE MEASUREMENTS & PROPOSED
IPFEI DESIGN GUIDELINE

The aforementioned findings presented in Chapters 3-5 confirmed that the the rotated square
array is fluidelastically stable for all tested void fractions in two-phase flow, except for 97%.
The quasi-steady analysis showed a significant reduction in damping for 97% void fraction
compared to lower void fractions. The quasi-steady model, however, could not resolve the
increase in tube bundle vibrations in the transverse direction for 97% void fraction. Hence,
further analysis is required to deeply look into the array using the unsteady theory. The
advantage the unsteady theory has is taking into consideration the variation of the fluid
force phase with reduced flow velocity. This is not encountered in the quasi-steady theory
where the fluid force phase is always assumed to be constant. Unlike the quasi-static force
measurements, the unsteady fluid dynamic force component and the vibration modes of the
tubes are taken into account in the unsteady theory.

6.1 Unsteady Force Measurements

Very few research work measured experimentally the unsteady forces of tube arrays, and non
yet did for the rotated square array. A full set of unsteady measurements was performed
using the same test apparatus presented in Chapter 5. The method employed in the analysis
of the measured unsteady fluid forces is as outlined below [119].

When a harmonic motion of the form x(t) = xoe
iωt is applied to a tube in a rigid tube bundle,

the fluid force per unit length on the tube may be expressed as

F = [ω2(m+ 2ρR2cma) + iωρURcda + ρU2

2 cs]x(t) (6.1)

where, R is the tube radius, U flow velocity, ρ flow density, m is the tube mass per unit
length, D is tube diameter, cma, cda and cs are are the fluid added mass, damping and
stiffness coefficients, respectively.

By defining a force/displacement transfer function

HF x = F

xoeiωt
(6.2)

By equating the real and imaginary parts of this transfer function to the corresponding
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components of the fluid force yields

ℜ[HF x] = ω2(m+ 2ρR2cma) + ρU2

2 cs (6.3)

ℑ[HF x] = ωρURcda (6.4)

The fluid stiffness together with the added mass component is therefore given by

Fs,ma = [ω2(m+ 2ρR2cma) + ρU2

2 cs]xo −mω2xo (6.5)

where the last term is related to tube inertia, and determined by performing tests in air. The
damping force then will be

Fda = ℑ[HF x]xo (6.6)

The force coefficient magnitude will be

cf =
(F 2

s,ma + (ℑ[HF x]xo)2)0.5

0.5ρU2xo

(6.7)

The phase angle between the fluid force and displacement then becomes

ϕf = tan−1
[

ℑ[HF x]xo

Fs,ma

]
(6.8)

Then the damping coefficient becomes

cf = −ℑ[HF x]
ω

(6.9)

and the added mass is calculated as

ma = ℜ[HF x] − ω2m

ω2 (6.10)

while the total damping factor is given by

ζ = −ℑ[HF x]
2(m+ma)ω2 (6.11)
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Results

(a) (b)

Figure 6.1 Variation of the tube added mass with flow void fraction in the: (a) transverse
and (b) streamwise directions

Since the added mass is an important parameter in the FEI analysis, it was estimated from
the unsteady fluid forces on the central tube from equation 6.10. Results show fairly good
agreement with experiments as shown in figure 6.1. The added mass ratio was over estimated
from the unsteady forces in high void fractions (above 60%).

The unsteady fluid force phase and magnitude are presented in figures 6.2 and 6.3 for the
transverse direction, and in figures 6.4 and 6.5 for forced oscillations in the streamwise di-
rection, for single phase flow as well as 40% and 70% void fraction two-phase flows. An
approximate analytical curve was fitted to the exported data to show the trend of the fluid
phase and force coefficient with reduced flow velocity, Vp/fD. The phase angle is seen to
decrease with the flow reduced velocity. This is, however, different in the 97% void fraction
case in the transverse direction, where the phase is seen to gradually increase, reaching a
maximum value near Vp/fD=20, followed by a decrease at high velocities. This is found to
clearly occur for 97% void fraction, and only in the transverse direction. The range of the
flow velocity where the fluid phase is positive indicates a reduction in fluid damping. Figure
6.6 presents the calculated damping from the unsteady model for 60%, 90%, and 97% void
fractions. This is the net (velocity dependent) damping. Compared to the 60% and 90% void
fractions, it is clear that the net fluid damping decreases, and becomes negative in the range
7 ≤ Vp/fD ≤ 30 for 97% void fraction. This has significant implications for the tube array
subjected to two-phase flow of 97% void fraction. The reduction in the total damping of
the flexible tube would be expected to lead to an increase in tube vibrations and fluidelastic
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instability in this velocity range. Figure 6.7 shows the single flexible tube vibration in the
transverse direction for the 97% void fraction. The foregoing effect is precisely observed in
the tests. This effect may be amplified for a fully flexible array with multiple flexible tubes.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2 Force coefficient and fluid phase in the transverse direction for the central tube
for 6-20 Hz excitation frequencies : (a) 0%, (b) 40%, (c) 70%
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(a) (b)

(c) (d)

Figure 6.3 Force coefficient and fluid phase in the transverse direction for the central tube
for 6-20 Hz excitation frequencies : (a) 90%, (b) 97%
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4 Force coefficient and fluid phase in the streamwise direction for the central tube
for 6-20 Hz excitation frequencies : (a) 0%, (b) 40%, (c) 70%
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(a) (b)

(c) (d)

Figure 6.5 Force coefficient and fluid phase in the streamwise direction for the central tube
for 6-20 Hz excitation frequencies : (a) 90%, (b) 97%
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(a) (b)

(c)

Figure 6.6 Damping variation of central tube in the transverse direction in: (a) 60%, (b) 90%
and (c) 97% void fractions
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Figure 6.7 Single flexible tube vibrations in the transverse direction for β=97%
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CHAPTER 7 GENERAL DISCUSSION

7.1 Flow-induced Dynamics of the Rotated Square Array

There have been numerous investigations into the fluidelastic instability of tube arrays with
triangular and in-line geometries. In spite of the fact that the rotated square geometry
presents a unique behaviour and characteristics compared to the other geometries, such as
strong vortex-induced vibrations (VIV) and dynamic stability, the array is not yet understood
and could not be practically recommended for the industrial use. There is an industrial need
to study the rotated square geometry in order to provide a deeper understanding of the array.
In this thesis, the fluidelastic instability of a rotated square array, with P/D = 1.64, was
investigated in depth. An experimental study was performed to investigate the fluidelastic
instability and understand the dynamic behaviour of the array in single phase (water) flow
and two-phase (air-water) flow for void fractions up to 97%. The complex dynamics for
the two-phase flow tests led to an extension of the study to investigate the array dynamics
in air cross-flow. The study separately covered both flexibility directions, streamwise and
transverse to the flow.

The results of this work are presented in three main research articles. In the first article
(Chapter 3), the flow-induced vibration (FIV) of the array was studied through a series of
experiments in water cross-flow. A strong lock-in effect was uncovered in this array due to
vortex shedding excitation. In comparison to other array geometries, much larger resonance
vibration amplitudes were found in this array in water flow. This could, at least in part,
be explained by the geometrical pattern of the tubes in the array. In the rotated square
geometry, the wake area downstream each tube is 40% larger than in the rotated triangular
array geometry, having the same P/D spacing ratio. This allows for strong vortices to
form and shed behind the tubes resulting in large periodic pressure fluctuations. Frequency
analysis of the response showed that three Strouhal numbers existed in this array, with two
only effectively participating in the tube vibrations. The third periodicity is not practically
effective in the tested range of flow velocities. The vortex-tube frequency synchronization
was confirmed by suppressing the vortex shedding in the tube wake with a vortex suppressor
plate which could eliminate VIV. Unsteady numerical simulations were performed to study
the flow structure and the periodicities formed in the tube vicinity. The CFD simulations
showed the highly coherence vortex formation and confirmed the Strouhal numbers found in
the experimental results.

Two-phase flow fluidelastic instability tests were conducted, and results are presented in the
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second article (Chapter 4). The results are mainly divided into two main sections: (i) trans-
verse, and (ii) streamwise fluidelastic instability results. A wide range of void fractions was
tested up to β=97%. The stability of the single flexible tube was experimentally confirmed
in the rotated square array in both directions. The dynamic behaviour in the streamwise
direction is also stable when the full bundle is tested. No different conclusion was drawn from
the transverse tests, except for the 97% void fraction. This void fraction is the highest that
has been tested, and it could be considered more special than the other void fractions due
to the low average flow density. For β=97% a single flexible tube tends to be fluidelastically
unstable in the transverse direction. However, the tube stabilized with an increase in the flow
velocity. The restabilization behaviour is uncommon for tube arrays once fluidelastic insta-
bility occurs. The vibration amplitudes were seen to significantly increase with the number
of flexible tubes. This observation suggests that the stiffness controlled mechanism could be
leading the instability in this case. Flow damping was estimated from the frequency spectra
by using the frequency response curve fitting method for an accurate estimation. Results
showed that the damping in this array is generally higher than what was observed in all the
other array geometries. The aforementioned part of the work leads to the strong conclusion
that this rotated square array is generally stable in both the streamwise and transverse di-
rections in two-phase flow. The only exception is the case of very high void fractions where
instability is possible in the transverse direction. The fundamental finding from this work is
that the flow damping increases in the flow direction, leading to completely stable dynamic
behaviour.

The change in stability behaviour for very high void fractions led to the need to extend the
study to the limitly case of β=100%, i.e. air flow. In a direct comparison with the research
results presented by Kuran [123], this array showed similar behaviour to the array previously
studied with P/D=2.12. However, the effect of the first row in the rotated square array in
the streamwise direction is still questionable, since the study here showed that fixing the
most upstream row in the array has led to a significant delay in the instability onset.

The quasi-steady model was adopted to delve deeper into the array dynamic behaviour
in the third article (Chapter 5). It was found that the quasi-steady model successfully
predicted total stability of the single flexible tube in this array. This differs from predictions
by previous models, including Leaver and Weaver [7], and Granger and Paidoussis [6], that
predicted a single flexible tube in this array to be unstable. The stability results from the
quasi-steady model were in very good agreement with the experimental results. For void
fractions up to β=90%, instability was not possible to occur in this array in the streamwise
and transverse directions, even with increasing the number of flexible tubes in the bundle.
The only exception to this case is that, as what was interestingly found from the model, a
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cluster of tubes, flexible in the transverse direction is unstable in water flow. With a deeper
look into the water flow FEI test results, this result is in good agreement with the experiments
as the array was not found to be "stabilizing" with the increase in flow velocity, compared
to what has been seen in the partially flexible array and single flexible tube. The accuracy
of the quasi-steady model was verified by comparing the damping ratio in two-phase flow in
the streamwise direction with the experimental results. The model results agreed very well
with the damping increasing behavior in the FEI tests.

It should be noted, however, that apparent transverse instability in the 97% void fraction
was still questionable and contradicted the prediction of the stable behaviour according to
the quasi-steady model. This was a motivation for further investigation of this unique be-
haviour by turning to the more general unsteady modal concept. Another set of experiments
was performed to measure the unsteady fluid forces in both the transverse and streamwise
directions. Pertinent results are presented in Chapter 6. The results covered the single phase
(water) flow in addition to two-phase flow. The measured fluid force phase showed a substan-
tial difference in the 97% void fraction phase in the transverse direction compared to lower
void fractions. The damping calculated from the unsteady force showed a clear reduction in
the same range of flow velocities as observed in the FEI experiments confirming the limited
velocity range instability. The damping results thus provide a physical explanation of the
array behaviour for β=97%. In order to complete the stability analysis of the APR1400, a
rotated triangular array was studied in single and two-phase cross-flow (see Appendix A). A
key finding addressed the question of SG tube stability. The results show stable streamwise
fluidelastic behaviour for flow conditions matching the operating range of flow velocities of
the steam generator.

7.2 Practical Implications of Research Findings and Proposed IPFEI Design
Guideline

This thesis is a part of a large industrial project related to studying the fluidelastic instability
of an operating steam generator. Several industrial reports have been written throughout the
project, providing the technical requirements and the results of studying the steam generator
tube bundle [130–136].

This study aimed in part to analyse the APR1400 steam generator tube bundle in single
and two-phase cross-flow. The steam generator tube geometry is a hybrid geometry, with
a rotated triangle layout in the vertical tube legs and rotated square layout at the upper
horizontal section of the U-bend. The continuation of the steam generator study is pre-
sented in the 4th article presented in Appendix A. In-plane fluidelastic instability has become
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a significant concern since the tube failures of the SONGS generating station in 2012. A
main conclusion from this work is that the the APR1400 steam generator is unlikely to be
susceptible to in-plane fluidelastic instability (IPFEI) due to the stability of both arrays as
confirmed in the work presented here.

Research work on the fluidelastic instability has aimed to provide experimental data to pro-
duce design information for steam generator tube bundles. Most of the reported data is
generated from real geometries used in steam generators. This data pertains fluidelastic
instability in several tube array geometries and different array pitch spacings (P/D). The
majority of the fluidelastic instability studies showed that instability predominantly occurs
in the OOP direction. Consequently, anti-vibration bars were introduced to suppress the
OOP vibrations in steam generators. However, since the incident showing the existence of
in-plane instability in steam generators, a redirection has been noticed in the research with
renewed focus on IPFEI. Thus far, however, there is no design guideline for IPFEI. It was
shown by Blevins [137] that the SONGS U-tubes became unstable in the first in-plane vibra-
tion mode. Based on the ASME guideline, Blevins suggested that the Connors constant of
K=2.4 could be used. This may be considered an overly conservative estimation for a general
design guideline specifically when it comes to IPFEI. The current ASME design guideline in
essence takes no consideration of the important difference in tube array stability behaviour
between the OOP and IP directions. The existing guideline, which is based on data collected
for OOP, or combined OOP & IP, instability has "unfortunately" been recently used by engi-
neers, for lack of an alternative. Hence, an effort was made here to collect data resulting only
from in-plane instability in two-phase cross-flow. Test results in this thesis are also added to
the IP instability data. The data from this study forms nearly 40% of all the data presented
in the figure, which currently makes up the (publicly available) world data. Figure 7.1 shows
that all currently (published) world data is lower bounded by the line K=6.5. Physically this
means that no IPFEI has been measured at reduced velocities below Vp/fD=6.5 mδ/ρD2.
This is true for all array geometries. The lower bound stability constant of K=6.5 for IPFEI
is ≃ 63% higher than the average value of K=4.0 for out-of-plane (dominated) fluidelastic
instability, and 171% higher than the value (of K=2.4) recommended for design analysis by
the ASME.

Taking a lower bound envelop of all data, including the transverse instability data, would
be excessively conservative. When looking for a design guideline for in-plane instability,
it is more realistic to have a lower bound based on data exclusively presenting instability
onset in the in-plane direction. The use of ASME’s proposed stability boundary for IPFEI
analysis clearly highly conservative. The present work leads to a proposed design stability
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boundary with a Connors constant of K=6.5. This stability boundary includes "built-in"
conservativeness since it is based on idealized laboratory tests. However, the steam generator
designers would be expected to introduce a factor of safety in their analysis.
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Figure 7.1 Suggested in-plane fluidelastic instability design guideline in the fluidelastic in-
stability map showing two-phase flow test results in the in-plane direction for: ( ) rotated
square array stability boundary based on maximum flow velocity attained (present study),
( ) rotated triangle array (present study), and data from the literature: ( ) Tan et al. [20],
( , ▲) Azuma et al. [21], ( ) Mureithi et al. [10], ( ) Joly et al. [22], ( ) Violette et al. [23]
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CHAPTER 8 CONCLUSIONS

8.1 Research Contributions and Findings

The research work carried out in this PhD thesis has led to several contributions to the state
of knowledge in the field of fluidelastic instability of heat exchangers. These contributions
meet the research objectives presented in Sec. 1.1:

• The dynamic behaviour of the rotated square array with moderate pitch spacing (P/D=1.64)
in the in-plane and out-of-plane directions in two-phase flow was found to be generally
stable. This includes the single flexible tube and fully flexible bundle, operating in a
wide range of void fractions.

• The rotated square array damping in two-phase flow was found to be practically higher
than what was found in the other array geometries in two-phase flow. This has a
significant effect on the array dynamic behaviour and explains the array’s susceptibility
to fluidelastic instability.

• The work presented is the first attempt to measure the quasi-steady fluid forces in a
rotated square array in two-phase flow. The measurements included measuring the
cross-coupling forces between the tubes in the array which made it possible to model
the multiple flexible tubes fluidelastic instability.

• The rotated square array dynamic behaviour in the transverse direction in the 97%
void fraction was found to be unique compared to the lower void fractions. A complex
behaviour was found with an increase followed by a decrease in tube vibrations over a
wide range of flow velocities.

• Another outcome is the measurement, for the first time, of the unsteady fluid force
phase in the two-phase flow, in both for the transverse and streamwise directions. These
measurements have led to the finding that for very high void fraction, and only in the
transverse direction, the flow damping ratio decreases, leading the array to vibrate
with vibration amplitudes increasing with the number of flexible tubes. Uniquely, the
restabilization of the array was explained by the damping increase for high flow velocity;
an unexpected result based on past research on fluidelastic instability

• An additional fluidelastic instability study was conducted on a confined space array with
a rotated triangular geometry (P/D=1.33). The study presented the dynamic behaviour
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of the array in both streamwise and transverse directions. The main contribution of
this study is the finding that the instability in the streamwise direction occurs at a
significantly high Connors constant of K=7.4 (see Appendix A).

• These results provided the valuable input needed to evaluate the stability of the APR1400
steam generator which contains both the rotated square and rotated triangular arrays,
both subjected to two-phase flow with different void fractions along the tube span. A
main practical contribution that can be drawn here is the confirmation of the stable
behaviour of the APR1400 steam generator in the in-plane (IP) direction.

• For the first time, design guideline for in-plane fluidelastic instability is proposed from
the results of this study as well as world data in the literature.

8.2 Recommendations for Future Work

• Tube array confinement (i.e., P/D) is considered a key factor in determining the two-
phase flow damping. This is true based on the experimental observations were reported
in the literature, which do not include inclusively the rotated square geometry dynamic
behaviour. Hence, a study of tube arrays with pitch ratios other than 1.6 is recom-
mended. Taking into consideration that much larger spacing may not be practical from
the industrial point of view, as in any steam generator tube array, a much larger pitch
spacing could result in a significant reduction in the steam generator efficiency.

• It is apparent that rotated square arrays are more stable than other geometries, at
least in the practical range of flow velocities. A study of the flow structure within such
an array is recommended in order to have a comprehensive understanding of the flow
dynamics in the array. This may be done using optical methods of flow visualization
such as PIV (Particle Image Velocimetry), or numerically using CFD.

• Rotated square array behaviour in air cross-flow turned out to be complex. A com-
prehensive study is recommended to include several pitch ratios and flexible tubes
frequency detuning.

• The array behaviour for all void fractions is quite clear, except for the very high 97%
case in the transverse direction. Hence, it would be valuable to have a separate study
for this void fraction investigating the two-phase flow regime transition and the changes
in the flow structure with the flow velocity.
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8.3 Publications

The research work in this theses has led to four journal articles and two conference papers:

8.3.1 Journal articles

• S. Darwish et al. "Flow-Induced Vibrations of a Rotated Square Tube Array Subjected
to Single-Phase Cross-Flow". Journal of Pressure Vessel Technology, 144.4 (2022):
041405.

• S. Darwish et al. "Experimental Investigation of Fluidelastic Instability of a Rotated
Square Array Subjected to Two-phase and Air Cross-flow". Journal of Nuclear Engi-
neering and Design, 2022 (submitted).

• S. Darwish et al. "Force Measurement and Modelling of Rotated Square Array in
Two-phase Flow". Journal of Nuclear Engineering and Design, 2022 (submitted).

• S. Darwish et al. "In-Plane Fluidelastic Instability Study of a Tube Bundle with a
Rotated Triangular Layout and Small Pitch Ratio". Journal of Nuclear Engineering
and Design, 2022 (submitted).

8.3.2 Conferences

• S. Darwish et al. "Flow-Induced Vibration Behaviour of a Rotated Square Tube Ar-
ray Subjected to Cross-Flow". Pressure Vessels and Piping Conference. Vol. 85338.
American Society of Mechanical Engineers, 2021.

• S. Darwish et al. "On the stability of the rotated square array in two-phase flow using
the quasi-steady model". Flow induced Vibrations Conference.

8.3.3 Technical reports

• N. Mureithi, S. Darwish et al. “Rotated Square Array Tests Interim Report I: Com-
missioning and Preliminary Tests”, Tech. Rep., 2020.

• N. Mureithi, S. Darwish et al. “Rotated Square Array Tests Interim Report II: FEI/FIV
and Wear Workrate Tests”, Tech. Rep., 2020.

• N. Mureithi, S. Darwish et al. “Rotated Square Array Tests Interim Report III: Damp-
ing Tests”, Tech. Rep., 2020.
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• N. Mureithi, S. Darwish et al. “Rotated Triangular Array Tests Interim Report I:
Commissioning and Preliminary Tests”, Tech. Rep., 2020.

• N. Mureithi, S. Darwish et al. “Rotated Triangular Array Tests Interim Report II:
FEI/FIV and Wear Workrate Tests”, Tech. Rep., 2020.

• N. Mureithi, S. Darwish et al. “Rotated Triangular Array Tests Interim Report III:
Damping Tests”, Tech. Rep., 2020.

• N. Mureithi, S. Darwish et al. “Normal Triangular Array Tests Interim Report II:
FEI/FIV and Wear Workrate Tests”, Tech. Rep., 2020.
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APPENDIX A ARTICLE 4: IN-PLANE FLUIDELASTIC INSTABILITY 
STUDY OF A TUBE BUNDLE WITH A ROTATED TRIANGULAR 

LAYOUT AND SMALL PITCH RATIO

Sameh Darwish, Njuki Mureithi, Minki Cho

This article has been submitted to the “Journal of Nuclear Engineering and Design” on October 
26, 2022.

In this chapter, the stability analysis of the rotated triangle array is performed in single phase 
(water) and two-phase (air-water) cross-flow. This is to meet the specific objectives to:

• Study the fluidelastic instability of the array and determine the instability onset, with
a focus on the instability in the streamwise direction.

• Investigate the stability of the APR1400 steam generator tube bundle (along with the
rotated square stability analysis results).

The paper presents the in-plane fluidelastic instability of a rotated triangular array with 
P/D=1.33. Single and multiple flexible tubes configurations were used to investigate the 
array behaviour in single phase (water) and two-phase flow. The findings from this paper 
show that the array does not undergo in-plane fluidelastic instability for the case of the single 
flexible tube and partially flexible array. However, when the fully flexible array was tested, 
in-plane instability occurred at high flow velocity. On the other hand, transverse instability 
existed in all the cases tested. This does not raise any concern in the practical applications as 
tube bundles are supported with anti-vibration bars that support the tubes in the transverse 
direction.
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Abstract

Since the shutdown of the San Onofre Nuclear Generating Station (SONGS), the question of
the possibility of in-plane fluidelastic instability in the steam generators was raised. In a step
to analyze the stability of the APR1400 steam generator, this paper reports on an experimental
fluidelastic instability study in single phase (water) and two-phase (air-water) cross flow of
the vertical tube bank in the steam generator. The study concerns the vibration behaviour
of single flexible tube with an otherwise rigid array as well as fully flexible array. The tube
pattern analyzed is the rotated triangular array (60o) having a pitch spacing (P/D) of 1.33.
This spacing is generally more confined than what is usually seen in the literature. Adjustable
tube mounts allow the tubes to vibrate only in one direction, whether in the streamwise or
transverse to the flow. The stability threshold in the transverse direction of such a tightly
spaced rotated triangular array is somewhat lower than the other layouts. Damping of this
rotated triangle array reaches its maximum value at a void fraction near 80%. Fluidelastic
instability critical velocity in the streamwise direction was found to be much higher than
the range of velocities implied by the ASME design guideline, which implies relatively high
Connors constants. This was observed in the case of fully flexible array only, where cross-
coupling between the tubes is significant. However, A single flexible tube did not undergo
instability, which indicates that the streamwise instability is governed by the fluid stiffness
mechanism.

A.1 Introduction

For a long time, the design of nuclear steam generator tube supports was directed to avoid
tube vibrations in the direction transverse to the flow (or the out-of-plane direction). This
was thought to be sufficient until the in-plane (IP) instability caused tube failures in the San
Onofre Nuclear Generating Station (SONGS) in California [138]. The vast majority of the
reported research work is oriented towards studying the out-of-plane instability (transverse
to the flow direction). Tube failures are now, however, known to be clearly possible as a
result of the in-plane fluidelastic instability (IPFEI). There is now, therefore, a concerted
effort to investigate IPFEI for the range of the tube array geometries found in nuclear steam
generators. This work is needed to provide the data necessary for verification or extension
of current FIV design guidelines to account for IPFEI.

A typical steam generator tube bundle, has a semi-circular U-bend region and vertical straight
legs. In this case the cross-section tube pattern in the steam generator has a fixed geometry.
If the tube bundle has a rectangular U-bend, the tube pattern then transitions from one
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arrangement to another in the upper U-bend region if tube spacing also changes. In the
APR1400 steam generator for instance, there is a transition from a triangular geometry in
the vertical legs, to a rotated square geometry in the upper horizontal section of the U-
bend region. Figure A.1 shows the design of the APR1400 steam generator with the U-bend
region of the tube bundle. The rotated square geometry was studied in previous studies
in detail [129, 139]. In this article, the rotated triangular array is studied. This provides
complementary information on the second array geometry found in the APR1400.

The rotated (or parallel) triangular array, was shown to be susceptible to fluidelastic insta-
bility in the transverse direction. Recent studies showed that rotated triangular (RT) arrays
with small pitch spacing ratios and high mass damping parameters are also susceptible to
FEI in the streamwise direction. The array pitch spacing has been found to be a significant
parameter with regards to the instability boundary. Its effect was found to be considerable
in the normal triangle and rotated square arrays , while it is less significant for the rotated
triangle and normal square arrays [140]. In a study by Nakamura et al. [141], multiple arrays
with pitch spacings in the range 1.2-1.5 were studied in air flow. The Connors constant
(which is a measure of array stability) was seen to increase with the increase of array pitch
spacing ratio when the array vibration is limited to the direction transverse to the flow.
This was even more clear in the streamwise direction. Interestingly, streamwise instability
was found to occur at an earlier onset than in the transverse direction in the most compact
array having spacing ratio P/D=1.2. The array pitch ratio may also affect the significance
of the tubes cross-coupling as was observed by Scott [9] in water flow experiments. Two
rotated triangular arrays of 1.375 and 1.73 pitch ratios were tested. The results showed that
in the transverse direction, the single flexible tube had the same stability threshold as the
fully flexible array. However, for the larger spacing array, the stability threshold of the fully
flexible array was 30% lower than that of the single flexible tube array. This suggests that
the significance of the fluid damping instability mechanism may vary depending on the array
compactness or pitch spacing.

Theoretical analysis by Shahriary et al. [126] suggested that a single flexible tube in a RT
array (P/D=1.5) cannot become unstable in the flow direction. This result was not exper-
imentally confirmed (for water flow) until later by Mureithi et al. [10] who showed that no
streamwise fluidelastic instability occurs in air flow or in two-phase flow for a single flexible
tube. Furthermore, Nakamura et al. [141] showed an agreement with the model results in air
flow vibration experiments. However, a single flexible tube in an otherwise rigid tube array
with low mass damping parameter could be susceptible to FEI in the streamwise direction.
This was reported by Tan et al. [20] for a rotated triangular array with pitch ratio of 1.48.
This is unlikely to happen in RT arrays that have tubes with high mass damping parameter.
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The majority of the reported test results confirm the necessity of the stiffness controlled
mechanism to induce streamwise fluidelastic instability. An early study considering the par-
tial flexibility in the streamwise direction was conducted by Violette et al. [23] on a rotated
triangular array with pitch ratio of 1.5. Other test results were published presenting the
rotated triangular array dynamic behaviour in single and in two-phase flow [21,22,142–145].

The aforementioned industrial experience and recent findings have redirected the research
work to investigate further the possibility of the streamwise fluidelastic instability. The ef-
fect of array pitch spacing needs particular attention to understand its effect on the bundle
stability behaviour. We here present an experimental study of a rotated triangular array
tested in the low mass damping parameter range. This array is compact, having a pitch
spacing ratio of 1.33. The study presents the streamwise and transverse dynamics, investi-
gated separately for single (water) and two-phase (air-water) flow. The study provides key
information on the streamwise (in-plane) dynamics of the second tube array geometry found
in the APR1400 steam generator.

A.2 Tube Bundle Test Apparatus

A test loop is designed and built to perform a wide range of two-phase flow experiments.
Water is circulated by a 1.56 m3/min centrifugal pump from a large reservoir with a 1.5 m3

capacity. As shown in Fig. A.2, compressed air is injected into the test loop upstream of
the test section. The air and water streams are mixed using a two-layer honeycomb mixer.
The efficiency of the mixer was verified ahead of performing the FEI tests by measuring the
uniformity of the two-phase flow void fraction across the test section. Water flow velocity
uniformity was also verified. This is to ensure the quality of the two-phase flow mixing and
the uniform distribution of the flow upstream of the tube bundle.

Water flow rate is measured using a magnetic water flow meter (MAG500), and water tem-
perature is monitored in the tank by a thermocouple. The flow rate of the injected air is
measured using two distinct orifice plates and a differential pressure transducer, along with
air flow temperature and pressure. The pressure at the inlet of the test section, and upstream
of tube bundle is measured using another differential pressure transducer to correct the air
flow rate for pressure variation.

The experimental test section is designed to suit several test setups. The rotated triangu-
lar array is composed of 9 rows and 7 columns of either rigid or flexible tubes, based on
the desired experimental setup. Two more columns of half tubes are mounted on the side
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Figure A.1 Schematic drawing showing internal details of the APR1400 steam generator [1]

walls to reduce the wall effect. The clearance between the flexible tube and the wall is ap-
proximately 1 mm, thus negligible effect on the flow. Flexible tubes are cantilevered using
flexible plates made of Aluminum, having a rectangular cross section. This design allows the
tubes to be preferentially flexible in one direction only, either streamwise or transverse to
the flow direction. All tubes are designed with the same modal parameters (damping ratio
and natural frequency), and a detailed geometrical and experimental verification was carried
out to ensure that all tubes are well tuned. Tuning the tube modal parameters provides
array behaviour symmetry and experiment repeatability. The dimensions of the rectangular
support were carefully chosen to ensure approximate rigidity in the normal direction, with
a natural frequency five times higher than the flexible direction. The tube mass damping
parameter (in air) is mδ/ρD2=20.6.

Flexible tube vibration is measured using strain gauges. The gauges are fixed at the can-
tilevered tube root where the strain signal is maximum. A full bridge type II tee rosette is
utilized. This bridge type has 4 active elements with many advantages such as reducing the
signal noise, rejecting the axial strain, compensating for temperature change, aggregate ma-
terial and lead resistance. Tube tip-to-strain relation was determined using an STI CMCP610
bench-top calibrator. All signals are acquired using a calibrated National Instruments data
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acquisition system. A high sampling frequency fs=2 kHz was used in all the measurements.

For the two-phase flow tests, the flow conditions are specified using the homogeneous two-
phase flow model. The homogeneous air-water flow void fraction is calculated as a ratio
between air flow rate to flow mixture total flow rate

β = Qg

Qg +Ql

(A.1)

where, Qg and Ql are the gas (air) and liquid (water) flow rates, respectively. The variation of
the void fraction is controlled by the air flow and water flow, based on the pre-determined flow
velocity. The flow pitch velocity, Vp, is related to the upstream homogeneous flow velocity,
Vu, by

Vp = Vu
P/D

P/D − 1 (A.2)

Vu is calculated by dividing the total flow rate by the test section area. The homogeneous
density, ρh, is defined using flow homogeneous void fraction

ρh = βρg + β(1 − ρl) (A.3)

where, subscripts g and l denote gas and liquid, respectively.

A.3 Vibration Test Results

To determine the dynamic behaviour of the array, a series of experiments were conducted in
water flow, and in two-phase flow for void fractions in the range β=20-60%. Three different
flexible tube configurations were chosen, a single flexible tube located in the 4th row and
central column, a column of four flexible tubes, and a fully flexible array (flexible bundle).
For brevity, the single flexible tube and fully flexible array test results will be presented in
detail. In each case, tubes were tested once in the streamwise direction, and in another
test in the direction transverse to the flow. Figure A.3a shows the test section operating
in two-phase flow, while Fig. A.3b shows the tube array with instrumented tubes numbers.
The results obtained in water flow will be presented first, followed by the two-phase flow test
results. In all the following sections, vibration test results are presented in the form of the
root-mean-square (rms) of the tube vibration non-dimensional amplitude normalized using
the tube outer diameter, D. The vibration test results are presented as a function of the
non-dimensional flow velocity, Vp/fD.
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Figure A.2 Test loop showing the tube bundle

A.3.1 Single phase (water) flow results

Transverse direction dynamics

Figure A.4 presents the vibration test results of a single flexible tube subjected to water
flow. The tube is oriented to vibrate purely in the direction transverse to the flow. As
seen in the figure, low amplitude vibrations were observed at a low reduced velocity near
Vp/fD=1.2, followed by a reduction in tube vibration amplitude near Vp/fD= 1.5. The
vibration reduction at the reduced velocity of 1.5 suggests that this behaviour is a resonance
like behaviour due to flow periodicity generated by the flow through the array. Based on the
vibration frequency and flow velocity, a Strouhal number of 0.8 is determined. This agrees
well with the experimental results published by Ziada [146], for such a tight spaced array
with P/D=1.33. According to Ziada [146], three periodicity frequencies may exist in this
array. Practically, however, not all these periodicities may be detected by the tube vibration
frequency spectra. Here, the periodicity frequencies could not be easily detected from the
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(a) (b)

Figure A.3 Test section

frequency spectra. This could be due to the small pitch spacing and array confinement
that leads to formation of weak vortex shedding thus low periodic excitation forces. In Fig.
A.4, the tube non-dimensional vibration frequency variation is presented with flow reduced
velocity. The dispersion of the frequencies could be due to a high Strouhal number vortex
shedding that is around Sp=0.96. Fig. A.5 presents the frequency spectra of the flexible
tube for all flow pitch velocities. It was difficult to judge the vortex shedding frequencies in
this test. However, a clear Strouhal number of Sp=0.79 could be detected at one frequency
spectrum. Clearly this vortex shedding excites the tube for a short range of flow velocity. The
abrupt frequency change near the reduced velocity of Vp/fD=1.5 also confirms the vorticity
excitation observation, followed by well synchronized frequencies. Parallel triangular arrays
generally may show three distinct Strouhal number depending on the array spacing [146].
In this array, in the transverse direction, only the periodicity that corresponds to the mid
Strouhal number (Sp=0.79) was observed.

An instability of the single flexible tube is observed near a reduced velocity of Vp/fD=
1.65. For such a tight spacing, it is expected that strong hydrodynamic coupling between
the flexible tubes will occur. A reduction in the critical velocity for fluidelastic instability
may be observed. In the fully flexible array test, tubes went unstable at a reduced velocity



171

Figure A.4 Frequency spectra of single flexible tube in water flow in the transverse direction

Figure A.5 Single flexible tube vibrations in water flow in the transverse direction

of Vp/fD=1.6 as shown in Fig. A.6. This is only 3% lower than the critical velocity of the
single flexible tube. The instability that arises in the case of the single flexible tube indicates
that the instability here is due to the negative damping mechanism. Despite the fact that
strong cross-coupling between the tubes may exist here, the critical flow velocity did not
noticeably decrease in the flexible bundle compared to the single flexible tube. The violent
vibrations were found to occur in the bundle. A complex amplitude grow due to the cross-
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Figure A.6 Fully flexible array vibrations in water flow in the transverse direction

Figure A.7 Fully flexible array frequency variation in water flow in the transverse direction

coupling between the tubes is observed. This may also be a result of interaction between
vortex shedding excitation forces and fluidelastic forces. The frequency of the four tubes
increases by 20% at reduced velocity Vp/fD=3 as shown in Fig. A.7 which may support this
hypothesis. Strong impacts between the tubes were observed when the array went unstable,
however, high enough flow velocities were attained to confirm the instability observation and
that vibrations are not only vortex-induced.

Streamwise direction dynamics

Figure A.8 presents the tube vibration test results in water flow when the tube is free to
vibrate in the flow direction. In the streamwise direction, a similar vibration response to
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(a)

(b)

Figure A.8 Single flexible tube water test in the streamwise direction

Figure A.9 Frequency spectra of single flexible tube in the streamwise direction in water flow

the transverse direction case is observed here for low flow velocity. A mild increase in tube
vibration amplitude is observed in the reduced velocity range of 1.6<Vp/fD<2.5. This is
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Figure A.10 Fully flexible array vibrations in water flow in the streamwise direction

Figure A.11 Frequency variation of the fully flexible array vibrations in water flow in the
streamwise direction

(a) (b) (c) (d)

Figure A.12 Frequency spectra at various flow reduced velocities showing the change in tube
vibration frequency at reduced velocity of: (a) 0.35, (b) 0.45, (c) 0.55, and (d) 1.05
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again attributed to vorticity shedding that excites the tube vibrations near a reduced veloc-
ity of Vp/fD=1.6. This corresponds to Sp=0.63, which is slightly lower than the Strouhal
number observed in the transverse vibrations. When single isolated tube is limited to vibrate
in the flow direction, oscillations occur at twice the shedding frequency, as a consequence of
the vortex street geometry. This does not necessarily hold for tube arrays. Tubes flexible in
the flow direction, within the array, are seen to vibrate due to vortex shedding at the same
frequency that induces vibrations in the transverse direction. This was also observed in a
previously tested rotated square array in water flow [139]. Figure A.8b presents the tube
frequency variation with flow reduced velocity. Despite the observed vortex-induced vibra-
tions, no lock-in like frequency change was observed. However, the tube apparent frequency
gradually increases with flow velocity in the range 1.5<Vp/fD<4.5 well beyond the vibration
amplitude reduction at Vp/fD ≃2.5. It seems that the flow periodicity drags upwards the
tube vibration frequency (via frequency synchronization) without amplifying the vibration
amplitudes. This could again be due to the weak formation of the vortex shedding in such
a small spacing coupled with the streamwise flexibility. The frequency spectra are presented
in Fig. A.9. As seen at low flow velocities, the tube does not capture the vortex shed-
ding frequency until it synchronizes with the tube natural frequency. Note also that in the
streamwise direction no fluidelastic instability was observed in water flow with one flexible
tube.

When the fully flexible bundle was tested, strong vibrations were observed starting at reduced
velocity near Vp/fD=1.8 with all tubes synchronized as shown in Fig. A.10. Vibrations
reached a maximum amplitude near the reduced velocity Vp/fD=3. Above the maximum
vibration amplitude velocity, the tube bundle vibration response fell to significantly low
levels and stable behaviour was maintained up to high flow velocities. Compared to the
single flexible tube case, the synchronization here is much stronger and effective over a wider
range of flow velocities. The response frequency of the four tubes is shown in Fig. A.11.
It is more clear here that the tube vibration frequency is locked in the vortex frequency at
a reduced velocity Vp/fD=2. This is followed by a gradual frequency increase up to the
reduced velocity Vp/fD=4, where an abrupt frequency reduction occurs. A more detailed
look is presented in Fig. A.12, where frequency spectra for several flow velocities is shown,
depicting the frequency variation and the post lock-in frequency behaviour. Also here, there
is not fluidelastic instability observed.
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(a) (b)

Figure A.13 (a) Single flexible tube response in the transverse direction for β=20%-40%, and
(b) frequency spectra for β=30%

(a) (b)

Figure A.14 (a) Single flexible tube response in the transverse direction for β=50%-60%, and
(b) frequency spectra for β=60%

A.3.2 Two-phase flow test results

A range of two-phase flow void fractions is tested from 20%-60% for the main tests. For some
specific cases, e.g. the single flexible tube case, a wider range of void fractions up to 97% was
tested. Testing at high void fraction provided valuable information on damping behaviour of
the array. For the fully flexible array in the streamwise direction, testing also covered high
void fractions up to 97%.
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(a) (b)

Figure A.15 (a) Fully flexible array response in the transverse direction for β=20%-40%, and
(b) frequency spectra for β=30%

(a) (b)

Figure A.16 (a) Fully flexible array response in the transverse direction for β=50%-60%, and
(b) frequency spectra for β=60%

Transverse direction array dynamics

Following the instability observed in the transverse direction in water flow, a single flexible
tube in the array is tested in two-phase flow. Figure A.13 presents the vibration test results
for 20%, 30% and 40% void fractions. Fluidelastic instability arises at an early velocity. For
these low void fractions, instability onset is well defined compared to the higher 50% and 60%
void fraction cases shown in Fig. A.14. For 50% and 60% void fractions, a gradual increase
in tube amplitude vibrations is noticed and instability cannot be easily judged. This could
be due to flow turbulence, or the high two-phase flow damping as will be shown in section



178

(a) (b)

Figure A.17 (a) Fully flexible array response in the transverse direction for β=70%-80%, and
(b) frequency spectra for β=80%

A.4.1. However, high flow velocity was attained here again to investigate the tube behaviour
over a wide range of flow velocities. Figures A.13b and A.14b show the frequency spectra of
the tube in the two void fraction ranges. The spectrum bandwidth is larger in the high void
fractions of 50% and 60% compared to the lower void fraction cases.

When the fully flexible tube bundle was tested for the same void fractions, flow critical
velocity is much more clearly defined for void fractions in the range of 20%-40%. Fig. A.15
shows clear fluidelastic instability occurrence between reduced velocities of 1.5-2 for different
void fractions. At the post-instability velocities, strong impacts between the tubes were
observed due to the small spacing in the array. A similar observation is made for 50%
and 60% void fractions, where critical reduced velocities are near 2. Testing higher void
fractions was also done to investigate the evolution of the dynamic behaviour of the array
with void fraction. For 70% and 80% void fractions, random turbulence excitation was found
to overcome the fluidelastic forces, causing the vibration amplitudes to gradually increase,
see Fig. A.17.

Streamwise direction array dynamics

Figure A.18a shows the single tube vibrations in the streamwise direction for 20%-60% void
fractions. Stability analysis is performed on the obtained experimental results. Because
the tubes are flexible in the flow direction, the bundle is subjected to two-phase flow quasi-
periodic forces. These forces excite the bundle at low frequency around 4-5 Hz. To study
the fluidelastic vibration behaviour, tube rms vibrations are calculated at the tube natural
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(a)

(b) (c)

Figure A.18 (a) Single flexible tube response in the streamwise direction at β=20%-60%, and
frequency spectra for β=: (b) 30%, and (c) 60%

frequency. Due to the two-phase flow density variation with void fraction, tube natural
frequency varies based on the flow density. Generally, calculations of the tube rms vibration
response in the streamwise direction are done at a band width covering the tube dynamics at
its response natural frequency. More details about the quasi-periodic excitation phenomenon
is addressed by Pettigrew et al. [109]. Figures A.18b and A.18c present the frequency spectra
showing small vibrations at the low reduced velocities due to flow turbulence. As clearly seen,
the tube is stable in two-phase flow up to high flow velocity. The stable behaviour in this
case indicates that the negative damping instability mechanism cannot produce fluidelastic
instability up to the maximum tested velocity.

When the fully flexible bundle is tested, observations become completely different from what



180

(a) (b)

Figure A.19 (a) Fully flexible array response in the streamwise direction for β= 20%-40%,
and (b) frequency spectra for β=30%

(a) (b)

Figure A.20 (a) Fully flexible array response in the streamwise direction for β= 50%-60%,
and (b) frequency spectra for β=60%

was found in the single flexible tube test results. The test results for the void fractions 20%-
40% are presented in Fig. A.19. Delayed fluidelastic instability is observed for all the void
fractions. For 20% and 30% void fractions, instability arises at a reduced velocity Vp/fD=7,
while for 40% void fraction, the critical velocity is near 7.5. Stability onset is well defined
for the lower void fractions. When the array is tested for 50% and 60% void fractions, the
critical velocities increase to 8.5 and 9.6, respectively, as seen in Fig. A.20. For the 20% void
fraction, an increase in tube vibration is noticed at a reduced velocity Vp/fD=2. This is a
remnant of flow periodicity excitation in water. The continuation of testing at higher void
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(a) (b)

Figure A.21 (a) Fully flexible array response in the streamwise direction for β= 70%-90%,
and (b) frequency spectra for β=80%

(a) (b)

Figure A.22 (a) Fully flexible array response in the streamwise direction and frequency spectra
for β= 97%, and (b) frequency spectra

fractions was necessary here to validate the instability at high flow velocities (hence Connors
constant as will be shown in a later section). Figure A.21 shows that instability occurs at
high flow velocity even at high void fraction of 70%, 80% and 90%. A special case of a very
high void fraction of 97% was also tested. Instability was found to occur at a reduced velocity
Vp/fD=36 as shown in Fig. A.22.
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(a) (b)

Figure A.23 Tube damping ratio estimation showing: (a) curve fitting for low flow velocity
for β=50%, (b) fluid damping averaged over multiple velocity points

(a) (b)

Figure A.24 Tube damping ratio in comparison with Pettigrew et al. [3]

A.4 Discussion

A.4.1 Damping measurements

Damping is a key parameter characterizing the array behaviour in two-phase flow. The
damping ratio was estimated at low flow velocities where the fluidelastic forces are negligible.
Theoretically, damping ratio should be measured in still fluid, but this is not attainable for
two-phase mixtures. In the present work, the two-phase flow damping ratio is calculated
using a direct curve fit of the tube frequency response spectrum. This approach leads to the
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best estimate of the tube damping under conditions of turbulence excitation. The curve fit
is done based on the following one degree-of-freedom FRF:

∣∣H(jω)
∣∣ = 1

k
√

(1 − r2)2 + (2ζr)2
(A.4)

where, ζ is tubes damping ratio, r = ω/ωn, ω = 2πf . The general form of this equation is
also valid for the tube response spectrum, under the assumption of a flat turbulence force
spectrum in the frequency band centred on the tube natural frequency. This is also equivalent
to the assumption of uniform turbulence in this frequency band in the tube arrays.

This methodology is used to estimate tube natural frequencies and damping values from
frequency data in water flow and in the two-phase flow tests. Figure A.23 presents samples
of the curve fitting in two-phase flow (β=50%), and averaged fluid damping over different
low reduced flow velocity points. The frequency results are in turn used to determine the
tube added mass. Figure A.24 presents the calculated damping ratio for all void fractions
tested. A comparison is made in the figure with another rotated triangle array with a pitch
ratio of 1.45 [3].

Generally, the damping ratio diminishes at low void fractions where the flow is more likely
to be liquid, and at high void fractions where the flow have a tendency to damping in air.
Damping ratio is seen to gradually increase with flow void fraction, reaching a maximum value
near β=80%. Previous damping results presented by Pettigrew et al. [3] and Sawadogo and
Mureithi [25] for rotated triangular arrays of 1.45 and 1.5 pitch ratios showed a similar trend
with the array presented in this work. However, the maximum two-phase flow damping was
attained near 60% void fraction for the large spacing arrays, while for the small spacing array
presented in this work the maximum damping ratio was attained near 80% void fraction. For
low void fractions (< 50%), the two-phase flow damping ratio was seen to be lower in this
array compared to the lager spaced array. From a practical point of view, the effect of the
array confinement is not considered to be strong, except for void fractions between 70% and
90%. In the streamwise direction, the trend is similar to the transverse direction, although
the damping ratio is relatively higher.

A.4.2 Hydrodynamic mass

The hydrodynamic mass is also measured at low flow velocities. It is determined based on
tube natural frequency variation with flow density, hence flow void fraction. The ratio of
the hydrodynamic mass at a given void fraction to that in liquid, (mh/ml) is given by the
following equation [3, 147]
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Figure A.25 Hydrodynamic mass ratio for the flexible tube in the streamwise direction in
comparison with Pettigrew et al. [3]

Figure A.26 Hydrodynamic mass ratio for the flexible tube in the transverse direction in
comparison with Pettigrew et al. [3]

mh/ml = (fs/f)2 − 1
(fs/fl)2 − 1 (A.5)

where, and fs, fl, and f are the tube structural frequency (in air), tube natural frequency in
water, and tube natural frequency in the two-phase flow mixture, respectively. Theoretically,
the tube added mass is modelled in liquid flow as follows [48]
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mh = (ρhπD
2

4 )(De/D)2 + 1
(De/D)2 − 1; De/D = (0.96 + 0.50P/D)P/D (A.6)

where, ρh is the two-phase flow homogeneous density, D is tube outer diameter, and De is
the equivalent diameter.

The hydrodynamic mass ratio versus void fraction relationship for this array is shown in Fig.
A.25 and Fig. A.26 for the streamwise and transverse directions, respectively. Theoretically,
the added mass ratio should vary linearly with flow density, from unity in water, to approx-
imately zero in air. In this array, the measured added mass is generally higher than that
predicted by the simple linear model approximation in both directions. As shown in Fig.
A.26, the two-phase flow added mass does not follow this theoretical model developed by
Rogers et al. [48] shown in equation A.6. Pettigrew et al. [3] related this, for a larger spaced
rotated triangular array, to the slip between gas and liquid phases that results in liquid hold-
up around the tubes, thus a larger hydrodynamic mass. In a later study by Pettigrew et
al. [109], it was found that the gas flow tends to deviate from the tube surface and flow in
the middle of the inter-column area. This explains why the added mass is closer to the liquid
added mass for low void fractions for the rotated triangular array with 1.47 pitch spacing
(See Fig. A.26). However, the confinement in the array presented in this work results in less
spatial distribution and the gas phase seems to remain close to the tube surface. From what
is seen in the figures, the wider spacing array added mass ratio deviates from that for this
array with P/D=1.33 at high and low void fractions. This is the case for both streamwise
and transverse directions. Similarly, at high void fractions, the flow void fraction would be
more uniform across the interspacing tube area, which results in a added mass closer to the
homogeneous model.

A.4.3 Stability map

The Connors equation commonly used in industry to express the relationship between the
non-dimensional (or reduced) critical pitch velocity and the tube mass damping parameter.
The equation takes the form

Vpc

fD
= K

(
mδ

ρD2

)n

(A.7)

where, Vp is the two-phase flow velocity, f is tube natural frequency in the two-phase mixture,
D is the tube outer diameter, m is the tube mass per unit length including tube hydrodynamic
mass, δ is tube logarithmic decrement of damping, ρ is the two-phase flow density, and (K,
n) are empirical constants. The critical reduced flow velocities are summarized in Table A.1
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Table A.1 Summary of FEI test results with instability constants

Direction β mδ/ρD2 Flexible tubes Vpc/fD
2 K

Streamwise

0% 0.08 Single - -
Fully flexible - -

20% 0.27 Single - -
Fully flexible 8.86 17.2

30% 0.83 Single - -
Fully flexible 8.75 9.6

40% 1.52 Single - -
Fully flexible 9.16 7.4

50% 1.73 Single - -
Fully flexible 10.28 7.8

60% 2.3 Single - -
Fully flexible 11.25 7.4

70% 3.3 Fully flexible 13.8 7.6
80% 4.7 Fully flexible 16.2 7.5
90% 7.9 Fully flexible 22.4 8.0
97% 19.4 Fully flexible 36.2 8.2

Transverse

0% 0.10 Single 1.58 5.0
Fully flexible 1.58 5.0

20% 0.26 Single 2.44 4.8
Fully flexible 2.2 4.3

30% 0.52 Single 3.06 4.2
Fully flexible 2.4 3.3

40% 0.76 Single - -
Fully flexible 2.2 2.5

50% 1.21 Single - -
Fully flexible 2.3 2.1

60% 1.71 Single - -
Fully flexible 2.7 2.0

along with the mass damping parameter for each void fraction. The Connors constant, K, is
calculated for the single flexible tube and fully flexible array test results.

Using the Connors equation, the stability limit for the various test cases can be conveniently
summarized in a stability map. This map also allows comparison between stability results
from different researchers. Figure A.27 presents the stability map for the tests presented
here. It was found in previous studies that a single flexible tube in a rotated triangle array
does not become unstable in the flow direction [140,141,148,149]. An important confirmation
that can be made from the results addressed above is that this is also true for small spacing
rotated triangular array. This means that the damping controlled instability mechanism is
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Figure A.27 Fluidelastic instability map showing test results of the present study

Figure A.28 Fluidelastic instability map showing rotated triangular array test results in the
transverse direction in comparison with data from the literature: (♢, ) Pettigrew et al. [24],
⃝ Sawadogo and Mureithi [25], Azuma et al. [21].

absent in the rotated triangular layout in the flow direction even for confined arrays. It is
evident that the critical velocity for the fully flexible array is lower than that found for the
single flexible tube in the transverse direction. This would be of less concern compared to
the instability in the flow direction in the steam generators since anti-vibration bars (AVBs)
impede vibrations in the out-of-plane direction.

Figure A.28 presents the rotated triangular array the transverse direction test results for
different pitch ratios. All the data represent FEI test results for flexible tube bundles in
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Figure A.29 Flow regime map for the tube bundle. Symbols show the flow velocity at different
void fractions in the streamwise direction

Figure A.30 Flow regime map for the tube bundle. Symbols show the flow velocity at different
void fractions in the transverse direction

two-phase flow. Results show the FEI occurrence at low flow velocities for small pitch ratios.
Generally, the instability constant (K) decreases with the decrease of array pitch spacing.
For lower pitch ratios, two regions are found. One region is where the exponent n is approx-
imately 0.5, and at higher mass damping parameters it becomes significantly lower. This
behaviour was explained by Pettigrew et al. [24] to be the result of flow regime change be-
tween continuous and intermittent flow for the arrays with small pitch spacing. However,
for the large spacing array with P/D=1.5, the decrease in the exponent was not observed
and n=0.5 is reasonable for all test results data, even at high void fractions. Another region
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is found where the mass damping parameter is very low (< 0.8). The instability constant
changes with the same slope that has an exponent of 0.5.

One significant factor that should be considered for two-phase flow is the flow regime. For a
tube bundle subjected to two-phase flow, the flow regime may affect the dynamic behaviour,
hence, fluidelastic nature, and damping mechanism for different flow conditions. Here, Ul-
brich and Mewes [113] flow map as well as Noghrehkar et al. [112] flow map have been used.
Figures A.29 and A.30 show the flow regime for all the tested velocities of the fully flexible
array in the streamwise and transverse directions, respectively. It is seen that flow in the
transverse vibration tests is continuous for void fractions below 70%. Intermittent flow pre-
vails for 80% void fraction. Streamwise flow map shows a similar observation except that in
the 97% void fraction the flow becomes dispersed at high flow velocities.

The foregoing results report on part of the stability analysis of the APR1400 steam generator.
The instability found in the transverse direction does not pose a practical concern since in
nuclear steam generators the anti-vibration bars (AVBs) are used to suppress the vibrations
in the transverse direction. However, they are not effective to restrain tube motion in the
streamwise direction. The instabilities reported here in the streamwise direction, however,
occur at a significantly high Connors constant (K =7.4), indicating highly stable behaviour.

The overall in-plane stability of the steam generator is governed by the dynamics of the
triangular array geometry reported here as well as the rotated square geometry at the upper
horizontal section of the U-bends. Previous work by the authors (Darwish et al. [129])
on the rotated square array geometry found the geometry to be even more stable than the
triangular array studied here. Put together, the findings on these two arrays strongly suggest
that the U-bend tube bundle composed of these two arrays is highly stable in the in-plane
direction. The steam generator is therefore expected to have minimal susceptibility to IPFEI.
To unequivocally confirm the in-plane stability behavior of the steam generator, experimental
tests on full U-bend tubes are needed in order to also account for the dynamical effect of
the array geometry transition from triangular to rotated square at the U-bends. The tube
spacing in the transition region is larger than that in the vertical and horizontal U-bend
sections suggesting that transition region effects should be less significant and unlikely to be
destabilizing.

A.5 Conclusion

In a step to study the APR1400 steam generator tube bundle, a fundamental experimental
program was carried out to test a rotated triangle array with P/D=1.33 in air and air-water
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two-phase flows. Based on the results presented in this paper, a number of significant con-
clusions are drawn. Fluidelastic instability occurs in the transverse direction and is governed
by the negative damping mechanism. This was seen also for wider spaced arrays, which
confirms that this conclusion remains valid even in more confined rotated triangular arrays.
Array confinement due to the proximity of the tubes did not show significant effect for low
void fractions, while for 70%-90% void fraction damping increased in this array. This is a
general observation in the flow direction and transverse direction. Streamwise fluidelastic
instability was not observed in this array at the practical flow velocities that may exists in
the APR1400 steam generator. The fact of having very high Connors constant confirms the
stable behaviour of this array in the streamwise direction. The late occurrence of fluidelastic
instability in the streamwise direction only in the fully flexible array also confirms the fact
that the stiffness mechanism is necessary to induce instability in the rotated triangular ar-
rays. However, this is not the case for the transverse direction where the negative damping
mechanism is dominant. Generally, this rotated triangular array is stable from a practical
point of view in the streamwise direction. Pitch spacing clearly influences the exponent in
Connors equation and the trend of the FEI critical velocity. The smaller the array spacing,
the lower the exponent is at high mass damping parameters.
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APPENDIX B UNCERTAINTY ANALYSIS

This appendix presents the uncertainty analysis of the experimental parameters in all the
experimental results. The purpose of this analysis is to predict the uncertainty interval of a
calculated parameter based on the uncertainty of the raw data used in calculating the result.

The parameter Y is a dependent variable and given as a function of independent variables
such that:

Y = Y (X1, X2, X3, ....., Xn) (B.1)

Let ∂Y be the uncertainty of the dependent variable, and ∂X1, ∂X2,...., ∂Xn be the uncer-
tainties of the independent variables. Following Kline and McClintok approach [150], the
uncertainty of the dependent variable Y can be expressed as

δY =
 n∑

i=1

(
∂Y

∂Xi

δXi

)2
1/2

(B.2)

The Strouhal number is expressed as

Sp = fvD

Vp

(B.3)

Then the uncertainty of the Strouhal number calculation is

δSp =
√√√√(D

Vp

δfv)2 + (fv

Vp

δD)2 + (−fvD

V 2
p

δVp)2 (B.4)

from equations B.4 and B.3, the relative uncertainty of the Strouhal number is

δSp

Sp

=

√√√√(δfv

fv

)2 + (δD
D

)2 + (δVp

Vp

)2 (B.5)

Since all the equipment and sensors used in the experiments are calibrated, the uncertainty
of all the readings are provided in the calibration certificates. The flow velocity is calculated
using the water flow rate measure by a magnetic water flow meter. The uncertainty of the
water flow velocity is 0.5%. The uncertainty of the frequency is very small due to the data
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acquisition system high accuracy. However, it can be estimated from the frequency resolution
used in the frequency analysis, which is 0.01 Hz. Since the lowest frequency measured is
around 2 Hz, the relative uncertainty of the frequency is 0.5%. The tubes are fabricated with
an accuracy around 0.005". This yields a relative uncertainty in tube’s diameter and length
of 0.67% and 0.067%. From equation B.5, the relative uncertainty of the Strouhal numbers
calculated is ± 0.97%.

Following the same calculation procedure of the Strouhal number, the uncertainty of the lift
and drag force coefficients can be calculated. The lift coefficient is given as

CL = FL
1
2ρV

2
p Dl

(B.6)

This yields that the lift coefficient relative uncertainty is

∂CL

CL

=

√√√√(∂FL

FL

)2 + (2∂Vp

Vp

)2 + (∂D
D

)2 + (∂l
l

)2 (B.7)

The relative uncertainty of the drag force coefficient can also be calculated using equation
B.7 by using drag force FD. The resolution of the force sensor in the lift and drag directions
is around 0.0208 N. The lowest measured force is around 1 N. So the uncertainty of the
force values is 2.08%. Using equation B.7, the relative uncertainty of the lift and drag force
coefficients is 2.43%.

The added mass is calculated from tube stiffness and vibration frequency in water

m = k

(2πf)2 (B.8)

Hence, the uncertainty of the tube added mass is

∂m

m
= 2∂f

f
(B.9)

This results in mass relative uncertainty of 1%.

The Connors constant can be expressed in a simple form as

K = Vp

f
/

√
mδ

ρ
(B.10)



193

Following the same approach, the uncertainty of the Connors constant can be calculated as

∂K

K
=

√√√√(∂Vp

Vp

)2 + (∂f
f

)2 + (∂m2m )2 + (∂δ2δ )2 (B.11)

The logarithmic decrement of the tube is calculated directly from the tub damping, where
the tube damping is directly dependent on the frequency. For simplicity, the uncertainty
of the logarithmic decrement is taken to be the same as the frequency uncertainty. From
equation B.11, the uncertainty of the Connors constant is around 0.9%.
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