
Titre:
Title:

First-year integrative project for computer and software engineering
students at Polytechnique Montréal

Auteurs:
Authors:

Jérôme Collin

Date: 2015

Type: Article de revue / Article

Référence:
Citation:

Collin, J. (2015). First-year integrative project for computer and software
engineering students at Polytechnique Montréal. Proceedings of the Canadian
Engineering Education Association (CEEA), 6 pages.
https://doi.org/10.24908/pceea.v0i0.5919

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10616/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use:

CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Proceedings of the Canadian Engineering Education Association
(CEEA)

Maison d’édition:
Publisher:

Queen's University Library

URL officiel:
Official URL:

https://doi.org/10.24908/pceea.v0i0.5919

Mention légale:
Legal notice:

Authors retain copyright and grant the journal right of first publication with the work
simultaneously licensed under a Creative Commons Attribution Non-Commercial License
(CC BY-NC) that allows others to use and share the work with an acknowledgement of
the work's authorship and initial publication in this journal, as long as it is not used for
commercial purposes. This license does not waive the author’s moral rights.

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.24908/pceea.v0i0.5919
https://publications.polymtl.ca/10616/
https://doi.org/10.24908/pceea.v0i0.5919

Proc. 2014 Canadian Engineering Education Association (CEEA14) Conf.

CEEA14; Paper 086

Canmore, AB; June 8-11, 2014 – 1 of 6 –

First-year integrative project for computer and software engineering students at

Polytechnique Montréal

Jérôme Collin

Polytechnique Montréal

Department of Computer and Software Engineering

jerome.collin@polymtl.ca

Abstract – This paper presents the most important

aspects of the first-year project for students in computer

and software engineering at Polytechnique Montréal. A

small robot is used to introduce students to hardware and

software concepts of a complete and autonomous small

computer. A custom robot was designed for this course

and this gives the flexibility to introduce some concepts in

a specific way. The fact that both software and hardware

are considered makes it particularly challenging for the

students but also for the teaching team. The robot itself is

described but also the project structure and how students

can progress in this context. The evaluation and the

support offered to the students are also explained.

Keywords: first year, computer, software, integrative

project, course structure, robot.

1. INTRODUCTION

The first-year project in computer and software

engineering at Polytechnique Montréal has been a great

success and students really appreciate it. Therefore, this

paper describes how it has been developed and the context

surrounding it. It underlines how details are important to

provide a good learning environment to the students.

In the present case, the biggest problem was the fact

that students must start a project with very limited

technical background. Another problem was to propose a

project course which would take key concepts from

various other courses in the curriculum during this same

first year and include them in the project. Consequently,

this integrative approach would require students to pass

valuable time in a laboratory where they would

experiment with knowledge they have learned or are

learning while the project progresses.

During this first year, students follow two courses on

hardware, the first on basic digital design and the second

on computer architecture. Two courses on programming

are also scheduled, the first on procedural programming

and the second on object-oriented programming (both

with C++). Two other courses are also proposed on

methodology. The first one is a general introduction to

computer engineering and the second is specifically on

fundamental software engineering. Some mathematical

courses complete the first-year program.

Therefore, we were looking for a project in which

students could program a hardware device they have to

understand. They would work in teams and they would

follow a specific methodology. This course would be

placed during the second semester of the first year.

Beyond this, very little was assumed. However, we didn’t

want to make some kind of “big homework” but a

complete project where, at the end, students would have a

complete hardware system, with all its programming

aspects and complex input/output relationship. Therefore,

at the end of their first year, they would be in a position to

understand a little computer system. We didn’t go as far

as the “From NAND to Tetris” course [9] but we certainly

share some objectives with this approach.

Using robotics to teach programming concepts is a

method that has gained momentum [6] and can be

quantified [4,7]. It was decided that our programming

base would be a small mobile robot. This robot would be

designed specifically for this project course as opposed to

the E-Puck robot which is designed to be used in a large

spectrum of teaching activities [8]. The robot would have

to be easily assembled by students (including soldering of

electronic parts) and would move around trying to interact

with other robots and/or objects in its environment at the

end of the semester. The capacity to install many different

sensors and to use the robot in various situations was also

important. Approaches that use Lego Mindstorms [5] or

some kind of robot kit were excluded as a robot base

because we wanted our students to grasp the hardware and

understand the fundamentals without usage of high-level

libraries or preprogrammed pieces of code.

Proc. 2014 Canadian Engineering Education Association (CEEA14) Conf.

CEEA14; Paper 086

Canmore, AB; June 8-11, 2014 – 2 of 6 –

2. THE ROBOT

Humans are fascinated by moving objects. It is

something we can appreciate with our eyes naturally.

Programming computer is seen as hard and not intuitive.

Movement in a system can increase motivation and

understanding of programming [1]. Having a robot would

give us an interesting base to teach programming, digital

design and computer architecture. Something as complex

as a robot, even a very simple one, would be challenging

enough, to the point that methodology and team work

would be necessary and applied in an interesting context.

Thus, a small robot became at the heart of our first-year

project.

Figure 1. The robot

Great care was taken in the design of the robot. The

goal was to come up with a mobile that could be easily

assembled and repaired when necessary. Standard and

highly available electronic parts would have to be

soldered. A low cost was also a priority. It was also

considered important to easily connect the robot to a PC

to quickly download programs to the microcontroller.

Modularity was desirable. The main sections of the

robots are as independent as possible one from another.

We ended up with a robot design (figure 1) that fulfilled

all our criteria after a few iterations.

The base of the robot is made of simple PVC plastic to

which various other main components are fastened. Some

off-the-shelf wheels and electric motors take place

underneath this plastic base. A classic H-Bridge electric

motor drive is located at the rear. Towards the front,

many holes in the PVC base are used to install various

sensors. On top, a custom motherboard is the most

important part. Two Atmel AVR microcontrollers are at

the center of the system. The first is an ATmega324PA

for general purpose usage. The second is an ATmega8

and is used to program the first one easily and it’s also,

with its special firmware, a USB peripheral. Thus, this

motherboard can be easily programmed and powered by a

USB cable. This architecture is close to the Arduino

architecture but without the programming framework.

The Arduino framework is excellent for the beginners but

it hides all the lower level details that are exactly the ones

we want our students to understand.

Right from the beginning, we wanted the robot design

to be completely open source. This means that we publish

on the course web site [2] what it takes to produce a robot.

We even give the instructions to install the compiler on

the PC for students who begin with Linux. This makes it

possible to program the robot on a laptop or on a desktop

at home without proprietary software licenses. The robot

costs about $200.00 Canadian dollars. It comes in a

plastic box and it has to be assembled. Over 500 have

been produced since 2006 and more than 1000 students

have assembled one by team of two during a project

course.

3. HARWARE AND SOFTWARE

The first thing students will have to do is to assemble

to robot, especially to solder the electronic components.

This is a manual activity, obviously. Some have exposed

the values of manual work [3]. We consider that first-year

students benefit from this experience and they enjoy it.

However, it is also true that students don’t design real

hardware because we give them a robot that is already

designed. With the limited background they have, and

also because they are not studying in electrical

engineering, we consider that this is acceptable. On the

other end, this is a great opportunity to study an existing

design and learn from it. In any case, the main hardware

concepts of the course will be found inside the main

microcontroller. This is where we find what we want the

students to learn: a CPU, timers, UARTs, interrupt

controllers, I/O lines, memories, buses, registers, and so

on. How all these digital components work is taught in

another course that students follow during the same

semester.

This project-based course remains focused on

programming in C/C++. No assembly language is used on

the robot. To make links with the hardware structure,

students start by writing short programs. Most of them

will make use of precise and limited hardware resources at

the beginning. Therefore, it is almost impossible for

students to separate hardware and software when they

write these programs. Doing so, they also have to mix

concepts they have learned in other courses during this

Proc. 2014 Canadian Engineering Education Association (CEEA14) Conf.

CEEA14; Paper 086

Canmore, AB; June 8-11, 2014 – 3 of 6 –

first year. This is where this project becomes integrative

in its nature. Understanding the dataflow between

registers in the microcontroller and the interaction with

variables and C procedures is critical. These concepts are

the fundamental principles of any computer system.

These programs are short but it takes time to write and to

understand them.

To complete the software picture, we introduce Linux

as a programming platform, including the basic shell

commands. The emphasis is also placed on usage of a

version control system, SVN. Moreover, we want

students to be able to form a simple static library with a

Makefile at some point in the project. This structure will

introduce a basic software engineering methodology as

well.

On the hardware side, we have to explain principles

that students don’t know about. PWM to drive DC

electric motors with an H-Bridge is one of them. A basic

review of electric circuit is also necessary when it is time

to put electronic parts on a breadboard at the front of the

robot. Obviously, how to solder and how to crimp

connectors are also complementary notions that we give,

sometimes using videos on the course web site.

4. THE COURSE, WEEK BY WEEK

Because this is a first-year project, students work by

team of two at the beginning and they receive assignments

on a weekly basis. The real final project will only begin

around week number 10. This gives time to other courses

of the same semester to progress and to introduce

fundamental concepts that will be reused in the project

course.

 This also gives 8 weeks to a psychologist to teach

interpersonal and team interaction skills. This part of the

project introduces students to subjects like: leadership,

teamwork dynamic, teamwork models and cohesion. How

to organize efficient meetings and to define roles in a team

are also discussed. The project will offer a real situation

to students to demonstrate this know-how later in the

project. The psychologist will continue to follow every

team during the project after these 8 first weeks.

On the technical side, assembling the robot is the first

assignment in this project. However, this usually doesn’t

take more than 7 to 10 days to finish. It is interesting to

observe how much rhythm it gives to the course early in

the semester. It can almost be viewed as a team building

exercise as well because the degree of interaction is high.

In a first-year project, students know very little each other

sometimes and this helps even the communication

between teams. Teaching assistants and staff members are

also involved to help students and this increases

interaction as well.

A team of two students can now begin the second

assignment of the semester, the introduction to the

motherboard. The first exercise will be to install a

program that is on the course web site as an example and

that is about only 10 lines of code. This program exposes

how the input/output ports work. The first program we

ask students to write will be to control a simple LED and

the second one will be to read the output of a simple tact

switch on the motherboard.

By the beginning of the third week of the course, we

prepare students to write a software finite state machine

(FSM), a concept they have learned a semester before but

in the context of a digital design course. FSM are

important to eventually develop a robot with automated

behaviors.

The fourth week is when students start using the

motherboard to control the wheels. Explanations about

the H-Bridge circuit and Pulse Width Modulation (PWM)

are also provided. Usually, some debugging with multi-

meters and oscilloscopes are necessary and students are

encouraged by the teaching assistants to use laboratory

equipment.

The fifth week is an important turning point of the

semester because students will be introduced to the

internals of the main microcontroller and its architecture.

It’s time for the more complex notions: interrupts, timers,

configuration registers, etc. These concepts are difficult

to understand. That’s why we propose to students to

rewrite some short programs that have produced

previously but instead of just using I/O ports to achieve

the correct results, they have to use internal peripherals of

the microcontroller. For example, using interrupts to read

the output of a tact switch instead of using a polling

method. Another example is how to use a timer to

generate PWM to control the motor speed and to avoid a

busy-wait programming structure to get the same results.

This approach is interesting because it shows an important

distinction between concepts even if the behavior of the

microcontroller, from an external point of view, is the

same. However, internally, the program and the electronic

modules used are different. Students can also quickly

reprogram their microcontroller with a program they

wrote just a few weeks ago and realize that nothing has

changed externally but the efficiency has increase when

proper electronic modules are used.

Usually, by the sixth and seventh weeks of the

semester, students are busy and the amount of work in

other courses has grown. Some midterm exams are

Proc. 2014 Canadian Engineering Education Association (CEEA14) Conf.

CEEA14; Paper 086

Canmore, AB; June 8-11, 2014 – 4 of 6 –

scheduled in these courses and students feel they have to

pass less time on the project. To give a chance to

students, the pace is reduced in the project. Easier

assignments are proposed during these two weeks. The

overview of hardware resources continues with the UART

(to communicate back some values to the PC), the

Analogue to Digital Converter (ADC) and an external I
2
C

serial memory. Usually, these assignments are

straightforward for most students, especially if they have

understood correctly the details of the previous week.

Another turning point occurs again around week

number eight. First, we regroup two teams of two to form

one team of four. This will force students to develop code

in a bigger group, something they have never done before.

What we propose is also completely different. We want

students to compare code they have written and that is

currently in their SVN repositories. We want them to

evaluate what is good and not so good. With what they

want to keep, we ask them to form a static library of code

that they can reuse for the remaining weeks of the

semester. Obviously, this assignment forces them to talk

and interact. This work is more software engineering

oriented than what was covered during the past few

weeks. This is also time to reorganize what was

developed separately since the beginning.

During the ninth week, students have to write a much

longer program. They reuse their library written the week

before and they have to distribute between team members

the responsibilities to develop pieces of code. This last

assignment before the final project is an opportunity to

watch teams that can do it with a relative easiness and the

ones we will have to follow closely because they have

problems to bring all their parts together. Usually, it is

asked to make sure their robot can execute a little dance

by reading specific instructions in an external memory.

Their basic execution and code structure is somewhat

similar to a Java Virtual Machine. This is also an

example of software architecture. Students should now

realize that this course follows a bottom-up approach.

The control of each individual hardware element is

encapsulated in C++ class or function in a library and we

can reuse code to fulfill more complex needs.

5. THE CHALLENGE AT THE END

Up until this point in the semester, assignment on a

weekly basis has been the operating mode. For the

remaining weeks (about four), the course will turn into a

real project. Students will receive a much longer

description of what the robot is expected to do. They will

also get sensors to install on the robot. Teams will have to

understand this challenge, evaluate how they can bring an

appropriate solution, make a plan to develop the code,

manage the unexpected problems and test the solution. In

other words, a real short project. Naturally, most of the

concepts covered previously will have to be reused but in

complex situations this time.

The robot has to follow a special kind of race. To

design this course, a table (4’X8’) made of white

melamine on top (figure 2) is used. We add black tape to

mark this course and we complete with various obstacles:

aluminum posts, acrylic walls, magnetic or light sources,

etc. This robot race changes every semester. One, two or

three robots can be on the table at the same time

depending on the challenge and what is the desired robot

interaction. Usually, if more than one robot are on the

table at the same moment, they have to communicate

using IR emitters/receivers similar to those found in TV

remote controls.

The challenge is to be able to guide the robot to follow

a certain path using a line tracker which can distinguish

the black and the white of the surface while other sensors

are used to identify objects in the surroundings. Students

have to analyze how various sensors work and which

electronic resources inside the microcontroller should be

used at the precise moment. Obviously, once the robot is

put on the table and is moving, most teams have to re-

evaluate their strategy based on the results they observe.

This challenge offers an opportunity for students to

develop their conception and creativity skills, even in a

first-year project where computer and software

technologies are part of a complex system.

Figure 2. Example of a robot course

The last day is reserved for a public presentation. The

table used by students will be moved in the middle of a

large public area. The robot performances will be

evaluated by judges. Students will prepare a poster session

Proc. 2014 Canadian Engineering Education Association (CEEA14) Conf.

CEEA14; Paper 086

Canmore, AB; June 8-11, 2014 – 5 of 6 –

at their kiosk as well. Judges will also evaluate this oral

test. Visitors like to pass and to watch what the robots

have to do so the interaction with people is interesting

(figure 3). To conclude, we present a trophy to the best

teams. It represents an additional source of motivation for

students.

Figure 3. Public presentation

6. EVALUATION

This project course is formed around many different

activities. Thus, the diversity is also found in the

evaluation. First, the robot assembly is not evaluated.

Students know that they need this platform for the

duration of the semester so we prefer to give a general

assessment on the general quality for this activity,

especially on the soldering aspects.

Students will also have to submit three shorts programs

during the semester for evaluation. They also receive a

written report regarding the general quality of their code

by the teaching assistants. Submission is done through

SVN. To get a correct submission can be a problem at the

beginning but it also helps students to work with the

system. Even in a project, it still makes sense to have an

exam to measure each student to make sure everybody is

capable of some contribution to the teamwork and

understands the key concepts. Their library (week #8) is

also evaluated and a report has to explain how they have

made it.

At week number 9, teams have an interview with the

teacher where different questions will be asked. The code

they have written will be reviewed and technical questions

will be asked about what the code does. Usually, these

questions are addressed to one student at a time. Some

non-technical questions will also be asked about the team

it-self: how the team members communicate, how they

organize their work sessions, how they view the project

course so far, etc. Thus, this turns into an assessment by

the teacher. He can give feedbacks to the members based

on his observations and answers from the team. The

teacher usually has a good idea after an interview if a team

will need more attention during the remaining weeks or if

it is in a good position to succeed.

The challenge is evaluated by the teaching assistants

during the public presentation with a scoring rubric and it

is based strictly on the behavior of the robot and its

capacity to perform well during the robot race. The poster

session is also evaluated with a scoring rubric.

7. SUPPORT

A first-year project including hardware assembly and

low-level programming requires a lot of direct support to

students and good equipment in a well-organized

laboratory to be successful. Early investments in quality

hand tools, multi-meters, oscilloscopes and soldering irons

are very important. Even small lockers for robots or for

the teaching assistant’s special tools have to be

considered. The design and the refinement of the robot

over the years are even more important to reduce the

number of repeated minor problems. Otherwise, students

pass more time on these little problems and less on the

important concepts. First-year students will mature in

their debugging skills over the next few years but they are

limited at the beginning.

A carefully structured course web site is also very

important. The site for this project is maintained

continuously. It includes pictures, videos, assembly

instructions, references to various external sites,

datasheets, step-by-step debugging procedures, advices,

and many more. Presented at the right moment and

gradually during the semester, their impact is important

and they give confidence to students that they have the

first line of support they need.

Recruiting the best students to become teaching

assistants is a good strategy. These assistants become the

second direct line of support when students have

questions. A part-time engineer, member of the technical

staff, helps a lot in the preparation of this course: parts

orders for the robot kits, equipment in the lab, questions

from students, long term improvements, etc. The teacher

has to play his role as well. He will spend less time in

front of the class on PowerPoint presentations and more

helping students with their robots. However, his direct

support will make a difference for the success of his

students.

Proc. 2014 Canadian Engineering Education Association (CEEA14) Conf.

CEEA14; Paper 086

Canmore, AB; June 8-11, 2014 – 6 of 6 –

8. RESULTS

This project course was evaluated by 43 out of the 51

registered students of the fall semester of 2013 with the

standard project evaluation form used at Polytechnique

Montréal. This semester was particularly important to us

because some significant modifications to the course web

site and to the robot it-self were completed in August of

the same year. Table 1 presents the results to some

questions pertaining to the course structure and indirectly

to the support offered to students. These results

demonstrate a very good appreciation by the students.

Results for previous semesters were similar.

Table 1: Project course evaluation results – fall of 2013.

 Perception Results

 Disagree Agree

Evaluation questions - - - + + +

The teacher has paid

attention to team aspects
1 2 8 32

The skills development was

in accordance with the

project objectives

0 1 4 38

Workload is well distributed

throughout the semester
0 3 11 29

Final mark was based on

various aspects
0 1 8 34

The level of difficulty is

appropriate for this project
1 2 14 26

The project is well organised 0 1 7 35

9. CONCLUSION

After many readjustments over the years, this first-year

project has stabilized. Many early problems were about

the support and the minor details that, when all added

together, were too time consuming. However, we

conclude that it was worth fixing all these problems. The

impression is that we now spend more time on important

learning and team experiences.

Starting with sort programs and using them as bricks to

build a complete system is also seen by students as

valuable experience. It shows how small details add up

and how team members have to interact to develop a

complete solution to complex problems. The variety of

activities proposed by this first project-based course gives

a good foundation for the next three project based courses

at Polytechnique.

Acknowledgements

The author would like thank the Department of

Computer and Software Engineering of Polytechnique

Montréal for its support of this project over the last 9

years, especially Michel Dagenais, Yves Boudreault and

Laurent Tremblay. Matthew Khouzam was a main

designer of the robot and the author wants to thank him as

well.

References

[1] Yves Boudreault, “ Environnement favorisant

l’apprentissage des concepts fondamentaux de la

programmation ”, Actes du 4e colloque annuel de DIVA,

(Montréal, QC, 17-18 May 2005), 8 pp., 2005.

[2] Jérôme Collin, INF1995 project course [online],

 http:// http://www.groupes.polymtl.ca/inf1995/ fichiers/

[3] Matthew B. Crawford, Shop Class as Soulcraft: An Inquiry

into the Value of Work, New York, NY: The Penguin Press,

2009, 256 pp. {ISBN: 978-1441800107}

[4] Barry S. Fagin and Laurence Merkle, “Quantitative analysis

of the effects of robots on introductory Computer Science

education”, Journal on Education Resources in Computing

(JERIC), vol. 2, Issue 7, 2002.

[5] Aaron Gage and Robin R. Murphy, “Principles and

experiences in using Legos to teach Behavioral robotics”, in

Proceeding of the 33rd ASEE/IEEE Frontiers in Education

Conference, (Boulder, CO, 5-8 November 2003), 6 pp.,

2003. {ISBN: 0-7803-7961-6}

[6] IEEE Transaction on Education, Special Issue on Robotics

in Education, February 2013, IEEE Education Society,

Volume 56, Number 1, 147 pp. {ISBN: 18-9359}

[7] L. Major, T. Kyriacou and O.P. Brereton, “Teaching

novices programming using robots”, in Proc. EASE 2011

15th Annual Conference on Evaluation & Assessment in

Software Engineering, (Durham, UK, 11-12 April 2011), 10

pp., 2011. {ISBN: 978-1-84919-509-6}

[8] F. Mondada, M. Bonani et al., “The e-puck, a Robot

Designed for Education in Engineering”, in Proc. 9th

Conference on Autonomous Robot Systems and

Competitions, (Castelo Branco, Portugal, 7-7 may 2009), 7

pp., 2009.

[9] Noam Nisan and Shimon Schocken, The Elements of

Computing Systems: Building a Modern Computer from

First Principles, Cambridge, MA: The MIT Press, 2005,

 344 pp. {ISBN: 978-0262640688}

