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Abstract
In the Inventory Routing Problem, customer demand is satisfied from inventory
which is replenished with capacitated vehicles. The objective is to minimize total
routing and inventory holding cost over a time horizon. If the customers are located
relatively close to each other, one has the opportunity to satisfy the demand of a
customer by inventory stored at another nearby customer. In the optimization of the
customer replenishments, this option can be included to lower total costs. This is for
example the case for ATMs in urban areas where an ATM-user that wants to with-
draw money could be redirected to another ATM. To the best of our knowledge, the
possibility of redirecting end-users is new to the operations research literature and
has not been implemented, but is being considered, in the industry. We formulate
the Inventory Routing Problem with Demand Moves in which demand of a cus-
tomer can (partially) be satisfied by the inventory of a nearby customer at a service
cost depending on the quantity and the distance. We propose a branch-price-and-cut
solution approach which is evaluated on problem instances from the literature. Cost
improvements over the classical IRP of up to 10% are observed with average savings
around 3%.

Keywords Inventory routing problem · Demand moves · Exact methods ·
Branch-price-and-cut

1 Introduction

The Inventory Routing Problem (IRP) combines the optimization of inventory man-
agement and routing of the replenishments for a set of customers. This problem is
relevant in vendor-managed inventory settings, in which a supplier (the vendor) takes
both the routing and replenishment decisions. The customers need to be served over
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a given time horizon and the vendor needs to decide when to replenish each cus-
tomer, how much to deliver, and how to combine the visits in feasible vehicle routes
while minimizing total routing and inventory holding costs. Each customer faces a
certain demand per period which must be satisfied from the customer’s inventory, this
demand is composed of demands of multiple end-users. If the customers are located
relatively close to each other, one may have the opportunity to satisfy a part of the
demand of a customer by another nearby customer by redirecting some of the end-
users. This is for example the case when considering ATMs in urban areas where
ATMs are often located in close proximity. This provides the opportunity to redirect
ATM-users (“end-users”) who want to withdraw money from one ATM to another in
case of a cash shortage, hence, to move demand between ATMs (“customers”). The
same principle could also be applied to, e.g., urban bike sharing systems. Our busi-
ness partner considers this a realistic option to reduce their ATM replenishment costs.
Moreover, in the future, it might be possible to provide ATM-users with information
upfront via a mobile application which can increase customer service by avoiding
visits to out-of-service ATMs. Besides that, it is also an option to give the user a
small discount if they withdraw cash from certain ATMs. Note that, for example in
the Netherlands, a user can withdraw money at every ATM without transaction costs,
even if an ATM is not owned by his own bank but by a competing bank. Hence, stim-
ulating a user to withdraw at a certain ATM does not result in transaction costs for
the user.

The possibility of redirecting end-users can be incorporated in the optimization of
the customer replenishments to reduce total costs. We define the Inventory Routing
Problem with Demand Moves (IRPDM) in which demand of a customer can (par-
tially) be satisfied by another customer. We assume that a service cost is incurred
by the vendor for each demand move. This cost can, for example, reflect a loss in
service experienced by the end-user or the actual cost of the discount provided to
the end-users. Hence, the IRPDM consists of deciding on the timing and quantity
of deliveries to each customer, both to satisfy its own demand and potential demand
moved from other customers to this customer, deciding on the vehicle routes to per-
form the replenishments and on demand moves between customers. The objective of
the IRPDM is to minimize the total routing, inventory holding and service costs.

The contributions of this paper can be summarized as follows. We introduce the
notion of demand moves and define the IRPDM.We solve the problem with a branch-
price-and-cut (BPC) solution method based on the approach by Desaulniers et al. [1]
for the IRP. Valid Inequalities (VIs) from the IRP literature are not directly appli-
cable to the IRPDM. Non-trivial modifications of these inequalities are proposed to
ensure that they capture the effect of the demand moves in the IRPDM. Experiments
on synthetic IRP instances from the literature illustrate the performance of the pro-
posed solution approach and offer insight in the benefits of allowing demand moves
in inventory routing problems. Moreover, sensitivity analysis, for example on the
service costs, is conducted to derive managerial insights.

The paper is organized as follows. Section 2 provides an overview of related liter-
ature. In Section 3, we formally describe the problem and we present a mathematical
programming formulation for the IRPDM. Section 4 describes the solution method
and contains an extensive description of the VIs. The results of the computational
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experiments are detailed in Section 5. Finally, Section 6 discusses conclusions and
directions for future research.

2 Literature

Inspired by a real-life case on ATM replenishment, this paper contributes to a recent
stream of papers on cash supply chains. Van Anholt et al. [2] propose a three-step
heuristic to solve a combined inventory management and routing problem for so-
called Recirculation ATMs (RATM). At an RATM, a user can both withdraw and
deposit money; hence, the IRP solutions contain both delivery and pick-up activities.
Money that is picked up at one ATM can be used for a replenishment of another ATM.
Hence, transshipments performed by a vehicle are included in the model. Instances
are based on real-life data with up to 200 customers and one vehicle per depot for
a planning horizon of 6 days. Larrain et al. [3] consider an IRP which allows stock-
outs and the replenishment policy consists of swapping new cassettes of a chosen
amount for the old cassettes that can still contain bank notes. The authors propose a
matheuristic to solve instances with up to 60 locations, 3 vehicles, and up to 18 peri-
ods (in at most 6 days). Geismar et al. [4] provide a literature overview on currency
supply chains by reviewing studies that look into the supply chain from the supply
side (national banks), the demand side (commercial banks and ATM networks), and
the private sector logistics providers’ side. In their analysis of ATM replenishment-
related literature, Geismar et al. [4] mention the study by Van Anholt et al. [2] on
RATMs and suggest as future research to investigate possible incentives to rebal-
ance RATM inventories by steering users to a certain RATM (either withdraw from a
full RATM or deposit at an empty RATM). As incentive they suggest a premium for
making a deposit at a certain RATM and these premiums can be reviewed online by
the user. In this paper, we investigate the IRPDM to examine possible supply chain
savings when implementing a similar system for ATMs.

The IRPDM is related to the IRP with Transshipment (IRPT) introduced by
Coelho et al. [5]. In the IRPT, one can move goods from an origin customer or
depot to a destination customer in order to redistribute merchandise between stores
of the same chain to cover unexpected demand variations, redistribute inventory to
reduce handling costs, and in case storage capacity is limited at certain locations. It
is assumed that these transshipments are performed by an outsourced carrier. Coelho
et al. [5] propose an ILP formulation for this problem and develop an adaptive large
neighborhood search heuristic for the single vehicle case. The heuristic is tested on
instances from the literature with one vehicle, with up to 30 customers and 6 peri-
ods and with up to 50 customers and 3 periods. The heuristic’s stopping criterion
is 25,000 iterations or 1 h of computation time (which was reached for some of the
largest instances). Coelho and Laporte [6] use a branch-and-cut (BC) algorithm with-
out problem specific VIs for the IRPT, solving instances up to 30 customers with
6 periods and 50 customers with 3 periods with a maximum running time of 12
hours per instance. Lefever et al. [7] propose an improved formulation for the IRPT
which is solved by BC and uses two problem specific VIs. Compared with [6], the
computation times are lower and two more instances with 6 periods are solved.
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On the one hand, for certain features, the IRPDM can be seen as a special case
of the IRPT. First, in the IRPT, it is possible to transship goods and store the goods
at the destination customer to be used during multiple periods. In the IRPDM, the
goods are not transshipped, but the demand is moved. Therefore, a demand move
in one direction, is equivalent to a transshipment of goods in the other direction if
these transshipped goods are immediately consumed. Second, in the IRPDM, demand
moves to the depot are not possible while in the IRPT, goods can be moved directly
from the depot to a customer.

On the other hand, the IRPDM contains some features that generalize the IRPT.
First, we handle the multiple vehicle case, while in [5] and [6], only the single vehicle
case is considered. Second, in the IRPDM, a large distance between customers would
make a demand move impractical. Therefore, we restrict demand moves for each
customer to a small subset of neighboring customers in close proximity and this
subset can be different for each customer. In contrast, both in [5] and [6], the set of
customers from which goods can be transshipped is limited to a depot and a subset of
the customers, and this set is fixed for all customers. Hence, there is a set of “source”
locations from which goods can be transshipped to any other customer. This can
be modeled as a special case in the framework of neighbors that we define for the
IRPDM. Although the limitation to a general set of source locations is modeled in [5],
this feature does not seem to be used in the computational experiments. Concluding,
in the IRPDM, any customer can be a “source” location, not only a predetermined
subset of the customers, and in the IRPDM, the “source” customers can be different
for each customer.

For extensive surveys on variants and solution methods for the IRP, we refer to [8]
and [9]. Next to solution methods mentioned in these surveys, Desaulniers et al. [1]
present a new formulation for the IRP that performs better for instances with multiple
vehicles. In [1], a BPC algorithm is proposed to solve the IRP. In the model, columns
represent a combination of a route and a so-called route delivery pattern (RDP) spec-
ifying the quantity delivered to each customer along the route. In the master problem,
the optimal combinations of routes and RDPs are selected to minimize total rout-
ing and inventory holding costs. In the pricing problem (PP), routes and associated
RDPs are generated based on the dual variables retrieved from the master problem.
To model demand moves in the IRP, we extend the IRP formulation as introduced by
Desaulniers et al. [1]. The main differences are the handling of initial inventory at the
customers at the beginning of the planning horizon, the introduction of the neighbor-
ing customers, and the non-trivial adjustments to the VIs. Section 3 provides more
details on the IRP formulation by Desaulniers et al. [1] and the extension for the
IRPDM.

3 ProblemDescription and Formulation

In the IRPDM, a supplier replenishes inventory for a set of customers over a cer-
tain planning horizon. The supplier has an initial inventory at the beginning of the
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planning horizon and a known quantity becomes available in each period. A given
number of vehicles with a load capacity restriction is available to perform the replen-
ishments. A customer can be serviced at most once per period, i.e., split deliveries are
not allowed. Each customer has an initial inventory at the beginning of the planning
horizon, faces a given demand per period, and has an inventory capacity that must
be respected. Via demand moves, part of a customer’s demand can be satisfied by
another nearby customer. Note that we consider moving a part of the demand of the
customer (the ATM) which implies that in practice, the demand of several end-users
of the customer is moved. For each demand move, a cost is incurred that depends on
the quantity moved and the distance between the customers involved. The other costs
consist of routing costs for the distance traveled by the vehicles and inventory holding
costs at the supplier and the customers. The objective of the IRPDM is to minimize
the routing, inventory holding, and demand move costs. The inventory holding costs
are charged on the quantity in stock at the end of each period assuming the follow-
ing order of events in a period: increase inventory at the supplier, delivery of goods
to the customers, consumption, inventory calculation. This order of events coincides
with most literature on the IRP [10].

More formally, a single supplier, denoted by 0, needs to serve a set of customers
N over a time horizon P = {1, 2, . . . , ρ}. A fictitious period ρ + 1 is considered to
handle end inventories. At each discrete time moment p ∈ P , a quantity d

p

0 becomes
available at the supplier 0 and each customer i ∈ N faces a demand d

p
i . A homo-

geneous fleet of K vehicles with capacity Q is available to deliver the goods to the
customers. For each customer i ∈ N , a holding capacity Ci needs to be respected and
backlogging is not allowed. A customer i ∈ N (the supplier 0) has an initial inven-
tory I 0i (I 00 ) and a unit holding cost hi (h0). A Maximum Level inventory policy is
adopted for the customers which means the delivery quantity can be chosen freely
as long as inventory capacity is respected. The distance between the depot and each
customer, and between all customers is given and denoted by cij . Each customer can
redirect (part of) its demand to another customer. Therefore, for each customer i ∈ N ,
a set of neighboring customers Ni is established; the demand of the customers in Ni

can be satisfied by i via demand moves. So, if a demand move from i to j is possi-
ble, this means that i ∈ Nj , i.e., j can satisfy demand of i. If a demand move takes
place, a cost mij is charged per unit moved and per unit distance between i and j .
Adding these costs in the objective is similar to incorporating costs of, for example,
backlogging [11] and lost sales [3] in IRP settings.

In most IRP formulations, the model involves variables indicating the quantity
delivered in a period to a certain customer. Inventory balance constraints keep track
of the use of the inventory to satisfy the demand in the different periods. In contrast,
in the formulation for the IRP proposed by Desaulniers et al. [1], the model uses
variables indicating for which periods the delivered quantities are dedicated. The
authors use the fact that there always exists an optimal solution that respects the first-
in, first-out (FIFO) principle. Hence, it is possible, given the period of delivery, to
determine the periods to which a delivered quantity is assigned. Moreover, if there
is initial inventory, FIFO implies that this inventory is used to cover the demand
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in the first periods of the planning horizon. Therefore, so-called residual demands
d̄

p
i can be calculated. In periods for which the initial inventory cannot cover the

demand, customers have a positive residual demand. Constraints that make sure all
demand is covered are only needed for periods with a positive residual demand. In
the IRPDM, initial inventory can also be used to satisfy moved demand of another
customer. Therefore, we cannot use residual demands as in [1], but we have to model
the use of the initial demand explicitly. This also implies that these constraints are
needed for all customers and all periods.

Given the FIFO rule, let I 0,si = max{0, I 0i −∑s
�=1 d�

i } be the quantity remaining
from initial inventory at customer i at the end of period s if initial inventory is only
used to satisfy demand of customer i itself. Let P +

ijp denote the subset of periods
associated with subdeliveries delivered in period p ∈ P to customer i ∈ N dedicated
to customer j ∈ Ni ∪ {i}. The deliveries for periods P +

ijp and customers j ∈ Ni ∪ {i}
are so-called subdeliveries. Note that a subdelivery can be zero, then no delivery is
made for the corresponding period and customer. The set P +

ijp can be determined as
follows:

P +
ijp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
s ∈ {p, p + 1, . . . , ρ + 1}|∑s−1

l=p dl
i < Ci

}
if i =j andNi �= ∅

{
s ∈ {p, p + 1, . . . , ρ + 1}|
(
s ∈ P, d̄s

i > 0 and (s =p or
∑s−1

l=p dl
i + I

0,s−1
i < Ci)

)

or
(
s = ρ + 1 and

∑s−1
l=p dl

i + I
0,s−1
i < Ci

)}
if i =j andNi = ∅

{
s ∈ {p, p + 1, . . . , ρ}|∑s

l=p dl
i < Ci

}
i �= j .

The set P +
ijp should be large enough such that possible solutions for the IRP are

not excluded, which can be derived as follows. If i = j and Ni �= ∅, there are
neighbors for which the initial inventory can satisfy the demand. Set P +

ijp is then
largest if all periods are included such that inventory capacity of the customer is not
exceeded by the total delivery made. If i = j andNi = ∅, all initial inventory is used
to satisfy demand of customer i itself, and subdeliveries are only needed for periods
with a positive residual demand, and such that inventory capacity is not exceeded. If
i �= j , because of the FIFO principle, demand of customer i needs to be satisfied
from inventory before satisfying (part of) the demand of a neighbor j . This means
that a subdelivery for a customer j in a period s is possible if the total demand of
customer i up to and including period s does not exceed Ci . For ease of notation,
denote P +

ip = P +
iip, and introduce P +�

ip denoting the latest period in set P +
ip .

Let us
ijp denote the upper bound on the quantity of a subdelivery in period s ∈

P +
ijp. For the visited customer i us

ip := us
iip is computed as follows:

us
ip = us

iip =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
{
ds
i , Ci − I 0i

}
if s = p = 0

min
{
ds
i , Ci

}
if s = p �= 0

Ci −∑s−1
�=p d�

i if s = ρ + 1

min
{
ds
i , Ci −∑s−1

�=p d�
i

}
otherwise
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and the upper bound us
ijp for a neighboring customer j ∈ Ni is given by:

us
ijp =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
{
ds
j , Ci − I 0i − d̄s

i

}
if s = p = 0

min
{
ds
j , Ci − ds

i

}
if s = p �= 0

0 if s = ρ + 1

min
{
ds
j , Ci −∑s

�=p d�
i

}
otherwise.

Note that delivering goods for the fictitious ending period will be in inventory at the
same customer i ∈ N , no matter whether these goods are dedicated to the customer
itself or one of its neighbors. Therefore, without changing the solutions, we set the
upper bound for the quantity dedicated to each neighbor to 0 for this fictitious period.
Also note that it is never optimal to have an incoming demand move and outgoing
demand move in the same period. Therefore, first the customer’s own demand needs
to be satisfied before using goods in inventory to satisfy the demand of a neighbor.
This influences the upper bound on the delivered quantity that is dedicated to a neigh-
bor. The set of feasible routes is denoted byR. For each route, r ∈ R,Nr indicates the
set of visited customers and Ar the set of arcs used in the route. Let ari be equal to 1
if customer i ∈ N is visited in route r ∈ R and 0 otherwise. An RDP w correspond-
ing to period p details the quantities qs

wij ∈ [0, us
ijp] delivered to customer i ∈ Nr

dedicated to satisfy the demand of customer j ∈ Ni ∪ {i} in period s ∈ P +
ijp. As in

[1], qs
wij = 0 corresponds to a zero subdelivery, qs

wij = us
ijp to a full subdelivery,

and a partial subdelivery if 0 < qs
wij < us

ijp. An extreme RDP contains at most one

partial subdelivery. A set of extreme RDPs W
p
r is associated with each route r ∈ R

in period p ∈ P . Note that with a convex combination of multiple extreme RDPs any
combination of delivered quantities can be constructed. The total quantity delivered
in RDP w ∈ W

p
r is denoted by qw = ∑

i∈Nr

∑
j∈Ni∪{i}

∑
s∈P +

ijp
qs
wij .

Given a route r ∈ R and an extreme RDP w ∈ W
p
r , we can identify the quan-

tity b̂s
wi delivered to customer i ∈ N that will be in inventory at the end of period

p ≤ s ≤ P +�
ip . Compared with [1], we use b̂s

wi instead of bs
wi to indicate that

in our case deliveries dedicated to neighboring customers are also included. Let
crw = ∑

(i,j)∈Ar
cij +∑

i∈Nr

∑
s∈P +

ip
hi b̂

s
wi be the costs associated with route r and

RDP w in which the first term is the routing costs and the second term is the inven-
tory holding costs of all units delivered to the visited customers. Note that a unit
dedicated to satisfy the demand of a neighboring customer stays in inventory at the
customer until consumption. Denote by P −

ijs = {p ∈ P |s ∈ P +
ijp} the set of periods

in which a subdelivery can be made to customer i ∈ N to satisfy the demand of cus-
tomer j ∈ Ni ∪ {i} in period s ∈ P . Use P −

is to represent the union of sets P −
ijs over

all j ∈ Ni ∪ {i}.
To model the IRPDM, we use the following decision variables. Continuous vari-

ables y
p
rw ∈ [0, 1] are indicating the proportion of route r ∈ R with RDP w ∈ W

p
r in

period p ∈ P . To clarify some of the notation, Figure 1 illustrates a variable y
p
rw for

a route 0-1-2-0 and RDP w in a period p, corresponding delivery quantities q
p
wij for

the visited customers (solid arrows) and the involved demand move (dotted arrow).
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Nonnegative variables I
p

0 indicate the inventory level at the supplier at the end of
period p ∈ P . Nonnegative, integer variables z

p
ij indicate the quantity out of initial

inventory at customer i ∈ N used to satisfy demand of customer j ∈ Ni ∪ {i} in
period p ∈ P .

To comply with the FIFO principle, we prevent a demand move from i to j if
customer i still has inventory left. Therefore, we introduce binary decision variables
vs
i . This variable will be equal to 1 if there is a positive inventory level at customer

i ∈ N at the end of period s ∈ P and 0 otherwise. Hence, if vs
i = 0, a demand move

from customer i to j (i ∈ Nj ) in period s is possible. If vs
i = 1, customer i still has

inventory left that should be used first and a demand move is definitely not possible.
We can now formulate the IRPDM as follows:

min
∑

p∈P

∑

r∈R

∑

w∈W
p
r

crwy
p
rw +

∑

p∈P

h0I
p

0 +
∑

p∈P

∑

i∈N

⎛

⎝I 0i −
∑

s≤p

∑

j∈Ni∪{i}
z
p
ij

⎞

⎠ hi

+
∑

p∈P

∑

r∈R

∑

w∈W
p
r

∑

i∈Nr

∑

j∈Ni

∑

s∈P +
ijp

mij q
s
wij y

p
rw +

∑

p∈P

∑

i∈N

∑

j∈Ni

mij z
p
ij (1a)

s.t. Ip−1
0 + d

p

0 −
∑

r∈R

∑

w∈W
p
r

qwy
p
rw = I

p

0 , ∀p ∈ P, (1b)

∑

i:j∈Ni∪{j}

∑

p∈P −
ijs

∑

r∈R

∑

w∈W
p
r

qs
wij y

p
rw +

∑

i:j∈Ni∪{j}
zs
ij = ds

j , ∀j ∈ N, ∀s ∈ P, (1c)

I 0i −
∑

p≤s

∑

j∈Ni∪{i}
z
p
ij +

∑

p∈P −
is

∑

r∈R

∑

w∈W
p
r

b̂s
wiy

p
rw

+
∑

j∈Ni

∑

p∈P −
ijs

∑

r∈R

∑

w∈W
p
r

qs
wij y

p
rw + ds

i ≤ Ci, ∀i ∈ N, ∀s ∈ P, (1d)

∑

r∈R

∑

w∈W
p
r

ariy
p
rw ≤ 1, ∀i ∈ N, ∀p ∈ P, (1e)

∑

r∈R

∑

w∈W
p
r

y
p
rw ≤ K, ∀p ∈ P, (1f)

∑

p∈P

∑

j∈Ni∪{i}
z
p
ij ≤ I 0i , ∀i ∈ N, (1g)

I 0i −
∑

p≤s

∑

j∈Ni∪{i}
z
p
ij +

∑

p∈P −
is

∑

r∈R

∑

w∈W
p
r

b̂s
wiy

p
rw ≤(Ci − ds

i

)
vs
i , ∀i ∈ N, ∀s ∈ P, (1h)

∑

i:j∈Ni

∑

p∈P −
ijs

∑

r∈R

∑

w∈W
p
r

qs
wij y

p
rw +

∑

i:j∈Ni

z
p
ij ≤ ds

j

(
1 − vs

j

)
, ∀j ∈ N, ∀s ∈ P, (1i)

0 ≤ I
p

0 ≤ C0, ∀p ∈ P, (1j)

z
p
ij ∈ N, ∀i ∈ N, ∀j ∈ N, ∀p ∈ P, (1k)

y
p
rw ≥ 0, ∀p∈P, ∀r ∈R, ∀w∈W

p
r , (1l)

∑

w∈W
p
r

y
p
rw ∈ {0, 1}, ∀p ∈ P, ∀r ∈ R, (1m)

vs
i ∈ {0, 1}, ∀i ∈ N, ∀s ∈ P . (1n)

The objective function (1a) minimizes the total routing, inventory holding, and
demand move costs. Note that the demand move costs consist of the moves satisfied
by initial inventory and by deliveries made during the planning period. Constraints
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Fig. 1 Visualization of a route and RDP variable, delivery quantities, and a demand move

(1b) balance the inventory level at the supplier between periods. Constraints (1c)
make sure that, for each customer j ∈ N , all demand is satisfied by deliveries to cus-
tomer j itself, to one of the customers i for which j ∈ Ni , or from initial inventory.
Constraints (1d) are the capacity constraints at the customers. Note that the inventory
level at customer i in a period is highest after the deliveries and before consumption.
The highest inventory level is thus equal to the remaining initial inventory, plus past
deliveries (dedicated to i or to j ∈ Ni) that are not consumed yet at the end of the
period, plus the demand satisfied for other customers j ∈ Ni in this period and the
demand at i in this period. Split deliveries are prevented by constraints (1e) and the
number of used vehicles per period is limited by constraints (1f). Constraints (1g)
make sure that the amount used from initial inventory does not exceed the actual ini-
tial inventory. In (1h), the left hand side is equal to the ending inventory at customer
i in period s. If the ending inventory is positive, variable vs

i must be equal to 1. Note
that in this case, constraints (1d) are more restrictive than (1h). If vs

i = 0 then there
cannot be any ending inventory. By constraints (1i), a demand move from j to i can
only occur if vs

j = 0 which implies that there cannot be any ending inventory in the
same period.

Note that the maximum number of periods in which demand can be satisfied from
initial inventory is limited, for example, if the demand is the same every period, the
number of periods is 	I 0i /di
. Hence, the variables z

p
ij only need to be introduced for

those periods.

3.1 Limiting theMoved Demand

In the current formulation of the problem, it is possible that one customer is never
replenished by a vehicle, but that all of its demand is satisfied from the customer’s
initial inventory and via demand moves. In practice, this might not be desirable, for
example for an ATM that is closest to a hospital. Therefore, as a general rule, we limit
the quantity that is satisfied by another customer via demand moves to a certain per-
centage θ of the demand. The left hand side of the constraint should be the quantity
of the demand of customer j ∈ N in period s ∈ P satisfied via demand moves, either
via a delivery to another customer i such that j ∈ Ni or from initial inventory. The
right hand side should limit the quantity to θds

j . The left hand side of this constraint
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is identical to the left hand side of constraint (1i), hence, we can merge the two types
of constraints as follows:
∑

i:j∈Ni

∑

p∈P −
ijs

∑

r∈R

∑

w∈W
p
r

qs
wij y

p
rw+

∑

i:j∈Ni

z
p
ij ≤θds

j

(
1−vs

j

)
∀j ∈ N, ∀s ∈ P (2)

3.2 Using Initial Inventory for DemandMoves

In Section 4, we will present a BPC algorithm to solve the IRPDM. Existing cuts for
the IRP are no longer valid and need to be adjusted to handle demand moves. Because
initial inventory can be used to satisfy moved demand, it is not straightforward how
the cuts can be properly adjusted. Therefore, we first study a simplified variant of
the problem, in which initial inventory can only be used to satisfy demand of the
customer itself. In the remainder of the paper, we consider this variant of the problem,
unless indicated otherwise. In formulation (1a)–(1n), this variant can be modeled by
setting z

p
ij = 0 for all i �= j or by considering a formulation with residual demands as

in [1]. Moreover, we need to adjust the calculations of P +
ijp and us

ijp since goods only
need to be delivered for periods with a positive residual demand. The set of periods
to which a delivery in period p to customer i can be dedicated is given by:

P +
ijp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
s ∈ {p, p + 1, . . . , ρ + 1}|

(
s ∈ P, d̄s

i > 0 and (s = p or
∑s−1

l=p dl
i + I

0,s−1
i < Ci)

)

or
(
s = ρ + 1 and

∑s−1
l=p dl

i + I
0,s−1
i < Ci

)}
if i = j

{
s ∈ {p, p + 1, . . . , ρ}|d̄s

j > 0 and
∑s

l=p dl
i + I

0,s
i < Ci

}
otherwise

An upper bound us
ip on the quantity dedicated to each period s ∈ P +

ijp is computed
as follows for the visited customer:

us
ip = us

iip =

⎧
⎪⎪⎨

⎪⎪⎩

min
{
d̄s
i , Ci − I

0,s−1
i

}
if s = p

Ci −∑s−1
�=p d�

i − I
0,s−1
i if s = ρ + 1

min
{
d̄s
i , Ci −∑s−1

�=p d�
i − I

0,s−1
i

}
otherwise

and the upper bound us
ijp for a neighboring customer j ∈ Ni is given by:

us
ijp =

⎧
⎪⎪⎨

⎪⎪⎩

min
{
d̄s
j , Ci − I

0,s−1
i − d̄s

i

}
if s = p = 1

0 if s = ρ + 1

min
{
d̄s
j , Ci −∑s−1

�=p d�
i − I

0,s−1
i − d̄s

i

}
otherwise

4 SolutionMethod

A BPC method is used to solve model (1a)–(1n). Column generation is applied to
the master problem consisting of the linear relaxation of (1a)–(1l) and (1n) to com-
pute lower bounds within a branch-and-bound algorithm. Columns represent a route
and an extreme RDP, and these are generated by the PP. This solution method can be
applied to both the case in which the initial inventory can be used to satisfy moved
demand and the case in which initial inventory cannot be used for this purpose. VIs
are added dynamically to the master problem to tighten the linear relaxations. The
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VIs are based on inequalities proposed in the literature for the IRP, we adjust these for
the case in which initial inventory cannot be used to satisfy moved demand. An inte-
ger feasible solution is found by branching on the appropriate variables. Below, we
describe the column generation process, the PP, the VIs, and the branching procedure.

4.1 Column Generation

Column generation is an iterative procedure that solves a linear program (LP). The
procedure to solve the linear relaxation of (1a)–(1l) and (1n) starts with an LP with
a limited set of variables y

p
rw, which is called the restricted master problem (RMP).

Then, new variables are added which are found by solving one or more PPs and with
these new variables, the RMP is resolved. The PPs generate negative reduced cost
variables y

p
rw (also called columns) with respect to the dual values of the current

RMP. This process continues until the PPs do not generate new variables.
Initially, artificial columns with very high costs are added to guarantee a feasible

solution for the RMP, such that dual values can be retrieved to be used in the PP. To
obtain a better initial solution, an additional set of columns is computed in the fol-
lowing greedy way. Consider, for each period p, the customers S that have residual
demand in this period, if there are none, consider the customers with residual demand
in period p + 1. For each customer, consider the RDP with a full delivery in period p

(or p + 1) and zero deliveries for other periods. Create a route to visit the customers
in S by applying the nearest neighbor heuristic starting at the depot and adding cus-
tomers as long as vehicle capacity is not violated. Each customer that is added to the
route is marked as visited. If no customers in S can be added anymore without vio-
lating vehicle capacity, the route is finished. If there are still unvisited customers in
S, create another route.

4.2 Pricing Problem

For the IRPDM, there is a PP for each period p ∈ P in the planning horizon. A col-
umn generated by the PP corresponds to a delivery route r ∈ R and an extreme RDP
w ∈ W

p
r that are feasible with respect to the constraints of the problem. Hence, the

PP consists of a routing part and a delivery part which results in solving an Elemen-
tary Shortest Path Problem with Resource Constraints (ESPPRC) combined with the
linear relaxation of a knapsack problem. After providing more explanation on the PP,
the details on solving the ESPPRC will be discussed in Section 4.2.1. The PP for the
IRPDM is an extension of the one for the IRP in [1].

Associate dual variables π1b
p , π1c

is , π1d
is , π1e

ip , π1f
p , π1h

is , and π1i
js with constraints

(1b)–(1f) and (1h)–(1i) respectively. The reduced cost of a variable y
p
rw is given by:

c̄
p
rw = crw +

∑

i∈Nr

∑

j∈Ni

∑

s∈P +
ijp

mij q
s
wij + qwπ1b

p −
∑

i∈Nr

∑

j∈Ni∪{i}

∑

s∈P +
ijp

qs
wij π

1c
js −

∑

i∈Nr

P +�
ip∑

s=p

b̂s
wiπ

1d
is

−
∑

i∈Nr

∑

j∈Ni

∑

s∈P +
ijp

qs
wij π

1d
is −

∑

i∈Nr

π1e
ip − π1f

p −
∑

i∈Nr

P +�
ip∑

s=p

b̂s
wiπ

1h
is −

∑

i∈Nr

∑

j∈Ni

∑

s∈P +
ijp

qs
wij π

1i
js (3)
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in which crw = ∑
(i,j)∈Ar

cij + ∑
i∈Nr

∑P +�
ip

s=p hi b̂
s
wi are the routing and inventory

holding costs for a route r and RDP w.
For the routing part of the problem, define a graph Gp = (V p, Ap) in which V p

is the set of nodes and Ap is the set of arcs with arc travel costs cij , (i, j) ∈ Ap.
The set of nodes includes nodes corresponding to the customers vi , and to a depot
source node vS and sink node vE . Set Ap contains all arcs between the customers
(i, j) ∈ N × N, i �= j , all arcs from the source node (vS, i), i ∈ N and all arcs
entering the sink node (i, vE), i ∈ N . In the ESPPRC, define the cost of an arc to be:

c̄ij =
{

cij − π1f
p if i = vS

cij − π1e
ip otherwise

∀(i, j) ∈ Ap. (4)

For the delivery part of the problem, a linear relaxation of a knapsack problem needs
to be solved with the extra feature that the delivery quantity for a customer consists
of goods to satisfy the demand of the customer itself and of its neighbors. Therefore,
introduce two sets of variables. First, associate with each customer i ∈ N and period
s ∈ P +

is the variable ξ s
i ∈ [0, us

ip] specifying the quantity delivered to customer i

that is dedicated to satisfy the demand of customer i in period s if s ∈ P or to the
end inventory if s = ρ + 1. Second, associate with each customer i ∈ N , each of
its neighbors j ∈ Ni and each period s ∈ P +

ijp variable ψs
ij ∈ [0, us

ijp] specifying
the quantity delivered to customer i dedicated to satisfy the demand of customer j in
period s. As indicated before, ρ+1 /∈ P +

ijp for j ∈ Ni . Given a route r ∈ R, variables

ξ s
i , s ∈ P +

is , and ψs
ij , s ∈ P +

ijp, must be 0 for customers i ∈ N \ Nr . Moreover,

it must hold that
∑

i∈Nr

(∑
s∈P +

ip
ξ s
i +∑

j∈Ni

∑
s∈P +

ijp
ψs

ij

)
≤ Q to respect vehicle

capacity. Given the conditions above, (ξ s
i )i∈N,s∈P +

ip
and (ψs

ij )i∈N,j∈Ni ,s∈P +
ijp

define

an RDP w associated with route r . The reduced cost can be rewritten as follows:

c̄
p
rw =

∑

(i,j)∈Ar

c̄ij +
∑

i∈Nr

∑

s∈P +
ip

ξ s
i

(

π1b
p − π1c

is +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

+
∑

i∈Nr

∑

j∈Ni

∑

s∈P +
ijp

ψs
ij

(

mij + π1b
p − π1c

js − π1d
is − π1i

js +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

(5)

An extreme RDP has at most one partial subdelivery; hence, in an extreme RDP at
most one variable ξ s

i or ψs
ij can take a value in the open interval ]0us

ip[ and ]0us
ijp[,

respectively.

4.2.1 Labeling Algorithm

Labeling algorithms have been proposed in the literature to solve the PPs of a wide
variety of routing problems [12]. To solve the PP of the IRPDM, we propose a label-
ing algorithm in which a label represents both a partial route (path) and an associated
extreme RDP. The labeling algorithm starts with a label at the source node vS in the
graph Gp, this label is extended to subsequent nodes if such extensions are feasible.
An extension to the sink node vE results in a route with corresponding extreme RDP.
During the algorithm, a dominance rule can be used to discard labels that will not
result in the optimal solution of the PP.
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An extreme RDP consists of full subdeliveries, zero subdeliveries and at most
one partial subdelivery. During the execution of the labeling algorithm, the quantity
delivered in the partial subdelivery is unknown, because this quantity can depend on
the other deliveries made. When a label is extended to the sink node vE , the size of
the partial subdelivery is determined. Following [1], we keep track of the possible
contribution of the partial subdelivery to the reduced costs.

A label Li corresponding to a partial route ending in node i with associated RDP
w contains the following elements:

• T cost
i : Reduced cost of the route/RDP (r, w), excluding the dual contribution of

the partial subdelivery if i �= vE .
• T loadF

i : Total quantity delivered along (r, w), the quantity of full subdeliveries
only if i �= vE .

• T
custk
i : Binary value indicating whether or not customer k ∈ N has been visited

in the route.
• T

part
i : Binary value indicating whether or not RDP w contains a partial

subdelivery.
• T rateP

i : Unit rate of contribution of the partial subdelivery to the reduced costs,
if applicable.

• T maxP
i : Maximum quantity that can be delivered in the partial subdelivery, if

applicable.

Therefore, the label is denoted by Li =
(
T cost

i , T loadF
i ,

(
T
custk
i

)

k∈N
, T

part
i , T rateP

i ,

T maxP
i

)
. There are three subdelivery types: a full (F), partial (P), and zero (Z) sub-

delivery. An extreme RDP consists of the subdelivery types for the visited customers
and their neighbors for the periods in P +

ip and P +
ijp, respectively, which we call a

customer delivery pattern (CDP). For example, for a visit to customer i with one
neighbor j , the CDP FF–P means that full subdeliveries are made for the two peri-
ods in P +

ip for customer i and that a partial subdelivery is made to satisfy a demand

move from customer j in the single period in P +
ijp. A CDP can contain at most one

partial subdelivery, since an RDP can contain at most one, and the full subdeliveries
cannot exceed vehicle capacity Q. For each customer i ∈ N and period p ∈ P , we
determine a list of feasible CDPs �ip that we consider in the labeling algorithm at a
node corresponding to customer i in period p. To make this list as short as possible,
which will speed up the labeling algorithm, the list can be filtered to exclude CDPs
that do not comply with the FIFO rule. For example, for customer i without neigh-
bors, a CDP FPF cannot be optimal, and hence, this CDP is excluded from the list.
Note that the FIFO rule can only be applied to the part of the CDP that indicate the
subdeliveries for the visited customer itself and cannot be applied to the part of the
CDP indicating the deliveries for the neighboring customers. For example, a CDP
FFF-FPF is feasible with respect to the FIFO rule and can be in the optimal solution
if the neighboring customer receives a delivery in the second period of P +

ijp.
To express the resource extension functions, define binary parameters f s

γ (respec-
tively, f s

γj ) which is equal to 1 if CDP γ ∈ �ip contains a full subdelivery for period
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s for the visited customer (respectively, neighbor j ). Similarly, define gs
γ (respec-

tively, gs
γj ) which is equal to 1 for a partial subdelivery in period s for the visited

customer (respectively, neighbor j ). Now, we can define for each CDP γ ∈ �ip the
cost τ costγ , the load of the full deliveries τ loadFγ , an indicator whether there is a partial

subdelivery in the CDP τ
part
γ , the rate of the partial delivery τ ratePγ , and the maximum

size of the partial delivery τmaxP
γ , which are defined as follows:

τ costγ =
∑

s∈P +
ip

f s
γ us

ip

(

π1b
p − π1c

is +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

+

∑

j∈Ni

∑

s∈P +
ijp

f s
γj u

s
ijp

(

mij + π1b
p − π1c

js − π1d
is − π1i

js +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

τ loadFγ =
∑

s∈P +
ip

f s
γ us

ip +
∑

j∈Ni

∑

s∈P +
ijp

f s
γj u

s
ijp

τ
part
γ =

∑

s∈P +
ip

gs
γ +

∑

j∈Ni

∑

s∈P +
ijp

gs
γj

τ ratePγ =
∑

s∈P +
ip

gs
γ

(

π1b
p − π1c

is +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

+

∑

j∈Ni

∑

s∈P +
ijp

gs
γj

(

mij + π1b
p − π1c

js − π1d
is − π1i

js +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

τmaxP
γ =

∑

s∈P +
ip

gs
γ (us

ip − 1) +
∑

j∈Ni

∑

s∈P +
ijp

gs
γj (u

s
ijp − 1)

Any CDP with a partial subdelivery for which τ ratePγ ≥ 0 can be discarded, since
replacing the partial subdelivery with a zero subdelivery provides a solution with at
most the same reduced cost.

The resource extension functions are defined as follows. Assume we have a label
Li =

(
T cost

i , T loadF
i ,

(
T
custk
i

)

k∈N
, T

part
i , T rateP

i , T maxP
i

)
corresponding to a node i �=

vE and the label is extended along an arc (i, j) ∈ Ap (j �= vE), for every CDP
in �jp. Let γ ∈ �jp be one of those CDPs. The extended label is given by Lj =(
T cost

j , T loadF
j ,

(
T
custk
j

)

k∈N
, T

part
j , T rateP

j , T maxP
j

)
with:

T cost
j = T cost

i + c̄ij + τ costγ (6)

T loadF
j = T loadF

i + τ loadFj (7)

T
custk
j =

{
T
custk
i + 1 if j = k

T
custk
i otherwise,

∀k ∈ N (8)

T
part
j = T

part
i + τ

part
γ (9)

T rateP
j = T rateP

i + τ ratePγ (10)

T maxP
j =

{
min{τmaxP

γ , Q − T loadF
i − τ loadFγ } if τ

part
γ = 1

min{T maxP
i , Q − T loadF

i − τ loadFγ } otherwise.
(11)
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The resulting label is feasible if T loadF
j ≤ Q, T custk

j ≤ 1 for all k ∈ N , and T
part
j ≤ 1.

When extending to the sink node j = vE , the cost computation differs to account for
the partial subdelivery:

T cost
j =

{
T cost

i + c̄ij + T maxP
i T rateP

i if T rateP
i < 0

T cost
i + c̄ij otherwise.

(12)

The number of labels can become very large; therefore, a dominance rule is
used to reduce the number of labels. The dominance rule introduced for the IRP by
Desaulniers et al. [1] still holds for the IRPDM:

Definition 1 A labelL1 =
(
T cost
1 , T loadF

1 ,
(
T
custk
1

)

k∈N
, T

part
1 , T rateP

1 , T maxP
1

)
is said

to dominate a label L2 =
(
T cost
2 , T loadF

2 ,
(
T
custk
2

)

k∈N
, T

part
2 , T rateP

2 , T maxP
2

)
if both

labels L1 and L2 are associated with the same vertex and the following conditions
are satisfied:

(a) T loadF
1 ≤ T loadF

2 ;
(b) T

custk
1 ≤ T

custk
2 ;

(c) T
part
1 ≤ T

part
2 ;

(d) T cost
1 − T maxP

1 T rateP
1 ≤ T cost

2 − T maxP
2 T rateP

2 ;
(e) T cost

1 − (
T loadF
2 − T loadF

1

)
T rateP
1 ≤ T cost

2 ;
(f) T cost

1 − (
T loadF
2 + T maxP

2 − T loadF
1

)
T rateP
1 ≤ T cost

2 − T maxP
2 T rateP

2 .

4.2.2 Heuristic Labeling Algorithms

Before applying the exact labeling algorithm described above, two heuristic labeling
algorithms are applied. First, for each route/RDP combination in the current RMP
solution, optimize the CDPs for the given route with respect to the current dual vari-
ables. To optimize the CDPs, the labeling algorithm is solved with only the arcs in
the given route. Second, the labeling algorithm is performed on a graph that contains
only a subset Âp of the arcs Ap for each period p ∈ P . The arcs are selected by the
procedure proposed in [13]. Arcs that do not belong to the κ least reduced cost out
of an origin node, or into a destination node, are removed. To compute the reduced
cost of an arc A, the average cost over all possible CDPs for the destination node
is computed (or similarly, the average cost over the CDPs of the origin node of an
arc) and added to the reduced cost. In this calculation, we assume that no quantity
is delivered in the partial deliveries. Then, for each node, the κ arcs with the lowest
reduced cost, both incoming and outgoing, are kept in the graph. We set a dynamic
value for κ , which starts at 1 and is incremented by 2 if no columns are generated in
every subproblem for κ = 1.

4.2.3 Acceleration Techniques

Next to the heuristic labeling procedures, the following acceleration techniques are
implemented to speed up the column generation procedure.
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First, the list of CDPs �ip associated with a customer i ∈ N in period p ∈ P

can be established once before the solution procedure starts. The costs and values
associated with each CDP γ ∈ �ip need to be updated at each iteration with the
corresponding dual variables. Before the (heuristic) labeling algorithm solves the PP,
we filter the list of CDPs by applying the dominance conditions as in Definition 1,
except for condition (b), in which all T values are replaced by the current τ values of
the CDPs.

Second, ng-path relaxation is applied as defined in [14]. This relaxation of the PP
allows for cycles in the paths. To apply ng-paths, define for each node v ∈ V p in
network Gp = (V p, Ap) a subset of customers NGv . Let NGv contain v itself and
a subset of vertices that are closest to v such that |NGv| = b. Here, b is a predefined
parameter (which is set to 7 in our experiments). An ng-path can contain a sequence
of visits v − v1 − v2 − . . . − v only if at least one node w /∈ NGv is visited in
between two visits of v. The labeling algorithm is adjusted to accommodate ng-paths
as explained in [15].

Finally, since constraints (1e), which limit the number of visits to a customer
in one period to one, are numerous and often not binding in the optimal solution,
these constraints are relaxed first and added only if violated in a BC form. More-
over, Desaulniers et al. [1] showed that for the IRP some holding capacity constraints
(equivalent to 1d) are redundant with the constraints equivalent to 1c and 1e. How-
ever, for the IRPDM, it is not possible to establish a comparable statement. Hence,
all capacity constraints (1d) are now present in the master problem. Yet, it is likely
that for each customer this constraint is only binding in one or two periods. There-
fore, we add the holding capacity constraints (1d) also in a dynamic way similar to
constraints 1e.

4.3 Valid Inequalities

Next to the heuristic labeling described in Section 4.2.2 and the acceleration
techniques described in Section 4.2.3, VIs are implemented to strengthen linear relax-
ations of the problem and hence, to speed up the solution method. Only one family
of VIs that was proposed for the IRP can immediately be applied to the IRPDM. For
the variant of the IRPDM in which initial inventory cannot be used to satisfy moved
demand, existing VIs can be adjusted, although the adjustments are not trivial. For
the variant of the IRPDM in which initial inventory can be used to satisfy moved
demand, it is not clear whether or how some of the existing IRP VIs can be adjusted.
Therefore, we restrict ourselves to developing VIs for the variant in which initial
inventory cannot be used to satisfy moved demand.

First, in Section 4.3.1, we describe a family of VIs proposed in [1] for the IRP
and we argue why this family of inequalities is also valid for the IRPDM. Second,
we propose a generalization of the first family of inequalities in Section 4.3.2. Third,
Sections 4.3.3 to 4.3.6 propose VIs for the IRPDM that are derived from VIs for the
IRP. Finally, in Section 4.3.7, we elaborate why the VIs in Sections 4.3.3 to 4.3.6
need structural changes for the variant of the IRPDM in which initial inventory can
be used to satisfy moved demand.
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4.3.1 Valid Inequalities on the MinimumNumber of Routes per Time Interval

In the IRP, given the total quantity that must be delivered and the vehicle capac-
ity, one can compute the minimum number of vehicle routes needed to deliver all
goods. So, if one adds up the residual demand of all customers up to period ρ ∈ P ,
a lower bound can be established on the number of routes to fulfill the total resid-
ual demand. This also holds for the number of routes needed up to a certain period
� ∈ P . We denote these inequalities as Route Inequalities (RIs). In the IRPDM,
both in case initial inventory can and cannot be used to satisfy moved demand, the
total quantity that needs to be delivered by vehicles remains the same as in the
IRP. Therefore, these inequalities can be applied to the IRP and both variants of the
IRPDM without adjustments. A lower bound on the number of routes is given by

lbR
� =

⌈∑
i∈N

∑�
s=1 d̄s

i /Q
⌉
and the following VIs hold:

�∑

p=1

∑

r∈R

∑

w∈W
p
r

y
p
rw ≥ lbR

� , ∀� ∈ P (13)

Let π13
� , � ∈ P be the dual variables associated with VIs (13). The reduced cost

is adjusted the same way as in [1]:

c̄ij =
{

cij − π1f
p −∑ρ

�=p π13
� if i = vS

cij − π1e
ip otherwise,

∀(i, j) ∈ Ap. (14)

4.3.2 Generalized Valid Inequalities on the MinimumNumber of Routes per Time
Interval

The cuts in Section 4.3.1 can be generalized to time intervals [�, �′] where �, �′ ∈ P

are such that �′ > �. For example, suppose there is one customer and it has the fol-
lowing residual demands: 25, 40, 40, 40, 40, 40 for the six periods in the planning
horizon, the vehicle capacity is Q = 100, and inventory capacity at the customer
is C = 80. Then, at the end of period 4, there can be at most an inventory of 40;
hence, at least one vehicle must visit this customer in the interval [5, 6]. All residual
demands for this customer can be covered with 3 vehicles, but if, in a fractional solu-
tion, this customer receives a visit of one vehicle in periods 1, 3, and 4, and of 0.4
vehicle in period 5, the inequality for interval [5, 6] will be violated. We denote these
inequalities as Generalized Route Inequalities (GRIs). If � = 1, the inequalities are
the same as in Section 4.3.1.

Define a new lower bound lbR̄
ll′ =

⌈∑
i∈N

(∑�′
p=� d

p
i −
(
Ci−d�−1

i

))

Q

⌉

. The numerator

now accounts for the maximum possible inventory level at the end of period � − 1 at
each customer. Note that the fraction can be rounded up because all terms are known
at the beginning of the planning horizon. We propose the following generalized VIs:

�′
∑

p=�

∑

r∈R

∑

w∈W
p
r

y
p
rw ≥ lbR̄

ll′, ∀�, �′ ∈ P (15)
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Associating dual variables π15
��′ , �, �′ ∈ P with these inequalities, then the modified

arc reduced costs c̄ij become:

c̄ij =
{

cij − π1f
p −∑p

�=1

∑ρ

�′=p
π15

��′ if i = vS

cij − π1e
ip otherwise,

∀(i, j) ∈ Ap. (16)

4.3.3 Valid Inequalities on the MinimumNumber of Visits per Customer

For the IRP, given the residual demand at a customer over periods 1 to � ∈ P ,
the inventory capacity at the customer and the vehicle capacity, one can compute
how many visits are at least needed to satisfy a customer’s demand [16, 17]. In the
IRPDM, demand at a customer i cannot only be satisfied via deliveries by a vehi-
cle but also via other customers j : i ∈ Nj . Hence, a delivery to such a customer j

should also be counted as a “visit” to customer i. Note that Cj can also decrease the
number of visits needed for customer i, if residual demand is satisfied via a customer
j . Therefore, define Cmax

i = maxj :i∈Nj ∪{i}{Cj }. Then the minimum number of vis-

its needed to a customer between periods 1 and � is given by lbV
i� =

⌈ ∑�
p=1 d̄

p
i

min{Q,Cmax
i }

⌉

.

The following VIs hold:

�∑

p=1

∑

r∈R

∑

w∈W
p
r

⎛

⎝ari +
∑

j :i∈Nj

arj

⎞

⎠ y
p
rw ≥ lbV

i� ∀i ∈ N, ∀� ∈ P (17)

Associate dual variables π17
i� , i ∈ N , � ∈ P with the VIs. In the PP for period p, the

arc reduced costs are adjusted as follows:

c̄ij =
{

cij − π1f
p if i = vS

cij − π1e
ip −∑ρ

�=p π17
i� −∑j∈Ni

∑ρ
�=p π17

j� otherwise
∀(i, j) ∈ Ap. (18)

Lefever et al. [7] adjust a different version of these VIs for the IRPT in which
the right-hand side contains the variable representing the inventory level. Lefever et
al. [7] include transshipments by adding the fraction of transshipped demand to the
left-hand side. Since variables are included in these terms, rounding is not possible.

4.3.4 Valid Inequalities on the MinimumNumber of Subdeliveries per Demand

Inequalities on the minimum number of subdeliveries per demand (MNSDIs) for the
IRP were proposed by Desaulniers et al. [1] based on the idea of Desaulniers [18] on
similar inequalities for the Split Delivery Vehicle Routing Problem (SDVRP). The
idea is that the residual demand d̄s

i of customer i ∈ N in period s ∈ P can be fulfilled
via one subdelivery of size d̄s

i , or via at least two smaller subdeliveries in different
periods. We extend the inequalities to incorporate demand moves.

A given residual demand d̄s
i > 0 can, in the IRPDM, be fulfilled in four different

ways: (i) either by performing one subdelivery to customer i in a period p ∈ P −
is ,

(ii) at least two subdeliveries to customer i in different periods p ∈ P −
is , (iii) one

subdelivery to a customer j : i ∈ Nj in a period p ∈ P −
jis or (iv) at least two
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subdeliveries to a customer j in different periods p ∈ P −
jis . Define aS

ijw (respectively,

aM
ijw) as a binary parameter equal to 1 if ari = 1 and d̄s

j (respectively, less than d̄s
j )

units are delivered in the subdelivery to customer i dedicated to customer j ∈ Ni∪{i}
and period s ∈ P +

ijp in RDPw, 0 otherwise. Define aS
wi = aS

wij if i = j , and similarly

for aM
wi . The MNSDIs can be stated as follows:

∑

j :i∈Nj ∪{i}

∑

p∈P −
jis

∑

r∈R

∑

w∈W
p
r

(
2aS

wji +aM
wji

)
y

p
rw ≥2, ∀i ∈ N, ∀s ∈ P : d̄s

i >0 (19)

Define π19
is , i ∈ N, s ∈ P as the dual variables of VIs (19). To take the dual

variables into account in the PP for period p ∈ P , modify parameters τ cost
γ as

follows:

τ cost
γ =

∑

s∈P +
ip

[

f s
γ us

ip

(

π1b
p − π1c

is +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

− (1 + f s
γ )π19

is

]

+
∑

j∈Ni

∑

s∈P +
ijp

[

f s
γj u

s
ijp

(

mij + π1b
p − π1c

js − π1d
is − π1i

js +
∑

p≤t<s

(
hi − π1d

it − π1h
it

)
)

−(1 + f s
γj )π

19
js

]

(20)

4.3.5 Multiperiod Capacitated Subtour Inequalities

Avella et al. [19] formulate Multiperiod Capacitated Subtour Inequalities (MCSIs)
for the IRP. The MCSIs exploit that over a given set of subsequent periods p1 to
p2, one can determine the minimum vehicle flow needed to satisfy the demand of
a subset of customers S ⊆ N . Before deriving the MCSIs for the IRPDM, we will
rewrite the VIs of [19] for the IRP in the terminology of our paper.

Let (E : F) denote the set of arcs (i, j) ∈ A for which i ∈ E and j ∈ F with A

the complete set of arcs. Suppose there is a subset of customers S ⊆ N and a time
interval [p1, p2] in which p1 ≤ p2, p1, p2 ∈ P . Define arij to be a binary parameter
indicating whether arc (i, j) is traversed in route r ∈ R. The following inequalities
hold for the IRP:

p2∑

t=p1

∑

r∈R

∑

w∈Wt
r

∑

i,j :
i∈N∪{vS }\S

and j∈S

arij y
t
rw ≥

⎡

⎢
⎢
⎢

∑
i∈S

(∑p2
t=p1

dt
i −

(
Ci − d

p1−1
i

))

Q

⎤

⎥
⎥
⎥

,

∀S ⊆ N, ∀p1, p2 ∈ P (21)

The left hand side computes the vehicle flow into S ⊆ N during the periods p1 to p2.
In the nominator of the right hand side, for each customer in S, we add up the demand
over the periods in the time interval, minus the largest possible inventory at the end
of period p1 −1. The largest possible ending inventory at a customer i is equal to the
holding capacity Ci minus the demand in period p1 − 1. Note that for p1 = 1, the

SN Oper. Res. Forum (2021) 2: 6 Page 19 of 61 6



right hand side can be improved to

⌈∑
i∈S

∑p2
t=1 d̄ t

i

Q

⌉

since there is no delivery possible

before this time period and the remaining (residual) demand is known.
Avella et al. [19] introduce a quadratic program to solve the separation problem

for this family of inequalities, which is rewritten as follows for the IRP:

min
p2∑

t=p1

∑

r∈R

∑

w∈Wt
r

∑

(i,j)∈A

arij ȳ
t
rw(1 − αi)αj − γ (22)

s.t. Qγ ≤
∑

i∈N

(
p2∑

t=p1

dt
i −

(
Ci − d

p1−1
i

)
)

αi + Q − ε (23)

αi ∈ {0, 1} ∀i ∈ N (24)

γ ∈ Z (25)

in which ȳt
rw are the values of the current fractional solution, αi = 1 if i ∈ S and 0

otherwise for i ∈ N , and ε is a very small positive constant. γ represents the value of
the right hand side of (21). Solutions with a negative objective correspond to violated
cuts.

In the IRPDM, the demand of a customer j ∈ S cannot only be satisfied by
vehicles going into the set S (first term of (26)) but also by deliveries to a customer
i ∈ N \ S for which j ∈ Ni (second term of (26)). Note that if there are customers
j, k ∈ S and k ∈ Nj , flow into j does not have to contribute twice to the flow into
S to account for a possible demand move. We therefore adjust the MCSIs as follows
for the IRPDM:

p2∑

t=p1

∑

r∈R

∑

w∈Wt
r

∑

i,j :
i∈N∪{vS }\S

and j∈S

arij y
t
rw +

∑

i∈N\S

∑

j∈S∩Ni

∑

1≤t≤p2:
P +

ij t∩[p1,p2]�=∅

∑

r∈R

∑

w∈Wt
r

ariy
t
rw

≥
⎡

⎢
⎢
⎢

∑
i∈S

(∑p2
t=p1

dt
i −

(
Ci − d

p1−1
i

))

Q

⎤

⎥
⎥
⎥

, ∀S ⊆ N, ∀p1, p2 ∈ P (26)

The second term represents deliveries to customers i ∈ N \ S for which j ∈ S ∩ Ni ,
but only for the periods 1 ≤ t ≤ p2 in which the subdelivery periods P +

ij t have any
overlap with the interval [p1, p2] under consideration. Again, for p1 = 1, the right

hand side can be improved to

⌈∑
i∈S

∑p2
t=1 d̄ t

i

Q

⌉

.

To separate the inequalities for the IRPDM, the programs (22)–(25) can still be
used, but with the following extended objective function:

min
p2∑

t=p1

∑

r∈R

∑

w∈Wt
r

∑

(i,j)∈A

arij ȳ
t
rw(1 − αi)αj

+
∑

i∈N

∑

j∈Ni

∑

1≤t≤p2:
P +

ij t∩[p1,p2]�=∅

∑

r∈R

∑

w∈Wt
r

ari ȳ
t
rw(1 − αi)αj − γ (27)
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Associate dual variables π26
S��′, S ⊆ N, �, �′ ∈ P with inequalities (26). In the

subproblem for period p ∈ P , the reduced costs are adjusted as follows:

c̄ij =

⎧
⎪⎨

⎪⎩

cij −π1f
p −∑S⊆N

∑p

�=1

∑ρ

�′=p
z̄ijπ

26
S��′ if i = vS

cij −π1e
ip −∑S⊆N

∑p

�=1

∑ρ

�′=p
z̄ijπ

26
S��′

−∑S⊆N

∑
k∈Ni

∑p

�=1

∑ρ

�′=p
z̄ikẑp��′π26

S��′ otherwise,

∀(i, j) ∈ Ap.

(28)
with z̄ij a parameter equal to 1 if customer i ∈ N ∪ {vS} \ S and j ∈ S, and ẑp��′
equal to 1 if P +

ijp ∩ [�, �′] �= ∅.

4.3.6 Capacity Inequalities

The Capacity Inequalities (CIs) were introduced for the Capacitated Vehicle Routing
Problem (CVRP) [20]. For the CVRP, given a subset of customers U ⊆ N and a
lower bound κ(U) on the number of vehicles required to service these customers
given the vehicle capacity, the total flow of vehicles incident to subset U must be at
least 2κ(U). Desaulniers et al. [1] propose an adaptation of these VIs for the IRP.
Instead of a subset of customers, the authors use subsets of positive residual demands
to define the CIs. For the CVRP, a graph depicting the flow between customers is
used for separating the VIs. For the IRP, an auxiliary graph is used which depicts the
flow between consecutive residual demands assuming the FIFO principle.

For the IRPDM in which initial inventory cannot be used to satisfy moved demand,
we extend the notion of the flow between residual demands. We will use a similar
auxiliary graph as in [1]; however, the underlying structure of the graph per period
changes. Define the set of residual demands RD = {(i, s) ∈ N ×P | d̄s

i > 0} and the
auxiliary graph G∗ = (V ∗, E∗). Node set V ∗ contains a depot node 0 and a node for
each residual demand in RD. The edge set E∗ contains the following types of edges.
First, an edge is present between the depot node and each residual demand node.
Secondly, edges are present between consecutive nodes that correspond to the same
customer, i.e., an edge exists between (i, s) and (i, s + 1). Third, there is an edge
between nodes (i, s) and (i′, s′), i �= i′, if there exists a period p ∈ P such that s is
the latest period in P +

ip ∩ P and s′ is the earliest period in P +
i′p ∩ P . Until now, this

definition is the same as in [1]. Additionally, for the IRPDM, an edge exists between
(i, s) and (i′, s′), i �= i′, if i is in Nk for some k �= i, i′ and there is a period p ∈ P

such that s is the latest period in P +
kip and s′ is the earliest period in Pi′p ∩ P . Edges

that do not have any weight can be discarded.
For the weights on the edges, for a given (fractional) solution, we look into a

network per period Gp = (V p, Ap). For the IRP, a node in this network for a given
period p represents a customer and the periods for which a subdelivery can be made
P +

ip . For the IRPDM, a node represents both a customer and its neighbors, and the
periods for which a subdelivery can be made for these customers in period p, i.e.,
the periods in P +

ip and P +
ijp for all j ∈ Ni . To illustrate the structure of the auxiliary

graph for the IRPDM, consider the example in Fig. 2.
Consider the example with N = {c1, c2} and P = {1, 2, 3}. Customer c1 has a

positive residual demand in period 3 and customer c2 has a positive residual demand
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Fig. 2 Example for CIs

in periods 2 and 3. Moreover, customer c2 is a neighbor of customer c1, i.e., Nc1 =
{c2}. The nodes in the networks in Fig. 2a–c represent both the customer and their
neighbor, if applicable. Period 4 = ρ + 1 is the fictitious period and recall that this
period is never included in the delivery periods for a neighbor. Figure 2d gives the cor-
responding auxiliary graph G∗ in which customer i and period s are indicated by ci.s.

To illustrate the association of the arcs with the edges, consider as an example the
edge between c1.3 and c2.2. This edge is present because the latest period in P +

c2,1 is

2 and the first period in P +
c1,1 is 3. The edge represents the flow between the residual

demands and can be computed by summing the flow on arc (c2, c1) ∈ A1 (arc c),
the incoming arcs of node c1 ∈ V 1 (arcs a and c) and the incoming arcs of node
c1 ∈ V 2 (arcs g and i). The last two sets are added since customer c2 is a neighbor
of customer c1, the last period of P +

c1,c1,1 ∩ P and P +
c1,c1,2 ∩ P is period 3, and the

first period of P +
c1,c2,1 and P +

c1,c2,2 is period 2. Note that arc c is added twice to this
edge flow; counting arcs twice for one edge was not possible in the auxiliary graph
for the IRP but is now necessary to account for the demand moves.

Since we only change the underlying auxiliary graph for the IRPDM, the VIs
as defined in [1] and the impact on the reduced cost remain the same and are not
repeated here for conciseness. They use three separation heuristics for the CIs for
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the IRP. The first one is the separation routine of the CVRPSEP package [21] devel-
oped by Lysgaard et al. [22] which is followed by a filter to incorporate that, for the
IRP, the flow through a node can be higher than one. Second, current routes/RDPs
with exactly one partial subdelivery in a current solution are considered to construct
subsets U ⊆ N on which the VI is evaluated. Finally, a route-based connected com-
ponent heuristic is applied which was proposed by Archetti et al. [23] for the SDVRP
with Time Windows. For details on the separation heuristics, which are also used for
the IRPDM, we refer to [1].

4.3.7 IRPDM inWhich Initial Inventory Can Satisfy Moved Demand

The inequalities presented in Sections 4.3.3 to 4.3.6 cannot be adjusted without
changing their structure and effectiveness for the variant of the IRPDM in which
initial inventory at a customer can be used to satisfy the demand of another cus-
tomer via a demand move. For the inequalities in Sections 4.3.3 to 4.3.5, two main
reasons preventing effective adjustments are (1) the “flow” resulting from the use
of initial inventory should be accounted for in the left hand side and (2) residual
demand can no longer be used in the right hand side of the inequalities. For the CIs in
Section 4.3.6, similar to the other inequalities, the residual demands can no longer be
used to construct the auxiliary graph. Hereafter, we discuss the two main reasons in
more detail by reflecting on the VIs on the minimum number of visits per customer
(Section 4.3.3).

(1) If it is possible to satisfy a demand move from initial inventory, potentially all
demand at a customer j is satisfied from the initial inventory of customers j and i :
j ∈ Ni . In that case, no visits by a vehicle (to j or i) are needed to satisfy the demand
of j . The idea of considering the use of initial inventory of i to satisfy demand of j

as a “visit” could be applied to adjust the VI in two ways. A first approach could be
to add the initial inventory variables to the left hand side; however, it would not be
counting visits, but units of goods. One could divide by the demand and round up, but
this would be non-linear. A second approach could be to add supplementary binary
variables, which are equal to 1 if initial inventory is used to satisfy a demand move.
However, these binary variables must be added to the master problem and moreover,
a set of big-M constraints is needed to make sure the binary variables have the correct
value.

(2) In the right hand side of the inequality, residual demands d̄j can no longer
be used since initial inventory of customer j can be used to satisfy demand of a
customer k ∈ Nj . Hence, not all initial inventory is necessarily available to sat-
isfy demand of customer j itself. In the right hand side of inequality (17), we could
therefore incorporate the variables that represent the use of initial inventory to sat-
isfy moved demand. The disadvantage of that is that decision variables are included
in the fraction and rounding the fraction would make the inequality non-linear.

Concluding, both on the left and the right hand side of the VI, the structure has
to be changed to handle the possibility of using initial inventory to satisfy moved
demand, making the inequalities weaker. A similar reasoning can be followed for the
VIs in Sections 4.3.4 and 4.3.5. Therefore, the inequalities cannot be adjusted for this
variant of the IRPDM without changing their structure and effectiveness.
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4.4 Branching

To find a feasible solution to the problem, seven types of branching decisions are
evaluated if a fractional solution of the linear relaxation is computed. The branching
decisions are defined on the following variables:

1. The total number of routes over all periods
(∑

p∈P

∑
r∈R

∑
w∈W

p
r

y
p
rw

)
.

2. The number of routes per period p ∈ P
(∑

r∈R

∑
w∈W

p
r

y
p
rw

)
.

3. The number of visits per customer i ∈ N
(∑

p∈P

∑
r∈R

∑
w∈W

p
r

ariy
p
rw

)
.

4. vs
i variables.

5. z
p
ij variables.

6. The flow through each customer vertex i ∈ N in each period p ∈ P(∑
r∈R

∑
w∈W

p
r

ariy
p
rw

)
.

7. The flow on each edge < i, j > in each period p ∈ P which is equal
to the sum of the flows on the corresponding arcs (i, j) and (j, i) in Ap
(∑

r∈R

∑
w∈W

p
r
(arij + arji)y

p
rw

)
.

Compared with the solution method proposed by Desaulniers et al. [1] for the IRP, we
added three types of variables to branch on 3, 4, and 5. Types 4, 5, and 7 are sufficient
to guarantee an optimal integer solution. For a discussion on the arc and edge flows,
we refer to [1]. Branching decisions are imposed in the model by adding a constraint,
except for setting the flow on an edge to zero for which both corresponding arcs
are removed from the arc set Ap. Adding an extra constraint to the master problem
implies an adjustment in the reduced costs; specifics are omitted here for conciseness.

The next steps are followed to decide which branching decision is imposed. Com-
pute the values of the variables for each type of decisions 1 to 7 and select for each
type the candidate variable with a value closest to 0.5. If the candidates for types 6
and 7 have fractional values between 0.25 and 0.75, then branch on the variable with
the value closest to 0.5 out of these two (at equality, select the type 3 decision). If
there are no type 6 or 7 variables to branch on, if there is a candidate variable of type
1 or 2, select the candidate with the value closest to 0.5. If no candidate exists in the
previous types, branch on the candidate variable of type 3 if one exists. Otherwise,
choose the candidate variable of type 4 or 5 of which the value is closest to 0.5 to
branch on.

A local-depth first search approach as described in [1] is applied to select the next
node in the branch-and-bound tree to explore.

5 Computational Experiments

To assess the impact of including the demand moves in the IRP, we performed com-
putational experiments using the described BPC algorithm that was implemented
using C++ and the Gencol library. CPLEX 12.6 is used to solve all restricted master
problems during the solution procedure. These experiments are run on an Intel Core
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i7-4770 processor at 3.40 GHz, with 8 cores and 16 GB RAM. For all tests, only a
single core is used and a time limit of 2 h is imposed for each instance. To evaluate
the benefits of demand moves, the IRPDM results are compared to the IRP by using
the solution values obtained by Coelho and Laporte [17] and Desaulniers et al. [1]
(see instances and results in [24]).

To design our test set, we use the benchmark instances proposed by Archetti et al.
[16] for the IRP. The time horizon in these instances is either 3 or 6 periods, instances
have a multiple of five customers, and there is one vehicle with a given capacity.
Moreover, an instance contains for each customer the location, the initial inventory
level, the maximum inventory capacity, the demand, and the inventory holding rate.
For the depot, the quantity becoming available is given instead of the demand and
there is no maximum on the inventory. There are two levels for the inventory holding
rate. Based on that, there are four classes of instances denoted by their inventory
holding rate level (High or Low) and planning horizon (3 or 6 periods), resulting in
classes H3, H6, L3, and L6. The instances originally include a single vehicle, but the
instances have been used for the multi-vehicle case by dividing the vehicle capacity
by the chosen number of vehicles. Details on the instances are available in [16].

To incorporate demand moves, we determine for each customer i ∈ N the closest
customer j ∈ N \ {i} that is within 150 units of distance and set Ni = {j}. All VIs
are added in a dynamic way in each node of the branch-and-bound tree. The CIs and
MCSIs are only added in nodes that are at most at depth two in the tree. The costs
for demand moves are set to mij = 0.01 per unit of goods and per unit of distance
between locations i and j (following [5]) and there is no limit on the amount of
demand that can be moved, unless indicated otherwise.

In Section 5.1, we present results to assess the effectiveness of the new GRIs
(Section 4.3.2), the MCSIs (Section 4.3.5), and the CIs (Section 4.3.6). Thereafter,
generating results for the IRPDM with the most efficient settings, Section 5.2 com-
pares the solution values of the IRPDM with the solution values of the IRP. In
Section 5.2.1, the cost of a demand move is set to mij = 0.05 and mij = 0.1 to
assess the impact of changing this cost. In practice, it might not be desirable that all
demand of a customer is satisfied by another customer as described in Section 3.1.
Hence, Section 5.2.2 reports the effect of limiting the percentage of demand that can
be moved to 25%, 50%, and 75% of the demand of one customer in each period.

5.1 Effectiveness of Valid Inequalities

We assess the effectiveness of the GRIs, MCSIs, and CIs by solving the IRPDM
with different combinations of VIs. The first setting includes the CIs and the GRIs,
while the second setting includes the MCSIs and the GRIs. For the third and fourth
settings, both the CIs and MCSIs are included. Additionally, setting three includes
the GRIs, while setting four uses the original RIs. The remaining VIs are used in
all settings. For each setting, the IRPDM is solved for a subset of the instances.
The algorithm is tested on the instances with 3 and 4 vehicles (“K”), with 5 and 10
customers for 3-period horizon, and with 5 customers for 6-period horizon, for both
high and low inventory holding costs. Hence, for each H3/L3 class (“Class”), there
are 10 instances, and for each H6/L6 class, there are 5 instances in this subset.
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Table 1 reports for each class and number of vehicles the average integrality gap at
the root node before adding VIs (“Gapr”), which is the same for all settings. There-
after, the table compares for each setting the number of instances solved to optimality
(“Opt”), the average running time of instances solved to optimality (“T(s)”), the aver-
age integrality gap at the root node after adding VIs (“Gap”), and the average number
of CIs (“CI”) and MCSI (“MCSI”) inequalities added during the execution of the
algorithm, respectively. Only the instances solved to optimality are considered when
computing the averages. The integrality gap is computed as (z−z)/z with z the lower
bound computed at the root node of the branch-and-bound tree and z the optimal
value. The row “overall” shows the overall average, overall minimum, or maximum
reported in each of columns.

Table 1 shows that with all four settings, the same number of instances can be
solved. Moreover, the CIs andMCSIs are effective since the integrality gap is approx-
imately halved by adding these VIs. This can be observed from the overall integrality
gaps of 2.1% and 1.9% for settings 1 and 2 respectively, compared to the gap of 4.2%
in the root node before adding VIs. In tests with the RIs (without the CIs and MCSIs),
still 55 instances can be solved to optimality, but the average running time is more
than 2.5 times as high and the integrality gap is more than twice as high as in setting
4. Details on these tests are not reported, but are available on request.

The results indicate that the MCSIs are slightly more effective than the CIs since
setting 2 gives both a lower average computation time and lower integrality gap after
adding the VIs than setting 1. Combining these types of inequalities in settings 3 and
4 increases the efficiency since the running time goes down, even tough the integrality
gap is the same as for settings 2 and 3. In settings 3 and 4, the average number of
identified CIs is much lower than in setting 1, but since the MCSIs are slightly more
effective, the average computation time is still lower in settings 3 and 4 than in setting
1. Comparing settings 3 and 4 shows that the integrality gaps are the same, which
implies that using the GRIs does not seem to improve the solution method for the
IRPDM. Note that the average number of CIs and MCSIs differs slightly between
settings 3 and 4. Although the generalization of the route inequalities is not effective
for the IRPDM, this cannot immediately be concluded for other problems. Based on
these observations, setting 4 will be used for the remainder of the experiments.

5.2 Comparing IRP and IRPDM

To evaluate the benefit of exploiting demand moves in the IRP, the solutions of the
IRPDM are compared to the solutions of the IRP. We look into the (percentage) cost
improvement that is achieved for the test instances, and examine the number of moves
and their size that actually take place in the IRPDM solutions. The solutions for the
IRP are collected from [24].

Table 2 shows the obtained results. For each class of instances (“Class”), fleet size
(“K”), and number of customers (“N”), Table 2 first shows the number of instances
that are solved to optimality for both the IRP and IRPDM (“Opt.”). Secondly, the
average computation time for the BC IRP algorithm by Coelho and Laporte [17]
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(“T(s)-BC”), for the BPC IRP algorithm by Desaulniers et al. [1] (“T(s)-BPC”), and
for the IRPDM (“T(s)”) are reported. Thereafter, the average (“Av. Impr”), maximum
(“Max. Impr”), and minimum (“Min. Impr”) percentage cost improvement of the
IRPDM over the IRP are stated. Finally, the average number of demand moves (“Av.
Nr. of DMs”) and the average size of a demand move are reported (“Av. Sz. of DM”).

We run the algorithm on instances with up to 25 customers for a 3-period horizon
and up to 10 customers for a 6-period horizon. All detailed results are reported in
Appendix 1. Two instances can be solved for the IRPDM while no feasible solution
for the IRP exists. Hence, these instances are not included in the results since there
are no IRP results to compare with. For instances with a 6-period horizon, we can
only solve instances with five customers to optimality. This is limited, however, note
that for the IRP not all instances with a 6-period horizon and ten customers have
been solved to optimality with BPC in state-of-the-art literature [1] and the proposed
IRPDM is a more complicated problem.

The average computation times show that the IRPDM instances require more time
to be solved than the IRP with the BPC solution method. This can be expected since
the BPC solution method for the IRPDM is an extension of the one for the IRP.
Compared to the BC method for the IRP, solving the IRP is in general easier. The
higher computation times are caused by having a more extensive master problem
which includes additional binary variables and new constraints. Also, the capacity
constraints are not redundant with the other constraints in the master problem which
was the case for the IRP [1]. Moreover, the number of CDPs per customer increases
substantially since the patterns include the deliveries dedicated to the neighboring
customers. Consequently, the number of labels is greater which slows down the PP.
However, for some instances, the BPC method for the IRPDM solves them more
quickly, for example class H3 with 4 vehicles and 10 customers.

The average cost improvement is around 2.35% for instance classes with high
holding costs and above 3.5% for instance classes with low inventory holding costs,
respectively. In general, it can be observed that the average improvements are higher
for low inventory holding costs while the average number and the average size of
the demand moves do not differ much. This can be explained by the fact that for
high holding costs, the routing costs are a smaller part of the solution value than for
low holding costs. Since the demand moves decrease the routing costs and increase
the holding costs, the savings yielded by including demand moves are larger when
holding costs are lower.

The maximum improvements go up to 10% and for only three classes of instances,
the minimum cost improvement equals zero. A zero cost improvement means that
solving the IRPDM results in the same solution as the IRP, i.e., exploiting demand
moves does not result in a cost saving. Looking into the detailed results in Appendix
1 shows that out of 96 instances, only three instances do not result in a cost improve-
ment. The number of demand moves per instance is 2.6 and 2.8 for short time
horizons, and 5.3 and 5.5 for long horizons, respectively. This implies that there is
on average one demand move per period of the planning horizon. The higher number
of moves for longer horizons can be explained by the fact that in a longer planning
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horizon, there are more opportunities to incorporate a demand move for multiple
periods. Note that the percentage cost improvement is not higher for a longer plan-
ning horizon than for a shorter planning horizon. If a demand move takes place, the
number of units moved is quite substantial with averages between 30 and 45 units,
which is approximately between half and three-quarters of the average demand (the
demand is between 10 and 100).

5.2.1 Impact of the DemandMove Costs

In the previous experiments, the service fee incurred for a demand move (per unit of
goods and per unit of distance) is set to m = 0.01. This section examines the impact
of this parameter on the IRPDM solutions by solving the IRPDM for different values
of m. For a subset of instances (instance sizes 5, 10 and 15 for 3-period horizon and
sizes 5 and 10 for 6-period horizon), the IRPDM is solved for m = 0.005, m = 0.05
and m = 0.1 as well. The latter two values were also tested by Coelho et al. [5] for
the IRPT. Table 3 reports the average cost improvement over the IRP (“Av. (%)”), the
maximum cost improvement (“Max. (%)”), the average number of demand moves
(“Av. Nr.”), and the average size of the demand move (“Av. Sz.”) per instance class
and fleet size. Only instances that are solved to optimality for all parameter values
of m are considered (the number of instances solved is indicated in column “Opt.”);
therefore, averages can differ marginally from the reported results in Table 2 for
m = 0.01. Detailed results can be found in Appendix 2.

The results in Table 3 show that the improvement over the IRP by using demand
moves diminishes if the cost of demand move increases, which can be expected.
Increasing the value of m from m = 0.01 to m = 0.05 results in average improve-
ments that are approximately a factor five lower, as illustrated in Fig. 3. The average
number of demand moves decreases more rapidly as planning horizons become
longer. Increasing the value of m to 0.1 results in very few demand moves, and hence,
a very minor cost improvement of only 0.1% and 0.2% on average for high and
low inventory holding costs, respectively. Moreover, if a demand move takes place,
the number of units moved is very limited and approximately half of the size for
m = 0.05.

Lowering m from m = 0.01 to m = 0.005 leads to higher improvements, as
can be expected. Note that mainly for 6-period horizon instances, the number of
demand moves increases which results in an average cost improvement twice the
improvement for m = 0.01. The average size of the demand moves does not change
substantially for this change in demand move cost m.

Overall, it can be observed that the value of m has a larger impact for instances
with a 6-period horizon. Figure 3 shows that when m is increased, the average cost
improvement decreases faster for a longer than for a shorter planning horizon. Also
the number of demand moves declines faster for a longer planning horizon, starting
at averages of well above one move per period for m = 0.005, but reducing to almost
zero for m = 0.05 and m = 0.1.

SN Oper. Res. Forum (2021) 2: 6 Page 31 of 61 6



Ta
bl
e
3

Im
pa
ct
of

m
ov
e
co
st

m m
=
0.
00
5

m
=
0.
01

m
=
0.
05

m
=
0.
1

A
v.

M
ax
.

A
v.

A
v.

A
v.

M
ax
.

A
v.

A
v.

A
v.

M
ax
.

A
v.

A
v.

A
v.

M
ax
.

A
v.

A
v.

C
la
ss

K
O
pt
.

(%
)

(%
)

N
r.

Sz
.

(%
)

(%
)

N
r.

Sz
.

(%
)

(%
)

N
r.

Sz
.

(%
)

(%
)

N
r.

Sz
.

H
3

3
12

3.
0

6.
2

2.
5

32
.2

2.
1

4.
1

2.
3

34
.4

0.
4

1.
7

0.
3

6.
0

0.
2

0.
7

0.
3

3.
7

H
3

4
10

3.
5

6.
6

3.
4

40
.8

2.
3

5.
5

3.
0

33
.6

0.
4

2.
0

0.
4

4.
8

0.
2

1.
6

0.
3

2.
0

H
3

5
10

4.
5

7.
9

3.
1

33
.4

3.
6

6.
1

2.
8

31
.9

0.
6

1.
6

0.
8

12
.2

0.
0

0.
4

0.
2

6.
0

O
ve
ra
ll
H
3

32
3.
6

7.
9

3.
0

35
.3

2.
6

6.
1

2.
7

33
.4

0.
5

2.
0

0.
5

8.
3

0.
1

1.
6

0.
3

3.
6

H
6

3
4

3.
9

5.
8

7.
3

50
.8

1.
8

3.
0

4.
8

54
.2

0.
4

1.
5

0.
3

6.
0

0.
3

1.
1

0.
3

6.
0

H
6

4
4

3.
3

6.
2

5.
8

39
.1

2.
2

4.
3

5.
0

44
.2

0.
2

0.
3

0.
5

16
.0

0.
0

0.
0

0.
3

2.
0

H
6

5
1

7.
6

7.
6

12
.0

45
.3

3.
8

3.
8

5.
0

34
.0

0.
0

0.
0

0.
0

-
0.
0

0.
0

0.
0

-

O
ve
ra
ll
H
6

9
4.
1

7.
6

7.
1

45
.0

2.
2

4.
3

4.
9

46
.7

0.
2

1.
5

0.
3

12
.7

0.
1

1.
1

0.
2

4.
0

L
3

3
12

5.
0

10
.5

2.
3

35
.8

3.
5

7.
0

2.
2

36
.6

0.
7

3.
1

0.
3

6.
0

0.
3

1.
4

0.
3

3.
7

L
3

4
11

5.
3

8.
6

4.
3

34
.4

3.
4

7.
2

3.
8

28
.5

0.
5

3.
1

0.
4

4.
8

0.
3

2.
5

0.
3

2.
0

L
3

5
10

6.
8

12
.7

3.
1

33
.6

5.
5

10
.0

2.
7

32
.3

1.
0

2.
5

1.
0

11
.7

0.
1

0.
7

0.
1

6.
0

O
ve
ra
ll
L
3

33
5.
7

12
.7

3.
2

34
.7

4.
1

10
.0

2.
9

32
.7

0.
7

3.
1

0.
5

8.
3

0.
2

2.
5

0.
2

3.
3

L
6

3
4

6.
1

9.
5

7.
0

51
.4

3.
0

5.
1

5.
5

39
.2

0.
6

2.
4

0.
3

6.
0

0.
4

1.
7

0.
3

6.
0

L
6

4
3

5.
3

9.
0

6.
3

34
.0

3.
5

6.
4

6.
0

34
.6

0.
4

0.
7

0.
7

16
.0

0.
0

0.
0

0.
0

-

L
6

5
1

10
.5

10
.5

11
.0

49
.4

5.
3

5.
3

5.
0

33
.4

0.
0

0.
0

0.
0

-
0.
0

0.
0

0.
0

-

O
ve
ra
ll
L
6

8
6.
4

10
.5

7.
3

44
.6

3.
4

6.
4

5.
6

36
.7

0.
4

2.
4

0.
4

12
.7

0.
2

1.
7

0.
1

6.
0

SN Oper. Res. Forum (2021) 2: 6Page 32 of 616



Fig. 3 Average cost improvement for m-values by class

5.2.2 Impact of Limit on Moved Demand

As discussed in Section 3.1, the IRPDM allows that all demand of one customer is
moved to another customer (after using the initial inventory). This could imply that
some customers are never replenished by a vehicle. From a service point of view,
this might be unacceptable. In this section, we therefore analyze the impact on the
solutions when the moved demand per customer per period is limited to a given
percentage, as discussed in Section 3.1. We solve the IRPDM for a maximum of 25%,
50%, and 75%, additionally to the results already obtained for 100% (which allows
moving all demand). The same instances are used as in Section 5.2.1 and Table 4
reports similar information as Table 3. Only instances solved to optimality for all
settings are taken into account; therefore, the averages for 100% can deviate slightly
from the reported results in Table 2. Appendix 2 reports the detailed results.

Table 4 shows that the average number of units moved decreases if the maximum
demand moved becomes smaller. For example, for class H3, the average size is only
6 units if the limit is 25% compared to 32.3 units if there is no maximum. It is
interesting to observe that the average number of units declines stronger for a shorter
planning horizon than for a longer planning horizon. For instance, for class H6, the
average number of units is 15.6 for a 25% limit, which is much larger than the 6
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units for class H3 while the differences between the classes are small if there is no
limit imposed (32.3 vs. 37.8 units). The same observation holds for classes with low
holding costs.

Furthermore, the results show that the difference in cost improvement is small
between a limit of 25% and 50%. Figure 4 shows that the largest difference can be
observed between maxima of 75% and 100% (i.e., no limit). Restricting the demand
moved to 75% of the demand per customer per period approximately halves the per-
centage cost improvement over the IRP. As an example, consider instance class L3
which has an average cost improvement of 4.0% if there is no limit, and only 1.5% in
case of a maximum of 75%. This shows that if there is any restriction on the amount
of demand that can be moved, a large share of the potential cost improvement is lost.
This can be explained by the fact that in case of a limit, some customers must be
served by a vehicle while their demand would have been moved and no visit would
be required if there was no limitation on the moved demand. Therefore, routing costs
increase and the improvement over the IRP is lower. The number of required replen-
ishments is also enhanced by the limitation that demand can only be moved if there
is no inventory left. Hence, replenishing a customer once and spreading this inven-
tory over multiple periods combined with moving some demand every period is not
possible; instead, replenishments with a vehicle are necessary.

Fig. 4 Average cost improvement for maximum demand move by class
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Although limiting the demand that can be moved, to 25% for example, clearly
results in lower cost improvements over the IRP than imposing no limit. From a
service perspective, this can still be preferable. Even with moving a very limited
amount of goods, we still find average cost improvements between 0.5 and 1.1%, and
up to 4.8% maximally, which can be substantial in practice.

6 Conclusion

In this paper, we introduced the Inventory Routing Problem with Demand Moves
(IRPDM). This problem is an extension of the IRP with the addition that a customer
can satisfy (part of) the demand of another customer. Although originally inspired by
redirecting ATM-users to nearby ATMs, the IRPDM can prove useful to a variety of
settings, such as bicycle sharing systems where users can collect or return a bicycle
at several stations. We formulate a mathematical model for the IRPDM as an exten-
sion of the IRP formulation of Desaulniers et al. [1] and we develop a BPC solution
method including non-trivially adjusted VIs stemming from the IRP.

The IRPDM is solved on IRP benchmark instances from the literature [16] and
the performance of three types of VIs is analyzed. The tests show that MCSIs (see
[19] for the IRP) adjusted for the IRPDM are more effective than adjusted CIs (see
[1] for the IRP), and that using both these types of inequalities results in the best
performance of the algorithm. To assess the impact of allowing for demand moves
in the IRP, we compare the solutions of the IRPDM to those of the IRP. Moreover,
we analyze the average number and size of demand moves to develop management
insights.

Cost improvements of up to 10% are achieved for a demand move cost of
m = 0.01 per unit of demand and unit of distance and if there is no limit on the
moved demand. Moreover, it is observed that there is on average approximately one
demand move per day, which implies that these improvements are achieved without a
large change in the solutions compared to the IRP. The designed algorithm can solve
instances with up to twenty customers, three periods, and five vehicles to optimal-
ity, which is limited. It must be noted that the IRPDM is much more difficult than
the IRP, for which instances up to fifty customers can be solved to optimality with a
state-of-the-art BPC method [1]. Sensitivity analysis on both the demand move costs
and the maximum on the moved demand per customer per period is performed. Vary-
ing the demand move costs shows that the impact of increasing the costs is larger for
a longer planning horizon than for a shorter planning horizon on both the percentage
cost improvement over the IRP and the number of demand moves performed. Limit-
ing the demand that can be moved per period of one customer to 75% of its demand
already has a considerable impact on the cost improvement over the IRP compared
with the cost improvement if there is no limit. The percentage cost improvement is
approximately halved in case of 75% compared to 100%. Even by allowing only 25%
of the demand to be moved, we observe cost improvements up to 4.8% and around
1% on average compared to the classical IRP.

In this paper, we limit ourselves to the case in which initial inventory can only be
used to satisfy demand of the customer itself for algorithmic reasons. An extension
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would be to develop an exact solution method that does accommodate satisfying
moved demand with the initial inventory. A challenge can especially be found in the
design of VIs for this problem as discussed in Section 4.3.7. Moreover, the results
show that allowing for demand moves can lead to significant cost savings. Therefore,
the design of a heuristic solution method for the IRPDM capable of solving larger
scale IRPDM instances is an interesting future research direction. A helpful insight
obtained in this paper which can be used in the development of heuristics is that
the number of demand moves taking place in optimal solutions is rather limited.
Finally, in our model, we only consider a load capacity constraint on the vehicles.
In practice, the number of ATMs that can be served by one vehicle in one period is
often limited by time, which is now not considered in the IRPDM. Hence, demand
moves can also be useful if there is insufficient vehicle time capacity to replenish all
ATMs in a certain area. It would be interesting to investigate the impact of allowing
demand moves if the number of customers that can be replenished is further limited,
for example, by limiting the number of customers served per vehicle.
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Appendix 1: Results per instance

Tables 5, 6, and 7 show detailed results on the instances used for Section 5.2 when
m = 0.01 and no maximum on the moved demand. The fleet size differs per
table (K = 3,4,5). The three tables report per instance the computation time for the
IRPDM if the instance is solved within 2 h of running time and whether the instance
was solved to optimality (y/n). Thereafter, the upper bound (“UB”), the root lower
bound (“LBroot”), and the lower bound after adding valid inequalities (“LBcuts”) is
given. The size of the tree (“Tree”), the number of added CIs (“CI”) and MCSIs
(“MCSI”) are then given, followed by the percentage cost improvement over the
IRP (“Impr.”), the number of demand moves (“Nr.DM”), and the average size of the
demand moves (“Sz.DM”) of the solution. Finally, the best upper bound found for
the IRP is reported (“UB”), retrieved from [24] and an indication (“Opt.”) whether
the instance was solved to optimality (y/n). The instance is indicated in the following
format C Hp Nc Kv i with C the level of holding costs, p the number of periods, c
the number of customers, v the number of vehicles, and i the index of the instance.
If no solution is available because the instance is not solved to optimality, a dash is
filled out. We only include instances for which at least the root node is solved. For
two IRP instances, there is no feasible solution possible, and their upper bounds are
therefore unknown (Unk).
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Appendix 2: Results on impact ofm andmaximumonmoved demand

Tables 8, 9, and 10 show detailed results on the instances used for Sections 5.2.1
and 5.2.2. The fleet size differs per table (K = 3,4,5). The three tables show for each
instance details on the time (“T(s)”), the upper bound (“UB”), and the best lower
bound (“LBbest”). The details are shown for different values of m (0.01, 0.005, 0.05,
0.1) and varying maxima on the moved demand (100%, 25%, 50%, 75%). Remind
that instances with up to 15 customers and horizon three, and with five customers
and horizon six are tested. The formatting of the instance number is the same as in
Appendix 1.
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