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RÉSUMÉ

Les problèmes d’ingénierie reposent sur des modèles pour prédire les phénomènes physiques
et il est essentiel, à des fins de prise de décision, que ces modèles soient probabilistes, afin que
nous soyons conscients de ce que nous ne savons pas à leur sujet. Les approches probabilistes
courantes incluent les modèles d’espace d’états utilisés pour prévoir les séries chronologiques,
et les réseaux de neurones Bayésiens utilisés pour effectuer des tâches de régression. De tels
modèles impliquent des paramètres inconnus non seulement pour modéliser des phénomènes
physiques mais aussi pour quantifier les incertitudes épistémiques et aléatoires du modèle.
En pratique, l’estimation de ces paramètres peut être exigeante en termes de calcul, ce qui
empêche les modèles existants d’être mis à l’échelle pour être utilisés dans des applications
d’ingénierie pratiques à grande échelle.

Par exemple, dans les modèles d’espace d’états, l’estimation des variables d’état cachées est
peu coûteuse en termes de calcul car nous pouvons nous appuyer sur une formulation analy-
tique pour effectuer l’inférence Bayésienne. D’autre part, l’incertitude aléatoire est quantifiée
par les paramètres de variance dans les matrices de covariance des erreurs de processus (Q)
et d’observation (R), qui doivent être connues avec précision pour une estimation exacte
des variables cachés. L’obtention d’estimations optimales pour ces paramètres inconnus est
généralement la tâche la plus exigeante en termes de calcul dans la procédure d’estimation
d’états cachés. Même si la matrice R peut être, dans de nombreuses situations, considérée
comme connue à partir des spécifications de l’instrument de mesure, il reste toujours un défi
de développer une méthode de calcul efficace capable d’effectuer une estimation en ligne de
forme fermée de la matrice Q pour plusieurs séries chronologiques. De plus, l’inférence en
ligne traitable analytiquement ne peut pas être effectuée pour les modèles d’espace d’états
multiplicatifs qui permettraient de déduire les paramètres du modèle en tant qu’états cachés
à l’aide d’expressions algébriques de forme fermée. D’autre part, l’inférence de paramètres
analytiques peut être effectuée dans des réseaux de neurones Bayésiens en utilisant la method
tractable approximate Gaussienne Inference (TAGI), mais est uniquement limitée à la mod-
élisation de l’incertitude aléatoire homoscédastique.

Cette thèse contribue à développer des méthodes Bayésiennes analytiques traitables pour
l’inférence de paramètres afin d’améliorer les performances et l’évolutivité des modèles prob-
abilistes dans le contexte des applications d’ingénierie. Les principales contributions sont :
a) une méthode analytique applicable aux modèles d’espace d’états multiplicatifs qui tire
parti de l’approximation multiplicative Gaussienne (GMA), b) une méthode de régression
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qui s’appuie sur GMA pour modéliser la dépendance non linéaire entre deux séries tem-
porelles et permettant l’estimation en ligne du coefficient de régression en fonction des valeurs
des variables d’états ainsi que des séries chronologiques interdépendantes, c) une méthode
d’inférence Bayésienne analytique appelée l’inférence approximative de la variance Gaussi-
enne (AGVI) qui permet d’effectuer une estimation en ligne sous forme fermée du terme de
variance de l’erreur de processus univariée, d) l’extension de la méthode AGVI pour déduire
les paramètres de variance de l’erreur de processus multivariée, et e) l’application de l’AGVI
pour modéliser analytiquement l’incertitude aléatoire hétéroscédastique pour les tâches de ré-
gression utilisant TAGI pour les réseaux de neurones bayésiens. Les méthodes proposées sont
vérifiées avec des données synthétiques et validées avec des ensembles de données réels pour
les applications de surveillance de la santé structurelle ainsi que des ensembles de données de
régression de référence. Les méthodes proposées dans cette thèse dépassent les performances
des approches existantes en termes de capacité prédictive tout en étant jusqu’à des ordres de
grandeur plus rapides.
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ABSTRACT

Engineering problems rely on models to predict physical phenomena and it is critical for
decision-making purposes that these models be probabilistic, so that we are aware about what
we do not know about them. Common probabilistic approaches include state-space models
that are used for forecasting time series and Bayesian neural networks that are used for per-
forming regression tasks. Such models involve unknown parameters for not only modeling
physical phenomena but also for quantifying the model’s epistemic and aleatory uncertain-
ties. In practice, estimating these parameters can be computationally demanding, so that it
prevents existing models from being scaled up to be used in large-scale practical engineering
applications.

For instance, in state-space models, estimating hidden state variables is computationally
cheap because we can rely on an analytical formulation for performing Bayesian inference. On
the other hand, the aleatory uncertainty is quantified by the variance parameters in the pro-
cess (Q) and observation (R) error covariance matrices, which need to be known accurately
for an exact state estimation. Obtaining optimal estimates for these unknown parameters is
typically the most computationally demanding task in the state estimation procedure. Even
though in many situations the matrix R can be considered to be known from the measuring
instrument specifications, it still remains a challenge to develop a computationally efficient
online method which is able to perform the closed-form Bayesian estimation of the matrix
Q for multiple time series. Moreover, analytically tractable online inference cannot be car-
ried out for multiplicative state-space models which would allow model parameters to be
inferred as hidden states using closed-form algebraic expressions. On the other hand, analyt-
ical parameter inference can be carried out in Bayesian neural networks using the tractable
approximate Gaussian inference (TAGI) but is restricted to modeling only homoscedastic
aleatory uncertainty.

The contribution of this thesis is to develop analytically tractable Bayesian methods for pa-
rameter inference in order to improve the performance and scalability of probabilistic models
in the context of engineering applications. The main contributions are: a) an analytical
method applicable to multiplicative state-space models that takes advantage of the Gaussian
multiplicative approximation (GMA), b) a state-based regression method that builds upon
GMA to model the nonlinear dependency between two time series enabling online estima-
tion of the state-dependent regression coefficient as well as the interdependent time series, c)
an analytical Bayesian inference method called the approximate Gaussian variance inference
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(AGVI) which enables performing closed-form online estimation of the univariate process
error variance term, d) the extension of the AGVI method to infer multivariate process
error variance parameters, and e) applying AGVI to analytically model the heteroscedastic
aleatory uncertainty for benchmark regression tasks within the TAGI framework for Bayesian
neural networks. The proposed methods are verified with synthetic data and validated with
real datasets for structural health monitoring applications as well as benchmark regression
datasets. The methods proposed in this thesis are shown to exceed the performance of exist-
ing approaches in terms of predictive capacity while being up to orders of magnitude faster.



ix

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF SYMBOLS AND ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Co-Authored Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Bayesian Dynamic Linear Models . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Gaussian Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Parameter Estimation in State-Space Models . . . . . . . . . . . . . . . . . . 15
2.3.1 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Adaptive Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Approximate Inference Methods . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Tractable Approximate Gaussian Inference . . . . . . . . . . . . . . . 29



x

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 3 The Gaussian Multiplicative Approximation
for State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Gaussian Multiplicative Approximation . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Moments of Product Term . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Case Study 1: First-Order Online Autoregressive Process (OAR) . . . 40
3.3.2 Case Study 2: Trend Multiplicative Model (TM) . . . . . . . . . . . . 42
3.3.3 Case Study 3: Double Kernel Regression (DKR) . . . . . . . . . . . . . 46

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 4 Modeling Nonlinear Dependency Using State-Based Regression . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 State Regression Component . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Case Study 1 – CB2 Time Series . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Case Study 2 – CB3 Time Series . . . . . . . . . . . . . . . . . . . . . 67

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 5 Approximate Gaussian Variance Inference for
Univariate Process Error in the Context of State-Space Models . . . . . . . . . . . 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Approximate Gaussian Variance Inference . . . . . . . . . . . . . . . . . . . 75

5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Case Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Case Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 6 Approximate Gaussian Variance Inference for



xi

Multivariate Process Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Multivariate Process Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Case Study 1 – Multivariate Random Walk Model . . . . . . . . . . . 98
6.3.2 Case Study 2 – Dam Displacement . . . . . . . . . . . . . . . . . . . 101

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

CHAPTER 7 Heteroscedastic Aleatory Uncertainty Quantification in
Bayesian Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Toy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.2 Regression Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

CHAPTER 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1 Thesis Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2.1 The Gaussian Multiplicative Approximation . . . . . . . . . . . . . . 123
8.2.2 State-Based Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2.3 Approximate Gaussian Variance Inference . . . . . . . . . . . . . . . 124
8.2.4 TAGI-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.1 Analytically Tractable Skewness Inference . . . . . . . . . . . . . . . 125
8.3.2 Time-Varying Process Error’s Variance Inference . . . . . . . . . . . . 127

8.4 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xii

LIST OF TABLES

Table 3.1 Comparison of the mean square error and log-likelihood estimates for
the GMA and the CKF . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 3.2 Comparison of mean square error and log-likelihood values for DKR and
KR on the traffic-load dataset. . . . . . . . . . . . . . . . . . . . . . . 49

Table 4.1 Root mean square error (RMSE) and log-likelihood values obtained
with the state-based regression (SR) method and the linear dependency
(linear) model in BDLM for the CB2 dataset. . . . . . . . . . . . . . 64

Table 4.2 Root mean square error (RMSE) and log-likelihood values obtained
with the state-based regression (SR) method and the linear dependency
(linear) model in BDLM for the CB3 dataset. . . . . . . . . . . . . . 70

Table 5.1 Average number of points outside the 95% probability region for the
NEES and NIS values in all the three cases, i.e., (a) {µW 2

0|0 = 0.2, (σW 2
0|0 )2 =

0.01}, (b) {µW 2
0|0 = 2, (σW 2

0|0 )2 = 1}, and (c) {µW 2
0|0 = 20, (σW 2

0|0 )2 = 100}. 85
Table 5.2 Comparison of the average RMSE values and the computational time

(in seconds) obtained from each method in all three cases where the
true values are (a) σ2

AR = 0.42, (b) σ2
AR = 1.35, and (c) σ2

AR = 18.75. The
results are averaged over five independent runs. Each of the methods
are picked from different AKF categories where AGVI and SWVAKF
are Bayesian methods whereas ALMF is a covariance-matching method
(CMM) and ICM is a correlation method. . . . . . . . . . . . . . . . 87

Table 5.3 Comparison of the average test mean square error (MSE), test log-
likelihood (LL), optimization time (in s), training time (in seconds),
and the final estimate of σAR using the AGVI and Newton-Raphson
(NR) for the traffic-load dataset. . . . . . . . . . . . . . . . . . . . . 88

Table 6.1 Comparison of the average RMSE values and the computational time
(in seconds) for each method. The results are averaged over five in-
dependent runs. Each of the methods are picked from different AKF
categories where AGVI and SWVAKF are Bayesian methods whereas
ALMF is a covariance-matching method (CMM) and ICM is a cor-
relation method. The variance terms and the covariance terms are
represented by σ2

ii and σ2
ij, ∀i, j ∈ 1, · · · , D. . . . . . . . . . . . . . . . 100



xiii

Table 6.2 Average number of points outside the 95% probability region for the
different prior initialization of

−−→
LW0|0. Each column presents the average

value computed using the five simulated datasets for one combination
of {α, β}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 6.3 Root mean square error (RMSE) and log-likelihood values obtained
with the AGVI and the Newton-Raphson methods for the displace-
ments datasets yD1 and yD2 along all three axis. . . . . . . . . . . . . 104

Table 6.4 Comparison of optimization time (in seconds) and training time (in
seconds) using the AGVI and the Newton-Raphson method. . . . . . 105

Table 7.1 RMSE comparison between the inference methods on large UCI re-
gression datasets. The direct comparison is made with the best per-
forming sub-space inference method [1] i.e., principal component anal-
ysis combined with variational inference (PCA+VI), along with the
stochastic weight averaging-Gaussian (SWAG) [2], the orthogonally de-
coupled variational Gaussian Processes (Orth VGP) [3], the deep kernel
learning with a spectral mixture kernel (DKL) [4], the Bayesian final
layers (NL) [5], the stochastic gradient descent (SGD) obtained from
Izmailov et al. (2020) [1], and the fastfood kernel Gaussian process
(FF) [6] (Rank legend: first). The ±σ represents one standard devi-
ation computed over 10 splits. The results for TAGI-V are averaged
over 3 random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 7.2 Normalized log-likelihood comparison between the inference methods
on large UCI regression datasets. The direct comparison is made with
the best performing sub-space inference method [1] i.e., principal com-
ponent analysis combined with variational inference (PCA+VI), along
with the stochastic weight averaging-Gaussian (SWAG) [2], the or-
thogonally decoupled variational Gaussian Processes (Orth VGP) [3],
the deep kernel learning with a spectral mixture kernel (DKL) [4], the
Bayesian final layers (NL) [5], the stochastic gradient descent (SGD)
obtained from Izmailov et al. (2020) [1], and the fastfood kernel Gaus-
sian process (FF) [6] (Rank legend: first, second). The ±σ represents
one standard deviation computed over 10 splits. The results for TAGI-
V are averaged over 3 random seeds. . . . . . . . . . . . . . . . . . . 119



xiv

Table P.1 Comparison of the average RMSE values and the computational time
for each method. Each of the methods are picked from different AKF
categories where AGVI and SWVBAKF are Bayesian methods whereas
ALMF is a covariance-matching method (CMM) and ICM is a cor-
relation method. The variance terms and the covariance terms are
represented by σ2

ii and σ2
ij, ∀i, j ∈ 1, · · · , D, respectively. . . . . . . . . 164

Table S.1 Optimized set of hyperparameters identified using grid-search proce-
dure. The parameters α and β, and patience are associated with
the modified He’s approach and early-stopping procedure, respectively.
The grid-search is carried out using a validation set obtained from the
original training set by a 80− 20 split ratio. The total computational
time (in s.) required for the grid-search procedure is also provided. . 169

Table V.1 Comparison between the approximate inference methods for average
training time (in s.) per epoch (Rank legend: first). All the experi-
ments are carried out using 12 core 3GHz CPU. For TAGI-V and TAGI,
the codes are in MATLAB, and all others are written in Python. . . . 177

Table W.1 Comparison between the inference methods for average test RMSE’s
as mentioned in the original work for TAGI [7], MC-dropout [8], Deep
ensembles [9], PBP [10], PBP-MV [11], VMG [12], and DVI [13] (Rank
legend: first). The ±σ represents one standard deviation computed
over 20 splits. The results for TAGI-V are also averaged over 5 random
seeds. The results for DVI is left empty as it is not provided in the
respective article by Wu et al. [13]. . . . . . . . . . . . . . . . . . . . 178

Table W.2 Comparison between the inference methods for average test log-likelihood’s
as mentioned in the original work for TAGI [7], MC-dropout [8], Deep
ensembles [9], PBP [10], PBP-MV [11], VMG [12], and DVI [13] (Rank
legend: first). The ±σ represents one standard deviation computed
over 20 splits. The results for TAGI-V are also averaged over 5 random
seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Table X.1 Optimized set of hyperparameters identified using grid-search proce-
dure. The parameters α and β, and patience are associated with
the modified He’s approach and early-stopping procedure, respectively.
The grid-search is carried out using a validation set obtained from the
original training set by a 80− 20 split ratio. . . . . . . . . . . . . . . 179



xv

LIST OF FIGURES

Figure 2.1 Visual interpretation showing the epistemic and the aleatory uncer-
tainty associated with the model predictions represented by the green
and blue regions respectively. The model predictions are shown in
black where the true function g(x) = x · sin(x) is shown in red. As
the number of observation increases from a) D = 20 to b) D = 100,
we observe that the epistemic uncertainty shrinks to a negligible value
while the aleatory remains constant. . . . . . . . . . . . . . . . . . . 6

Figure 2.2 Heteroscedastic aleatory uncertainty as a result of missing explanatory
variables. Figure a) shows the 2-D plot generated using the function
g(x1, x2), b) shows the rotated view of the 2-D plot in (a) to show
the surface plot with respect to the x1 axis, and c) shows the varying
uncertainty of the data as we move from −1 to 1 within the domain of
x1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3 An example showing the generic components in BDLM for time series
modeling. The Figure a) shows the time series yt in red, (b) the local
level, (c) the periodic, and (d) the autoregressive component in black. 10

Figure 2.4 The (a) Full and (b) Compact representation of a FNN for obtaining
a single model output z(O) as a function of the input covariates x. The
network comprises of L hidden layers having A hidden units in any layer
j ∈ {1, 2, · · · , L}. The parameters between any two layers j and j + 1
are represented by θ(j). The observation y, denoted by the purple node,
is connected to the output unit z(O), and the error v in accordance to
the observation model in Equation 2.19. . . . . . . . . . . . . . . . . 31

Figure 3.1 Comparison of the GMA and the CKF method for estimating a) xAR

and b) xφ. The red solid line shows the observations, the black solid
line and the green shaded region shows the predictions and their ±1σ
confidence regions using the GMA, and the blue solid line and the pink
shaded region shows the predictions and their ±1σ confidence regions
using the CKF. Note that Figure (a) is a close-up view from the actual
plot showing the first 100 time steps. . . . . . . . . . . . . . . . . . . 42

Figure 3.2 Plot showing the flow-rate data recorded on a concrete gravity dam.
The test set is represented by the shaded region. . . . . . . . . . . . . 43



xvi

Figure 3.3 Plot showing the estimated values for the flow-rate data using the GMA
and the CKF. The red solid line shows the observations, the black solid
line and the green shaded region shows the predictions and their ±1σ
confidence regions using the GMA, and the blue solid line and the pink
shaded region shows the predictions and their ±1σ confidence regions
using the CKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.4 Illustration of the hidden state estimation for the flow-rate data. Fig-
ures (a)-(c) represents the hidden states of the TM component; where
(a) represents the product of the level associated with the TM and the
periodic pattern xS1 , (b) represents the level component xLP associ-
ated with the TM component, and (c) represents the periodic pattern
xS1 . Figure (d) represents the online estimation of xφ associated with
the OAR. The black solid line and the green shaded region shows the
predictions and their ±1σ confidence regions. . . . . . . . . . . . . . 46

Figure 3.5 Plot showing traffic-load data recorded on the Tamar bridge in the UK.
The test set is represented by the shaded region. . . . . . . . . . . . . 47

Figure 3.6 Plot showing the estimated values of traffic-load data using the GMA
and the CKF. The red solid line shows the observations, the black solid
line and the green shaded region shows the predictions and their ±1σ
confidence regions using the GMA, and the blue solid line and the pink
shaded region shows the predictions and their ±1σ confidence regions
using the CKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.7 Illustration of the hidden state estimation for the traffic-load data. Fig-
ures (a)-(c) represents the hidden states of the DKR component; where
(a) represents the product of the two product terms xKR1

0 · xKR2
0 , (b)

represents the periodic pattern xKR1
0 with a 7 day periodicity, and (c)

represents the periodic pattern xKR2
0 with a 1 day periodicity. Figure

(d) represents the online estimation of xφ associated with the OAR. The
black solid line and the green shaded region shows the predictions and
their ±1σ confidence regions. . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.1 Illustration of the set of control-points where each point marked in red
circle (xcp, µφ

R)i is associated with a value for the reference variable xcp

as well as the expected value of the hidden state µφR . The uncertainty
bounds for the hidden state µφR ± σφR are shown by the black error bars. 52



xvii

Figure 4.2 Illustrative example showing the process for obtaining the kernel out-
puts using the independent time series xref and the set of control-points
xcp at a given instant of time t. The control-points are marked by red
circles that cover the entire output range of xref, i.e., [−1.5, 1.5], the
independent time series xref is marked in solid blue line, the value of
the independent time series xref

t at time t is marked by the black as-
terisk, and the kernel outputs k(xref,xcp) at time t are denoted by red
crosses. The Gaussian radial basis function (RBF) is represented by
the purple solid line as defined in Equation 4.1. . . . . . . . . . . . . 53

Figure 4.3 Illustration showing (a) the front view of the dam and (b) the in-
verted pendulums placed in the dam’s central blocks 2 and 3 (CB2 and
CB3) that measures the dam’s radial displacement reproduced from the
ICOLD Benchmark [14]. . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.4 Illustration showing the available CB2 dataset along with the reservoir
water level and examples of moving averages (MA) for the residuals of
temperature (TB);(a) shows the raw CB2 data using red dotted points,
(b) presents the raw daily dataset for water level in red solid line, (c)
provides the mean-centered data showing the short-term periodic but
non-harmonic fluctuations in blue solid line along with the average
long-term trend (xL) in red solid line, and (d) presents 7 and 54 days
MA for TB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.5 Plots showing (a) the estimated values for the CB2 time series using the
state-based regression method and (b) the water level time series. The
red solid line shows the observations, the black solid line and the green
shaded region shows the predictions and their ±1σ confidence regions.
The validation and the test data are shown by the gray region; The
training data is from 2000 to 2010, the validation data is from 2010 to
2013 which is marked by the region between the two dashed lines, and
the test data is from 2013 to 2018. . . . . . . . . . . . . . . . . . . . 62



xviii

Figure 4.6 Plots showing (a) the forecast values for the CB2 time series using the
state-based regression (SR) method as well as the linear dependency
(linear) model in BDLM for the period 2010 to 2018 and (b) the
residuals collected by the AR component in each of the method. The
red solid line shows the observations, the black solid line and the green
shaded region shows the estimated values and their ±1σ confidence
regions obtained using the SR method, while the blue solid line and
the pink shaded region shows the predictions and their ±1σ confidence
regions obtained using the linear model. . . . . . . . . . . . . . . . 63

Figure 4.7 Plot showing the contribution of each of the hidden states to the CB2
predictions where (a) demonstrates the constant average value of the
time series shown by the hidden state xLL, (b) represents the pattern
obtained by adding xLL and the interdependent hidden state xD1 asso-
ciated with the SR1 component, (c) represents the pattern obtained by
adding the kernel regression hidden state representing the stationary
periodic pattern xKR

0 with the hidden states xLL and xD1 , (d) represents
total pattern captured by the addition of the hidden states xLL, xD1 , xKR

0

and the interdependent hidden state xD2 associated with the SR2 com-
ponent, and (e) represents the residuals captured by the AR component.
The red solid line shows the observations, the black solid line and the
green shaded region shows the predictions and their ±1σ confidence
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.8 Plot showing the hidden state estimation of the predicted regression
coefficient xφ

R

0 and the interdependent time series xD for the two SR
components. The red solid line shows the observations, the black solid
line and the green shaded region shows the predictions and their ±1σ
confidence regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.9 Illustration showing (a) the relative importance of each component
used for modeling CB2 time series, and (b) the extracted nonlinear
relationship between the interdependent time series xD1 and the long-
term trend xL,WL1 represented by h(xL,WL1) in blue solid line, and between
xD2 and the mean-centered water level xAR,WL2 represented by g(xAR,WL2)
in red solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



xix

Figure 4.10 Plots showing (a) the estimated values for the CB3 time series using the
state-based regression method and (b) the water level time series. The
red solid line shows the observations, the black solid line and the green
shaded region shows the predictions and their ±1σ confidence regions.
The validation and the test data are shown by the gray region; The
training data is from 2000 to 2010, the validation data is from 2010 to
2013 which is marked by the region between the two dashed lines, and
the test data is from 2013 to 2018. . . . . . . . . . . . . . . . . . . . 69

Figure 4.11 Plots showing (a) the forecast values for the CB3 time series using the
state-based regression (SR) method as well as the linear dependency
(linear) model in BDLM for the period 2010 to 2018 and (b) the
residuals collected by the AR component in each of the method. The
red solid line shows the observations, the black solid line and the green
shaded region shows the estimated values and their ±1σ confidence
regions obtained using the SR method, while the blue solid line and
the pink shaded region shows the predictions and their ±1σ confidence
regions obtained using the linear model. . . . . . . . . . . . . . . . 70

Figure 4.12 Plot showing the contribution of each of the hidden states to the CB3
predictions where (a) demonstrates the constant average value of the
time series shown by the hidden state xLL, (b) represents the pattern
obtained by adding xLL and the interdependent hidden state xD1 asso-
ciated with the SR1 component, (c) represents the pattern obtained by
adding the kernel regression hidden state representing the stationary
periodic pattern xKR

0 with the hidden states xLL and xD1 , (d) represents
total pattern captured by the addition of the hidden states xLL, xD1 , xKR

0

and the interdependent hidden state xD2 associated with the SR2 com-
ponent, and (e) represents the residuals captured by the AR component.
The red solid line shows the observations, the black solid line and the
green shaded region shows the predictions and their ±1σ confidence
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xx

Figure 4.13 Illustration showing (a) the relative importance of each component used
for modeling CB3 time series, (b) the extracted nonlinear relationship
between the interdependent time series xD1 and the long-term trend
xL,WL1 represented by h(xL,WL1) in blue solid line, and between xD2 and
the mean-centered water level xAR,WL2 represented by g(xAR,WL2) in red
solid line, and (c)-(d) shows the state-dependent regression coefficients
that vary based on the values of the reference variables xLL,WL1 and xAR,WL2. 73

Figure 5.1 Illustration showing the graphical model for the online inference of the
error variance parameter. The hidden and observed state variables are
denoted by green and violet nodes. The double arrows on the nodesX
and W 2 represent that these variables are learnt recursively over time.
For brevity, the subscript t|t− 1 is dropped from each of the variables. 80

Figure 5.2 Online estimation of the error variance term for each of the three cases
for which the different prior initializations are (a) µW 2

0|0 = 0.2, (σW 2
0|0 )2 =

0.01, (b) µW 2
0|0 = 2, (σW 2

0|0 )2 = 1, and (c) µW 2
0|0 = 20, (σW 2

0|0 )2 = 100.
The true σ2

AR value in each case is shown in red dashed line, while the
estimated values and their ±1σ uncertainty bound are shown in black
and green shaded area. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.3 Illustration showing the average normalized state estimation error squared
(NEES) and the average normalized innovation squared (NIS) for the
case study (a) with its 95% probability region given by [0.647, 1.428] is
marked by the green and red lines. . . . . . . . . . . . . . . . . . . . 84

Figure 5.4 Empirical consistency check for the variance of the error variance es-
timate, where γ is the percentage of realizations where the true value
lies within the three C.I. for the cases (a) {µW 2

0|0 = 0.2, (σW 2
0|0 )2 = 0.01},

(b) {µW 2
0|0 = 2, (σW 2

0|0 )2 = 1}, and (c) {µW 2
0|0 = 20, (σW 2

0|0 )2 = 100}. . . . . 85
Figure 5.5 The posterior mean estimate and C.I of the error variance for different

values of Q
R

for the cases (a) {µW 2
0|0 = 0.2, (σW 2

0|0 )2 = 0.01}, (b) {µW 2
0|0 =

2, (σW 2
0|0 )2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2
0|0 )2 = 100}. Note that the

x-axis is in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 5.6 Illustration showing the online estimation of both the AR parameter and

the error variance σ2
AR using the prior initialization {µW 2

0|0 = 4, (σW 2
0|0 )2 =

1}. The estimated values are shown by the black solid line and their
±1σ uncertainty bound is shown by the green shaded region. . . . . . 87



xxi

Figure 6.1 Online estimation of the error variance term (a) σ2
55 and (b) σ2

22 and the
covariance terms (c) σ23 and (d) σ45 from the full Q matrix compared to
their true values marked by the dashed red line. The estimated values
are shown by the black solid line and their ±1σ uncertainty bound is
shown using the green shaded region. . . . . . . . . . . . . . . . . . . 100

Figure 6.2 Plots showing the displacement datasets in all three directions collected
by two sensors from a concrete dam in Canada. . . . . . . . . . . . . 102

Figure 6.3 Plots showing the time-step size for the displacement datasets (a) yD1

and (b) yD2 . The y-axis showing the time-step size is plotted in log-scale.102
Figure 6.4 Online estimation of the error variance and covariance terms in the full

Q matrix for both datasets yD1 and yD2 ; where (a) σ2
33,D1

, (b) σ12,D1 ,
and (c) σ23,D1 , (d) σ2

11,D2
, (e) σ12,D2 , and (f) σ13,D2 . The estimated values

are shown by the black solid line and their ±1σ uncertainty bound is
shown using the green shaded region. . . . . . . . . . . . . . . . . . . 104

Figure 7.1 Graphical model representing the relationship between the random
variables V , V 2, and V 2, denoted by the green nodes. The causal rela-
tionship between the nodes V 2 and V 2 is shown by the directed arrow
as demonstrated by Equation 7.4. The undirected solid line between
the nodes V 2 and V represents the one-to-one relationship between
their moments as defined by Equations 7.1 & 7.2. . . . . . . . . . . . 107

Figure 7.2 Network architecture for TAGI having a two-headed output layer for
obtaining the random variables ZO and V 2 as a function of the input
covariates x. The output unit for V 2 has an additional set of parame-
ters θ(L)

V 2 connected to the last hidden layer L as shown in red. Also, it
shows the extended graphical model representing the causal relation-
ship between the random variables Y , ZO, and V , as per the observation
model, along with the graphical model shown in Figure 7.1. . . . . . 108



xxii

Figure 7.3 Application of TAGI-V to a toy problem having a heteroscedastic error
variance modeled using σ2

V = 0.45 · (x+0.5)2. The training data points
are plotted in magenta, the true function y = −(x+ 0.5) · sin(3πx) + v,
and their ±1σ confidence regions are shown by the red solid line and
red shaded region, and the model predictions and their ±1σ confidence
regions are shown by the black solid line and green shaded area. Figure
(a) shows the predictions using TAGI-V and (b) shows the learning
curve providing the evolution of the test log-likelihood as a function of
the number of epochs. Figures (c)-(e) show the predictions using the
original version of TAGI [7], a deterministic neural network [15], and
DVI [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 7.4 Application of TAGI-V on three toy problems where the true het-
eroscedastic error variance for each case is modeled using (a) σ2

V = 0.45·
(x+0.5)2, (b) σ2

V = 3 · x4 + 0.02, and (c) σ2
V = ((1 + x) · sin(πx))2 + 0.02.

For each case, the top figure illustrates the true error variance using
the cyan solid line, whereas the mean estimate of the variance is shown
by the black solid line along with their ±1σ confidence regions in green
shaded area. The bottom figures presents the training data points in
magenta, the true observation function y = 2.5 · x3 + v and the ±1σ
confidence regions using the red solid line and red shaded area, and the
model predictions and their ±1σ confidence regions by the black solid
line and green shaded area. A total of 104 training points are generated
in the range [−1, 1] and the same network setup is used as described
for the toy problem in Figure 7.3. . . . . . . . . . . . . . . . . . . . . 112

Figure 7.5 Illustration showing the estimated error variance in three different cases
where the number of training points are (a) D = 102, (b) D = 103, and
(c) D = 104. The true error variance is shown using the cyan solid line,
the mean estimate of the variance using the black solid line and their
±1σ confidence regions in green shaded area. . . . . . . . . . . . . . . 113



xxiii

Figure 7.6 Illustration showing the limitation of TAGI-V where it does not ac-
count for the epistemic uncertainty of the error variance while comput-
ing the predictive uncertainty of the model output. The top plot in (a)
presents the original estimations of the error variance and the bottom
plot shows the model predictions. The top plot in (b) shows the same
mean estimate for the error variance while its epistemic uncertainty is
artificially increased. As in (a), the bottom plot in (b) shows the pre-
dictive uncertainty associated with the modified epistemic uncertainty
which remains unchanged. . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 7.7 Comparison for the test log-likelihood and test RMSE for the datasets
a) Boston, b) Kin8nm, and c) Power under the epoch setting. For
each subset of figures, the top and bottom graphs shows the learning
curves for test log-likelihood and test RMSE respectively for a total
of 100 epochs. The horizontal axis shows the number of epochs and
the vertical axis shows the test log-likelihood (top figure) or the test
RMSE (bottom figure). The colored line plots are: TAGI-V (red solid
line), PBP (blue solid line) [10], MC-dropout (green solid line) [8],
DVI (purple solid line) [13], deterministic NN (yellow solid line) [15],
Ensemble (black solid line) [9], and TAGI (brown dotted line) [7]. . . 115

Figure 7.8 Comparison for the test log-likelihood and test RMSE for the datasets
a) Boston, b) Kin8nm, and c) Power under the time setting. The
horizontal axis represents training time (in sec) in log scale (base 10)
and the vertical axis represents the test log-likelihood (top figure) or
the test RMSE (bottom figure) in linear scale. The colored line plots
are: TAGI-V (red solid line), PBP (blue solid line) [10], MC-dropout
(green solid line) [8], DVI (purple solid line) [13], deterministic NN
(yellow solid line) [15], Ensembles (black solid line) [9], TAGI (brown
dotted line) [7], TAGI-V 2L (red dotted line) that represents a TAGI-
V network of two layers and 100 hidden nodes, PBP-MV (cyan solid
line) [11], and VMG (magenta solid line) [12]. The learning curves for
PBP-MV and VMG are reproduced directly from the original article
[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



xxiv

Figure Q.1 Online estimation of the error variance term and the covariance terms
from the full Q matrix compared to their true values marked by the
dashed red line. The estimated values are shown by the black solid
line and their ±1σ uncertainty bound is shown using the green shaded
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Figure Q.2 Online estimation of the error variance and covariance terms in the full
Q matrix for both datasets yD1 and yD2 ; where (a) σ2

11,D1
, (b) σ2

22,D1
,

and (c) σ13,D1 , (d) σ2
22,D2

, (e) σ2
33,D2

, and (f) σ23,D2 . The estimated values
are shown by the black solid line and their ±1σ uncertainty bound is
shown using the green shaded region. . . . . . . . . . . . . . . . . . . 166

Figure S.1 The learning curves for test log-likelihood showing the comparative
performance between the original and modified He’s approach for pa-
rameter initialization. The black and red solid line represents the
performance using the original and modified He’s approach, respec-
tively. In the original He’s approach [16], the scaling factors are set to
α = β = 1, but for the modified He’s approach the scaling factors are
tuned for each dataset using a grid-search procedure over possible set
of hyperparameter values [15]. . . . . . . . . . . . . . . . . . . . . . . 170

Figure S.2 The learning curves for test RMSE showing the performance using the
original and modified He’s approach for parameter initialization. The
black and red solid line represents the performance using the original
and modified He’s approach, respectively. In the original He’s approach
[16], the scaling factors are set to α = β = 1, but for the modified He’s
approach, the scaling factors are tuned for each dataset using a grid-
search procedure over possible set of hyperparameter values [15]. . . . 171

Figure T.1 The learning curves for TAGI-V under epoch setting showing the test
log-likelihood for the datasets Energy, Kin8nm, Naval, Power, Protein,
and Yacht. The optimal epoch is highlighted by the black dotted line
found using early-stopping procedure. . . . . . . . . . . . . . . . . . . 172



xxv

Figure U.1 Learning curves showing the test log-likelihood under the epoch setting.
The horizontal axis shows the number of epochs and the vertical axis
shows the test loglikelihood. The colored line plots are : TAGI-V
(red solid line), PBP (blue solid line) [10], MC-dropout (green solid
line) [8], DVI (purple solid line) [13], deterministic NN (yellow solid
line) [15], Ensemble (black solid line) [9], TAGI (brown dotted line) [7],
and TAGI-V 2L (red dotted line) that represents a TAGI-V network
of two layers and 100 hidden nodes. . . . . . . . . . . . . . . . . . . . 173

Figure U.2 Learning curves showing the test RMSE under the epoch setting. The
horizontal axis shows the number of epochs and the vertical axis shows
the test RMSE. The colored line plots are : TAGI-V (red solid line),
PBP (blue solid line) [10], MC-dropout (green solid line) [8], DVI (pur-
ple solid line) [13], deterministic NN (yellow solid line) [15], Ensemble
(black solid line) [9], TAGI (brown dotted line) [7], and TAGI-V 2L
(red dotted line) that represents a TAGI-V network of two layers and
100 hidden nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure U.3 Learning curves showing the test log-likelihood under the time setting.
The horizontal axis represents training time (in s.) in log scale (base
10) and the vertical axis represents the test log-likelihood in linear
scale. The colored line plots are : TAGI-V (red solid line), PBP (blue
solid line) [10], MC-dropout (green solid line) [8], DVI (purple solid
line) [13], deterministic NN (yellow solid line) [15], Ensembles (black
solid line) [9], TAGI (brown dotted line) [7], TAGI-V 2L (red dotted
line) that represents a TAGI-V network of two layers and 100 hidden
nodes, PBP-MV (cyan solid line) [11], and VMG (magenta solid line)
[12]. The learning curves for PBP-MV and VMG are obtained directly
from the original article by Sun et al. [11]. . . . . . . . . . . . . . . . 175



xxvi

Figure U.4 Learning curves showing the test RMSE under the time setting. The
horizontal axis represents training time (in s.) in log scale (base 10)
and the vertical axis represents the test RMSE in linear scale. The
colored line plots are : TAGI-V (red solid line), PBP (blue solid line)
[10], MC-dropout (green solid line) [8], DVI (purple solid line) [13],
deterministic NN (yellow solid line) [15], Ensembles (black solid line)
[9], TAGI (brown dotted line) [7], TAGI-V 2L (red dotted line) that
represents a TAGI-V network of two layers and 100 hidden nodes, PBP-
MV (cyan solid line) [11], and VMG (magenta solid line) [12]. The
learning curves for PBP-MV and VMG are obtained directly from the
original article by Sun et al., 2017 [11]. . . . . . . . . . . . . . . . . . 176



xxvii

LIST OF SYMBOLS AND ACRONYMS

In the thesis, I use lower case slanted letters for deterministic variables, upper case slanted
letters for random variables, slanted lower case with bold font to denote vectors, and upright
upper case with bold font for matrices. The typewriter style is used either for specific names
or to represent the number of variables in a set, vector, or matrix.

Symbols

A Transition matrix
AR Autoregressive component
a

(j)
i ith activation unit in jth hidden layer

A Number of hidden nodes
B Batch size
C Observation matrix
cov Covariance operator
D Total number of observations
diag Create diagonal matrix or get diagonal elements of matrix
D Set of observations
DT Training set
DV Validation set
DKR Double kernel regression
E Expectation operator
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CHAPTER 1 Introduction

1.1 Motivation

Engineering applications often rely on models to represent physical phenomena. In civil en-
gineering and more specifically in the context of structural health monitoring, data-driven
models are developed to assess the deterioration of infrastructures over time such that abnor-
mal structural behavior can be identified [17]. This is carried out by modeling the different
structural responses such as displacements, modal frequencies, stresses, and strains, etc. as a
proxy for the structure’s health [18]. These models involve parameters that define the model
structure used to represent the phenomenon. In general, the basic setup to learn these model
parameters relies on optimization methods that only provide a single optimal value, known
as point estimates. As a result, we also obtain point estimates for the model predictions.
Making informed decisions requires models that are probabilistic in nature, which provide
not only point estimates but also uncertainties associated with the model parameters.

Bayesian inference provides the mathematical framework for obtaining the conditional prob-
ability of a random variable given observation [19]. For continuous model parameters, such
a framework is used for evaluating their posterior probability density function (PDF) which
allows us to quantify two forms of uncertainty, i.e., epistemic and aleatory [19, 20]. The
uncertainty associated with the model parameters that is reducible as more information is
collected is referred to as epistemic uncertainty. For an identifiable problem [21], where an
infinite amount of independent training data is available, the parameters’ posterior PDF ap-
proaches a Dirac delta distribution such that the function is zero everywhere except at the
true value. In practical cases where only a limited amount of data is available, epistemic
uncertainty remain over the parameters.

Moreover, in complex practical applications, a discrepancy always remains between the model
predictions and the reality. This may arise from misrepresentation of the physical phe-
nomenon as a result of a lack of understanding or availability of explanatory variables that
can fully describe a phenomenon. This form of uncertainty is referred to as aleatory; in the
context of a given model structure, it cannot be reduced regardless of the amount of training
data available as the model itself is inadequate [22]. Furthermore, the aleatory uncertainty
may vary as a function of the input values for which missing explanatory variables is a pri-
mary cause. Hence, it is important to quantify both epistemic and aleatory uncertainties
in order to understand whether the model’s uncertainty is due to a lack of data or model
inadequacy.
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State-space models and Bayesian neural networks are key probabilistic models used for per-
forming time series forecasting and regression tasks, respectively. State-space models describe
dynamic systems through unobserved state variables referred to as hidden states that are in-
ferred from imperfect observations [20]. Bayesian neural networks provide a probabilistic
approach to the traditional neural networks with regard to quantifying uncertainty over its
parameters, i.e., the weights and biases using the Bayesian inference framework. Both these
approaches involve unknown parameters for not only modeling the phenomenon but also for
quantifying the model’s epistemic and aleatory uncertainties.

For instance, in state-space models, it is computationally cheap to estimate the expected
values and the covariance matrix that are quantifying the mean and the epistemic uncer-
tainties for the hidden state variables because we can rely on an analytical formulation for
performing Bayesian inference. In contrast, obtaining optimal estimates for the variance pa-
rameters in the process (Q) and observation (R) error covariance matrices that quantifies
the model’s aleatory uncertainties is typically the most computationally demanding task in
the state estimation procedure [20]. Even though in many situations the matrix R can be
considered to be known from the measuring instrument specifications, it remains a challenge
to develop a computationally efficient method which is able to perform closed-form online
estimation of the matrix Q for multiple time series. In Bayesian neural networks, analytical
parameter inference can be carried out using the tractable approximate Gaussian inference
(TAGI), but it is restricted to modeling homoscedastic aleatory uncertainty quantified by a
constant observation error variance across the input covariate-domain. In practical regression
tasks, it is necessary to quantify the heteroscedastic aleatory uncertainty as a function of the
input covariates.

Furthermore, additional parameters that exist in the transition and observation equations of
state-space models can be inferred as hidden states using a multiplicative structure. However,
such an analytical formulation does not exist for multiplicative state-space models that would
allow closed-form inference of the model parameters as hidden states. A closed-form inference
is only possible with Bayesian dynamic linear models (BDLM) which are a type of state-space
models having linear transition and observation equations, and a Gaussian assumption for
the hidden states’ PDF. The Kalman filter is employed to obtain the closed-form posterior
moments for the hidden states. For multiplicative state-space models, we have to rely on
nonlinear filtering methods such as the cubature Kalman filter and particle filters [20, 23]
that use sampling-based approaches which are computationally expensive compared to the
Kalman filter. Such a closed-form analytically tractable formulation for the multiplicative
state-space model will not only allow model parameters to be treated as hidden states but
will also present the possibility of creating new generic components involving the product of
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any two hidden states representing specific patterns in the data.

Additionally, the existing BDLM framework only allows for modeling linear relationships
between the independent and the dependent time series described by a constant regression
coefficient [21]. However, it is not possible to model a nonlinear relationship between two time
series in such a way that the regression coefficient is not a constant parameter, but depends
on the current value of the independent time series. To achieve this, we need a framework
that allow performing closed-form inference for the product of a regression coefficient with
the independent hidden state variable to obtain the interdependent state variable. Hence,
a key limitation to be addressed is to develop the mathematical formulation for obtaining
closed-form moments for the product of any two hidden states.

In practice, estimating the parameters defining the dynamic system in state-space models
and the variance parameters quantifying the aleatory uncertainties in both state-space models
and Bayesian neural networks can be order of magnitude more computationally demanding
than estimating the expected values and the parameters quantifying epistemic uncertainties.
The challenge associated with estimating these parameters prevents existing models from
being scaled up to be used in large-scale practical engineering applications.

1.2 Research Objectives

This thesis aims at developing analytically tractable Bayesian methods for parameter in-
ference in order to improve the performance and scalability of probabilistic models in the
context of engineering applications. The core objectives of this thesis are:

− Develop an analytical method to handle multiplicative state-space models.

− Formulate an analytical Bayesian inference method that will enable performing closed-
form online estimation of the process error covariance matrix Q for multiple time series.

− Derive a framework to analytically model the heteroscedastic aleatory uncertainty in
Bayesian neural networks.

1.3 Thesis Outline

The content of this thesis is organized as follows: Chapter 2 presents a literature review
on parameter inference methods for two key probabilistic models: the state-space models
and Bayesian neural networks. Chapter 3 introduces an analytical framework for handling
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multiplicative state-space models by taking advantage of the Gaussian multiplicative approx-
imation (GMA) that explicitly provides closed-form equations for moment computation for
the product of two hidden states. Chapter 4 describes a state-based regression method that
builds upon GMA to model the nonlinear dependency between two time series enabling online
estimation of the state-dependent regression coefficient as well as the interdependent time
series. Chapter 5 presents an analytical Bayesian inference method called the approximate
Gaussian variance inference (AGVI) which enables performing closed-form online estimation
of the univariate process error variance term in the context of state-space models applied to
time series. Chapter 6 presents the extension of the AGVI method to infer multivariate pro-
cess error variance parameters in the full Q matrix for multiple time series and ensures that
the Q matrix is positive semi-definite at any instant of time. Chapter 7 provides a framework
to analytically model the heteroscedastic aleatory uncertainty in Bayesian neural networks
for regression tasks. Finally, Chapter 8 provides the thesis conclusions, its limitations, and
future research directions.

1.4 Co-Authored Papers

The list of co-authored papers that are part of this thesis is:

− Deka, B., Ha Nguyen, L., Amiri, S., & Goulet, J. A. (2022). The Gaussian multiplica-
tive approximation for state-space models. Structural Control and Health Monitoring,
29(3), e2904.

− Deka, B., Vuong, V. D., Goulet, J. A., Côté, P. & Miquel, B. (Submitted, 2022).
Dam Behavior Prediction Using an Ensemble of Bayesian Dynamic Linear Model and
Bayesian LSTM Networks. 16th International Benchmark Workshop on Numerical
Analysis of Dams, International Commission on Large Dams, Ljubljana, Slovenia.
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CHAPTER 2 Literature Review

2.1 Introduction

In engineering, we use parametric models to represent physical phenomena. In the most
basic setup, these model parameters are estimated using optimization methods that provide
a single optimal value i.e., a point estimate for each parameter. However, in order to express
the uncertainty associated with our predictions, we need methods that can quantify the
uncertainties associated with these model parameters.

Bayesian inference provides the mathematical framework for quantifying the posterior distri-
bution of the parameters given the data D = {xi,yi}D

i=1, where D refers to the total number
of data points, and xi ∈ RX are the input features, and yi ∈ RY are the observations corre-
sponding to the ith data point. With Bayes rule, we can obtain the conditional probability
density f(·|·) for any two continuous random variables x and y such that

f(x|y) = f(y|x) · f(x)
f(y) .

For continuous model parameters (θ), we can use the Bayes rule to infer their posterior
probability density function (PDF) such that

f(θ|D) = f(D|θ) · f(θ)
f(D) ,

where the numerator f(D|θ) · f(θ) denotes the joint PDF obtained from the product of the
likelihood of data given the parameters f(D|θ), and the prior PDF of the model parameters
f(θ) and the denominator f(D) =

∫
f(D|θ) · f(θ)dθ denotes the marginal likelihood, which

is also referred to as the evidence. Using the posterior PDF f(θ|D), we can compute the
posterior predictive PDF f(y|x,D) for the output random variables Y given the input values
x by marginalizing the joint PDF f(y,θ|x,D) over all possible parameter values so that

f(y|x,D) =
∫
f(y,θ|x,D)dθ =

∫
f(y|x,θ) · f(θ|D)dθ,

where f(y|x,θ) is the model that generates the outputs y given the inputs x and the pa-
rameters θ.

For an identifiable problem [21], where we have access to an infinite amount, i.e., D→∞, of
independent data, the parameters’ posterior PDF approaches a Dirac delta function shown
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by f(θ|D) ≈ δ(θ − θ̌) such that the function is zero everywhere except at the true value θ̌.
This is because we have reached a point where we have an exact knowledge of our model
parameters and as a result, we would also obtain point estimates for the model outputs.
This type of uncertainty that is reducible by collecting more data is known as epistemic.
In complex practical applications, regardless of how much data we collect, a discrepancy
typically remains between the predictions for our model and the real phenomenon that we
are trying to model. This often happens because we do not have a complete understanding
of all the possible explanatory variables that describe a physical phenomenon. The type of
uncertainty that arises because of model inadequacy is typically referred to as aleatory. Figure
2.1 shows the distinction between the epistemic and the aleatory uncertainty associated with
the model predictions represented by the green and the blue regions. As the number of
observation increases from D = 20 to 100, we observe that the epistemic uncertainty in
green shrinks to a negligible value while the aleatory one remains constant. An aleatory
uncertainty that is assumed to be constant over the domain of the explanatory variables is
known as homoscedastic [24].
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(a) D = 20
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x

y

(b) D = 100

yt g(x) = x · sin(x) µ aleatory epistemic

Figure 2.1 Visual interpretation showing the epistemic and the aleatory uncertainty associ-
ated with the model predictions represented by the green and blue regions respectively. The
model predictions are shown in black where the true function g(x) = x · sin(x) is shown in
red. As the number of observation increases from a) D = 20 to b) D = 100, we observe that
the epistemic uncertainty shrinks to a negligible value while the aleatory remains constant.

In most methods, the aleatory uncertainty is modeled as being homoscedastic. However, in
real-world problems this assumption does not hold and we often observe that the aleatory
uncertainty varies as a function of the input values. For example, Figure 2.2a shows a two-
dimensional plot where we consider two input variables x1 and x2 to generate data using a
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two-dimensional deterministic function given by g(x1, x2). If we consider that one of the input
variable is unavailable, let’s say x2, and rotate the plot to show the data only with respect to
x1 as shown by Figure 2.2b, we observe that the uncertainty associated with the data varies
as we move from −1 to 1 within the domain of x1 as shown by Figure 2.2c. This type of
aleatory uncertainty that varies with the input values is known as heteroscedastic, for which
a primary cause in practical applications is the lack of access to some of the explanatory
variables.
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(c) 1-D representation

Figure 2.2 Heteroscedastic aleatory uncertainty as a result of missing explanatory variables.
Figure a) shows the 2-D plot generated using the function g(x1, x2), b) shows the rotated
view of the 2-D plot in (a) to show the surface plot with respect to the x1 axis, and c) shows
the varying uncertainty of the data as we move from −1 to 1 within the domain of x1.

For decision making, it is important to know whether the uncertainty is due to a limited
amount of data or because of model inadequacy. Therefore, we need probabilistic models
capable of producing reliable predictions and robust estimates for both the epistemic and
aleatory uncertainties. The subsequent sections will outline two key probabilistic models,
namely the state-space models and the Bayesian neural networks used for forecasting time
series and regression tasks in engineering problems.

2.2 State-Space Models

State-space models (SSM) [20, 21, 25] are probabilistic models used for modeling dynamic
systems that are indirectly observed through imperfect data [20]. Applications of such mod-
els can be found in fields such as navigation, aerospace, telecommunication and control-
engineering. In civil engineering, SSM find their applications in the monitoring of structural
degradation over time [21, 26, 27]. For instance, by observing a structure’s condition xt,
we can obtain two new states: the degradation speed ẋt and the acceleration ẍt, that are
indirectly observed [27].
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To formulate a SSM, the first step is to define the dynamic model’s structure through un-
observed hidden states xt = [x1, x2, · · · , xX]ᵀt , ∈ RX, and the second step is to define the
relationship between these hidden states xt and the observations yt = [y1, y2, · · · , yY]ᵀt , ∈ RY

at a time step t. The dynamic model is defined using the Markov hypothesis according to
which the hidden states xt are only dependent on xt−1 considering that all the information
from the past time steps {0, 1, . . . t − 1} are contained in xt−1. Using the Markov hypoth-
esis, we can define the transition model f(xt|xt−1) that relates the hidden states xt and
xt−1 such that f(xt|x1:t−1) = f(xt|xt−1), where we use a short-hand notation 1 : t − 1 for
{1, 2, · · · , t− 1}. The relationship between the hidden states xt and the observations yt are
modeled using an observation model given by f(yt|xt). The generic form of a SSM can be
summarized as follows

xt = g(xt−1,wt),
yt = h(xt,vt),

(2.1)

where xt is the hidden state vector, yt is the observation vector, g(·) and h(·) are the lin-
ear/nonlinear functions for the transition and the observation equation, wt is the process
error, and vt is the observation error. The main purpose of using SSMs is to perform hidden
state estimation where using the prior knowledge of the hidden states f(xt−1|y1:t−1), the
transition model f(xt|xt−1), and the observation model f(yt|xt), and the observation yt, we
can employ Bayesian inference to obtain the posterior PDF f(xt|y1:t) such that

f(xt|y1:t) = f(yt|xt) · f(xt|y1:t−1)
f(yt|y1:t−1) , (2.2)

where the prior predictive PDF f(xt|y1:t−1) =
∫
f(xt|xt−1) · f(xt−1|y1:t−1)dxt−1 and the

evidence f(yt|y1:t−1) =
∫
f(yt|xt) · f(xt|y1:t−1)dxt. SSMs can be linear or nonlinear based

on the functions g and h describing the transition and observation equations. For nonlinear
models, the inference step described by the Equation 2.2 might be either intractable or
computationally expensive [19,20]. The following section will describe the Bayesian dynamic
linear models (BDLM) which are a special type of SSM employing linear transition and
observation equations.
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2.2.1 Bayesian Dynamic Linear Models

BDLM employs linear dynamic models together with additive errors such that the transition
and the observation equations are

xt = Axt−1 +wt, w : W ∼ N (0,Q),

yt = Cxt + vt, v : V ∼ N (0,R),

where A is the transition matrix, C is the observation matrix, Q is the process error covari-
ance matrix, and R is the observation error covariance matrix. BDLM may comprise one or
more generic components where each models a specific pattern having its own linear dynamic
structure. There are five main components namely the local level (LL), the local trend (LT),
the local acceleration (LA), the periodic (S), and the autoregressive (AR). In the context of
structural health monitoring, the local level, the local trend, and the local acceleration com-
ponents are used to model the baseline of any time series without the external effects such
as temperature or water level. These components capture the irreversible pattern which can
be used for anomaly detection [28]. The periodic or the kernel regression (KR) components
are used to identify any external effects having a periodic pattern that can be harmonic or
non-harmonic in nature [29]. The autoregressive component is used to capture the residuals
term that is not captured by the other components. Several components can be assembled to
model a wide range of patterns. Figure 2.3 shows such an example where the time series yt is
decomposed into three specific patterns using a local level, a periodic, and an autoregressive
component. For a full description of the mathematical formulation and application of the
generic components, the reader can consult the work of Goulet [18] and West [30].

For linear-Gaussian systems, exact inference can be carried out for the posterior PDF of the
hidden states using a recursive process called filtering. The Bayesian filtering techniques with
Gaussian assumption for the hidden states’ PDF comes under a special class known as the
Gaussian filters [20, 31,32].

2.2.2 Gaussian Filters

In the Gaussian filters, the prior PDF f(xt−1|y1:t−1) of the hidden states and the likelihood
f(yt|xt) are assumed to be Gaussian which makes the posterior f(xt|y1:t) of the hidden states
also Gaussian [32]. When the dynamic model is linear, the process as well as the observation
errors are white, i.e., uncorrelated random variables having a zero mean and a finite variance,
and the errors are additive, i.e., they are added to the state or the observation variable, then
the Gaussian filter is equivalent to the filtering technique known as the Kalman filter [33].
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Figure 2.3 An example showing the generic components in BDLM for time series modeling.
The Figure a) shows the time series yt in red, (b) the local level, (c) the periodic, and (d)
the autoregressive component in black.

Kalman Filter

The Kalman filter is a recursive filtering method that provides closed-form solutions for
the first two moments of the hidden states in a linear-Gaussian dynamic system. Hence, the
Kalman Filter reduces to calculating the mean vector and the covariance matrices recursively
to get the exact Gaussian posterior PDF for the hidden states. The posterior mean vector
and the covariance matrix at time t are obtained using a two-step procedure; the prediction
step and the update step. In the prediction step, we compute the moments for the prior
predictive PDF of Xt|y1:t−1 ≡Xt|t−1 ∼ N (xt;µt|t−1,Σt|t−1) given by

E[Xt|t−1] ≡ µt|t−1 = Aµt−1|t−1,

cov(Xt|t−1) ≡ Σt|t−1 = AΣt−1|t−1Aᵀ + Q,

where µt−1|t−1 and Σt−1|t−1 are the prior moments of Xt−1|y1:t−1 ≡ Xt−1|t−1 obtained using
all the observations y1:t−1 up to the time step t − 1. Given that the observations at time t
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are available, we can obtain the posterior moments of Xt|t using the update step shown by

f(xt|y1:t) = N (xt;µt|t,Σt|t),
µt|t = µt|t−1 + Ktrt,

Σt|t = (I−KtC)Σt|t−1,

rt = yt − ŷt,
ŷt = Cµt|t−1,

Kt = Σt|t−1CᵀG−1
t ,

Gt = CΣt|t−1Cᵀ + R,

where µt|t and Σt|t are the posterior mean vector and covariance matrix for Xt|t, rt is the
innovation vector, I is the identity matrix, Kt is the Kalman gain matrix, and Gt is the
innovation covariance matrix. The Kalman filter method is carried out recursively from time
step t− 1 to t as new observations are collected and can be summarized as follows

(µt|t,Σt|t,Lt) = Kalman filter(µt−1|t−1,Σt−1|t−1,yt,A,Q,C,R), (2.3)

where Lt is the log-likelihood obtained for the observations yt to be used for the parameter
estimation that will be discussed in Section 2.3. Hence, using the prior knowledge of the
hidden states at t − 1, the A,Q,C, and R matrices that define the linear dynamic system,
and the observations y1:t, we obtain the posterior knowledge for the hidden states at time t.

The Kalman filter is an exact state estimator for linear dynamic systems. However, in many
real applications, the linear assumption may not hold. In the case of nonlinear dynamic
systems, closed-form solutions are not available and require approximations for the posterior
PDF leading to sub-optimal solutions [31]. There are two main approaches in the literature
for performing this approximation:

a. Local approach: In this approach, the posterior PDF is assumed to have a known
type and is computed using numerical approximations [32]. This approximation can
be performed either through linearisation of the nonlinear function, e.g., the extended
Kalman filter (EKF) [34] or by approximating the mean vector and the covariance
matrix of the posterior PDF directly using weighted samples, e.g., the unscented Kalman
filter (UKF) [35] and the cubature Kalman filter (CKF) [32].

b. Global approach: In this approach, there is no assumption made for the posterior PDF’s
type. The particle filter is one such example where the posterior PDF can have any
type and is approximated usingMonte Carlo sampling methods [36]. This approach has
the limitation of having a high computational cost associated with the sampling and is
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inefficient for online state estimation in comparison with the exact Kalman filter [31].

The methods belonging to the local approach are discussed further owing to their advantages
of being accurate, analytically tractable as well as having a low computational cost as com-
pared to the global approaches. The aforementioned techniques approximate the following
moment integral for the expectation of X,

I =
∫ ∞
−∞

g(x) · f(x)dx,

where g(x) is the nonlinear dynamic model, and f(x) is a known PDF for the states which
can also be Gaussian. The numerical approximation reduces the integral to the form,

I ≈
X∑
i=1

wi · g(xi),

where xi are the samples, X is the number of samples, and wi are the associated weights.
In the subsequent sections, two of the main Gaussian filters used for nonlinear functions,
namely the UKF and CKF, are reviewed.

Unscented Kalman Filter

The unscented Kalman filter (UKF) is a nonlinear filtering method that approximates the
posterior PDF using a set of samples called the sigma points and an unscented transform (UT)
[37] method for the associated weights [35]. The sigma points are generated symmetrically
around the prior mean vector which has a considerably higher weight than the other points.
These sigma points are propagated through the nonlinear model to estimate the posterior
PDF’s mean vector and covariance matrix which is accurate up to third order for the mean
and up to first order for the covariance associated with any polynomial function [20,35]. The
UKF is derivative-free and also a more accurate nonlinear filter than the EKF as it is not
based on a linear approximation at a single point but uses a set of points to approximate the
nonlinear function [20,31].

The formulation of the UKF is described by considering a state vector x of size X that
is transformed by a nonlinear function g(·) such that f(g(x)) = N (g(x);µ,Σ) follows a
Gaussian PDF having the mean vector µ and the covariance matrix Σ. Note that the
UKF is not only restricted to the Gaussian case as it is applicable for any symmetric PDF.
A sigma matrix of 2X + 1 sigma point vectors, X = [X 0 X i X X+i]ᵀ, and their weights,
w = [w0 wi wX+i]ᵀ, are chosen such that the first two moments associated with the PDF
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f(g(x)) are matched accurately as shown by

µ =
2X∑
i=0

wiXi, (2.4)

Σ =
2X∑
i=0

wi(Xi − µ)(Xi − µ)ᵀ.

The sigma vectors forming the sigma matrix X and their corresponding weights w are de-
scribed by

X 0 = µ, w0 = κ
X+κ ,

X i = µ+ (
√

(X + κ)Σ)i, wi = 1
2(X+κ) ,

X X+i = µ− (
√

(X + κ)Σ)i, wX+i = 1
2(X+κ) ,

where i = 1, 2, . . . , X, (
√

(X + κ)Σ)i is the ith column of the matrix
√

(X + κ)Σ, and the
parameter κ = (3− X) is the scaling factor that controls the distribution of the sigma points
around the prior mean vector µ. Using the sigma point sets and the weights, the UKF
approximates the posterior PDF f(xt|y1:t) ≈ N (xt;µt|t,Σt|t) where the mean vector and the
covariance matrix are obtained using a two-step procedure as follows: In the prediction step,
the sigma point set X t−1|t−1 is propagated through the nonlinear transition function g(·) to
obtain the transformed state vector X t|t−1. Using this transformed vector and the associated
weights, we obtain the predictive moments µt|t−1 and Σt|t−1. Similarly, the transformed
state vector X t|t−1 is propagated through the nonlinear observation function h(·) to obtain
the predicted observations ŷt. In the update step, we first compute the innovation covariance
matrix ΣY ,t|t−1 and the cross-covariance ΣXY ,t|t−1 using the transformed state vector X t|t−1

and the predicted observations ŷt using which we obtain the posterior moments for f(xt|y1:t).
Both steps for the UKF algorithm are summarized as follows:

Prediction step

X t−1|t−1 = [µ X i X n+i]t−1|t−1, Sigma-point set
X t|t−1 = g(X t−1|t−1), Transformed state vector
µt|t−1 = ∑2X

i=0wiX i,t|t−1, Prior mean vector
Σt|t−1 = ∑2X

i=0wi[X i,t|t−1 − µt|t−1][X i,t|t−1 − µt|t−1]ᵀ + Q, Prior covariance matrix
Y t|t−1 = h(X t|t−1), Transformed observations
ŷt = ∑2X

i=0wiYi,t|t−1, Predicted observations
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Update step

ΣY ,t|t−1 = ∑2X
i=0wi[Yi,t|t−1 − ŷt][Yi,t|t−1 − ŷt]ᵀ + R, Innovation covariance

ΣXY ,t|t−1 = ∑2X
i=0wi[Xi,t|t−1 − µt|t−1][Yi,t|t−1 − ŷt]ᵀ, Cross-covariance

Kt = ΣXY ,t|t−1Σ−1
Y ,t|t−1, Kalman gain

µt|t = µt|t−1 + Kt(yt − ŷt), Posterior mean
Σt|t = Σt|t−1 −KtΣY ,t|t−1Kᵀ

t , Posterior covariance

where ΣY ,t|t−1 ≡ cov(Yt|y1:t−1) and ΣXY ,t|t−1 ≡ cov(Xt,Yt|y1:t−1).

Even though the UKF is better than the EKF considering both accuracy and efficiency, it
can suffer from instabilities and numerical inaccuracies [31, 32]. The covariance matrix may
result in non-positive semi-definite (non-PSD) cases owing to round-off errors introduced by
sensitive numerical operations such as matrix square rooting, matrix inversion and covariance
update through matrix substraction. Hence, the square-root version of the UKF is often
necessary to prevent numerical ill-conditioning due to arithmetic imprecision even though
the computational complexity increases [32]. However, a stable version of the square-root
UKF is still not guaranteed owing to the presence of negatively weighted samples to update
the posterior covariance matrix which can still result in non-PSD matrices. The cubature
Kalman filter is deemed to be more accurate and stable compared to the UKF which is
reviewed in the next section.

Cubature Kalman Filter

The cubature Kalman filter (CKF) is another nonlinear filtering method that approximates
the multivariate moment integral for f(x) = N (x;µ,Σ) using a third-order spherical cuba-
ture rule [32] shown by

∫
g(x) · f(x)dx = 1

2X

2X∑
i=1

g(µ+
√

Σ ξi),

where 2X cubature points are generated by

ξi =


√

Xei, i = 1, 2, · · · , X,
−
√

Xei−X, i = X + 1, X + 2, · · · , 2X,

where X is the size of the hidden state vector and ei is the ith column of the identity matrix IX.
Each cubature point is uniformly weighted by wi = 1

2X
. Also, the weights and the samples

of the cubature point set {wi, ξi} are only dependent on the size of the state vector and are
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independent of the nonlinear function g(x). Assuming a Gaussian PDF for the state vector
x at time t− 1 such that f(xt−1|y1:t−1) = N (xt−1;µt−1|t−1,Σt−1|t−1), the prediction and the
update steps in the CKF algorithm are given as follows

Prediction step

Σt−1|t−1 = St−1|t−1S
ᵀ
t−1|t−1, Factorize

X i,t|t−1 = µt−1|t−1 + St−1|t−1ξi, Cubature-point set
X t|t−1 = g(X t−1|t−1), Transformed state vector
µt|t−1 = 1

2X
∑2X
i=1X t|t−1, Prior mean

Σt|t−1 = 1
2X
∑2X
i=1X i,t|t−1X ᵀ

i,t|t−1 − µt|t−1µ
ᵀ
t|t−1 + Q, Prior covariance

Σt|t−1 = St|t−1S
ᵀ
t|t−1, Factorize

X ∗i,t|t−1 = St|t−1ξi + µt|t−1, New cubature point set
Y i,t|t−1 = h(X ∗i,t|t−1), Transformed observations
ŷt = 1

2X
∑2X
i=1Y i,t|t−1, Predicted observations

Update step

ΣY ,t|t−1 = 1
2X
∑2X
i=1 Yi,t|t−1Yᵀ

i,t|t−1 − ŷt|t−1ŷᵀ
t|t−1 + R, Innovation covariance

ΣXY ,t|t−1 = 1
2X
∑2X
i=1X ∗i,t|t−1Yᵀ

i,t|t−1 − µt|t−1ŷᵀ
t|t−1, Cross-covariance

Kt = ΣXY ,t|t−1Σ−1
Y ,t|t−1, Kalman gain

µt|t = µt|t−1 + Kt(yt − ŷt), Posterior mean
Σt|t = Σt|t−1 −KtΣY ,t|t−1Kᵀ

t , Posterior covariance

The CKF formulation is derivative-free, numerically more stable than the UKF and has the
same computational complexity; hence the CKF is an efficient filtering method to be used
for nonlinear functions under the Gaussian assumption for the hidden state vector.

2.3 Parameter Estimation in State-Space Models

Modeling dynamic systems using the state-space models involve unknown parameters θ ∈
RP in the transition and the observation equations along with the hidden states x. These
parameters might be employed in the linear/nonlinear functions g(·) and h(·) or the error
covariance matrices Q and R used to model the process errors w : W ∼ N (0,Q) and the
observation errors v : V ∼ N (0,R). Hence, identifying the optimal parameters is critical to
the state estimation procedure.

The parameter estimation methods can be broadly classified into two groups: Bayesian
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estimation (BE) [20] and maximum likelihood (MLE) or the maximum a posteriori estimation
(MAP) [19,20]. The BE methods such as the Markov chain Monte Carlo (MCMC) [38] and
the Laplace approximation (LAP) [19] approximate the parameters’ posterior PDF. Moreover,
for specific combinations of the prior and the likelihood, the parameters’ posterior PDF can
be analytically computed. Such priors are known as the conjugate priors [19, 25]. On the
other hand, the MLE and the MAP methods such as the gradient-based approaches [19,20,25]
and the expectation-maximization (EM) [39] are optimization methods that determine the
optimal set of parameters by either maximizing the likelihood function or the product of the
likelihood and the prior. The subsequent sections reviews the parameter estimation methods.

2.3.1 Bayesian Estimation

The full Bayesian joint estimation of the parameters and hidden states, requires considering
them as random variables in order to infer the joint posterior PDF such that

f(x0:T,θ|y1:T) = f(y1:T|x0:T,θ) · f(x0:T|θ) · f(θ)
f(y1:T) , (2.5)

where we choose the parameters’ prior PDF f(θ) and evaluate the hidden states’ joint prior
PDF f(x0:T|θ), the joint likelihood function f(y1:T|x0:T,θ) and the joint evidence f(y1:T). We
can obtain the parameters’ posterior PDF f(θ|y1:T) by marginalizing out the hidden states
x0:T from the joint PDF defined in Equation 2.5 such that

f(θ|y1:T) =
∫
f(x0:T,θ|y1:T)dx0:T,

=

∫
f(y1:T|x0:T,θ) · f(x0:T|θ) · f(θ)dx0:T

f(y1:T) ,

= f(y1:T|θ) · f(θ)
f(y1:T) ,

∝ f(y1:T|θ) · f(θ), (2.6)

where f(y1:T|θ) is the joint marginal likelihood given the parameters θ such that f(y1:T|θ) =∫
f(y1:T|x0:T,θ) · f(x0:T|θ)dx0:T. In most practical situations, evaluating the joint evidence

f(y1:T) is computationally intractable, hence it is a common practice to evaluate the un-
normalized posterior PDF given by f(θ|y1:T) ∝ f(y1:T|θ) · f(θ) as shown in Equation 2.6.
Using the probability theory, the joint marginal likelihood defined in Equation 2.6 can be
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expressed as the product of conditional PDFs shown by

f(y1:T|θ) =
T∏
t=1

f(yt|y1:t−1,θ), (2.7)

where the conditional PDF f(yt|y1:t−1,θ) is the marginal prior predictive PDF of the ob-
servations yt given y1:t−1. Using the conditional independence of the observations yt and
y1:t−1 given the states xt, we can recursively compute the marginal prior predictive PDF
f(yt|y1:t−1,θ) using the filtering procedure shown by

f(yt|y1:t−1,θ) =
∫
f(yt|xt,θ) · f(xt|y1:t−1,θ)dxt, (2.8)

where f(yt|xt,θ) is the observation model and f(xt|y1:t−1,θ) is the prior predictive PDF
obtained by

f(xt|y1:t−1,θ) =
∫
f(xt|xt−1,θ) · f(xt−1|y1:t−1,θ)dxt−1, (2.9)

where f(xt|xt−1,θ) is the transition model and f(xt−1|y1:t−1,θ) is the prior knowledge of
the hidden states at time t − 1. In the case of BDLM, the PDF f(yt|y1:t−1,θ) is obtained
using the Kalman filter procedure such that

f(yt|y1:t−1,θ) = N (yt; Cµt|t−1,CΣt|t−1Cᵀ + R).

The posterior PDF f(θ|y1:T) defined in Equation 2.6 can be approximated using methods
such as the MCMC or in specific cases, by employing conjugate priors. The Laplace approxi-
mation can also be used to approximate the posterior using the MLE or the MAP estimates.
The subsequent sections review the Bayesian estimation using the MCMC method and the
conjugate priors.

Markov Chain Monte Carlo

For Bayesian estimation of parameters, the Markov Chain Monte Carlo (MCMC) methods
are used to generate parameter samples θs that are realizations from the target distribution
f̂(θ) i.e., the parameters’ un-normalized posterior PDF f(θ|y1:T) ∝ f(y1:T|θ) · f(θ). The
common algorithms for MCMC methods such as the Metropolis-Hastings (MH) [20] simulate
a Markov chain by first obtaining an initial state θ0 and then using a proposal distribution
q(θ′ |θ) to obtain a new state θ′ from the current state θ. Depending on an acceptance ratio,
the new state is either accepted or rejected. This algorithm is recursively performed for a



18

total of S steps, and once, convergence is reached we obtain parameters from a stationary
distribution equal to our target distribution. All the accepted samples are used to obtain the
empirical posterior moments Ê[θ|y1:T] and ˆcov(θ|y1:T) such that

Ê[θ|y1:T] = 1
S

S∑
s=1
θs

ˆcov(θ|y1:T) = 1
S− 1

S∑
s=1

(θs − Ê[θ|y1:T])(θs − Ê[θ|y1:T])ᵀ.

The task of choosing a suitable proposal distribution is difficult as poor choices might lead
to highly correlated samples or a high rejection rate [20]. The Gaussian PDF is a common
choice for the proposal distribution such that q(θ′ |θ) = N (θ′ ;θ,Σq), where the mean θ is the
current location and the Σq controls the random walk within the parameter space. Methods
such as the adaptive MCMC [40] and the robust MCMC [41] are capable of automatically
adapting the covariance matrix while performing the MCMC run.

The Hamiltonian Monte Carlo (HMC) [42] is another method that relies on Hamiltonian
dynamics to propose new parameters. The HMC method adds an auxiliary momentum
variable ri to each parameter θi to obtain the joint PDF of the parameters and the momen-
tum variables such that f(θ, r|y1:T) = exp([−H(θ, r)]), where using classical mechanics the
Hamiltonian function H(θ, r) is given by

H(θ, r) = T (r) + V (θ)

= − ln f(r)− ln f(y1:T|θ)− ln f(θ) (2.10)

where, assuming r and θ are independent, T (r) = − ln f(r) is the kinetic energy and V (θ) =
− ln f(y1:T|θ)− ln f(θ) is the potential energy. Considering that the energy terms T (r) and
V (θ) are known, new samples for the parameters and the momentum variables are proposed
using a leapfrog method [20,42] that numerically solves the Hamiltonian equations shown by

dr

dt
= −∇θV (θ)

dθ

dt
= ∇rT (r),

where ∇ is the gradient operator. The proposed samples are then passed through an accep-
tance criteria βH such that

βH = min
{

1, exp([−H(θi+1, ri+1)])
exp([−H(θi, ri)])

}
,
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where the superscripts i and i+ 1 denote the current and the proposed samples. Compared
to the Metropolis Hastings algorithm, the HMC is able to minimize correlation between the
accepted samples. However, tuning the parameters such as the step size and the number
of steps is critical to efficient exploration of parameters so that the method leads to accu-
rate simulations with less autocorrelation between the consecutive samples [26]. For details
regarding the various MCMC methods, the reader can refer to the work of Neal [42] and
Brooks [38].

The MCMC methods have shown their efficacy in estimating the parameters’ posterior PDF
in high-dimensional spaces when analytical implementations for obtaining the posterior are
not available. However, for specific cases, conjugate priors do exist that can be utilized to
analytically obtain the posterior PDF.

Conjugate Priors

For specific combinations of the prior PDF and the likelihood function, the posterior follows
the same type as the prior. Such a prior is known as the conjugate prior using which closed-
form solutions are available for the parameters’ posterior PDF and the posterior predictive
PDF for the outputs. A well-known example for demonstrating the use of conjugate priors
is for the Gaussian PDF with a known variance and a random mean. Let’s consider the
likelihood function to be a Gaussian PDF such that Y ∼ N (y;M,σ2) with a known variance
σ2 and a random meanM ∼ N (m;µM , σ2

M), where µM and σ2
M are its hyper-parameters. The

Gaussian random variables Y and M can be represented in terms of the standard Gaussian
variable ε and ζ shown by

y = m+ σε, ε ∼ N (0, 1),

m = µM + σMζ, ζ ∼ N (0, 1) (2.11)

Considering the joint bivariate Gaussian PDF between Y and M , the posterior moments for
M |y are obtained using the Gaussian conditional equations

E[M |y] = E[M ] + cov(Y,M)
var(Y ) (y − E[Y ]),

= µM + σ2
M

σ2
M + σ2 (y − µM),

var(M |y) = var(M)− cov(Y,M)2

var(Y ) ,

= σ2
M · σ2

σ2
M + σ2 , (2.12)
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where using Equation 2.11 and the properties of random variables, the marginalized moments
for Y and the covariance term cov(Y,M) are derived by

E[Y ] = E[M ] +��
��* 0

E[σε] = µM ,

var(Y ) = var(M) + var(σε) +
���

���
�: 0

2cov(M,σε) = σ2
M + σ2,

cov(Y,M) = cov(M,M) +����
���: 0

cov(σε,M) = σ2
M ,

in which the terms E[σε] and cov(M,σε) are zero as ε has a zero mean and is independent
of any other random variable. Hence, for the specific combination of the Gaussian prior
f(m) ∼ N (m;µM , σ2

M), and the Gaussian likelihood f(y) ∼ N (y;M,σ2), the random mean’s
posterior PDF is also Gaussian shown by

M |y ∼ N
(
m;µM + σ2

M

σ2
M + σ2 (y − µM), σ

2
M · σ2

σ2
M + σ2

)
.

Similarly for a known mean but a random variance, the conjugate prior for the variance is
an inverse gamma PDF which is combined with a Gaussian likelihood function to obtain an
inverse gamma posterior PDF itself. For the detailed analytical formulation involving the
conjugate priors, the reader can refer to the work of Gelman [19] and Murphy [25].

2.3.2 Maximum Likelihood Estimation

For complex models, Bayesian estimation using sampling methods are computationally ex-
pensive [21], and conjugate priors are only applicable for specific cases. Hence, for most
practical scenarios, we are forced to rely on point estimates for the parameters instead of a
posterior PDF. The point estimates are computed by either maximizing the likelihood (MLE)
or the product of the likelihood and the prior (MAP) as shown by

θ∗ =


arg max

θ
ln f(y1:T|θ), MLE

arg max
θ

ln f(y1:T|θ)f(θ), MAP
(2.13)

where a common practice is to use the log-likelihood instead of the likelihood in the objective
function f̃(θ) = ln f(y1:T|θ) for maintaining numerical stability [21]. Note that for brevity,
we use the term log-likelihood instead of marginal log-likelihood. The MLE or the MAP
estimates can be evaluated using gradient-based approaches such as the gradient ascent [21]
and the Newton-Raphson [21,25] where we identify new parameters θnew by moving towards
the maximum point using the gradient ∇θ of the objective function evaluated at the old
parameters θold. The procedure for obtaining θnew using the gradient ascent and Newton-
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Raphson can be shown as follows

θnew =

 θold + λ ·∇θf̃(θold), Gradient Ascent
θold −H[f̃(θold)]−1 ·∇θf̃(θold), Newton-Raphson

where λ is the learning rate which, in the case of Newton-Raphson, is approximated using
the inverse of the negative Hessian matrix H of the objective function f̃(θ) evaluated at the
old parameters given by H[f̃(θold)]−1. Compared to gradient ascent, the Newton-Raphson
method converges faster but has the additional cost of computing the Hessian [21]. For
further details on the various gradient-based approaches, the reader can consult the work of
Kelley and Carl [43] and Goodfellow [44].

Using the MAP estimate θ∗, the Laplace approximation can be used to approximate the
parameters’ posterior PDF by a multivariate Gaussian such that

f(θ|y1:T) ≈ N (θ;θ∗,Σθ∗).

for which the mean vector θ∗ is the MAP estimate and the covariance matrix Σθ∗ is obtained
by the inverse Hessian matrix of the negative log-likelihood evaluated at the MAP vector θ∗

shown by
Σθ∗ = H[− ln f(y1:T|θ∗)]−1.

However, such approaches are computationally expensive when employed for identifying a
large number of parameters as it involves computing the second-order derivatives of the
objective function with respect to the model parameters. Moreover, these are offline methods
that require retraining the entire model for updating the parameters as new data are collected.
Furthermore they are also sensitive to the initial set of parameters and produce sub-optimal
results in the presence of saddle points and local maxima [44].

Expectation-Maximization

When complete data is available, i.e., all the variables defining the model are fully observed,
computing the MLE or the MAP estimates is straightforward [20, 25]. This is because di-
rect optimization is feasible as the marginal likelihood of the data can be computed [20].
However, when we have incomplete data, i.e., the observed variables are partially known or
involves unknown hidden variables [21], the marginal likelihood is intractable. For such cases,
when we cannot compute the likelihood function directly, the expectation-maximization (EM)
algorithm [45] finds its application for obtaining the MLE or MAP estimates.
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Considering that the data D = {y1:T,x0:T,x ∈ RX,y ∈ RY} is fully observed, the complete
data log-likelihood given the parameters θ is obtained by

L(θ) = ln
∫
f(y1:T,x0:T|θ)dx0:T,

= ln
∫
q(x0:T) · f(y1:T,x0:T|θ)

q(x0:T) dx0:T, (2.14)

where q(x0:T) is an arbitrary PDF of the hidden variables x0:T. Unfortunately, the complete
data log-likelihood cannot be computed as the hidden variables are unknown. The EM
algorithm employs the Jensen’s inequality [25] in order to obtain a lower bound for the
likelihood function L(θ) defined in Equation 2.14 such that

L(θ) ≥
∫
q(x0:T) ln

[
f(y1:T,x0:T|θ)

q(x0:T)

]
dx0:T,

≥
∫
q(x0:T) · ln[f(y1:T,x0:T)|θ]− q(x0:T) · ln[q(x0:T)]dx0:T,

≥
∫
q(x0:T) · ln[f(y1:T,x0:T)|θ]dx0:T, (2.15)

where the lower bound is simplified by removing the second term as it does not depend on
θ. It can be shown that choosing a PDF such that q(x0:T) = f(x0:T|y1:T,θ) satisfies the
inequality shown in Equation 2.15 [20, 25], using which we can define the expected complete
data log-likelihood Q(θ,θi) at the current parameters θi as shown by

Q(θ,θi) =
∫
f(x0:T|y1:T,θ

i) · ln[f(y1:T,x0:T)|θ]dx0:T, (2.16)

where using the Markov hypothesis, the complete data log-likelihood can be formulated as

ln[f(y1:T,x0:T)|θ] = ln f(x0|θ) ·
T∑
t=1

ln f(xt|xt−1,θ) ·
T∑
t=1

ln f(yt|xt,θ).

In the case of BDLM, the expectations involved in Equation 2.16 can be computed in closed-
form using the Rauch-Tung-Streibel (RTS) smoother [46] while for nonlinear dynamic models
these have to be approximated using the Gaussian smoothers [47] or the particle smoothers
[20]. The EM algorithm is carried out by starting from an initial set of parameters θ(0) and
performing the following two steps for the ith iteration:

• E-step: obtain the expected complete data likelihood Q(θ,θi) defined in Equation 2.16
given the current parameters θi.

• M-step: find the new MLE estimates θi+1 by maximizing the expected complete data
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log-likelihood shown by θi+1 = arg max
θ

Q(θ,θi).

It turns out that the EM algorithm is specifically advantageous for BDLMs as the optimiza-
tion at the M-step can be performed analytically by setting the gradient to zero such that
∂Q(θ,θi)

∂θ
. Note that for computing MAP estimates, we need to maximize Q(θ,θi) + ln f(θ)

instead of Q(θ,θi). Even though the EM algorithm monotonically increases the complete
data likelihood function, it is common to get stuck at local maxima or saddle points based
on initial choice of parameters [25].

The Bayesian estimation and the maximum likelihood estimation methods discussed in this
section are widely used for parameter estimation in state-space models. However, in existing
literature there are methods called the adaptive Kalman filters (AKF) specifically designed
for the estimation of the process error and the measurement error covariance matrices to be
reviewed in the following section.

2.3.3 Adaptive Kalman Filters

For linear dynamic systems, the Kalman filter is an exact state estimator if the process
error (Q) and the measurement error (R) covariance matrices are known [48]. In most
practical situations, the deterministic part of the model which includes the transition and
the observation models is formulated based on known system dynamics. In contrast, the
stochastic part representing the process and the measurement errors is either unknown or
only approximately known [48,49]. Previous studies have also shown that using incorrect error
covariance matrices may result in large estimation errors or even cause divergence [48,50,51].
Hence, the accurate estimation of the error covariance matrices is necessary for the exact
state estimation [50,52].

As presented in the Section 2.3.2, the unknown error variance parameters in the Q and the R
matrices can be obtained using the maximum likelihood estimation methods such as gradient-
based approaches [21, 25] or the EM algorithm [45]. On the other hand, gradient-based
MLE methods are sensitive towards the initialization of the parameters, are computationally
demanding, and may provide sub-optimal estimates in case of small datasets and in the
presence of large number of parameters [53–55]. Even though the EM algorithm can be
utilized for complex models where computing the gradients is numerically infeasible [20] or
when data is missing [56], it cannot guarantee to provide an optimal set of parameters because
of its sensitivity to parameter initialization. Moreover such methods can only be applied
offline, and as a result, the entire model needs to be retrained to obtain new parameter
estimates as new data points arrive [25]. Online learning methods such as Rao-Blackwellized
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Particle Filtering (RBPF) [57] can provide reliable estimates for small datasets, but it is
computationally demanding for complex models [58].

The adaptive Kalman filters (AKF) were developed to estimate both the states and the
error covariance matrices together by adaptively adjusting the Kalman filter to the measured
data such that the estimation errors can be either bounded or reduced [50]. The AKFs
are broadly grouped as follows: 1) correlation methods [48, 59–62], 2) covariance-matching
methods [63–65], 3) maximum likelihood methods [66, 67], and 4) Bayesian methods [68–70].

Correlation Methods

The innovation correlation method (ICM) [48] is one of such approach which is based on the
fact that the innovation sequence is white for an optimal Kalman filter or otherwise, there
must be correlation between the innovations. The ICM method uses the auto-correlation
function of the innovations to form a system of linear equations involving the unknown
covariance matrices. A least-square method is used to solve these equations simultaneously
to obtain the estimates for the Q and the R matrices. The literature contain several other
correlation methods such as the measurement average correlation method (MACM) [60], the
direct correlation method (DCM) [61], and the measurement correlation method (MDCM)
[62]. However, these methods are strictly restricted to the case of linear dynamic models and
are only capable of providing point estimates [49, 71, 72]. Moreover, in order to ensure the
asymptotic convergence, the Q and the R matrices need to be updated over several iterations
utilizing the entire data [48], and hence the method can only be applied offline.

Covariance-Matching Methods

The basic idea in covariance-matching method (CMM) is to match the actual error covari-
ance matrices to the theoretical values computed by the filter. Considering that the process
errors W ∼ N (q,Q) and the measurement errors V ∼ N (r,R) are independent and iden-
tically distributed having a constant mean and a covariance, the CMM method provides an
unbiased estimator for the parameters q, r,Q, and R by computing the sample mean and
the sample covariance over the collected error samples. Myers and Tapley [63] proposed the
adaptive limited memory filter (ALMF) [63] that uses such a technique where sample covari-
ance matrices are computed at each time step for both the state prediction error and the
innovation sequence using either the entire past data or over a moving window. However,
such methods produce biased estimates for the covariance matrices and often fail to ensure
the positive-definiteness of matrices when the sample size of the data is small [61,73].
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Maximum Likelihood Methods

The maximum likelihood methods primarily uses a gradient-based or expectation-maximization
algorithm to estimate the error covariance matrices. Shumway and Stoffer [66] provided a
framework that uses the EM algorithm to obtain both the states and the error covariance
matrices even when the data is irregularly spaced. The main disadvantages of these methods
are its computational demand and the fact that these can be only applied offline [73].

Bayesian Methods

An extensive amount of literature exists for the AKF methods under the Bayesian category.
The Bayesian methods include state augmentation methods primarily relying on nonlinear
estimation techniques such as the EKF [73], the UKF [74], or the particle filters [54, 75]
for the joint estimation of both the states and the error covariance matrices (ECM). While
most methods in this category identify the error variances offline, Kontoroupi and Smyth [74]
provided an online estimation method by employing an approximation of the inverse gamma
conjugacy. The method enables the online estimation by using the mode of the inverse
gamma PDF as a point estimate to solve the intractable integral required for obtaining the
marginalized posterior moments for the hidden states. The method is also applicable for
multivariate cases where instead of the inverse gamma, the inverse Wishart PDF is employed
to estimate the error covariance matrices. The method provides an effective technique for
accurately estimating both the mean and full covariance matrix associated with the observa-
tion error, but has a limited accuracy for the moments associated with the process error [74].
The primary cause for this inaccuracy is attributed to the approximation of using the resid-
uals from the UKF filter for updating the hyperparameters of the inverse-gamma or inverse
Wishart PDF at each time step. These residuals are intrinsically uncertain while the method
considers them to be deterministic values.

Another Bayesian method is the interactive multiple models [76] that defines multiple models
each having a separate dynamic model with its own ECM as well as the transitional proba-
bilities between one model i and another model j at any given time step t. A set of several
Kalman filters are run on parallel to evaluate the state estimates for each model simulta-
neously. The model selection is performed according to the Bayes’ rule using the likelihood
obtained for each model given the ECM and the prior probabilities assigned to each model.
In order to obtain the combined state estimate, the posterior state estimates from each
model are weighted according to the updated model probabilities. This method is applicable
for both stationary and non-stationary error variances and has the potential of providing
exact estimates when an infinitely large numbers of models are considered. However, the



26

computational cost makes it practically infeasible [68].

The variational Bayes (VB) methods have been proposed to approximate the intractable
joint posterior PDF of the states and the covariance matrices at a comparatively lower com-
putational cost than using the particle filters or the multiple model methods [49,68]. Sarkka
and Nummenmaa proposed the VB-AKF method [68] that attempts to estimate the approx-
imate joint posterior PDF of the states and the unknown diagonal R matrix by using an
inverse gamma prior for each of the error variance terms. This is because using an inverse
gamma prior combined with a Gaussian likelihood results in an inverse gamma posterior
itself, hence the conjugate prior choice for the unknown variance of a Gaussian PDF [19].
Sarkaa and Hartikainen [77] extended the VB-AKF method to obtain the full R matrix using
an inverse Wishart conjugate prior. The method can also be applied to nonlinear state-space
models using the available approximate Gaussian filters [68]. However, the method requires
an exact knowledge of the Q matrix which is not known for most practical applications [78].
Moreover, the same methodology could not be applied to obtain the Q matrix, since it does
not appear in simple conjugate prior form, as opposed to the R matrix [77,79]. Furthermore,
a heuristic dynamic model is suggested for the error covariance matrix using a user-defined
forgetting factor ρ and the VB method requires a fixed-point iteration to estimate the scale
parameter of the inverse gamma PDF at each time step. Ardeshiri et al. [80] proposed a VB
based RTS smoother to obtain both the Q and R matrices, but it can only evaluate the error
covariance matrices offline [78,79].

Huang et al. [78] proposed an online VB-AKF method, referred to as VBAKF-PR, to directly
estimate the joint distribution of the states, the state prediction error covariance matrix, and
the R matrix by using the conjugacy of the inverse Wishart prior for the covariance matri-
ces. However, the method requires an accurate nominal Q matrix based on problem-specific
expertise without which the performance degrades drastically. Moreover, the method has
additional parameters such as the tuning parameter, the forgetting factor, and the number
of fixed-point iterations per time step that needs to be tuned. The sliding window variational
adaptive Kalman filter (SWVAKF) allows estimation of the Q and the R matrices by per-
forming three steps: a forward Kalman filtering step to obtain the state estimates by using
the error covariance matrices at the previous time step, a backward Kalman smoothing step
to obtain the smoothed PDF of the state estimates over a sliding window of discrete number
of time steps, and the online estimation of the Q and the R matrices using the smoothed
posterior PDF of the states. The SWVAKF overcomes the limitation of the VBAKF-PR as
it is robust to the initialization of the nominal Q matrix and proved to be computationally
more efficient by avoiding the fixed-point iteration step. However, this method is only shown
to be applicable for linear dynamic models [81].
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As discussed in this section, there are several methods that have been proposed to estimate
the error covariance matrices. In general, most methods are capable of estimating the R
matrix [48, 68] or can be identified directly from the measuring devices [73], however the Q
matrix is neither known in practice nor is it straightforward to estimate it using the available
methods [68, 78]. Moreover, most methods are either offline in nature [48, 66], restricted to
linear dynamic systems [70, 78] or are computationally demanding [20, 75, 76]. Furthermore,
there is no closed-form method to obtain these matrices, and only a limited number of
methods can estimate time-varying error matrices, but only through a heuristic dynamic
model [78]. In addition, none of the available methods have demonstrated the capacity to
estimate a high-dimensional full Q matrix. Hence, there is still the challenge to develop
a method that performs closed-form online estimation of not only constant, but also time-
varying Q matrices for a linear as well as a nonlinear dynamic model and that is still scalable
to high-dimensional domains.

2.4 Bayesian Neural Networks

Bayesian neural networks (BNN) [82, 83] are another class of probabilistic models that pro-
vides a Bayesian treatment for the neural network’s (NN) parameters. The typical NN uses
a deterministic set of model parameters to provide point estimates for the model predictions.
On the other hand, the BNN uses Bayesian inference to learn the posterior over the neu-
ral networks’ parameters. Hence, such a model provides predictive uncertainty, robustness
against over-fitting, and enables learning from smaller datasets [83].

For a supervised learning problem, neural networks are used to find a parameterized function
y = g(x,θ) given the data D = {xi,yi}D

i=1, where D refers to the total number of data points,
xi ∈ RX are the input features, and yi ∈ RY are the observations corresponding to the ith

data point. The model parameters θ = {w, b} comprise the set of deterministic weights
and biases that stores the information of the learned function g(·). Using this function, the
model predictions y are obtained for the given set of inputs x. However in BNN, prior PDFs
are placed over the model parameters f(θ) and the objective is to learn the posterior PDF
of the parameters f(θ|D) that best describes the data D. Using Bayes rule, f(θ|D) can be
obtained by

f(θ|D) = f(D|θ) · f(θ)
f(D) , (2.17)

where f(D|θ) is the likelihood of data given the parameters, f(θ) is the prior PDF of the
model parameters, and f(D) =

∫
f(D|θ) · f(θ)dθ is the model evidence. Using the posterior
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PDF f(θ|D), we can compute the posterior predictive PDF f(y|x,D) for the output random
variables Y given the input features x by marginalizing the joint PDF f(y,θ|x,D) over all
possible parameter values so that

f(y|x,D) =
∫
f(y,θ|x,D)dθ =

∫
f(y|x,θ) · f(θ|D)dθ, (2.18)

where f(y|x,θ) is the model that generates the outputs y given the inputs x and the pa-
rameters θ.

However, solving the integrals to obtain the model evidence f(D) or the predictive PDF
f(y|x,D) as defined in Equations 2.17 & 2.18 is computationally intractable. As a re-
sult, several approximate methods were proposed for quantifying the predictive uncertainty
including variational inference [10, 11, 13], sampling-based methods, [82, 84] and ensemble
model combination [8, 9]. The subsequent section provides a detail overview of the existing
approximate inference methods.

2.4.1 Approximate Inference Methods

Since exact Bayesian inference is computationally intractable for neural networks (NN), many
approximate inference methods have been proposed in the literature for employing Bayesian
neural networks (BNN) [8, 9, 85]. The Laplace approximation [86] was used for obtaining
the posterior distribution of the parameters in NN. In its original form, this method is
computationally inefficient for large neural networks as it requires the computation of a full
inverse Hessian matrix. The Hamiltonian Monte Carlo (HMC) is a Monte-Carlo sampling
method that is considered as the reference for BNN [10,82]. For most practical applications,
the method lacks practical scalability and requires problem-specific parameter tuning [10].

A scalable variational inference (VI) method [87] was proposed for estimating the poste-
rior distribution of the parameters in neural networks by maximizing the evidence lower
bound (ELBO) of the marginal log-likelihood. This required computing the intractable ex-
pected log-likelihood term of the ELBO using a Monte Carlo approximation and using the
stochastic gradient descent (SGD) approach to optimize the approximate lower bound [10,83].
However, VI tends to perform poorly for large datasets as the optimization procedure us-
ing SGD requires multiple passes through the entire data which is practically infeasible for
large datasets [10]. Probabilistic backpropagation (PBP) [10] uses expectation propagation
to estimate the parameters in BNN. Unlike backpropagation, PBP computes the posterior
distribution over the parameters by propagating backward the gradients of the marginal like-
lihood with respect to the parameters. PBP is accurate, more computationally efficient than
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any form of variational inference or Markov chain Monte Carlo (MCMC) method, and tunes
its hyper-parameters automatically [10].

Monte Carlo dropout (MC-dropout) uses dropout [88] as a Bayesian approximation for de-
riving an approximate predictive distribution. MC-dropout computes the predictive uncer-
tainty by averaging over an ensemble of neural networks where each network is trained using
dropout [8, 9]. MC-dropout is orders of magnitudes faster than PBP but requires hyper-
parameter tuning unlike PBP [8]. MC-dropout motivated researchers to look into ensemble
methods in neural networks [9]. Deep ensembles [9] provided a simple and scalable method
that combines ensembling techniques and adversarial training for obtaining improved predic-
tive performance and out-of-distribution robustness [9].

Variational inference remains an active research area for BNN. Other notable works using
variational inference include Variational matrix Gaussian (VMG) [12] and probabilistic back-
propagation with the matrix-variate Gaussian (MVG) distribution (PBP-MV) [11]. VMG
uses matrix-variate Gaussian (MVG) [89] priors over the weights compared to PBP which
uses independent standard Gaussian priors. VMG shows a better predictive performance
compared to PBP and MC-dropout despite its slow convergence. On the other hand, PBP-
MV was shown to outperform VMG and converge faster in regression and classification bench-
marks [11]. Moreover, Wu et al. pointed out that variational Bayes is limited in practical
applications because of its computational constraints and sensitivity to the definition of the
prior variances for weights [13]. Deterministic variational inference (DVI) [13] was proposed
to counter these limitations. DVI provides analytically tractable moment computation and
an empirical Bayes [90] approach to automatically assign prior variances for the weights, but
has a high computational demand. Recently, the analytically tractable approximate Gaussian
inference (TAGI) method [7] was proposed which allows for closed-form parameter inference
in BNN, without relying on backpropagation. The next section reviews the TAGI method in
detail.

2.4.2 Tractable Approximate Gaussian Inference

TAGI [7] performs analytical inference for the parameters in Bayesian neural networks. Here,
we summarize the key principles behind TAGI through a feedforward neural network (FNN)
architecture. We consider a FNN with L hidden layers for learning the relationship between
the input covariates x = [x1 x2 · · · xX]ᵀ, ∈ RX and the observed system responses y =
[y1 y2 · · · yY]ᵀ, ∈ RY. Each of the L layer of this FNN consists of A hidden units z(j)

i ,∀i ∈
{1, 2, · · · , A} and ∀j ∈ {1, 2, · · · , L} for which the corresponding activation units a(j)

i =
φ(z(j)

i ) are obtained using an activation function φ(·). The observation model describing the
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relationship between the observed system responses y and the model outputs is given by

y = z(O) + v, v : V ∼ N (0,ΣV ), (2.19)

where z(O) ∈ RY represents the vector of hidden units on the output layer, and v represents
the vector of errors with mean zero and covariance matrix ΣV . Figure 2.4 shows a graphical
model representing the FNN for obtaining a single model output z(O) as a function of the
input covariates x. The green nodes represent the vector of hidden units and the directed
arrows show the flow of information from one node to another. The parameters between any
two layers j and j + 1 are represented by θ(j), j ∈ {1, 2, · · · , L}. The observation y, denoted
by the purple node, is connected to the output unit z(O), and the error v in accordance to the
observation model in Equation 2.19.
In a generic form, TAGI requires propagating uncertainties from the activation hidden units
A(j) ∼ N (a(j);µ(j)

A ,Σ
(j)
A ) in hidden layer j to the ith hidden unit in layer j + 1 given by

Z
(j+1)
i =

A∑
k=1

W
(j)
i,k A

(j)
k +B

(j)
i , (2.20)

where the parametersW (j)
i,k and B(j)

i are assumed to be Gaussian random variables. Equation
2.20 involves the product of pairs of weights W and activation units A for which the exact
moments can be computed using the Gaussian multiplicative approximation (GMA) [7, 91]
described as follows: Consider X = [X1 X2 X3 X4]ᵀ, a vector of Gaussian random variables
such thatX ∼ N (x;µ,Σ), with mean vector µ and covariance matrix Σ. Using the Gaussian
moment generating function [7], the following equations hold for the product of any two
Gaussian random variables such that

E[X1X2] = µ1µ2 + cov(X1, X2), (2.21)

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)2

+2cov(X1, X2)µ1µ2 (2.22)

+σ2
1µ

2
2 + σ2

2µ
2
1,

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1, (2.23)

cov(X1X2, X3X4) = cov(X1, X3)cov(X2, X4) (2.24)

+cov(X1, X4)cov(X2, X3)

+cov(X1, X3)µ2µ4

+cov(X1, X4)µ2µ3 + cov(X2, X3)µ1µ4

+cov(X2, X4)µ1µ3.
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(b) Compact representation where θ = {w, b}

Figure 2.4 The (a) Full and (b) Compact representation of a FNN for obtaining a single
model output z(O) as a function of the input covariates x. The network comprises of L hidden
layers having A hidden units in any layer j ∈ {1, 2, · · · , L}. The parameters between any two
layers j and j + 1 are represented by θ(j). The observation y, denoted by the purple node, is
connected to the output unit z(O), and the error v in accordance to the observation model in
Equation 2.19.

In TAGI, the GMA Equations 2.21 - 2.24 are leveraged to obtain the moments for the product
of pairs of weights W and activation units A.

Even though the true distribution for the product of two Gaussian random variables is not
Gaussian, TAGI considers that the sum of a large number of independent product terms
approximately results into a Gaussian PDF under the central limit theorem (CLT), given
that all activation units Ak are independent from each other. Moreover, using nonlinear
activation functions prohibits the analytical tractability for propagating uncertainty through
the network. Therefore, TAGI uses a 1st order Taylor series approximation at the expected
value of the hidden unit µ(j+1)

Zi
to maintain the analytical tractability when propagating

uncertainty through the activation function. In order to maintain a linear computational
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complexity with respect to the number of parameters, first, the method employs a diagonal
covariance matrix for both the parameters θ and the hidden units Z(j). Second, it uses a
recursive layer-wise Gaussian inference approach that relies on the conditional independence
between the hidden units Z(j−1) and Z(j+1) given that the hidden units z(j) are known and
that the parameters θ are independent for each layer.
A two-fold inference step is used for obtaining the posterior moments for the parameters θ
and hidden units Z(j). First, the posterior expected value and diagonal covariance matrix
for the output units are obtained such that

f(z(O)|y) = N (z(O);µZ(O)|y,ΣZ(O)|y), (2.25)

µZ(O)|y = µZ(O) + Σᵀ
YZ(O)Σ−1

Y (y − µY ) , (2.26)

ΣZ(O)|y = ΣZ(O) −Σᵀ
YZ(O)Σ−1

Y ΣYZ(O) , (2.27)

where µZ(O) and µY are the mean vectors for Z(O) and Y ; ΣZ(O) is the prior covariance
matrix for Z(O), ΣY is the prior covariance matrix for Y , and ΣYZ(O) is the prior cross-
covariance between Z(O) and Y . Second, the Rauch-Tung-Striebel (RTS) smoother [92] is
used to perform the layer-wise backward inference pass using the posterior knowledge for the
output units obtained by Equations 2.25 – 2.27. The posterior moments for the parameters
θ and the hidden units Z are obtained following

f(Z|y) = N (z;µZ|y,ΣZ|y), f(θ|y) = N (θ;µθ|y,Σθ|y),

µZ|y = µZ + JZ
(
µZ+|y − µZ+

)
, µθ|y = µθ + Jθ

(
µZ+|y − µZ+

)
,

ΣZ|y = ΣZ + JZ
(
ΣZ+|y −ΣZ+

)
Jᵀ
Z , Σθ|y = Σθ + Jθ

(
ΣZ+|y −ΣZ+

)
Jᵀ
θ ,

JZ = ΣZZ+Σ−1
Z+ , Jθ = ΣθZ+Σ−1

Z+ ,

(2.28)

where the short-hand notations for the parameters and hidden units in the jth and the
subsequent layer are {θ+,Z+} ≡ {θ(j+1),Z(j+1)} and {θ,Z} ≡ {θ(j),Z(j)}. The posterior
inference for the parameters θ shown in Equation 2.28 is done recursively using either a
single observation or a batch of them. Moreover, this recursive inference process is done over
multiple epochs E > 1 to overcome the limitation of having weakly informative priors for the
parameters f(θ|η(0)) = N (θ;µ(0)

θ ,Σ(0)
θ ) for which the hyperparameters η(0) = {µ(0)

θ ,Σ(0)
θ }

are defined using either the Xavier’s [93] or He’s [16] approach. Hence, multiple iterations are
carried out using a training set DT and a validation set DV, where the posterior parameters’
hyperparameter values at the ith iteration η(i) = {µ(i)

θ|DT
,Σ(i)

θ|DT
} are used as that of the prior’s
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for the i+ 1th iteration shown by

η(i+1) = TAGI(DT,η
(i)).

In order to avoid overfitting, the learning process is stopped using an early-stopping procedure
when the marginal log-likelihood for the validation set DV reaches its maximum value. Using
multiple epochs to learn the optimal hyperparameters is equivalent to the empirical Bayes
approach [94], but the maximization of the marginal log-likelihood is performed implicitly
rather explicitly [7].

TAGI provides an analytically tractable method for inferring the posterior expected values
and diagonal covariance matrix of the neural network’s parameters. It was shown to provide
a competitive performance with regard to regression and classification benchmarks [7], as
well as on applications such as adversarial attacks, optimization, and continuous-action re-
inforcement learning [95]. However, a key limitation is that the original version of TAGI can
only handle homoscedastic aleatory uncertainty for which the error variance σ2

V is considered
as a hyperparameter that needs to be identified separately from the analytical parameter
inference, which makes it computationally expensive to identify [7].

2.5 Conclusion

The literature review has covered key probabilistic models that can quantify predictive un-
certainty. First, the review examined the state-space models (SSM) used for modeling linear
and nonlinear dynamic systems comprising hidden states, and the filtering methods that
provide a probabilistic approach for updating the knowledge of these hidden states using
observations at any time. We can perform the exact inference using the Kalman filter under
the Gaussian assumption for the hidden states and the linear assumption for the transition
and observation models. However, we depend on nonlinear filtering methods such as the
unscented Kalman filter, cubature Kalman filter, and particle filters for handling nonlinear
models which are computationally expensive. Furthermore, parameter estimation is typi-
cally the most computationally demanding task in the state estimation procedure. This task
relies either on Bayesian methods such as the Markov Chain Monte Carlo (MCMC) which
are computationally expensive, or on maximum likelihood methods such as gradient-based
approaches, which are sensitive to parameter initialization, are computationally demanding,
and require model retraining with each additional data point. In particular, modeling the
process and observation errors associated with the transition and the observation models are
critical for an accurate hidden state estimation. These errors are quantified by the error
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variance terms in the error covariance matrices. The adaptive Kalman filter (AKF) methods
are specifically designed for estimating the error covariance matrices but it still remains a
challenge to develop a method able to perform closed-form online estimation of the process
error covariance matrix Q.

Second, the review investigated the Bayesian neural networks (BNN), which provide a prob-
abilistic approach to the traditional neural networks with regard to quantifying uncertainty
over the parameters and model predictions using a Bayesian framework. As exact Bayesian
inference is intractable in neural networks, there are many approximate methods employing
either variational inference, sampling-based methods or ensemble of models for quantifying
the predictive uncertainty. The tractable approximate Gaussian inference (TAGI) allows for
analytical parameter inference for BNNs and was shown to be competitive in comparison
to existing networks trained with backpropagation. However, in its current version, a key
limitation of TAGI is that it can only model homoscedastic aleatory uncertainty as quantified
by the constant error variance parameter.

Overall, the review identifies that the parameter inference step is critical for improving the
applicability and the scalability of our probabilistic models. The following chapters will de-
scribe methods that can overcome each of the aforementioned limitations related to parameter
inference for the state-space models and Bayesian neural networks.
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CHAPTER 3 The Gaussian Multiplicative Approximation
for State-Space Models

3.1 Introduction

This chapter presents how we propose to take advantage of the Gaussian multiplicative 
approximation (GMA), see Section 2.4.2, in the context of state-space models. Using the 
GMA, the closed-form solutions for the first two moments f or the product o f two Gaussian 
random variables can be obtained. The potential of combining the GMA with the Bayesian 
dynamic linear models (BDLM) is illustrated through the development of generic components 
called (1) the online autoregressive (OAR) that can estimate both the AR state (xAR) and the 
AR parameter (φAR) together; (2) the trend multiplicative (TM) for multiplicative seasonality 
model to identify a non-harmonic periodic pattern whose amplitude changes linearly with 
time; and (3) the double kernel regression (DKR) to identify non-harmonic periodic pattern 
that involves the product of two periodic kernel regression components.

The chapter includes the detailed mathematical formulation for the proposed method and 
the procedure to perform state estimation using the BDLM framework. Thereafter, three 
applied examples are presented for showcasing the capacity of using the GMA for both real 
and synthetic datasets. The main contributions of this chapter are to

• Provide an analytical method that is applicable to multiplicative state-space models by
providing explicitly the equations for moment computation of a product term.

• Enable the online estimation of model parameters as hidden states.

• Provide generic components called the online autoregressive, trend multiplicative and
double kernel regression in the BDLM framework.

• Validate and verify the proposed method with real and synthetic datasets.

• Provide a method that exceed the performance of the cubature Kalman filter in terms
of accuracy and computational cost as validated through the SHM-based case studies.

3.2 Gaussian Multiplicative Approximation

This section presents the Gaussian multiplicative approximation for computing the moments
associated with the product of two Gaussian random variables and demonstrates its applica-
tion in state estimation using BDLM.
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3.2.1 Moments of Product Term

Consider the case where the variables x = [x1 x2]ᵀ are the input of the nonlinear function,

g(x) = x1x2. (3.1)

The goal is to infer the probability density function (PDF) of X indirectly, using an obser-
vation y that is defined such that,

y = g(x) + v, v : V ∼ N (v; 0, σ2
V ), (3.2)

where V is a random variable representing the observation error with zero mean and variance
σ2
V .

The posterior PDF of X given an observation y can be estimated using Bayes theorem as in,

f(x|y) = f(x, y)
f(y) = N (x;µX|y,ΣX|y), (3.3)

which follows a Gaussian distribution with a mean vector µX|y and a covariance matrix ΣX|y

that are given by

µX|y = µX + ΣXY

σ2
Y

(y − µY ),

ΣX|y = ΣX −
ΣXY ·Σᵀ

XY

σ2
Y

. (3.4)

As seen in Section 2.4.2, Equation 3.3 holds when f(x, y) is Gaussian. However, in the case
presented here, y is nonlinearly related to x through Equation 3.2 which makes the joint
prior PDF, f(x, y), non-Gaussian. For such a situation, the GMA can provide closed-form
inference. The prior moments µX and ΣX in Equation 3.4 are obtained as follows

µX = E[X] =
 E[X1]
E[X2]

 ,
ΣX = var(X) =

 var(X1) cov(X1, X2)
cov(X2, X1) var(X2)

 .
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The mean and variance of Y can be obtained by propagating the uncertainty associated with
X through the model described in Equation 3.2 so that

µY = E[Y ] = E[g(X)] + E[V ] = E[X1X2],
σ2
Y = var(Y ) = var(X1X2) + var(V ) = var(X1X2) + σ2

V .

Using the moment generating function (MGF) [96, 97] for the multivariate Gaussian distri-
bution or 2nd order Taylor series expansion (TSE) [98] of the product of the two Gaussian
random variables, the first two moments associated with the product term X1X2 can be
computed exactly using

E[X1X2] = µ1µ2 + cov(X1, X2), (3.5)

var(X1X2) = σ2
1σ

2
2 + cov(X1, X2)2 + 2cov(X1, X2)µ1µ2 + (3.6)

σ2
1µ

2
2 + σ2

2µ
2
1,

and the covariance between X and Y is given by

ΣXY = cov(X, Y ) =
 cov(X1, X1X2)
cov(X2, X1X2)

 .
Similarly, we can also derive the exact solution for the covariance between the product term
X1X2 and any other Gaussian random variable X3,

cov(X3, X1X2) = cov(X1, X3)µ2 + cov(X2, X3)µ1. (3.7)

Finally, for the general case, the covariance between any two pair of product terms is given
by

cov(X1X2, X3X4) = cov(X1, X3)cov(X2, X4) (3.8)

+cov(X1, X4)cov(X2, X3) + cov(X1, X3)µ2µ4

+cov(X1, X4)µ2µ3 + cov(X2, X3)µ1µ4

+cov(X2, X4)µ1µ3,

where X1X2 and X3X4 are the product terms of the Gaussian random variables X1, X2 and
X3, X4, respectively. The derivation of the GMA equations using both the MGF and TSE
are presented in Appendix A and B.

Hence, the GMA approximates the distribution for the product term X1X2 as a Gaussian
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random variable for which the expected value, variance and covariance can be calculated
exactly, under the assumption that X1 and X2 are themselves Gaussians.

3.2.2 State Estimation

In the context of state-space models, the state estimation for cases involving product terms
in the transition model can be performed by combining the linear estimation theory and the
GMA. Given the vector of hidden states x = [x1 x2]ᵀ, a generic multiplicative transition
model involving the product of the hidden states x1 and x2 is given by

x1,t = x1,t−1x2,t + w1,t, w1 : W1 ∼ N (0, σ2
W1), (3.9)

x2,t = x2,t−1 + w2,t, w2 : W2 ∼ N (0, σ2
W2),

where w = [w1 w2]ᵀ is the vector of error terms associated with the transition model. The
hidden states at time t − 1 is assumed to follow a Gaussian PDF with mean vector and
covariance matrix given by

Xt−1|t−1 ∼ N (x;µt−1|t−1,Σt−1|t−1),

where µt−1|t−1 = E[Xt−1|y1:t−1], Σt−1|t−1 = cov(Xt−1|y1:t−1), and y1:t−1 = {y1, . . . , yt−1}. In
its current form, the transition model as given by Equation 3.9 is nonlinear. However, the
nonlinear transition model can be formulated as a linear dynamic model by augmenting the
state vector x̃ = [x xp]ᵀ so that

X̃t−1|t−1 ∼ N (x̃; µ̃t−1|t−1, Σ̃t−1|t−1),

where µ̃t−1|t−1 =
 µ
µp


t−1|t−1

and Σ̃t−1|t−1 =
 Σ cov(X, Xp)
cov(Xp,X) (σp)2


t−1|t−1

.

The hidden state variable Xp = X1X2 represents the product term and is assumed to be
Gaussian with expected value µp = E[X1X2] and variance (σp)2 = var(X1X2). The covari-
ance terms between X and Xp in Σ̃t−1|t−1 is given by

cov(X, Xp) =
 cov(X1, X1X2)
cov(X2, X1X2)

 .
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Using linear algebra, the transition model in Equation 3.9 can be written as

x̃t = Ax̃t−1, (3.10)
x1

x2

xp


t

=


0 0 1
0 1 0
0 0 0



x1

x2

xp


t−1

,

where x̃ = [x1 x2 x
p]ᵀ. The augmented state vector X̃t|t−1 follows a Gaussian PDF given by

X̃t|t−1 ∼ N (µ̃t|t−1, Σ̃t|t−1), (3.11)

where µ̃t|t−1 = Aµ̃t−1|t−1 and Σ̃t|t−1 = AΣ̃t−1|t−1Aᵀ + Q, considering that Q is the process
error covariance matrix. The variance terms in the Q matrix can be estimated using the
methods described in Section 2.3. The observation model is defined as

yt = Cx̃t + vt, v : V ∼ N (0,R), (3.12)

where C is the observation matrix, vt is the observation error, and R = σ2
V is the observation

error covariance matrix. Using Equations 3.11 and 3.12, both the prediction and the update
steps in the Kalman filter can be carried out for a nonlinear system having product terms.
Note that the application of the GMA equations is shown explicitly using a product term in
the state vector to simplify the use of the method, hence the last row in the A matrix has 0’s
as the product term xp is a placeholder. However, the GMA equations can also be applied
implicitly without the need to store the information specifically in a variable. At each step
t − 1 of the recursive procedure, the GMA Equations 3.5 – 3.8 are applied to compute the
moments of the product term X1X2 using the moments of X1 and X2 obtained from the
Kalman filter. The method can also be extended to more than one product terms in the
state vector either by placing more placeholders as shown by Equation 3.10 or by computing
the moments implicitly. The case studies 2 and 3 in this chapter are examples of more than
one product terms in the state vector.

The computational complexity of using the GMA for estimating a state vector of size n is
O(3n3). When using either the UKF or the CKF (see Section 2.2.2) to perform the same
state estimation, the computational complexity is to the order O(14n3) [99]. The derivation
of the computational complexity for the GMA is provided in Appendix E.
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3.3 Applied Examples

This section presents three case studies comparing the performance of the GMA and the
CKF for the task of estimating the state variables in SSM having product terms.

3.3.1 Case Study 1: First-Order Online Autoregressive Process (OAR)

This case study presents the application of the proposed online estimation method for the
state and parameter of a first-order autoregressive process.

Model Formulation

Consider the transition model for a first-order autoregressive process (AR) given by

xAR
t = φARxAR

t−1 + wAR
t︸ ︷︷ ︸

transition model

,

process error︷ ︸︸ ︷
wAR : W AR ∼ N (wAR; 0, (σAR)2),

where xAR is the AR hidden state, φAR is the AR coefficient, andW AR is the zero-mean Gaussian
process error. The AR coefficient φAR can be estimated online by considering it as a hidden
state xφ. The new transition model is defined as

xAR
t = xφt x

AR
t−1 + wAR

t , (3.13)

xφt = xφt−1,

where the hidden states at time step t − 1 are xt−1 = [xAR xφ]ᵀt−1. The linear transition
model for this case is given by Equation 3.10. The augmented mean vector µ̃t−1|t−1 and the
covariance matrix Σ̃t−1|t−1 of x̃t−1 are given by

µ̃t−1|t−1 =


E[XAR]
E[Xφ]

E[XφXAR]


t−1|t−1

,

Σ̃t−1|t−1 =


var(XAR) cov(XAR, Xφ) cov(XAR, XφXAR)

... var(Xφ) cov(Xφ, XφXAR)
sym. . . . var(XφXAR)


t−1|t−1

,
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where the elements of µ̃t−1|t−1 and Σ̃t−1|t−1 can be computed analytically using Equations
3.5-3.8. The observation model is given by

yt = Cx̃t + vt, v : V ∼ N (v; 0, σ2
V ),

where the observation matrix is C = [1 0 0].

Numerical Example

Simulated data is generated from a first-order AR process using the following parameters:
σv = 0.1, σAR = 0.05 and φAR = 0.9. Five datasets containing 1000 data points are generated
using these parameters with a uniform time step of one unit. The prior knowledge of the
hidden states are initialized by

µ̃0 = [0 0 0]ᵀ,

Σ̃0 = diag([100 100 0]).

Both µ̃t|t and Σ̃t|t of x̃t are estimated using the GMA and the CKF methods. Table 3.1 shows
the average results along with their standard deviation for the mean square error (MSE) [25]
and log-likelihood (LL) [18,25] values for xAR, xφ, as well as their joint log-likelihood. Figure
3.1 compares the actual and estimated hidden state values obtained using the GMA and the
CKF methods, which shows the convergence of the estimated states to the true values while
there is a slight difference early on in the state estimation. The results presented in Table 3.1
show that the predictive performance of both the methods using MSE and LL values have
negligible discrepancies. The LL values using the CKF are slightly higher than the GMA
owing to the difference in the state estimation at the initial stage, which disappears as the
state estimates merge together and move towards the true values.

Table 3.1 Comparison of the mean square error and log-likelihood estimates for the GMA
and the CKF

metric MSE Log-likelihood, ∑T
t=1 ln f(xt|y1:t)

xAR xφ xAR xφ (xAR, xφ)
GMA 3.3e-03± 1.9e-04 2.9e-02± 1.6e-02 1181.3± 34.2 2081.9± 250.2 3281.4± 263.2
CKF 3.3e-03± 1.6e-04 3.3e-02± 1.2e-02 1199.5± 30.15 2175.3± 198.8 3386.4± 201.8
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Figure 3.1 Comparison of the GMA and the CKF method for estimating a) xAR and b) xφ.
The red solid line shows the observations, the black solid line and the green shaded region
shows the predictions and their ±1σ confidence regions using the GMA, and the blue solid
line and the pink shaded region shows the predictions and their ±1σ confidence regions using
the CKF. Note that Figure (a) is a close-up view from the actual plot showing the first 100
time steps.

3.3.2 Case Study 2: Trend Multiplicative Model (TM)

This case study is conducted on water infiltration flow-rate data [100–102] recorded on a
concrete gravity dam in Canada. Such data is employed by engineers as a proxy for a dam’s
health.

Data Description

The flow-rate data ranges from September 26th 2006 to December 31st 2012. The raw data
is averaged daily to have 2289 data points. The data have an increasing baseline along with
a periodic component whose amplitude is increasing with time. A multiplicative model is the
classical approach [103] to handle periodicity that varies with time, which can be performed



43

by the product of the baseline component with the static periodic component. The data
are divided into a training set (1618 points) and a test set (671 points) to evaluate the
predictive performance of the model. Figure 3.2 shows the entire dataset where the test set
is represented by the shaded region.
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Figure 3.2 Plot showing the flow-rate data recorded on a concrete gravity dam. The test set
is represented by the shaded region.

Model Formulation

The components used for this model are a local trend (LT) that includes the level (L) and the
local trend (LT) hidden states to model the baseline of the time series, a periodic component
(S) that includes the amplitude (S1) to model the periodic pattern with a periodicity of one
year, an online first-order autoregressive component (OAR) to model the residual, and a new
component called trend multiplicative (TM) to model the increasing amplitude with time. The
TM component includes a new set of level (LP) and local trend (TP) hidden states to capture
the constant rate of change in the level of the periodic component. In this case, the transition
model has two placeholders for the two product terms represented by xp1

t−1 = {xAR
t−1 ·x

φ
t−1} for

the OAR and xp2
t = {xLP

t · xS1
t } for the TM. The transition model for the new component TM is

given by concatenating the product term xp2 to model the time-varying amplitude, with the
local trend component provided by

xLP

xTP

xp2


t

=


1 ∆t 0
0 1 0
0 0 0



xLP

xTP

xp2


t−1

.
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The vector of 10 hidden states at time t − 1 for all the components combined together is
defined as

xt−1 = ︸ ︷︷ ︸
xs3

[
xs1︷ ︸︸ ︷

xL xLT xS1 xS2 xAR xφ xp1

xs2︷ ︸︸ ︷
xLP xTP xp2 ]ᵀt−1,

where xs1
t−1, xs2

t−1 and xs3
t−1 are subsets of the vector xt−1. The prediction step in the Kalman

filter is carried out sequentially using the mean vector µt−1|t−1 and the covariance matrix
Σt−1|t−1 of Xt−1 given by

1. µ̃1,t−1|t−1 = µt−1|t−1 +


0n1×1

E[Xp1 ]
0n2×1


t−1|t−1

,

Σ̃1,t−1|t−1 = Σt−1|t−1 +
[

0n×n1 cov(X, Xp1) 0n×n2

]
t−1|t−1

,

2. µ̃1,t|t−1 = Aµ̃1,t−1|t−1,

Σ̃1,t|t−1 = AΣ̃1,t−1|t−1Aᵀ + Q,

3. µ̃t|t−1 = µ̃1,t|t−1 +
 0n3×1

E[Xp2 ]


t|t−1

,

Σ̃t|t−1 = Σ̃1,t|t−1 +
 0n3×n3 cov(Xs3 , Xp2)
cov(Xp2 ,Xs3) var(Xp2)


t|t−1

,

where in Step 1 we explicitly compute the expected value E[Xp1 ] and the covariance matrix
cov(X, Xp1) associated with the first product term xp1

t−1, thereby computing the augmented
mean vector µ̃1,t−1|t−1 and the covariance matrix Σ̃1,t−1|t−1, in Step 2 we carry out the pre-
diction step using µ̃1,t−1|t−1, Σ̃1,t−1|t−1, and the matrices A and Q, and finally in Step 3, we
compute the moments for the second product term xp2

t to obtain the predicted mean vector
µ̃t|t−1 and the covariance matrix Σ̃t|t−1. Using µ̃t|t−1, Σ̃t|t−1, and Equation 3.12, the update
step of the Kalman filter is performed. The complete model matrices A, C, Q and R required
for the state estimation using the Kalman filter are described in Appendix C. The vector of
unknown parameters which need to be estimated using an optimization algorithm [18,25,104]
are given by

θ = [σLT
W σAR

W σTP
W σV ]ᵀ,

where σLT
W is the standard deviation of the local trend, σAR

W is the standard deviation of the AR
process, σTP

W is the standard deviation of the local trend (TP) in the TM, and σV is the standard
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deviation for the observation error. Using the initial parameters θ0 = [10−6 0.1 10−6 1]ᵀ,
the optimized parameters θ∗ = [2.16 × 10−6 0.092 6.5 × 10−7 0.054]ᵀ are obtained by
maximizing the joint log-likelihood [21] using the Newton-Raphson method [25].

State Estimation

Figure 3.3 shows the observed flow-rate data in red, the black solid line and the green shaded
region shows the predictions µt|t and the uncertainty bounds µt|t±σt|t using the GMA, and
in blue solid line and pink shaded region using the CKF, for both the training set and the test
set. The grey region shows the forecast period. Figure 3.4 shows the hidden state estimation
of the flow-rate data; where (a) represents the product of the level associated with the TM
and the periodic pattern xS1 , (b) represents the level component xLP associated with the TM
component, and (c) represents the periodic pattern xS1 . Figure 3.4(d) represents the online
estimation of xφ associated with the OAR. The black solid line and the green shaded region
shows the predictions and their ±1σ confidence regions.The test set mean square error (MSE)
and log-likelihood (LL) values obtained using the CKF and the GMA are {0.28,−541.5} and
{0.28,−541.6} respectively. These results show that the proposed methodology has the same
predictive capacity as that of the CKF and also provide interpretable sub-components of the
time-varying amplitude hidden state.
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Figure 3.3 Plot showing the estimated values for the flow-rate data using the GMA and the
CKF. The red solid line shows the observations, the black solid line and the green shaded
region shows the predictions and their ±1σ confidence regions using the GMA, and the blue
solid line and the pink shaded region shows the predictions and their ±1σ confidence regions
using the CKF.
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Figure 3.4 Illustration of the hidden state estimation for the flow-rate data. Figures (a)-(c)
represents the hidden states of the TM component; where (a) represents the product of the
level associated with the TM and the periodic pattern xS1 , (b) represents the level component
xLP associated with the TM component, and (c) represents the periodic pattern xS1 . Figure
(d) represents the online estimation of xφ associated with the OAR. The black solid line and
the green shaded region shows the predictions and their ±1σ confidence regions.

3.3.3 Case Study 3: Double Kernel Regression (DKR)

This case study is conducted on traffic-load data [29,105,106] recorded on the Tamar bridge
in the UK. In the context of structural health monitoring, modeling traffic data correctly is
important for removing its effect on structural responses.

Data Description

The data ranges from September 01 to October 21, 2007. The raw data have 2409 data
points with a uniform time steps of 30 minutes. The raw data shows a constant baseline and
two periodic components having a daily and a weekly periodicity. A multiplicative model is
used to capture the dual periodicity using the product of the two periodic components. The
data is divided into a training set (1649 points) and a test set (760). The entire dataset is
shown in Figure 3.5.
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Figure 3.5 Plot showing traffic-load data recorded on the Tamar bridge in the UK. The test
set is represented by the shaded region.

Model Formulation

The BDLM components used are the local level (LL) to model the constant baseline, two
kernel regression (KR) components [29] each having 50 non-uniform and 30 uniform control-
points to model the periodic patterns with periodicity of 7 days and 1 day respectively,
the online autoregressive component (OAR), and a new component called the double kernel
regression (DKR). The DKR is used to model the product of two periodic patterns represented
by the hidden states xKR1

0 and xKR2
0 . The KR component for modeling the 7 day periodic pattern

requires more control points in the first two days due to a higher complexity in the sub-daily
pattern compared to the rest of the week. Note that increasing the number of control points
can further improve accuracy at the cost of increasing computational cost. In this case, the
transition model has two product terms represented by xp1

t−1 = {xAR
t−1 · x

φ
t−1} for the OAR and

xp2
t = {xKR1

0 ·xKR2
0 }t for the DKR. The vector of hidden states at time t−1 for all the components

is defined as

xt−1 = ︸ ︷︷ ︸
xs3

[
xs1︷ ︸︸ ︷

xLL xAR xφ xp1

xs2︷ ︸︸ ︷
xKR1

0 . . . xKR1
50 xKR2

0 . . . xKR2
30 xp2 ]ᵀt−1. (3.14)

The prediction step in the Kalman filter is carried out sequentially using the mean vector
µt−1|t−1 and the covariance matrix Σt−1|t−1 of Xt−1 as shown in Section 3.3.2. The complete
model matrices A, C, Q and R are described in Appendix D. The vector of unknown
parameters is given by

θ = [σLL
W `KR1 `KR2 σAR

W σV ]ᵀ,

where σLL
W is the standard deviation of the local level, `KR1 is the kernel length for the KR

component with a period of 1 day, `KR2 is the kernel length for the KR component with a period



48

of 7 days, σAR
W is the standard deviation of the AR process, and σV is the standard deviation

for the observation error. Using the initial parameter values θ0 = [10−6 0.05 0.5 0.1 0.1]ᵀ,
the optimized values θ∗ = [1.01 × 10−6 0.359 0.24 0.275 1.93 × 10−7]ᵀ are obtained using
the Newton-Raphson method [25].

State Estimation

Figure 3.6 shows the observed traffic-load data in red, the black solid line and the green
shaded region shows the predictions µt|t and the uncertainty bounds µt|t ± σt|t using the
GMA, and in blue solid line and pink shaded region using the CKF, for both the training
set and the test set. Figure 3.7 presents the hidden state estimation for the traffic-load
data; where (a) represents the product of the two product terms xKR1

0 · xKR2
0 , (b) represents

the periodic pattern xKR1
0 with a 7 day periodicity, and (c) represents the periodic pattern

xKR2
0 with a 1 day periodicity. Figure 3.7(d) represents the online estimation of xφ associated

with the OAR. The black solid line and the green shaded region show the predictions and
their ±1σ confidence regions. These results show that using the GMA in BDLM has better
predictive capacity than the CKF. The predictive capacity is also compared to the results
presented in Nguyen et al. [29] for the same dataset while using a single KR component with
101 control-points having a periodicity of 7 days. Table 3.2 presents the test set mean square
error and the log-likelihood values as well as the training time using the DKR and the KR. The
results demonstrate that DKR has better predictive capacity than the KR component, fewer
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Figure 3.6 Plot showing the estimated values of traffic-load data using the GMA and the
CKF. The red solid line shows the observations, the black solid line and the green shaded
region shows the predictions and their ±1σ confidence regions using the GMA, and the blue
solid line and the pink shaded region shows the predictions and their ±1σ confidence regions
using the CKF.
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hidden states, and also has fewer parameters to optimize, which makes it computationally
faster.
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Figure 3.7 Illustration of the hidden state estimation for the traffic-load data. Figures (a)-(c)
represents the hidden states of the DKR component; where (a) represents the product of the
two product terms xKR1

0 ·xKR2
0 , (b) represents the periodic pattern xKR1

0 with a 7 day periodicity,
and (c) represents the periodic pattern xKR2

0 with a 1 day periodicity. Figure (d) represents
the online estimation of xφ associated with the OAR. The black solid line and the green shaded
region shows the predictions and their ±1σ confidence regions.

Table 3.2 Comparison of mean square error and log-likelihood values for DKR and KR on the
traffic-load dataset.

metric MSE Log-likelihood, ∑T
t=1 ln f(xt|y1:t)

DKR 0.30 −616.96
KR 0.34 −656.30
CKF 0.32 −629.59
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3.4 Conclusion

This chapter presented an analytical approach to handle multiplicative state-space models
by leveraging the Gaussian multiplicative approximation (GMA). The method enables: (1)
the analytical inference of the mean vector and the covariance matrix for the product of two
hidden states in the transition and/or observation models using linear estimation theory, and
(2) analytically tractable online estimation of model parameters as hidden states. In the
first case study, the proposed method was validated and verified using synthetic data for a
first-order autoregressive process. A new generic component developed was called the online
autoregressive (OAR) to evaluate both the AR state and the AR parameter together. For the
second and third case studies, the proposed method was applied to SHM-based real data for
which new components were developed, namely the trend multiplicative (TM) and the double
kernel regression (DKR), in order to handle specific multiplicative models. The three case
studies confirm that the method match or exceeds the performance of the existing nonlinear
Kalman filter methods such as the cubature Kalman filter in terms of both predictive capacity
and computational complexity.
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CHAPTER 4 Modeling Nonlinear Dependency Using State-Based Regression

4.1 Introduction

Bayesian dynamic linear models (BDLM) [18] are probabilistic approaches used for time
series analysis and that are capable of online learning (see Section 2.2.1). These models
consist of generic components that each capture a specific pattern and that can be grouped
together to model time series. With the existing BDLM framework, linear relationships
between independent and the dependent time series can be described by a constant regres-
sion coefficient [21]. Nevertheless, with the existing method, it is not possible to model a
nonlinear relationship between two time series in such a way that the regression coefficient
is not a constant parameter but a function of the current value of the independent time
series. This is particularly important in the context of dam health monitoring where the
displacement at various locations is most often nonlinearly related to the reservoir water
level [17]. Building upon the Gaussian multiplicative approximation described in Section
3.2, this chapter presents the state-based regression (SR) method to model the nonlinear de-
pendency between any two time series such that the state-dependent regression coefficient is
inferred using a new SR component within the BDLM framework. This component provides
an interpretable representation of how each nonlinear dependency explains specific patterns
in the interdependent time series. In addition, the chapter also describes the methodology
for performing state estimation using the SR method along with two case studies derived
from the 16th International Commission on Large Dams (ICOLD) Benchmark 2022 on dam
behavior prediction [107]. The main contributions of this chapter are to

• Provide the methodology for applying the state-based regression method to model the
nonlinear dependency between any two time series.

• Validate the method using two inverted pendulum datasets from the ICOLD workshop.

4.2 Methodology

This section provides the methodology for applying the state-based regression method to
model nonlinear dependency between two time series. First, a kernel method is employed to
obtain the probabilistic weights for a set of regression coefficients associated with the value of
an independent time series at a particular time instant. Thereafter, a weighted summation
of these regression coefficients is carried out in order to obtain the predicted regression
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coefficient using which the dependent value is obtained by multiplying the coefficient with the
independent value. Second, the SR component is created within the BDLM framework that
allows the regression coefficient and the dependent time series to be learned probabilistically
while maintaining analytical tractability.

4.2.1 Kernel Method

The state-based regression is a kernel method relying on a set of control-points, where each
consists of a reference variable xcp that is associated with a regression coefficient represented
by the hidden state xφR . The reference variables are defined as a fixed set of values covering
the entire output range of the independent time series. The hidden state associated with each
control-point is modeled as a Gaussian random variable such that XφR ∼ N (xφR ;µφR

, (σφR)2),
where µφR is the expected value and (σφR)2 is the variance. Figure 4.1 shows the schematic
plot for a set of five control-points, (xcp, xφ

R)i,∀i = 1 : 5, where each point is associated with
a value for xcp as well as the expected value µφRand uncertainty bound given by µφR ± σφR .

-2 0 2
-2

0

2

xcp

x
φ
R

(xcp, µφ
R

)i µφ
R ± σφ

R

Figure 4.1 Illustration of the set of control-points where each point marked in red circle
(xcp, µφ

R)i is associated with a value for the reference variable xcp as well as the expected
value of the hidden state µφR . The uncertainty bounds for the hidden state µφR ± σφ

R are
shown by the black error bars.

The Gaussian radial basis function (RBF) kernel [25] is used to measure the similarity between
the hidden state associated with the independent time series xref and the reference variable
xcp given by

k(xref,xcp) = exp
[
−1

2(`SK)2 (xref − xcp)2
]
, (4.1)
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where k(xref,xcp) gives the kernel outputs as a function of the Euclidean distance between
the two covariates xref and xcp, and the kernel length `SK. Figure 4.2 shows an illustrative
example of the kernel outputs k(xref,xcp) obtained using the independent time series xref

marked in solid blue line and the set of control-points xcp marked in red circles that cover the
entire output range of xref, i.e., [−1.5, 1.5]. In Figure 4.2, xref

t is the value of the independent
time series at the time instant t denoted by the black asterisk. Following Equation 4.1, the
kernel outputs at time t which are marked by red crosses are obtained using xref

t and the
control-points xcp.

-1.5

0

1.5

Timestamp

x
r
e
f

xcp xreft

k(xreft , xcp,2)

k(xref, xcp)

k(xreft , xcp)

Figure 4.2 Illustrative example showing the process for obtaining the kernel outputs using
the independent time series xref and the set of control-points xcp at a given instant of time
t. The control-points are marked by red circles that cover the entire output range of xref,
i.e., [−1.5, 1.5], the independent time series xref is marked in solid blue line, the value of the
independent time series xref

t at time t is marked by the black asterisk, and the kernel outputs
k(xref,xcp) at time t are denoted by red crosses. The Gaussian radial basis function (RBF)
is represented by the purple solid line as defined in Equation 4.1.

Furthermore, these kernel outputs are normalized in order to obtain probabilistic weights
for each hidden state xφR . Thereafter, the hidden state associated with the state-dependent
regression coefficient xφ

R

0 is computed using a weighted summation of the normalized kernel
outputs k̃(xref,xcp) and the control-point’s hidden states xφR . Finally, the hidden state
associated with the interdependent time series xD is obtained by multiplying the reference
variable xref with the state-dependent regression coefficient xφ

R

0 such that xD = xφ
R

0 · xref.

Given that the input Xref ∼ N (xref;µref, (σref)2) is a Gaussian random variable due to the
fact that it is a hidden state inferred from the observations, the output of k(xref,xcp) from
Equation 4.1 is also a random variable. For maintaining the analytical tractability, the kernel
function is linearised using a 1st order Taylor series expansion at µref such that

k(xref,xcp) ≈ xSK = k(µref,xcp) + k′(µref,xcp)(xref − µref), (4.2)
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where the random kernel outputs k(xref,xcp) are represented by the hidden state vector xSK,
k(µref,xcp), and k′(µref,xcp) represents the kernel output and the first-order derivative at
µref, where µref ≡ E[Xref]. Using Equation 4.2, the raw and the normalized expected kernel
outputs are obtained by

µSK = exp
[
−1

2(`SK)2 (µref − xcp)2
]
, (4.3)

µ̃SK = µSK∑
µSK ,

where µSK and µ̃SK represents the raw and the normalized expected kernel outputs for the
hidden state vector xSK and x̃SK. The normalized 1st order derivative of xSK evaluated at µref

is given by

k̃′(µref,xcp) = exp
[
−1

2(`SK)2 (µref − xcp)2
]
· −(µref − xcp)

(`SK)2 · µ
SK

µ̃SK . (4.4)

Using Equations 4.2-4.4 and the variance of Xref, the variance and covariance terms in the
covariance matrix of X̃SK are given by

var(X̃SK
i ) = (k̃′(µref,xcp))2 · (σref)2,

cov(X̃SK
i , X̃

SK
j ) = k̃′(µref

i , xcp
i ) · k̃′(µref

j , xcp
j ) · (σref)2.

The cross-covariance between X̃SK and any other Gaussian random variable X is given by

cov(X, X̃SK) = k̃′(µref,xcp) · cov(X,Xref).

The SR method also allows for modeling multiple pair of dependencies where more than one
independent time series can be used to model a dependent time series. In such cases, a
separate random variable is considered for the normalized kernel outputs associated with
each independent time series. The cross-covariance between the random variables X̃SK

k and
X̃SK

l for any kth and lth time series is given by

cov(X̃SK
k,i, X̃

SK
l,j ) = k̃′(µref

k,i , x
cp
k,i) · k̃′(µref

l,j , x
cp
l,j) · cov(Xref

k , Xref
l ).

where {µref
k,i , x

cp
k,i} and {µref

l,i , x
cp
l,i} represents the expected values and the fixed set of points

for the two independent hidden states Xref
k and Xref

l , and cov(Xref
k , Xref

l ) represents the
covariance between them.
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4.2.2 State Regression Component

Within the BDLM framework, a new generic component called the state regression (SR) is
created so that nonlinear relationships between time series can be modeled and can also be
combined with other generic components while maintaining the analytical tractability. The
SR component provides the estimated values µt|t and their uncertainty bounds µt|t ± σt|t for
the predicted regression coefficient XφR

0 and the predicted pattern for the dependent time
series XD. The SR component includes N hidden states for the normalized kernel outputs
such that x̃SK = [x̃SK

1 x̃SK
2 . . . x̃SK

N ]ᵀ; N + 1 hidden states for the regression coefficient that
includes N hidden states associated with the control-points, xφR = [xφ

R

1 xφ
R

2 . . . xφ
R

N ]ᵀ and the
hidden state for the predicted regression coefficient xφ

R

0 ; the hidden state for the dependent
time series, xD = (xφ

R

0 · xref), and N product terms, xp = [xp1 xp2 . . . xpN ]ᵀ, where, xpi =
(x̃SK

i ·x
φR

i );∀i = 1 : N. The GMA (see Section 3.2) is used to compute the moments associated
with the product terms. The predicted regression coefficient is computed using the weighted
summation of the normalized kernel outputs, x̃SK and the hidden states for the control-points
xφ

R so that,

xφ
R

0 = x̃SK
1 x

φR

1 + x̃SK
2 x

φR

2 + . . .+ x̃SK
N x

φR

N . (4.5)

Finally, the hidden states for the SR component can be grouped together as

xSR = [(x̃SK)ᵀ (xφR)ᵀ xφ
R

0 xD (xp)ᵀ]ᵀ. (4.6)

The transition matrix for the SR component of size 3N + 2 is formulated as

ASR =



0N 01×N 0 0 01×N
... IN 0 0 01×N
... . . . 0 0 11×N
... . . . . . . 0 01×N

sym. . . . . . . . . . 0N


.

The hidden states for the control-points transition from t − 1 to t as a random walk, i.e.
xφ

R

t = xφ
R

t−1 +wφR

t , as represented by IN in ASR. Similarly to the procedure in Section 3.2.2,
the kernel outputs and the product terms are merely placeholders as represented by 0N to
simplify the use of the method. The observation matrix CSR is given by

CSR = [0ᵀ
N×1 0ᵀ

N×1 0 1 0ᵀ
N×1] , (4.7)
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where the only hidden state observable is the one associated with the dependent time series
i.e., xD.

4.3 Applied Examples

This section presents two case studies illustrating the application of the SR method for each
of the two displacement datasets obtained from the 16th ICOLD Benchmark 2022 [14, 107].
The data provides the radial displacement measurements in mm from inverted pendulums
placed within the dam. Figure 4.3(a) shows the front view of the concrete arch dam and
Figure 4.3(b) presents the elevation view showing the two inverted pendulums placed in
the dam’s central blocks 2 and 3 referred to as CB2 and CB3 [14]. In each case study, the
datasets involved and the pre-processing steps are described, followed by model forecasting
and interpretation.

(a) Front view (b) Elevation view

Figure 4.3 Illustration showing (a) the front view of the dam and (b) the inverted pendulums
placed in the dam’s central blocks 2 and 3 (CB2 and CB3) that measures the dam’s radial
displacement reproduced from the ICOLD Benchmark [14].

4.3.1 Case Study 1 – CB2 Time Series

This case study is conducted on the CB2 time series which measures the dam’s radial dis-
placement between the altitudes 236m and 196m, i.e., between under the crest and the toe
of the dam.
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Data Description

The CB2 dataset is available from the year 2000 to 2012 with an average data acquisition
frequency of one data point every 1.5 week. Moreover, the daily reservoir water level and the
air temperature time series are also available from the period 2000 to 2018; these two are
used as explanatory variables to build a prediction model for CB2. The TB dataset is selected
for the temperature as it takes into account the altitude of the dam and is also calculated by
interpolating from several measuring stations. The stationary seasonal pattern is removed
from the temperature time series and several moving averages such as {1, 7, 14, 28, 54} days
of the residuals are considered for taking into account the thermal inertia of the dam [17,108].
Furthermore, the water level time series is divided into two separate datasets to isolate the
effect of the average long-term trend and its short-term periodic pattern. Figure 4.4(a) shows
the raw CB2 data using red dotted points, Figure 4.4(b) presents the raw daily dataset for
water level in red solid line, and Figure 4.4(c) provides the mean-centered data showing the
short-term periodic pattern in blue solid line and the average long-term trend (xL) in red
solid line. Figure 4.4(d) presents examples of moving averages (MA) for the residuals of
temperature such as 7 and 54 days. In addition, the raw water level data presented in Figure
4.4(b) is truncated to 196 m in order to account for the physical constrain associated with
the bottom of the dam. This step is carried out before centering the dataset as shown by the
lower flat regions in Figure 4.4(c).

Model Formulation

Each of the four time series, i.e., displacement, mean-centered water level, average long-
term trend, and temperature moving averages are modeled using set of BDLM components.
The mean-centered water level is modeled using the AR component that captures the short-
term periodic pattern while the average long-term trend (xL) is modeled using a local trend
component with a non-zero QLT matrix to allow the model to capture the non-stationary
pattern. The residuals for temperature are also modeled using the AR component with which
linear dependencies are considered through the regression coefficients βT−MA in order to model
the daily fluctuations in the CB2 data. Note that nonlinear dependencies with the temperature
did not improve the predictions and hence, are not considered in this study. Finally, the CB2
dataset is modeled using a local level to model the constant baseline, a kernel regression
to model the periodic pattern, two state regression (SR) components, i.e., SR1 and SR2, to
model nonlinear dependencies of displacement on 1) mean-centered water level (WL1) and 2)
average long-term trend (WL2), and the AR to model the residuals. In this case study, 20
control-points are considered for both the SR and the KR components. The vector of hidden
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Figure 4.4 Illustration showing the available CB2 dataset along with the reservoir water level
and examples of moving averages (MA) for the residuals of temperature (TB);(a) shows the
raw CB2 data using red dotted points, (b) presents the raw daily dataset for water level in
red solid line, (c) provides the mean-centered data showing the short-term periodic but non-
harmonic fluctuations in blue solid line along with the average long-term trend (xL) in red
solid line, and (d) presents 7 and 54 days MA for TB.

states for all the components combined together at time t are

xt= ︸ ︷︷ ︸
N1︸ ︷︷ ︸

N3︸ ︷︷ ︸
N2

CB2︷ ︸︸ ︷
[xLL (xKR)ᵀ xAR

WL1︷ ︸︸ ︷
xL,WL1xLT (x̃SK1)ᵀ (xφR

1)ᵀ xφ
R
1

0 xD1 (xp1︸ ︷︷ ︸
xSR1

)ᵀ
WL2︷ ︸︸ ︷

xAR,WL2 (x̃SK2)ᵀ (xφR
2)ᵀ xφ

R
2

0 xD2 (xp2︸ ︷︷ ︸
xSR2

)ᵀ
T−MA︷ ︸︸ ︷

(xAR)ᵀ]ᵀt ,

(4.8)

where the hidden state vectors for the SR components xSR1 = [(x̃SK1)ᵀ (xφR
1)ᵀ xφ

R
1

0 xD1 (xp1)ᵀ]ᵀ

and xSR2 = [(x̃SK2)ᵀ (xφR
2)ᵀ xφ

R
2

0 xD2 (xp2)ᵀ]ᵀ, are defined using Equation 4.6 for which the
reference hidden states are xL,WL1 and xAR,WL2 for the nonlinear dependency with WL1 and WL2,
respectively.
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State Estimation

Using the prior knowledge of the hidden state vector x defined in Equation 4.8, the objective
is to obtain its posterior knowledge using the Kalman filter. This procedure can be done
analytically and is summarized as follows:

The first task is to obtain the prior moments for the normalized kernel outputs x̃SK associated
with the SR component. This step is carried out using the procedure described in Section
4.2.1 that uses the moments for the hidden states XL,WL1

t−1|t−1 and XAR,WL2
t−1|t−1 defined in the prior

moments µt−1|t−1 and Σt−1|t−1. The updated prior mean vector µ1,t−1|t−1 and covariance
matrix Σ1,t−1|t−1 are obtained by

µ1,t−1|t−1 = µt−1|t−1 +
[

01×N1 (µ̃SK1)ᵀ 01×(2N+3) (µ̃SK2)ᵀ 01×(2N+7)

]ᵀ
t−1|t−1

,

Σ1,t−1|t−1 = Σt−1|t−1 + ΣA
t−1|t−1 + (ΣA

t−1|t−1)ᵀ, (4.9)

where N1 represents the total number of hidden states from xLL of CB2 up to xLT of WL1 in
the hidden state vector x as shown in Equation 4.8, N is the total number of control-points
for the SR component, and the matrix ΣA is given by

ΣA
t−1|t−1 =

[
0X×N1 cov(X, X̃SK1) 01×(2N+3) cov(X, X̃SK2) 0X×(2N+7)

]
t−1|t−1

,

which consists of only the covariance terms between the state vector X and the hidden
states for the normalized kernel outputs, i.e., cov(X, X̃SK1) and cov(X, X̃SK2), along with
sub-matrices of zeros to make the matrix addition compatible. Note that X represents the
total number of hidden states in x.

Using the moments for the normalized kernel outputs as shown in Equation 4.9 and the
Gaussian multiplicative approximation (GMA), the second task is obtain the moments for
the product terms xp1 = xSK1 · xφR

1 and xp2 = xSK2 · xφR
2 in the two SR components. The

updated prior moments µ2,t−1|t−1 and Σ2,t−1|t−1 are

µ2,t−1|t−1 = µ1,t−1|t−1 +
[

01×N2 (µp1)ᵀ 01×(2N+3) (µp2)ᵀ 01×5

]ᵀ
t−1|t−1

,

Σ2,t−1|t−1 = Σt−1|t−1 + ΣB
t−1|t−1 + (ΣB

t−1|t−1)ᵀ, (4.10)

where N2 represents the total number of hidden states from xLL of CB2 up to xD1 of WL1 in the
hidden state vector x as shown in Equation 4.8 and the matrix ΣB

t−1|t−1 is given by

ΣB
t−1|t−1 =

[
0X×N2 cov(X,Xp1) 01×(2N+3) cov(X,Xp2) 0X×5

]
t−1|t−1

.
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Using the prior mean vector µ2,t−1|t−1 and covariance matrix Σ2,t−1|t−1 defined in Equation
4.10, and the matrices A and Q, the next task is to perform the prediction step of the Kalman
filtering procedure (see Section 2.2.2). This task is further divided into two steps where first,
the predicted mean vector µ̃1,t|t−1 and covariance matrix Σ̃1,t|t−1 at time step t are obtained
from

µ̃1,t|t−1 = Aµ2,t−1|t−1, (4.11)

Σ̃1,t|t−1 = AΣ2,t−1|t−1Aᵀ + Q, (4.12)

where A is the global transition matrix and Q is the process error covariance matrix associ-
ated with the process error terms. The mathematical formulation for the model matrices A,
C, Q, and R defining the transition and observation equations are presented in Appendix
F. By performing this step, the predicted regression coefficients, i.e., xφ

R
1

0 and xφ
R
2

0 , defined in
Equation 4.5 are automatically obtained because this information is embedded in the matrix
ASR within the global A matrix.

The final task in the prediction step is to leverage GMA for obtaining the moments of the
hidden states associated with the two interdependent time series, namely xD1 = (xφ

R
1

0 · xL,WL1)
and xD2 = (xφ

R
2

0 · xAR,WL2),

µ̃t|t−1 = µ̃1,t|t−1 +
[

01×N3 (µD1)ᵀ 01×(2N+2) (µD2)ᵀ 01×(N+5)

]ᵀ
t|t−1

,

Σ̃t|t−1 = Σ̃1,t|t−1 + ΣC
t|t−1 + (ΣC

t|t−1)ᵀ, (4.13)

where N3 represents the total number of hidden states from xLL of CB2 up to xφ
R
1

0 in the hidden
state vector x as shown in Equation 4.8 and the matrix ΣC

t|t−1 is given by

ΣC
t|t−1 =

[
0X×N3 cov(X,XD1) 01×(2N+2) cov(X,XD2) 0X×(N+5)

]
t|t−1

.

Using the predicted moments µ̃t|t−1 and Σ̃t|t−1 defined in Equation 4.13, the update step of
the Kalman filter is performed as described in Section 2.2.2. All the steps carried out at
a particular time step t for the proposed state-based regression method are summarized in
Algorithm 1.

Model Forecast

Figure 4.5(a) shows the observed data in red, the estimated values µt|t in black solid line and
their uncertainty bounds µt|t ± σt|t are shown by a green shaded region as obtained using
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Algorithm 1 One-time step of the state-based regression method
Input: µt−1|t−1, Σt−1|t−1, yt, A, C, Q, and R

Prior moments for Normalized Kernel Outputs x̃SK :

1: µ1,t−1|t−1 = µt−1|t−1 +
[

01×N1 (µ̃SK1)ᵀ 01×(2N+3) (µ̃SK2)ᵀ 01×(2N+7)

]ᵀ
t−1|t−1

,

2: Σ1,t−1|t−1 = Σt−1|t−1 + ΣA
t−1|t−1 + (ΣA

t−1|t−1)ᵀ.

Moments for the Product Terms xp1 = xSK1 · xφR
1 and xp2 = xSK2 · xφR

2 :

3: µ2,t−1|t−1 = µ1,t−1|t−1 +
[

01×N2 (µp1)ᵀ 01×(2N+3) (µp2)ᵀ 01×5

]ᵀ
t−1|t−1

,

4: Σ2,t−1|t−1 = Σt−1|t−1 + ΣB
t−1|t−1 + (ΣB

t−1|t−1)ᵀ.

1st Prediction Step:

5: µ̃1,t|t−1 = Aµ2,t−1|t−1,

6: Σ̃1,t|t−1 = AΣ2,t−1|t−1Aᵀ + Q.

2nd Prediction Step:

7: µ̃t|t−1 = µ̃1,t|t−1 +
[

01×N3 (µD1)ᵀ 01×(2N+2) (µD2)ᵀ 01×(N+5)

]ᵀ
t|t−1

,

8: Σ̃t|t−1 = Σ̃1,t|t−1 + ΣC
t|t−1 + (ΣC

t|t−1)ᵀ,

9: rt = yt −Cµ̃t|t−1,

10: K = Σ̃2,t−1|t−1Cᵀ(CΣ2,t−1|t−1Cᵀ + R)−1.

Update Step:

11: µt|t = µ̃t|t−1 + Krt,

12: Σt|t = (I−KC)Σ̃t|t−1.

13: return µt|t, Σt|t

the SR method. Figure 4.5(b) shows the raw water level time series which is available for
the entire duration. The validation and the test data are shown by the gray region; The
training data is from 2000 to 2010, the validation data is from 2010 to 2013 which is marked
by the region between the two dashed lines, and the test data is from 2013 to 2018. The
observations for the period 2013 to 2018 are retrieved from the summary results provided
by the ICOLD Benchmark formulators [107]. The forecasts are produced using the hidden
states for the local level, kernel regression, and autoregressive components associated with
the CB2 dataset, as well as the hidden states for the nonlinear dependency with the two
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Figure 4.5 Plots showing (a) the estimated values for the CB2 time series using the state-
based regression method and (b) the water level time series. The red solid line shows the
observations, the black solid line and the green shaded region shows the predictions and their
±1σ confidence regions. The validation and the test data are shown by the gray region; The
training data is from 2000 to 2010, the validation data is from 2010 to 2013 which is marked
by the region between the two dashed lines, and the test data is from 2013 to 2018.

water level time series and also through the linear regression coefficients associated with the
temperature’s residuals.

The results for the validation and the forecast period show that the method is capable of
accurately identifying the short-term as well as the long-term patterns in the CB2 time series.
However, there is bias in the predictions beyond the year 2016 as the observations have lower
values compared to the predictions. This behavior may be attributed to lower water levels
in the forecast period that are not seen during the training period. Moreover, the nonlinear
relationship between the water level and the displacement time series might also be different
in the forecast period than the one learned during training.

To better evaluate the advantage of identifying nonlinear dependencies, the method proposed
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is compared with a linear dependency model (linear) in BDLM, where constant regression
coefficients are learned in relation to both water level time series. The linear model uses
the same BDLM components as the proposed method excluding the SR component. Figure
4.6(a) shows the forecast values for the CB2 time series using the SR method as well as the
linear model in BDLM for the period 2010 to 2018 and Figure 4.6(b) shows the residuals
collected by the AR component in each of the method. Table 4.1 shows the test RMSE and
the log-likelihood values obtained with the SR method and the linear model in BDLM for
the entire forecast period. Note that these metrics are evaluated using only the observations
available from the period 2010 to 2018. The results show that the linear model has a
poor predictive performance compared to the SR method in terms of both RMSE and log-
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Figure 4.6 Plots showing (a) the forecast values for the CB2 time series using the state-based
regression (SR) method as well as the linear dependency (linear) model in BDLM for the
period 2010 to 2018 and (b) the residuals collected by the AR component in each of the
method. The red solid line shows the observations, the black solid line and the green shaded
region shows the estimated values and their ±1σ confidence regions obtained using the SR
method, while the blue solid line and the pink shaded region shows the predictions and their
±1σ confidence regions obtained using the linear model.
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Table 4.1 Root mean square error (RMSE) and log-likelihood values obtained with the state-
based regression (SR) method and the linear dependency (linear) model in BDLM for the
CB2 dataset.

metric RMSE Log-likelihood
SR 2.80 −793.38
Linear 5.92 −1302.90

likelihood. Moreover, there are significant patterns that remain in the residuals from the
linear model as opposed to the ones obtained from the proposed method. This shows that
the linear model is limited for identifying complex behavior in dam’s displacement that
may arise due to nonlinear dependencies with other explanatory variables such as the water
level.

Model Interpretation

Following the BDLM structure used in this case study, the hidden states that contribute to
the observations are xLL, xD1 , xKR

0 , xD2 , and xAR. Figure 4.7 summarizes the contribution of
these hidden states to the prediction shown in Figure 4.5(a); where (a) demonstrates the
constant average value of the time series shown by the hidden state xLL, (b) represents the
pattern obtained by adding xLL and the interdependent hidden state xD1 associated with the
SR1 component, (c) represents the pattern obtained by adding the kernel regression hidden
state representing the stationary periodic pattern xKR

0 with the hidden states xLL and xD1 , (d)
represents total pattern captured by the addition of the hidden states xLL, xD1 , xKR

0 and the
interdependent hidden state xD2 associated with the SR2 component, and (e) represents the
residuals captured by the AR component. The red solid line presents the observed data, the
black solid line and the green shaded region show the predictions and their ±1σ confidence
regions. The residuals from the CB2 dataset shown in Figure 4.7(e) demonstrate that the
SR method is able to capture the patterns from the data. Moreover, both the nonlinear
dependencies have a significant contribution to the predictions for CB2 in identifying the
non-stationary long-term trend as well as the periodic but non-harmonic fluctuations in the
time series.

Figure 4.8(a)-(d) present the hidden state estimations of the predicted regression coefficient
xφ

R

0 and the interdependent time series xD for the two SR components. Figure 4.8(e) and (f)
show that the estimated regression coefficients are state-dependent as they vary from one
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Figure 4.7 Plot showing the contribution of each of the hidden states to the CB2 predictions
where (a) demonstrates the constant average value of the time series shown by the hidden
state xLL, (b) represents the pattern obtained by adding xLL and the interdependent hidden
state xD1 associated with the SR1 component, (c) represents the pattern obtained by adding
the kernel regression hidden state representing the stationary periodic pattern xKR

0 with the
hidden states xLL and xD1 , (d) represents total pattern captured by the addition of the hidden
states xLL, xD1 , xKR

0 and the interdependent hidden state xD2 associated with the SR2 compo-
nent, and (e) represents the residuals captured by the AR component. The red solid line shows
the observations, the black solid line and the green shaded region shows the predictions and
their ±1σ confidence regions.

time step to another based on the values of the reference variables xLL,WL1 and xAR,WL2. These
coefficients allow us to identify the non-stationary trend as well as periodic fluctuations in the
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CB2 dataset as illustrated in Figures 4.8(a) and (b) that arise due to nonlinear dependencies
on the water level time series.
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Figure 4.8 Plot showing the hidden state estimation of the predicted regression coefficient xφ
R

0
and the interdependent time series xD for the two SR components. The red solid line shows
the observations, the black solid line and the green shaded region shows the predictions and
their ±1σ confidence regions.

Figure 4.9 presents additional information that can be extracted from BDLM; (a) it presents
the relative importance of each component measured by the relative variance of each compo-
nent used and (b) it shows the extracted nonlinear relationships between the interdependent
time series xD1 and the long-term trend xL,WL1 shown by h(xL,WL1), and between xD2 and the
mean-centered water level xAR,WL2 shown by g(xAR,WL2). The results in Figure 4.9(a) shows
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Figure 4.9 Illustration showing (a) the relative importance of each component used for model-
ing CB2 time series, and (b) the extracted nonlinear relationship between the interdependent
time series xD1 and the long-term trend xL,WL1 represented by h(xL,WL1) in blue solid line, and
between xD2 and the mean-centered water level xAR,WL2 represented by g(xAR,WL2) in red solid
line.

the dominant relative importance of the mean-centered water level through the non-linear
dependency g(xAR,WL2), and followed secondly by the periodic pattern xKR

0 . The third most
important contributor is the autoregressive component xAR which represents the residual pat-
tern that cannot be explained by other components. Even though the relative importance of
the long-term trend in the water level xL,WL1 is significantly less than even the residual term,
it provides the non-stationary baseline for the CB2 time series.

4.3.2 Case Study 2 – CB3 Time Series

This case study is conducted on the CB3 time series which measures the dam’s radial dis-
placement in the foundation between the altitudes 195m and 161m as shown in Figure 4.3.

Data Description

Similarly to the CB2 dataset as described in Section 4.3.1, the CB3 dataset is also available
from the year 2000 to 2012 with an average data acquisition frequency of one data point every
1.5 week. The water level and the air temperature time series are also used as explanatory
variables. The raw water level time series is further divided into two components to model the
nonlinear dependency of displacement with its average long-term trend and the short-term
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periodic pattern. Moreover, the water level is capped below 196m to account for the bottom
of the dam. Also, moving averages of {1, 7, 14, 28, 54} days of the temperature’s residuals are
considered to model the daily fluctuations in the displacement data that occurs as a result
of thermal inertia of the dam [17,108].

Model Formulation

As described in Section 4.3.1, the same BDLM components are used to model the CB3 dataset
as used to formulate the prediction model for the CB2 dataset. The mean-centered water level
is modeled using the AR component that captures the short-term periodic pattern while the
average long-term trend (xL) is modeled using a local trend component with a non-zero
QLT matrix. The residuals for temperature are also modeled using the AR component with
which linear dependencies are considered through the regression coefficients βT-MA in order to
model the daily fluctuations in the CB3 data. Finally, the CB3 dataset is modeled using a
local level to model the constant baseline, a kernel regression to model the periodic pattern,
two state regression (SR) components, i.e., SR1 and SR2, to model nonlinear dependencies of
displacement on 1) mean-centered water level (WL1) and 2) average long-term trend (WL2),
and the AR to model the residuals.

Model Forecast

Figure 4.10(a) shows the observed data in red, the estimated values µt|t in black solid line
and their uncertainty bounds µt|t±σt|t are shown by green shaded regions as obtained using
the SR method. Figure 4.10(b) shows the raw water level time series which is available from
the year 2000 to 2018. The validation and the test data are shown by the gray region; The
training data is from 2000 to 2010, the validation data is from 2010 to 2013 which is marked
by the region between the two dashed lines, and the test data is from 2013 to 2018. The
test data is retrieved from the results provided by the ICOLD Benchmark formulators [107].
The forecasts are produced using the hidden states for the local level, kernel regression, and
autoregressive components associated with the CB3 dataset, as well as the hidden states for
the nonlinear dependency with the two water level time series and also through the linear
regression coefficients associated with the temperature’s residuals.

The results for the validation and the forecast period show that the method is capable of
accurately identifying the short-term as well as the long-term patterns in the CB2 time series.
However, as seen in the CB2 dataset, there is a considerable bias in the predictions beyond
the year 2016 as a result of lower water levels in the forecast period that is not seen during
the trained period. Figure 4.11 illustrates the model predictions and the residuals obtained
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Figure 4.10 Plots showing (a) the estimated values for the CB3 time series using the state-
based regression method and (b) the water level time series. The red solid line shows the
observations, the black solid line and the green shaded region shows the predictions and their
±1σ confidence regions. The validation and the test data are shown by the gray region; The
training data is from 2000 to 2010, the validation data is from 2010 to 2013 which is marked
by the region between the two dashed lines, and the test data is from 2013 to 2018.

using the SR method and the linear model for the CB3 time series where Figure 4.11(a)
shows the forecast values for the period 2010 to 2018 and Figure 4.11(b) shows the residuals
collected by the AR component in each of the method. Table 4.2 shows the test RMSE and the
log-likelihood values obtained with the SR method and the linear model. Note that these
metrics are evaluated using only the observations available from the period 2010 to 2018. The
results show that the linear model has a poor predictive performance compared to the SR
method in terms of both RMSE and log-likelihood. Moreover, there are significant patterns
that remain in the residuals from the linear model compared to the ones obtained from the
proposed method. Figure 4.11 illustrates the model predictions and the residuals obtained
using the SR method and the linear model for the CB3 time series where Figure 4.11(a)
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Figure 4.11 Plots showing (a) the forecast values for the CB3 time series using the state-based
regression (SR) method as well as the linear dependency (linear) model in BDLM for the
period 2010 to 2018 and (b) the residuals collected by the AR component in each of the
method. The red solid line shows the observations, the black solid line and the green shaded
region shows the estimated values and their ±1σ confidence regions obtained using the SR
method, while the blue solid line and the pink shaded region shows the predictions and their
±1σ confidence regions obtained using the linear model.

Table 4.2 Root mean square error (RMSE) and log-likelihood values obtained with the state-
based regression (SR) method and the linear dependency (linear) model in BDLM for the
CB3 dataset.

metric RMSE Log-likelihood
SR 1.49 −1079.8
Linear 1.51 −1787.2
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shows the forecast values for the period 2010 to 2018 and Figure 4.11(b) shows the residuals
collected by the AR component in each of the method. Table 4.2 shows the test RMSE and the
log-likelihood values obtained with the SR method and the linear model. The results show
that the linear model has a poor predictive performance compared to the SR method in
terms of both RMSE and log-likelihood. Moreover, there are significant patterns that remain
in the residuals from the linear model compared to the ones obtained from the proposed
method. Even though the SR method has a better predictive capacity than the linear model,
the residuals still have non-stationary patterns which cannot be explained by the existing
model setup for the CB3 data. Hence, the prediction model provided by the SR method needs
to be combined with a regime switching approach [28] to detect such non-stationary patterns
in real time.

Model Interpretation

Figure 4.12 summarize the contribution of the hidden states to the predictions shown in
Figure 4.10(a); where (a) demonstrates the constant average value of the time series shown by
the hidden state xLL, (b) represents the pattern obtained by adding xLL and the interdependent
hidden state xD1 associated with the SR1 component, (c) represents the pattern obtained by
adding the kernel regression hidden state representing the stationary periodic pattern xKR

0

with the hidden states xLL and xD1 , (d) represents total pattern captured by the addition of
the hidden states xLL, xD1 , xKR

0 and the interdependent hidden state xD2 associated with the
SR2 component, and (e) represents the residuals captured by the AR component. The red
solid line presents the observed data, the black solid line and the green shaded region shows
the predictions and their ±1σ confidence regions.

The results in Figure 4.12(d) and (e) show that even though significant patterns in the
CB3 dataset could be captured using the SR method, the residuals still have non-stationary
patterns which cannot be explained by the existing model setup. Hence, the prediction model
provided by the SR method needs to be combined with a regime switching approach [28] to
detect such non-stationary patterns in real time.

Figure 4.13 presents additional information that can be extracted from BDLM; (a) presents
the relative importance of each component measured by the relative variance of each com-
ponent used, (b) shows the extracted nonlinear relationships between the interdependent
time series xD1 and the long-term trend xL,WL1 shown by h(xL,WL1), and between xD2 and the
mean-centered water level xAR,WL2 shown by g(xAR,WL2), (c)-(d) shows the state-dependent re-
gression coefficients that vary based on the values of the reference variables xLL,WL1 and xAR,WL2.
The results in Figure 4.13(a) shows the dominant relative importance of the mean-centered
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Figure 4.12 Plot showing the contribution of each of the hidden states to the CB3 predictions
where (a) demonstrates the constant average value of the time series shown by the hidden
state xLL, (b) represents the pattern obtained by adding xLL and the interdependent hidden
state xD1 associated with the SR1 component, (c) represents the pattern obtained by adding
the kernel regression hidden state representing the stationary periodic pattern xKR

0 with the
hidden states xLL and xD1 , (d) represents total pattern captured by the addition of the hidden
states xLL, xD1 , xKR

0 and the interdependent hidden state xD2 associated with the SR2 compo-
nent, and (e) represents the residuals captured by the AR component. The red solid line shows
the observations, the black solid line and the green shaded region shows the predictions and
their ±1σ confidence regions.

water level through the non-linear dependency g(xAR,WL2), and followed secondly by the peri-
odic pattern xKR

0 . The third most important contributor is the autoregressive component xAR
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which represents the residual pattern that cannot be explained by other components. The
relative importance of the long-term trend in the water level xL,WL1 is comparatively less, but
it provides the non-stationary baseline for the CB3 time series.
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Figure 4.13 Illustration showing (a) the relative importance of each component used for
modeling CB3 time series, (b) the extracted nonlinear relationship between the interdependent
time series xD1 and the long-term trend xL,WL1 represented by h(xL,WL1) in blue solid line, and
between xD2 and the mean-centered water level xAR,WL2 represented by g(xAR,WL2) in red solid
line, and (c)-(d) shows the state-dependent regression coefficients that vary based on the
values of the reference variables xLL,WL1 and xAR,WL2.

4.4 Conclusion

The state-based regression (SR) method proposed in this chapter enables modeling nonlinear
dependency between any two time series within the Bayesian dynamic linear model (BDLM)
framework. The SR method employs a Gaussian radial-basis kernel function to obtain the
probabilistic weights for a set of regression coefficients associated with the hidden state
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representing an independent time series at a particular time instant. Thereafter, a weighted
summation of the regression coefficients is carried out in order to infer the predicted regression
coefficient. Finally, the interdependent time series is obtained by the product of the hidden
state associated with the predicted regression coefficient and the independent time series.

A new SR component is developed in the BDLM framework using which the state-dependent
regression coefficient and the interdependent time series can be analytically inferred online as
hidden states by leveraging the Gaussian multiplicative approximation as described in Section
3.2. This component provides an interpretation of how each nonlinear dependency explains
specific patterns in the interdependent time series. Two case studies were conducted using
two of the dam’s radial displacement datasets obtained from the 16th ICOLD Benchmark
2022 [14, 107]. The results for both the case studies show that the method is capable of
accurately identifying the short-term as well as long-term stationary patterns. The method
provides interpretable components such that the estimates and the uncertainties for the
hidden states involved in the prediction model are available at each instant of time. In
comparison to the linear dependency model available in the exiting BDLM framework, the
predictive performance for the SR method is superior in terms of both test RMSE and log-
likelihood.

However, the presence of non-stationary patterns in the residual for the CB3 dataset sug-
gests that the predictive model would require a regime switching framework to identify such
non-stationary patterns in real-time. Moreover, it might be worth investigating additional
explanatory variables that can identify specific dam behavior such as creep or creep-relief
effects [109]. Furthermore, a key limitation in the proposed method is the need for feature
engineering to pre-select the explanatory variables such as the average long-term trend, mean-
centered water level, and the moving averages of the air temperature’s residuals as shown in
the case studies that require domain specific knowledge and also can be time consuming. In
addition, the error variances representing the prediction model’s aleatory uncertainties need
to be obtained using offline gradient-based methods such as Newton-Raphson [25] which are
typically computationally demanding.
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CHAPTER 5 Approximate Gaussian Variance Inference for
Univariate Process Error in the Context of State-Space Models

5.1 Introduction

In the context of state-space models, the process error represents the inaccuracy of per-
fectly modeling the change in a physical quantity over time. This chapter presents a novel
method called the approximate Gaussian variance inference (AGVI) that enables analyti-
cal Bayesian inference of the variance term σ2

W associated with the univariate process error
W ∼ N (w; 0, σ2

W ). By definition, the expected value of the square of the process error W 2

is equal to the error variance parameter, i.e., E[W 2] = σ2
W , given that W has a zero mean.

With the approximation that W 2 is Gaussian such that W 2 ∼ N (w2;E[W 2], var(W 2)), the
error variance parameter is same as the mean parameter for the probability density function
(PDF) of W 2. Subsequently, considering that this mean parameter E[W 2] is a random vari-
able itself, inferring its posterior will be analogous to computing the posterior for the error
variance term.

The method proposed utilizes this definition and formulates the relationship between the
process error W , the square of process error W 2, and E[W 2] by leveraging the Gaussian
multiplicative approximation (GMA) (see Section 3.2) that provides the exact moments for
W 2. Thereafter, the Gaussian conjugate prior (see Section 2.3.1) is used to analytically infer
the unknown mean parameter for W 2, i.e., E[W 2] = σ2

W , using closed-form equations. This
chapter provides the detailed mathematical formulation and the methodology for applying
AGVI in the case of a univariate process error along with two applied examples. The main
contributions of this chapter are to

• Provide an analytical Bayesian inference method for performing closed-form online
estimation of the univariate process error variance term.

• Provide the mathematical formulation and the methodology of applying AGVI in the
Bayesian dynamic linear model (BDLM) framework.

• Validate and verify the performance of the AGVI using synthetic and real data.

5.2 Approximate Gaussian Variance Inference

This section presents the mathematical formulation of the AGVI for inferring the variance
parameter σ2

W associated with the univariate process error W ∼ N (w; 0, σ2
W ) in the context
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of state-space models.

5.2.1 Problem Formulation

Let us consider an N-dimensional hidden state vector at time t− 1, xt−1 = [x1 x2 · · ·xN]ᵀt−1,
having a Gaussian PDF such that Xt−1|t−1 ∼ N (xt−1;µt−1|t−1,Σt−1|t−1) where µt−1|t−1 =
E[Xt−1|y1:t−1] is the prior mean and Σt−1|t−1 = var(Xt−1|y1:t−1) is the prior covariance
matrix. Note that for brevity, the notation Xt−1|t−1 is used as a shorthand for Xt−1|y1:t−1.
The transition and the observation equations for the Bayesian dynamic linear models (BDLM)
(see Section 2.2.1) are given by

xt = Axt−1 +wt, w : W ∼ N (0,Q),
yt = Cxt + vt, v : V ∼ N (0,R),

(5.1)

where A is the transition matrix, wt = [w1 w2 · · ·wN]ᵀt is a vector of process error terms for
which Q is the process error covariance matrix, yt is the observation, C is the observation
matrix, and vt is the observation error for which the observation error variance is R = σ2

V .
The A and Q matrices are constructed by assembling S specific components given by

A = blkdiag(A1,A2, · · · ,AS),

Q = blkdiag(Q1,Q2, · · · ,QS), (5.2)

where blkdiag(·,·) refers to block diagonal assembly of the individual components. The Q
matrix in Equation 5.2 can be further described by

Q = blkdiag(Q1(σ2
W1 ,∆t),Q

2(σ2
W2 ,∆t), · · · ,Q

S(σ2
WS
,∆t)), (5.3)

where each component Qi(σ2
Wi
,∆t) can be represented as a function of the error variance

parameter σ2
Wi

and ∆t. For example, consider that the BDLM comprises two generic com-
ponents, namely the local trend (LT) and the autoregressive (AR), for which the global Q
matrix is

Q =

 σ2
LT ·

 ∆t4
4

∆t3
2

∆t3
2 ∆t2

 0

0 σ2
AR

 , (5.4)
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where the Q matrices associated with the local trend Q1 and the autoregressive component
Q2 are

Q1 = σ2
LT ·

 ∆t4
4

∆t3
2

∆t3
2 ∆t2

 , Q2 = σ2
AR,

where σ2
LT and σ2

AR are the process error variance terms associated with the LT and the AR
components, respectively [21]. Both matrices Q1 and Q2 are assembled in a block diagonal
arrangement to get the Q matrix as shown by Equation 5.4. Moreover, for a time series
consisting of a single observation variable yt, it is only possible to infer σ2

W for one component
Qi, while all other should be either known or 0. This is because only a single unknown
variable can be uniquely solved per equation. Hence, for each time series there is one unique
process error variance that can be inferred. The next section describes the various steps for
performing AGVI in order to obtain the posterior PDF for the error variance parameter.

5.2.2 Methodology

The proposed method considers the process error variance term σ2
W = E[W 2] as a random

variable represented by W 2 having a Gaussian PDF such that

W 2 ∼ N (w2;µW 2
, (σW 2)2), (5.5)

where µW 2 and (σW 2)2 are the hyper-prior mean and variance for W 2. Using Equation 5.5,
the PDF of W can be re-written as

W ∼ N (w; 0, w2). (5.6)

Hence, the first objective is to obtain the marginal PDF of W such that the random variance
can be marginalized out. The following lemmas are invoked to show that the marginal PDF
ofW can be obtained using the marginal PDF ofW 2. The subsequent proposition uses these
lemmas to provide the prior predictive PDF for W at a time t.

Lemma 1. Given that W is Gaussian with a zero mean and W 2 is approximated as a
Gaussian random variable given by W 2 ∼ N (w2;µW 2

, (σW 2)2) for which the exact moments
are provided by the GMA (see Section 3.2), it can be shown that the PDF of W 2 is dependent
only on the mean parameter µW 2 so that

W 2 ∼ N (w2, µW
2
, 2(µW 2)2)),

where the variance term (σW 2)2 is equal to 2(µW 2)2. As a result, the PDF f(w2|µW 2
, (σW 2)2)
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can be shown by f(w2|µW 2).

Proof. See Appendix G.

Lemma 2. Given that the parameter µW 2 in f(w2|µW 2) is considered as a Gaussian random
variable W 2 ∼ N (w2;µW 2

, (σW 2)2), the mean and variance of the prior predictive PDF of
W 2
t|t−1 are given by

µW
2

t|t−1 = µW
2

t−1|t−1,

(σW 2

t|t−1)2 = 3(σW 2
t−1|t−1)2 + 2(µW 2

t−1|t−1)2,

where µW 2
t−1|t−1 and (σW 2

t−1|t−1)2 are the prior moments for W 2
t−1|t−1.

Proof. See Appendix H.

Proposition 1. Considering that the mean parameter µW 2 is itself a random variable W 2

so that

W 2
t−1|t−1 ∼ N (w2

t−1 ;µW 2
t−1|t−1, (σW

2
t−1|t−1)2),

where µW 2
t−1|t−1 and (σW 2

t−1|t−1)2 are the hyper-prior mean and variance for W 2
t−1|t−1, the error

variance σ2
W can be made equal to

σ2
W = µW

2
t−1|t−1. (5.7)

Proof. Using Lemmas 1 & 2, and considering the one-to-one relationship between the mo-
ments of W and W 2, the prior predictive PDF of Wt|t−1 can be formulated as

f(wt) = N (wt; 0, µW 2
t−1|t−1),

where by Lemma 2, the variance of Wt|t−1 is σ2
W = E[W 2

t|t−1] = µW
2

t−1|t−1.

Using Equation 5.7, the prior PDF for the process error Wt−1|t−1 is reparameterized as
Wt−1|t−1 ∼ N (0, µW 2

t−1|t−1).

The next objective is to perform the prediction step in the filtering procedure (see Section
2.2.2) using the model matrices A, C, Q, and R defined in Section 5.2.1 and the prior
knowledge of σ2

W . The transition model for w2 is w2
t = w2

t−1, where the hidden state w2 is
assumed to be constant from t − 1 to t. Using the prior knowledge for W , the augmented
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state vector ht−1 at any time t− 1 is given by

ht−1 = [x w]ᵀt−1. (5.8)

The prior predictive PDF of the hidden states Ht|t−1 is given by

Ht|t−1 ∼ N (ht;µHt|t−1,ΣH
t|t−1),

where, using Equations 5.1 & 5.7, the mean vector and the covariance matrix are given by

µHt|t−1 =
Aµt−1|t−1

0


t|t−1

,

ΣH
t|t−1 =

AΣt−1|t−1Aᵀ + Q ΣXW

(ΣXW )ᵀ µW
2


t|t−1

. (5.9)

The covariance term ΣXW
t|t−1 between Xt|t−1 and Wt|t−1 in Equation 5.9 is formulated as

ΣXW
t|t−1 = cov(AXt−1|t−1 +Wt|t−1,Wt|t−1), (5.10)

= cov(W ,W )t|t−1,

whereWt|t−1 is a vector of random variables representing the process error terms in the state
vector h. Moreover the hidden states Xt−1|t−1 and the process error Wt|t−1 are assumed to
be independent of each other. The mean and variance of Yt|t−1 ∼ N (yt;µY , σ2

Y ) are given by

µY = Cµt|t−1 +��*
0µV ,

σ2
Y = CΣt|t−1Cᵀ + σ2

V ,

given thatX and V are assumed to be independent of each other. The covariance term ΣHY

between Ht|t−1 and Yt|t−1 is

ΣHY = ΣH
t|t−1F

ᵀ
t ,

where the observation matrix is Ft = [C 0].

The inference for the parameter σ2
W requires two update steps; In the first step, the posterior

PDF f(ht|y1:t) is estimated using the observation model defined in Equation 5.1 so that

f(ht|y1:t) = f(ht, yt|y1:t−1)
f(yt|y1:t−1) ≈ N (ht;µHt|t,ΣH

t|t), (5.11)
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which we approximate by a Gaussian distribution with a posterior mean vector µHt|t and a
covariance matrix ΣH

t|t that are obtained using the predicted moments provided in Equation
5.9 and the Gaussian conditional equations such that

µHt|t = µHt|t−1 + ΣHY

σ2
Y

(yt − µY ),

ΣH
t|t = ΣH

t|t−1 −
ΣHY ·Σᵀ

HY

σ2
Y

.

Now that we have the posterior PDF f(wt|y1:t) from Equation 5.11, we move to the second
update step where we use this new information of W at time t to update our current knowl-
edge of W 2. Figure 5.1 shows the graphical model representing the relationship between
the random variables Yt|t−1, Xt|t−1, Wt|t−1, W 2

t|t−1 and W 2
t|t−1 . Note that while considering

µW = 0, the first moment of W 2 is equal to the second moment of W (under Lemma 1). In
this case, the knowledge of W is fully defined by the knowledge of W 2, which is denoted in
Figure 5.1 by an undirected solid line between the nodes W 2 and W . Following the struc-
ture depicted in Figure 5.1, the subsequent lemmas are provided for obtaining the posterior
knowledge of W 2

t|t .

X

WW 2W 2

µW 2

(
σW 2

)2

Y

Figure 5.1 Illustration showing the graphical model for the online inference of the error
variance parameter. The hidden and observed state variables are denoted by green and
violet nodes. The double arrows on the nodes X and W 2 represent that these variables are
learnt recursively over time. For brevity, the subscript t|t − 1 is dropped from each of the
variables.

Lemma 3. Considering the joint PDF of the random variables Yt|t−1, W 2
t|t−1, and W 2

t|t−1 ,

and marginalizing out W 2 from the joint PDF, the posterior PDF of W 2 can be obtained by
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the following integral

f(w2
t|y1:t) =

∫
f(w2

t |y1:t) · f(w2
t|w2

t ,y1:t−1)dw2
t .

Proof. See Appendix I.

Lemma 4. The posterior mean and variance of W 2
t|t are

µW
2

t|t = (µWt|t)2 + (σWt|t )2,

(σW 2

t|t )2 = 2(σWt|t )4 + 4(σWt|t )2(µWt|t)2.

Proof. See Appendix J.

The Lemmas 3 & 4 are used for proving the following proposition.

Proposition 2. The posterior mean and variance of W 2
t|t ∼ N (µW 2

t|t , (σW
2

t|t )2) are given by

µW
2

t|t = µW
2

t|t−1 +Kt(µW
2

t|t − µW
2

t|t−1),

(σW 2
t|t )2 = (σW 2

t|t−1)2 +K2
t ((σW 2

t|t )2 − (σW 2

t|t−1)2),

Kt =
(σW 2

t−1|t−1)2

(σW 2
t|t−1)2 .

Proof. See Appendix K.

Both the update steps 1 and 2 are employed recursively as observations are collected in order
to first estimate the posterior knowledge of W and then use this to update our knowledge of
the expected value of W 2, i.e., W 2, which is a variable that is equal to σ2

W , the parameter we
seek to infer. All the steps performed in a particular time step t are summarized in Algorithm
2.

5.3 Applied Examples

This section presents two case studies illustrating the application of AGVI for inferring the
univariate process error variance. For the first case study, the online state estimation of the
error variance is provided along with statistical consistency tests for showcasing the opti-
mality of the filter, empirical validation of the uncertainty associated with the error variance
estimates, as well as the impact of the Q

R
ratio on the posterior mean estimate µT|T of the error

variance. Moreover, the performance of the AGVI method is also compared to existing adap-
tive Kalman filtering (AKF) approaches namely the indirect correlation method (ICM) [48],
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the adaptive limited memory filter (ALMF) [63], and the sliding window variational adaptive
Kalman filter (SWVAKF) [70]. For the second case study, the AGVI method is applied to
the traffic-load data for which the predictive performance as well as the computational time
is compared with the Newton-Raphson method.

5.3.1 Case Study 1

For this case study, the first-order autoregressive process (see Section 3.3.1) is considered for
which the process error variance σ2

AR is unknown and needs to be inferred. Data is simulated
using the parameters φAR = 0.9, σV = 0.01, and the true value of σ2

AR is randomly selected
from the prior PDF of W 2

0|0 such that

W 2
0|0 ∼ N (w2

0 ;µW 2
0|0 , (σW

2
0|0 )2),

where three different true values are generated by considering different prior initialization
for the pair of {µW 2

0|0 , (σW
2

0|0 )2} such that the three cases are (a) {µW 2
0|0 = 0.2, (σW 2

0|0 )2 = 0.01},
(b) {µW 2

0|0 = 2, (σW 2
0|0 )2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2
0|0 )2 = 100}. Figure 5.2 shows the online

state estimation of the error variance term for each of the three cases. The true variance
value is shown by the red dashed line and the estimated values and their ±1σ uncertainty
bound are shown in black and green shaded area. These results confirm that the method is
able to perform online inference for different magnitudes of the error variance starting from
arbitrary initial estimates.
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Figure 5.2 Online estimation of the error variance term for each of the three cases for which
the different prior initializations are (a) µW 2

0|0 = 0.2, (σW 2
0|0 )2 = 0.01, (b) µW 2

0|0 = 2, (σW 2
0|0 )2 = 1,

and (c) µW 2
0|0 = 20, (σW 2

0|0 )2 = 100. The true σ2
AR value in each case is shown in red dashed line,

while the estimated values and their ±1σ uncertainty bound are shown in black and green
shaded area.

The optimality of the filter is evaluated using two chi-square (χ2) tests that rely on the
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Algorithm 2 One-time step of the proposed AGVI method
Input: µt−1|t−1, Σt−1|t−1, µW

2
t−1|t−1, (σW 2

t−1|t−1)2, yt, A, C, Q, and σ2
V

Prior knowledge for the error variance parameter:

1: σ2
W = µW

2
t−1|t−1

Prediction Step:

2: µHt|t−1 =

Aµt−1|t−1

0


t|t−1

, ΣH
t|t−1 =

AΣt−1|t−1Aᵀ + Q ΣXW

(ΣXW )ᵀ µW
2


t|t−1

,

µY = Cµt|t−1, σ2
Y = CΣt|t−1Cᵀ + σ2

V , ΣHY = ΣH
t|t−1F

ᵀ
t

1st Update Step:

3: µHt|t = µHt|t−1 + ΣHY

σ2
Y

(yt − µY ), ΣH
t|t = ΣH

t|t−1 −
ΣHY ·Σᵀ

HY

σ2
Y

Posterior Moments for W 2:

4: µW
2

t|t = (µWt|t)2 + (σWt|t )2,

(σW 2

t|t )2 = 2(σWt|t )4 + 4(σWt|t )2(µWt|t)2

2nd Update Step:

5: µW 2
t|t = µW

2
t|t−1 +Kt(µW

2

t|t − µW
2

t|t−1), (σW 2
t|t )2 = (σW 2

t|t−1)2 +K2
t ((σW 2

t|t )2 − (σW 2

t|t−1)2),

Kt = (σW 2
t−1|t−1)2

(σW 2
t|t−1)2

6: return µt|t, Σt|t, µW
2

t|t , and (σW 2
t|t )2

normalised estimation error squared (NEES) and the normalised innovation error squared
(NIS) values [110]. These tests are conducted using 50 random simulations. Consider-
ing a 95% confidence interval (C.I.) and the degrees of freedom v = X = Y = 1, i.e.,
the size of the state and observation vector, the two-sided probability region is given by
[χ2

50(0.025) χ2
50(0.975)] = [32.3 71.4]. By dividing the range by 50, we obtain the probability

region for the average NEES and NIS values [0.647 1.428]. Figure 5.3 illustrates an example
of the 95% region marked by the green and red lines for both the average NEES and NIS
values in case (a). From the definition of the test, there should be approximately 5% of the
total number of points outside the 95% region. The length of the time series for the case
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study is 1000 and hence, approximately 50 points should be outside the region. Table 5.1

0 1000

0.647

1.428

t

N
EE

S

(a) NEES

0 1000

0.647

1.428

t

N
IS

(b) NIS

Figure 5.3 Illustration showing the average normalized state estimation error squared (NEES)
and the average normalized innovation squared (NIS) for the case study (a) with its 95%
probability region given by [0.647, 1.428] is marked by the green and red lines.

presents the average number of points outside the probability region for both the NEES and
NIS tests in all three cases where each of the 50 runs are carried out five times in order to
compute the average value. The results verify that the filter is optimal and provide consis-
tent estimates for the error variance term, given that the number of points outside the 95%
probability region are in accordance to the theoretical results.

In order to check the statistical consistency for the variance of the error variance term, we
created 1000 simulated time series where the true values of the error variance in each time
series is generated from the prior knowledge of W 2

0|0 . Figure 5.4 presents, for each time step,
the percentage of realizations (γ) where the true value lies within the confidence interval
(C.I.) for 1, 2, and 3 standard deviations from the mean estimate in each of the three case
studies. The results in Figure 5.4 show that the γ values match the theoretical C.I. quantities,
i.e., {68, 95, 99}%, for the Gaussian distribution supporting the hypothesis that the Gaussian
PDF for the error variance is adequate at each time step.

Also, we noticed the effect of Q
R

= σ2
AR
σ2

V
ratio on the estimation accuracy. Figure 5.5 shows the

posterior mean estimate µT|T and the confidence interval µT|T±σT|T for the error variance after
T time steps with respect to different Q

R
values for the three cases, where T = 1000 is the total

length of the time series. The results validate that the AGVI method is accurate for Q
R
≥ 10.

For 1 < Q
R
< 10, the estimates are accurate with small biases in comparison to the true

values, whereas for Q
R
< 1, the estimates are inaccurate with large biases. This phenomenon

is explained by the fact that the Kalman gain has a higher value with an increase in the Q
R
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Table 5.1 Average number of points outside the 95% probability region for the NEES and NIS
values in all the three cases, i.e., (a) {µW 2

0|0 = 0.2, (σW 2
0|0 )2 = 0.01}, (b) {µW 2

0|0 = 2, (σW 2
0|0 )2 = 1},

and (c) {µW 2
0|0 = 20, (σW 2

0|0 )2 = 100}.

Average number of points case (a) case (b) case (c)
NEES 52.2 52.0 50.6
NIS 53.8 53.8 50.6
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Figure 5.4 Empirical consistency check for the variance of the error variance estimate, where γ
is the percentage of realizations where the true value lies within the three C.I. for the cases (a)
{µW 2

0|0 = 0.2, (σW 2
0|0 )2 = 0.01}, (b) {µW 2

0|0 = 2, (σW 2
0|0 )2 = 1}, and (c) {µW 2

0|0 = 20, (σW 2
0|0 )2 = 100}.
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Figure 5.5 The posterior mean estimate and C.I of the error variance for different values
of Q

R
for the cases (a) {µW 2

0|0 = 0.2, (σW 2
0|0 )2 = 0.01}, (b) {µW 2

0|0 = 2, (σW 2
0|0 )2 = 1}, and (c)

{µW 2
0|0 = 20, (σW 2

0|0 )2 = 100}. Note that the x-axis is in log-scale.

ratio, given that the system is observable [23, 111]; as a result, the Kalman filter put more
weight on the measurements. Hence, we obtain a better mean and variance estimate of W
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by learning from each measurement which in turn provide better estimates for W 2.

Table 5.2 compares the average RMSE values and computational time obtained using the
AGVI method and the existing adaptive Kalman filtering (AKF) methods for the three cases
where the true values are (a) σ2

AR = 0.42, (b) σ2
AR = 1.35, and (c) σ2

AR = 18.75. The results
are averaged over five independent runs. Each of these AKF methods falls under separate
categories as described in Section 2.3.3, where ICM is a correlation method, ALMF is a
covariance-matching method (CMM), and the SWVAKF is a Bayesian variational method.
The hyper parameters for ICM include the stable Kalman gain (K) and the auto-covariance
lag parameter which are fixed to 0.99 and 1, whereas for ALMF, the initial Q matrix is chosen
as 1. For the SWVAKF, the same parameters are used as provided in the implementation
code [70]. The results show that AGVI outperforms all methods in terms of predictive ca-
pacity in case (b) and case (c), while ALMF has better performance in case (a). While being
an offline method, the ICM emerges as the fastest method among all others. In comparison
to SWVAKF which is both a Bayesian and an online estimation method, AGVI is more than
two order of magnitude faster. The offline methods, i.e., the ALMF and the ICM, are faster
compared to the Bayesian methods but can only provide point estimates. However, it is
necessary to quantify the epistemic uncertainties associated with the error variances in order
to understand if the amount of available data is sufficient to estimate them accurately. Fur-
thermore, it is crucial to have accurate and statistically consistent estimates of the posterior
mean and variance associated with the error variance terms at every time step when learning
sequentially from data. It enables faster convergence to the true values by extracting as much
information as possible from each new data point.

5.3.2 Case Study 2

For this case study, the AGVI method is applied to the traffic-load data as presented in
Section 3.3.3 for which the process error variance needs to be inferred. The raw data have
2409 data points which is divided into a training set (1649 points) and a test set (760). The
generic components used for modeling the data presented in Figure 3.5 are the local level
(LL), two kernel regression components each having 50 and 30 control points to model the
periodic patterns with periodicity of 7 days and 1 day respectively, the online autoregressive
component (OAR) to model the residuals, and the double kernel regression (DKR) to model the
product of the two periodic patterns.

Figure 5.6 shows an example of the online estimation of both the AR parameter and the
error variance σ2

AR for which the prior initialization for W 2
0|0 is {µW 2

0|0 = 4, (σW 2
0|0 )2 = 1}. The

estimated values are shown by the black solid line and their ±1σ uncertainty bound is shown
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Table 5.2 Comparison of the average RMSE values and the computational time (in seconds)
obtained from each method in all three cases where the true values are (a) σ2

AR = 0.42, (b)
σ2

AR = 1.35, and (c) σ2
AR = 18.75. The results are averaged over five independent runs. Each

of the methods are picked from different AKF categories where AGVI and SWVAKF are
Bayesian methods whereas ALMF is a covariance-matching method (CMM) and ICM is a
correlation method.

Type Category Methods RMSE Time (s)
σ2

AR = 0.42 σ2
AR = 1.35 σ2

AR = 18.75
Online Bayesian AGVI 0.014 0.01 0.45 0.044
Online Bayesian SWVAKF 0.060 0.09 2.07 4.640
Offline CMM ALMF 0.010 0.06 0.85 0.022
Offline Correlation ICM 0.018 0.05 0.50 0.002

by the green shaded region. The results confirm that both parameters from the BDLM
framework can now be estimated online simultaneously using the Kalman filter. Table 5.3
compares the AGVI and the Newton-Raphson (NR) method to evaluate the error variance
using the average test log-likelihood (LL), the test mean square error (MSE), the optimization
time (in s), the training time (in s), and the final estimate of σAR. In the case of AGVI, the
average values were obtained using different prior initialization forW 2

0|0 such that µW 2
0|0 = α ·1

and (σW 2
0|0 )2 = 1, where α ranges from 1 to 6. Similarly, in order to compute the average

estimate using the NR method, the optimization was carried out starting from different initial
values such that σAR = α · 1. The results show that AGVI has a similar predictive capacity
in terms of MSE and a marginally better LL value compared to the NR method. However,
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Figure 5.6 Illustration showing the online estimation of both the AR parameter and the error
variance σ2

AR using the prior initialization {µW 2
0|0 = 4, (σW 2

0|0 )2 = 1}. The estimated values are
shown by the black solid line and their ±1σ uncertainty bound is shown by the green shaded
region.
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the advantage of using AGVI is seen from its computational time, which is approximately 10
times faster than the NR method.

Table 5.3 Comparison of the average test mean square error (MSE), test log-likelihood (LL),
optimization time (in s), training time (in seconds), and the final estimate of σAR using the
AGVI and Newton-Raphson (NR) for the traffic-load dataset.

method MSE LL Optimization
Time (s)

Training Time
(s)

σAR

AGVI 0.302 −610.47 0 4.39 0.282
NR 0.307 −620.64 49.78 4.31 0.278

In the case of real data, only the chi-square test relying on normalized innovation errors
squared (NIS) values can be employed to check the optimality of the filter. The two-sided
probability region for a 95% C.I. having one degree of freedom, i.e., the size of the observa-
tion vector Y, is [0 5.02]. Considering that the total length of the training set is 1649, the
theoretical 5% value of the number of acceptable points outside the 95% C.I. is 82.45. Using
different prior initialization, the average number of points outside the probability region is
71 which is acceptable given the theoretical results. Hence, both the case studies show that
AGVI is a computationally efficient approach that provides competitive predictive capacity
and statistically consistent estimates for the error variance.

5.4 Discussion

In addition to the two case studies presented in this chapter, the AGVI method has already
been applied in Blanche Laurent’s master thesis [112] to a network-scale framework that is
used for monitoring the condition of transportation infrastructures over time. In the frame-
work, visual inspections are used to quantify the structural condition. These inspections have
been carried out by different individuals such that the inspections are subjective in nature
given that each inspector has a different capacity to perform the evaluation task. Hence, it
is critical to evaluate each of the inspector’s variance. A gradient-based framework [27] was
considered to estimate the variance of these inspectors. This process was computationally
demanding due to the large number of inspectors across the network of bridges. The AGVI
method successfully replaced the gradient-based framework with an analytical framework to
perform joint estimation for over 250 variance parameters associated with the inspectors. The
results show that the AGVI-based framework has reduced the computational time from 33
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hours to 20 minutes while maintaining a comparable predictive capacity. This independent
case study is another example showcasing the capability of the AGVI method for scaling up
existing models for practical engineering applications.

The AGVI method has promising results and can provide an efficient way of reducing the
computational time for estimating parameters associated with aleatory uncertainty in prob-
abilistic models. However, one key limitation of AGVI that is not addressed in this thesis
is the uncertainty associated with the error variance is not considered as σ2

W is shown to be
equal to µW 2 , i.e., the expected value of W 2, as provided by Proposition 1. For example, if
we consider thatW is a Gaussian random variable such thatW ∼ N (w; 0,W 2) for which the
variance parameter is a random variable shown by W 2 ∼ N (w2; 10, 4), it can be verified by
sampling from the PDF ofW that the sample variance is 10 thereby ignoring the uncertainty
associated with the variance term. This limitation is attributed to the Gaussian assumption
for the variance term, for which inverse gamma PDF is the theoretical distribution. On the
other hand, closed-form inference from uncertain observations is not possible while starting
from inverse gamma priors for the error variance. A future work that could further improve
the AGVI method would be to consider inverse gamma priors for the error variance while
maintaining the analytical tractability during inference.

5.5 Conclusion

The approximate Gaussian variance inference (AGVI) method proposed in this chapter is an
analytically tractable online Bayesian inference method for state-space models that provides:
1) analytical inference of the univariate process error variance as a hidden state, 2) accurate
as well as statistically consistent estimates of the mean and the variance of the error variance
term at each time step, and 3) higher computational speed compared to the offline gradient-
based optimization approaches. The method was validated and verified with both simulated
and SHM-based real data.

The case study 1 shows the application of the AGVI method for obtaining the univariate
process error variance starting from different prior initialization. The statistical consistency
tests verify that the filter is optimal and that the AGVI method provide consistent estimates
for the mean as well as the variance of the error variance term. In comparison to the existing
adaptive Kalman filtering methods, the AGVI method provides better predictive capacity
in two out of the three cases. In comparison to SWVAKF which is both a Bayesian and
an online estimation method, it is more than two order of magnitude faster. The offline
methods, i.e., the ALMF and the ICM, are faster compared to the Bayesian methods but
can only provide point estimates which limits their applicability in decision-making tasks.
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The case study 2 shows that with AGVI the Bayesian dynamic linear models can bypass offline
optimization techniques such as the Newton-Raphson (NR) method for obtaining the error
variance estimates at an order of magnitude faster. Moreover, AGVI provides both the mean
as well as variance that gives us not only the estimate but also the associated uncertainty
at any instant of time. Both case studies demonstrate that AGVI is a computationally
efficient approach that provides a competitive predictive capacity and statistically consistent
estimates for the error variance.

Nevertheless, note that the observation error variance needs to be known and the Q
R ratio plays

an influential role in the estimation accuracy of AGVI. The independent case study reviewed
in Section 5.4 shows that the AGVI method is applicable to existing models for quantifying
uncertainty associated with observations, which in this case, was visual inspections. The
results show that by leveraging the AGVI method, the computational time of the framework
could be reduced from 33 hours to 20 minutes while maintaining a comparable predictive
capacity.

One key limitation not addressed in this thesis is that the uncertainty associated with the
error variance is not considered as σ2

W is shown to be equal to µW
2 . A future work to

improve the AGVI method would be to consider inverse gamma priors for the error variance
so that the uncertainty of the error variance is taken into account for estimating the variance
parameter of the prior predictive PDF of the process error W while maintaining analytical
tractability.
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CHAPTER 6 Approximate Gaussian Variance Inference for
Multivariate Process Errors

6.1 Introduction

For a network of sensors, the process errors associated with modeling different physical quan-
tities can be correlated. Hence, it is often incorrect to assume a diagonal process error co-
variance matrix (Q), as the model does require a full Q matrix with not only the error
variance terms but also the covariance between the error terms. However the factor limiting
the inference of higher dimensional Q matrix is related to numerical instabilities that occur
as the matrix becomes non-positive semi-definite (non-PSD). This chapter extends the math-
ematical formulation for the approximate Gaussian variance inference (AGVI) described in
Chapter 5 for the online inference of the multivariate process error variance parameters. Us-
ing AGVI for the multivariate observation model, one error variance term σ2

W is inferred for
each observation equation along with the covariance for each pair of error terms. The chapter
also provides a closed-form square-root filtering technique using the Cholesky decomposition
such that the Q matrix is always PSD. Finally, the chapter provides the methodology and
two applied examples where the first case study compares the performance of AGVI with
the existing adaptive Kalman filtering (AKF) approaches and the second case study shows
its application on real datasets from a concrete dam. The main contributions of this chapter
are to

• Provide the mathematical formulation and the methodology for applying AGVI in the
case of multivariate process errors.

• Provide a closed-form square-root filtering technique using the Cholesky decomposition.

• Compare the performance of AGVI with the existing AKF approaches and shows its
application on real datasets from a concrete dam.

6.2 Multivariate Process Errors

This section presents the mathematical formulation of the AGVI for inferring multiple process
error variance parameters.
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6.2.1 Problem Formulation

Let us consider D observed time series for which the global state vector is xt = [x1
t x

2
t · · · xD

t ]ᵀ,
where xjt , ∀j ∈ {1, 2, · · · , D} refers to the concatenation of all Sj generic components for
the jth time series. Similarly, the vector of correlated process errors is assembled following
wt = [w1

t w
2
t · · ·wD

t ]ᵀ. The global transition, observation, process error covariance, and
observation error covariance matrices are assembled block diagonally as

A = blkdiag[A1, A2, · · · ,AD],

C = blkdiag[C1, C2, · · · ,CD],

Q = blkdiag[Q1, Q2, · · · ,QD],

R = blkdiag[R1, R2, · · · ,RD].

Covariance matrices cov(W k,W n) exists between the process errorsW k andW n of the kth

and nth time series respectively, where k, n ∈ {1, 2, · · · , D}. The process error covariance
matrix Q can be reformulated as follows

Q =



Q1 Q1,2 · · · Q1,D

... Q2 · · · Q2,D

... · · · . . . ...
sym. · · · · · · QD

 , (6.1)

where the covariance term cov(W k,W n) is represented by Qk,n. The sub-matrices within
the matrix Qk,n in Equation 6.1 are themselves represented by cov(W jk,Wmn) = Qjk,mn,
where j ∈ {1, 2, · · · , Sj} and m ∈ {1, 2, · · · , Sm} are the jth and mth component of the kth

and nth time series, respectively. As described in Section 5.2.1, each of the sub-matrices
Qjk,mn(σ2

jk, σ
2
mn,∆t) can be represented as a function of the error variance parameters σ2

jk,
σ2
mn, and ∆t. Moreover, each of the elements within the sub-matrix Qjk,mn is given by

cov(W ijk,W lmn), which provides the covariance between the ith process error term of the jth

component in the kth time series, W ijk, and the lth process error term of the mth component
in the nth time series, Wlmn. For example, let us consider two time series each modeled using
a local trend (LT) component as described in Section 5.2.1. The global Q matrix is assembled
block diagonally such that

Q =
 Q1 Q1,2

Q2,1 Q2

 ,
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where Q1 and Q2 are the process error covariance matrices associated with their individual
local trend components and Q1,2 is the cross-covariance matrix between the process errors of
the two time series. Each of these covariance matrices are defined as follows: Q1 = σ2

LT1
· J,

Q2 = σ2
LT2
· J, and Q1,2 = σLT12 · J, where σ2

LT1
, and σ2

LT2
are the two error variance terms for

each of the LT component, σLT12 is the covariance term between the two process errors W LT1

andW LT2 . For a constant acceleration kinematic model [23,110], the matrix J is defined such
that

J =


∆t4
4

∆t3
2

∆t3
2 ∆t2

 .
Hence, for this case the terms to be inferred are: σ2

LT1
, σ2

LT2
, and σLT12 . Similarly, for mul-

tiple time series, the goal is to infer one error variance term per time series along with the
covariance terms for each pair of process error terms.

6.2.2 Methodology

Let us consider the multivariate process error term w = [w1 w2 · · · wi · · · wD]ᵀ, where
wi, ∀i ∈ {1, 2, · · · , D} represents the one process error term for the ith time series for
which the variance term has to be inferred. Given that the expected value of W is zero, the
covariance term between the ith and jth process error is

cov(W i,W j) = E[W iW j]−��
��*

0
E[W i]��

��*
0

E[W j] = E[W iW j]. (6.2)

Using Equation 6.2, the covariance matrix ΣW is given by

ΣW =



E[(W 1)2] E[W 1W 2] · · · E[W 1W D]
... E[(W 2)2] · · · E[W 2W D]
... · · · . . . ...

sym. · · · · · · E[(W D)2]

 , (6.3)

where var(W i) = E[(W i)2] is the error variance for the ith time series, and cov(W i,W j) =
E[W iW j] is the covariance term between the two process errors for the ith and jth time series.
Similarly to the univariate process error, let us consider the approximation that each of the
product terms W iW j is a Gaussian random variable such that

W iW j ∼ N (wiwj;µW iW j

, (σW iW j )2), (6.4)
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where E[W iW j] = µW
iW j is the mean parameter and var(W iW j) = (σW iW j )2 is the variance.

For D time series, there are a total of D · (D + 1) product terms which are represented by the
random vector wp = [(w1)2 (w2)2 · · · wiwj · · · wDwD-1]ᵀ such that

W p ∼ N (wp;µW p

,ΣW p), (6.5)

where using Equation 6.4, the mean vector of W p is given by

µW
p =

[
µ(W 1)2

µ(W 2)2 · · ·µ(W D)2
µW

1W 2 · · · µW D-1W D
]ᵀ
k×1

. (6.6)

Similarly to Lemma 1, the covariance matrix ΣW p can be obtained in terms of the mean
parameters in µW p such that

ΣW p =



2(µ(W 1)2)2 2(µW 1W 2)2 · · · 2µW 1W D−1
µW

1W D

... 2(µ(W 2)2)2 · · · 2µW 2W D−1
µW

1W D

... · · · · · · ...

... · · · . . . ...
sym. · · · · · · (µ(W D−1)2)2(µ(W D)2)2 + (µW D-1W D)2


k×k

,

where the variance var(W iW j) and the covariance cov(W iW j,W kWm) terms for the product
of the errors ∀i, j, k,m ∈ {1, 2, · · · , D} are obtained using the GMA equations defined in
Section 3.2. The mean vector µW p defined in Equation 6.6 is considered to be random with
a Gaussian PDF given by

W p ∼ N (wp;µW p

,ΣW p). (6.7)

where the vector wp is

wp =
[
(w1)2 (w2)2 · · · (wD)2 w1w2 · · · wD-1wD

]ᵀ
.
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The mean vector and the covariance matrix of W p are

µW
p =

[
µ(W 1)2

µ(W 2)2 · · · µW D-1W D
]ᵀ
k×1

,

ΣW p =



(σ(W 1)2)2 0 · · · 0
... (σ(W 2)2)2 · · · 0
... · · · · · · 0
... · · · . . . ...

sym. · · · · · · (σW D-1W D)2


k×k

,

where the random variables inW p are assumed to be independent from each other as shown
by the covariance matrix ΣW p where the off-diagonal terms are zero.

Using the hyper-priorW p defined in Equation 6.7, the first objective is to obtain the covari-
ance matrix ΣW defined in Equation 6.3 by obtaining the prior predictive PDF of W p

t|t−1 as
provided by the following lemma and proposition.

Lemma 5. Using the transition model wp
t = wp

t−1, the prior predictive PDF of W p
t|t−1 is

given by

W p
t|t−1 ∼ N (µW p

t|t−1,ΣW p

t|t−1),

where the mean terms in µW p

t|t−1, and the variance and covariance terms in ΣW p

t|t−1 are given
by

E[W iW j] = µW
iW j

,

var((W i)2) = 3(σ(W i)2)2 + 2(µ(W i)2)2,

var(W iW j) = (σW iW j )2

+ (µW iW j )2

µ(W i)2µ(W j)2 + (µW iW j )2
· (σW iW j )2

+ µ(W i)2
µ(W j)2 + (µW iW j )2,

cov(W iW j,W lWm) = µW
iW l

µW
jWm + µW

iWm
µW

jW l
.

Proof. See Appendix L.

Proposition 3. The prior predictive PDF of W has a zero mean vector and covariance
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matrix ΣW
t|t−1 defined by

ΣW
t|t−1 =



µ(W 1)2
µW

1W 2 · · · µW
1W D

... µ(W 2)2 · · · µW
2W D

... · · · . . . ...
sym. · · · · · · µ(W D)2


t|t−1

. (6.8)

Proof. Using Lemma 5, the covariance matrix ΣW for the prior predictive PDF of W is
obtained by substituting the terms E[W iW j] in Equation 6.3 by the mean parameters of
W p, i.e., µW iW j .

In order to maintain positive semi-definiteness of ΣW
t|t−1 shown by Equation 6.8, the prior

information is built from a random vector
−−→
LW that is defined in a Cholesky space as shown

by the following lemma.

Lemma 6. Any ijth element of ΣW is obtained such that

µW
iW j = E

[ D∑
k=1

LjkLki

]
,

where all elements of
−−→
LW are assumed to be Gaussian, Lij ∼ N (µLij

, σ2
Lij

), and the expecta-
tion of the product terms are obtained using the GMA equations. Moreover, any covariance
term between the random vectors

−−→
LW and W p given by Σ

−−→
LWW p

t|t−1 , can be shown as

cov(Lij,W iW j) = cov(Lij,
D∑

k=1
LjkLki).

Proof. See Appendix M.

Using the prior predictive PDF of W , the next objective is to perform the prediction step.
Let us consider the augmented vector of hidden states ht−1 = [xᵀ

t−1 w
ᵀ
t−1]ᵀ such that the

PDF of Ht|t−1 ∼ N (ht,µHt|t−1,ΣH
t|t−1) has a mean vector µHt|t−1 and a covariance matrix

ΣH
t|t−1 defined by

µHt|t−1 =
[
µᵀ
t|t−1 0

]ᵀ
, (6.9)

ΣH
t|t−1 =

AΣt−1|t−1Aᵀ + Q ΣXW

(ΣXW )ᵀ ΣW


t|t−1

, (6.10)
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where the covariance matrix ΣW defined in Equation 6.8 is obtained using the prior knowledge
of
−−→
LW defined in the Cholesky space as stated in Lemma 6. Similarly to Equation 5.10, the

covariance matrix between X and W is given by

ΣXW
t|t−1 = cov(X,W )t|t−1

= cov(X, [W 1 W 2 · · · W D]ᵀ)t|t−1,

= cov(AXt−1|t−1 +Wt|t−1, [W 1 W 2 · · · W D]ᵀt|t−1),

= cov(W , [W 1 W 2 · · · W D]ᵀ)t|t−1,

where Wt|t−1 = [W 1 W 2 · · · W D]ᵀt|t−1, is a vector of random variables that includes one
process error term W from each of the D time series.

The inference for the covariance matrix ΣW requires two update steps. Using the Gaussian
conditional equations defined in Section 5.2.2, the first update step is performed to obtain
the posterior PDF of H so that

Ht|t ∼ N (ht,µHt|t,ΣH
t|t). (6.11)

We now move to the second update step where we use the posterior PDF f(wt|y1:t) obtained
from Equation 6.11, and the GMA equations to obtain the posterior PDF f(wp

t |y1:t) such
that

f(wp
t |y1:t) = N (wp

t ;µW p

t|t ,ΣW p

t|t ).

The posterior PDF of W p is defined using the following lemma.

Lemma 7. The posterior mean, variance and covariance terms of W p are

µW
p

t|t = µW
p

t|t−1 +Kt(µW
p

t|t − µW
p

t|t−1),

ΣW p

t|t = ΣW p

t|t−1 +Kt(ΣW p

t|t −ΣW p

t|t−1)Kᵀ
t ,

Kt = ΣW pW p

t|t−1 (ΣW p

t|t−1)−1,

ΣW pW p

t|t−1 = ΣW p

t|t−1.

Proof. See Appendix N.

Using the updated knowledge of W p in Lemma 7, the posterior moments for
−−→
LW in the

Cholesky space is defined using the following proposition.
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Proposition 4. The posterior moments of
−−→
LW are

µ
−−→
LW

t|t = µ
−−→
LW

t|t−1 +KL
t (µW p

t|t − µW
p

t|t−1),

Σ
−−→
LW

t|t = Σ
−−→
LW

t|t−1 +KL
t (ΣW p

t|t −ΣW p

t|t−1)(KL
t )ᵀ,

KL
t = Σ

−−→
LWW p

t|t−1 (ΣW p

t|t−1)−1.

Proof. The proposition 4 is derived using the Lemmas 5, 6, and 7.

Both steps are employed recursively in order to estimate the elements of the covariance matrix
ΣW and then use this to update our knowledge of the mean vector ofW p, i.e.,W p. All the
steps performed in a particular time step t are summarized in Algorithm 4 as provided in
Appendix O.

6.3 Applied Examples

This section presents two case studies illustrating the application of AGVI for multiple time
series. The case study 1 presents a simulated multivariate random walk model with a full
process error covariance matrix Q for which the performance of the AGVI method is compared
to the adaptive Kalman filter (AKF) methods, namely the indirect correlation method (ICM)
[48], the adaptive limited memory filter (ALMF) [63], and the sliding window variational
adaptive Kalman filter (SWVAKF) [70]. Each of these AKF methods falls under separate
categories as described in Section 2.3.3, where ICM is a correlation method, ALMF is a
covariance-matching method (CMM), and the SWVAKF is a Bayesian variational method.
The case study 2 shows the application of AGVI on real displacement datasets obtained from
a concrete dam in Québec, Canada.

6.3.1 Case Study 1 – Multivariate Random Walk Model

This case study is conducted using five simulated datasets of 1000 time steps with a transition
process error having a full covariance matrix Q. The vector of hidden states xt associated
with five time series is given by

xt = [xLL1
t xLL2

t xLL3
t xLL4

t xLL5
t ]ᵀ.
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The state transition matrix A and the observation matrix C are defined as A = I5, and
C = I5, The Q and the R matrices are defined as

Q =



1 −0.3 −0.2 −0.1 0.25
−0.3 3 0.35 0.4 0.45
−0.2 0.35 4 0.5 0.55
−0.1 0.4 0.5 0.8 0.6
0.25 0.45 0.55 0.6 2


,

R = 10−4 · I5,

where the off-diagonal covariance terms in the Q matrix are selected arbitrarily such that it
is symmetric and positive-definite, i.e., the eigen values are positive. For AGVI, the prior
knowledge for the augmented hidden states µ̃0|0 = [µ0|0;µ

−−→
LW

0|0 ] and Σ̃0|0 = blkdiag(Σ0|0,Σ
−−→
LW

0|0 )
are initialized by

µ̃0|0 = [0ᵀ
5 1.5 · 1ᵀ

5 0.1 · 1ᵀ
10]ᵀ,

Σ̃0|0 = diag([1ᵀ
5 0.1 · 1ᵀ

5 0.5 · 1ᵀ
10]), (6.12)

where 0 and 1 represent vector of zeros and ones, respectively. The mean vector and the
covariance matrix for −−→

LW0|0 = [L11 L22 · · ·L55 L12 · · ·L45]ᵀ0|0,

are given by

µ
−−→
LW

0|0 = [1.5 · 1ᵀ
5 0.1 · 1ᵀ

10]ᵀ,

Σ
−−→
LW

0|0 = diag([ 0.1 · 1ᵀ
5 0.5 · 1ᵀ

10]). (6.13)

For the AKF methods, the hidden states are initialized similarly to Equation 6.12 where
the mean vector is µ0|0 = 05 and the covariance matrix is Σ0|0 = I5. The hyperparameters
for ICM include the stable Kalman gain (K) and the auto-covariance lag parameter which
are fixed to 0.99 and 1, whereas for ALMF, the initial Q matrix is chosen as I5. For the
SWVAKF, the same parameters are used as provided in the implementation code [70]. Figure
6.1 compares the true values with the online hidden state estimates obtained using AGVI
for the four elements of the Q matrix, namely σ2

55, σ2
22, σ23, and σ45. The true values for

each element is shown by the dashed red line and the estimated values are shown by the
black solid line and their ±1σ uncertainty bound is shown using the green shaded region.
Table 6.1 shows the average RMSE values over five independent runs for estimating some



100

0 1000

2

4

6

t

σ
2 55

(a) σ2
55

0 1000

2

3

4

t

σ
2 22

(b) σ2
22

0 1000

−1

0

1

t

σ
23

(c) σ23

0 1000

−1

0

1

t

σ
45

(d) σ45

µ µ± σ

Figure 6.1 Online estimation of the error variance term (a) σ2
55 and (b) σ2

22 and the covariance
terms (c) σ23 and (d) σ45 from the full Q matrix compared to their true values marked by
the dashed red line. The estimated values are shown by the black solid line and their ±1σ
uncertainty bound is shown using the green shaded region.

of the elements chosen arbitrarily from the Q matrix as well as the average computational
time for each method. The results show that AGVI outperforms all methods in terms of
predictive capacity for most of the variance and covariance terms. In comparison to SWVAKF

Table 6.1 Comparison of the average RMSE values and the computational time (in seconds)
for each method. The results are averaged over five independent runs. Each of the methods
are picked from different AKF categories where AGVI and SWVAKF are Bayesian methods
whereas ALMF is a covariance-matching method (CMM) and ICM is a correlation method.
The variance terms and the covariance terms are represented by σ2

ii and σ2
ij, ∀i, j ∈ 1, · · · , D.

Type Category Methods RMSE Time (s)
σ2

22 σ2
33 σ55 σ12 σ24 σ35

Online Bayesian AGVI 0.1633 0.1437 0.1567 0.0624 0.0641 0.0851 1.45
Online Bayesian SWVAKF 0.4670 0.3133 0.1618 0.0846 0.1177 0.1552 20
Offline CMM ALMF 0.1824 0.3295 0.1773 0.0765 0.0662 0.1045 0.12
Offline Correlation ICM 0.2421 0.1476 0.1524 0.0863 0.0764 0.1280 0.04
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which is also both a Bayesian and an online estimation method, it is more than an order of
magnitude faster. The offline methods, i.e., the ALMF and the ICM, are faster compared
to the Bayesian methods but can only provide point estimates which limit their potential
in learning sequentially from data as described in Section 5.3.1. The RMSE values and the
plots for the remaining variance and covariance terms are provided in Appendix P.

For the consistency test using the normalized innovation square (NIS) values, the two-sided
probability region for a 95% C.I. having five degrees of freedom, i.e., the size of the observation
vector Y, is [0.831 12.833]. Considering that the total length of the training set is 1000, the
theoretical 5% value for the number of acceptable points outside the 95% C.I. is 50. The
different prior initialization are chosen such that µ

−−→
LW

0|0 = [α · 1ᵀ
5 β · 1

ᵀ
10]ᵀ, where α = {1.5 :

0.1 : 2} and β = {0.5 : 0.1 : 1} while considering the same covariance matrix as defined in
Equation 6.13. Table 6.2 presents the average number of points outside the probability region
for the different prior initialization of

−−→
LW0|0 where the average value is computed using five

simulated datasets for each combination of {α, β}. The results show that there are on average
≈ 56 points that lie outside the 95% probability region which is comparable to the theoretical
value of 50, which verifies that the filter is optimal and provide consistent estimates for the
error variance and covariance terms of the full Q matrix.

Table 6.2 Average number of points outside the 95% probability region for the different
prior initialization of

−−→
LW0|0. Each column presents the average value computed using the five

simulated datasets for one combination of {α, β}.

{1.5, 0.5} {1.6, 0.6} {1.7, 0.7} {1.8, 0.8} {1.9, 0.9} {2, 1} Mean
NIS 57.6 57 55.6 54.6 56.6 55.4 56.13

6.3.2 Case Study 2 – Dam Displacement

This case study is conducted on data collected by two sensors measuring the displacement
from a concrete dam in Québec, Canada. Figure 6.2 shows the displacement datasets along
all three orthogonal directions (a) X-axis, (b) Y-axis, and (c) Z-axis; where top plots present
the displacement datasets yD1 that are available from April 2005 to February 2016 with a
total of 9995 points and bottom plots present the displacement datasets yD2 that are available
from December 2009 to February 2016 with a total of 5667 points. A test set consisting of
1095 points is considered for all the datasets shown by the gray regions in Figure 6.2. Both
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Figure 6.2 Plots showing the displacement datasets in all three directions collected by two
sensors from a concrete dam in Canada.

datasets yD1 and yD2 are recorded with a non-uniform time-step size ∆t as illustrated in
Figure 6.3. The vertical axis showing the time-step size is plotted with a log-scale where we
see that the most frequent time-step size is 12 hours for both datasets. Figure 6.3(a) shows
the time-step size for yD1 that varies in the range of 1 to 2792 hours and Figure 6.3(b) shows
the time-step size for yD2 that varies in the range of 1 to 1032 hours.

05-04 07-12 10-09 13-05 16-02

100
101
102
103

Time [YY-MM]

T
im

e
st

ep
siz

e
[h

]

1h
12h

2792h

(a) yD1

09-12 11-06 13-01 14-07 16-02

100
101
102
103

Time [YY-MM]

T
im

e
st

ep
siz

e
[h

]

1h
12h

1032h

(b) yD2

Figure 6.3 Plots showing the time-step size for the displacement datasets (a) yD1 and (b) yD2 .
The y-axis showing the time-step size is plotted in log-scale.

The Bayesian dynamic linear model (BDLM) components used to model the patterns in the
data are the local trend to model the baseline and the kernel regression component to model
the periodic pattern. The process errors are modeled by a zero-mean vector and a full process
error covariance matrix Q to be inferred using the multivariate AGVI method. For handling
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non-uniform time-step size [113], a reference time-step ∆tref is chosen such that it is the
most frequent time-step size in the datasets. The variance and the covariance parameters
in the Q matrix are estimated for the reference time-step ∆tref, and for any time-step size
∆t different than ∆tref, these parameter values are linearly scaled by the ratio between the
current time-step and the reference time-step shown by

Q∆t = Q∆tref · ∆t
∆tref ,

where Q∆t is the updated process error covariance matrix at the current time-step and Q∆tref

is the covariance matrix for the reference time-step.

The prior knowledge for the hidden states are defined using the default values provided by
the OpenBDLM library [113] and the kernel length parameters for the three datasets from
each sensor are obtained by offline optimization using the Newton-Raphson method such
that {`XD1

= 0.350, `YD1
= 0.362, `ZD1

= 0.347} and {`XD2
= 0.288, `YD2

= 0.289, `ZD2
= 0.602}.

The observation error covariance matrix R is set to 10−6 · I3 such that the process errors
model the residuals considering that the measurements from the sensors are exact. Since
there are three time series from each sensor, the Q matrix has a size of 3 × 3 with three
variance terms and three covariance terms to be evaluated. The prior mean vector and the
covariance matrix for

−−→
LW0|0 = [L11 L22 L33 L12 L13 L23]ᵀ0|0, are given by

µ

−−→
LW

D1
0|0 = [1 · 13 1e-03 · 13]ᵀ, µ

−−→
LW

D2
0|0 = [1 1 0.5 1e-03 · 13]ᵀ,

Σ
−−→
LW

D1
0|0 = diag([ 1e-04 · 13 1e-02 · 13]), Σ

−−→
LW

D2
0|0 = diag([ 1e-04 · 13 1e-02 · 13]).

Figure 6.4 shows the online estimation for one variance and two covariance terms in the full
Q matrix for both datasets yD1 and yD2 . The estimated values are shown by the black solid
line and their ±1σ uncertainty bound is shown using the green shaded region. The online
estimation for the remaining terms are provided in Appendix Q.

The predictive performance of using AGVI is compared with the one obtained using the
Newton-Raphson method where the variance parameters are learned offline through opti-
mization. Table 6.3 shows the test-set root mean square error (RMSE) and log-likelihood
values obtained using the AGVI and the Newton-Raphson method for the two displacement
datasets along all three axis. Table 6.4 compares the two methods in terms of computational
time required, i.e., optimization time and training time expressed in seconds. The results
show that AGVI has an accuracy comparable to the Newton-Raphson in terms of RMSE
and outperforms it in terms of log-likelihood. Moreover, AGVI is orders of magnitude more
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Figure 6.4 Online estimation of the error variance and covariance terms in the full Q matrix
for both datasets yD1 and yD2 ; where (a) σ2

33,D1
, (b) σ12,D1 , and (c) σ23,D1 , (d) σ2

11,D2
, (e) σ12,D2 , and

(f) σ13,D2 . The estimated values are shown by the black solid line and their ±1σ uncertainty
bound is shown using the green shaded region.

computationally efficient than Newton-Raphson as it facilitates online learning of the process
error variance and covariance terms, thereby avoiding the parameter optimization step. This
example shows that AGVI is applicable to real case studies for evaluating the full Q matrix
involving multiple time series.

Table 6.3 Root mean square error (RMSE) and log-likelihood values obtained with the AGVI
and the Newton-Raphson methods for the displacements datasets yD1 and yD2 along all three
axis.

RMSE Log-likelihood
method AGVI Newton-Raphson AGVI Newton-Raphson
XD1 0.598 0.622 −1576.8 −1585.1
YD1 0.35 0.35 −556.76 −630.38
ZD1 0.64 0.64 −1031 −1034.1
XD2 0.57 0.57 −992.81 −1069.2
YD2 0.84 0.85 −1414.80 −2303.9
ZD2 0.17 0.17 372.37 361.43
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Table 6.4 Comparison of optimization time (in seconds) and training time (in seconds) using
the AGVI and the Newton-Raphson method.

Optimization Time (s) Training Time (s)
method AGVI Newton-Raphson AGVI Newton-Raphson
yD1 0 2894 61 51
yD2 0 961 34 26

6.4 Conclusion

In this chapter, the AGVI method is extended to the multivariate case so that the full process
error covariance matrix Q associated with multiple time series can be obtained. The chapter
also provided a closed-form square-root filtering technique using the Cholesky decomposition
that combines with the AGVI method such that the estimated Q matrix remain positive
semi-definite. The case study 1 shows the application of AGVI for a multivariate random
walk model with a full Q matrix and compares its performance with existing adaptive Kalman
filtering (AKF) methods. The results show that AGVI outperforms all methods in terms of
predictive capacity for most of the variance and covariance terms, and yields statistically
consistent estimates. In comparison to SWVAKF which is both a Bayesian and an online
estimation method, it is more than an order of magnitude faster. The offline methods, i.e.,
the ALMF and the ICM, are faster compared to the Bayesian methods but can only provide
point estimates which limits their applicability in decision-making tasks.

The case study 2 shows the application of AGVI on displacement datasets obtained by two
sensors along all three directions from a concrete dam in Canada. The predictive perfor-
mance obtained using AGVI is compared with the one obtained using the Newton-Raphson
method where the variance terms are learned offline. The results show that AGVI has a com-
parable accuracy with Newton-Raphson in terms of RMSE and outperforms it in terms of
log-likelihood. Moreover, AGVI is orders of magnitude more computationally efficient than
Newton-Raphson as it facilitates online learning of the process error variance and covariance
terms, and bypasses the optimization step. Hence, the proposed method is capable of online
estimation of aleatory uncertainty in regard to state-space models involving multiple time
series as verified with synthetic and validated by real datasets.
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CHAPTER 7 Heteroscedastic Aleatory Uncertainty Quantification in
Bayesian Neural Network

7.1 Introduction

The tractable approximate Gaussian inference (TAGI) method allows for analytical param-
eter inference in Bayesian neural networks. In its current form (see Section 2.4.2), TAGI
can only model homoscedastic aleatory uncertainty that is quantified by a constant error
variance across the input covariate-domain. This chapter extends the application of approx-
imate Gaussian variance inference (AGVI) method to model analytically the heteroscedastic
aleatory uncertainty for regression tasks with TAGI. This chapter provides the methodology
and presents its application on toy problems as well as on benchmark regression datasets
where its performance is compared with existing approximate inference methods. The main
contributions of this chapter are to

• Provide the methodology for applying the AGVI method to handle heteroscedastic
aleatory uncertainty within the TAGI framework.

• Validate the application of AGVI for heteroscedastic regression tasks.

• Provide a comparative analysis for benchmark regression datasets with existing approx-
imate inference methods.

7.2 Methodology

In this section, we apply the AGVI method described in Chapter 5 for analytically inferring
the error variance σ2

V within the TAGI framework. Similarly to the procedure described
in Section 5.2.2 for the process error variance in the context of state space models, the
methodology for inferring σ2

V can also be summarized in two steps; first, we establish the
relationship between the random variables describing the error V , the square of that error
V 2, and the expected value of V 2, to obtain the prior knowledge for the error variance σ2

V ;
second, we leverage these relationships, and use the posterior PDF of the error V to obtain
the posterior knowledge for σ2

V . Here, we describe AGVI through the univariate case having
a single σ2

V associated with the observation unit Y whereas without modification, it can be
extended for the multivariate case with diagonal covariance matrix ΣV = diag(σ2

V ). For the
first step, the GMA is employed, as presented in Section 3.2 to model V 2 using a Gaussian
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random variable such that

f(v2) = N (v2;µV 2 , σ2
V 2). (7.1)

Using Equation 7.1, and given that V is zero-mean, the variance for V is by definition equal
to the expected value for V 2, so that the PDF of V is described by

f(v) = N (v; 0, µV 2). (7.2)

Following Lemma 1 from Chapter 5, we show that the PDF of V 2 can be described using
only the expected value µV 2 following

f(v2|µV 2) = N (v2;µV 2 , 2µ2
V 2), (7.3)

where using the GMA, the variance for V 2 is σ2
V 2 = 2µ2

V 2 . In order to maintain the analytical
tractability, we assume the hyperparameter µV 2 in Equation 7.3 to be a Gaussian random
variable described by V 2 ∼ N (v2;µ

V 2 , σ
2
V 2), using which, Equation 7.3 can be re-written as

f(v2|v2) = N (v2; v2, 2(v2)2), (7.4)

where the PDF of V 2 is defined using the knowledge of v2. Figure 7.1 shows the graphical
model representing the relationships between the random variables V , V 2, and V 2, denoted
by the green nodes. The causal relationship between the nodes V 2 and V 2 is shown by the
directed arrow as defined in Equation 7.4. The undirected solid line between the nodes V 2

and V represents the one-to-one relationship between their moments as defined by Equations
7.1 & 7.2. Hence, we obtain the prior predictive PDF of V using the prior predictive PDF
of V 2. Using Lemma 2 from Chapter 5, the moments for the prior predictive PDF of V 2 are

VV 2V 2

µ
V 2

σ2

V 2

Figure 7.1 Graphical model representing the relationship between the random variables V ,
V 2, and V 2, denoted by the green nodes. The causal relationship between the nodes V 2

and V 2 is shown by the directed arrow as demonstrated by Equation 7.4. The undirected
solid line between the nodes V 2 and V represents the one-to-one relationship between their
moments as defined by Equations 7.1 & 7.2.
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given by

µV 2 = µ
V 2 , (7.5)

σ2
V 2 = 3σ2

V 2 + 2µ2
V 2 . (7.6)

Using Equations 7.2 & 7.5, the prior predictive PDF of V is described by

f(v) = N (v; 0, µ
V 2),

where the variance of V is σ2
V = µ

V 2 . Therefore, we obtain the prior knowledge for σ2
V by

using the prior PDF of V 2 described by its moments µ
V 2 and σ2

V 2 .

In order to obtain the moments for V 2 as a function of the input covariates x, we use a
neural network having a two-headed output layer where the first output unit Z(O) models
the expected value of the system response and the second output unit is V 2. This network
setup allows handling heteroscedastic aleatory uncertainty in regression tasks. Figure 7.2
shows the graphical model for a feedforward network where the two output units are the
random variables Z(O) and V 2. The output unit for V 2 has its own set of parameters θ(L)

V 2

connected to the last hidden layer L as shown in red. This graphical model also shows the
causal relationship between the random variables Y , Z(O), and V , as per the observation
model, along with the graphical model shown in Figure 7.1. This structure presents the flow
of information from V 2 to V , and then to the observation unit Y . Note that in order to
restrict the possible values for v2 to the positive domain, the original values are transformed
using an exponential activation function exp(·). This lead to a log-normal PDF for which
closed-form expressions for the moments are available in [21, §4.2.1]. The moments for the

x Z(1) · · · Z(L)

Z(O)

VV 2V 2

Yθ(0) θ(1) θ(L-1)

θ(L)

θ
(L)

V 2

Figure 7.2 Network architecture for TAGI having a two-headed output layer for obtaining the
random variables ZO and V 2 as a function of the input covariates x. The output unit for V 2

has an additional set of parameters θ(L)
V 2 connected to the last hidden layer L as shown in red.

Also, it shows the extended graphical model representing the causal relationship between
the random variables Y , ZO, and V , as per the observation model, along with the graphical
model shown in Figure 7.1.
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transformed random variable
∼
V 2 are shown by

µ ∼
V 2

= exp
(
µ
V 2 + 0.5σ2

V 2

)
, (7.7)

σ2
∼
V 2

= exp
(
2µ

V 2 + σ2
V 2

)
· (exp

(
σ2
V 2

)
− 1), (7.8)

cov(V 2,
∼
V 2) = σ2

V 2 · exp
(
µ
V 2 + 0.5σ2

V 2

)
, (7.9)

where cov(V 2,
∼
V 2) is the covariance between the transformed random variable

∼
V 2 and the

original V 2.

In order to infer σ2
V following the structure provided in Figure 7.2, the process is divided into

two steps. Considering that the vector of output units is h = [z(O) v]ᵀ, the posterior PDF
f(h|y) is defined by

f(h|y) = f(h, y)
f(y) ≈ N (h;µH|y,ΣH|y). (7.10)

Using the Gaussian conditional equations presented in Section 5.2.2, the posterior mean
vector µH|y and covariance matrix ΣH|y are obtained following

µH|y = µH + ΣHY

σ2
Y

(y − µY ),

ΣH|y = ΣH −
ΣHY ·Σᵀ

HY

σ2
Y

. (7.11)

Second, the current knowledge of V 2 is updated using the posterior PDF f(v|y) derived from
Equation 7.11. Following Lemma 4 and Proposition 2, the posterior moments for V 2 and V 2

are given by

µV 2|y = µ2
V |y + σ2

V |y,

σ2
V 2|y = 2(σV |y)4 + 4σ2

V |yµ
2
V |y,

µ
V 2|y = µ

V 2 + k(µV 2|y − µV 2),

σ2
V 2|y = σ2

V 2 + k2(σ2
V 2|y − σ2

V 2),

k =
σ2
V 2

σ2
V 2
.

The updated knowledge for Z(O) and V 2 are used to obtain the posterior for the parameters
and the hidden units using the layer-wise recursive inference detailed in Section 2.4.2. By
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combining the frameworks of TAGI and AGVI, we can perform the analytically tractable
inference of the neural network’s parameters as well as the error variance, and enable het-
eroscedastic aleatory uncertainty quantification for regression tasks. The proposed method
is referred to as TAGI-V.

7.3 Applied Examples

In this section, experiments are performed using the TAGI-V method for 1D toy problems
and for the UCI regression benchmark datasets [10]. A comparative analysis is provided with
other approximate inference methods used for the same regression tasks.

7.3.1 Toy Problem

The TAGI-V method is applied to a 1D heteroscedastic regression problem for y = −(x+0.5)·
sin(3πx) +v, such that v ∼ N (0, σ2

V ), where the heteroscedastic error variance is modeled by
σ2
V = 0.45 ·(x+0.5)2. A total of 500 observations are generated that are sampled uniformly in

the range [−0.5, 0.5] and a two-layer fully-connected network of 128 hidden units is used with
ReLU activation function. The prior weights and bias are initialized using He’s approach [16]
and the inference is carried out using one observation at a time. The TAGI-V is compared
with the homoscedastic original version of TAGI [7], a deterministic heteroscedastic neural
network trained with backpropagation [15], and the deterministic variational inference (DVI)
[13]. Figure 7.3 compares the true function used to generate the data with the predictions
described by the expected values and their ±1σ confidence regions for each of these methods.

The results in Figure 7.3(a) show that TAGI-V is capable of handling the heteroscedastic
error variance in the region where training data is available and is able to extrapolate the
confidence region outside the training data in order to represent a lack of knowledge. Fig-
ure 7.3(b) shows the learning curve representing the evolution of the test log-likelihood as
a function of the number of epochs. The optimal epoch for the toy problem is identified to
be E = 28 using an early-stopping procedure and patience of 5 epochs. In Figure 7.3(c),
we can see that the original TAGI method is not capable of handling heteroscedastic error
variance and can only model a constant one, both within as well as beyond the training
region. Figure 7.3(d) shows the predictions using a deterministic NN trained with backprop-
agation that can, to a certain extent, model heteroscedastic uncertainty where training data
is available but fails to extrapolate the uncertainty beyond the training region. As shown by
Figure 7.3(e), DVI is capable of handling heteroscedastic error variance and is better than
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Figure 7.3 Application of TAGI-V to a toy problem having a heteroscedastic error variance
modeled using σ2

V = 0.45 · (x + 0.5)2. The training data points are plotted in magenta, the
true function y = −(x + 0.5) · sin(3πx) + v, and their ±1σ confidence regions are shown by
the red solid line and red shaded region, and the model predictions and their ±1σ confidence
regions are shown by the black solid line and green shaded area. Figure (a) shows the
predictions using TAGI-V and (b) shows the learning curve providing the evolution of the
test log-likelihood as a function of the number of epochs. Figures (c)-(e) show the predictions
using the original version of TAGI [7], a deterministic neural network [15], and DVI [13].

TAGI-V at extrapolating the confidence interval to represent the lack of knowledge outside
the training region. However, DVI requires order of magnitudes more epochs (20000) for
achieving convergence compared to TAGI-V (28) as shown in Figure 7.3(b).

Figure 7.4 shows the heteroscedastic error variance estimation in three different cases where
the true variance in each case is modeled using (a) σ2

V = 0.45·(x+0.5)2, (b) σ2
V = 3 · x4 + 0.02,

and (c) σ2
V = ((1 + x) · sin(πx))2 + 0.02. For each case, the top figure illustrates the true error

variance using the cyan solid line, the mean estimate of the variance using the black solid line
and their ±1σ confidence regions in green shaded area. Similarly to Figure 7.3, the bottom
figure presents the model predictions and the true observation function y = 2.5 ·x3 + v along
with their confidence regions. A total of 104 training points are generated in the range [−1, 1]
and the same network setup is used as described for the toy problem in Figure 7.3. Early-
stopping is used with a patience of 5 to stop the training procedure. The results in Figure
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7.3 show that the method is capable of identifying the true error variance as shown for three
different functions with respect to the input x.
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Figure 7.4 Application of TAGI-V on three toy problems where the true heteroscedastic
error variance for each case is modeled using (a) σ2

V = 0.45 · (x+0.5)2, (b) σ2
V = 3 · x4 + 0.02,

and (c) σ2
V = ((1 + x) · sin(πx))2 + 0.02. For each case, the top figure illustrates the true

error variance using the cyan solid line, whereas the mean estimate of the variance is shown
by the black solid line along with their ±1σ confidence regions in green shaded area. The
bottom figures presents the training data points in magenta, the true observation function
y = 2.5 · x3 + v and the ±1σ confidence regions using the red solid line and red shaded area,
and the model predictions and their ±1σ confidence regions by the black solid line and green
shaded area. A total of 104 training points are generated in the range [−1, 1] and the same
network setup is used as described for the toy problem in Figure 7.3.

Figure 7.5 shows the impact of the amount of available training data on the error variance
estimation. When the number of training data points are small, i.e., D = 102 as shown by
Figure 7.5(a), the mean estimate as shown by the black solid line is inaccurate and there is a
large epistemic uncertainty associated with the estimated values. But as the number of data
points are increased as shown by Figures 7.5(b) and 7.5(c), not only the epistemic uncer-
tainty shrinks but the mean estimate is also close to the true variance. Hence, the epistemic
uncertainty is crucial when few data points are available for learning the heteroscedastic error
variance.
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Figure 7.5 Illustration showing the estimated error variance in three different cases where
the number of training points are (a) D = 102, (b) D = 103, and (c) D = 104. The true error
variance is shown using the cyan solid line, the mean estimate of the variance using the black
solid line and their ±1σ confidence regions in green shaded area.

As mentioned in Section 5.5, Figure 7.6 shows an illustrative example for highlighting the
limitation for the current TAGI-V formulation which comes from the mathematical formula-
tion of the AGVI method. It is seen that the epistemic uncertainty of the error variance does
not come into play for computing the predictive uncertainty of the model outputs. The top
plot in Figure 7.6(a) presents the original estimations of the error variance, while the bottom
plot shows the model predictions, whereas the top plot in Figure 7.6(b) displays the same
mean estimate for the error variance but with artificially increased epistemic uncertainty.
The predictive uncertainty shown in the bottom plot of Figure 7.6(b) do not differ from that
of (a) as the mean estimates are the same even when the epistemic uncertainties are different.

7.3.2 Regression Benchmarks

In this section, TAGI-V is compared with probabilistic backpropagation (PBP) [10], MC-
dropout [8,114], a deterministic neural network [15], ensemble of neural networks [9], DVI [13],
probabilistic backpropagation with the matrix-variate Gaussian (MVG) distribution (PBP-
MV) [11], Variational matrix Gaussian (VMG) [12], and the original version of TAGI [7]
for the small UCI regression datasets using the experimental setup provided by Hernández-
Lobato and Adams [10]. This setup has been extensively used in the literature to evaluate
the predictive capacity of the approximate inference methods which are reviewed in Section
2.4.1. The implementation details for each method is provided in Appendix R.
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Figure 7.6 Illustration showing the limitation of TAGI-V where it does not account for the
epistemic uncertainty of the error variance while computing the predictive uncertainty of the
model output. The top plot in (a) presents the original estimations of the error variance
and the bottom plot shows the model predictions. The top plot in (b) shows the same mean
estimate for the error variance while its epistemic uncertainty is artificially increased. As in
(a), the bottom plot in (b) shows the predictive uncertainty associated with the modified
epistemic uncertainty which remains unchanged.

Small UCI Datasets

Each dataset is randomly split into a training and test set having 90% and 10% of the data,
and the same indices are maintained in both sets for each method. A total of 20 data splits are
considered to compute the average test performance. For comparative purposes, a network
having a single hidden layer of 50 units is considered for each dataset except for Protein which
has 100 units. For TAGI-V, the data is normalized, a ReLU activation function is used, and
the batch size considered is B = 32. The prior covariances for weights and bias are initialized
using He’s approach [16]. Note that the scaling factor associated with the prior variance of
the weights for the mean as well as the error variance are tuned for each dataset for proper
initialization. The details regarding the grid-search procedure are provided in Appendix S.
Moreover, an early-stopping procedure is used to identify the optimal number of epochs for
each dataset by dividing the training set into an 80− 20% train-validation set, see details in
Appendix T.



115

Two sets of comparison are provided. First, the epoch setting is presented, where each method
is trained for 100 epochs and the learning curves are plotted showing the average test log-
likelihood and test RMSE during training. Second, the time setting is considered, where the
learning curves are reported as a function of the average training time per epoch for each
method. The epoch setting allows assessing the performance for each method solely on the
basis of predictive accuracy. On the other hand, the time setting provides a better assessment
of the methods both in terms of accuracy and computational time.

For the epoch setting, the performance of each method is reviewed for all the datasets based
on the test log-likelihood and test RMSE over 100 epochs. Figure 7.7 shows the learning
curves for the datasets Boston, Kin8nm and Power under the epoch setting while the results
for the other datasets are presented in Appendix U. In general, there is not one method
that outperforms the others in all the datasets. While evaluating the absolute performance
in terms of the test log-likelihood, TAGI-V provides the best results in 3 out of 9 datasets,
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Figure 7.7 Comparison for the test log-likelihood and test RMSE for the datasets a) Boston,
b) Kin8nm, and c) Power under the epoch setting. For each subset of figures, the top and
bottom graphs shows the learning curves for test log-likelihood and test RMSE respectively
for a total of 100 epochs. The horizontal axis shows the number of epochs and the vertical
axis shows the test log-likelihood (top figure) or the test RMSE (bottom figure). The colored
line plots are: TAGI-V (red solid line), PBP (blue solid line) [10], MC-dropout (green solid
line) [8], DVI (purple solid line) [13], deterministic NN (yellow solid line) [15], Ensemble
(black solid line) [9], and TAGI (brown dotted line) [7].



116

namely Boston, Energy and Yacht, and second only to DVI in Concrete, and Naval. It
is seen that using an ensemble of neural networks outperforms a single neural network in
all datasets except in Naval. Also, Ensemble outperforms the other methods in 4 out of
9 datasets (Protein, Wine, Power, and Kin8nm). In terms of test RMSE, the PBP and
Ensemble provide the best results in 3 out of the 9 datasets. PBP provides the best test
RMSE in Yacht, Boston and Concrete, and Ensemble in Power, Kin8nm, and Wine. In
comparison with the original version of TAGI, TAGI-V provides similar test RMSE while
outperforming it in terms of test log-likelihood. It is to be noted that MC-dropout can
achieve a higher predictive performance than what is reported here for 100 epochs, if trained
until convergence (≈ 4000 epochs) [114]. Although the epoch setting presents the current
standard used by other authors for comparing predictive performances, it only shows the
predictive accuracy achieved over a fixed number of epochs, and not the computational time
required to achieve those results. To better assess the trade-off between predictive accuracy
and computational time, the methods need to be evaluated under the time setting.

Figure 7.8 shows the learning curves for the datasets Boston, Kin8nm and Power under the
time setting where the horizontal axis represents the training time (s) for each method. The
horizontal axis is presented in log-scale (base 10) for accommodating the large disparities
with respect to training time between the methods. The figures comparing the results for
other datasets are presented in Appendix U. The learning curves for PBP-MV and VMG in
Figures 7.8, U.3 and U.4 are provided by Sun et al. [11].

While comparing the average training time per epoch between the methods, TAGI-V is found
to be ≈ 100 times faster than PBP-MV and VMG, ≈ 10 times faster than PBP, and ≈ 3
times faster than Ensemble. MC-dropout has an average training time per epoch equivalent
to TAGI-V but requires hyperparameter tuning (dropout rate and τ parameter) and orders
of magnitude more epochs (≈ 4000) to achieve the stated predictive performance [114]. The
deterministic NN is the fastest method by a factor of ≈ 1.5 compared with TAGI-V, but it
provides a poor predictive accuracy as shown in Figure 7.8. The average training time per
epoch for all the methods is provided in the Table V.1 from Appendix V. In terms of absolute
predictive performance, PBP-MV reports the best test log-likelihood and test RMSE among
all methods in 8 out of the 9 datasets, while VMG outperforms PBP-MV in Power. Even
though PBP-MV and VMG produce state-of-the-art results in terms of predictive accuracy,
these methods take orders of magnitudes more computational time than all other methods
except DVI which has a similar computational demand. The details regarding the predictive
performance for each of the method is provided in Appendix W.

In order to further demonstrate the superiority of TAGI-V in comparison with approaches
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Figure 7.8 Comparison for the test log-likelihood and test RMSE for the datasets a) Boston,
b) Kin8nm, and c) Power under the time setting. The horizontal axis represents training
time (in sec) in log scale (base 10) and the vertical axis represents the test log-likelihood (top
figure) or the test RMSE (bottom figure) in linear scale. The colored line plots are: TAGI-V
(red solid line), PBP (blue solid line) [10], MC-dropout (green solid line) [8], DVI (purple solid
line) [13], deterministic NN (yellow solid line) [15], Ensembles (black solid line) [9], TAGI
(brown dotted line) [7], TAGI-V 2L (red dotted line) that represents a TAGI-V network of
two layers and 100 hidden nodes, PBP-MV (cyan solid line) [11], and VMG (magenta solid
line) [12]. The learning curves for PBP-MV and VMG are reproduced directly from the
original article [11].

such as PBP-MV that can reach a high accuracy at the expense of computational efficiency,
the performance of TAGI-V is tested by using 2 layers and 100 hidden nodes (TAGI-V 2L)
as represented by the red dotted lines in Figures 7.8, U.3 and U.4. The two-layer network
not only outperform PBP-MV and VMG for test log-likelihood in all datasets except in
Concrete and Wine, but while doing so remains two orders of magnitude faster than these
methods. For the test RMSE, the two-layer network exceeds the performance of PBP-MV
and VMG in 5 out of 9 datasets (Concrete, Energy, Kin8nm, Yacht and Power). These
results demonstrate that TAGI-V can achieve the state-of-the-art predictive accuracy by
using a larger neural network architecture while still being computationally faster than any
of the other approaches.
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Large UCI Datasets

The TAGI-V is tested for the large UCI datasets: elevators, keggdirected, keggundirected,
pol, and skillcraft. The experimental framework provided by Wilson et al. [4] is used. Each
dataset is randomly split into a training and test set having 90% and 10% of the data. The
experiment is carried out for 10 random splits for computing the average test RMSE and
normalized test log-likelihood as per the original setup by Wilson et al. [1, 4].

On all datasets, except skillcraft, a network of five hidden layers is used where the number
of hidden units in each layer are: [1000, 1000, 500, 50, 2]. For skillcraft, a smaller network
is used such that the structure is: [1000, 500, 50, 2]. A ReLU activation unit is used, the
batch size considered is B = 10, and an exponential function is used for the error variance
output. The prior variances for weights and bias are initialized using He’s approach [16].
Similarly to the procedure for the small UCI datasets, the gain parameters associated with
the variances for all the hidden layers and the output layer connected to the mean and error
variance are tuned using a grid-search procedure. Also, an early-stopping procedure is used
to stop the training process with a fixed patience of 3 epochs. The hyperparameters used for
each dataset are provided in Table X.1 from Appendix X.

Tables 7.1 & 7.2 provides the test RMSE and normalized test log-likelihood for the large
UCI datasets. The direct comparison is made with the best performing sub-space inference
method [1] i.e., principal component analysis combined with variational inference (PCA+VI),
along with the stochastic weight averaging-Gaussian (SWAG) [2], the orthogonally decoupled
variational Gaussian Processes (Orth VGP) [3], the deep kernel learning with a spectral
mixture kernel (DKL) [4], the Bayesian final layers (NL) [5], the stochastic gradient descent
(SGD) obtained from Izmailov et al. (2020) [1], and the fastfood kernel Gaussian process
(FF) [6]. The test log-likelihood values shows that TAGI-V performs better than all the
methods in four of the five datasets except in Pol for which it is second best after SI. The
method is also competitive for RMSE values for which DKL is the best performing method.
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Table 7.1 RMSE comparison between the inference methods on large UCI regression datasets.
The direct comparison is made with the best performing sub-space inference method [1] i.e.,
principal component analysis combined with variational inference (PCA+VI), along with
the stochastic weight averaging-Gaussian (SWAG) [2], the orthogonally decoupled variational
Gaussian Processes (Orth VGP) [3], the deep kernel learning with a spectral mixture kernel
(DKL) [4], the Bayesian final layers (NL) [5], the stochastic gradient descent (SGD) obtained
from Izmailov et al. (2020) [1], and the fastfood kernel Gaussian process (FF) [6] (Rank
legend: first). The ±σ represents one standard deviation computed over 10 splits. The
results for TAGI-V are averaged over 3 random seeds.

Datasets TAGI-V PCA + VI (SI) SWAG DKL Orth VGP NL SGD FF
Elevators 0.085± 0.002 0.088± 0.001 0.088± 0.001 0.084± 0.02 0.0952 0.101± 0.002 0.103± 0.035 0.089± 0.002
KeggD 0.129± 0.005 0.128± 0.029 0.129± 0.029 0.10± 0.01 0.119 0.134± 0.036 0.132± 0.017 0.12± 0.00
KeggU 0.122± 0.002 0.160± 0.043 0.160± 0.043 0.11± 0.00 0.117 0.120± 0.003 0.186± 0.034 0.12± 0.00
Pol 2.737± 0.135 2.50± 0.068 3.11± 0.070 6.617± 0.00 4.30± 0.20 4.380± 0.853 3.900± 6.003 –
Skillcraft 0.45± 0.135 0.293± 0.015 0.293± 0.015 0.25± 0.00 – 0.253± 0.011 0.288± 0.014 0.25± 0.02

Table 7.2 Normalized log-likelihood comparison between the inference methods on large UCI
regression datasets. The direct comparison is made with the best performing sub-space in-
ference method [1] i.e., principal component analysis combined with variational inference
(PCA+VI), along with the stochastic weight averaging-Gaussian (SWAG) [2], the orthogo-
nally decoupled variational Gaussian Processes (Orth VGP) [3], the deep kernel learning with
a spectral mixture kernel (DKL) [4], the Bayesian final layers (NL) [5], the stochastic gradient
descent (SGD) obtained from Izmailov et al. (2020) [1], and the fastfood kernel Gaussian
process (FF) [6] (Rank legend: first, second). The ±σ represents one standard deviation
computed over 10 splits. The results for TAGI-V are averaged over 3 random seeds.

Datasets TAGI-V PCA + VI (SI) SWAG DKL Orth VGP NL SGD FF
Elevators −0.298± 0.027 −0.325± 0.019 −0.374± 0.021 – −0.4479 −0.698± 0.039 −0.538± 0.108 –
KeggD 1.274± 0.122 1.085± 0.031 1.080± 0.035 – 1.0224 0.935± 0.265 1.012± 0.154 –
KeggU 0.793± 1.034 0.757± 0.028 0.749± 0.029 – 0.7007 0.670± 0.038 0.602± 0.224 –
Pol 0.718± 0.108 1.764± 0.271 1.533± 1.084 – 0.1586 −2.84± 0.226 1.073± 0.858 –
Skillcraft −0.981± 0.031 −1.179± 0.033 −1.180± 0.033 – – −1.002± 0.050 −1.162± 0.032 –
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7.4 Conclusion

The TAGI-V method proposed in this chapter provides an analytical method for handling
heteroscedastic aleatory uncertainty and overcomes the limitation of the original version of
TAGI which can only handle homoscedastic error variance. The method proposed combines
the TAGI framework that allows for the analytical inference of the parameters’ posterior
PDF in Bayesian neural networks, and AGVI that enables analytical inference of the error
variance. TAGI-V outperforms the original version of TAGI in terms of test log-likelihood
while providing similar test RMSE for all small UCI datasets. In comparison with other
approximate inference methods, TAGI-V is an order of magnitude faster and exhibits superior
predictive performance. The TAGI-V framework was also tested for large UCI datasets for
which it provided better log-likelihood for four out of five datasets compared to the benchmark
methods while providing competitive performance in terms of RMSE. However, the existing
framework cannot yet quantify aleatory uncertainties in a joint prediction model for multi-
output regression tasks. Moreover, the framework requires identifying the hyperparameters
associated with the initial variances for the weights and biases, i.e., the gain parameters α
and β using a grid-search procedure. A future work to further improve the framework would
be infer these gain parameters analytically.
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CHAPTER 8 Conclusion

8.1 Thesis Conclusion

This thesis proposes new analytical Bayesian methods for parameter inference in probabilistic
models. The methods developed improve the models’ predictive performance and scalability
in regard to practical engineering applications. The following section presents the conclusions
derived from this thesis.

State-space models and Bayesian neural networks involve unknown parameters for not only
modeling a physical phenomenon, but also for quantifying the model’s epistemic and aleatory
uncertainties. In the context of state-space models, parameters that exist in the transition
and observation equations can be inferred as hidden states using a multiplicative structure.
However, a key limitation in the existing framework is that an analytically tractable for-
mulation does not exist for multiplicative state-space models that would allow closed-form
inference of the model parameters as hidden states. To overcome this limitation, the the-
sis proposed an analytical method to handle multiplicative state-space models by leveraging
the Gaussian multiplicative approximation (GMA). The GMA provides closed-form moment
equations for the product of two Gaussian hidden states. The framework enables the analyt-
ical Bayesian inference for the hidden state vector in a multiplicative structure involving the
product of two hidden states in the transition and/or observation models. The framework en-
sures that the Kalman filter is still applicable for performing closed-form posterior inference
for a multiplicative structure which can now be represented by a Bayesian dynamic linear
model (BDLM). The proposed method is validated with synthetic as well as SHM-based real
datasets and have shown to exceed the performance of the cubature Kalman filter both in
terms of predictive capacity and computational complexity.

Additionally, the current BDLM framework is limited to modeling linear relationships be-
tween the independent and the interdependent time series described by a constant regres-
sion coefficient. For modeling a nonlinear dependency between two time series, the thesis
proposes the state-based regression (SR) method that allows closed-form inference of the
state-dependent regression coefficient as well as the interdependent state variable. The SR
method provides an interpretable representation of how each nonlinear dependency explains
specific patterns in the interdependent time series. The two case studies involving a dam’s
displacement datasets show that the predictive performance for the SR method is superior
both in terms of root mean square error (RMSE) and log-likelihood compared to the linear
dependency model in the existing BDLM framework.
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Another key feature of state-space models is that it is computationally cheap to estimate the
expected values and the covariance matrix that are quantifying the mean and the epistemic
uncertainties for the hidden state variables because we can rely on an analytical formulation
for performing Bayesian inference. In contrast, obtaining optimal estimates for the variance
parameters in the process (Q) and observation (R) error covariance matrices that quantifies
the model’s aleatory uncertainties is typically the most computationally demanding task
in the state estimation procedure. Even though in many situations the matrix R can be
considered to be known from the measuring instrument specifications, it remains a challenge
to develop a computationally efficient method which is able to perform closed-form online
estimation of the matrix Q. To overcome this limitation, this thesis proposes the approximate
Gaussian variance inference (AGVI) method that provides closed-form analytical inference
for the univariate as well as the multivariate process error’s variance and covariance terms.
The AGVI method is verified and validated using both synthetic and real datasets and have
shown to provide accurate as well as statistically consistent estimates for the mean and
variance of the process error’s variance and covariance terms in the Q matrix at each time
step. In comparison to the offline gradient-based optimization approaches and the existing
adaptive Kalman filtering (AKF) methods, the AGVI method has a better performance in
terms of its predictive capacity as well as a higher computational speed.

Analytical parameter estimation is feasible in Bayesian neural networks using the tractable
approximate Gaussian inference (TAGI) method. However, a key limitation of the TAGI
framework is that it is restricted to modeling homoscedastic aleatory uncertainty. The the-
sis provides the TAGI-V framework to model the heteroscedastic aleatory uncertainty in
Bayesian neural networks by combining the AGVI method with the TAGI framework. In
comparison to existing approximate inference methods applied to the small UCI regression
benchmark, the framework is an order of magnitude faster and exhibits superior predictive
performance. The TAGI-V framework was also tested for large UCI datasets for which it
provided a better log-likelihood for four out of five datasets compared to the benchmark
methods while providing competitive performance in terms of RMSE.

It is important to highlight that the GMA formulation is fundamental to all the analytical
methods developed in this thesis. Without the closed-form moment equations for the product
of two Gaussian hidden states, it would not have been possible to perform the parameter
inference step analytically. The simple algebraic expressions for the expected values, the vari-
ance, and the covariance terms have allowed us to obtain the moments associated with the
multiplicative terms. For instance, we could model parameters such as the autoregressive pa-
rameter in the first-order autoregressive process as a hidden state, generate new components
in the BDLM framework such as the trend multiplicative and the double kernel regression
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that models the product of a local trend and a periodic component and the product of two
periodic components. The state-based regression method relies on GMA to analytically in-
fer the product of the regression coefficient and the independent hidden state. The AGVI
method uses the GMA equations for formulating the relationship between the process errors,
the square of the process errors, and their expected values that allow closed-form posterior
inference of the full Q matrix in the context of state-space models. Moreover, the AGVI
method found its application in the context of Bayesian neural networks for analytically
quantifying the heteroscedastic aleatory uncertainty necessary for practical regression tasks.
Overall, the GMA is the thread line connecting each chapter of this thesis that has enabled
developing analytical inference methods for estimating parameters in probabilistic models.

In conclusion, the methods proposed in this thesis have addressed key limitations in esti-
mating parameters for state-space models and Bayesian neural networks. The case studies
presented in the context of state-space models focuses on structural health monitoring (SHM)
applications. However, the methods themselves are not restricted to SHM and are applicable
in general for time series forecasting and regression tasks in many other engineering fields
including navigation, aerospace, telecommunications, etc., where parameter estimation is
a necessary step. Finally, this thesis lay the groundwork for analytical tractability in pa-
rameter estimation which is at the core of advancing the existing methods for large-scale
implementation.

8.2 Limitations

This section examines the limitations that exist in the methods proposed in this thesis.
Resolving these limitations, can further improve the applicability of these methods for a
wide array of engineering applications.

8.2.1 The Gaussian Multiplicative Approximation

The Gaussian multiplicative approximation provides closed-form moments for the product of
two hidden states that could be leveraged to analytically model parameters as hidden states
in the context of state-space models. However, the closed-form moments are only available
for the product of two Gaussian random variables. The current formulation does not provide
closed-form moments for higher-order monomials or polynomials. This could allow handling
dynamic systems having general polynomial functions and not be restricted to the product
of two random variables.
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8.2.2 State-Based Regression

The state-based regression method is capable of identifying short-term and long-term sta-
tionary patterns in time series. However, as seen in the case studies, the method cannot
handle non-stationary patterns by itself and would require combining the SR method with a
regime-switching approach. This would enable identifying whether the model is in a normal
regime or an abnormal regime allowing the predictive model to identify anomalies in real-
time. Moreover, it might be worth investigating additional explanatory variables that can
identify specific dam behavior such as creep or creep-relief effects. Furthermore, a key lim-
itation in the state-based regression method is the need for feature engineering to preselect
the explanatory variables such as the average long-term trend, mean-centered water level,
and the moving averages of the air temperature’s residuals as shown in the case studies that
require domain specific knowledge. This aspect is currently the factor limiting the scalability
of the approach for analyzing large SHM databases.

8.2.3 Approximate Gaussian Variance Inference

The AGVI method has shown promising results and can provide an efficient way of reducing
the computational time for estimating the parameters quantifying aleatory uncertainties in
probabilistic models. However, one key limitation of AGVI is that the uncertainty associated
with the process error’s variance is not considered as σ2

W is shown to be equal to µW 2 , i.e.,
the expected value of W 2. This limitation is attributed to the Gaussian assumption for the
variance term, for which inverse-gamma PDF is the theoretical distribution. Moreover, in
complex practical applications, the Q matrix might be time-varying, i.e., the true values for
the variance and covariance terms in the Q matrix might vary as a function of time. The
existing framework cannot handle time-varying Q matrix and requires it to be stationary
over time.

8.2.4 TAGI-V

TAGI-V was successfully applied to quantify heteroscedastic aleatory uncertainty for single-
output regression tasks. However, the existing framework cannot yet quantify aleatory uncer-
tainties in a joint prediction model for multi-output regression tasks. Moreover, the frame-
work requires identifying the hyperparameters associated with the initial variances for the
weights and biases, i.e., the gain parameters α and β using a grid-search procedure. A future
work to further improve the framework would be infer these gain parameters analytically.
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8.3 Future Research

This section provides two future research directions that builds upon the mathematical for-
mulations developed in this thesis.

8.3.1 Analytically Tractable Skewness Inference

One future case study is to analytically infer the skewness parameter along with the expected
value and the variance parameter for any skewed probability distribution. This would allow
describing generalized extreme value distributions (GEV) used to model the maxima or min-
ima of a sequence of random variables [115]. The GEV distribution is widely used to model
financial risks, as well as extreme events such as maximum precipitation, temperature, fire
hazards, etc.

Generalized Extreme Value Distribution

Given that Y ∼ GEV(α, β, ζ), where α ∈ R is the location parameter, β ∈ R+ is the scale
parameter, ζ ∈ R is the shape parameter. The moments for Y are shown by

E[Y ] = α + (g1 − 1)β
ζ
, for ζ < 1,

var(Y ) = (g2 − g2
1)β

2

ζ2 ,

skewness(Y ) = g3 − 3g2g1 + 2g3
1

(g2 − g2
1)3/2 , for ζ > 0,

where the mean, the variance, and the skewness are functions of α, β, and ζ. The term
gk = Γ(1 − kζ), k ∈ {1, 2, 3} is a gamma function. With the knowledge of these three
moments, we can identify the three parameters using which the GEV distribution can be
constructed. The mean and the variance parameters can be analytically inferred using the
AGVI method. But we do not have the mathematical formulation to infer the skewness
parameter.
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Skewness

The skewness of a random variable Y is the 3rd standardized moment represented by µ̃3 and
defined as

µ̃3 = E
[(
Y − µY
σY

)3
]
,

µ̃3 = E [Y 3 − 3µY σ2
Y − µ3

Y ]
σ3
Y

. (8.1)

Using the observation model y = z(O) + v, v : V ∼ N (0, σ2
V ), we can simplify the numerator

term in Equation 8.1 shown by

µ̃3 =
E
[
(Z(O) + V )3

]
− 3E[Z(O)]var(Z(O) + V )− E[Z(O)]3

σ3
Y

,

=
E
[
(Z(O) + V )3

]
− 3E[Z(O)]var(Z(O))− 3E[Z(O)]var(V )− E[Z(O)]3

σ3
Y

. (8.2)

Using GMA, the term E
[
(Z(O) + V )3

]
can be simplified further using

E
[
(Z(O) + V )3

]
= E

[(
ZO
)3

+ V 3 + 3ZOV 2 + 3V
(
ZO
)2
]
,

= E
[(
ZO
)3
]

+ E[V 3] + 3E[ZOV 2] +����
��:0

3E[V ZO2],

= E[ZO]3 + 3E[ZO]var(ZO) + E[V 3] + 3E[ZO]var(V ). (8.3)

Using Equations 8.2 & 8.3, we re-write the expression for skewness as

µ̃3 =
E
[
(Z(O) + V )3 − 3E[Z(O)]var(Z(O))− 3E[Z(O)]var(V )− E[Z(O)]3

]
σ3
Y

,

= ��
��E [ZO]3 +((((((

((3E[ZO]var(ZO) + E[V 3] +((((((
((3E[ZO]var(V )−((((((

(((3E[Z(O)]var(Z(O))−((((((
((3E[Z(O)]var(V )−�����E[Z(O)]3

σ3
Y

,

µ̃3 = E[V 3]
σ3
Y

. (8.4)

Hence, the skewness of Y is a function of E[V 3] and σY . The first-step for inferring the
skewness, would be to obtain the closed-form moments for the cube of the Gaussian random
variable V , i.e., E[V 3] and var(V 3). Considering that term E[V 3] is represented by the random
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variable V 3, the next step would be to formulate the prediction and update equations similarly
to the AGVI method described in Section 5.2.2 of Chapter 5, but for the posterior inference
of V 3.

8.3.2 Time-Varying Process Error’s Variance Inference

In the current AGVI formulation, the process error’s variance term is considered to be sta-
tionary over time. The transition model for the random variable representing the error’s
variance, i.e., W 2 is constant from one time step to the next as given by

w2
t = w2

t−1 . (8.5)

For modeling time-varying process error’s variance, the transition model shown in Equation
8.5 should include the random error term s shown by

w2
t = w2

t−1 + st, s : S ∼ N (0, σ2
S),

where σ2
S is the variance parameter associated with the process error s. This variance term

can also be inferred with the current AGVI formulation. Let us represent the error’s variance
σ2
S by the Gaussian random variable S2. Similarly to the procedure shown in Section 5.2.2,

the Gaussian random variables S2 and S2 can be expressed in terms of the standard Gaussian
variable ε and ζ shown by

S2 = S2 +
√

2 S2ε, ε ∼ N (0, 1) (8.6)

S2 = µS
2 + σS

2
ζ, ζ ∼ N (0, 1). (8.7)

Starting from the prior knowledge for S2, the first objective is to obtain the marginalized
moments for S2, thereby providing the variance for S which would be equal to µS2 . Using
the prior knowledge for W 2 and the variance term µS

2 , the mean and variance for the prior
predictive PDF of W 2

t|t−1 are

E[W 2
t|t−1] = µW

2
t−1|t−1,

var(W 2
t|t−1) = (σW 2

t−1|t−1)2 + µS
2

t|t−1.

Using these moments, the same procedure taken for the AGVI method can be followed to
obtain the posterior PDF of W 2 at any time t. Thereafter, the next objective would be
to formulate the update step for obtaining the posterior moments for S2 using the updated
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knowledge of W 2. Hence, for the time-varying case, the AGVI method needs to be applied
twice for each time step to obtain the posterior knowledge of the time-varying error’s variance
parameter.

8.4 Concluding Remark

The methods developed in this thesis are fundamental to the engineering community and
can be used in many future applications. Using the mathematical concepts developed in this
thesis, structured ideas can already be formulated as shown by the future research section.
Nevertheless, the limitations section confirms that these methods are still in a nascent stage
and that they can be improved significantly in the future.
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APPENDIX A THE GMA EQUATIONS USING GAUSSIAN MOMENT
GENERATING FUNCTION

Let X = [X1 . . . Xp]ᵀ be a vector of Gaussian random variables, X ∼ N (x;µ,Σ), where µ
is the mean vector, Σ is the covariance matrix, and t = [t1 . . . tp]ᵀ ∈ Rp, then the following
Equation [116,117] is held which analytically computes the multivariate moments encountered
in the nonlinear Kalman filter given by

E[Xk1
1 . . . Xkp

p ] = ∂k

∂tk1 . . . ∂tkp
exp

 p∑
i=1

tiµi + 1
2

p∑
i,j=1

titjcov(Xi, Xj)
∣∣∣∣

t1=...=tp=0
(A.1)

where ki’s are non-negative integers and k = ∑p
i=1 ki. This Equation is derived from the

moment generating function of multivariate Gaussian;

∂k
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1 . . . ∂t

kp
p

Mx(tᵀ) = ∂k
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1 . . . ∂t
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p

E
[
exp

( p∑
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(A.2)

= E
[

∂k

∂tk1 . . . ∂tkp
exp

( p∑
i=1

tiXi

)]

= E
[
Xk1

1 . . . Xkp
p exp

( p∑
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tiXi

)]

Setting t = [0 . . . 0]ᵀ, we obtain

E[Xk1
1 . . . Xkp

p ] = ∂k

∂tk1 . . . ∂tkp
Mx(tᵀ)

Given Gaussian random variables, Mx(tᵀ) = E[etᵀx] = etᵀµ+ 1
2 tᵀΣt, the following equations to

evaluate product terms can be directly obtained from Equation A.1.

E[X1X2] = µ1µ2 + cov(X1, X2),

E[X1X2X3] = cov(X1, X2)µ3 + cov(X1, X3)µ2 + cov(X2, X3)µ1 + µ1µ2µ3,

E[X1X2X3X4] = cov(X1X2)
(
cov(X3, X4) + µ3µ4

)
+ cov(X1X3)

(
cov(X2, X4) + µ2µ4

)
+

cov(X2X3)
(
cov(X1, X4) + µ1µ4

)
+ cov(X1, X4)µ2µ3 + cov(X2, X4)µ1µ3

+cov(X3, X4)µ1µ2 + µ1µ2µ3µ4.
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APPENDIX B THE GMA EQUATIONS USING 2ND ORDER TAYLOR
SERIES EXPANSION

Let us consider the function h(·) in two variables x1 and x2, where h(x1, x2) = x1x2 that
represents the product of two random variables. Using 2nd order Taylor series expansion, we
express h(x1, x2) as

h(x1, x2) ≈ h(µ1, µ2) + ∂h

∂x1

∣∣∣
µ1,µ2

(x1 − µ1) + ∂h

∂x2

∣∣∣
µ1,µ2

(x2 − µ2) + 0.5 · ∂
2h

∂x2
1
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µ1,µ2

(x1 − µ1)2

+ 0.5 · ∂
2h

∂x2
2

∣∣∣
µ1,µ2

(x2 − µ2)2 + · ∂2h

∂x1∂x2

∣∣∣
µ1,µ2

(x1 − µ1)(x2 − µ2),

≈ µ1µ2 + µ2(x1 − µ1) + µ1(x2 − µ2) + (x1 − µ1)(x2 − µ2), (B.1)

where h(µ1, µ2) = µ1µ2, ∂h
∂x1

∣∣∣
µ1,µ2

= µ2, ∂h
∂x2

∣∣∣
µ1,µ2

= µ1, and ∂2h
∂x1∂x2

∣∣∣
µ1,µ2

= 1. Using Equation
B.1, the expected value E[X1X2] is

E[X1X2] = µ1µ2 + E[(X1 − µ1)(X2 − µ2)],

= µ1µ2 + cov(X1, X2), (B.2)

where using the properties of random variables E[(X1 − µ1)(X2 − µ2)] = cov(X1, X2). The
variance term var(X1X2) is given by

var(X1X2) = var
(
µ1µ2 + µ2(X1 − µ1) + µ1(X2 − µ2) + (X1 − µ1)(X2 − µ2)

)
,

= var
(
µ2(X1 − µ1)

)
+ var

(
µ1(X2 − µ2)

)
+ var

(
(X1 − µ1)(X2 − µ2)

)
+ 2cov

(
µ2(X1 − µ1), µ1(X2 − µ2)

)
+ 2cov

(
µ2(X1 − µ1), (X1 − µ1)(X2 − µ2)

)
+ 2cov

(
(x1 − µ1)(X2 − µ2), µ1(X2 − µ2)

)
,

= µ2
2σ

2
1 + µ2

1σ
2
2 + σ2

1σ
2
2 + cov(X1, X2)2 + 2µ1µ2cov(X1, X2), (B.3)

where the terms in Equation B.3 are evaluated as follows

var
(

(X1 − µ1)(X2 − µ2)
)

= E[(X1 − µ1)2(X2 − µ2)2]− E[(X1 − µ1)(X2 − µ2)]2,

= σ2
1σ

2
2 + 2cov(X1, X2)2 − cov(X1, X2)2,

= σ2
1σ

2
2 + cov(X1, X2)2, (B.4)
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where using Isserlis theorem [97], E[(X1−µ1)2(X2−µ2)2] = σ2
1σ

2
2 + 2cov(X1, X2)2. Similarly,

the covariance terms in Equation B.3 are given by

2cov
(
µ2(X1 − µ1), µ1(X2 − µ2)

)
= 2µ1µ2cov(X1, X2), (B.5)

2cov
(
µ2(X1 − µ1), (X1 − µ1)(X2 − µ2)

)
= 2µ2

(
E[(X1 − µ1)2(X2 − µ2)]

−����
���:0

E[X1 − µ1]E[(X1 − µ1)(X2 − µ2)]
)

= 0, (B.6)

2cov
(
µ1(X2 − µ2), (X1 − µ1)(X2 − µ2)

)
= 2µ1

(
E[(X2 − µ2)2(X1 − µ1)]

−����
���:0

E[X2 − µ2]E[(X1 − µ1)(X2 − µ2)]
)
,

= 0, (B.7)

where using Isserlis theorem, E[(X1 − µ1)2(X2 − µ2)] = E[(X2 − µ2)2(X1 − µ1)] = 0 as the
expected values of the product of odd powers of Gaussian random variables of zero-mean
values are 0. The covariance between X3 and X1X2 is

cov(X3, X1X2) = cov
(
X3, µ1µ2 + µ2(X1 − µ1) + µ1(X2 − µ2) + (X1 − µ1)(X2 − µ2)

)
,

= cov
(
X3, µ2(X1 − µ1)

)
+ cov

(
X3, µ1(X2 − µ2)

)
+ cov

(
X3, (X1 − µ1)(X2 − µ2)

)
,

= µ2cov(X3, X1) + µ1cov(X3, X2),

where similar to Equations B.6 and B.7, the term cov
(
X3, (X1 − µ1)(X2 − µ2)

)
= 0 and

evaluated as follows

cov
(
X3, (X1 − µ1)(X2 − µ2)

)
= E[X3(X1 − µ1)(X2 − µ2)]− E[X3]E[(X1 − µ1)(X2 − µ2)],

= E[(X3 − µ3 + µ3)(X1 − µ1)(X2 − µ2)]− µ3cov(X1, X2),

= E[(X3 − µ3)(X1 − µ1)(X2 − µ2)] + E[(µ3)(X1 − µ1)(X2 − µ2)]

− µ3cov(X1, X2),

= 0 + µ3cov(X1, X2)− µ3cov(X1, X2),

= 0.
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The covariance between the product terms X1X2 and X3X4 is given by

cov(X1X2, X3X4) = cov
(
µ1µ2 + µ2(X1 − µ1) + µ1(X2 − µ2) + (X1 − µ1)(X2 − µ2),

µ3µ4 + µ4(X3 − µ3) + µ3(X4 − µ4) + (X3 − µ3)(X4 − µ4)
)
,

= cov
(
µ2(X1 − µ1), µ4(X3 − µ3)

)
+ cov

(
µ2(X1 − µ1), µ3(X4 − µ4

)
+ cov

(
µ2(X1 − µ1), (X3 − µ3)(X4 − µ4)

)
+ cov

(
µ1(X2 − µ2), µ4(X3 − µ3)

)
+ cov

(
µ1(X2 − µ2), µ3(X4 − µ4)

)
+ cov

(
µ1(X2 − µ2), (X3 − µ3)(X4 − µ4)

)
+ cov

(
(X1 − µ1)(X2 − µ2), µ4(X3 − µ3)

)
+ cov

(
(X1 − µ1)(X2 − µ2), µ3(X4 − µ4)

)
+ cov

(
(X1 − µ1)(X2 − µ2), (X3 − µ3)(X4 − µ4)

)
,

= cov(X1, X3)cov(X2, X4) + cov(X1, X4)cov(X2, X3) + µ2µ4cov(X1, X3)

+ µ2µ3cov(X1, X4) + µ1µ4cov(X2, X3) + µ1µ3cov(X2, X4), (B.8)

where the terms in Equation B.8 are evaluated as follows

cov
(
µ2(X1 − µ1), µ4(X3 − µ3)

)
= µ2µ4cov(X1, X3),

cov
(
µ2(X1 − µ1), µ3(X4 − µ4

)
= µ2µ3cov(X1, X4),

cov
(
µ2(X1 − µ1), (X3 − µ3)(X4 − µ4)

)
= µ2cov

(
(X1 − µ1), (X3 − µ3)(X4 − µ4)

)
,

= µ2E[(X1 − µ1)(X3 − µ3)(X4 − µ4)]

− E[(X1 − µ1)]E[(X3 − µ3)(X4 − µ4)],

= 0,
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cov
(
µ1(X2 − µ2), µ4(X3 − µ3)

)
= µ1µ4cov(X2, X3),

cov
(
µ1(X2 − µ2), µ3(X4 − µ4)

)
= µ1µ3cov(X2, X4),

cov
(
µ1(X2 − µ2), (X3 − µ3)(X4 − µ4)

)
= 0,

cov
(

(X1 − µ1)(X2 − µ2), µ4(X3 − µ3)
)

= 0,

cov
(

(X1 − µ1)(X2 − µ2), µ3(X4 − µ4)
)

= 0,

cov
(

(X1 − µ1)(X2 − µ2), (X3 − µ3)(X4 − µ4)
)

= E[(X1 − µ1)(X2 − µ2)(X3 − µ3)(X4 − µ4)]

− E[(X1 − µ1)(X2 − µ2)]E[(X3 − µ3)(X4 − µ4)],

= cov(X1, X2)cov(X3, X4)

+ cov(X1, X3)cov(X2, X4)

+ cov(X1, X4)cov(X2, X3)

− cov(X1, X2)cov(X3, X4),

= cov(X1, X3)cov(X2, X4)

+ cov(X1, X4)cov(X2, X3),

where using Isserlis theorem [97], the expected value of the product of centered-Gaussian
random variables Xi, Xj, Xk, andXn is E[XiXjXkXn] = σijσkn + σikσjn + σinσjk, considering
σij = cov(Xi, Xj).
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APPENDIX C MODEL MATRICES FOR THE TREND MULTIPLICATIVE

A = blockdiag


 1 ∆t

0 1

 ,
 cosω sinω
− sinω cosω

 ,


0 0 1
0 1 0
0 0 0

 ,


1 ∆t 0
0 1 0
0 0 0


 ,

C = [1 0 0 0 1 0 0 0 0 1],

R = σ2
V ,

Q = blockdiag

(σLT
W )2

 ∆t3
3

∆t2
2

∆t2
2 ∆t

 , (σS
W )2

 1 0
0 1

 , (σAR
W )2


1 0 0
0 0 0
0 0 0

 , (σTP
W )2


∆t3

3
∆t2

2 0
∆t2

2 ∆t 0
0 0 0


 .

where frequency ω = 2π∆t
p

with p = 365.24 days and ∆t = 1 day. The prediction and
update steps in the Kalman filter are given by

[µ̃t|t−1, Σ̃t|t−1] = Predict
(
µt−1|t−1,Σt−1|t−1,A,C,Q,R

)
,

[µt|t,Σt|t] = Update
(
µ̃t|t−1, Σ̃t|t−1,A,C,Q,R

)
.
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APPENDIX D MODEL MATRICES FOR THE DOUBLE KERNEL
REGRESSION

A = blockdiag

1,


0 0 1
0 1 0
0 0 0

 ,
 0 k̃KR1(t, tKR)

050×1 I50×50

 ,
 0 k̃KR2(t, tKR)

030×1 I30×30

 , 0
 ,

C = [1 1 0 0 01×51 01×31 1],

R = σ2
V ,

Q = blockdiag

(σLL
W )2, (σAR

W )2


1 0 0
0 0 0
0 0 0

 ,051×51,031×31, 0

 .
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APPENDIX E COMPUTATIONAL COMPLEXITY

Algorithm 3 Kalman filter algorithm with the GMA
Input: µt−1|t−1,Σt−1|t−1
Output: µt|t,Σt|t

1: µt|t−1 = Aµ̃t−1|t−1.

2: Σt|t−1 = AΣ̃t−1|t−1Aᵀ + Q.
3: K = Σt−1|t−1Cᵀ(CΣt−1|t−1Cᵀ + R)−1.
4: rt = yt −Cµt|t−1.
5: µt|t = µt|t−1 + Krt.
6: Σt|t = (I−KC)Σt|t−1.

Since the filtering method is recursive, it is enough to determine the computational complexity
of a single time step going from t− 1 to t to evaluate the total complexity of the algorithm.
The computational complexity here refers to the time complexity of an algorithm which is
denoted by the big O notation. The time complexity (or from here on complexity) of the
matrix operations to be used in algorithm 1 are described as follows.

1. Matrix multiplication: The multiplication of two matrices of size n×n has a complexity
of O(n3). In general, matrix multiplication of two matrices of size n ×m and m × p
has a complexity of O(mnp).

2. Matrix addition: The addition of matrices of size m× n has a complexity of O(mn).

3. Algebraic operations: Algebraic operations are considered to have constant complexity
or O(1) as these operations are unaffected by the size of state vector and will be
performed in the same time.

Considering the big O notation for the various matrix operations and the size of the state
vector to be n, the step-by-step complexity of algorithm 1 is presented.
Step 1: This step consists of multiplication of two matrices, [A]n×n and [µ̃]n×1 with a com-
plexity is O(n2). The complexity of computing µ̃ is O(n). Since, the GMA equations are
algebraic operations unaffected by the size of the state vector, these will have a complexity
of O(1). Hence the total complexity in Step 1 is O(n2 + n).
Step 2: This step consists of two matrix multiplication and one transposition operation for
computing [A]n×n[Σ̃]n×n[A]ᵀn×nand one matrix addition. The complexity for this step is
O(2n3 + n2).
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Step 3: This step consists of computing the terms [Σ]n×n[Cᵀ]n×1 having a complexity of
O(n2) and [C]1×n[Σ]n×n[Cᵀ]n×1 having a complexity of O(2n2). Finally, the total complex-
ity of calculating the Kalman gain is O(3n2 + n).
Step 4: This step consists of a matrix multiplication of [C]1×n[µ]n×1 having a complexity of
O(n).
Step 5: This step consists of a matrix addition of [µ]n×1 and multiplication of a matrix by a
scalar, [K]n×1[r]1×1. The total complexity in this step is O(2n).
Step 6: The final step to compute Σt|t consists of two matrix multiplication and one matrix
subtraction. The total complexity in this step is O(n3 + 2n2).
Hence, the total complexity of the Kalman filter algorithm using the GMA is of the order ≡
O(3n3).
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APPENDIX F BDLM STRUCTURE IN STATE-BASED REGRESSION

The model matrices for the local level LL, local trend LT, kernel regression KR, and autore-
gressive AR components [21] are as follows:

ALL = 1, ALT =
 1 ∆t

0 1

 , AKR =
 0 k̃KR(t, tKR)

0N×1 IN

 , AAR = φAR, (F.1)

where N represents the number of control-points for kernel regression and ∆t = 1day. The
observation matrix C for these components are given by

CLL = 1, CLT = [1 0] , CKR = [1 0N×1] , CAR = 1. (F.2)

The process error covariance matrices Q are

QLL = (σLL
w )2, QLT = (σLT

w )2

 ∆t4
4

∆t3
2

∆t3
2 ∆t2

 , QKR =
 (σKR

0 )2 0
0 (σKR

1 )2 · IN

 , QAR = (σAR
w )2,(F.3)

The transition matrix for the SR component of size 3N + 2 is formulated as

ASR =



0N 01×N 0 0 01×N
... IN 0 0 01×N
... . . . 0 0 11×N
... . . . . . . 0 01×N

sym. . . . . . . . . . 0N


. (F.4)

The observation matrix CSR is given by

CSR = [0ᵀ
N×1 0ᵀ

N×1 0 1 0ᵀ
N×1] . (F.5)

No process error covariance matrix is considered for the SR component and is given by
QSR = 03N+2. Using Equations F.1 & F.4, the global transition matrix A is obtained by
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arranging each of the transition matrices block diagonally shown by

A = blockdiag


CB2/3︷ ︸︸ ︷

[ALL, AKR, AAR],
WL1︷ ︸︸ ︷

[ALT, ASR1 ],
WL2︷ ︸︸ ︷

[AAR, ASR2 ],
T−MA1︷ ︸︸ ︷
[AAR],

T−MA7︷ ︸︸ ︷
[AAR],

T−MA14︷ ︸︸ ︷
[AAR] ,

T−MA28︷ ︸︸ ︷
[AAR] ,

T−MA54︷ ︸︸ ︷
[AAR]

,
(F.6)

where WL1 and WL2 refers to the average long-term trend and the mean-centered water level,
and the nonlinear dependencies are modeled using the SR1 and SR2 components. Using
equations F.2 & F.5, the global observation matrix Ct is given by

C = blockdiag


CB2/3︷ ︸︸ ︷

[CLL, CKR, CAR],
WL1︷ ︸︸ ︷

[CLT, CSR1 ],
WL2︷ ︸︸ ︷

[CAR, CSR2 ],
T−MA1︷ ︸︸ ︷
[CAR],

T−MA7︷ ︸︸ ︷
[CAR],

T−MA14︷ ︸︸ ︷
[CAR] ,

T−MA28︷ ︸︸ ︷
[CAR] ,

T−MA54︷ ︸︸ ︷
[CAR]

,
(F.7)

The Q and the R matrices are

Q = blockdiag


CB2/3︷ ︸︸ ︷

[QLL, QKR, QAR],
WL1︷ ︸︸ ︷

[QLT, QSR1 ],
WL2︷ ︸︸ ︷

[QAR, QSR2 ],
T−MA1︷ ︸︸ ︷
[QAR],

T−MA7︷ ︸︸ ︷
[QAR],

T−MA14︷ ︸︸ ︷
[QAR] ,

T−MA28︷ ︸︸ ︷
[QAR] ,

T−MA54︷ ︸︸ ︷
[QAR]

,
(F.8)

R = blockdiag

[
CB2/3︷ ︸︸ ︷

(σV1)2,

WL1︷ ︸︸ ︷
(σV2)2,

WL2︷ ︸︸ ︷
(σV3)2,

T−MA1︷ ︸︸ ︷
(σV4)2,

T−MA7︷ ︸︸ ︷
(σV5)2,

T−MA14︷ ︸︸ ︷
(σV6)2,

T−MA28︷ ︸︸ ︷
(σV7)2,

T−MA54︷ ︸︸ ︷
(σV8)2]

, (F.9)

where σVi
, ∀i = 1 : 8 refers to the standard deviation of the observation error V for each of

the time series.
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APPENDIX G PROOF FOR LEMMA 1

Proof. Given that W is Gaussian and has a zero mean, the moments of W can be derived
using a Gaussian moment generating function so that

µW = E[W ] = 0,

σ2
W = E[(W − µW )2] = E[W 2]− E[W ]2, (G.1)

= E[W 2],

E[W 4] = 3E[W 2]2, (G.2)

where using Equations G.1 & G.2, we can define the variance of W 2 such that

var(W 2) = E[(W 4)]− E[W 2]2 = 2E[W 2]2. (G.3)

If we make the approximation thatW 2 ∼ N (w2;µW 2
, (σW 2)2) is a Gaussian random variable,

then the PDF can be fully defined by its mean and variance,

µW
2 = E[W 2],

(σW 2)2 = var(W 2) = 2E[W 2]2,

where by using Equation G.3, the variance var(W 2) can also be expressed in terms of the
expected value E[W 2]. Hence, the PDF ofW 2 only depends on the unknown hyper parameter
µW

2 such that

f(w2|µW 2
, (σW 2)2) ≡ f(w2|µW 2),

= N (w2, µW
2
, 2(µW 2)2). (G.4)
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APPENDIX H PROOF FOR LEMMA 2

Proof. Let us consider that the mean parameter µW 2 is described by the random variable
W 2 : w2 ∈ (0,∞) for which

f(w2) ∼ N (w2;µW 2
, (σW 2)2). (H.1)

Using (G.4) and (H.1), we can rewrite the PDF of W 2 as

f(w2|w2) = N (w2;w2, 2(w2)2). (H.2)

Using the acyclic graph in Figure 5.1, the joint PDF of Yt|t−1, Xt|t−1, W 2
t|t−1, and W 2

t|t−1 is
shown by

f(yt, xt, w2
t , w

2
t|y1:t−1) = f(yt|xt, w2

t ) · f(xt|y1:t−1)

· f(w2
t |w2

t) · f(w2
t|y1:t−1). (H.3)

Using Equation H.2 and marginalizing Yt|t−1, Xt|t−1, and W 2
t|t−1 from the joint PDF defined

in Equation H.3, the prior predictive PDF of W 2
t|t−1 is

f(w2
t |y1:t−1) =

∫
f(w2

t |w2
t) · f(w2

t|y1:t−1)dw2
t, (H.4)

=
∫
N (w2

t ;w2
t, 2(w2

t)2) · N (w2
t;µW

2
t−1|t−1, (σW

2
t−1|t−1)2)dw2

t.

The integration in Equation H.4 can be solved in closed-form (see Section 2.3.1). The equiv-
alent formulation to obtain this is to represent the Gaussian random variables W 2 and W 2

in terms of the standard Gaussian variable ε and ζ shown by

W 2 = W 2 +
√

2 W 2ε, ε ∼ N (0, 1) (H.5)

W 2 = µW
2 + σW

2
ζ, ζ ∼ N (0, 1). (H.6)
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Using Equations H.5 & (H.6), the mean and variance of the prior predictive PDF of W 2
t|t−1

are given by

E[W 2
t|t−1] = E[W 2

t|t−1 ] +
√

2����
��:0

E[W 2
t|t−1 ε],

= µW
2

t−1|t−1, (H.7)

var(W 2
t|t−1) = var(W 2

t|t−1 ) + 2 var(W 2
t|t−1 ε),

= (σW 2
t−1|t−1)2 + 2(var(W 2

t|t−1 ) ·��
��*

1
var(ε)

+ ��
��*

1
var(ε) · E[W 2

t|t−1 ]2),

= 3(σW 2
t−1|t−1)2 + 2(µW 2

t−1|t−1)2, (H.8)

where the term var(W 2
t|t−1 ε) in Equation H.8 is obtained using the GMA equations,

var(W 2
t|t−1 ε) = var(W 2

t|t−1 ) · var(ε) + var(ε) · E[W 2
t|t−1 ]2.

Using Equations G.1 & H.7, the error variance term is given by

σ2
W = µW

2
t−1|t−1. (H.9)
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APPENDIX I PROOF FOR LEMMA 3

Proof. Let us consider the joint PDF of Yt|t−1, W 2
t|t−1, and W 2

t|t−1 as shown by Figure 5.1,

f(yt, w2
t , w

2
t|y1:t−1) = f(yt|w2

t ) · f(w2
t |w2

t) · f(w2
t|y1:t−1).

= f(yt|w2
t ) ·

f(w2
t |w2

t) · f(w2
t|y1:t−1)

f(w2
t |y1:t−1) · f(w2

t |y1:t−1),

= f(yt|w2
t ) ·

f(w2
t , w

2
t|y1:t−1)

f(w2
t |y1:t−1) · f(w2

t |y1:t−1),

= f(yt|w2
t ) · f(w2

t|w2
t ,y1:t−1) · f(w2

t |y1:t−1). (I.1)

By dividing both sides in Equation I.1 by f(yt|y1:t−1) we obtain

f(yt, w2
t , w

2
t|y1:t−1)

f(yt|y1:t−1) = f(yt|w2
t ) · f(w2

t |y1:t−1)
f(yt|y1:t−1) · f(w2

t|w2
t ,y1:t−1),

f(w2
t , w

2
t|y1:t) = f(w2

t |y1:t) · f(w2
t|w2

t ,y1:t−1), (I.2)

By marginalizing out W 2 from the joint PDF defined in Equation I.2, the posterior PDF of
W 2

t|t is obtained such that

f(w2
t|y1:t) =

∫
f(w2

t |y1:t) · f(w2
t|w2

t ,y1:t−1)dw2
t . (I.3)
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APPENDIX J PROOF FOR LEMMA 4

Proof. Using the GMA equations in Section 3.2, the posterior PDF of W 2 can be shown by

f(w2
t |y1:t) ∼ N (w2

t ;µW
2

t|t , (σW
2

t|t )2), (J.1)

where the mean and variance of W 2
t|t are

µW
2

t|t = (µWt|t)2 + (σWt|t )2,

(σW 2

t|t )2 = 2(σWt|t )4 + 4(σWt|t )2(µWt|t)2.
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APPENDIX K PROOF FOR PROPOSITION 2

Proof. Given that the prior predictive PDF of both W 2 and W 2 are Gaussian, the joint
multivariate Gaussian PDF f(w2

t, w
2
t |y1:t−1) is shown by

f(w2
t, w

2
t |y1:t−1) = N

((
w2

t

w2
t

)
;µW 2,W 2

t|t−1 ,ΣW 2,W 2

t|t−1

)
, (K.1)

having a mean vector µW 2,W 2

t|t−1 and a covariance matrix ΣW 2,W 2

t|t−1 defined as

µW
2,W 2

t|t−1 =
[
µW

2
t|t−1 µ

W 2

t|t−1

]ᵀ
,

ΣW 2,W 2

t|t−1 =
 (σW 2)2

t|t−1 cov(W 2,W 2)t|t−1

cov(W 2,W 2)t|t−1 (σW 2)2
t|t−1

 , (K.2)

and where using the transition model w2
t = w2

t−1, the mean and the variance of W 2
t|t−1 =

W 2
t−1|t−1 are given by Equations H.7 & H.8. The covariance term cov(W 2,W 2)t|t−1 between

W 2
t|t−1 and W 2

t|t−1 in Equation K.2 is obtained using Equations H.1 & H.5, and the GMA
equations from Section 3.2 so that

cov(W 2
t|t−1,W

2
t|t−1 ) = cov(W 2,W 2)t|t−1,

= cov(W 2 +
√

2 W 2ε,W 2)t|t−1,

= var(W 2)t|t−1 +
√

2cov(W 2ε,W 2)t|t−1,

= var(W 2)t|t−1 +
√

2(cov(W 2,W 2)��
�>

0
E[ε]

+����
��:0

cov(ε,W 2)E[W 2]),

= (σW 2
t−1|t−1)2.

Given that the joint Gaussian PDF is defined as shown by Equation K.1, the Gaussian
conditional properties are used to obtain the conditional PDF f(w2

t|w2
t ,y1:t−1) which is part

of the integrand shown in Equation I.3,

f(w2
t|w2

t ,y1:t−1) = N (w2
t;µW

2|W 2

t|t−1 , (σW
2|W 2

t|t−1 )2), (K.3)
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for which the conditional mean and variance are

µ
W 2|W 2

t|t−1 = µW
2

t|t−1 +Kt(w2
t − µW

2

t|t−1), (K.4)

(σW
2|W 2

t|t−1 )2 = (σW 2
t|t−1)2 −K2

t (σW 2

t|t−1)2, (K.5)

Kt =
cov(W 2

t|t−1,W
2
t|t−1 )

(σW 2
t|t−1)2 ,

=
(σW 2

t−1|t−1)2

(σW 2
t|t−1)2 . (K.6)

Using Equations K.3 & J.1, Equation I.3 is rewritten as

f(w2
t|y1:t) =

∫
N (w2

t;µW
2|W 2

t|t−1 , (σW
2|W 2

t|t−1 )2) · N (w2
t ;µW

2

t|t , (σW
2

t|t )2)dw2
t . (K.7)

Equation K.7 can be solved in closed-form having a Gaussian PDF with a random mean, i.e.,
µ
W 2|W 2

t|t−1 , and a constant variance, i.e., (σW
2|W 2

t|t−1 )2, shown by Equations K.4 & K.5. Hence, the
PDF f(w2

t|y1:t) is also Gaussian such that

f(w2
t|y1:t) = N (w2

t;µW
2

t|t , (σW
2

t|t )2),

for which the posterior mean and the variance are

µW
2

t|t = E
[
µW

2
t|t−1 +Kt(W 2

t|t − µW
2

t|t−1)
]
,

= µW
2

t|t−1 +Kt(µW
2

t|t − µW
2

t|t−1),

(σW 2
t|t )2 = (σW 2

t|t−1)2 −K2
t (σW 2

t|t−1)2 +K2
t var(W 2

t|t),

= (σW 2
t|t−1)2 +K2

t ((σW 2

t|t )2 − (σW 2

t|t−1)2). (K.8)
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APPENDIX L PROOF FOR LEMMA 5

As described by Lemma 2 in Chapter 5 for the univariate process error, the expected value
E[(W i)2] and the variance terms var((W i)2),∀i ∈ {1, 2, · · · , D} for the prior predictive PDF
of W p are given by

E[(W i)2] = (µ(W i)2),

var((W i)2) = 3(σ(W i)2)2 + 2(µ(W i)2)2.

Using the GMA equations, the mean and variance term of W iW j are

E[W iW j] = cov(W i,W j) = wiwj, (L.1)

var(W iW j) = var(W i)var(W j) + cov(W i,W j)2,

= µ(W i)2
µ(W j)2 + (wiwj)2, (L.2)

where using Equation H.9 from Proof H, var(W i) = µ(W i)2 . Using Equations L.1 and L.2, the
Gaussian random variableW iW j ∼ N (wiwj;wiwj, µ(W i)2

µ(W j)2+(wiwj)2) can be represented
in terms of its standard Gaussian variable ε by

wiwj = wiwj +
√
µ(W i)2 · µ(W j)2 + (wiwj)2 · ε, ε ∼ N (0, 1).

The moments of the prior predictive PDF of W iW j are given by

E[W iW j] = E[W iW j] +
��

���
���

���
���

���
�:0

E
[√
µ(W i)2µ(W j)2 + (W iW j)2 · ε

]
,

= µW
iW j

, (L.3)

var(W iW j) = var(W iW j) + var(
√
µ(W i)2µ(W j)2 + (W iW j)2 · ε),

= var(W iW j) + var(
√
µ(W i)2µ(W j)2 + (W iW j)2),

+ E
[√
µ(W i)2µ(W j)2 + (W iW j)2

]2
, (L.4)

where using GMA equations the term var(
√
µ(W i)2µ(W j)2 + (W iW j)2 · ε) is obtained by

var(
√
µ(W i)2µ(W j)2 + (W iW j)2·ε) = var(

√
µ(W i)2µ(W j)2 + (W iW j)2)+E

[√
µ(W i)2µ(W j)2 + (W iW j)2

]2
.
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In order to simplify the notation in Equation L.4, let us consider u = wiwj and t(u) =√
µ(W i)2µ(W j)2 + (wiwj)2, so that using 1st order Taylor series expansion we get

E[t(u)]2 = t(E[U ])2 = µ(W i)2
µ(W j)2 + (µW iW j )2, (L.5)

var(t(u)) = (t′(E[U ]))2 · var(U),

= (µW iW j )2

µ(W i)2µ(W j)2 + (µW iW j )2
· (σW iW j )2. (L.6)

Hence, combining Equations L.4, L.5, and L.6 we get

var(W iW j) = (σW iW j )2 + (µW iW j )2

µ(W i)2µ(W j)2 + (µW iW j )2
· (σW iW j )2

+ µ(W i)2
µ(W j)2 + (µW iW j )2.

Using the GMA equations, and Equations 6.2 and L.3, the covariance between the product
terms W iW j and W lWm, i, j, l,m ∀ ∈ {1, 2, · · · D}, is given by

cov(W iW j,W lWm) = cov(W i,W l)cov(W j,Wm) + cov(W i,Wm)cov(W j,W l),

= E[W iW l]E[W jWm] + E[W iWm]E[W jW l],

= µW
iW l

µW
jWm + µW

iWm
µW

jW l
.
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APPENDIX M PROOF FOR LEMMA 6

Proof. The covariance matrix ΣW in Equation 6.3 can be reformulated in terms of the random
variables in W p given by

ΣW =



(W 1)2 W 1W 2 · · · W 1W D

... (W 2)2 · · · W 2W D

... · · · . . . ...
sym. · · · · · · (W D)2


t|t−1

, (M.1)

where using Equation L.1, E[W iW j] = W iW j,∀i, j ∈ {1, 2, · · · , D}. Let us consider LW is
an upper triangular random matrix such that

LW =


L11 L12 · · · L1D

0 L22 · · · L2D
... · · · . . . ...
0 · · · 0 LDD

 , (M.2)

where each of the term is assumed to be a Gaussian random variable given by Lij ∼
N (µLij

, σ2
Lij

). The elements of LW can be arranged in a random vector,

−−→
LW = [L11 L22 LDD L12 · · ·Lij · · ·LD-1 D]ᵀ,

such that
−−→
LW is a Gaussian random vector given by

−−→
LW ∼ N (µ

−−→
LW

,Σ
−−→
LW ), (M.3)

where µ
−−→
LW and Σ

−−→
LW are the mean vector and the covariance matrix of

−−→
LW . Let us reproduce

ΣW using Equation M.2 such that

ΣW = (LW )ᵀLW ,

where each element W iW j of ΣW defined in Equation M.1 is obtained using matrix multi-
plication so that

W iW j =
D∑

k=1
LjkLki,∀i, j ∈ {1, · · · , D},
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where using Equation M.3 and the GMA equations we can determine the expected value, the
variance, and the covariance terms of any element W iW j as follows,

E[W iW j] = E
[ D∑
k=1

LjkLki

]
, var(W iW j) = var(

D∑
k=1

LjkLki). (M.4)

Using Equation M.4, the elements of the prior predictive PDF of W defined in Proposition
3 can be computed as

µW
iW j = E

[ D∑
k=1

LjkLki

]
.

Similarly, the covariance between the random matrices, ΣW and LW , is equivalent to find-
ing the covariance between the random vectors

−−→
LW and W p given by Σ

−−→
LWW p

t|t−1 , where any
covariance term is obtained by

cov(Lij,W iW j) = cov(Lij,
D∑

k=1
LjkLki).
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APPENDIX N PROOF FOR LEMMA 7

Proof. The prior knowledge of W p is updated by using the same procedure as shown in
Section 5.2.2 which employs the prior W p

t|t−1 and the posterior W p
t|t knowledge of W p such

that

f(wp
t|y1:t) = N (wp

t;µ
W p

t|t ,ΣW p

t|t ),

where using Equations K.6-K.8, the posterior mean, variance and covariance terms of W p

are

µW
p

t|t = µW
p

t|t−1 +Kt(µW
p

t|t − µW
p

t|t−1),

ΣW p

t|t = ΣW p

t|t−1 +Kt(ΣW p

t|t −ΣW p

t|t−1)Kᵀ
t ,

Kt = ΣW pW p

t|t−1 (ΣW p

t|t−1)−1,

ΣW pW p

t|t−1 = ΣW p

t|t−1.
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APPENDIX O ALGORITHM FOR THE AGVI METHOD IN CASE OF
MULTIVARIATE PROCESS ERRORS

Algorithm 4 One-time step of the AGVI method for multivariate process errors

Input: µt−1|t−1, Σt−1|t−1, µ
−−→
LW

t−1|t−1, Σ
−−→
LW

t−1|t−1, yt, A, C, Q, and R

Prior Predictive PDF of Wt|t−1 ∼ N (wt; 0t|t−1,ΣW
t|t−1):

1: Any ijth element of ΣW
t|t−1 is obtained using µW iW j = E

[∑D
k=1 LjkLki

]
Prediction Step:

2: µHt|t−1 =

Aµt−1|t−1

0


t|t−1

, ΣH
t|t−1 =

AΣt−1|t−1Aᵀ + Q ΣXW

(ΣXW )ᵀ ΣW


t|t−1

,

µY = Cµt|t−1, ΣY = CΣt|t−1Cᵀ + R, ΣHY = ΣH
t|t−1F

ᵀ
t , where F = [C 0]

1st Update Step:

3: µHt|t = µHt|t−1 + ΣHY Σ−1
Y (yt − µY ), ΣH

t|t = ΣH
t|t−1 −ΣHY Σ−1

Y Σᵀ
HY

4: Obtain the posterior PDF, f(wp
t |y1:t) = N (wp

t ;µW p

t|t ,ΣW p

t|t )

2nd Update Step:

5: µW p

t|t = µW
p

t|t−1 +Kt(µW
p

t|t − µW
p

t|t−1), ΣW p

t|t = ΣW p

t|t−1 +Kt(ΣW p

t|t −ΣW p

t|t−1)Kᵀ
t ,

Kt = ΣW pW p

t|t−1 (ΣW p

t|t−1)−1, ΣW pW p

t|t−1 = ΣW p

t|t−1

Posterior moments of
−−→
LW :

6: µ
−−→
LW

t|t = µ
−−→
LW

t|t−1 +KL
t (µW p

t|t − µW
p

t|t−1), Σ
−−→
LW

t|t = Σ
−−→
LW

t|t−1 +KL
t (ΣW p

t|t −ΣW p

t|t−1)(KL
t )ᵀ,

KL
t = Σ

−−→
LWW p

t|t−1 (ΣW p

t|t−1)−1

7: return µt|t, Σt|t, µ
−−→
LW

t|t , and Σ
−−→
LW

t|t
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APPENDIX P TABLE COMPARING THE PREDICTIVE ACCURACY
BETWEEN THE AKF METHODS AND AGVI

Table P.1 Comparison of the average RMSE values and the computational time for each
method. Each of the methods are picked from different AKF categories where AGVI and
SWVBAKF are Bayesian methods whereas ALMF is a covariance-matching method (CMM)
and ICM is a correlation method. The variance terms and the covariance terms are repre-
sented by σ2

ii and σ2
ij, ∀i, j ∈ 1, · · · , D, respectively.

Variance terms RMSE
AGVI SWVBAKF ALMF ICM

σ2
11 0.0534 0.1215 0.0418 0.0814
σ2

44 0.0281 0.1671 0.0470 0.0344
σ13 0.0536 0.1772 0.0532 0.1470
σ14 0.0171 0.1336 0.0226 0.0288
σ15 0.0229 0.1002 0.0266 0.0569
σ23 0.1368 0.3667 0.1692 0.3366
σ25 0.0851 0.2294 0.0988 0.1562
σ34 0.0802 0.3013 0.1108 0.0683
σ45 0.0495 0.1128 0.0620 0.0407
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APPENDIX Q ONLINE INFERENCE OF THE VARIANCE AND
COVARIANCE TERMS IN THE FULL Q MATRIX
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Figure Q.1 Online estimation of the error variance term and the covariance terms from the
full Q matrix compared to their true values marked by the dashed red line. The estimated
values are shown by the black solid line and their ±1σ uncertainty bound is shown using the
green shaded region.
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Figure Q.2 Online estimation of the error variance and covariance terms in the full Q matrix
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11,D1
, (b) σ2

22,D1
, and (c) σ13,D1 , (d) σ2
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33,D2
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(f) σ23,D2 . The estimated values are shown by the black solid line and their ±1σ uncertainty
bound is shown using the green shaded region.
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APPENDIX R HYPERPARAMETERS FOR THE APPROXIMATE
INFERENCE METHODS

The approximate inference methods used for comparison are: PBP [10], MC-dropout [8,114],
deterministic NN [15], ensemble of neural networks [9], DVI [13], PBP-MV [11], VMG [12],
and TAGI [7]. This section provides the set of hyperparameters associated with each of these
methods.

The code for PBP is provided in [118]. PBP tunes its hyperparameter, namely the precision
(λ), automatically for which a gamma hyper-prior is considered with the scale and inverse
scale parameters, αλ0 = βλ0 = 6. The batch size used is B = 1.

The code for MC-dropout is provided in [119]. The optimal values for the hyperparameters
namely, the dropout rate d and the precision parameter τ are identified for each data split
by performing grid-search over a range of (d, τ) pairs. The batch size used is B = 128 and
the Adam optimizer used is with the default learning rate built-in Keras [120]. The number
of forward iterations (T) used for obtaining predictive uncertainty are 104.

For the Ensembles method, an ensemble of 5 neural networks is implemented which is trained
with random initialization of weights and bias having a two-headed output layer that provides
the mean and error variance. A softplus activation function is used as suggested in [9]. The
batch size used is B = 128, the learning rate is 0.01, and the epsilon parameter for adversarial
training is set to 1%. A deterministic neural network is also implemented with only one
model having the same set of hyperparameters as the Ensembles.

For DVI, the set of hyperparameters for the toy problem are provided in the code by [121],
while for the regression benchmark they are provided by Wu et al. [13]. The results for
PBP-MV and VMG are directly used as presented in the article by Sun et. al [11].

The implementation code for TAGI is provided in the Github repository by Goulet et al. [122].
The original work identifies the optimal error variance σ2

V using a 5 fold cross-validation. The
batch size used is B = 10, and the prior covariance for bias is initialized using 0.01 · I, and
for the weights using the Xavier’s approach.
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APPENDIX S INITIALIZATION OF THE NEURAL NETWORK’S
PARAMETERS

Using He’s approach [16], the prior covariance matrix for the weightsW (j) and bias B(j), in
any hidden layer j are given by Σ(j)

W = Σ(j)
B = 1

nj−1
· I, where nj−1 represents the number of

hidden units in the previous layer j − 1. The He’s approach was modified by introducing a
scaling factor α [15] for the weights such that the new prior covariance matrix is Σ̃(j)

W = α
nj−1
·I

that are initialized according to the data. Also, a different scaling factor β is considered for
the weights connected to the 2nd output node providing the error variance. The best pair of
values for these two hyperparameters (α and β) are identified using a validation set and a
grid-search procedure. The list of hyperparameter values over which the grid-search is carried
out are

patience : {3, 5, 10},
α : {0.1, 0.5, 1},
β : {0.1, 0.01, 0.001},

where patience is the hyperparameter for the early-stopping procedure. Table S.1 shows the
optimal values for the hyperparameters used for each dataset. Figures S.1 and S.2 shows
the learning curves for TAGI-V using both the original and the modified He’s approach for
parameter initialization. The results shows that the modified He’s approach provides better
predictive accuracy in most datasets.
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Table S.1 Optimized set of hyperparameters identified using grid-search procedure. The
parameters α and β, and patience are associated with the modified He’s approach and early-
stopping procedure, respectively. The grid-search is carried out using a validation set ob-
tained from the original training set by a 80− 20 split ratio. The total computational time
(in s.) required for the grid-search procedure is also provided.

Datasets α β Patience Total Time (in s.)
Boston 0.5 0.01 5 591.63
Concrete 0.5 0.01 5 1225.83
Energy 0.5 0.01 5 420.30
Kin8nm 1 0.01 5 3562.74
Naval 0.5 0.01 3 19570.24
Power 0.5 0.001 10 4805.74
Protein 0.5 0.1 10 23299.31
Wine 0.1 0.01 10 353.71
Yacht 0.1 0.1 5 648.60
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Figure S.1 The learning curves for test log-likelihood showing the comparative performance
between the original and modified He’s approach for parameter initialization. The black
and red solid line represents the performance using the original and modified He’s approach,
respectively. In the original He’s approach [16], the scaling factors are set to α = β = 1,
but for the modified He’s approach the scaling factors are tuned for each dataset using a
grid-search procedure over possible set of hyperparameter values [15].
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Figure S.2 The learning curves for test RMSE showing the performance using the original and
modified He’s approach for parameter initialization. The black and red solid line represents
the performance using the original and modified He’s approach, respectively. In the original
He’s approach [16], the scaling factors are set to α = β = 1, but for the modified He’s
approach, the scaling factors are tuned for each dataset using a grid-search procedure over
possible set of hyperparameter values [15].
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APPENDIX T LEARNING CURVES FOR TAGI-V UNDER EPOCH
SETTING USING EARLY-STOPPING
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Figure T.1 The learning curves for TAGI-V under epoch setting showing the test log-
likelihood for the datasets Energy, Kin8nm, Naval, Power, Protein, and Yacht. The optimal
epoch is highlighted by the black dotted line found using early-stopping procedure.
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APPENDIX U LEARNING CURVES SHOWING TEST
LOG-LIKELIHOOD AND TEST RMSE UNDER THE EPOCH AND TIME

SETTING
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Figure U.1 Learning curves showing the test log-likelihood under the epoch setting. The
horizontal axis shows the number of epochs and the vertical axis shows the test loglikelihood.
The colored line plots are : TAGI-V (red solid line), PBP (blue solid line) [10], MC-dropout
(green solid line) [8], DVI (purple solid line) [13], deterministic NN (yellow solid line) [15],
Ensemble (black solid line) [9], TAGI (brown dotted line) [7], and TAGI-V 2L (red dotted
line) that represents a TAGI-V network of two layers and 100 hidden nodes.
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Figure U.2 Learning curves showing the test RMSE under the epoch setting. The horizontal
axis shows the number of epochs and the vertical axis shows the test RMSE. The colored
line plots are : TAGI-V (red solid line), PBP (blue solid line) [10], MC-dropout (green solid
line) [8], DVI (purple solid line) [13], deterministic NN (yellow solid line) [15], Ensemble
(black solid line) [9], TAGI (brown dotted line) [7], and TAGI-V 2L (red dotted line) that
represents a TAGI-V network of two layers and 100 hidden nodes.
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Figure U.3 Learning curves showing the test log-likelihood under the time setting. The
horizontal axis represents training time (in s.) in log scale (base 10) and the vertical axis
represents the test log-likelihood in linear scale. The colored line plots are : TAGI-V (red
solid line), PBP (blue solid line) [10], MC-dropout (green solid line) [8], DVI (purple solid
line) [13], deterministic NN (yellow solid line) [15], Ensembles (black solid line) [9], TAGI
(brown dotted line) [7], TAGI-V 2L (red dotted line) that represents a TAGI-V network of
two layers and 100 hidden nodes, PBP-MV (cyan solid line) [11], and VMG (magenta solid
line) [12]. The learning curves for PBP-MV and VMG are obtained directly from the original
article by Sun et al. [11].
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Figure U.4 Learning curves showing the test RMSE under the time setting. The horizontal
axis represents training time (in s.) in log scale (base 10) and the vertical axis represents the
test RMSE in linear scale. The colored line plots are : TAGI-V (red solid line), PBP (blue
solid line) [10], MC-dropout (green solid line) [8], DVI (purple solid line) [13], deterministic
NN (yellow solid line) [15], Ensembles (black solid line) [9], TAGI (brown dotted line) [7],
TAGI-V 2L (red dotted line) that represents a TAGI-V network of two layers and 100 hidden
nodes, PBP-MV (cyan solid line) [11], and VMG (magenta solid line) [12]. The learning
curves for PBP-MV and VMG are obtained directly from the original article by Sun et al.,
2017 [11].
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APPENDIX V COMPARISON FOR COMPUTATIONAL TIME
BETWEEN THE APPROXIMATE INFERENCE METHODS

Table V.1 Comparison between the approximate inference methods for average training time
(in s.) per epoch (Rank legend: first). All the experiments are carried out using 12 core
3GHz CPU. For TAGI-V and TAGI, the codes are in MATLAB, and all others are written
in Python.

Datasets TAGI-V TAGI MC-Dropout Deep Ensembles PBP PBP-MV VMG DVI NN
Boston 0.025 0.099 0.041 0.061 0.25 37 18.6 12.86 0.012
Concrete 0.038 0.134 0.066 0.129 0.55 28.57 35.71 24.91 0.037
Energy 0.031 0.177 0.051 0.102 0.375 14.7 18.38 24.26 0.025
Kin8nm 0.309 0.814 0.434 0.642 3.65 158.73 222.22 277.31 0.194
Naval 0.493 1.934 0.631 0.881 5.375 271.26 271.26 579.689 0.320
Power 0.32 0.783 0.496 0.701 4.20 181.82 981.82 363.816 0.28
Protein 2.327 6.23 1.193 3.506 11.075 556 21296.00 1498.41 1.10
Wine 0.062 0.157 0.093 0.185 0.80 39.68 166.67 59.53 0.047
Yacht 0.012 0.102 0.0295 0.041 0.250 5.56 327.78 53.01 0.010
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APPENDIX W COMPARISON FOR TAGI-V’S PREDICTIVE
PERFORMANCE

Table W.1 Comparison between the inference methods for average test RMSE’s as mentioned
in the original work for TAGI [7], MC-dropout [8], Deep ensembles [9], PBP [10], PBP-
MV [11], VMG [12], and DVI [13] (Rank legend: first). The ±σ represents one standard
deviation computed over 20 splits. The results for TAGI-V are also averaged over 5 random
seeds. The results for DVI is left empty as it is not provided in the respective article by Wu
et al. [13].

Datasets TAGI-V TAGI MC-dropout Deep Ensembles PBP PBP-MV VMG DVI
Boston 2.99± 0.86 2.98± 0.86 2.83± 0.17 3.28± 1.00 3.01± 0.18 3.11± 0.15 3.18± 0.19 –
Concrete 5.94± 0.51 5.72± 0.52 4.93± 0.14 6.03± 0.58 5.66± 0.093 5.08± 0.14 5.18± 0.16 –
Energy 1.94± 0.28 1.46± 0.22 1.08± 0.03 2.09± 0.29 1.804± 0.048 0.45± 0.01 0.48± 0.01 –
Kin8nm 0.102± 0.01 0.10± 1e-03 0.09± 0.00 0.09± 0.00 0.098± 0.00 0.07± 0.00 0.07± 0.00 –
Naval 0.005± 0.00 0.01± 6e-03 0.00± 0.00 0.00± 0.00 0.006± 0.00 0.00± 0.00 0.00± 0.00 –
Power 4.11± 0.15 4.12± 0.16 4.01± 0.04 4.11± 0.17 4.12± 0.034 3.91± 0.04 3.87± 0.05 –
Protein 4.70± 0.03 4.70± 0.02 4.27± 0.02 4.71± 0.06 4.73± 0.013 3.94± 0.02 3.90± 0.02 –
Wine 0.63± 0.04 0.63± 0.04 0.62± 0.01 0.64± 0.04 0.64± 0.008 0.64± 0.01 0.64± 0.01 –
Yacht 0.88± 0.40 1.02± 0.42 0.67± 0.05 1.58± 0.48 1.02± 0.054 0.81± 0.06 0.87± 0.08 –

Table W.2 Comparison between the inference methods for average test log-likelihood’s as
mentioned in the original work for TAGI [7], MC-dropout [8], Deep ensembles [9], PBP [10],
PBP-MV [11], VMG [12], and DVI [13] (Rank legend: first). The±σ represents one standard
deviation computed over 20 splits. The results for TAGI-V are also averaged over 5 random
seeds.

Datasets TAGI-V TAGI MC-Dropout Deep Ensembles PBP PBP-MV VMG DVI
Boston −2.51± 0.30 −2.58± 0.45 −2.40± 0.04 −2.41± 0.25 −2.57± 0.09 −2.54± 0.08 −2.71± 0.12 −2.41± 0.02
Concrete −3.13± 0.13 −3.17± 0.09 −2.93± 0.02 −3.06± 0.18 −3.16± 0.02 −3.04± 0.03 −3.07± 0.04 −3.06± 0.01
Energy 1.54± 0.40 −1.81± 0.14 −1.21± 0.01 −1.38± 0.22 −2.04± 0.02 −1.01± 0.01 −0.91± 0.01 −1.01± 0.06
Kin8nm 1.00± 0.04 0.88± 0.04 1.14± 0.01 1.20± 0.02 0.90± 0.01 1.28± 0.01 1.24± 0.00 1.13± 0.00
Naval 3.82± 0.05 2.10± 0.57 4.45± 0.00 5.63± 0.05 3.73± 0.01 4.85± 0.06 2.47± 0.00 6.29± 0.04
Power −2.82± 0.04 −2.83± 0.04 −2.80± 0.01 −2.79± 0.04 −2.84± 0.01 −2.78± 0.01 −2.78± 0.01 −2.80± 0.00
Protein −2.88± 0.03 −2.97± 4e-03 −2.87± 0.00 −2.83± 0.02 −2.97± 0.00 −2.77± 0.01 −2.78± 0.01 −2.85± 0.01
Wine −0.95± 0.09 −0.96± 0.06 −0.93± 0.01 −0.94± 0.12 −0.97± 0.01 −0.97± 0.01 −0.99± 0.02 −0.90± 0.01
Yacht −0.51± 0.30 −1.49± 0.45 −1.25± 0.01 −1.18± 0.21 −1.63± 0.02 −1.64± 0.02 −1.46± 0.02 −0.47± 0.03
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APPENDIX X HYPERPARAMETER TUNING FOR LARGE UCI
REGRESSION DATASETS

The hyperparameters that needs to be learnt are the parameters α and β associated with the
modified He’s approach and patience for the early-stopping procedure. The list of hyperpa-
rameter values over which the grid-search is carried out are as follows:

patience : {3, 5, 10},
α : {0.1, 0.5},
β : {0.1, 0.01, 0.001, 0.0001},

where patience is the hyperparameter for the early-stopping procedure. Note that any combi-
nation of hyperparameters causing numerical overflow errors are omitted from the grid-search
procedure. Table S.1 shows the optimal values for the hyperparameters used for each dataset.

Table X.1 Optimized set of hyperparameters identified using grid-search procedure. The
parameters α and β, and patience are associated with the modified He’s approach and early-
stopping procedure, respectively. The grid-search is carried out using a validation set ob-
tained from the original training set by a 80− 20 split ratio.

Datasets α β Patience
Elevators 0.1 0.1 10
KeggD 0.1 10−4 3
KeggU 0.1 0.1 10
Pol 0.5 10−3 3
Skillcraft 0.1 0.1 3
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