
Titre:
Title:

Towards Pragmatic Incivility Management in Software Engineering

Auteur:
Author:

Isabella Vieira Ferreira

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Vieira Ferreira, I. (2022). Towards Pragmatic Incivility Management in Software
Engineering [Thèse de doctorat, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/10563/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10563/

Directeurs de
recherche:

Advisors:
Jinghui Cheng, & Bram Adams

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10563/
https://publications.polymtl.ca/10563/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Towards Pragmatic Incivility Management in Software Engineering

ISABELLA VIEIRA FERREIRA
Département de génie informatique et génie logiciel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie informatique

Septembre 2022

© Isabella Vieira Ferreira, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Towards Pragmatic Incivility Management in Software Engineering

présentée par Isabella VIEIRA FERREIRA
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Foutse KHOMH, président
Jinghui CHENG, membre et directeur de recherche
Bram ADAMS, membre et codirecteur de recherche
Heng LI, membre
Nicole NOVIELLI, membre externe

iii

DEDICATION

This thesis is dedicated to my parents Luciano and Carla and my sister Ana Clara, whose
words of encouragement and push for tenacity ring in my ears.

iv

ACKNOWLEDGEMENTS

The journey of pursuing my PhD certainly was not easy. It was not only hard intellectually,
but also mentally and emotionally - filled with challenges, confusion, self-doubt, self-criticism,
tears, and breakdowns. For many times I wondered if I should continue this journey, and if
so, if I should change my research topic that was extremely challenging. After all, I spent
the first 2 years trying to figure out how to tackle the incivility problem with no success at
all, which was very demotivating! Now, looking back and connecting the dots, I am glad I
persevered and did not give up! Once, a major contributor of the Linux kernel came to talk
to me after a BoF session I conducted at the Linux Plumbers conference and I remember
his words as if it was yesterday: “Look, incivility is a tremendous complicated topic. I don’t
believe there is a way to understand or solve it, but if you do, you will have a huge contribution
to open source communities.” So, this PhD thesis is my two cents towards having healthier
open source communities. I never thought I would be able to finish my PhD in four years
and, more than that, to have my thesis accepted as it is and nominated by the jury for the
best thesis. Wow! Of course, a PhD is not something I could do by myself. So, this excellent
outcome is partly due to all the wonderful people who helped me throughout this journey.

First of all, I would like to thank my family, especially my father Luciano Ferreira and
my mother Carla Maria Barbosa Vieira Ferreira. If I have arrived here is because you
always gave me unconditional support and you have worked hard to give me conditions to
follow my dreams. I also thank my sister, Ana Clara Vieira Ferreira, for being my source of
encouragement, especially in my darkest times. This degree is half yours!

I would like to thank my supervisors Bram Adams and Jinghui Cheng. Words are far from
enough to express my deepest gratitude towards all the guidance and opportunities you have
provided me through this challenging but worthwhile research journey. I truly appreciate
you for trusting me, especially to let me do internships in the industry, teach a course, or
be a teaching assistant while doing my PhD at the same time. I must also thank both of
you for being always very accessible whenever I needed you. Whenever I sent an email or a
message on Slack to ask for feedback, schedule a meeting, ask for help because I was stuck or
not sure what to do, you always replied me so fast! This certainly sped up things and gave
me confidence that I had someone to count on when things got tough.

Bram, I would like to thank you for providing me with so many opportunities to be in touch
with open source communities and to contribute with different researchers in many parallel
projects. I learned a lot! Also, your enthusiasm with doing research and programming always

v

motivated me. I remember one day, in the beginning of my PhD, you came to the lab at
night and I was working on improving the performance of email2git. You sat by my side and
asked if you could help me by creating some bash scripts to automate the different scenarios
we had, then you enthusiastically started to show me emacs. Our discussion sparked my
interest to use emacs (you must be proud by reading this :p) and also motivated me and
gave me ideas to improve more the email2git’s source code. You also taught me how to make
great presentations. I remember when I first arrived at the MCIS lab, you lent me the book
“Presentation Zen”, then you taught me more about it on the course LOG6307. Nowadays,
many people praise my presentations. Furthermore, with you, I learned invaluable lessons on
mining software repositories (and discovered my passion for it!), working with high volume
of data, statistical tests, conducting high-quality research, and all the little but important
details that should be included when writing a paper. Finally, I really admire your way to
explore ideas that are very creative and unusual. I really enjoyed the brainstorming sessions
in our meetings.

Jinghui, I am very grateful that you accepted to be my supervisor in the middle of this
journey. I remember I was completely lost on what to do and in our first meeting (back
in May/2020) you showed me the book “Mere Civility” that helped me to understand a bit
about incivility. Your expertise with qualitative research was a great addition to the project!
After we discovered that we did not have another option unless code all the data by ourselves,
you took me by the hand and guided me through my first qualitative study and how to write
my first qualitative paper. I learned so much with your feedback and suggestions! I even
started enjoying open and axial coding :-). I also would like to thank you for showing me a
bit of HCI and to give me the opportunity to attend conferences such as CHI and CSCW.
Being always from the software engineering community and always participating in software
engineering events, it was a really interesting experience to see different perspectives on how
to tackle problems and on what different research communities are working on. You also made
writing research papers seem so easy with your interest to always improve your writing. I
have to say that I really enjoyed writing papers with you! Furthermore, as a PhD student,
I was used to receiving criticism from other people about my work (supposedly to improve
it, but often times demotivating). However, your appreciation for every little progress and
achievement was showing me that there was a light at the end of the tunnel. Finally, thank
you for creating a wonderful lab environment, especially during the COVID-19 pandemic.
The Mondays we used to e-meet to play online games helped me to connect with the lab
mates and disconnect from the problems.

Other than my supervisors, I also would like to thank Kate Stewart, Daniel German, and
Shuah Khan. The topic of this thesis emerged from one of the discussions we had while I

vi

was working with them and Bram on a project about sentiment analysis. I’m very grateful
for their valuable insights, help with the talks I gave at the Linux Leadership Summit 2019
and Linux Plumbers 2019, for connecting me with the Linux community, and for validating
our initial methodology and initial results. I also would like to thank Ahlaam Rafiq, who
was my summer intern responsible for implementing BERT. Thank you Ahlaam for always
being available to help and for conducting the experiments in a timely manner. Finally, I
would like to thank Alexander Serebrenik and Nan Yang, whom I had the pleasure to work
with in a project parallel to this thesis. Alexander and Nan, I learned different techniques
and metrics with both of you. Also, our discussions have always been insightful and helped
me to grow.

I also would like to thank Peter Rigby and Foutse Khomh, who were part of the jury of my
PhD comprehensive exam. Your suggestions were crucial to help me to focus on a specific
research problem, sparked the need to manually create a dataset, and gave me ideas on how
to do it. Furthermore, I would like to thank the jury members of my PhD defense: Foutse
Khomh, Nicole Novielli, and Heng Li. Your insightful questions helped me to think about
future work and the impact of this thesis.

Throughout my PhD, I was lucky enough to be surrounded by amazing people who gave
me strength in the everyday life. Jean-Hughes Fournier Lupien, mon amour, thank you for
always being by my side despite everything we have been through. A special thanks to
my dearest friends Javier Rosales, Maryam El-Arfaoui, and Yassine Lamine. I will never
forget our memorable days studying at Poly for more than 10 hours a day and then going
to have fun at La Maisonnée or playing table soccer in the residence. Poly was never the
same after you left, but I’m glad we continue to support each other and I’m very grateful
to have your friendship. Thanks to my dear labmate, Arghavan Sanei, for all the support
during my PhD. I am glad we could always share the ups and downs of our PhD journey
and have fun conversations. I also thank my friends Nasim Sharbatdar, Marina Gasparini,
and Gilberto Pinho for the encouragement and continuous support. I certainly could not
have done my PhD without my psychologist Isabella Matias. My deepest gratitude to you,
Isabella, for helping me to take care of my mental health, for showing me that I was capable
of doing it, for not letting me give up, and for having empathy and considerateness with
me. Also, thanks to all MCIS and HCD lab members. Last but not least, I would like to
thank all free/libre and open source software (FLOSS) contributors that have participated
in my studies and for the FLOSS movement, without them this thesis would not have been
possible.

Finally, I thank the Linux Foundation for the travel funds to attend the Open Source Leader-

vii

ship Summit (2019), Linux Plumbers Conference (2019), ChaossCon (2020), and FOSDEM
(2020). I also thank the Gary Marsden Travel Award to fund my attendance to CHI (2021)
and CSCW (2021). The computations done in this thesis were made on the supercom-
puters Cedar and Beluga managed by Calcul Québec and the Digital Research Alliance of
Canada. The operation of these supercomputers is funded by the Canada Foundation for
Innovation (CFI), Ministère de l’Économie et de l’Innovation du Québec (MEI), and le Fonds
de recherche du Québec (FRQ). This thesis is funded by the FRQ-FNRS research program
between Québec and Wallonia (Belgium) (grant #264544) and the Natural Sciences and
Engineering Research Council of Canada (NSERC) through the Discovery Grants Program
(RGPIN-2019-06014 and RGPIN-2018-04470).

viii

RÉSUMÉ

Étant donné la nature démocratique du développement open source, la révision technique de
code et les discussions sur les rapports de bogue peuvent être inciviles. L’incivilité, dans ce
contexte, est définie comme « les caractéristiques de la discussion qui transmettent un ton inu-
tilement irrespectueux envers le forum de discussion, ses participants ou ses sujets » et peut
avoir des conséquences négatives sur les communautés open source. Bien que l’incivilité dans
les discussions publiques ait fait l’objet d’une attention croissante de la part des chercheurs
dans différents domaines, dans le contexte du génie logiciel, et plus particulièrement de la révi-
sion technique de code et des discussions sur les rapports de bogue, il y a encore un manque
de compréhension des caractéristiques et de la dynamique de la communication incivile ainsi
que de la possibilité de détecter automatiquement l’incivilité.

Afin de combler cette lacune dans la littérature et de gérer de manière pragmatique l’incivilité
dans le génie logiciel, nous nous appuyons, dans cette thèse, de la construction sociale ma-
ture de l’incivilité comme d’une lentille pour comprendre, caractériser et détecter les conflits
dans la révision technique de code et les discussions sur les rapports de bogue. Pour cela,
nous avons mené quatre études empiriques. Les deux premières études sont axées sur la com-
préhension et la caractérisation de l’incivilité dans les discussions de révision de contributions
rejetées open source de la liste de diffusion du Linux kernel et dans les discussions de rapports
de bogue verrouillées comme « too heated »(GitHub). Dans la troisième étude, nous avons
comparé six modèles classiques d’apprentissage automatique au modèle BERT pour détecter
automatiquement l’incivilité dans la révision technique de code et les discussions de rapports
de bogue. En outre, nous avons évalué si l’ajout d’informations contextuelles améliore les
performances des modèles et si ces derniers sont performants dans un contexte multiplate-
forme. Finalement, la quatrième étude est une étude exploratoire visant à quantifier et à
comprendre les caractéristiques sociales et les modèles structurels des discussions civiles et
inciviles de la révision technique de code.

Nous avons constaté dans notre première étude que plus de la moitié (66,66%) des courriels
non-techniques comportaient des caractéristiques inciviles. En particulier, la frustration,
les identifications abusives, et l’impatience sont les caractéristiques les plus fréquentes dans
les courriels incivils. Nous avons également constaté qu’il existe des alternatives civiles pour
aborder les arguments, tandis que les commentaires incivils peuvent potentiellement être faits
par n’importe qui pour n’importe quel sujet. Enfin, nous avons identifié les diverses causes
et conséquences de ces communications inciviles. À partir de nos résultats, nous avons fourni

ix

un ensemble d’approches proactives et réactives pour atténuer/traiter les incivilités avant et
après qu’elles se produisent.

En ce qui concerne l’incivilité dans les discussions de rapports de bogues verrouillées de
GitHub (deuxième étude), nous avons constaté que ces discussions ont tendance à avoir un
nombre similaire de commentaires, de participants et de réactions sous forme d’émoticônes
que les discussions non-verrouillées. Pour les 205 discussions de rapports de bogue verrouil-
lées comme « too heated », nous avons constaté qu’un tiers ne contient aucun discours incivil,
et que seulement 8,82% des commentaires analysés sont réellement incivils. Enfin, nous avons
constaté que les justifications de verrouillage fournies par les responsables du projet ne corre-
spondent pas toujours à l’étiquette utilisée pour verrouiller la discussion de rapport de bogue.
À partir de nos résultats, nous avons identifié trois pièges à éviter lors de l’utilisation des
données sur les discussions de rapport de bogue verrouillées sur GitHub et nous fournissons
des recommandations aux chercheurs et aux praticiens.

Lors de la détection de l’incivilité dans la révision de codes open source et les discussions
sur les rapports de bogue (troisième étude), nous avons constaté que BERT est plus per-
formant que les modèles classiques d’apprentissage automatique, avec un score F1 de 0,95.
En outre, les modèles classiques d’apprentissage automatique ont tendance à être moins per-
formants pour détecter les discussions non-techniques et civiles. Nos résultats montrent que
l’ajout d’informations contextuelles à BERT n’améliore pas ses performances et qu’aucun des
classificateurs analysés n’a eu de performance exceptionnelle dans un contexte multiplate-
forme. Enfin, nous fournissons des indications sur le ton des discussions mal classifiées par
les modèles.

Notre étude exploratoire de la dynamique de l’incivilité dans des discussions open source
(quatrième étude) montre que les courriels incivils ont tendance à apparaître beaucoup plus
tôt dans un fil de discussion que les courriels civils. Cependant, il n’y a pas de différence
dans la durée de la discussion après l’apparition d’un courriel civil ou incivil. De plus, les
courriels incivils ont tendance à avoir le même nombre de réponses et le même temps de
réponse que les courriels civils. Finalement, nous avons identifié quatre modèles structurels
dans les discussions civiles et inciviles de révision de code : (i) les discussions de révision
de code qui commencent par des courriels techniques tendent à rester techniques malgré les
courriels incivils dans le fil de discussion; (ii) les courriels incivils répondant à la soumission
d’un correctif tendent à déclencher l’incivilité dans le fil de discussion de révision de code si un
courriel civil n’est jamais envoyé par quelqu’un; (iii) lorsqu’un fil de discussion n’a pas encore
de courriels incivils, les courriels civils peuvent aider la discussion à rester civile/technique;
et (iv) les courriels civils aident à pacifier les discussions de révision de code, la civilité

x

pouvant empêcher les contributeurs open source d’être incivils. Ces modèles démontrent que
les commentaires civils devraient être encouragés dans les discussions de révision de code open
source afin de pacifier une discussion incivile ou de maintenir une discussion technique/civile.

À notre connaissance, cette thèse est la première thèse sur le phénomène général de l’in(civilité)
dans le développement de logiciels open source, ouvrant la voie à un nouveau champ de
recherche sur la collaboration et la communication dans le contexte du génie logiciel.

xi

ABSTRACT

Given the democratic nature of open source development, open source code review and issue
discussions may be uncivil. Incivility, in this context, is defined as “features of discussion
that convey an unnecessarily disrespectful tone toward the discussion forum, its participants,
or its topics” and can have negative consequences to open source communities. Although
incivility in public discussions has received increasing attention from researchers in different
domains, in the context of software engineering, and more specifically, code review and issue
discussions, there is still a lack of understanding about the characteristics and dynamics of
uncivil communication as well as if incivility can be automatically detected.

To address this gap in the literature and to pragmatically manage incivility in software
engineering, in this thesis, we leverage the mature social construct of incivility as a lens to
understand, characterize, and detect confrontational conflicts in open source code review and
issue discussions. For that, we conducted four empirical studies. The first two studies are
focused on understanding and characterizing incivility in open source code review discussions
of rejected patches of the Linux Kernel Mailing List and GitHub issue discussions locked as
too heated. In the third study, we compared six classical machine learning models with
BERT to automatically detect incivility in open source code review and issue discussions.
Furthermore, we assess if adding contextual information improves the models’ performance
and how well the models perform in a cross-platform setting. Finally, the fourth study is
an exploratory study aimed at quantifying and understanding the social characteristics and
structural patterns of civil and uncivil code review discussions.

As a result, in our first study, we found that more than half (66.66%) of the non-technical
emails included uncivil features. Particularly, frustration, name calling, and impatience are
the most frequent features in uncivil emails. We also found that there are civil alternatives
to address arguments, while uncivil comments can potentially be made by anyone when
discussing any topic. Finally, we identified various causes and consequences of such uncivil
communication. Based on our results we provided a set of proactive and reactive approaches
to mitigate/address incivility before and after it happens.

Concerning incivility on GitHub locked issues (second study), we found that locked issues
tend to have a similar number of comments, participants, and emoji reactions to non-locked
issues. For the 205 issues locked as too heated, we found that one-third do not contain any
uncivil discourse, and only 8.82% of the analyzed comments are actually uncivil. Finally,
we found that the locking justifications provided by maintainers do not always match the

xii

label used to lock the issue. Based on our results, we identified three pitfalls to avoid when
using the GitHub locked issues data and we provide recommendations for researchers and
practitioners.

When detecting incivility in open source code review and issue discussions (third study), we
found that BERT performs better than classical machine learning models, with the best F1-
score of 0.95. Furthermore, classical machine learning models tend to underperform to detect
non-technical and civil discussions. Our results show that adding the contextual information
to BERT did not improve its performance and that none of the analyzed classifiers had an
outstanding performance in a cross-platform setting. Finally, we provide insights into the
tones that the classifiers misclassify.

Our exploratory study (fourth study) shows that uncivil emails tend to appear significantly
earlier in a discussion thread than civil emails. However, there is no difference in the discus-
sion length after a civil or uncivil email appears. Furthermore, uncivil emails tend to have
the same number of replies and the same reply time as civil emails. Finally, we identified
four structural patterns in civil and uncivil code review discussions: (i) code review discus-
sions that start with technical emails tend to remain technical despite uncivil emails in the
thread; (ii) uncivil emails replying to the patch submission tend to trigger incivility in the
code review thread if a civil email is never sent by someone; (iii) when a thread does not yet
have any uncivil email, civil emails might help the discussion to remain civil/technical; and
(iv) civil emails help to pacify code review discussions, i.e., civility might inhibit open source
contributors from being uncivil. These patterns demonstrate that civil comments should be
fostered in open source code review discussions in order to pacify an uncivil discussion or
maintain a technical/civil discussion.

To the best of our knowledge, this thesis serves as the first thesis about the general phe-
nomenon of (in)civility in open source software development, paving the road for a new field
of research about collaboration and communication in the context of software engineering.

xiii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . viii

ABSTRACT . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

LIST OF SYMBOLS AND ACRONYMS . xx

LIST OF APPENDICES . xxi

CHAPTER 1 INTRODUCTION . 1
1.1 Context and problem statement . 1
1.2 Definition of incivility and related concepts 3
1.3 Thesis overview and organization . 6
1.4 Thesis contributions . 9
1.5 Publications . 11

CHAPTER 2 MOTIVATIONAL CASE STUDY: HOW DO OPEN SOURCE CON-
TRIBUTORS PERCEIVE INCIVILITY? . 14
2.1 Case study methods . 14
2.2 Summary of findings . 15
2.3 Lessons learned from the case study . 17

CHAPTER 3 BACKGROUND AND RELATED RESEARCH 18
3.1 Public discussions in software engineering . 18

3.1.1 Code review discussions . 18
3.1.2 Issue discussions . 19

3.2 Incivility . 20

xiv

3.2.1 Incivility in public discourse . 20
3.2.2 Unhealthy discussions in software engineering 21

3.3 Automated detection of incivility . 22
3.3.1 Machine learning for text classification 22
3.3.2 Automated detection of incivility in online communication platforms 23
3.3.3 Automated detection of unhealthy discussions in software engineering 24

3.4 Conversational dynamics . 26

CHAPTER 4 CHARACTERIZING INCIVILITY IN OPEN SOURCE CODE REVIEW
DISCUSSIONS . 28
4.1 Introduction . 28
4.2 Research questions . 31
4.3 Methods . 32

4.3.1 Collecting code review emails . 32
4.3.2 Identifying rejected patches . 32
4.3.3 Filtering and sampling rejected email threads 33
4.3.4 Qualitative coding on 262 rejected email threads 34

4.4 Results . 37
4.4.1 RQ1. Tone-bearing discussion features (TBDFs) in code review discus-

sions of rejected patches . 37
4.4.2 RQ2. Frequency of incivility in code review discussions of rejected

patches . 40
4.4.3 RQ3. Correlations of incivility with email and thread attributes . . . 41
4.4.4 RQ4. Discoursal causes of incivility 45
4.4.5 RQ5. Discoursal consequences of incivility 48

4.5 Discussion and recommendations . 51
4.5.1 Discussion on the main findings . 51
4.5.2 Proactive and reactive approaches to address risk factors before and

after incivility happens . 53
4.5.3 Incivility detection . 55

4.6 Threats to validity . 59
4.7 Acknowledgements . 61
4.8 Chapter summary . 61

CHAPTER 5 CHARACTERIZING INCIVILITY IN OPEN SOURCE ISSUE DISCUS-
SIONS . 63
5.1 Introduction . 63

xv

5.2 Goals and research questions . 65
5.3 Methods . 67

5.3.1 Data selection . 67
5.3.2 Quantitative analysis on locked issues 67
5.3.3 Qualitative analysis on locked issues 68

5.4 Results . 70
5.4.1 RQ1. Characteristics of GitHub locked issues 70
5.4.2 RQ2. Justifications for locking GitHub issues as too heated 71
5.4.3 RQ3. Topics of discussions in issues locked as too heated 73
5.4.4 RQ4. Incivility in issues locked as too heated 75

5.5 Discussion and recommendations . 81
5.5.1 How are projects using the GitHub locking conversations feature? . . 82
5.5.2 How is incivility expressed in issues locked as too heated? 83
5.5.3 Recommendations . 84

5.6 Threats to validity . 87
5.7 Acknowledgements . 88
5.8 Chapter summary . 88

CHAPTER 6 INCIVILITY DETECTION IN OPEN SOURCE CODE REVIEW AND
ISSUE DISCUSSIONS . 89
6.1 Introduction . 89
6.2 Research questions . 90
6.3 Methods . 91

6.3.1 Datasets and data preprocessing . 91
6.3.2 Feature extraction for classical ML classifiers 93
6.3.3 Data augmentation and class balancing 94
6.3.4 Training and evaluating the classifiers 96
6.3.5 Performance metrics . 99
6.3.6 Experimental design to answer the RQs 100

6.4 Results . 101
6.4.1 RQ1. Models’ performance on incivility detection 101
6.4.2 RQ2. Incivility detection using the context 104
6.4.3 RQ3. Incivility detection in a cross-platform setting 106

6.5 Discussion . 108
6.5.1 Analysis of misclassified TBDFs per incivility classifier 109
6.5.2 Analysis of BERT’s misclassified TBDFs considering the context . . . 111

xvi

6.5.3 Analysis of misclassified TBDFs in cross-platform settings 112
6.6 Threats to validity . 113
6.7 Acknowledgements . 114
6.8 Chapter summary . 115

CHAPTER 7 CONVERSATIONAL DYNAMICS OF CIVIL AND UNCIVIL OPEN
SOURCE CODE REVIEW DISCUSSIONS . 116
7.1 Introduction . 116
7.2 Research questions . 117
7.3 Methods . 118

7.3.1 Reconstructing code review discussions 118
7.3.2 Describing social characteristics with graphs’ properties 119
7.3.3 Describing structural patterns with regular expressions 119

7.4 Results . 120
7.4.1 RQ1. Social characteristics of civil and uncivil code review discussions 120
7.4.2 RQ2. Structural patterns of civil and uncivil code review discussions 121

7.5 Discussion . 125
7.6 Threats to validity . 126
7.7 Acknowledgements . 127
7.8 Chapter summary . 127

CHAPTER 8 DISCUSSION AND FUTURE WORK 129
8.1 Contributions and findings . 129
8.2 Opportunities for future research . 132

REFERENCES . 135

xvii

LIST OF TABLES

Table 1.1 Comparison of concepts and definitions related to unhealthy interac-
tions according to the literature. 13

Table 3.1 Methods available in the literature to automatically detect unhealthy
discussions in the software engineering domain. 27

Table 4.1 Frequency of threads and emails with or without an argument in code
review discussions of rejected patches. 43

Table 4.2 Proactive approaches for OSS communities and researchers. 54
Table 4.3 Performance of SE-specific sentiment analysis tools. For each tool, we

highlight the best values for each metric. 57
Table 6.1 Conversational features of code review and issue discussions 93
Table 6.2 EDA hyperparameters search space 95
Table 6.3 Search space for hyperparameter tuning 98

xviii

LIST OF FIGURES

Figure 1.1 Relation among incivility and related concepts. 6
Figure 1.2 Thesis overview. 7
Figure 3.1 Summary of the code review process of the Linux kernel development. 19
Figure 4.1 Frequency of TBDFs in code review discussions of rejected patches.

Note: A sentence can be coded with multiple codes. 42
Figure 4.2 Distribution of number of emails for each email type in threads with

or without an argument. 44
Figure 4.3 Frequency of causes of incivility in emails discussing rejected patches

sent by developers. Note: A sentence can be coded with multiple codes. 47
Figure 4.4 Frequency of causes of incivility in emails discussing rejected patches

sent by maintainers. Note: A sentence can be coded with multiple
codes. 49

Figure 4.5 Relationship between causes and consequences of uncivil emails sent
by developers (left) and maintainers (right) when discussing rejected
patches. 52

Figure 4.6 Sentiment polarity of uncivil TBDFs. 58
Figure 5.1 Distribution of percentages of (non-)locked issues per project (left) and

according to locking reasons labelled on GitHub (right). 71
Figure 5.2 Distribution of the frequency of the three types of comments across

issues. 78
Figure 5.3 Position of uncivil comments in uncivil issues. 79
Figure 5.4 Number of issues per justifications given by maintainers when locking

issues as too heated. 80
Figure 5.5 Justifications given by maintainers when locking issues as too heated

per TBDF. 82
Figure 5.6 Number of issues per topics of issues locked as too heated. 83
Figure 5.7 Topics of issues locked as too heated per TBDF. 84
Figure 6.1 Key components and main pipeline of incivility classifiers 96
Figure 6.2 Average performance scores per class balancing technique and classifier

for the classification of technical and non-technical emails/comments
(CT1). 102

Figure 6.3 Performance scores per target class for the classification of technical
and non-technical emails/comments (CT1). 103

xix

Figure 6.4 Average performance scores per class balancing technique and classifier
for the classification of civil and uncivil sentences (CT2). 104

Figure 6.5 Performance scores per target class for the classification of civil and
uncivil sentences (CT2). 105

Figure 6.6 Difference of BERT’s performance scores between RQ1 (without con-
text information) and RQ2 (with context information). 105

Figure 6.7 Performance scores for classification in a cross-platform setting. . . . 107
Figure 6.8 Percentage of misclassified sentences per TBDF per classifier. 110
Figure 6.9 Percentage of misclassified sentences per TBDF for BERT considering

the context. 111
Figure 6.10 Percentage of misclassified sentences per TBDF in cross-platform set-

tings. 113
Figure 7.1 Distribution of degrees and reply time of civil and uncivil emails . . . 120
Figure 7.2 Distribution of depth to and from civil and uncivil emails 121
Figure 7.3 Pattern 1. Code review discussions that start with technical emails

tend to remain technical despite uncivil emails in the thread. 122
Figure 7.4 Pattern 2. Uncivil emails replying to the patch submission tend to

trigger incivility in the code review thread if a civil email is never sent
by someone. 123

Figure 7.5 Pattern 3. When a thread does not have any uncivil email, civil emails
might help the discussion to remain civil/technical. 124

Figure 7.6 Pattern 4. Civil emails help to pacify code review discussions, i.e.,
civility might inhibit OSS contributors from being uncivil. 125

xx

LIST OF SYMBOLS AND ACRONYMS

BERT Bidirectional Encoder Representations from Transformers
BoF Birds of a Feather
BoW Bag of Words
CART Classification and Regression Tree
EDA Easy Data Augmentation Techniques
FOSS Free and open-source software
ITSs Issue Tracking Systems
KNN K-Nearest Neighbours
LKML Linux Kernel Mailing List
LR Logistic Regression
ML Machine Learning
MLM Masked Language Modeling
NB Naive Bayes
NLP Natural Language Processing
NSP Next Sentence Prediction
OSS Open Source Software
RF Random Forest
SE Software Engineering
SVM Support Vector Machine
TBDF Tone-bearing discussion features
TF-IDF Term Frequency-Inverse Document Frequency

xxi

LIST OF APPENDICES

Appendix A Replication packages . 151

Appendix B PhD defense presentation . 152

1

CHAPTER 1 INTRODUCTION

1.1 Context and problem statement

Open source software (OSS) development provides abundant opportunities for public discus-
sions, which happen within the context of issue tracking, bug report, code review, and user
feedback, just to name a few. These opportunities characterize the democratic essence of
open source development by allowing anyone who has the relevant knowledge to contribute
to the development process and shape the project one way or another.

However, as in all types of public discussions, conversations that happen in open source de-
velopment can become uncivil, a topic that has received increasing attention in recent years.
Researchers have investigated this phenomenon in various domains, such as interpersonal re-
lationships in workplace dynamics [1,2], political discourse [3–5], and online comments [6–8].
According to Bejan [5], incivility is the product of technology, social, and cultural transfor-
mations unique to the modern world. That is, with the increasing opportunities for public
debates on prevalent platforms such as social media, Q&A systems, and tools for remote and
collaborative work, incivility can spread more rapidly and widely than ever before [9].

In the context of OSS development, we adopt Coe et al.’s [6] definition of incivility as “fea-
tures of discussion that convey an unnecessarily disrespectful tone toward the
discussion forum, its participants, or its topics” (see Section 1.2). An example of
such incivility can be seen very clearly from the following code review comment of a patch
submitted to the Linux kernel:

“What the F*CK, guys? This piece-of-shit commit is marked for stable, but
you clearly never even test-compiled it, did you? ... And why the hell was this
marked for stable even *IF* it hadn’t been complete and utter tripe? It even has
a comment in the commit message about how this probably doesn’t matter. So it’s
doubly crap: it’s *wrong*, and it didn’t actually fix anything to begin with. There
aren’t enough swear words in the English language, so now I’ll have to call you
[swear words in another language] just to express my disgust and frustration with
this crap.”

In recent years, software engineering researchers have started studying this phenomenon,
along with related concepts such as toxicity [10–18]. In OSS discussions, this type of un-
healthy, and sometimes disturbing or harmful behavior can be the result of a variety of

2

reasons. First, even though diversity has many benefits for OSS communities [19, 20], the
mix of cultures, personalities, and interests of open source contributors can cause a clash of
personal values and opinions [21]. Second, the increasing level of stress and burnout among
OSS contributors can also cause unhealthy interactions [10]. In fact, because of the repu-
tation and wide adoption of open source projects, the sheer amount of requests that OSS
maintainers receive is overwhelming [22], resulting in stressful and non-effective communica-
tion.

This situation is exacerbated in open source code review and issue discussions. In open source
code review discussions, particularly, developers can have diverse motivations in providing
code contributions [23, 24], which can be different or even conflicting with the maintainers’
interests. Additionally, the power differences between maintainers and developers are evident
in popular open source projects, such as Linux, creating an uneven platform for discussion.
In issue discussions, social context discussions may happen, such as conversations about the
black lives matter and me too movements, which can increase the chances of conflicts and ar-
guments. Such conflicts could occur for example in discussions seeking a more anti-oppressive
software terminology, such as renaming the branch master to main, whitelist/blacklist to al-
lowlist/blocklist and gender-neutral pronouns. In sum, because of the nature of code review
and issue discussions, they innately contain disagreements and potential conflicts, leading,
therefore, to incivility.

Research has also shown that heated and toxic interactions can have many negative conse-
quences for OSS projects. For example, interpersonal conflicts in code review can trigger
negative emotions in developers [11,25]. In issue discussions, although maintainers and other
members may try to engage in a constructive conversation after toxicity happens, the discus-
sion might still escalate to more toxicity [14]. Hence, heated and toxic communication might
hinder OSS communities’ ability to attract, onboard, and retain contributors.

This knowledge is still largely unexplored for incivility, though. In fact, incivility is a very
complex phenomenon, since each person might perceive it differently. Furthermore, due to
the lack of understanding about incivility in software engineering (SE), and code review
and issue discussions more specifically, its characteristics, dynamics, and the possibility to
automatically detect it are unknown.

Thesis statement: Although incivility in open source discussions is a complex phe-
nomenon, its characteristics and dynamics can be captured by a conceptual framework
and it can be automatically detected by machine learning models.

Hence, in this thesis, to pragmatically manage incivility in software engineering, we

3

leveraged the mature social construct of incivility to understand, characterize,
and detect confrontational conflicts in open source discussions. To reach this goal,
we focus on empirically analyzing code review and issue discussions of open source projects.
Particularly, we have three specific goals as described below.

1. Characterize incivility in OSS development, particularly in code review and issue discus-
sions;

2. Investigate whether incivility can be accurately detected automatically in code review and
issue discussions;

3. Understand the conversational dynamics in civil and uncivil code review discussions.

Overall, we find that:

1. Incivility in open source discussions (i) has distinguishable and diverse characteristics, (ii)
happens frequently in non-technical open source discussions, (iii) is not correlated with
properties of the discussion such as the occurrence of an argument, the author of the
uncivil comment, or the topic of discussion, (iv) has various causes and consequences for
both maintainers and developers, and (v) is not always the reason given by maintainers
when locking open source issue discussions.

2. Deep learning models perform better than classical machine learning models to detect
incivility in open source discussions. Adding extra information (such as the context of the
discussion) makes the prediction worse, if not unchanged; and the classifiers’ performance
degrades in a cross-platform setting.

3. Civil and uncivil code review discussions feature different social characteristics and differ-
ent structural patterns.

1.2 Definition of incivility and related concepts

Deciding if a text is uncivil is not simple, even for humans. Many authors [6, 26, 27] believe
that “incivility is in the eye of the beholder”; in other words, what seems uncivil for one person
might strike another person as completely appropriate. For example, in our preliminary in-
vestigation of incivility (see Chapter 2), we found that the code review email below, extracted
from the Linux Kernel Mailing List, was tagged by two sentiment analysis tools [28, 29] as
having a negative sentiment. Even though both tools agree on the classification (which is

4

not always the case), 50% of the participants in our preliminary study classified this email
as positive/civil, 30% as negative/uncivil, and 20% of the participants were not sure about
the classification.

“Didn’t we learn this lesson already with [Person’s name]? i.e., that dump-
ing filesystem code in staging on the assumption “the community” will fix it up
when nobody in “the community” uses or can even test that filesystem is a broken
development model...”

Hence, the phenomenon of incivility is complex, rooted in interpersonal relationships, and
also influenced by language nuances. Furthermore, to the best of our knowledge, incivility
is not defined in the field of software engineering (SE) in general, and in open source code
review and issue discussions in particular.

In order to develop a working definition of incivility for this thesis, we gathered different
definitions of incivility in the literature and compared the perspectives of existing SE studies
to those from different fields of study, such as incivility in workplace, political discourse,
newspaper comments, and tweets (see Table 1.1). For this exploratory analysis, we formulated
search queries such as “incivility in workplace”, “incivility on twitter”, etc., then selected the
top search result, which typically had dozens of citations. We then studied the terminology
and definitions used by these papers, comparing them to those used by SE papers.

For example, SE researchers have so far used concepts such as hate speech, offensive language,
toxicity, and pushback to define unhealthy discussions. Davidson et al. [30] analyzed the
use of offensive language and hate speech on Twitter and used these terms interchangeably.
Incivility in the workplace [1] is characterized by rudeness and lack of respect for others;
some of these characteristics also considered as toxicity in SE [31]. We analyze the definition
of all these concepts already discussed in the field of SE and compare and contrast them to
the definition of incivility in other fields of study.

To better compare the definitions provided in the various studies in different fields, we con-
sider different dimensions in which the definitions can be compared (see Table 1.1). These
dimensions were defined based on a manual analysis of the definitions through a method
based on content analysis [32]. We explain each dimension below.

• Target: some of the definitions demonstrate that incivility and other related concepts
have specific targets, such as the participants of the conversation, the discussion forum,
the topic of discussion, or the companies and open source communities.

5

• Goal: some definitions explicitly state the goal of the unhealthy interaction. Some authors
believe that incivility in the workplace is intended to harm the target, while in political
discourse, incivility is a form of attack. Interestingly, in the newspaper field, incivility is
considered unnecessary; the same is valid for pushback in SE.

• Impact: some definitions mention the impact of the unhealthy interaction to the target.
For example, toxicity in the workplace can “cause institutions to be worn out or hurt and
harm employees” [33] and in SE, toxicity can “make someone leave a discussion” [31].

• Specific emotions/tones: some definitions explicitly mention the emotions or tones
either related to the unhealthy interaction or the goal of the interaction. For example,
hate speech and offensive language on Twitter “is intended to be derogatory, to humiliate,
or to insult” [12], while toxicity in SE is composed of “rude, disrespectful, or unreasonable
language” [31].

Based on the aforementioned dimensions, it seems like the concept of incivility is broader
than the other concepts, not focused on a specific impact or specific emotions/tones. We
present below the differences between incivility and related concepts.

– Incivility vs. toxicity: Toxicity emphasizes the impact to the target; e.g., “make
someone leave a discussion” [31] and “impact the health of FOSS/peer production commu-
nities” [34]. Yet, the concept of incivility often is not confined to this aspect.

– Incivility vs. unhealthy interactions, hate speech, and offensive language: While
unhealthy interactions, hate speech, and offensive language always focus on a specific
emotion/tone (such as entitlement [10], insults [12], or racist terms [30]), incivility does
not [6].

– Incivility vs. pushback: Both incivility and pushback are unnecessary behaviors,
however, pushback focuses on a specific action (i.e., “a reviewer blocking a change re-
quest ” [11]), while incivility is broader. Hence, pushback is a type of incivility.

Based on the aforementioned definitions, although these different concepts might share sim-
ilarities with incivility, they only cover one dimension of incivility, i.e., language that harms
other people. Incivility, however, is an umbrella term with different dimensions that focus on
unnecessarily disrespectful tones toward the discussion forum, its participants, or its topics,
hurting, therefore, a technical and constructive conversation. Figure 1.1 presents how these
different concepts are related to incivility.

6

Pushback

Unnecessary
conflicts

Incivility

Hate
speech

Offensive
language

Toxicity

Unhealthy
interactions

Reviewer is
blocking a

change
request

Figure 1.1 Relation among incivility and related concepts.

Hence, for this thesis, we decided to work with the definition of incivility proposed by Coe
et al. [6], for three reasons. First, their definition targets the discussion forum, its partic-
ipants, and its topics, giving, therefore, contextual information about incivility. Second,
their definition mentions incivility as unnecessary, meaning that uncivil comments do not
add anything to a constructive and technical discussion (the case of SE discussions). Finally,
their definition does not mention any impacts or specific emotions/tones, allowing us to avoid
making assumptions, since the impacts and emotions/tones of incivility in SE are unknown.
We reiterate below the definition of incivility by Coe et al. [6] that will be used throughout
this thesis:

Working definition of incivility: “Features of discussion that convey an unnecessarily
disrespectful tone toward the discussion forum, its participants, or its topics [6].”

1.3 Thesis overview and organization

Figure 1.2 depicts an overview of the scope of this thesis.

Chapter 2: Motivational case study

We first present a preliminary assessment of the problem (brown box in Figure 1.2) by
conducting surveys and an open discussion with OSS community members.

7

Chapter 3:
Background and
related research

Understanding incivility in
OSS development

Understanding civil and
uncivil conversational

dynamics

Automatically detecting
incivility

Towards Pragmatic Incivility
Management in Software

Engineering

Empirical
studies

Chapter 4:
Incivility in code review

discussions

Chapter 5:
Incivility in issue

discussions

Chapter 7:
Conversational dynamics

in code review
discussions

Chapter 6:
Incivility detection in code

review and issue
discussions

Outcomes Pragmatic
proactive and

reactive
approaches to

mitigate incivility
before and after

it happens

Feasability of
sentiment

analysis tools to
detect incivility

Pitfalls that
researchers
should avoid

when using the
GitHub locked

issues data

Recommendations
for practitioners
and designers of

issue tracking
systems

Civil and uncivil cases
that classifiers are not

able to correctly
identify (i) in civil and

uncivil discussions, (ii)
using the context of the
conversation, and (iii)

in a cross-platform
setting

Chapter 8:
Discussion

Opportunities for
future research

Chapter 2:
Motivational case

study

Structural
characteristics
and structural

patterns of civil
and uncivil code

review
discussions

Figure 1.2 Thesis overview.

Chapter 3: Background and related research

Then, we provide the reader with background information and we situate this thesis
with respect to prior research (orange box).

Next, we shift our focus to the main body of this thesis (green boxes). Each part of the main
goal is divided into a series of empirical studies (yellow boxes) that have compelling potential
outcomes (blue boxes). The methodology, results, discussion, and threats to validity of each
empirical study are presented in their own chapter.

Chapter 4: Characterizing incivility in open source code review discussion

To aim toward pragmatic incivility management in software engineering, first, we aim
to understand incivility in OSS development. For that, in Chapter 4, we investigate
the characteristics, the causes, and the consequences of uncivil code review discussion
comments from both maintainers and developers. We conducted a qualitative analy-
sis on 1,545 emails from the Linux Kernel Mailing List (LKML) that were associated
with rejected patches; we study rejected patches because the rejection could be the first
indication of conflict, inducing incivility, and thus would allow us to achieve an under-
standing of both uncivil and civil ways of addressing conflicts. Furthermore, previous
work has shown that rejected patches represent more than 66% of all patches submit-
ted to LKML [35] and that the Linux community frequently rejects patches using harsh
language when reporting the rejection, even though the reasons for rejection are purely
technical [36].

8

Chapter 5: Characterizing incivility in open source issue discussion

Furthermore, in Chapter 5, we adopted a mixed-methods approach to assess the char-
acteristics of GitHub locked issues, and, in particular, assess the extent to which GitHub
issue discussions locked as too heated were, in fact, uncivil. First, we quantitatively an-
alyzed 1,272,501 closed issue discussions of 79 open source projects hosted on GitHub
that have at least one issue locked as too heated. This analysis is aimed at identifying the
overall characteristics of GitHub locked and non-locked issues. Then, we qualitatively
examined all 205 issues locked as too heated in the analyzed projects, and their 5,511
comments, to assess the extent to which the issue discussions locked as too heated were,
in fact, uncivil. Additionally, we assessed the topics being discussed by too heated locked
issues and the justifications given by maintainers for locking such issues.

Chapter 6: Incivility detection in open source code review and issue discussions

Moreover, we propose automated methods to detect incivility in open source code review
and issue discussions (Chapter 6). For that, we compare the performance of six classi-
cal machine learning models (such as Naive Bayes and Support Vector Machine) with
the BERT deep learning model. Furthermore, we assess the extent to which the context
helps to detect incivility and whether incivility can be detected in a cross-platform setting.

Chapter 7: Conversational dynamics of civil and uncivil open source code review discussions

Finally, we aim to understand the conversational dynamics, i.e., the interpersonal struc-
tures underlying the dialog between people [37], in civil and uncivil open source discussions
(Chapter 7). For that, we conducted an exploratory study on the civil and uncivil code
review discussions of rejected patches of the Linux Kernel Mailing List to quantify and
understand the social characteristics and structural patterns in such discussions.

Chapter 8: Discussion and conclusion

In Chapter 8 (purple box), we draw conclusions and discuss promising avenues for future
work.

9

1.4 Thesis contributions

We present below the contributions of this thesis.

Contribution 1: Characterization of incivility in open source code review discussions

In code review discussions of rejected patches of the LKML, we found that more than
half (66.66%) of the non-technical code review emails included uncivil features. Particu-
larly, frustration, name calling, and impatience are the most frequent features in uncivil
emails. Besides that, our results indicate that there are civil alternatives to address
arguments, and that uncivil comments can potentially be made by any people when dis-
cussing any topic. Finally, we identified eight themes that caused incivility for developers
and five themes for maintainers. Violation of community conventions was the common
cause of incivility for both developers and maintainers. Further, maintainers were also
frequently irritated by inappropriate solution proposed by developer, while developers by
characteristics in the maintainers’ feedback. Based on these results, we recommend a set
of pragmatic proactive and reactive approaches to mitigate incivility before and after it
happens.

Contribution 2: Characterization of GitHub locked issues and the extent to which GitHub
issues locked as too heated are uncivil

We found that projects have different behaviors when locking issues: while 54 locked less
than 10% of their closed issues, 14 projects locked more than 90% of their closed issues.
Additionally, locked issues tend to have a similar number of comments, participants, and
emoji reactions to non-locked issues. For the 205 issues locked as too heated, we found
that one-third do not contain any uncivil discourse, and only 8.82% of the analyzed com-
ments are actually uncivil. Finally, we found that the locking justifications provided by
maintainers do not always match the label used to lock the issue. Based on our results,
we identified three pitfalls to avoid when using the GitHub locked issues data and we
provide recommendations for researchers and practitioners.

Contribution 3: Comparison of six classical machine learning models with the BERT model
to detect incivility in code review and issue discussions

We identified BERT as the best model to detect incivility in both code review and is-
sue discussions. Furthermore, our results show that classical machine learning models
tend to underperform when classifying non-technical and civil conversations. Finally,

10

we found that adding the context does not improve BERT’s performance and that the
classifiers’ performance degraded in a cross-platform setting. We provide three insights
on the tones that the classifiers misclassify when detecting incivility. These insights
will help future work that aims at leveraging discussion tones in automated incivility de-
tection applications, as well as improving cross-platform incivility detection performance.

Contribution 4: Identification of the social characteristics and structural patterns of civil
and uncivil code review discussions

Concerning the social characteristics of civil and uncivil code review discussions, our re-
sults show that (i) uncivil emails tend to appear significantly earlier in the email thread
than civil emails, (ii) there is no difference in the discussion length after a civil or uncivil
email appears, (iii) uncivil emails tend to have the same number of replies and the same
reply time as civil emails. Furthermore, we identified four structural patterns of code
review discussions: (i) code review discussions that start with technical emails tend to
remain technical despite uncivil emails in the thread; (ii) uncivil emails replying to the
patch submission tend to trigger incivility in the code review thread if a civil email is
never sent by someone; (iii) when a thread does not yet have any uncivil email, civil
emails might help the discussion to remain civil/technical; and (iv) civil emails help to
pacify code review discussions, i.e., civility might inhibit OSS contributors from being
uncivil. These patterns demonstrate that OSS communities should foster civil comments
in code review discussions to pacify an uncivil discussion or maintain a technical/civil
discussion.

Contribution 5: Two tagged datasets of incivility in open source discussions

To the best of our knowledge, an incivility dataset in SE is inexistent in the litera-
ture. This thesis, thus, contributes to the first manually tagged datasets of incivility in
open source code review1 and issue discussions2. These datasets will help to pave the
road for future studies about this topic in software-related collaborations and discussions.

Contribution 6: The scripts of six classical machine learning models and one deep learning
model to detect incivility in open source discussions

To the best of our knowledge, machine learning models for detecting incivility in SE
discussions are nonexistent in the literature. Hence, we make available the features used

1Dataset of incivility in code review discussions: https://doi.org/10.6084/m9.figshare.14428691
2Dataset of incivility in issue discussions: https://doi.org/10.6084/m9.figshare.18848765

https://doi.org/10.6084/m9.figshare.14428691
https://doi.org/10.6084/m9.figshare.18848765

11

by the six classical machine learning models and all the scripts used to detect incivility
in open source discussions3.

Contribution 7: Building incivility awareness in OSS development

We conducted workshops and gave talks in a variety of open source venues456 to promote
awareness about the incivility problem to the OSS community, which we believe that
helped OSS contributors to open up about their experiences with incivility and to reason
about the ways to manage incivility in their context.

1.5 Publications

We present below the publications related to this thesis.

1. The "Shut the f**k up" Phenomenon: Characterizing Incivility in Open Source
Code Review Discussions (Chapter 4). Isabella Ferreira, Jinghui Cheng, and Bram
Adams. Proceedings of the ACM on Human-Computer Interaction 5, no. CSCW2 (2021):
1-35.

2. How heated is it? Understanding GitHub locked issues (Chapter 5). Isabella Ferreira,
Bram Adams, and Jinghui Cheng. 19th International Conference on Mining Software
Repositories (MSR’22).

3. Incivility Detection in Open Source Code Review and Issue Discussions (Chapter 6).
Isabella Ferreira, Ahlaam Rafiq, and Jinghui Cheng. Under review. Submitted to the Jour-
nal of Systems and Software on June 22, 2022.

4. Conversational Dynamics in Civil and Uncivil Code Review Discussions (Chapter 7).
Isabella Ferreira, Jinghui Cheng, and Bram Adams. To be submitted to the Empirical Soft-
ware Engineering Journal.

The following publications are not directly related to the material in this thesis but were
produced in parallel to the research performed for this thesis.

3Features and scripts to detect incivility in open source discussions: https://github.com/
isabellavieira/incivility_detection_oss_discussions

4Sentimine: A cregit Plugin to Analyze the Sentiment Behind the Linux Kernel Code, Open Source
Leadership Summit (2019).

5Civil communication in practice: What does it mean to you as an open source developer?, Linux Plumbers
(2019).

6Characterizing and detecting incivility in open source code review discussions, CHAOSScon North Amer-
ica (2021)

https://github.com/isabellavieira/incivility_detection_oss_discussions
https://github.com/isabellavieira/incivility_detection_oss_discussions
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://chaoss.community/chaosscon-2021-na
https://chaoss.community/chaosscon-2021-na

12

1. Why do projects join the Apache Software Foundation?. Nan Yang*, Isabella Ferreira*,
Alexander Serebrenik, and Bram Adams. In 44th IEEE/ACM International Conference
on Software Engineering: Software Engineering in Society, ICSE (SEIS). 2022.

* Both authors contributed equally to this work.

2. Refactoring effect on internal quality attributes: What haven’t they told you
yet?. Eduardo Fernandes, Alexander Chávez, Alessandro Garcia, Isabella Ferreira, Diego
Cedrim, Leonardo Sousa, and Willian Oizumi. Information and Software Technology
(2020).

3. A longitudinal study on the maintainers’ sentiment of a large scale open source
ecosystem. Isabella Ferreira, Kate Stewart, Daniel German, and Bram Adams. In 2019
IEEE/ACM 4th International Workshop on Emotion Awareness in Software Engineering
(SEmotion), pp. 17-22. IEEE, 2019.

13

Table 1.1 Comparison of concepts and definitions related to unhealthy interactions according
to the literature.

C
on

ce
pt
s
an

d
de

fin
it
io
ns

ac
co
rd
in
g
to

th
e
lit
er
at
ur
e

D
im

en
si
on

s
us
ed

fo
r
co
m
pa

ri
so
n
of

th
e
co
nc
ep

ts
F
ie
ld

C
on

ce
pt

D
efi

ni
ti
on

of
th
e
co
nc
ep

t
So

ur
ce

T
ar
ge
t

G
oa
l

Im
pa

ct
Sp

ec
ifi
c
em

ot
io
ns
/t
on

es

W
or
kp

la
ce

In
ci
vi
lit
y

Lo
w
-in

te
ns
ity

de
vi
an

t
be

ha
vi
or

w
ith

am
bi
gu

ou
s

in
te
nt

to
ha

rm
th
e
ta
rg
et
,i
n
vi
ol
at
io
n
of

wo
rk
pl
ac
e

no
rm

s
fo
r
m
ut
ua

lr
es
pe

ct
.
U
nc

iv
il
be

ha
vi
or
s
ar
e

ch
ar
ac
te
ris

tic
al
ly

ru
de

,d
isc

ou
rt
eo
us
,d

isp
la
yi
ng

a
la
ck

of
re
sp
ec
t
fo
r
ot
he

rs
.

[1
]

-
In
te
nt
io
na

l
-

Ru
de

,d
isc

ou
rt
eo
us
,

di
sr
es
pe

ct
fu
l

Po
lit
ic
al

di
sc
ou

rs
e

In
ci
vi
lit
y

A
tt
ac
ks

th
at

go
be

yo
nd

fa
ct
s
an

d
di
ffe

re
nc

es
,a

nd
m
ov
e
in
st
ea
d
to
wa

rd
s
na

m
e-
ca
lli
ng

,c
on

te
m
pt
,a

nd
de

ris
io
n
of

th
e
op

po
sit

io
n.

[3
]

-
A
tt
ac
ks

-

N
am

e-
ca
lli
ng

,
co
nt
em

pt
,

de
ris

io
n
of

th
e

op
po

sit
io
n

N
ew

sp
ap

er
da

ta
In
ci
vi
lit
y

Fe
at
ur
es

of
di
sc
us
sio

n
th
at

co
nv

ey
an

un
ne

ce
ss
ar
ily

di
sr
es
pe

ct
fu
lt
on

e
to
wa

rd
th
e
di
sc
us
sio

n
fo
ru
m
,i
ts

pa
rt
ic
ip
an

ts
,o

r
its

to
pi
cs
.

[6
]

D
isc

us
sio

n
fo
ru
m
,

pa
rt
ic
ip
an

ts
,

an
d
to
pi
cs

U
nn

ec
es
sa
ry

-
-

Tw
itt

er
In
ci
vi
lit
y

A
ct

of
se
nd

in
g
or

po
st
in
g
m
ea
n
te
xt

m
es
sa
ge
s

in
te
nd

ed
to

m
en
ta
lly

hu
rt
,e

m
ba

rr
as
s
or

hu
m
ili
at
e

an
ot
he

r
pe

rs
on

us
in
g
co
m
pu

te
rs
,c

el
lp

ho
ne

s,
an

d
ot
he

r
el
ec
tr
on

ic
de

vi
ce
s.

[7
]

Pa
rt
ic
ip
an

ts
In
te
nt
io
na

l
-

H
ur
t,
em

ba
rr
as
s,

hu
m
ili
at
e

W
or
kp

la
ce

To
xi
ci
ty

Si
tu
at
io
ns

th
at

ca
us
e
in
st
itu

tio
ns

to
be

wo
rn

ou
t

or
hu

rt
,h

ar
m

em
pl
oy
ee
s,

br
in
g
ab

ou
t
tr
ou

bl
es
,

ar
e
no

t
be

ne
fic

ia
l,
an

d
ar
e
pa

in
fu
l.

[3
3]

In
st
itu

tio
ns
,

pa
rt
ic
ip
an

ts
-

-
Ex

ha
us
tio

n,
hu

rt
,h

ar
m

SE
To

xi
ci
ty

Ru
de

,d
isr

es
pe

ct
fu
l,
or

un
re
as
on

ab
le

la
ng

ua
ge

th
at

is
lik

el
y
to

m
ak

e
so
m
eo
ne

le
av
e
a
di
sc
us
sio

n.
[3
1]

Pa
rt
ic
ip
an

ts
-

So
m
eo
ne

le
av
es

th
e
di
sc
us
sio

n
Ru

de
,d

isr
es
pe

ct
fu
l,

un
re
as
on

ab
le

la
ng

ua
ge

SE
To

xi
ci
ty

A
SE

co
nv

er
sa
tio

n
w
ill

be
co
ns
id
er
ed

to
xi
c
if

it
in
cl
ud

es
an

y
of

th
e
fo
llo

w
in
g:

off
en

siv
e
na

m
e

ca
lli
ng

,i
ns
ul
ts
,t

hr
ea
ts
,p

er
so
na

la
tt
ac
ks
,

fli
rt
at
io
ns
,r
ef
er
en

ce
to

se
xu

al
ac
tiv

iti
es
,a

nd
sw

ea
rin

g
or

cu
rs
in
g.

[1
5]

-
-

-

O
ffe

ns
iv
e
na

m
e
ca
lli
ng

,
in
su
lts

,t
hr
ea
ts
,

pe
rs
on

al
at
ta
ck
s,

fli
rt
at
io
ns
,

re
fe
re
nc

e
to

se
xu

al
ac
tiv

iti
es
,

sw
ea
rin

g,
cu

rs
in
g

SE
To

xi
ci
ty

T
he

ad
ve
rs
e
eff

ec
ts

ca
us
ed

by
in
di
vi
du

al
ac
tio

ns
an

d
be

ha
vi
or
s
th
at

im
pa

ct
th
e
he

al
th

of
FO

SS
/p

ee
r

pr
od

uc
tio

n
co
m
m
un

iti
es
.

[3
4]

FO
SS

co
m
m
un

iti
es

-
H
ea
lth

of
FO

SS
/p

ee
r

pr
od

uc
tio

n
co
m
m
un

iti
es
.

-

SE
U
nh

ea
lth

y
in
te
ra
ct
io
ns

H
at
e
sp
ee
ch

an
d
m
ic
ro
ag

gr
es
sio

ns
fo
un

d
al
so

el
se
w
he

re
on

lin
e
(e
.g
.,
Yo

ut
ub

e)
,b

ut
al
so

th
ro
ug

h
op

en
-s
ou

rc
e-
sp
ec
ifi
c
di
sp
la
ys

of
en
tit

le
m
en
t

an
d
ur
ge
nc

y
re
la
te
d
to

tim
in
g
ex
pe

ct
at
io
ns
.

[1
0]

-
-

-
En

tit
le
m
en
t,
ur
ge
nc

y
re
la
te
d
to

tim
in
g

ex
pe

ct
at
io
ns

Tw
itt

er
H
at
e
sp
ee
ch

an
d

O
ffe

ns
iv
e
la
ng

ua
ge

La
ng

ua
ge

th
at

is
us
ed

to
ex
pr
es
s
ha

te
to
wa

rd
s

a
ta
rg
et
ed

gr
ou

p
or

is
in
te
nd

ed
to

be
de

ro
ga

to
ry
,

to
hu

m
ili
at
e
or

to
in
su
lt
th
e
m
em

be
rs

of
th
e
gr
ou

p.
[3
0]

Pa
rt
ic
ip
an

ts
In
te
nt
io
na

l
-

D
er
og

at
or
y,

hu
m
ili
at
e,

in
su
lt

SE
O
ffe

ns
iv
e
la
ng

ua
ge

A
ny

co
m
m
un

ic
at
io
n
th
at

co
nt
ai
ns

gu
tt
er

la
ng

ua
ge
,

sw
ea
rin

g
or

ra
ci
st

te
rm

s
or

co
nt
en
t
th
at

m
ay

be
co
ns
id
er
ed

as
off

en
siv

e
on

m
or
al
,s

oc
ia
l,
re
lig

io
us

or
cu

ltu
ra
lg

ro
un

ds
.

[3
0]

-
-

-
G
ut
te
r
la
ng

ua
ge
,

sw
ea
rin

g,
ra
ci
st

te
rm

s,
off

en
siv

e.

SE
Pu

sh
ba

ck
T
he

pe
rc
ep

tio
n
of

un
ne

ce
ss
ar
y
in
te
rp
er
so
na

lc
on

fli
ct

in
co
de

re
vi
ew

w
hi
le

a
re
vi
ew

er
is

bl
oc
ki
ng

a
ch
an

ge
re
qu

es
t.

[1
1]

-
U
nn

ec
es
sa
ry

-
-

14

CHAPTER 2 MOTIVATIONAL CASE STUDY: HOW DO OPEN SOURCE
CONTRIBUTORS PERCEIVE INCIVILITY?

Since little is known about incivility in the context of OSS development, this chapter ex-
plores the perceptions of this concept from members of open source communities. Hence, to
understand how open source contributors perceive incivility, we conducted surveys and an
open discussion with open source community members during a Birds of a Feather (BoF)
session at the Linux Plumbers Conference1. BoF sessions are informal gatherings of people
interested in a particular topic during industrial conferences.

2.1 Case study methods

The goal of the BoF was to raise awareness about civility and to learn from the commu-
nity how their communication happens in practice as well as the associated challenges. The
BoF session focused on four main topics: understanding what civility means to the partic-
ipants, discussing incivility in open source communities, discussing the role of the code of
conduct, and evaluating whether it is feasible for sentiment analysis tools to automatically
detect incivility. An intuitive idea was to identify incivility through sentiment analysis tools.
Hence, we wanted to assess if the tools’ results are compatible with the Linux contributors’
interpretation of (in)civility.

The BoF session lasted 45 minutes. We first presented the concept of civility, then
we brought up a survey whose questions were interspersed with group discussions. The
participants had about ten minutes to answer the online survey composed of 14 closed-ended
questions on the participants’ experience with uncivil communication, the code of conduct,
and the contributors’ perceptions of (in)civility in three communication examples. After
everyone has submitted their answers to the survey, we displayed the anonymous answers and
discussed each topic for about five to ten minutes. We had one person in the audience taking
notes about the participants’ discussion. After the BoF session, we conducted a thematic
analysis on our notes and the survey answers to identify prominent themes discussed by the
participants. The survey questions and the presentation used to guide the group discussions
are hosted online2 for replication or third party reuse.

In the survey, we asked the participants to discuss if they have ever experienced incivility
in open source software communities, if they tried to call out the uncivil person, if they would

1https://linuxplumbersconf.org/event/4/contributions/543/
2https://doi.org/10.6084/m9.figshare.14428691

https://linuxplumbersconf.org/event/4/contributions/543/
https://doi.org/10.6084/m9.figshare.14428691

15

talk to the person offline in case of an uncivil interaction, the major factors and consequences
that can make communication uncivil, and to what extent communication helps to achieve
civil communication goals. Additionally, we asked the participants to classify three code
review emails and we compared their classification with the results of off-the-shelf sentiment
analysis tools.

To identify sentiment in code review discussions, we used IBM Watson [28], a general-
purpose sentiment analysis tool, and Senti4SD [29], a tool developed to identify sentiment in
software engineering artefacts. We run both tools in the code review emails from the Linux
Kernel Mailing List (LKML), and we randomly picked one email classified by Senti4SD as
positive, negative, and neutral. Since sentiment analysis tools might have disagreements, we
picked the results of Senti4SD that is trained on software engineering data. During the BoF
session, participants could classify the code review discussions into civil, uncivil, and I don’t
know, in case they were not sure about the classification.

We collected survey responses from 22 participants at the BoF session; 20 provided
demographic information. Among the participants, 17 were from the Linux kernel community,
two were from both the Linux and Debian community, and one person was from another open
source community. Seven people had from 10 to 20 years of experience contributing to open
source projects, six of them had from five to ten years, five had from zero to five years
of experience, and two people had more than 20 years of experience. Ten self-reported as
software developer, six as maintainer, two as both developer and maintainer, and two as open
source software manager.

2.2 Summary of findings

When developers were asked about the extent to which civil communication helps to achieve
communication goals, 81.9% mentioned either to a great extent or to a moderate extent.
Participants discussed several factors that they considered to be associated with the concept
of civility, such as no personal attacks, distinguishing the target from the problem, respect,
politeness, constructive feedback, accepting mistakes, and being humble. Most participants
(18 out of 22) mentioned that they have experienced incivility themselves.

Participants discussed various strategies to respond to uncivil online communication.
Nine participants have recalled situations where they tried to call out the offending person
online, while 14 discussed that they would talk to the person offline in case they face uncivil
interactions. Participants mentioned that whether to call out a person depends on the degree
of familiarity with that person (participant P1), the perceived power imbalance (P5), and

16

the topic and the target associated with the uncivil comment (P2). Alternatively, some
participants believed that a better way to handle uncivil comments is to “take the punch
and get back to reality” (P2). P4 added that normally people keep escalating the problem if
nobody recedes.

When discussing factors that can make communication uncivil, participants mentioned
several prominent themes, including (1) differences in perception and viewpoint between
the people engaged in the conversation (N = 12), (2) the sentiment/emotion of a dis-
cussion participant towards the source code, the topic, or the people involved in the con-
versation (N = 12), and (3) language and culture differences that led to communication
barriers (N = 12). Participants also perceived the consequences of uncivil communication
to be (1) worsened the reputation of the community and reduced attraction to new con-
tributors (N = 19), (2) reduced retention, leading to contributors leaving the community
(N = 17), (3) contributors demonstrating frustration (N = 11), (4) contributors showing
signs of passive-aggressive behavior by indirectly expressing negative feelings (N = 10), and
(5) patch rejection (N = 9).

The results of the code review emails classification were surprising. The first email
was classified as negative by both tools. However, 50% of the participants classified this
email as positive/civil, 30% as negative/uncivil, and 20% of the participants were not sure
about the classification. During the group discussion, some participants mentioned that the
classification of this first email depends on the context, i.e., on the previous emails of the
email thread. Coincidentally, the recipient of this email was in the audience, so he could
explain the context of this specific email. He mentioned that this email was sent to him
by a co-worker (of 20 years) who was a non-native English speaker. According to him, the
context, familiarity, mother tongue, and culture all matter for determining the civility of an
email. He also mentioned that there was a newcomer in the same email thread, and the way
to convey the message was not clear enough for the newcomer, and he needed to repeat his
message many times.

The second email was classified by Senti4SD as positive and by IBM Watson as negative.
80% of the participants classified the email as positive/civil, whereas 15% thought it was neg-
ative/uncivil, and 5% was not sure. The participants mentioned that granularity matters and
people might have different opinions based on the granularity of the analysis. For example,
this email started as negative and then became positive.

Finally, the third email was classified as neutral by Senti4SD and as negative by IBM
Watson. However, 55% of the participants classified such email as positive/civil, 25% as
negative/uncivil, and 20% as I don’t know. In this example, participants reinforced the need

17

to understand the context of the email to perform the classification.

2.3 Lessons learned from the case study

Through the small-scale survey and the BoF discussion, we found that incivility can be an
important issue affecting many open source contributors in various ways. Uncivil communi-
cation can originate from diverse sources and can have wide impacts. More specifically, in
the context of code review where differences in perception and viewpoint often happen, dis-
cussions have a potential for arguments, and therefore, they might be uncivil. In the current
context, the most commonly adopted strategy of addressing uncivil communication seemed
to be either to “call it out” or to “eat it up”.

Furthermore, the sentiment analysis results demonstrate a lack of agreement between
tools (Senti4SD and IBM Watson), and between tools and humans, which shows that ex-
isting sentiment analysis tools may not be able to identify uncivil communication. Finally,
participants gave us valuable insights on factors that need to be considered to better assess
(in)civility in a text, such as the context, the familiarity among people, the mother tongue
and culture, and the granularity of analysis. These findings have inspired us to conduct a
manual qualitative analysis on the civil and uncivil communication styles in code review dis-
cussions to understand the phenomenon of incivility in the software engineering context. Our
research questions and study design were also framed based on the information we gathered
from this case study.

18

CHAPTER 3 BACKGROUND AND RELATED RESEARCH

3.1 Public discussions in software engineering

3.1.1 Code review discussions

Code review is a widely-adopted software engineering practice in both open source and pro-
prietary software projects [38]. The code review practice does not only ensure the quality and
integrity of the software being developed, but it also considerably impacts the dynamics and
relationships among members in open source communities. For example, Bosu et al. have
identified that code reviews have several non-technical benefits such as knowledge sharing
and relationship building; they also found that carelessness and lack of respect can create
negative perceptions in both developers and maintainers and hinder collaboration [39]. Simi-
larly, Asri et al. identified that negative sentiments expressed in code reviews were associated
with prolonged issue fixing time [40]. Ebert et al. also found that communication barriers
in the code review process, originated from factors such as unarticulated rationale and lack
of context, can result in lengthy discussions and delay in decision-making [41]. Through
analyzing code review comments, Pascarella et al. have identified the dynamics of reviewers’
different informational needs across the life-cycle of a code review that can be satisfied by
better communication and tool support [42]. Henley et al. have proposed an automated col-
laboration tool that can improve communication and productivity in code review [43]. Alami
et al. found that open source contributors often experience rejection and negative feedback,
and, as a consequence, they need to take the frequent negative feedback as an opportunity
to learn and to improve in their job [36]. This thesis builds upon this body of literature and
focuses on identifying characteristics of uncivil communication in code review.

Code review in the Linux kernel development

Instead of using a dedicated code review tool, the Linux kernel community uses mailing lists
for code review [44, 45]. The Linux kernel review process happens in the following way (see
Figure 3.1 for a summary). First, a developer implements the new feature or the bug fix in
their local version control system. Once finished, the developer will generate a summary of
changes based on a series of commits, which is formulated as a patch. The developer then
submits the patch to the Linux Kernel Mailing List (LKML) or a subsystem mailing list via
an email; the majority of the patch submissions and the discussions and debates about the
Linux kernel take place on LKML [46, 47]. Once a patch is submitted, the maintainers

19

will then review the patch and make one of the following three decisions: (1) accepting the
patch as is, (2) rejecting the patch immediately (e.g., because the feature implemented is
not interesting), or (3) provide feedback to the developer through email discussions. Our
research focuses on the discussions that happened in the latter case. The discussion about
the proposed patches can involve all developers and maintainers in the community. Such a
discussion can be done through several email replies, which compose an email thread. As
a result of the discussion, the maintainers may decide to accept the patch eventually or ask
the developer to send a new patch version with modifications. Once a patch is accepted,
the maintainers will then commit the code changes to their version control systems. Linus
Torvalds, the creator of the Linux kernel, will then eventually review the patch and make
the final decision of whether the patch would be included as a part of an official Linux kernel
release.

Submit a patch
(changes + explanations)

Review the patch
Implement a change

Code changes
(patch)

Provide information
and discuss

</>

Provide feedback
and discuss

…
Reject the patch

Accept the patch

Developer MaintainersDeveloper’s
code repository

Maintainer’s
code repository Linus Torvalds

Main Linux kernel
code repository

Accept the patch
Code changes

Code changes

Linux Kernel Mailing List
(LKML)

Figure 3.1 Summary of the code review process of the Linux kernel development.

3.1.2 Issue discussions

Issue tracking systems (ITSs) are a central part of the software development process. Despite
being a communication and coordination channel for a wide range of stakeholders, ITSs
accumulate valuable information over time about the described problems [48]. One example
is the GitHub issues, an ITS available in every repository on GitHub. GitHub issues are used
mostly for reporting bugs and requesting features, but sometimes it hosts discussions about
different topics related to the project or even documentation feedback. Anyone with reading
access can create an issue in a repository where issues are enabled.

By creating an issue, a community member first adds the title and the description

20

of the problem or the proposed feature. The description is the first comment in the issue
thread. Once the issue is created and submitted, other community members can comment
in response to the original comment from the author of the discussion or any other comment
made within the discussion. Discussion participants can also react to comments with emojis.
Maintainers are responsible for reviewing issues regularly and triaging by labeling them (as
bug or feature, for example). As discussions go on and participants respond to each other’s
comments, it is the maintainers’ responsibility to make sure that the issue discussion does
not violate the community’s code of conduct [49,50] or GitHub’s community guidelines [51].
If so, maintainers can lock issue discussions for being too heated or for any other reason.

3.2 Incivility

3.2.1 Incivility in public discourse

Although incivility, and the converse phenomenon of civility, has been studied by many au-
thors from different fields, there is no common agreement on its definition. For some, civility
is interchangeably related to politeness. However, according to Bejan [5], although civility
is certainly associated with politeness, calling someone uncivil is far worse than impolite.
For Bejan, impoliteness can be tolerated in a way that incivility cannot. When studying
political discussion groups, Papacharissi [52] found that relating civility to only politeness
makes us ignore the democratic merit of a heated discussion. Hence, Papacharissi suggested
identifying civil behaviors that enhance a democratic conversation. In the field of electorate,
Brooks and Geer [3] defined civility in terms of mutual respect. When studying incivility
on social media, Maity et al. [7] defined it as “an act of sending or posting mean text mes-
sages intended to mentally hurt, embarrass or humiliate another person using computers cell
phones, and other electronic devices”. Focusing on online comments on news reports, Coe
et al. [6] suggested a general definition of incivility, as “features of discussion that convey an
unnecessarily disrespectful tone toward the discussion forum, its participants, or its topics.”
According to their definition, incivility is unnecessary, since it does not add anything con-
structive to the discussion. Our work builds on the definition proposed by Coe et al. [6] by
focusing on incivility in code review discussions of rejected patches and in issues locked as
too heated.

The presence of incivility in public discourse has important consequences. For example,
Anderson et al. [53] found that people who are exposed to uncivil deliberation in blog com-
ments of science-related blog posts are more likely to perceive the technology as risky than
those who are exposed to civil comments. Consequently, the effects of user-to-user incivility

21

on perceptions towards emerging technologies may be a problem for science experts that rely
on public acceptance of their technology. In a recent work, Kenski et al. [26] found that
the audience’s perceptions of incivility are not uniform. For example, females usually have
greater sensitivity to incivility than men, so they are less likely to engage in such discourses.
Similarly, Molina et al. [8] found that users who were exposed to civil comments on Facebook
were more prone to engage in discussions. Hence, instigating civil discussions can make polit-
ical and social debates more likely to occur, since it sparks arguments that can be exchanged
in a constructive way. Our study extends this related literature to investigate the causes
and consequences of incivility in open source code reviews. To the best of our knowledge,
incivility has not yet been studied in the software development context.

3.2.2 Unhealthy discussions in software engineering

Our work is related to a few very recent studies [10, 12, 15, 25, 31] that investigate unhealthy
interactions, negative communication and its effects, toxicity, and conflicts in OSS develop-
ment.

Researchers have identified that the negative communication styles have affected a wide
range of open source developers, from newcomers who experienced communication barriers
when onboarding to open source software projects [54] to frequent contributors who often
suffer from stress and burnout facing toxic interactions [10]. Furthermore, previous work has
found that there are quantifiable differences in the communication patterns between leaders
of the Linux kernel community, in which some people often use words such as thanks and
sorry, while other people use rude and offensive words [55]. To help address the effects of
negative communication, Tan and Zhou [22] identified 17 strategies as effective practices for
communication when submitting a patch to LKML.

Most closely related to incivility, several previous studies focused on the concept of con-
flict in open source software development. Filippova et al. [56,57] have conducted a series of
studies to understand the types, sources, and effects of conflict in open source development
from the contributors’ perspectives. They have identified that conflicts are often associated
with disagreements on technical tasks, development processes, and community norms; these
conflicts have impacted the developers’ perception of team performance and their community
identification, which in turn influenced their intention to remain in the project. Focusing on
the effectiveness of conflict management strategies, Huang et al. [58] found that only the strat-
egy of providing concrete constructive suggestions for alternative suggestions at the technical
level was effective in reducing the negative consequences of conflicts, while neither rational
clarifications of misunderstandings nor social encouragement were effective. Most recently,

22

Egelman et al. [11] identified five types of feelings (e.g., frustration and discouragement) that
were results of “unnecessary interpersonal conflict” in code reviews at Google. They further
developed a method that uses metrics in the code review process (i.e., rounds of review,
review time, and shepherding time) to predict these feelings.

Miller et al. [31] investigated toxicity, which is defined as “rude, disrespectful, or un-
reasonable language that is likely to make someone leave a discussion” in 100 open source
issue discussions (including 20 GitHub issues locked as too heated). The authors found that
entitlement, insults, and arrogance were the most common types of toxicity in issue discus-
sions. Furthermore, in issue discussions, users have been found to write toxic comments when
having problems using the software, holding different points of view about technical topics,
or being in a disagreement about politics and ideology (e.g., OSS philosophy) [31].

Previous studies also identified patterns of reactions from OSS communities to unhealthy
interactions. In issue discussions, although maintainers and other members may try to engage
in a constructive conversation after toxicity happens, the discussion might still escalate to
more toxicity [31]. However, these discussions seemed to be localized; only in a few cases,
the author who posted toxic comments would open another toxic issue [31]. Additionally,
when maintainers invoke the code of conduct [49], the author of the toxic comments usually
did not comment anymore. These results indicate that locking issues might be effective to
stop toxicity.

3.3 Automated detection of incivility

3.3.1 Machine learning for text classification

Text classification is a classical natural language processing (NLP) problem that aims at
assigning labels to textual documents, such as sentences or paragraphs [59]. Currently,
there are two kinds of machine learning approaches for automatic text classification, namely
classical machine learning-based models and neural network-based approaches.

Common classical machine learning-based models include classification and regres-
sion tree (CART), k-nearest-neighbors (KNN), logistic regression, naive Bayes, random forest,
and support vector machine (SVM), among others. They were applied in various general text
classification tasks [60–63] as well as for software engineering tasks in specific [64–67]. To use
these models, features need to be first defined and extracted from textual documents, then
fed into the classifier for prediction. Popular features for textual data include bag of words
(BoW) and frequency–inverse document frequency (tf-idf). Although widely used, classical
machine learning classifiers have a major limitation. That is, choosing the proper features

23

for each domain requires extensive domain knowledge; thus it is hard to define cross-domain
or cross-task features [59]. In this thesis, we assess if it is feasible to use the six aforemen-
tioned classical machine learning-based models to detect incivility in code review and issue
discussions.

To solve the aforementioned challenges, neural network-based approaches have been
widely explored in the literature to address text classification tasks [68–74]. In 2018, Devlin
et al. [68] proposed BERT (Bidirectional Encoder Representations from Transformers), which
is currently the state of the art embedding model [59]. The BERT base model consists of
110M parameters and has been trained on BookCorpus [75] and English Wikipedia [76],
which include a total of 3.3 billion words. BERT is trained with two objectives: masked
language modeling (MLM) and next sentence prediction (NSP). MLM allows the model to
learn a bidirectional representation of the sentence by randomly masking 15% of the words
in the input and then training the model to predict the masked words. For NSP, the model
concatenates two masked sentences as inputs during the pretraining phase and then predicts
if the two sentences are continuous in the text or not.

Many variants have been made to BERT since it was proposed [77–81]. RoBERTa [77],
for example, is a more robust implementation of BERT, trained with a much larger amount
of data. ALBERT [78] optimizes BERT by lowering its memory consumption and increasing
its training speed. DistillBERT [79] uses knowledge distillation, i.e., a compression technique
in which a compact model is trained to reproduce the behavior of a larger model, to reduce
the size of the BERT model. SpanBERT [80] is a pre-trained method to better represent and
predict spans of text. CodeBERT [81] is a pre-trained language model for both programming
languages and natural languages. In many NLP [82] and software engineering problems [12,
83–85], BERT has demonstrated to have better performance than classical machine learning
models. Thus, we investigate BERT’s ability to detect incivility in code review and issue
discussions. To simplify this initial exploration, we used the original BERT model instead of
its variants.

3.3.2 Automated detection of incivility in online communication platforms

By using either classical machine learning-based models or neural network-based approaches,
many authors have tried to automatically detect incivility on online platforms, such as in
news discussions [27,86] and Twitter [7]. Daxenberge et al. [86], for example, sought to under-
stand incivility (defined as “expressions of disagreement by denying and disrespecting opposing
views”) on user comments on Facebook pages of nine German public and private media out-
lets. By using a logistic regression classifier, they found that incivility can be identified with

24

an overall F1-score of 0.46. To assess how well machine learning models are able to detect
incivility (defined as “features of discussion that convey an unnecessarily disrespectful tone
towards the discussion forum, its participants, or its topics”) in a cross-platform setting, Sad-
eque et al. [27] trained different machine learning models on an annotated newspaper dataset
and tested them on Russian troll tweets. As a result, Recurrent Neural Network (RNN) with
Gated Recurrent Units (GRU) outperformed the other analyzed models with an F1-score
of 0.51 for name calling and 0.48 for vulgarity. On Twitter, incivility (defined as “the act
of sending or posting mean text messages intended to mentally hurt, embarrass or humiliate
another person using computers, cell phones, and other electronic devices”) detection with
character-level bidirectional long short-term memory (bi-LSTM) and character-level convo-
lutional neural networks (CNNs) with a rectified linear unit (ReLU) outperformed the best
baseline model with a F1-score of 0.82 [7].

In our literature review, we were not able to find previous research investigating au-
tomated detection of incivility in software engineering settings, although some recent work
focused on detecting unhealthy discussions that we review in Section 3.3.3.

3.3.3 Automated detection of unhealthy discussions in software engineering

Table 3.1 presents the studies proposing models to detect different kinds of unhealthy inter-
actions in software engineering. We compare our study with the literature with respect to
the model implemented, the used dataset, and the techniques to improve the models’ per-
formance, such as cross-validation, data augmentation, class balancing, and hyperparameter
optimization.

Previous study identified that open source contributors might have different communica-
tion styles; some may have negative impacts. For example, a Naive Bayes classifier identified
that the leaders of the Linux Kernel Mailing List (LKML) have different communication styles
(F1-score = 0.96) [55]; some used more impolite, rude, aggressive, or offensive words. Offen-
sive language (defined as “communication that contains gutter language, swearing, racist, or
offensive content”) can also be identified in other platforms such as GitHub, Gitter, Slack,
and Stack Overflow, with more than 97% of accuracy using BERT [12].

In addition to having different communication styles, contributors might also demon-
strate their sentiments and emotions when expressing themselves in open source discussions.
Anger, for example, can be accurately identified in Jira discussions with SVM (F1-score =
0.81), J48 decision tree (F1-score = 0.77), and Naive Bayes (F1-score = 0.72) [87]. Similarly,
sentiment polarity of Stack Overflow posts can be better identified with BERT (F1-score =
0.84) than with Recurrent Neural Network (RNN) (F1-score = 0.66) [83]. BERT and its

25

variation RoBERTa also achieve a good performance (F1-score>0.90) when identifying the
sentiment polarity of GitHub issues [84]. Since BERT achieves a good performance in many
NLP tasks, Wu et al. [85] compared the performance of different existing sentiment analysis
tools with BERT. They found that BERT achieved the best score among all sentiment anal-
ysis tools for Stack Overflow posts (F1-score = 0.64 for the positive and negative classes, and
0.93 for the neutral class), API reviews, Jira issues, and Gerrit code reviews (with F1-score
of about 0.9 for the positive and negative classes in all those cases). Interestingly, BERT also
has better performance than sentiment analysis tools in a cross-platform setting (F1-scores
are above 0.9 for positive, neutral and negative polarities) [85].

Another emotion that might emerge in code review discussions, more specifically, is the
feeling of pushback, which is characterized by interpersonal conflicts, impatience, disappoint-
ment, and frustration [11]. In Google’s code review discussions, a logistic regression model
found that code review authors are between 3.0 and 4.1 times more likely to experience the
feeling of pushback for at least once and between 7.0 and 13.7 times more likely to experi-
ence it multiple times when compared to code reviews that were not flagged with a potential
feeling of pushback.

Finally, toxic language, i.e., hate speech and microaggressions, can be identified with
automated methods. For example, using the SVM model Raman et al. detected toxicity in
GitHub issues with a precision of 0.75, but a low recall of 0.35 [10]. Sarker et al. [15] also
tested the SVM classifier on other 100k randomly sampled GitHub issues; they found that
the precision decreased to 0.50, demonstrating that the model might be overfitting to the
training set. Similarly, toxicity can be identified in Gerrit code review and Gitter discussions,
with the STRUDEL toxicity detector having a F1-score of 0.49 and 0.73, respectively [15].
Interestingly, Sarker et al. [15] found that toxicity detectors tend to perform worse on more
formal SE discussions, such as code reviews, than on informal conversations such as Gitter
messages.

Our work differs from the previous works in several ways. First, this is the first study
proposing to detect incivility in SE discussions. This study builds upon our previous work on
characterizing incivility on code review discussions of rejected patches from the LKML and
GitHub issue discussions locked as too heated. We chose to compare six classical machine
learning models (Classification and Regression Tree (CART), k-Nearest Neighbors (KNN),
Logistic Regression, Naive Bayes, Random Forest, and SVM) with BERT. Additionally, we
use four strategies to augment our data (i.e., synonym replacement, random insertion, ran-
dom swap, and random deletion) and compare three class balancing techniques, i.e., random
undersampling, random oversampling, and SMOTE. We also perform hyperparameter opti-

26

mization with Grid Search on the classical machine learning models’ hyperparameters and
Bayesian Optimization on BERT’s hyperparameters to improve the models’ performance.
Finally, the performance of our models is evaluated in a 5-fold cross-validation. On top of
evaluating the performance of the machine learning models in detecting incivility, we also
analyze the impact of the discussion context and the feasibility of detecting incivility in a
cross-platform setting.

3.4 Conversational dynamics

Although many studies have characterized the conversational dynamics of public discourse [88–
92], to the best of our knowledge, none of the previous work has focused on identifying the
social characteristics and structural patterns of unhealthy discussions in software engineering
in general, and incivility in particular.

In public discourse, some authors focus on analyzing the extent to which discussion
participants, the number of discussion comments, and the discussion topics play an important
role in the conversational dynamics. Interestingly, online political discussions [92] tend to
involve a larger number of participants and to have more levels of nested comments than
other types of discussions. In Facebook discussions [88], participants can be a stronger driver
of structural differences than the type of content. On Usenet groups, Yahoo! groups, and
Twitter [91], the depth of conversations tend to grow sub-linearly to the size of the thread. In
Twitter, more specifically, there are two types of threads, i.e., those that are mainly between
two individuals and those that are among a group of people. The former type of thread tends
to be deeper while the latter tend to be wider.

Other authors focused on analyzing how conflicts spread from one Reddit community
to another [89]. As a result, conflicts tend to be initiated by less than 1% of communities
that start 74% of conflicts. Even though such conflicts are initiated by very active commu-
nity members, they are maintained by less active members. In general, conflicts in Reddit
communities tend to negatively affect overall activity in those communities and hinder user
interaction.

Different from previous work in online communication, in this thesis, we propose to an-
alyze the conversational dynamics of civil and uncivil open source code review discussions.
Particularly, we are interested in characterizing the differences and similarities in social char-
acteristics and structural patterns of such conversations.

27

Table 3.1 Methods available in the literature to automatically detect unhealthy discussions
in the software engineering domain.

A
ut
ho

rs
G
oa
l

M
od

el
D
ep

en
de

nt
va
ri
ab

le
s

D
at
as
et

T
ec
hn

iq
ue

s

Sc
hn

ei
de
r
et

al
.[
55
]

Id
en
tif
y
th
e
di
sc
ou

rs
e
pa

tt
er
ns

of
th
e
le
ad

er
s

of
th
e
LK

M
L.

N
ai
ve

Ba
ye
s

Em
ai
ls

en
t
by

Li
nu

s
To

rv
al
ds

Em
ai
ls

en
t
by

G
re
g
K
ro
ah

-H
ar
tm

an
C
od

e
re
vi
ew

s

C
ro
ss
-v
al
id
at
io
n:

3

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

7

G
ac
he
ch
ila

dz
e
et

al
.[
87
]

D
et
ec
t
an

ge
r
to
wa

rd
s
se
lf,

ot
he
rs
,a

nd
ob

je
ct
s.

SV
M
,J

48
,N

ai
ve

Ba
ye
s

A
ng

er
to
wa

rd
s
se
lf

A
ng

er
to
wa

rd
s
ot
he
rs

A
ng

er
to
wa

rd
s
ob

je
ct
s

Ji
ra

iss
ue
s

C
ro
ss
-v
al
id
at
io
n:

3

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

3

Bi
sw

as
et

al
.[
83
]

A
ss
es
s
ho

w
m
uc
h
im

pr
ov
em

en
t
ca
n
be

m
ad

e
to

se
nt
im

en
t
an

al
ys
is

fo
r
th
e
SE

do
m
ai
n.

BE
RT

4S
en
tiS

E,
R
N
N
4S

en
tiS

E
Po

sit
iv
e

N
eg
at
iv
e

N
eu
tr
al

St
ac
k
O
ve
rfl
ow

po
st
s

C
ro
ss
-v
al
id
at
io
n:

3

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

3

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

3

Eg
el
m
an

et
al
.[
11
]

D
et
ec
t
th
e
fe
el
in
gs

pu
sh
ba

ck
in

co
de

re
vi
ew

s,
i.e

.,
th
e
pe

rc
ep
tio

n
of

un
ne
ce
ss
ar
y
in
te
rp
er
so
na

l
co
nfl

ic
ts

in
co
de

re
vi
ew

w
hi
le

a
re
vi
ew

er
is

bl
oc
ki
ng

a
ch
an

ge
re
qu

es
t.

Lo
gi
t
R
eg
re
ss
io
n
M
od

el

In
te
rp
er
so
na

lc
on

fli
ct

Fe
el
in
g
th
at

ac
ce
pt
an

ce
wa

s
w
ith

he
ld

fo
r
to
o
lo
ng

R
ev
ie
we

r
as
ke
d
fo
r

ex
ce
ss
iv
e
ch
an

ge
s

Fe
el
in
g
ne
ga
tiv

e
ab

ou
t

fu
tu
re

co
de

re
vi
ew

s
Fr
us
tr
at
io
n

C
od

e
re
vi
ew

s

C
ro
ss
-v
al
id
at
io
n:

7

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

7

R
am

an
et

al
.[
10
]

D
et
ec
t
to
xi
c
la
ng

ua
ge

,i
.e
.,
ha

te
sp
ee
ch

an
d

m
ic
ro
ag
gr
es
sio

ns
.

SV
M

To
xi
c

N
on

-t
ox

ic
G
itH

ub
iss

ue
s

C
ro
ss
-v
al
id
at
io
n:

3

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

3

Sa
rk
er

et
al
.[
15
]

Ev
al
ua

te
di
ffe

re
nt

to
ol
s
to

de
te
ct

to
xi
ci
ty

.

Pe
rs
pe

ct
iv
e
A
PI

,S
T
RU

D
EL

To
xi
ci
ty

D
et
ec
to
r,

D
ee
p
Py

ra
m
id

C
on

vo
lu
tio

na
l

N
eu
ra
lN

et
wo

rk
s,

BE
RT

w
ith

fa
st
.a
i,

H
at
e
Sp

ee
ch

D
et
ec
tio

n

To
xi
c

N
on

-t
ox

ic
C
od

e
re
vi
ew

s,
G
itt

er
m
es
sa
ge
s

C
ro
ss
-v
al
id
at
io
n:

7

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

7

Ba
tr
a
et

al
.[
84
]

A
ss
es
s
ho

w
m
uc
h
im

pr
ov
em

en
t
ca
n
be

m
ad

e
to

se
nt
im

en
t
an

al
ys
is

fo
r
th
e
SE

do
m
ai
n.

BE
RT

ba
se

m
od

el
,R

oB
ER

Ta
,

A
LB

ER
T

Po
sit

iv
e

N
eg
at
iv
e

N
eu
tr
al

G
itH

ub
co
m
m
its

,
Ji
ra

iss
ue
s,

St
ac
k
O
ve
rfl
ow

po
st
s

C
ro
ss
-v
al
id
at
io
n:

7

D
at
a
au

gm
en
ta
tio

n:
3

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

7

C
he
riy

an
et

al
.[
12
]

D
et
ec
t
an

d
cl
as
sif
y
off

en
si
ve

la
ng

ua
ge

,i
.e
.,

co
m
m
un

ic
at
io
n
th
at

co
nt
ai
ns

gu
tt
er

la
ng

ua
ge
,

sw
ea
rin

g,
ra
ci
st
,o

r
off

en
siv

e
co
nt
en
t.

R
an

do
m

Fo
re
st
,S

V
M
,B

ER
T

O
ffe

ns
iv
e

N
on

-o
ffe

ns
iv
e

G
iH

ub
,

G
itt

er
,

Sl
ac
k,

St
ac
k
O
ve
rfl
ow

C
ro
ss
-v
al
id
at
io
n:

7

D
at
a
au

gm
en
ta
tio

n:
3

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

7

W
u
et

al
.[
85
]

D
et
ec
t
se
nt
im

en
t
in

di
ffe

re
nt

ki
nd

s
of

SE
di
sc
us
sio

ns
.

BE
RT

,S
en
tiS

tr
en
gt
h,

N
LT

K
,

St
an

fo
rd
C
or
eN

LP
,

Se
nt
iS
tr
en
gt
h-
SE

,S
en
tiC

R
,

Se
nt
i4
SD

Po
sit

iv
e

N
eg
at
iv
e

N
eu
tr
al

Ji
ra

iss
ue
s,

A
PI

re
vi
ew

s,
St
ac
k
O
ve
rfl
ow

,
G
er
rit

C
od

er
ev
ie
w
,

G
itH

ub
pu

ll
re
qu

es
ts

,
St
ac
k
O
ve
rfl
ow

po
st
s

C
ro
ss
-v
al
id
at
io
n:

7

D
at
a
au

gm
en
ta
tio

n:
7

C
la
ss

ba
la
nc
in
g:

7

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

7

O
ur

wo
rk

D
et
ec
t
in
ci
vi
lit
y,

i.e
.,
fe
at
ur
es

of
di
sc
us
sio

n
th
at

co
nv

ey
an

un
ne
ce
ss
ar
ily

di
sr
es
pe

ct
fu
l

to
ne

to
wa

rd
th
e
di
sc
us
sio

n
fo
ru
m
,i
ts

pa
rt
ic
ip
an

ts
,o

r
its

to
pi
cs

in
co
de

re
vi
ew

an
d
iss

ue
di
sc
us
sio

ns
.

C
A
RT

,K
N
N
,L

og
ist

ic
R
eg
re
ss
io
n,

N
ai
ve

Ba
ye
s,

R
an

do
m

Fo
re
st
,S

V
M
,

BE
RT

Te
ch
ni
ca
l

N
on

-t
ec
hn

ic
al

C
iv
il

U
nc
iv
il

C
od

e
re
vi
ew

s
G
itH

ub
iss

ue
s

C
ro
ss
-v
al
id
at
io
n:

3

D
at
a
au

gm
en
ta
tio

n:
3

C
la
ss

ba
la
nc
in
g:

3

H
yp

er
pa

ra
m
et
er

op
tim

iz
at
io
n:

3

28

CHAPTER 4 CHARACTERIZING INCIVILITY IN OPEN SOURCE
CODE REVIEW DISCUSSIONS

4.1 Introduction

Code review is a software quality assurance practice widely adopted in open source soft-
ware projects [38]. In this practice, a developer submits a collection of functionally coherent
changes to the source code (i.e., a patch) that implements a new feature or fixes a bug for
review; project maintainers (a group of core community members) are then responsible for
reviewing the patch and making the decision of either integrating it into the project (patch
acceptance) or not (patch rejection). At the core of the code review process is the discus-
sion among the developers and maintainers around various topics related to the submitted
patches; topics such as the merits of the patch to the project, the appropriateness of the
solution design, and its implementation details, to name a few. During such discussions, the
maintainers frequently ask for clarifications, offer suggestions, and provide critical feedback
to the developers, while the developers explain their rationale, hoping to convince the main-
tainers to accept the patch. The review process and the embedded discussions are usually
supported by tools such as Gerrit [93] and mailing lists [44,94].

While both the maintainers and the contributing developers may have the same in-
tention of enriching functionality and fixing problems for the software project, they can
have different or even conflicting interests around the code review activity. Particularly, for
open source software projects, developers can have diverse motivations in providing code
contribution [23, 24]. In addition to intrinsic motivations such as community identification
and the desire of feeling competent, researchers have identified various extrinsic motivations
of contributing to open source projects such as self-marketing, gaining revenue for related
products, and personal needs for specific software functionalities [23]. However, project main-
tainers face the daily gate-keeping challenges of not only ensuring the quality of the software
but also determining the relevance of the proposed functionalities to the greater community.
As a result, while developers always hope to make their code contributions accepted, it is
the maintainers’ responsibility to critically assess each contribution, candidly communicate
with the developers, and make informed decisions. Because of this nature of code review
discussions, they innately contain disagreements and potential conflicts.

This situation is exacerbated by several factors related to large-scale open source soft-
ware projects, such as Linux. Because of the reputation and wide adoption, the sheer amount
of contributions received in those communities can be overwhelming. For example, the daily

29

volume of emails sent to the Linux Kernel Mailing List is more than 1,000 [95]; a typical
maintainer receives hundreds of emails per day [22]. The quality and focus of these contribu-
tions are also often very diverse, which adds to the burden of the maintainers [96], resulting in
stressful and non-effective communication. Further, the power differences between maintain-
ers and developers are evident in popular open source projects, creating an uneven platform
for discussion. In our preliminary investigation of code review of Linux kernel development,
we have found that the discussions can be heated and sometimes involve personal attacks
and unnecessary disrespectful comments; i.e., the code review discussions can demonstrate
incivility. We can see it very clearly from the following code review comment of a patch
submitted to the Linux kernel:

“ [Person’s name], SHUT THE F**K UP! ... your whole email was so _hor-
ribly_ wrong, and the patch that broke things was so obviously crap. Fix your
f*cking "compliance tool", because it is obviously broken. And fix your approach
to kernel programming.”

Incivility in public discussions has received increasing attention in recent years. Re-
searchers have investigated this phenomenon in the domains of interpersonal relationships
in workplace dynamics [1,2], political discourse [3–5], and online comments [6–8], to name a
few. According to Bejan [5], incivility is the product of technology, social, and cultural trans-
formations unique to the modern world. That is, with the increasing opportunities for public
debates on prevalent platforms such as social media, Q&A systems, and tools for remote and
collaborative work, incivility can spread more rapidly and widely than ever before [9].

In the context of software development in general and code review discussions in partic-
ular, however, our knowledge about the characteristics, causes, and consequences of uncivil
communication is still very limited. Many studies have investigated the technical aspects
of code review, such as the kinds of patches that are more likely to be accepted [35], the
reasons why patches are rejected [97], the characteristics of the reviewing history in mailing
lists [44], and the techniques for recommending appropriate reviewers for patches [98]. The
social aspects of code review discussions, however, are only explored in a few very recent
studies [11, 39], often not directly leveraging the construct of incivility. For example, Egel-
man et al. [11] have found that unnecessary interpersonal conflicts in code review can evoke
negative feelings, such as frustration and discouragement, in developers.

In this chapter, we thus contribute to the first study that leverages the mature social
construct of incivility as a lens to understand confrontational conflicts in open source code
review discussions. Particularly, we focus on identifying the discussion characteristics, the

30

causes, and the consequences of uncivil code review discussion comments from both maintain-
ers and developers. To achieve our goals, we conducted a qualitative analysis on 1,545 emails
from the Linux Kernel Mailing List (LKML) that were associated with rejected patches; we
study rejected patches because the rejection could be the first indication of conflict, inducing
incivility, and thus would allow us to achieve an understanding of both uncivil and civil ways
of addressing conflicts. Furthermore, previous work has shown that rejected patches represent
more than 66% of all patches submitted to LKML [35], and that the Linux community fre-
quently rejects patches using a harsh language when reporting the rejection, even though the
reasons for rejection are purely technical [36]. Overall, by analyzing the discussions around
rejected patches on LKML, we aimed at answering five research questions (see Section 4.2).

Our results characterize the civil and uncivil comments in open source code review
discussions and support the notion that open source communities might be able to create
healthier and more attractive environments by fostering civil arguments. Concretely, based
on the uncivil TBDFs we identified, if code review discussion participants cease the expression
of bitter frustration, name calling, and impatience, reviews and arguments might be more
constructive and efficient. Overall, this chapter makes the following contributions:

• Our effort serves as a first study about in(civility) in open source communities, therefore,
paving the road for future studies about this topic in software-related collaborations and
discussions.

• We provided an in-depth characterization of incivility in open source code review dis-
cussions, providing evidence, descriptions, and explanations of incivility in this dynamic
context. By analyzing the code review discussions in the Linux Kernel Mailing List,
we encountered TBDFs not previously found in any other study, proposed a definition
of incivility based on the uncivil TBDFs, assessed the frequency of incivility, analyzed
the correlation with the common assumptions of the cause of incivility (i.e., arguments,
contributors, and topics), and assessed the causes and consequences of developers’ and
maintainers’ uncivil interactions.

• We suggested practical implications and tool design ideas proposed to open source software
communities and researchers, encouraging future efforts to help software communities
address incivility and create healthy working environments.

31

4.2 Research questions

Overall, by analyzing the discussions around rejected patches on LKML, we aimed at an-
swering five research questions as follows.

RQ1: Which features of discussion can be found in code reviews of rejected
patches?

We focused on identifying tone-bearing discussing features (TBDF) in code review com-
ments. We define TBDF as conversational characteristics demonstrated in a written sentence
that convey a mood or style of expression. This concept was inspired from Coe et al.’s defini-
tion of incivility as “features of discussion that convey an unnecessarily disrespectful tone” [6].
We identified 16 TBDFs that emerged from an inductive analysis of code review discussions
of rejected patches, including seven uncivil features: bitter frustration, impatience, irony,
mocking, name calling, threat, and vulgarity.

RQ2: How much incivility exists in code review discussions of rejected patches?

We found that although the majority of the code review emails did not contain a TBDF
(i.e., focused on technical discussions), more than half (66.66%) of the non-technical emails
included uncivil features. Frustration, name calling, and impatience are the most frequent
features in uncivil emails.

RQ3: How is incivility correlated with the occurrence of arguments, the individ-
ual contributors, and the discussion topics?

We aimed to explore these correlations to identify potential explanations of uncivil com-
munication. However, we did not find evidence that incivility was associated with any of the
three attributes. These results indicated that there are civil alternatives to address argu-
ments, while uncivil comments can potentially be made by any people when discussing any
topic. As a result, incivility might have been triggered by other factors, which we explore in
RQ4.

RQ4: What are the discoursal causes of incivility?

Through examining discussions before the uncivil comments, we identified eight themes
that caused incivility for developers and five themes for maintainers. Violation of community
conventions was the common cause of incivility for both developers and maintainers. Further,
maintainers were also frequently irritated by inappropriate solution proposed by developer,
while developers by characteristics in the reviewer’s feedback.

32

RQ5: What are the discoursal consequences of incivility?

Through examining discussions after the uncivil comments, we identified eight themes
as consequences of uncivil comments made by developers and by maintainers. We found that
most frequently, the target of the uncivil comments discontinued further discussion; in some
cases, the target continued the discussion in a civil way, while a few escalated the uncivil
communication.

4.3 Methods

This section discusses the case study approach used by this study on the Linux Kernel Mailing
List in order to characterize incivility in code review discussions of rejected patches.

4.3.1 Collecting code review emails

We collected code review emails from the Linux Kernel Mailing List (LKML) in the period
between January 2018 and March 2019. We chose to study the Linux community because
they have a diverse and large number of contributors with different communication styles [55]
as well as a large number of daily discussions [95]. Furthermore, we chose to analyze the
aforementioned period because it was a period with several controversies and potential for
incivility due to Linus Torvalds’ temporary break from his maintainer role [99], as well as
when the code of conduct was established in the Linux kernel community.

The review emails of LKML are stored in different git repositories1. We first used git
commands to extract the email content of each repository and collected a total of 406,719
review emails in the studied period. Since a discussion to review a patch is spread across
a multitude of email replies, we then group individual emails by email threads using the
Mailboxminer tool [100]. As a result, we found 55,396 email threads.

4.3.2 Identifying rejected patches

In this chapter, we focus on characterizing incivility in code review discussions of rejected
patches. We chose to study rejected patches because (1) rejected patches represent a majority
(about 66%) of all patches submitted to LKML [35] and (2) rejection indicates conflict, thus
a greater potential for identifying and categorizing (in)civility. A previous work has found
that even when patches were rejected for technical reasons, the language used can be harsh
and toxic [36].

1https://lore.kernel.org/lkml/_/text/help/

https://lore.kernel.org/lkml/_/text/help/

33

Thus, after collecting code review emails, it is necessary to identify which patches were
rejected. While most open source projects use web-based review environments like Gerrit
or GitHub’s pull requests, the Linux kernel community’s usage of regular mailing lists for
review discussions implies that the review decision (accept/reject) of a given review email is
either not explicitly recorded or mentioned in an inconsistent manner [44]. Hence, to identify
whether patches discussed in the review emails are eventually accepted or rejected, we need
to link the code review emails to the commits in the git repository. If a patch is both in the
mailing list and the git repository, then the patch was accepted. Otherwise, the patch was
rejected.

To link review emails to commits, we developed three heuristics based on the work of
Jiang et al. [35, 44]. The heuristics determine that a patch mentioned in a review email is
accepted (i.e., linked to a commit) if: (1) the subject of the email is the same subject of the
commit message, (2) the email and the commit are associated with the same author and the
commit appeared later than the email, or (3) the email includes code that changed the same
file as the commit and the file includes a considerable proportion (based on a threshold) of
changed lines as the commit file. If one email in an email thread is determined as being
linked to an accepted patch, all the emails in that thread are then considered related to the
accepted patch.

We used the linux-tips mailing list [44] to validate the performance of these heuristics,
since this mailing list contains review emails listing, for each accepted patch, the identifier
of the git commit that was generated for the patch (i.e., it contains a gold standard). We
calculate the precision based on the ratio of equal links found by our heuristics and the gold
standard to the number of links found by our heuristics. The recall is the ratio of equal
links found by our heuristics and the gold standard to the number of links found by the gold
standard. We found that the three heuristics achieved a precision of 98.51% and a recall
of 90.08% when identifying review emails that linked to git commits. After applying these
heuristics to our dataset, we identified 26,989 (48.72%) rejected threads.

4.3.3 Filtering and sampling rejected email threads

We automatically performed the following filtering steps on all identified rejected email
threads from the previous step to remove email threads that did not contain a discussion
or were in fact associated with an accepted patch (i.e., false positives of the heuristics).

1. We excluded threads that do not include a patch (source code snippets) in the emails;
that is, threads that had just discussions. We removed 11,074 threads in this step.

34

2. We excluded patch submission threads with only one email (i.e., without a followup by
someone from the community). We removed 3,446 threads in this step.

3. We excluded threads with only one response in which the response has the following
keywords: “Applied to”, “Applied”, “Queueing for”, “Queued”, “Tested-by”, “Reviewed-
by” and “Acked-by”. These keywords indicate that the patch might have been accepted,
or there is no discussion that we can analyze in the context of this study. We removed
887 threads in this step.

After applying all the filters, 11,582 (42.91%) rejected threads were retained. We then
randomly sampled 372 threads, achieving a confidence level of 95% under a confidence in-
terval of 5. We performed a manual verification on these 372 threads and 110 of those that
mentioned that the patch was accepted were removed from our analysis (i.e., false positives
of the heuristics). The remaining 262 email threads comprised 1,545 code review discussion
emails (i.e., emails that reply to the original submission of the patch), which were the focus
of our qualitative analysis.

4.3.4 Qualitative coding on 262 rejected email threads

To answer our RQs, we did a qualitative analysis [101, 102] on the sample of 262 email
threads that were composed of 1,545 code review discussion emails. The coding focused on
the following aspects.

Identification of tone-bearing discussion features (TBDFs)

Recall that we define TBDF as conversational characteristics demonstrated in a written sen-
tence that convey a mood or style of expression. We inspired our work on the uncivil discussion
features proposed by Coe et al. [6], namely name-calling (mean words directed at a person
or a group of people), aspersion (mean words directed at an idea, plan, or behavior), lying
accusation (stating that an idea, plan, or policy was a lie), vulgarity (usage of profanity or
not a proper language in a professional discourse), and pejorative for speech (criticizing the
way a person communicates). The first author conducted an inductive coding [103], which is
an approach that allows the research findings to emerge from the interpretation of the raw
data, on each email of each sampled thread to manually identify TBDFs; the coding was
conducted on the sentence-level within each email.

To identify TBDFs in relevant sentences of an email, we take into consideration the
context of the previous emails in the thread. We decided to analyze the previous context

35

due to the insights gathered in our pilot study (see Section 2). Furthermore, sentences that
contain purely technical discussions were not coded because they do not convey a mood or a
style of expression. More specifically, we do not code if the sentence is:

• discussing about the program’s behavior, such as in “Seems like kallsyms would be one to
absolutely scan... it shouldn’t cause hangs either.”

• asking purely technical questions, especially if the previous email in the thread is also
purely technical. For example, after someone has submitted a patch, the answer was “With
stock knob settings, that’s too late to switch from llc -> l2 affinity for sync wakeups, and
completely demolished tbench top end on huge socket NUMA box with lots of bandwidth.”

• an explanation without any mood or style of expression. For example, “I already have an
equivalent change queued up.”

Codes related to the identified TBDFs were added in the codebook [104] during the process
with a definition and one or more examples. The codebook containing all manually identified
TBDFs was iterated based on the discussion with two other authors. To refine the codebook
and guarantee that the inductive coding can be replicated, the second author deductively
coded all emails in which the first author has identified TBDFs, adding up to 191 emails.
The second author did not assess the emails in which the first author judged to contain
only technical information, as they are easy to be classified without ambiguity with the
criteria listed above. Similar to the initial coding process, when identifying the TBDFs of a
specific email, the second author was asked to read all the previous emails in the thread to
understand the content. We computed the Cohen’s Kappa to evaluate inter-rater reliability
of our coding schema [105]. Results show that the Kappa scores on all codes in the final
version of the codebook ranged from 0.42 to 0.96, with an average of 0.62, demonstrating a
substantial agreement [106]. The complete codebook can be found in our online repository2.
The results of this step were used to answer RQ1: Which features of discussion can be found
in code reviews of rejected patches? and RQ2: How much incivility exists in code review
discussions of rejected patches?. We answer RQ1 by describing the TBDFs found with the
inductive coding, and we answer RQ2 by presenting the frequency of (in)civility as well as
the frequency of each TBDF in the sentence, email, and thread levels.

2https://doi.org/10.6084/m9.figshare.14428691

https://doi.org/10.6084/m9.figshare.14428691

36

Identification of email and thread attributes

We also explore email and thread attributes that might be associated with the occurrence of
incivility to answer RQ3: How is incivility correlated with the occurrence of arguments, the
individual contributors, and the discussion topics?

To assess if incivility is correlated with arguments, we coded for the occurrence of an
argument in each email thread based on all email discussions in the thread. In our context,
an argument happens if two parties (usually a developer and a maintainer) disagree with
each other and both voice their opinions. We analyzed our results by showing the frequency
of threads and emails with and without an argument. We performed the t-test [107] to
assess if there is a statistical difference between (i) the length of the discussion of threads
with and without an argument, and (ii) the number of civil and uncivil emails in threads
with and without an argument. Additionally, using the chi-square test [108], we assessed the
relationship between (i) the occurrence of an uncivil email in a thread and (ii) the occurrence
of an argument in a thread. Finally, we computed the effect size of the relationship between
the two aforementioned variables using Cramer’s V [108].

To investigate if incivility is correlated with individual contributors, for each analyzed
email, we classified if the email author is a developer or a maintainer. We considered all
individuals whose name is listed in the most recent version of the MAINTAINERS file3, which is
an official file that lists the Linux kernel’s maintainers, as maintainers and all other individuals
as developers. Additionally, we cluster individuals that have either the same name or the same
email address together to accurately determine developers’ identities and to avoid classifying
the same person more than once as a developer or a maintainer. Then, we manually checked
if all identities were correctly clustered together. We analyzed our results by presenting (i)
the number of contributors that have sent technical, civil, and uncivil emails, and (ii) the
distribution of technical, civil, and uncivil emails sent by developers and maintainers. Then,
we compared with the t-test [107] if there is a statistically significant difference between the
number of civil and uncivil emails sent by someone that has sent at least one uncivil email.

Finally, to evaluate if incivility is related to specific topics of the discussion, we induc-
tively coded for the discussion topic of each uncivil email based on the email subject and
content. For terms that we do not understand in the email subject or content, we searched
and read related material to have a better understanding. We then grouped our codes into
categories to topics. We analyzed the frequency of the encountered categories of topics in
emails sent by developers and maintainers.

3https://github.com/torvalds/linux/blob/master/MAINTAINERS, last access: 2021-04-06

https://github.com/torvalds/linux/blob/master/MAINTAINERS

37

Identification of discoursal causes of incivility.

To answer RQ4: What are the discoursal causes of incivility?, we consider the content of the
email that the uncivil email is replying to. This allows us to grasp the context and identify
what triggered the incivility in practice. We then conducted open coding [109] on each
sentence classified with an uncivil TBDF for their causes. During our coding, one sentence
might have several causes. Finally, we did a thematic analysis [109] on the identified causes
to group them into themes. We answer RQ4 by describing the causes and the frequency of
each cause in emails sent by developers and maintainers.

Identification of discoursal consequences of incivility.

To answer RQ5: What are the discoursal consequences of incivility?, we followed a similar
approach as for the causes of incivility but focused on the email that replied to the uncivil
email. We conducted open coding on the consequences of each sentence classified with an
uncivil TBDF and grouped the codes into themes. We answer RQ5 by describing the conse-
quences and the frequency of each consequence in emails sent by developers and maintainers.
Additionally, we analyze the relationship between the causes (RQ4) and consequences (RQ5)
of emails sent by developers and maintainers.

4.4 Results

In this section, we present the results to answer our five research questions that aim to
characterize incivility in code review discussions of rejected patches.

4.4.1 RQ1. Tone-bearing discussion features (TBDFs) in code review discus-
sions of rejected patches

To answer RQ1, we identified 16 TBDFs through the open coding of the code review dis-
cussions of rejected patches. We further grouped these TBDFs into positive, neutral, and
negative features according to the general tone expressed. Finally, we separated uncivil
features from the negative ones if the sentence includes a feature that conveys an unneces-
sarily disrespectful tone. Because of our focus on uncivil communication, we identified more
fine-grained uncivil features. We describe these TBDFs in the following sections.

38

Positive features

• Appreciation and excitement. Code review discussion participants have expressed
appreciation, enthusiasm, and interest towards certain problems, solutions, or discoveries.
For example, one participant was excited over a discovery of a technical approach: “All
this time, I thought these parameters were for power gating... I also did not expect that
clock gating had to be disabled before we could program them. Great find!”

• Considerateness. This feature appears in sentences that express extreme polite requests
made in form of questions or in expressions considerate of other people’s opinions. For
example, “My point is, we might as well take the opportunity to fix this right away, don’t
you think?”

• Humility. This feature appears when participants express in a modest way that they
did not understand something, they need to ask for someone’s opinion or help, and/or
they recognize someone’s efforts. “The patch does more than described in the subject and
commit message. At first I was confused why do you need to touch here. It took few
minutes to figure it out.”

Neutral features

• Friendly joke. This appears when someone is making a suggestion or a statement in
form of a joke. We consider this feature as neutral because expressions coded with this
code are mostly used to address awkward or unpleasant situations. For example, “Instead
of hitting the fly, hit "make htmldocs" on the keyboard :)” and “Do you believe me now,
that [programming details] is not "the whole and only reason" I did this? :D”

• Hope to get feedback. This appears when someone hopes/wishes to get feedback from
the community or individuals that are more knowledgeable about a specific problem. For
example “It would be good to get comments from people more [programming details] knowl-
edgeable, and especially from those involved in the decision to do separate [programming
details].”

• Sincere apologies. This code is used to capture expressions in which participants say
sorry about what they did not do and/or because of a wrongdoing (e.g., someone is being
harsh). For example, “I am sorry that I didn’t join the discussion for the previous version
but time just didn’t allow that. So sorry if I am repeating something already sorted out.”

39

Negative features

• Commanding. This feature appears in sentences that issue a command, instructions, or
a request in an abrupt way. Someone might also ask rhetorical questions to express an
order or command. For example, a maintainer asked a developer: “Do not use attachments
to fix this problem, the patch must be inline after your commit message and signoffs.”

• Oppression. Code review discussion participants, especially developers, sometimes ex-
pressed resistance or reluctance when forced to adopt a solution or an approach by a
person of power (e.g. a maintainer). Furthermore, they might express mental pressure or
distress. For example, “When one of the authors of the original document objected, I felt
it is better to backoff. But if there is a consensus, I will proceed.”

• Sadness. This feature appears when the speaker is unhappy or sorrowful because the
result was not as expected. Additionally, someone of less power (usually a developer) might
experience a condition put to them that negatively affects their feelings. For example, “I’ll
remember all this for the next time (if next time there is, of course, I was already quite
hesitant to spend time to prepare and send patches for these issues with [programming
details] mix-up).”

Uncivil features

• Bitter frustration. This feature appears when someone expresses strong frustration
when addressing a false accusation or a lie, expressing that expectations are not met,
voicing dissatisfaction or annoyance due to a lack of information or explanation, dealing
with erroneous assumptions, or describing a problem that was not mentioned before. For
example, when reviewing a piece of code that was submitted as rich text in an email
rather than as plain ASCII text, a maintainer wrote: “I cannot apply a patch which has
been corrupted by your email client like this.”

• Impatience. Participants might demonstrate impatience when they express a feeling
that it is taking too long to solve a problem, understand a solution, or answer a question.
Furthermore, impatience appears when someone has to repeat the same information over
and over again, someone is doing a repeated mistake, and/or not everyone is participating
in the discussion. For example, “Note instead the time lapse between this and previous
posting of the series, and if you want to assume something, assume things can get missed
and forgotten without intent or malice.”

40

• Irony. In a few cases, contributors used expressions that usually signify the opposite in
a mocking or blaming tone. For example, one contributor wrote on a late response to a
maintainer’s comments: “Only about a year and a half late, nice!”

• Mocking. This feature appears when a discussion participant is making fun of someone
else, usually because that person has made a mistake. For example, “I would also suggest
that your time might be spent more productively if you would work on some more useful
projects. There is more than enough to do. However, that’s up to you.”

• Name calling. This appears in sentences that include mean or offensive words directed
at a person or a group of people. For example, “If you want to provide more accurate docu-
mentation then you better come up with something which is helpful instead of a completely
useless blurb like the below...”

• Threat. In a few cases, contributors put a condition impacting the result of another
discussion participant or that person’s career. For example, “Unless you have solid sug-
gestions on how to deal with all of them, this is a complete non-starter.”

• Vulgarity. In some cases, contributors used profanity or language that is not considered
proper in professional discourse.

4.4.2 RQ2. Frequency of incivility in code review discussions of rejected patches

To understand the frequency of incivility and answer RQ2, we classified code review emails
into the following three categories based on the TBDF they demonstrate (found in RQ1).

• Uncivil: An email is classified as uncivil if it has at least one sentence demonstrating an
uncivil TBDF (i.e., bitter frustration, impatience, irony, mocking, name calling, threat, or
vulgarity).

• Civil: An email is classified as civil if it has at least one sentence labeled with a TBDF,
but none of the TBDF is uncivil.

• Technical: An email is classified as technical if it has no sentence labeled with a TBDF.
This indicates that the discussion is focused only on technical aspects and does not include
any perceivable emotion or tone.

We found that 1,377 (89.13%) of the manually analyzed emails are technical
(i.e., does not contain a TBDF), 112 (7.25%) are uncivil, and 56 (3.62%) are
civil. Because of the technical focus of the LKML, it is natural that most of the emails are

41

technical-oriented and did not bear any TBDF. However, to our surprise, more than half
of the non-technical emails are uncivil (66.66% of non-technical emails). On average, email
threads with at least one uncivil email included 1.96 uncivil emails (ranged from 1 to 11).

Interestingly, 27 of the 112 uncivil emails (24.11%) also included civil discussion fea-
tures. Specifically, humility appeared in nine uncivil emails, commanding appeared in eight
uncivil emails, sadness in seven emails, hope to get feedback appeared in five, considerateness
appeared in three uncivil emails, sincere apologies, oppression, friendly joke and appreciation
and excitement appeared in one uncivil email. This result indicates that uncivil comments
can sometimes contaminate a discourse.

Figure 4.1 summarizes the frequency of each TBDF in the sentence, email, and email
thread levels. We observe that humility is the most frequent feature for positive TBDFs (39
sentences out of 32 distinct emails). Although commanding, sadness and oppression convey
a negative tone, they do not happen very often (only 15, 9, and 3 sentences, respectively).
Finally, bitter frustration, name calling, impatience, andmocking are the most frequent uncivil
TBDFs. Interestingly, these results match the ones found in our motivational case study
(see Section 2), where participants mentioned that civility is related to being humble (most
frequent positive TBDF), and that frustration (most frequent uncivil TBDF) is a factor that
can make communication uncivil.

4.4.3 RQ3. Correlations of incivility with email and thread attributes

In order to explore factors that might explain the appearance of incivility (RQ3), we analyzed
the correlations of uncivil communication with three email and thread attributes: the occur-
rence of an argument in the thread, the author of uncivil emails, and the topic discussed in
the thread. These correlations are the so-called devil’s advocate arguments since they might
provide the most obvious explanations for uncivil communication during code review.

Correlation of incivility with argument in the thread

Previous work [110] has found that arguments are typically related to confrontation and
conflicts, and have, consequently, negative effects. We define the appearance of an argument
in a code review email thread as two parties (usually a developer and a maintainer) disagreeing
with each other and each laying out their reasons (see Section 4.3.4). Based on that, RQ3
hypothesizes that incivility is correlated with arguments.

Using the above definition for “argument” to code the email threads, we identified
that only 10.31% of the email threads in our dataset included an argument. They

42

39

32

24

1918
16

19
16

14 1313
11

7 7
5

7
5 5

15
1212

9 8 7

3 3 3

90

64

37

84

51

27

40

35

26

39

35

27

9 8 8 9 8
6 7 6 6

Positive Neutral Negative Uncivil

H
um

ilit
y

C
on

si
de

ra
te

ne
ss

App
re

ci
at

io
n

an
d

ex
ci
te

m
en

t

Sin
ce

re
 a

po
lo
gi
es

H
op

e
to

 g
et

 fe
ed

ba
ck

Frie
nd

ly
 jo

ke

C
om

m
an

di
ng

Sad
ne

ss

O
pp

re
ss

io
n

Bitt
er

 fr
us

tra
tio

n

N
am

e
ca

llin
g

Im
pa

tie
nc

e

M
oc

ki
ng

Thr
ea

t

Vul
ga

rit
y

Iro
ny

0

25

50

75

F
re

q
u
e
n
c
y

Level of analysis sentences emails threads

Figure 4.1 Frequency of TBDFs in code review discussions of rejected patches. Note: A
sentence can be coded with multiple codes.

cover 23.37% (361) of the emails in our sample, among which 77.56% (280) were technical
emails, 5.82% (21) were civil emails and 16.62% (60) were uncivil emails (see Table 4.1).

Conversely, among all uncivil emails in our dataset, 53.57% were part of a thread with
argument; this percentage was 37.50% for civil emails and 20.33% for technical emails. While
these results show that more than half of the uncivil emails were indeed related to the presence
of an argument in a thread, they also imply that, against our expectations, almost half
of the uncivil emails (46.43%) were part of threads without an argument.

Figure 4.2 presents the distributions of the number of emails for each email type (i.e.,
technical, uncivil, or civil) in a thread with or without an argument. We observe that
on average threads with an argument tend to have longer discussions (13.37 emails) than
threads without an argument (5.04 emails); a t-test indicated that this difference is significant
(t = 3.75, p = 0.0008). Among the threads that contain an argument, the difference between

43

Table 4.1 Frequency of threads and emails with or without an argument in code review
discussions of rejected patches.

Thread code #email
threads

#technical
emails

#uncivil
emails

#civil
emails

Total
emails

Without argument 235 1097 52 35 1184
With argument 27 280 60 21 361
TOTAL 262 1377 112 56 1545

the average number of uncivil emails (3.33) and that of civil emails (1.75) is also significantly
different (t = −2.21, p = 0.04). This difference is not statistically significant in threads
without an argument (t = −0.78, p = 0.43), which on average contains 1.21 civil emails and
1.33 uncivil emails. A chi-square test indicated that there is a significant relationship between
(1) the occurrence of uncivil emails in a thread and (2) the occurrence of an argument in a
thread (X2(1, N = 1545) = 12.99, p = 0.0003). However, the association between these two
variables is very weak, with Cramer’s V = 0.19.

Correlation of incivility with the topic under discussion

Coe et al. [6] found that incivility is often associated with several key contextual factors,
including the topic of the discussion. To understand how discussion topics are associated
with incivility in code review, we identified themes of discussion topics in uncivil emails (see
Section 4.3.4).

Topics associated with uncivil emails written by developers. We found six main categories
of topics that developers were uncivil about. In ten uncivil emails posted by developers, the
main discussion topic itself was the workflow, in aspects such as documentation, devel-
opment conventions, or contribution process. In six emails, developers were uncivil about
system components, such as the display and media components. In four emails, developers
were uncivil on the topic of technical implementation of various system aspects, such as
problems with coscheduling different processes, implementing optimization techniques, col-
lecting kernel debugging and performance information, and synchronization issues. In two
emails, developers were uncivil about network, such as when discussing about network pro-
tocols. In two emails, developers were uncivil in emails about issues with memory, such
as allocating memory and shared-memory variables. Finally, in two emails, developers were
uncivil when discussing about cryptography of asynchronous messages.

Topics associated with uncivil emails written by maintainers. We found six categories
that maintainers were uncivil about. Maintainers were mainly uncivil when discussing about

44

Threads with an argument Threads without an argument

total technical uncivil civil total technical uncivil civil

1

10

100

Email code

#
e
m

a
ils

 p
e
r

th
re

a
d

Figure 4.2 Distribution of number of emails for each email type in threads with or without
an argument.

system components (in 34 emails), such as the file system, drivers, controllers, and hard-
ware interfaces. Additionally, maintainers were frequently uncivil about the topic of work-
flow (in 23 emails). In nine emails, maintainers were uncivil about network, such as the
speed of ethernet devices and network protocols. Maintainers were also uncivil in eight emails
discussing about memory, such as problems with allocating memory and shared-memory
variables. Technical implementation was the topic of six emails in which the maintainers
were uncivil, containing discussions about handling exceptions, assigning values to boolean
variables, data race, duplicated headers, and runtime problems. Finally, in six emails, main-
tainers were uncivil about cryptography when discussing cryptography of asynchronous
messages.

Our results show that developers and maintainers are uncivil about the same topics, in
which developers are mostly uncivil about workflow and maintainers about system compo-
nents. However, we could not find any pattern to conclude that the topic of the discussion
is correlated with incivility. Therefore, incivility can happen when discussing any topic.

45

4.4.4 RQ4. Discoursal causes of incivility

We have found in RQ3 that incivility in code review discussions of rejected patches is not
strongly correlated to the most obvious explanations, i.e., arguments, individuals, or topics.
Thus, the goal of this section is to analyze in more detail the causes of incivility in such
discussions. In order to answer RQ4 and understand the immediate discoursal causes of
uncivil TBDF for developers and maintainers, we coded these causes based on the email that
the uncivil email replied to (see Section 4.3.4). Through this analysis, we identified themes
that caused developers’ and maintainers’ uncivil communication in rejected patches.

Causes of incivility in developers’ emails

In total, we identified eight themes in the causes of incivility in the developers’ emails (Fig-
ure 4.3). The most common categories are the maintainer’s feedback (13 sentences), violation
of community conventions (12 sentences), and communication breakdown (12 sentences).

Maintainer’s feedback. Some developers have been irritated by the maintainer’s
feedback. In most cases, the developer believed that the feedback proposed a non-optimal
solution or a solution that can have a bad impact. For example, one developer reacted to
a feedback suggesting that it is not the right time to fix the issue, writing: “I don’t think
“not fixing it because it’s not fixed yet” is a good reason to keep things the way they are.”.
Sometimes the developer also got frustrated because the maintainer asked to change direction
or rejected the patch after a devoted effort from the developer.

Violation of community conventions. Some developers made uncivil comments
due to disagreement with the workflow imposed by the community, not understanding the
rationale behind a tedious workflow, or out of surprise by a workflow that they were not
informed of. For example, disagreeing on the necessity of patch squashing (i.e., merging
several commits into one), one developer wrote in an uncivil email: “If you would insist on
patch squashing, would you dare to use a development tool like “quilt fold” also on your own
once more?” In another example, one developer did not know that an item in a workflow is
necessary: “Since when is the cover letter mandatory? ... for this simple test case addition
what’s the point?”

Communication breakdown. Developers’ uncivil comments were sometimes trig-
gered by being misinterpreted by the maintainer or being unable to follow the maintainer’s
instructions. For example, a developer reacts to the maintainers’ accusations, writing “Wrong
attitude what? I was trying to guess your reasoning ... since it wasn’t clear to me why is
your position what it is.”. As an example of not being able to understand the maintainer, a

46

developer wrote: “I cannot comment on your proposal because I do not know where to find
the reference you made.”

Maintainer’s behavior. Some developers’ uncivil comments were direct results from
a maintainer’s uncivil behavior. In those cases, the developers tried to call out the uncivil
behavior or to ask someone else to review the patch, nonetheless, in an uncivil way. For ex-
ample, in a frustrated tone, a developer wrote: “Would you like to answer my still remaining
questions in any more constructive ways?”

Rejection. Developers sometimes expressed frustration when they received a quick
rejection or a rejection without sufficient explanation for the patches they submitted. For
example, a developer complained, targeting a maintainer: “I find it very surprising that you
rejected 146 useful update suggestions so easily.”

Inappropriate suggestion. In a few cases, developers’ uncivil comments were trig-
gered when maintainers made an inappropriate suggestion. For example, a maintainer sug-
gested a way of loading drivers instead of doing a mass code duplication. Then, the developer
answered in a frustrated way: “One do not load all [driver’s name] at once, simply because
one board has only one [driver’s name] (or few closely related), and if one even try, almost
none of them will initialize on given hardware.”

Motivation of the problem. A few uncivil comments made by developers originated
from an argument with the maintainer on the relevance or importance of the problem. For
example, in response to a maintainer that believed the developer was changing the symptom
rather than the cause of the problem, a developer wrote, in frustration: “It is not my theory
guessing, it is a real problem..”

Misalignment of motivations. In one case, a developer and a maintainer had different
opinions about the need of solving a specific problem. For example, the maintainer mentioned
that the change proposed by the developer is not welcomed, and the developer wrote “I think
that’s a pity.”

Causes of incivility in maintainers’ emails

Concerning the main causes of incivility in emails sent by maintainers, we found five themes
(summarized in Figure 4.4). The most common triggers for maintainers’ uncivil comments
are inappropriate solution proposed by developer (72 sentences), violation of community con-
ventions (56 sentences), and poor code quality (40 sentences).

Inappropriate solution proposed by the developer. Maintainers were most likely
to get frustrated by the problems in the solutions proposed by the developers. This is

47

13

9

6

12

7

5

12

6

5

9

6

4

6

1 1

4

3 3

2 2 2

1 1 1

0

5

10

M
ai
nt

ai
ne

r's
 fe

ed
ba

ck

Vio
la
tio

n
of

 c
om

m
un

ity
 c
on

ve
nt

io
ns

C
om

m
un

ic
at

io
n

br
ea

kd
ow

n

M
ai
nt

ai
ne

r's
 b

eh
av

io
r

R
ej
ec

tio
n

In
ap

pr
op

ria
te

 s
ug

ge
st
io
n

M
ot

iv
at

io
n

of
 th

e
pr

ob
le
m

M
is
al
ig
nm

en
t o

f m
ot

iv
at

io
ns

F
re

q
u
e
n
c
y

Level of analysis sentences emails threads

Figure 4.3 Frequency of causes of incivility in emails discussing rejected patches sent by
developers. Note: A sentence can be coded with multiple codes.

sometimes because the proposed solution does not solve the problem; e.g., one maintainer told
a developer: “All in all, I’m not inclined to consider this approach, it complicates an already
overly complicated thing and has a ton of unresolved issues while at the same time it doesn’t
(and cannot) meet the goal it was made for.” The maintainer could also get upset because the
developer neglected important negative side effects or impacts when proposing their solution
(e.g., one maintainer wrote, in frustration, “You can’t do it simply as it will cause deadlock
due to nested locking of the buf_lock.”) or made uninformed changes to the existing code
(e.g., “You are trying to "out smart" the kernel by getting rid of a warning message that
was explicitly put there for you to do something.”). Also, related to a communication issue,
the maintainers were sometimes frustrated because they could not be convinced that the
solution is valid; e.g., a maintainer commented on a patch: “This looks really nonsensical
and the commit message doesn’t explain the rationale for that at all.”

Violation of community conventions. Similar to developers, maintainers’ uncivil
comments were also triggered by a violation of community conventions related issues. This
category included situations when the developers did not follow the workflow or they are

48

not aware of certain steps in the workflow; e.g., “The way you post them (one fix per file) is
really annoying and takes us too much time to review.” Sometimes maintainers reacted in an
uncivil way when the developer did not include sufficiently detailed commit messages, sent
the patch to a wrong mailing list, did not follow the emailing convention, forgot to put the
appropriate person in cc, etc.; e.g., “Your email client should not be forcing you to top post.
So please don’t.”

Poor code quality. Maintainers have also been annoyed by the quality of the code
that the developers submitted. Often times, it is simply because the developer’s code violates
some best practices or conventions of programming or their code has readability issues; e.g.,
“You implemented the same code thrice, it surely is not reduced.” Other times, it is because
the developer’s code is buggy and have run-time issues such as low performance; e.g., “Did
you actually test this?”

Communication breakdown. Maintainers have made uncivil comments due to com-
munication issues with the developer. In this category, the maintainers most frequently got
frustrated due to insufficient explanation provided by the developer in the commit message or
in the email discussion about the proposed patch. In such situations, the maintainers some-
times asked for explanations in a confrontational way; e.g., “Now explain to me how you’re
going to gang-schedule a VM ... without it turning into a massive train wreck?” Sometimes,
maintainers also got irritated because their comments seemed to be misunderstood or ignored
by the developer; e.g. “I think you didn’t read my reply carefully. ... I’m just saying that the
way you [solved this problem] is not at all the same as you would do [in another context]. Do
you deny that?”

Misalignment of motivation. Maintainers also demonstrated uncivil behavior when
they disagreed with the developers’ motivation to solve the problem; e.g. “That is the whole
and only reason you did this; and it doesn’t even begin to cover the requirements for it.”
Maintainers sometimes believed that the submitted patch is irrelevant or not useful, which
triggered uncivil comments; e.g., “Who the hell cares [about a technical solution]” The discus-
sions of such issues are often about the problem space. maintainers sometimes believed that
the developer did not realize the complexity of the problem or simply did not understand the
problem; e.g., “Either it does exist, or it doesn’t. If it exists, it needs to be fixed. If it doesn’t
exist, nothing needs to be done. Which is the case?”

4.4.5 RQ5. Discoursal consequences of incivility

After analyzing the causes of incivility (RQ4), we are interested in analyzing the consequences
of incivility in code review discussions of rejected patches (RQ5). For that, we analyzed the

49

72

36

28

56

24

18

40

22

18

37

26

17
14

9 8

0

20

40

60

In
ap

pr
op

ria
te

 s
ol
ut

io
n

pr
op

os
ed

 b
y
th

e
de

ve
lo
pe

r

Vio
la
tio

n
of

 c
om

m
un

ity
 c
on

ve
nt

io
ns

Poo
r c

od
e

qu
al
ity

C
om

m
un

ic
at

io
n

br
ea

kd
ow

n

M
is
al
ig
nm

en
t o

f m
ot

iv
at

io
n

F
re

q
u
e
n
c
y

Level of analysis sentences emails threads

Figure 4.4 Frequency of causes of incivility in emails discussing rejected patches sent by
maintainers. Note: A sentence can be coded with multiple codes.

next email that replied to the uncivil email (see Section 4.3.4). Similar to the cause analysis of
RQ4, we also evaluate the impact of uncivil emails separately for developers and maintainers.

Consequences of incivility in developers’ emails

When developers are uncivil, we found eight main categories of consequences. In six emails,
the maintainer stopped the review and discontinued further discussion with the un-
civil developer. In five emails, the maintainer escalated the uncivil communication by
fighting for words or accusing the developer’s assumptions. In four emails, the maintainer
discussed in a civil way with the developer, by providing a technical explanation or try-
ing to understand the problem further. In three emails, the maintainer reinforced their
standpoint, stating that the developer should respect the convention or the workflow. In
three emails, the maintainer provided technical explanation to the developer about the
topic in a civil way. In two emails the maintainer accepted what the developer suggested
and made a compromise with the developer. In other two emails, the developer accepted

50

the maintainer’s criticism and addressed the changes suggested by the maintainer in the
source code. Finally, in one email, the maintainer tried to stop the incivility after a long
fight.

Consequences of incivility in maintainers’ emails

We found eight different categories of consequences when maintainers are uncivil. Very
frequently (in 24 cases), the developer discontinued further discussion on the topic by
not replying to the email or abandoning the patch. Those cases are “silent rejects” of the
submitted patches. In 19 cases, the developer simply accepted the maintainers’ criticism
and performed the requested changes based on the maintainers’, however uncivil, feedback.
In 18 cases, the developer discussed in a civil way with the maintainer, by providing
technical explanations, discussing alternative solutions, asking for clarifications, or trying
to reach a consensus with the maintainer. In ten cases, some developers escalated the
uncivil communication, attacking the maintainer back in an uncivil way. In nine emails,
the developer provided technical explanation about the change or the problem in a civil
way. Rarely (in three cases), either the developer or a third party (e.g. another maintainer)
called out the uncivil behavior, asking for more constructive feedback or change of
maintainer. Even rarer (in two cases), the developer reinforced their standpoint, and in
only one case, the developer made a compromise with the maintainer.

Cause and consequence relationship

We also assessed the relationship between the identified causes of RQ4 and the consequences
of RQ5. Figure 4.5 (left) summarizes this relationship in uncivil emails sent by developers.
We observe that when developers sent uncivil emails due to rejection, violation of community
conventions, or maintainer’s feedback, the maintainer most likely discontinued the discussion.
When the cause of incivility was the maintainer’s feedback, communication breakdown, main-
tainer’s behavior, or innapropriate solution, the maintainer most likely escalated the uncivil
communication. Finally, when developers were uncivil due to the maintainers’ behavior, the
maintainer most likely reinforced their standpoint.

Conversely, when maintainers sent uncivil emails (Figure 4.5 (right)), in most of the
cases, regardless of the cause of the maintainer’s uncivil behavior, the developer often ac-
cepted the maintainers’ criticism, discontinued further conversation, or discussed the problem
in a civil way. The developers only escalated the uncivil communication when the cause was
mostly a communication breakdown. Finally, the developers usually called out the uncivil
behavior because the behavior was caused by a violation of community conventions or poor

51

code quality.

4.5 Discussion and recommendations

In this section, we discuss the main findings of our analysis, propose practical approaches
and research directions for addressing incivility in the software development context, and
scrutinize techniques for incivility detection.

4.5.1 Discussion on the main findings

Our results show that incivility is common in code review discussions of rejected
patches. We found that 66.66% of the non-technical emails, which corresponds to 7.25%
of all analyzed emails, are uncivil. We found that the most common types of tone-bearing
discussion feature (TBDF) in uncivil comments were bitter frustration, name calling, and
impatience. Although our identification of uncivil TBDF was inspired by the work of Coe
et al. [6], we have found additional uncivil features in our context, i.e., bitter frustration,
impatience, irony, mocking, and threat. Also different from Coe et al., we did not encounter
aspersion, lying accusation, and pejorative for speech in our data. We speculate that these
differences from Coe et al.’s work have reflected the special nature of discussion in code re-
views. Code review discussions are often lengthy and extensive, resulting in frustration if
agreement cannot be achieved. Moreover, such discussions are usually warrant-based (i.e.,
rely on laying out rationales and beliefs), rather than evidence-based (i.e., rely on the accu-
racy of factual supports) [111], resulting in more confrontational discussion features and less
accusation for lying.

Against our expectations, we did not find evidence that incivility is related
to arguments. Although we found that code review email threads with an argument tend
to have longer discussions, we did not find evidence that discussions containing arguments
included more uncivil communication. Hence, given the nature of code review that tends to
have long discussions in which participants tend to disagree [110], our results indicate that
people can still disagree in a civil way. Moreover, we have found that there was no argument
in the threads that contained about half of the uncivil emails. In many cases, the other
party stopped the communication facing incivility. This finding echoes results from previous
work [58] that found conflicts to cause members to leave the project. Consequently, our results
support the notion that open source communities might be able to retain more contributors
by fostering civil arguments. Concretely, by avoiding the expression of the uncivil TBDFs
identified in this study (e.g., bitter frustration, name calling, and impatience), code review

52

Violation of
 community conventions

Motivation of
 the problem

Maintainer's
 feedback

Maintainer's
 behavior

Inaproppriate
 solution

Communication
 breakdown

Maintainer's
 behavior

Try to stop
 incivility

Reinforce
 standpoint

Provide technical
 explanation

Make a
 compromise

Escalate uncivil
 communication

Discuss in a
 civil way

Discontinue further
 conversation

Accept maintainer's
 criticism

Violation of
 community conventions

Poor code quality

Misalignment of
 motivations

Inaproppriate
 solution

Communication
 breakdown

Reinforce
 standpoint

Provide technical
 explanation

Escalate uncivil
 communication

Discuss in a
 civil way

Discontinue further
 conversation

Call out uncivil
 behavior

Accept maintainer's
 criticism

Developers Maintainers

Cause Consequence Cause Consequence

0

30

60

90

120

0

10

20

30

C
u

m
u

la
ti
ve

 #
e

m
a

ils

2 4 6 8 10
#emails

Figure 4.5 Relationship between causes and consequences of uncivil emails sent by developers
(left) and maintainers (right) when discussing rejected patches.

discussion participants may make more constructive and efficient arguments.

Our results also show that only four contributors have sent only uncivil emails and 54
contributors have sent not only uncivil emails but also civil and technical emails. Moreover,
we could not find evidence that incivility is correlated with the authors of uncivil
emails. Concerning the topic of the discussion, even though workflow is the most common
discussion topic that contained uncivil emails sent by developers, and system components the
corresponding topic in uncivil emails sent by maintainers, we could not find evidence that
there is a correlation between topics and incivility. Hence, uncivil comments can
potentially be made by any people when discussing any topic. This result suggests
that contributors should be mindful when writing or replying to review emails, since previous
work has found that lack of respect can create negative perceptions for contributors as well
as hinder collaboration [39].

Since we could not find evidence that incivility is related to common assumptions, we

53

then assessed the causes and consequences that are visible in public code review discussions.
We found that developers were uncivil mostly because of the maintainers’ feed-
back, violation of community conventions, and communication problems. The
consequences of these uncivil comments on maintainers are diverse. While maintainers often
simply discontinued the discussion, they most frequently followed up with a civil discussion
on the technical level, if a response was provided. These results are similar to the ones found
in our motivational case study (Section 2), in which participants mentioned that civility is
related to constructive feedback. However, previous work [58] has found that, in general, pure
technical explanations have no effect on retaining contributors, since those explanations are
often superficial and demonstrate a misunderstanding of the contributors’ work. In other
cases, maintainers reinforced their standpoint, escalated the uncivil communication, or tried
to stop the incivility. This was also mentioned in our case study, in which participants said
that contributors might escalate the problem if nobody recedes. Even when maintainers
reinforced their standpoint or tried to stop the incivility, the tone in which the feedback is
delivered can cause unnecessarily interpersonal conflicts [11].

When maintainers are uncivil, mostly due to a developer’s violation of com-
munity conventions, inappropriate solution proposed by developer, or commu-
nication breakdowns, developers often accepted the maintainers’ criticism and
discussed the problem in a civil way. One reason for that might be the power imbal-
ance between maintainers and developers that have resulted in developers’ polite resistance
to blame maintainers for uncivil communication or to fight back. Although rare, a few de-
velopers escalated the uncivil communication and called out uncivil maintainers. We also
observed that very frequently developers discontinued further conversation by not replying
to the uncivil maintainer or simply abandoning the patch. To avoid this to happen, maintain-
ers should keep in mind that open source contributors may need to be intrinsically motivated
such as by feeling competent and being understood [23,58].

4.5.2 Proactive and reactive approaches to address risk factors before and after
incivility happens

Based on our results, we propose some practical implications and suggestions for open source
communities and researchers. We split the implications into proactive approaches, i.e., what
can be done to address the causes of incivility and to identify potential risks before uncivil
communication happens, and reactive approaches, i.e., what can be done to identify and
address incivility after it happens.

54

Proactive approaches. Our study has identified several frequent causes of incivility. We
argue that, if evident, open source software (OSS) communities should first focus on address-
ing these causes in order to remove factors that may result in uncivil communication in the
first place. For each of these causes, we propose in Table 4.2 some practical approaches for
both OSS communities and researchers to address.

Table 4.2 Proactive approaches for OSS communities and researchers.

Role Most frequent
causes of incivility Practical approaches for OSS communities Practical approaches for researchers

Developers &
Maintainers

Violation of
community
conventions

Include a training for newcomers and developers to ensure
that everyone is aware about the community conventions,
especially if the conventions change.
Maintainers should always include why the patch was rejected.
Violation of community conventions should not be a reason for
silent rejection.
Gamify the review process so that developers that
follow the community conventions gain more reputation and status.

Develop tools that help developers in the review process.
For example, if a cover letter is mandatory (see example
in Section 4.4.4) and the developer forgot to add it, then the
tool would warn the developer that something is missing
before the message is sent.

Developers &
Maintainers

Communication
issues

Develop a code of conduct [49] focused on the code review process
by providing guidelines on how to communicate constructive feedback
(maintainer’s side) and how to interpret the feedback (developer’s side).

To avoid poorly articulated explanations and arguments,
researchers could develop tools that help linking technical
explanations to the relevant code snippets in order to make
the discussion more evidence-based and the arguments
more effective.

Developers Maintainer’s
feedback

Include a training for maintainers on how to give constructive feedback [36].
Include a training for developers on how to handle rejections so that they
are aware that rejection is not a failure [36].
Make coaching or mentoring sessions available for maintainers [36].

Develop tools for supporting maintainers to give constructive
feedback.
Develop strategies to gamify the review process so that
maintainers that give constructive feedback in a civil way gain
more reputation and status.

Maintainers Inappropriate
solution

Developers should always include a technical rationale of their solution,
including the negative side effects of the solution (if there are any), the
motivation of the proposed patch, and the limitations.
Provide awareness to developers in the sense that even if the solution is not
appropriate, the code review practice enables to promote knowledge
sharing and learning opportunities [36], and there is no need to discontinue
further conversation.

Researchers could survey or interview OSS developers and
assess the extent to which developers accept the maintainers’
criticism due to power imbalance, and what are the
consequences for OSS communities of just accepting the criticism
without further interaction.

Maintainers Poor code quality

Include a training for newcomers and developers to ensure that everyone
is aware of the community’s expectations in terms of code quality.
Adopt existing code analysis tools, integrating them into the
developers’ workflow (e.g., continuous integration).

Develop tools to support developers by checking for code
quality (such as readability and performance) before the patch
ends in the mailing list.

In addition to addressing the causes, other approaches may help contributors to avoid
posting uncivil comments on the mailing list. For example, contributors could use tools to
check if their emails are uncivil before they are sent to the mailing list. A more fine-grained
tool that lets contributors know what kind of incivility is present in their email would also
help them to change their text for a more civil discussion. In the future, these types of
tools could be integrated into the code review process, yet they will rely on automated or
semi-automated techniques for the detection of incivility in potential comments. We discuss
these techniques in Section 4.5.3.

Reactive approaches. Although proactive approaches help OSS communities to prevent
incivility, they do not take into consideration the cases when incivility has already happened
in the open. For that, reactive approaches need to be considered. That is, when incivility
happens, community leaders need to do damage control, and community members need to
be informed and properly respond to the incivility. We argue that if OSS communities
implement both approaches in practice, incivility can be considerably reduced.

55

To identify and address incivility after it happens, OSS communities could use a bot
that is constantly checking if the emails sent to the mailing list are civil or uncivil. A crowd-
based technique can also be investigated to allow community members to collaboratively
identify uncivil conversations in code reviews and augment the automated tools. If incivility
keeps happening in an email thread, community leaders can be warned to assess the situation
and take the appropriate measures, such as applying the code of conduct. In case the OSS
community already uses bots to identify “heated conversations”, such as the Stack Overflow
bot4, the community could then incorporate the TBDFs found in this study into their tool.
This will allow OSS communities to identify more cases and types of incivility, and to target
and mitigate specific types of incivility more effectively. Similar to some of the proactive
approaches, these reactive approaches also can benefit from techniques for the detection of
uncivil comments, which we discuss next.

4.5.3 Incivility detection

As we have previously discussed, some of the proactive and reactive approaches to address
incivility before and after it happens rely on automated incivility detection. For that, three
approaches could be considered. First, sentiment analysis tools are commonly used to eval-
uate whether a conversation is positive, negative, or neutral. Although current sentiment
analysis tools do not identify incivility, they could provide hints of whether a conversation is
negative or not. Second, toxicity and offensive language tools could be used to identify ex-
pressions whose intention is to harm other people. Finally, incivility could be automatically
identified through the TBDFs found in this study. We discuss below how the aforementioned
approaches could be addressed.

Sentiment analysis tools. In our motivational case study (see Section 2), we compared
the results of sentiment analysis tools with the perception of Linux developers. Although we
had a very small sample (three emails), we observed that there was a lack of agreement be-
tween sentiment analysis tools (Senti4SD and IBM Watson), and between tools and humans.
Additionally, based on the feedback received in our case study and on our own experience
conducting the qualitative analysis on our dataset, we speculated that current sentiment
analysis tools might not be able to identify incivility. To confirm this speculation, we ex-
tended our case study by analyzing the sentiment of all sentences in our dataset coded with
a TBDF, adding up to 337 distinct sentences. Our goal is to assess if the existing sentiment
analysis tools are able to detect incivility.

4https://github.com/SOBotics/HeatDetector

https://github.com/SOBotics/HeatDetector

56

Methods. To achieve our goal, we run three software engineering (SE) specific tools to
detect sentiment, namely Senti4SD [29], SentiStrength-SE [112], and SentiCR [113]. We only
considered SE-specific tools because previous research [16, 114, 115] has found that general-
purpose sentiment analysis tools need to be fine-tuned to accommodate the technical-heavy
discussions in the software development context. Further, we decided to use pre-trained mod-
els because this is an exploratory study and we might not have a dataset that is big enough
to train a classifier. Moreover, we chose to compare the results of the three aforementioned
tools for the following reasons.

First, we chose Senti4SD [29], a supervised tool trained and validated on 4,000 questions,
answers, and comments from StackOverflow, because it is the tool that has achieved the best
performance when compared to other tools [29, 116, 117] and it reduces misclassifications of
neutral and positive posts as emotionally negative [116]. Second, we chose SentiCR [113]
because it is the only SE-specific tool trained on code review comments from Gerrit. Ad-
ditionally, SentiCR performs the SMOTE [118] technique to handle class imbalance in the
training set (similar to our case). Finally, we chose SentiStrength-SE [112] because it imple-
ments a lexicon-based approach. Although SentiStrength-SE is trained on issue comments
from Jira, the tool is unsupervised; unsupervised tools are found to perform better than
supervised tools when retraining is not possible [116]. Since different tools return different
sentiment polarity labels as an output, we converted the outputs into positive, negative, and
neutral based on the mapping suggested by the literature [116], except for the SentiCR tool,
which that only returns the negative and non-negative polarities. We used the sentences
manually labeled in our dataset as gold standard. Then, we converted the TBDFs into senti-
ment polarities, as described in Section 4.4.1. Since current sentiment analysis tools do not
detect incivility, we consider the uncivil TBDFs as having a negative sentiment.

To assess the performance of the tools, we computed the typical classification met-
rics: precision, recall, and f-score and calculated their micro- and macro-averages. The
precision [119] for a given sentiment polarity (e.g., positive) was calculated as the ratio of
sentences for which a given SE-specific sentiment analysis tool correctly identified the pres-
ence of that polarity. The recall [119] for a given polarity is the ratio of all sentences with
that polarity that a given SE-specific sentiment analysis tool was able to find. F-score is
the harmonic mean of the precision and the recall. For completeness, we also report the
overall performance using micro-averaging and macro-averaging as aggregated metrics [120].
Micro-averaging is influenced by the performance of the majority polarity class, and macro-
averaging is mostly used when the dataset is unbalanced, since it accounts for the classifier’s
ability to identify classes with few datapoints. Since our data is unbalanced, we will mostly
rely on the macro-averaging values when globally analyzing our results, and on the precision

57

and recall values when analyzing the results by sentiment polarity.

Results. The three SE-specific sentiment analysis tools tend to have high pre-
cision for the positive and negative classes, and high recall for the neutral class.
However, the overall performance (F1, micro and macro-averaging) is very low
for all analyzed tools (see Table 4.3). Furthermore, we observe in Figure 4.6 that most
tools classified sentences coded with an uncivil TBDF as neutral or non-negative, which ex-
plains the low recall for the negative class. According to Novielli et al. [116], it is expected
to find a drop in precision for the neutral class, and recall for the negative and positive
classes when analyzing the results in a cross-platform setting, i.e., training and test sets are
different. Previous work [116] has also found that this might be due to the fact that positive
and negative lexicons are platform-dependent.

Based on these results, we conclude that current SE-specific sentiment analysis tools do
not perform well when detecting incivility. In particular, while a sentiment analysis tool might
be relatively convincing when identifying an uncivil message (negative sentiment; precision
of 73% to 77%), it would miss up to 91% of those cases (Senti4SD). In fact, incivility has
many dimensions that are not captured by sentiment analysis tools, such as the context of
the conversation (in our case the emails prior to the uncivil email in a thread), the familiarity
among people, and the granularity of analysis. Furthermore, some TBDFs are not sentiment-
related, such as irony, mocking, and threat, and it might be hard to capture them with
sentiment models only. Hence, with current technologies, incivility cannot be captured
reliably only by analyzing the sentiment of a text.

Table 4.3 Performance of SE-specific sentiment analysis tools. For each tool, we highlight
the best values for each metric.

Sentiment
Polarity

Senti4SD SentiStrength-SE SentiCR
Precision Recall F1 Precision Recall F1 Precision Recall F1

Negative 0.73 0.09 0.16 0.74 0.23 0.35 0.77 0.16 0.26
Neutral 0.06 0.70 0.11 0.05 0.52 0.09 - - -
Positive 0.44 0.31 0.36 0.65 0.29 0.40 - - -
Non-negative - - - - - - 0.26 0.86 0.40
Micro-averaging 0.17 0.17 0.17 0.26 0.26 0.26 0.34 0.34 0.34
Macro-averaging 0.41 0.37 0.21 0.48 0.34 0.28 0.52 0.51 0.33

Detection of toxicity and offensive language. Although there are existing general-
purpose tools that analyze toxicity in online communication, such as PerspectiveAPI5 and

5http://perspectiveapi.com

http://perspectiveapi.com

58

Senti4SD SentiStrength−SE SentiCR

0 25 50 75 0 25 50 75 0 25 50 75

Irony

Threat

Vulgarity

Mocking

Impatience

Name calling

Bitter frustration

sentences

U
nc

iv
il

TB
D

Fs

Sentiment Polarity negative neutral positive non−negative

Senti4SD SentiStrength−SE SentiCR

0 25 50 75 0 25 50 75 0 25 50 75

Irony

Threat

Vulgarity

Mocking

Impatience

Name calling

Bitter frustration

sentences

U
nc

iv
il

TB
D

Fs

Sentiment Polarity negative neutral positive non−negative

Senti4SD SentiStrength−SE SentiCR

0 25 50 75 0 25 50 75 0 25 50 75

Irony

Threat

Vulgarity

Mocking

Impatience

Name calling

Bitter frustration

sentences

U
nc

iv
il

TB
D

Fs

Sentiment Polarity negative neutral positive non−negative

For Senti4SD and SentiStrength-SE

Senti4SD SentiStrength−SE SentiCR

0 25 50 75 0 25 50 75 0 25 50 75

Irony

Threat

Vulgarity

Mocking

Impatience

Name calling

Bitter frustration

sentences

U
nc

iv
il

TB
D

Fs

Sentiment Polarity negative neutral positive non−negative

Senti4SD SentiStrength−SE SentiCR

0 25 50 75 0 25 50 75 0 25 50 75

Irony

Threat

Vulgarity

Mocking

Impatience

Name calling

Bitter frustration

sentences

U
nc

iv
il

TB
D

Fs

Sentiment Polarity negative neutral positive non−negative

For SentiCR

Figure 4.6 Sentiment polarity of uncivil TBDFs.

Tensorflow toxicity model6, these tools do not capture the broad spectrum of incivility. In
fact, previous work defines toxicity in online communities as “(explicit) rudeness, disrespect
or unreasonableness of a comment that is likely to make one leave the discussion” [121]. Al-
though there is an overlap between toxicity and incivility, toxicity only covers one dimension
of incivility, i.e., language that harms other people. Incivility is more general and focuses
on issues that can hurt a constructive and technical conversation. According to Sadeque et
al. [27], a fine-grained incivility detection is more challenging than toxicity detection, and
the differences between these tasks (incivility and toxicity detection) make it hard to use
the same data or the same strategies for both tasks. Furthermore, Hosseini et al. [122] have
found that PerspectiveAPI often identifies false positives (i.e., assign high toxicity scores to
sentences that are not toxic), and that the tool classifies a sentence and an adversarial sen-
tence (modified sentences that contain the same highly abusive content as the original one)
with completely different toxicity scores. In the SE context, Raman et al. [10] have built a
combination of general pre-trained sentiment analysis tools and toxicity classifiers, such as
PerspectiveAPI. Although their best classifier had a precision of 0.91, the recall was very low
(0.42), showing that the tool was not able to identify the majority of unhealthy interactions.
On top of that, the classifier shows very low precision (0.50) when tested on random issues.
Based on that, we claim that a more fine-grained classification using software development
data and the TBDFs found in this study is needed to produce accurate results when detecting

6https://github.com/tensorflow/tfjs-models/tree/master/toxicity

https://github.com/tensorflow/tfjs-models/tree/master/toxicity

59

incivility.

Identifying incivility through TBDFs. Given the fact that the existing sentiment anal-
ysis, toxicity, and offensive language tools cannot readily identify uncivil comments, dedicated
tools and techniques should be built. The TBDFs proposed in our study can be used as a
framework to support these techniques. For example, heuristics could be developed to iden-
tify each TBDF, a civility-specific lexicon for each TBDF and for each community could be
built to improve the performance of classifiers, and our dataset7 could be extended based on
the proposed framework with the goal of training machine learning models to detect incivil-
ity. Additionally, some existing tools could be extended based on our TBDF framework and
dataset. For example, Gachechiladze et al. [87] have proposed a tool to detect anger and its
direction in Apache issue reports; their approach could be extended to identify the tone (e.g.
impatience, irony, etc) behind the anger with the goal to explain the reasons behind it.

4.6 Threats to validity

In this section, we discuss the major threats to the validity [123] of our study, in the following
categories.

Construct validity. The TBDFs identified in this study might not capture (in)civility in
practice. To minimize this threat, we started our analysis with a civility framework [6] and
we built our work on top of that. Furthermore, the categorization of TBDFs was made with
two other authors to avoid biases and misclassifications.

Internal validity. Our qualitative coding could lead to inconsistencies due to its subjec-
tiveness. To minimize this threat, our codebook was iteratively improved based on discussions
with two other authors. Additionally, the second author analyzed all emails in which the
first author has identified a TBDF, and as a result, we found on average a substantial agree-
ment between the two raters. The Kappa values varied among the TBDF codes, probably
due to the different difficulties inherent to each TBDF; however, we have achieved at least
a moderate agreement between the two raters on each individual code. The main threat of
our study concerns the technical emails identified by the first author, which were not verified
by a second rater. The technical emails were identified with a straightforward list of criteria
(see Section 4.3.4), with a low risk of misclassification.

7https://doi.org/10.6084/m9.figshare.14428691

https://doi.org/10.6084/m9.figshare.14428691

60

For the analysis of individual contributors, we assess the number of contributors that
have sent (un)civil emails as well as the contributors’ roles. To do that, we grouped contribu-
tors’ aliases either by the same name or the same email. To mitigate the risk of having wrong
identities clustered together, we manually checked all clusters to assess their correctness. Fi-
nally, the actual size of the population of rejected patches is unknown, since the heuristics
used in this study might have false positives and false negatives. To mitigate this risk, we
have assessed the performance of the heuristics in another dataset, since there is no available
ground truth for the LKML.

Conclusion validity. Conclusion validity concerns the statistical analysis of the results, in
which commonly used statistical techniques are applied to validate the researchers’ assump-
tions [123]. A common threat to this type of validity includes the low number of samples,
which reduces the ability to reveal patterns in the data [123]. Hence, in the quantitative part
of our analysis, we aimed at achieving sufficient analysis reliability. We applied statistical
tests to assess the correlations of incivility with email and thread attributes, and we made
our conclusions based on the statistical power encountered.

External validity. The analysis of an open source project represents a threat to the study
validity since open source projects and proprietary projects may have different types of inci-
vility. We focus on open source because it is difficult to have access to code review discussions
of proprietary systems. The large amount of publicly available data in open source contexts
also allows us to examine the phenomenon of (in)civility on a large scale. Additionally, we
only analyze one open source community, the Linux kernel. Linux is a popular and large
open source project, and the Linux community is very diverse in terms of expertise, gender,
ethnicity, and companies contributing to it. Therefore, it is important to have a healthy
community to attract and retain contributors [124]. However, we do not have evidence to
support that the results found in this study are generalizable to other projects.

Furthermore, despite our efforts in characterizing incivility in code review discussions,
we only analyzed review emails of rejected patches in a specific period, and the results found
in this study might not be generalizable to accepted patches. However, previous work has
shown that more than 66% of all patches submitted to LKML are rejected [35] and that
the Linux community frequently rejects patches using harsh language when reporting the
rejection, even though the reasons for rejection are purely technical [36].

61

4.7 Acknowledgements

The authors would like to thank Kate Stewart (Linux Foundation), Shuah Khan (Linux
Foundation), and Dr. Daniel German (University of Victoria) for their valuable insights.
The authors also thank the Natural Sciences and Engineering Research Council of Canada
for funding this research through the Discovery Grants Program.

4.8 Chapter summary

In this chapter, we investigated incivility in open source code review discussions. Incivility
is an important issue that can potentially affect many open source contributors in various
ways. To the best of our knowledge, this is the first study of an in-depth characterization of
incivility in open source code review discussions, providing evidence, descriptions, and expla-
nations of incivility in this dynamic context. By analyzing the code review discussions of the
Linux Kernel Mailing List, we encountered TBDFs not previously found in any other study,
proposed a definition of incivility based on the uncivil TBDFs, assessed the frequency of in-
civility, analyzed the correlation with the common assumptions of the cause of incivility (i.e.,
arguments, contributors, and topics), and assessed the discoursal causes and consequences of
developers’ and maintainers’ uncivil interactions.

As a result, we found that incivility is common in code review discussions of rejected
patches of the Linux kernel. We also found that frustration, name calling, and impatience are
the most frequent features in uncivil emails. Besides that, our results indicate that there are
civil alternatives to address arguments, and that uncivil comments can potentially be made
by any people when discussing any topic. Finally, we found the main causes and consequences
of uncivil communication for both developers and maintainers.

Previous work have found that interpersonal conflicts and toxicity are rare on Google’s
code review discussions and on GitHub projects with “too heated” conversations [10, 11],
but they have negative consequences when they occur. Based on this evidence, we decided
to first characterize incivility by analyzing the Linux community, which has been criticized
for using harsh language, giving frequent rejections, and negative feedback [36]. Because
software development is essentially a communication-intense activity, incivility can arise in
any community and development stage. However, the results found in this study may not be
generalized to other communities or other software development activities. Hence, we suggest
that future research investigate the potential generalizability of our findings in other open
source and industrial projects. Additionally, not all causes and consequences of incivility
are visible in public code review discussions. An in-depth investigation of the community

62

members’ experience and perception of incivility would be helpful to address this problem.

We believe that the findings of this work will pave the way for further studies in software
development that aim to analyze incivility and promote civil communication. More specif-
ically, the causes and consequences of incivility found in this study are crucial for devising
strategies to handle incivility during code review. Even though many approaches exist to
prevent incivility, such as the code of conduct [49], these approaches do not treat the root
of the problem. For example, even though the Linux community has a code of conduct8,
incivility is still present in their code review discussions. Therefore, it is crucial to investi-
gate other means to tackle the problem of uncivil communication in the context of software
development. These efforts can be effectively inspired and informed by this categorization
study.

To deepen our understanding of incivility in other software engineering conversations, the
next chapter uses the framework proposed in this study to characterize incivility in GitHub
issue discussions locked as too heated. More specifically, we analyze how this locking feature
is used to handle heated (or uncivil) discussions.

8https://www.kernel.org/doc/html/latest/process/code-of-conduct.html

https://www.kernel.org/doc/html/latest/process/code-of-conduct.html

63

CHAPTER 5 CHARACTERIZING INCIVILITY IN OPEN SOURCE
ISSUE DISCUSSIONS

5.1 Introduction

In open source software (OSS) development, community members use Issue Tracking Systems
(ITSs) (e.g., Jira, Bugzilla, and GitHub Issues) to discuss various topics related to their
projects. Such ITSs provide a set of features that streamline communication and collaboration
by promoting discussions around bug reports, requests of new features or enhancements,
questions about the community and the project, and documentation feedback [65,125].

Although issue reports play a crucial role in software development, maintenance, and
evolution, issue discussions can get heated (or “uncivil”), resulting in unnecessarily disrespect-
ful conversations and personal attacks. This type of unhealthy, and sometimes disturbing or
harmful behavior can be the result of a variety of reasons. For example, even though diversity
has many benefits for open source communities [19,20], the mix of cultures, personalities, and
interests of open source contributors can cause a clash of personal values and opinions [21].
Furthermore, as a social-technical platform, ITSs sometimes host social context discussions,
such as conversations about the black lives matter and me too movements, which can increase
the chances of conflicts and arguments. Those discussions seek for a more anti-oppressive
software terminology, such as renaming the branch master to main, whitelist/blacklist to
allowlist/blocklist and gender-neutral pronouns. Finally, the increasing level of stress and
burnout among OSS contributors can also cause unhealthy interactions [10]. In fact, the
amount of requests that OSS maintainers receive is overwhelming and the aggressive tone of
some OSS interactions drains OSS developers [10].

Such heated interactions can have many negative consequences for OSS projects. Fer-
reira et al. [126] have found that both maintainers and developers often discontinue further
conversation and escalate the uncivil communication in code review discussions. Egelman
et al. [11] also found that interpersonal conflicts in code review can trigger negative emotions
in developers. These communication styles might also hinder OSS communities’ ability to
attract, onboard, and retain contributors.

To help OSS projects deal with some of the aforementioned challenges, in June 2014,
GitHub released a feature that allows project owners to lock issues, pull requests, and commit
conversations [127], basically prohibiting further comments. The main goal of this feature is
to smooth out too heated conversations that violate the community’s code of conduct [49,50]

64

or GitHub’s community guidelines [51]. However, conversations can also be locked for other
reasons, such as off-topic, resolved, or spam. Contributors might also choose to lock issues
without providing a reason.

Since locked issues have been manually tagged by community experts rather than by
researchers or classifiers, this data of locked issues provides a potentially valuable dataset for
software engineering researchers aiming to understand how OSS communities handle possibly
harmful conversations. A few very recent previous studies have used this dataset, in particular
the subset of too heated locked issues, as an oracle to detect toxicity in software engineering
discussions [10], and to understand when, how, and why toxicity happens on GitHub locked
issues [31]. However, to the best of our knowledge, none of these studies have performed an
in-depth investigation of the nature of GitHub locked issues in general and the validity of
the too heated locked issues in particular as a potential oracle.

Hence, in this chapter, we adopt a mixed-methods approach and aim at assessing the
characteristics of GitHub locked issues. First, we quantitatively analyzed 1,272,501 closed
issue discussions of 79 open source projects hosted on GitHub that have at least one issue
locked as too heated. This analysis is aimed at identifying the overall characteristics of
GitHub locked and non-locked issues. Then, we qualitatively examined all 205 issues locked
as too heated in the analyzed projects, and their 5,511 comments, to assess the extent to
which the issue discussions locked as too heated were, in fact, uncivil. For this, we identified
the tone-bearing discussion features (TBDFs) of issue discussions [126], i.e., “conversational
characteristics demonstrated in a written sentence that convey a mood or style of expression.”
We then identified heated discussions based on the presence of uncivil TBDFs, i.e., “features
of discussion that convey an unnecessarily disrespectful tone.” Additionally, we assessed the
topics being discussed by too heated locked issues and the justifications given by maintainers
for locking such issues.

In summary, we make the following contributions:

• To the best of our knowledge, this is the first study shedding light on the usage patterns
of the GitHub locking conversations feature;

• We found that projects have different behaviors to lock issues, that the locking justifica-
tions given by maintainers do not always match the label on the GitHub platform, and
that not all issues locked as too heated are uncivil;

• We identified three pitfalls and provided a set of recommendations of what researchers
should do and not do when using this dataset;

• We provide three recommendations for practitioners and designers of ITSs;

65

• We make a replication package1 available that contains (i) the codebooks used in the
qualitative coding, (ii) the manually tagged dataset of issues locked as too heated, con-
taining sentences coded with TBDFs, the topics of discussion, and the justifications given
by maintainers, and (iii) the scripts to analyze the data.

5.2 Goals and research questions

The general goal of this study is to understand the nature of GitHub locked issues and to
identify the common pitfalls that could pose a threat to validity when using a (sub)set of
GitHub locked issues as an oracle for uncivil communication. Our specific goals are to (i)
quantitatively characterize GitHub locked issues in comparison to non-locked issues and (ii)
qualitatively assess the actual discussion tones in issues locked as too heated. Based on these
goals, we constructed four main research questions to guide our study, which we present
below along with their motivations.

RQ1. What are the characteristics of GitHub locked issues?

To the best of our knowledge, only the study conducted by Miller et al. [31] has studied
GitHub locked issues, in particular focusing on when, how, and why toxicity happens on a
sample of 20 locked issues. In our quantitative study, we aim to conduct a broader analysis of
locked issues to identify their overall characteristics. It is essential to gain this understanding
to make informed decisions about mining this kind of data and to understand how different
open source projects use this feature. To this end, we assess how often projects lock issues,
as well as how different locked issues are in comparison to issues that are not locked, in terms
of the number of comments, the number of people participating in the discussion, and the
number of emoji reactions.

RQ2. What are the justifications given in the comments by project maintainers
when locking issues as too heated?

Project maintainers can choose predefined reasons (e.g., too heated or spam) to lock an
issue on GitHub. However, these predefined reasons are abstract and sometimes difficult
to interpret. Maintainers often need to communicate the specific justifications of locking a
too-heated issue with the community in the issue comments in order to explain their actions,
educate the community members, and/or maintain their authority. In this RQ, we aim at
understanding how maintainers communicate these justifications.

RQ3. What are the topics being discussed in issues locked as too heated?
1https://doi.org/10.6084/m9.figshare.18848765

https://doi.org/10.6084/m9.figshare.18848765

66

Earlier work by Ferreira et al. [126] did not find any correlation between the topics of code
review discussions and the presence of incivility. However, this finding might not necessarily
apply to issue discussions because code review and issues discussions have different focuses
(the former on the solution space while the latter on the problem space) and participant
dynamics (there is a smaller power distance between maintainers and other discussants in
issue discussions than in code reviews). Thus, in this RQ, we aim at examining the topics
of discussion in issues locked as too heated in order to analyze the presence of potentially
provocative topics.

RQ4. To what extent are issues locked as too heated uncivil?

In this RQ, we aim at investigating the extent to which issues locked as too heated do,
in fact, involve heated interactions. We used the characterization of incivility of Ferreira
et al. [126] to identify the uncivil tones in issue discussions as a concrete measure of heated
discussions. Our analyses were split into four sub-RQs.

First, we aim at answeringRQ4.1. What are the features of discussion in issues
locked as too heated? This is done by identifying the tone-bearing discussion features
(TBDFs) of the sentences of these issues. TBDFs capture the “conversational characteristics
demonstrated in a written sentence that convey a mood or style of expression” [126]. As an
example of a TBDF, the following sentence shows that a speaker is frustrated: “I’m fed up the
whole framework is filled with this crap. Why you even do double way binding if works half the
needed cases? Don’t even make a framework at this point.” (project angular/angular),
demonstrating therefore a mood or style of expression. Because the original TBDF framework
was created through analysis of code reviews, we adapted this framework to the context of
issue discussions, then used this adapted framework to identify the TBDFs in each sentence
of the issue discussions in our sample.

Then, we answer RQ4.2. How uncivil are issues locked as too heated?. For
this, we use the notion of uncivil TBDFs, which are “features of discussion that convey an
unnecessarily disrespectful tone” [126]. We consider an issue or comment as technical if none
of its sentences demonstrate any TBDF in RQ4.1, uncivil if at least one sentence demonstrates
an uncivil TBDF, and civil if at least one sentence demonstrates a TBDF but none of these
TBDFs are uncivil. Conceptually, uncivil issues and comments correspond to inappropriate
and unhealthy discussions.

Finally, we use the aforementioned categorization of issues and comments to assess
correlations between (1) the TBDFs demonstrated in an issue discussion and (2) justifications
given by project contributors for locking an issue and the topics of the too heated issues. Thus

67

we ask: RQ4.3. How are the observed discussion feature types distributed across
the justifications given by project contributors when locking too heated issues?
and RQ4.4. How are the observed discussion feature types distributed across
the different discussion topics in too heated issues?

5.3 Methods

5.3.1 Data selection

Our research questions require open source projects with a sufficient number and variety of
locked issues. Since no pre-built dataset exists, we used a two-pronged approach. First of all,
we selected projects from 32 different GitHub collections2, which are curated lists of diverse
and influential GitHub projects. We selected projects that (i) have more than 1,000 issues,
(ii) have code commits later than November 2020 (six months before our data collection),
and (iii) have at least one issue locked as too heated until 2021-06-03. This resulted in 29
GitHub projects.

Second, we also added projects open-sourced by three large, well-known software com-
panies (Apple, Google, and Microsoft), since we hypothesized that such projects might en-
counter more polarized discussions. For this, we mined the companies’ corresponding GitHub
organization, but also added open-sourced projects not hosted within the organization (such
as Bazel and Kubernetes). This resulted in 3,931 projects,including 86 projects from Apple,
1,240 projects from Google, and 2,605 projects from Microsoft. Filtering out projects without
issues locked as too heated until 2021-06-03 resulted in 50 projects, i.e., 1 project from Apple,
23 from Google, and 26 from Microsoft.

Then, we collected all closed issues from the resulting sample of 79 projects until 2021-
06-03 using the GitHub REST API3. We chose to analyze only closed issues in order to
observe complete issue discussions. For each closed issue, we recorded whether the issue has
been locked [128], the issue comments, the emoji reactions to each comment, all the events
related to the issue (e.g., when the issue was locked), the dates that the issue was opened,
closed, and locked (if so), and the contributors who performed these actions.

5.3.2 Quantitative analysis on locked issues

To answer RQ1, we considered two independent groups: locked and non-locked issues, as well
as three dependent variables. We discuss the hypothesis related to each dependent variable

2https://github.com/collections
3https://docs.github.com/en/rest/reference/issues

https://github.com/collections
https://docs.github.com/en/rest/reference/issues

68

below.

Number of comments: Ferreira et al. found that review discussions with arguments
tend to be longer and have more uncivil than civil emails [126]. We thus hypothesize that
locked issue discussions have more comments than non-locked discussions (H1).

Number of participants: Previous research found that discussions involving people
with different backgrounds and cultures are more likely to be uncivil [129]. Since OSS projects
are highly diverse, we hypothesize that locked issues have more participants than non-locked
issues (H2).

Number of emoji reactions: Previous work has shown that emoji reactions reduce
unnecessary commenting in pull request discussions, leading to fewer conflicts [130]. We thus
hypothesize that locked issues have fewer emoji reactions than non-locked issues (H3).

We aggregate the dependent variables per issue for each independent group. Following
the central limit theorem [131] and because of the large number of issues in our dataset (about
1.3 million), we used unpaired t-tests [132] to determine if there is a significant difference
in the means of each dependent variable between the two independent groups. Then, we
computed the effect size between the means of the two groups for each dependent variable
using Cohen’s d [133].

5.3.3 Qualitative analysis on locked issues

To answer RQ2, RQ3, and RQ4, we conducted a qualitative analysis [101,102] on the GitHub
issues locked as too heated.

Identifying the justifications to lock GitHub issues.

In RQ2, we aim at investigating the justifications given by community members themselves
when locking issues as too heated. We approached the coding through the following steps.
First, we read the title and the first comment (description) of the issue to understand what
the issue is about. Then, we read the last comment of the issue. If the last comment mentions
that the issue is being locked and it is clear why it is the end of the discussion, we then coded
for the justification given by the community member. If the last comment does not mention
that the issue is being locked or it is not clear why, we then searched for other comments
justifying the reason for locking the issue, as follows.

1. We searched for the keywords “locking”, “locked”, “closing”, “heated”. If we found a
comment mentioning one of these keywords, we read the comment and check if it mentions

69

the justification for locking the issue. If not, we executed step (2).
2. We read the entire issue thread looking for a justification to lock the issue. If we did not

find any justification, we then coded the justification as “no reason mentioned”. We coded
the respective justification, otherwise.

The first author started with an inductive coding [103] on all issues locked as too heated,
a total of 205 issues. During the coding process, we added the identified justifications in a
codebook [104] with the name of the code, a definition, and one or more examples. The code-
book containing all manually identified justifications was improved during discussions with
two other authors. Then, we conducted axial coding and grouped the identified justifications
into themes [134].

To guarantee that the codebook can be replicated, the second author deductively coded
20% [135,136] of the issues (41 issues). Afterwards, the first and third authors discussed the
disagreements, improving our coding schema. We computed Cohen’s Kappa to evaluate the
inter-rater reliability of our coding schema [105]. The average Kappa score between the two
raters across all the identified justifications is 0.85, ranging from 0.64 to 1.00, demonstrating
an almost perfect agreement [106]. The complete codebook can be found in our replication
package4.

Identifying the topic of the discussion

For RQ3, we first inductively coded the issue title and the content being discussed at the
issue level. We then did axial coding to group our codes into categories. A codebook was
created with the axial codes and their definitions. Two authors discussed and iteratively
improved the codebook, which can be found in our replication package5.

Identifying tone-bearing discussion features (TBDFs).

We identify the discourse characteristics of issues locked as too heated (RQ4) through tone-
bearing discussion features (TBDFs) [126]. To initiate the coding, the first author directly
used the framework and the codebook of 16 TBDFs proposed by Ferreira et al. [126]. To
adapt the coding schema in the issue discussion context, we added new codes or adjusted
the coding criteria of certain codes when appropriate. The coding was conducted at the
sentence level of each issue comment written in English and visible on GitHub (a total of
5,511 comments from the 205 issues locked as too heated). We also took into consideration

4https://doi.org/10.6084/m9.figshare.18848765

https://doi.org/10.6084/m9.figshare.18848765

70

the context of the previous comments on the same issue to identify the TBDF of a particular
sentence.

The updated codebook was iteratively discussed and improved with all authors. In the
end, we added four TBDFs and adjusted the coding criteria of eight TBDFs in the original
codebook. The third author then deductively coded 20% [135, 136] of the comments coded
with at least one TBDF by the first author (145 out of 718 comments). We measured the
inter-rater reliability, and the average Cohen’s Kappa score between the two raters and across
all the identified TBDFs was 0.65, ranging from 0.43 to 0.91, showing substantial agreement
between the two raters [106]. The final codebook can be found in our replication package5.

5.4 Results

5.4.1 RQ1. Characteristics of GitHub locked issues

Among the 1,272,501 closed issues of the 79 analyzed projects, we identified three types
of projects: 14 projects (17.72%) locked more than 90% of their closed issues,
54 projects (68.35%) locked less than 10% of their closed issues; the remaining
11 projects (13.92%) locked between 54% and 88% of their closed issues with an
average of 73% of locked issues. Figures 5.1 (left) and (right) present the distribution
of (non-)locked issues per project as well as per locking reason mentioned on the GitHub
platform, respectively.

Furthermore, we found that 313,731 (61.61%) locked issues have been auto-
matically locked by a bot (e.g., due to inactivity), 195,409 (38.38%) by an orga-
nization, and 52 (0.01%) by a user. Interestingly, 16 projects (20.25%) had most of their
issues locked with no reason mentioned and 9 projects (11.4%) had most of their issues locked
as resolved. These 25 projects, specifically, have 313,494 (62.13% of their locked issues) issues
locked by a bot.

Concerning the length of locked and non-locked issues, an unpaired t-test revealed that
non-locked issues had a statistically significantly larger number of comments (mean = 5.72,
SD = 10.54) than locked issues (mean = 5.05, SD = 8.23), t = −40.587, p < 0.001. How-
ever, the difference between the means of these two variables is negligible (Cohen’s d = 0.07),
rejecting H1. Similarly, we found that non-locked issues involved a statistically significantly
larger number of participants (mean = 2.92, SD = 2.48) than locked issues (mean = 2.86,
SD = 3.21), t = −11.559, p < 0.001. However, Cohen’s d = 0.02 indicated that this dif-
ference is negligible, rejecting H2. Finally, we found that non-locked issues involved a

5https://doi.org/10.6084/m9.figshare.18848765

https://doi.org/10.6084/m9.figshare.18848765

71

0

25

50

75

100

Locked Non−locked

%
 i
s
s
u
e
s
 p

e
r

p
ro

je
c
t

1

10

100

No reason mentioned Off−topic Resolved Spam Too heated

%
 i
s
s
u
e
s
 p

e
r

p
ro

je
c
t
(i
n
 l
o
g
1
0
)

Figure 5.1 Distribution of percentages of (non-)locked issues per project (left) and according
to locking reasons labelled on GitHub (right).

statistically significantly larger number of reactions (mean = 0.13, SD = 0.85) than locked
issues (mean = 0.07, SD = 0.60), t = −40.631, p < 0.001, but this difference is again negli-
gible (Cohen’s d = 0.07), rejecting H3.

Summary RQ1: We found three types of projects in terms of issue locking behaviors:
(1) 14 projects locked more than 90% of their closed issues, (2) 54 locked less than 10%,
and (3) the remaining 11 locked between 54% and 88% of their closed issues. Furthermore,
31.65% of the projects have the majority of issues locked by a bot. Finally, locked issues
tended to have a similar number of comments, participants, and emoji reactions to non-
locked issues.

5.4.2 RQ2. Justifications for locking GitHub issues as too heated

In 70 issues (34.15% of the 205 too heated locked issues), the justification for locking the issue
was not explicitly mentioned by the project contributors and not clear from the discussion.
In the remaining 135 issues, we found ten categories of justifications that project
contributors gave when locking the issues as too heated.

Inappropriate/unhealthy interaction was the justification for locking 52 issues
(25.37%). Contributors locked these issues by calling out behaviors violating the code of
conduct, asking other contributors to keep the discourse civil, or mentioning that the kind of
behavior will not be tolerated by the community. Furthermore, project contributors locked
issues because the conversation was starting to become uncivil, and in a few cases, the offen-
sive comments were even hidden. As an example: “This is not the place to post this kind of

72

message @[username], I’m closing the topic. Please follow the contributing guidelines if you
want to post anything constructive.” (project angular/angular).

Off-topic. Project contributors explicitly mentioned that they were locking 23 issues
(11.22%) because the discussion was getting off-topic. This includes cases where the issues
were not actionable or unrelated to the project goals, and/or people were discussing the
implications related to other issues but not the issue being discussed. E.g., “Thanks for
creating this issue. We think this issue is unactionable or unrelated to the goals of this
project. Please follow our issue reporting guidelines.” (project microsoft/vscode).

Issue will not be addressed. The justification for locking 16 issues (7.80%) was that
the team decided not to address the issue. This can be due to various reasons such as different
motivations between the team and the users, disagreement about licensing, geopolitical or
racial concerns, or project contribution process problems. E.g., “We discussed this issue on
the SIG-arch call of 20200130, and have unanimously agreed that we will keep the current
naming for the aforementioned reasons.” (project kubernetes/kubernetes).

Issue/PR status. The reason for locking 11 issues (5.37%) was due to the issue or
pull request status: duplicated, merged, not mergeable, inactive, stale, fixed, abandoned,
etc. In most cases in this category, project contributors locked the issue instead of closing it.
E.g., “This PR is being closed because golang.org/cl/281212 has been abandoned.” (project
golang/go).

Wrong communication channel was the justification for locking 7 issues (3.41%).
In this case, the contributor mentioned that the problem should be discussed in another
channel, such as the mailing list or the IRC channel. E.g., “The community site is where we
are moving conversations about problems happening on travis-ci.com or travis-ci.org. Thanks
in advance for posting your questions over there.” (project travis-ci/travis-ci).

Issue cannot be addressed. Project contributors locked 7 issues (3.41%) because it
was not feasible to address the issue under discussion. The underlying reason could be that
the discussion did not provide a reasonable way to address the problem, the issue is related
to another project or a dependency, or the project does not have enough resources (such as
personnel or infrastructure) to address the issue. In most cases, issues in this category were
locked as too heated instead of closed. E.g., “I’m going to close this issue (and edit the OP
for fast reference) since the issue is deeper in the OS and the Flutter framework can’t resolve
it.” (project flutter/flutter).

Work prioritization. Project contributors locked 6 issues (2.93%) to save time an-
swering discussions and requests, or to focus on other work aspects. E.g., “Closing this

73

conversation to prevent more “ETA requested” responses (which actually take time from fea-
ture work)” (project firebase/FirebaseUI-Android).

Not following community rules. Project contributors locked 6 issues (2.93%) be-
cause contributors were not following the community rules. For example, contributors used
+1 comments instead of the emoji reaction +1, discussed too many problems in one issue, or
continued the discussion on issues with a similar topic. E.g., “I’ve locked this to contributors
for now. Adding +1 comments is too noisy. For future reference, add a reaction to the issue
body, and don’t comment.” (project ansible/ansible).

Address the issue in the future. Project contributors justified the reason for lock-
ing 5 issues (2.44%) being that the problem will be addressed in the future. That is, the
contributor mentioned that the bug will be triaged with other bugs, the issue needs further
investigation, or the bug will be addressed in the future. E.g., “As always, thanks for re-
porting this. We’ll definitely be triaging this with the rest of our bug fixes. In the meantime,
however, please keep the discourse civil.” (project microsoft/terminal).

Communication problems. There were 2 issues (0.97%) locked because the discus-
sion was not being productive or people could not reach a consensus. E.g., “I’m going to
close this thread, as the conversation isn’t really productive after [link to a comment], I’m
afraid.” (project flutter/flutter).

Summary RQ2: We identified ten justifications that project contributors gave when
locking issues as too heated. In the majority of the issues (74.63%), the justifications
were not related to the conversation being uncivil.

5.4.3 RQ3. Topics of discussions in issues locked as too heated

In 12 issues (5.85%) that were locked as being too heated, we were not able to identify the
discussion topic from the issue title or the comments. In the remaining 193 issues, we found
13 topics:

Source code problems was the topic of 78 issues (38.05%). Examples of such problems
include deprecated functionality, encoding problems, code warning, and installation problems.

User interface is the topic of 35 issue discussions (17.07%). Contributors were con-
cerned with the interface colors, the user interface crashing or not responsive, or the need for
changing icons.

Renaming. There were 15 issues (7.32%) discussing about renaming the software, the
API, or certain terminologies due to racial concerns, such as renaming master to main and

74

whitelist to allowlist.

New feature. There were 15 issues (7.32%) locked as too heated that were discussing
the implementation of a new feature. In some cases, the project was asking the community
about feature ideas for the next releases. In other cases, people were requesting to add social
features (such as Instagram and Twitter) to the terminal and to consider specific syntax in
the source code.

Community/project management. We found 12 issues (5.85%) discussing topics
related to the community and project management. More specifically, contributors were
asking the project’s owner to give more privileges to other people to review and merge code,
criticizing censorship when removing comments and locking issues, asking questions about
coding programs such as freeCodeCamp and Google Summer of Code, discussing about project
financing, making announcements about the end of the project, etc.

Lack of accordance. Contributors expressed their opinion to not work for a specific
company or their opinion about a tool or programming language in 9 issues (4.39%).

Data collection/protection. We found 7 issues (3.41%) discussing data collection or
data protection. More specifically, contributors were concerned about the security, privacy,
and ethical issues related to data collection, storage, and sharing.

Documentation. The topic of 6 issues (2.93%) was related to documentation, such
as errors, missing information, or inappropriate content (e.g., political banners) in the doc-
umentation.

Performance is the topic of 5 issues (2.44%). Contributors were discussing the per-
formance problems between two releases, the application or the download of the application
was very slow, and interactivity with the webpage was very slow.

Error handling. 4 issues (1.95%) discussed compilation errors, tool errors, or errors
after a version update.

Translation. We found 3 issues (1.46%) discussing a problem with the listing of lan-
guages in the software (e.g., listing Chinese (China), and Chinese (Taiwan) separately), or
regarding languages from the Google Translator (e.g., Scottish Gaelic).

Versioning. There were 2 issues (0.98%) about requests to change the version number
of the tool or complaints about the tool not following semantic versioning.

License. There were 2 issues (0.98%) about making changes in the license file.

75

Summary RQ3: We found 13 topics being discussed in issues locked as too heated, with
source code problems, user interface, and renaming being the most frequent topics.

5.4.4 RQ4. Incivility in issues locked as too heated

In this RQ, we aim at assessing to what extent issues locked as too heated feature uncivil
discourse. We present the results of each sub-RQ below.

RQ4.1. What are the features of discussion in issues locked as too heated?

We identified 20 tone-bearing discussion features (TBDFs) in issue discussions
locked as too heated, four of which have not been found by previous work. In to-
tal, 1,212 distinct sentences were coded with a TBDF (a sentence can be coded with
more than one TBDF). We present below the description, an example, and the frequency
of the four TBDFs uniquely identified in the analyzed issue discussions. For the 16 TBDFs
identified by Ferreira et al. [126], we present the frequency and the conditions that were
added to code such TBDFs when different from previous work. For replication purposes, the
description and the example of TBDFs not described here can be found in our replication
package6.

Positive features. Surprisingly, 151 sentences (12.46%) in issue discussions locked
as too heated actually expressed a positive tone. Considerateness is the most fre-
quent positive feature (N = 61), followed by Appreciation and excitement (N = 58),
and Humility (N = 32). Contributors also expressed Appreciation and excitement towards
the project in issue discussions; e.g., “You have a super reliable, and extendable set of tools.
wcf provides the best tools for building enterprise applications. Without it, you simply end
up rebuilding it.” (project dotnet/wcf).

Neutral features appear in 115 sentences (9.49%) of issue discussions locked as too
heated. In the context of issue discussions, we have identified Expectation (N = 44)
and Confusion (N = 12) as two new neutral TBDFs. Additionally, Sincere apologies
(N = 31), Friendly joke (N = 25), and Hope to get feedback (N = 3) also appear in
issue discussions, similar to code review discussions [126].

Expectation is a new TBDF we identified in the issue discussions and is the most
frequent neutral feature in our dataset (N = 44). This TBDF is expressed when the speaker

6https://doi.org/10.6084/m9.figshare.18848765

https://doi.org/10.6084/m9.figshare.18848765

76

expects to add a feature in the future, to fix a specific problem, or that the feature should
do something specific. It is also expressed when the speaker is expecting someone to resolve
a problem or that the community will work on a particular problem. E.g., “As a consumer
of your product, I expect it to work as advertised.” (project jekyll/jekyll).

We also identified Confusion, which is expressed when the speaker is unable to think
clearly or understand something (N = 12). E.g., “I am confused because I add this ‘mixins‘
to as own which should not affect any updates from Bootstrap.” (project twbs/bootstrap).

Negative features. There were 196 distinct sentences (16.17%) demonstrating nega-
tive features. While indicating a negative mood, these TBDFs do not involve a disrespectful
tone. In our dataset, we found Commanding (N = 61), Sadness (N = 40), and Op-
pression (N = 9), which were already identified by previous work [126]. However, different
from code reviews, in issue discussions contributors also expressed Sadness when the com-
munity is going to lose something or someone (e.g., “It would be a great loss for the .NET
community if you’d stop contributing.” project dotnet_runtime), and Oppression when
a person of power reinforces their standpoints (e.g., “bro I am an Open Source author and
maintainer so don’t try lecturing me about being against "off-putting towards the open-source
community.” project dotnet/maui). Additionally, we identified two new negative TBDFs:
Dissatisfaction (N = 75) and Criticizing oppression (N = 17)

Dissatisfaction appears when a simple change requires a lot of discussions and the
change is not accepted, when someone wants to stop contributing because things never get
resolved, or the community does not acknowledge the problem or is not willing to fix the
problem. E.g., “At this point I am discouraged to report more because nothing ever seems
to get fixed (usually because “it’s complicated").” (project dotnet/roslyn). Additionally,
contributors might express dissatisfaction with the framework, tool, or process.

Criticizing oppression happens when someone of a lesser power (e.g., developer)
does not accept what someone (usually a person of a higher power) says or how the person
behaves. E.g., “Your heavy-handed and dismissive approach to moderation diminishes the
project and the whole community.” (project nodejs/node).

Uncivil features. Uncivil features are those that convey an unnecessarily disrespectful
tone [126]. We identified 790 sentences (65.18%) featuring at least one uncivil
TBDF. Annoyance and Bitter frustration is the most common uncivil feature (N =
288). Issue discussions also demonstrate Name calling (N = 222), Mocking (N = 194),
Irony (N = 64), Impatience (N = 55), Vulgarity (N = 51), and Threat (N = 18).

77

Although contributors express these uncivil TBDFs in both code review discussions [126]
and issue discussions, we found that several TBDFs had new interpretations in the context
of issue discussions, which we describe below.

Contributors tend to expressAnnoyance and Bitter frustration in issue discussions
when they use capital letters to emphasize something in a frustrating way, when someone is
using abusive language to express their opinion, when injustice makes the other person feel
unable to defend herself/himself, and when the speaker is strongly irritated by something
impossible to do in the speaker’s opinion. Contributors might also mention that they are
“fed up”, “pissed off”, “sick”, and “tired” of something. E.g., “I’m not just an angry fool,
a lot of people are fed up with it and it actually is a half-baked crippled tool.” (project
angular/angular).

Name calling was expressed in issue discussions by mentioning “you”, the name or
identification of someone on GitHub (usually expressed by @username), or the name of a
company in a sentence that has a negative connotation. E.g., “Obviously you didn’t take my
hint on length to heart but don’t come to conclusions about my character because you don’t
know me at all.” (project flutter/flutter).

Contributors expressed Mocking in issue discussions by making fun of the community
rules or mimicking the way someone speaks. E.g., “People can express their opinions but the
mods are just gonna lock it away “cause y’all can’t behave” and “the discussion is getting out
of hand and is not productive anymore”.” (project angular/angular).

Contributors expressed Impatience when other community members asked them to
work on a bug even if they do not have enough resources, when they are unhappy with
the situation that exists for a long time, and when someone comments before reading and
understanding the message. E.g., “As I have stated multiple times you can definitely work
with Atom while offline (or with network requests blocked).” (project atom/atom).

Threat is demonstrated in issue discussions when someone mentions that a person will
be punished if they do not follow the code of conduct, when contributors threaten to stop
using a product, or when someone is challenging someone else. E.g., “I have the urge to drop
Microsoft products and suggest to the company I work for that we do the same wherever we
can.” (project dotnet/roslyn).

Summary RQ4.1: We identified 20 TBDFs in issues locked as too heated, four of which
have never been found by previous work. Annoyance and bitter frustration, name calling,
and mocking are the most common TBDFs in the analyzed issues.

78

RQ4.2. How uncivil are issues locked as too heated?

Building on the sentence-level TBDF coding of RQ4.1, we then consider the overall issue
or comment as civil if it contains sentences coded with positive, neutral, and/or negative
features. An issue/comment is considered uncivil if it contains sentences coded with at least
one uncivil TBDF. Finally, an issue/comment is considered technical if none of its sentences
are coded with a TBDF, i.e., the issue discussion is focused only on technical aspects.

Discussions locked as too heated can still have civil comments or even involve
civil or technical comments only. From the 205 issues locked as too heated, 138 (67.32%)
of them are uncivil, 45 (21.95%) are technical, and 22 (10.73%) issues are civil. From the
5,511 comments part of the 205 issues, 4,793 (86.97%) of them are technical, 486 (8.82%) are
uncivil, and 232 (4.21%) are civil. We also observe that the median numbers of technical,
uncivil, and civil comments in issues locked as too heated are 9, 1, and 0, respectively.
Figure 5.2 presents the distribution of the number of comments per issue of the three types
of comments.

1

10

100

1000

civil technical uncivil
Comment code

#
c
o
m

m
e
n
ts

 p
e
r

is
s
u
e
 (

in
 l
o
g
1
0
)

Figure 5.2 Distribution of the frequency of the three types of comments across issues.

Inspired by the coding framework of Miller et al. [31], we investigate where the uncivil
comments are positioned in uncivil issues. Particularly, we considered three locations: (1) in
the issue description, (2) in the first comment, and (3) in later comments (i.e., emerged from
the discussion). For each one of the 138 issues that included at least one uncivil comment,
the combination of the above three locations resulted in seven conditions of where the uncivil
comments were positioned: (i) only in the issue description, (ii) only in the first comment,
(iii) only in the issue description and the first comment, (iv) in the issue description and it

79

emerged from the discussion, (v) in the first comment and it emerged from the discussion,
(vi) in the issue description, first comment, and it emerged from the discussion, or (vii) only
emerged from the discussion.

As shown in Figure 5.3, uncivil comments emerged from the discussion in 88
issues (63.77%), incivility was present on the issue description and it emerged from the
discussion in 16 issues (11.59%), and it was present on the first comment and emerged from
the discussion in 10 issues (7.25%).

10

1

16

11

88

5

7

Only first comment

Description and first comment

Description, first comment, and emerging from discussion

Only issue description

First comment and emerging from discussion

Description and emerging from discussion

Emerging from discussion

0 25 50 75 100
#uncivil issues

P
o

s
it
io

n
 o

f
u

n
c
iv

il
c
o

m
m

e
n

t

Figure 5.3 Position of uncivil comments in uncivil issues.

Summary RQ4.2: Contrary to expectations, 32.68% of issues locked as too heated are
either technical or civil, and only 8.82% of the comments in issues locked as too heated
are uncivil. Additionally, uncivil comments emerge from the actual discussion in 63.77%
of the uncivil issues.

RQ4.3. How are the observed TBDF types distributed across the locking justi-
fications?

As observed in Figure 5.4, although project contributors did not mention a justification for
locking 70 issues, 60% of those issues (42 issues) were uncivil; the remaining 28 issues (40%)
were either technical (22 issues) or civil (6 issues). This result shows that, in this case,
the lack of justification given by the project contributors is not a reliable reason
to filter out such data, since they still contain a high number of uncivil issues.

80

As expected, 96.15% of the issues locked with a justification of inappropriate/unhealthy
interaction included one or more uncivil comments, while none were civil, and two issues
(3.85%) were technical. These findings might be due to the fact that project contributors can
delete or hide heated comments, which we did not consider in our analysis. When analyzing
the off-topic justification for too heated locked issues, we found that 69.57% (16) of those
issues were uncivil, 21.74% (5) were civil, and 8.70% (2) were technical. In this case, the
latter seven issues should have been locked by the project contributor using the off-topic
option, instead of too heated.

0

20

40

60

No
re

as
on

In
ap

pr
op

ria
te

 in
te

ra
cti

on

Off−
to

pic

Iss
ue

 w
ill

no
t b

e
ad

dr
es

se
d

Iss
ue

/P
R st

at
us

W
ro

ng
 co

m
m

un
ica

tio
n

ch
an

ne
l

Iss
ue

 ca
nn

ot
 b

e
ad

dr
es

se
d

W
or

k p
rio

rit
iza

tio
n

Not
 fo

llo
wing

 co
m

m
un

ity
 ru

les

Add
re

ss
 th

e
iss

ue
 in

 th
e

fu
tu

re

Com
m

un
ica

tio
n

pr
ob

lem
s

Justifications for locking issues

is

su
es

Issue code civil technical uncivil

Figure 5.4 Number of issues per justifications given by maintainers when locking issues as
too heated.

Issues locked due to inappropriate/unhealthy interaction often demonstrate
annoyance and bitter frustration, mocking, and name calling. Figure 5.5 presents
the frequency of TBDFs per identified justification given by maintainers when locking issues
as too heated. Issues locked with no reason mentioned often demonstrate annoyance and
bitter frustration, mocking, and name calling. Interestingly, too heated issues locked because
the conversation was off-topic often demonstrate mocking. This is because most of the issues
in this category are from the project microsoft/vscode and are related to the Santagate
event [137]. To celebrate the holiday season, the VS Code team added a Santa hat to the
settings gear. A user wrote an issue complaining that the Santa hat was very offensive to
him. After that, the VS Code team changed the icon to a snowflake. However, many users

81

got frustrated with that change and started writing a lot of issues and comments filled with
mocking.

Summary RQ4.3: Although all identified justifications for too heated issues contain
some proportion of issues with incivility, contributors only called out for uncivil commu-
nication in 25.37% of all issues, representing 37.68% of the uncivil issues. Furthermore,
60% of the issues in which project contributors did not mention a justification for locking
the issue are actually uncivil.

RQ4.4. How are the observed TBDF types distributed across the discussion
topics?

Figure 5.6 shows the number of civil, technical, and uncivil issues per topic of discussion.
Although 56 issues (71.79%) discussing source code problems are uncivil, 22 issues (28.25%)
are either technical (13 issues) or civil (9 issues). A similar pattern is observed for the topics
user interface and renaming.

Interestingly, none of the issues discussing community/project management,
data collection/protection, translation, and topic not clear exhibit civility, i.e.,
issues discussing the aforementioned topics are either uncivil or technical. All issues dis-
cussing versioning and license are uncivil, and issues discussing performance and
translation are more technical and civil than uncivil (6 technical/civil issues (75%)
against 2 uncivil issues (25%)).

Figure 5.7 presents the frequency of topics per TBDF. We found that issues dis-
cussing source code problems often demonstrate annoyance and bitter frustra-
tion and name calling.

Summary RQ4.4: All too heated issues discussing versioning and license were uncivil,
and issues discussing performance and translation tended to be more technical or civil.

5.5 Discussion and recommendations

We present below a discussion about (i) how projects are using the GitHub locking con-
versations feature, (ii) how incivility is expressed in issues locked as too heated, and (iii)
recommendations for researchers and practitioners.

82

6 524 1 2 12 2 5 1

1028 2 1 8 10 2

1 213 6 1 3 1 2 3

32 1 3 1 2

1 79 2 1 9 1 14

1 5 1 1 13 2 1 1

2 1

510 1 4 6 1 3 1

1 33 3 16 7 1

48 2 2 1

52 22 4 3 19 2 8 10

25 2

1 41 13 3 1 11 4 1 1

1 25145 5 7 62 2 6 14 23

717 1 18 2 4 6

230 3 23 5 4 1

2 81 81 1 2 38 54 4 3

1 71 126 1 12 46 5 9 15

12 2 4

130 1 13 2 4 1

positive
neutral

negative
uncivil

Add
re

ss
 th

e
iss

ue
 in

 th
e

fu
tu

re

Com
m

un
ica

tio
n

pr
ob

lem
s

In
ap

pr
op

ria
te

 in
te

ra
cti

on

Iss
ue

 ca
nn

ot
 b

e
ad

dr
es

se
d

Iss
ue

 w
ill

no
t b

e
ad

dr
es

se
d

Iss
ue

/P
R st

at
us

No
re

as
on

Not
 fo

llo
wing

 co
m

m
un

ity
 ru

les

Off−
to

pic

W
or

k p
rio

rit
iza

tio
n

W
ro

ng
 co

m
m

un
ica

tio
n

ch
an

ne
l

Appreciation and Excitement

Considerateness

Humility

Confusion

Expectation

Friendly joke

Hope to get feedback

Sincere apologies

Commanding

Criticizing oppression

Dissatisfaction

Oppression

Sadness

Annoyance and Bitter frustration

Impatience

Irony

Mocking

Name calling

Threat

Vulgarity

Justifications for locking issues

T
B

D
F

s

0
25
50
75
100
125
150

#sentences

Figure 5.5 Justifications given by maintainers when locking issues as too heated per TBDF.

5.5.1 How are projects using the GitHub locking conversations feature?

We found that projects have different behaviors when locking their issues. In fact, 14 projects
locked more than 90% of their closed issues, while 54 locked less than 10% of their closed
issues. Furthermore, the overall percentage of locked issues (40.02%) was surprising to us; this
might be due to the fact that 61.61% of the locked issues were automatically locked by a bot
(e.g., due to inactivity). We also found that project maintainers give a variety of justifications
to the community when locking issues as too heated, while most of the justifications are not
related to the issue being uncivil.

In fact, it seems that issues locked because the conversation was off-topic should have
been locked as “off-topic” instead, and issues locked with other justifications (such as Is-
sue/PR status, Issue will not be addressed, or Issue cannot be addressed) should have been

83

0

20

40

60

80

Cod
e

pr
ob

lem
s

Use
r i

nt
er

fac
e

Ren
am

ing

New
 fe

at
ur

e

To
pic

 n
ot

 cl
ea

r

Com
m

un
ity

/p
ro

jec
t m

an
ag

em
en

t

La
ck

 o
f a

cc
or

da
nc

e

Dat
a

co
lle

cti
on

/p
ro

te
cti

on

Doc
um

en
ta

tio
n

Per
for

m
an

ce

Erro
r h

an
dli

ng

Tra
ns

lat
ion

Ve
rs

ion
ing

Lic
en

se

Topics

is

su
es

Issue code civil technical uncivil

Figure 5.6 Number of issues per topics of issues locked as too heated.

closed normally instead of locked. Furthermore, we found that issues locked as too heated
often focused on discussing topics related to source code problems, renaming, and user inter-
face. For discussions about source code problems, more specifically, if participants abstain
from demonstrating annoyance and bitter frustration, name calling, and mocking, the con-
versation would be more civil. Some topics seem to not trigger incivility though, such as
performance and translation.

5.5.2 How is incivility expressed in issues locked as too heated?

Similar to code review discussions on LKML [126], we found that issue discussions often
demonstrate annoyance and bitter frustration and name calling. Furthermore, we found that
issue discussions feature expectation, confusion, dissatisfaction, and criticizing oppression,
which have not been found in code review discussions of the LKML [126]. That said, confusion
was investigated in code review discussions of Android, Facebook, and Twitter projects [138].
These differences are most likely a result of the distinct ways in which issues and code reviews
are discussed (i.e., issues focus frequently on the problem space while code reviews focus on
the solution space) as well as the communication style of different OSS communities.

Finally, we found that in most (63.77%) of the issues that included an uncivil comment,
those comments emerged during the discussion, instead of appearing at the beginning of the

84

7

5

2

1

2

2

4

1 7

3

8

6

1

1

17

2

30

28

13

1

3

6

1

1

3

3

2

1

1

2

1

1

1

15

4

1

2

2

1

1

1

1

6

19

13

2

19

2

3

3

4

5

8

1

5

6

1

1

1

1

1

4

1

6

2

3

1

2

5

2

5

3

1

1

7

4

1

2

21

8

41

3

22

2 7

11

5

2

27

3

3

12

14

3

14

4

6

3

4

1

11

1

5

9

1

2

1

20

1

1

13

16

1

14

3

2

5

3

12

1

5

8

11

2

1

28

4

15

34

23

2

4

139

32

23

49

107

13

21

8

2

4

4

2

1

1

1

23

7

8

54

26

1

6

4

1

2

5

3

positive
neutral

negative
uncivil

Com
m

un
ity

/p
ro

jec
t m

an
ag

em
en

t

Dat
a

co
lle

cti
on

/p
ro

te
cti

on

Doc
um

en
ta

tio
n

Erro
r h

an
dli

ng

La
ck

 o
f a

cc
or

da
nc

e

Lic
en

se

New
 fe

at
ur

e

Per
for

m
an

ce

Ren
am

ing

Sou
rc

e
co

de
 p

ro
ble

m
s

To
pic

 n
ot

 cl
ea

r

Tra
ns

lat
ion

Use
r i

nt
er

fac
e

Ve
rs

ion
ing

Appreciation and Excitement

Considerateness

Humility

Confusion

Expectation

Friendly joke

Sincere apologies

Hope to get feedback

Commanding

Dissatisfaction

Oppression

Sadness

Criticizing oppression

Annoyance and Bitter frustration

Impatience

Irony

Mocking

Name calling

Vulgarity

Threat

Topics

T
B

D
F

s

0
25
50
75
100
125
150

#sentences

Figure 5.7 Topics of issues locked as too heated per TBDF.

issue. This might happen due to a variety of reasons. In code review discussions, uncivil com-
ments emerge from the discussion when maintainers do not immediately answer or developers
do not solve the problem with the provided information [31], or the maintainer’s feedback
is inadequate, there is a violation of community conventions, or poor code quality [126].
However, the causes of incivility in locked issues are still unknown and we encourage further
studies to investigate this direction.

5.5.3 Recommendations

Based on our results, we provide a set of recommendations for both researchers and practi-
tioners.

85

For researchers

We have identified three potential pitfalls for researchers that use GitHub locked issues data
“out of the box”, and we provide recommendations to mitigate these problems.

Pitfall 1: Bots automatically lock issues.

About one-third (31.65%) of the projects in our sample had the majority (62.13%) of
closed issues locked by a bot (e.g., the Lock Threads bot7 that locks issues due to inactiv-
ity), instead of a maintainer. Thus, using the GitHub locked issues data as it is might be
misleading, since issues locked as resolved do not necessarily mean that the issue is indeed
resolved. In fact, the GitHub guidelines [128] recommend that issues should be locked when
the conversation is not constructive or violates the project’s code of conduct or GitHub’s
community guidelines, while the bots often lock issues for reasons other than these.

Recommendations: Don’t use all locked issues assuming that the project is following
the GitHub’s guidelines. Do use the GitHub events [139] to verify if the issues have been
locked by a bot. If so, the real reason why the issue is locked should be examined (manually).

Pitfall 2: Issues locked as too heated may not contain uncivil expressions.

According to our analysis of incivility, 32.68% of the issues locked as too heated are
either technical or civil; i.e., they do not contain any uncivil comment. We hypothesize
that maintainers locked such issues as too heated to prevent the discussion from becoming
heated. As a result, researchers should not assume that uncivil expressions would necessarily
appear in issues locked as too heated. In fact, we found that the majority of the comments
(91.18%) in those issues are not heated/uncivil at all. Thus, blindly using this dataset (e.g.,
directly feeding it to a machine learning model to detect inappropriate behavior) might lead
to unreliable results.

Recommendations: Don’t blindly use the issues locked as too heated assuming that
they all include uncivil or too heated discussions. Do manually inspect the data to identify
heated/uncivil comments and construct manually annotated datasets for automated tech-
niques. To reduce this effort, benchmarks could be built and reused.

7https://github.com/dessant/lock-threads

https://github.com/dessant/lock-threads

86

Pitfall 3: The justification given by maintainers may not match the label they used to
lock the issues or reflect the true locking reason.

For all the issues locked with a too heated label, maintainers only explicitly justified
25.37% of them with a comment on inappropriate/unhealthy interaction. For the other
74.63%, the justifications given were, among others, off-topic, issue will not be addressed, or
issue/PR status. Furthermore, among the 70 issues to which the maintainers did not explic-
itly provide a justification for locking, we found that the majority (60%) in fact include an
uncivil comment. There are different explanations of why maintainers provide justifications
other than the reason they used to lock the issue. They might have locked the issue before
it gets too heated as a preventive measure, provided a nebulous justification to avoid con-
frontation, or simply chosen the wrong reason for locking. Researchers should consider these
factors when using the labels or the explicitly given justifications.

Recommendations: Don’t blindly accept either the justification label and/or text as
the true oracle for why an issue is locked. Do scrutinize factors such as the discussion topic,
the context of the discussion, and the presence/absence of unhealthy interaction.

For practitioners

We suggest the following recommendations for practitioners and designers of issue tracking
systems (ITSs).

Recommendation 1: Projects should have clear and explicit guidelines for maintainers
to lock issues according to each locking reason.

We identified three types of projects that locked issues, i.e., projects that locked (i)
more than 90% of their closed issues, (ii) less than 10% of their closed issues, and (iii) be-
tween 54% and 88% of their closed issues. Hence, having explicit guidelines would not only
guarantee consistency amongst the maintainers of a given OSS project but would also ensure
transparency to the entire community.

Recommendation 2: Projects should not abuse the locking issue feature (e.g., locking
instead of closing issues).

According to the GitHub guidelines [51], conversations should only be locked when they
are not constructive. However, we found that 17.72% of projects locked more than 90% of

87

their closed issues. This could have an adverse effect on the project since OSS contributors
might assume at first sight that the community is uncivil.

Recommendation 3: ITSs should provide features that (i) allow projects to add custom
locking reasons, (ii) allow maintainers to select more than one locking reason (e.g., spam
and too heated), and (iii) encourage maintainers to add a justification of why the issue
is being locked.

We found that maintainers give different justifications when locking issues and that such
justifications do not match the label on the GitHub platform in 74.63% of the issues locked
as too heated. Furthermore, maintainers did not mention a justification for locking 70 issues
as too heated, out of which we could not observe signs of incivility in 28 issues. Finally, some
too heated issues are also spam, such as issues related to the Santagate event. New features
in ITSs are necessary to mitigate the aforementioned problems.

5.6 Threats to validity

Construct validity. We used incivility, particularly Ferreira et al.’s framework of TBDFs [126],
as a proxy to identify and measure heated discussions and expressions. While this is the most
appropriate framework we found adaptable to our context, incivility defined in this frame-
work may not completely overlap with the concept of heated discussions.

Internal validity. First, our qualitative coding can lead to inconsistencies due to its subjec-
tiveness. To minimize this threat, our codebooks were interactively improved with all three
authors. Additionally, we validated our codings with a second rater, reaching an almost
perfect agreement for the coding of justifications given by maintainers and a substantial
agreement for the TBDFs. Second, we only coded for comments that are visible on the
GitHub platform and were not able to analyze hidden or deleted comments. So it is possible
that issues coded as technical or civil actually included hidden or deleted comments that were
uncivil. Third, we only qualitatively analyzed issues locked as too heated, but since adding
a reason to lock issues is optional on the GitHub platform, we might have missed heated
issues that were not explicitly labeled by a maintainer with a reason or that were labeled
with another reason.

External validity. Although the projects were carefully selected and filtered based on a set
of criteria, our results are based on a sample of 79 projects that have at least one issue locked

88

as too heated in the analyzed period. Hence, our results cannot be generalized to projects
that do not have any issues locked as too heated. To minimize this threat, we compared
locked and non-locked issues in our quantitative analyses and we qualitatively assessed all
comments in all issues locked as too heated. Furthermore, the selected projects might not
be the ones with the largest number of locked issues. Although this is a threat to the study
validity, we could still find interesting insights in the analyzed sample.

5.7 Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada for
funding this research through the Discovery Grants Program [RGPIN-2018-04470].

5.8 Chapter summary

In this chapter, we focused on an empirical study aimed at understanding the characteristics
of GitHub locked issues, particularly those locked as too heated. In our sample of 79 projects,
we found that projects have different behaviors when it comes to locking issues, and that
locked issues tend to have a similar number of comments, participants, and emoji reactions
to non-locked issues.

Through an analysis of the 205 issues locked as too heated in our dataset, we found
that the locking justifications provided by the maintainers in the comments do not always
match the label used to lock the issue. The topics covered by those issues are also diverse.
Leveraging a framework capturing uncivil behavior in software engineering discussions, we
identified that about one-third of the issues locked as too heated do not contain any uncivil
comments. Our analysis also revealed patterns in how the civil and uncivil discussion features
are distributed across the explicit justifications and the discussion topics.

Together, our results provide a detailed overview of how GitHub’s locking conversations
feature is used in practice, and we suggest concrete pitfalls and recommendations for software
engineering researchers and practitioners using this information.

Now that we better understand how incivility occurs in code reviews (chapter 4) and in
issue discussions (this chapter), the next chapter investigates the extent to which incivility in
code review and issue discussions can be accurately detected by machine learning techniques.

89

CHAPTER 6 INCIVILITY DETECTION IN OPEN SOURCE CODE
REVIEW AND ISSUE DISCUSSIONS

6.1 Introduction

Open source software (OSS) development provides abundant opportunities for public dis-
cussions, which happen within the context of issue tracking, bug report, code review, and
user feedback, to just name a few. These opportunities characterize the democratic essence of
open source development by allowing anyone who has the relevant knowledge to contribute to
the development process and shape the project one way or another. However, as in all types
of public discussions, conversations that happen in open source development can become
uncivil. Incivility in such contexts is defined as features of discussion that convey an unnec-
essarily disrespectful tone toward the discussion forum, its participants, or its topics [126].
This phenomenon, along with related concepts such as toxicity, is a topic that has recently
attracted close attention in the software engineering community [10–18,64,140].

Previous research [14, 126] have indicated that negative experiences involving uncivil
encounters may be caused by various factors such as the violation of community conven-
tions, inappropriate solutions proposed by developers, inappropriate feedback provided by
maintainers, personal opinions with the OSS project, different points of view about technical
concerns, or disagreement about politics and/or OSS ideology. Furthermore, uncivil expres-
sions can have important impacts on the communication and the discussion participants,
resulting in escalated incivility, discontinued conversation, or disengaged contributors. As
such, many major software engineering platforms such as Stack Overflow and GitHub have
incorporated mechanisms for labeling and removing offensive and toxic languages [127,141].
Many of these approaches involve manual inspection, which requires considerable human ef-
forts given the large amount of content generated daily in those platforms. Hence, automated
techniques for detecting uncivil communication in software engineering platforms would be
helpful for open source communities.

Developing such automated techniques, however, involves major challenges. First, al-
though their impacts are not neglectable, uncivil exchanges in open source communities can
be infrequent [126, 140]. The lack of uncivil cases poses challenges in creating datasets for
training and evaluating the automated techniques. Second, incivility can be manifested in
various ways. For example, previous work has identified many characteristics of discussion
that can be seen as uncivil. Among them, there are straightforward features such as name
calling and vulgarity. But at the same time, incivility can be manifested through discus-

90

sion characteristics such as irony, mocking, and threat that are difficult to detect automati-
cally [126]. As a result, many existing software engineering sentiment analysis tools do not
perform well when detecting incivility [126]. Finally, incivility can be “very much in the eye
of the beholder” [6]. Thus, the discussion context can have strong indications on whether
a comment is uncivil. So analyzing the text in isolation may lead to inaccurate results. In
this chapter, we aim to detect incivility by addressing the aforementioned problems. More
specifically, we aim answering the research questions described on Section 6.2.

6.2 Research questions

Based on the aforementioned goals, we posit the following three research questions.

RQ1. How well can the BERT-based model detect incivility compared to classical
machine learning models?

To the best of our knowledge, none of the previous research has built classifiers to detect
incivility in open source code review or issue discussions. Hence, it is unknown if incivility
can be automatically detected with a good performance in such discussions. This research
question seeks to address this gap by comparing the performance of classical machine learning
models (such as Naive Bayes and Support Vector Machine) with the BERT deep learning
model in detecting incivility. BERT [68] is known for outperforming classical natural language
processing (NLP) techniques in various problems, including text classification [82]. It is being
widely used in the software engineering domain, especially for sentiment analysis [83–85].
Based on the results of previous research on other tasks, we hypothesize that BERT can
detect incivility in open source code review and issue discussions more accurately than the
classical machine learning models.

RQ2. To what extent does the context help to detect incivility in code review
and issue discussions?

Ferreira et al. [126] have shown that the context is an important factor that should be
considered when detecting incivility. However, Murgia et al. [142] found that contexts did not
help human raters reach an agreement on assessing emotion expressed in discussions on issue
tracking systems. Hence, in RQ2, we aim to assess if adding the context helps to improve the
performance of automated incivility detection techniques. Particularly, we considered the
previous email or comment for the detection of incivility of the current email or comment.
We hypothesize that the context improves the classifiers’ performance.

RQ3. How well do the incivility detection techniques work in a cross-platform

91

setting?

Building a manually annotated gold standard for incivility detection on a particular
platform is a time-consuming task. Currently, only two datasets are available in the lit-
erature [126, 140], focusing on code review discussions and issue discussions, respectively.
Furthermore, discussions that happened on different platforms could have characteristics
that indicate incivility in different ways. Hence, in RQ3, we aim to assess if it is feasible
to use BERT and classical machine learning models to detect incivility in a cross-platform
setting. This information will help us assess the performance of incivility detection on a new
dataset when a gold standard is not available.

6.3 Methods

6.3.1 Datasets and data preprocessing

The general goal of this study is to assess the extent to which incivility can be detected in
code review and issue discussions. To the best of our knowledge, only two incivility datasets
are available in the literature, i.e., a code review dataset comprising code review emails
of rejected patches that were sent to Linux Kernel Mailing List (LKML) [126] and an issues
dataset comprising GitHub issues locked as too heated [140]. We used both datasets to
train our classifiers.

For each dataset, the natural language emails (in the case of the code review dataset)
and comments (in the case of the GitHub issues dataset) were first labeled as technical or
non-technical. Following the definition used by the datasets, the technical class comprises
emails and comments that are purely focused on technical discussions, i.e., none of their
sentences convey a mood or style of expression [126]. On the contrary, non-technical
code review emails or issue comments are those in which at least one sentence expresses a
tone-bearing discussion feature (TBDF). The datasets use the concept of TBDF to indicate
“conversational characteristics demonstrated in a written sentence that convey a mood or
style of expression” [126]. In total, there are 1,365 technical emails and 168 non-technical
emails in the code review dataset; there are 4,793 technical comments and 718 non-technical
comments in the issues dataset.

Next, sentences in non-technical emails and comments were then further categorized
as civil or uncivil. Civil sentences are those that contain positive, neutral, or negative
(but not uncivil) TBDFs, such as excitement, friendly joke, or sadness, as defined in the
dataset [126,140]. Conversely, the uncivil class contains sentences that demonstrate at least
one uncivil TBDF, such as bitter frustration, impatience, mocking, or vulgarity. There are 117

92

civil sentences and 276 uncivil sentences in the non-technical emails of the code review dataset
and there are 353 civil sentences and 896 uncivil sentences in the non-technical comments of
the issues dataset.

Our classification tasks are thus two-layered: first, we aim to classify code review
emails/issue comments into technical or non-technical (CT1); then, for non-technical
contents, we aim to classify sentences into civil or uncivil (CT2). The goal to separate
these two classification tasks is to assess if there is a difference to predict incivility according
to the granularity of the text, i.e., the technical/non-technical classification is more coarse-
grained since it is in the email/comment level and the civil/uncivil classification is more
fine-grained since it is done in the sentence level. Furthermore, in a concrete scenario in
which open source contributors would use our classifiers to assess whether their comments
are uncivil or not, first we would detect if the text is technical or not. If it is non-technical,
then we would detect (in)civility.

Data preprocessing

We consider a series of steps to reduce noise on the datasets described above. First, we
exclude sentences coded with civil and uncivil TBDFs from the civil dataset because similar
instances with different target classes can cause the models to perform poorly.

1. We manually remove the source code (including variable names, function names, stack
traces, etc.), words other than English, emojis, and GitHub username mentions (such as
@username) from the text;

2. We automatically remove the header of code review emails, including the first line that
follows the regex pattern “On (.*?) wrote:”;

3. We automatically remove greetings such as “Hi [person_name]” and statements such as
“Reviewed by [person_name]” or “Tested by [person_name]”;

4. We automatically remove any signature statement that is in the following list of words:
“warm regards”, “kind regards”, “regards”, “cheers”, “many thanks”, “thanks”, “sin-
cerely”, “best”, “thank you”, “talk soon”, “cordially”, “yours truly”, “all the best”, “best
regards”, “best wishes”, “looking forward to hearing from you”, “sincerely yours”, “thanks
again”, “with appreciation”, “with gratitude”, and “yours sincerely”;

5. We automatically remove all reply quotes, usually represented by “<”;

93

6. We automatically remove stop words and punctuation; we perform stemming on each
remaining word.

6.3.2 Feature extraction for classical ML classifiers

This step consists in extracting features to detect incivility in code review emails/issues
comments and sentences using supervised techniques. We created two sets of features for
both classification tasks, namely textual features and conversational features, which were
inspired by the work of Arya et al. [65] and adapted to our context.

Table 6.1 Conversational features of code review and issue discussions
Feature type Classification task Feature name Description Values

Participant CT1, CT2 AUTHOR_ROLE Email author’s role in the Linux kernel. We first group identities that have the same names or the same email addresses. The
author is considered a maintainer if one of those identities appears in the MAINTAINERS file [143], and a developer otherwise. {Maintainer, Developer}

Length

CT1, CT2 FIRST_AUTHOR Flag if the email/comment author also sent the first email/comment of thread (i.e., original patch/issue description). {True, False}
CT1 CHAR_TEXT Number of characters in the email/comment. R≥0 = {x ∈ R|x≥0}
CT1 LEN_TEXT Number of words in the email/comment divided by that of the longest email/comment in the thread. (0,1]
CT2 CHAR_SENT Number of characters in the sentence. (0,1]
CT2 LEN_SENT_T Number of words in sentence divided by that of longest sentence in the thread. (0,1]
CT2 LEN_SENT_C Number of words in sentence divided by that of longest sentence in the email/comment. (0,1]

Structural

CT1 POS_TEXT_T Position of email/comment in the thread divided by the number of emails/comments in thread. (0,1]

CT2 POS_SENT_E Position of sentence in email/comment divided by the number of sentences in email/comment. Sentences are identified based
on the following regular expression: (? <= [.!?]). (0,1]

CT2 POS_SENT_T Position of sentence in thread divided by the number of sentences in thread. Sentences are identified based on the following
regular expression: (? <= [.!?]). (0,1]

CT1, CT2 LAST_COMMENT Flag if it is the last email/comment or not. {True, False}

Temporal

CT1, CT2 TIME_FIRST_COMMENT Time from first email/comment to current email/comment divided by the total time of the thread. [0, 1]
CT1, CT2 TIME_TEXT_LAST Time from current email/comment to last email/comment divided by the total time of the thread. [0, 1]
CT1, CT2 TIME_PREVIOUS_COMMENT Time from previous email/comment to current email/comment divided by the total time of the thread. [0, 1]
CT1, CT2 TIME_TEXT_NEXT Time from current email/comment to next email/comment divided by total time of the thread. [0, 1]

Note: CT1 = classification task 1 on technical and non-technical emails/comments, CT2 = classification
task 2 on civil and uncivil sentences.

Textual features: We consider n-grams as textual features. First, we perform text
vectorization by transforming each word of the text into one feature. In short, we create
feature vectors that are based on the absolute terms frequencies. Second, we use n-grams
that represent the appearance of n tokens sequences. Then, we use weighted TF-IDF to
transform both features into numerical representations, i.e., the frequency of words and n-
grams in the text are multiplied by their inverse document frequency [65]. In this work, we
consider 1-gram (i.e., word frequency) and 2-gram. We tune our models by considering only
the n-gram configuration that yields the best result for each model.

Conversational features describe the participants, length, structural, and temporal
attributes of code review and issue discussions. Each one of these features are described in
Table 6.1, along with the classification tasks in which they are used. The conversational
features include the following categories.

• Participant features include features describing the discussion participants, i.e., authors
who wrote the code review email or issue comment as well as is the author is a maintainer
or a developer.

94

• Length features concern the length of emails, comments, or sentences. These specific
features indicate length in terms of the number of characters in the email/comment or the
sentence, as well as the relative number of words with respect to other emails, comments,
or sentences.

• Structural features describe the location of an email, comment, or sentence in relation
to the entire email thread, issue thread, or the current email/comment itself.

• Temporal features concern the time that the email/comment was sent with respect to
the immediately previous and next email/comment as well as the beginning and the end
of the email/issue thread.

6.3.3 Data augmentation and class balancing

Our datasets, especially the ones for civil/uncivil classification, are relatively small. To
increase the training set and to boost performance for both classification tasks, we used the
Easy Data Augmentation (EDA) [144] techniques to augment the current datasets; the EDA
techniques are known to contribute to performance gains of classifications when the dataset
is small [144]. Additionally, the datasets we use are highly imbalanced, skewing toward
technical emails/comments and uncivil sentences. Machine learning classifiers are well known
for underperforming when the data is skewed toward one class [145, 146]. To address this
issue, we explored and evaluated three class balancing techniques that we describe in this
section.

Easy Data Augmentation Techniques (EDA)

In this study, we use the Easy Data Augmentation (EDA) Techniques [144] to increase the
size of our datasets. EDA is composed of four operations:

• Synonym Replacement (SR) consists of randomly choosing n words (excluding stop
words) from the text and replacing them with a random synonym.

• Random Insertion (RI) consists of finding a synonym of a random word in the text
(excluding stop words) and inserting the synonym in a random position in the text. This
process is repeated n times.

• Random Swap (RS) is when two words are randomly chosen and their positions are
swapped. This is repeated n times.

95

Table 6.2 EDA hyperparameters search space
Classification task α_SR α_RI α_RS p_RD naug code review dataset naug GitHub issues dataset

CT1

0.2 0.1 0.05 0.05 4 4
0.2 0.1 0.05 0.05 8 -
0.2 0.05 0.05 0.05 4 4
0.2 0.05 0.05 0.05 8 -
0.05 0.1 0.05 0.05 4 4
0.05 0.1 0.05 0.05 8 -
0.05 0.05 0.05 0.05 4 4
0.05 0.05 0.05 0.05 8 -

CT2

0.2 0.1 0.05 0.05 8 8
0.2 0.1 0.05 0.05 16 16
0.2 0.05 0.05 0.05 8 8
0.2 0.05 0.05 0.05 16 16
0.05 0.1 0.05 0.05 8 8
0.05 0.1 0.05 0.05 16 16
0.05 0.05 0.05 0.05 8 8
0.05 0.05 0.05 0.05 16 16

Note: CT1 = classification task 1 on technical and non-technical emails/comments, CT2 = classification
task 2 on civil and uncivil sentences.

• Random Deletion (RD) consists of randomly removing words in a sentence with prob-
ability p.

To find a synonym to perform the SR and RI operations, we use the NLTK wordnet
corpus and the function synsets (word) to lookup for the word’s synonym. Furthermore,
we use the NLTK’s list of English stopwords [147] to exclude stop words from the text. To
mitigate the threat of long texts having more words than short texts, Wei and Zou [144]
suggest varying the number of words n for SR, RI, and RS based on the text length l

with the formula n = αl, where α is a hyperparameter that indicates the percentage of
words in a text to be changed. Furthermore, for each original email/comment/sentence, it
is possible to generate naug augmented emails/comments/sentences. We evaluated different
combinations of hyperparameters to augment the training set, as shown in Table 6.2. The
hyperparameter values were chosen based on the training set size and thresholds that result
in high performance for each EDA operation, as recommended by Wei and Zou [144]. The
hyperparameter tuning process is described in detail in Section 6.3.4.

Class balancing techniques

To address the class imbalance problem of our dataset [145], we explored three class balanc-
ing techniques: random oversampling, random undersampling, and Synthetic Minority Over-
sampling Technique (SMOTE). We implemented these techniques using the Python library
imblearn to compare their results when answering RQ1. The class balancing techniques are
applied after the datasets are augmented by EDA.

96

• Random oversampling aims at taking random samples for the minority class and du-
plicating them until it reaches a size comparable to the majority class [148].

• Random undersampling selects random samples from the majority class and removes
them from the dataset until it reaches a size comparable to the minority class [146].

• SMOTE is a method in which the minority class is oversampled by creating new samples
and the majority class is undersampled [118].

6.3.4 Training and evaluating the classifiers

Figure 6.1 depicts the key components in the pipeline of the incivility classifiers explored in
this study. To answer our research questions, we implemented six classical machine learning
models (Section 6.3.4) and one deep learning model (Section 6.3.4). After preprocessing
the data (Section 6.3.1) and extracting the features for the classical machine learning models
(Section 6.3.2), we stratify our dataset into train, test, and validation sets. Then, we augment
our training set (Section 6.3.3) and balance our classes (Section 6.3.3). During training,
to obtain the optimal models, we perform hyperparameter tuning to find out the best set
of hyperparameters. Finally, we test the trained classifiers on the test set and assess the
performance of each classifier according to four performance metrics (Section 6.3.5).

Data
Preprocessing

Blue-colored boxes indicate components with hyperparameters.

Classical ML Models
5-fold nested cross-validation

Class Balancing

SMOTE

Random Undersampling

Random Oversampling

One of the following:

Data augmentation
All of the following,
on the training sets:

Random Deletion
Random Insertion
Synonym Replacement
Random Swap

Features Extraction

Conversational
Features

Textual
Features

Logistic Regression

Naive Bayes

Random Forest

SVM

CART

KNN

BERT Base Model
5-fold cross-validation with Bayesian optimization of hyperparameters

Class Balancing

Random Oversampling

One of the following:

Random Undersampling

No Class Balancing

Data augmentation
All of the following,
on the training sets:

Random Deletion
Random Insertion
Synonym Replacement
Random Swap

BERT base model
(uncased)

Two Classification Tasks: Civil UncivilCT2:Technical Non-technicalCT1:Datasets

GitHub issues

Code review emails

Precision

Recall

F1-score

MCC

Performance Metrics

Figure 6.1 Key components and main pipeline of incivility classifiers

97

Classical machine learning models

We consider six classical classifiers to detect incivility in code review and issues discussions
(RQ1). The classifiers were implemented using the sklearn Python library.

• Classification and Regression Tree (CART) is a binary tree that aims at producing
rules that predict the value of an outcome variable [63].

• k-nearest neighbors (KNN) assumes that similar datapoints are close to each other.
Hence, the algorithm relies on distance metrics for classification. The resulting class is
the one that has the nearest neighbors [60].

• Logistic Regression (LR) uses a logistic function to model the dependent variable. The
goal of the algorithm is to find the best fitting model to describe the relationship between
the dependent and independent variable [60].

• Naive Bayes (NB) is a probabilistic classifier based on the Bayes theorem. It assumes
that the presence (or absence) of a particular feature of a class is unrelated to the presence
(or absence) of any other feature [62]. In this work, our text classification is performed us-
ing the Multinomial Naive Bayes model that has improved performance over the Bernoulli
model for text classification [149].

• Random Forest (RF) is a group of decision trees whose nodes are defined based on
the training data [60]. The most frequent label found by the trees from the forest is the
resulting class [65].

• Support Vector Machine (SVM) is a linear model that creates a line or a hyperplane
separating the data into two classes [150].

During the training process, we performed nested cross-validation with grid search [151]
to test a combination of hyperparameters and evaluate the models’ performance. Specifically,
we first split the dataset into train and test sets in the outer stratified 5-fold cross-validation
for model evaluation. The training set obtained from the outer cross-validation is then
further split into training (for training the models) and validation (for selecting the best
hyperparameters) sets in the inner stratified 5-fold cross-validation. In addition to the EDA
hyperparameters, Table 6.3 presents the search space for the additional hyperparameters of
each model, which were defined according to the literature. Note that we used the default
values for hyperparameters not described in Table 6.3. In each outer cross-validation fold,
we used the performance metrics presented in Section 6.3.5 to evaluate the performance of
the classifier.

98

BERT base model

We use the uncased BERT base model, pretrained on the English language [152], to detect
incivility. We chose to use the uncased model (i.e., the model does not make a differ-
ence between “english” and “English”) because the case information is not relevant in our
classification tasks. Furthermore, due to the large number of parameters in this model (ap-
proximately 110 million parameters), we did not pretrain it from scratch to reduce the risk
of overfitting [153]. The classification task is done using the Transformers PyTorch library
with AutoModelForSequenceClassification [154], which has a classification head.

We split the input dataset into train, test, and evaluation datasets in a 70-15-15 ra-
tio stratified along the labels. To optimize BERT’s hyperparameters, we run bayesian
optimization [155] with 50 trials for each one of the EDA parameter settings (see Sec-
tion 6.3.3), i.e., eight times. BERT’s hyperparameter optimization was done using the
hyperparameter_search() function [156] from the Trainer class with optuna as the back-
end. The bayesian optimization takes in the training and evaluation sets as inputs; the former
is used to train the model with different hyperparameters and the latter is used to select the
best hyperparameters. The search space for the hyperparameters is presented in Table 6.3;
we used the default values of hyperparameters not described in Table 6.3.

After obtaining the best set of hyperparameters, we perform a 5-fold cross-validation to
train and test BERT. For that, we use the Trainer [157] class from the Transformers library.
The training adopts an epoch evaluating strategy, i.e., evaluating BERT’s performance at
the end of each epoch using the performance metrics described in Section 6.3.5.

Table 6.3 Search space for hyperparameter tuning
Model Hyperparameter Default value Searched values Steps Reference
BERT learning_rate 5−5 log([1−5, 1−3]) -

per_device_train_batch_size 8 {4, 8, 16} -
warmup_steps [0, 5−5] [0, 500] 1
num_train_epochs 3 [2, 10] 1
weight_decay 0.0 log([0.01, 0.3]) -

CART max_depth None {1, 2, 5, 10, 20, 30, 40, 50} - [158]
min_samples_leaf 1 {1, 2, 4, 8, 16, 32} - [158]

KNN n_neighbors 5 [1, 10] 1 [159]
leaf_size 30 [10, 100] 10 [159]

Logistic Regression C 1.0 {0.01, 0.1, 1.0, 10.0} - [65]

Multinomial Naive Bayes alpha 1.0 [0.0, 1.0] 0.1 [159]

Random Forest n_estimators 100 {10, 50, 100} - [65]
max_features auto {2, 5, 10} - [65]

SVM C 1.0 [2−5, 215] 2−2 [160]
gamma scale [2−15, 23] 2−2 [160]

99

6.3.5 Performance metrics

To compare the performance of our classifiers, we evaluate their performances using the
confusion matrix: TP is the number of true positives, FN is the number of false negatives,
FP is the number of positives, and TN is the number of true negatives.

Based on this matrix, we first computed two well-known metrics, namely precision and
recall [161]. The precision of a given target class (i.e., technical, non-technical, civil, or
uncivil) is defined by the ratio of emails, comments, or sentences for which a given classifier
correctly predicted that target class, i.e., precision = TP/(TP + FP). The precision value
is always between 0 (poor model) and 1 (perfect model). In each classification task of our
experiments, we first calculated the precision in each class, then the macro-average metric
across both classes to represent the overall precision of the models.

The recall of a given target class is the ratio of all emails, comments, or sentences with
that target class that a given classifier was able to find, i.e., recall = TP/(TP + FN). The
recall value is always between 0 (poor model) and 1 (perfect model). Similar to precision,
we calculated per-class and macro-averaged recall metrics for each classification task.

Then, to have a single value representing the goodness of the models, we computed the
F1-score, which is the harmonic mean of precision and recall, i.e., F1 = 2 · precision·recall

precision+recall
.

The F1-score is independent of the number of true negatives and it is highly influenced by
classes labeled as positive. The F1-score is always between 0 (low precision and low recall)
and 1 (perfect precision and perfect recall). In our experiments, we calculated per-class and
macro-averaged F1 metrics.

Finally, we computed the Matthews Correlation Coefficient (MCC) [162], which
is a single-value classification metric that is more interpretable and robust to changes in the
prediction goal [163] because it summarizes the results of all four quadrants of a confusion
matrix, i.e., true positive, false negative, true negative, and false positive [164]. The MCC
metric is calculated as MCC = T P ·T N−F P ·F N√

(T P +F P)(T P +F N)(T N+F P)+(T N+F N)
and its value is always

between -1 (poor model) and 1 (perfect model); 0 suggesting that the model’s performance is
equal to random prediction. To calculate TP, TN, FP, and FN for MCC, we considered civil
and technical as positive classes and uncivil and non-technical as negative classes, although
this selection does not influence the end results. To be able to compare the MCC scores
with the other performance metrics (i.e., macro-averaged precision, recall, and F1-score),
we normalized the MCC values to the [0, 1] interval. Therefore, the normalized MCC
(nMCC) is defined by nMCC = MCC+1

2 [163, 165]. We also use nMCC as the primary
metric during hyperparameter evaluation (Section 6.3.4).

100

6.3.6 Experimental design to answer the RQs

In this section, we present the experimental design to answer each research question. All
data and scripts used in our experiments are available in our replication package1.

Detecting incivility in code reviews and issues discussions (RQ1)

In RQ1, we have two classification tasks for each dataset, i.e., (1) classification of code
review emails and issue comments into technical and non-technical and (2) classification of
code review sentences and issue sentences into civil and uncivil.

For each classification task and for each dataset, we compare BERT with six classical
machine learning models. We assess BERT with three class balancing conditions: no class
balancing, random oversampling, and random undersampling. It was not possible to run
SMOTE with BERT because the current SMOTE implementations need to convert textual
features to numerical vectors (via tokenization to a form suitable for SMOTE) [166] and
cannot be applied to textual features that are used for BERT. The classical machine learning
models are assessed with three class balancing techniques: random oversampling, random
undersampling, and SMOTE. Thus, for each classification task and each dataset, we have
21 experimental conditions (7 classifiers * 3 balancing techniques). The hyperparameters
are tuned separately for each combination of classification task, dataset, classifier, and class
balancing technique. In this chapter, we report the results related to hyperparameters that
had the best averaged nMCC score across all outer folds.

Using the context to predict incivility (RQ2)

To answer RQ2, we considered the previous email/comment in the same thread, ordered by
date/time, as the context in the classification tasks. Specifically, for each email/comment
included in the datasets, we retrieve the previous email/comment from the same email or issue
thread and concatenate it with the original email/comment to create a “context dataset”.

We could not consider the classical classifiers in RQ2 because the extracted features rely
solely on the current email/ comment (see Section 6.3.2). Hence, RQ2 focuses only on BERT.
We use the hyperparameters, the EDA parameter configuration, and the imbalance handling
technique that obtained the best nMCC score in RQ1 for BERT in each classification task
for each dataset.

To analyze if the context helps to detect incivility, we compare the difference between
1https://github.com/isabellavieira/incivility_detection_oss_discussions

https://github.com/isabellavieira/incivility_detection_oss_discussions

101

the performance scores of RQ1 and RQ2. Hence, for each performance metric (PM), ∆PM =
PMRQ2 − PMRQ1. We define whether the context helps to detect incivility or not according
to the following conditions:

∆PM =

< 0 : the context does not help
> 0 : the context helps
= 0 : the context does not make a difference

Detecting incivility in a cross-platform setting (RQ3)

To answer RQ3, we train our models and test them in the other dataset for each classification
task; i.e., we train our classifiers on the code review dataset and test them on the GitHub
issues dataset, and vice versa. For that, we use the hyperparameters, the EDA parameters
configuration, and the imbalance handling techniques that obtained the best nMCC score in
RQ1 for the dataset used to train the classifiers. Because the best hyperparameters can differ
among the five folds for the classical machine learning models, we pick the hyperparameters
that were chosen most frequently across all five folds. If there is a tie between two sets of
hyperparameters, we then choose the hyperparameter from the fold that had the highest
nMCC score.

6.4 Results

6.4.1 RQ1. Models’ performance on incivility detection

Classification into technical and non-technical

Figure 6.2 presents the average performance scores for each experiment condition for the
code reviews (left) and issues (right) datasets and Figure 6.3 shows the performance scores
per target class.

For the code reviews dataset, BERT without class balancing and with ran-
dom undersampling has the best performance compared to the classical clas-
sifiers, with F1 = 0.92 and 0.94, and nMCC = 0.91 and 0.94, respectively. Classical
machine learning models underperform to classify non-technical code review
emails. The nMCC scores for the classical classifiers and for BERT with random over-
sampling (ranging from 0.50 to 0.64) are very low compared to BERT’s nMCC scores with
random understamplinng and without class balancing (0.94 and 0.91, respectively), showing
that such classifiers are not effective to detect non-technical code review emails. Figure 6.3
(left) confirms this result, indicating that the non-technical class (red color) having overall

102

Figure 6.2 Average performance scores per class balancing technique and classifier for the
classification of technical and non-technical emails/comments (CT1).

lower precision and recall than the technical class (green color) for the underperforming clas-
sifiers. We also observe that among the classical classifiers, Random Forest (RF) achieved
the highest precision of approximately 0.7 regardless of the class balancing technique, but
with a low recall of approximately 0.5; on the contrary, the Logistic Regression (LR) classifier
achieved the highest recall of approximately 0.7, but a relatively low precision of about 0.6.

For the issues dataset, BERT also performs better than the classical classi-
fiers in all class balancing conditions. Similar to the code reviews dataset, BERT is able
to precisely classify technical and non-technical issue comments (precision ≈ 0.9), finding a
substantial number of issue comments (recall ≈ 0.9), and effectively classifying the technical
and non-technical issue comments (nMCC ≈ 0.9), in all class balancing conditions. Further-
more, classical classifiers also underperform to classify non-technical issue com-
ments. The nMCC scores range from 0.57 to 0.69 demonstrating that non-technical issue
comments are not effectively detected with classical machine learning models (see Figure 6.3
(right)), except for RF with random oversampling and SVM with random undersampling, in
which their precision metrics are better for the non-technical class (precisionRF = 0.91 and
precisionSV M = 1.0) than the technical class (precisionRF = 0.87 and precisionSV M = 0.87);
yet their recalls are very low for the non-technical class (recallRF = 0.07, recallSV M = 0.03).

103

Figure 6.3 Performance scores per target class for the classification of technical and non-
technical emails/comments (CT1).

It is surprising that BERT has a good performance overall even without any
class balancing technique. This result is confirmed by Figure 6.3, which shows that even
without a class balancing technique both technical and non-technical classes have a good
F1-score for both the code reviews dataset (non − technical = 0.84 and technical = 0.98)
and the issues dataset (non− technical = 0.86 and technical = 0.98).

Classification into civil and uncivil

Figure 6.4 illustrates the performance metrics for each experiment setting and for both the
code reviews (left) and issues (right) datasets. Similarly, Figure 6.5 presents the performance
metrics per target class for both datasets.

BERT is the best performing classifier regardless of the class balancing tech-
nique for the code reviews dataset. We observe that, similar to the technical/non-
technical classification task, BERT has the best performance (precision ≈ 0.9, recall ≈ 0.9,
F1 ≈ 0.9, nMCC ≈ 0.9) to classify civil and uncivil code review sentences. However, clas-
sical machine learning techniques tend to perform better in the classification of civil/uncivil
sentences than in technical/ non-technical emails, with nMCC scores ranging from 0.58 to
0.77 (compared to between 0.50 and 0.64 for the technical/ non-technical classification). Ad-

104

Figure 6.4 Average performance scores per class balancing technique and classifier for the
classification of civil and uncivil sentences (CT2).

ditionally, the classical models underperform when classifying civil code review
sentences (see Figure 6.5 (left)). The Logistic Regression, Naive Bayes, and Random Forest
classifiers have overall promising results though, with precision ≈ 0.8 and recall ≈ 0.7.

For the issue comments dataset, BERT is also the best classifier for detecting
incivility regardless of which class balancing technique is used (precision ≈ 0.9,
recall ≈ 0.9). Although classical techniques also tend to underperform when classifying civil
issue sentences (see Figure 6.5 (right)), Logistic Regression and Random Forest have good
precision (≈ 0.71 for LR and ≈ 0.75 for RF) and recall (≈ 0.72 for LR and ≈ 0.67 for RF)
overall.

Summary RQ1: BERT performs better than the classical machine learning classifiers
regardless of the class balancing technique for technical/non-technical and civil/uncivil
classification in both datasets. Classical machine learning techniques tend to underper-
form when classifying the non-technical and civil classes.

6.4.2 RQ2. Incivility detection using the context

Figure 6.6 (a) and (b) present the difference of performance metrics between the BERT
results considering the context (RQ2) and without the context (RQ1), for the technical/non-

105

Figure 6.5 Performance scores per target class for the classification of civil and uncivil sen-
tences (CT2).

technical classification and the civil/uncivil classification, respectively.

−0.02

−0.2

−0.11

−0.01

−0.14

−0.07

−0.01

−0.22

−0.11

−0.02 −0.04 −0.03

−0.02

−0.21

−0.11

−0.01

−0.08
−0.05

−0.11
−0.05

Code reviews dataset Issues dataset
Technical Non−technical Average Technical Non−technical Average

Precision
R

ecall
F1

nM
C

C

BERT BERT BERT BERT BERT BERT

−0.20
−0.15
−0.10
−0.05

0.00
0.05

−0.20
−0.15
−0.10
−0.05

0.00
0.05

−0.20
−0.15
−0.10
−0.05

0.00
0.05

−0.20
−0.15
−0.10
−0.05

0.00
0.05

Δ
 P

M

Δ PM = <0 >0

(a) Technical and non-technical classification (CT1)

0 −0.02 −0.02

−0.09

0.01
−0.04

−0.04
−0.01 −0.03 −0.03 −0.01 −0.02

−0.03 −0.02 −0.02
−0.06

0
−0.03

−0.02 −0.03

Code reviews dataset Issues dataset
Civil Uncivil Average Civil Uncivil Average

Precision
R

ecall
F1

nM
C

C

BERT BERT BERT BERT BERT BERT

−0.20
−0.15
−0.10
−0.05

0.00
0.05

−0.20
−0.15
−0.10
−0.05

0.00
0.05

−0.20
−0.15
−0.10
−0.05

0.00
0.05

−0.20
−0.15
−0.10
−0.05

0.00
0.05

Δ
 P

M

Δ PM = <0 >0

(b) Civil and uncivil classification (CT2)

Figure 6.6 Difference of BERT’s performance scores between RQ1 (without context informa-
tion) and RQ2 (with context information).

We found that the context does not help to classify technical and non-technical
code review emails and issue comments. We observe that, for both datasets when de-
tecting technical and non-technical contents, ∆PM is negative overall, with the non-technical

106

class results having most drastically decreased with the context information (Figure 6.6 (a)).
BERT’s performance on the code reviews dataset, more specifically, gets worse by ≈ −0.2 for
the non-technical class, having its precision decreased from 0.88 to 0.67 and its recall from
0.92 to 0.71. Similarly, on the issues dataset, BERT’s precision for non-technical comments
decreased by 0.14, going from 0.92 to 0.78; and the recall decreased by 0.04, from 0.83 to
0.79.

Overall, the context also does not help to classify civil and uncivil code
review and issue sentences. Concerning the classification into civil and uncivil using the
context information, our results show that the civil class results have significantly decreased,
especially for the issues dataset (Figure 6.6 (b)). Although the precision did not change for
the code reviews dataset, its recall decreased by 0.04, going from 0.92 to 0.88). For the issues
dataset, the precision and recall decreased by 0.09 and 0.03, respectively.

Summary RQ2: Adding the previous code review email and issue comment makes the
prediction worse for both technical/non-technical and civil/uncivil classification. The
effect is stronger for the non-technical class.

6.4.3 RQ3. Incivility detection in a cross-platform setting

Classification into technical and non-technical

Figure 6.7 (a) presents the performance scores for technical and non-technical classification
when (i) training on the code reviews dataset and testing on the issues dataset and (ii)
training on the issues dataset and testing on the code reviews one.

The classifiers’ performances degraded to classify non-technical discussions
in a cross-platform setting. When training our classifiers on the code reviews dataset
and testing them on the issues dataset, we observe that BERT is the best classifier, with a
nMCC score of 0.62. Our results show that the classifiers’ performances are not satisfactory to
precisely classify non-technical discussions (red color), with precision scores ranging from 0.10
(SVM) to 0.39 (BERT and RF). Interestingly, the Logistic Regression (LR) and Naive Bayes
(NB) classifiers can retrieve a significant percentage of non-technical discussions (recallLR =
0.88, recallNB = 0.85); even though they fail to precisely classify such cases (precisionLR =
0.16, precisionNB = 0.17). We also observe a similar pattern when training on the issues
dataset and testing on the code reviews dataset. The MCC scores ranged from 0.50 (KNN and
SVM) to 0.62 (BERT). In this setting, BERT is better (precision = 0.51) than in the previous
setting (precision = 0.39) to precisely classify non-technical discussions, yet the coverage is
lower (recall = 0.10 in this setting, recall = 0.30 in the previous setting). Surprisingly, the

107

Train on code reviews and test on issues Train on issues and test on code reviews

Precision
R

ecall
F1

nM
C

C

BERT CART KNN LR NB RF SVM BERT CART KNN LR NB RF SVM

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pe
rfo

rm
an

ce
 s

co
re

s

Target class Technical Non−technical Average

(a) Technical and non-technical classification (CT1)

Train on code reviews and test on issues Train on issues and test on code reviews

Precision
R

ecall
F1

nM
C

C

BERT CART KNN LR NB RF SVM BERT CART KNN LR NB RF SVM

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pe
rfo

rm
an

ce
 s

co
re

s

Target class Civil Uncivil Average

(b) Civil and uncivil classification (CT2)

Figure 6.7 Performance scores for classification in a cross-platform setting.

Logistic Regression classifier has a similar recall for both target classes (recalltechnical = 0.61,
recallnon_technical = 0.64).

Classification into civil and uncivil

Figure 6.7 (b) presents the classification results for the civil and uncivil classification when
(i) training on the code reviews dataset and testing on the issues dataset and (ii) training on
the issues dataset and testing on the code reviews dataset.

The classifiers’ performances are also degraded to classify civil sentences in a
cross-platform setting. Concerning the classification into civil and uncivil and training on
code reviews and testing on issues, we observe that all classifiers are able to precisely classify
uncivil discussions with precision ≈ 0.7 with a good coverage (recall ≈ 0.8). However, all
classifiers have low precision (ranging from 0.35 to 0.53) and low recall (ranging from 0.29 to
0.56). When training on issues and testing on code reviews, we observe the same pattern as
in the aforementioned configuration, i.e., all classifiers can precisely classify the uncivil class
(precision ≈ 0.8) with a recall ≈ 0.7. Interestingly, the Logistic Regression classifier has a
recall higher for the civil class (recall = 0.82) than the uncivil class (recall = 0.42).

108

Summary RQ3: None of the classifiers are effective to classify non-technical and civil
discussions in a cross- platform setting. However, all classifiers were able to perform well
when classifying the technical and uncivil classes in a cross-platform setting.

6.5 Discussion

Our results show that BERT performs better than classical machine learning models
in both technical/non-technical and civil/uncivil classification on code review emails and issue
comments, with a F1-score higher than 0.9. This result is similar to the ones found in the
literature for the classification of sentiments [83–85] and offensive language [12] in different
software engineering artifacts (such as Stack Overflow posts, GitHub issues, API reviews,
Jira issues, Gerrit code reviews, Gitter, and Slack). Hence, this chapter contributes to the
literature by demonstrating that BERT can also be used to classify incivility in code review
emails and issue discussions. Furthermore, our results demonstrate that classical machine
learning techniques tend to underperform when classifying non-technical code
review emails and issue comments and civil sentences in both datasets. Since
BERT has a F1-score greater than 0.90 when identifying both of these target classes, it is
unclear what are the cases that classical machine learning models miss and that BERT does
not.

Given that BERT had the best performance of all the analyzed classifiers, we then
assessed whether BERT could be further improved if the context was added to the text to be
classified. However, we found that adding the previous code review email and issue
comment makes the prediction of technical/non-technical code review emails
and issue comments and civil/uncivil sentences worse, if not unchanged. This
result echoes Murgia et al. [142], in which the authors found that the context does not play a
significant role when classifying emotions in issue comments. But at the same time, this result
is counterintuitive to us, since based on our experience of manually classifying incivility in
code reviews and issue discussions [126,140], we would expect that adding the context would
improve the classifiers’ performance. One explanation for this is that such conversations are
not “flat” or “linear”; i.e., the context is more complex than the immediate previous email.
We plan to examine ways to capture this complexity in future work.

Finally, we investigated if BERT and classical machine learning models can be used in a
cross-platform setting. Based on our analysis, we found that the classifiers’ performance
degraded in a cross-platform setting, with BERT being the best performing model with
F1 and nMCC scores below 0.7. Similarly, Qiu et al. [167] also found that classifiers have

109

performance degradation when training on toxic issues and code review comments and testing
on pushback in code reviews and vice versa. While performance degradation is expected,
BERT’s classification results are way better than random, especially for the technical and
uncivil classes. However, whether this performance is satisfactory in practice needs future
investigation.

Based on these results, we would like to further investigate why BERT performs better
than classical machine learning models (RQ1), why the context makes BERT’s performance
scores worst (RQ2), and why the incivility detectors cannot be accurately generalized to
other platforms (RQ3). To answer those questions and to have a better understanding of the
cases that each classifier performs better or worse, in the next sections we aim to assess if
there are any tone-bearing discussion features (TBDFs) [126] that the analyzed
models are unable to precisely classify. Since the non-technical emails/comments (CT1)
are split into civil and uncivil sentences (CT2) and the sentence classification depends on
the tone that they demonstrate [126], we will then assess the percentage of sentences that
were misclassified by each classifier per TBDF in CT2. The misclassified sentences were ex-
tracted from the test sets in the outer fold cross-validation (see Section 6.3.4). Furthermore,
as demonstrated by Ferreira et al., the TBDFs named confusion, criticizing oppression, dis-
satisfaction, and expectation were only encountered in issue discussions [140] and not in code
review discussions [126].

6.5.1 Analysis of misclassified TBDFs per incivility classifier

Contrary to the classical machine learning models, BERT is able to correctly
classify more than 70% of the sentences for all civil and uncivil TBDFs for the
code reviews and issues datasets. As Figure 6.8 shows, in the code reviews dataset
BERT mostly misclassifies sentences demonstrating the civil TBDFs friendly
joke (28.57%), commanding (22.22%), and sadness (14.29%) and the uncivil
TBDFs irony (16.67%), threat (15.28%), and vulgarity (15.28%). Although BERT
misses 22.22% of sentences expressing commanding, the classical machine learning models
are worst in classifying this TBDF (varying from 44.44% for LR and SVM to 88.89% for
KNN). Concerning the friendly joke TBDF, although SVM is as good as BERT (both models
miss 28.57% of sentences with this TBDF), the other machine learning models misclassify
from 42.86% (for CART, LR, and NB) to 71.43% (for KNN AND RF) sentences. The
same happens for commanding and sadness. Interestingly, the classical machine learning
models perform better than BERT to identify the uncivil TBDFs that BERT
misses in the code reviews dataset. That is, KNN and SVM misclassify 14.29% of

110

15.79%52.63%21.05%10.53%10.53%31.58%26.32%

66.67%88.89%44.44%55.56%55.56%77.78%44.44%

77.78%55.56%61.11%61.11%61.11%72.22%55.56%

42.86%71.43%42.86%42.86%42.86%71.43%28.57%

50.00%75.00%75.00%75.00%75.00%75.00%75.00%

56.76%56.76%35.14%24.32%24.32%40.54%37.84%

66.67%66.67% 0.00% 66.67%66.67%66.67%33.33%

42.86%85.71%71.43%71.43%71.43%71.43%85.71%

30.77%76.92%15.38%15.38%15.38%15.38%30.77%

5.56%

22.22%

5.88%

28.57%

0.00%

5.26%

0.00%

14.29%

0.00%

22.22%21.11%17.78%12.22%12.22% 6.67% 8.89%

25.00%27.50%15.00%12.50%12.50%15.00%12.50%

57.14%14.29%28.57%42.86%42.86%42.86%14.29%

25.64%12.82%17.95%20.51%20.51%12.82%10.26%

21.69%13.25% 9.64% 10.84%10.84% 4.82% 8.43%

12.50%12.50%25.00%25.00%25.00%37.50%37.50%

0.00% 11.11% 0.00% 11.11%11.11%11.11% 0.00%

4.76%

0.00%

16.67%

3.13%

0.91%

15.38%

15.38%

1.72% 51.72%62.07%22.41%32.76%36.21%86.21%

53.19%59.57%55.32%74.47%74.47%85.11%74.47%

5.00% 25.00%22.50%20.00%17.50%22.50%27.50%

50.00%58.33%33.33%61.67%61.67%66.67%78.33%

17.65%82.35%64.71%52.94%58.82%47.06%82.35%

63.64%72.73%39.39%75.76%75.76%71.21%81.82%

27.27%50.00%15.91%34.09%34.09%31.82%75.00%

56.52%60.87%43.48%78.26%78.26%60.87%82.61%

0.00% 66.67%66.67%33.33%33.33%33.33%66.67%

37.50%59.38%34.38%59.38%59.38%40.63%84.38%

55.56%66.67%55.56%88.89%88.89%88.89%77.78%

35.00%67.50%27.50%30.00%30.00%42.50%85.00%

31.03%58.62%20.69%27.59%27.59%41.38%68.97%

1.72%

8.51%

5.26%

13.56%

17.65%

12.90%

4.44%

26.09%

0.00%

12.50%

11.11%

9.52%

3.23%

31.10%22.97%27.92%14.13%14.13%10.25% 9.19%

25.93%27.78%22.22%12.96%12.96%12.96%12.96%

27.87%31.15%27.87%26.23%26.23%11.48%18.03%

23.78%28.65%23.78%14.59%14.59% 9.19% 11.35%

25.86%27.59%12.07%17.24%17.24% 4.60% 12.64%

20.00%26.67%20.00%26.67%26.67%13.33% 6.67%

41.94%41.94%25.81%12.90%12.90%16.13%22.58%

2.17%

1.89%

4.76%

1.66%

2.20%

0.00%

3.03%

Code reviews dataset Issues dataset

C
ivil

U
ncivil

BERT CART KNN LR NB RF SVM BERT CART KNN LR NB RF SVM

Sincere apologies

Sadness

Oppression

Humility

Hope to get feedback

Friendly joke

Expectation

Dissatisfaction

Criticizing oppression

Considerateness

Confusion

Commanding

Appreciation and excitement

Vulgarity

Threat

Name calling

Mocking

Irony

Impatience

Annoyance and bitter frustration

T
B

D
F

s

0 25 50 75 100

% misclassified sentences per TBDF

Figure 6.8 Percentage of misclassified sentences per TBDF per classifier.

sentences (instead of 16.67% for BERT) demonstrating irony; CART and KNN misclassify
12.50% of sentences (instead of 15.38% for BERT) showing threat; CART, LR, and SVM do
not miss any sentence demonstrating vulgarity, while BERT misses 15.38%.

For the issues dataset, BERT mainly misclassifies the civil TBDFs friendly
joke (26.09%), criticizing oppression (17.65%), considerateness (13.56%), and
dissatisfaction (12.90%). None of the uncivil TBDFs had more than 10% of
misclassified sentences for this dataset. Furthermore, none of the classical machine
learning models can classify the aforementioned TBDFs better than BERT.

Observation 1: For each TBDF, BERT can correctly classify more than 70% of the
sentences in both datasets. The TBDFs Friendly joke and commanding are among the
most difficult civil TBDFs to classify, while irony and vulgarity are the most difficult

111

uncivil TBDFs.

6.5.2 Analysis of BERT’s misclassified TBDFs considering the context

Figure 6.9 presents the percentage of misclassified sentences per TBDF for BERT consider-
ing the context for both datasets. Surprisingly, for the code reviews dataset, commanding,
friendly joke, sadness, and threat that were most frequently misclassified by BERT without
the context (see Section 6.5.1) now have 100% of the sentences correctly classified. Irony
has a slightly decreased number of misclassified sentences, going from 16.67% to 14.29%, and
vulgarity has an increased number of misclassified sentences, by 9.62% (from 15.38% to 25%).
Additionally, appreciation and excitement, sincere apologies, impatience, and mocking were
more frequently misclassified considering the context than without the context, increasing
the number of misclassified sentences by 9.82%, 11.11%, 7.14%, and 7.98%, respectively.

15.38%

0.00%

7.14%

0.00%

0.00%

5.88%

0.00%

0.00%

11.11%

0.00%

7.14%

11.11%

8.89%

0.00%

25.00%

14.29%

3.45%

15.00%

8.33%

11.88%

29.41%

13.19%

12.82%

10.00%

0.00%

15.15%

10.00%

32.14%

17.39%

2.74%

0.00%

1.33%

3.07%

2.87%

0.00%

0.00%

Code reviews dataset Issues dataset

C
ivil

U
ncivil

BERT BERT

Sincere apologies

Sadness

Oppression

Humility

Hope to get feedback

Friendly joke

Expectation

Dissatisfaction

Criticizing oppression

Considerateness

Confusion

Commanding

Appreciation and excitement

Vulgarity

Threat

Name calling

Mocking

Irony

Impatience

Annoyance and bitter frustration

T
B

D
F

s

0 25 50 75 100

% misclassified sentences per TBDF

Figure 6.9 Percentage of misclassified sentences per TBDF for BERT considering the context.

For the issues dataset, the number of misclassified sentences was decreased by 16.09% for

112

the friendly joke TBDF and by 1.67% for the considerateness TBDF. Criticizing oppression
has an increased number of misclassified sentences by 11.76%, and dissatisfaction by 0.29%.
Furthermore, expectation, sadness, and sincere apologies were the most impacted TBDFs,
increasing the number of misclassified sentences by 8.38%, 22.62%, and 14.16%, respectively.

Observation 2: Even though some TBDFs that were misclassified by BERT without
context have improved, many others have deteriorated.

6.5.3 Analysis of misclassified TBDFs in cross-platform settings

When training on code reviews and testing on issues, BERT misclassifies more
than 50% of the sentences demonstrating confusion, dissatisfaction, oppression,
criticizing oppression, commanding, considerateness, and sadness. Figure 6.10
presents the percentage of misclassified sentences per TBDF in cross-platform settings. It is
expected that BERT’s performance is decreased for confusion, criticizing oppression, dissat-
isfaction, and expectation, since those TBDFs are not present in the code reviews dataset;
hence, BERT never saw examples of these TBDFs in the training set. Interestingly, in this
setting, BERT classifies all instances of hope to get feedback correctly, and it misses up to 16%
for name calling (7.14%), annoyance and bitter frustration (11.09%), impatience (13.58%),
and sincere apologies (16.13%). The classical machine learning models tend to mis-
classify more sentences than BERT, except for the vulgarity with KNN, and
irony and mocking with LR.

When training on issues and testing on code reviews, BERT tends to mis-
classify more than 50% of the sentences classified as sadness, friendly joke, and
considerateness. Similar to the other cross-platform setting, BERT classifies all instances
of hope to get feedback correctly and it misses only 9.23% of sentences related to vulgarity,
11.88% related to mocking, and 12.36% related to name calling. Interestingly, in this set-
ting classical machine learning models are better than BERT to classify various
TBDFs, such as commanding (CART and LR), friendly joke (LR), humility (LR), oppres-
sion (LR), sincere apologies (LR), annoyance and bitter frustration (RF), impatience (RF),
irony (CART, KNN, RF, and SVM), mocking (RF and SVM), name calling (SVM), and
threat (NB and SVM).

Observation 3: In a cross-platform setting, the accuracy of all TBDFs degraded for
BERT. The TBDFs that are the most challenging to correctly classify are commanding,
considerateness, oppression, and sadness for both datasets. For the issues dataset, BERT
also fails to classify friendly joke.

113

31.03%60.34%67.24%56.90%62.07%58.62%91.38%

71.49%42.55%59.57%68.09%63.83%70.21%70.21%

83.33%66.67%58.33%50.00%66.67%41.67%91.67%

70.51%50.00%75.00%68.33%38.33%60.00%55.00%

76.47%70.59%82.35%70.59%76.47%88.24%94.12%

81.29%37.88%71.21%62.12%50.00%63.64%54.55%

47.11%56.82%56.82%86.36%59.09%61.36%65.91%

43.48%78.26%60.87%73.91%47.83%82.61%65.22%

0.00% 66.67%100.00%33.33%66.67%100.00%66.67%

37.50%46.88%81.25%46.88%21.88%21.88%43.75%40.63%

77.78%77.78%77.78%77.78%33.33%77.78%55.56%

60.00%47.50%77.50%60.00%35.00%60.00%45.00%

16.13%58.62%55.17%51.72%17.24%27.59%34.48%

11.09%48.06%26.15%25.09%34.28%26.50%29.33%

13.58%50.00%27.78%22.22%33.33%29.63%33.33%

38.73%42.62%32.79%18.03%39.34%26.23%32.79%

23.31%45.41%22.16%15.14%35.14%22.16%22.70%

7.14% 48.28%25.29%20.69%33.91%22.41%25.86%

24.00%33.33%33.33%26.67%40.00%40.00%33.33%

29.70%48.39%19.35%38.71%38.71%32.26%45.16%

30.00%57.89%68.42%31.58%57.89%94.74%89.47%

46.67%33.33%66.67%33.33%55.56%77.78%88.89%

60.00%72.22%66.67%38.89%100.00%83.33%100.00%

71.43%57.14%85.71%14.29%71.43%85.71%100.00%

0.00% 50.00%100.00%25.00%75.00%100.00%75.00%

45.79%48.65%70.27%13.51%67.57%64.86%91.89%

40.00%33.33%100.00%0.00% 33.33%100.00%66.67%

80.00%71.43%85.71%57.14%57.14%85.71%100.00%

25.71%15.38%61.54% 0.00% 30.77% 7.69% 92.31%

20.63%31.11%21.11%42.22%16.67% 7.78% 8.89%

33.50%45.00%32.50%50.00%35.00% 5.00% 7.50%

43.33%28.57%28.57%57.14%57.14%28.57%28.57%

11.88%30.77%30.77%33.33%15.38% 7.69% 7.69%

12.36%27.71%25.30%32.53%14.46% 7.23% 3.61%

18.46%50.00%25.00%87.50% 0.00% 12.50% 0.00%

9.23% 55.56%22.22%11.11%22.22%22.22%11.11%

Train on code reviews and test on issues Train on issues and test on code reviews

C
ivil

U
ncivil

BERT CART KNN LR NB RF SVM BERT CART KNN LR NB RF SVM

Sincere apologies

Sadness

Oppression

Humility

Hope to get feedback

Friendly joke

Expectation

Dissatisfaction

Criticizing oppression

Considerateness

Confusion

Commanding

Appreciation and excitement

Vulgarity

Threat

Name calling

Mocking

Irony

Impatience

Annoyance and bitter frustration

T
B

D
F

s

0 25 50 75 100

% misclassified sentences per TBDF

Figure 6.10 Percentage of misclassified sentences per TBDF in cross-platform settings.

6.6 Threats to validity

We discuss threats to the study validity [123] as follows.

Construct validity The incivility dataset from Ferreira et al. [126,140] might contain noise
(such as the source code, words other than English, special characters, etc..) that can affect
the models’ performance. To mitigate this threat, we followed strict steps to preprocess the
text (Section 6.3.1). Hence, we expect to have removed the noise in the data. Furthermore,
the set of features used for the classical models might not represent all confounding factors
in incivility. We minimize this threat by adopting the features from a previous work focused
on characterizing sentences in issue discussions [65]. Finally, when assessing if the contextual
information helps to detect incivility, the presence of civil or uncivil words and technical or

114

non-technical words in the previous code review email/issue comment can affect the models’
performance. To mitigate this threat, we computed the number of previous emails and
comments that are technical → non-technical and civil → uncivil and vice versa. For CT1,
we found up to 7.76% code review emails and up to 8.05% issues comments in this situation.
For CT2, we found up to 5.36% code review sentences and up to 12.68% of issue sentences
in this situation. Given the relative low number of datapoints in such a situation, we think
that our results will not be highly affected by that.

Internal validity The models might overfit due to the small number of labeled datapoints.
To address this problem, we implemented four data augmentation techniques with eight
combinations of hyperparameters to ensure optimal results. Additionally, the imbalance in
the datasets may lead to poor performance. To minimize this threat, we compared three class
balancing techniques and assessed their performance. Finally, the choice of hyperparameters
might affect the results. For that, we did hyperparameter optimization on all seven models
using search spaces defined in the literature. Additionally, our model evaluation is based on
the average metric values of a 5-fold cross-validation.

Conclusion validity All our validations (either to find the best hyperparameter or to
compare the models) are based on the nMCC metric, which is known to be more interpretable
and to have more robust results than other performance metrics.

External validity Our incivility classifiers are limited to code reviews of rejected patches
of the Linux Kernel Mailing List and to GitHub issues locked as too heated. Hence, our
results may not be generalizable to other software engineering communication artifacts; this
includes the results of cross-platform performance. Concerning the features used by the
classical techniques, we have experience with incivility studies and we manually coded the
data in our previous work [126,140]. Hence, we were able to assess if the features are accurate
to the incivility domain. Finally, our results are confined to the models implemented in this
study. It is unknown if other models that would perform better for incivility classification.

6.7 Acknowledgements

The authors would like to thank Calcul Québec for the computing hardware that enabled
to them run the experiments of this study. The authors also thank the Natural Sciences
and Engineering Research Council of Canada for funding this research through the Discovery
Grants Program [RGPIN-2018-04470].

115

6.8 Chapter summary

Open source communities have developed mechanisms for handling uncivil discourse. How-
ever, the current mechanisms require considerable manual efforts and human intervention.
Automated techniques to detect uncivil conversations in open source discussions can help al-
leviate such challenges. In this study, we compared six classical machine learning techniques
with BERT when detecting incivility in open source code review and issue discussions. Fur-
thermore, we assessed if adding contextual information improves the classifiers’ performance
and if the seven classifiers can be used in a cross-platform setting to detect incivility. In our
analysis, we identified BERT as the best model to detect incivility in both code review and
issue discussions. Furthermore, our results show that classical machine learning models tend
to underperform when classifying non-technical and civil conversations. Finally, we found
that adding the context does not improve BERT’s performance and that the classifiers’ per-
formance degraded in a cross-platform setting. We provide three insights on the tones that
the classifiers misclassify when detecting incivility. These insights will help future work that
aims at leveraging discussion tones in automated incivility detection applications, as well as
improving cross-platform incivility detection performance.

In order to explore ways in which to improve BERT’s performance, the next chapter
aims to analyze the civil and uncivil conversational dynamics of code review discussions.
In particular, we hypothesize that civil discussions could not be accurately detected by the
machine learning models because (1) civil discourse dynamics differ from the uncivil ones
(e.g., code review discussions focus on a problem’s solution while issue discussions focus
on the problems themselves), and (2) adding context did not improve BERT’s performance
because we considered the previous immediate email/comment as the context instead of
analyzing the emails’ threaded structured. Hence, in the next chapter, we aim to evaluate
this structure in order to investigate the differences and similarities between civil and uncivil
conversational dynamics.

116

CHAPTER 7 CONVERSATIONAL DYNAMICS OF CIVIL AND UNCIVIL
OPEN SOURCE CODE REVIEW DISCUSSIONS

7.1 Introduction

Our previous work [126,140] has shown that the quality of code review and issue discussions
might be degraded due to incivility. Furthermore, it is known that OSS conversations tend to
be very complex due to their threaded nature [88]. That is, anyone can start a new discussion
and/or join an existing discussion by replying to any participant’s comment at any time. As
such, any uncivil discourse could apply to only a sub-tree of the threaded discussion. Besides
that, some tools, such as GitHub issues, allow discussion participants to react to comments
with the use of emojis, adding a non-textual signal to the conversation.

Hence, understanding the conversational dynamics of OSS conversations, i.e., the inter-
personal structures underlying the dialog between people [37], is important because it gives
OSS communities insights into the contextual factors driving the discussion. Several impor-
tant social characteristics can be identified in OSS discussions based on these factors, such
as if uncivil comments tend to attract more replies, if civil comments can be used as a way to
pacify an uncivil discussion, or if a specific OSS contributor has more power in the discussion.
By having an understanding of the conversational dynamics in civil and uncivil open source
discussions, OSS communities can create means to foster and improve such conversations.

However, analyzing such conversational dynamics in OSS discussions in general, and
code review and issue discussions in particular, is challenging due to the heterogeneity of the
dynamics they exhibit. Hence, the primary goal of this chapter is to quantify and understand
the structural patterns and social characteristics of open source code review discussions. For
that, first, we conducted an exploratory study focused on the incivility dataset composed of
code reviews of rejected patches of the Linux Kernel Mailing List (see Chapter 4) proposed
by Ferreira et al. [126]; we analyzed 77 email threads composed of 1,144 review emails.
To capture these conversational dynamics, we build a representation of the code review
discussion structures that explicitly captures the connections (replies) among various code
review emails. Furthermore, we qualitatively analyzed the 77 email threads to extract their
structural patterns.

To the best of our knowledge, this is the first study aiming to assess the civil and
uncivil conversational dynamics of code review discussions. Our exploratory study shows
that uncivil emails tend to appear significantly earlier in the email thread than civil emails.

117

However, there is no difference in the discussion length after a civil or uncivil email appears.
Furthermore, uncivil emails tend to have the same number of replies and the same reply time
as civil emails.

Finally, we identified four structural patterns of civil and uncivil code review discussions:
(i) code review discussions that start with technical emails tend to remain technical despite
uncivil emails in the thread; (ii) uncivil emails replying to the patch submission tend to
trigger incivility in the code review thread if a civil email is never sent by someone; (iii)
when a thread does not yet have any uncivil email, civil emails might help the discussion
to remain civil/technical; and (iv) civil emails help to pacify code review discussions, i.e.,
civility might inhibit OSS contributors from being uncivil. These patterns demonstrate that
civil comments should be fostered in OSS code review discussions in order to pacify an uncivil
discussion or keep a technical/civil discussion civil.

7.2 Research questions

We posit two main research questions to guide this exploratory study.

RQ1. To what extent are the social characteristics of civil and uncivil code
review discussions different?

Although there have been many efforts to describe the conversational dynamics in online
discussions [88, 91, 168, 169], to the best of our knowledge, the social characteristics of civil
and uncivil code review discussions are unknown. Different from online discussions, code
review discussions should remain technical, since their goal is purely on reviewing source code
changes; therefore understanding the social characteristics of civil and uncivil discussions can
give insights into how to foster civil code review discussions.

Hence, in this research question, we aim at investigating the relationship between the
social characteristics and the code review email (in)civility. Particularly, we focus on ana-
lyzing if (i) uncivil emails attract more replies than civil emails, (ii) if uncivil emails appear
earlier in the email thread than civil emails, (iii) if an uncivil email triggers more discussion
after the incivility happens than civil emails, and (iv) if the reply time to uncivil emails is
faster than to civil emails.

RQ2. What are the structural patterns of code review discussions?

The social characteristics of civil and uncivil code review emails represent only one
dimension of the conversational dynamics. Another dimension of it is the structural patterns
of code review email threads; i.e., how technical, civil, and uncivil emails are organized

118

in each code review thread. In this research question, we aim to quantitatively describe
code review email threads as sequences of emails and then characterize the patterns of how
technical, civil, and uncivil emails appear in each sequence.

7.3 Methods

7.3.1 Reconstructing code review discussions

The code review process of the Linux kernel community is done through mailing lists (see
Section 3.1.1). Hence, code reviews are usually grouped into email threads, which are chains
of messages posted as replies to previous messages. In our previous work [170], we considered
the reply relationships as linear, i.e., by sorting code review emails by date. However, to
extract the structural interactions of code review discussions, we aim now to arrange the
code review messages in a hierarchical view, i.e., based on their reply chain [169].

For that, we used the incivility dataset of code review discussions of rejected patches
of the Linux Kernel Mailing List [126] (see Chapter 4). This dataset initially contained
1,545 code review emails that were part of 262 email threads. To reconstruct code review
discussions, we now model them as a graph where vertices are code review emails and directed
edges represent a code review email that is a reply to another email. Furthermore, edges are
weighted by the reply time from one email to another. In this case, an email can only reply
to one email, thus the connected components of such graphs are trees, i.e., reply trees.

To identify the replies, we used the field In-Reply-To in the mbox specification header
of the code review email. This field was blank for 658 emails (42,59%), meaning that those
emails did not reply to any email or the reply id was recorded in another field of the header.
For the remaining 887 emails (57.41%), 288 of them (32.47%) had the In-Reply-To field,
however, the “reply email” was not part of Ferreira et al.’s dataset. After doing a manual
analysis on such cases, we found that they were emails that did not include any discussion at
all (such as emails containing source code or stack traces), being therefore excluded from the
dataset. Hence, to have a complete representation of the email replies, we decided to update
our data set with such emails.

Furthermore, we focused on code review email threads that have at least one civil or one
uncivil email, excluding therefore threads composed of only technical emails. As a result, we
have 77 reply trees composed of 1,144 emails, where 112 emails are uncivil, 56 are civil, and
976 are technical.

119

7.3.2 Describing social characteristics with graphs’ properties

To answer RQ1, we considered two independent groups: civil and uncivil emails, as well as
three dependent variables. We discuss the hypothesis related to each dependent variable
below.

• Degree: The degree of a civil/uncivil email is the number of replies that this email
receives. The higher the degree of a civil or uncivil vertex, the more replies that email
attracts. We hypothesize that uncivil emails attract more replies than civil
emails (H1).

• Reply time: The edge weights (reply time) tell us if discussion participants tend to reply
faster to civil or uncivil emails. We hypothesize that replies to uncivil emails are
faster than to civil emails (H2).

• Depth: We consider depth in two different ways. First, from the root node to the
civil/uncivil email. This property tells us what kind of email appears earlier in the thread.
We hypothesize that civil emails tend to appear earlier in the thread (H3).
Second, we analyze depth from the civil/uncivil email to the leaf node. This property
tells us if the discussion is longer after a civil or an uncivil email. We hypothesize that
uncivil emails trigger longer discussions (H4).

7.3.3 Describing structural patterns with regular expressions

To answer RQ2, we conducted a qualitative analysis of the 77 reply trees. That is, to identify
the structural patterns, we wrote down all paths leading to civil or uncivil emails as sequences.
Paths composed of only technical emails were excluded from our analysis. Then, we grouped
such sequences based on three groups: (1) containing only technical and uncivil emails, (2)
containing only technical and civil emails, and (3) containing technical, civil, and uncivil
emails.

When needed, we split such groups into sub-groups based on the observable patterns
they exhibit. For example, both the email sequences (technical technical technical
technical uncivil technical technical technical) and (technical uncivil technical
uncivil technical uncivil technical technical) belong to group (1). However, we
observe that in the former example technical emails are interspersed with uncivil ones while
in the latter only the email replying to the first email (patch submission) is uncivil. Hence,
we split group (1) into two sub-groups.

120

After splitting groups into sub-groups, we query graph patterns through regular ex-
pressions following the POSIX standard [171]. The regular expressions generalize the pat-
terns in paths that contain civil and/or uncivil emails in each reply tree, i.e., the aforemen-
tioned sub-groups. As such, the regular expression of the two aforementioned examples would
be (technical+) (technical)*|(uncivil)* and technical uncivil (technical)*|(uncivil)*,
respectively.

7.4 Results

7.4.1 RQ1. Social characteristics of civil and uncivil code review discussions

Civil emails receive as many replies as uncivil emails. Concerning the degree of
civil and uncivil emails in the reply trees, an unpaired t-test revealed that the difference
between the mean degree of civil (0.66) and uncivil (0.65) emails is not statistically significant
(t = 0.15, p = 0.88), rejecting H1. Figure 7.1 (a) presents the distribution of degrees of
civil and uncivil emails.

0

1

2

3

4

5

Civil Uncivil

D
e

g
re

e

(a) Degrees

0

20

40

Civil Uncivil

R
e

p
ly

 t
im

e
 (

in
 h

o
u

rs
)

(b) Reply time

Figure 7.1 Distribution of degrees and reply time of civil and uncivil emails

Civil emails tend to have the same reply time as uncivil emails. With regards
to the reply time to civil and uncivil emails in the reply tree (Figure 7.1 (b)), an unpaired
t-test revealed that the difference between the mean reply time to civil (10.53 hours) and

121

uncivil (7.37 hours) emails is not statistically significant (t = 1.19, p = 0.24), rejecting H2.

Uncivil emails tend to appear earlier in the thread than civil emails. When
analyzing the depth of civil and uncivil emails in the reply tree (Figure 7.2), an unpaired t-test
showed that uncivil emails (mean = 1.95, SD = 1.41) have a statistically significantly lower
depth from the root node than civil emails (mean = 2.68, SD = 1.60), t = 2.91, p = 0.004.
The effect size between these two variables is medium (Cohen’s d = 0.50), supporting H3.

There is no difference in the discussion length after a civil or uncivil email
appears. Finally, the difference between the mean depth from uncivil (2.28) and civil (2.23)
emails to the leaf node is not statistically significant (t = −0.07, p = 0.94), rejecting H4.

From root node to civil/uncivil node From civil/uncivil node to leaf node

Civil Uncivil Civil Uncivil

0

10

20

30

D
e

p
th

Figure 7.2 Distribution of depth to and from civil and uncivil emails

Summary RQ1: Uncivil emails tend to appear earlier in a thread than civil emails.
However, the discussion length is the same after a civil or uncivil email appears. Further-
more, uncivil emails tend to have the same number of replies and the same reply time as
civil emails.

7.4.2 RQ2. Structural patterns of civil and uncivil code review discussions

Through our qualitative analysis of the reply trees (see Section 7.3.3), we have identified
four structural patterns of civil and uncivil code review discussions. We present below a
description of each pattern along with their regular expression and examples. The examples

122

represent one or more paths of the reply tree, but not the complete reply tree. The number
in each node merely shows the email identifier. Furthermore, the yellow color represents
technical emails, the green shows civil emails, and the red uncivil ones. Note that all regular
expressions start with technical emails, which represent the patch submission (first email of
the thread).

Pattern 1. Code review discussions that start with technical emails tend to
remain technical despite uncivil emails in the thread

Email sequences that follow this pattern tend to start with technical discussions interspersed
with an uncivil email. These threads have only one uncivil email, multiple technical emails,
and no civil email at all. In this pattern, uncivil emails seem to not induce more incivility
and the discussions remain mostly technical. Figure 7.3 illustrates this pattern that can be
generalized by the following regular expression:

(technical+) (technical)*|(uncivil)*

168668

168687

168727

159308

159307

177720

178564

Figure 7.3 Pattern 1. Code review discussions that start with technical emails tend to remain
technical despite uncivil emails in the thread.

Pattern 2. Uncivil emails replying to the patch submission tend to trigger
incivility in the code review thread if a civil email is never sent by someone

In this pattern, email sequences always start with a technical email followed by an uncivil
one (see Figure 7.4). This means that an email author was being uncivil towards the patch
submission, which is purely composed of source code changes. After this initial uncivil email,

123

the conversation might have technical emails interspersed with uncivil ones. Threads that
belong to this pattern tend to have one or more uncivil emails, multiple technical emails, and
no civil emails. In this case, it seems that the uncivil email replying to the patch submission
triggers more incivility in the discussion. The following regular expression represents this
pattern:

technical uncivil (technical)*|(uncivil)*

202437

505195

160227

210458

210459

210460

210466

191235

191241

191275 196318

210461

210467 210462

210463

210464

210465

Figure 7.4 Pattern 2. Uncivil emails replying to the patch submission tend to trigger incivility
in the code review thread if a civil email is never sent by someone.

Pattern 3. When a thread does not have any uncivil email, civil emails might
help the discussion to remain civil/technical

Email sequences in this pattern are composed of technical and civil emails only; having no
uncivil discussions at all. In some cases, the discussion remains technical until someone

124

sends a civil email, which seems to help the discussion to remain technical. In other cases,
there is a technical email (patch submission) and a civil email followed by many technical
emails or technical emails interspersed with civil emails. In this case, the reviewer either
gave constructive feedback (even if the feedback was negative, it remained civil), made a
compliment by demonstrating appreciation and excitement, for example, or remained neutral.
We hypothesize that the civil emails in such threads prevented them from getting uncivil.
Figure 7.5 shows examples of this pattern, which is describe by the regular expression below:

(technical+) ((technical*)|(civil*))

289026

292549

294072

294210 294650

271211

377230

377228

377461

378176

378511

377229

Figure 7.5 Pattern 3. When a thread does not have any uncivil email, civil emails might help
the discussion to remain civil/technical.

Pattern 4. In the presence of uncivil emails, civil emails help to pacify code
review discussions, i.e., civility might inhibit OSS contributors from staying
uncivil

Email sequences that follow this pattern might have a technical email followed by (i) a civil
email, (ii) an uncivil email, or (iii) a series of technical emails. In all the three cases, we
observed that when a civil email replies to an uncivil one, the following code review emails
tend to be either technical or civil; resulting in a pacific discussion (see Figure 7.6). In all the
analyzed code review threads, when incivility remained after a civil email, the conversation
either kept being uncivil and/or was discontinued. This pattern can be generalized by the
following regular expression:

125

(tech)+ (tech*|uncivil*|civil*)

289026

292515

292930

294078

291846

292839

294205

271212

294522

271213

258997

259457

259513

259881

259904 260065

260104 260106

260213

260217

170193

170196

170197

188745

188746

188747

188748

Figure 7.6 Pattern 4. Civil emails help to pacify code review discussions, i.e., civility might
inhibit OSS contributors from being uncivil.

Summary RQ2: We identified four structural patterns of civil and uncivil code review
discussions. These patterns demonstrate that civil comments should be fostered in OSS
code review discussions in order to pacify an uncivil discussion or to make a technical/civil
discussion remains civil.

7.5 Discussion

Against our expectations, our results show that (i) civil emails attract as many
replies as uncivil emails, (ii) civil discussions are as long as uncivil discussions
after (in)civility happens, and (iii) civil emails have the same reply time than

126

uncivil emails. This result is surprising to us because previous research has found that
civility instigates more conversation on Facebook [8] and on online political discussions [172].
In fact, in a civil discourse, participants are more likely to be open-minded and willing to
share their opinions [172], triggering therefore more and faster responses. However, in code
review discussions, this does not seem to be the case; i.e., civility instigates the same number
of replies than incivility as well as the same number of code review emails after (in)civility
happens with the same reply time.

While we speculate that we were not able to observe any difference between the num-
ber of replies to civil and uncivil emails and the size of discussion after (in)civility happens
because of the small number of civil and uncivil emails in the analyzed dataset (56 and
112 emails, respectively), we have two alternative hypotheses. First, OSS contributors are
generally reluctant to participate in uncivil discussions because they find them intimidating,
especially when disagreements (or incivility) arise, and because discussions are public and per-
manent [173]. Second, a community member might have reinforced the code of conduct [49],
stopping therefore the incivility and further comments in the code review discussion.

Interestingly, uncivil emails appear earlier in the code review thread than
civil emails. This result shows that OSS contributors tend to uncivilly comment about a
patch submission from the beginning of the thread. According to the structural pattern 4
found in this study, if participants convey civility, especially after an uncivil email, then there
are higher chances that the uncivil email will not intensify further emails in the code review
discussion. If a civil email is never sent by anyone, there is a high chance that incivility will
increase in further comments in the discussion (see pattern 2), making it a hostile environment
to communicate.

Finally, the structural patterns found in this study demonstrate that civil
comments are crucial in OSS code review discussions to either pacify an uncivil
discussion or maintain a technical/civil discussion. Ideally, it is recommended to avoid
being uncivil to the patch submission (first email), since this seems to add fuel to the fire.
If this happens, it is recommended to send a civil email right away to prevent the discussion
from escalating.

7.6 Threats to validity

The main threats to the validity of our study are discussed in this section [123] .

127

Construct validity. Only analyzing the replies might not be able to capture all the struc-
tural characteristics and patterns of civil and uncivil code review emails. Hence, we aim to
analyze in the future other characteristics such as the relationships between authors of civil
and uncivil emails.

Internal validity. The qualitative analysis of the structural patterns could lead to incon-
sistencies due to its subjectiveness. To minimize this threat, the first author wrote down all
the observable patterns and grouped them according to their similarities. Then, the other
two authors reviewed the identified patterns and the grouping.

Conclusion validity. The low number of samples inhibits the ability to reveal patterns in
the data, which threatens the conclusion validity of this study [123]. To minimize this threat,
we tried to achieve sufficient reliability in our quantitative analysis by applying statistical
tests to assess the correlations of degree, depth, and reply time between civil and uncivil
emails; our conclusions were made based on the statistical power encountered.

External validity. We only analyze the conversational dynamics of code review discussions
of rejected patches of the Linux Kernel Mailing List. Hence, there is no evidence that our
results can be generalized to other open source projects or other software artifacts. However,
we expect similar dynamics to other kinds of OSS discussions, such as issue discussions and
Stack Overflow posts, because of their threaded nature.

7.7 Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada for
funding this research through the Discovery Grants Program [RGPIN-2018-04470].

7.8 Chapter summary

As a result of the threaded nature of OSS conversations, they tend to be quite complex
and heterogeneous with respect to the conversational dynamics they demonstrate. Hence,
in this chapter, our goal was to quantify and understand the structural patterns and social
characteristics of open source code review discussions. We built a representation of the code
review discussion structures that explicitly captures the connections (replies) among various
code review emails and we conducted an exploratory study on 77 email threads composed of
1,144 review emails.

128

As a result, we found that uncivil emails tend to appear significantly earlier in the email
thread than civil emails. However, there is no difference in the discussion length after a civil
or uncivil email appears. Furthermore, uncivil emails tend to have the same number of replies
and the same reply time as civil emails. Finally, we identified four structural patterns of code
review discussions. These patterns demonstrate that civil comments must be fostered in OSS
code review discussions in order to pacify an uncivil discussion (especially when an uncivil
email emerges at the beginning of the code review discussion) or maintain a technical/civil
discussion.

As future work, we suggest to analyze the civil and uncivil conversational dynamics in
other software artefacts, such as issue discussions, especially since we obtained surprising
findings compared to other domains where the dynamics of incivility were studied. Further-
more, we suggest future work to analyze other kinds of structures such as the interactions
among different conversation participants in order to uncover other conversational dynamics.
Finally, we recommend researchers to explore the conversation sequences to predict whether
the next comment will be uncivil or not by capturing conversational dynamics that will
escalate the incivility.

Now that we have an understanding and characterization of incivility in code review and
issue discussions, we know how to detect it, and we identified the conversational dynamics
of civil and uncivil code review discussions, in the next chapter, we will move towards the
contributions and main findings of this thesis with respect to the thesis statement and specific
goals. We also propose promising future work.

129

CHAPTER 8 DISCUSSION AND FUTURE WORK

8.1 Contributions and findings

The general goal of this thesis is to leverage the mature social construct of incivility to
understand, characterize, and detect confrontational conflicts in open source discussions to
pragmatically manage incivility in software engineering. Broadly speaking, we were not able
to reject the hypothesis that:

Thesis statement: Although incivility in open source discussions is a complex phe-
nomenon, its characteristics and dynamics can be captured by a conceptual framework
and it can be automatically detected by machine learning models.

Below, we outline the specific goals of this thesis and their respective findings.

1. Characterize incivility in OSS development, particularly in code review and
issue discussions

In Chapters 4 and 5, we identified 16 TBDFs on code review emails of rejected patches
of the LKML and 20 TBDFs on GitHub issues locked as too heated. Particularly, we found
that (1) frustration, name calling, and impatience are the most frequent features in uncivil
code review emails, and (2) annoyance and bitter frustration, name calling, and mocking in
uncivil issue comments. Interestingly, we found that expectation, confusion, dissatisfaction,
and criticizing oppression are only manifested in issue discussions.

Furthermore, against our expectations, we found that uncivil features were included in
more than half of the non-technical code review emails of rejected patches of the LKML
(66.66%) and the non-technical issue comments belonging to GitHub issues locked as too
heated (67.69%). Additionally, we found that one-third of the 205 analyzed issues (i.e.,
technical and non-technical issues) locked by OSS maintainers as too heated do not contain
any uncivil discourse and only 8.82% of all analyzed comments are actually uncivil.

When analyzing whether code review discussions are correlated to potential explana-
tions of uncivil communication in terms of arguments, people involved in the discussion, or
the discussion topic, we found that even though anyone can make uncivil comments when
discussing any topic, arguments can be resolved with civil comments. In issue discussions,
our results show that locked issues tend to have a similar number of comments, participants,
and emoji reactions to non-locked issues. The aforementioned factors are, therefore, not

130

related to incivility in open source code review and issue discussions.

Finally, we identified the causes and consequences of uncivil communication in code
review discussions. In total, we identified eight themes that caused incivility for developers
and five themes for maintainers. Violation of community conventions was the most com-
mon cause of incivility for both developers and maintainers. Further, maintainers were also
frequently irritated by an inappropriate solution proposed by developer, while developers by
characteristics in the maintainers’ feedback. In issue discussions, we identified ten justifica-
tions that project contributors give when locking issues as too heated. In the majority of
issues (74.63%), the justifications were not related to the conversation being uncivil.

2. Investigate whether incivility can be accurately detected automatically in code
review and issue discussions

In Chapter 4, we assessed if the existing sentiment analysis tools are able to detect
incivility. As a result, we found that incivility cannot be captured reliably only by analyzing
the sentiment of a text. One reason for this is that incivility has many dimensions that are
not captured by sentiment analysis tools, such as the context of the conversation and the
granularity of analysis. Furthermore, some TBDFs are not sentiment-related, such as irony,
mocking, and threat, and it might be hard to capture them with sentiment models only.

Based on this finding and given the TBDFs found in Chapters 4 and 5 as well as the
manually tagged dataset of incivility in code review and issue discussions, in Chapter 6, we
compared six classical machine learning models with the BERT model to detect incivility in
open source code review and issue discussions. We found that BERT performs better than
the classical machine learning classifiers regardless of using class balancing for technical/non-
technical and civil/uncivil classification in both datasets (F-score > 0.90 for BERT and
< 0.70 for classical ML models). More specifically, classical machine learning techniques
tend to underperform when classifying the non-technical and civil classes.

Then, we investigated if adding the context of the discussion (the previous code review
email and issue comment) would improve BERT’s classification results. Surprisingly, we
found that adding the previous code review email and issue comment makes the prediction
of technical/non-technical code review emails and issue comments and civil/uncivil sentences
worse, if not unchanged. The effect is stronger for the non-technical class.

Finally, we aimed to assess if it is feasible to use BERT and classical machine learning
models to detect incivility in a cross-platform setting. This information is useful to assess the
performance of incivility detection on a new dataset when a gold standard is not available.

131

As a result, we found that the classifiers’ performance degraded in a cross-platform setting,
with BERT being the best performing model with a F1-score below 0.7.

When analyzing the TBDFs that the trained classifiers miss when detecting incivility, we
found that, in the code reviews dataset, BERT mostly misclassifies sentences demonstrating
the civil TBDFs friendly joke, commanding, and sadness; and the uncivil TBDFs irony, threat,
and vulgarity. For the issues dataset, BERT mainly misclassifies the following civil TBDFs:
friendly joke, criticizing oppression, considerateness, and dissatisfaction. Interestingly, clas-
sical machine learning models perform better than BERT to identify the uncivil TBDFs
that BERT misses in the code reviews dataset. In a cross-platform setting, the TBDFs that
are the most challenging to correctly classify are commanding, considerateness, oppression,
and sadness for both datasets. For the issues dataset, BERT also fails to classify friendly joke.

3. Understand the conversational dynamics in civil and uncivil code review
discussions

Since in Chapter 6 we found that the classification performance of civil discussions was
worse than that of uncivil discussions, we hypothesized that civil and uncivil discourse might
differ in their conversational dynamics. Furthermore, we hypothesized that adding the con-
text of a discussion was not able to improve BERT’s performance because such conversations
are not “flat” or “linear”; i.e., the context is more complex than the immediate previous
email/comment. Hence, in Chapter 7, we conducted an exploratory study to investigate the
conversational dynamics of code review discussions, i.e., we investigate the social character-
istics and the structural patterns of civil and uncivil code review discussions.

We found that uncivil emails tend to appear significantly earlier in the email thread than
civil emails. However, there is no difference in the discussion length after a civil or uncivil
email appears and uncivil emails tend to have the same number of replies and the same reply
time as civil emails, as opposed to Facebook [8] and online political discussions [172].

Finally, we identified four structural patterns of code review discussions, i.e., (i) despite
uncivil emails in the thread, code review discussions that begin with technical emails tend to
remain technical; (ii) whenever an uncivil email is sent in response to a patch submission, it
tends to trigger incivility in the code review thread; (iii) civil emails help to keep a discussion
civil/technical when no uncivil emails have yet been sent; (iv) code review discussions can
be pacified by civil emails, i.e., civility can deter uncivil behavior from OSS contributors.

The results of our exploratory study suggest that a technical/civil OSS code review
discussion can only be maintained or pacified with civil comments (especially in cases where

132

uncivil emails emerge at the beginning of the discussion).

8.2 Opportunities for future research

We believe that this thesis sheds light on how to pragmatically manage incivility in soft-
ware engineering and paves the road for a new field of research about collaboration and
communication in software engineering. Furthermore, despite bringing awareness of the
incivility problem to the research community through the research papers related to this
thesis [126,140,170], we believe that our workshops and talks in many open source venues123

helped OSS contributors to open up about their experiences with incivility and to reason
about the ways to manage incivility in their context. However, there is still plenty of room
for research in this area. Below, we outline five promising avenues for future research.

1. Investigate incivility in other software communication platforms

While we have understood and characterized incivility in open source code review and
issue discussions, our findings are confined to the code review discussions of rejected patches
of the Linux Kernel Mailing List and to GitHub issue discussions locked as too heated of
79 open source projects. Hence, the analysis of incivility in other communication platforms,
such as Stack Overflow posts or Gitter messages, would be useful to assess the generalizability
of the findings of this thesis and to help further the knowledge about incivility in software
engineering. Furthermore, we only focused on open source projects. Proprietary projects
may have different types of incivility that need to be investigated by future research, even
though access to such data is less straightforward.

2. Detect incivility at the TBDF level

Our incivility detection is focused on identifying if a code review email or issue comment
is either technical or non-technical. If a text is non-technical, then we classify the sentences
of non-technical emails/comments as either civil or uncivil. Even though we performed an
initial exploration of the TBDFs that the classifiers are not able to correctly classify, our
classifiers were not built to detect specific TBDFs. We believe that our classifiers that were
trained on two classification tasks (technical/non-technical and civil/uncivil) are the first

1Sentimine: A cregit Plugin to Analyze the Sentiment Behind the Linux Kernel Code, Open Source
Leadership Summit (2019).

2Civil communication in practice: What does it mean to you as an open source developer?, Linux Plumbers
(2019).

3Characterizing and detecting incivility in open source code review discussions, CHAOSScon North Amer-
ica (2021)

https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://osls19.sched.com/event/LG3u/sentimine-a-cregit-plugin-to-analyze-the-sentiment-behind-the-linux-kernel-code-isabella-vieira-ferreira-polytechnique-montreal
https://chaoss.community/chaosscon-2021-na
https://chaoss.community/chaosscon-2021-na

133

step towards building a tool to support communication in open source. To work towards this
goal, future research could focus on specifically identifying each TBDF in civil and uncivil
emails/comments. Even though access to labeled data might be a bottleneck, researchers
could augment our labeled dataset using data augmentation techniques. In the future, a tool
that provides recommendations on how to make an uncivil text civil could be developed to
support software engineering communication.

3. Use the conversational dynamics to improve the performance of incivility
classifiers

The reply trees built in this thesis provide a hierarchical representation of the code re-
view email thread. Future research could investigate how the use of reply trees, including
their different social characteristics and structural patterns, can improve the performance of
incivility classifiers.

4. Investigate incivility in multi-channel OSS communication

This thesis only focuses on discussions that are public in OSS software artifacts. How-
ever, it is known that open source contributors may discuss issues privately or even in confer-
ences, for example. These different ways of online communication (e.g., public email, private
email, video call) and different environments (e.g., online, in conferences) may change the
way people behave. Hence, analyzing OSS contributors in different settings would allow the
research community to have a perspective on incivility in different settings. To do this, re-
searchers could either observe, interview, or survey OSS developers. Furthermore, researchers
could investigate how the factors associated with the online disinhibition effect [174], i.e.,
people behave and talk in different ways online than they do in person, impact incivility.

5. Pragmatically integrate incivility detection models into OSS communication

Similar to how codes of conduct represent a means to react to uncivil behavior, the
next step in our research is to design ways in which incivility detection models can be used
pragmatically to remedy or even prevent uncivil discourse in OSS communication. For exam-
ple, while a web environment like GitHub could automatically scan each issue or pull request
comment upon submission, such an approach would not work in the email-based environment
of Linux development. Furthermore, even in web environments, the false positive rate of the
detection models might irritate contributors. Hence, apart from coming up with innovative
ways to deploy incivility detection models, empirical evaluation of their effectiveness will be

134

necessary, for example by using user studies or focus groups.

135

REFERENCES

[1] G. Blau and L. Andersson, “Testing a measure of instigated workplace incivility,” Jour-
nal of Occupational and Organizational Psychology, vol. 78, no. 4, pp. 595–614, 2005.

[2] P. M. Forni, Choosing civility: The twenty-five rules of considerate conduct. St. Mar-
tin’s Press, 2010.

[3] D. J. Brooks and J. G. Geer, “Beyond negativity: The effects of incivility on the
electorate,” American Journal of Political Science, vol. 51, no. 1, pp. 1–16, 2007.

[4] K. L. Fridkin and P. J. Kenney, “The dimensions of negative messages,” American
Politics Research, vol. 36, no. 5, pp. 694–723, 2008.

[5] T. M. Bejan, Mere Civility. Harvard University Press, 2017.

[6] K. Coe, K. Kenski, and S. A. Rains, “Online and uncivil? patterns and determinants of
incivility in newspaper website comments,” Journal of Communication, vol. 64, no. 4,
pp. 658–679, 2014.

[7] S. K. Maity, A. Chakraborty, P. Goyal, and A. Mukherjee, “Opinion conflicts: An
effective route to detect incivility in twitter,” Proceedings of the ACM on Human-
Computer Interaction, vol. 2, no. CSCW, pp. 1–27, 2018.

[8] R. G. Molina and F. J. Jennings, “The role of civility and metacommunication in
facebook discussions,” Communication studies, vol. 69, no. 1, pp. 42–66, 2018.

[9] S. Sobieraj and J. M. Berry, “From incivility to outrage: Political discourse in blogs,
talk radio, and cable news,” Political Communication, vol. 28, no. 1, pp. 19–41, 2011.

[10] N. Raman, M. Cao, Y. Tsvetkov, C. Kästner, and B. Vasilescu, “Stress and burnout in
open source: Toward finding, understanding, and mitigating unhealthy interactions,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, 2020, pp. 57–60.

[11] C. D. Egelman, E. Murphy-Hill, E. Kammer, M. M. Hodges, C. Green, C. Jaspan, and
J. Lin, “Predicting developers’ negative feelings about code review,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering, ser. ICSE
’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 174–185.
[Online]. Available: https://doi.org/10.1145/3377811.3380414

https://doi.org/10.1145/3377811.3380414

136

[12] J. Cheriyan, B. T. R. Savarimuthu, and S. Cranefield, “Towards offensive language
detection and reduction in four software engineering communities,” in Evaluation and
Assessment in Software Engineering, 2021, pp. 254–259.

[13] K. D. A. Carillo and J. Marsan, ““the dose makes the poison”-exploring the toxicity
phenomenon in online communities,” 2016.

[14] C. Miller, S. Cohen, D. Klug, B. Vasilescu, and C. Kästner, ““did you miss my comment
or what?” understanding toxicity in open source discussions,” 2022.

[15] J. Sarker, A. K. Turzo, and A. Bosu, “A benchmark study of the contemporary toxicity
detectors on software engineering interactions,” in 2020 27th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2020, pp. 218–227.

[16] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto, “Sentiment
analysis for software engineering: How far can we go?” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 94–104.

[17] N. Novielli and A. Serebrenik, “Sentiment and emotion in software engineering,” IEEE
Software, vol. 36, no. 5, pp. 6–23, 2019.

[18] N. Novielli, F. Calefato, and F. Lanubile, “Love, joy, anger, sadness, fear, and surprise:
Se needs special kinds of ai: A case study on text mining and se,” IEEE Software,
vol. 37, no. 3, pp. 86–91, 2020.

[19] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, P. Devanbu,
and V. Filkov, “Gender and tenure diversity in github teams,” in Proceedings of the
33rd annual ACM conference on human factors in computing systems. ACM, 2015,
pp. 3789–3798.

[20] B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of diversity on git hub: A user
survey,” in 2015 IEEE/ACM 8th International Workshop on Cooperative and Human
Aspects of Software Engineering. IEEE, 2015, pp. 50–56.

[21] J. Cheng and J. L. Guo, “Activity-based analysis of open source software contributors:
Roles and dynamics,” in 2019 IEEE/ACM 12th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE). IEEE, 2019, pp. 11–18.

[22] X. Tan and M. Zhou, “How to communicate when submitting patches: An empirical
study of the linux kernel,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW,
Nov. 2019. [Online]. Available: https://doi.org/10.1145/3359210

https://doi.org/10.1145/3359210

137

[23] S. O. Alexander Hars, “Working for free? motivations for participating in open-source
projects,” International journal of electronic commerce, vol. 6, no. 3, pp. 25–39, 2002.

[24] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software developers in open
source projects: an internet-based survey of contributors to the linux kernel,” Research
policy, vol. 32, no. 7, pp. 1159–1177, 2003.

[25] P. Wurzel Gonçalves, G. Çalikli, and A. Bacchelli, “Interpersonal conflicts during code
review: Developers’ experience and practices,” Proceedings of the ACM on Human-
Computer Interaction, vol. 6, no. CSCW1, pp. 1–33, 2022.

[26] K. Kenski, K. Coe, and S. A. Rains, “Perceptions of uncivil discourse online: An
examination of types and predictors,” Communication Research, vol. 47, no. 6, pp.
795–814, 2020.

[27] F. Sadeque, S. Rains, Y. Shmargad, K. Kenski, K. Coe, and S. Bethard, “Incivility
detection in online comments,” in Proceedings of the Eighth Joint Conference on Lexical
and Computational Semantics (* SEM 2019), 2019, pp. 283–291.

[28] IBM, “Watson natural language understanding.” [Online]. Available: https:
//www.ibm.com/cloud/watson-natural-language-understanding

[29] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection
for software development,” Empirical Software Engineering, vol. 23, no. 3, pp. 1352–
1382, 2018.

[30] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate speech detec-
tion and the problem of offensive language,” in Proceedings of the international AAAI
conference on web and social media, vol. 11, no. 1, 2017, pp. 512–515.

[31] C. Miller, S. Cohen, D. Klug, B. Vasilescu, and C. Kästner, “Did you miss my comment
or what? understanding toxicity in open source discussions,” 5 2022.

[32] K. Krippendorff, Content analysis: An introduction to its methodology. Sage publica-
tions, 2018.

[33] G. Kasalak, “Toxic behaviors in workplace: Examining the effects of the demographic
factors on faculty members’ perceptions of organizational toxicity.” International Jour-
nal of Research in Education and Science, vol. 5, no. 1, pp. 272–282, 2019.

https://www.ibm.com/cloud/watson-natural-language-understanding
https://www.ibm.com/cloud/watson-natural-language-understanding

138

[34] K. D. A. Carillo, J. Marsan, and B. Negoita, “Towards developing a theory of toxicity in
the context of free/open source software & peer production communities,” SIGOPEN
2016, 2016.

[35] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and how fast?: Case
study on the linux kernel,” in Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR). IEEE Press, 2013, pp. 101–110.

[36] A. Alami, M. L. Cohn, and A. Wąsowski, “Why does code review work for open source
software communities?” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1073–1083.

[37] R. Fusaroli and K. Tylén, “Investigating conversational dynamics: Interactive align-
ment, interpersonal synergy, and collective task performance,” Cognitive science,
vol. 40, no. 1, pp. 145–171, 2016.

[38] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code
review,” in 2013 35th International Conference on Software Engineering (ICSE), 2013,
pp. 712–721.

[39] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process aspects and social
dynamics of contemporary code review: Insights from open source development and
industrial practice at microsoft,” IEEE Transactions on Software Engineering, vol. 43,
no. 1, pp. 56–75, 2017.

[40] I. El Asri, N. Kerzazi, G. Uddin, F. Khomh, and M. J. Idrissi, “An empirical study of
sentiments in code reviews,” Information and Software Technology, vol. 114, pp. 37–54,
2019.

[41] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in code reviews: Rea-
sons, impacts, and coping strategies,” in 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2019, pp. 49–60.

[42] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli, “Information
needs in contemporary code review,” Proc. ACM Hum.-Comput. Interact., vol. 2, no.
CSCW, Nov. 2018. [Online]. Available: https://doi.org/10.1145/3274404

[43] A. Z. Henley, K. Muçlu, M. Christakis, S. D. Fleming, and C. Bird, “Cfar: A tool to in-
crease communication, productivity, and review quality in collaborative code reviews,”
in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
2018, pp. 1–13.

https://doi.org/10.1145/3274404

139

[44] Y. Jiang, B. Adams, F. Khomh, and D. M. German, “Tracing back the history of
commits in low-tech reviewing environments: a case study of the linux kernel,” in
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2014, pp. 1–10.

[45] I. Ferreira, K. Stewart, D. German, and B. Adams, “A longitudinal study on the
maintainers’ sentiment of a large scale open source ecosystem,” in 2019 IEEE/ACM 4th
International Workshop on Emotion Awareness in Software Engineering (SEmotion).
IEEE, 2019, pp. 17–22.

[46] M. J. Gallivan, “Striking a balance between trust and control in a virtual organization:
a content analysis of open source software case studies,” Information Systems Journal,
vol. 11, no. 4, pp. 277–304, 2001.

[47] R. Love, Linux kernel development. Pearson Education, 2010.

[48] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication, collaboration,
and bugs: the social nature of issue tracking in small, collocated teams,” in Proceedings
of the 2010 ACM conference on Computer supported cooperative work, 2010, pp. 291–
300.

[49] P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open source projects,”
in Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th Inter-
national Conference on. IEEE, 2017, pp. 24–33.

[50] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code of conduct conversations in
open source software projects on github,” Proceedings of the ACM on Human-Computer
Interaction, vol. 5, no. CSCW1, pp. 1–31, 2021.

[51] G. Docs, “Github community guidelines,” accessed on Jan. 02, 2022. [Online]. Available:
https://docs.github.com/en/github/site-policy/github-community-guidelines

[52] Z. Papacharissi, “Democracy online: Civility, politeness, and the democratic potential
of online political discussion groups,” New media & society, vol. 6, no. 2, pp. 259–283,
2004.

[53] A. A. Anderson, D. Brossard, D. A. Scheufele, M. A. Xenos, and P. Ladwig, “The
“nasty effect:” online incivility and risk perceptions of emerging technologies,” Journal
of Computer-Mediated Communication, vol. 19, no. 3, pp. 373–387, 2014.

https://docs.github.com/en/github/site-policy/github-community-guidelines

140

[54] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa, “Why do newcomers aban-
don open source software projects?” in Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop on. IEEE, 2013, pp. 25–32.

[55] D. Schneider, S. Spurlock, and M. Squire, “Differentiating communication styles of
leaders on the linux kernel mailing list,” in Proceedings of the 12th International Sym-
posium on Open Collaboration, 2016, pp. 1–10.

[56] A. Filippova and H. Cho, “Mudslinging and manners: Unpacking conflict in free
and open source software,” in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, ser. CSCW ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 1393–1403. [Online]. Available:
https://doi.org/10.1145/2675133.2675254

[57] ——, “The effects and antecedents of conflict in free and open source software devel-
opment,” in Proceedings of the 19th ACM Conference on Computer-Supported Cooper-
ative Work & Social Computing, ser. CSCW ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 705–716.

[58] W. Huang, T. Lu, H. Zhu, G. Li, and N. Gu, “Effectiveness of conflict management
strategies in peer review process of online collaboration projects,” in Proceedings of the
19th ACM Conference on Computer-Supported Cooperative Work & Social Computing,
ser. CSCW ’16. New York, NY, USA: Association for Computing Machinery, 2016,
p. 717–728. [Online]. Available: https://doi.org/10.1145/2818048.2819950

[59] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep
learning–based text classification: a comprehensive review,” ACM Computing Surveys
(CSUR), vol. 54, no. 3, pp. 1–40, 2021.

[60] K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A comparative analysis of logistic re-
gression, random forest and knn models for the text classification,” Augmented Human
Research, vol. 5, no. 1, pp. 1–16, 2020.

[61] T. Pranckevičius and V. Marcinkevičius, “Comparison of naive bayes, random forest,
decision tree, support vector machines, and logistic regression classifiers for text reviews
classification,” Baltic Journal of Modern Computing, vol. 5, no. 2, p. 221, 2017.

[62] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, “Transferring naive bayes classifiers for text
classification,” in AAAI, vol. 7, 2007, pp. 540–545.

https://doi.org/10.1145/2675133.2675254
https://doi.org/10.1145/2818048.2819950

141

[63] R. J. Lewis, “An introduction to classification and regression tree (cart) analysis,”
in Annual meeting of the society for academic emergency medicine in San Francisco,
California, vol. 14. Citeseer, 2000.

[64] A. Rahman and L. Williams, “Source code properties of defective infrastructure as code
scripts,” Information and Software Technology, vol. 112, pp. 148–163, 2019.

[65] D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection of information
types of open source software issue discussions,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 454–464.

[66] M. Chouchen, J. Olongo, A. Ouni, and M. W. Mkaouer, “Predicting code review com-
pletion time in modern code review,” arXiv preprint arXiv:2109.15141, 2021.

[67] A. Uchôa, C. Barbosa, D. Coutinho, W. Oizumi, W. K. Assunçao, S. R. Vergilio, J. A.
Pereira, A. Oliveira, and A. Garcia, “Predicting design impactful changes in modern
code review: A large-scale empirical study,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 2021, pp. 471–482.

[68] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[69] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,”
Advances in Neural Information Processing Systems, vol. 13, 2000.

[70] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” Advances in neural information
processing systems, vol. 26, 2013.

[71] S. Ilić, E. Marrese-Taylor, J. A. Balazs, and Y. Matsuo, “Deep contextualized word
representations for detecting sarcasm and irony,” arXiv preprint arXiv:1809.09795,
2018.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[73] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language un-
derstanding by generative pre-training,” 2018.

142

[74] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[75] “Bookcorpus,” https://yknzhu.wixsite.com/mbweb, last access: 2022-02-13.

[76] “English wikipedia,” https://en.wikipedia.org/wiki/English_Wikipedia, last access:
2022-02-13.

[77] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv
preprint arXiv:1907.11692, 2019.

[78] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert:
A lite bert for self-supervised learning of language representations,” arXiv preprint
arXiv:1909.11942, 2019.

[79] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[80] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “Spanbert: Improv-
ing pre-training by representing and predicting spans,” Transactions of the Association
for Computational Linguistics, vol. 8, pp. 64–77, 2020.

[81] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang
et al., “Codebert: A pre-trained model for programming and natural languages,” arXiv
preprint arXiv:2002.08155, 2020.

[82] S. González-Carvajal and E. C. Garrido-Merchán, “Comparing bert against traditional
machine learning text classification,” arXiv preprint arXiv:2005.13012, 2020.

[83] E. Biswas, M. E. Karabulut, L. Pollock, and K. Vijay-Shanker, “Achieving reliable
sentiment analysis in the software engineering domain using bert,” in 2020 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 162–173.

[84] H. Batra, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Bert-based sentiment analy-
sis: A software engineering perspective,” in International Conference on Database and
Expert Systems Applications. Springer, 2021, pp. 138–148.

[85] J. Wu, C. Ye, and H. Zhou, “Bert for sentiment classification in software engineering,”
in 2021 International Conference on Service Science (ICSS). IEEE, 2021, pp. 115–121.

https://yknzhu.wixsite.com/mbweb
https://en.wikipedia.org/wiki/English_Wikipedia

143

[86] J. Daxenberger, M. Ziegele, I. Gurevych, and O. Quiring, “Automatically detecting
incivility in online discussions of news media,” in 2018 IEEE 14th International Con-
ference on e-Science (e-Science). IEEE, 2018, pp. 318–319.

[87] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger and its direction
in collaborative software development,” in 2017 IEEE/ACM 39th International Con-
ference on Software Engineering: New Ideas and Emerging Technologies Results Track
(ICSE-NIER). IEEE, 2017, pp. 11–14.

[88] J. Zhang, C. Danescu-Niculescu-Mizil, C. Sauper, and S. J. Taylor, “Characterizing
online public discussions through patterns of participant interactions,” Proceedings of
the ACM on Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–27, 2018.

[89] S. Kumar, W. L. Hamilton, J. Leskovec, and D. Jurafsky, “Community interaction and
conflict on the web,” in Proceedings of the 2018 world wide web conference, 2018, pp.
933–943.

[90] F. Kivran-Swaine, P. Govindan, and M. Naaman, “The impact of network structure on
breaking ties in online social networks: unfollowing on twitter,” in Proceedings of the
SIGCHI conference on human factors in computing systems, 2011, pp. 1101–1104.

[91] R. Kumar, M. Mahdian, and M. McGlohon, “Dynamics of conversations,” in Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, 2010, pp. 553–562.

[92] S. Gonzalez-Bailon, A. Kaltenbrunner, and R. E. Banchs, “The structure of politi-
cal discussion networks: a model for the analysis of online deliberation,” Journal of
Information Technology, vol. 25, no. 2, pp. 230–243, 2010.

[93] K. Hamasaki, R. G. Kula, N. Yoshida, A. C. Cruz, K. Fujiwara, and H. Iida, “Who
does what during a code review? datasets of oss peer review repositories,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE, 2013, pp. 49–52.

[94] P. Tourani, Y. Jiang, and B. Adams, “Monitoring sentiment in open source mailing
lists: exploratory study on the apache ecosystem,” in Proceedings of 24th annual inter-
national conference on computer science and software engineering. IBM Corp., 2014,
pp. 34–44.

[95] J. Corbet, “A farewell to email,” 2018, accessed: 2020-10-15. [Online]. Available:
https://lwn.net/Articles/768483/

https://lwn.net/Articles/768483/

144

[96] X. Tan, M. Zhou, and B. Fitzgerald, “Scaling open source communities: An
empirical study of the linux kernel,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1222–1234. [Online]. Available:
https://doi.org/10.1145/3377811.3380920

[97] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical study of open
source project patches,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution. IEEE, 2014, pp. 271–280.

[98] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code review by predict-
ing reviewers and acceptance of patches,” Research on software analysis for error-free
computing center Tech-Memo (ROSAEC MEMO 2009-006), pp. 1–18, 2009.

[99] B. Shoot, “Linux founder to take some time off: I need to change some of my behavior,”
http://fortune.com/2018/09/17/linux-git-linus-torvalds-bullying-abuse-time-off/, ac-
cessed: 2018-12-26.

[100] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the risks of using
off-the-shelf techniques for processing mailing list data,” in 2009 IEEE International
Conference on Software Maintenance. IEEE, 2009, pp. 539–542.

[101] A. L. Strauss, Qualitative analysis for social scientists. Cambridge university press,
1987.

[102] A. Strauss and J. Corbin, “Open coding,” Basics of qualitative research: Grounded
theory procedures and techniques, vol. 2, no. 1990, pp. 101–121, 1990.

[103] D. R. Thomas, “A general inductive approach for qualitative data analysis,” 2003.

[104] J. Saldaña, The coding manual for qualitative researchers, 3rd ed. Sage, 2015.

[105] N. McDonald, S. Schoenebeck, and A. Forte, “Reliability and inter-rater reliability in
qualitative research: Norms and guidelines for cscw and hci practice,” Proceedings of
the ACM on Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–23, 2019.

[106] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agreement: the kappa
statistic,” Fam med, vol. 37, no. 5, pp. 360–363, 2005.

[107] T. K. Kim, “T test as a parametric statistic,” Korean journal of anesthesiology, vol. 68,
no. 6, p. 540, 2015.

https://doi.org/10.1145/3377811.3380920
http://fortune.com/2018/09/17/linux-git-linus-torvalds-bullying-abuse-time-off/

145

[108] M. L. McHugh, “The chi-square test of independence,” Biochemia medica, vol. 23,
no. 2, pp. 143–149, 2013.

[109] M. Williams and T. Moser, “The art of coding and thematic exploration in qualitative
research,” International Management Review, vol. 15, no. 1, pp. 45–55, 2019.

[110] J. Angouri and M. A. Locher, “Theorising disagreement,” Journal of Pragmatics,
vol. 44, no. 12, pp. 1549–1553, 2012.

[111] W. Wang, D. Arya, N. Novielli, J. Cheng, and J. L. Guo, “Argulens: Anatomy of
community opinions on usability issues using argumentation models,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, ser. CHI ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p. 1–14. [Online].
Available: https://doi.org/10.1145/3313831.3376218

[112] M. R. Islam and M. F. Zibran, “Sentistrength-se: Exploiting domain specificity for
improved sentiment analysis in software engineering text,” Journal of Systems and
Software, vol. 145, pp. 125–146, 2018.

[113] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “Senticr: a customized sentiment analysis
tool for code review interactions,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 106–111.

[114] N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment detection in
the social programmer ecosystem,” in Proceedings of the 7th International Workshop
on Social Software Engineering, 2015, pp. 33–40.

[115] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results when using
sentiment analysis tools for software engineering research,” Empirical Software Engi-
neering, vol. 22, no. 5, pp. 2543–2584, 2017.

[116] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile, “Can we use
se-specific sentiment analysis tools in a cross-platform setting?” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020, pp. 158–168.

[117] N. Novielli, F. Calefato, F. Lanubile, and A. Serebrenik, “Assessment of off-the-shelf
se-specific sentiment analysis tools: An extended replication study,” Empirical Software
Engineering, vol. 26, no. 4, pp. 1–29, 2021.

[118] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

https://doi.org/10.1145/3313831.3376218

146

[119] M. Buckland and F. Gey, “The relationship between recall and precision,” Journal of
the American society for information science, vol. 45, no. 1, pp. 12–19, 1994.

[120] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing
surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[121] Y. Xia, H. Zhu, T. Lu, P. Zhang, and N. Gu, “Exploring antecedents and
consequences of toxicity in online discussions: A case study on reddit,” Proc.
ACM Hum.-Comput. Interact., vol. 4, no. CSCW2, Oct. 2020. [Online]. Available:
https://doi.org/10.1145/3415179

[122] H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran, “Deceiving google’s perspective
api built for detecting toxic comments,” arXiv preprint arXiv:1702.08138, 2017.

[123] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

[124] I. Steinmacher, M. A. Gerosa, and D. Redmiles, “Attracting, onboarding, and retaining
newcomer developers in open source software projects,” inWorkshop on Global Software
Development in a CSCW Perspective, 2014.

[125] P. Heck and A. Zaidman, “An analysis of requirements evolution in open source
projects: Recommendations for issue trackers,” in Proceedings of the 2013 Interna-
tional workshop on principles of software evolution, 2013, pp. 43–52.

[126] I. Ferreira, J. Cheng, and B. Adams, “The" shut the f** k up" phenomenon: Charac-
terizing incivility in open source code review discussions,” Proceedings of the ACM on
Human-Computer Interaction, vol. 5, no. CSCW2, pp. 1–35, 2021.

[127] “Locking conversations,” https://github.blog/2014-06-09-locking-\conversations/, last
access: 2022-02-13.

[128] G. Docs, “Moderation - locking conversations,” accessed on Jan.
02, 2022. [Online]. Available: https://docs.github.com/en/communities/
moderating-comments-and-conversations/locking-conversations

[129] J. Salminen, S. Sengün, J. Corporan, S.-g. Jung, and B. J. Jansen, “Topic-driven
toxicity: Exploring the relationship between online toxicity and news topics,” PloS
one, vol. 15, no. 2, p. e0228723, 2020.

https://doi.org/10.1145/3415179
https://github.blog/2014-06-09-locking-\conversations/
https://docs.github.com/en/communities/moderating-comments-and-conversations/locking-conversations
https://docs.github.com/en/communities/moderating-comments-and-conversations/locking-conversations

147

[130] T. Son, T. Xiao, D. Wang, R. G. Kula, T. Ishio, and K. Matsumoto, “More than
react: Investigating the role of emojireaction in github pull requests,” arXiv preprint
arXiv:2108.08094, 2021.

[131] M. R. Islam, “Sample size and its role in central limit theorem (clt),” Computational
and Applied Mathematics Journal, vol. 4, no. 1, pp. 1–7, 2018.

[132] E. Whitley and J. Ball, “Statistics review 6: Nonparametric methods,” Critical care,
vol. 6, no. 6, pp. 1–5, 2002.

[133] M. E. Rice and G. T. Harris, “Comparing effect sizes in follow-up studies: Roc area,
cohen’s d, and r,” Law and human behavior, vol. 29, no. 5, pp. 615–620, 2005.

[134] M. Vollstedt and S. Rezat, “An introduction to grounded theory with a special focus
on axial coding and the coding paradigm,” Compendium for early career researchers in
mathematics education, vol. 13, pp. 81–100, 2019.

[135] M. W. DiStaso and D. S. Bortree, “Multi-method analysis of transparency in social
media practices: Survey, interviews and content analysis,” Public Relations Review,
vol. 38, no. 3, pp. 511–514, 2012.

[136] A. Foundjem, “Release synchronization in software ecosystems,” in 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 2019, pp. 135–137.

[137] D. Ramel, “Santa hat icon in vs code creates ’santagate,’ locks down repository,” 2019.
[Online]. Available: https://visualstudiomagazine.com/articles/2019/12/20/santagate.
aspx

[138] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in code reviews: Rea-
sons, impacts, and coping strategies,” in 2019 IEEE 26th international conference on
software analysis, evolution and reengineering (SANER). IEEE, 2019, pp. 49–60.

[139] G. Docs, “Github event types,” accessed on Jan. 02, 2022. [Online]. Available: https:
//docs.github.com/en/developers/webhooks-and-events/events/github-event-types

[140] I. Ferreira, B. Adams, and J. Cheng, “How heated is it? understanding github locked
issues,” in Proceedings of the 19th International Conference on Mining Software Repos-
itories, 2022.

[141] “Heat detector,” https://github.com/SOBotics/HeatDetector, last access: 2022-02-13.

https://visualstudiomagazine.com/articles/2019/12/20/santagate.aspx
https://visualstudiomagazine.com/articles/2019/12/20/santagate.aspx
https://docs.github.com/en/developers/webhooks-and-events/events/github-event-types
https://docs.github.com/en/developers/webhooks-and-events/events/github-event-types
https://github.com/SOBotics/HeatDetector

148

[142] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel emotions? an ex-
ploratory analysis of emotions in software artifacts,” in Proceedings of the 11th working
conference on mining software repositories, 2014, pp. 262–271.

[143] “Linux kernel’s list of maintainers,” https://github.com/torvalds/linux/blob/master/
MAINTAINERS, last access: 2022-02-13.

[144] J. Wei and K. Zou, “Eda: Easy data augmentation techniques for boosting performance
on text classification tasks,” arXiv preprint arXiv:1901.11196, 2019.

[145] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic study,”
Intelligent data analysis, vol. 6, no. 5, pp. 429–449, 2002.

[146] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several
methods for balancing machine learning training data,” ACM SIGKDD explorations
newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[147] “Nltk’s list of english stopwords,” https://gist.github.com/sebleier/\554280, last ac-
cess: 2021-07-23.

[148] C. Padurariu and M. E. Breaban, “Dealing with data imbalance in text classification,”
Procedia Computer Science, vol. 159, pp. 736–745, 2019.

[149] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the poor assumptions
of naive bayes text classifiers,” in Proceedings of the 20th international conference on
machine learning (ICML-03), 2003, pp. 616–623.

[150] M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, “A novel active learning method
using svm for text classification,” International Journal of Automation and Computing,
vol. 15, no. 3, pp. 290–298, 2018.

[151] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” Advances in neural information processing systems, vol. 24, 2011.

[152] T. Hugging Face, “Bert-base-uncased model,” https://huggingface.co/
bert-base-uncased, last access: 2022-03-10.

[153] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students learn better: On
the importance of pre-training compact models,” arXiv preprint arXiv:1908.08962v2,
2019.

https://github.com/torvalds/linux/blob/master/MAINTAINERS
https://github.com/torvalds/linux/blob/master/MAINTAINERS
https://gist.github.com/sebleier/\554280
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

149

[154] T. Hugging Face, “Auto classes: Auto model for sequence classification,” https:
//huggingface.co/docs/transformers/v4.19.2/en/model_doc/auto#transformers.
AutoModelForSequenceClassification, last access: 2022-03-10.

[155] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine
learning algorithms,” Advances in neural information processing systems, vol. 25, 2012.

[156] T. Hugging Face, “Hyperparameter search,” https://huggingface.co/docs/
transformers/main_classes/trainer#transformers.Trainer.hyperparameter_search,
last access: 2022-03-10.

[157] ——, “Trainer class,” https://huggingface.co/docs/transformers/main_classes/
trainer, last access: 2022-03-10.

[158] Q. Liu, X. Wang, X. Huang, and X. Yin, “Prediction model of rock mass class using
classification and regression tree integrated adaboost algorithm based on tbm driving
data,” Tunnelling and Underground Space Technology, vol. 106, p. 103595, 2020.

[159] R. Shu, T. Xia, L. Williams, and T. Menzies, “Better security bug report classification
via hyperparameter optimization,” arXiv preprint arXiv:1905.06872, 2019.

[160] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support vector classi-
fication,” 2003.

[161] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval. ACM press New
York, 1999, vol. 463.

[162] B. W. Matthews, “Comparison of the predicted and observed secondary structure of
t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-Protein Structure, vol. 405,
no. 2, pp. 442–451, 1975.

[163] D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation,” BMC genomics,
vol. 21, no. 1, pp. 1–13, 2020.

[164] R. Croft, D. Newlands, Z. Chen, and M. A. Babar, “An empirical study of rule-based
and learning-based approaches for static application security testing,” in Proceedings
of the 15th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2021, pp. 1–12.

https://huggingface.co/docs/transformers/v4.19.2/en/model_doc/auto#transformers.AutoModelForSequenceClassification
https://huggingface.co/docs/transformers/v4.19.2/en/model_doc/auto#transformers.AutoModelForSequenceClassification
https://huggingface.co/docs/transformers/v4.19.2/en/model_doc/auto#transformers.AutoModelForSequenceClassification
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Trainer.hyperparameter_search
https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Trainer.hyperparameter_search
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer

150

[165] D. Chicco, V. Starovoitov, and G. Jurman, “The benefits of the matthews correlation
coefficient (mcc) over the diagnostic odds ratio (dor) in binary classification assess-
ment,” IEEE Access, vol. 9, pp. 47 112–47 124, 2021.

[166] H. He and Y. Ma, Imbalanced learning foundations, algorithms, and applications. IEEE
Press, Wiley, 2013.

[167] H. S. Qiu, B. Vasilescu, C. Kästner, C. D. Egelman, C. N. C. Jaspan, and E. R. Murphy-
Hill, “Detecting interpersonal conflict in issues and code review: Cross pollinating
open-and closed-source approaches,” 2022.

[168] C. Wang, M. Ye, and B. A. Huberman, “From user comments to on-line conversations,”
in Proceedings of the 18th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2012, pp. 244–252.

[169] P. Aragón, V. Gómez, and A. Kaltenbrunner, “To thread or not to thread: The im-
pact of conversation threading on online discussion,” in Eleventh international AAAI
conference on web and social media, 2017.

[170] I. Ferreira, A. Rafiq, and J. Cheng, “Incivility detection in open source code review
and issue discussions,” arXiv preprint arXiv:2206.13429, 2022.

[171] M. Sulzmann and K. Z. M. Lu, “Correct and efficient posix submatch extraction with
regular expression derivatives,” 2013.

[172] S.-H. Han and L. M. Brazeal, “Playing nice: Modeling civility in online political dis-
cussions,” Communication Research Reports, vol. 32, no. 1, pp. 20–28, 2015.

[173] M. Guizani, A. Chatterjee, B. Trinkenreich, M. E. May, G. J. Noa-Guevara, L. J. Rus-
sell, G. G. Cuevas Zambrano, D. Izquierdo-Cortazar, I. Steinmacher, M. A. Gerosa
et al., “The long road ahead: Ongoing challenges in contributing to large oss organi-
zations and what to do,” Proceedings of the ACM on Human-Computer Interaction,
vol. 5, no. CSCW2, pp. 1–30, 2021.

[174] J. Suler, “The online disinhibition effect,” Cyberpsychology & behavior, vol. 7, no. 3,
pp. 321–326, 2004.

151

APPENDIX A REPLICATION PACKAGES

• Chapters 2 and 4 : https://doi.org/10.6084/m9.figshare.14428691

• Chapter 5: https://doi.org/10.6084/m9.figshare.18848765

• Chapter 6: https://github.com/isabellavieira/incivility_detection_oss_discussions

https://doi.org/10.6084/m9.figshare.14428691
https://doi.org/10.6084/m9.figshare.18848765
https://github.com/isabellavieira/incivility_detection_oss_discussions

152

APPENDIX B PHD DEFENSE PRESENTATION

153

154

155

156

157

158

159

160

161

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Context and problem statement
	1.2 Definition of incivility and related concepts
	1.3 Thesis overview and organization
	1.4 Thesis contributions
	1.5 Publications

	2 MOTIVATIONAL CASE STUDY: HOW DO OPEN SOURCE CONTRIBUTORS PERCEIVE INCIVILITY?
	2.1 Case study methods
	2.2 Summary of findings
	2.3 Lessons learned from the case study

	3 BACKGROUND AND RELATED RESEARCH
	3.1 Public discussions in software engineering
	3.1.1 Code review discussions
	3.1.2 Issue discussions

	3.2 Incivility
	3.2.1 Incivility in public discourse
	3.2.2 Unhealthy discussions in software engineering

	3.3 Automated detection of incivility
	3.3.1 Machine learning for text classification
	3.3.2 Automated detection of incivility in online communication platforms
	3.3.3 Automated detection of unhealthy discussions in software engineering

	3.4 Conversational dynamics

	4 CHARACTERIZING INCIVILITY IN OPEN SOURCE CODE REVIEW DISCUSSIONS
	4.1 Introduction
	4.2 Research questions
	4.3 Methods
	4.3.1 Collecting code review emails
	4.3.2 Identifying rejected patches
	4.3.3 Filtering and sampling rejected email threads
	4.3.4 Qualitative coding on 262 rejected email threads

	4.4 Results
	4.4.1 RQ1. Tone-bearing discussion features (TBDFs) in code review discussions of rejected patches
	4.4.2 RQ2. Frequency of incivility in code review discussions of rejected patches
	4.4.3 RQ3. Correlations of incivility with email and thread attributes
	4.4.4 RQ4. Discoursal causes of incivility
	4.4.5 RQ5. Discoursal consequences of incivility

	4.5 Discussion and recommendations
	4.5.1 Discussion on the main findings
	4.5.2 Proactive and reactive approaches to address risk factors before and after incivility happens
	4.5.3 Incivility detection

	4.6 Threats to validity
	4.7 Acknowledgements
	4.8 Chapter summary

	5 CHARACTERIZING INCIVILITY IN OPEN SOURCE ISSUE DISCUSSIONS
	5.1 Introduction
	5.2 Goals and research questions
	5.3 Methods
	5.3.1 Data selection
	5.3.2 Quantitative analysis on locked issues
	5.3.3 Qualitative analysis on locked issues

	5.4 Results
	5.4.1 RQ1. Characteristics of GitHub locked issues
	5.4.2 RQ2. Justifications for locking GitHub issues as too heated
	5.4.3 RQ3. Topics of discussions in issues locked as too heated
	5.4.4 RQ4. Incivility in issues locked as too heated

	5.5 Discussion and recommendations
	5.5.1 How are projects using the GitHub locking conversations feature?
	5.5.2 How is incivility expressed in issues locked as too heated?
	5.5.3 Recommendations

	5.6 Threats to validity
	5.7 Acknowledgements
	5.8 Chapter summary

	6 INCIVILITY DETECTION IN OPEN SOURCE CODE REVIEW AND ISSUE DISCUSSIONS
	6.1 Introduction
	6.2 Research questions
	6.3 Methods
	6.3.1 Datasets and data preprocessing
	6.3.2 Feature extraction for classical ML classifiers
	6.3.3 Data augmentation and class balancing
	6.3.4 Training and evaluating the classifiers
	6.3.5 Performance metrics
	6.3.6 Experimental design to answer the RQs

	6.4 Results
	6.4.1 RQ1. Models' performance on incivility detection
	6.4.2 RQ2. Incivility detection using the context
	6.4.3 RQ3. Incivility detection in a cross-platform setting

	6.5 Discussion
	6.5.1 Analysis of misclassified TBDFs per incivility classifier
	6.5.2 Analysis of BERT's misclassified TBDFs considering the context
	6.5.3 Analysis of misclassified TBDFs in cross-platform settings

	6.6 Threats to validity
	6.7 Acknowledgements
	6.8 Chapter summary

	7 CONVERSATIONAL DYNAMICS OF CIVIL AND UNCIVIL OPEN SOURCE CODE REVIEW DISCUSSIONS
	7.1 Introduction
	7.2 Research questions
	7.3 Methods
	7.3.1 Reconstructing code review discussions
	7.3.2 Describing social characteristics with graphs' properties
	7.3.3 Describing structural patterns with regular expressions

	7.4 Results
	7.4.1 RQ1. Social characteristics of civil and uncivil code review discussions
	7.4.2 RQ2. Structural patterns of civil and uncivil code review discussions

	7.5 Discussion
	7.6 Threats to validity
	7.7 Acknowledgements
	7.8 Chapter summary

	8 DISCUSSION AND FUTURE WORK
	8.1 Contributions and findings
	8.2 Opportunities for future research

	REFERENCES

