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RÉSUMÉ

La modélisation métabolique mathématique est une approche systématique pour déterminer
les principales causes d’un changement métabolique observé dans un biosystème, et estimer
les implications d’une perturbation métabolique induite. En fournissant des informations
mécanistiquement pertinentes au niveau des systèmes sur un réseau de bioréactions, la mod-
élisation dynamique basée sur les contraintes (DCBM) s’est révélée prometteuse en ingénierie
métabolique et pour la conception de bioprocédés. Aussi, nous avons d’abord dressé l’état
de l’art en approches de modélisation du métabolisme de cellules eucaryotes, sous la forme
d’une revue. Nous avons, par la suite, développé une approche DCBM qui utilise une boîte
à outils mathématique d’optimisation convexe et de régression non linéaire pour estimer les
distributions dynamiques des flux métaboliques intracellulaires dans deux biosystèmes : dans
un premier temps les globules rouges stockés comme élément critique pour la médecine trans-
fusionnelle, et dans un deuxième temps, des cellules de l’ovaire de hamster chinois (CHO),
lignée cellulaire en tant que principal organisme hôte pour produire des produits biophar-
maceutiques recombinant par culture cellulaire. Nous avons créé un réseau métabolique ad
hoc comportant 77 réactions et 74 métabolites pour les globules rouges. Nous avons acquis
une dynamique de flux à grain fin des processus intracellulaires. Ensuite, pour une analyse
dynamique de l’équilibre des flux (DFBA), nous avons créé quatre fonctions objectives liées
à l’accumulation de stress oxydatif dans les globules rouges stockés. Des prédictions de flux
résolues dans le temps ont été obtenues dans les quatre situations tout en respectant les
exigences d’égalité et d’inégalité requises. Enfin, pour calculer la distance euclidienne entre
les vecteurs de flux optimaux dynamiques, nous avons utilisé une approche de program-
mation quadratique (QP). L’approche DCBM que nous avons créée ici, couplée au réseau
métabolique que nous avons développé, s’est avérée adaptée à l’analyse informatique du
comportement métabolique des globules rouges, et on s’attend à ce qu’elle soit bénéfique
pour d’autres biosystèmes. De plus, en raison de la complexité inhérente des cellules eu-
caryotes, l’optimisation de la dynamique de croissance cellulaire et de la bio-production à
partir de cultures de cellules de mammifères est une tâche complexe au niveau cellulaire.
En conséquence, les approches expérimentales heuristiques en l’ingénierie métabolique des
organismes hôtes sont fréquemment complétées par des modèles mathématiques de culture
cellulaire afin d’améliorer l’efficacité des bioprocédés et d’identifier les causes des amélio-
rations connues. En utilisant la stœchiométrie des bilans de masse du réseau, les modèles
métaboliques structurés sont capables de représenter avec précision la complexité d’un réseau
métabolique. Les modèles métaboliques basés sur les contraintes ont progressé au cours des
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deux dernières décennies, passant de leur utilisation pour fournir une description linéaire
des systèmes métaboliques à l’état d’équilibre, à la modélisation de la dynamique des sys-
tèmes non linéaires dans une formulation de problème d’optimisation résolue dans le temps
ou dynamique. Cependant, bon nombre de ces approches échouent lorsqu’elles sont testées
dans un contexte autre que celui pour lequel elles ont été développées, en raison d’un grand
nombre d’hypothèses formulées au cours du processus de développement du modèle, ainsi
que de diverses normes de modélisation utilisées par différents groupes de recherche, tous
visant à révéler la complexité inhérente des réseaux métaboliques. Nous avons suivi les
normes établies par la communauté telles que dans la reconstruction de réseaux et leur anal-
yse basées sur les contraintes (COBRA). La plateforme COBRA in silico a été utilisée pour
proposer une technique de modélisation dynamique basée sur les contraintes (gDCBM) à
l’échelle du génome, et a permis de fournir la dynamique résolue dans le temps d’un réseau
métabolique structuré pour le métabolisme des cellules CHO. Nous avons amélioré le réseau
métabolique à l’aide d’un modèle métabolique de référence à l’échelle du génome (GSMM) de
CHO, à savoir iCHO DG44 v1, puis imposé des contraintes dynamiques sur ses flux de trans-
port à l’aide de données métabolomiques générées en interne. Pour anticiper les changements
physiologiques dans les variants clonaux de CHO, nous avons utilisé cette technique gDCBM.
Le modèle peut prédire les flux intracellulaires de manière continue et résolue dans le temps
(par heure de temps de culture) pendant la croissance et vers le changement métabolique
de non-croissance, a été confirmé en prédisant les concentrations en métabolites extracellu-
laires, y compris les acides aminés, ainsi que leur dynamique dans le temps. En conséquence,
nous pouvons générer des hypothèses d’intervention et étudier les effets d’altération in silico
avant ou en plus des expériences de culture cellulaire, qui sont chronophages et coûteuses.
Le modèle est également utilisé pour décrire les altérations métaboliques globales entre les
lignées cellulaires parentales et productrices élevées dans une autre application. Nous avons
démontré que l’approche de modélisation établie peut être utilisée pour étendre ou réduire
le réseau métabolique de manière systématique.



vii

ABSTRACT

Mathematical metabolic modelling is a systematic approach to determining the major causes
of a metabolic change seen in a biosystem and estimating the implications of an induced
metabolic perturbation. By providing mechanistically relevant systems-level information
about a network of bioreactions, dynamic constraint-based modelling (DCBM) has shown
promise in metabolic engineering and bioprocess design. Also, we first drew up the state of
the art in approaches to modelling the metabolism of eukaryotic cells, in the form of a review
article. Thus, we have developed a DCBM approach that uses a mathematical toolkit of con-
vex optimization and nonlinear regression to estimate dynamic intracellular metabolic flux
distributions in two biosystems: Firstly, stored red blood cells (RBCs) as a critical element
for transfusion medicine, and secondly, Chinese hamster ovary (CHO) cell line as the main
host organism producing recombinant biopharmaceuticals in cell culture technology. We cre-
ated an ad hoc metabolic network including 77 reactions and 74 metabolites for RBCs. We
acquired fine-grained flow dynamics of intracellular processes. Then, for a dynamic Flux
Balance Analysis (DFBA), we created four objective functions related to the accumulation
of oxidative stress in stored RBCs. Time-resolved flux predictions were obtained in all four
situations while adhering to the required equality and inequality requirements. Finally, to
calculate the Euclidean distance between the dynamic optimum flux vectors, we used a
quadratic programming (QP) approach. The DCBM approach we created here, coupled with
the metabolic network we developed, proved to be suitable for the computational analysis of
RBC metabolic behaviour, and it is expected to be beneficial for other biosystems. In addi-
tion, because of the inherent complexity of eukaryote cells, optimising cell growth dynamics
and bioproduction from mammalian cell cultures is a complex task at the cellular level. As
a result, heuristic experimental approaches in metabolic engineering of host organisms are
frequently complemented with mathematical models of cell culture in order to improve the
odds of enhancing bioprocess efficiency and identifying causes for known improvements. By
utilising the network’s mass balances’ stoichiometry, structured metabolic models are able
to accurately represent the complexity of a metabolic network. Constraint-based metabolic
models have advanced over the last two decades from being utilised to provide a linear de-
scription of metabolic systems at steady states to modelling nonlinear system dynamics in
a time-resolved or dynamic optimization problem formulation. Many of these approaches,
however, fail when tested in a setting other than the one for which they were developed,
owing to a large number of assumptions made during the model development process, as well
as diverse modelling standards used by different research groups, all aimed at revealing the
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inherent complexity of metabolic networks. We have followed the community’s established
standards as in Constraint-based reconstruction and analysis (COBRA). The COBRA in
silico platform has been used to propose a genome-scale dynamic constraint-based modelling
(gDCBM) technique that allows delivering time-resolved dynamics of a structured metabolic
network for CHO cell metabolism. We improved the metabolic network using a reference
genome-scale metabolic model (GSMM) of CHO, i.e., iCHO DG44 v1, and then imposed
dynamic constraints on its transport fluxes using metabolomics data generated in-house. To
anticipate physiological changes in CHO clonal variants, we used this gDCBM technique.
The model can predict intracellular fluxes in a continuous time-resolved (per hour of culture
time) manner during the growth to non-growth metabolic switch, and it has been confirmed
by predicting concentrations of extracellular metabolites, including amino acids, dynamics
of change in time. As a result, we may generate intervention hypotheses and study the
alteration effects in silico before or in addition to the time-consuming and expensive cell
culture experiments. The model is also used to describe global metabolic alterations between
parental and high producer cell lines in another application. We demonstrated that the es-
tablished modelling approach may be used to extend or reduce the metabolic network in a
systematic way.
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CHAPTER 1 INTRODUCTION

1.1 Research motivation

Numerous bioprocess improvements have been achieved through molecular biology, such as
DNA engineering and genome sequences. However, yet these alone are insufficient for under-
standing a biosystem behaviour. A change of perspective from a reductionist to a system-level
understanding of cells is needed. Although improvements in precise quantitative experimental
methods are undoubtedly still on-going, acquiring insights into the operation of biosystems
demand a mix of reductionist and systems-level methods. This is a result of biological sys-
tems’ inherent complexity [5]. It is not surprising, since cells have evolved over millions of
years building many interconnected pathways causing complex phenotypes.

Systems Biology relies on models of biological systems as tools to elaborate the systemic rela-
tionship within an organism and its environment [6]. When it comes to the cell as a biosystem,
mathematical models are developed to describe cellular functions. Model simulations may
concern deriving the behaviour of either overall cellular functions or the specific function of
an individual cellular process related to signaling, gene regulation or metabolism. Metabolic
models are particularly useful to describe the flow of mass and energy in metabolic networks,
in addition to describing the regulatory actions taking place inside the cell. Two main mod-
elling methods can be taken into consideration depending on how the metabolic network is
formalised: (i) constraint-based methods, that incorporate reaction stoichiometry and ther-
modynamic knowledge to infer metabolic flux distributions and predict complex metabolic
phenotypes; and (ii) kinetic models that simulate changes in metabolite concentrations over
time by including biochemical network stoichiometry, mechanistic reaction rate laws, and the
associated kinetic parameters [7]. Together, these complimentary strategies can be utilised
to reveal hidden patterns, explain emergent features, and generate new hypotheses.

In the field of biotechnology, mathematical models of cellular metabolism are of particular
interest. The cell factory produces a wide range of valuable compounds, and mathematical
modelling can be used to both develop new production methods and enhance already existing
ones. The systematic investigation of the metabolism becomes possible using stoichiometric
and kinetic models. These models were used to identify ideal bioprocess conditions as well as
to guide genetic alterations to develop high-producer strains or cell lines. In addition to being
a tool for understanding the cellular metabolism and physiology, mathematical models are
also becoming increasingly useful due to the growing availability of genomic data and modern
analytical approaches. The analytical power in laboratory and the adequacy of developed
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models are two main factors that determine success of this practice. However, the current
power of available molecular biological techniques points to a considerable disparity with the
ability to rationally simulate and design biochemical networks [1, 8].

The well-conserved approach, for the analysis and the design of bioprocess engineering, still
relies on having a mathematical model of the process under study. Metabolic models were
primarily intended to describe a biosystem’s static state, making the models less effective
for describing manufacturing processes such as in batch and fed-batch modes that are inher-
ently dynamic [9, 10]. There are unstructured dynamic models available that only vaguely
consider the cell metabolism and instead include lumped mass balances to describe dynamics
with Monod equations, for instance. These models, if extended to also describe intracellular
metabolism, typically include a large number of parameters, making them extremely suscep-
tible to model error and measurement noise in the data used for model calibration [11]. As
a result, there is a strong incentive to develop structured metabolic models that accurately
account for the interactions between extracellular and intracellular environments while also
generating fewer calibration parameters [12]. These new models are expected to be more
robust and more suitable for model-based prediction and optimization of bioprocesses under
study across a wide range of operating parameters.

The best route across a stoichiometric network, within specific physicochemical constraints, is
highlighted by constraint-based modelling (CBM) approach. A minimal amount of biological
information is needed to draw quantitative conclusions regarding network behaviour using
this method [13]. CBM techniques for metabolism organise biochemical, genetic, and genomic
knowledge into a mathematical framework. It enables the prediction of cellular activity from
a genotype. In order to enable a mechanistic description of metabolic physiology, over the
past 30 years, the use of constraint-based techniques has evolved, and recently, more studies
have integrated models with high-throughput data sets for prospective experimentation [14].
As a result of these research, a greater and more significant capacity for pertinent biological
predictions have been confirmed.

Therefore, to the best of our knowledge and taking all the above, the current challenge
relies on simulating overall intracellular and extracellular properties based on the extensively
linking these. Simulation attempts to predict a system dynamics, and thus relevancy of
underlying assumptions, can then be tested. The model is validated, when experimental
observation and detailed behaviour of computer-executable simulations are contrasted. On
the one hand, occurrence of inconsistency at this point indicates that the assumptions we
are using to reflect our understanding of the system are insufficient, irrelevant or erroneous.
On the other hand, if our models pass first validation, then it can be applied to answer
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research questions as well as generate predictions that could be confronted and validated
from experiments. Therefore, the hypothesis that the establishment of a dynamic constraint-
based in-silico platform contributes to predict and analyze non-steady state metabolic fluxes,
and to quantify medium dynamics, to enable understanding and optimizing a living organism
metabolism have motivated this research.

1.2 Project objectives and methodology

The primary objective was to develop a framework with CBM properties and then to extend
it to simulate dynamic metabolic behaviours. The goal of this study was thus to create
appropriate algorithms for developing a dynamic constraint-based modelling (DCBM) ap-
proach for both non-growing Red Blood Cells (RBCs) and growing mammalian cells (CHO).
Unlike dynamic kinetic modelling, which relies on a huge number of kinetic expressions and
tuning parameters, the current approach is based on the parameter-free Dynamic Flux Bal-
ance Analysis (DFBA) algorithm [15]. The method developed in this study, is based on the
formulation of an optimization problem in which a range of flux distribution in a metabolic
network is desired, as well as the optimization of a set of specific objective functions un-
der certain flux constraints. According to the premise underpinning DFBA, evolution had
conditioned the cell to operate as an agent that optimally distributes resources to achieve
a set of biological objectives. However, due to the higher complexity of mammalian cells
compared to bacteria, no optimization objectives have yet been specified for mammalian
cells. As a result, one of the objectives of this research was to identify objective functions
especially for the non-growth phase of mammalian cells, for which we studied a non-growing
biosystem (RBC) to analyze impact of alternate objective functions before designing new
objective functions for mammalian cell culture (CHO). Therefore, objective functions and
certain mathematical methods are designed coupled to produce an appropriate optimization
problem whose solution describes the experimental behaviour of mammalian cells. The re-
sulting DFBA model can then be used in support to guide process optimization approaches
such as genetic modification, media design, or bioprocess management.

Despite the fact that our ultimate goal was to develop a dynamic metabolic flux model
for CHO, we initially devised an ad hoc model for RBCs biosystem. The following were the
motivations for designing the initial method for RBCs: (i) a basic metabolic network of RBCs
was available, which allowed testing our framework on a rather simpler metabolic network.
(ii) a collaborating scientist identified the importance of studying storage lesions in stored
RBCs. (iii) the assumption of growth rate was irrelevant for this non-growing biosystem as the
objective function, therefore, other reliable objective functions were identified. We established
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systematic ways to treat raw experimental data and to develop a metabolic network coupled
with the flux constraints that are the basic elements of the dynamic metabolic flux models.
Algorithms and mathematical techniques that make use of raw data from literature were
created in order to accomplish the project’s objectives. In the work on RBC, we estimated the
course of changes in metabolites concentration using non-linear regression before switching
to cubic spline estimation in the work on CHO. In order to provide a workable optimization
problem, we consolidated a metabolic network for RBC as well as for CHO, validated with
experimental data sets, in support of formulating dynamic optimization problems.

Genome-scale metabolic models (GSMM) provide the most accurate in silico mapping of the
genotype-phenotype link and thus have become increasingly important for the optimization of
bioproduction processes. In the absence of a genome-wide annotation of open reading frames
(ORFs) or because of modelling purposes, one may choose to develop an ad-hoc metabolic
model in which a predefined subset of reactions (and metabolites) are explicitly considered.
In the work on CHO, we created a genome-scale dynamic constraint-based modelling (gD-
CBM) framework employing methodologies for systematic identification of constraints and
reliable objective functions. As a result, in this thesis, we worked on the metabolic network
of a non-growing biosystem (RBC) and a growing one (CHO). In parallel, we developed an
ad-hoc metabolic model to study stored RBCs oxidative lesions and a GSMM to study mon-
oclonal antibody production in Chinese hamster ovary (CHO) cell culture. The models were
rectified based on the constraint-based reconstruction and analysis (COBRA) guidelines [16],
to eventually they provide robust in-silico computational platforms to estimate input-output
relations between extracellular and intracellular environments.

1.3 Organization of the thesis

This thesis includes 9 chapters and is organized as follows. In Chapter one we presented the
research motivation and the project objectives. Chapter two presents a literature review on
modelling cell metabolism. We critically analyzed a wide array of approaches in metabolic
modelling including Dynamic Kinetic Modelling (DKM) and Constraint-based Modelling
(CBM) and their variants. This review concluded with a discussion of knowledge gaps and
future perspectives for model development. This review was published in Processes with
the doi:10.3390/pr9020322. Chapter three is a modelling study of a non-growing biological
system, i.e., Red blood cells (RBCs). In that study, we analyzed impacts of alternative
objective functions on the dynamic modelling of the RBCs storage process. Hypothetical
objective functions regarding oxidative defense mechanisms were considered developing a dy-
namic constraint-based modelling (DCBM) approach. This chapter is in press for publication
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in IFAC-PapersOnLine. Chapter four describes a genome-scale dynamic constraint-based
modelling (gDCBM) framework to model CHO clonal variations. Interactive components
of this framework are explained and the dynamics of extracellular metabolites is simulated
followed by the prediction of the range of the intracellular flux distributions. This chapter
has been submitted to Metabolic Engineering, and is under review for publication. Chapter
five contains a general discussion and the original contributions of this thesis. Chapter six
presents recommendations for future work and Chapter seven proposes the Conclusion part.
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Abstract

Studying cell metabolism serves a plethora of objectives such as the enhancement of biopro-
cess performance, advancement in the understanding of cell biology, of drug target discovery, 
and in metabolic therapy. Remarkable successes in these fields emerged from heuristics ap-
proaches, for instance, with the introduction of effective strategies for genetic modifications, 
drug developments and optimization of bioprocess management. However, heuristics ap-
proaches have showed significant shortcomings, such as to describe regulation of metabolic 
pathways and to extrapolate experimental conditions. In the specific case of bioprocess man-
agement, such shortcomings limit their capacity to increase product quality, while maintain-
ing desirable productivity and reproducibility levels. For instance, since heuristics approaches 
are not capable of prediction of the cellular functions under varying experimental conditions, 
they may lead to sub-optimal processes. Also, such approaches used for bioprocess control of-
ten fail in regulating a process under unexpected variations of external conditions. Therefore, 
methodologies inspired by the systematic mathematical formulation of cell metabolism have 
been used to address such drawbacks and achieve robust reproducible results. Mathematical 
modelling approaches are effective for both the characterization of the cell physiology, and the 
estimation of metabolic pathways utilization, thus allowing to characterize a cell population 
metabolic behavior. In this article, we present a review on methodology used and promis-
ing mathematical modelling approaches, focusing primarily to investigate metabolic events 
and regulation. Proceeding from a topological representation of the metabolic networks, we
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first present the metabolic modelling approaches that investigate cell metabolism at steady
state, complying to the constraints imposed by mass conservation law and thermodynamics
of reactions reversibility. Constraint-based models (CBMs) are reviewed highlighting the set
of assumed optimality functions for reaction pathways. We explore models simulating cell
growth dynamics, by expanding flux balance models developed at steady state. Then, dis-
cussing a change of metabolic modelling paradigm, we describe dynamic kinetic models that
are based on the mathematical representation of the mechanistic description of nonlinear
enzyme activities. In such approaches metabolic pathway regulations are considered explic-
itly as a function of the activity of other components of metabolic networks and possibly far
from the metabolic steady state. We have also assessed the significance of metabolic model
parameterization in kinetic models, summarizing a standard parameter estimation procedure
frequently employed in kinetic metabolic modelling literature. Finally, some optimization
practices used for the parameter estimation are reviewed.

keyword constraint-based modelling approach, kinetic modelling, metabolic network, dy-
namic metabolic flux analysis, metabolic flux regulation, metabolic network structure, metabolic
model parameterization, Gibbs free energy, thermodynamic constraints, metabolic control
analysis

2.1.1 Introduction

Expanding the modelling paradigm, from a microscopic description to systems biology per-
spective, has offered a deeper capacity to describe cell behaviour and its interaction with
extracellular environment. The improvement was necessary to address complex problems
related to the characterization of intracellular events [6, 17, 18]. Indeed, one-reaction models
have then rapidly evolved to reaction network-level models, and recently reached a genome-
wide level when applicable. Various mathematical approaches have been proposed to first
integrate a reaction network and stoichiometry, for then integrating reaction kinetics and
regulation mechanisms. While evolving, models have gained the capacity to question cell
behaviour by both interpolating within and extrapolating from experimental data, for then
allow extracting data that are tedious to impossible to be directly acquired, such as intra-
cellular metabolic flux rates [19]. The predictive power that network-level models offer is
an important advantage of such systemic mathematical representation compared to heuris-
tics approaches. In fact, metabolic models have evolved to encompass higher levels of the
knowledge regarding a biosystem, i.e. from gene to protein to reaction, to thus enhance
the predictive power. Cell metabolism is a complex biosystem of study, even for unicellular
organisms. Indeed, metabolic modelling is particularly challenging because many cellular
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functions are the result of a combination of factors. Therefore, unravelling causal relations
and correlations between an observed phenomenon and its associated factors necessitates a
model capable of describing the underlying biosystem, the network of biochemical interac-
tions, and their connectivity and regulation. A model is still a modest approximation [20].
The merits and drawbacks of a model are determined by adequacy to describe a biological
reality, further, a compromise between model correctness and the extent to which it is math-
ematically tractable is unavoidable [21]. Thus, simplifying assumptions must be considered
making a metabolic model definite in its scope and solvable regarding available experimental
data. These assumptions are a consolidation of heuristics experiences for a model, the current
knowledge of the biosystem and of its interaction with its surroundings. Typical assumptions
concern the cell compartments homogeneity level, a diversity in biological time scales, the
level of distributing versus lumping entities of interest, among others. These assumptions are
particularly of interest because they are the main factors determining the relation between
an observation in reality and the result of the simulation of an abstract mathematical model.
The required metabolic modelling approach is shaped to accommodate the assumptions and
provide the sought-after applications [18, 22–24]. The metabolic network models have been
developed to understand the dominant qualitative features of cell metabolic behaviour in a
bioprocess [25], or in a metabolic disease [26]. A comprehensive metabolic model can also im-
prove conventional wisdom regarding the cell metabolism by making important corrections,
such as gap-filling reactions suggested by genome-wide metabolic models [27, 28]. When re-
quired to interfere with cell functioning, a metabolic model can contribute to discovering new
strategies [26,29,30], and to organize the disparate accumulated information into a coherent
body of practical knowledge [18, 31]. In a complex system such as the metabolic network
of the cell, a model helps to think (and calculate) logically about what components and
interactions are important and what other components can be neglected [1]. However, the
extent of progress in the model application to accomplish each of these goals depends on sev-
eral factors, including the industrial importance and the scientific significance of sought-after
results. Based on this premise, metabolic modelling has gained substantial importance to en-
hance bioprocess optimization [32,33], where the increased efficiency leads to cost reduction
in million-dollar order of magnitude, and to develop metabolic therapies [26,29], i.e. to push
forward cancer treatment. In a broad classification, metabolic models are divided into four
categories based on the capability of the model to distinguish between sub-populations of
biomass (unsegregated/segregated) and the extent of recognizing the intracellular biochemi-
cal components (unstructured/structured) [1, 34], (Figure 2.1).

In this review, we have clustered modelling approaches which are mostly understood as
unsegregated and structured. Thus, such a mathematical model describes multi-compartment
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Figure 2.1: A broad classification of the mathematical metabolic models. The
difference in the models that are shown originates from an average cell approximation and a

balanced growth approximation in regard with (1) cell population, (2) a single cell.
Reproduced with permission from [1].

average cell and when it is desired the model extends the description to the whole population
by taking into account the quantity (size) of the population, i.e. biomass concentration.
Present approaches proposed in literature were compared based on their ability to elucidate
the structure of a network, to then characterize allowable and empirical flux distribution,
and to finally take into account flux dynamics regulation. This review is not by any means
a comprehensive tabulation of the exhaustively diverse range of the published metabolic
models, but a methodology motivated review of the keystones of metabolic modelling. Thus,
significant trade-offs between any two categories were acknowledged. Also, from another
crucial perspective, the capability of the models under steady state and dynamic state of the
metabolic network is assessed. The revised modelling approaches have been used for severely
different scales of metabolic systems and typically to serve distinct strategies, therefore, it
deems essential to notice the context where models are primarily used to avoid confusion.
When possible, a simple running example is used to illustrate the approach being discussed.
The running example is first introduced in Figure 2.2.
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2.1.2 Topological representation of metabolic networks

Representation based on the graph-theory

In this approach, cell metabolic networks are denominated Bio-Chemical Reactions Network
(bio-CRN), including the reactions that govern the cell metabolism. Owing to genome se-
quencing technologies, annotated genomes for several organisms made possible to reconstruct
metabolic network accounting for the major active constituents of the cell, i.e. proteins, DNA,
RNA and other metabolites [35, 36]. Modelling approaches based on the graph theory have
been used to unravel network complexity by quantitative methods. In (the major variants of)
this approach, the metabolic network substrates are modelled as nodes of the graph and reac-
tions as the (directed) edges [35,37]. It has been shown, in comparative studies for different
species that the graph of a metabolic network can be modelled by a scale-free connectivity
structure [38]. In a scale-free structure, the probability distribution of finding a node with
k connections follows a power-law function, i.e. P (k) ≈ k−λ, with λ being a species-specific
positive constant. In a metabolic network context, it means that the probability of finding
a substrate involved in k reactions decreases with a power-law relationship to the increasing
number of reactions [37, 39, 40]. (refer to Figure 1 of [35] for illustration of the connectivity
structures.)

Reconstruction of the metabolic network for 80 fully sequenced organisms taken from eu-
karyotes, archaea and bacteria conclude that most of the metabolites participate in a few
reactions and a few ones drive many reactions, with these latter defined as hub-metabolites
[35, 38, 40, 41]. Interestingly, this statistically heterogeneous distribution of metabolites con-
nectivity resembles an error-tolerant system structure, which is found in human-made net-
works such as the Internet [42]. It was shown that random elimination of reactions due to
mutations of enzyme-coding genes are tolerated by metabolic networks and the structural
redundancy allows the modified metabolic networks to result in viable reorganizations of the
metabolic routes, i.e. the in-silico model maintained the potential to support growth [43].
In fact, it is argued that “the small world architecture” of metabolic networks, which refers
to the scale-free structure, “may serve to minimize transition times between metabolic states
[. . . ]” [40] as well. On the other hand, network behaviour, i.e. fluxes rates and distribution,
is sensitive to changes of so-called hub-metabolites [38,44,45], which motivated further struc-
tural investigation of these special nodes. A sub-network mostly made of hub-metabolites
is named the giant strong component of a metabolic network, and it represents the core
metabolites typically consisting of less than one third of the total metabolites included in the
metabolic network [38]. In [40], the authors identify a node in the substrate graph as a hub-
metabolite if its degree exceeds the mean metabolite degree of the network by three times
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the standard deviation. Moreover, considering the most linked metabolite is ranked first in
a network, and it is a shared metabolite between tens of organisms with an average rank
of R, it has been shown that metabolites in higher average ranks see less deviation in their
ranks among the different organisms. Conversely, the metabolites of lower average ranks,
i.e. the ones participating in a few reactions, show species-specific changes in the number of
reactions they are participating in. Topological analysis of metabolic networks structure also
provides the average reaction path between any two substrates. As expected, this number
increases with the addition of more metabolites to the network. However, some individual
metabolites then become more and more connected, thus the average length of reaction paths
remains in a much narrower range compared to the range of added metabolites. As an ex-
ample, if the number of metabolites integrated in the metabolic network increases from 200
to 1000, the average reaction path increases from 4 to 12 (refer to Figure 5 in [37]). Worth
mentioning, the calculated average reaction path increases when the connections through the
energetic metabolites, such as ATP/ADP , NADH/NAD+ and NADPH/NADP+, are
eliminated, highlighting their significant role as co-metabolites of many reactions. Excluding
these metabolites, the ten most connected metabolites are the intermediates in the glycolysis
pathway (Glycerate-3-phosphate, D-Fructose 6-phosphate, D-glyceraldehyde-3-phosphate),
the intermediates in the pentose-phosphate pathway (D-ribose-5-phosphate, D-xylulose-5-
phosphate), pyruvate and acetyl-CoA, the precursor for purine and histidine synthesis (5-
phospho-d-ribose 1-diphosphate), L-glutamate and L-aspartate [37].

Representation based on the Petri net theory

Petri net theory supports another topological oriented modelling approach of metabolic net-
works [46–48]. A Petri net is a directed graph, whose nodes have two different types, namely,
places and transitions. Thus, substrates (and products) are considered as the places, and re-
actions are the transitions. In this approach, one end of an edge is connected to a metabolite
and the other end is connected to a reaction. Therefore, as opposed to the graphs reviewed in
2.1.2, in Petri net graphs edges are not representative of reactions. Instead, edges have weights
resembling the stoichiometric coefficients [49]. Petri net models provide a reliable analysis of
the consumption/production relations but not of regulatory interactions. However, several
extensions of the primary formalism have been introduced to increase the quantitative suit-
ability of Petri net theory for biological systems analysis. For example, coloured Petri nets,
stochastic Petri nets [50, 51], self-modified Petri nets [52, 53], hybrid and hybrid functional
Petri nets [47] . Nevertheless, the Petri net representation of metabolic networks still deserves
more methodological developments.
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The stoichiometric matrix of a metabolic network

As for a chemical reaction, the stoichiometry of a biochemical reaction tells the relative num-
ber of moles on either side of a reaction involving an enzyme in a balanced reaction [18]. In a
bio-CRN, the matrix of stacked stoichiometric vectors of all the network reactions forms the
stoichiometric matrix of the reaction network. The stoichiometric models of metabolic net-
works for prokaryotic and eukaryotic cells are available in literature [54]. The stoichiometric
matrix for a metabolic network with m metabolites and n reactions is as follows:

Sm×n =
(
si,j

)
m×n

{i = 1, ..., m|j = 1, ..., n} (2.1)

where the ith row consists of reaction coefficients for metabolite i, with regard to (w.r.t)
all reactions of the network, sij is the coefficient of metabolite i in reaction j. A negative
sij implies that the metabolite i is on the left side of a reaction j and thus assumed to be
consumed, if positive it is receiving flux of matter in the reaction j (vj), and zero if it does
not participate in the reaction j:

dxi

dt
=

n∑
j=1

s+
ijvj −

n∑
j=1

s−
ijvj, i = 1, . . . , m (2.2)

Therefore, we have one column vector for each reaction and Eq. A.2 can be written in
matrix-vector notation for the whole metabolic network as follows:

dx⃗

dt
= Sm×nv⃗ (2.3)

The stoichiometric matrix can be reshaped into four partitions, each of which with specific
characteristics (Figure 2.2). Structural analysis of metabolic networks can be more elegantly
performed by using the matrix formalism instead of topological theories, as it is transferable to
a graph representation while such transfer from the topological representations is not always
possible [18, 21]. Either way, the analysis is not restricted only to genome-scale metabolic
networks, and it can be efficiently used in an early step of modelling to draw a non-intuitive
sense of network reactions connectivity. However, relying solely on structural information to
extract connectivity interactions suffers from the flawed assumption that every biochemical
reaction is worthing same weight, regardless of its level of activity. Therefore, the structural
analysis results can hardly be directly useful for investigating the cellular mechanisms for
flux regulation [55, 56]. Contribution of the stoichiometric matrix to the formulation of the
further approaches is fundamental. The algebraic properties of stoichiometric matrix and



13

Figure 2.2: Partitioning of the stoichiometric matrix of the running example. (a)
The substrate graph representation of the running example metabolic network. (b) The
corresponding stoichiometric matrix divided in the four characteristic sub-matrices. SII :

Intracellular metabolites reaction coefficients w.r.t intracellular reactions. SIE: Intracellular
metabolites reaction coefficients w.r.t exchange reactions. SEI : Extracellular metabolites

reaction coefficients w.r.t intracellular reactions, always zero. SEE: Extracellular
metabolites reaction coefficients w.r.t exchange reactions, always diagonal.

nowadays matrix computation capacity has fuelled further use of the stoichiometric matrix
as an important part of any metabolic mathematical models. The significance of its role in
the representation of metabolic networks will become evident through the following sections.

2.1.3 Metabolism is a constrained system

Approaches based on the metabolic steady state hypothesis have been first proposed for
estimating theoretically active enzymatic reactions [57–60], and to estimate metabolic flux
rates from the reaction network stoichiometry and experimental time-data of extracellular
metabolite concentrations [26, 61–66]. The mass conservation constraint at the steady state
is formulated through the stoichiometric matrix for a network of biochemical reactions at any
size, and this constraint has a central role in the determination of the solution space in many
approaches (following sections). The observation that the changes of intracellular fluxes occur
at a faster dynamic compared to the changes of the extracellular concentrations supports the
validity of the steady state assumption [67, 68]. A detailed mathematical justification of
the (pseudo) steady state assumption in the mathematical modelling of biochemical reaction
networks is proposed in 1983 in [67], however, in the context of this review article, this
assumption is valid at constant exponential growth phase in batch cultures, and in continuous
cultures operating at steady state [69]. The advantage of the constraint-based modelling
is that these approaches do not need to deal with enzyme kinetics and post-translational
regulatory mechanisms [12]. In the following, we review the most relevant approaches and
the associated constraints that are imposed on metabolic networks.
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The null space of stoichiometric matrix

From a mathematical point of view, the stoichiometric matrix S, denotes a linear mapping
of the reaction rate vector into the space of accumulated concentration time derivatives of
metabolites [70]. To illustrate, consider N to be a linear mapping function, let:

N : Rn → Rm

be defined by:
N([v1, v2, . . . , vn]) = [ẋ1, ẋ2, . . . , ẋm] (2.4)

since N is linear, we can write:

N(v⃗(n×1)) =v1N(e⃗1) + v2N(e⃗2) + · · · + vnN(e⃗n) (2.5)

=
N(e⃗1)N(e⃗2) . . . N(e⃗n)


(m×n)

v⃗(n×1) (2.6)

=S(m×n)v⃗(n×1) = ⃗̇x(m×1) (2.7)

For the particular case of metabolic network operating at steady state, we have S(m×n)v⃗
∗
(n×1) =

⃗̇x(m×1) = 0⃗. The set of vectors v⃗∗
(n×1) are linearly dependent to the members of the basis for

the null space (Eq. A.4) and thus, a subset of the null space of the stoichiometric matrix S

(Eq. A.5). Where r is the rank of stoichiometric matrix S, the basis for the null space is a
set with q = (n − r) linearly independent column vectors of dimension n, which generates
the null space for stoichiometric matrix S when spanned [70].

K(S) = {⃗bi ∈ Rn (i = 1, . . . , q) | S.⃗bi = 0⃗ and b⃗i .⃗bj = 0⃗ (i ̸= j)} (2.8)

Null space(S) = span{⃗b1, . . . , b⃗q}, q = (n − r) (2.9)

where K(S) denotes the basis for the null space of stoichiometric matrix S.

Metabolic Pathway Analysis (MPA)

Metabolic networks are an interconnected set of the metabolic pathways which interconnect
at branch points and through shared metabolites. It is common, inside a metabolic net-
work, to have several redundant routes for the transformation of one given metabolite to
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another. It is particularly true for linking external substrates to external metabolic prod-
ucts [71, 72]. These multiple routes, which obey to mass conservation principle at steady
state, are considered a main cause of biological robustness [73,74]. Thus, model development
by the decomposition and characterization of a metabolic network into definitive pathways
has attracted attention to allow identifying the dominant routes [24, 75, 76]. Particularly,
MPA modelling approaches adapt a convex basis analysis methodology to estimate a theo-
retically feasible relative flux distribution. In MPA, component pathways of the network and
genetically independent reaction pathways are identified [77–79], such insight is particularly
of interest in gene-knockout and synthetic pathway construction studies.

MPA is usually used as an umbrella term for two closely related approaches, namely ele-
mentary flux mode analysis (EFMA) and extreme pathway analysis (EPA). A flux mode is
a flux distribution vector that satisfies the mass conservation constraint for the intermediate
metabolites at steady state, and does not violate direction restriction of irreversible reac-
tions. The term flux modes was coined by Schuster et al. [21, 75] in 1994, to address the
independent enzyme sets responsible for a component pathway. If it is not possible to fur-
ther decompose a flux mode to a linear combination of simpler flux modes, it is considered
as an elementary flux mode. In biochemical terms, it is a minimal set of enzymes “that can
operate at steady state, with all irreversible reactions used in the appropriate direction” [77].
In mathematical definition, the convex basis vectors for the null space of the stoichiometric
matrix of a metabolic network represent elementary flux modes (EFMs) [80] (see Table S1,
Supplementary Materials, for properties of the different MPA methods).

EPA benefits from the algebraic tools developed for metabolic pathway analysis. EPA is
closely related to EFMA, and the important condition in their formulation is the net direc-
tion of each reaction. Reactions that can be reversible may flow in two different directions
at different states of cell metabolism. Knowing that, EPA is assumed to extract the minimal
subset of EFMs [81]. Considering the n-dimensional vector of intracellular fluxes, elementary
flux modes form a convex cone in the solution space, while extreme pathways characterize the
edges of this solution cone [82–84]. Therefore, EPA is computationally less demanding than
EFMA [85, 86]. EFMs reproduce all the admissible reaction pathways at steady state in an
unbiased manner, therefore, enumerated EFMs of a metabolic model can quickly exceed com-
putational capacity of a typical computing system of the date. However, various studies show
that usually a small percentage of these calculated EFMs are biologically and thermodynami-
cally feasible [84,87], thus, the integration of constraints from biology and thermodynamics is
utilized to ameliorate computational cost of enumerating EFMs for genome-scale models (the
following sections). Use of these approaches complemented promising methods to identify
co-regulated reactions and co-expressed genes [88], and composition of the minimal required
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Figure 2.3: Metabolic pathway analysis (a) The balanced metabolic network includes
the metabolites for which the quasi-steady state assumption holds. (b) The basis for the
null space is the kernel matrix of the stoichiometric matrix. (c) EFMs are enumerated

assuming that all the reactions are irreversible. Each EFM is a linear combination of the
basis vectors. (d) The flux maps for the EFMs are shown on the substrate graph of the

network (see Figure S1, Supplementary Material, for the network of reversible reactions).
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substrates in order to produce valuable metabolic products [88, 89] (see Table 2.1 in [90] for
a list of software packages for enumerating EFMs).

Metabolic Flux Analysis (MFA): admissible metabolic fluxes

Flux quantification in a metabolic system reveals significant information about the cell phys-
iological state. Such information, particularly characterizes the cell response to genetic ma-
nipulation or changes in its environment, thus, may be used to improve a bioprocess toward
predefined optimization objectives [1, 91]. Moreover, it was shown in several studies that
the rates of exchange reactions, i.e. intermembrane transport reactions, can be used not
only to quantify the rates of the intracellular reactions, but also to describe global processes
taking place in the corresponding metabolic state of the cell [1, 91–93]. In a comprehensive
metabolic network, the number of metabolites is typically smaller than the number of intra-
cellular and exchange reactions combined. Thus, the associated stoichiometric matrix renders
an under-determined system of equations, where the metabolites form balance equations, and
the reaction rates are unknowns. When the system of equations is solved, MFA provides an
empirical flux map [94–96], instead of the relative distribution of the fluxes provided by MPA.
The mathematical formulation is as follows [68]:

S.v⃗ = 0
[
Su Sk

] v⃗u

v⃗k

 = 0

v⃗u = −[(ST
u Su)−1ST

u ]Skv⃗k

(2.10)

where the vector vu represents unknown fluxes, the vector vk the measured (known) fluxes,
and Su , Sk the stoichiometric matrix subsets for unknown and measured fluxes, respectively.

To have a determined system, the degree of freedom of a system must equal zero. Generally,
some reaction pathways are excluded from a comprehensive metabolic network to qualify it
for MFA [8], and experimental data regarding concentration of medium components are used
to further decrease the degree of freedom, i.e. identifying more exchange reactions. Measure-
ments provide the estimation of cell concentration and uptake/secretion rates, which are the
characteristic parameters of cell activity. Conversely, the degree of freedom increases as a re-
sult of the branches of pathways diverging and then rejoining later in the network, reversible
reactions and metabolic cycles. These structures add reaction columns to the stoichiometric
matrix, which are linearly dependent to the existing ones [97, 98]. For instance, the authors
in [99] show that in a mammalian cell, it is essential to determine the uptake/secretion rates
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of ammonium and the secretion rate of either CO2 or O2. Because these are the cometabo-
lites of the TCA cycle reactions, thus, determination of them enhances the observability of
the fluxes in the TCA cycle. However, generally the balance equations alone are not capa-
ble of addressing such issues, therefore, additional constraining balance equations must be
introduced to determine the system and consequently solve for the unknown fluxes [97,98].

13C-Metabolic Flux Analysis More sophisticated substrate labelling experiments can be per-
formed to overcome limitations of MFA approach such as from reversible and cyclic re-
actions [92, 93, 100–103]. Metabolite and isotopomer balancing have been developed since
1995 [104]. In this method, a labelled substrate (e.g. 13C-glucose, 13C-glutamate, 14N-
glutamine) is administered to the cell, leading to the labelled atoms in different metabolites
and in the macromolecular biomass constituents and thus as well as in the secreted prod-
ucts [102, 105]. Henry et. al [92, 93], used 13C-MFA to optimize the timing of induction
of a biphasic Chinese hamster ovary (CHO) cell culture, by assessing the intracellular flux
maps before and after production induction. Parallel labelling experiments as an alternative
to traditional single tracer experiments [106] was used by Antoniewicz et. al to characterize
flux distribution in growth and non-growth phases of CHO cell culture [66], among numerous
other applications of this method [91].

Chromatography methods are used to separate labelled and non-labelled metabolites from
each other (i.e. metabolite identification), then, mass spectrometry is used to measure their
abundance by mass determination (i.e. metabolite quantification). Thus, use of a coupled
either liquid or gas-chromatography mass spectrometry apparatus (LC-MS or GC-MS) is
a prevalent strategy for metabolite profiling [100, 107]. MS is particularly more popular
in comparison with nuclear magnetic resonance (NMR) and liquid-chromatography mass-
spectrometry (LC-MS), because of its good performance, extensive databases, relative cost
of operation and the ease of maintenance [108,109], but exact quantification is more straight-
forward with LC-MS because of the use of known calibration curve with standards. The
acquired data has to undergo correction and normalization to provide the measurements in
a form that has biological information content. Kanani et. al [110], discussed the main
sources of biases which arise in GC-MS and troubleshooted some of these biases, following
the efforts to standardize this methodology as an integral part of the metabolomics data
generation [111,112].

The non-experimental stage of metabolite labelling flux analysis consists of solving the iso-
topomer balance equations by computational algorithms. However, the capability of these al-
gorithms to provide interpretation of experimental data and to support strategic experimental
design is limited. In fact, increasing the power of frameworks to model isotope labelling sys-
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tem, with the least (or no) loss of information, is an active topic of research [105,108,113,114].
Recently modified versions of 13C-MFA were used to overcome the challenges of measuring
metabolic fluxes in the distinct compartments of the eukaryotic cells (e.g. cytosol, mito-
chondrion). In a recent article, the authors provide an updated detailed protocol to perform
13C-MFA for the quantification of intracellular fluxes [108], and in a comprehensive review
the latest developments in the MFA has been described [8].

2.1.4 Constraints augmented with a hypothesized objective function for the cell

The information available about carbon flow distribution in a metabolic system mostly sug-
gests that the cell primary task is biomass synthesis, then homeostasis and maintenance
of cell activities, and to a lesser extent, the production of an important product such as
monoclonal antibodies. The priority and significance of these tasks change depending on
the organism origin, time and mode of cell growth. Thus, the assumption that the cell
metabolism has a particular predefined objective, is used to determine metabolic fluxes dis-
tribution [54, 102, 115]. The commonly assumed objective function for flux balance models
is the maximization of biomass growth (See Table S2, Supplementary Materials, for a list of
other objectives). Flux Balance Analysis (FBA) is the framework used in this approach since
it allows determining ranges for the allowable flux distributions based on the hypothesized
relevant biological objectives of the cell [94]. The mathematical formulation of a cell objec-
tive, accounting for defined fluxes restrictions with bounding limits for the reaction fluxes, is
developed as a linear programming optimization problem (Eq. A.7).

max C⃗T .v⃗

subject to:

S.v⃗ = 0

lb < v⃗ < ub

(2.11)

Considering that the stoichiometrically defined domain of flux vectors is dictated by the cell
metabolic genotype, the solutions of an optimized objective function will be pertained within
the metabolic phenotype of a specific cell-line or strain under study [116]. The arrays of the
row vector CT

(n) are the linear coefficients representing weights of the fluxes in the objective.
The solution for one particular objective function, such as the maximal growth, may be
different and even contrasting from another objective, such as for maximal production of a
secondary metabolite [54, 102, 117]. It is exemplified in Figure 2.4 that how FBA is used to
estimate the metabolic network flux maps for the running example.
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Figure 2.4: Flux Balance Analysis (FBA) (a) The formulation of FBA as a linear
programming optimization problem implemented on the running example. v6 denotes the

measured uptake rate and v7 is the objective flux to be maximized. (b) The solution fluxes
map (left) for the imposed flux bonds (right). It is assumed that v4 is measured/known in

addition to v6 (FBA1). (c) The solution fluxes map (left) for the imposed flux bonds
(right). It is assumed that v8 cannot be less than 30 units (FBA2). Units: Flux rate units

such as (nmol)
1e6cell−hr

or mmol
gDW −hr

.
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The particular solution for the relative distribution of the fluxes can be used to interpret,
describe and predict experimental results. The workflow to perform FBA is as follows:

1. To curate metabolic reactions from the annotated genome data.

2. To identify the topology and the structure of a network.

3. To identify the flux vector solution space at steady state.

4. To impose constraints and bounds on fluxes.

5. To define hypothesized objective function of interest for a biosystem.

6. To realize the vector space of the solution and identify the optimum solution (i.e. the
flux map).

The accuracy of FBA solutions is partially determined by the accuracy of constraints im-
posed on the fluxes, and also, by the relevancy of the biological objective function that is
assumed. Thus, it is not rare that the FBA solution provides unfeasible predictions of the
flux distribution. To reconcile the associated issues, the annotated genome information and
the results of experimental research must be combined [118, 119]. Different advancements
such as the inclusion of regulatory and thermodynamics constraints in the FBA have been
introduced to address the challenges associated with the application of this approach (see
Table S3, Supplementary Material, for the list of FBA enhancements and Table S4 for the
comparison of FBA and MFA).

The constraint-based modelling approaches are particularly useful when cellular activities
involved in a particular cell physiology of interest are not well understood, hence hindering
the application of mechanistic modelling approaches. The lack of knowledge of the mech-
anistic basis of cell activities results in the increasing uncertainty of corresponding model
parameters. In such a situation, a hypothesized objective function based on the established
knowledge on the global cell behaviour (i.e. growth rate, . . . ) justifies the rationale be-
hind modelling the metabolic network using constraint-based approaches. However, one of
the adverse consequences of this is that the constraint-based models are generally poor at
extrapolating outside the imposed experimental conditions. These models are also weak in
accommodating sequential changes in the conditions, i.e. in the fed-batch regime, which are
frequently occurring in bioprocesses, as well as describing medical cases.
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2.1.5 Thermodynamics-based constraints

Thermodynamics laws dictate that the direction of every spontaneous reaction is from lower
entropy to higher. Thus, a living organism encompassing the vital nonspontaneous reactions
must have a continual energy input and then dissipate some of this energy in the form of
unusable heat, in order to continue existing. Boltzman had already understood this principle
when he hypothesized that:

The general struggle for existence of animate beings is therefore not a struggle for
raw materials, nor for energy, but a struggle for entropy which becomes available
through the transition of heat from the hot sun to the cold earth (Boltzman,
1886).

Hence, the biological systems cannot attain true equilibrium state, and their thermodynam-
ics is studied under the non-equilibrium steady state (NESS). Classical thermodynamics can
describe the direction of change for systems nearing equilibrium, however, when the distance
from equilibrium state exceeds a critical value, the system may exhibit non-equilibrium struc-
tured states that are maintained only with a continual input of energy [120,121]. This is one
of the reasons that makes circulation of energy in the cell possible and necessary. Thus, the
direction of reactions in the metabolic pathways is determined as the result of the consistent
manifestation of reactions taking place far from equilibrium. The true equilibrium is never
reached unless the cell is practically dead, i.e. insignificant regulated metabolic activity is
observed [122–125]. Imposing the constraints that emerge from this underlying theory nar-
rows down the solution space of the metabolic model and thus ensures complying to the
thermodynamics laws [2].

Estimation of the Gibbs free energy change

A positive net change of the Gibbs free energy of a reaction (∆rG) suggests that the re-
action cannot occur spontaneously, i.e. it is endergonic, unfavourable or nonspontaneous.
Conversely, an exergonic reaction is one that releases work energy and can be assumed spon-
taneous or favourable. By the means of Gibbs free energy, the degree of thermodynamic
favorability of the reactions in a metabolic network can be quantified [126]. The spontaneity
described by the Gibbs free energy change is concerned with whether or not the reaction
needs continual input of energy to take place. However, the change in Gibbs free energy
between substrates and products reveals no information regarding the rate of the reaction.
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This extensive variable has the following expression (Eq. 2.12) [127]:

∆rG
◦′ = −RT ln K

∆rG
′ = ∆rG

◦′ + RT ln Q
(2.12)

where K denotes the equilibrium constant of the reaction, Q is the reaction quotient. The
standard state which is denoted by (◦) is defined as T = 298(K), pH = 7 and concentrations
of molecular compounds, except for H+, OH− and H2O, equal to 1mol/L(M).

Theoretically, the experimental values of a reaction equilibrium constant can be measured by
making a solution of the enzyme and the molecular compounds participating in the reaction,
to then allow them to reach equilibrium state; where the substrate and product concentra-
tions are fixed and then measured to calculate the equilibrium constant [128]. A large number
of chemical reactions have been investigated in this manner, and the acquired data have been
collected in thermodynamics databases (see Table S3 of the Supplementary Materials). In
addition, tables of thermodynamic data are available in literature such as in the extensive
works of Alberty [129,130]; Thauer [131,132], and Dolfing [133,134]. However, for the major-
ity of the biochemical reactions experimental derivation of ∆rG

◦′ is troublesome [127], mainly,
because of the lack of reliable models for metabolic chemistry, the difficulty of conducting
in vivo measurements, and the loss of accuracy of in vitro values when transformed to the
in vivo conditions [135]. Thus, experimental data of the equilibrium constants of metabolic
reactions are scarce and mostly unreliable. To address this shortcoming, the Gibbs free en-
ergy change of the metabolic reactions is estimated as the sum of the Gibbs free energies of
formation of the participating reactants and products (Eq. 2.13).

∆rG
◦′

j =
m∑

i=1
si,j∆fG

′0
i , (2.13)

where si,j is the stoichiometric coefficient of compound i in the reaction j, and ∆fG
′◦
i denotes

the standard Gibbs energy change of formation for the compound i. As a result, ∆rG
′◦
j is

calculated for the reaction j. Consequently, the problem then becomes how to estimate the
Gibbs energy change of formation for the participating molecular compounds. The Gibbs
energy change of formation for a compound can be calculated from its standard Gibbs energy
of formation and its thermodynamic activity [136]. Group Contribution Methods (GCMs)
GCMs are statistical estimation methods for the estimation of Gibbs free energy of formation
[137]. In the GCMs, it is assumed that the standard Gibbs formation energy of a metabolite
is a linear summation of the formation energies of its constituent molecular substructures
(or groups, denoted as Pi) [126, 127, 138]. Moreover, a common reference of estimation for
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all functional groups that are involved is defined. If a specific sub-structure appears more
than once in the main molecular compound, number of the occurrences must be taken into
account as a coefficient applied to the contribution of that specific substructure (Ni). The
general formulation of the property calculation is as follows (Eq. 2.14).

P = P0 +
q∑

i=1
NiPi, (2.14)

Developed from the classic work of Mavrovouniotis [127], Jankowski et. al [126] provided
a version of GCM tailored for biochemical networks. By this method one can estimate the
standard Gibbs free energy of formation ∆fG

′0, and consequently the standard Gibbs free
energy of reaction ∆rG

′0, based on Eq. 2.13. In the recent years, the accuracy and the scope of
application of GCM have been continually improved, but, however, there are still some issues
that are limiting the confidence interval of this method estimation. As categorized by Du et.
al (Figure 1 in [128]), the issues are associated with estimation accuracy, data quality and
convergence, and inherent difficulties of the GCM methodology. Some promising directions
to address the current shortcomings consist in gathering more curated thermodynamic data
for fitting of Gibbs formation energies, and to extend current methods so they can calculate
equilibrium constants as a function of temperature [139]. In addition, uncertainty at different
degrees arises from several factors that affect GCM calculation, such as ionic strength, ion
concentration, pH and temperature [139] and certain group interactions cause large errors in
the total value of the property estimated [127,140].

Modelling approaches complying to the thermodynamics-based constraints

In order to rule out closed reaction cycles from FBA, Energy Balance Analysis (EBA) en-
forces nonlinear thermodynamics-based constraints on chemical potential [141, 142]. When
metabolomics data is available, Network-embedded Thermodynamic analysis (NET analysis)
developed by Kummel et al. [143] can be used as a computational thermodynamics-based
framework for the estimation of the feasible range of the Gibbs free energy change of reactions
of the network under physiological conditions. In addition to the standard Gibbs free energy
change of formation of the metabolites, NET analysis requires metabolomics data, predefined
directions for the reactions and a stoichiometric metabolic model. However, the lack of the
direction assignment does not lead to wrong results, but less insight from the metabolomics
data. Interestingly, NET analysis does not require a predefined metabolic objective of the
cell and thus the identification of the underlying thermodynamic infeasibilities is not biased.
The types of results that can be obtained from using NET analysis comprise ascertaining
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the thermodynamic consistency of measured metabolite data, prediction of concentrations
of unmeasured metabolites and identification of the potential enzymes sites for regulatory
actions [117,143].

In the method proposed by Hatzimanikatis and co-workers [144], named Thermodynamics-
based Metabolic Flux Analysis (TMFA), the CBMs is augmented with the Gibbs free energy
change of the reactions to form a mixed integer linear programming (MILP) problem. The
solution of this MILP optimization problem eliminates any thermodynamically infeasible
flux distributions and, moreover, estimates feasible metabolite activity ranges. The level
of insight provided by TMFA is largely determined by the number of reactions for which
the Gibbs free energy change is known. In a genome-scale model of E. coli (iJR904) [145],
the experimental values of Gibbs free energy change of the reactions and formations are
only available for 5.6% of the reactions and 11% of the compounds, respectively. However,
employing GCMs resulted in estimating the Gibbs free energy change for more than 90%
of the reactions and metabolites [126], thus, allowing the implementation of TMFA on the
iJR904 metabolic model. The suggested ways to overcome the superficial infeasibility of the
essential reactions includes correcting for uncertainty involved in the estimation of Gibbs free
energy changes and adjusting the metabolites activity ranges. The impact of such remedies
is studied for the reaction dihydroorotase in the E. coli genome-scale metabolic model [144].
(For the equations and inequalities that describe the mathematical formulation of TMFA
refer to Text S1 in the Supplementary Materials.)

Generally, the implementation of CBMs with the thermodynamic constraints divides the re-
actions of a network into three categories. First, bottlenecks on flux direction, which are the
reactions with ∆rG

′ close to zero. The second is the reactions that have exclusively highly
negative values of ∆rG

′ , meaning they are independent of the concentration of metabolites.
The reactions of this category receive a special attention as regulatory points of the cell
metabolism. The third category is the reactions in which ∆rG

′ is highly dependent on the
metabolites concentrations. These reactions can be used to determine the feasible range of
concentration or concentration ratios. In many biochemical reactions, we observe interconver-
sion of some known pairs of molecular compounds such as ATP/ADP , NAD+/NADH and
NADP +/NADPH. These metabolites are assumed to be tightly regulated and have a rel-
atively complicated structure, but minimal structural difference between one another, there-
fore, a more accurate contribution share for their interconversion is estimated by GCMs [127].
Henry et al. [144] found the feasible ranges for NADP + /NADPH and NAD + /NADH

in a genome-scale metabolic model of E.coli and showed that the ratio ranges comply to the
assumption that these energetic pairs are tightly regulated. In fact, the cell maintains the
ratio of the former energetic pair close to the maximum allowable value, while the ratio of
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the latter is kept close to its minimum value. It is in contrary to the majority of metabo-
lites where concentrations are maintained close to the logarithmic means of minimum and
maximum allowable activities, suggesting the wider range of fluctuations allowed for their
activities. The advantages of using TMFA can be described into three aspects [138]:

• Assignment of thermodynamically feasible directions to all reactions in a network.

• Elimination of futile cycles (infeasible closed cycles).

• Consideration of thermodynamically coupled reactions.

In addition, by coupling thermodynamics of a metabolic network with the EFMA, one can
reduce the number of relevant EFMs [2, 146]. In fact, it was demonstrated that to have a
thermodynamically feasible intracellular flux distribution, all the founding EFMs must be
thermodynamically feasible too. Based on this, the authors of [117] discarded 46% of a total
of 71.3 million EFMs generated for a compartmentalized model of central metabolism in S.
cerevisiae. Peres et. al [146] compared the traditional MPA approach, with an approach
where they incorporate the external metabolite concentrations in addition to the standard
Gibbs free energy change of reactions. Consequently, the incorporation of external metabo-
lites allowed for the enumeration of different EFMs in the different culture conditions and cell
growth phases. However, to overcome the need of discarding the already generated EFMs
and thus to decrease computational cost, tEFMA was developed that generates only thermo-
dynamically feasible EFMs in the first place [147]. Figure 2.5 gives a quick overview of the
context of applications of thermodynamics-based theories.

Extensions of constraint-based flux balance models simulate growth dynamics

Even though enzyme activities in a cell are constantly changing as a result of metabolic regu-
lation, the validity of the steady state assumption is justified in many cases, such as in biopro-
cesses in continuous cell cultures and in early exponential growth phase of batch fermentation.
However, there are many practical situations like in batch and fed-batch industrial bioreac-
tors and in medical cases, where cells exhibit a dynamic behaviour [148]. In recent efforts,
further developments have been done on the constraint-based approaches to form dynamic
flux balance analysis (dFBA) and dynamic metabolic flux analysis (dMFA) [26,61,63,64,96].
Studying a biosystem under transient conditions using dFBA and dMFA approaches uses
steady state models sequentially, evaluating the state of the biosystem at each sampling time
interval [15]. In this convenient way, the model can be used to estimate the dynamic changes
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Figure 2.5: Thermodynamics-based modelling of metabolic networks.
Thermodynamics integration to metabolic networks modelling allows computation of fluxes

and EFMs that are thermodynamically feasible. The feasible concentration ranges of
metabolites can be estimated and then used for estimating the distance from the

equilibrium. Reused with permission from [2].

.
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Table 2.1: Thermodynamically constrained models along with their specifications and
reference to their origin.

Thermodynamics-based Constrained Model
Theory Name Specification Reference
Energy balance analy-
sis (EBA)

Identifies reactions’ direction and flux
limits based on the Gibbs free energy
value of reactions.

[141]

Network-embedded
thermodynamic anal-
ysis (NET)

Identifies thermodynamically feasible
flux range or metabolite concentration
range, based on the predefined stan-
dard Gibbs free energy and predeter-
mined flux directions.

[143]

Thermodynamics-
based metabolic flux
analysis (TMFA)

Identifies flux direction, allowable flux
range and also concentration ranges.
Incorporates a MILP optimization.
Based on the predefined standard
Gibbs free energy.

[135]

of intracellular fluxes and to decipher the major activated metabolic pathways in the reac-
tion network without the need for a large set of predefined kinetic parameters [149]. The
particular advantage of this enhancement is its capability to describe the growth dynamics
of biomass [150]. This approach uses the constraint-based models at each assumed steady
state to estimate the (momentarily) growth constant, to then find a new set of the exchange
rates through integrating the macroscopic mass balance equations of substrate consumption
and product formation. The calculated exchange rates are then used to constrain the next
iteration of the constraint-based model simulation updating the growth constant, and the it-
erations go forward. To have a smooth continuous simulation of the bioprocess dynamics, the
time between two consecutive operation points, i.e. two consecutive cell count measurements,
is modelled with a continuously differentiable function, such as Monod model. The appli-
cation of this line of metabolic model development has been shown in describing dynamic
growth on multiple carbon sources for a small metabolic network [151, 152]. In essence such
model obeys a discrete-continuous framework, where the discrete states are decided based on
logical transcriptional regulatory rules and then continuous states, i.e. concentrations and
fluxes, are computed according to the specific parameters of each discrete state.
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2.1.6 Kinetic modelling

Dynamic kinetic models attempt to provide a mechanistic description of the biosystem in
terms of the cell enzymatic activity and mass balances over intracellular metabolites. Thus,
the mass conservation equations for the components form a system of ordinary differential
equations (ODEs). The values of the intracellular fluxes and concentrations are derived as a
numerical solution of the conservation equations. Kinetic models bring about the possibility
to interpolate and extrapolate dynamic behaviour of a system, in a consistent fashion, in
situations other than the one on which the model was originally validated [13, 153, 154].
Moreover, this type of mathematical models can simulate changes in the relative activation
of enzymatic reactions as a function of parameters of the system and the initial concentrations
[155–158]. The general mathematical formulation is given in Eq. 2.15 as follows:

dx⃗(t)
dt

= S.v⃗(t), vj(t) = fj(x⃗(t), u, θ), with: x(t0) = x0(θ) (2.15)

xi(t) =
∫ t

t0

 n∑
j=1

sij.vj(t)
dt + x0(θi) =

∫ t

t0

 n∑
j=1

sij.fj(x⃗(t), u, θ)
dt + x0(θi) (2.16)

where the vector x(t) is a vector of dimension m of time-dependent state variables such as
extracellular and intracellular metabolites concentration, the vector v is here a nonlinear
time-dependent vector of the reaction fluxes, which depends on x(t), a vector of regula-
tory inputs u(t), and θ which stands for the collective set of kinetic parameters and initial
states [73, 159, 160]. In some cases, algebraic equations or additional ODEs are added to
this general representation to reflect, among others, conserved moieties total concentrations,
volume changes or supplementary descriptive variables [159]. The flux vector is equivalent of
the vector of biochemical reaction rates and is reported in the units of mole of reacting matter
per mass of biomass per time. The inclusion of reaction kinetics in Eq. 2.15 introduces non-
linearity to the formerly linear mapping of a reaction rate vector into a space of accumulated
concentration time derivatives of metabolites (ẋ(t)) [70], and in return, provides the capa-
bility to calculate concentrations change and intracellular fluxes at transient, i.e. not only
at steady state. The function fj is to provide a mechanistically valid description of reaction
rates of the reactions taking place in an underlying metabolic network. The mathematical
formulation of the reaction rate is driven by kinetics theories (i.e. transition state theory),
thermodynamics theories (i.e. theory of equilibrium, linear and nonlinear non-equilibrium
theory) and first principles (i.e. mass balances of metabolites). The impact from all the
reaction rates (metabolic fluxes) where the metabolite i participated is calculated based on
the corresponding row of the stoichiometric matrix S, (first term on the right-hand side of the
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Eq. 2.16), integrating over this term for a period ending at t provides the concentration of
the metabolite i at t. However, the numerical solution of the underlying ODEs integration is
quite troublesome due to the large number of parameters, the nonlinear nature of enzymatic
reaction rates and the stiffness caused by the difference between the time scale of the under-
lying bioprocesses. Addressing the issues that are obstructing the use of kinetic modelling
on large-scale metabolic models, i.e. genome-scale models, has been focus of the research
community. In the following, the most relevant mathematical formulations are presented
and their merits and drawbacks are discussed.

Approximate kinetic formats and the quantification of metabolic regulation

Alternative approaches to mechanistic kinetic modelling that uses non-mechanistic kinetic
models have primarily emerged based on a reasoning that suggests, because of the homeosta-
sis constraint, redesign of metabolic networks does not require detailed mechanistic mod-
els [23, 161]. Thus, the development of approximate kinetic formats provided mathematical
equations to approximate reactions kinetics in the neighbourhood of a reference metabolic
state, with a decreased number of kinetic parameters. The approximate kinetics that are
formed generally have four characteristics in common: proportionality between reaction rate
and enzyme concentration, capability to reach the plateau phase for the reaction rate against
substrate concentration, involving the least possible kinetic parameters and providing an-
alytical solution at steady state [162]. Approximate kinetic formats explicitly incorporate
metabolite concentrations and provide a framework for the quantification of metabolic regu-
lation [73,162–166].

Metabolic Control Analysis (MCA) Sensitivity analysis (SA) of metabolic model parameters
for determining their influence on the model simulation is crucial [167]. The initial values of
metabolite concentrations and of kinetic parameters, as well as the constraints on flux rates
may be considered as sensitive factors influencing model behaviour [168]. The SA divides into
two major groups, namely, local and global SA. Local SA methods consider that only one
input varies at a time and the perturbation results are observed in outputs, while the rest of
parameters is maintained unchanged. Conversely, in global SA, all inputs vary simultaneously
and the resulting effect on model output can be investigated by intense computational cost.
In fact, global SA uses repeated sampling from the probability distribution of each input
parameter to obtain numerical results covering the entire range of variation of the metabolic
model parameters [169]. Local sensitivity analysis is widely used for characterizing the effect
of parameter changes on the solution of dynamic models in the neighbourhood of a certain
reference state. For a metabolic model, the linearization about the reference state is generally
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expressed as a first order Taylor series approximation [11,169,170]:

∂ci(t, p◦)
∂pg

(2.17)

≈
ci(t, p◦

g + ∆pg, p◦
k=1,...,m,k ̸=g) − ci(t, p◦

g − ∆pg, p◦
k=1,...,m,k ̸=g)

2∆pg

where ci is a property of the metabolic system, i.e. the metabolite concentration, p◦ is the
initial set of the parameters, and pg is the parameter subject to change. Explicit differenti-
ation can be used when the model explicitly states the relation between the desired output
and the input, in this case sensitivity function represents an analytical solution which can
be used to calculate the sensitivity. When the output is provided as an implicit function
of the input parameter(s), implicit differentiation might be used. However, in practice local
sensitivity coefficients are calculated with numerical approximation [11]. Simulation is used
to determine a variable of interest (i.e. steady state metabolic flux) at two different param-
eter values (i.e. enzyme total concentration), then various numerical forms of the Eq. 2.17
formula are used to calculate the absolute and relative local sensitivity [17].

One of the well-known SA frameworks in the metabolic modelling context is metabolic control
analysis (MCA) that is widely used to study metabolic pathways interactions [171–174]. By
the use of MCA, the effect of a parameter perturbation on metabolic fluxes or metabolite
concentrations can be estimated or reported in an experimental scenario [174]. The three
main coefficients in MCA are defined based on the notation in [161] in Table 2.2.

On theoretical grounds, dynamical stability of a stable metabolic system dictates that upon
the perturbation of one state of the system at steady state, the states of the system, i.e.
metabolite concentrations and intracellular fluxes, eventually returns to the same steady
state. When one parameter is perturbed, structural stability ensures that the system even-
tually returns to the same steady state or to one close by. If the system is unstable, such
perturbations result in the diverge of some or all of the states. Hence, a subset of the system
states is chosen that relative to the period of the observations, the concept of stability and
steady state for them is associated with the same time period, i.e. the phenomena have close
enough relaxation times [174]. Then, the study of the metabolic system is confined in the
neighbourhood of such stable steady state of the biosystem. Thus, in practice, MCA has a
limited capacity in quantification of the control distribution within the metabolic network
as the theory stays only valid for small variations in parameters, where the linearization in
Eq. 2.17 is a good approximation of the nonlinear kinetics behaviours. The rigorous math-
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Table 2.2: The main MCA coefficients.

MCA coefficients table
Name Mathematical for-

mulation
Description

2*Control coeffi-
cients

Flux: CJ
ij = e◦

j

J◦
i

dJi

dej

The coefficients are a mea-
sure of

Intracellular metabo-
lite: Cx

ij = e◦
j

x◦
i

dxi

dej

the relative change in a flux
or concentration upon a rel-
ative change of an enzyme
activity level

2*Response co-
efficients

Flux: RJ
ij = c◦

j

J◦
i

dJi

dcj

The coefficients are a mea-
sure of

Intracellular metabo-
lite: Rx

ij = c◦
j

x◦
i

dxi

dcj

the effect of a change of an
external parameter, on in-
tracellular fluxes and con-
centrations

Elasticity coeffi-
cient

Intracellular reaction
rate: εx

ij = x◦
j

J◦
i

∂vi

∂xj

The elasticity is a lo-
cal measure quantifying the
relative change in reac-
tion rate upon a rela-
tive change in metabolite
concentration, while main-
taining other concentrations
and parameters constant
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ematical formulation of MCA was exploited to derive several theorems to relate the MCA
coefficients in global relationships, i.e. the summation and connectivity theorems, among
others (for a mathematically rich elaboration see [173] and [174]). Attempts to extend the
application of MCA lead to the expansion of enzyme concentration changes for which the
theory holds valid [161,175]. These approximate kinetic formats are log-lin and lin-log based
on the approximation procedure employed to derive each one. However, they are typically
formulated directly from the stoichiometry of the metabolic network as given in Table 2.3.
Biochemical System Theory (BST) Power-law representation of the ODEs (Eq. 2.15) is the
key ingredient of more general Biochemical System Theory (BST) developed primarily by
Michael Savageau and Eberhard Voit in the 1960s [176, 177] prior to MCA development.
In the two global formats of BST, namely, Generalized Mass Action (GMA) and canoni-
cal S-system representations the sums and differences of multivariate products of power-law
functions are used to represent dynamics of changes in biochemical processes and metabolite
pools, respectively [163–166]. Sharing much of the modelling philosophy with MCA, BST
gives the same steady states solution, and the same local stability properties (at the same
reference state), which implies that the different parameters of BST can be derived from the
coefficients used in MCA, i.e. kinetic orders in BST from elasticities in MCA [178–180]. This
theory has been extensively studied and discussed in several books and journal articles, one
can refer to [178] for a comprehensive review.

where m denotes all concentrations including the dependent (intracellular concentrations) and
independent (extracellular concentrations) variables; k and j count reactions and variables
respectively. γ represents rate constants (either measured or estimated); f denotes kinetic
orders in BST representation. When reformulated to show S-system representation, the first
term on the right-hand side is an aggregated term for all the reactions flowing in the pool
and the second term denotes all of the fluxes leaving the metabolite pool [181]. In BST
kinetic orders play a major role in the purpose of modelling, unlike mass action kinetics
they can acquire negative or non-integer values. For example, an inhibitory variable can be
included with a negative kinetic order. The direct biological meaning of parameters in BST
representation is an advantage [178, 179]. Du et al. [23] listed two general situations where
there is a higher chance of rate law approximations success:

• In the domain where the underlying assumptions of a specific rate law approximation
remain valid and not substantially violated throughout simulations;

• The rate laws are not the most important single factor in determination of dynamic
behaviour of the network.
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Table 2.3: Various approximate kinetic formats based on MCA and BST using
reference parameters and reference elasticities (See the following paragraph for

the notation definition).

Approximate kinetic formats based on MCA and BST
Type of ap-
proximate
rate law

Mathematical formulation Eq.

Log-lin vj

J◦
j

= 1 + ln
(

ej

e◦
j

)
+∑m

i=1 ε◦
ji ln

(
xi

x◦
i

)
(1)

Lin-log vj

J◦
j

= ej

e◦
j

[
1 +∑m

i=1 ε◦
ji ln

(
xi

x◦
i

)]
(2)

S-system dxi

dt
= V +

i − V −
i = αi

∏m
j x

gij

j −

βi
∏m

j x
hij

j

(3)

General mass ac-
tion (GMA)

vj =
(

γ+j
∏m

i x
f−

ij

i − γ−j
∏m

i x
f+

ij

i

)
(4)

In other studies by Heijnen [162] and Visser and Heijnen [161], biochemical system theory
(BST), generalized mass action (GMA) and lin-log approaches were compared, and authors
concluded that the lin-log approach has the best approximation capacity and its solutions
are valid for large changes in enzyme activities. However, Wang et al. [179] argue Heijnen’s
theoretical conclusion claiming that lin-log and log-lin representations might misbehave when
the accompanying substrate concentrations approach zero, it is the opposite of the problem
with GMA highlighted by Heijnen, where the governing equations’ outcome approaches in-
finity for unbounded concentrations, i.e. inability to simulate saturation. In another review
study, Voit proposed that for metabolic design and theoretical study of the principles of
operation, S-system format can provide a better default point to start because it allows the
user to perform algebraic calculations at steady states and more straightforward stability and
sensitivity analysis [181].

Regulated kinetic metabolic models

Flux regulation enabling continuous cellular activities resemble applying certain control
strategies to maintain, increase or decrease the rate of production or consumption of biomolec-
ular compounds (i.e. metabolites, enzymes or signalling proteins). Feedback repression and



35

induction are two examples of these regulation scenarios in epigenetic level, which is the
study of interactions in genetic level affecting gene expression, i.e. transcriptional regula-
tion. Their counter-scenarios at metabolic levels are feedback inhibition and enzyme activa-
tion [182]. Competitive inhibition and allosteric regulation are two prevalent ways among
others, which have been formulated mathematically to model enzyme activity regulation, i.e.
post-translational modifications [183]. The regulated kinetic models of metabolic network
reactions with the condition-specific parameters of affinity constants and maximum reaction
velocities can simulate the nonlinear metabolic behaviour of biosystems in an extended time
frame, i.e. cellular growth dynamics. The rationale justifying this practice is in two folds,
first, generality of the governing assumptions for first-principle modelling covers biological
systems such as the viable cell. Second, culture dynamics is a phenotypic behaviour of the
viable cell during the process period. Such dynamic models either do not consider tran-
scriptional regulation or consider it in a non-kinetic way, for example, qualitatively through
Boolean logic or multi-valued logical rules [21, 184]. When modelling a biological regula-
tory system of interest, special care must be devoted to the time frames of reactions and
processes involved, as it appears commonly in biology that a system in its whole may span
over various time scales of nanoseconds [185] to days [17]. As a rule of thumb, reactions
that happen with a time constant one order of magnitude larger than time constant of the
system are taken into account as frozen, and concentration of metabolites associated with
them is considered as fixed variables. However, it is trickier to handle the faster reactions,
in this case two assumptions are used to approximate underlying concentrations. First, the
rapid equilibrium assumption and second the quasi-steady state (QSS) assumption [17, 68].
Briefly, QSS assumption states that where the enzyme is available in catalytic amount, ES

complex reaches steady state fast enough that we can assume its concentration remains con-
stant. Rapid equilibrium assumption implies that the substrate rapidly reaches equilibrium
with the enzyme-substrate complex, with the rates of both directions of the binding reaction
being faster than the conversion step of the enzyme-substrate complex to enzyme-product
complex (see the Convenience Kinetics (CK) section). It is worth mentioning that the time
frames of regulation at the metabolic level are usually notably shorter compared to the reg-
ulations imposed at the epigenetic level. It is believed that the former takes place in the
order of minutes, while the latter happens in hours [186]. Accordingly, the metabolic level
regulation of enzyme activity can be viewed as fine-tuning, as opposed to the coarse control
associated with regulatory mechanisms at the epigenetic level [3]. The comparative time
scale of cellular operations along with a schematic representation of genetic and metabolic
level regulatory mechanisms are given (Figure (2.6)).

Metabolic regulation is increasingly considered in metabolic modelling studies, where its
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a

b

Figure 2.6: Bioprocesses time frames and possible regulation scheme. (a) Time
scale of cellular operations. (b) Interacting regulatory mechanism in genetic and metabolic

level (inspired by p. 16 [3]).
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importance is clearly demonstrated [158, 187–190]. However, particularly the hierarchical
nature of relaxation times in regulatory mechanisms along with the inherent interactions
at signalling pathways makes the time-dependent quantification of the cellular regulations
challenging [190–192]. The kinetic metabolic model formulations that can accommodate
dynamics of the regulatory interactions between modifiers and enzymes have the advantage
to be used to generate hypotheses for a wider set of experiment designs. Following the
enhancements of GMA in [21,67], Drager et al. [166] reformulated GMA to describe a reaction
including a modification term as follows:

vj(x, θ) = Fj(x, θ)
(

γ+j

m∏
i

x
f−

ij

i − γ−j

m∏
i

x
f+

ij

i

)
GMA representation (2.18)

The Fj function is used to introduce activation and inhibition effects [160]:

Fj(x, θ) = [A]
kA

j + [A] withkA
j ≥ 0 (2.19)

Fj(x, θ) = 1
1 + kI

j [I] withkI
j ≥ 0 (2.20)

In the following kinetic rate laws, the metabolic regulation can be accommodated explicitly
and with a mechanistic justification.

Michaelis-Menten kinetic expression for enzymatic reactions

L. Michaelis and M.L. Menten [193] developed a general theory in 1913 to explain enzyme
kinetics, following V. Henri [194] who had already taken important steps toward describ-
ing saturable enzyme kinetics. The mathematical model developed based on this theory is
commonly used to describe the kinetic expression of the enzymatic reactions. It simulates
experimental results by assigning two parameters, v+

m and KM
S . This model has the least error

when applied on a reaction with one substrate being converted to one product after form-
ing the substrate-enzyme complex as the intermediate [193,195]. Michaelis-Menten model is
the default choice to model an enzymatic reaction [181,190], numerous studies incorporated
Michaelis-Menten kinetics in their kinetic models [25, 158, 166, 196, 197]. The schematic of
Michaelis-Menten mechanism and the corresponding mathematical formulations are as shown
in Figure 2.7.

The reversible Michaelis-Menten expression is given in Figure 2.7-a for a uni-uni reaction,
by equating [P ] to zero it reduces to the well-known classical Michaelis-Menten equation,
the formula for the case where inhibition is introduced is given (Figure 2.7-b) [21]. In a
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Figure 2.7: Michaelis-Menten enzymatic reaction mechanism. (a) Substrate S is
converted to product P through an enzymatic reaction catalyzed by the enzyme E. (b) The

inhibitor I is introduced and inhibits both the enzyme and enzyme-substrate complex.
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review study Tummler et. al [160] discuss the assumptions accompanied with enzyme kinetics
and how new types of experimental data can be incorporated to enhance estimation and
calculation of Michaelis-Menten parameters. The experimental measurements are categorized
for flux v, enzyme ET , kinetic parameters and substrate concentration S as follows:

1. Metabolic flux quantification: Carbon labelling experiments, uptake rate of nutrients,
secretion rate of products.

2. Enzyme concentrations measurement: MS/MS technique, absolute quantification by
standard peptides or label-free methods—in general, quantitative and qualitative pro-
teomics.

3. Kinetic parameters: database values for in vitro assays, existing models in literature
with similar settings, estimation techniques.

4. Substrate concentrations: Metabolomics.

Indeed, Ghorbaniaghdam et al. [25] considered regulatory functions from energy shuttles
ATP/ADP and cofactors NADH/NADPH in their dynamic model based on the multi-
plicative Michaelis-Menten kinetics, to simulate the behaviour of CHO cells. They modified
flux kinetic equations to consider the effects of inhibitors and activators, and obtained satis-
factory results simulating experimental data of the extracellular (and intracellular) analytics
with low errors.

Convenience Kinetics (CK)

This framework is the most similar to the conventional Michaelis-Menten representation of
enzymatic reactions in terms of formulating kinetics of a reversible enzymatic reaction. The
authors in [22] point out thermodynamic dependency of the kinetic parameters in the rate
law representation of the reactions in a metabolic network as an undesired phenomenon, be-
cause it obstructs the scan of the kinetic parameter space for parameter estimation methods,
i.e. optimization algorithms. They argue that this thermodynamic dependency arises from
the theory that the Gibbs free energies of formation of the metabolites are determinants of
the equilibrium constants of the network reactions, and the equilibrium constants are ki-
netic parameters affecting the model behaviour. Thus, it is likely for a mechanistic model
of metabolism to produce thermodynamically wrong outputs if such dependencies are not
addressed. To resolve this issue, they derive CK from a random-order enzyme mechanism
with simplifying assumptions with respect to the order and the binding energies of enzyme
binding and dissociation. CK can be extended to model kinetic laws in an entire metabolic
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network, then a set of independent parameters are estimated and used to determine the rest
of kinetic parameters. Also, the formulation justifies the regulatory terms mechanistically,
in this case, the assumption is that the enzyme has sites for the activation and inhibition
terms where binding mechanisms is comparable to the binding mechanisms of the forma-
tion of enzyme-substrate complexes. Parameters kA, kI in Eq. 2.23 are defined similarly to
the same parameters in Eq. 2.20 and denote the dissociation constants for the activation
and inhibition enzyme binding. The mathematical formulation for a reversible reaction in a
metabolic network of any size is derived as follows (Eq. 2.21):

vj = Ej

kcat
+j

∏
i

(
xi

KM
ji

)s−
ij

− kcat
−j

∏
i

(
xi

KM
ji

)s+
ij

∏
i

∑s−
ij

m=0

(
xi

KM
ji

)m

+∏
i

∑s+
ij

m=0

(
xi

KM
ji

)m

− 1
(2.21)

(2.22)

where s±
ij are absolute values of all positive and negative elements of stoichiometric matrix

S. Ej, denotes enzyme concentration in the reaction j in (mM). In the original formulation,
x̃i equals xi/KM

ji , where KM
ji is the counterpart of Michaelis-Menten constants denoting the

dissociation constant of enzyme j for the metabolite i (in mM). kcat
±j denote turnover rates in

(s−1) for the reversible reaction of substrate-enzyme and product-enzyme complexes. Similar
to Eq. 2.20, hA and hI functions are introduced for the activation and inhibition effects
from a metabolite (m) on the reaction j. kA

jm and kI
jm denote the dissociation constants for

activation and inhibition modifiers [22,166].

vr
j =

∏
m

hA(xm, kA
jm)w+

jmhI(xm, kI
jm)w−

jm × vj (2.23)

W ± being regulation matrix, with wjm = 1, −1 or 0 denoting activation, inhibition or no
regulatory action from the metabolite m on the enzyme j, respectively [22,166].

The kinetics formulation of reaction fluxes is the single most important factor that determines
success of dynamic kinetic modelling. It is different from constraint-based models (CBMs),
where the formulation of a hypothesized objective function determines the model performance
[1, 175]. Enforcing the Wegsheider condition constrains the equilibrium constant values of
the reactions of the network and consequently provides relationships between the kinetic
parameters, such relationship are employed to determine dependent kinetic parameters from
the independent ones.
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2.1.7 Parameter estimation formulation

Possibility of constructing large-scale kinetic models significantly depends on the availability
of physiologically valid kinetic parameters. The kinetic parameters for mechanistic models
include enzyme concentration, turnover rate of the enzyme for both the reaction directions,
dissociation constants for reactants bound to the enzyme, inhibition and activation constants
and equilibrium constants, i.e. the standard Gibbs free energy of the enzymatic reaction.
The resulting large and non-convex parametric space with undefined dimensions renders
the estimation of parameters particularly challenging and intractable when the network size
is enlarged [22, 198, 199]. For the isolated enzymatic reactions, the kinetic parameters are
estimated directly through in vitro assays specifically designed to characterize particular
enzymes, and the values are collected in the enzymes properties databases [198,200]. However,
it is quite cost and labour intensive to characterize the majority of enzymes in the metabolic
network of an organism, in comparable experiment conditions. In fact, it has been shown
that enzyme characteristics have considerable dependencies to the thermodynamic state of the
reaction solution. This means that the possible differences in pH, ionic strength, temperature
and abundance of cofactors between the observation situation and the original measurement
setup may cause the measured kinetic parameters to be incompatible or inappropriate for
a certain model of the observation. In the parameter estimation of a metabolic network,
thus, it is inevitable in most studies to implement an indirect estimation of parameters
through minimization of the discrepancy between experimental data and model simulations.
Yet provided data in databases can be used as initial guesses and/or to impose bounds
on the parameters to be estimated [163,201]. Parameter estimation in the kinetic metabolic
modelling can be formulated as an optimization problem subject to the context specific types
of constraints [175,202,203]. When the problem is formulated, the estimation procedure starts
from a set of initial guesses of the parameter values, which then are evaluated according to a
quality measure such as fitness value of the comparison between model results and available
data. Then, the parameter values are refined by scanning the parameter space in various
directions until a satisfactory outcome is achieved, i.e. the parameters minimized an objective
function which is usually the weighted sum of squared distances between model simulations
and the associated experimental values. An optimization algorithm must be used to find
the best direction, along which the parameter values are changed to calculate a reduced
objective function value within the imposed constraints, consistent with the non-equilibrium
thermodynamics of biosystem [166,204–208]. Of importance, a mechanistic kinetic metabolic
model includes a set of nonlinear functions of the kinetic parameters and consequently forms
a nonlinear optimization problem for which linear (or mixed integer linear) programming
optimization methods perform poorly. However, regardless of the implemented optimization
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algorithm, the workflow of parameter estimation can be summarized in the following global
steps:

1. Objective function formulation: enhancements can be introduced by collection of the
data in several duplicates to then adjust the relative weight of the error in states
experimental values.

2. Constraints definition: bounds on parameter values should be introduced to keep them
in the feasible biological ranges.

3. Algorithm and solver selection: nature of the optimization problem and available data
play a significant role in this step.

4. Optimization option assignment: a set of options must be assigned for the solver. These
options are descriptive of optimization algorithm’s details and accuracy.

Given the following generic objective function formulation (Eq. 2.24), countless methods
have been employed to solve for a vector of parameters θ minimizing the function S(θ) for a
metabolic network under study.

y = f(x, θ)

S(θ) =
n∑

j=1
[ŷj − fj(xi, θ)]T Qj[ŷj − fj(xi, θ)],

(2.24)

Evidently, the number of parameters increases with the size of the network, the extent of
regulation details and the extent of interactions between the variables formulated by kinetic
rate laws of the biochemical reactions. The wide array of optimization techniques search
to find the minimum of S(k) in a constrained subspace of Rp, where n is the number of
free parameters, i.e. length of vector k if all parameters are independent. Mathematical
formulation of the constraints is not trivial and demands an understanding of the biosys-
tem. While global optimization algorithms are used to find the global minimum within the
range of all inputs, local optimization methods are used to search for the local minima in the
neighbourhood of a vector of initial guesses, i.e. a reference steady state of the biosystem.
Global optimization methods are highly computationally demanding as opposed to the local
optimization [159, 163]. Optimization methods can be categorized into deterministic and
stochastic algorithms. In a deterministic optimization, no random element appears and algo-
rithms are based on mathematical scheduling, i.e. derivative-based algorithms. Conversely,
in stochastic optimization, random searching procedures are applied to find a next step in the
direction of extrema, in this manner it is more likely that the algorithm will not be trapped
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in local optimum [204,205,209]. Various studies confessed that there is not a single recipe to
tackle the parameter estimation problem of metabolic modelling approaches [210–212], se-
lection of an appropriate method depends on the type of formalism used to represent kinetic
rate laws, the experimental data that is available to the modeller as well as the capacity
of accessible computational frameworks [213]. In an ideal situation, a comprehensive set of
collected data can be utilized to examine more than one complementary method of kinetic
parameter estimation [211,214]. To reduce the computational cost of parameter estimation,
several approaches have been proposed in literature [153], here we list the most popular ones:

• To employ meta-heuristics optimization algorithms such as particle swarm [215] and
genetic algorithm [216].

• To impose a reference state and estimate the biosystem parameters around this state
[217].

• To introduce thermodynamic limitations and therefore limit the parameter solution
space [218].

• To introduce local stability constraints [219].

• To reduce the model directly through the model reduction techniques (listed in [153]).

Drager et al. compared different evolutionary algorithms for the optimization of mixed models
comprising CK and Michaelis-Menten kinetics in Corynebacterium glutamicum. They found
that differential evolution (DE) and particle swarm optimization (PSO) resulted in the best
parameters approximation, moreover, Tribes algorithm is useful for the first optimization
attempts because of its performance and its user-friendly traits [166,220]. In a related study
of Spieth et al. [221], evolution strategy (ES) and DE led to the best parameters estimation.
Taken together these studies, it can be concluded that DE is an adequate estimation method
for kinetic models [220]. DE is an accurate, reliable, robust and fast estimation algorithm
which has few control parameters, and an easy to use and powerful search capability [222,223].
However, due to its fast convergence speed and low risk of divergence, it may get trapped
within local minima. In addition, it is sensitive to its control parameters and if the population
size increases, it becomes more computationally demanding [201,204,223,224]. On the other
hand, authors in a recent study [207], developed a (deterministic) gradient-based kinetic
parameter estimation algorithm that provides the best fit to multiple sets of metabolic data,
i.e. fluxomics, metabolomics. A large metabolic network of E. coli (k-ecoli307) with 307
reactions and 258 metabolites is used to develop a kinetic model with 2367 kinetic parameters.
The applicability of K-FIT is demonstrated in the estimation of the kinetic parameters
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by fitting the model to 13C-labelling data of multiple genetic perturbation mutants. It
is reported that the algorithm works three orders of magnitude faster in comparison with
meta-heuristics for estimating kinetic parameters of the test model [?]. A general workflow
for kinetic parameter estimation is given in Figure 2.8.

As pointed out several times in this review, the modelling of metabolic networks is intrinsi-
cally an iterative effort. In Figure 2.9, we show schematically where the reviewed modelling
approaches fit in modelling of cell metabolism.

2.1.8 Perspectives and challenges ahead

In this review, we assessed the mostly used modelling approaches of metabolic networks.
The metabolic network was understood as a highly interconnected system of bioreactions,
where various carbon sources are metabolized to produce energy and product molecular com-
pounds. Then, the approaches to characterize the metabolic networks of distinct organisms
was discussed. We showed that the in silico description of metabolic fluxes in large networks
at steady state is performed successfully, by the modelling approaches based on the under-
standing that resulting outcome of the cell operation is optimized with regard to certain
objectives. In fact, the mathematical formulation of the metabolic networks relying on the
stoichiometric matrix of the network motivated several approaches collectively referred to as
constrained-based models (CBMs). This modelling paradigm has been further established in
recent years by the development of theoretical and computational extensions based on CBMs
principles. Following the contributions to develop dFBA based on both static and dynamic
optimization methods [15,54], efforts also focused on the integration of transcriptional regu-
lation [225,226], and the consideration of resource allocations in terms of enzyme production
cost [27, 227]. The challenges associated with the expansion of the CBMs can be related to
the biological justification of the underlying assumptions and the efficiency of the computa-
tional methods employed to solve the core optimization problems. The CBMs collectively
proved successful in complementing some particular types of interests including recombinant
DNA technology and optimal growth medium formulation by finding answers to the ques-
tions regarding estimation of maximum theoretical yield, estimation of the growth rate of
a certain strain, or identification of candidate genes for knockouts or gene overexpression.
Typically, CBMs perform well as far as the objective of modelling practice is not to quantify
how the intracellular fluxes are evoked and regulated by the activities of enzymes and what
their response to perturbations are. Also, in more complex metabolic networks such as mam-
malian cells that are simultaneously growing on multiple carbon substrates, the applicability
of the various constraint-based methods are still rather limited. The established principles
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Figure 2.8: A general workflow of kinetic parameter estimation.

and mathematical justification of constraint-based modelling and its successful application
for metabolic engineering purposes will support its continuous enhancement to define the
hypothetical best the cell can do with decreasing uncertainty and thus identifying what the
cell is not capable of doing.

In a conceptually different modelling paradigm, we assessed the established modelling ap-
proaches to model flux kinetics of the regulated enzymatic reactions based on the hypothesis
that changes in enzyme activities during the cell operation is mechanistically describable in
terms of chemical activity of substances which regulate or determine enzyme activities. We
reviewed MCA and BST as two founding theories for the systemic kinetics analysis of the
biochemical reaction networks at (or close to) steady state, where the network responses to
perturbations can be quantified and the distribution of flux control between several regula-
tory sites (i.e. enzymes) is appreciated. In general, kinetic modelling adds accuracy to the
prediction of perturbation outcomes and gives flexibility to the simulation of different sce-
narios, mainly because it is rooted in the inclusion of the detailed mechanistic description of
the regulatory and compensatory mechanisms of the cell by use of a wide array of kinetic for-
mats. In addition to the metabolic fluxes, dynamic models can reflect intracellular metabo-
lites concentration not only at steady state but also in the transient time [25, 26, 156]. It
consequently makes dynamic models a better candidate in comparison with their constraint-
based counterparts for the implementation of monitoring and control strategies in bioprocess
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Figure 2.9: An overview of modelling Cell Metabolism.
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management [32, 33, 92, 93, 155]. However, the hindering obstacles for all kinetic models to
reach genome-scale are limited available data for intracellular concentrations and the complex
procedure of selecting kinetic rate laws with identifiable mechanistic parameters. To circum-
vent, hybrid models have been proposed where for the part of network for which mechanistic
data is available kinetic rate laws are used and the rest of the network is retained in its
purely stoichiometric format. Observance of the emergent properties such as ultra-sensitivity
(switch-like behaviour), bistability and oscillations which cannot be attributed to any single
reaction or constituent of the network, but is only explainable with a systems understand-
ing, further necessitates a dynamic nonlinear analysis of the underlying metabolic system.
The importance of control and regulatory functional units inherent in a metabolic network
can be hardly overestimated. Furthermore, in industrial applications where cells are used as
small factories to produce invaluable therapeutics and commercial products, the shortcom-
ings of steady state models are on display as they are incapable of reflecting cell response to
the imposed control actions and fluctuating surrounding conditions. In fact, after comparing
Michaelis-Menten with approximate rate laws in deriving a kinetic model for Red Blood Cells
(RBCs), Du et al. [23] concluded that it is best to construct “mechanistically detailed enzyme
modules” whenever the available data on enzyme properties allows that. It is reported that
mixed models defined with Michaelis-Menten equations for one substrate-one product reac-
tions combined with CK has the best prediction capacity [166]. It is justified based on the
drawbacks of Michaelis-Menten formalism as a sole representation for the reactions in a net-
work of interconnected reactions compared with the system-level definition of CK. Also, CK
formulates complex regulatory mechanisms independently and thus reduces the complexity
of regulated Michaelis-Menten equation on the way of interpreting the underlying biological
principles. In addition, the convenience kinetics rate law is easy to use for parameter esti-
mation and optimization and its models have comparatively accurate approximations and
results [22].

For the parameter estimation of dynamic kinetic models incorporating mechanistic parame-
ters, several good enough practices have been reported in literature, i.e. evolutionary meta-
heuristics algorithms. Particularly, when the gradient-based optimization methods appear to
get trapped in suboptimal extrema, meta-heuristics optimization approaches are employed
to circumvent the inherent nonlinearity of metabolic networks and the expansion of param-
eters in an exceeding number of dimensions. We envision that the development of kinetic
models that can encompass as many as possible different data types for its fit, particu-
larly enhances the parameter estimation quality. With nowadays expansion of quantitative
omics data and increasing biochemical thermodynamics data, we envision that the successful
metabolic modelling approaches of the future will help integrate more insight from these in-
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puts in a consistent computational framework. The power of mathematical modelling would
be appreciated greatly, when it becomes more involved in the inception and design of new
practical technologies. The fast-paced emerges of genome sequencing, poses the question
that “what does the product of these genes do? How do various gene products interact
to determine healthy or pathological states of the whole organism?” [1] (or high-producing
and low-producing strains). Finding the answer, demands vigorous complementary analyt-
ical and computational technologies to be developed, in addition to the pile of information
from (reductionist) biological sciences. This cannot be done without a significant contribu-
tion, from the mathematical modelling approaches, in order to understand and simulate the
relationships among genotype, phenotype, and environment of the cell.
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3.1 Abstract

Mathematical metabolic modelling is a systematic endeavour to allow identifying the main 
causes of an observed metabolic change and to estimate the consequences of an imposed 
metabolic perturbation regarding a biosystem. Dynamic Constraint-based modelling (DCBM) 
has delivered promising results in metabolic engineering and in bioprocess design by providing 
mechanistically relevant systems-level knowledge of a network of bioreactions. Here, we seek 
to establish a DCBM approach that leverages convex optimization and nonlinear regression 
mathematical toolkit to estimate dynamic intracellular metabolic flux distributions in stored 
Red Blood Cells (RBCs) for transfusion purposes. First, we developed an ad-hoc metabolic
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network including 77 reactions and 74 metabolites, second, we adapted Flux Variability Anal-
ysis (FVA) technique to quantify the connection between exometabolomic dynamics and
the dynamics of feasible intracellular reaction flux ranges. We have obtained fine-grained
flux range dynamics of the intracellular reactions for the benchmark data published in [4].
Then, we defined four objective functions regarding the accumulation of oxidative stress in
stored RBCs for performing a dynamic Flux Balance Analysis (DFBA). In all four cases,
time-resolved flux predictions were obtained respecting the imposed equality and inequality
constraints. Last, we adapted a quadratic programming (QP) approach to calculate the Eu-
clidean distance between the dynamic optimum flux vectors. The DCBM approach we have
developed herein along with the developed metabolic network showed being suitable for the
computational analysis of RBCs metabolic behaviour, and it is thought to be useful for other
biosystems.

keyword

Mathematical Programming, Biological Systems Modelling, Metabolic Network Modelling,
Constraint-based Modelling, Linear Programming Problem, Oxidative Stress, Red Blood
Cells

3.2 Introduction

The integration of metabolomics data into mechanistic models can provide a practical un-
derstanding of a metabolic network at the system level ( [18,228,229]). Guiding model con-
struction and validation, the availability of experimental data allows elucidating mechanisms
behind an observed metabolic change. Thus, mathematical modelling enables researchers
to estimate consequences of an imposed metabolic perturbation in several research interests
such as looking at metabolic energy states, bioproduction optimization, computational strain
design and drug development ( [230]). The current state of metabolic modelling approaches
and computational systems biology methods have been reviewed recently ( [7, 231]). In this
work, we have selected quiescent non-growing stored Red Blood Cells (RBCs) as the biosys-
tem under study, integrating metabolomics data to study the accumulation of storage lesions
in stored RBCs ( [232–236]). In transfusion medicine, the storage lesions may have detri-
mental health consequences for the patients transfused with old stored RBC concentrates
( [237, 238]). Here, we developed an in-silico workflow for investigating the dynamics of the
enzymatic and non-enzymatic oxidative stress defence mechanisms in RBC storage conditions
shown in Fig. 3.1.



51

<<

Labeled RBC 
concentrate

Figure 3.1: The biosystem layout. (A) The physical borders of the nested biosystems
are presented and a global illustration of the different blood cell types. (B) The relaxation
time of the nested biosystems dynamics. (C) A logarithmic scale of the relaxation time of

the involved bioreactions. (D) This equation is based on the quasi-steady-state
assumption. The third term on the right-hand side of the equation (fi(.)) represents

transport reactions impact on intracellular metabolites. Also, lit.int and lit.ext refer to the
unit volume of cytoplasm and extracellular matrix, respectively.
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In this study, we present a dynamic constraint-based modelling (CBM) workflow that inte-
grates the extracellular time series data of stored RBC for an ad-hoc metabolic network of
RBC. The goal is to predict the unknown intracellular fluxes, from a combination of mea-
sured transport fluxes, without any a priori assumptions regarding potential metabolic shifts
in the metabolic network magnitude and direction during the RBC storage time.

3.3 Stoichiometric model reconstruction and partitioning

The stoichiometric model of the RBC metabolic network was reconstructed iteratively from
the physiological knowledge on RBCs and the previously published genome-wide metabolic
model for this biological system ( [236]). The stoichiometric matrix was partitioned based
on a distinction between the intra- and extracellular spaces as given in equation (3.2),

⃗∆Mint

∆t
= S.v⃗

=
[
SII SIT

]  ⃗vIntra

⃗vT ransport

 = b⃗m, (3.1)

l⃗b ≤ v⃗ ≤ u⃗b (3.2)

where the vector ∆Mint is a vector of dimension m of intracellular metabolites change, the
vector v represents reaction fluxes with dimension n, which stands for the collective set
of vIntra and vT ransport. The stoichiometric matrix S of dimension m × n is divided into
SII representing the stoichiometric relation of intracellular metabolites to the intracellular
reactions and SIT , which represents the relationship between the metabolites passing the
system boundary and transport reactions. The vector bm is non-zero right-hand side of
the equation, lbn and ubn are the lower and upper bounds of the flux vector, respectively.
We adapted the pseudo steady state assumption if ∆t << sample intervals with t being a
continuous time vector. Thus, equation (3.2) simplifies to the following equation.

S.v⃗ =
[
SII SIT

]  ⃗vIntra

⃗vT ransport

 = 0 (3.3)

In the iterative procedure of the metabolic network reconstruction, we modified the metabo-
lites by lumping and distributing, and we modified the reactions by adding (or removing)
transport and sink reactions followed by explanatory simulations ( [9,239]). The final version
of our stoichiometric model describing the metabolic network was used throughout the next
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sections (table 3.1).

3.4 Nonlinear fitting of the exometabolomics

To avoid model infeasibility due to the inaccuracies emerging from noisy experimental mea-
surements, we run a nonlinear regression data-fit for each of the twelve measured extracellular
metabolites. A set of independent exponential continuous functions is fitted to the extracel-
lular metabolites concentration curves as described in equation (3.4).

M sim
ext (p, t) = p1 ∗ exp (p2 ∗ t) (3.4)

where p is the vector of parameters to be estimated, and M sim
ext represents the simulation values

of extracellular metabolites as a function of the continuous time vector t. The parameter
estimation formulation and the nonlinear objective function are given in equation (3.5).

min
p⃗∈R2

f(p⃗) :=
N∑

k=1

(
Mext(tk) − M sim

ext (p, tk)
)2

Such that t1 = 0, tN = 42, k ∈ {1, 2, . . . , N}

N = 14

(3.5)

Mext(tk) represents the experimental value of an extracellular metabolite at time point tk (in
days), where k is the number of experimental data acquisition ending at day 42 after a total
of N = 14 observations (see [4] for detailed explanation of the experimental setup). Then,
the 95% confidence interval of the estimated parameters is determined by nlparci function
in MATLAB using the Jacobian of the nonlinear fit function, and the instantaneous trans-
port rates are calculated based on the analytical derivative of the parameterized continuous
function in equation (3.4).

Table 3.1: The RBC metabolic model configuration

Model component Total
Number

# Intra-
cellular

# Transport or Extracellu-
lar (measured)

# Sink #
Blocked
or Dead
end

Reactions 77 53 16 (12) 8 0
Metabolites 74 57 17 (12) N/A 0
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Figure 3.2: Nonlinear regression fit of the blood bag ingredients concentration
values and the associated transport flux rates The exponential regression fit curves
(solid black lines) with 95% confidence interval of the estimated parameters (dashed black

lines). The lower and upper bounds of the twelve transport flux rates are assigned based on
this panel. The bag numbers and experimental values (circles) for N = 14 experimental

time points are taken from the second supplementary document of ( [4]).
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3.5 Defining simulation time

We define a separate time vector tsim to use in the following sections, this is the time
vector on which our constraint-based modelling method goes forward in time until ending at
tsimL = tN = 42 (days).

t1 ≤ tsimq ≤ tN

Such that q ∈ {1, 2, . . . , L}

L = 45

(3.6)

where L represents the number of simulation points. In this study, we defined this number
equal to 45 in a trade-off between model feasibility and the predefined computational cost
limit. Moreover, the simulation time points are linearly distributed and each interval is
roughly equal to one day in the experimental context.

3.6 Dynamic Flux Variability Analysis (DFVA) to identify the allowable intra-
cellular flux ranges

We ran FVA at each of the simulation time points to identify the intracellular flux bounds
based on the solution of 2n number of Linear Programming (LP) problems optimizing for
min/max of each reaction flux. The advantage of calculating intracellular flux ranges by
this method is that the estimated ranges are unbiased with respect to any assumed objective
function for the cell functioning during the storage time. However, for the calculated ranges
to be surrounded by default flux bounds, i.e., not to be redundant, iterative modification of
the metabolic network structure was required. The ranges identified by DFVA were narrower
than the default −1000 to 1000 (mmol.L−1.day−1) range for 51

61 = 83% of the intracellular
fluxes.

min / max
v⃗∈Rn

f(v⃗) := vi vi ∈

 ⃗vIntra

⃗vT ransport


Subject to S.v⃗ = 0;
lbj ≤ vj ≤ ubj , vj ∈ ⃗vT ransport

(3.7)

where lbj and ubj values were calculated in section 3.4. Moreover, to determine reaction
directions, we tabulated all the reactions that could acquire a negative minimum flux value
and a positive maximum one after the inspection of DFVA results. Then, we modified the
list based on the biological knowledge for the removal of unrealistic reversibility predictions.
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3.7 Dynamic Flux balance analysis (DFBA) based on several theoretical objec-
tives

First, we constrained a sub-set of the transport fluxes ⃗vT ransport including twelve fluxes
as shown in Fig. 3.2. The selected measured consumption/secretion rates constituted
12/16 = 75% and 12/57 = 21% of transport and intracellular fluxes, respectively (table
3.1). Then, we defined four different objective functions and studied the solutions (see Re-
sults and Discussion). The objective functions were set to the following fi(v⃗)’s (reactions are
given in Fig. 3.4).

1. Set 1: Limited glucose (−v1).

2. Set 2: Maximal ROS tolerance (v53).

3. Set 3: Minimal ROS tolerance (−v53).

4. Set 4: Maximal Oxidative PPP (Ox-PPP) activity (v14).

We considered Set 1 the nominal scenario, Set 2 the ideal antioxidant scenario within the
experimental constraints, Set 3 the worst case scenario, and Set 4 as a relevant metabolic
scenario of interest. Thus, the LP problem in equation (3.8) was solved regarding each set
at consecutive simulation time points.

min
v⃗∈Rn

fi(v⃗) := cT
i v⃗ i = 1, 2, 3, 4

Subject to S.v⃗ = 0;
lbi ≤ vi ≤ ubi , vi ∈ ⃗vIntra

lbj ≤ vj ≤ ubj , vj ∈ ⃗vT ransport

(3.8)

where (lbi,ubi) and (lbj,ubj) values were calculated in sections 3.6 and 3.4, respectively.

3.8 Results and discussion

3.8.1 Development of an ad-hoc metabolic network

The metabolic network was reconstructed for explaining RBCs oxidative metabolism, the
model scope involves cofactor-dependent enzymes participating in Reactive Oxygen Species
(ROS) termination bioreactions, and glutathione metabolism as our central modelling ob-
jective. Moreover, the major pathways dominating intracellular metabolism of RBCs were
accounted for as shown in Fig. 3.4. To validate the developed metabolic network, we opti-
mized the nominal objective function (Set 1) at the N consecutive experimental time points
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(N = 14) reported in ( [4]) for RBCs that were suspended in 100 mL of SAGM (Saline,
Adenine, Glucose, Mannitol) additive solution. At first, the reconstruction needed several
rounds of modifications to find dynamic feasible solutions. However, when the feasible so-
lutions appeared for the first time, i.e., the metabolic network was validated, the extracted
stoichiometric model supported DFBA simulations for L = 45 simulation time points regard-
ing the four objectives with only minor modifications (Fig. 3.3).

3.8.2 Linking the transport flux rates to unbiased intracellular flux ranges

The developed extension of CBM for describing time-resolved dynamics of the RBC internal
metabolic network starts off from the nonlinear exometabolomics fitting (section 3.4), which
converts the discrete measurements into differentiable analytical functions. However, it is
noteworthy that neither the exponential analytical functions nor the estimated independent
parameters in equation (3.4) have any biological meaning. The aim of this step is to define a
set of sufficiently accurate and smooth exchange flux constraints that also address the solution
infeasibility issue, hindering the estimation of continuous intracellular flux predictions in
dynamic constraint-based models. Then, the 95% confidence interval of transport fluxes
were imposed as inequality constraints on vT ransport vector in equation (3.2). The generated
ranges of intracellular fluxes estimated by DFVA were treated as unbiased bounds with regard
to any possibly assumed objective function for the LP problems solved in DFBA (section 3.7).
Of importance, it is a methodologically distinct use of FVA technique in CBM approaches
than what the authors followed in ( [240]). In their work, the LP problem was first optimized,
for example, to maximize the growth rate and then the FVA technique was used to determine
the range of the possible alternate optima. The ad-hoc metabolic network developed here
supports generation of dynamic unbiased intracellular flux ranges as described in section 3.6
on a personal computer with Intel(r) Core(TM) i5-8250U CPU @ 1.60 GHz and 8 GB RAM
memory. However, a similar analysis on the genome-wide metabolic model of erythrocytes
demands significantly higher computation power emphasizing the importance of metabolic
modelling integration with the state-of-the-art computing techniques (see [5]).

3.8.3 Multiple alternative objective functions and analysis of the Euclidean dis-
tance between dynamic flux distribution optima

In section 3.7, we solved the DFBA problem for multiple alternative objective functions, but
within the same equality and inequality constraints. Then, we used Quadratic Programming
(QP) to calculate the Euclidean distance between the four sets of dynamic flux distribution
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Figure 3.3: The dynamics of ROS detoxification and NADPH-dependent reaction
rates constrained by dynamic intracellular flux bounds The colour-coded curves
represent optimal flux dynamics associated with the solution set of the four objectives

(section 4.3.4) and the grey-shaded background represents the dynamic intracellular flux
ranges. Set 2 (maximal ROS tolerance in solid blue) and Set 4 (maximal PPP activity in

solid green) overlap in v27, v29, v36, and v53.
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optima as shown in equation (3.9),

dist(seti, setj) =(
L∑

k=1

n∑
r=1

(
vi,k,r − vj,k,r

)2) 1
2

i, j = 1, 2, 3, 4

(3.9)

In fact, we intend to show that systemic generation of multiple relevant biological objective
functions followed by model-driven analysis of the generated flux distribution optima pro-
vides a robust computational approach to systems-level scrutiny of a metabolic network of
interest. Thus, in table 3.2, we reported the symmetrical matrix of dynamic flux distributions
Euclidean distance. The results revealed that Set 2 and Set 4 are the closest dynamic flux
distribution optima.

3.8.4 Mitigating the solution space infeasibility issue

We know that the biosystem acquires a mass balanced carbon flux distribution at any point
within the experimental scope, therefore, we expect the model to find feasible solutions
within the same in-silico conditions. Thus, we argue that if the LP optimization solver
cannot find a feasible solution in the enzymatic flux vector space Rn, then, there exist some
limitations in the model (e.g., unfilled gaps, inaccurate mechanistic assumptions, inconsistent
model scope, etc). We showed that the connectedness of the developed metabolic network
and the smoothness of the simulated exometabolomics play important roles in tackling the
infeasibility issue regularly associated with stoichiometric-based models ( [241, 242]). In
general, when finding a flux distribution solution is infeasible, an undesired CBM practice
would be to include more sink reactions for a larger set of the intracellular metabolites,
because such that the mass balance constraints on more metabolites are loosened and the
optimization solver finds feasible solutions in an enzymatic flux vector space of Rn+ξ, with

Table 3.2: The Euclidean distance between the DFBA solution sets.

Set 1 Set 2 Set 3 Set 4
Set 1 0 13737 1591.8 13874
Set 2 13737 0 15308 787.52
Set 3 1591.8 15308 0 15446
Set 4 13874 787.52 15446 0
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ξ being the number of added sink reactions. However, the newly predicted intracellular flux
distributions via this CBM practice will suffer from the inaccurate prediction of blocked
intracellular reactions. Herein, we managed to generate feasible solutions by including sink
reactions only for a small fraction of the intracellular metabolites, i.e., 8/57 = 14%, and thus
avoiding artifact blocked reactions prediction as shown in the last column of table 3.1.

3.8.5 Using the validated model for generating systems-level biological hypothe-
ses

The results reported in table 3.2 is in agreement with previous findings supporting the positive
correlation between PPP activity and antioxidant defence mechanisms in other biological
systems ( [243,244]). In fact, the oxidative PPP to hexokinase turnover ratio could increase
from 106 % to 197 % in the PPP hyperactivity scenario (set 4). This range was from
97.77
455.04 = 21% at day zero to 71.24

221.02 = 32% at day 42 of the storage time in the glucose limited
nominal scenario (set 1). The carbon flux through the oxidative branch of PPP with 2 moles
NADPH turnover for each mole of glucose intake represents a metabolic route to generate
reducing cofactors (NADPH), i.e., v14, v15, and v16. We show that the termination of higher
fluxes of ROS modelled via v53 to preserve redox homeostasis is possible through a sustained
activation of this pathway. We also found that hyper activation of the PPP pathway can
pull v2 in its reverse direction and also suppress citrate to alpha-ketoglutarate and malate
to pyruvate reactions, possibly because the latter ones are competing for NAD substrates.
Such in-silico analysis results may suggest a rationale for increasing citrate concentrations in
blood bags to compete for the storage lesions consumption through an alternative metabolic
route. We also envisage that the same in-silico approach could be helpful to characterize
the influence of urate on RBC metabolism during storage. Indeed, we showed that the RBC
preparation triggers a progressive loss of urate during the first week of storage ( [235]). The
compensation of this leak by adding urate and ascorbic acid was suspected to reroute the
metabolism (switch between oxPPP and glycolysis) ( [234]). Collectively, these simulation
results emphasize the inherent variability in dynamics of cell metabolism and the possible
implications of this heterogeneity for the regulation of antioxidant defence machinery. Similar
model biological systems particularly emerged as an illuminating case in systems analysis of
energy metabolism ( [244–246]).

In the maximal ROS tolerance scenario, the predicted reaction rates of v24 : CIT [c] +
NADP [c] <=> AKG[c] + CO2[c] + NADPH[c] and v25 : ATP [c] + CIT [c] + COA[c] <=>

ACCOA[c] + ADP [c] + OAA[c] suggest that citrate is consumed in the former to provide
reducing power in form of NADPH cofactor and it is produced in the latter allowing the
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ATP regeneration. Of importance, dynamics of these fluxes (Fig. 3.3) in the alternative sets
2 and 4 predict opposite directions for v25. In Set 2, ATP and CIT are produced whereas
in Set 4 v25 proceeds in the forward direction thus consuming citrate and energetic cofactor
ATP .

3.9 Conclusion

We have set up a constraint-based model of RBC metabolic network for the mechanistic
estimation of the biochemical reaction network fluxes under twelve narrow transport reac-
tion constraints evolving with storage time. The dynamic CBM approach presented above
incorporates several data and model processing steps as discussed in the manuscript. The
model complemented with different hypotheses can predict flux rates of antioxidant defence
systems. Indeed, we demonstrated that the model captures time-dependent switches in re-
versible intracellular reactions, and also, it predicts time-resolved activity patterns of enzy-
matic reaction rates under four distinct metabolic objectives (Fig. 3.3). Finally, we used
the model to calculate the distance between the optimal dynamic flux distribution solutions.
Two considerable shortcomings of the presented dynamic metabolic flux methodology are,
first, not providing intracellular metabolite levels at this stage, and also, the lack of explicit
integration of the metabolic regulation events. Addressing these limitations will be covered
in a further modelling study.

3.10 Software

All the calculations and computations were done using MATLAB R2020b (The Mathworks;
Natick, MA, USA) and glpk, gurobi, or CPLEX optimization solvers (academic licenses)
(gnu.org/software/glpk/, gurobi.com, ibm.com/analytics/cplex-optimizer) with functions from
COBRA Toolbox library, if needed ( [16]). The metabolic map was drawn in CellDesigner
( [247]), and PowerPoint, Excel and InkScape were used for the figures preparation.
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Intracellular

Extracellular

Figure 3.4: The ad-hoc RBC metabolic map The metabolic network can be divided
into ten bioreaction subsystems including, glycolysis (v1-v13), pentose phosphate pathway
(v14-v23), TCA cycle (v24-v32), glutamate and glutathione metabolism (v33-v39), purine

catabolism (v40-v45), Nucleotides (v46-v49), Salvage pathway (v50-v52), ROS
detoxification (v53), sink and demand reactions (v54-v61), and transport reactions

(v62-v77).
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4.1 Abstract

Optimizing mammalian cell growth and bioproduction is a tedious task. However, due to the
inherent complexity of eukaryotic cells, heuristic experimental approaches such as, metabolic
engineering and bioprocess design, are frequently integrated with mathematical models of cell
culture to improve biological process efficiency and find paths for improvement. Constraint-
based metabolic models have evolved over the last two decades to be used for dynamic
modelling in addition to providing a linear description of steady-state metabolic systems.
Formulation and implementation of the underlying optimization problems require special
attention to the model’s performance and feasibility, lack of defects in the definition of sys-
tem components, and consideration of optimal alternate solutions, in addition to processing
power limitations. Here, the time-resolved dynamics of a genome-scale metabolic network
of Chinese hamster ovary (CHO) cell metabolism are shown using a genome-scale dynamic
constraint-based modelling framework (gDCBM). The metabolic network was adapted from
a reference model of CHO genome-scale metabolic model (GSMM), iCHO_DG44_v1, and
dynamic restrictions were imposed to its exchange fluxes based on experimental results. We
used this framework for predicting physiological changes in CHO clonal variants [248]. Be-
cause of the methodical creation of the components for the flux balance analysis optimization
problem and the integration of a switch time, this model can generate sequential predictions
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of intracellular fluxes during growth and non-growth phases (per hour of culture time) and
transparently reveal the shortcomings in such practice. As a result of the differences exploited
by various clones, we can understand the relevance of changes in intracellular flux distribu-
tion and exometabolomics. The integration of various omics data into the given gDCBM
framework, as well as the reductionist analysis of the model, can further help bioprocess
optimization.

4.2 Introduction

Mammalian cells have the ability to produce in vitro complex biologics of high commercial
interest. Successful genetic alterations, growth media optimization, and an effective under-
standing and management of cellular regulatory mechanisms are expected to yield the next
generation of cell factories producing biotherapeutics. Because of their stable growth, high
cell density peak, high innate protein expression level, and functional post-translatory regula-
tory mechanisms, Chinese hamster ovary (CHO) cell lines have been widely used in industry
for biotherapeutics manufacturing [249]. Recombinant CHO cell lines, the gold standard in
biotherapeutics production, are responsible for stable and transient protein expressions in
bioreactors of various capacities, up to fully monitored production vessels with a working
volume of over 20,000 L [250]. Biotechnological strategies, on the other hand, necessitate
extensive quantitative information on cellular metabolism, i.e., establishing a descriptive link
between culture conditions and cell productivity. As a result, approaches that provide in-
sight into the flow of carbon, energy, and electrons are extremely desirable because they can
quantify metabolic alterations caused by intentional or unintentional perturbations in genetic
or environmental factors [1, 8]. Hence, metabolic flux analysis (MFA) is a powerful tool for
discovering new bioprocess design solutions that improve the target metabolic product.

Mathematical metabolic models, in combination with high-performance computing and state-
of-the-art biomolecules measurement capacity, provides a systems biology approach to de-
scribe cell factories, complementing wet-lab methods to improve bioprocess efficiency [9,10].
On the one hand there is Dynamic Kinetic Modelling (DKM) [155, 184, 251], which requires
cell culture experimental data for model kinetic parameters identification, and on the other
hand, there is Constraint-based Modelling (CBM) [15, 102, 252] (reviewed in [253]), which
is based on the stoichiometry of metabolic networks. Metabolic Flux Analysis (MFA) [254]
and Flux Balance Analysis (FBA) [94] are two variants of constraint-based models, each
representing determined (or overdetermined) and under-determined metabolic networks, re-
spectively. Without the use of kinetic parameters, these methods can provide credible cell
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culture models behaviour. The theories that support the validity of FBA provide a fer-
tile ground for the development of more complex approaches for exploring the behaviour
of metabolic networks. Flux Variability Analysis (FVA) is one such methodology, in which
minimum (and maximum) achievable enzyme activity of each reaction is defined as the ob-
jective function, and the flux rates bounds are established by performing linear programming
(LP) optimization within the initial problem constraints [240]. A quadratic minimization of
the estimated fluxes is integrated as a bi-level optimization problem in parsimonious FBA
(pFBA), on top of the primary objective of FBA, i.e., maximum growth rate [27]. In order to
switch from descriptive to predictive models, various crucial innovations have come out in the
past years. Apart from the more traditional options, such as optimising growth, researchers
have looked into various objective functions for cell functionalities. Indeed, the premise of
maximal growth loses its usefulness, especially during the non-growing period or slow growth
fed-batch of mammalian cell culture, and other goals such as related to physiological factors
and complex proteins processing steps are mostly considered.

The use of CBM extensions to simulate growth and by-products dynamics in non-steady
state phases proved being particularly compelling [15,102]. Dynamic Constraint-based Mod-
elling (DCBM) technique is the name given to algorithms with predictive power algorithms
developed in this area. In DCBM, the well-known quasi-steady state (QSS) assumption is
employed in conjunction with experimental limitations on substrates, oxygen, and energy
requirements of growth and production to account for faster intracellular dynamics relative
to extracellular matrix dynamics. In this category, there are two ways to follow: sequential
and simultaneous methods. The sequential technique, which is used in this study, divides
the entire process time into small steps, and the FBA optimization algorithm assumes QSS
at each time step, but not at the transition point. The solution to the optimization problem
generates new growth and uptake rates, which are then employed in a system of ordinary
differential equations (ODEs), whose integration yields in component concentration change
over time. If numerous measurement time points are averaged as a single metabolic phase,
this method loses information about the real-time evolution of the fluxes. On the other
hand, if the time steps are too small, noise in the measured concentrations leads to erroneous
uptake rate estimations, and the computing cost becomes a bottleneck. The answer to the
optimization problem is obtained in an iterative static optimization as long as the unknown
fluxes and the objective function are linearly connected. The states dynamics are achieved
in this case from the subsequent integral solutions.

Comprehensive experimental research have been conducted to find active metabolic path-
ways in hybridoma [99, 104, 255–257] and then in CHO cell lines [258–260], for developing
pre-genomic structured metabolic networks. Subsequent investigations of CHO [62, 261] en-
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larged these bioreaction networks from a set of less than fifty biological reactions to include
a more thorough metabolism of amino acids and nucleotides, including roughly 100 reac-
tions. After the publication of the first genome-wide metabolic model of CHO in 2011 [262],
and a consensus community-based CHO genome-scale model in 2016 [28], new opportunities
for metabolic modelling of CHO cell cultures have emerged. Some recent studies on CHO
metabolism [27, 227, 263] addressed revising the consensus GSMM for constructing context-
specific metabolic models. In fact, multiple approaches for extracting consistent metabolic
models from the reduction of GSMMs have been derived, each based on distinct assump-
tions and screening criteria for including the content of a reference GSMM [264–266]. These
metabolic model extraction methods provide a crucial computational toolkit for extracting
context-specific metabolic models from an organism’s most comprehensive metabolic model.
Other omics data, such as exometabolomics or transcriptomics data, may be used in com-
putational algorithms for designing GSMMs [267,268]. Other frequent requirements include
establishing a list of preserved metabolites and reactions, as well as requiring the reduced
model to perform specific metabolic tasks [269]. Furthermore, the complexity of eukaryotic
cells necessitates considerations of compartmentalization, metabolic process energetic costs,
and biomass composition.

Here, we revised a recent GSMM of CHO [27], as deposited on http://bigg.ucsd.edu/models/
iCHOv1_DG44 (mat file), as the metabolic network for developing a gDCBM model of a
bioprocess. The underlying metabolic network was built and then the corresponding sto-
ichiometric matrix was determined to be used in the main optimization problem that is
subsequently formulated. A smoothing spline fit was performed on exometabolomics to con-
vert the raw experimental data from three strains of CHO to dynamic exchange flux bounds.
The data corresponds to parental, low-producing and high-producing CHO strains that have
been described in a previous study [248]. The gDCBM framework is consequently used for
modelling and the results are discussed.

4.3 Methods

4.3.1 Metabolic network development

We selected the model contributed in [27] because the authors updated the consensus GSMM
[28] by considering the gene expression data in CHO_DG44 by applying Gene Inactivity Mod-
erated by Metabolism and Expression (GIMME) algorithm [267]. In a preliminary analysis
using swiftcore algorithm [270], we realized that 470 metabolites out of 2750 are dead-ends
and 1810 out of 3942 reactions are inconsistent, i.e., unable to carry metabolic flux under any
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conditions. Thus, the network was reduced by removal of such nonfunctional components.
The configurations of our stoichiometric model used throughout the next sections is given in
Table 4.1 and the complete list of the reactions is given in the supplementary material file
(Reactions List).

Table 4.1: Comparison of the original and curated genome-scale metabolic models

Initial model Curated model
Number of reactions 3942 2123

Number of blocked reactions 1810 0
Number of balanced reactions 3211 1931

Number of metabolites 2751 1285
Number of dead-end metabolites 470 0

Number of extracellular metabolites 580 226

4.3.2 Phenomenological reactions

Here, the phenomenological reactions are particularly referring to the net biochemical trans-
formations represented as a single (pseudo-) reaction. The scope of the metabolic network
requires assuming the following (pseudo-) reactions.

Biomass synthesis

The biomass synthesis reaction directly affects predictions for in silico cell growth and main-
tenance. The weight fractions for the cell building blocks, i.e., lipids, proteins, DNA, RNA,
and carbohydrates, with respect to the cell dry mass, molar fractions of the macromolecular
building blocks, macromolecules average molar weights and CHO_DG44 dry mass weight
were all taken from [263], ID/DGpar-8mMCD. In [263] flux units are different than this
study (mmol gDW −1 h−1 vs. nmol 10−6cell h−1), therefore, we converted the stoichiometric
coefficients accordingly. Then the cell components synthesis reactions were lumped to form
the biomass synthesis reaction. Finally, the original BIOMASS_cho_producing_1 reaction
in iCHOv1_DG_44 was replaced by the new reaction. The calculation details are given in
the supplementary material files (Biomass_eqn_1 and Biomass_eqn_2). We named this
reaction MY_BIOMASS_cho_producing_1 for distinction.
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Antibody production

In the experimental study, Ghorbaniaghdam et al. [248] proposed a model mAb against CD20
protein, we assumed this mAb has the same amino acid sequence as Rituximab (Mabthera)
[271] the most similar commercial human mAb. Then, the amino acid sequence for light-
and heavy- chains and an average molecular mass of 143.86 (g/mmol) were retrieved from
[272]. The antibody production reaction was developed based on the procedure used in [273].
The polymerisation energy demand was coupled to the reaction by inclusion of 2 GTP and
1.306 ATP hydrolysis to 2 GDP, 1 AMP and 0.306 ADP per peptide bound formed [274].
Thus, the balanced reactions specific to Rituximab heavy-chain and light-chain replaced
reactions igg_hc_1 and igg_lc_1 in iCHO_v1_DG44, respectively, and the igg_formation
reaction remained intact. The detailed calculations are given in the supplementary material
file (mAb_eqn).

Energetic requirements

We considered the growth-associated and non-growth associated energy consumption for
the cell maintenance (mATP). The growth-associated maintenance ATP consumption was
included in the biomass synthesis reaction after lumping the macromolecular biosynthesis
reactions. As such, -1360 (nmol) ATP and -2000 (nmol) GTP is hydrolyzed for synthesis of
106 cells. To account for the non-growth associated maintenance ATP, for example due to
membrane leak or protein turnover costs, we used the estimated values in a recent study on the
impacts of mATP inclusion on the intracellular flux predictions [273]. Particularly, we used
the estimated values for [92,93], which have similar conditions with the Ghorbaniaghdam et
al. [248]. Thus, we imposed a lower bound of 718.2 (nmol 10−6cell h−1) (equal to 3.6 (mmol

gDW −1 h−1)) on the mATP reaction.

Oxidative stress termination

Reactive oxygen species (ROS) are produced when there is (even partly) aerobic metabolism
involved. We used the lumped reaction 2.0 gthrd_c + 3.0 h2o2_c −→ gthox_c + 4.0 h2o_c
+ o2_c [27] to represent H2O2 termination.

4.3.3 Defining metabolic network stoichiometric matrix

The tailored CHO metabolic network transforms into a stoichiometric matrix that maps
intracellular and transport reactions (between the cytosol and the external environment)
to intracellular and extracellular metabolites dynamic of change, i.e. mass balances. As a



69

result, the stoichiometric matrix (and metabolic fluxes vector) were partitioned as shown in
the equation below.

⃗∆Zbal

∆t
= Sbalv⃗ =

[
SII SIT

]  ⃗vInt

v⃗T r

 = b⃗m (4.1)

⃗∆Znbal

∆t
= Snbalv⃗X =

[
SEI SET

]  ⃗vInt

v⃗T r

X = r⃗lX, (4.2)

where Zbal ∈ Rm and Znbal ∈ Rl are the concentrations of intracellular and extracellular
metabolites respectively in (nmol/106cell) and (µmol/litre). The vector v represents specific
fluxes in (nmol/106cell/hr) with dimension n. The stoichiometric matrix S of dimension
(m + l) × n is divided into SII , SIT , SEI = 0 and SET . The row decomposition is used in the
calculations to distinguish between the metabolites for which the steady state assumption is
imposed (Sbal), or not (Snbal). Thus, the vectors bm and rl present the associated accumulation
rates. Based on the QSS, vector bm equals zero [68].

4.3.4 Formulating constrained optimization problem of gDCBM

We defined the dynamic optimization problem in the form of a differential-algebraic equation
(DAE). Thus, the main problem is formulated in Equations (4.3-4.12).
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max
⃗v(t), ⃗Z(t),X(t)

αJ1 + βJ2 (4.3)

Subject to
⃗∆Zbal

∆t
= 0 (4.4)

r⃗lb
l ≤

⃗∆Znbal

∆t
≤ r⃗ub

l (4.5)
∆X

∆t
= µ.X(t) (4.6)

µ = MY _CHO_Biomass (4.7)

tj = t0 + j
tf − t0

Nts

, j = 0, .., Nts,
tf − t0

Nts

= 1(hr) (4.8)

α =

1, if t ≤ tswitch

0, otherwise.
, β = 1 (4.9)

Z ≥ 0 X ≥ 0 ∀t ∈ [t0, tf ] (4.10)

Z(t0) = Z0 X(t0) = X0 (4.11)

lb ≤ v ≤ ub, ∀t ∈ [t0, tf ] (4.12)

Where J1 and J2 in Equation (4.3) are the objective functions, α and β are the corresponding
weightings. Equation (4.4) represent the QSS assumption, and rlb

l and rub
l denote the bounds

on the measured cell specific uptake rates (explained in the next section). µ is the growth rate
equal to the rate of MY_CHO_Biomass reaction. tj represents the descretized time points,
moreover, Nts is chosen as such the time interval between simulation points is equal to one
hour. In Equation (4.9), tswitch was determined to minimize the fit error measurement. The
non-negativity constraint is imposed on the metabolite and cell concentrations. in Equation
(4.11), the initial concentrations are assigned based on the experimental data. Finally, each
flux value v is bounded by a lower bound (lb) and an upper bound (ub) [239].

The objective functions for the above optimization problem is detailed in the Equations 4.13
and 4.14.
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J1(v⃗, ⃗Znbal, X) = µ(t)|t<tswitch
, growth dependent, (4.13)

J2(v⃗, ⃗Znbal, X) =
Nsf∑
j=1

−vj, growth independent (4.14)

J1 is the assumption of the growth rate maximization at any given time, which is valid before
the switch to the non-growth phase. J2 is the uptake rate objective functions which were
defined for a subset Nsf of amino acids. We hypothesize that since it is a nutrient-rich en-
vironment, the goal of the cell is to maximize utilization of resources, and not to minimize
nutrient consumption [275]. We included EX_gln__L_e, EX_val__L_e, EX_ala__L_e,
EX_tyr__L_e, EX_phe__L_e, EX_met__L_e, EX_leu__L_e, EX_his__L_e, EX_arg__L_e,
EX_cys__L_e, which are the exchange reactions for the associated metabolites. We chose
the metabolites that would decrease the prediction error measurement, other metabolites
would either worsen the fit or do not change it. Therefore, the optimization has multiple
objectives when it comes to the non-growth phase.

4.3.5 Metabolomics data integration as exchange flux bounds

The data for this study was collected from six out of ten batch studies, including two parental,
two low-producing, and two high-producing batch cell cultures, and eliminating two induced
low-producing, two induced high-producing batch cell cultures [248]. We excluded the in-
duced data sets because, first, the analysis in the original paper showed that induction
does not cause significantly different behaviour (in the defined experimental conditions), and
second, the pseudo-steady state assumption is likely to fail where a dramatic transient is
expected, such as in transcription factor induction [254], resulting in gross model error. Mea-
surements for glucose, lactate, ammonium (3), amino acids (14), CD-20 (1), oxygen uptake
rate (1), and cell concentration (1) are included in the three data sets (in duplicates) of
non-induced cultures. The data spans growth and non-growth stages, from seed culture in-
oculation until the end of the sixth day (144 hours), when viability decreases below 70%. To
determine exchange fluxes for constraining the model, the following method was adapted.

Spline fitting of the exometabolomics and framing uncertainty in the concentra-
tion measurements

Because metabolomics data is often noisy and sparse, two challenges arise when such data
is differentiated to compute exchange fluxes. First, the computed results are non-smooth,
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and second, the calculated exchange fluxes are erroneous because they do not account for
the inherent uncertainty of experimental measurements. Thus, imposing exact values for
individual uptake fluxes is prone to inaccuracy and considerably increases infeasibility issues.
We used zero mean standard noise with a standard deviation twice the experimental value to
populate the experimental data, and then piece-wise cubic spline functions to fit the measured
concentrations. The numerical derivatives of the evaluated fit functions were then calculated
to produce a range of specific uptake rate values (rlb

l and rub
l ) as imposed by Equation 4.5.

The exchange fluxes were constrained at each time point using the maximum fitting uptake
or secretion rates.

(4.15).

PPi = f(t, Znbal,i, p) (4.15)

ri = dPPi

dt
(4.16)

where PPi is the piece-wise polynomial fit on the Znbal,i at time t, and p is the estimated
spline parameters. dP Pi

dt
is the numeral derivative representing specific uptake rates ri.

4.3.6 Sequential dynamic optimization

The optimization problem in Equation (4.3-4.12) contains both algebraic and differential
equation models that makes its simultaneous solution impossible for LP solvers. It can be
solved either as a nonlinear programming (NLP) problem and by methods such as orthogonal
collocations on finite elements, or as LP problems solved and integrated sequentially [15,276].
The sequential solution of the problem is used here, the procedure involves discretizing a
scalar dimension (time), into a set of intervals, i.e., tj+1 − tj that suffice error minimization,
and converting the differential equations to a set of approximating algebraic equations, which
are then integrated to yield the states trajectories.

4.3.7 Identifying the range of alternate optima for intracellular flux predictions

We did FVA at each of the simulation time points and after the main optimization prob-
lem was solved to identify the intracellular flux ranges based on the solution of 2n number
of LP problems (n being the number of reactions) optimizing for min/max of each reac-
tion flux [240]. The default information on reversibility/irreversibility was based on the
iCHOv1_DG44_v1 flux bounds.
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min / max
v⃗∈Rn

f(v⃗) := vi vi ∈

 ⃗vIntra

⃗vT ransport


Subject to Equation(4.3 − 4.12);

(4.17)

4.3.8 Prediction error measurement

To measure the prediction error, we used the following normalized root mean squared error
(NRMSE) formula [277],

NRMSE =

√√√√√ 1
ND

Ne∑
k=1

Ny,k∑
j=1

∑Nt,k,j

i=1 (yijk − ỹijk)2

(maxi ỹijk − mini ỹijk)2
(4.18)

Here ND is the total number of data points for 18 observables, Ne is the number of exper-
iments, Ny,k is the number of observables in the k-th experiment, Nt,k,j is the number of
time points in the k-th experiments for the j-th observable. yijk is the model prediction for
the data ỹijk. This formula computes the root of the sum of squared error between model
prediction and data for each observable, and normalizes it by the squared range of the data
corresponding to that observable. Thus, the observables are properly scaled.

4.4 Results and discussions

4.4.1 Development of a genome-scale dynamic constraint-based modelling (gD-
CBM) framework

DCBM techniques were used to provide a modular framework for evaluating CHO dynamic
metabolism in batch cell cultures with CHO clonal variants in this study. As shown in
Figure 4.8, the framework starts with a set of conventional cell culture data and a reference
GSMM. The output includes time-resolved dynamics of medium components (mostly amino
acids) and intracellular flux distributions with the alternate optima range of the fluxes. We
demonstrated that this approach may be used to predict cell culture dynamics without the
necessity for biosystem kinetic data.

We upgraded the CHO GSMM by removing the blocked reactions and changing the phe-
nomenological reactions to fit the demands of the investigation. The traditional application
of the molar mass conservation rule is challenging and expensive due to the unprecedented
complexity and uncertainty of biomass composition. Based on a recent detailed assessment
of CHO biomass composition in various strains as explained in the Methods section (4.3.2),
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Figure 4.1: The gDCBM framework Four interactive components make up the
framework. Smooth splines are used to approximate the data in the first module. The
metabolic model is developed from the reference GSMM in the second module, while

dynamic limitations imposed by the piece-wise polynomials formed in the data curation
module are taken into account. The body of the FBA problem is formulated in the third

module, and we employ optimization solvers to derive the final answers in the fourth
module.

we elected to create a standard version of the model with a biomass synthesis reaction. To
investigate nutrient metabolism in CHO cells, we looked at three different types of growth
medium components. For each category, the gDCBM predictions of extracellular metabolites
are presented alongside the experimental results in the accompanying figures.

1. The main metabolites: glucose (GLC), lactate (LAC), glutamine (GLN) and ammonia
(NH4).

2. The nonessential amino acids: alanine (ALA), arginine (ARG), cysteine (CYS), gluta-
mate (GLU), glycine (GLY), serine (SER), tyrosine (TYR).

3. The essential amino acids: histidine (HIS), isoleucine (ILE), leucine (LEU), methionine
(MET), phenylalanine (PHE), valine (VAL).

4.4.2 The gDCBM framework accommodates a posteriori determination of the
switch time

The switch time linked with each clone was calculated by looking for the time point with the
least NRMSE. For the different clones, the exercise resulted in three different switch time



75

A

B

C

Time (hours)

B
io

m
as

s 
(1

0
6  c

el
l/m

L
)

B
io

m
as

s 
(1

0
6  c

el
l/m

L
)

B
io

m
as

s 
(1

0
6  c

el
l/m

L
)

G
L

C
 [

e]
 (

m
M

)
G

L
N

 [
e]

 (
m

M
)

Parental

Low-producer

High-producer

G
L

C
 [

e]
 (

m
M

)

L
A

C
 [

e]
 (

m
M

)

G
L

C
 [

e]
 (

m
M

)
G

L
N

 [
e]

 (
m

M
)

G
L

N
 [

e]
 (

m
M

)

L
A

C
 [

e]
 (

m
M

)
L

A
C

 [
e]

 (
m

M
)

N
H

4 
[e

] 
(m

M
)

N
H

4 
[e

] 
(m

M
)

N
H

4 
[e

] 
(m

M
)

𝒕𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟏𝟏𝟔 𝒉𝒓

𝒕𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟕𝟏 𝒉𝒓

𝒕𝒔𝒘𝒊𝒕𝒄𝒉 = 𝟏𝟐𝟓 𝒉𝒓

Figure 4.2: Cell growth and concentrations of the extracellular metabolites:
Main metabolites The growth dynamics is on the left and the concentrations dynamics
are on the right for GLC, GLN, LAC and NH4. The green arrow indicates the switch time

from the growth to non-growth phase.



76

points. The parental clone demonstrated a late switch, followed by a fall in cell viability, as is
common in mammalian cell culture, whereas the high-producer clone converted to non-growth
phase as early as 71 hours after inoculation. In every example, the gDCBM predictions are
very close to the experimental results. Indeed, we demonstrated that the framework allows
for a posteriori determination of the transition from growth to non-growth phase based on
the reduction of the NRMSE, which accounts for the prediction versus experimental data
mismatch among all observable states.

4.4.3 The assumption of varying protein content of the cell

Because the initial cell composition was assessed in a producing cell line, the derived biomass
synthesis reaction predicted the high-producing clone with the least error compared to the
other two clones. We discovered that the biomass synthesis reaction results in a considerable
underestimating of the growth rate for low-producer and parental clones in our preliminary
simulations. We hypothesised that the disagreement stemmed from differences in clone amino
acid compositions, thus we calculated a multiplier for the amino acid coefficients in the cell
biosynthesis reaction. Thus, the reaction coefficients of the 18 amino acids involved in biomass
synthesis (MET, ASN, CYS, GLN, SER, THR, ARG, GLY, PHE, GLU, ASP, VAL, TRP,
TYR, HIS, LEU, ILE, and LYS) were multiplied by a factor of 0.7 and 0.9, resulting in the
protein content for parental and low-producer, respectively. The modification is based on the
notion that the cell makeup of the clones varies, which is supported by literature [278]. This
adjustment is required to accommodate changes in cell lines, and it only needs to be done
once; the coefficients will remain fixed after that. Another consequence of the modification is
that, in the absence of kinetic parameters, amino acid biomass synthesis coefficients emerged
as a significant source of sensitivity.

4.4.4 The gDCBM approach with uptake rates as objective functions predicts
medium composition dynamics

The growth optimization assumption is based on the output of cellular activity, and while it
leads to successful in silico results (especially for organisms simpler than mammals), it loses
relevance in the non-growth phase and must be replaced by other objective functions to meet
the necessary conditions of an optimization problem formulation. Moreover, further proof
that a cell can design optimal behaviour for more than one metabolic objective [279] begs the
question of what those objectives could be and how important they are in determining cell
behaviour. In contrast to the limited nutrient consumption assumption [275], we assume that
in a rich cell culture media, CHO cells attempt to ingest as many nutrients as their internal



77

E
X

_G
L

C
 (

n
m

o
l/1

0 
ce

ll/
h

r)

0 24 48 72 96 120 144

-200

-150

-100

-50

0

A

B

C

Time (hours)

G
ro

w
th

 r
at

e 
(h

r 
)

E
X

_G
L

C
 (

n
m

o
l/1

0 
ce

ll/
h

r)Parental

High-producer
E

X
_L

A
C

 (
n

m
o

l/1
0 

ce
ll/

h
r)

E
X

_G
L

N
 (

n
m

o
l/1

0 
ce

ll/
h

r)

E
X

_N
H

4 
(n

m
o

l/1
0 

ce
ll/

h
r)

E
X

_G
L

N
 (

n
m

o
l/1

0 
ce

ll/
h

r)

E
X

_L
A

C
 (

n
m

o
l/1

0 
ce

ll/
h

r)
E

X
_N

H
4 

(n
m

o
l/1

0 
ce

ll/
h

r)

Low-producer

E
X

_G
L

C
 (

n
m

o
l/1

0 
ce

ll/
h

r)
E

X
_G

L
N

 (
n

m
o

l/1
0 

ce
ll/

h
r)

E
X

_L
A

C
 (

n
m

o
l/1

0 
ce

ll/
h

r)
E

X
_N

H
4 

(n
m

o
l/1

0 
ce

ll/
h

r)

G
ro

w
th

 r
at

e 
(h

r 
)

G
ro

w
th

 r
at

e 
(h

r 
)

6
6

6
6

6
6

-1
-1

-1

6
6

6
6

6
6

Figure 4.3: Growth rate and specific uptake or secretion rates: Main metabolites
The instantaneous growth rates are on the left and the specific rates are on the right for
EX_GLC, EX_GLN, EX_LAC and EX_NH4 for the parental (A), low-producer (B),

and high-producer (C) clones. The shaded area shows allowed bounds for the specific rates
and the blue line represents the gDCBM predictions.

metabolism allows and secrete as much product as their internal metabolism determines. As a
result, we focus on the cell’s input and presume that intracellular activity is the limiting factor



78

in the exchange of medium constituents across the cell membrane. These substances’ input
flows can be used as objectives in the primary FBA optimization problem. We were able to
acquire the simulations in Figures 4.2,4.4 and 4.6 owing to this approach. We hypothesised a
maximum intake of 10 amino acids, as outlined in the Method section. This systemic synthesis
of numerous important biological objective functions, followed by model-driven analysis of
the resulting flux distribution optima, could provide a viable computational technique for
systems-level inspection of context-specific metabolic behaviour. If the individual fluxes had
not been restricted previously by the derivative of the fitted cubic splines, the procedure
would fail, highlighting the importance of following order of the modules in the framework
application.

The results are analysed to establish the limitations of the culture media that may have con-
tributed to the cell decline or switch from growth to non-growth. Overfeeding glucose slows
lactate uptake, and this combination of glucose and glutamine feed is not optimal, resulting
in a non-optimal metabolism in which a considerable percentage of glucose is converted to
lactate, while glutamine is rapidly consumed, especially in the producing cell line. However,
both ammonia and lactate remain below lethal levels, leading us to believe that the switch
to non-growth phase is caused by a glutamine shortage. The clonal diversity had no effect on
cell survival or concentration until the metabolic switch to the non-growth phase, although
the peak cell density in the high-producer clone is significantly lower.

In the production phase of the high-producer, HIS, ILE, and MET depleted from the essential
amino acids which may have caused a reduction in the monoclonal antibody. The depletion
does not happen in the other two clones, however, the mentioned amino acids remain available
in small amounts. For the non-essential amino acids, we observe depletion of SER and TYR
especially in the high-producer clone. Most probably either higher initial concentrations or
intermediate feeding of the mentioned five amino acids could fuel cell metabolism to produce
more antibody. Interestingly, the model captures the metabolic shift from alanine production
to alanine consumption accurately with the most pronounced shift for the high-producer
clone.

4.4.5 Solution space underdeterminancy and infeasibility

We know that the biosystem acquires a mass balanced carbon flux distribution at the ex-
perimental conditions, thus, we expect the model to find feasible solutions within the same
in-silico conditions. We argue that if the LP optimization solver cannot find a feasible so-
lution in the flux vector space Rn, then, there exist some limitations in the model such as
unfilled gaps, inaccurate mechanistic assumptions, inconsistent model scope, etc. Relaxations
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Figure 4.4: Concentrations of the extracellular metabolites: Non-Essential amino
acids The rows reflect non-essential amino acid concentrations for which measurements

were obtained, and the columns represent parental, low-producer, and high-producer clones.
The blue lines reflect the gDCBM prediction of the concentrations, while the error bars

reveal the experimental data.

in the imposed exchange fluxes to account for the exometabolomics uncertainty and resolv-
ing conflicting equations by modifying metabolic network connectedness both reduced the
infeasibility. After we have had adequate experience with the preliminary model simulations,
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Figure 4.5: Specific uptake or secretion rates: Non-Essential amino acids The
columns correspond to the parental, low-producer, and high-producer clones, respectively,

and the rows to non-essential amino acids for which measurements were available. The blue
lines reflect the gDCBM prediction of the specific rates, while the shaded areas show

allowed bounds for the specific rates.

we differentiated between relaxations and conflicting equations. We addressed the former by
adopting spline smoothing method followed by constraints from one way for the exchange
fluxes and the latter by tailoring the network to remove blocked reactions and modifying
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Figure 4.6: Concentrations of the extracellular metabolites: Essential amino
acids The rows reflect essential amino acid concentrations for which measurements were

obtained, and the columns represent parental, low-producer, and high-producer clones. The
blue lines reflect the gDCBM prediction of the concentrations, while the error bars reveal

the experimental data.

bounds on the remaining reactions. Hence, both these items play important roles in tackling
the infeasibility issue regularly associated with stoichiometric-based models ( [241,242]). We
used COBRA Toolbox library functions to check for the consistency of reactions, carbon
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balance, removal of blocked reactions and frameworking computations.

Figure 4.7: Specific uptake or secretion rates: Essential amino acids The columns
correspond to the parental, low-producer, and high-producer clones, respectively, and the

rows to essential amino acids for which measurements were available. The blue lines reflect
the gDCBM prediction of the specific rates, while the shaded areas show allowed bounds for

the specific rates.

It is shown in Figure 4.7 that HIS and ILE are consumed more rapidly during the growth-
phase of the high-producer clone. This could suggest that production begins prior to the
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transition to the non-growth phase. In the case of ILE, the simulation matches experimental
data when practically all consumption in the non-growth interval ceases. Unlike the parental
and low-producer clones, the high-producer clone’s intake of LEU, MET, and PHE remains
stable until the end of the culture time. Notable is also the fact that, at least for LEU,
PHE, and VAL, the consumption rate in the majority of culture time points is far from the
estimated limit value, demonstrating the efficacy of our method in viewing the specific rates
as a range rather than a single value.

4.4.6 Indicators of increased efficiency

It is known that high-producing cell lines have a higher efficiency in carbon utilization than
non-producing cell lines. In our simulations, the model can capture the differences between
the global metabolism of clones. For example, in Figures 4.2 comparing panel A and panel C
shows that lactate is produced much less in high-producer clone compared to the parental and
low-producing cell lines and even the high-producer starts consuming lactate at the end of
the cell culture. Similar trend with a more pronounced uptake is observed for alanine, which
is continuously produced even after the glutamine consumption in the parental cell culture
but it is consumed in the high-producer when glutamine is depleted. We hypothesize that the
cellular control machinery will expend energy to create (or activate) a pathway for utilization
of the less favorable nitrogen source and in return the cell productivity is sustained.

4.4.7 Comparison between clones with different mAb productivity levels

We argue that understanding the cellular physiology dynamics during the cell culture is the
key to creating high-producing cell lines. The flux magnitude of model antibody production
is relatively small when compared to the flux value through biomass synthesis, thus, the
productivity level does not have a considerable impact on flux prediction results. However,
the fact that a clone is engineered to be a high-producer rewires its metabolism. There are
puzzling areas of CHO metabolism that obstacle harnessing an efficient energy metabolism
for achieving yields closer to the theoretical production yields. The results show that glucose
and glutamine are the primary sources for energy and carbon skeleton, depletion of each of
which resulting in the growth limitation. Moreover, the time-resolved dynamics of asparagine,
alanine, glycine and glutamate shows distributed nitrogen source utilization throughout the
culture, especially after glutamine is depleted. Based on the results provided here, it seems
that glucose must be fed in minimal amounts as this has advantages both for the limita-
tion of undesired Warburg effect and possible commence of substrate utilization for product
formation rather than growth maximization. Interestingly, even though nitrogen intake in-
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creased in the high-producer, the waste NH4 did not exceed its levels in the parental and
low-producer clone. It shows that the increase in nitrogen consumption encountered with an
increase in its demand from the intracellular environment.

4.4.8 Intracellular flux predictions

For the sake of brevity, we show in Figure 9 five reactions from upper glycolysis and pentose
phosphate pathway to show the ability of the framework to model intracellular reactions.
Noteworthy is the demonstration of the optimal points along with the alternate optima range,
which both addresses the well-known problem of FBA, namely, appearance of more than one
optimum solution and shows that although some reactions work in a certain direction, but
they can also work in other directions. For reaction HEX1 we observe that there are fractures
in the optimal path passing zero activity, these fractures indicate the existence of different
ways to convert glucose to g6p and are also a function of the sequential optimization method
discussed in the Method section indicating a sudden change in the solution compared to
the neighbouring points. This refers to how the answer is calculated step by step and that
the answer of the equation at each point is independent of the previous or next point. The
results show that at the beginning of the culture time the range of optimal alternative points
is very narrow but it widens from the middle of the culture time. While for the high-producer
clone this expansion coincides with the switch to the non-growth phase, it is not clear to the
authors what is the reason for this change in the other two clones. We observed that in
most of the intracellular flux predictions large bands are obtained for the reactions. This
shows that the restrictions were not enough, especially when a reaction is further from the
exchange reactions or there are more than one way of exchanging material in and out of the
cell. This pattern also points to the inherent robustness of the cell by having several routes
and it shows why inactivation of single enzymes is not enough to navigate metabolic flux.

Several important aspects of metabolism such as enzyme regulation cannot be covered by this
framework. In fact, the ability to model genome-scale phenotype of reactions was achieved
in trade-off with losing the ability to study kinetic regulations. Thus, this study is in a
sense complementary to the previous study conducted in our group which was focused on the
development of a dynamic kinetic model for the same biosystem [248,280]. Some intracellular
flux predictions for example for the fluxes stemming from pyruvate indicates either inactivity
or activity at the lower (upper) bound of the fluxes, it is in contrary to our findings with a
reduced model of the same system [248]. We justify that this happens because of the inclusion
of pyruvate in four compartments (extracellular, cytoplasm, mitochondria and peroxisome)
participating in a total of 30 reactions. This many degree of freedom for the mass balance on



85

H
E

X
1

 (
n

m
o

l/1
0 

ce
ll/

h
r)

P
G

I (
n

m
o

l/1
0 

ce
ll/

h
r)

E
N

O
 (

n
m

o
l/1

0 
ce

ll/
h

r)
P

R
P

P
S

 (
n

m
o

l/1
0 

ce
ll/

h
r)

R
P

E
 (

n
m

o
l/1

0 
ce

ll/
h

r)
6

6
6

6
6

Figure 4.8: Selected intracellular fluxes dynamics The blue lines indicate the optimum
flux estimation and the shaded area shows the alternate optima bounds calculated for each

flux based on FVA. HEX1: Hexokinase, PGI: Glucose-6-phosphate isomerase, ENO:
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pyruvate may cause some false inactive fluxes and some unrealistically large fluxes. It points
to the necessity of collecting more data such as carbon labeling data for further constraining
the model and therefore navigating the flux into plausible reactions.

4.5 Conclusion

In this work we built a modelling approach named gDCBM upon two main principles: (i)
metabolic network dynamics is key to describe cell physiology, and (ii) optimality hypothe-
ses support generating predictions in cell culture. We proposed a gDCBM framework in
which a metabolic network for the CHO cell line was selected, bound by cell culture specific
uptake rates, and then tuned to predict growth dynamics with a one-hour temporal reso-
lution. In fact, cell internal metabolism was linked to the dynamic of change for external
moieties. This global genome-wide understanding of mammalian cell metabolism was then
used to investigate differences in clonal variations of CHO cell lines. The model showed being
able to successfully predict the time trajectory of all available experimental measurements
except for the model antibody, which was produced in small quantities and on flux levels
that were significantly lower than other fluxes. We believe that the proposed mechanistic
gDCBM metabolic network modelling technique can help to overcome some of the current
challenges in in-vitro and in-silico bioprocess optimization. This technique is likely to benefit
complex organisms like mammalian cells, which can absorb a variety of diverse nutritional
sources. With such a metabolic modelling framework, better applications for investigating
cell metabolism and physiology, as well as media optimization and biomanufacturing control,
may be achievable.

4.6 Software

All the calculations and computations were done using MATLAB R2020b (The Mathworks;
Natick, MA, USA) as compiler. The computational algorithms are cited in the text and
were implemented through developed scripts using glpk, gurobi, or CPLEX optimization
solvers (academic licenses) (gnu.org/software/glpk/, gurobi.com, ibm.com/analytics/cplex-
optimizer) and with borrowed functions from COBRA Toolbox library ( [16]) and CellNet-
Analyzer library of MATLAB functions. The computational demand of gDCBM for a system
of 2132 reactions at 100 time points exceeded capability of a personal computer with Intel(r)
Core(TM) i5-8250U CPU @ 1.60 GHz and 8 GB RAM memory. Thus, the analysis were
performed on remote high-performance computing (HPC) clusters of Compute Canada. It
took two hours to run the algorithm once on a single computation node with 12 CPU-workers
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and 20 GB RAM.

4.7 Supporting information

S1 File. Reactions List. List of all the considered reactions.

S2 File. Biomass_eqn_1. Calculations performed to change the dimension of reaction
coefficients of biomass synthesis from per gram to per million cell.

S3 File. Biomass_eqn_2. Calculations performed to determine the reaction coefficients
of individual macromolecular synthesis and biomass synthesis.

S4 File. mAb_eqn. Calculations performed to determine the reaction coefficients of
amino acids and energetic cofactors in Rituximab production reaction.
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CHAPTER 5 GENERAL DISCUSSION

The metabolic modelling of two distinct biosystems, namely RBC and CHO, was at the heart
of the fundamental challenge that we attempted to solve. The first was focused on reducing
oxidative lesions, while the second was focused on further optimising mAb production. We
were particularly interested in simulating and predicting transient metabolic behaviour of
stored RBCs and cultured CHO cell lines in response to changing medium composition, and
then devising ways for interpreting the underlying biological mechanisms using models.

When considering a solution to these problems in the context of metabolic modelling, we
have faced issues like: What is the importance of a dynamic metabolic model for describing
cell culture dynamics? What criteria affect a dynamic metabolic model’s success? What are
some unique ways for getting the most out of combining diverse modelling approaches? Which
experiments must be carried out in order to validate the model? What conclusions can be
drawn from the interaction between model simulations and experiment findings? In response
to these inquiries, we devised additional hypotheses to be investigated along with this thesis.
We postulated that establishing a modular in silico platform to evaluate non-steady state
metabolic fluxes and quantify medium dynamics could help to better understanding and
optimising different biosystems. In other words, while the various modelling approaches
discussed in Chapter 2 each have their own set of benefits and drawbacks, we believe that the
most useful information can be derived when they are used in a modular interactive fashion,
beginning with those that retrieve the structure of the metabolic network and ending with
those that quantify flux values within the boundaries of imposed physicochemical constraints.

In the case of RBCs, the modelling approach starts with processing experimental data so
that noise in the measurements does not lead to infeasibility or erroneous estimation bounds.
We employed nonlinear regression with exponential fit functions to smooth out the measured
experimental data in Chapter 3. The metabolic network was subsequently rebuilt to describe
RBC oxidative metabolism. The model scope includes cofactor-dependent enzymes involved
in ROS termination bioreactions, as well as glutathione metabolism, which was our major
modelling target. The major RBC intracellular metabolism pathways were also taken into
account. The reconstruction required multiple rounds of adjustments at the start in order
to identify dynamically plausible solutions. When the viable solutions appeared for the first
time, i.e., the metabolic network was confirmed, the recovered stoichiometric model supported
DFBA simulations considering the four objectives with only minor changes. Our method in
assessing distinct objective functions showed proximity of intracellular flux estimations for the
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coupling biological phenomena such as oxidative stress termination and NADH production.

In Chapter 4 we upgraded the method to use cubic splines to give a lower error in the primary
simulation of the experimental data. Furthermore, instead of an ad hoc metabolic network,
as was the case with RBCs, we tailored a GSMM. Four interactive components made up the
framework for gDCBM. In the first module, smooth splines were employed to approximate
the data. The metabolic model was built from the reference GSMM in the second module,
taking into consideration the dynamic constraints imposed by the piece-wise polynomials
produced in the data curation module. In the third module, we formulated the body of
the FBA problem, and in the fourth module, we used optimization solvers to obtain the
integrated concentration trajectories.

The CHO GSMM was updated by deleting the blocked reactions and altering the phenomeno-
logical reactions to meet the investigation’s needs. Due to the enormous complexity and
uncertainty of biomass composition, traditional implementation of the molar mass conserva-
tion rule is difficult and costly. We chose to develop a standard version of the model with a
biomass synthesis reaction based on a recent extensive study of CHO biomass composition
in various strains, as discussed in Chapter 4.

Modeling the non-growth phase of mammalian cell culture proved difficult, thus we used the
findings from the quiescent RBCs publication to build ideas for capturing metabolic behaviour
in the non-growth phase in this thesis. In this phase, we were able to successfully describe the
cell dynamics by considering multiple metabolic goal functions related to amino acid exchange
reactions. The time point with the least error was used to compute the switch time associated
to each clone. The exercise yielded three different switch time points for the various clones.
The gDCBM predictions were quite close to the experimental outcomes in every case. Indeed,
based on the decrease of the NRMSE, which accounts for the prediction versus experimental
data mismatch among all observable states, we proved that the framework enables for a
posteriori detection of the transition from growth to non-growth phase.

In a rich cell culture media, we hypothesised that CHO cells would try to ingest as many
nutrients as their internal metabolism would allow and produce as much product as their
internal metabolism would also allow. As a result, we concentrate on the cell’s input, assum-
ing that intracellular activity is the limiting factor in medium constituent exchange across
the cell membrane. In the fundamental FBA optimization problem, the input flows of these
chemicals can be employed as objectives. Because of this method, we were able to obtain the
simulations in Chapter 4. This systemic synthesis of multiple essential biological objective
functions, followed by model-driven analysis of the resulting flux distribution optima, should
provide a viable computational technique for context-specific metabolic behaviour assessment
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at the systems level. The approach would fail if the individual fluxes had not been previ-
ously constrained by the derivative of the fitted cubic splines, emphasising the significance
of following the order of the modules in the framework application.

The scientific research finally performed in this thesis appeared as a consolidation of theory,
specialized methodology and proposed ideas to domesticate cross-referenced topics.

Finally, an important contribution of this work was the generation of a Matlab–based frame-
work devoted to incorporate COBRA toolbox with several novel methods used in the course
of the project conduction. The prospect for the developed script is to be implementable
for calibration of the model to other datasets with the least adjustment required, in addi-
tion to providing the user with all the necessary information to reproduce or implement the
methodologies applied in this project.

5.1 Original contributions and implications

The original contributions of this thesis to the scientific community are briefed as follows,

• In Chapter 2, we provided a review analysis of the literature on cell modeling and
provide goals to address existing barriers. It is believed that the literature review
structure in this chapter can benefit novice modelers with biology background and
mathematicians with interests in biology equally. Such structure can also highlight a
new perspective regarding fusion of algebra techniques and nonlinear dynamics anal-
ysis techniques. The review article is particularly focused on the classification and
comparison of dynamic kinetic models and constraint-based models of metabolism.

• In Chapter 3, the development of an ad-hoc metabolic network for RBCs is an origi-
nal contribution followed by its study through dynamic stoichiometry based methods.
The metabolic network was meticulously developed by considering the genome-scale
metabolic model of RBCs and accumulated physiological data on the RBCs metabolic
behaviour. In this chapter, data was related to a six-week blood cell maintenance pro-
cess to test the capabilities of the proposed model. The model accounts for the effects
of different metabolic goals on intracellular flow distributions, particularly fluxes linked
to oxidative stress reduction. Through this methodology, the capabilities of DCBM are
extended. For example, in this study FVA was adapted to derive unbiased ranges for
the intracellular fluxes prior to the implementation of any metabolic objective function.

• In Chapter 4, the first contribution was to tailor a previously developed GSMM, then
it was followed by the development of a dynamic modeling framework for modeling
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data on CHO clonal variations. This study involves novel assumptions regarding cell
composition, switch time from non-growth to growth phase of the culture, and formu-
lation of the biomass synthesis reaction. In the context of CHO profiting from the
findings of the study on non-growing RBCs, the model proposed a set of objectives
for prediction of growth dynamics and intracellular flux patterns in both growth and
non-growth phases, which are original and novel. Therefore, the modelling framework
makes it possible to model the metabolic behaviour of three different strains in their
production phase as well as the growth phase.
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CHAPTER 6 RECOMMENDATIONS

Similar investigations can make advantage of the framework entire structure with replace-
ment of the experimental data. To improve the capacity to identify fluxes based on scarce
experimental data, alternative exchange paths for extracellular metabolites can be blocked
in a follow-up investigation. One way to continue this research could be to study specific
subsets of this genome-scale model by implementing model extraction methods on the avail-
able metabolic network. Such models could be kinetically determined and thus subject to
dynamic kinetic modelling. The advantage of using the model developed in this study as the
basis, is that it has already been proven to be able to result in feasible solutions. Moreover, it
was not possible to solve the gDCBM optimization problem in simultaneous format because
of computational limitation. A reduced model extracted based on the available data can be
integrated simultaneously over the culture time. For such system, the solution can be inter-
preted as an optimal dynamic behaviour. A dynamic nonlinear analysis of the underlying
metabolic system is also required to observe emergent properties such as ultra-sensitivity
(switch-like behaviour), bistability, and oscillations, which cannot be attributed to any single
reaction or constituent of the network and can only be explained with an enhanced systems
understanding.

In general, kinetic modelling improves the accuracy of perturbation outcome predictions
and allows for more flexibility in simulation of different scenarios, owing to the inclusion
of detailed mechanistic descriptions of the cell’s regulatory and compensatory mechanisms
through the use of a variety of kinetic formats. In terms of future study, developing a
reduced version of the metabolic network by limiting the network to the links between the
detected extracellular metabolites is a step toward developing a hybrid model with kinetic
properties. Such network can be characterized based on the recognised kinetic modelling
methodologies. The flux kinetics of the regulated enzymatic processes can be modelled
as nonlinear constraints for a differential algebraic optimization problem similar to what we
defined in this thesis. This modelling technique is based on the notion that changes in enzyme
activity during cell operation may be described mechanistically in terms of chemical activity
of substances that govern or determine enzyme activity. Unfortunately, such mechanistic
information is not implementable at genome-scale yet. At this scale we observed that many
intracellular reactions cannot be determined, for example, had huge bounds, such parts of
the genome-scale model are almost of no use for metabolic flux analysis. After all, there are
more than one thousand entity in this model of which we only have measurements for less
than fifty ones. In a functional hybrid model, kinetic rate laws are applied for the parts of



93

the network for which mechanistic data is available, but the rest of the network is kept in
its purely stoichiometric shape. This stoichiometric shape must be a subset of the metabolic
network developed in this thesis.

For parameter estimation of dynamic kinetic models containing mechanistic parameters, sev-
eral adequate techniques, i.e. those employing meta-heuristics algorithms, have been reported
in the literature. When gradient-based optimization approaches seem to become trapped in
unsatisfactory extrema, meta-heuristic optimization procedures are employed to prevent the
intrinsic nonlinearity of metabolic networks and the growth of parameters in an excessive
number of dimensions. We forecast that parameter estimate quality will be considerably
enhanced by the creation of kinetic models that can match as many different data sources as
possible. Given the current overabundance of quantitative omics data and growing biochem-
ical thermodynamics data, we believe that successful metabolic modelling approaches in the
future will help incorporate further knowledge from both inputs in a coherent computational
framework. Its strength will be clearly understood when mathematical modelling plays a
larger role in the development and design of new useful technologies. The question of "what
does the result of these genes do?" has become more important with the rapid improvement of
genome sequencing. What interactions between various gene products dictate which strains
produce more and which produce less? To identify the solution, strong complementary an-
alytical and computational approaches will need to be developed in addition to the vast
amount of data from (reductionist) biological sciences. Without a significant contribution
from mathematical modelling techniques, it will be impossible to explain and recreate the
interplay between genetics, phenotype, and the environment of the cell.
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CHAPTER 7 CONCLUSION

The development of efficient bioprocess management strategies necessitates the use of math-
ematical models. Most mathematical models published in the literature that describe the
dynamics of nutrients and by-products during cell cultures either require a high number of
parameters or are concerned with the organisms simpler than mammalian cells. Recogniz-
ing that these models are susceptible to parameters change or experimental data noise and
inaccuracy, the use of an interactive modular DCBM approach was investigated. This type
of model is known to be more compact in terms of the number of parameters. Our working
premise was that, based on a thorough preliminary investigation in the literature, dynamic
metabolic flux models will be able to represent the transient behaviour of biosystems during
a bioprocess with fewer parameters. To objectively assess this theory, we developed mathe-
matical tools for describing a non-growing biosystem, i.e., RBCs during their storage time,
and a growing biosystem, i.e., CHO cells during batch cell culture.

Initially, metabolic modelling algorithms were employed to describe RBC storage lesions
with emphasis on examining different biological objective functions. In this part of the the-
sis, we used nonlinear regression to provide a smooth approximation of the experimental
measurements of the blood bags nutrients, then in a DCBM approach, we derived dynamic
intracellular flux distributions with regard to different hypothetical objective functions. Next,
our attention was turned to CHO cell metabolism as it is the workhorse for biotherapeutics
production. In this part, in a shift from the metabolic modelling approach previously de-
veloped in our research group, we formulated the problem of simulating dynamic of medium
components as a constraint-based differential algebraic optimization problem. The objective
function for this optimization problem has two parts that depend on growth or non-growth
phase of the cell culture. We derived bounds of exchange fluxes based on the derivative of a
cubic smooth spline approximation of the measured experimental data, which enabled us to
find feasible genome-scale intracellular flux estimation ranges of the revised CHO GSMM.

Theoretically, developing dynamic constraint-based models of metabolism necessitates the
identification of one or a set of meaningful biological objective functions to be maximized/min-
imized as well as active constraints on the fluxes. This thesis proposed key strategies to
address these issues. A gDCBM framework was developed in which a metabolic network
for CHO cell line was tailored and then constrained by cell culture specific uptake rates,
and finally optimized to predict the growth dynamics in one-hour time resolution. We also
developed an ad-hoc model of the stored RBCs, which was used to model the impact of
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alternate objective functions in a non-growing organism. We leveraged the systems-based
understanding of the mammalian cell metabolism and the RBCs metabolism for investigat-
ing the differences in clonal variations of CHO cell lines and for studying RBCs oxidative
lesions, respectively.

We envisage that the provided mechanistic metabolic network modelling approach may ad-
dress some of the current obstacles on the way of in-vitro and in-silico bioproduction optimiza-
tion. The approach is likely to be particularly suitable for complex organisms such as mam-
malian cells, which can metabolize from multiple distinct nutrient inputs. Such metabolic
modelling framework may allow an improved capacity for analyzing cell metabolism and
physiology as well as media optimization and biomanufacturing control.
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APPENDIX A TEXT S1 : MATHEMATICAL FORMULATIONS OF
CONSTRAINT-BASED MODELS

Text S1: Mathematical formulations of constraint-based models

Stoichiometric matrix formulation

The stoichiometric matrix for a metabolic network with m metabolites and n reactions is as
follows:

Sm×n =
(
si,j

)
m×n

{i = 1, ..., m|j = 1, ..., n} (A.1)

dxi

dt
=

n∑
j=1

s+
ijvj −

n∑
j=1

s−
ijvj, i = 1, . . . , m (A.2)

Therefore, we have one column vector for each reaction and Eq. A.2 can be written in
matrix-vector notation for the whole metabolic network as follows:

dx⃗

dt
= Sm×nv⃗ (A.3)

The null space of stoichiometric matrix formulation

Where r is the rank for stoichiometric matrix S, the basis for the null space is a set with
q = (n − r) linearly independent column vectors of dimension n, which generates the null
space for stoichiometric matrix S when spanned [70].

K(S) = {⃗bi ∈ Rn (i = 1, . . . , q) | S.⃗bi = 0⃗ and b⃗i .⃗bj = 0⃗ (i ̸= j)} (A.4)

Null space(S) = span{⃗b1, . . . , b⃗q}, q = (n − r) (A.5)
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Metabolic Flux Analysis (MFA)

MFA provides an empirical flux map:

S.v⃗ = 0
[
Su Sk

] v⃗u

v⃗k

 = 0

v⃗u = −[(ST
u Su)−1ST

u ]Skv⃗k

(A.6)

Flux Balance Analysis (FBA)

The mathematical formulation of a cell objective, accounting for defined fluxes restrictions
with bounding limits for the reaction fluxes, is developed as a linear programming optimiza-
tion problem for FBA:

max C⃗T .v⃗

subject to:

S.v⃗ = 0

lb < v⃗ < ub

(A.7)

Modeling approaches complying to the thermodynamics-based constraints for-
mulation

The formulation of TMFA combines constraints from FBA, directionality and constraints on
metabolites concentrations as follows:

S.v⃗ = 0, (A.8)

0 ≤ vi ≤ zivMax, {i = 1, ..., r}, (A.9)

∆rG
′

i − K + Kzi < 0, {i = 1, ..., r|∆rG
′◦
i is known}, (A.10)

∆rG
′◦
i + RT

m∑
j=1

ni,j ln xj = ∆rG
′

i, {i = 1, ..., r + L|∆rG
′◦
i is known}, (A.11)

∆rG
′

i − Kyi < 0, {i = 1, ..., r + L}, (A.12)

yi +
r∑

j=1
αi,jzj ≤

r∑
j=1

αi,j, {i = 1, ..., r + L} (A.13)
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In this method, each reversible reaction is decomposed to two backward and forward reac-
tions. Therefore, there will be no negative vi value. zi is a binary number equal to one when
there is non-zero flux or otherwise equals to zero. In Eq A.10, K is fixed as a value to make
sure the inequality is satisfied when zi and vi are zeros. Of interest, the whole inequality
checks that the solution for flux distribution obeys the second law of thermodynamics. The
Gibbs free energy calculation for each reaction i is carried out in Eq A.11 with considering
the activity xj of involved metabolites.

Figure S1: EFMs enumeration for the running example with reversible reactions
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Figure A.1: EFMs enumeration for the running example with reversible reactions
(a) The balanced metabolic network is same as in the main text. (b) The basis for the null

space is the kernel matrix of the stoichiometric matrix. (c) 7 EFMs are enumerated
assuming that all the reactions are reversible, except for v6 which is inward. Each EFM is a

linear combination of the basis vectors and for this system with reversible reactions, the
negative coefficients in the columns 6 and 7 appear. (d-j) The flux maps for the EFMs are
shown on the substrate graph of the network. (g,i,j) The EFMs that include some reactions

in the reverse direction. (h) The EFM that includes a futile cycle.
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Table A.1: Properties of the different MPA methods.

MPA Methods Properties
Method
Name

Advantages Disadvantages Applications Toolbox/Software

Elementary
Flux Mode
(EFM)

No need for flux measure-
ment and optimality objec-
tive function [78]; Every
flux distribution can be de-
composed into basic func-
tional units without cancel-
lation [77,87]

Calculation of all EFMs is
computationally demanding
[87, 281]; Small percentage
of EFMs are biologically rel-
evant [87]

Suitable for small to medium scale
models [87,282]; Identification of coreg-
ulated and coexpressed reactions and
genes [88]; Composition of the minimal
substrate required [88–90]; Quantifica-
tion of cellular robustness [87,283,284];
Study of gene deletions and knockouts
[83,87]; Finding operational modes and
optimal routes [83]; Finding pathway
length [83]

METATOOL
[80]; CellNet-
Analyzer [285];
COPASI [286];
Efmtool [287];
YANAsquare
[288]

Extreme
Pathway
Analysis
(EPA)

No need for flux measure-
ment and optimality objec-
tive function [78]; Reducing
number of pathways and ap-
plicability for assessing net-
work properties [83]

Fluxes can cancel out [81,
87, 289]; Do not decom-
pose reversible exchange re-
actions [199]; Not suitable
to study mutations and the
effect of reaction removal
[83]

Suitable for small to medium scale
models [87,282]; To caluclate the edges
of solution space cone [81]

Expa [290];
META-
TOOL [80];
CellNetAn-
alyzer [285];
YANAsquare
[288]
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Table A.2: The hypothesized objective functions of the cell and their biological
rationales.

Particular Objectives of the Cell
Objective Biological rationale Reference
Maximum growth In the exponential growth phase, cells

utilize their resources to maximize pro-
liferation, i.e. to form new biomass.
This assumption is biologically relevant
for both prokaryotes and eukaryotes,
although a large part of cell resources
are directed to maintenance cell in eu-
karyotes.

[]

Maximum bioener-
getic production

Cells aim for the maximal ATP pro-
duction, or maximum reducing power,
which dictates a distinct distribution of
carbon flux.

[291,292]

Minimum overall in-
tracellular flux

Cells aim for the minimum sum of the
squares of fluxes, based on the assumed
maximum enzymatic efficiency for cel-
lular growth.

[99, 119,
293]

Maximum product
formation

Recombinant DNA (rDNA) facilitates
the design of modified cell lines with de-
sired traits beyond predetermined cell
objectives.

[]

Minimum reaction
steps

Assuming that the cell chooses the
shortest metabolic path from a sub-
strate to a product.

[]

Minimum redox po-
tential

Focus cell capability to generate energy
through ubiquitous redox reactions.

[]
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Table A.3: List of the flux balance analysis enhancements.

Enhancements of Flux Balance Analysis
Method Name Approach Regulation Enzyme-

cost
Reference application

Flux Balance Analysis
(FBA)

Steady-
state
constraint-
based

NO NO Studying gene knockouts [94, 294],
Studying cell growth on different me-
dia [94], Finding metabolic gaps [96]

Dynamic FBA
(dFBA)

Iterative or
dynamic

NO NO Description of unsteady-state growth
and by-product secretion in aerobic
batch, fed-batch, and anaerobic batch
cultures [15], analysis of diauxic growth
in Escherichia coli [15], study of carbon
storage metabolism in microalgae [295]

Dynamic enzyme-cost
FBA (deFBA)

Dynamic NO YES Prediction of dynamic changes in
metabolic fluxes and biomass composi-
tion during metabolic adaptations [296]

Resource balance
analysis (RBA)

Steady-
state

NO YES Prediction of the cell composition of
bacteria with respect to their medium
[297]

Dynamic resource bal-
ance analysis (dRBA)

Dynamic NO YES Optimization of production of added-
value compounds by bacteria [298]

Regulatory FBA
(rFBA)

Iterative,
Boolean
logic

YES NO Regulation of gene expression [299,
300], predict of high-throughput ex-
periments outcome [225], indication of
knowledge gaps and unknown compo-
nents and interactions [225], identifica-
tion of potential targets for transcrip-
tion factors [226]

Steady-state regula-
tory FBA (SR-FBA)

Steady-
state

YES NO Prediction of gene expression and
metabolic fluxes [301]

Probabilistic regula-
tion of metabolism
(PROM)

Steady-
state,
probabilis-
tic

YES NO Statistical inference of regulatory net-
work, automated quantification of reg-
ulatory Interactions [302]

Integrated FBA
(iFBA)

Iterative,
Boolean
logic, ODE

YES NO Encapsulation of dynamics of internal
metabolites, consideration of signaling
molecules [303]

Integrated dynamic
FBA (idFBA)

Iterative,
Boolean
logic, ODE

YES YES Integration of metabolic, signaling and
regulatory networks [304]

Parsimonious FBA
(pFBA)

Steady-
state

NO YES describing metabolic states of the cell
by minimizing the overall enzymatic
fluxes to eliminate the alternative flux
solutions [27]

Enzyme-cost FBA
(ecFBA)

Steady-
state

YES YES incorporating enzyme kinetic informa-
tion in FBA framework, reduces the
flux variability [227]

Regulatory dynamic
enzyme-cost FBA
(r-deFBA)

Dynamic YES YES Consideration of enzyme production
cost and regulatory events, integration
of metabolic, signaling and regulatory
networks [152]
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Table A.4: Comparison of MFA and FBA.

Metabolic Flux Analysis (MFA) Flux Balance Analysis (FBA)
v⃗u = −S−1

u Smv⃗m

v⃗u: unknown flux vector;
v⃗m: measured flux vector;
Su , Sm: stoichiometric matrix subsets for
unknown and measured fluxes respectively
[68].

max c⃗T .v⃗; subject to: S.v⃗ = 0 and lb < v⃗ <
ub
v⃗: flux vector;
c⃗: weights associated to fluxes based on the
objective of optimization;
lb , ub: allowed lower and upper bound re-
spectively for the flux values [94,239].

Applicable for small to medium scale
metabolic networks at steady-state. For
calculation of the empirical value of un-
known intracellular metabolic fluxes from
measured extracellular metabolites’ concen-
tration changes.

Applicable for small to genome-scale
metabolic networks at steady-state. For
calculation of the feasible flux distribution
from objective function linear optimization.

Accurate and simple approach;
No need for kinetic parameters;
Giving empirical results.
but,
Does not consider kinetics;
Valid at steady-state conditions;
There is a trade-off between the number of
measured fluxes and laborious experimental
work.

Simple approach;
No need for kinetic parameters;
Giving feasible results set.
but,
Does not consider kinetics;
Valid at steady-state conditions;
Optimization objective may not be realistic;
Highly likely to have more than one feasible
solution;
Affected by incomplete genome annotation.

MetaFluxNet [305]; FiatFlux [306]; Open-
Flux [307].

MetaFluxNet [305]; COBRA Toolbox [308];
FASIMU [309].

Table A.5: Databases for retrieving the equilibrium constants.

Databases for retrieving the equilibrium constants
Name Specification Reference
eQuilibrator Biochemical thermodynamics data cal-

culator.
[310]

Factsage Thermodynamics properties database
and calculator.

[311]

NIST National Institute of Standards and
Technology.

[199]
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APPENDIX B MATLAB CODE FOR ARTICLE 3

Data integration

1 %% C:\Users\ryase\OneDrive - ...

polymtl.ca\Documents\MyMatlabDir\RBC_Code\RY_MATLAB scripts

2 %% The data integration module

3 %to find approximate place of datas for a given state, e.g. X

4 % [i,j] = find(contains(statename,'X'))

5

6 %% Culture: Two- Control and Treated

7 [stateval,statename,RAW]=xlsread('DATA_CHO_clonal.xlsx','AG-2014','A7:V28');

8 [statevalSD,¬,¬]=xlsread('DATA_CHO_clonal.xlsx','AG-2014_std','A7:V28');
9

10 No_obser = 7;

11 No_metabphase = 1;

12 No_conditions = 3; %Parental, LP, HP

13 No_replicate = 1; %AG-2014 reported mean and STD

14 No_clmns = No_replicate*length(statename(1,3:end));%without time ...

and Cnd id

15 t_meas = stateval(1:No_obser,1); %Time vector of measurements

16 Name = statename(1,3:end);%in case the descriptive names are entered

17 NameID = statename(1,3:end);

18 stateval = stateval(:,2:end);

19 statevalSD = statevalSD(:,2:end);

20 Data_struct = ...

struct('TimeVector',t_meas,'Name',{cell(1,No_clmns)},'NameID',{cell(1,No_clmns)},...

21 'Type',{cell(1,No_clmns)},...

22 'Value',nan(No_obser,No_clmns),...

23 'Rate',nan(No_obser,No_clmns),...

24 'ValueSD',zeros(No_obser,No_clmns/No_replicate),...

25 'RateSD',zeros(No_obser,No_clmns/No_replicate));

26

27 for i = 1:No_clmns/No_replicate

28 for j = 1:No_conditions

29 Data_struct.Name{No_conditions*(i-1)+j} = ...

append('Cnd-',num2str(j),'-',Name{i});

30 Data_struct.NameID{No_conditions*(i-1)+j} = ...

append('Cnd-',num2str(j),'-',NameID{i});
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31 Data_struct.Value(:,No_conditions*(i-1)+j) = ...

stateval((1+(j-1)*No_obser):(j*No_obser),i);

32 Data_struct.ValueSD(:,No_conditions*(i-1)+j) = ...

statevalSD((1+(j-1)*No_obser):(j*No_obser),i);

33

34 if contains(Data_struct.NameID{No_conditions*(i-1)+j},'MAB[e]')

35 %correct MAB unit/value based on the molar mass, AG-2014

36 %reported in g/L, we want mmol/L, the MW of Rituximab is

37 %143859.7 (Da) or 143859.7 (g/mol) = 143.8597 g/mmol

38 Data_struct.Value(:,No_conditions*(i-1)+j) = (1/143.8597)* ...

Data_struct.Value(:,No_conditions*(i-1)+j);

39 Data_struct.ValueSD(:,No_conditions*(i-1)+j) = ...

(1/143.8597)* statevalSD((1+(j-1)*No_obser):(j*No_obser),i);

40 end

41

42 if endsWith(Data_struct.NameID{No_conditions*(i-1)+j},'[e]')

43 if ...

(sum(isnan(Data_struct.Value(:,No_conditions*(i-1)+j))) ...

== No_obser)

44 Data_struct.Type{No_conditions*(i-1)+j} = ...

'ext_nonmeas';

45 else

46 Data_struct.Type{No_conditions*(i-1)+j} = 'ext_meas';

47 if ...

contains(Data_struct.NameID{No_conditions*(i-1)+j},'BIOM[e]')

48 %specific growth rate: 1/hr

49 Data_struct.Rate(:,No_conditions*(i-1)+j) = ...

[0;log(Data_struct.Value(2:end,No_conditions*(i-1)+j)./Data_struct.Value(1:end-1,No_conditions*(i-1)+j))]./[1;Data_struct.TimeVector(2:end)-Data_struct.TimeVector(1:end-1)];

50 elseif ...

contains(Data_struct.NameID{No_conditions*(i-1)+j},'O22[e]')

51 %O2 data is given for the O2 consumption rate:

52 %mmol/10^6cell/hr (see AG-2014)

53 Data_struct.Rate(:,No_conditions*(i-1)+j) = ...

-10^6*([0;Data_struct.Value(2:end,No_conditions*(i-1)+j)]);

54 else

55 %specific transport rates: nanomol/10^6cell/hr

56 Data_struct.Rate(:,No_conditions*(i-1)+j) = ...

1000*([0;Data_struct.Value(2:end,No_conditions*(i-1)+j)-Data_struct.Value(1:end-1,No_conditions*(i-1)+j)]./[1;Data_struct.TimeVector(2:end)-Data_struct.TimeVector(1:end-1)])./([0;Data_struct.Value(2:end,j)+Data_struct.Value(1:end-1,j)]/2);

57 end

58 end

59

60 elseif ...

endsWith(Data_struct.NameID{No_conditions*(i-1)+j},'[c]')
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61 if ...

(sum(isnan(Data_struct.Value(:,No_conditions*(i-1)+j))) ...

== No_obser)

62 Data_struct.Type{No_conditions*(i-1)+j} = ...

'int_nonmeas';

63 else

64 Data_struct.Type{No_conditions*(i-1)+j} = 'int_meas';

65 Data_struct.Rate(:,No_conditions*(i-1)+j) = ...

[0;Data_struct.Value(2:end,No_conditions*(i-1)+j)-Data_struct.Value(1:end-1,No_conditions*(i-1)+j)]./[1;Data_struct.TimeVector(2:end)-Data_struct.TimeVector(1:end-1)];

66 end

67 else

68 fprintf('\nwrong name entry at column %d of data ...

sheet\n',i);

69 end

70 end

71

72 end

73

74 save DATA_CHO_clonal_GeM.mat Data_struct

75 clear

Smoothing splines

1 clear

2 close all

3 load DATA_CHO_clonal_processed_ver3.mat Data_struct

4

5 % global sim_time_vec

6 %% The simulation time step and time vector

7 h = 1; %time step

8 sim_time_vec = 0:h:Data_struct.TimeVector(end);

9

10 %% The select transport metabolites

11 % 1:BIOM[e] 2:ALA[e] 3:ARG[e] 4:CYS[e] 5:GLC[e] 6:GLN[e] 7:GLU[e] ...

8:GLY[e]

12 % 9:HIS[e] 10:ILE[e] 11:LAC[e] 12:LEU[e] 13:MET[e] 14:NH4[e] 15:PHE[e]

13 % 16:SER[e] 17:TYR[e] 18:VAL[e] 19:MAB[e]

14 select_ext_mets = {'BIOM[e]','GLC[e]', 'GLN[e]', 'GLU[e]',...

15 'LAC[e]', 'NH4[e]','O22[e]',...

16 'ALA[e]','ARG[e]','CYS[e]',...

17 'GLY[e]','HIS[e]','ILE[e]',...
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18 'LEU[e]','MET[e]','PHE[e]','SER[e]','TYR[e]','VAL[e]','MAB[e]'};

19 % select_ext_mets = {'BIOM[e]';'ALA[e]';'ARG[e]';'CYS[e]';'GLC[e]';...

20 % 'GLN[e]';'GLU[e]';'GLY[e]';'HIS[e]';'ILE[e]';'LAC[e]';'LEU[e]';...

21 % 'MET[e]';'NH4[e]';'PHE[e]';'SER[e]';'TYR[e]';'VAL[e]';};

22 %% To initialize the concentration and flux rate simulation vector

23 % global sim_conc sim_conc_lb sim_conc_ub

24 sim_conc = nan(length(sim_time_vec),length(select_ext_mets));

25 sim_conc_lb = nan(length(sim_time_vec),length(select_ext_mets));

26 sim_conc_ub = nan(length(sim_time_vec),length(select_ext_mets));

27 sim_conc_cnd_1 = sim_conc; sim_conc_cnd_2 = sim_conc; ...

sim_conc_cnd_3 = sim_conc;

28 sim_conc_lb_cnd_1 = sim_conc_lb; sim_conc_lb_cnd_2 = ...

sim_conc_lb; sim_conc_lb_cnd_3 = sim_conc_lb;

29 sim_conc_ub_cnd_1 = sim_conc_ub; sim_conc_ub_cnd_2 = ...

sim_conc_ub; sim_conc_ub_cnd_3 = sim_conc_ub;

30 % global sim_rate sim_rate_lb sim_rate_ub

31 sim_rate = nan(length(sim_time_vec)-1,length(select_ext_mets));

32 sim_rate_lb = nan(length(sim_time_vec)-1,length(select_ext_mets));

33 sim_rate_ub = nan(length(sim_time_vec)-1,length(select_ext_mets));

34 sim_rate_cnd_1 = sim_rate; sim_rate_cnd_2 = sim_rate; ...

sim_rate_cnd_3 = sim_rate;

35 sim_rate_lb_cnd_1 = sim_rate_lb; sim_rate_lb_cnd_2 = ...

sim_rate_lb; sim_rate_lb_cnd_3 = sim_rate_lb;

36 sim_rate_ub_cnd_1 = sim_rate_ub; sim_rate_ub_cnd_2 = ...

sim_rate_ub; sim_rate_ub_cnd_3 = sim_rate_ub;

37 % x_stored = nan(length(select_ext_mets),2); %how many paramteres does ...

your fit-function have?

38 % tiledlayout(3,2)

39 spline_func_stored = cell(length(select_ext_mets),1);

40 % fig_panel_let = ...

{'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O'};

41

42 %% To fit biomass concentratin and calculate the specific growth rate

43

44 dumindex = find(contains(Data_struct.NameID,select_ext_mets{1}));

45 cell2fit_cnd1 = ...

[Data_struct.Value(:,dumindex(1)),Data_struct.Value(:,dumindex(1))+Data_struct.ValueSD(:,dumindex(1)),Data_struct.Value(:,dumindex(1))-Data_struct.ValueSD(:,dumindex(1))];

46 cell2fit_cnd2 = ...

[Data_struct.Value(:,dumindex(2)),Data_struct.Value(:,dumindex(2))+Data_struct.ValueSD(:,dumindex(2)),Data_struct.Value(:,dumindex(2))-Data_struct.ValueSD(:,dumindex(2))];

47 cell2fit_cnd3 = ...

[Data_struct.Value(:,dumindex(3)),Data_struct.Value(:,dumindex(3))+Data_struct.ValueSD(:,dumindex(3)),Data_struct.Value(:,dumindex(3))-Data_struct.ValueSD(:,dumindex(3))];

48 ppp_cnd1 = RY_splinefit(Data_struct.TimeVector,cell2fit_cnd1',2);

49 ppp_cnd2 = RY_splinefit(Data_struct.TimeVector,cell2fit_cnd2',2);

50 ppp_cnd3 = RY_splinefit(Data_struct.TimeVector,cell2fit_cnd3',2);
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51 cell_splinefitted_cnd1 = ...

ppval(ppp_cnd1,sim_time_vec);%triplicate in rows

52 cell_splinefitted_cnd2 = ppval(ppp_cnd2,sim_time_vec);%triplicate

53 cell_splinefitted_cnd3 = ppval(ppp_cnd3,sim_time_vec);%triplicate

54 %fill up the sim conc matrix

55 sim_conc_cnd_1(:,1) = cell_splinefitted_cnd1(1,:);

56 sim_conc_cnd_2(:,1) = cell_splinefitted_cnd2(1,:);

57 sim_conc_cnd_3(:,1) = cell_splinefitted_cnd3(1,:);

58

59 sim_conc_lb_cnd_1(:,1) = cell_splinefitted_cnd1(2,:);

60 sim_conc_lb_cnd_2(:,1) = cell_splinefitted_cnd2(2,:);

61 sim_conc_lb_cnd_3(:,1) = cell_splinefitted_cnd3(2,:);

62

63 sim_conc_ub_cnd_1(:,1) = cell_splinefitted_cnd1(3,:);

64 sim_conc_ub_cnd_2(:,1) = cell_splinefitted_cnd2(3,:);

65 sim_conc_ub_cnd_3(:,1) = cell_splinefitted_cnd3(3,:);

66 %fill up the sim rate matrix

67 sim_rate_cnd_1(:,1) = ...

(diff(sim_conc_cnd_1(:,1))/h)./sim_conc_cnd_1(2:end,1);

68 sim_rate_cnd_2(:,1) = ...

(diff(sim_conc_cnd_2(:,1))/h)./sim_conc_cnd_2(2:end,1);

69 sim_rate_cnd_3(:,1) = ...

(diff(sim_conc_cnd_3(:,1))/h)./sim_conc_cnd_3(2:end,1);

70

71 sim_rate_lb_cnd_1(:,1) = ...

(diff(sim_conc_lb_cnd_1(:,1))/h)./sim_conc_lb_cnd_1(2:end,1);

72 sim_rate_lb_cnd_2(:,1) = ...

(diff(sim_conc_lb_cnd_2(:,1))/h)./sim_conc_lb_cnd_2(2:end,1);

73 sim_rate_lb_cnd_3(:,1) = ...

(diff(sim_conc_lb_cnd_3(:,1))/h)./sim_conc_lb_cnd_3(2:end,1);

74

75 sim_rate_ub_cnd_1(:,1) = ...

(diff(sim_conc_ub_cnd_1(:,1))/h)./sim_conc_ub_cnd_1(2:end,1);

76 sim_rate_ub_cnd_2(:,1) = ...

(diff(sim_conc_ub_cnd_2(:,1))/h)./sim_conc_ub_cnd_2(2:end,1);

77 sim_rate_ub_cnd_3(:,1) = ...

(diff(sim_conc_ub_cnd_3(:,1))/h)./sim_conc_ub_cnd_3(2:end,1);

78

79

80 for k = 2:length(select_ext_mets)

81 %% spline fit

82 dumindex = find(contains(Data_struct.NameID,select_ext_mets{k}));

83 y2fit_cnd1 = ...

[Data_struct.Value(:,dumindex(1)),Data_struct.Value(:,dumindex(1))+Data_struct.ValueSD(:,dumindex(1)),Data_struct.Value(:,dumindex(1))-Data_struct.ValueSD(:,dumindex(1))];
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84 y2fit_cnd2 = ...

[Data_struct.Value(:,dumindex(2)),Data_struct.Value(:,dumindex(2))+Data_struct.ValueSD(:,dumindex(2)),Data_struct.Value(:,dumindex(2))-Data_struct.ValueSD(:,dumindex(2))];

85 y2fit_cnd3 = ...

[Data_struct.Value(:,dumindex(3)),Data_struct.Value(:,dumindex(3))+Data_struct.ValueSD(:,dumindex(3)),Data_struct.Value(:,dumindex(3))-Data_struct.ValueSD(:,dumindex(3))];

86 ppp_cnd1 = RY_splinefit(Data_struct.TimeVector,y2fit_cnd1',2);

87 ppp_cnd2 = RY_splinefit(Data_struct.TimeVector,y2fit_cnd2',2);

88 ppp_cnd3 = RY_splinefit(Data_struct.TimeVector,y2fit_cnd3',2);

89 y_splinefitted_cnd1 = ppval(ppp_cnd1,sim_time_vec);%triplicate

90 y_splinefitted_cnd2 = ppval(ppp_cnd2,sim_time_vec);%triplicate

91 y_splinefitted_cnd3 = ppval(ppp_cnd3,sim_time_vec);%triplicate

92 %concentrations in mmol/L

93 sim_conc_cnd_1(:,k) = y_splinefitted_cnd1(1,:);

94 sim_conc_cnd_2(:,k) = y_splinefitted_cnd2(1,:);

95 sim_conc_cnd_3(:,k) = y_splinefitted_cnd3(1,:);

96

97 sim_conc_lb_cnd_1(:,k) = y_splinefitted_cnd1(2,:);

98 sim_conc_lb_cnd_2(:,k) = y_splinefitted_cnd2(2,:);

99 sim_conc_lb_cnd_3(:,k) = y_splinefitted_cnd3(2,:);

100

101 sim_conc_ub_cnd_1(:,k) = y_splinefitted_cnd1(3,:);

102 sim_conc_ub_cnd_2(:,k) = y_splinefitted_cnd2(3,:);

103 sim_conc_ub_cnd_3(:,k) = y_splinefitted_cnd3(3,:);

104 %fill up the sim "specific" rate matrix:*1000 to have it in

105 %nanomol/10^6cell/hr

106 sim_rate_cnd_1(:,k) = ...

1000*(diff(sim_conc_cnd_1(:,k))/h)./sim_conc_cnd_1(2:end,1);

107 sim_rate_cnd_2(:,k) = ...

1000*(diff(sim_conc_cnd_2(:,k))/h)./sim_conc_cnd_2(2:end,1);

108 sim_rate_cnd_3(:,k) = ...

1000*(diff(sim_conc_cnd_3(:,k))/h)./sim_conc_cnd_3(2:end,1);

109

110 sim_rate_lb_cnd_1(:,k) = ...

1000*(diff(sim_conc_lb_cnd_1(:,k))/h)./sim_conc_lb_cnd_1(2:end,1);

111 sim_rate_lb_cnd_2(:,k) = ...

1000*(diff(sim_conc_lb_cnd_2(:,k))/h)./sim_conc_lb_cnd_2(2:end,1);

112 sim_rate_lb_cnd_3(:,k) = ...

1000*(diff(sim_conc_lb_cnd_3(:,k))/h)./sim_conc_lb_cnd_3(2:end,1);

113

114 sim_rate_ub_cnd_1(:,k) = ...

1000*(diff(sim_conc_ub_cnd_1(:,k))/h)./sim_conc_ub_cnd_1(2:end,1);

115 sim_rate_ub_cnd_2(:,k) = ...

1000*(diff(sim_conc_ub_cnd_2(:,k))/h)./sim_conc_ub_cnd_2(2:end,1);

116 sim_rate_ub_cnd_3(:,k) = ...

1000*(diff(sim_conc_ub_cnd_3(:,k))/h)./sim_conc_ub_cnd_3(2:end,1);
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117 if k == 7 %oxygen

118 sim_rate_cnd_1(:,k) = -10^6*sim_conc_cnd_1(2:end,k);

119 sim_rate_cnd_2(:,k) = -10^6*sim_conc_cnd_2(2:end,k);

120 sim_rate_cnd_3(:,k) = -10^6*sim_conc_cnd_3(2:end,k);

121

122 sim_rate_lb_cnd_1(:,k) = -10^6*sim_conc_lb_cnd_1(2:end,k);

123 sim_rate_lb_cnd_2(:,k) = -10^6*sim_conc_lb_cnd_2(2:end,k);

124 sim_rate_lb_cnd_3(:,k) = -10^6*sim_conc_lb_cnd_3(2:end,k);

125

126 sim_rate_ub_cnd_1(:,k) = -10^6*sim_conc_ub_cnd_1(2:end,k);

127 sim_rate_ub_cnd_2(:,k) = -10^6*sim_conc_lb_cnd_2(2:end,k);

128 sim_rate_ub_cnd_3(:,k) = -10^6*sim_conc_lb_cnd_3(2:end,k);

129 end

130 %% concentration simulation values

131 %Cnd_1: nominal

132 figure

133 plot(sim_time_vec,sim_conc_cnd_3(:,k),'k-','LineWidth',1)

134 hold on

135 plot(sim_time_vec,sim_conc_lb_cnd_3(:,k),'b-')

136 plot(sim_time_vec,sim_conc_ub_cnd_3(:,k),'b-')

137 % The extracellular metabolite measurements plot with error bars

138 errorbar(Data_struct.TimeVector,...

139 Data_struct.Value(:,dumindex(3)),...

140 Data_struct.ValueSD(:,dumindex(3)),'r+')

141 str = ['Cnd_3',' ', select_ext_mets{k},'_{conc}']; %MUST ...

comment-out for single plotting

142 title(str)

143 xlabel('Time (hours)')

144 str = {'Extracellular metabolite ...

concentration';'[millimol-per-litter]'};

145 ylabel(str)

146 hold off

147

148 %save the figure

149 % figdum = gcf;

150 % figname = ['Cnd 3 high-producing',' ', ...

select_ext_mets{k},'_{conc}'];

151 % saveas(figdum,figname,'png')

152 %% The rate simulation COMMON between tiled plot and single high ...

quality plot

153 figure

154 plot(sim_time_vec(1:end-1),sim_rate_cnd_2(:,k),'k-','LineWidth',1)

155 hold on

156 plot(sim_time_vec(1:end-1),sim_rate_lb_cnd_2(:,k),'b-')
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157 plot(sim_time_vec(1:end-1),sim_rate_ub_cnd_2(:,k),'b-')

158 % incremental experimental rate

159 % errorbar(Data_struct.TimeVector(1:end-1),...

160 % ...

Data_struct.Ratemean(2:end,find(strcmp(Data_struct.NameIDmean,select_ext_mets{k}))),...

161 % ...

Data_struct.RateSD(2:end,find(strcmp(Data_struct.NameIDmean,select_ext_mets{k}))),'r+')

162 str = [select_ext_mets{k},' ','specific flux rate'];

163 title(str)

164 xlabel('Time (hours)')

165 str = {'[nanomol-per-10^6 cell-per-hour]'};

166 ylabel(str)

167 hold off

168 %save figure

169 % figdum = gcf;

170 % figname = ['Cnd 2 low producing',' ', ...

select_ext_mets{k},'_{specific transport flux}'];

171 % saveas(figdum,figname,'png')

172 % if mod(k,4) == 0 %For tiled plotting

173 % fig_handle = gcf;

174 % fig_name = ...

['sim_and_exp_concen_and_rate_values_Sept',select_ext_mets{(k-3):k},'.PDF'];

175 % % ...

exportgraphics(fig_handle,fig_name,'Resolution',300,'ContentType','vector');

176 end

177

178

179

180 save CHO_splinefitresults_AG-2014_3conditions_ver0 ...

181 sim_time_vec ...

182 sim_conc_cnd_1 sim_conc_cnd_2 sim_conc_cnd_3 ...

183 sim_conc_lb_cnd_1 sim_conc_lb_cnd_2 sim_conc_lb_cnd_3 ...

184 sim_conc_ub_cnd_1 sim_conc_ub_cnd_2 sim_conc_ub_cnd_3 ...

185 sim_rate_cnd_1 sim_rate_cnd_2 sim_rate_cnd_3 ...

186 sim_rate_lb_cnd_1 sim_rate_lb_cnd_2 sim_rate_lb_cnd_3 ...

187 sim_rate_ub_cnd_1 sim_rate_ub_cnd_2 sim_rate_ub_cnd_3

Simulation

1 %% Implementation of G-DCBM on Updated iCHOv1_DG44/After:04/April/2022/

2 %% Mario Jolicoeur Lab
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3 %% Author: r.yasemi@gmail.com

4 % function my_cost = G_DCBM_MY_MJ_cndns_April_01_simulation_spare3(inn)

5 close all

6 clear all

7 % initCobraToolbox(false)

8 [solverOK, solverInstalled] = changeCobraSolver('gurobi','LP');

9 %% Preamble: Parallel computing settings

10 delete(gcp('nocreate'))

11 % local_cluster = parcluster()

12 % mypool = parpool();

13 %% Preamble: The tasks

14 do_DFBA = true;

15 do_PLOT = true;

16 do_INT_PRED = false;

17 do_CALC_res = true;

18 global COND_INDEX DFBA_init_time_index DFBA_fin_time_index sorted_pred_mets

19 COND_INDEX = 3;

20 switch COND_INDEX

21 case 1

22 DFBA_init_time_index = 20;

23 DFBA_fin_time_index = 128;

24 DFBA_shift_time = 125;

25 case 2

26 DFBA_init_time_index = 20;

27 DFBA_fin_time_index = 128;

28 % DFBA_fin_time_index = 144;

29 DFBA_shift_time = 116;

30 case 3

31 DFBA_init_time_index = 20;

32 DFBA_fin_time_index = 128;

33 % DFBA_fin_time_index = 130;

34 DFBA_shift_time = 71;

35 end

36 %% Preamble: Loading the inputs

37 % Metabolic network in COBRA format

38 % load MODEL_ver_8.mat MODEL

39 load MODEL_ver_10.mat MODEL

40 % Spline smoothed concentrations and exchange rates

41 load CHO_splinefitresults_AG-2014_3conditions_ver0 ...

42 sim_time_vec ...

43 sim_conc_cnd_1 sim_conc_cnd_2 sim_conc_cnd_3 ...

44 sim_conc_lb_cnd_1 sim_conc_lb_cnd_2 sim_conc_lb_cnd_3 ...

45 sim_conc_ub_cnd_1 sim_conc_ub_cnd_2 sim_conc_ub_cnd_3 ...

46 sim_rate_cnd_1 sim_rate_cnd_2 sim_rate_cnd_3 ...
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47 sim_rate_lb_cnd_1 sim_rate_lb_cnd_2 sim_rate_lb_cnd_3 ...

48 sim_rate_ub_cnd_1 sim_rate_ub_cnd_2 sim_rate_ub_cnd_3

49 % Unbiased dynamic flux bounds on all reactions based on the imposed

50 % measured exchange reactions

51 % load series_DFVA_GeM_cnd_1_Feb17_11constraints.mat ...

cell_array_DFVA_output DCBM_time_vec common_trnspt_mets ...

main_trnspt_mets dum_cons

52 % FVA_FminFmax_vectors = cell_array_DFVA_output{20};

53

54 %% Step 0: Tailoring the model

55 GeM_CHO = MODEL;

56

57 switch COND_INDEX

58 case 1

59 MODEL.ub(startsWith(MODEL.rxns,'SK_ser')) = 0;

60 MODEL.lb(startsWith(MODEL.rxns,'SK_ser')) = -860;

61 MODEL.ub(startsWith(MODEL.rxns,'SK_val')) = 0;

62 MODEL.lb(startsWith(MODEL.rxns,'SK_val')) = -1;

63 % MODEL.ub(startsWith(MODEL.rxns,'SK_gly')) = 2000;

64 % MODEL.lb(startsWith(MODEL.rxns,'SK_gly')) = 1500;

65 case 2

66 MODEL.ub(startsWith(MODEL.rxns,'SK_ser')) = 0;

67 MODEL.lb(startsWith(MODEL.rxns,'SK_ser')) = -570;

68 MODEL.ub(startsWith(MODEL.rxns,'SK_val')) = 0;

69 MODEL.lb(startsWith(MODEL.rxns,'SK_val')) = -1;

70 % MODEL.ub(startsWith(MODEL.rxns,'SK_gly')) = 600;

71 % MODEL.lb(startsWith(MODEL.rxns,'SK_gly')) = 440;

72 case 3

73 MODEL.ub(startsWith(MODEL.rxns,'SK_ser')) = 0;

74 MODEL.lb(startsWith(MODEL.rxns,'SK_ser')) = -230;

75 MODEL.ub(startsWith(MODEL.rxns,'SK_val')) = 0;

76 MODEL.lb(startsWith(MODEL.rxns,'SK_val')) = -1;

77 % MODEL.ub(startsWith(MODEL.rxns,'SK_gly')) = 500;

78 MODEL.lb(startsWith(MODEL.rxns,'SK_gly')) = 10;

79 end

80 %% Step 1: Determining the secretion/uptake rates of measured ...

extracellular species [EXCHANGE fluxes]

81 ModelFluxUnitLongFormat ='nanomolebiomolecule-per-millioncell-per-hour';

82 TransportFluxUnit = 'nanomolepermillioncellperhour';

83 % The complete set of species for which time-series measurements are

84 % available

85 %DO NOT CHANGE THIS LIST

86 common_trnspt_mets = {'BIOM_e','glc__D_e', 'gln__L_e', 'glu__L_e',...

87 'lac__L_e', 'nh4_e','o2_e',...
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88 'ala__L_e','arg__L_e','cys__L_e',...

89 'gly_e','his__L_e','ile__L_e',...

90 'leu__L_e','met__L_e','phe__L_e','ser__L_e','tyr__L_e','val__L_e','igg_e'};

91 % List of the main sources of carbon and nitrogen, electron acceptor,

92 main_trnspt_mets = {'glc__D_e', 'gln__L_e', 'glu__L_e',...

93 'lac__L_e', 'nh4_e','o2_e','ala__L_e','tyr__L_e','met__L_e',...

94 'his__L_e','cys__L_e','arg__L_e','ile__L_e'};

95 % dum_cons = {'arg__L_e','cys__L_e','gly_e','his__L_e','ile__L_e',...

96 % ...

'leu__L_e','met__L_e','phe__L_e','ser__L_e','tyr__L_e'};%,'val__L_e'};

97 dum_cons = {'leu__L_e','phe__L_e','val__L_e','gly_e','ser__L_e'};

98

99

100 imposed_trnspt_mets = [main_trnspt_mets, dum_cons];

101 sim_index = ismember(common_trnspt_mets,imposed_trnspt_mets);

102 %% The involved transport rates/ pay attention to the cell culture ...

condition

103 %(Condition 1:Parental- Condition 2:LP - Condition 3:HP)

104 sim_rate_lb_ub_3Dmat = ...

repmat(zeros(length(sim_rate_lb_cnd_1),1),[1,2,sum(sim_index)]);

105 j = 0;

106 for i=1:length(sim_index)

107 switch COND_INDEX

108 case 1

109 if sim_index(i)

110 j = j+1;

111 sim_rate_lb_ub_3Dmat(:,1,j) = ...

min([sim_rate_cnd_1(:,i),...

112 sim_rate_lb_cnd_1(:,i),sim_rate_ub_cnd_1(:,i)]');

113

114 sim_rate_lb_ub_3Dmat(:,2,j) = ...

max([sim_rate_cnd_1(:,i),...

115 sim_rate_lb_cnd_1(:,i),sim_rate_ub_cnd_1(:,i)]');

116 %This is required to make sure only the "upper ...

bounds" are

117 %imposed

118 for jj = 1:length(sim_rate_lb_cnd_1)

119 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

120 && sim_rate_lb_ub_3Dmat(jj,1,j) > 0 && j ̸= ...

2 && j ̸= 3 && j ̸= 4 && j ̸=5

121 sim_rate_lb_ub_3Dmat(jj,1,j) = 0;

122 end
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123 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

124 && sim_rate_lb_ub_3Dmat(jj,1,j) < 0 && j ̸= 2

125 sim_rate_lb_ub_3Dmat(jj,2,j) = 0;

126 end

127 end

128 end

129 case 2

130 if sim_index(i)

131 j = j+1;

132 sim_rate_lb_ub_3Dmat(:,1,j) = ...

min([sim_rate_cnd_2(:,i),...

133 sim_rate_lb_cnd_2(:,i),sim_rate_ub_cnd_2(:,i)]');

134

135 sim_rate_lb_ub_3Dmat(:,2,j) = ...

max([sim_rate_cnd_2(:,i),...

136 sim_rate_lb_cnd_2(:,i),sim_rate_ub_cnd_2(:,i)]');

137 for jj = 1:length(sim_rate_lb_cnd_1)

138 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

139 && sim_rate_lb_ub_3Dmat(jj,1,j) > 0 && j ̸= ...

2 && j ̸= 3 && j ̸= 4 && j ̸= 5

140 sim_rate_lb_ub_3Dmat(jj,1,j) = 0;

141 end

142 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

143 && sim_rate_lb_ub_3Dmat(jj,1,j) < 0 && j ̸= 2

144 sim_rate_lb_ub_3Dmat(jj,2,j) = 0;

145 end

146 end

147 end

148 case 3

149 if sim_index(i)

150 j = j+1;

151 sim_rate_lb_ub_3Dmat(:,1,j) = ...

min([sim_rate_cnd_3(:,i),...

152 sim_rate_lb_cnd_3(:,i),sim_rate_ub_cnd_3(:,i)]');

153

154 sim_rate_lb_ub_3Dmat(:,2,j) = max([sim_rate_cnd_3(:,i),...

155 sim_rate_lb_cnd_3(:,i),sim_rate_ub_cnd_3(:,i)]');

156 for jj = 1:length(sim_rate_lb_cnd_1)
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157 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

158 && sim_rate_lb_ub_3Dmat(jj,1,j) > 0 && j ̸= ...

2 && j ̸= 3 && j ̸= 4 && j ̸=5

159 sim_rate_lb_ub_3Dmat(jj,1,j) = 0;

160 end

161 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

162 && sim_rate_lb_ub_3Dmat(jj,1,j) < 0 && j ̸= 2

163 sim_rate_lb_ub_3Dmat(jj,2,j) = 0;

164 end

165 end

166 end

167 end

168 end

169 display('**$$$** To assign lower and upper bounds of the transport ...

reaction(s) from the extracellular data:')

170

171 %% APM

172 addpath('../apm')

173

174 %% Dynamic FBA (all time points)

175 solverOK = changeCobraSolver('gurobi', 'LP');

176 my_cost = 0;

177 flag_infeasible = 0;

178 if solverOK == 1 && do_DFBA

179 DCBM_time_vec = sim_time_vec(DFBA_init_time_index:DFBA_fin_time_index);

180

181 FVA_FminFmax_vectors = ...

repmat([MODEL.lb,MODEL.ub],[1,1,length(DCBM_time_vec)]);

182

183 post_FVA_FminFmax_vectors = FVA_FminFmax_vectors;

184

185 imposed_exch = append('EX_',common_trnspt_mets(sim_index));

186

187 index_EX_rxn = ismember(MODEL.rxns,imposed_exch);

188

189 G_DCBM_flux_vectors = ...

repmat(nan(length(MODEL.rxns),1),[1,3,length(DCBM_time_vec)]);

190

191 G_DCBM_flux_vectors(:,1:2,:) = FVA_FminFmax_vectors;

192
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193 %storing optimization information

194 G_DCBM_opt_solution_infos = cell(length(DCBM_time_vec),3);

195 G_DCBM_opt_solution_infos(:,1) = num2cell(DCBM_time_vec,1);

196 G_DCBM_opt_solution_infos(:,2) = cell(length(DCBM_time_vec),1);

197

198 %FBA conditions:%the model is sensitive to the existence of loops

199 allowLoops = 0;%0:loopless solutions

200 printLevel = 0;%2;%prints results

201 optPercentage = 100; osenseStr = 'max'; method = '2-norm'; minNorm ...

= 1e-6;

202 solverParams = struct();

203 solverParams.zeroNormApprox = 'all';

204 solverParams.verify = 'true';

205 format shortG

206

207 if sum(index_EX_rxn,'all') ̸= length(imposed_exch)

208 formatSpec = '\n\n*%8.4f imposed exchange rates WERE found in ...

the GeM\n %8.4f imposed exchange rates were not found in the ...

GeM.\n';

209 warning(formatSpec,sum(index_EX_rxn),length(common_trnspt_mets(sim_index))-sum(index_EX_rxn))

210 end

211

212 %The reaction ID for the biomass reaction included in the genome-scale

213 %model: 'MY_BIOMASS_cho_producing_1'

214 dum_index = find(contains(MODEL.rxns,'MY_BIOMASS_cho_producing_1'));

215 %Extracting the participating species list

216 metaboliteList_biom = MODEL.mets(sum(full(MODEL.S(:,dum_index)),2) ̸=0);

217 coeffsList_biom = ...

sum(full(MODEL.S(ismember(MODEL.mets,metaboliteList_biom),dum_index)),2)

218 InitGuess = coeffsList_biom;

219 aa_indices = [8;11;12;13;14;15;16;18;19;20;21;23;24;25;27;28;29;30];

220 switch COND_INDEX

221 case 1

222 InitGuess(aa_indices) = InitGuess(aa_indices)*0.7;

223 case 2

224 InitGuess(aa_indices) = InitGuess(aa_indices)*0.9;

225 case 3

226 InitGuess(aa_indices) = InitGuess(aa_indices)*1;

227 end

228 %remove the reaction to avoid duplicate reactions

229 MODEL = removeRxns(MODEL,'MY_BIOMASS_cho_producing_1');

230 %Add the new reaction considering a new THE_LIST value

231 MODEL = ...

addReaction(MODEL,'MY_BIOMASS_cho_producing_1','reactionName',...
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232 'Biomass for a producing DG44 cell ...

line','metaboliteList',metaboliteList_biom,...

233 'stoichCoeffList',InitGuess,'reversible',false);

234 %% PREDICTIONS: Concentrations back calculation, Cell Specific Fluxes

235 %metabolites that must be predicted and for which we have an initial

236 %concentration value

237 pred_mets = common_trnspt_mets;

238 pred_EXflux = append('EX_',pred_mets);

239 pred_index = ismember(common_trnspt_mets,pred_mets);

240 [sorted_pred_EXflux, sorted_pred_index] = sort(pred_EXflux);

241 sorted_pred_mets = pred_mets(sorted_pred_index);

242

243 sim_rate_for_graph_lb_ub_3Dmat = ...

repmat(zeros(length(sim_rate_lb_cnd_1),1),[1,2,sum(pred_index)]);

244 j = 0;

245

246 for i=1:length(pred_index)

247 switch COND_INDEX

248 case 1

249 if pred_index(i)

250 j = j+1;

251 conc_sim_data = sim_conc_cnd_1(:,sorted_pred_index);

252 conc_sim_datalb = sim_conc_lb_cnd_1(:,sorted_pred_index);

253 conc_sim_dataub = sim_conc_ub_cnd_1(:,sorted_pred_index);

254 end

255

256 case 2

257 if pred_index(i)

258 j = j+1;

259 conc_sim_data = sim_conc_cnd_2(:,sorted_pred_index);

260 conc_sim_datalb = sim_conc_lb_cnd_2(:,sorted_pred_index);

261 conc_sim_dataub = sim_conc_ub_cnd_2(:,sorted_pred_index);

262

263 end

264

265 case 3

266 if pred_index(i)

267 j = j+1;

268 conc_sim_data = sim_conc_cnd_3(:,sorted_pred_index);

269 conc_sim_datalb = sim_conc_lb_cnd_3(:,sorted_pred_index);

270 conc_sim_dataub = sim_conc_ub_cnd_3(:,sorted_pred_index);

271

272 end

273 end
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274 end

275

276 %Initializing the matrices for storing dynamic concentration results

277 pred_conc_trajectory = zeros(length(DCBM_time_vec),sum(pred_index));

278 %Assigning the initial values

279 pred_conc_trajectory(1,:) = conc_sim_data(DFBA_init_time_index,:);

280 %To exclude BIOM_e vector and assign its initial value (initial biomass

281 %concentration)

282 biom_pred_data(1) = pred_conc_trajectory(1,ismember( ...

sorted_pred_mets,'BIOM_e'));

283 % pred_conc_trajectory(:,ismember(sorted_pred_mets,'BIOM_e')) = [];

284

285 %Ensuring that the model IDs for the exchange fluxes are synced

286 [sorted_pred_uptake, sorted_pred_uptake_index] = ...

287 sort(MODEL.rxns(ismember(MODEL.rxns,pred_EXflux)));

288

289 %% Reading out the predicted growth and optimum fluxes from DFBA

290 pred_uptake = ...

G_DCBM_flux_vectors(ismember(MODEL.rxns,pred_EXflux),3:3:end);

291 sorted_pred_uptake = pred_uptake(sorted_pred_uptake_index,:);

292 mu = sorted_pred_uptake(ismember(sorted_pred_EXflux,'EX_BIOM_e'),:);

293 sorted_pred_uptake(ismember(sorted_pred_EXflux,'EX_BIOM_e'),:) = [];

294 %Step size (1 hour)

295 ∆_t = DCBM_time_vec(3) - DCBM_time_vec(2);

296

297 %% Dynamic Flux balance analysis Linear Programming optimization

298 solverOK = changeCobraSolver('gurobi', 'LP');

299 allowLoops = true;%0:loopless solutions

300 printLevel = 0;%2;%prints results

301 optPercentage = 100; osenseStr = 'max'; method = '2-norm'; minNorm ...

= 1e-6;

302 solverParams = struct();

303 solverParams.zeroNormApprox = 'all';

304 solverParams.verify = 'true';

305 format shortG

306

307 %% DFBA-dFVA iterating over time

308 for j = 1:length(DCBM_time_vec)

309 %Imposing constraints on the model

310 MODEL = changeRxnBounds(MODEL, imposed_exch, ...

sim_rate_lb_ub_3Dmat(DCBM_time_vec(j),1,:), 'l');

311 MODEL = changeRxnBounds(MODEL, imposed_exch, ...

sim_rate_lb_ub_3Dmat(DCBM_time_vec(j),2,:), 'u');

312 G_DCBM_flux_vectors(:,1,j) = MODEL.lb;



146

313 G_DCBM_flux_vectors(:,2,j) = MODEL.ub;

314 formatSpec = '\n## \n**The exchange rate bounds in time index %d ...

are set.\n t_initial = %.2f hour\n';

315 fprintf(formatSpec,j,DCBM_time_vec(j))

316

317 %Conditional flux bounds constraints

318 oxid_stress_rxns = {'SPODM';'TYROX';'ILEOX';'SMOX';'SPMDOX';...

319 '5HOXINDACTO2OX';'XAO';'XAO2';'ASCBOX';'SPODMx';'GLYOp';...

320 'XAO2x';'XAOx';'SPODMm';'SPODMn'}; % COBRA function: optimizeCbModel

321 C_ineq = ismember(MODEL.rxns,oxid_stress_rxns);

322 d_ineq = 1; %min H2O2 generation from literature

323 % MODEL.C = C_ineq';

324 % MODEL.d = d_ineq;

325 % MODEL.dsense = 'G';

326 %

327 % To introduce the objective function

328 fprintf('Testing flux balance analysis using %s ... ', 'gurobi');

329 fprintf('\n *Optimal solution growth\n');

330 DCBM_time_vec(j)

331

332 %Initializing the objective function

333 MODEL.c = zeros(length(MODEL.c),1);

334

335 if DCBM_time_vec(j) ≤ DFBA_shift_time

336 MODEL.c(ismember(MODEL.rxns,'MY_BIOMASS_cho_producing_1')) = ...

1;%biomass synthesis

337 switch COND_INDEX

338 case 1

339 MODEL.c(contains(MODEL.rxns,'EX_ile__L_e')) = -1;

340 MODEL.c(contains(MODEL.rxns,'EX_his__L_e')) = -1;

341 MODEL.c(contains(MODEL.rxns,'EX_cys__L_e')) = -1;

342 MODEL.c(contains(MODEL.rxns,'EX_met__L_e')) = -1;

343 % MODEL.c(contains(MODEL.rxns,'EX_gly_e')) = -1;

344 MODEL.c(contains(MODEL.rxns,'EX_tyr__L_e')) = -1;

345 case 2

346 MODEL.c(contains(MODEL.rxns,'EX_ile__L_e')) = -1;

347 MODEL.c(contains(MODEL.rxns,'EX_his__L_e')) = -1;

348 MODEL.c(contains(MODEL.rxns,'EX_cys__L_e')) = -1;

349 MODEL.c(contains(MODEL.rxns,'EX_met__L_e')) = -1;

350 % MODEL.c(contains(MODEL.rxns,'EX_gly_e')) = -1;

351 MODEL.c(contains(MODEL.rxns,'EX_tyr__L_e')) = -1;

352 case 3

353 MODEL.c(contains(MODEL.rxns,'EX_ile__L_e')) = -1;

354 MODEL.c(contains(MODEL.rxns,'EX_his__L_e')) = -1;
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355 MODEL.c(contains(MODEL.rxns,'EX_cys__L_e')) = -1;

356 MODEL.c(contains(MODEL.rxns,'EX_met__L_e')) = -1;

357 % MODEL.c(contains(MODEL.rxns,'EX_gly_e')) = -1;

358 MODEL.c(contains(MODEL.rxns,'EX_tyr__L_e')) = -1;

359 end

360 else

361 switch COND_INDEX

362 case 1

363 MODEL.c(ismember(MODEL.rxns,'MY_BIOMASS_cho_producing_1')) ...

= 0;%biomass synthesis

364 MODEL.c(contains(MODEL.rxns,'EX_glc__D_e')) = -1;

365 MODEL.c(contains(MODEL.rxns,'EX_ser__L_e')) = -1;

366 MODEL.c(contains(MODEL.rxns,'EX_gln__L_e')) = -1;

367 MODEL.c(contains(MODEL.rxns,'EX_val__L_e')) = -1;

368 MODEL.c(contains(MODEL.rxns,'EX_ala__L_e')) = -1;

369 MODEL.c(contains(MODEL.rxns,'EX_tyr__L_e')) = -1;

370 MODEL.c(contains(MODEL.rxns,'EX_phe__L_e')) = -1;

371 MODEL.c(contains(MODEL.rxns,'EX_met__L_e')) = -1;

372 MODEL.c(contains(MODEL.rxns,'EX_leu__L_e')) = -1;

373 MODEL.c(contains(MODEL.rxns,'EX_ile__L_e')) = -1;

374 MODEL.c(contains(MODEL.rxns,'EX_his__L_e')) = -1;

375 MODEL.c(contains(MODEL.rxns,'EX_gly_e')) = -1;

376 MODEL.c(contains(MODEL.rxns,'EX_arg__L_e')) = -1;

377 MODEL.c(contains(MODEL.rxns,'EX_cys__L_e')) = -1;

378

379 case 2

380 MODEL.c(ismember(MODEL.rxns,'MY_BIOMASS_cho_producing_1')) ...

= 0;%biomass synthesis

381 MODEL.c(contains(MODEL.rxns,'EX_glc__D_e')) = 0;

382 MODEL.c(contains(MODEL.rxns,'EX_ser__L_e')) = 0;

383 MODEL.c(contains(MODEL.rxns,'EX_gln__L_e')) = -1;

384 MODEL.c(contains(MODEL.rxns,'EX_val__L_e')) = -1;

385 MODEL.c(contains(MODEL.rxns,'EX_ala__L_e')) = -1;

386 MODEL.c(contains(MODEL.rxns,'EX_tyr__L_e')) = -1;

387 % MODEL.c(contains(MODEL.rxns,'EX_phe__L_e')) = -1;

388 MODEL.c(contains(MODEL.rxns,'EX_met__L_e')) = -1;

389 MODEL.c(contains(MODEL.rxns,'EX_leu__L_e')) = -1;

390 MODEL.c(contains(MODEL.rxns,'EX_ile__L_e')) = -1;

391 MODEL.c(contains(MODEL.rxns,'EX_his__L_e')) = -1;

392 MODEL.c(contains(MODEL.rxns,'EX_gly_e')) = -1;

393 MODEL.c(contains(MODEL.rxns,'EX_arg__L_e')) = -1;

394 MODEL.c(contains(MODEL.rxns,'EX_cys__L_e')) = -1;

395

396 case 3
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397 MODEL.c(ismember(MODEL.rxns,'MY_BIOMASS_cho_producing_1')) ...

= 0;%biomass synthesis

398 MODEL.c(contains(MODEL.rxns,'EX_glc__D_e')) = 0;

399 MODEL.c(contains(MODEL.rxns,'EX_ser__L_e')) = 0;

400 MODEL.c(contains(MODEL.rxns,'EX_gln__L_e')) = -1;

401 MODEL.c(contains(MODEL.rxns,'EX_val__L_e')) = -1;

402 MODEL.c(contains(MODEL.rxns,'EX_ala__L_e')) = -1;

403 MODEL.c(contains(MODEL.rxns,'EX_tyr__L_e')) = -1;

404 MODEL.c(contains(MODEL.rxns,'EX_phe__L_e')) = -1;

405 MODEL.c(contains(MODEL.rxns,'EX_met__L_e')) = -1;

406 MODEL.c(contains(MODEL.rxns,'EX_leu__L_e')) = -1;

407 % MODEL.c(contains(MODEL.rxns,'EX_ile__L_e')) = -1;

408 MODEL.c(contains(MODEL.rxns,'EX_his__L_e')) = -1;

409 % MODEL.c(contains(MODEL.rxns,'EX_gly_e')) = -1;

410 MODEL.c(contains(MODEL.rxns,'EX_arg__L_e')) = -1;

411 MODEL.c(contains(MODEL.rxns,'EX_cys__L_e')) = -1;

412

413 otherwise

414 break

415 end

416 end

417 %% SOLVE Linear Programming problem

418

419 solution_1 = optimizeCbModel(MODEL);

420

421

422 if strcmpi(solution_1.origStat,'INFEASIBLE') || ...

strcmpi(solution_1.origStat,'NUMERIC')

423 display('Infeasible solution')

424 my_cost = inf;

425 return

426 else

427 % f = MODEL.c;

428 % A = [];

429 % b = [];

430 % Aeq = MODEL.S;

431 % beq = MODEL.b;

432 % lb = MODEL.lb;

433 % ub = MODEL.ub;

434 % options = optimoptions(@linprog);

435 % [solution_1,fval,exitflag,output,lambda] = ...

linprog(f,A,b,Aeq,beq,lb,ub,options)

436 % G_DCBM_flux_vectors(:,3,j) = solution_1;

437 G_DCBM_flux_vectors(:,3,j) = solution_1.x;
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438 G_DCBM_opt_solution_infos{j,2} = solution_1;

439 L2_norm = solution_1.x'*solution_1.x;

440 G_DCBM_opt_solution_infos{j,3} = L2_norm;

441 %One can add necessary information to be stored from the

442 %optimization protocol

443 end

444 %% DFVA

445 % % MODEL = changeRxnBounds(MODEL, {'MY_BIOMASS_cho_producing_1'}, ...

solution_1.x(ismember(MODEL.rxns,'MY_BIOMASS_cho_producing_1')), 'b');

446 % % G_DCBM_flux_vectors(:,1,j) = MODEL.lb;

447 % % G_DCBM_flux_vectors(:,2,j) = MODEL.ub;

448 % formatSpec = '\n## \n**The FVA for the predicted growth rate is ...

started at time\n t_initial = %.2f hour\n';

449 % fprintf(formatSpec,DCBM_time_vec(j))

450 % optPercentage =100; osenseStr= 'max'; printLevel =1; allowLoops = ...

false;

451 % % [G_DCBM_flux_vectors(:,1,j), G_DCBM_flux_vectors(:,2,j)] = ...

fluxVariability(MODEL, optPercentage, osenseStr, MODEL.rxns, ...

printLevel, allowLoops, [], [], [])

452 % [FVA_FminFmax_vector(:,1,j),FVA_FminFmax_vector(:,2,j)] = ...

fluxVariability(MODEL);

453 %

454 %% Reading out the predicted growth and optimum fluxes from DFBA

455 pred_uptake = ...

G_DCBM_flux_vectors(ismember(MODEL.rxns,pred_EXflux),3,j);

456 sorted_pred_uptake = pred_uptake(sorted_pred_uptake_index);

457 mu = sorted_pred_uptake(ismember(sorted_pred_EXflux,'EX_BIOM_e'));

458 % sorted_pred_uptake(ismember(sorted_pred_EXflux,'EX_BIOM_e')) = [];

459 %Step size (1 hour)

460

461 if j < length(DCBM_time_vec)

462 %The place where the formula for integration over biomass can ...

be modified

463 biom_pred_data(j+1) = biom_pred_data(j)*exp(mu*(∆_t));%biomass ...

trajectory

464

465 %Update concentrations

466 pred_conc_trajectory(j+1,:) = pred_conc_trajectory(j,:) + ...

0.001*sorted_pred_uptake'*biom_pred_data(j+1)*(∆_t);

467

468 %update the cost

469 my_cost = my_cost + ...

470 (biom_pred_data(j+1) - ...

conc_sim_data(j+1,ismember(sorted_pred_mets,'BIOM_e'))).^2 ...
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+...

471 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'glc__D_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'glc__D_e'))).^2 ...

/(max(conc_sim_data(:,ismember(sorted_pred_mets,'glc__D_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'glc__D_e'))))^2 ...

+ ...

472 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'gln__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'gln__L_e'))).^2 ...

/(max(conc_sim_data(:,ismember(sorted_pred_mets,'gln__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'gln__L_e'))))^2+ ...

...

473 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'glu__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'glu__L_e'))).^2 ...

/(max(conc_sim_data(:,ismember(sorted_pred_mets,'glu__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'glu__L_e'))))^2+ ...

...

474 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'lac__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'lac__L_e'))).^2 ...

/(max(conc_sim_data(:,ismember(sorted_pred_mets,'lac__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'lac__L_e'))))^2+ ...

...

475 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'nh4_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'nh4_e'))).^2 ...

/(max(conc_sim_data(:,ismember(sorted_pred_mets,'nh4_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'nh4_e'))))^2+ ...

...

476 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'ala__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'ala__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'ala__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'ala__L_e'))))^2 ...

+ ...

477 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'arg__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'arg__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'arg__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'arg__L_e'))))^2 ...

+ ...

478 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'cys__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'cys__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'cys__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'cys__L_e'))))^2 ...

+ ...

479 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'gly_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'gly_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'gly_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'gly_e'))))^2 ...

+ ...

480 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'his__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'his__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'his__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'his__L_e'))))^2 ...

+ ...

481 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'met__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'met__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'met__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'met__L_e'))))^2 ...

+ ...

482 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'phe__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'phe__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'phe__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'phe__L_e'))))^2 ...

+ ...

483 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'ser__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'ser__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'ser__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'ser__L_e'))))^2 ...

+ ...

484 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'tyr__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'tyr__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'tyr__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'tyr__L_e'))))^2 ...

+ ...

485 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'val__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'val__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'val__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'val__L_e'))))^2 ...

+ ...

486 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'ile__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'ile__L_e'))).^2 ...

/(max(conc_sim_data(:,ismember(sorted_pred_mets,'ile__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'ile__L_e'))))^2+ ...

...

487 (pred_conc_trajectory(j+1,ismember(sorted_pred_mets,'leu__L_e'))-conc_sim_data(j+1,ismember(sorted_pred_mets,'leu__L_e'))).^2/(max(conc_sim_data(:,ismember(sorted_pred_mets,'leu__L_e')))-min(conc_sim_data(:,ismember(sorted_pred_mets,'leu__L_e'))))^2;

488

489 end

490

491 end
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492 %to calculate Normalized Root Mean Square Error (NRMSE)

493 my_cost = sqrt(my_cost/(18*length(DCBM_time_vec)));

494 formatSpec = 'my_cost value is %.2f \n';

495 fprintf(formatSpec,my_cost)

496

497

498 end

499 %% Save output

500 save G_DCBM_dFBA_cnd_3_April_18 G_DCBM_flux_vectors ...

pred_conc_trajectory biom_pred_data DCBM_time_vec

Visualization

1 %% Implementation of G-DCBM on Updated iCHOv1_DG44/After:04/April/2022/

2 %% Mario Jolicoeur Lab

3 %% Author: r.yasemi@gmail.com

4 % function my_cost = G_DCBM_MY_MJ_cndns_April_01_simulation_spare3(inn)

5 close all

6 clear all

7 do_PLOT = false;

8 do_INT_FLUX = true;

9 global COND_INDEX DFBA_init_time_index DFBA_fin_time_index sorted_pred_mets

10 COND_INDEX = 1;

11 switch COND_INDEX

12 case 1

13 load G_DCBM_dFVA_cnd_1_April_12 G_DCBM_flux_vectors ...

FVA_FminFmax_vector pred_conc_trajectory biom_pred_data ...

DCBM_time_vec

14 DFBA_init_time_index = 20;

15 DFBA_fin_time_index = 128;

16 DFBA_shift_time = 125;

17 case 2

18 load G_DCBM_dFVA_cnd_2_April_14 G_DCBM_flux_vectors ...

FVA_FminFmax_vector pred_conc_trajectory biom_pred_data ...

DCBM_time_vec

19 DFBA_init_time_index = 20;

20 DFBA_fin_time_index = 128;

21 % DFBA_fin_time_index = 144;

22 DFBA_shift_time = 116;

23 case 3
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24 load G_DCBM_dFVA_cnd_3_April_14 G_DCBM_flux_vectors ...

FVA_FminFmax_vector pred_conc_trajectory biom_pred_data ...

DCBM_time_vec

25 DFBA_init_time_index = 20;

26 DFBA_fin_time_index = 128;

27 % DFBA_fin_time_index = 130;

28 DFBA_shift_time = 71;

29 end

30 %% Preamble: Loading the inputs

31 % Metabolic network in COBRA format

32 %% Plotting growth dynamics

33 load DATA_CHO_clonal_GeM.mat Data_struct

34 % load MODEL_ver_9.mat MODEL

35 load MODEL_ver_10.mat MODEL

36 % Spline smoothed concentrations and exchange rates

37 load CHO_splinefitresults_AG-2014_3conditions_ver0 ...

38 sim_time_vec ...

39 sim_conc_cnd_1 sim_conc_cnd_2 sim_conc_cnd_3 ...

40 sim_conc_lb_cnd_1 sim_conc_lb_cnd_2 sim_conc_lb_cnd_3 ...

41 sim_conc_ub_cnd_1 sim_conc_ub_cnd_2 sim_conc_ub_cnd_3 ...

42 sim_rate_cnd_1 sim_rate_cnd_2 sim_rate_cnd_3 ...

43 sim_rate_lb_cnd_1 sim_rate_lb_cnd_2 sim_rate_lb_cnd_3 ...

44 sim_rate_ub_cnd_1 sim_rate_ub_cnd_2 sim_rate_ub_cnd_3

45

46 load considered_rxns.mat considered_rxns

47 %% Step 0: Tailoring the model

48 GeM_CHO = MODEL;

49 %% Step 1: Determining the secretion/uptake rates of measured ...

extracellular species [EXCHANGE fluxes]

50 ModelFluxUnitLongFormat ='nanomolebiomolecule-per-millioncell-per-hour';

51 TransportFluxUnit = 'nanomolepermillioncellperhour';

52 %DO NOT CHANGE THIS LIST

53 common_trnspt_mets = {'BIOM_e','glc__D_e', 'gln__L_e', 'glu__L_e',...

54 'lac__L_e', 'nh4_e','o2_e',...

55 'ala__L_e','arg__L_e','cys__L_e',...

56 'gly_e','his__L_e','ile__L_e',...

57 'leu__L_e','met__L_e','phe__L_e','ser__L_e','tyr__L_e','val__L_e','igg_e'};

58

59 [sorted_mets, sorted_mets_index] = sort(common_trnspt_mets);

60 EXflux = append('EX_',sorted_mets);

61 switch COND_INDEX

62 case 1

63 conc_sim_data = sim_conc_cnd_1(:,sorted_mets_index);

64 conc_sim_datalb = sim_conc_lb_cnd_1(:,sorted_mets_index);
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65 conc_sim_dataub = sim_conc_ub_cnd_1(:,sorted_mets_index);

66 case 2

67 conc_sim_data = sim_conc_cnd_2(:,sorted_mets_index);

68 conc_sim_datalb = sim_conc_lb_cnd_2(:,sorted_mets_index);

69 conc_sim_dataub = sim_conc_ub_cnd_2(:,sorted_mets_index);

70 case 3

71 conc_sim_data = sim_conc_cnd_3(:,sorted_mets_index);

72 conc_sim_datalb = sim_conc_lb_cnd_3(:,sorted_mets_index);

73 conc_sim_dataub = sim_conc_ub_cnd_3(:,sorted_mets_index);

74 end

75

76

77 %% The involved transport rates/ pay attention to the cell culture ...

condition

78 %(Condition 1:Parental- Condition 2:LP - Condition 3:HP)

79 sim_rate_lb_ub_3Dmat = ...

repmat(zeros(length(sim_rate_lb_cnd_1),1),[1,2,length(sorted_mets_index)]);

80 j = 0;

81 for i=1:length(sorted_mets_index)

82 switch COND_INDEX

83 case 1

84 j = j+1;

85 sim_rate_lb_ub_3Dmat(:,1,j) = ...

min([sim_rate_cnd_1(:,sorted_mets_index(i)),...

86 sim_rate_lb_cnd_1(:,sorted_mets_index(i)),sim_rate_ub_cnd_1(:,sorted_mets_index(i))]');

87

88 sim_rate_lb_ub_3Dmat(:,2,j) = ...

max([sim_rate_cnd_1(:,sorted_mets_index(i)),...

89 sim_rate_lb_cnd_1(:,sorted_mets_index(i)),sim_rate_ub_cnd_1(:,sorted_mets_index(i))]');

90 %This is required to make sure only the "upper ...

bounds" are

91 %imposed

92 for jj = 1:length(sim_rate_lb_cnd_1)

93 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

94 && sim_rate_lb_ub_3Dmat(jj,1,j) > 0 && j ̸= ...

2 && j ̸= 3 && j ̸= 4 && j ̸=5

95 sim_rate_lb_ub_3Dmat(jj,1,j) = 0;

96 end

97 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

98 && sim_rate_lb_ub_3Dmat(jj,1,j) < 0 && j ̸= 2
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99 sim_rate_lb_ub_3Dmat(jj,2,j) = 0;

100 end

101 end

102

103 case 2

104 j = j+1;

105 sim_rate_lb_ub_3Dmat(:,1,j) = ...

min([sim_rate_cnd_2(:,sorted_mets_index(i)),...

106 sim_rate_lb_cnd_2(:,sorted_mets_index(i)),sim_rate_ub_cnd_2(:,sorted_mets_index(i))]');

107

108 sim_rate_lb_ub_3Dmat(:,2,j) = ...

max([sim_rate_cnd_2(:,sorted_mets_index(i)),...

109 sim_rate_lb_cnd_2(:,sorted_mets_index(i)),sim_rate_ub_cnd_2(:,sorted_mets_index(i))]');

110 for jj = 1:length(sim_rate_lb_cnd_1)

111 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

112 && sim_rate_lb_ub_3Dmat(jj,1,j) > 0 && j ̸= ...

2 && j ̸= 3 && j ̸= 4 && j ̸= 5

113 sim_rate_lb_ub_3Dmat(jj,1,j) = 0;

114 end

115 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

116 && sim_rate_lb_ub_3Dmat(jj,1,j) < 0 && j ̸= 2

117 sim_rate_lb_ub_3Dmat(jj,2,j) = 0;

118 end

119 end

120

121 case 3

122 j = j+1;

123 sim_rate_lb_ub_3Dmat(:,1,j) = ...

min([sim_rate_cnd_3(:,sorted_mets_index(i)),...

124 sim_rate_lb_cnd_3(:,sorted_mets_index(i)),sim_rate_ub_cnd_3(:,sorted_mets_index(i))]');

125

126 sim_rate_lb_ub_3Dmat(:,2,j) = ...

max([sim_rate_cnd_3(:,sorted_mets_index(i)),...

127 sim_rate_lb_cnd_3(:,sorted_mets_index(i)),sim_rate_ub_cnd_3(:,sorted_mets_index(i))]');

128 for jj = 1:length(sim_rate_lb_cnd_1)

129 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

130 && sim_rate_lb_ub_3Dmat(jj,1,j) > 0 && j ̸= ...

2 && j ̸= 3 && j ̸= 4 && j ̸=5
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131 sim_rate_lb_ub_3Dmat(jj,1,j) = 0;

132 end

133 if ...

sim_rate_lb_ub_3Dmat(jj,1,j)*sim_rate_lb_ub_3Dmat(jj,2,j) ...

> 0 ...

134 && sim_rate_lb_ub_3Dmat(jj,1,j) < 0 && j ̸= 2

135 sim_rate_lb_ub_3Dmat(jj,2,j) = 0;

136 end

137 end

138 end

139 end

140

141 display('**$$$** To assign lower and upper bounds of the transport ...

reaction(s) from the extracellular data:')

142

143 %% Reading out the predicted growth and optimum fluxes from DFBA

144 pred_uptake = zeros(length(EXflux),floor(size(G_DCBM_flux_vectors,3)));

145 for i = 1:length(EXflux)

146 pred_uptake(i,:) = ...

G_DCBM_flux_vectors(ismember(MODEL.rxns,EXflux(i)),3:3:end);

147 end

148 mu = pred_uptake(ismember(EXflux,'EX_BIOM_e'),:);

149 %Step size (1 hour)

150 ∆_t = DCBM_time_vec(3) - DCBM_time_vec(2);

151

152 % biomass

153 dumindex = find(contains(Data_struct.NameID,'BIOM[e]'));

154 dumindex_cnd_ = dumindex(COND_INDEX);

155 figure('Units', 'pixels', ...

156 'Position', [100 100 500 375]);

157 hold on;

158 figPRED = plot(DCBM_time_vec,biom_pred_data,'k-','LineWidth',1);

159 % figSPLINE = ...

plot(sim_time_vec,conc_sim_data(:,ismember(pred_mets(sorted_pred_index),'BIOM_e')),'b');

160 figDATA = errorbar(Data_struct.TimeVector,...

161 Data_struct.Value(:,dumindex_cnd_),...

162 Data_struct.ValueSD(:,dumindex_cnd_));

163 set(figDATA, 'LineStyle','none','Marker','.','Color',[.3 .3 .3]);

164 set(figDATA, 'LineWidth',1,'Marker','o','MarkerSize',3,...

165 'MarkerEdgeColor',[.2 .2 .2],'MarkerFaceColor',[.5 .5 .5]);

166 % Add Legend and Labels

167 switch COND_INDEX

168 case 1

169 hTitle = title (['Case 1 - ','Growth dynamics']);
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170 case 2

171 hTitle = title (['Case 2 - ','Growth dynamics']);

172 case 3

173 hTitle = title (['Case 3 - ','Growth dynamics']);

174 end

175 hXLabel = xlabel('Time (hr)','FontSize', 12);

176 hYLabel = ylabel({'Cell concentration';'(10^6 cell/mL)'});

177 hLegend = legend([figPRED, figDATA],...

178 'gDCBM prediction' , 'Experiment data','location', 'NorthWest' );

179 % Adjust Error Bar Width

180 figDATA_c = get(figDATA,'Children');

181 errorbarXData = get(figDATA_c,'XData');

182 errorbarXData(4:9:end) = errorbarXData(1:9:end)-0.2;

183 errorbarXData(7:9:end) = errorbarXData(1:9:end)-0.2;

184 errorbarXData(5:9:end) = errorbarXData(1:9:end)+0.2;

185 errorbarXData(8:9:end) = errorbarXData(1:9:end)+0.2;

186 set(figDATA_c, 'XData', errorbarXData);

187 % Adjust Font and Axes Properties

188 set(gca,'FontName','Helvetica');

189 set([hTitle, hXLabel, hYLabel],'FontName','AvantGarde');

190 set([hLegend, gca],'FontSize',8);

191 set(hXLabel,'FontSize',12);

192 set(hYLabel,'FontSize',12);

193 set( hTitle,'FontSize',12,'FontWeight','bold');

194 set(gca,'Box','off','FontSize',12,'TickDir','out','TickLength',[.02 ...

.02],...

195 'XMinorTick','off','YMinorTick','off','YGrid','on',...

196 'XColor',[.3 .3 .3],'YColor',[.3 .3 .3]);

197 set(gca,'XTick',0:24:144,'LineWidth',2);

198 %Set PaperPositionMode to auto so that the exported figure looks like ...

it does on the screen.

199 set(gcf, 'PaperPositionMode', 'auto');

200 figdum = gcf;

201 figname = ['Case',num2str(COND_INDEX),' - Cell growth'];

202 % saveas(figdum,figname,'png')

203 % saveas(figdum,figname,'pdf')

204 % print -depsc2 figname.eps

205 hold off

206

207 %% Exometabolomics dynamics (in mM)

208 if do_PLOT,

209 conc_sim_data(:,ismember(sorted_mets,'BIOM_e')) = [];

210 sorted_mets(ismember(sorted_mets,'BIOM_e')) = [];

211
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212 for k = 1:length(sorted_mets)

213 if startsWith(sorted_mets{k},'igg_')

214 dummet = 'MAB';

215 elseif startsWith(sorted_mets{k},'o2_')

216 dummet = 'O22';

217 else

218 dummet = upper(extractBefore(sorted_mets{k},'_'));

219 end

220 dummet = append(dummet,'[e]');

221 dumindex = find(contains(Data_struct.NameID,dummet));

222 dumindex_cnd_ = dumindex(COND_INDEX);

223 %adjustments in the initial conidtions within the experimental error

224 switch COND_INDEX

225 case 1

226 if startsWith(dummet,'glc','IgnoreCase',true)

227 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + 1;

228 end

229 if startsWith(dummet,'ala','IgnoreCase',true)

230 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) - ...

0.3;

231 end

232 if startsWith(dummet,'cys','IgnoreCase',true)

233 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;

234 end

235 if startsWith(dummet,'gln','IgnoreCase',true)

236 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.3;

237 end

238 if startsWith(dummet,'his','IgnoreCase',true)

239 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.1;

240 end

241 if startsWith(dummet,'met','IgnoreCase',true)

242 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;

243 end

244 if startsWith(dummet,'ser','IgnoreCase',true)

245 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.25;

246 end

247 if startsWith(dummet,'tyr','IgnoreCase',true)

248 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;
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249 end

250

251 case 2

252 if startsWith(dummet,'ala','IgnoreCase',true)

253 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) - ...

0.3;

254 end

255 if startsWith(dummet,'cys','IgnoreCase',true)

256 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;

257 end

258 if startsWith(dummet,'gln','IgnoreCase',true)

259 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.3;

260 end

261 if startsWith(dummet,'his','IgnoreCase',true)

262 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.04;

263 end

264 if startsWith(dummet,'met','IgnoreCase',true)

265 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.04;

266 end

267 if startsWith(dummet,'phe','IgnoreCase',true)

268 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.02;

269 end

270 if startsWith(dummet,'ser','IgnoreCase',true)

271 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.25;

272 end

273 if startsWith(dummet,'tyr','IgnoreCase',true)

274 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.03;

275 end

276

277 case 3

278 if startsWith(dummet,'ala','IgnoreCase',true)

279 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) - ...

0.1;

280 end

281 if startsWith(dummet,'arg','IgnoreCase',true)

282 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.2;
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283 end

284 if startsWith(dummet,'cys','IgnoreCase',true)

285 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;

286 end

287 if startsWith(dummet,'gln','IgnoreCase',true)

288 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.3;

289 end

290 if startsWith(dummet,'gly','IgnoreCase',true)

291 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) - ...

0.05;

292 end

293 if startsWith(dummet,'his','IgnoreCase',true)

294 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.02;

295 end

296 if startsWith(dummet,'leu','IgnoreCase',true)

297 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) - ...

0.1;

298 end

299 if startsWith(dummet,'met','IgnoreCase',true)

300 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;

301 end

302 if startsWith(dummet,'phe','IgnoreCase',true)

303 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) - ...

0.03;

304 end

305 if startsWith(dummet,'ser','IgnoreCase',true)

306 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.1;

307 end

308 if startsWith(dummet,'tyr','IgnoreCase',true)

309 pred_conc_trajectory(:,k) = pred_conc_trajectory(:,k) + ...

0.05;

310 end

311

312 end

313 % concentration simulation values

314 figure('Units', 'pixels', ...

315 'Position', [100 100 500 375]);

316 hold on;
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317 figPRED = ...

plot(DCBM_time_vec,pred_conc_trajectory(:,k),'b-','LineWidth',1);

318 % figSPLINE = plot(sim_time_vec,conc_sim_data(:,k),'b');

319 figDATA = errorbar(Data_struct.TimeVector,...

320 Data_struct.Value(:,dumindex_cnd_),...

321 Data_struct.ValueSD(:,dumindex_cnd_));

322 set(figDATA, 'LineStyle','none','Marker','.','Color',[.3 .3 .3]);

323 set(figDATA, 'LineWidth',1,'Marker','o','MarkerSize',3,...

324 'MarkerEdgeColor',[.2 .2 .2],'MarkerFaceColor',[.5 .5 .5]);

325 % Add Legend and Labels

326 switch COND_INDEX

327 case 1

328 hTitle = title (['Case 1 - ',dummet]);

329 case 2

330 hTitle = title (['Case 2 - ',dummet]);

331 case 3

332 hTitle = title (['Case 3 - ',dummet]);

333 end

334 % hXLabel = xlabel('Time (hr)');

335 % hYLabel = ylabel({'Concentration';'(mM)'});

336 hLegend = legend([figPRED, figDATA],...

337 'gDCBM prediction' , 'Experiment data','location', 'NorthWest' );

338 % Adjust Error Bar Width

339 figDATA_c = get(figDATA,'Children');

340 errorbarXData = get(figDATA_c,'XData');

341 errorbarXData(4:9:end) = errorbarXData(1:9:end)-0.2;

342 errorbarXData(7:9:end) = errorbarXData(1:9:end)-0.2;

343 errorbarXData(5:9:end) = errorbarXData(1:9:end)+0.2;

344 errorbarXData(8:9:end) = errorbarXData(1:9:end)+0.2;

345 set(figDATA_c, 'XData', errorbarXData);

346 % Adjust Font and Axes Properties

347 set(gca,'FontName','Helvetica');

348 set([hTitle, hXLabel, hYLabel],'FontName','AvantGarde');

349 set([hLegend, gca],'FontSize',8);

350 set([hXLabel, hYLabel],'FontSize',12);

351 set( hTitle,'FontSize',12,'FontWeight','bold');

352 set(gca,'Box','off','FontSize',12,'TickDir','out','TickLength',[.02 ...

.02],...

353 'XMinorTick','off','YMinorTick','off','YGrid','on',...

354 'XColor',[.3 .3 .3],'YColor',[.3 .3 .3]);

355 set(gca,'XTick',0:24:144,'LineWidth',2);

356 %Set PaperPositionMode to auto so that the exported figure looks ...

like it does on the screen.

357 set(gcf, 'PaperPositionMode', 'auto');
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358

359 if startsWith(sorted_mets{k},'val')

360 ylim([0 1])

361 elseif startsWith(sorted_mets{k},'tyr')

362 ylim([0 0.7])

363 elseif startsWith(sorted_mets{k},'ser')

364 ylim([0 10])

365 elseif startsWith(sorted_mets{k},'glc')

366 ylim([0 30])

367 elseif startsWith(sorted_mets{k},'gln')

368 ylim([0 5])

369 elseif startsWith(sorted_mets{k},'lac')

370 ylim([0 20])

371 elseif startsWith(sorted_mets{k},'nh4')

372 ylim([0 6])

373 elseif startsWith(sorted_mets{k},'glu')%C5H9NO4

374 ylim([0 1.2])

375 elseif startsWith(sorted_mets{k},'phe')%C9H11NO2

376 ylim([0 0.8])

377 elseif startsWith(sorted_mets{k},'met')

378 ylim([0 0.7])

379 elseif startsWith(sorted_mets{k},'leu')

380 ylim([0 0.8])

381 elseif startsWith(sorted_mets{k},'ile')

382 ylim([0 2])

383 elseif startsWith(sorted_mets{k},'o2')

384 ylim([0 20])

385 elseif startsWith(sorted_mets{k},'arg')

386 ylim([0 3])

387 elseif startsWith(sorted_mets{k},'cys')

388 ylim([0 0.8])

389 elseif startsWith(sorted_mets{k},'gly')

390 ylim([0 1.5])

391 elseif startsWith(sorted_mets{k},'his')

392 ylim([0 1.2])

393 elseif startsWith(sorted_mets{k},'ala')

394 ylim([0 3.5])

395 end

396 %

397 figdum = gcf;

398 figname = ['Case ',num2str(COND_INDEX),'-CONC-',sorted_mets{k}];

399 % saveas(figdum,figname,'png')

400 % saveas(figdum,figname,'pdf')

401
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402 hold off

403 end

404

405 %% Dynamic Genome-scale flux distributions

406 %for measured fluxes

407 for k = 1:length(EXflux)

408 if strcmp(EXflux{k},'EX_BIOM_e')

409 continue

410 end

411 figure('Units', 'pixels', ...

412 'Position', [100 100 500 375]);

413 hold on;

414 figPRED = plot(DCBM_time_vec,pred_uptake(k,:)','b-','LineWidth',2);

415 figSPLINE = ...

plot_ci(sim_time_vec(2:end),[zeros(length(sim_time_vec(2:end)),1),...

416 sim_rate_lb_ub_3Dmat(:,1,k),sim_rate_lb_ub_3Dmat(:,2,k)],'PatchColor', ...

'k',...

417 'PatchAlpha', 0.1, 'MainLineWidth', 0.1, 'MainLineStyle', '-',...

418 'MainLineColor', 'k','LineWidth', 1.5, 'LineStyle','--', ...

'LineColor', 'k');

419 % set(figSPLINE, 'LineStyle','none','Marker','.','Color',[0.6 0.6 ...

0.6]);

420 % set(figSPLINE, 'LineWidth',1,'Marker','o','MarkerSize',0.1,...

421 % 'MarkerEdgeColor',[.2 .2 .2],'MarkerFaceColor',[.5 .5 .5]);

422 % Add Legend and Labels

423 switch COND_INDEX

424 case 1

425 hTitle = title (['Case 1 - ',EXflux{k}]);

426 case 2

427 hTitle = title (['Case 2 - ',EXflux{k}]);

428 case 3

429 hTitle = title (['Case 3 - ',EXflux{k}]);

430 end

431 % hXLabel = xlabel('Time (hr)');

432 % hYLabel = ylabel({'Exchange Flux';'(nanomol/10^6cell/hr)'});

433 hLegend = legend('gDCBM prediction' , 'Flux bounds' , 'location', ...

'NorthWest' );

434 % Adjust Font and Axes Properties

435 set(gca,'FontName','Helvetica');

436 set([hTitle, hXLabel, hYLabel],'FontName','AvantGarde');

437 set([hLegend, gca],'FontSize',8);

438 set([hXLabel, hYLabel],'FontSize',12);

439 set( hTitle,'FontSize',12,'FontWeight','bold');
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440 set(gca,'Box','off','FontSize',12,'TickDir','out','TickLength',[.02 ...

.02],...

441 'XMinorTick','off','YMinorTick','off','YGrid','on',...

442 'XColor',[.3 .3 .3],'YColor',[.3 .3 .3]);

443 set(gca,'XTick',0:24:144,'LineWidth',2);

444 uistack(figPRED,'top')

445 %Set PaperPositionMode to auto so that the exported figure looks ...

like it does on the screen.

446 set(gcf, 'PaperPositionMode', 'auto');

447 %Y-axis limits for better visualization

448 if startsWith(EXflux{k},'EX_val')

449 ylim([-20 10])

450 elseif startsWith(EXflux{k},'EX_tyr')

451 ylim([-20 10])

452 elseif startsWith(EXflux{k},'EX_ser')

453 ylim([-60 10])

454 elseif startsWith(EXflux{k},'EX_glc')

455 ylim([-300 10])

456 elseif startsWith(EXflux{k},'EX_gln')

457 ylim([-200 10])

458 elseif startsWith(EXflux{k},'EX_lac')

459 ylim([-100 300])

460 elseif startsWith(EXflux{k},'EX_nh4')

461 ylim([-20 200])

462 elseif startsWith(EXflux{k},'EX_glu')%C5H9NO4

463 ylim([-2 15])

464 elseif startsWith(EXflux{k},'EX_phe')%C9H11NO2

465 ylim([-5 1])

466 elseif startsWith(EXflux{k},'EX_met')

467 ylim([-10 2])

468 elseif startsWith(EXflux{k},'EX_leu')

469 ylim([-10 2])

470 elseif startsWith(EXflux{k},'EX_ile')

471 ylim([-40 5])

472 elseif startsWith(EXflux{k},'EX_o2')

473 ylim([-300 20])

474 elseif startsWith(EXflux{k},'EX_arg')

475 ylim([-70 10])

476 elseif startsWith(EXflux{k},'EX_cys')

477 ylim([-20 5])

478 elseif startsWith(EXflux{k},'EX_gly')

479 ylim([-20 30])

480 elseif startsWith(EXflux{k},'EX_his')

481 ylim([-10 2])
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482 elseif startsWith(EXflux{k},'EX_ala')

483 ylim([-20 50])

484 end

485 figdum = gcf;

486 figname = ['Case ',num2str(COND_INDEX),'-FLUX-',EXflux{k}];

487 % saveas(figdum,figname,'png')

488 % saveas(figdum,figname,'pdf')

489 hold off

490 end

491 end

492

493 %% For plotting a subset of reactions

494 if do_INT_FLUX

495 % dumreactions = considered_rxns(301:end);

496 % dumreactions = ...

{'GLCt1','HEX1','PGI','PFK','FBA','TPI','GAPD','PGK','PGM','PYK','PYK6','PC','PDHm','TALA', ...

'RPE',...

497 % ...

'PPM','PRPPS','TKT1','TKT2','CSm','ICDHym','FUMm','MDH','MDHm','CSm','PDHm','LDH_L','ALATA_Lm','RPI', ...

'FUMm','ENO', ...

498 % ...

'RPE','GLUDym','ASPTA','SPTc','SUCD1m_1','GLYCLm','MTHFC','MTHFCm','MTHFDm','MTHFR2','10FTHFtm','GHMT2r','GHMT2rm'...

499 % 'P5CDm','ILETA','GTMLTe','ME1m','MDHm','MDH',...

500 % 'SPODM','GTHS','GTHOr','GTHPi','GTHDH','GTHP_CAT',...

501 % 'ATPM','ATPS4m_cho','NADH2_u10m_cho','NADHtru', ...

'CYOOm3_cho','CYOR_u10m_cho'};

502

503 dumreactions = {'PFK'}

504 % dumreactions = findRxnsFromMets(MODEL, 'gln__L_c');

505 % dumreactions = ...

{'GLCt1','GBA_cho','SBTR','GK_adp','HEX1','GLCter','r0354','r0355','r1392','RE1342C','MY_BIOMASS_cho_producing_1'};

506 % dumreactions = {'GTHS','GTHOr','GTHPi','GTHDH','GTHP_CAT'}

507 % dumreactions = {'SPODM';'TYROX';'ILEOX';'SMOX';'SPMDOX';...

508 % '5HOXINDACTO2OX';'XAO';'XAO2';'ASCBOX';'SPODMx';'GLYOp';...

509 % 'XAO2x';'XAOx';'SPODMm';'SPODMn'};%oxid_stress_rxns

510 selected_rxns_to_analyze_index = ismember(MODEL.rxns,dumreactions);

511 selected_rxns_to_analyze = ...

MODEL.rxns(selected_rxns_to_analyze_index);

512 selected_rxns_to_analyze_formula = ...

printRxnFormula(MODEL,selected_rxns_to_analyze)

513

514 for k = 1:length(selected_rxns_to_analyze)

515 %Assigning the dFBA solutions and dFVA solutions to the fluxes which

516 %are about to be plotted.
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517 y_hat = ...

reshape(G_DCBM_flux_vectors(ismember(MODEL.rxns,selected_rxns_to_analyze(k)),3,:),...

518 [length(DCBM_time_vec) 1]);

519 y_hat_lb = ...

reshape(FVA_FminFmax_vector(ismember(MODEL.rxns,selected_rxns_to_analyze(k)),1,:),...

520 [length(DCBM_time_vec) 1]);

521 y_hat_ub = ...

reshape(FVA_FminFmax_vector(ismember(MODEL.rxns,selected_rxns_to_analyze(k)),2,:),...

522 [length(DCBM_time_vec) 1]);

523 % y_hat_lb = ...

reshape(G_DCBM_flux_vectors(ismember(MODEL.rxns,selected_rxns_to_analyze(k)),3,:),...

524 % [length(DCBM_time_vec) 1]);

525 % y_hat_ub = ...

reshape(G_DCBM_flux_vectors(ismember(MODEL.rxns,selected_rxns_to_analyze(k)),3,:),...

526 % [length(DCBM_time_vec) 1]);

527

528 figure('Units', 'pixels', ...

529 'Position', [100 100 500 375]);

530 hold on;

531 figPRED = plot(DCBM_time_vec,y_hat,'b-','LineWidth',2);

532 figSPLINE = plot_ci(DCBM_time_vec,[zeros(length(DCBM_time_vec),1),...

533 y_hat_lb,y_hat_ub ],'PatchColor', 'k',...

534 'PatchAlpha', 0.1, 'MainLineWidth', 0.1, 'MainLineStyle', '-',...

535 'MainLineColor', 'k','LineWidth', 1.5, 'LineStyle','--', ...

'LineColor', 'k');

536 % set(figSPLINE, 'LineStyle','none','Marker','.','Color',[0.6 0.6 ...

0.6]);

537 % set(figSPLINE, 'LineWidth',1,'Marker','o','MarkerSize',0.1,...

538 % 'MarkerEdgeColor',[.2 .2 .2],'MarkerFaceColor',[.5 .5 .5]);

539 % Add Legend and Labels

540 switch COND_INDEX

541 case 1

542 hTitle = title (['Case 1 - ...

',selected_rxns_to_analyze{k},'-',selected_rxns_to_analyze_formula{k}]);

543 case 2

544 hTitle = title (['Case 2 - ...

',selected_rxns_to_analyze{k},'-',selected_rxns_to_analyze_formula{k}]);

545 case 3

546 hTitle = title (['Case 3 - ...

',selected_rxns_to_analyze{k},'-',selected_rxns_to_analyze_formula{k}]);

547 end

548 hXLabel = xlabel('Time (hr)');

549 hYLabel = ylabel({'Intracellular Flux';'(nanomol/10^6cell/hr)'});
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550 legend('gDCBM optimum' , 'Alternate optima bounds' , 'location', ...

'NorthWest' );

551 % Adjust Font and Axes Properties

552 set(gca,'FontName','Helvetica');

553 set([hTitle, hXLabel, hYLabel],'FontName','AvantGarde');

554 set([hLegend, gca],'FontSize',8);

555 set([hXLabel, hYLabel],'FontSize',12);

556 set( hTitle,'FontSize',12,'FontWeight','bold');

557 set(gca,'Box','off','FontSize',12,'TickDir','out','TickLength',[.02 ...

.02],...

558 'XMinorTick','off','YMinorTick','off','YGrid','on',...

559 'XColor',[.3 .3 .3],'YColor',[.3 .3 .3]);

560 set(gca,'XTick',0:24:144,'LineWidth',2);

561 uistack(figPRED,'top')

562 %Set PaperPositionMode to auto so that the exported figure looks ...

like it does on the screen.

563 set(gcf, 'PaperPositionMode', 'auto');

564

565 % if startsWith(selected_rxns_to_analyze{k}, PAT)

566 % DO somtheitng on the plot

567 % end

568

569 figdum = gcf;

570 figname = ['Case ...

',num2str(COND_INDEX),'-DCBM-IntracellularFlux-',selected_rxns_to_analyze{k}];

571 saveas(figdum,figname,'png')

572 saveas(figdum,figname,'pdf')

573 hold off

574 end

575

576 end

577

578 return
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