
Titre:
Title:

Look-Up Table Based Neural Networks For Fast Inference

Auteur:
Author:

Moussa Traore

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Traore, M. (2022). Look-Up Table Based Neural Networks For Fast Inference
[Mémoire de maîtrise, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/10547/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10547/

Directeurs de
recherche:

Advisors:
J. M. Pierre Langlois, & Jean Pierre David

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10547/
https://publications.polymtl.ca/10547/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Look-Up Table Based Neural Networks For Fast Inference

MOUSSA TRAORE
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie informatique

Aout 2022

© Moussa Traore, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Look-Up Table Based Neural Networks For Fast Inference

présenté par Moussa TRAORE
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Guy BOIS, président
Pierre LANGLOIS, membre et directeur de recherche
Jean Pierre DAVID, membre et codirecteur de recherche
Tarek OULD BACHIR, membre

iii

DEDICATION

To my people, that inspired me
not to become someone else,

but to be more thoroughly
myself. . .

iv

ACKNOWLEDGEMENTS

Leaving my job, and looking for my backpack on the first day back to school is memorable.
The excitement I felt, the constant hunger for knowledge and the passion I had for discovery
brought me to Professor Langlois and Professor David on a cold winter of January 2020. For
the warm welcome to their laboratory, the constant guidance and support I would like to
thank Professor Langlois and Professor David. Going through this entire program despite
COVID-19 would not have happened without their dedication, their sustained push for im-
provement and their relentless pursuit of excellency. Thank you.
Working alongside brilliant people with the same dreams and aspirations as me had never
felt better. I would like to thank Alexandre, Hossein, Mehdi and Su who have shared ideas
and never hesitated to jump on a white board with me for a heated discussion on the next
best step.
I would like to thank my mother for never letting me down.
I would like to thank and congratulate my father, Traore Mamadou, for achieving his Doc-
torate degree while I was working on this thesis. It showed me that no matter a person’s
age, his success and the respect he receives from his peers, having the humility to learn is
something to thrive for. It pushed me to where I am today.
I would like to thank my sister and my brother that put up with my sleepless nights, and my
constant stress. Thanks for the support and for believing in me.

v

RÉSUMÉ

La dernière décénie a connu de fulgurants dévelopements dans le domaine de l’intelligence
artificielle, plus précisément de l’apprentissage profond. Bien qu’ayant été un sujet de re-
cherche depuis les années 80, ce domaine ne connait son essor que depuis 2012 lorsqu’un
modèle d’apprentissage profond gagne la compétition ImageNet de reconnaissance d’image.
Depuis, de nombreux chercheurs se sont penchés sur la question. Plusieurs problèmes majeurs
restent encore sans solution, dont celui de la performance de ces modèles et de leur consom-
mation importante d’énergie. Dans le cadre de ce travail, nous explorons l’efficacité de ces
modèles dans le contexte des systèmes embarqués qui ont un budget énergétique et une puis-
sance de calculs relativement limités. Pour tenter d’apporter une solution à certains de ces
problèmes, nous explorons des techniques de quantification binaire, d’élagage, et des réseaux
maître-élève. Généralement, lors de la conception d’un réseau binaire, l’architecture du sys-
tème sous-jacent n’est pas prise en compte. Cependant, l’exploration récente de l’application
des réseaux binaires sur des FPGA a mené à de nouvelles architectures de réseaux pouvant
être contenus complètement dans les tables de vérités d’un FPGA. Pour construire ce type de
modèles, plusieurs algorithmes d’apprentissage existent. PoET-BiN, l’un de ces algorithmes,
est au coeur de notre travail. Dans ce travail, nous commençons par explorer une nouvelle
forme d’algorithme visant à compresser les réseaux de neurones binaires. Nous apportons en-
suite des améliorations sur le modèle algorithmique de PoET-BiN, dans le but d’améliorer la
précision de ses prédictions et explorons comment ce modèle peut être appliqué sur les couches
de convolution d’un réseau neural convolutif. Nous démontrons des améliorations en terme
de précision d’apprentissage par rapport à l’algorithme original de PoET-BiN sur MNIST.
Finalement, nous étudions des améliorations matérielles, notamment en termes d’architecture
processeur pouvant améliorer grandement le traitement des prédictions faites par les réseaux
de neurones basés sur les tables de vérité. Nous atteignons une une accélération maximale
d’un facteur de 2994× lorsque le temps de calcul de notre processeur spécialisé est comparé
à celui d’un processeur standard ne possédant pas notre unité de calculs spécialisée.

vi

ABSTRACT

The last decade has seen tremendous developments in the field of artificial intelligence, more
specifically deep learning. Although deep learning had been a research subject since the 1980s,
the field only took off in 2012 when a deep leaning model won the ImageNet competition.
However, several key problems still exist including that of the performance of these models
with respect to their energy and power consumption. In this work, we explore the effectiveness
of these models in the context of embedded systems that have a constrained energy and power
budget. In an attempt to provide a solution to common problems, we explore techniques of
binary quantification, pruning and master-networks students. Generally, when designing a
binary network, the architecture of the underlying system is not taken into account. But,
lately the exploration of the application of binary networks using FPGAs has led to new
network architectures that can exclusively be contained in the look-up tables of an FPGA.
Several learning algorithms exist to build such models. One of which, PoET-BiN, is at the
heart of our work. In this work, we begin by exploring a new form of algorithm aimed
at compressing binary neural networks. Then, we bring improvements to the algorithmic
model of PoET-BiN, in order to improve the accuracy of the predictions made by PoET-BiN
and explore how this model can be applied on the convolutional layers of a convolutional
neural network. We demonstrate improvements in terms of learning accuracy compared to
the original PoET-BiN algorithm on MNIST. Finally, we study hardware improvements, in
particular in terms of processor architecture that can greatly improve the processing speed
of these models. We achieve a 2994× speedup when comparing our specialized processor to
a standard processor, which does not have our processing unit.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS AND ACRONYMS . xii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 3
2.1 Vanilla neural networks . 3

2.1.1 Forward propagation . 3
2.1.2 Back propagation . 4
2.1.3 Classification . 6

2.2 Convolutional neural networks . 6
2.3 Binarized neural networks . 7
2.4 Decision trees . 9

2.4.1 Bagging: Random forests . 9
2.4.2 Boosting: Adaboost . 9

2.5 Tensors . 13
2.5.1 Rank of a tensor . 13
2.5.2 Tensor-Train format . 13

2.6 Summary . 14

CHAPTER 3 LITERATURE REVIEW . 15
3.1 Pruning . 15

3.1.1 Structured and unstructured pruning 16

viii

3.1.2 One-Shot pruning, iterative pruning, fine-tuning 16
3.1.3 Scoring . 17

3.2 Quantization . 17
3.3 Knowledge distillation . 19

3.3.1 Knowledge representation . 19
3.3.2 Distillation strategy . 20

3.4 Tensor-Train decomposition and tensor factorization 20
3.5 LUT-based neural networks . 22

3.5.1 PoET-BiN . 23
3.6 Summary . 25

CHAPTER 4 BTNN : BINARIZED TENSOR DECOMPOSITION OF NEURAL NET-
WORKS . 26
4.1 Introduction . 26
4.2 Tensorizing neural networks . 27
4.3 Binarized TT-decomposition of neural networks 28
4.4 Experiments . 29

4.4.1 Application to the MNIST dataset 29
4.4.2 Application to the CIFAR-10 dataset 30

4.5 Results and discussion . 31
4.5.1 MNIST dataset results . 31
4.5.2 CIFAR-10 dataset results . 32

4.6 Conclusion . 33

CHAPTER 5 APPLYING POET-BIN TO CONVOLUTIONAL NEURAL NETWORKS 35
5.1 PoET-BiN’s depth challenge . 35
5.2 Making PoET-BiN deeper . 36

5.2.1 The curse of depth . 39
5.2.2 Early exit . 39
5.2.3 Conclusion . 39

CHAPTER 6 ASIP ACCELERATOR FOR LUT-BASED NEURAL NETWORKS IN-
FERENCE . 40
6.1 Specialized processor . 40

6.1.1 ASIP Designer . 41
6.1.2 Base processor: TVLIW . 42
6.1.3 Added hardware components . 42

ix

6.1.4 Specialized instructions . 43
6.2 Evaluation . 45
6.3 Conclusion . 48

CHAPTER 7 CONCLUSION . 49
7.1 Summary of works . 49
7.2 Limitations . 50
7.3 Future research . 50

REFERENCES . 52

x

LIST OF TABLES

Table 2.1 XNOR operation . 8
Table 3.1 Side-by-side comparison of different tensor factorization methods. . . 22
Table 4.1 Experiment results of BTNN on MNIST 31
Table 4.2 Experiment results of BTNN on CIFAR-10, BTNNx indicates the TT

ranks . 33
Table 6.1 LUTs, BRAM, Flip-Flops, F7 Mutiplexers, F8 Mutiplexers Count and

number of cycles of predict instruction With regards to the number of
Slots of the predict Instructions © 2022 IEEE 46

xi

LIST OF FIGURES

Figure 2.1 Vanilla feed forward neural network with 2 hidden layers. 4
Figure 2.2 Convex loss function and gradient descent. 5
Figure 2.3 Example filter of a CNN. 6
Figure 2.4 Convolution operation on a two dimensional input and a two dimen-

sional filter. 7
Figure 2.5 Regular decision tree and input features space partitioning. 10
Figure 2.6 Example space. 11
Figure 2.7 Tensor-Train format of a n dimensional tensor. 13
Figure 2.8 Common matrix and vector multiplications in the Tensor-Train format. 14
Figure 3.1 Tensor network representation of TT decomposition, G tensors are the

cores while rn indicate TT ranks. 21
Figure 3.2 PoET-BiN BNN teacher-student architecture. 24
Figure 3.3 Selected inputs for a LUT in PoET-BiN © 2022 IEEE 25
Figure 4.1 Tensor network representation of reshape of the weights matrix W to

a tensor . 28
Figure 4.2 TT-decompostion of weight matrix of the weights matrix in tensor

network representation . 29
Figure 4.3 Loss and accuracy vs. epoch for the MNIST dataset 32
Figure 4.4 Loss and accuracy vs. epoch for the CIFAR-10 dataset 34
Figure 5.1 VGG13 Architecture . 36
Figure 5.2 Accuracy of a single RINC-2 module

The blue curve shows the accuracy on the training set and the orange
curve shows the accuracy on the test set 38

Figure 5.3 Accuracy of a single RINC-3 module
The blue curve shows the accuracy on the training set and the orange
curve shows the accuracy on the test set 38

Figure 6.1 Data Alignment in Specialized Data Memories 43
Figure 6.2 Overall Processor Architecture © 2022 IEEE 44
Figure 6.3 Data Memory Store Instruction Breakdown 45
Figure 6.4 Resource usage with respect to the number of slots © 2022 IEEE . . . 47
Figure 6.5 Cycle count for predictions with respect to the number of slots © 2022

IEEE . 47

xii

LIST OF SYMBOLS AND ACRONYMS

ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
BNN Binarized Neural Network
BTNN Binarized Tensor decomposition of Neural Networks
CIFAR Canadian Institute for Advanced Research
CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning
DNN Deep Neural Network
FC Fully Connected
FPGA Field-Programmable Gate Array
FSP Flow of Solution Procedure
HOSVD Higher-Order Singular Value Decomposition
KD Knowledge Distillation
KL Kullback–Leibler
LUT Look-Up Table
MAC Multiply And Accumulate
MNIST Modified National Institute of Standards and Technologies
PoET-BiN Power Efficient Tiny Binary Neurons
RINC Reduced Input Neural Circuit
SIMD Single Instruction Multiple Data
SGD Stochastic Gradient Descent
SOTA State-Of-The-Art
SVD Singular Value Decomposition
TT Tensor-Train
VLIW Very Long Instruction Word

1

CHAPTER 1 INTRODUCTION

The adequacy of machine learning algorithms, neural networks (NN) in particular, to process
and extract useful information from the abundance of available data in all types of natural,
human and industrial activities, has been clearly demonstrated in recent years [1] [2] [3]. More
specifically, with recent hardware improvements, Deep learning (DL) algorithms, where sev-
eral neural network layers are successively stacked in a single neural network, have become
the state-of-the-art (SOTA) solution for many data intensive tasks, outperforming many
classical learning techniques and expert systems. However, they involve an immense amount
of computations and memory to store the model parameters. For example, EfficientNet-L2
has 480 million parameters and GPT-3 has 175 billion parameters [1] [3]. Implementing
deep learning algorithms using general purpose architectures such as CPUs poses difficult
problems [4] [5]. Deep neural networks (DNNs) are very resource hungry. Due to the von
Neumann architecture used by modern CPUs, the sequential loading of data in CPU registers
makes the inference process slower than the streaming oriented massively parallel architecture
of GPUs [2] [4]. Still, GPUs energy usage tends to be relatively high [5] [6]. This leads to the
requirement for more specialized hardware to be able to implement deep learning algorithms
and achieve high performance with low energy, especially in the context of embedded devices
where the energy budget is limited.
Several researchers are now focusing on developing computer hardware better suited to the
realities of deep learning implementation [7]. Application-Specific Integrated Circuit (ASICs)
have become the most commonly explored solution, integrating techniques such as in-memory
computing, network on-chip, high bandwidth memory and data reuse [5] [7].
The fact that specialized hardware for DNNs depends on the ever changing algorithms and
system requirements makes the non-recurring engineering costs of developing ASICs un-
reasonably high. Consequently, Field-Programmable Gate Arrays (FPGAs) have become
increasingly adopted to accelerate machine learning algorithms [8] [9] [10]. They offer a high
level of re-configurability making them a preferable solution to ASICs which is desirable
in this research area. Jointly with research on hardware accelerators, researchers have been
focusing on improving deep learning algorithms, with techniques such as quantization and bi-
narization [11]. Binarized Neural Networks (BNNs) [12] have emerged as a practical solution.
Hence, several adaptations to BNNs have been explored. Recently, Look-Up Tables (LUT)
have been considered to adapt BNNs to the underlying architecture of FPGAs [13] [14].
In particular, the teacher-student knowledge distillation (KD) approach developed by Chi-
dambaram et al. to build power efficient tiny binary neurons (PoET-BiN) demonstrated

2

interesting results in the context of image classification with a convolutional neural network
(CNN) [13]. However, their approach was subject to inherent limitations that made it un-
suitable for a direct application on the convolutional layers of a CNN.
In light of these challenges, we define the main objectives of this thesis to be threefold: ex-
plore, enhance and exploit.
In the exploration phase, we look at a different network compression algorithms. Particularly,
we combine tensor factorization and binarization and try to derive a LUT-based NN from
there.
Therefore, in the enhancement phase, we worked on making PoET-BiN a more suitable can-
didate for an application on the convolutional layers of a CNN. More specifically, we modified
the original work done by Chidambaram et al. to let PoET-BiN’s training algorithm account
for more features present from the input features space.
Finally, we realized that a regular CPU is ill-suited to exploit LUT-based NNs without
an FPGA. Furthermore, even FPGAs with a limited number of LUTs may be ill-suited.
Therefore, to exploit LUT-based NNs, we introduce a novel process architecture capable of
processing the inference of up to 21 LUTs per clock cycle.
The thesis outlines as follows:

• Chapter 2 introduces key concepts needed to understand the remainder of the thesis.

• Chapter 3 provides a thorough overview of the SOTA in various DNN optimization
domains ranging from pruning to knowledge distillation (KD) and tensor factorization.

• Chapter 4 introduces a novel compression approach, binarized tensorized neural net-
works (BTNN).

• Chapter 5 analyzes the limitation of the PoET-BiN training process and explores vari-
ous optimizations to the original algorithm.

• Chapter 6 presents a specialized processor architecture designed for the purpose of
LUT-based NNs.

• Chapter 7 synthesizes and concludes the thesis. The chapter also describes some limi-
tations encountered in this work and provides some avenues for future works.

3

CHAPTER 2 BACKGROUND

To better understand the contents of this thesis, a few concepts need to be introduced. In
this chapter, we describe how regular NNs learn. We then go over CNNs and BNNs before
introducing decision trees and exploring two common learning algorithms, Adaboost and
random forests. Finally, we introduce some concepts related to tensors which are used to
explore a novel compression technique for neural networks in chapter 4.

2.1 Vanilla neural networks

NNs are able to learn and apply knowledge acquired during a training process. The process
relies on partial derivations of a loss function with respect to the parameters of the network
and error propagation. In the context of the training algorithm, the network requires a prior
mapping of inputs, X, to outputs, Y known as training data. In the following sections, we
describe how this algorithm learns patterns. We start by describing the forward propagation
of data in a neural network which tries to predict some properties of an input value X.

The known output that is mapped to X, namely Y , is then used to compute the prediction
error. This error is then propagated backward in the network and used to update its param-
eters.
A four-layer neural network is shown in Fig. 2.1. The input is represented by the matrix X

and the predicted output of the network by the matrix Ŷ . The layer-wise parameters of the
networks are represented by the matrices W L1 , W L2 and W L3 with dimensions {3x4}, {4x3}
and {3x1}, respectively.

2.1.1 Forward propagation

Forward propagation represents the propagation of values in the network from left to right.
The first layer is the input layer and the last layer is the output layer (L0 and L3, respectively,
in Fig. 2.1). Layers in-between are the hidden layers. L0’s input values are the training
examples X. In the upper layers, neurons apply activation functions to their inputs to
compute their outputs.

4

Figure 2.1 Vanilla feed forward neural network with 2 hidden layers.

The output of a neuron al
n, where l is the index of the layer and n is index of the specific

neuron on that layer, is computed using equations (2.1) and (2.2):

zl = (W l)T × al−1 + bl, (2.1)

al
n = σ(zl), (2.2)

where zl is the pre-activation vector input of the neuron, σ is the activation function, al−1

the vector containing the outputs of the previous layer, W l the weight matrix of the current
layer and bl the bias of the current layer. At the end of the forward propagation, we get an
estimated value of the property we were trying to predict, Ŷ .

2.1.2 Back propagation

The weights in the network are learned during training using an optimizer. A popular
optimizer is the gradient descent optimizer. To apply gradient descent, we start by forwarding
a single data point in the network before computing the estimation error. The error will then
be propagated backward in the network to update the weights. A popular error function is

5

the L2 loss function C shown in equation (2.3):

C(WL1 , ..., WL) = 1
2

∑
||ŷ − yi||2 = 1

2
∑
||σ(W T

L ...σ(W T
L2σ(W T

L1xi)))− yi||2, (2.3)

where xi, yi are the ith training input and outputs respectively.

Note that C must be a convex function and therefore has a minimum as seen in Fig. 2.2.

The goal of this process is to minimize the error by bringing the estimated value Ŷ closer to
the actual value Y . The minimum value of the error can be found by finding the right set of
parameters W that minimizes the overall loss. When applying gradient descent, we update
the weights by moving the error in the direction opposed to the gradient of the loss function.
Each weight matrix is updated using equation (2.4):

W t+1
Lx

= W t
Lx
− α∇⃗C(W t

Lx
, W t

Lx−1 , ..., W t
L1). (2.4)

In Fig. 2.2, we observe the loss, C, with respect to the parameters of the network. The
initial estimation error is C0. The target minimum value is Cmin and the gradients, ∂C

∂W
,

successively bringing the predicted values closer to the target values by updating the network
parameters.

Figure 2.2 Convex loss function and gradient descent.

6

2.1.3 Classification

The previous section introduced an approach that can be used for regression as-is. However,
in the case of a multi-class classification problem, the output layer of the network has multiple
neurons. The output of those neurons are called logits. To evaluate the class associated to
the input, each logit will contain the probability of the input being of a particular class. In
such a case, the number of output neurons equals the number of classes in the dataset. To
assign a class to the prediction, the model applies a softmax function, shown in equation 2.5,
that associates each logit to a probability of that logit being of a particular class:

σ(zi) = ezi∑Q
j=1 ezj

, (2.5)

where i is the output of the ith neuron on the output layer and Q is the number of classes
in the dataset.

2.2 Convolutional neural networks

The fully-connected (FC) layers of a neural network perform well at classifications and es-
timations. However, they lack in their ability to retrieve spatially related information from
input features. Convolutional layers introduce filters that can extract information from the
input features [15]. A convolutional layer consists of a learnable set of filters.
A simple filter is a matrix K ∈ Rk1×k2 as shown in Fig. 2.3 in which the set of parameters
wi are learnable during training.

Figure 2.3 Example filter of a CNN.

An output feature map is generated by applying a convolution operation sequentially to the
input features while sliding the filter through it. In Fig. 2.4, we can observe this operation

7

where a convolution is applied on an image X with a filter K producing an output feature
map Y . An example of the sliding principle shows a convolution on the blue and green areas
of the image generating a blue and a green output, respectively.

Figure 2.4 Convolution operation on a two dimensional input and a two dimensional filter.

In practice, n1 = n2, m1 = m2 and k1 = k2. Dumoulin et al. found that in this case, the
output size m1, m2 can be calculated using equation (2.6) [16]:

m1 = ⌊n1 + 2× padding − k1

stride
⌋+ 1, (2.6)

where the padding is the amount of pixels (rows and columns) added to the input image and
the stride is the amount of pixels by which to move the kernel K in horizontal and vertical
directions during the convolution operation. In Fig. 2.4, padding = 0 and stride is about
half the kernel size. Generally, the inputs and outputs of a convolutional layer and the filter
are three dimensional tensors with the third dimension representing different channels.

2.3 Binarized neural networks

In a binarized neural network (BNN), we reduce the available range of values to only 2 bits
for the weight matrices and the neuron activations.
There are mainly two approaches to binarize the weight matrices: stochastic and determin-
istic. In stochastic binarization, the binary value of a floating point input is expressed as a
probability density function. This usually leads to better accuracy of the network predictions.
However, it requires more resources during training and therefore deterministic binarization

8

is preferred [12]. Deterministic binarization uses the sign function as shown in equation (2.7).

Wb =

−1, if Wr < 0

1, otherwise
(2.7)

Wr and Wb are the real and binary weights, respectively.
To binarize the activations, the hard-tanh activation is used. On an embedded device, switch-
ing the representation of -1 to zero helps in applying multiplications using only Boolean op-
erations [17]. More specifically, they can be performed using XNOR operations as shown in
Table 2.1.

x1 x2 z
0(-1) 0(-1) 1
0(-1) 1 0(-1)

1 0(-1) 0(-1)
1 1 1

Table 2.1 XNOR operation

Furthermore, a pop-count operation is used to count the number of ones in a bit sequence
replacing the accumulation. Courbariaux et al. also demonstrated that batch-normalization
was costly in terms of operation on an embedded device [18]. They developed a new approach
that relies on bit-shifts to compute the batch normalization.
Finally, the computation of the gradient w.r.t. the network parameters need to take bina-
rization into account. The same applies to the activations. To avoid having most of the
gradients being equal to zero by derivating the sign function, Courbariaux et al. proposed
to use a straight through estimator shown in equation (2.8) [18]:

∂C

∂Wr

= ∂C

∂Wb

. (2.8)

Equation (2.8) effectively bypasses the sign function while computing the gradient of the loss
function C. For activations, the same straight-through estimator is used, furthermore the
saturating effect is taken into account:

∂C

∂ar

= ∂C

∂ab

× 1|a|≤1, (2.9)

where 1 is the indicator function. It is important to note that the gradients are then applied
on the real-valued weights which are kept in memory and binarized in the forward pass.

9

2.4 Decision trees

A decision tree is a graphical learning model in which alternative outcomes are visualizable.
In this model, a hierarchical graph is build based on the importance of the input features.
The advantage of such a model is that it is easily interpretable. To classify an input, a
decision tree partitions the feature space into classes as shown in Fig. 2.5.

A popular algorithm for training decision trees is C4-5 [19]. It builds a decision tree by
sequentially selecting input features based on the information gain they provide to the model.
However, the computational feasibility of such a decision tree is subject to the dimensionality
of the input feature space since the depth of a tree is directly proportional to it [20]. To
alleviate this issue and diminish the high variance deeper decision trees suffer from, ensemble
learning techniques are explored. There exist three types of ensemble learning techniques:
bagging, boosting and stacking [20]. For the purpose of this thesis, we explore bagging with
random forests and boosting with Adaboost.

2.4.1 Bagging: Random forests

When building a classifier H(x) for a data-set D that has a certain distribution, P , a problem
we may encounter is that we build a classifier that instead of generalizing from the data-set,
learns the data-set. This causes high variance in the estimation of unseen data-points. The
model overfits. To mitigate this issue, by sampling the original data-set with replacement we
can build multiple data-sets Di, each having their own independent classifier hi(x). Following
this process, we re-combine the multiple weaker classifiers into a strong classifier by averaging
their estimations.

H(x) = 1
m

m∑
i=1

hi(x) (2.10)

Random forests are a type of bagging algorithm that use decision trees as the weak classifiers.
The decision trees are restricted to use k features selected at random to build the trees, which
restricts the trees to a specific depth.

2.4.2 Boosting: Adaboost

Boosting is another technique to combine multiple weak learners to build a strong leaner for
classification. The general boosting classifier is defined by equation 2.11:

H(x) =
T∑

t=1
αtht(x), (2.11)

10

Figure 2.5 Regular decision tree and input features space partitioning.

where ht(x) is a weak classifier and αt an adaptable step-size.
The general idea is to aggregate multiple classifiers that each emphasise on the classification
of certain examples of the data-set and neglect others. The classifiers are built sequentially

11

and not in parallel like random forest.
During training, Adaboost builds a strong classifier by iterativally aggregating weaker classi-
fiers. The weaker classifiers are selected based on the output accuracy of the current classifier
at time t. Each training example is associated with a weight and each weak classifier is se-
lected based on these weights.
The classification outputs is represented as a vector in the input example space (rather than
the input feature space). As an example, imagine a data-set (xi, yi) with a single feature xi

and 3 examples: {(x1, y1 = 1), (x2, y2 = −1), (x3, y3 = 1)}, then the vector y⃗ = [y1, y2, y3]
represents the classified data-set. This is shown in Fig. 2.6.

Figure 2.6 Example space.

The prediction vector h⃗t(x) is the vector containing the predictions of every single example
[h(x1), h(x2), h(x3)]. Note that yi ∈ {−1, +1} and h(xi) ∈ {−1, +1}.
The loss function in Adaboost is the exponential loss as seen in equation (2.12):

l(H) =
∑

i

e−yiHi(xi). (2.12)

By minimizing this loss, we move our predicted vector closer to the target. Since this is
a sequential process and H is gradually stronger, we define a step size to move towards
the minimum of the loss function at each iteration, we compute the next optimal classifier,
update the example weights. These are detailed in the following sub-sections.

12

Next optimal classifier

To find the next best classifier ht(x) that is added to our sum of classifiers as defined in
equation (2.11), we solve the following objective function:

ht = arg min
h∈Ψ

(l(H + αh)), (2.13)

where l is the exponential loss shown in equation (2.12), and Ψ is the set of all valid decision
trees, defined by some properties of our model. Using a Taylor approximation, we can solve
equation (2.13) and find that the next best classifier is given by equation (2.14):

ht = arg min
h∈Ψ

(
∑

h(xi) ̸=yi

wi), (2.14)

where:
wi = e−yiHi(xi)∑

j e−yjHj(xj) . (2.15)

Thus, the next best classifier is the classifier that minimizes the weighted error of the training
examples.

Step size

To compute the optimal step size αt, we solve the following objective function:

αt = arg min
α

(l(H + αh)), (2.16)

which solves to:
αt = 1

2 ln(1− ϵ

ϵ
), (2.17)

where:
ϵ =

∑
h(xi)̸=yi

wi. (2.18)

Weight update

The final step is to update the weights of each example, wi under the constraint that ∑
wi = 1.

The weight update rule is a function of the classification error. If an example was classified
its weight value is decreased:

wt
i = wt−1

i e−αt

2
√

ϵ(1− ϵ)
, (2.19)

13

otherwise it is increased:
wt

i = wt−1
i eαt

2
√

ϵ(1− ϵ)
. (2.20)

2.5 Tensors

A tensor is a concept representing a set of values in a specified vector space. A vector, a
matrix and a cube are tensors. However, it becomes useful when referring to spaces that are
of dimension higher than three. The dimension of a tensor is called its order and this term
will be used in the remainder of the thesis.

2.5.1 Rank of a tensor

The rank of a tensor represents the number of linearly independent vectors that constitute
the tensor. The other vectors being linearly dependant on the former.

2.5.2 Tensor-Train format

The tensor-train (TT) format is a graphical representation of tensors [21]. It is a convenient
notation when working with high order tensors. A tensor T ∈ Rd1×...×dn is represented by a
circle with n legs as shown in Fig. 2.7. A scalar is simply represented by a circle.

Figure 2.7 Tensor-Train format of a n dimensional tensor.

In Fig. 2.8, we can observe common tensor products represented in their tt format where:

• (a) is the product of two matrices.

• (b) is the product of a matrix and a vector.

• (c) is the inner product of two vectors.

14

Figure 2.8 Common matrix and vector multiplications in the Tensor-Train format.

2.6 Summary

In this chapter, we have introduced the basic concepts that are necessary for the rest of
the thesis to be well understood. We have talked about NNs, CNNs and BNNs. We also
introduced decision trees with an emphasis on two common learning methods, bagging and
boosting. Finally, we talked about tensors. In the following chapter, we build on top of these
basic concepts to present a thorough review of the SOTA in DNN optimization.

15

CHAPTER 3 LITERATURE REVIEW

Deep Neural Networks (DNNs) are versatile in their requirements across applications. De-
pending on the desired outcome, their accuracy, latency, throughput, energy and power
requirements diverge significantly. With several approaches taken to optimize DNNs, three
main optimization types have emerged [22]:

1. Model Optimization

2. System Optimization

3. Joint Model and System Optimization

In the case of model optimization, improvement is made at the algorithmic level of DNNs.
They include but are not limited to quantization, pruning and low-rank factorization. The
algorithmic modifications can either be hardware aware, meaning that the algorithm is tied to
the underlying hardware or hardware agnostic. System optimization works at the deployment
level by adapting DNNs to the entire system. When working at this level, the factors taken
into consideration are the operating system preemption, the device-server load distribution,
and other system dependent variables such as voltage level and energy consumption. These
considerations can be statically or dynamically considered to modify the execution of the
inference process. To dynamically improve system level processes, one interesting approach
is to include an early exit mechanism that outputs a neural network’s (NN) prediction and
terminates the process once the confidence on the output accuracy is satisfying enough. The
junction of these two approaches incorporates model level optimizations and system level
optimizations by combining some of the previously mentioned techniques.

In the present work, both of these optimizations types are used making our approach a
joint model and system optimization type. In the following sections, different optimization
methods that move us steps towards the efficient execution of DNN algorithms on embedded
devices are presented.

3.1 Pruning

Pruning compresses and optimizes a neural network inference and training process by re-
moving a set of parameters. Consider a NN model characterized by function f(x; θ), where
θ represents all the parameters of the model. Applying a filter M ∈ {0, 1}|θ| to the model’s

16

parameters results in a pruned network such that the model is now defined as f(x; M ⊙ θ)
which denotes a sparse network [23]. The induced sparsity can either be structured or un-
structured. Other distinctive characteristics of pruning algorithms in the literature involve
the scoring schemes used to decide which parameters to remove, the number of times the
pruning is applied throughout the training process and the way fine tuning is applied in
between each pruning iteration.

3.1.1 Structured and unstructured pruning

Unstructured pruning works by removing individual weights from neurons by zeroing them
out such that the filter has no inherent structure. Although unstructured pruning ends up
reducing memory usage, it leads to a sparse representation of the NN parameters which
ultimately does not reduce computation power as the number of multiply and accumulate
(MACs) operations remains the same [23]. Another problem with unstructured pruning is
the indexing of non-zero parameters that is involved to store the networks parameters after
training. Thus, an impact is observed on the computation and memory complexity since all
the stored weights now have the index of the parameter in the sparse matrix as a second
parameter. The fetching of a single weight then involves a two step operation where the
index is fetched followed by the actual parameter [24].

Structured pruning reduces both memory and computation footprint on existing hardware
[23]. Instead of removing specific weights, different sets of spatially connected weights, such
as all the parameters associated to a specific neuron or a complete filter in a convolutional
layer [25] are discarded such that the resulting parameters matrices are structured and the
operations can be done using commonly available hardware. However, the compression ratio
achieved by unstructured pruning tends to be higher than structured pruning [24].

3.1.2 One-Shot pruning, iterative pruning, fine-tuning

Pruning algorithms can either be One-Shot or iterative. The lottery ticket hypothesis [26]
describes an approach to find a pruned network from an initial dense network. Their assump-
tion is that since a pruned network is a smaller version of a larger network, there should be
an existing sub-network constructed from the original network that when trained separately
should have the same accuracy. Although, the reported results stem from an iterative pro-
cess, their algorithm describes a One-Shot approach. [27] develop a one-shot pruning scheme
that solves an induced structured sparsity problem with a Half-Space Projected Gradient
approach. Iterative approaches are more commonly found in the literature. The training
of a pruned network is done by gradually compressing the network after each iteration at a

17

certain scheduling rate [23]. To obtain the desired sparsity, the network is first trained then
pruned and retrained again to recover the accuracy lost by pruning through a fine-tuning
process.

However, the authors of [9] argue that, for structured pruning, a single iteration (One-Shot)
has the same outcome as the iterative approach.

3.1.3 Scoring

Different scoring schemes determine the parameters to remove. For structured pruning, the
importance of the layer-wise parameters or channel-wise parameters is determined by the
magnitude of the l1 or l2 regularizers. Some methods consider the scoring of parameters
locally, while others apply it globally without regards to where they reside relative to each
other [23].

3.2 Quantization

In Deep Learning, data values (inputs, outputs, activations, gradients, and weights) are
usually represented using 32-bit floating point numbers. Quantization was introduced as a
means to reduce the size of a network by replacing the traditional floating-point representation
of data by other representation strategies that would allow for smaller data sizes. In the
literature, 16-bit, 8-bit, 4-bit, 3-bit quantization schemes have been explored [28] [29] [30] [31].
An extreme form of quantization where all values are restricted to binary values has also
gained tremendous popularity in recent years [12] [32] [33] [34].

An adequate classification of quantization schemes can be done based on the following factors:

1. Quantization-Aware Training And Post-Training Quantization:
Quantization-Aware training involves quantizing a model at training time while post-
training quantization quantizes pre-trained models [35]. One of the advantages of the
later is that it allows for data-free optimization [29] [36] [37]. Depending on the setting,
training data might not be available to the model optimizer (i.e. a pre-trained model
on cloud). Quantization-Aware training usually renders better performance since the
model can be fine-tuned and its hyper-parameters optimized while applying quantiza-
tion [35].

2. Fixed-Point, Vector And Product Quantization:
In fixed-point precision quantization, every single data point is quantized to a fixed-
point representation, either using scalar values or fixed-point floating point values [30].

18

Vector quantization on the other hand will derive a vector of values and assign every sin-
gle data point to their closest representative in that vector using k-means algorithms [38]
or other clustering strategies [39] [40]. Product quantization is done by applying vector
quantization after partitioning the input matrix into multiple sub-matrices [36] [38].
While most quantization approaches try to minimize the following objective function

||W − Ŵ ||22 =
∑

j

||wj − q(wj)||22, (3.1)

which minimizes the error on the quantized data with regards to the original data,
Stock et al. apply a per-layer product quantization where they minimize the error on
the output of the layer after quantization instead by minimizing the following objective
function [36]:

||y − ŷ||22 =
∑

j

||x× (wj − q(wj))||22 (3.2)

Stock et al. use knowledge distillation techniques (section 3.3) on a trained network to
iteratively quantize each layer independently before quantizing the entire network for
a final calibration of the generated quantization vectors (codebooks).

3. Single-Precision and Mixed-Precision Quantization:
Single-precision quantization methods apply the same quantization strategy to all the
data points whereas mixed-precision quantization allows for different schemes depend-
ing on a per data-point basis [35]. The mixed-precision approach is applied on a per
layer or a per channel basis [35] [41]. Nagel et al. adequately explain that mixed-
precision quantization methods usually have better performance because they account
for the range of the data to compress [37]. As an example, they explain that a layer
may have its weights in the range [-0.5, 0.5] while another one may lay in the range
[-128,128]. If 8-bit quantization is similarly applied on these ranges, the weights in the
former may mostly be assigned a value of zero and thus the network may lose an entire
layer’s information.

In the above classification of quantization methods, a focus was made on weight quantization.
However, quantization is not limited to the weights of neural network. Generally, quantization
can be applied on weights, activations and gradients or a combination of them [28]. Applying
quantization on weights or activations reduces memory footprint. When applied on weights
and activations in the same network, quantization leads to a reduction of computation with
the introduction of fixed-point multiplications and additions [28] [30]. Formerly, quantizing
was done to optimize the forward propagation of DNNs but recently gradients have also been

19

undergoing this process to optimize training, more specifically, in the case of distributed
training on multiple machines [28].

3.3 Knowledge distillation

A popular approach to compressing DNNs is knowledge distillation (KD), where a pair of
models work in tandem to transfer knowledge from one, the teacher network, to another, the
student network. Two main components play a crucial role in knowledge distillation: the
representation of knowledge and the distillation strategy [42].

3.3.1 Knowledge representation

In a NN, knowledge is contained inside the output of the entire model, the outputs of each
layer of the model, and the parameters of the model. Gou et al. distinguish three types of
knowledge depending on where it is located in a NN: response-based knowledge, feature-based
knowledge and relation-based knowledge [42].

• A response-based KD model uses the response of the entire network (logits) as infor-
mation used by the student network to evaluate the gradient of the loss as shown in
(3.3) [43]:

∂C

∂zi

= 1
T

(qi − pi), (3.3)

where zi is the ith logit of the student network, T is a temperature factor (usually
1), qi and pi are the logits associated with the ith class by a the student network and
the teacher network, respectively. One can also use the popular Kullback–Leibler (KL)
divergence [44]:

C = (1− λ)Cst − λCKL, (3.4)

where λ is an hyper-parameter that serves as a selective trade-off between the student’s
loss and the KL divergence loss, Cst is the student loss and CKL is the KL divergence
loss.

• A feature-based KD model uses the intermediate representation of knowledge contained
in the output in the hidden layers of a teacher network to train a student network [42].
Particularly, Romero et al. develop a hint-based model where they extract intermediate
layer knowledge from the teacher network described as hints to train a student network’s
guided layers [45]. Then, they recursively train the student network from the first layer
up to the guided layer.

20

• Finally, a relation-based KD algorithm models the relation between pairs of feature
maps in a network as a flow of the solution procedure (FSP) matrix where values in
the matrix can be computed using equation (3.5) [42] [46]:

Gi,j(x; W) =
∑

i

∑
j

F 1
i (x; W)× F 2

j (x; W)
h× w

, (3.5)

where F 1 and F 2 are the input and output feature maps, respectively, i and j are the
index in the input and output feature maps, respectively and h and w are the width and
height of the feature maps. Furthermore, by representing the relation between feature
maps as a correlation matrix, Lee et al. use singular value decomposition (SVD) to
capture latent information in the relationship between the layers present in the FSP
matrix [47]. Following that information gathering, the student network is trained to
capture the knowledge present in the FSP matrix.

3.3.2 Distillation strategy

Gou et al. identify three types of distillation strategies: the offline, online, and self-distillation
strategies [42]. They categorize self-distillation as a specialized type of online strategy. The
KD models previously described are offline strategies. However, for a larger teacher architec-
ture, offline training is not always convenient since the potential consequent training process
of the teacher network is still necessary. Furthermore, Mirzadeh et al. empirically validate
that a larger teacher model does not always lead to a better performing student model [44].
They introduce an online training strategy that uses a teacher assistant model that is of a
relatively bigger size than the target student network to close the gap in network between
a pre-trained teacher and the student network. Zhang et al. introduced a novel type of
ensemble learning techniques that leverages the sharing of knowledge between an ensemble
of models [48].
Going further, in 2019, Zhang et al. propose a self-distillation strategy where a network
passes knowledge in between its own layers [42] [49]. This is done by introducing classifiers
at the output of target layers such that the each layer as a teacher and a student in an online
training fashion while developing a response-based KD model.

3.4 Tensor-Train decomposition and tensor factorization

Tensor-Train decomposition, first described by Oseledets et al., is one of many tensor fac-
torization techniques [50]. TT decomposition factorizes a high-order tensor of dimension N

21

into N low-order matrices. More precisely, a tensor B ∈ Rd1×d2×···×dN is factorized into N

core tensors. In Fig. 3.1, we can visualize the tensor-train format (as described in Section
2.5.2) of N tensors resulting from the decomposition of a tensor of order N .

Figure 3.1 Tensor network representation of TT decomposition, G tensors are the cores while
rn indicate TT ranks.

Each tensor Gi is composed of matrices of dimensions ri−1×ri, where r0 = rN = 1. Therefore,
the first and last core tensors are two dimensional tensors. The total number of matrices for
a tensor Gi is given by the value of the ith dimension where in ∈ [1 . . . dn]. The tensors Gi

that are not at the extremeties are three dimensional tensors and the ones at the extremeties
are two dimensional tensors. Finally, an element of B can be computed from core tensors as
follows:

W (i1, i2, . . . , iN) = G1[i1]︸ ︷︷ ︸
r0×r1

×G2[i2]︸ ︷︷ ︸
r1×r2

× · · · × GN [iN]︸ ︷︷ ︸
rN−1×rN

(3.6)

The collection of ranks (r1, . . . , rN) is called the TT-rank of the tensor. TT-ranks deter-
mine the number of parameters and by careful selection, the original tensor can be ex-
pressed in its compressed format. The TT-rank is subject to the following restriction:
rn ≤ min(d1 . . . dn, dn+1 . . . dN). The low-rank approximation of the original tensor can
then be performed by multiplying these low-rank tensors. TT-decomposition reduces the to-
tal number of parameters in the original tensor by exploiting correlations in the eigenspace.
By thoughtfully selecting the ranks rn of the resulting core tensors, we can control the final
compression ratio.

Other decomposition techniques provide varying degrees of compression with different trade-
offs. In Table 3.1, TT-decomposition is compared to two popular decomposition techniques:
CP-decomposition [51] and Tucker decomposition [52].

22

CP-Decomposition Tucker-
Decomposition

TT-Decomposition

Computing the rank NP-Hard Polynomial Polynomial
Low-Rank Approx. NP-Hard Np-Hard but

HOSVD is
quasi-optimal

quasi-optimal

Set of low-rank tensors Not closed Closed Closed
Number of Parameters ∑N

n=1(R) R1R2...RN +∑N
n=1(dnRn)

O(R2 ∑N
n=1(dn))

Unicity True False False

Table 3.1 Side-by-side comparison of different tensor factorization methods.

3.5 LUT-based neural networks

Portions of this section are excerpted from our article presented at NEWCAS 2022 [53], ©
2022 IEEE.
Several hardware architectures have adapted the original works of BNNs for a faster and
more energy efficient inference [10]. Xilinx introduced FINN [17] that integrates multiple
approaches to map binarized neural networks to FPGA more efficiently. In particular, the
authors of FINN altered the original BNN inference flow by replacing multiply and accumulate
(MAC) operations with XNOR operations and a pop-count operation [34] [54] . Since all the
values are binary, instead of accumulating over an entire bitstring that represents a NN layer’s
response, only the number of ones need to be counted. Pop-count halves the total number
of LUTs required. Furthermore, the computation of the batch-norm step was changed to a
simple threshold comparison and max-pooling was replaced by a Boolean OR.
Although these algorithms speed up the original algorithm execution time on the FPGA
architecture, the intrinsic BNN architecture is not modified. Because the basic building-block
of FPGAs are LUTs, a more FPGA-specific type of BNNs are LUTs based neural networks.
Inherently, these components can evaluate any Boolean function. Although different LUT
size exist, the common 6 input to 1 output LUTs is used as a reference throughout the rest
of this section. To leverage the LUTs present in FPGAs, researchers have tried to develop
algorithms that would exclusively use LUTs in the inference phase of DNNs.
Nazemi et al. (NullaNet) [14] and Umuroglu et al. (LogicNets) [55] have taken two similar
approaches where they implement complete neural networks using only LUTs. They trim a
regular neural network by using quantization and reduced fan-in approaches to achieve the
ideal case where 6-input neurons produce single outputs. Depending on the requirements,

23

they can use more than a single LUT per neuron. Since the number of utilized LUTs is
exponential with respect to the number of inputs, as shown in equation (3.7) [55]:

LUTCost(X,Y) = Y

3 × (2X−4 − (−1)X), (3.7)

where X is the number inputs and Y the number of outputs. Using equation (3.7), it can
be observed that six-bit inputs and a single output bit is convenient as this configuration
renders exactly one LUT used per neuron.
However when using input-output mappings other than six inputs to one output, the re-
quired number of LUTs can be relatively high as the equation suggests. NullaNet uses "don’t
cares" to ignore input combinations that are not relevant based on the data-set while Log-
icNets optimizes the architecture by building neural networks that only have the desired
input-output mapping. To achieve this, the authors randomly select input connections from
previous layers in quantized neural networks. Wang et al. have taken a similar approach to
utilize LUT boolean functions as much as possible [56]. However, they differ from NullaNet
and LogicNets because they still have data-paths for various components of their architecture
(i.e. accumulators).

3.5.1 PoET-BiN

To train this LUT-based NN, Chidambaram et al. [13] enforce a specific input-output map-
ping, six or eight inputs to one output, where each neuron is allowed six or eight inputs
producing a single output. We focus on the six to one input-output mapping for the re-
mainder of this section. Instead of training a conventional neural network, Chidambaram
et al. build a network of decision trees using Adaboost and KD techniques. They build
a feature-based KD (refer to Section 3.3.1) model by using a BNN as a teacher network.
Specifically, the BNN has convolutional layers and a FC classifier. The convolutional layers
have multiple configurations. However, the FC layer is engineered such that the last layer of
the hidden layers outputs 60 features. Ten groups of six features are then formed and used
by the classifier to output ten classes probabilities.
This architecture is depicted in Fig. 3.2. The student network input training data are the
feature outputs of the last convolutional layer Xstudent and the target training data are the
outputs of the FC hidden layers Ystudent, prior to the teacher output layer. The student is
then trained with the extracted features. Specifically, Chidambaram et al. build a reduced
input neural circuit (RINC) classifier per output feature Ystudent[i]. sixty are trained in par-
allel. Finally, the classifier is retrained on the predictions made by the RINC classifiers. The
goal of the ith RINC classifier is to select the best combination of input features to predict

24

Figure 3.2 PoET-BiN BNN teacher-student architecture.

Ystudent[i] by using weighted examples. These weights depend on the classification accuracy of
each example as per Adaboost. Each weak classifier is a decision tree built by going through
the examples and finding the best set of features to make predictions. The decision trees are
trained successively and stacked (shown in Fig. 3.3) such that:

• Each RINC is assigned a level where RINC-x indicates the level of the RINC.

• RINC-0s get their inputs from the input feature map Xstudent.

• To build a RINC-1, six RINC-0s are built successively, and combined to a RINC-1.

• To build a RINC-2, six RINC-1s are built successively, and combined to a RINC-2.

• The goal is to build a RINC-2.

A limitation of PoET-BiN is that it cannot go deeper than RINC-2, which ultimately con-
straints the number of usable input features to 63 = 216.

The output assigned for the prediction of a RINC classifier is found by classifying each
example with the combination of the selected input features. An exhaustive list of feature
combination can be built since the combination of six binary features has exactly 64 possible
outcomes. Then, the output is set to be the class that has the highest number of examples
that have that exact combination of features for each of the tested combination.

25

Figure 3.3 Selected inputs for a LUT in PoET-BiN © 2022 IEEE

We observe the representation of a single RINC-1 module in Fig. 3.3. At the RINC-0 level,
6 modules receive their inputs directly from the input image. The RINC-1 level has a single
module fed by the outputs of the 6 previous modules at the RINC-0 level. The table shows
the LUT content of a single RINC-0 module. The highlighted line is the one that is activated
in the particular case of this RINC configuration. The positions of the selected RINC inputs
in the feature map are shown at the top of the table. The input at position (0,0) is a 1 and
thus is painted in blue whereas at position (1,2) a white background depicts a 0. The output
of this particular LUT can be seen in the table.

3.6 Summary

This chapter introduced the SOTA of DNN optimization. In particular, we went over a
curated literature review related to NN pruning and quantization, knowledge distillation and
finally tensor factorization. These techniques are commonly used to compress DNNs. We
then reviewed the state of LUT-based neural networks and formally introduced PoET-BiN
which is a building block for the next chapters. In the following chapter, we leverage tensor
factorization techniques to compress DNNs in an attempt to derive a new training method
for LUT-based NNs.

26

CHAPTER 4 BTNN : BINARIZED TENSOR DECOMPOSITION OF
NEURAL NETWORKS

The present chapter is based on a project done during the course of IFT6760-A (Matrix and
Tensor Factorization techniques for Machine Learning) given at the University of Montréal
in winter 2020. In particular, the text has been adapted for the matter of this thesis, the
results interpretation has been updated and the problem formulation has been revisited.

To build LUT-based neural networks efficiently, multiple algorithms have been introduced
in chapters 2 and 3. In this chapter, we visit the compression of a neural network. Such
a compression could be used to build a more efficient LUT-based neural network if proven
practical. In Section 4.1, we contextualize our approach. Then we visit the tensorization
of the FC layers of a neural network with TT decomposition (described in Section 3.4) in
Section 4.2. In Section 4.3, we apply binarization to the factorization. We experiment on the
MNIST and CIFAR-10 data-sets in Section 4.4 before presenting our results in Section 4.5.

4.1 Introduction

Today, the energy and computational demand of DNNs remain an unresolved issue. Solving
the memory storage required to store deep learning parameters inevitably reduces resource
usage, ultimately allowing to run the networks on low powered devices. That, along with our
goal to run these networks solely using LUTs on an FPGA leads to the exploration of model
compression. Indeed, reducing the number of parameters of a neural network reduces the
complexity of fitting a neural network inside a network of LUTs using the approach taken by
Umuroglu et al. [55].

Courbariaux et al. demonstrated that using binary representation of the weight matrices
and the activations of the hidden layers neurons, it is possible to compress the network by a
factor of 32 when compared to a 32 bit floating point NN [18]. Furthermore multiplications
are replaced by XNOR operations and additions are replaced by pop-count.

Motivated by the redundancy observed in neural network weight matrices, Novikov et al.
explored matrix factorization techniques to extract more meaningful parameters out of the
original network parameters [57]. The authors explored the tensor train decomposition of
the weight matrices of a NN. TT decomposition essentially factorizes a tensor to a low rank
approximation by computing different core tensors [50]. They introduce TensorNet and show

27

new state-of-the-art results.

Binarization and TT-decomposition are intended to compress network parameters. In this
chapter, we explore the combination of the two compression schemes by applying binarization
on the core tensors resulting from the TT decomposition. Similar to the approach taken in
this chapter, [58] apply Tucker decomposition on the weights of a neural network and binarize
the reconstructed weight matrix. Our approach is different as we focus on the binarization
of the core tensors obtained by the TT-decomposition of the weight matrix.

In the following sections, we analyze the effectiveness of binarizing core tensors issued from
low-rank TT-decomposition of a neural networks. We show that the compression power of
the combination of these two approaches is highly desirable. However, we are not able to
learn effectively and suspect conclude that more exploration work is needed to understand
how to properly apply the described approach.

4.2 Tensorizing neural networks

Multiple matrix factorization techniques have been applied to DNNs before targeting the
compression of the weight matrices [51]. However, TT-decomposition was first used in 2015
by Novikov et al. [57]. Motivated by the huge portion of parameters of a CNN belonging to
the fully-connected layers, the compression of FC layers using TT decomposition was desir-
able.

The weights and biases of a fully-connected layer are matrices and vectors respectively. To
work efficiently with weights and biases, they are transformed into high-order tensors. All
TT-tensor operations such as summations and products are applicable in the TT-format.

A output neuron of the fully-connected layer of a NN computes the following function:

y = Wx + b, (4.1)

where W ∈ RM×N is the weight matrix, b ∈ RM is the bias vector and input x and output y

as N-dimensional vectors. To further increase the efficiency, the input is also reshaped into
a d-dimensional tensor and the linear part of TT-layer can be expressed in tensor form:

Y (i1, ..., id) =
∑

j1,...,jd

G1[i1, j1]...Gd[id, jd]X(j1, ..., jd) + B(i1, ..., id) (4.2)

Another advantage of this method is the compatibility with the gradient descent training

28

algorithms. Novikov et al. show that the gradient of the loss function can be computed
efficiently with respect to the cores of W and therefore existing gradient based methods can
be easily used for training [57]. The paper shows promising results on CIFAR-10 dataset.

To increase the efficiency, using a low-rank approximation of the core tensors, they are able
to compress the weights and biases matrices by very large factors depending on the network
architectures while nearly preserving the accuracy of the network. The ranks can then be
fine-tuned to get a higher accuracy.

4.3 Binarized TT-decomposition of neural networks

Tensorized NNs provide great reduction in the number of parameters and consequently mem-
ory storage. On the other hand, BNNs offer ≈ 32× compression of a NN and the ability to
efficiently use this network in the context of a low-powered device [59]. Although BNNs and
tensor decomposition methods for DNNs have been studied, TT decomposition of weighs
has never been applied to binary networks. Nor has the binarization been applied to the
factorized cores resulting from any decomposition. The combination of these algorithms is
highly interesting due to the huge compression potential that they offer.

To apply this on the FC layers of a NN, each layer’s weight matrix, of shape W ∈ R[inp]×[out]

is reshaped as illustrated in Fig. 4.1.

Figure 4.1 Tensor network representation of reshape of the weights matrix W to a tensor

We then perform a TT-decomposition on this d-dimensional tensor as can be seen in Fig.
4.2. Each core is then binarized before being used to compute the output of the layer in the
forward pass. In the backward pass, the real-valued weights are kept in memory and gradients
update is performed on these real-valued weights. Note that when we multiply binarized cores
together the outputs are no longer binary. The batch-normalization fixes this problem. Thus
we introduce a batch-normalization layer right after computing the pre-activations. Finally,

29

Figure 4.2 TT-decompostion of weight matrix of the weights matrix in tensor network rep-
resentation

we binarize the activations.

4.4 Experiments

We limit our experiments to FC neural networks without any convolutional layers. Input
and hidden layers are replaced by TT-layer. For a non-binarized TT-layer the operations are
TT decomposition, batch normalization, ReLu and dropout.

For binarized TT network, the layer consists of binarization of core TT-decomposition tensors,
batch normalization, binarization and dropout. Therefore both core tensors and activation
maps are binarized. We perform experiments on two well-known data-sets: MNIST and
CIFAR-10.

For training, we used a SGD optimizer with cross entropy loss and used exponentially de-
caying learning rate. The experiments were performed with various TT-ranks to represent
different compression ratios and the performance is compared in each case with the non-
binarized TT network.

4.4.1 Application to the MNIST dataset

For the MNIST data-set, we used the same architecture as Courbariaux et al. with a 3 layer
BNN [18]. The input image size is 28 × 28 pixels, corresponding to an input vector of size

30

784. All hidden layers have 4096 neurons and with the same rank. The last layer remains
a conventional FC layer without TT-decomposition or binarization. The total number of
parameters is thus:

#Parameters = 784× 4096 + (4096× 4096)× 2 + 4096× 10 = 36806656 (4.3)

Since each parameter is a 32 bits floating point value, the total storage size for network
weights is :

36806656× 32 bits = 1177812992 bits = 147.2 MB (4.4)

As we can see, this relatively simple neural network already requires considerable amount
of memory. Replacing all layers except the output layer with TT-layers, we can achieve
some degree of compression. Therefore, we first transform the input parameters into the TT-
format with max TT-rank. We then compare it to a network with a TT-decomposition with
low-rank. The input images are reshaped to tensors of size 2×2×2×2×7×7 = 784 and the
outputs that are fed to the classification layer to tensors of size 4× 4× 4× 4× 4× 4 = 4096.

4.4.2 Application to the CIFAR-10 dataset

For the CIFAR-10 data-set, we were inspired by architecture used in [57]. The input RGB
images are of size 32 × 32 × 3 giving 3072 inputs values. The first hidden layer consists of
262144 neurons, while the second and third have 4096 neurons each. Finally, the output layer
which will remains unaltered will has 10 neurons. The total number of parameters is thus :

#Parameters = 3072× 262144 + (262144× 4096)

+(4096× 4096) + 4096× 10

= 1895866368

(4.5)

With 32 bits floating point values, the storage size is:

1895866368× 32 bits = 6.0610 bits ≈ 7.58 GB (4.6)

As we can see, this neural network requires a lot of memory for the parameters. By using our
approach, we first transform the input parameters into the TT-format with TT-rank capped
at 32. We then compare it to a network with a TT-decomposition with very low-rank. The
inputs are tensorized to size 4× 4× 4× 4× 4× 4× 3 and the output of first layer is of size
8× 8× 8× 8× 8× 8× 8 and for hidden layers 4× 4× 4× 4× 4× 4× 4.

31

4.5 Results and discussion

In this section, we compare the accuracy of the validation sets of TT-network and binary
TT-network for various TT-ranks.

4.5.1 MNIST dataset results

We observe that the accuracy is not greatly affected by the choice of TT-rank. The results
can be seen in table 4.1 where BTNNx indicates the TT ranks, compression ratio is the ratio
of compression of the number of parameters compared to the uncompressed network and
storage value indicates the memory required for weights. Note that Bin. Comp. (Binarized
Compression) Ratio is the compression ratio on the binarized TT-cores.
In Table 4.1 TT full rank has best accuracy of 91.1% accuracy while TT-rank 4 decomposition
has an accuracy of 88.86%. In this table the number of parameters are sum of calculated
number of parameters of layers as for each layer as:

no. of parameters for one layer =
N∑

i=n

ri−1 ri inpi outi (4.7)

TT full rank has great compression in terms of number of parameters, while the performance
drop is low.

Network Accuracy #parameters Bin. Comp. ratio Storage
BTNN4 88.86 44240 896.35 163,8 KB
BTNN[Full] 91.1 1,498,160 425.5 169,5 KB

Table 4.1 Experiment results of BTNN on MNIST

In Table 4.1, we observe the difference in the accuracy, the number of parameters, and the
conversion ratio when the approximation is done at full-rank, meaning that each dimension of
the originally reshaped matrix is used in the decomposition, and when we limit the ranks of
the weight tensors to 4. We note that the number of parameters in the approximated version
is drastically reduced. Applying binarization further improves the total compression ratio.
These values account for the parameters in the hidden layers only where BTNN is applied.
The total required storage for our model is shown in the storage column. The proximity
of these values reflect the fact that most of the models storage requirements remain in the
classification layer. The results presenting the loss over time and the accuracy over time can
be seen in Fig. 4.3. In particular, we see that the model is learning effectively for BTNN[Full],

32

Figure 4.3 Loss and accuracy vs. epoch for the MNIST dataset

the loss is steadily decreasing while the accuracy is steadily increasing. However, in the case
of BTNN4, we observe that the network has difficulties generalizing. The decrease in the loss
is unstable and the variance the accuracy between successive epochs is high.

4.5.2 CIFAR-10 dataset results

For the CIFAR-10 data-set we considered three different TT ranks: 3, 16 and 32. As shown
in Table 4.2, all three perform similarly with an accuracy of ≈ 40%. We also note the huge
potential in compression that reducing the TT-ranks offers. We can save around 70KB

by compressing using BTNN4. However, the limiting factor is the huge drop in accuracy.
Applying convolutions prior to the FC layer can potentially help in the learning process.
Therefore the results on this data-set are inconclusive. The accuracy on this data-set is
low and we observe that the network has difficulties learning. The best accuracy we get for
CIFAR-10 is 40%.

33

Network Accuracy #parameters Bin. Comp. ratio Storage
BTNN3 40.0 584,978 3,240 146.24 KB
BTNN16 38.2 665,994 55.26 166.48 KB
BTNN32 38.3 864522 42.57 216.13 KB

Table 4.2 Experiment results of BTNN on CIFAR-10, BTNNx indicates the TT ranks

The results presenting the loss over time and the accuracy over time can be seen in Fig. 4.4.
For all the explored network architectures, we observe that the network is having difficulties
in generalizing which is reflected in the high variance seen in the graphs.

4.6 Conclusion

We combined two existing neural network compression techniques, binarized neural networks
and tensorized networks and applied the method to the MNIST and the CIFAR-10 datasets.
We applied binarization on the core tensors resulting on the TT-decomposition of the FC
layers of a neural network. For MNIST we observed a non-dramatic drop in accuracy when
applying a full rank TT-decomposition, and a higher drop for a rank 4 TT-decomposition.
For CIFAR-10 we did not observe any indication that the network was effectively learning.
With a top accuracy of 40% regardless of the rank of the TT-decomposition, we conclude
that the network failed to extract useful patterns out of the training process. We believe that
the lack of convolutions in the network makes the learning process tedious for this data-set.
Finally, we believe that the described approach compresses networks effectively, and has po-
tential in learning representations. However, it seems like further research needs to be done
to evaluate the capacity of the network to extract useful patterns.

34

Figure 4.4 Loss and accuracy vs. epoch for the CIFAR-10 dataset

35

CHAPTER 5 APPLYING POET-BIN TO CONVOLUTIONAL NEURAL
NETWORKS

An attempt to compress BNNs and potentially derive a more suitable training algorithm
for LUT-based NNs has been presented in the previous chapter. In the current chapter,
we focus on improving the original feature-based KD algorithm of PoET-BiN with the goal
to apply KD in-between the convolutional layers of a CNN. In particular, we address the
inherent problem of the original PoET-BiN algorithm that limits the depth of its stacked
decision trees approach to two layers. Then, we evaluate the solution with a deeper PoET-
BiN approach. We discover and face an issue we name "the curse of depth" that deeper
PoET-BiN models suffer from. Finally, we experiment and validate our enhancements and
conclude the chapter.

5.1 PoET-BiN’s depth challenge

In Section 3.5.1, we mentioned that the original work of PoET-BiN was limited in the maxi-
mum depth of the RINC classifiers. The impact of this constraint is that PoET-BiN cannot
aggregate the values of more than 63 = 216 input features to make a prediction. The network
architectures that were covered in the original work of PoET-BiN were designed to output
512 features from the convolutional layers. Thus, selecting a maximum of 216 out of 512
features seemed reasonable and the accuracy of the model did not indicate an issue.

When working on replacing convolutional layers with RINC classifiers, Riviello et al. observed
that an increase in depth leads to an increase in accuracy when going from RINC-1 to RINC-
2 in their testing setting [60]. The considerable increase was due to the number of features
considered in the classification. In a RINC-1 classifier, only 36 input features are used
compared to 216 for a RINC-2. However, the network architecture that was studied had
relatively small convolutions compared to some of the common image centric CNNs such as
VGG13 shown in Fig. 5.1.

To further analyze the intuition that a shallow RINC-2 classifier lacks in its capacity to
capture enough information from the input features, we compute the number of features
that can be extracted from a regular convolutional layer. Consider the CNN architecture,
VGG13, shown in Fig. 5.1. With a kernel K of size three, the maximum number of input
features to map the outputs of the 4th convolutional layer, CONV 512, to the outputs of the

36

Figure 5.1 VGG13 Architecture

5th convolutional layer, CONV 512 is given by:

512× 3× 3 = 4608 (5.1)

Now the issue is clearer, using only 216 features out of 4096 features can only achieve poor
performance.

5.2 Making PoET-BiN deeper

In the remainder of this chapter, we analyze and work at the core of the RINC classifier. In
particular, we consider a single RINC-x classifier that classifies the ith output feature from
the output feature map, Ystudent, described in Section 3.5.1 and Fig. 3.2. Since improving the
classification accuracy of the student network inevitably improves the overall performance,
we focus on improving the RINC classifier by increasing its depth.

To address the depth of PoET-BiN, we modify the underlying concept of the original algo-
rithm such that:

• The first RINC level gets its inputs directly from the input features Xstudent (shown in
Fig. 3.2).

• Whenever six RINCs of a certain level have been built, they are combined into a RINC
of the next level. For example, to build a RINC at layer one, six layer zero RINCs
need to be built. The combination of their predictions is used to build a strong RINC-1
classifier. To build a RINC-2 classifier, six RINC-1 classifiers are built and combined
to built a stronger classifier.

• We do not impose any restrictions on the maximum depth of the classifiers.

37

Algorithm 1 outlines our approach to extending the original algorithm of PoET-BiN. In this
algorithm, we recursively build a RINC-N classifier, where N is the maximum depth of our
classifier. We use the RincStore variable to keep a per-layer store of all the RINCs.

Algorithm 1 Recursively build a Rinc-N. classifier.
1: procedure RincN(CurrentDepth, RincStore, weights):
2: if CurrentDepth = MaxDepth then
3: done ← True
4: if current_depth = 0 then
5: rincN ← RincModule()
6: rincN.BuildRincLUT()
7: else
8: prevLayerModules ← RincStore[CurrentDepth-1]
9: rincN ← RincModule(prevLayerModules)

10: rincN.PredictOutLut(train = True)
11: rincN.PredictOutLut(train = False)
12: rincN.ComputeAlpha()
13: weights ← rincN.ComputeWeightsForNextModule()
14: RincStore[N].append(rincN)
15: if done = True then
16: exit
17: for i ← MaxDepth - 1 to -1 do ▷ Loop backwards, if six Rinc-i, build Rinc-(i+1)
18: if layer has six Rinc-i ready then
19: call RincN(i + 1, RincStore, weights)
20: call RincN(0, RincStore, weights)

The original output error of a single RINC-2 classifier is shown in Fig. 5.2. We plot the
accuracy with respect to the number of RINCs. The accuracy being accuracy = 1 − error,
we can observe that the best prediction accuracy is 96.2%.

We also experiment with a deeper RINC-3 classifier. The result is shown in Fig. 5.3. We
observe a disparity between the accuracy on the test set and the accuracy on the training
set. This disparity indicates that the network is close to overfitting, which is expected since
the total number of features considered now is 64 = 1296 which is over 2× the number of
input features.

Two problems stem from this preliminary analysis. First, the training time for a RINC-3
is not sustainable. A RINC-3 classifier can take up to 4 hours to train on a regular CPU.
Furthermore, similar to a regular NN, there is no means to stop the training process when
the accuracy is plateauing or when the disparity between the accuracies between the train
and test sets is too large.

38

Figure 5.2 Accuracy of a single RINC-2 module
The blue curve shows the accuracy on the training set and the orange curve shows the
accuracy on the test set

Figure 5.3 Accuracy of a single RINC-3 module
The blue curve shows the accuracy on the training set and the orange curve shows the
accuracy on the test set

39

5.2.1 The curse of depth

We observe that our training time is exponential w.r.t. the number of layers. One solution to
that problem is to optimize the time taken to build the RINCs at layer 0. More specifically,
we want to reduce the search space for the next best decision tree. Instead of going through
the entire feature space to find the next best features, we can introduce randomness in the
network. At the time of feature selection, we randomly remove some of the features that
were part of the selection space with a probability p. We find that a good trade-off is p = 1

2 .

5.2.2 Early exit

To diminish the overfitting and plateauing issues observed for deeper RINC classifiers, we
introduce a variable to account for the maximum acceptable error on the test set. Since we are
training a student network which has an indirect effect on the overall classification accuracy,
we can optimize the training time and potentially improve the classification accuracy by
controlling the maximum tolerable classification error on the test set. Incomplete RINC
module are connected whenever that value is reached. For example, if our intent is to build
a RINC-2 classifier and we reach the value of early stop before having built a full RINC-2
module, we connect any non-connected RINCs from prior layers into an incomplete RINC-2
module.

5.2.3 Conclusion

In the current chapter, we gave a comprehensive introduction to the inherent limitation of the
original training algorithm of PoET-BiN. We proceeded to introduce our solution to that issue
and presented an algorithm that mitigates it. While developing and testing the algorithm,
we stumbled upon another issue, ẗhe curse of deptḧ. To reduce the overall training time,
we introduce randomness in the network. Finally, we observe that the deeper the RINC-N
classifier architecture, the more likely it is to overfit. In that perspective, we also introduce
an early exit parameter that lets the network exit once the maximum acceptable error has
been reached on the test set. The work done in this chapter is a building block towards
applying PoET-BiN to a full CNN. However, we only tested our approach on a single RINC-
N classifier that had the task to make a prediction for the ith output feature. In a regular
CNN, thousands of RINC-N classifiers will be used in parallel to make a prediction. The
total number of LUTs may reach the limit of the number of LUTs available in an FPGA. In
the next chapter, we introduce a processor architecture that does not have this limitation.

40

CHAPTER 6 ASIP ACCELERATOR FOR LUT-BASED NEURAL
NETWORKS INFERENCE

Portions of this chapter are excerpted from our paper presented at NEWCAS 2022 [53].

The goal of this chapter is to present the enhancement of a processor’s instruction set with
specialized instructions to accelerate the computations required to perform LUT-based neural
network inference. This application-specific instruction-set processor (ASIP) reduces latency
and increases throughput for LUT-based neural networks, with respect to general purpose
CPUs, while maintaining CPU-like generality of processing.

We used Synopsys ASIP Designer [61] to develop our processor’s enhanced instruction set.
The processor’s architecture is based on the TVLIW made available by Synopsys. At full
capacity, our developed architecture approximately 2994× faster than the base processor.

The accuracy on different data-sets of all the LUT-based network architectures described
in Section 3.5 is proportional to the number of LUTs used. But the number of LUTs is
limited by the actual FPGA architecture. To implement larger networks where the number
of LUTs required is greater than the available number, Wang et al. suggests to re-use some
LUTs through time multiplexing [56]. The approach that we suggest here, however, is to use
a general purpose processor with specialized instructions that can compute multiple LUTs
outputs per clock cycle. It could be used as an FPGA co-processor or as a standalone
processor.

Section 6.1 describes the developed processor and provides an introduction to ASIP Designer
from Synopsys. Section 6.2 contains experimental results. Section 6.3 concludes the chapter.

6.1 Specialized processor

Although multiple training algorithms were introduced in the previous section, the rigidity
imposed by the direct mapping of BNNs to LUTs leads to structurally constrained neural
network architectures. Algorithm 2 outlines the operations required to compute the output
of such neurons. Compared to the computation on an FPGA which takes a single clock cycle
to compute the prediction, this algorithm is inefficient. In the algorithm, each neuron is
represented by the set of M input features and the output configuration corresponding to
the 2M different output values that it could output based on the combination of its inputs.
The binary inputs and the LUT configurations are stored in the data memory (DM). Thus, the

41

Algorithm 2 Computes the output of neuron @neuron_ref and stores the result in the input
array @output_offset

1: procedure Predict(neuron_ref, output_offset)
2: LoadInputs(IOMem) ▷ Binary Inputs
3: LutConfiguration = LUTConfigurations[neuron_ref]
4: Address = 0
5: for i ← 0 to M-1 do ▷ M is the number of input per LUT
6: inputValue = FindInput(LutConfiguration.positions[i], IOMem) ▷ Binary Value
7: Address = Address | (inputValue << i)
8: output = LutConfiguration.LUT[Address]
9: IOMem[output_offset] = output

first step is to retrieve the binary inputs array and the LUT configurations array from the DM.
Then from all the LUT configurations, the specific LUT representing the neuron is selected.
The M different input features positions are encoded in the configuration. Furthermore, the
2M possible binary outputs of the LUT are also encoded in the configuration. Next, the
M binary inputs are concatenated to form an integer value which is used as an address to
retrieve the LUT output. In Fig. 3.3, it can be observed that the 6 combined binary inputs
led to address 37 (100101 = 37). The LUT configuration at that specific address is 1. Finally,
that output feature is stored in the binary inputs array. Another LUT in the following layer
uses the output as input. The process induces multiple cycles for a single inference. In a
real world setting with a relatively large number of LUTs, the inference process of the whole
network is slow as reported in 6.2.

Multiple specialized instructions are added to improve the inference speed of this algorithm.
In the following subsections, ASIP Designer from Synopsys is first introduced. The orig-
inal unoptimized processor architecture is then presented. Finally, the added specialized
instructions as well as the different hardware components are presented.

6.1.1 ASIP Designer

ASIP Designer is a tool to design an ASIP processor [61]. It generates a register transfer
level (RTL) design of the processor that can be used to program an FPGA, a compiler, an
assembler, a linker that outputs assembly instructions and the program’s byte-code for that
processor from a C++ source code, and a simulator to execute a program without leaving the
ASIP Designer’s environment. All of these are generated using a single code base in nML.

42

6.1.2 Base processor: TVLIW

ASIP Designer has a collection of example processors with different characteristics. The
developed processor is derived from the TVLIW [62], a 64-bit Very Long Instruction Word
(VLIW) processor. Having longer instruction words allows for the execution of the inference
of multiple LUTs by using multiple slots of instructions. These slots can run independent
instructions in parallel. Each slot that executes an instruction requires its own independent
data-path and processing unit. The TVLIW has a 32-bits data memory (DM) and an in-
struction set architecture (ISA) that consists of the same regular instructions found in MIPS
processors.

However, using this ISA, the base processor has limitations when it comes to computing
the inference of LUT-based neural networks. When running Algorithm 2 on this VLIW
processor, the number of instructions required per neuron causes unsatisfactory delays for a
single prediction.

6.1.3 Added hardware components

To adapt the processor described in Section 6.1 for a fast inference of Algorithm 2, special-
ized instructions and additional resources were added. The processor’s architecture is first
presented as these instructions heavily depend on it. The following components are added
to the TVLIW base processor:

• An input-output register file, named IOMem, with 4096 fields and a data width of 1
bit to store binary inputs and prediction outputs of each neurons. The input data is
loaded and the output data is produced in this register file. The latter will eventually
become an input to the next level’s neurons.

• Eight data memories with 1 read port and 1 write port each. As shown in Fig. 6.1,
they contain the LUT configurations aligned on 256 bits of which only the 136 least
significant bits are relevant and they store LUT information as follows:

– Out of the 136 bits, 72 MSBs contain references for the neuron’s input addresses
(6 inputs per neuron). These inputs are stored in the IOMem memory that is
addressable using 12 bits. Hence, 12 bits × 6 bits = 72 bits.

– The remaining 64 LSBs of the 136 bits are the outputs possibilities of a 6 inputs
LUT as previously described in Fig. 3.3. Depending on the combination of the
values stored in the IOMem, we select a single bit among the 64 possible outputs
making that bit the output assigned to this LUT. We then store that bit in the

43

IOMem. It will eventually be used as an input for a LUT at the next level or the
output of the model.

Figure 6.1 Data Alignment in Specialized Data Memories

The processor described in Fig. 6.2 contains all the resources and data paths from the
base TVLIW processor and the different resources and data-paths needed for the added
specialized instructions. It is divided in 5 pipeline stages. It is also relevant to note that Fig.
6.2 showcases a smaller version of the final processor design. It only has 2 slots of the predict
specialized instruction described hereafter, whereas the finalized processor contains up to 21
slots.

6.1.4 Specialized instructions

The base processor instruction width has been extended from 32 bits to 512 bits to parallelize
our instructions as much as possible. At full capacity, the built processor accelerator can
execute the predictions of 21 LUTs in parallel using 21 individual data paths and functional
units that we refer to as slots. Furthermore, there are also instructions to load and read data
from the IOMem and different data memories described above. Overall 4 instructions were
added:

Instruction to store in Data Memories

DMX[" addr "] = " dataH0 " & " dataL1 " & " dataL0

The total number of data memories is equivalent to the number of slots available to execute
the predictions which depends on the specific configuration of the processor. They store all

44

Figure 6.2 Overall Processor Architecture © 2022 IEEE

of the LUTs configurations. Each DM is aligned on 256 bits. By default, ASIP Designer
can use integers with length equal or smaller to 64 bits inside the processors instructions.
Therefore, we use 4 groups of 64 bits integers in a single instruction to fill in 256-bits per data
address. The first 120 bits remain unused. The last 136 bits must contain relevant data. For
this reason, we can break down the 256-bits of data into 3 groups of 64-bits, the 4th group
remaining unused. The 3rd group, dataH0 shown in assembly instruction 6.1.4, uses only 12
bits out of 64. The first, dataL0, and second group, dataL1, both contain 64 bits of relevant
data. The breakdown of this binary sequence is show in Fig. 6.3.

Since a single instruction uses 3 bits × 64 bits = 192 bits, we can parallelize 2 DM store
instructions in a single 512-bits instruction word. Doing so, we use 2 × 192 bits = 384 bits
of the 512-bits instruction word.

Instruction to store in IOMem register

IOMem[" addr "] = " value "

The IOMem is a register file that has 4096 single bit registers. Each of these registers is indi-
vidually addressable. The input image is loaded in this register using a specialized instruction.
8 slots handle the process in parallel. Each slot moves a single bit into the addressed register.
The instruction arguments are passed immediately through the instruction word.

45

Figure 6.3 Data Memory Store Instruction Breakdown

Instruction to predict LUT output

IOMem["outputAddr"] = predict(DMX["lutNumber "])

The predict instruction is at the heart of the LUT-based inference engine. It can run 8
predict instructions in parallel, each producing 1 LUT output per clock cycle with a latency
of 5 clock cycles. A single predict instruction has a width of 24 bits and is composed of:

• lutNumber: 12 bits representing the LUT positions in the connected data memory.

• outputAddr: 12 bits representing the position of the output bit to be placed in the
IOMem register.

In the simpler case of two slots that evaluate two LUT outputs, we start by storing their
configuration in each individual data memory. Thus, each data memory holds the configu-
ration of one LUT. Then, we write the input image data inside the IOMem registry. Finally,
we execute 8 predictions in parallel producing the output of the 8 LUTs that are placed back
in the IOMem register and can be read using another instruction.

6.2 Evaluation

We benchmarked our processor using the approach taken by the authors of POET-BIN [13]
to train a LUT-based neural network on the MNIST data-set. We extracted the outputs of
the convolutional layer and used them as inputs to the POET-BIN algorithm which outputs
the LUT configurations. We used these configurations to generate an assembly program that

46

Table 6.1 LUTs, BRAM, Flip-Flops, F7 Mutiplexers, F8 Mutiplexers Count and number of
cycles of predict instruction With regards to the number of Slots of the predict Instructions
© 2022 IEEE

#Slots #LUTs #Flip-Flops #BRAM #F7 Muxes #F8 Muxes #Cycles Predict
0 5374 1419 8 479 128 368345
2 144250 8155 40 10575 3886 1290
3 160748 9231 56 14198 5535 860
4 176572 9507 72 17191 7215 645
8 245120 10224 136 30327 13751 323

would load the different memories and registers of the processor. To ensure the correctness
of our inference engine, we validated that the outputs of our processor were the same as
the outputs of the POET-BIN algorithm when running on a regular processor. We measure
our performance against a base TVLIW processor with no specialized instructions. We
benchmarked multiple processor configurations with 2, 3, 4 and 8 slots of predict execution.
We used the RTL design generated by ASIP Designer to synthesize and implement our
processor on an FPGA to produce the benchmark results. We report the FPGA synthesis
results in terms of the number of LUTs used, the number of flip-flops used, the number of
F7 multiplexers used, the number of F8 multiplexers used and the number of BRAMS used.
On the other hand, using ASIP Designer’s simulation tools, we executed different programs
written in C++ and assembly to retrieve metrics regarding the execution of the inference
algorithm. We express these results in terms of the cycle count.

Table 6.1 contains all the retrieved data from our experiences. From the table, we see that the
number of resources (LUTs, FF, BRAMS, F7, F8 Muxes) increases while the number of slots
increases. A sharp increase in resource usage can be seen, for example the total LUTs usage
rises from 5374 LUTs to 144250 LUTs, as soon as the specialized instructions is introduced
even with only 2 slots. Along the same line, the number of prediction instructions decreases
with the number of slots. After a sharp drop in the number of cycles taken to execute the
inference algorithm when introducing our specialized instructions (from 0 slots at 368345
cycles to 2 slots at 1290), the number of cycles taken decreases with hyperbolic relationship
with respect to the number of slots. With a 512-bits processor, up to 21 slots can be executed
at full capacity since there are 24 bits per instructions. After testing for up to 8 slots, From
the gathered data and the graphs 6.4 and 6.5, we can infer the number of cycles that would
be taken by any particular configuration by using the observed hyperbolic relation. The
equation of the hyperbole is

y = z

x
, (6.1)

47

where y is the number of cycles, x the number of slots, and z the total number of LUTs in
the neural networks.

In our particular experiment, 2580 LUTs are used. By using equation (6.1), we deduce that at
maximum capacity, i.e. 21 slots (= 512/24), 123 instructions would be used to complete the
inference of this entire network. This renders a speed-up of 2994x when compared to the base
processor that uses 368345 instructions to produce the same result. Figure 6.4 and Figure 6.5
help to visually distinguish the discussed relationships. All the developed architectures run
on an FPGA at a maximum frequency of 125 MHz and consume 3W of power as estimated
by Vivado HLS synthesis tool.

Figure 6.4 Resource usage with respect to the number of slots © 2022 IEEE

Figure 6.5 Cycle count for predictions with respect to the number of slots © 2022 IEEE

48

6.3 Conclusion

We have successfully enhanced a processor’s instruction set to accommodate for a set of
neural networks architectures where each neuron has six binary inputs and a single binary
output. The developed processor accelerates the inference process by a factor of 2994x and
eliminates some of the work done when considering the sequential architecture of general
purpose processors. Our test setup effectively replaced the fully-connected layers of a CNN
by RINC modules and ran the inference process on our accelerator. The current architecture
is limited by the size of the IOMem register and the available DMs. We have also expressed
our results in terms of their implementation on an FPGA. It would be interesting to see an
ASIC with this configuration to see the actual energy consumption.

49

CHAPTER 7 CONCLUSION

This chapter synthesizes the work done in this thesis. We go over the work done in relation to
the three phases announced in the introduction: exploration, enhancement and exploitation.
We follow by presenting the limitations of our work and open avenues for future research.

7.1 Summary of works

In the present thesis, we started with the goal to optimize LUT-based NNs to apply them
to CNNs, particularly to the convolutional layers of a CNN. In this regard, we centered our
research around the work done by Chidambaram et al. where the authors introduced PoET-
BiN [13]. Before diving in PoET-BiN, we started in an exploration phase where we looked
into deriving a compression algorithm that could potentially be used to build LUT-based
NNs. We started by going through a thorough literature review, where we identified multiple
compression algorithms that had potential in building LUT-based NNs. We discovered that
the TT-decomposition of a tensor and binarization of NNs had never been used together
and realized that we could potentially leverage their combination to compress a DNN by
a very large factor. Even though our empirical analysis of the solution validates a huge
compression ratio, we found that our results are inconclusive and the generalization capacity
of the produced network architecture was poor. Following that discovery, we turned to the
enhancement of PoET-BiN in Chapter 5. We analyzed the limitation of the original PoET-
BiN model. We found that the maximum depth of the RINC classifiers were a limitation
to the approach and designed an algorithm that was free of those limitations. However, the
depth of the RINC classifier introduced a computation limitation as the time complexity was
exponential with respect to the depth of the RINC classifier. We also found that depending
on the actual size of the input feature space, overfitting could potentially be an issue. To solve
"the curse of depth" issue, we introduced randomness in the network by randomly removing
some of the potential features for the selection space before building RINC-0 classifiers. To
solve the overfitting issue and speed up the learning process as well, we introduced an early
stop mechanism with a maximum accuracy error parameter that stops the training process
once the value was reached. Finally, we thought about the exploitation of the model in a real
world setting. We realized that the total number of LUTs needed for its direct application
on the convolutional layers of a CNN had inherent limitations due to the limited number of
LUTs available in an FPGA. We developed an ASIP processor that could potentially be used
as an FPGA co-processor or a standalone general purpose CPU to process the inference of

50

LUT-based NNs. We tested and demonstrated a 2994× speedup in the inference time when
comparing our processor to a base processor without our specialized instructions. Overall,
we have explored multiple solutions to map the convolutional layers of a CNN into LUTs.
We then picked and enhanced PoET-BiN for that purpose. Finally, we developed a processor
architecture that can be used to process the high number of LUTs that are necessary in the
context of convolutions.

7.2 Limitations

In Chapter 4, we can see that the compressed binarized neural networks still manages to
perform classifications. Despite a huge compression factor, the impact on the accuracy is
negligible on the MNIST dataset. On CIFAR-10, however, the network does not demon-
strate any learning and renders poor performance regardless of the TT-ranks of the TT-
decomposition. We suspect that a convolutional layer to extract spatial features might be
helpful. Another limitation is that the values inside the core weight tensors (resulting from
the TT-decomposition) are indeed binary. However, after reconstructing the full weight by
multiplying all the core tensors, the values are no longer binary. In Chapter 5, the biggest
limitation we faced was the lack of a framework that successively replaces the layers of a
CNN by going forward in the layers and retraining the upper layers after replacement. The
training process is tedious and needs improvement, especially in the case of a deeper network.
Finally, the ASIP processor developed in Chapter 6 suffers from the limitation that the pro-
cessor has been only optimized for the inference of six inputs to one output LUTs. Other
works have shown that different LUT sizes can have better accuracy depending on the task
at hand [63]. A second limitation is that a VLIW processor is used while a vector processor
might have been more adequate. One main advantage of this approach is that the compiler
generated by ASIP Designer could be used alongside our processor without worrying about
the re-organization of instructions that happens when a VLIW processor.

7.3 Future research

Future works should take into account the limitations we described in this chapter. In
particular, future works would explore the development of a more robust BTNN where the
values of the reconstructed weight matrices are strictly binary. Another potential future
work would leverage the enhancement we have made to the original PoET-BiN model to
develop a training framework that would sequentially replace layers of a CNN, starting from
the input image onward. Lastly, the ASIP processor we have developed could be modified

51

to accept different LUTs input sizes. We also recommend dropping the TVLIW and making
the processor a SIMD processor.

52

REFERENCES

[1] T. B. Brown et al., “Language models are few-shot learners,” arXiv, 5 2020. [Online].
Available: http://arxiv.org/abs/2005.14165

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks.” [Online]. Available: https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[3] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019-
June, pp. 10 691–10 700, 5 2019. [Online]. Available: http://arxiv.org/abs/1905.11946

[4] A. A. Awan, H. Subramoni, and D. K. Panda, “An in-depth performance characterization
of cpu- and gpu-based dnn training on modern architectures,” Proceedings of MLHPC
2017: Machine Learning in HPC Environments - Held in conjunction with SC 2017:
The International Conference for High Performance Computing, Networking, Storage
and Analysis, 11 2017.

[5] Y. Chen et al., “A survey of accelerator architectures for deep neural networks,” Engi-
neering, vol. 6, pp. 264–274, 3 2020.

[6] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate cpu vs. gpu
performance without the answer,” in (IEEE ISPASS) IEEE International Symposium
on Performance Analysis of Systems and Software, 2011, pp. 134–144.

[7] R. Zhao et al., “Hardware compilation of deep neural networks: An overview,” in 2018
IEEE 29th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2018, pp. 1–8.

[8] J. Duarte et al., “Fast inference of deep neural networks in fpgas for particle physics,”
Journal of Instrumentation, vol. 13, no. 07, p. P07027–P07027, Jul 2018. [Online].
Available: http://dx.doi.org/10.1088/1748-0221/13/07/P07027

[9] Z. Liu et al., “Rethinking the value of network pruning,” 7th International Conference
on Learning Representations, ICLR 2019, 2019.

[10] H. Qin et al., “Binary neural networks: A survey,” Pattern Recognition, vol. 105, 3
2020. [Online]. Available: http://arxiv.org/abs/2004.03333http://dx.doi.org/10.1016/j.
patcog.2020.107281

http://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1905.11946
http://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://arxiv.org/abs/2004.03333 http://dx.doi.org/10.1016/j.patcog.2020.107281
http://arxiv.org/abs/2004.03333 http://dx.doi.org/10.1016/j.patcog.2020.107281

53

[11] H. Li et al., “Training quantized nets: A deeper understanding,” vol. 2017-December.
Neural information processing systems foundation, 2017, pp. 5812–5822.

[12] M. Courbariaux et al., “Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained to +1 or -1,” 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

[13] S. Chidambaram, J. M. P. Langlois, and J. P. David, “Poet-bin: Power efficient tiny
binary neurons,” 2 2020. [Online]. Available: https://arxiv.org/abs/2002.09794

[14] M. Nazemi, G. Pasandi, and M. Pedram, “Nullanet: Training deep neural
networks for reduced-memory-access inference,” 7 2018. [Online]. Available: http:
//arxiv.org/abs/1807.08716

[15] J. Zhang and J. Zhang, “An analysis of cnn feature extractor based on kl divergence,”
https://doi.org/10.1142/S0219467818500171, vol. 18, 7 2018.

[16] V. Dumoulin, F. Visin, and G. E. P. Box, “A guide to convolution arithmetic for deep
learning,” 2016. [Online]. Available: http://ethanschoonover.com/solarized

[17] Y. Umuroglu et al., “Finn: A framework for fast, scalable binarized neural network in-
ference,” FPGA 2017 - Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2017.

[18] M. Courbariaux et al., “Binarized neural networks: Training neural networks with low
precision weights and activations,” arXiv:1602.02830, 2016.

[19] J. R. Quinlan, M. K. Publishers, and S. L. Salzberg, “C4.5: Programs for
machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993,”
Machine Learning 1994 16:3, vol. 16, pp. 235–240, 9 1994. [Online]. Available:
https://link.springer.com/article/10.1007/BF00993309

[20] A. Criminisi et al., “Decision forests: A unified framework for classification, regression,
density estimation, manifold learning and semi-supervised learning,” Foundations and
Trends R in Computer Graphics and Vision, vol. 7, pp. 81–227, 2012.

[21] U. O. Montreal, “Ift6760a: Lecture 9 tensor decompositions-part 1,” 2022. [Online].
Available: https://www-labs.iro.umontreal.ca/~grabus/courses/ift6760_files/lecture-9.
pdf

http://arxiv.org/abs/1602.02830
https://arxiv.org/abs/2002.09794
http://arxiv.org/abs/1807.08716
http://arxiv.org/abs/1807.08716
http://ethanschoonover.com/solarized
https://link.springer.com/article/10.1007/BF00993309
https://www-labs.iro.umontreal.ca/~grabus/courses/ift6760_files/lecture-9.pdf
https://www-labs.iro.umontreal.ca/~grabus/courses/ift6760_files/lecture-9.pdf

54

[22] S. I. Venieris et al., “How to reach real-time ai on consumer devices? solutions for
programmable and custom architectures,” in 2021 IEEE 32nd International Conference
on Application-specific Systems, Architectures and Processors (ASAP), 2021, pp. 93–100.

[23] D. Blalock et al., “What is the state of neural network pruning?” 2020. [Online].
Available: https://arxiv.org/pdf/2003.03033.pdf

[24] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional neural
networks,” J. Emerg. Technol. Comput. Syst, vol. 13, no. 3, 2017. [Online]. Available:
http://dx.doi.org/10.1145/3005348

[25] H. Li et al., “Pruning filters for efficient convnets,” 5th International Conference on
Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017.

[26] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” in 7th International Conference on Learning Representations, ICLR
2019, 2019.

[27] T. Chen et al., “Only Train Once: A One-Shot Neural Network Training And Pruning
Framework,” 2021. [Online]. Available: http://arxiv.org/abs/2107.07467

[28] Y. Guo, “A Survey on Methods and Theories of Quantized Neural Networks,” 2018.
[Online]. Available: http://arxiv.org/abs/1808.04752

[29] P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for deep neural networks,”
2019. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1910/1910.04877.pdf

[30] R. Goyal et al., “Fixed-point Quantization of Convolutional Neural Networks
for Quantized Inference on Embedded Platforms,” Feb. 2021. [Online]. Available:
http://arxiv.org/abs/2102.02147

[31] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization of
convolutional networks for rapid-deployment,” in Advances in Neural Information
Processing Systems, vol. 32, 2019. [Online]. Available: https://github.com/
submission2019/cnn-quantization.

[32] I. Hubara et al., “Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” Journal of Machine Learning Research, vol. 18, pp. 1–30,
2018.

https://arxiv.org/pdf/2003.03033.pdf
http://dx.doi.org/10.1145/3005348
http://arxiv.org/abs/2107.07467
http://arxiv.org/abs/1808.04752
https://arxiv.org/ftp/arxiv/papers/1910/1910.04877.pdf
http://arxiv.org/abs/2102.02147
https://github.com/submission2019/cnn-quantization.
https://github.com/submission2019/cnn-quantization.

55

[33] M. Courbariaux, Y. Bengio, and J. P. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” in Advances in Neural
Information Processing Systems, vol. 2015-Janua, 2015, pp. 3123–3131. [Online].
Available: https://github.com/MatthieuCourbariaux/BinaryConnect

[34] M. Rastegari et al., “XNOR-net: Imagenet classification using binary convolutional
neural networks,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9908 LNCS,
2016, pp. 525–542. [Online]. Available: https://arxiv.org/pdf/1603.05279.pdf

[35] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference: A
whitepaper,” 2018. [Online]. Available: http://arxiv.org/abs/1806.08342

[36] P. Stock et al., “And the Bit Goes Down: Revisiting the Quantization of Neural
Networks,” 2019. [Online]. Available: http://arxiv.org/abs/1907.05686

[37] M. Nagel et al., “Data-free quantization through weight equalization and bias
correction,” in Proceedings of the IEEE International Conference on Computer
Vision, vol. 2019-Octob, 2019, pp. 1325–1334. [Online]. Available: https:
//arxiv.org/pdf/1906.04721.pdf

[38] Y. Gong et al., “Compressing Deep Convolutional Networks using Vector Quantization,”
2014. [Online]. Available: http://arxiv.org/abs/1412.6115

[39] Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network quantization,” 5th
International Conference on Learning Representations, ICLR 2017 - Conference Track
Proceedings, 2017.

[40] E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization for deep neural
networks,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, vol. 2017-Janua, 2017, pp. 7197–7205.

[41] K. Wang et al., “HAQ: Hardware-aware automated quantization with mixed precision,”
in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, vol. 2019-June, 2019, pp. 8604–8612.

[42] J. Gou et al., “Knowledge distillation: A survey,” International Journal of Computer
Vision, vol. 129, pp. 1789–1819, 6 2021.

[43] G. Hinton and J. Dean, “Distilling the knowledge in a neural network,” ArXiv, 2015.
[Online]. Available: https://arxiv.org/pdf/1503.02531.pdf

https://github.com/MatthieuCourbariaux/BinaryConnect
https://arxiv.org/pdf/1603.05279.pdf
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1907.05686
https://arxiv.org/pdf/1906.04721.pdf
https://arxiv.org/pdf/1906.04721.pdf
http://arxiv.org/abs/1412.6115
https://arxiv.org/pdf/1503.02531.pdf

56

[44] S. I. Mirzadeh et al., “Improved knowledge distillation via teacher assistant,” 2019.
[Online]. Available: www.aaai.org

[45] A. Romero et al., “Fitnets: Hints for thin deep nets.” International Conference on
Learning Representations, ICLR, 2015.

[46] J. Yim et al., “A gift from knowledge distillation: Fast optimization, network minimiza-
tion and transfer learning,” Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 7130–7138, 11 2017.

[47] S. H. Lee, “Self-supervised knowledge distillation using singular value decomposition,”
2018. [Online]. Available: https://arxiv.org/pdf/1807.06819.pdf

[48] Y. Zhang et al., “Deep mutual learning,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 4320–4328, 12 2018.

[49] L. Zhang et al., “Be your own teacher: Improve the performance of convolutional neural
networks via self distillation,” Proceedings of the IEEE International Conference on
Computer Vision, vol. 2019-October, pp. 3712–3721, 10 2019.

[50] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011. [Online]. Available: https:
//doi.org/10.1137/090752286

[51] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor decompositions
and their applications in machine learning.” CoRR, vol. abs/1711.10781, 2017. [Online].
Available: http://dblp.uni-trier.de/db/journals/corr/corr1711.html#abs-1711-10781

[52] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
Journal of Mathematics and Physics, vol. 6, pp. 164–189, 4 1927. [Online].
Available: https://onlinelibrary.wiley.com/doi/full/10.1002/sapm192761164https:
//onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164https://onlinelibrary.wiley.
com/doi/10.1002/sapm192761164

[53] M. Traore, J. M. Pierre Langlois, and J. Pierre David, “Asip accelerator for lut-based
neural networks inference,” in 2022 20th IEEE NEWCAS Conference (NEWCAS), 2022,
pp. 524–528.

[54] M. Kim and P. Smaragdis, “Bitwise neural networks for efficient single-channel source
separation,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, vol. 2018-April, pp. 701–705, 9 2018.

www.aaai.org
https://arxiv.org/pdf/1807.06819.pdf
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
http://dblp.uni-trier.de/db/journals/corr/corr1711.html#abs-1711-10781
https://onlinelibrary.wiley.com/doi/full/10.1002/sapm192761164 https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164 https://onlinelibrary.wiley.com/doi/10.1002/sapm192761164
https://onlinelibrary.wiley.com/doi/full/10.1002/sapm192761164 https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164 https://onlinelibrary.wiley.com/doi/10.1002/sapm192761164
https://onlinelibrary.wiley.com/doi/full/10.1002/sapm192761164 https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164 https://onlinelibrary.wiley.com/doi/10.1002/sapm192761164

57

[55] Y. Umuroglu et al., “Logicnets: Co-designed neural networks and circuits for extreme-
throughput applications,” Proceedings - 30th International Conference on Field-
Programmable Logic and Applications, FPL 2020, 2020.

[56] E. Wang et al., “Lutnet: Rethinking inference in fpga soft logic,” Proceedings - 27th
IEEE International Symposium on Field-Programmable Custom Computing Machines,
FCCM 2019, 2019.

[57] A. Novikov et al., “Tensorizing neural networks,” in Advances in Neural
Information Processing Systems, C. Cortes et al., Eds., vol. 28. Curran
Associates, Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper/2015/
file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf

[58] A. Bulat et al., “Matrix and tensor decompositions for training binary neural networks,”
2019. [Online]. Available: https://arxiv.org/abs/1904.07852

[59] Y. Wang et al., “Sub-bit neural networks: Learning to compress and accelerate binary
neural networks,” 2021. [Online]. Available: https://github.com/yikaiw/SNN

[60] A. Riviello, “Binary neural networks for keyword spotting tasks,” 2020. [Online].
Available: https://publications.polymtl.ca/5449/

[61] ASIP Designer Overview Manual, Synopsys, Mountain View, CA, 2019.

[62] ASIP Designer Tvliw Core Processor Manual, Synopsys, Mountain View, CA, 2019.

[63] S. Chatterjee, “Learning and memorization,” in Proceedings of the 35th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 755–763. [Online].
Available: https://proceedings.mlr.press/v80/chatterjee18a.html

https://proceedings.neurips.cc/paper/2015/file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/6855456e2fe46a9d49d3d3af4f57443d-Paper.pdf
https://arxiv.org/abs/1904.07852
https://github.com/yikaiw/SNN
https://publications.polymtl.ca/5449/
https://proceedings.mlr.press/v80/chatterjee18a.html

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Vanilla neural networks
	2.1.1 Forward propagation
	2.1.2 Back propagation
	2.1.3 Classification

	2.2 Convolutional neural networks
	2.3 Binarized neural networks
	2.4 Decision trees
	2.4.1 Bagging: Random forests
	2.4.2 Boosting: Adaboost

	2.5 Tensors
	2.5.1 Rank of a tensor
	2.5.2 Tensor-Train format

	2.6 Summary

	3 LITERATURE REVIEW
	3.1 Pruning
	3.1.1 Structured and unstructured pruning
	3.1.2 One-Shot pruning, iterative pruning, fine-tuning
	3.1.3 Scoring

	3.2 Quantization
	3.3 Knowledge distillation
	3.3.1 Knowledge representation
	3.3.2 Distillation strategy

	3.4 Tensor-Train decomposition and tensor factorization
	3.5 LUT-based neural networks
	3.5.1 PoET-BiN

	3.6 Summary

	4 BTNN : BINARIZED TENSOR DECOMPOSITION OF NEURAL NETWORKS
	4.1 Introduction
	4.2 Tensorizing neural networks
	4.3 Binarized TT-decomposition of neural networks
	4.4 Experiments
	4.4.1 Application to the MNIST dataset
	4.4.2 Application to the CIFAR-10 dataset

	4.5 Results and discussion
	4.5.1 MNIST dataset results
	4.5.2 CIFAR-10 dataset results

	4.6 Conclusion

	5 APPLYING POET-BIN TO CONVOLUTIONAL NEURAL NETWORKS
	5.1 PoET-BiN's depth challenge
	5.2 Making PoET-BiN deeper
	5.2.1 The curse of depth
	5.2.2 Early exit
	5.2.3 Conclusion

	6 ASIP ACCELERATOR FOR LUT-BASED NEURAL NETWORKS INFERENCE
	6.1 Specialized processor
	6.1.1 ASIP Designer
	6.1.2 Base processor: TVLIW
	6.1.3 Added hardware components
	6.1.4 Specialized instructions

	6.2 Evaluation
	6.3 Conclusion

	7 CONCLUSION
	7.1 Summary of works
	7.2 Limitations
	7.3 Future research

	REFERENCES

