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RÉSUMÉ

Pour de nombreuses tâches automatisées de perception et de décision, les meilleures perfor-
mances sont actuellement atteintes grâce à des algorithmes trop complexes pour que leur
comportement soit entièrement prédictible et compréhensible par les utilisateurs, parce qu’ils
déploient de grands modèles d’apprentissage automatique par exemple. Pour déployer ces
algorithmes dans des systèmes de décision et de contrôle critiques à la sécurité, il est particu-
lièrement important de développer des méthodes afin de promouvoir la confiance dans leurs
décisions et d’aider à explorer leur mode de défaillance. Ce mémoire comprend un article et
un travail de recherche complémentaire, où nous cherchons à aborder le problème de certifica-
tion pour permettre une meilleure compréhension de leurs comportements sous deux aspects
différents : explicabilité (générer des explications) et fiabilité (fournir une mesure de qua-
lité) de leurs comportements. Pour l’explicabilité, nous présentons une méthode qui permet
de générer des explications pour les comportements de n’importe quel système dynamique
de décision traitant des signaux, tandis que pour la fiabilité nous nous concentrons sur un
type particulier de système dynamique de décision — système de suivi multi-objets en ligne,
où nous proposons d’apprendre une mesure de qualité interprétable pour chaque trajectoire
d’objet, ou “tracklet”, pour que l’on puisse réagir en conséquence lors de l’exécution.

Plus précisément, dans l’article nous combinons la méthodologie d’« anchors » avec Monte
Carlo Tree Search (MCTS) pour générer des explications locales pour un comportement
donné d’un modèle dit boîte-noire, qui est censé prendre des décisions de manière dynamique
en traitant des signaux qui varient dans le temps. En effet, des systèmes de contrôle tels qu’un
système de direction basé sur la perception dans un véhicule autonome sont fondamentale-
ment des systèmes dynamiques entrée-sortie traitant des signaux. Anchors est une méthode
modèle-agnostique qui peut s’appliquer à tout type de modèle d’entrée-sortie que l’on cherche
à analyser, indépendamment de son architecture interne (e.g., réseau de neurones, système
à base de règles, etc.). L’approche proposée cherche des explications très descriptives pour
ces décisions sous la forme de propriétés des signaux d’entrée, exprimées en Signal Temporal
Logic (STL), qui sont les plus susceptibles de reproduire le comportement observé. STL est
une logique populaire qui sert à capturer les propriétés temporelles des signaux, et qui four-
nit des descriptions riches du comportement des séries temporelles facilement interprétables.
Pour illustrer la méthodologie, nous l’appliquons en simulation à l’analyse d’un système de
transmission automatique basé sur des règles et d’un système anticollision d’aéronef sans
pilote (ACAS Xu) implémenté avec un réseau de neurones.
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Dans le travail de recherche complémentaire, nous nous concentrons plus spécifiquement sur
les systèmes de suivi multi-objets (MOT) en ligne, dont le but est d’estimer la trajectoire des
objets dans l’environnement, tout en maintenant l’identité de chaque objet, dans le cadre du
« suivi-par-détection ». Plus précisément, les signaux d’entrée sont des détections 3D sous
forme de boîtes englobantes, fournies par des détecteurs 3D prêts à utiliser et qui traitent
des nuages de points LiDAR bruts avec un modèle complexe d’apprentissage automatique.
Pour mieux comprendre ces systèmes, il est intéressant de disposer d’une mesure de qua-
lité indiquant à tout moment la fiabilité de chaque tracklet. Cette mesure prédit la valeur
d’Intersection Over Union (IoU) entre le tracklet et un objet réel potentiel en temps réel.
Elle peut s’appliquer par exemple à la gestion du cycle de vie des tracklets, permettant ainsi
d’éliminer les faux positifs le plus tôt possible et de réduire le nombre d’objets ratés dû à
l’occlusion. En effet, des tracklets non pertinents peuvent être créés par accident à cause des
fausses détections ; un objet suivi peut avoir déjà quitté le champ de vue du capteur ; tan-
dis que ceux qui sont simplement occlus pendant une courte durée doivent continuer à être
suivis. Nous proposons une approche d’apprentissage automatique surveillé pour apprendre
cette mesure de qualité en entraînant un réseau de neurones récurrents Long-Short Term Me-
mory (LSTM), capable de prendre en compte des caractéristiques de tout le passé à partir de
la toute première détection de l’objet. Enfin, nous faisons des expériences sur les benchmarks
KITTI et nuScenes pour illustrer le système proposé et le comparer avec la littérature. Un
problème existant dans l’approche moderne d’évaluation des performances d’un système de
suivi multi-objets en ligne est également identifié et discuté.
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ABSTRACT

For many automated perception and decision tasks, state-of-the-art performance may be ob-
tained by algorithms that are too complex for their behavior to be completely understandable
or predictable by human users, e.g., because they employ large machine learning models. To
integrate these algorithms into safety-critical decision and control systems, it is particularly
important to develop methods that can promote trust into their decisions and help explore
their failure modes. This thesis includes an article and a complementary research work, in
which we try to tackle the problem of certification to provide a better understanding of the
behaviors from two different aspects: explainability (generating explanations) and reliability
(estimate a quality measure) of the behaviors. For explainability, we introduce a method
to generate explanations for behaviors of any dynamic decision system processing signals,
while for reliability, we focus on a particular type of dynamic decision system — online 3D
Multi Object Tracking (MOT) system, for which we propose to learn an interpretable quality
measure for each estimated object trajectory, or tracklet, so that human users can react upon
accordingly at runtime.

More precisely, in the article we combine the “anchors” methodology with Monte Carlo Tree
Search (MCTS) to provide local explanations for a given behavior of a black-box model,
supposed to make decisions dynamically by processing time-varying signals. Indeed, con-
trol systems such as a perception-driven steering system for an autonomous car are funda-
mentally input-output dynamical systems processing signals. Anchors is a model-agnostic
method which can be applied to any type of input-output model that one tries to analyze,
irrespective of its internal architecture (e.g., neural network, rule-based system, etc.). The
proposed approach searches for highly descriptive explanations for these decisions in the
form of properties of the input signals, expressed in Signal Temporal Logic (STL), which
are most susceptible to reproduce the observed behavior. STL is a popular logic used to
capture temporal properties of signals, which provides rich descriptions of the behavior of
time series that are easily interpretable by humans. To illustrate the methodology, we apply
it in simulations to the analysis of a rule-based automatic transmission system and a collision
avoidance system for unmanned aircraft (ACAS Xu) implemented with a neural network.

In the complementary research, we focus more specifically on perception-driven online MOT
systems, whose goal is to estimate the trajectory of objects in the surrounding environment
based on the “tracking-by-detection” framework, while keeping track of the identity of each
object. More specifically, input signals are 3D bounding-box detections, provided by off-the-
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shelf 3D detectors based on complex machine learning models processing raw LiDAR point
clouds. To better understand these systems, it is beneficial to be informed of a quality mea-
sure indicating each tracklet’s reliability at all times. This measure predicts the Intersection
Over Union (IoU) value between the tracklet and a potential true instance at runtime. It
can be applied for example to life cycle management, allowing to eliminate false positives as
early as possible and reducing misses due to occlusion. Indeed, irrelevant tracklets may be
accidentally created due to false detections; an object being tracked may have already left the
sensor’s field of view; while those which are simply occluded for a short period should keep
being tracked. We propose a data-driven approach to learn this quality measure by training a
Long-Short Term Memory (LSTM) recurrent neural network, capable of processing features
of the entire history starting from the very first detection of the object. Finally, we con-
duct experiments on benchmarks KITTI and nuScenes to illustrate the proposed system and
compare it with previous work. A problem existing with the modern evaluation approach of
online MOT system performance is also identified and discussed.
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CHAPTER 1 INTRODUCTION

1.1 Certification

Self-driving cars are ushering the world into an entire new era, with the goal of improving
traffic problems by providing safety and efficiency, especially in urban areas. Unavoidably,
due to short concentration time and slow human reaction, vehicles accelerating at different
times and drivers not obeying traffic rules are some of the main causes of road problems.
Advanced Driving Assistance System (ADAS) is designed to avoid accidents and collisions by
alerting the driver, or by implementing safeguards to take over control when a human makes
a mistake. Such system may use sensors like camera, LiDAR or even RaDAR to assimilate vi-
sual object recognition [1] in human brains, by analyzing important features to recognize the
surrounding obstacles. Compared to ADAS, more advanced perception-based autonomous
driving systems can be categorized into two major paradigms [2]: mediated perception ap-
proaches and behavior reflex approaches. Mediated perception approaches analyze the entire
scenario to identify surrounding objects such as lanes, lights, vehicles and other obstacles,
and apply rules to decide on the control strategies; while behavior reflex approaches directly
mimic human reactions by mapping input scenes to driving actions, using a trained neural
network regressor.

In a similar spirit, Airborne Collision Avoidance System (ACAS) is an aviation system which
provides maneuver guidance so that horizontal and vertical separation can be maintained be-
tween two aircraft. It allows to reduce the risk of mid-air collision and works independently
of the Air Traffic Control (ATC) ground systems and other navigation systems. Sensors
are used to measure and provide information such as distance, relative position and heading
direction of any other nearby aircraft so as to capture the potential risk of collision. Both the
ACAS system integrated in an aircraft and the automated control system in a self-driving
car are examples of a Cyber-Physical System (CPS), which are designed to connect separate
interacting computer components with physical inputs and outputs, including the aforemen-
tioned sensors and processors, to intelligently monitor or control specific mechanisms. They
are not only intensively used in transportation, but also in many other domains such as
robotics, civil engineering, medical monitoring, chemical processes, etc.

For these decision tasks, state-of-the-art performance is usually obtained by algorithms which
are too complex for their behavior to be completely understandable or predictable by hu-
man users, e.g., because they deploy large Machine Learning (ML) models or are designed
with complicated rules. In safety-critical applications, there is an increase need of formal
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certification approaches to ensure the system behaves correctly to meet users’ expectations,
especially in scenarios without human intervention. These requirements may be less impor-
tant in certain applications, such as recommender systems in movie streaming websites or
online shopping platforms, where a suggestion error can often be tolerated. In safety-critical
automated CPS however, such as self-driving cars, automated trains or ACAS, an unexpected
behavior would cause real danger to human lives or serious damage to the system itself. It is
thus desirable to develop certification methods that can promote trust into their decisions,
help detect anomalies and explore their failure modes.

Unfortunately, the lack of safety guarantees still prevents people from having faith in every
decision made by a perception-driven control system. It has been demonstrated that the
output may sometimes be sensitive to small input variations, known as adversarial examples
[3], a sort of intentional attack designed to lead the model to make a wrong decision. There
have already been several severe accidents, including Uber’s fatal crash where a self-driving
car ran into a pedestrian riding a bicycle across the road [4] in Tempe, Arizona, in 2018,
see Figure 1.1(a); and Tesla’s autopilot failing to stop in front of a truck overturned on a
highway [5], in Taiwan, in 2020, see Figure 1.1(b).

In the following sections we introduce three system certification methods:

1. Verification: test the system to find decision errors;
2. Explainability: generate explanations for decisions;
3. Reliability: provide a quality measure for decisions.

(a) Source: NSTB [4] (b) Source: Taiwan English News [5]

Figure 1.1 Accidents: (a) Uber’s fatal crash into a pedestrian (b) Tesla’s autopilot failing to
stop in front of a truck overturned on a highway
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1.1.1 Verification: test the system and find decision errors

It has been shown in [3] that even linear behaviors of a simple model in a high-dimensional
space can produce adversarial examples, i.e., a slight difference applied on a correctly classi-
fied sample may cause the system to make a wrong classification decision. A classic example
is shown in Figure 1.2(a), where an image of “panda” is wrongly classified with a 99.3% con-
fidence into a “gibbon”, just by adding some random noise. The Tesla Autopilot system has
also been shown by Tencent Keen Security Lab [6] to be vulnerable to adversarial examples
which can disable the lane detection function, or even fake a lane with only three patched
stickers, see Figure 1.2(b). While researchers keep seeking for corner cases to identify per-
turbations that may lead to unexpected behaviors, it should be noticed that, as pointed out
in [7], it is intractable to verify every possible scenario or every single part of a CPS, such
as a modern microprocessor containing billions of transistors, or a neural network containing
millions of parameters.

Nonetheless, formal specifications for safe monitoring can still be imposed at runtime to
identify errors immediately. For example, some temporal logic requirements are proposed
as benchmark problems in [8] for hybrid system verification, such as the Matlab/Simulink
automatic transmission model described in [9]:

1. G[0,10](espd < 4750)
2. G[0,20](vspd < 120)
3. G[0,30](espd < 3000)⇒ G[0,4](vspd < 35)
4. G[0,30](espd < 3000)⇒ G[0,8](vspd < 50)
5. G[0,30](espd < 3000)⇒ G[0,20](vspd < 65)

where G[t1,t2] stands for: “for all times between t1 and t2” (expressed in seconds), while
espd and vspd denote engine speed (expressed in rpm) and vehicle speed (expressed in
mph) respectively. More specifically, the safety monitoring system alerts the engineers when
one of these requirements is violated. For instance, the first requirement says: “during the
first 10 seconds, the engine speed should never exceed 4750 rpm”; while the third one says:
“if in the first 30 seconds the engine speed stays below 3000 rpm, then the vehicle should
remain slower than 35 mph in the first 4 seconds.” In some falsification tasks, such as those
proposed in the competition of the ARCH workshop [10], participants are asked to find
initial conditions or time-varying inputs which lead the system to a violation of an imposed
safety requirement, including the aforementioned temporal logic specifications for the hybrid
automatic transmission system.
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(a) Source: [3]

(b) Source: [6]

Figure 1.2 Adversarial examples: (a) an image of “panda” wrongly classified into a “gibbon”
by adding some random noise (b) a lane faked by three patched stickers using Tesla Autopilot

1.1.2 Explainability: generate explanations

Explainability of ML models draws continuous attention in the research community of In-
terpretable ML [11], due to the curiosity and the necessity of knowing why a model may
behave unexpectedly. For example, a robot vacuum stuck in a rug which is able to pro-
vide a viable reason is strongly preferred to one that has a better overall performance but
shuts down silently without giving any explanation about its failure. The failure can be
anything like low-battery level, wrong configuration, plenty of dust in the inner bag or can-
ister, insufficiency of motor power, etc, which are all beneficial for its user to know about if
explained. Explainability plays an even more important role in high-risk environment, where
safety-critical mistakes may result in severe consequences, such as a self-driving car running
through red lights, or worst, into pedestrians, or an ACAS system providing wrong advisories
and resulting in collision of two aircraft.

Explainability also promotes human-machine interaction, as humans tend to ignore com-
mands without knowing why, due to the lack of trust. For instance, when the ACAS system
suggests that the aircraft slightly change direction, it would be more interesting for the pilot
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to know more about the approaching aircraft, including its speed, its heading direction and
the distance between the two aircraft, in order to judge the necessity of obeying the system’s
suggestion. In case of wrong decisions, explanations also provide engineers insight into the
algorithms’ behavior, so as to identify and remediate a problem more quickly. Also, simply
optimizing a loss function to train a model could make certain decisions highly biased in
situations of rare occurrence. In some context where discrimination is undesirable, model
bias and missing features should be identified and incorporated into the problem formulation.

Some simple models are directly interpretable, meaning that the parameters or the model
structure itself can be directly given an understandable, or interpretable, meaning. Classic
examples of interpretable models include linear regression models and decision trees. Suppose
the price of an apartment y can be predicted via a linear regression model, comprising the
following features: the apartment size, x1, the number of rooms, x2, and the population of
the city where the apartment is located, x3, with the learnt parameters β1, β2, β3 ∈ R:

ŷ = β1x1 + β2x2 + β3x3

and suppose the apartment size x1 increases by one unit while the others remain constant,
then β1 simply suggests by how much the price y would increase. The same thing for the other
parameters, which also have easily interpretable meanings with the corresponding feature. A
decision tree such as the one illustrated in Figure 1.3 is even more interpretable. The model
makes a decision simply based on the value of some features in a greedy manner.

However, some models are too large and complex for each parameter to be interpretable,
such as a neural network or a decision system based on sophisticated rules. To interpret the
behaviors of these models, model-agnostic methods have been proposed by simply treating
them as black-box models. These methods would generate explanations completely separated

Figure 1.3 Example of a decision tree
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from the model itself and are thus flexible as they can be applied to any model. Model-
agnostic methods can be further categorized as either global or local. Global methods seek
to characterize the average behavior of the model, while local ones focus specifically on one
scenario and one decision by exploiting interesting properties of that particular scenario.
In Chapter 4, we focus on a specific type of local model-agnostic method, anchors [12], to
generate local explanations for a decision made by an automated dynamic decision system.

1.1.3 Reliability: estimate a quality measure

To improve certification, it is also interesting to provide decisions with an interpretable quality
measure, or confidence score, at runtime. This measure informs about their reliability, so
that users can further exploit this measure to react accordingly, depending on the application.
For instance, in medical diagnosis, instead of simply informing the doctor of the existence
of a cancer, the detection’s reliability would also highly influence the doctor’s analysis. In
object detection, YOLO [13] chooses to train the confidence score of a bounding box with
the Intersection Over Union (IoU) between the box and the true object if the latter is indeed
present, and push it to zero in case no object is in the box. An example of YOLO detections
is shown in Figure 1.4. Here, the measure IoU between two bounding boxes quantifies their
overlap ratio between the intersection area and the union area:

IoUB1,B2 := |B1 ∩B2|
|B1 ∪B2|

∈ [0, 1]

where | · | denotes the area (or volume in 3D), ∩ denotes intersection while ∪ denotes union.

Figure 1.4 Example of YOLO detections of a cat and a dog
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These confidence scores, despite the absence of a proper definition, are largely used in non-
maximum suppression and performance evaluation. Non-maximum suppression means that
if a number of overlapping boxes correspond to the same object, only the box with the best
confidence score is considered; in performance evaluation, on the other hand, thresholding
on the confidence score can change the number of output detections thus allows to compute
some average metrics. In Chapter 5, we focus on a specific dynamic decision system — online
3D Multi Object Tracking (MOT) system using LiDAR, where multiple objects are detected
and tracked, as shown in Figure 1.5 below. For better visualization, 3D bounding-box detec-
tions are projected onto a 2D image. Tracking systems allow to continuously estimate the
bounding box information based on past observations, while remaining a constant identity
for each object, despite a possible short period of occlusion, but these systems still lack an
interpretable quality measure for each estimated bounding box. For this reason, we introduce
in Chapter 5 the use of a recurrent neural network to predict such a measure in an online
fashion.

KITTI dataset [14]. Sequence 0004, 26th frame. Detector: PointRCNN [15]

Figure 1.5 Example of objects tracked by an MOT system

1.2 Research objectives

Among the three certification methods discussed previously, in this thesis we propose meth-
ods for the latter two: explainability and reliability. Due to the high dimensionality of the
raw input signals used to perceive complex environments (e.g., video signals), certification of
control systems is becoming more challenging. In terms of explainability, we seek to explain a
given decision of a system processing a given time-varying signal, by generating explanations
with a human-friendly temporal logic. This involves designing an efficient algorithm to find
the optimal explanation in a large search space. Then the method and the generated expla-
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nations should be illustrated in simulation or with real-world data. In terms of reliability, we
focus on a specific dynamic decision system — online 3D MOT system. We seek to provide
decisions, which, in the case of MOT systems, are basically the estimated bounding boxes of
the surrounding objects, with an interpretable quality measure. This measure can eventually
improve the tracking system and should be illustrated with public real-world datasets.

1.3 Thesis organization

This thesis by article includes one article submitted in April 2022 (Chapter 4):

• Tzu-yi Chiu, Jérôme Le-Ny, and Jean-Pierre David, “Temporal Logic Explanations for
Dynamic Decision Systems using Anchors and Monte Carlo Tree Search”, The journal
of Artificial Intelligence (AIJ), [under review] 2022

and a complementary research work (Chapter 5) titled “Tracklet Reliability in 3D Online
Multi Object Tracking”. The research presented in this thesis was done in the mobile robotics
and autonomous systems laboratory at Polytechnique Montreal, under supervision of Prof.
Jérôme Le Ny.

The remainder of this thesis is organized as follows. Chapter 2 reviews some basic concepts
and the related literature. Next, Chapter 3 briefly summarizes the research approaches to
cope with the above research objectives. Chapter 4 and Chapter 5 contain the article and the
complementary research work, respectively. Finally, Chapter 6 provides a general discussion
of the results obtained in the previous two chapters, while Chapter 7 concludes the thesis
with potential future work.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we review the related literature and present some basic concepts. We divide
this chapter into Section 2.1 and Section 2.2, to discuss the two certification methods in the
scope of our work: explainability (Chapter 4) and reliability (Chapter 5).

2.1 Explainability

We seek to generate explanations for a given behavior of an automated dynamic decision
system. Section 2.1.1 presents the literature in the area of Interpretable Machine Learning,
where we also present anchors, a framework allowing to quantify the relevance of explanations
using the concept of precision and coverage. To involve time properties, the explanations will
be expressed in the form of Signal Temporal Logic (STL) formulas, discussed in Section 2.1.2.
Then, the conceived algorithm for searching the best formulas is based on Monte Carlo Tree
Search (MCTS), which is finally presented in Section 2.1.3.

2.1.1 Interpretable Machine Learning

Interpretation methods can be categorized as either model-specific or model-agnostic. Model-
specific methods apply to particular types of ML models, whose structure can be exploited.
For instance, in computer vision, class activation maps (CAM [16] and Grad-CAM [17])
identify the input pixels that most influence a classification decision made by a Convolutional
Neural Network (CNN). In some neural networks that are too large and complex however,
the huge number of parameters (weights and biases) included in a network prevents us from
interpreting its behaviors from the model itself. Model-agnostic methods are more flexible,
as they can be applied to any model, which can be treated as a black-box model. Instead
of analyzing the model’s inner structure, these methods rather seek to provide interesting
features of the input data that would most probably result in a specific decision.

Global model-agnostic methods such as replacing the model by a small decision tree [18]
characterize the average behavior of the model based on the input data distribution, but are
usually not precise enough. On the other hand, local methods only focus on a specific region
of the input space. In Chapter 4, we consider an important local method, anchors [12], based
on which we try to explain specific behaviors of dynamic systems by incorporating temporal
properties. In the framework of anchors, two metrics, precision and coverage, are introduced
to measure the relevance of an explanation. Essentially, an explanation of high precision
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provides an accurate sufficient condition on the input features such that the output decision
remains the same. A larger coverage makes the explanation more general, i.e., applicable
to more input instances, thus approaching a necessary condition for the decision. A more
general explanation is also more comprehensible and user-friendly. Using the terminology
of [19], these rule-based explanations define clear boundaries between the decision for which
we request an explanation and a different one (see Section 4.2.1 for more details). Another
local method, LIME [20], precedes the method of anchors, and locally approximates the
model by a simpler interpretable model, e.g., a linear model or decision tree.

2.1.2 Signal Temporal Logic

STL [21] is a type of temporal logic [22] used to describe temporal and spatial properties
of a signal. The most common STL formulas are constructed based on the two operators
φ 7→ F[a,b]φ and φ 7→ G[a,b]φ, which mean that the predicate φ must be true at least once
(F) or at all times (G) in the time interval [a, b], starting from the current time t. Past
Time Signal Temporal Logic (PtSTL) can also be used when it is more natural to generate
explanations based on “past” observations. STL also admits quantitative semantics [23, 24],
quantified by the “robustness degree”, capturing how far a signal is about to violate a formula.

Some special STL formulas are called primitives, which may have different structures. For
example, we can define primitives of different levels, such as first-level primitives P1 and
second-level primitives P2 adapted from [25]:

P1 :=
{

F[a,b](s ≶ µ),G[a,b](s ≶ µ)
∣∣∣ 0 ≤ a ≤ b, µ ∈ R

}
P2 :=

{
F[a,b]G[0,c](s ≶ µ),G[a,b]F[0,c](s ≶ µ)

∣∣∣ 0 ≤ a ≤ b, c ≥ 0, µ ∈ R
}

In words, at the current time t, s ≶ µ intuitively means “the signal is [smaller/greater]
than µ”, and the first-level primitives in P1 mean “s ≶ µ is [once/always] true within the
time interval [t + a, t + b]”. For second-level primitives in P2, F[a,b]G[0,c](s ≶ µ) specifies
“within [t + a, t + b], there is a time after which s ≶ µ is true for c timestamps”, and
G[a,b]F[0,c](s ≶ µ) specifies “for all times in [t+ a, t+ b], s ≶ µ is true at least once within the
next c timestamps”. The second-level primitives are richer than the first-level ones. Note that
depending on the desired STL specifications, one is not limited to these two sets of primitives.
Finally, longer STL formulas can be obtained via conjunction (and, ∧) or disjunction (or, ∨)
of these primitives.
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Related literature includes [26] that tries to classify signals into anomalous and normal signals
using STL formulas. The search includes finding an appropriate formula structure, using
Parametric Signal Temporal Logic (PSTL) [27], as well as the parameters in a given PSTL
formula via optimization. Bombara et al. [28] use a decision-tree approach to build STL
formulas incrementally to classify a given set of signals. These methods suppose that a
dataset of signals is available to learn the formula. When only the model and a specific
input-output pair are available, it would be inefficient to generate a large dataset to apply
the method, without any guarantee that every special case could be included in the dataset
and explored sufficiently. That is the reason why we use the “anchors” methodology: with
some probability of error we can generate just enough signal samples to find the boundaries
described in STL.

2.1.3 Monte Carlo Tree Search

MCTS [29] is a heuristic algorithm that employs a multi-step look-ahead strategy to make de-
cisions sequentially, under uncertainty, in a large search space. Combined with deep learning,
it was used in the algorithm of AlphaGo [30], a program developed by Google’s DeepMind
to master the board game of Go. The data structure used in MCTS is a game tree, or a
Directed Acyclic Graph (DAG), whose nodes represent states while edges represent actions.
Given the current state, the goal is to choose the most promising action to pass to the next
state among its children, by exploring multiple steps ahead. In contrast to the Minimax
search algorithm, a basic depth-first adversarial search method, MCTS doesn’t explore all
possible subsequent states, especially in a complex game like Go where hundreds of possi-
ble actions can be chosen at each state. Exploring all possible nodes is infeasible within a
limited amount of time. Starting from the root state, the tree is built incrementally using
guided random sampling, via simulation, to estimate the success rate of each possible action.
MCTS is capable of finding the balance between exploration and exploitation using a bandit
strategy [31,32], to concentrate on the most promising actions.

To briefly summarize the algorithm, before making every decision a large number of roll-outs
are performed repeatedly until the imposed time limit is reached, starting from the root node
corresponding to the current state. A roll-out consists of 4 steps, as illustrated in Figure 2.1:

1. Selection. A path is selected from the root to a leaf using a bandit strategy.
2. Expansion. If the leaf reached is not a terminal node, the leaf is expanded and its

children are incorporated into the tree.
3. Simulation. Starting from the leaf, Monte-Carlo simulations are performed until a

result is achieved, which is then used to update the success rate.
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Source: Wikipedia

Figure 2.1 The 4 steps involved in one roll-out of MCTS

4. Back-propagation. Simulation scores are also back-propagated to every ancestor in
the selected path to update their success rate.

To draw connection with our work in Chapter 4, each state corresponds to an STL for-
mula, while its children are longer formulas obtained via conjunction with an STL primitive.
Interestingly, the empirical score computed for each state can be related to the notion of
“precision” defined in anchors [12]. Originally, the search algorithm proposed in [12] consists
of a Multi-Armed Bandit (MAB)-based sampling strategy, KL-LUCB [33], to greedily opti-
mize the empirical precision. Inspired by [34, 35] where MCTS is used for feature selection,
we propose to improve the efficiency with MCTS to search for high-precision explanations.

2.2 Reliability

To be informed of the reliability of decisions, we seek an interpretable quality measure at
runtime. In the complementary research work (Chapter 5), we focus specifically on MOT
systems. In Section 2.2.1, tracking systems are introduced and the related literature is
reviewed. Next, we show in Section 2.2.2 the use of confidence measures in ML in general,
and in object tracking more specifically. Finally, in Section 2.2.3 we introduce Recurrent
Neural Network (RNN), and a particular type of RNN — Long-Short Term Memory (LSTM),
which are capable of making predictions that take into account past information. We make
use of an LSTM to learn such a measure, which can provide interpretable meaning.



13

2.2.1 Object tracking

Object tracking [36] is an important task in computer vision applied in a variety of domains:
video surveillance, traffic monitoring, logistics, robotics, sports analysis, etc. Different modal-
ities such as camera, LiDAR and RaDAR can be used to detect surrounding objects. With
camera, a 2D object detector takes a static image as input and outputs a set of 2D detections,
described with bounding boxes or segmentation masks for localization, and may encode their
RGB information together. Stereo cameras can complement monocular cameras with depth
information and improve accuracy. LiDAR and RaDAR, on the other hand, estimate the
distance of objects, using the time-of-flight distance measurement of light pulses and radio
waves, respectively. The scanner can thus incrementally encode necessary information about
the detected physical surfaces to the point cloud (3D data points), which is then processed
by a 3D detector to output a set of 3D detections. See Figure 1.5 for illustration. These 3D
bounding-box detections are projected on a 2D image for better visualization.

In Visual (Single) Object Tracking, only the initial location of the object is provided, and the
goal is to identify its location in every subsequent frame. Relevant features are compared to
effectively discriminate the object from the background. Depending on the way the object is
described, methods can be classified as either point-based or contour-based. In point-based
methods such as [37], objects are described using feature points (or keypoints). However, fea-
ture points don’t explicitly provide precise location of the object. In contour-based methods
however, the object is described with a bounding box or a segmentation mask. For exam-
ple, [38] surveys the most prominent tracking methods: Discriminative Correlation Filters
and Siamese Networks. In Multi Object Tracking (MOT) [39], multiple objects have to be
discovered and localized in each frame and a same object should maintain a constant identity
across frames. The estimated trajectory of an object across frames is called a tracklet. With
the rapid development of state-of-the-art deep learning models trained for object detection
in real-time speed, a “tracking-by-detection” framework has been used in recently proposed
algorithms.

Methods can also be categorized as either online or offline, depending on the way sequences
are processed. In offline tracking, a video of 2D images or 3D point clouds is processed as a
whole to obtain a global optimal solution, thus future information can be used to determine
an object’s current location on a given frame. In online tracking however, only up-to-time
observations can be used and decisions should be made online at each frame.

According to [40], an online MOT system can be decomposed into four individual modules:
detector, association, motion model and life cycle management. The general architecture is
shown in Figure 2.2. To briefly summarize the architecture, at each frame, the detector pro-
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vides a set of object detections, which are new measurements used to update tracklets, while
their movement is modelled and predicted with the motion model. The association mod-
ule matches tracklets with new detections, while the life cycle management decides whether
tracklets should be kept or deleted.

Recent literature on 3D online MOT includes a simple baseline method, AB3DMOT [41],
which uses a 3D detector that processes LiDAR point clouds to provide 3D bounding boxes,
then uses a Kalman Filter [42] as the motion model, the Hungarian algorithm [43] for as-
sociation, and finally Intersection Over Union (IoU) as the matching metric. Among its
followers that seek to improve the association module, Chiu et al. [44] replaces IoU by Ma-
halanobis distance [45] to take into account the tracklet’s state uncertainty; CenterPoint [46]
considers objects as points and replaces IoU by their euclidean distance; [40] generalizes IoU
to GIoU [47]; FANTrack [48] trains a deep CNN for data association; finally, [49–51] add
2D camera data to provide additional position and RGB information. Different to previ-
ous works, CBMOT [52] concentrates on improving life cycle management. They design
score-update functions and a score decay mechanism to assign confidence scores to tracklets,
and distinguish their “confidence-based” methods from “count-based” rules proposed in [41],
based on which the number of frames of (non-)detection is used to determine the life cycle
of each tracklet.

2.2.2 Confidence measure

As explained previously, it is difficult to properly define what the confidence score of a
prediction or a decision made by an ML model is. In a neural network that performs image
classification, the confidence score of “an image associated to a class” is often considered as
the output corresponding to that class after the sigmoid or softmax normalization layer. In an
SVM classifier, the margin can be used as a proxy of confidence measure. However, as pointed
out by [53], these scores are only useful to compare reliability between two predictions, but
do not usually provide meaningful interpretation. A reliable interpretation of such a measure
can enable human users to react to the result accordingly. In object detection, YOLO [13]
trains the confidence score of a bounding box with the IoU between the box and the true
object, and can be used in non-maximum suppression to choose the best bounding box if
there are multiple of them corresponding to a same object.

It can also be used in performance evaluation via thresholding on this score. The two major
evaluation metrics of a system in ML are recall and precision: recall is defined as the ratio of
correct objects output by the system among all true objects (ground-truth), while precision is
the ratio of correct objects output by the system among all objects output by the system. In
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Figure 2.2 General architecture of a 3D online MOT system

general, depending on the application, there is a trade-off to find between recall and precision,
because outputting everything is equivalent to setting the threshold to 0, while increasing
the threshold can decrease the recall and improve the precision. Thus, thresholding on the
confidence score allows to find the best threshold to balance the two metrics. To evaluate
a system, certain metrics such as mean Average Precision (mAP) require that the model
performs correctly at each threshold by computing the area below the Precision-Recall curve
(PR curve).

Concerning the confidence scores used in object tracking specifically, a Bayesian model is used
in [54] to estimate the probability of a binary hypothesis (presence, absence) or the density
function of the object’s state (and presence) based on previous observations. [55] designs
heuristic functions to assign confidence scores to a tracklet using past information such as its
length, the number of frames of non-detection and the affinity with matched detections. In
3D tracking, [52,56] design heuristic score-update functions to compute confidence scores for
tracklets. In a similar spirit of mAP, AB3DMOT [41] proposes two integral metrics AMOTA
and AMOTP for evaluation by thresholding on the tracklet’s overall confidence score, defined
as the average of its confidence scores across all frames. However, these scores can neither be
obtained at runtime nor necessarily have an interpretable meaning. In our complementary
research work (Chapter 5), we propose to provide each tracklet with an interpretable quality
measure by training an LSTM [57], introduced in the next section, to predict the IoU between
the tracklet and a true instance, as in YOLO [13], with the goal of informing users of each
tracklet’s reliability at runtime.
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2.2.3 RNN and LSTM

Recurrent Neural Network (RNN) addresses the issue of stateless neural networks incapable
of making predictions based on past observations. While stateless neural networks may take
as input a window of past observations of fixed size, this would result in high dimensional
inputs and intermediate layers. RNNs can take inputs of variable length without being too
large and complex, by including loops in their internal structure. More specifically, memory
can be stored in hidden states and propagated forward to the next time step. With a new
input, the model updates the hidden states, to take into account past information. The
hidden states are then used to output predictions, usually by simply applying a linear (fully
connected) layer at the end.

Unfortunately, classical RNNs are known for their short-term memory and unable to mem-
orize previous information from long time ago [58]. LSTM [57] is a special type of RNN,
carefully designed to keep track of long-term dependencies from the past. In addition to the
hidden states present in every RNN, it also holds cell states that contain “gated” information
flow for long-term memory. Figure 2.3 shows a graphical representation of an LSTM, where
three of these gates are present: the forget gate, the input gate and the output gate. A gate
is a sigmoid layer, which outputs a number between 0 and 1, indicating how much informa-
tion can actually get through, followed by a pointwise multiplication operation. The forget
gate controls which bit of information in the long-term memory has less weight and should
be forgotten. The input gate controls the flow of new information from the new input and
hidden states into the long-term memory. Finally, the output gate decides how the hidden
state should be updated, depending on the new cell states, the new input and the previous
hidden states.

Source: Wikipedia

Figure 2.3 A graphical representation of an LSTM
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CHAPTER 3 RESEARCH APPROACH AND THESIS ORGANIZATION

To allow a better understanding of automated dynamic decision systems, we propose in this
thesis methods to improve certification of these systems from two aspects: explainability and
reliability, as discussed respectively in the submitted article included in Chapter 4 and the
complementary research work presented in Chapter 5.

On the one hand, to explain automated decisions (Chapter 4), we introduce a model-agnostic
method to generate user-friendly local explanations for a given behavior of any dynamic de-
cision system, treated as black-box model. To include features of time series in dynamic
scenarios, we search for explanations expressed in STL [21], a highly descriptive logic ca-
pable of capturing temporal properties of input signals, which are easily understandable by
human users. Indeed, the aim is that such explanations should be usable by human designers
to better understand the failure modes of a given system or gain confidence in its capabilities.
The search in such a high-dimensional space under uncertainty requires the use of heuristic
algorithms such as MCTS [29], to gradually optimize the “precision” of an explanation in
the framework of anchors [12]. Properties of STL can also be leveraged to find formulas that
maximize the “coverage” among previously found high-precision explanations (anchors). Fi-
nally, we illustrate our method in simulations with the analysis of an automatic transmission
system implemented in a vehicle, and a collision avoidance system for unmanned aircraft
(ACAS Xu) implemented with a neural network.

On the other hand, for reliability, we seek to provide an interpretable quality measure for
every decision made by the system. In the complementary research work of Chapter 5, we
focus on a particular type of perception-driven dynamic decision system — online 3D MOT
system. Recent papers generally design these systems based on the “tracking-by-detection”
paradigm. Upon these systems, we propose a data-driven approach using LSTM [57] recurrent
neural networks to learn a quality measure for each tracklet at runtime, predicting the IoU
measure between the tracklet and a potential true instance. We show that this quality
measure can also help manage each tracklet’s life cycle by conducting extensive experiments
on two benchmarks: KITTI [14] and nuScenes [59].

The remainder of this thesis is composed of the submitted article about explainability (Chap-
ter 4), the complementary research work about the reliability of MOT systems (Chapter 5),
a general discussion about the obtained results (Chapter 6) and a conclusion with potential
future work (Chapter 7).
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4.1 Introduction

Progress in Machine Learning (ML) in recent years is motivating efforts to use data-driven
design methodologies in the development of automated decision and control systems. For
example, neural networks trained on large image datasets can be used for perception in
self-driving cars or automated trains, and reinforcement-learning based controllers could be
used for online planning. Unfortunately, modern machine learning models and architectures,
such as deep neural networks used for object recognition and image interpretation, are often
very large and complex, containing millions of parameters in a nonlinear architecture. Thus,
assuring that these models will behave as expected in real-world situations is generally hard,
which constitutes a barrier to their adoption.

To integrate and deploy modern ML-based systems into safety-critical control systems, one
needs to understand, trust and even certify their behavior for environments that could differ
from a given training dataset. It has been shown that the outputs of ML models can be in
some cases very sensitive to small variations in their inputs (adversarial examples [3]). High
performance on a test dataset could also be due to the model learning spurious correlations
due to deficiencies in the data collection process and as a result might not be representative
of real-world performance [20]. Addressing these issues requires developing methods to assist
designers of ML-based systems in justifying, explaining or even certifying to third parties to
which extent a given system is likely to work as intended. Among existing approaches [11],
we focus here on model-agnostic explanation methods, which can be applied to any type of
input-output model that one tries to analyze, irrespective of its internal architecture (e.g.,
neural network, rule-based system, etc.). These methods can then be used, e.g., to compare
the behaviors of different types of models trained to solve the same given task.

Control systems, e.g., a perception-driven steering system for an autonomous car, are fun-
damentally input-output dynamical systems processing time-varying signals. Increasingly,
the high-dimensionality of the raw input signals and the complexity of the environments in
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which these systems are deployed require new decision-making architectures together with
the development of new validation methodologies that complement traditional model-based
formal analysis or simulation-based methods. In this chapter, we develop a framework to
provide local model-agnostic explanations for the behaviors of a dynamic decision or control
system. These explanations are expressed in Signal Temporal Logic (STL) [21], a popular
logic used to capture temporal properties of dense-time real-valued signals, which provides
rich descriptions of the behavior of time series that are easily interpretable by humans. In-
deed, the aim is that such explanations should be usable by human designers for example to
better understand the failure modes of a given system or gain confidence in its capabilities.

In this work, a simulator or implementation of the control system under study is assumed to
be available, which consists of a module computing decisions based on simulated or physical
input signals. Given a behavior of interest, i.e., an input signal and corresponding decision,
our algorithm searches efficiently for precise STL formulas that attempt to describe the most
relevant properties of the input signal that lead to this decision. Depending on the context, it
is also possible to use a variant of STL called Past Time Signal Temporal Logic (PtSTL) [60],
since an action performed by a controller is based on its past measurements. Following the
general anchors framework of Ribeiro et al. [12], for a formula to provide a good explanation
of a behavior, any input signal verifying the formula should lead the system to reproduce this
behavior with high probability. This probability is called the precision of the formula. We
describe an algorithm to search for descriptive STL formulas using Monte Carlo Tree Search
(MCTS) [29], an efficient heuristic algorithm allowing us to concentrate the search on the
most promising formulas (those expected to have higher precision) within a large possible
space, using guided random sampling. Another important measure for the relevance of an
explanation is the notion of coverage, which captures the generality of an explanation, i.e.,
whether it can be applied to more input instances. Indeed, a more general explanation is
argued to be more comprehensible and user-friendly. We describe how to leverage specific
features of STL to gradually maximize the coverage among high-precision formulas.

The rest of the paper is organized as follows. We start by providing the necessary back-
ground on the anchors methodology in Section 4.2.1 and on STL in Section 4.2.2, in order
to formally state in Section 4.2.3 the problem we address. Section 4.3 describes the pro-
posed algorithm in detail, more specifically, how MCTS is adapted to generate STL-based
explanations (anchors) efficiently, with an illustrative example allowing to walk through the
algorithm step-by-step. Then, two case studies are discussed. In Section 4.4, we consider
a hybrid (continuous-discrete) control system implementing an automatic transmission in a
vehicle [9]. We start by evaluating and validating our algorithm with a monitoring system
for which the real explanations are known [61], and then illustrate the method by analyzing
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a simulated behavior of the transmission system. In Section 4.5, we apply the methodology
to the ACAS Xu system [62], which uses a neural network to issue guidance instructions
to avoid collisions between aircraft. Finally, related work is discussed in Section 4.6 before
concluding the paper with future work in Section 4.7.

4.2 Preliminaries and problem statement

4.2.1 Anchors

We are concerned with describing formally certain behaviors of critical systems whose struc-
ture might be either partially unknown or too complex to be fully characterized. This work
builds on the anchors methodology of Ribeiro et al. [12], which provides local model-agnostic
explanations for specific behaviors (input-output pairs) produced by a black-box input-output
system. Formally, let f : X → {0, 1} be a black-box model and x0 ∈ X be a given input
instance for which we want to explain the model’s output f(x0). An anchor can be viewed as
a logic formula describing via a set of rules (predicates) a neighborhood Ax0 ⊂ X of x0, such
that inputs sampled from Ax0 lead to the same output f(x0) with high probability. Since this
concept of explanation is very general, algorithms to find good anchors for different types of
systems (e.g., for text analysis, image classification, or, in our case, dynamic decision-making
systems) can benefit from leveraging domain-specific tools.

For our problems of interest, f defines the behavior of a dynamic controller or decision-making
module, for which we seek a local explanation. The input x0 is an observable signal to be
analyzed, and Ax0 corresponds to a monitoring rule on signals, which we find convenient to
formulate using STL. Hence, the term rule in the following can refer both to a subset of X
and to a logical formula describing this subset. We assume that we are given a “perturbation
distribution” [12], i.e., a fixed probability distribution Dx0 on X (which depends on x0, see
Remark 4.2.1 below) that we use to sample input signals, by perturbing x0. All probabilities
in the following are defined by considering X as a probability space equipped with Dx0 .

Definition 4.2.1. Let τ ∈ [0, 1]. A rule A ∋ x0 (satisfied by x0) is said to be an anchor for
x0 if

pA ≥ τ (4.2.1)

where pA denotes the precision of A, defined as follows:

pA := P(f(z) = f(x0) | z ∈ A). (4.2.2)
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Therefore, an anchor A is a rule verified by x0 whose precision is above a certain threshold τ ,
where the precision of A is defined as the probability that the black-box model’s output is the
same for a random input z satisfying A as for x0. Hence, A provides some conditions that are
sufficient to predict the output of the model with high probability (under the perturbation
distribution Dx0). Another important notion introduced in [12] is the notion of coverage.

Definition 4.2.2. The coverage of a rule A is defined as cov(A) := P(z ∈ A).

Hence, the coverage of A is the probability that a random input (according to Dx0) satisfies
A. Although only the precision is involved in Definition 4.2.1 to define anchors, rules that
have broader coverage, i.e., rules that are satisfied by more input instances, are intuitively
preferable. Essentially, an explanation of high precision approximates an accurate sufficient
condition on the input features such that the output remains the same, while a larger coverage
makes the explanation more general, thus approaching a necessary condition. Therefore,
[12] proposes to maximize the coverage among all rules satisfying (4.2.1) to find the best
explanations among anchors, i.e., among those which have sufficient precision. This anchor
with maximized coverage allows to locally approximate the border separating the output from
the rest. Illustrative examples of precision and coverage are given in Figure 4.1: the curved
border separates the two decisions f(x) = 1 from f(x) = 0. In these examples, suppose
that τ defined in Definition 4.2.1 is fixed at 99%. Then A1 is not a valid anchor due to its
precision, while A2 and A3 are. Finally, A3 is preferred to A2 because of its coverage.

As explained in [12], for most problems of interest it is intractable to compute the precision
and the coverage exactly, and these probabilities have to be estimated by drawing independent
samples from Dx0 . We denote the empirical precision estimated from such samples by p̂A. On
the other hand, we show in Section 4.2.2 that the robustness degree of an STL formula, whose
definition is recalled in the next section, captures a notion related to coverage and can be
computed exactly. We also show in Section 4.3.1 that coverage can be gradually maximized
using logical implications between STL formulas, without the need to be accurately estimated.

Remark 4.2.1. How to choose Dx0 is problem-specific and left essentially unspecified by
the anchors methodology [12]. In practice, Dx0 should be used to generate a sufficiently rich
set of inputs around x0. Indeed, if the all the generated samples are very close to x0, many
candidate anchors could have a precision close to 100% and the method would not be able
to discriminate well among them. On the other hand, if the support of Dx0 is so large that
the behavior being explained is very rarely reproduced, it could take too long for a promising
candidate anchor A to collect enough samples for p̂A to approach pA. Since the region of
inputs producing the same output f(x0) is initially unknown, it may be delicate to choose
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Figure 4.1 Illustration of some example explanations for an input instance x0 and their
respective precision and coverage
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Dx0 appropriately. In this paper however, we generate simple random perturbations of the
input signal x0, see Sections 4.4 and 4.5, and leave for future work a study of the dependence
of the generated anchors with respect to the choice of Dx0 .

4.2.2 Signal Temporal Logic

We consider signals s : R+ → S1 × · · · × Sd where d denotes the signal dimension. For
i ∈ J1, dK := {1, . . . , d}, we assume that Si is a bounded interval in R, containing all real
values lying between a minimum value mini and a maximum value maxi. The components of
a signal s are denoted by si. The grammar of STL is recursively defined as follows:

ϕ := ⊤ | si > µ | si < µ | ¬ϕ | ϕ ∧ ϕ | ϕU[a,b]ϕ,

where ⊤ represents the Boolean true constant; si > µ and si < µ are Boolean predicates
with µ ∈ Si; ¬ is the Boolean negation and ∧ is the Boolean conjunction; finally U[a,b] is
the bounded temporal operator Until on the time interval [a, b]. Let s be a signal and t a
timestamp. The semantics of STL is defined recursively as follows, where s(t) |= φ means at
time t, the signal s satisfies the condition φ:

s(t) |= ⊤ ⇔ ⊤

s(t) |= (si > µ) ⇔ si(t) > µ

s(t) |= (si < µ) ⇔ si(t) < µ

s(t) |= ¬φ ⇔ ¬(s(t) |= φ)

s(t) |= φ1 ∧ φ2 ⇔ (s(t) |= φ1) ∧ (s(t) |= φ2)

s(t) |= φ1U[a,b]φ2 ⇔ ∃ t′ ∈ [t+ a, t+ b] s.t. (s(t′) |= φ2)

∧ (∀ t′′ ∈ [t, t′], s(t′′) |= φ1)

In addition, we use the two temporal operators (Eventually, Globally), which can be defined
from Until:

F[a,b]ϕ ≡ ⊤U[a,b]ϕ ; G[a,b]ϕ ≡ ¬F[a,b]¬ϕ ,

whose semantics can be easily deduced:

s(t) |= F[a,b]φ ⇔ ∃ t′ ∈ [t+ a, t+ b], s(t′) |= φ

s(t) |= G[a,b]φ⇔ ∀ t′ ∈ [t+ a, t+ b], s(t′) |= φ.
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In words, s(t) |= F[a,b]φ (resp. s(t) |= G[a,b]φ) says that the predicate φ must be true at least
once (resp. at all times) during [t+ a, t+ b] for the signal s.

STL also admits quantitative semantics [23, 24], quantified by the robustness degree ρ of a
formula φ over a signal s at time t. Due to different scales between signal components, we
normalize the robustness degree so that it is always contained within [−1, 1]. The semantics
is then recursively defined as follows:

ρ(⊤, s, t) = 1

ρ(si ≶ µ, s, t) = ∓(si(t)− µ) / (maxi − mini)

ρ(¬φ, s, t) = −ρ(φ, s, t)

ρ(φ1 ∧ φ2, s, t) = min(ρ(φ1, s, t), ρ(φ2, s, t))

ρ(φ1U[a,b]φ2, s, t) = max
t′∈[t+a,t+b]

min
(
ρ(φ2, s, t′), min

t′′∈[t,t′]
ρ(φ1, s, t′′)

)

and thus extends to:

ρ(F[a,b]φ, s, t) = max
t′∈[t+a,t+b]

ρ(φ, s, t′)

ρ(G[a,b]φ, s, t) = min
t′∈[t+a,t+b]

ρ(φ, s, t′)

The robustness degree captures how far a signal is from violating a formula, as illustrated by
the two following properties explained in [63]:

Property 4.2.1. (Soundness) Let s ∈ S, φ an STL formula and t ∈ R+. If ρ(φ, s, t) > 0,
then s(t) |= φ. If ρ(φ, s, t) < 0, then s(t) ̸|= φ.

Property 4.2.2. (Correctness) Let s, s′ ∈ S, φ an STL formula and t ∈ R+. Suppose
ρ(φ, s, t) > 0. If we have ∥si− s′

i∥∞ < (maxi− mini)ρ(φ, s, t) for all i ∈ J1, dK, then s′(t) |= φ.

In Property 4.2.2, the notation ∥u∥∞ refers to the sup-norm of a scalar signal u. This property
shows that the robustness degree captures a notion related to the coverage of Definition 4.2.2.
If a rule applies to an input signal, then its robustness degree ensures that it also applies to
signals that are sufficiently close, within a distance proportional to the robustness degree.

Parametric STL and primitives

Parametric Signal Temporal Logic (PSTL) [27] replaces the parameters in STL formulas
with indeterminates (to be evaluated) and thus represents the structure of the formula itself.
For example, given a PSTL formula ψ = F[a,b](s1 > µ), the evaluation of the parameters
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θ = {a : 0, b : 1, µ : 2} results in the STL formula ψ(θ) = F[0,1](s1 > 2). Depending on the
kind of system specifications one is interested in, different types of primitives can be used to
build formulas incrementally, such as the following ones adapted from [25].

Definition 4.2.3. The set of first-level primitives is defined as

P1 :=
⋃

i∈J1,dK

{
F[a,b](si ≶ µi),G[a,b](si ≶ µi)

∣∣∣ 0 ≤ a ≤ b, µi ∈ Si

}

Definition 4.2.4. The set of second-level primitives is defined as

P2 :=
⋃

i∈J1,dK

{
F[a,b]G[0,c](si ≶ µi),G[a,b]F[0,c](si ≶ µi)

∣∣∣ 0 ≤ a ≤ b, c ≥ 0, µi ∈ Si

}

In words, given that si ≶ µ means “the i-th signal is [smaller/greater] than µ at the time of
decision t”, the first-level primitives provide explanations of the form: “si ≶ µ is [once/always]
true within the time interval [t+a, t+b]”, while for the second-level primitives, F[a,b]G[0,c](si ≶

µ) specifies “within [t+ a, t+ b], there is a time after which si ≶ µ is true for c timestamps”
and G[a,b]F[0,c](si ≶ µ) specifies “for all times in [t+a, t+b], si ≶ µ is true at least once within
the next c timestamps”. These primitives are useful to capture certain safety, reachability
and liveness properties for example.

Remark 4.2.2. The second-level primitives are richer than the first-level ones because we
can show that P1 ⊂ P2. However, having more parameters increases the computation time
when searching for anchors. Note also that, depending on the desired STL specifications, one
is not limited to these two sets of primitives. In our current implementation and experiments,
we consider only first-level primitives.

Remark 4.2.3. Past time STL can be used instead of standard STL when it is more natural
to have explanations based on past observations. In this case, it suffices to replace the interval
[t+ a, t+ b] with [t− b, t− a] in the above definitions.

4.2.3 Formal problem statement

Given an input signal s0 ∈ S, a black-box system and a perturbation distribution Ds0 , our
goal is to compute the best possible anchor for s0 expressed in STL. As it would either be
too long or impossible to generate random samples from explanations whose coverage is too
small, we also impose that the robustness degree of the formulas be above a certain threshold
ρ ≥ 0 (cf. Property 4.2.2). Finally, if multiple anchors are found, the one with the largest
coverage is considered as the best anchor to be returned. More formally, given:
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• P a set of STL primitives,
• ρ ∈ [0, 1] close to 0,
• τ ∈ [0, 1] close to 1,

identify φ = ψ1 ∧ · · · ∧ ψn, with ψk ∈ P for all k, such that at the time of decision t:

ρ(φ, s0, t) ≥ ρ (4.2.3a)

∧ pφ ≥ τ (4.2.3b)

∧ φ ∈ argmax
pφ′ ≥τ

cov(φ′). (4.2.3c)

4.3 Computing anchors using Monte Carlo Tree Search (MCTS)

The richness of temporal logic specifications makes it difficult to analyze every possible
formula to find anchors expressed in STL. When adding a new predicate to a formula by
conjunction (∧), we reduce the coverage in order to increase the precision of the formula,
so it is natural to proceed incrementally. In this paper, we develop a search algorithm for
anchors using MCTS (see Section 4.6.3) in a Directed Acyclic Graph (DAG) whose nodes
are STL formulas, where the children of an STL formula φ consist of its conjunction with
primitive candidates {φ∧ψ |ψ ∈ P}. As such, the moves in MCTS are primitive candidates
ψ. However, some moves do not need to be considered, when the conjunction has no effect on
the formula itself, e.g., F[0,1](s < 0)∧F[0,1](s < 1) ≡ F[0,1](s < 0). We discuss in Section 4.3.1
how to effectively choose the eligible primitive candidates to conjoin with an STL formula
φ, and we give in Section 4.3.2 the details of the MCTS algorithm, which explores and
exploits formulas using a multi-step bandit sampling strategy before deciding on the best
move, and recursively builds the formula until its empirical precision increases above the
imposed threshold τ ∈ [0, 1]. Finally, an illustrative and visualized example showing the
evolution of a DAG built with MCTS is given further in Section 4.3.3.

4.3.1 Primitive candidates

First, to generate a finite set of STL primitive candidates ψ for consideration at each move, we
discretize the parameters µ for signal components. Let us introduce the following notation.
Let m ∈ N∗ denote a quantization stepsize. For x < y ∈ R:

linspace(x, y,m) :=
{
x+ k

y − x
m

, k ∈ J0,mK
}
. (4.3.1)

then only values in linspace(mini, maxi,m) are considered for µ.
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Secondly, in order to satisfy (4.2.3a), the STL primitive candidates should be robust enough,
so we consider the following set of primitive candidates, which are generated once when the
program starts:

cands :=
{
ψ ∈ P | ρ (ψ, s0, t) ≥ ρ

}
(4.3.2)

Property 4.2.1 ensures that every STL primitive ϕ ∈ cands is satisfied by the signal s0, while
Property 4.2.2 ensures a minimum coverage of ϕ, as it is also satisfied by the neighborhood
of s0 defined by ρ. Meanwhile, the property “robustness degree greater than ρ” is preserved
by conjunction, because

ρ(ϕ1 ∧ ϕ2, s0, t) = min(ρ(ϕ1, s0, t), ρ(ϕ2, s0, t)) ≥ ρ,

so the computed anchors will certainly verify (4.2.3a).

Finally, the children of a formula φ consist of its conjunction with the elements of cands.
However, some simplification can be made when the conjunction is redundant, due to cands
being partially ordered.

Definition 4.3.1. For two primitive candidates ϕ1, ϕ2 ∈ cands, we say that “ϕ1 implies ϕ2”
(ϕ1 ⇒ ϕ2) if for all signals s and all timestamps t:

s(t) |= ϕ1 ⇒ s(t) |= ϕ2.

For example, we have the following implications:

• G[0,3](s < 0)⇒ F[0,3](s < 0)
• G[0,3](s < 0)⇒ G[1,2](s < 0)
• G[0,3](s < 0)⇒ G[0,3](s < 1)
• F[0,3](s > 1)⇒ F[1,2](s > 0)

Property 4.3.1. If ϕ1, ϕ2 ∈ cands verify ϕ2 ⇒ ϕ1, then:

• cov(ϕ2) ≤ cov(ϕ1)
• ϕ1 ∧ ϕ2 ≡ ϕ2

Definition 4.3.1 and Property 4.3.1 can be naturally extended to STL formulas.

Property 4.3.2. Let φ be an STL formula and ϕ1, ϕ2 ∈ cands such that ϕ2 ⇒ ϕ1. We have:

• φ ∧ ϕ1 ⇒ φ

• φ ∧ ϕ2 ⇒ φ ∧ ϕ1
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• cov(φ ∧ ϕ2) ≤ cov(φ ∧ ϕ1) ≤ cov(φ)
• φ ∧ ϕ1 ∧ ϕ2 ≡ φ ∧ ϕ2

Notice from these properties that φ∧ϕ2 may be a child of φ∧ϕ1 in the DAG, even if they have
the same number of primitives. Moreover, if ϕ1, · · · , ϕn ∈ cands, according to the previous
properties, the children of φ = ϕ1∧ · · ·∧ϕn should only be its conjunction with the following
primitive candidates:

cands
∖

n⋃
k=1
{ϕ ∈ cands s.t. ϕk ⇒ ϕ} . (4.3.3)

4.3.2 MCTS algorithm

Since (4.2.3a) is necessarily verified by any conjunction of primitive candidates of cands,
we attempt to find an STL formula φ that satisfies (4.2.3b), by selecting the best primitive
candidate incrementally using MCTS. In other words, we attempt to increase the empirical
precision every time a candidate is selected, so that a precision of τ can be eventually achieved.
By building a DAG consisting of STL formulas, MCTS allows us to explore a significant
number of formulas while using a bandit strategy to concentrate on the most promising ones
before deciding on each move. When exploiting a node corresponding to a formula φ, the
empirical precision is estimated by drawing random signal samples from D:

p̂φ =

Sφ/Nφ, if Nφ ̸= 0,

−∞, if Nφ = 0,
(4.3.4)

where Nφ is the total number of sampled signals verifying φ and Sφ is the total score, i.e.,
counting the number of input signal samples verifying φ and yielding the same output as s0

with the black-box system.

Algorithm 1 shows the outline of the MCTS algorithm. At each stage of the algorithm, we
have a current root node, which we denote here φ∗. We start with the trivial STL formula
φ∗ = ⊤, whose children are exactly the primitive candidates in (4.3.2). In order to identify
the next move from φ∗, i.e., the child of the root that maximizes the precision, a (typically
large) number of roll-outs are performed to expand the DAG below φ∗ and estimate the
precision of each node. A roll-out, starting from the current root φ∗, consists of 4 steps,
each of which is described in detail in the following: selection, expansion, simulation and
back-propagation.
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Algorithm 1 Outlines of the MCTS algorithm
φ∗ ← ⊤, ε← error threshold, N ← batch size
while p̂φ∗ < τ do

error ← +∞
while error > ε do ▷ roll-out from φ

select a path from φ∗ to a leaf L according to (4.3.5) at each node
expand the leaf L with its children
run simulations to obtain N signals and their scores (0 or 1)
if none of the N signals verifies L then

prune L from the tree
end if
for all node φ in path from φ∗ to L do

update Nφ and Sφ ▷ back-propagation
end for
error ← εφ where φ is the selected child of φ∗ according to (4.3.5)

end while
φ∗ ← child of φ chosen according to (4.3.8) ▷ next move
p̂φ ← Sφ/Nφ

end while
while φ has a parent whose precision ≥ τ do ▷ termination
φ← parent of φ whose precision ≥ τ

end while
return φ, p̂φ

Selection

A path from φ∗ to a leaf 1 L is selected by successively choosing child nodes based on a bandit
strategy, in order to maintain the balance between exploration (nodes with few simulation)
and exploitation (nodes with high empirical precision). The most classical strategy in MCTS
is called UCT (Upper Confidence Bound 1 applied to trees) [31,32]. Based on [64, Chapter 7],
the child of some node φ in the path is chosen by maximizing the following upper confidence
bound:

argmax
φ′ child of φ

p̂φ′ + εφ′ (4.3.5)

with the confidence width defined as

εφ′ :=


√
ce ln(Nφ)/Nφ′ if Nφ′ ̸= 0,

+∞ if Nφ′ = 0,
(4.3.6)

1A leaf in MCTS is a node for which no simulation has ever been made.
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where ce is an exploration parameter to be tuned, usually taken equal to 2. In our imple-
mentation, we found that another strategy, called UCB1-tuned [32], tends to perform better,
by setting

εφ′ :=


√

ce ln(Nφ)
Nφ′

min
(

1
4 , σ̂

2
φ′ +

√
2 ln(Nφ)

Nφ′

)
if Nφ′ ̸= 0,

+∞ if Nφ′ = 0,
(4.3.7)

with σ̂2
φ′ = p̂φ′(1− p̂φ′), an estimate of the precision’s variance.

Expansion

When a leaf L is reached by following the above node selection strategy, the children of L,
defined by its conjunction with the primitives in (4.3.3), are incorporated into the tree, thus
expanding the tree. We note that the memory requirements can be reduced by expanding
the tree only when necessary during the Selection phase, as some nodes may never be visited
twice, making it unnecessary to incorporate their children into the tree.

Simulation

At leaf L, we sample from D a fixed number of signals, say N . In practice, to define D, the
signals are generated around the signal s0 by running simulations using random but realistic
initial states and/or control signals. Each signal s is stored and associated with a score
f(s) = 1 if it produces the same output as s0, and f(s) = 0 otherwise. In order to ensure
a sufficient coverage for L, at least one signal from the batch should satisfy L, otherwise we
simply prune the leaf. The probability that none of the N signals verifies L is (1− cov(L))N

which is upper bounded by (1 − c)N if cov(L) ≥ c. To ensure that this probability is small
enough, say less than γ, the batch size should then satisfy N ≥ log(γ)/ log(1 − c). For
example, if γ = 10−3 and c = 0.03, then N > 226. In our implementation, we typically
choose N = 256. Then every leaf L remaining in the tree verifies P(cov(L) ≥ c) ≥ 1− γ.

Back-propagation

The path from φ∗ to L is of the form φ∗ =: φ0 → φ1 → · · · → φm := L. For each signal
sj generated by simulation, 1 ≤ j ≤ N , we notice that if sj satisfies some φi, it necessarily
satisfies all φl such that 0 ≤ l ≤ i, because of the relationship φm ⇒ φm−1 ⇒ · · · ⇒ φ0
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(Property 4.3.2). Thus we can naturally use binary search2 to find i∗ such that sj satisfies
all φl, for 0 ≤ l ≤ i∗, and otherwise for all l > i∗. For 0 ≤ l ≤ i∗, we increment all Nφl

by 1
and Sφl

by the score f(sj) ∈ {0, 1}. For l > i∗, we simply leave Nφl
and Sφl

unchanged.

Next move

After a number of roll-outs, chosen as explained in Remark 4.3.2 below, the next move is
decided among the children of the current root φ∗, by maximizing the lower confidence bound
of their empirical precision:

argmax
φ′ child of φ∗

p̂φ′ − εφ′ (4.3.8)

where εφ′ is the error term in either (4.3.6) or (4.3.7), depending on the chosen strategy. The
reason not to choose the child node simply maximizing the empirical precision is that we
want to prioritize formulas whose estimated precision is more accurate, with εφ′ capturing
this accuracy. Finally, the selected node becomes the root φ∗ from which we restart a number
of roll-outs in the same DAG, and so on, until the empirical precision of some node exceeds
the imposed threshold τ . In addition, we multiply the batch size by the number of moves, as
the coverage becomes gradually smaller, making it more difficult to sample signals verifying
the formula.

Termination (maximizing coverage)

The search terminates when we find a formula after a move with empirical precision exceeding
τ . Denote such a formula φ ∧ ϕ1, where ϕ1 corresponds to the last move of the algorithm.
This formula is an anchor, but it is possible that other anchors be present among the other
children of φ. To maximize coverage, see (4.2.3c), we start from φ∧ϕ1 and iteratively search
for another child φ ∧ ϕ2 whose precision exceeds τ (anchor) and which is a parent of φ ∧ ϕ1

(hence has greater coverage, see Property 4.3.2), and so on, until it is no longer possible. The
last found formula φ ∧ ϕk is then returned by our algorithm.

Remark 4.3.1. In this basic setting, it is possible that the algorithm never terminates, which
means that it isn’t able to find an STL formula that explains the behavior of the system with
sufficiently high precision. This may occur due to the primitives not being rich enough, for
example, the actual explanation may involve primitives of P2 (cf. Definition 4.2.4) but only
P1 (cf. Definition 4.2.3) is used. To give a stopping criterion for the algorithm, we impose a
maximum depth for the tree, max_depth, typically 4 or 5, in order to maintain relatively short
explanations, which are more understandable by humans, and limit the memory requirements.

2Also known as bisection search, half-interval search, logarithmic search, or binary chop.
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If the explanation is already a conjunction of max_depth primitives (after simplification) and
its empirical precision remains smaller than τ , then the algorithm returns the best explanation
found with its empirical precision.

Remark 4.3.2. The number of roll-outs in many applications of MCTS depends on an
imposed time limit to make a decision for the next move. As the algorithm performs more
roll-outs, the precision of the STL formulas is estimated more accurately. Since in our case
such a time limit is not present, we instead impose a threshold ε on the confidence width
εφ′ defined in (4.3.6) or (4.3.7) to ensure that the estimated precision of the child chosen as
the next move is accurate enough. A maximum number of roll-outs, max_iter, can also be
imposed if the error converges too slowly.

4.3.3 Thermostat: an illustrative example

In this section, we provide a simple example to illustrate the evolution of a DAG built with
the proposed algorithm using MCTS. Consider an automated thermostat which turns itself
off whenever the detected temperature is once greater than 20 ◦C within the past two seconds.
Suppose that this mechanism is unknown to our algorithm but that we can perform as many
simulations of this thermostat as we wish. The sample rate is supposed to be 1 Hz and a
signal s0 := [19 ◦C, 21 ◦C] has been measured during the last two seconds3. The thermostat
is thus turned off automatically, the decision “off” corresponding to the observed output
for which we seek to provide an explanation. Starting from the trivial STL formula ⊤, we
perform 15 roll-outs and explain the evolution with figures in the following. The batch size
is fixed at 256.

0th roll-out (Figure 4.2(a))

Starting from the trivial formula ⊤ as the root node, we run simulations to sample 256 signals,
which clearly verify ⊤. Among these samples, only 170 signals result in the same output as
s0, i.e., make the thermostat turn off automatically. At this stage, S⊤ = 170, N⊤ = 256 and
the empirical precision of ⊤ is 66.41%.

1st roll-out (Figure 4.2(b))

The DAG is, from the root node ⊤, expanded with the 8 primitive candidates, and we run
simulations to obtain another batch of 256 signals. For the formula φ := F[0,1](s1 > 20 ◦C),
where s1 corresponds to the temperature, only 252 signals verify φ, among which 166 produces

3This signal is clearly unrealistic but this example is only for illustration.
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the same output as s0. Thus Sφ = 166, Nφ = 252 and the empirical precision of φ is
65.87%. Sφ and Nφ are then back-propagated to ⊤ to increment S⊤ = 170 + 166 = 336 and
N⊤ = 256 + 252 = 508. The other 4 signals clearly verify ⊤, but none of them produce the
same output, thus only N⊤ is incremented by 4 to reach 512.

2nd to 8th roll-out (Figures 4.2(c) to 4.4(c))

Note that Equation (4.3.5) prioritizes nodes for which no simulation has ever been made.
Thus we successively run simulations for the remaining nodes and update the empirical
precision accordingly. We can observe that, at the end of the 8th roll-out, the most promising
formulas are F[0,1](s1 > 20 ◦C) and F[1,1](s1 > 20 ◦C), whose empirical precision stays at
100%.

9th roll-out (Figure 4.5(a))

Now that we have sampled for every child of ⊤, the selection strategy described in Equation
(4.3.5) suggests us to select again F[1,1](s1 > 20 ◦C) and expand the DAG with its children,
i.e., its conjunction with the 8 same primitive candidates. Compared to the other promising
formula, i.e., F[0,1](s1 > 20 ◦C), it is selected basically due to its fewer samples, thus greater
uncertainty (error), in order to promote exploration. We then run simulations for a newly
incorporated node, update its empirical precision and that of its ancestors, i.e., F[1,1](s1 >

20 ◦C) and ⊤.

10th roll-out (Figure 4.5(b))

Now the formula F[0,1](s1 > 20 ◦C) is selected and the DAG is expanded with its conjunction
with the 8 primitive candidates. These children, interestingly, also include F[1,1](s1 > 20 ◦C)
simply because F[0,1](s1 > 20 ◦C)∧F[1,1](s1 > 20 ◦C) = F[1,1](s1 > 20 ◦C). We run simulations
for a new node again and update its empirical precision and that of its ancestors accordingly.

15th roll-out, next move (Figure 4.5(c))

Suppose at the end of the 15th roll-out, the error of the last selected child, i.e., F[1,1](s1 >

20 ◦C), is small enough that we have enough confidence about its empirical precision. At
this stage, we stop the roll-outs and choose the next move among the children of the current
root node, i.e., ⊤. Among all children of ⊤, we choose the one that maximizes the lower
confidence bound for the next move, as described in Equation (4.3.8). Here, the next move
corresponds to φ∗ := F[0,1](s1 > 20 ◦C). It has the highest lower bound, principally due to
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its empirical precision and its large number of samples. As its empirical precision reaches
100%, making the node an anchor for any value of τ (which is supposed to be fixed at the
beginning, say 95% or 99%), we can terminate the search and proceed to the termination
step. In a more general case, if none of the nodes had a precision higher than τ , i.e., if no
anchor were found, we would transfer the current root node ⊤ to the chosen child φ∗, and
start again a number of roll-outs from this new root node.

Termination (Figure 4.5(c))

The termination step consists of maximizing the coverage by climbing up the DAG from the
new root node while remaining an anchor. There is nothing to do in this example, because
the only ancestor of F[0,1](s1 > 20 ◦C) is ⊤ which is not an anchor due to its empirical
precision. Had, for instance, F[1,1](s1 > 20 ◦C) been the chosen node with a 100% empirical
precision, we would have climbed up the DAG and found the other anchor F[0,1](s1 > 20 ◦C).
It has a greater coverage due to the logical implication between them, according to Property
4.3.2. The algorithm ends and returns F[0,1](s1 > 20 ◦C) with its 100% empirical precision.
In words, this explanation says: “the thermostat is off because the temperature is above
20 ◦C once between the 0th second and the 1st second”, corresponding exactly to how the
thermostat works (unknown to the algorithm).

4.4 Case study: automatic transmission

In this section and the following, where we present simulated case studies, we assume that
the simulated model is totally unknown (black-box) to our algorithm. The experiments were
run on Linux with an Intel i7-7700K CPU. The code is developed in Python 3.8 and not
optimized for efficiency.

4.4.1 Background

We consider an automotive automatic transmission model proposed in [8] as a benchmark
for hybrid system verification and widely used as case study, see, e.g., [65, 66]. This model
includes one discrete state variable, gear ∈ {1, 2, 3, 4}, and three continuous state variables:
the engine speed (espd, in rpm), the vehicle speed (vspd, in mph) and the throttle opening
percentage (throttle ∈ [0, 1]). The closed-loop vehicle model includes an automatic trans-
mission controller that shifts the gear based on the current gear setting, vehicle speed and
throttle opening. The controller we implemented is an approximation of that proposed in [9],
according to the schedule shown in Figure 4.6. The engine speed depends on the gear and
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(a) After the 0th roll-out

(b) After the 1st roll-out

(c) After the 2nd roll-out

Figure 4.2 After roll-outs 0 to 2
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(a) After the 3rd roll-out

(b) After the 4th roll-out

(c) After the 5th roll-out

Figure 4.3 After roll-outs 3 to 5
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(a) After the 6th roll-out

(b) After the 7th roll-out

(c) After the 8th roll-out

Figure 4.4 After roll-outs 6 to 8
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(a) After the 9th roll-out

(b) After the 10th roll-out

(c) After the 15th roll-out: next move & termination

Figure 4.5 After roll-outs 9, 10 and 15
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the vehicle speed, while the vehicle speed changes according to an acceleration signal that
depends on the engine torque, the gear, the throttle opening, the road slope, the rolling fric-
tion and the aerodynamic drag. In this case study, the road is assumed flat and the vehicle
is initially stationary with the first gear engaged.

Source: [9]

Figure 4.6 Automatic transmission shift points

4.4.2 Explaining an STL-based monitoring system

To evaluate and validate the proposed algorithm, we consider five of the requirements on the
transmission system proposed in [8], expressed in STL:

• φ1 = G[0,10](espd < 4750)
• φ2 = G[0,20](vspd < 120)
• φ3 =

(
G[0,30](espd < 3000)→ G[0,4](vspd < 35)

)
• φ4 =

(
G[0,30](espd < 3000)→ G[0,8](vspd < 50)

)
• φ5 =

(
G[0,30](espd < 3000)→ G[0,20](vspd < 65)

)
Suppose that a monitoring system triggers an alarm when a requirement is violated. We
consider each of these monitoring systems as a black-box model and aim to recover the
formulas defining them. In other words, we try to explain why the alarm has been triggered
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just by observing a signal s0. The report [10] provides some signals that violate the above
requirements. Figure 4.7(a) shows a signal violating φ1, as the engine speed exceeds 4750
rpm within 10 seconds. Similarly, Figure 4.7(b) shows a signal violating φ2, as the vehicle
speed exceeds 120 mph within 20 seconds. Finally, the signal shown in Figure 4.7(c) violates
simultaneously φ3, φ4 and φ5. These signals were generated by adjusting the throttle opening
over time.

Results and Discussion

For the five benchmarks, the chosen hyper-parameters for our algorithm are shown in Table
4.1. The perturbation distribution D is specified by changing the throttle randomly every
second as specified in the table. The initial state is kept unchanged since the vehicle is
supposed to be initially stationary. We choose the precision threshold to be τ = 100%
because this case study is meant to validate our algorithm, and we know a priori that the
monitoring system is based on an STL formula, which moreover can be recovered exactly
using the primitives P1. The results are shown in Table 4.2, where linspace is defined in
(4.3.1). For the five benchmarks, the anchors returned by our algorithm correspond exactly
to their negation, since the alarm is triggered when the requirements are violated, except for
φ3 where G[2,30](espd < 3000) is almost equivalent to G[0,30](espd < 3000), as the engine
speed may not surpass 3000 rpm in 2 seconds. This demonstrates the capability of the
algorithm of retrieving the correct ground-truth formula, while exploring among conjunctions
of thousands of primitives. Interestingly, if at the end of the algorithm we hadn’t gradually
increased the coverage by climbing up the DAG (see the Termination step of the MCTS
algorithm description), we wouldn’t have obtained the exact formula, as illustrated in Table
4.3 where the intermediate results for φ3, φ4 and φ5 are given. Here, a number of moves are
made until the empirical precision arrives at τ = 100% (before dashed line), and starting
from the first chosen anchor, we gradually increase the coverage by climbing up the DAG,
while ensuring that the precision stays at 100%.

4.4.3 Explaining the transmission system during a passing maneuver

We now focus on a scenario where the vehicle is performing a passing maneuver. Suppose
that we observe the input signal s0 given by the first 3 plots in Figure 4.8 and the output of
the transmission system given by the last plot. Note that initially the vehicle is accelerating
with the throttle linearly decreasing from 60% to 40%, up-shifting the vehicle to the 4th gear.
At the 12th second, the throttle is suddenly pressed to 100%, making the transmission system
down-shift to the 3rd gear. The shifting schedule of the transmission system, shown in Figure
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(a) Signal violating φ1

(b) Signal violating φ2

(c) Signal violating φ3, φ4 and φ5

Figure 4.7 Signals violating φ1 to φ5



42

Table 4.1 Hyper-parameters for explaining the STL-based monitoring system
using each of the five benchmarks

hyper-parameter φ1 φ2 φ3, φ4, φ5

τ 100% 100% 100%
ρ 0 0 0
ε 2.0% 2.0% 1.0%

batch_size 256 256 256
max_depth 4 4 4
max_iter 40000 40000 40000
µespd ∈ linspace(0, 6000, 24) linspace(0, 5000, 5) linspace(0, 4000, 4)
µvspd ∈ linspace(0, 160, 8) linspace(0, 160, 8) linspace(0, 70, 14)

random throttle uniform between uniform between uniform ±40%
distribution 0% and 100% 70% and 100% from original

Table 4.2 Explanations returned by our algorithm for the
STL-based monitoring system using each of the five
benchmarks

STL number of anchor empirical execution
primitives precision time

φ1 7680 F[0,10](espd > 4750) 100% 00:35:46
φ2 4851 F[0,20](vspd > 120) 100% 00:22:15

φ3 4096 G[2,30](espd < 3000) 100% 02:20:13∧ F[0,4](vspd > 35)

φ4 4096 G[0,30](espd < 3000) 100% 03:01:14∧ F[0,8](vspd > 50)

φ5 4096 G[0,30](espd < 3000) 100% 06:56:46∧ F[0,20](vspd > 65)

Table 4.3 Intermediate results for the STL-based monitoring systems
using φ3, φ4 and φ5

STL Intermediate results Remark Precision

φ3

⊤⇝ G[2,30](espd < 3000) 1st move 35.97%
⇝ G[2,30](espd < 3000) ∧G[4,26](vspd > 35) 2nd move 100.00%
⇝ G[2,30](espd < 3000) ∧G[4,18](vspd > 35) termination
⇝ G[2,30](espd < 3000) ∧G[4,16](vspd > 35)
⇝ G[2,30](espd < 3000) ∧G[4,8](vspd > 35)
⇝ G[2,30](espd < 3000) ∧ F[4,4](vspd > 35)
⇝ G[2,30](espd < 3000) ∧ F[2,4](vspd > 35)
⇝ G[2,30](espd < 3000) ∧ F[0,4](vspd > 35) final result 100.00%

φ4

⊤⇝ G[0,30](espd < 3000) 1st move 34.52%
⇝ G[0,30](espd < 3000) ∧ F[2,8](vspd > 50) 2nd move 100.00%
⇝ G[0,30](espd < 3000) ∧ F[0,8](vspd > 50) final result 100.00%

φ5

⊤⇝ G[0,30](espd < 3000) 1st move 61.53%
⇝ G[0,30](espd < 3000) ∧ F[4,20](vspd > 65) 2nd move 100.00%
⇝ G[0,30](espd < 3000) ∧ F[0,20](vspd > 65) final result 100.00%
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4.6, is assumed unknown. We attempt to find automatically a (local) rule explaining why
the system engaged the 3rd gear at the 12th second, by analyzing the throttle opening, the
engine speed and the vehicle speed in the previous seconds, using PtSTL.

Figure 4.8 Simulation of the automatic transmission system during a passing maneuver

Results and Discussion

To define the perturbation distribution D, the throttle is changed to a random and uniform
value between 0% and 100% every second, while the initial state remains unchanged. The
chosen hyper-parameters for our algorithm are shown in Table 4.4. We use PtSTL and choose
to analyze only the 4 previous seconds. As a result, 450 primitives were generated, and we
obtained after 4 moves the following anchor:

F[−1,−1](throttle > 0.9) ∧G[−4,−2](vspd > 45) ∧ F[−4,−1](vspd < 70) (4.4.1)

achieving a precision of 99.41%. The formulas after each move along with their respective
empirical precision, number of roll-outs and execution time are shown in Table 4.5, where
the final formula after the dashed line is obtained by increasing the coverage by climbing up
the DAG. In words, the predicates of the explanation (4.4.1) mean that:

• F[−1,−1](throttle > 0.9): the throttle was opened more than 90% in the last second,
before down-shifting to the 3rd gear;

• G[−4,−2](vspd > 45): four to two seconds before down-shifting, the vehicle speed was
greater than 45 mph;
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• F[−4,−1](vspd < 70): the vehicle speed has once been lower than 70 mph during the 4
previous seconds.

If we look at these conditions on the shifting schedule of Figure 4.6 (which is unknown to our
algorithm), between the 8th and 12th second, the vehicle was moving faster than 45 mph and
up-shifted from the 3rd gear to the 4th (see also Figure 4.8). Then, the throttle was opened
to the maximum and thus the vehicle crossed the “4-3” line and down-shifted to the 3rd gear.
However, if the speed had exceeded 70 mph, the 4th gear would have remained engaged, and
if the speed had been lower than 45 mph, the system would have been directly down-shifted
to the 2nd gear. Thus, although limited to local explanations, our algorithm is able to provide
some insight on the boundaries separating the controller’s decisions.

Table 4.4 Hyper-parameters for
explaining the engagement of the 3rd

gear during the passing maneuver
hyper-parameter value

τ 99%
ρ 0.01
ε 0.75%

batch_size 256
max_depth 4
max_iter 50000

µespd ∈ linspace(0, 5000, 5)
µvspd ∈ linspace(0, 80, 16)

µthrottle ∈ linspace(0, 1, 10)

Table 4.5 The STL formulas after each move to explain the engagement
of the 3rd gear during the passing maneuver

move STL formula empirical number of execution
precision roll-outs time

1 F[−1,−1](throttle > 0.9) 91.18% 2376 00:03:22

2 F[−1,−1](throttle > 0.9) 95.63% 5790 00:13:31∧ G[−4,−2](vspd > 45)

3
F[−1,−1](throttle > 0.9)

99.99% 15912 00:56:47∧ G[−4,−2](vspd > 45)
∧ F[−4,−1](vspd < 65)

termination
F[−1,−1](throttle > 0.9)

99.41% – –∧ G[−4,−2](vspd > 45)
∧ F[−4,−1](vspd < 70)
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4.5 Case study: ACAS Xu

4.5.1 Background

ACAS Xu [67] is a system implementing the decision making logic of an Airborne Colli-
sion Avoidance System (ACAS) specifically for unmanned aerial vehicles. It uses dynamic
programming to provide maneuver guidance maintaining horizontal and vertical separation
between two aircraft. The original version of ACAS Xu consists of a large lookup score table
containing millions of discrete states, requiring several GB of floating point storage. Julian
et al. [62] introduced a compression method relying on deep neural networks to approximate
the original score table, trained using supervised learning, which requires only a few MB of
memory. It stores only the weights of the neural network instead of the discrete states and is
able to provide guidance instructions consistent with the ones recommended by the original
table, without loosing much performance. According to the description provided in [62, 68],
the system takes as input the following 7-dimensional signal obtained from sensor measure-
ments to issue one of 5 possible action advisories. Each advisory is assigned a score, with
the lowest score corresponding to the best advisory.

Inputs: 1. ρ (m): distance from ownship to intruder;
2. θ (rad): angle to intruder relative to ownship heading direction;
3. ψ (rad): heading angle of intruder relative to ownship heading direction;
4. vown (m/s): speed of ownship;
5. vint (m/s): speed of intruder;
6. χ (s): time until loss of vertical separation;
7. aprev: previous advisory.

Outputs: 1. Clear Of Conflict (COC): 0◦/s;
2. Weak Left Turn (WLT): 1.5◦/s;
3. Weak Right Turn (WRT): −1.5◦/s;
4. Strong Left Turn (SLT): 3.0◦/s;
5. Strong Right Turn (SRT): −3.0◦/s.

The geometry of the input parameters is illustrated in Figure 4.9. The authors of [62]
trained 45 deep neural networks for ACAS Xu by discretizing χ (9 discrete values) and
aprev (5 advisories), each network receiving the 5 other inputs and producing the 5 scores
assigned to the possible outputs. These networks are fully connected, use ReLU activation
functions and have 6 hidden layers. The ACAS Xu neural networks have been used extensively
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as a benchmark for neural network verification algorithms, as they contain a fairly small
number (300) of neurons. For example, 200 network verification queries were proposed in [68],
consisting of preconditions on the inputs and postconditions on the outputs.

Source: [62]

Figure 4.9 Geometry for the ACAS Xu horizontal logic table

In our framework, explanations for an output guidance advisory can be based on past values
of the input signals, up to some maximum history length. In order to obtain realistic input
data, we simulated scenarios involving 2 aircraft, assuming vown = 300 m/s and vint = 100
m/s were constant and χ = 0 for simplicity. Given the initial input data ρ, θ, ψ, the simulator
iterates at each timestamp by invoking the corresponding neural network and providing a
new advisory, allowing the ownship to turn by the corresponding angle.

4.5.2 Explaining an advisory change

In the scenario illustrated on Figure 4.10, the ownship aircraft is equipped with the ACAS Xu
system, initially heading left. The red trajectory indicates a (continuous) SRT, the yellow
indicates a WRT, while the green corresponds to COC. The initial state is the following:
ρ = 5000 (m), θ = π/4, ψ = −π/2, vown = 300 (m/s), vint = 100 (m/s), χ = 0 and aprev =
SRT. The system issued an SRT advisory for the ownship from the very beginning during
10 seconds, and switched to WRT and finally COC when the two aircraft were no longer in
danger of colliding with each other. In this case, we attempt to find an explanation, expressed
in PtSTL, for why the advisory switched from SRT to WRT at the 10th second, by analyzing
the signals ρ, θ, ψ during the previous seconds.
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Figure 4.10 Simulation of the ACAS Xu system

Results and Discussion

To define the perturbation distribution D, we ran simulations by randomizing the initial state
in the neighborhood of the original one. More precisely, the initial state components that are
not assumed constant were uniformly sampled from the following intervals: ρ ∈ [2000, 8000]
(m), θ ∈ [0, π], ψ ∈ [−π, 0]. The chosen hyper-parameters for our algorithm are shown in
Table 4.6. In our experiment, we chose to analyze only the 4 seconds before the advisory
change. 448 primitives were generated and the anchor returned by the algorithm was the
following:

F[−4,−2](θ > 1.57) ∧ F[−4,−1](ρ > 3500) (4.5.1)

achieving an empirical precision of 100.00% after 2 moves. Similarly to the previous case
study, the formulas after each move and their respective empirical precision, number of roll-
outs and execution time are shown in Table 4.7. Analyzing the formula (4.5.1) provides an
intuitive explanation for a human user to understand the criteria (e.g., thresholds for certain
inputs) according to which the neural network may consider a reduced danger level and issue
a change of advisory from SRT to WRT:

• F[−4,−2](θ > 1.57): four to two seconds before the advisory change, the intruder was on
the left side behind the ownship;

• F[−4,−1](ρ > 3500): before issuing the WRT, the distance was once greater than 3500
meters.
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Table 4.6 Hyper-parameters for
explaining the switch from SRT to
WRT

hyper-parameter value
τ 98%
ρ 0.01
ε 0.75%

batch_size 256
max_depth 4
max_iter 50000

µρ ∈ linspace(0, 8000, 8)
µθ ∈ linspace(0, π, 8)
µψ ∈ linspace(− π, 0, 8)

Table 4.7 STL formulas after each move for explaining the the
switch from SRT to WRT

move STL formula empirical number of execution
precision roll-outs time

1 F[−4,−2](θ > 1.57) 91.23% 1762 00:10:05

2 F[−4,−2](θ > 1.57) 100.00% 33325 04:00:52∧ F[−4,−1](ρ > 3500)

4.6 Related work

4.6.1 Interpretable Machine Learning

The monograph [11] surveys the area of interpretable machine learning, where methods can
be categorized as either model-specific or model-agnostic. Model-specific methods apply to
specific types of machine learning models. For example, class activation maps (CAM [16] and
Grad-CAM [17]) provide visual explanations for the decisions made by Convolutional Neural
Network (CNN) in computer vision tasks such as image classification and object detection, by
identifying the input pixels that most influence a classification decision. For this, Grad-CAM
requires the architecture of the specific CNN under study, in order to compute the gradient
information flowing into the last convolutional layer.

Model-agnostic methods, on the other hand, offer additional flexibility since they can be ap-
plied to any model, which is treated as a black box transforming inputs to outputs. Global
model-agnostic methods try to characterize the average behavior of the model, i.e., the ex-
pected output values based on the input data distribution, while local methods explain a
model only in a certain region of the input space, e.g., to analyze individual predictions
or decisions. This paper focuses on one important local method called anchors [12], which
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we extend to explain the behavior of dynamic systems by incorporating temporal properties.
Anchors aim to identify conditions on the input features under which a given prediction or de-
cision, for which an explanation is requested, remains essentially the same. These rule-based
explanations, using the terminology of [19], provide explicit decision boundaries between the
inputs leading to a given prediction and those leading to a different one. More details on this
method is provided in Section 4.2.1. Other local methods include, among others, LIME [20],
which locally approximates a black-box model by a learned interpretable model, e.g., a small
linear model or decision tree, and SHAP [69], which uses a game-theoretic approach to as-
sign a (Shapley) value [70] to each input feature contributing to a particular prediction of
the model.

4.6.2 Temporal Logic-based inference

This paper focuses specifically on dynamic scenarios with black-box models processing sig-
nals over time. To specify desired or undesired properties of a dynamical system’s behavior
in a way that is unambiguous yet easily interpretable by human operators, various types of
temporal logic can be used [22], including Signal Temporal Logic (STL) [21]. Conversely, one
can try to search for STL formulas that best classify observed behaviors into distinct groups,
e.g., anomalous vs. normal signals [26]. This generally involves searching for an appropri-
ate formula structure, usually expressed in Parametric Signal Temporal Logic (PSTL) [27],
and for the best parameters contained in a given PSTL formula, by optimizing a certain
classification criterion [26].

Among the work inferring both the formula structure and the parameters, Bombara et al. [28]
draw connections between STL formulas and decision trees, and build the latter incrementally
in order to classify a given set of signals using STL in an offline or online fashion. Kong et
al. [26] further exploit the partial order existing between formula structures by constructing
a Directed Acyclic Graph (DAG) and use a Support Vector Machine (SVM) for parameter
optimization. In [71], complicated formulas including the Until operator are learnt by using a
genetic algorithm to infer the formula structure and the GP-UCB algorithm [72] to estimate
the parameters.

The aforementioned efforts are in the spirit of the literature on Inductive Logic Programming
(ILP) [73], which aims to deduce logic programs from a set of positive and negative examples.
Paraphrasing a remark from [12], while these methods suppose a given dataset of signals a
priori available to infer formulas for ML tasks such as classification or clustering, to find
anchors it would be too inefficient to generate a very large dataset to which one would try to
apply such methods. Instead, we need to explore the black-box model to generate just enough
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signal samples to find (with some probability of error) the boundary of the decision regions
around a specific input signal, described by the most important features expressed in STL.
Moreover, we exploit the logical implications (partial order) existing between STL formulas
to further improve the efficiency. Another related work is [74], which, given a system model,
aims to automatically discover ranges of parameters for which a given property specified by
a parametrized temporal logic formula does not hold for the system. The approach actively
samples behaviors of the system, but the structure of the temporal logic formula is fixed a
priori.

4.6.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [29] is a heuristic search method for making sequential
decisions in a large search space under uncertainty. It has gained popularity in games and
planning problems, notably with its success in the task of Computer Go. A tree (or typically
a game tree) is a Directed Acyclic Graph (DAG) whose nodes represent states while edges
represent actions, or moves, to pass from one state to another. Starting from the initial state,
the tree is built in an incremental and asymmetric manner using guided random sampling to
estimate the score, or the success rate, of each move. This score coincides with the definition
of the precision in the framework of anchors [12], see Section 4.2.1.

The standard approach to search for anchors [12] relies on a Multi-Armed Bandit (MAB)-
based sampling strategy (e.g., KL-LUCB [33]) to optimize, in a greedy manner, the empirical
precision of formulas in propositional logic capturing the presence or absence of certain
features in the input. Features are considered one after another. In contrast, as in [34, 35]
for example where MCTS is used for feature selection, we argue that for our set-up it is
more efficient to search for high-precision explanations in a tree encoding STL formulas
using a multi-step look-ahead strategy. Indeed, MCTS is able to explore more formulas of
different lengths before making a decision, while concentrating on the most promising ones.
Furthermore, the back-propagation phase (cf. Section 4.3.2) allows to update the precision of
shorter formulas without additional sampling effort. This is beneficial because the precision of
shorter explanations, which are more interpretable to human users, is continuously updated,
thus better estimated.
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4.7 Conclusion and future work

In this paper, we present a framework providing precise model-agnostic explanations in the
form of anchors expressed in Signal Temporal Logic (STL) to interpret specific behaviors of
dynamic decision-making and control systems, considered as black-box models. Compared to
recent work in the area of interpretable machine learning, which mostly focuses on static data,
this work considers specifically black-box models processing time-varying signals, making
decisions based on past observations. A new method is proposed to build the STL formulas
defining anchors incrementally using a multi-step look-ahead strategy based on Monte Carlo
Tree Search (MCTS). The logical implications existing between STL formulas were also
leveraged to reduce the size of the search space.

Although our computational experiments could show in the case studies that scenarios of
reasonable complexity could be analyzed, much work remains to be done to apply such
techniques to realistic systems processing high-dimensional signals with high sampling rate,
such as autonomous decision systems driven by machine perception algorithms. Moreover,
our current implementation only considers first-level primitives. Future work can focus for
example on alternative search strategies that avoid discretizing the parameter space for STL
formulas and on the influence of the choice of hyper-parameters and perturbation distribution
on the execution time and quality of the returned explanations.
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CHAPTER 5 COMPLEMENTARY RESEARCH WORK: TRACKLET
RELIABILITY IN ONLINE 3D MULTI OBJECT TRACKING

5.1 Introduction

5.1.1 Context

Modern online Multi Object Tracking (MOT) systems surveyed in [40] are generally built
upon the “tracking-by-detection” framework, which employs directly an off-the-shelf detector
to provide a set of bounding boxes describing the position and the dimension of surrounding
objects at each frame. Different modalities such as camera, LiDAR or RaDAR can be used
to serve the detection purpose. With camera for example, a 2D object detector takes a static
image from a camera as input and outputs a set of 2D bounding boxes. In the same way, a 3D
object detector takes a static point cloud as input, i.e., a set of 3D data points, and outputs a
set of 3D bounding boxes. These detectors usually use large and complex neural networks to
achieve reliable detection performance. In contrast to static inputs, online trackers process
a sequence of detections up to the current frame and dynamically return a set of bounding
boxes (localization) as well as their identity (identification), with the latter supposed to
remain constant for the same object across frames. The estimated trajectory of an object is
called a tracklet, which is essentially a sequence of bounding boxes with the same identity.
In this work, we specifically focus on ground vehicle tracking, supposing that the tracked
object are always placed on plat ground.

The three main failure modes considered in the CLEAR MOT metrics [75] consist of the
number of false alarms (False Positives, or FP), misses (False Negatives, or FN), and mis-
matches (Identity Switches, or IDS). First, false tracklets could be accidentally created due
to false detections. Also, not terminating the tracklet early enough even if it has already left
the detector’s field of view would also result in false positives. Since most false detections
are low-scored, one may try to reduce the number of false positives by simply ignoring them
below a certain score threshold. However it is likely to introduce a large number of misses,
because some of them are true objects but just poorly localized. These misses would then
sacrifice the system’s recall, defined in machine learning as the ratio between the number
of correctly identified objects and the total number of true objects. In general, the number
of misses is largely determined by the detector’s performance, but can also be due to the
following two reasons: an object may have already been detected but the tracking system
waited before confirming its presence; an object may be occluded for a short period and the
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system decides to terminate the tracklet too early. Finally, this latter issue is also one reason
of identity switches: when the object reappears after being occluded, the system creates a
new tracklet to track the same object. Two object trajectories crossing each other may also
result in identity switches.

5.1.2 Contribution

To have a better control on each tracklet’s status, we believe it is important to provide each
tracklet with a measure indicating its reliability at runtime, especially when the object suffers
from non-detection. This confidence measure can then be used to improve, for example, the
tracklet’s life cycle management. In this work we propose a data-driven approach to learn
this measure by training a Long-Short Term Memory (LSTM) recurrent neural network,
which is capable of processing past information of the entire history starting from the very
first detection of the object. Experiments were conducted on two datasets, KITTI [14] and
nuScenes [59], to illustrate the trained confidence measure. Furthermore, we also reflect
on the definition of the integral metrics AMOTA and AMOTP proposed in [41], which are
used as the official evaluation metrics by nuScenes [59] in their online tracking challenge.
We also show that the CLEAR MOT metrics [75] such as MOTA or MOTP reported on
the leaderboard of nuScenes actually correspond to some non-causal systems, due to the
preprocessing step before evaluation.

5.1.3 Outline

The remainder of this chapter is organized as follows. We review related literature about
online MOT systems in Section 5.2, and present in Section 5.3 their general architecture and
details of each individual module. We then discuss in Section 5.4 about the recent evaluation
approach of MOT systems and the aforementioned issues. Next, we explain the training
process of our network in detail in Section 5.5. Finally, the results of experiments conducted
on the KITTI and nuScenes datasets are presented in Section 5.6.

5.2 Literature review

5.2.1 Online 3D Multi Object Tracking

3D MOT systems using the “tracking-by-detection” paradigm in an online fashion include a
simple and efficient baseline method AB3DMOT [41] and its followers [40, 44, 46, 52, 76]. As
explained in [40], a 3D online MOT system can be decomposed into four individual modules:
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3D detector, association, motion model and life cycle management. See Figure 2.2 for the
general architecture. To briefly summarize, at each frame, the 3D detector provides a set
of 3D bounding boxes as new detections, while the old tracklets are updated in the motion
model module with their predicted new position. The association module then matches the
predicted tracklets with the new detections. Matched tracklets are again updated with new
detection measurements, while the unmatched detections are used to create new tracklets.
These tracklets are then sent to the life cycle management module to decide on their active
status, e.g., whether to be output or deleted.

Among the aforementioned literature, AB3DMOT [41] uses 3D Intersection Over Union
(IoU) as the metric to associate new detections with predicted tracklets via the Hungarian
algorithm, while the motion of tracklets is modelled with constant velocity in a Kalman
Filter. Chiu et al. [44] replace 3D IoU by the Mahalanobis distance [45] to take into account
the tracklet’s state uncertainty for data association, and trains the covariance matrices in
the Kalman Filter from the detector statistics. CenterPoint [46] considers objects as points,
trains a novel 3D detector of high quality and replaces 3D IoU by euclidean distance between
the two objects’ center for association, while [40] generalizes 3D IoU to 3D GIoU [47], so as to
capture the overlap ratio and the distance of two objects in case of non-overlap. Pöschmann
et al. [76] represents the new detections as a Gaussian mixture model incorporated in a factor
graph and solves data association implicitly via non-linear least-square optimization on the
tracklets’ state estimation. FANTrack [48] solves data association directly via deep learning
using a CNN.

While the above methods improve the association module, the authors of CBMOT [52] focus
on the life cycle management: in contrast to [41] in which “count-based” rules are defined on
the number of frames where the tracklet is detected or not, they design heuristic score-update
functions and a score-decay mechanism to assign confidence scores to tracklets based on their
previous score and the score of matched detections, and define “confidence-based” rules by
thresholding on these scores. See Section 5.3.4 for more details. [40] also proposes a two-stage
association approach for life cycle management to reduce identity switches. In other work,
such as [49–51], 2D information is incorporated to provide additional position and RGB
information which are then fused with 3D features to further improve association. Finally,
data-driven approaches include [77], in which objects are jointly detected and tracked from
a sequence of monocular images using a trained LSTM in an end-to-end manner, and [78],
in which a graph neural network is designed to process detections and tracklets together to
resolve data association, classify false detections and initialize new tracklets. In addition
to learning feature fusion and data association, [49] also learns a binary classifier to decide
whether a tracklet should be created from an unmatched detection.
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5.2.2 Tracklet reliability

Having access to a confidence measure indicating the reliability of each tracklet facilitates the
understanding of the tracking system’s decisions. Such a measure that is easily interpretable
would also enable human users to react to the result accordingly. Previous work such as [54]
uses Bayesian estimation to compute the probability of binary hypotheses (presence, absence)
or the density function of the object’s state and existence, given the previous measurements.
However, it would be impossible to continuously track an object when it starts to move away
from the sensor, and the presence of such an object would be irrelevant in most application.
In 2D MOT, [55] manually designs heuristic functions to assign a confidence score to a
tracklet at each frame based on previous observations such as its length, the number of
frames of non-detection and the affinity with matched detections. This confidence score can
then be used to discriminate tracklets so that high-confidence ones are prioritized for data
association. Notice that the designed confidence score can be naturally extended to 3D. The
aforementioned CBMOT [52] also designs simple heuristic score-update functions to improve
life cycle management, while [56] uses a similar score to guide data association.

However, it is unclear how to interpret these confidence scores. Fortunately, with the con-
tinuous development of benchmarks or datasets providing ground-truth annotations, such
as [14, 59, 79], it becomes more relevant to say that a tracklet is present when it can be as-
sociated to a ground-truth object, via a predefined matching algorithm and distance metric,
exactly like how systems are evaluated with CLEAR MOT. In object detection, YOLO [13]
interprets its confidence score as the IoU between the predicted bounding box and the true
object when it is indeed present while pushing it to zero in case no object is in the box. In
our work, we also use the IoU between the tracklet and the true object to indicate how con-
fident the system is about the tracklet’s presence, and train an LSTM to learn this measure
frame-by-frame, hoping to inform users of each tracklet’s reliability at all times.

5.3 Online 3D MOT algorithm

The general architecture of a 3D online MOT system is given in Figure 2.2 and consists of
the following modules: detector, association, motion model and life cycle management. The
following subsections provide details of each individual module.
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5.3.1 Detector

The 3D detector module provides at each frame a set of detected bounding boxes. In ground
vehicle tracking, these boxes contain the following information: (x, y, z, θ, l, w, h), usually
expressed in the sensor’s frame, where (x, y, z) are the coordinates of the box’s center; θ
is the heading or the yaw angle; (l, w, h) denote the length, width and height respectively.
Notice the simplification made on the object’s orientation in ground vehicle tracking: the
pitch and roll angles are not considered as they are usually not provided in the ground-
truth annotations of many public datasets such as KITTI [14] and nuScenes [59]. Detection
modules also provide a detection score for each 3D bounding box, which serves as an indicator
of the detection quality.

5.3.2 Association

The association module is responsible for associating incoming detections with tracklets:
a detection matched with a tracklet serves as a new measurement for the tracklet’s state
estimation, while unmatched detections allow to create new tracklets. Assigning a detection
to a tracklet naturally induces a cost: a wrong assignment should cost more than a correct one.
Two popular matching algorithms for the assignment problem are the Hungarian algorithm
[43], also known as the Kuhn–Munkres algorithm, and the greedy algorithm. The Hungarian
algorithm solves the problem of minimizing the total assignment cost in polynomial time,
while the greedy algorithm is an efficient heuristic that assigns gradually a detection to a
tracklet by sorting the costs until either every detection or every tracklet has been assigned.
Some possible metrics used as the assignment cost are, to list a few, Intersection Over Union
(IoU), Generalized Intersection Over Union (GIoU) [47], 2D/3D euclidean distance between
the two bounding box centers, or Mahalanobis distance [45]. We add a minus sign on IoU
and GIoU when passing them into the cost matrix, because we want to maximize them, but
the distances are to be minimized. If T denotes the bounding box of a tracklet and D denotes
that of a detection, then:

• Intersection Over Union (IoU) of T and D is defined as:

IoUT,D := |T ∩D|
|T ∪D|

(5.3.1)

where | · | denotes the volume, ∩ denotes intersection while ∪ denotes union. By
definition IoUT,D ∈ [0, 1] and defines the overlap ratio.
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• Generalized Intersection Over Union (GIoU) is defined as:

GIoUT,D := IoUT,D −
|CT,D\(T ∪D)|
|CT,D|

(5.3.2)

where CT,D is the smallest convex hull enclosing both T and D, while \ is notation for
relative complement or set difference. By definition GIoUT,D ∈ (−1, 1] and generalizes
IoU in case of non-overlap (IoU = 0): the farther T and D are from each other, the
more GIoU approaches −1.

At the end of data association, special care should be taken to exclude matching pairs inducing
a cost higher than a certain threshold, to prevent unreasonable association. For example, if
3D IoU is used as the matching cost, then for any pair of (T , D) for which IoUT,D doesn’t
reach 0.25, T should be considered as unmatched while D is used to create a new tracklet.
The threshold for 3D GIoU is often fixed at −0.5 or −0.2, and 3D distance at 2 meters.

5.3.3 Motion model

The motion model module uses a filtering algorithm for state estimation, such as a Kalman
Filter. Though the state vector depends on the choice of the filter, which may naturally
differ depending on the object category (CAR, BICYCLE, PEDESTRIAN, etc), it should contain
the most basic information of a bounding box (x, y, z, θ, l, w, h) defining our tracklet. For
example, [41] uses a constant velocity model with the state vector (x, y, z, θ, l, w, h, vx, vy, vz):

ẋ = vx, ẏ = vy, ż = vz

while the rest of the parameters remain constant. Moreover, if information about sensor
poses is also available at each frame, which can be obtained from GPS/IMU and calibration,
then we can apply ego-motion compensation and express the predicted bounding box (from
the previous frame) in the current sensor frame coordinates. The predicted bounding box
can then be matched with the associated detection in the same sensor frame, allowing to
perform measurement update on the first 7 variables (x, y, z, θ, l, w, h).

5.3.4 Life cycle management

The life cycle management module is the main focus of our work and is primordial to reduce
false alarms (FP) and misses (FN) at the same time. To be more specific, a tracklet can
take one of the four following active status in the state machine: INIT, ACTIVE, PASSIVE or
DEAD. The status ACTIVE should only be set if we are confident enough of its real presence —
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any tracklet created from a false detection or corresponding to an object which has already
disappeared from the field of view should desirably be set to DEAD and deleted from the
memory as soon as possible. Though it should still be kept ACTIVE if just occluded for a
short period of time.

Figure 5.1 shows the state diagram of the life cycle management, and indicates the criteria
to pass from a status to another, depending on two boolean variables birth and death. Their
negation is noted with the exclamation mark (!). Upon creation of a tracklet, its status is
originally set to INIT. It is then set to ACTIVE immediately if the birth criterion is met, and
PASSIVE otherwise. The latter status corresponds to a warm-up period during which we are
still not confident enough about the tracklet’s presence: it will only be kept in memory but
not eliminated right away. In the next frame, now that existing tracklets are either ACTIVE or
PASSIVE, if the death criterion is met, the status is set to DEAD and the tracklet is immediately
removed from the system’s memory. The remaining tracklets in status PASSIVE will pass to
ACTIVE when the birth criterion is finally met. Otherwise, the status just remains unchanged.
Overall, the life cycle management provides a balance between false alarms and misses but
requires tuning certain hyper-parameters to decide on the birth and death criteria.

Figure 5.1 Diagram of the life cycle management

In count-based methods such as [41], the birth criterion is met when the tracklet has been
matched to some detections for at least min hits frames, while death corresponds to being
unmatched for more than max age “consecutive” frames. Notice however that these hyper-
parameters are fixed and don’t take into account the tracklet’s actual length, thus a tracklet
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which has been tracked for a long period of time, for which we should already be confident
enough of its presence, would still be deleted after just a short occlusion. Also, a track-
let created with a detection producing a relatively high score would not be set to ACTIVE
immediately.

On the contrary, in confidence-based methods [52], a tracklet is assigned a tracklet score strk

at each frame, and two thresholds sbirth and sdeath are used to define the birth and death
criteria. More specifically, birth simply corresponds to strk ≥ sbirth, while death corresponds
to strk < sdeath. Here we distinguish strk from detection scores sdet; the latter comes directly
with the bounding boxes from the 3D detector. For example, CBMOT [52] manually designs
score-update functions to calculate strk at each frame based on the score of the matched
detection sdet. More specifically, when a tracklet is created with an unmatched detection, its
score is initialized with the corresponding sdet. strk then decays by a value σ (score decay)
at each frame, since the presence of the tracklet is more susceptible to be unreliable as time
goes by:

ŝtrk
t+1 = strk

t − σ.

In case the tracklet is detected, the authors argue that strk
t+1 should be greater than both

ŝtrk
t+1 and sdet, because we can be more confident of its presence. Among the score-update

functions they propose, the one that experimentally achieves the best performance is

strk
t+1 =

1− (1− ŝtrk
t+1)(1− sdet

t+1) if detected,

ŝtrk
t+1 if undetected.

In our work, we also propose a confidence-based method, but instead of manually designing
heuristic functions to assign tracklet scores, we take a data-driven approach with an LSTM
to learn a confidence score indicating the tracklet’s presence at each frame, predicting the
IoU between the tracklet and a potential true object. While a value of 1 means a perfect
tracklet, a value of 0 rejects the possibility of an overlap with any object. The use of an RNN
such as LSTM is justified by the fact that whether the tracklet is actually present or not is
highly dependent on its past. Interesting factors may include, among others, the continuity
of matches, the reliability of matched detections, etc.
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5.4 Evaluation of online MOT systems

In Section 5.4.1, we present the CLEAR MOT metrics used to evaluate an MOT system. In
Section 5.4.2, we reflect on the definition of the integral metrics proposed in [41], which are
then used as the official evaluation metrics by nuScenes [59] in their tracking challenge.

5.4.1 CLEAR MOT metrics

CLEAR MOT [75] defines standard metrics used to evaluate MOT algorithms nowadays. It
includes the tracking accuracy, or MOTA, and the tracking precision, or MOTP, allowing
to quantify the overall performance of an MOT system. The authors mention a few points
expected from an ideal MOT system: the objects’ trajectory should be precisely estimated
and exactly one trajectory estimate (tracklet) be produced per object (ground-truth). More
precisely, we compute at each frame:

1. valid correspondences between the output tracklets and the real objects;
2. error of position estimation for each correspondence;
3. correspondence errors: an unmatched object is counted as one miss (False Negative, or

FN), an unmatched tracklet is counted as one false alarm (False Positive, or FP), and
an identity change is counted as one mismatch (Identity Switch, or IDS) compared to
the previous frame.

To determine whether a tracklet is a TP or a FP at each frame, we have to associate the
output tracklets with the objects provided in the annotations, similar to the matching strategy
described previously. In CLEAR MOT however, a correspondence already established in the
previous frame is still considered valid in the current frame as long as the matching distance
does not exceed a predefined threshold. This distance and the threshold cannot be generally
defined and are task-specific. In 3D MOT, we use 3D euclidean distance with a threshold of
2 meters. Next, the tracklets and the objects that are not yet assigned are matched using the
Hungarian algorithm [43] to minimize the total matching distance, followed by elimination
of invalid correspondences, i.e., whose distance exceeds the threshold previously defined.
Afterwards, if an object is matched to a different tracklet compared to the previous frame, a
mismatch (Identity Switch, or IDS) is counted; the total number of valid correspondences is
counted as True Positive (TP); unmatched objects are counted as False Negative (FN) and
unmatched tracklets as False Positive (FP). Finally, MOTP is computed by averaging the
distance for each valid correspondence, while MOTA is defined as follows:

MOTA := 1− FP + FN + IDS
GT = TP− FP− IDS

TP + FN (5.4.1)
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where GT = TP + FN denotes the total number of ground-truth objects. We expect MOTA
to be as high and near 1 as possible, and MOTP to be as low as possible.

5.4.2 Reflection on integral metrics

To briefly introduce the integral metrics, [41] argues that the CLEAR MOT metrics don’t ex-
plicitly consider objects’ confidence score during evaluation, and that it should be acceptable
if false tracklets have relatively low confidence scores. Inspired by the integral metrics such as
mAP, which computes the area below the PR curve, the authors propose two integral metrics
particularly for tracking systems, AMOTA and AMOTP, which average MOTA and MOTP
respectively across different recall values (TP divided by GT) ranging from 0 to 1, to ensure
that an outstanding MOT system should achieve high MOTA values at all possible recall
values. To allow a better understanding of how the CLEAR MOT metrics (FP, FN, IDS,
MOTA) behave across recall values, in the same spirit as the PR curve, we can render curves
of these metrics over recall. While we compare different MOT systems, the corresponding
curves (for a same metric) can be superposed to show at which threshold a system performs
better than another.

As this practice starts to become a new standard for MOT evaluation, we would like to point
out two major problems preventing it from reflecting the real performance of a system. Here
we cite the definition of a tracklet’s confidence score as follows [41]: “We define the confidence
score of an object trajectory as the average of its confidence scores across all frames” ; or in the
official evaluation code of nuScenes [59]: “We average over frame-level scores to compute the
track-level score. The score is used to determine positive and negative tracks via thresholding.”

On the one hand, this score has never been properly defined. A tracking system might not
even assign any score to its output tracklets. Otherwise, in [41] for example, a tracklet’s
frame-level confidence score is directly assigned with the score of the matched detection, and
remains constant if unmatched — its score is thus that of the last matched detection. Imagine
a tracklet created with a high-scored detection at the first frame and remaining active for a
period of time without being matched to any detection ever again before being killed. The
average confidence of this tracklet across frames is exactly the score of the first detection,
which is so high that it can beat other tracklets that may have been continuously tracked for
a long period of time but with a slightly lower score.

On the other hand, we work with online MOT systems, which are supposed to be causal.
In the official tracking evaluation code of nuScenes [59], a tracklet with missing scores is
preprocessed so that its scores are interpolated across frames. [40] points out that the in-
terpolation step uses future information and thus the evaluation is not a fully online one.
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Furthermore, [40] also shows that we can explicitly assign very low scores to these tracklets at
frames where scores are missing, and show a significant improvement on the system’s overall
recall and AMOTA, without even changing the behavior and the decisions of the system. In
addition, we argue that the non-causal aspect lies not only in the interpolation step. Even if
no interpolation is performed (i.e., tracklets are assigned a confidence score at every frame), a
user would not be allowed to wait until the end of a tracklet to compute its average confidence
score before deciding to output it or not via thresholding. As a result, the thresholding step
is also non-causal, so that the metrics computed for a certain recall value do not perfectly
reflect the actual performance of an online MOT system on that particular recall. This is
the case in particular for the highest MOTA and MOTP scores reported on the leaderboard
of the nuScenes tracking challenge, in which “online” tracking is imposed. In consequence,
we argue that these scores are misleading and the evaluation should be done directly on the
output tracklets without any preprocessing.

In the experiments conducted in Section 5.6, the scores of some previous works are not the
same as reported on the leaderboard, as we only compare different systems with the MOTA
score (instead of AMOTA) of the output tracklets, without any preprocessing.

5.5 Training

In this section, we present how the network is trained in detail. Section 5.5.1 explains how the
raw data of the training set are preprocessed to generate relevant input features and labels,
while Section 5.5.2 provides details about the network structure and the choice of training
hyper-parameters. Finally, during validation and testing, for each tracklet, the network will
be able to output at runtime a prediction of the IoU between the tracklet and a potential
true object.

5.5.1 Raw data preprocessing

With the annotated bounding boxes (ground-truth) provided in the training set, we use a
matching strategy similar to the one described previously to associate detections with the
true objects, to obtain information about the presence, the true position and the identity
of these detections. In our experiments, to label detections, we choose the 3D euclidean
distance as the matching cost and apply the Hungarian algorithm for data association. If
a detection is more than 2 meters away from the associated true object, then it should be
excluded and considered as a false detection. To train the network, we make use of every true
object provided in the training set, containing its real position and its identity. We create
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tracklets from the “true” detections (detections associated with a true object) that newly
appeared, and filter them with the sequence of detections labelled with the same identity,
using the same filtering algorithm described in Section 5.3.3. A tracklet is terminated at the
frame where the corresponding true object disappears in the annotations.

We manually select some interesting features to extract from a tracklet so that the network
can learn the correlations between them across frames, and predict the IoU between the
tracklet and the true object. Here we only use the following two features as inputs:

1. 3D IoU between the tracklet and the matched detection;
2. score of the matched detection.

We show an example of a training sequence in Figure 5.2. The network learns from sequences
of these two features (blue circle and orange triangle), labelled with the IoU between the
filtered tracklet and the true object (green line). We observe that whenever there is non-
detection (area filled with light-gray, frame 20, 25, 28, 29, 31), the label tends to decrease,
thus coinciding with the score decay mechanism designed in CBMOT [52], as desired. Indeed,
the label corresponds to the IoU between the filtered tracklet and the true object. In case
of non-detection, the estimated position of the tracklet would naturally derive from the true
position, thus reducing our confidence of its presence.

Dataset: nuScenes [59]. Detector: Megvii [80]

Figure 5.2 Example of a training sequence

These features were inspired by [81], where the authors propose to perform sensor fusion
(statically) between a 2D detection (camera) and a 3D detection (LiDAR) together to provide
a more accurate detection and a more refined confidence score, using deep learning. They
propose the following four features:
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1. 2D IoU between the 2D detection and the projected 3D detection
2. 2D detection score
3. 3D detection score
4. normalized distance between the 3D detection and the LiDAR.

We make an analogy in our work, as if at each frame we were trying to fuse a tracklet with
a new detection, but dynamically. However, notice that instead of repeatedly inputting the
tracklet score (output from the previous frame), it is more suitable to use an RNN.

Special care should be taken during creation of a tracklet, on the one hand, and during non-
detection, on the other hand. In the first case, the first feature is set to −2, to indicate to
the network that the object just appeared; while the second feature is simply the score of
the detection used to create the tracklet. In case of non-detection, i.e., when no detection
is labelled with the tracklet’s identity, the two features are simply set to −1 in order to
distinguish from normal cases where the IoU and the detection score are within [0, 1].

Finally, since the labels are contained within [0, 1], they are passed into a logit function before
being passed into the network, because we want to perform regression in the entire R. We
recall that the logit function is the inverse of the sigmoid function σ−1(x) := ln(x/(1−x)), for
x ∈ [ϵ, 1− ϵ] capped at ∓σ−1(ϵ) outside the interval, for some ϵ, e.g., 10−6. In consequence,
the output of the network should inversely be passed into a sigmoid function to obtain a
value in [0, 1] before making prediction during validation or testing.

5.5.2 Neural network structure and hyper-parameters

The inputs containing two features are sent one at a time into the LSTM, as we perform
online tracking. The dimension of the hidden state is set to 8. A linear fully connected
layer of shape 8 × 1 is added after the LSTM. The structure is shown in Figure 5.3. In our
experiments, we trained the network using the Mean Squared Error (MSE) loss function and
the Adam optimizer [82] configured with a learning rate of 10−3.

5.6 Experiments

5.6.1 Datasets

We present in this section the two datasets, KITTI [14] and nuScenes [59], upon which our
experiments were conducted. By comparing the leaderboard of these two datasets, nuScenes
seems to be more challenging and difficult than KITTI.
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Figure 5.3 Structure of our network

KITTI. The raw data were collected in the city of Karlsruhe and include diverse driv-
ing scenarios in rural and urban areas. The sampled data were captured with a pair of
grayscale stereo cameras, a pair of color stereo cameras, a Velodyne laserscanner, 4 varifocal
lenses and GPS/IMU. The KITTI tracking benchmark proposes 21 training sequences and
29 test sequences. Synchronized at a frequency of 10 Hz, the samples were annotated with
ground-truth 3D bounding boxes across 8 different classes. Among the training sequences,
11 sequences totalling 3908 frames were selected for validation in [41, 52]. In order not to
train with sequences we evaluate on, we only use the remaining 10 sequences, totalling 4100
frames, to train our LSTM.

nuScenes. Inspired by the previous KITTI dataset, the authors of the nuScenes dataset
collected data in Boston and Singapore, two cities known for their complicated traffic con-
ditions, on a car fully equipped with six cameras, one LiDAR, five RaDARs and GPS/IMU,
travelling through diverse driving conditions totalling a travel distance of 242 km. 1000
scenes were manually selected, each of which lasts for approximately 20 seconds. They were
split into 700 scenes for training, 150 for validation and 150 for testing, and annotated with
ground-truth 3D bounding boxes across 23 different object categories on keyframes sampled
at 2 Hz. Among the 700 training scenes, 15 were blacklisted due to missing GPS/IMU data.
In total, the training sequences contain 27533 frames, compared to 6019 frames for validation.

5.6.2 3D detectors

To fairly compare with previous works, we use the same 3D detections generated using the
following detectors provided by [41]: PointRCNN [15] for KITTI and Megvii [80] for nuScenes.
For simplicity, only the category CAR is considered, i.e., only cars (and vans in KITTI) are
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detected and tracked. To get an idea of the detection scores for detection quality, we start
by classifying the detections into true and false ones via data association with ground-truth
annotations (Hungarian, 3D euclidean distance, threshold 2 m). For each detector in the
corresponding dataset, we show in the first row of Figure 5.4 the distribution (histogram) of
detection scores for both true and false ones. For the true ones in particular, we also show the
distribution of IoU and 3D euclidean distance with the real objects for detection quality. For
some reason, PointRCNN yields scores ranging in R, between −2 and 16, thus we decided to
apply a linear transformation to bring the scores within [0, 1], in the preprocessing step. We
can observe in the figure that although most false detections are low-scored, they are mixed
with some low-scored true detections as well. It would thus be a bad idea to simply ignore
detections whose score is under a certain threshold. Also, as a side note, PointRCNN applied
to KITTI seems to have a better detection quality in terms of both IoU and 3D distance
than Megvii applied to nuScenes.

(a) Detector: PointRCNN. Dataset: KITTI (b) Detector: Megvii. Dataset: nuScenes

Figure 5.4 Distributions for both true and false detections

5.6.3 Hyper-parameters

We present in Table 5.1 the hyper-parameters used in our experiments for the association
module, the same as those proposed in [41]. The hyper-parameters used in the life cycle
management module are tuned by evaluating on the validation set to optimize the MOTA
metric, whose definition is given in Equation (5.4.1).
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Table 5.1 Important hyper-parameters in the
association module

Dataset algorithm metric threshold

KITTI Hungarian GIoU −0.2

nuScenes Greedy GIoU −0.5

5.6.4 Training

Before training the network, raw data should be preprocessed into tensors and labels as de-
scribed in Section 5.5.1. Finally, with PointRCNN in KITTI, 420 labelled training sequences
plus 209 labelled validation sequences were prepared for training; while 19280 labelled train-
ing sequences plus 3728 labelled validation sequences were prepared with Megvii in nuScenes.
In Figure 5.5 we show the training and validation loss for both datasets. The model is only
saved when the validation loss gets lower than each of the previous epochs. In both datasets,
the model simply converges without overfitting after 40 epochs of training. Notice that in
KITTI, the validation loss remains lower than the training loss, probably because the train-
val split was not done properly, and it seems like the validation scenes are a lot easier than
the training scenes.

(a) Detector: PointRCNN. Dataset: KITTI (b) Detector: Megvii. Dataset: nuScenes

Figure 5.5 Training and validation loss
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5.6.5 Qualitative results

By applying the algorithm described in Section 5.3, we design an MOT system with a modifi-
cation brought to the life cycle management module of AB3DMOT [41], using the confidence
scores learnt with our LSTM. Figure 5.6 shows an example of a tracklet with the sequence of
the two input features (blue circle and orange triangle) and the predicted confidence measure
(green line). The confidence measure corresponds to the IoU between the tracklet and a
potential true object. We observe that the trained LSTM tends to assimilate the effect of
the score decay mechanism proposed in CBMOT: when tracklets suffer from non-detection
(area filled with light-gray), the predicted score effectively decreases (frame 21), like in the
training sequence shown in Figure 5.2. Moreover, when the detection scores are too low, the
predicted confidence measure also tends to decrease (frame 22, 37-39) as desired.

We can also compare the distribution of the confidence score before and after each non-
detection in the whole dataset. Figure 5.7 shows the respective score distributions. The
overall scores are shifted to the left after each non-detection.

Dataset: nuScenes. Detector: Megvii

Figure 5.6 Example of a tracklet with its two input features and the predicted IoU

5.6.6 Quantitative results

We compare our evaluation results with AB3DMOT [41] and CBMOT [52] for which only the
life cycle management is different. As discussed previously in Section 5.4.2, the submitted
result should not be further processed to eliminate a small portion of tracklets in order to
boost the metrics via a thresholding step that is non-causal. In the work of AB3DMOT and
CBMOT, hyper-parameters were tuned to maximize AMOTA and/or MOTA via threshold-
ing, which is questionable. As such, we manually fine-tune again the hyper-parameters, via
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(a) Detector: PointRCNN. Dataset: KITTI (b) Detector: Megvii. Dataset: nuScenes

Figure 5.7 LSTM score distributions before and after each non-detection

grid search, such as max age, min hits for AB3DMOT; birth score sbirth, death score sdeath

for CBMOT and our system; and score decay σ for CBMOT. Since the annotations of the
testing set weren’t available for both datasets during our experiments, the results reported
below were simply evaluated with the validation set. See Table 5.2, 5.3, 5.4 for KITTI, and
Table 5.5, 5.6, 5.7 for nuScenes, where the tuned hyper-parameters and the corresponding
MOTA score are marked in bold.

In both datasets, confidence-based methods including CBMOT and our system outperform
the count-based method AB3DMOT. However, our system controlling the life cycle with a
trained LSTM doesn’t yield a better score than CBMOT which uses a heuristic score-update
function and a score-decay mechanism, with a slight gap: 83.46% v.s. 85.09% in KITTI, and
56.64% v.s. 57.90% in nuScenes. Notice that we explicitly tuned the hyper-parameters on the
validation set for both methods to pick the best ones during evaluation, thus it is uncertain
that with the same hyper-parameters CBMOT would perform better than our method on
the testing set.

Interestingly, the tuned hyper-parameters sbirth and sdeath in our system are meaningful. Those
maximizing the MOTA are the following:

(sbirth, sdeath) =

(0.7, 0.6) (KITTI)

(0.4, 0.45) (nuScenes)
(5.6.1)
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From the second row of Figure 5.4, we can notice that in KITTI the IoU between true
detections and the real objects lies in majority above 0.6, while in nuScenes above 0.4. It is
thus natural to set the status of a tracklet to ACTIVE when the predicted IoU exceeds this
threshold, corresponding to both sbirth and sdeath in Equation (5.6.1). Furthermore, this value
could have been deduced directly from the training set and thus could have simplified the
tuning effort of these hyper-parameters.

In conclusion, we successfully trained an LSTM capable of providing the tracklets with a more
interpretable confidence measure at runtime, by predicting the IoU between each tracklet and
a potential true object.

5.7 Conclusion and future work

In this chapter, we discussed about the general design of an online 3D Multi Object Tracking
(MOT) system based on the “tracking-by-detection” framework, and introduced the use of a
Long-Short Term Memory (LSTM) recurrent neural network, which can be trained to predict
a confidence measure describing the IoU between the tracklet and a potential true object.
This confidence measure not only improves robustness of such systems but can also be used in
the life cycle management to achieve competitive performance. We also presented the CLEAR
MOT metrics such as MOTA and MOTP, which facilitate evaluation of MOT systems, while
questioning the usage of the recently proposed integral metrics such as AMOTA and AMOTP
as well as the correctness of the MOTA and MOTP scores reported on the leaderboard of the
nuScenes benchmark. We argue that the submitted tracklets should not be preprocessed
before evaluation and the thresholding step across recall values contradicts the “online”
principle. Finally, we conducted experiments of our proposed system on two public datasets,
KITTI and nuScenes, and compared its performance with two similar previous works, by
changing only the life cycle management module tested with different hyper-parameters.

Though we didn’t achieve the state-of-the-art performance, the main contribution of this work
is an attempt to improve certification of online MOT systems. More extensive experiments
could be conducted to optimize the design of the network structure and the features provided
to the network. Due to the computational constraints, only the class CAR was used in our
experiments, but without loss of generality, it can be easily replaced with other classes such
as PEDESTRIAN and BYCICLE. Similarly, in each dataset the 3D detector is fixed during the
whole experiment. It would be interesting to notice how detectors of different qualities
would affect the training process and validation/testing results. Finally, the present work
trains and applies LSTM on individual tracklets without considering their mutual interaction
or interaction with the sensor, such as their relative position. We may try to improve the
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Table 5.2 Validation results of AB3DMOT (KITTI)

min hits 1 1 2 2 3 3
max age 1 2 1 2 1 2

MOTA ↑ 0.4236 0.1016 0.7526 0.6212 0.8089 0.7491
MOTP ↓ 0.8203 0.8087 0.8310 0.8183 0.8365 0.8231
Recall ↑ 0.9539 0.9689 0.9336 0.9567 0.9161 0.9455

TP ↑ 9887 10218 9535 9979 9264 9786
FP ↓ 4344 7194 1394 2719 752 1538
FN ↓ 478 328 678 452 848 564
IDS ↓ 8 6 1 3 1 0

Table 5.3 Validation results of CBMOT (KITTI)

sbirth 0.3 0.35 0.35 0.35 0.35 0.4
sdeath 0.8 0.75 0.8 0.8 0.85 0.8

σ 0.15 0.15 0.1 0.15 0.15 0.15
MOTA ↑ 0.8409 0.8502 0.8426 0.8509 0.8474 0.8493
MOTP ↓ 0.8362 0.8389 0.8366 0.8388 0.8415 0.8410
Recall ↑ 0.9222 0.9154 0.9230 0.9153 0.9058 0.9079

TP ↑ 9383 9288 9413 9272 9148 9166
FP ↓ 541 397 534 391 328 333
FN ↓ 792 858 785 858 951 930
IDS ↓ 0 0 0 0 0 0

Table 5.4 Validation results of our system (KITTI)

sbirth 0.65 0.7 0.7 0.7 0.75
sdeath 0.6 0.55 0.6 0.65 0.6

MOTA ↑ 0.7526 0.8258 0.8346 0.8266 0.8030
MOTP ↓ 0.8228 0.8286 0.8314 0.8387 0.8454
Recall ↑ 0.9524 0.9325 0.9307 0.9111 0.8766

TP ↑ 9947 9692 9617 9317 8890
FP ↓ 1573 757 669 543 399
FN ↓ 497 702 716 909 1251
IDS ↓ 3 1 1 1 1
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Table 5.5 Validation results of AB3DMOT (nuScenes)

min hits 1 1 1 2 2 2
max age 1 2 3 1 2 3

MOTA ↑ 0.4349 0.3236 0.2174 0.5089 0.4473 0.3836
MOTP ↓ 0.5821 0.5621 0.5520 0.5971 0.5740 0.5629
Recall ↑ 0.6974 0.7254 0.7391 0.6536 0.6903 0.7068

TP ↑ 55791 58035 59127 52291 55226 56543
FP ↓ 19537 30548 40008 10714 18380 24654
FN ↓ 24213 21969 20877 27713 24778 23461
IDS ↓ 1463 1600 1729 865 1057 1201

Table 5.6 Validation results of CBMOT (nuScenes)

sbirth 0.25 0.3 0.3 0.3 0.3 0.3 0.35
sdeath 0.5 0.45 0.5 0.5 0.5 0.55 0.5

σ 0.15 0.15 0.1 0.15 0.2 0.15 0.15
MOTA ↑ 0.5775 0.5790 0.5730 0.5790 0.5774 0.5786 0.5779
MOTP ↓ 0.6013 0.6046 0.5927 0.6074 0.6168 0.6100 0.6119
Recall ↑ 0.6677 0.6590 0.6776 0.6554 0.6392 0.6518 0.6444

TP ↑ 53419 52720 54212 52437 51142 52143 51554
FP ↓ 6399 5690 7570 5412 4354 5155 4761
FN ↓ 26585 27284 25792 27567 28862 27861 28450
IDS ↓ 819 705 796 699 593 694 556

Table 5.7 Validation results of our system (nuScenes)

sbirth 0.35 0.4 0.4 0.4 0.45
sdeath 0.45 0.4 0.45 0.5 0.45

MOTA ↑ 0.5650 0.5512 0.5664 0.5613 0.5634
MOTP ↓ 0.6363 0.6222 0.6416 0.6638 0.6450
Recall ↑ 0.6457 0.6584 0.6366 0.6048 0.6290

TP ↑ 51660 52675 50931 48389 50324
FP ↓ 5748 7767 4995 2994 4690
FN ↓ 28344 27329 29073 31615 29680
IDS ↓ 711 813 625 490 558
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LSTM to learn to detect occlusion or truncation more accurately. For example, if one object
is occluded by another in the sensor’s viewing angle, the score of the occluded tracklet should
not decrease even in case of non-detection.
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CHAPTER 6 GENERAL DISCUSSION

In the article (Chapter 4), we presented Temporal Logic Explanations for Dynamic Decision
Systems using Anchors and Monte Carlo Tree Search, a framework that allows to interpret
a given behavior of any black-box dynamic system. Recent literature in the field of inter-
pretability includes model-specific models such as [16,17], which provide visual explanations
but are not flexible enough to be applied to other domains, while global methods such as
replacing the model by a small decision tree [18] are not precise enough. Using the anchors
methodology [12], we demonstrated that highly precise local explanations expressed in STL
can be generated efficiently using MCTS, despite the high-dimensional search space where
temporal properties are incorporated. We then applied the methodology to two case studies in
simulations of reasonable complexity: an automatic transmission control system implemented
in a vehicle and the ACAS Xu system that maneuvers an airplane to avoid collisions. We
observed that the algorithm can produce interpretable time-dependant explanations without
any prior knowledge of the inner mechanisms of the decision system.

In Chapter 5 (Tracklet Reliability in Online 3D Multi Object Tracking), we focused specifically
on a type of dynamic decision system — online 3D MOT systems. We trained an LSTM
to predict a quality measure for each tracklet describing the IoU between the tracklet and a
potential true object at runtime. In contrast to previous works [52,55,56] that design heuristic
confidence scores to improve association or life cycle management, our quality measure is more
interpretable, allowing a better understanding of the tracking system’s decisions. Not only
does it inform users of each tracklet’s reliability, but it can also be employed in life cycle
management and achieve competitive performance in both KITTI [14] and nuScenes [59],
compared to count-based methods such as AB3DMOT [41].
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 Synthesis

In this thesis, we focused on dynamic decision systems, and included an article about gener-
ating local explanations for any black-box model, and a complementary research contribution
on providing an interpretable quality measure for a tracking system. The behaviors of these
systems are expected to be understood and reliable.

In the first article, we proposed to interpret specific behaviors of any black-box model by ex-
tracting features from time-varying input signals, expressed in Signal Temporal Logic (STL),
to generate explanations that gradually maximize the precision and the coverage in the an-
chors framework. Since including past observations results in a high-dimensional search
space, we proposed a new method to build STL formulas using a multi-step look-ahead
strategy based on Monte Carlo Tree Search (MCTS).

In the complementary work, we focused on a specific type of dynamic decision system —
online 3D Multi Object Tracking (MOT) system. To be aware of the reliability of each
tracklet, we trained a Long-Short Term Memory (LSTM) recurrent neural network to predict
a quality measure describing the IoU between the tracklet and a potential true object. It was
also applied in the life cycle management to achieve competitive performance. Moreover, we
raised issues about the usage of the recently proposed integral metrics such as AMOTA and
AMOTP as well as the metrics reported on the nuScenes benchmark.

7.2 Future work

Extensive experiments were conducted to illustrate the proposed methods. In the first article,
scenarios of reasonable complexity in simulation could be analyzed to generate explanations,
but it would be interesting to apply the method to realistic perception-driven systems process-
ing high-dimensional signals with high sampling rate, e.g., the online MOT system proposed
in the complementary work. In such scenarios, much work remains to be done to optimize the
algorithm complexity and to extend the search space of STL formulas, e.g., by considering
second-level primitives. In the complementary research work, future work can include the op-
timization of the network structure and the choice of features provided to the network. More
extensive experiments may also be conducted on different detectors and object categories.
Finally, mutual interaction between tracklets may also be considered to detect occlusion and
truncation and make the predicted quality measure even more accurate.
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