
Titre:
Title:

Multi-Protocol Interoperability Between Distributed Cyber-Physical
Systems Towards Industry 4.0 Collaborative Optimization

Auteur:
Author:

Md Sabbir Bin Azad

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Azad, M. S. B. (2022). Multi-Protocol Interoperability Between Distributed Cyber-
Physical Systems Towards Industry 4.0 Collaborative Optimization [Mémoire de
maîtrise, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/10528/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10528/

Directeurs de
recherche:

Advisors:
Christophe Danjou

Programme:
Program:

Maîtrise recherche en génie industriel

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10528/
https://publications.polymtl.ca/10528/

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

Multi-Protocol Interoperability Between Distributed Cyber-Physical Systems

Towards Industry 4.0 Collaborative Optimization

MD SABBIR BIN AZAD

Département de mathématiques et de génie industriel

Mémoire présenté pour l'obtention du diplôme de Maîtrise ès sciences appliquées

Génie industriel

Août 2022

© Md Sabbir Bin Azad, 2022

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

Ce mémoire intitulé :

Multi-Protocol Interoperability Between Distributed Cyber-Physical Systems

Towards Industry 4.0 Collaborative Optimization

présenté par Md Sabbir Bin AZAD

 en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Fabiano ARMELLINI, président

Christophe DANJOU, membre et directeur de recherche

Matthieu BRICOGNE-CUIGNIERES, membre

iii

DEDICATION

To Who has taught by the pen. He has taught man

that which he knew not. . .

(From the Holy Quran, Surah : 96, AL-Alaq, Verse : 4-5)

iv

ACKNOWLEDGEMENTS

Foremost, I would like to express my heartiest gratitude to my research supervisor Dr. Christophe

Danjou for the continuous support of my master’s research study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance, advice, and wisdom helped me in

all the time of research and writing of the thesis. I could not have imagined having a better

supervisor and mentor for my master’s research studies.

Besides my supervisor, I would like to thank rest of my thesis committee Prof. Fabiano Armellini,

Matthieu Bricogne-Cuignieres for their encouragement, insightful comments.

I thank to all my friends and family for helping me survive all the stress and not letting me give up.

In particular, I would like to thank my friends Shahab Hamdavi, Ferrakkem Bhuiyan, Moaz Abrar,

Rifat Sobhan for their support and thoughtful suggestions. I am grateful to Fahim Shahriar for

enlightening me with the research work.

I am grateful to my wife Razia Sultana for her immense sacrifice and continued support. Last but

not the least, I would like to thank my parents Abul Kalam Azad and Nargish Azad for supporting

me throughout my life.

v

RÉSUMÉ

L'industrie 4.0 est apparue comme une stratégie potentielle pour fournir une connectivité étendue

dans l'environnement de production, qui évolue rapidement, combinée à une demande commerciale

croissante et à une fabrication personnalisée de masse. La personnalisation de masse et les produits

complexes nécessitent plus de données et une communication M2M plus adaptable qui facilite

l'échange de données fluide et l'interaction entre les composants industriels dans la fabrication

intelligente. L'intégration de dispositifs IoT industriels au profit de différents secteurs industriels

nécessite simultanément une connectivité réseau étendue, une communication interopérable et une

collaboration entre les machines en réseau. Bien que les problèmes techniques critiques liés à la

connectivité réseau aient été correctement résolus, la technologie n'est pas prête pour une

communication flexible et transparente entre des machines disparates. L'un des défis qui découle

de ce développement est le besoin croissant de normes et de protocoles interopérables à différents

niveaux de l'écosystème de fabrication. Compte tenu de l'infrastructure interopérable requise pour

l'industrie 4.0, le document fournit une solution interopérable sécurisée et rentable pour les

traducteurs multiprotocoles. La principale contribution de mémoire est une méthode pour

cartographier les multi-protocoles IoT, y compris HTTP, MQTT, CoAP, WebSocket et Modbus

TCP dans une passerelle à faible coût, ainsi que pour fournir une communication M2M

interopérable en duplex intégral efficace et une intégration dans le cloud pour une compatibilité.

plates-formes.

vi

ABSTRACT

Industry 4.0 has emerged as a potential strategy to provide extensive connectivity in the production

environment, which is rapidly evolving combined with rising commercial demand, mass

personalized manufacturing. Mass customization and complicated products necessitate more data

and more adaptable M2M communication that facilitates smooth data interchange and interaction

between industrial components in smart manufacturing. Integrating industrial IoT devices to

benefit different industry sectors simultaneously requires extensive network connectivity,

interoperable communication, and collaboration among the networked machines. While critical

technical issues with network connectivity have been properly addressed, the technology is not

ready for flexible and seamless communication between disparate machines. One of the challenges

that arises as a result of this development is the growing need for interoperable standards and

protocols at various levels of the manufacturing ecosystem. Considering the interoperable

infrastructure required for Industry 4.0, the research work provides a secure and cost-effective

interoperable solution for multi-protocol translators. The key contribution of the research is a

method for mapping IoT multi-protocols including HTTP, MQTT, CoAP, WebSocket, and

Modbus TCP into a low-cost gateway, as well as providing effective full-duplex interoperable

M2M communication and cloud integration for compatible platforms.

vii

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT .. VI

TABLE OF CONTENTS ...VII

LIST OF TABLES .. XI

LIST OF FIGURES ..XII

LIST OF SYMBOLS AND ABBREVIATIONS.. XV

LIST OF APPENDICES ... XVIII

 INTRODUCTION ... 1

1.1 Research Questions .. 3

1.2 Thesis Structure .. 4

 STATE OF THE ART ... 5

2.1 Industrial Internet of Things(IIoT) ... 5

2.2 Interoperable Communication between Cyber-Physical Systems 6

2.2.1 Technical Interoperability .. 6

2.2.2 Syntactic Interoperability ... 7

2.2.3 Semantic Interoperability ... 7

2.2.4 Cross-domain Interoperability .. 7

2.2.5 Horizontal Interoperability ... 7

2.2.6 Vertical Interoperability ... 8

2.3 Challenges in Implementation of Interoperability ... 9

2.4 Existing Interoperable Standards and their Limitations ... 10

viii

2.4.1 OPC UA ... 10

2.4.2 MTConnect ... 11

2.4.3 Other Interoperable Approaches .. 12

2.5 Research Gap .. 13

2.6 IoT Gateway ... 14

2.7 IoT Communication Standards... 17

2.7.1 MQTT ... 17

2.7.2 CoAP .. 18

2.7.3 HTTP .. 19

2.7.4 WebSocket ... 19

2.7.5 Modbus TCP .. 21

2.7.6 AMQP .. 21

2.8 Comparison of IoT Standard Protocols .. 22

2.9 Literary Review Conclusion ... 24

RESEARCH METHODOLOGY .. 25

3.1 Research Objectives ... 25

3.2 Research Design ... 26

3.2.1 Protocol Selection Framework ... 26

3.2.2 Gateway Design ... 27

3.2.2.1 Data Formatting .. 28

3.2.2.2 Protocol Bridging ... 29

3.2.2.3 Interoperable communication among nodes and gateways 31

3.2.2.4 Data Process and Storage ... 32

3.3 Methodology Conclusion ... 33

ix

 RESEARCH DEVELOPMENT ... 34

4.1 Multi-Protocol Gateway Development .. 35

4.2 Multiple Server Configuration on the Gateway ... 37

4.2.1 MQTT Broker Configuration ... 37

4.2.2 HTTP Server (Apache Web Server) ... 37

4.2.3 Modbus TCP Server ... 38

4.2.4 CoAP Server Implementation .. 39

4.2.5 WebSocket Server Deployment ... 41

4.3 Node Microcontrollers for different Sensor Integration .. 42

4.3.1 Node1 as Raspberry Pi 3 and Sensor DHT22 .. 42

4.3.2 Node2 as Arduino Uno Wi-Fi Rev2 and Sensor BME280 .. 45

4.3.3 Node3 as ESP32 and Sensor as MQ-135 ... 48

4.4 Communication between node Microcontrollers and the Sensors 52

4.4.1 Node1: Raspberry Pi 3 and DHT22 Communication ... 52

4.4.2 Node2: Arduino Uno Wi-Fi Rev2 with BME280 Sensor Communication 53

4.4.3 Node3: ESP32 with MQ-135 Gas Sensor Communication 54

4.5 Communication Protocol Selection for the Nodes ... 55

4.6 Communication between Node Microcontroller and Gateway 57

4.6.1 Node2 Data Received by Gateway over WebSocket Protocol 57

4.6.2 Node3 Data Transfer to Gateway over MQTT protocol .. 58

4.6.3 Node1 Data Transfer to Gateway over CoAP Protocol ... 59

4.6.4 Node1 Data Transfer to Gateway over Modbus TCP Protocol 60

4.6.5 Node1 Data Transfer to Gateway over HTTP Protocol ... 60

4.7 Data Collection and Storage ... 61

x

4.7.1 Data Store to Local and Cloud Database ... 62

4.7.2 KEPServerEX Data Logging and Communication .. 63

4.7.3 Data Store to Azure IoT Hub and Data Explorer Databases 65

4.8 Visualization of Real-Time Node Data in Web Application ... 67

4.9 Development Conclusion ... 67

 RESULTS AND DISCUSSION ... 69

5.1 Case Study: Implementation on ThingsBoard Platform .. 69

5.2 Configuration with ThingsBoard Platform .. 70

5.2.1 Gateway Configuration .. 70

5.2.2 ThingsBoard Configuration .. 73

5.3 Gateway Transferring Node1 data to ThingsBoard ... 75

5.4 Gateway Sending Node2 data to ThingsBoard .. 75

5.5 Gateway Publishing Node3 data to ThingsBoard .. 76

5.6 Real-time Visualization on ThingsBoard ... 77

5.7 Results .. 79

5.8 Limitations ... 81

 CONCLUSION AND RECOMMENDATIONS .. 82

6.1 Conclusion .. 82

6.2 Future Work ... 83

REFERENCES .. 84

APPENDICES ... 92

xi

LIST OF TABLES

Table 2.1 Comparison of Different IoT Standards and Protocols .. 22

Table 4.1 Comparison of Efficient Gateways for Smart IoT Environment 35

Table 4.2 Comparison of Different Temperature and Humidity Sensors 43

Table 4.3 Comparison of Different Microcontroller Boards .. 45

Table 4.4 Different Air Quality Range with Status .. 51

xii

LIST OF FIGURES

Figure 2.1 General architecture of device connected using MTConnect standard 12

Figure 2.2 Main characteristics of the IoT gateway ... 15

Figure 2.3 Overview structure of data transmission system using MQTT protocol 18

Figure 2.4 HTTP protocol over REST architecture ... 19

Figure 2.5 WebSocket over TCP sequence diagram .. 20

Figure 2.6 Client-Server architecture of basic Modbus TCP/IP communication 21

Figure 3.1 Protocol selection block diagram for applicable IoT systems 27

Figure 3.2 Example of systematized data format ... 28

Figure 3.3 Protocol bridging for multiple nodes with different protocols 31

Figure 3.4 Interoperable protocol communication among the nodes and gateways 32

Figure 4.1 Proposed multi-protocol gateway architecture implementation framework 34

Figure 4.2 Architecture of Raspberry Pi 4 Model B .. 36

Figure 4.3 Mosquitto MQTT broker running on terminal ... 37

Figure 4.4 Apache3 Raspbian version webserver installation confirmation 38

Figure 4.5 Register mapping for Modbus communication .. 39

Figure 4.6 CoAP requests for node sensors ... 40

Figure 4.7 CoAP payload observing from GPIO output .. 41

Figure 4.8 CoAP successful response code on message receiving .. 41

Figure 4.9 Pinouts of DHT22 temperature-humidity sensor .. 44

Figure 4.10 DHT22 sensor connection with node1 Raspberry Pi 3B .. 44

Figure 4.11 Arduino UNO Wi-Fi microcontroller with pinouts .. 46

Figure 4.12 BME280 Pressure-Altitude sensor pinouts ... 47

Figure 4.13 BME280 sensor connection wiring with Arduino UNO W-Fi microcontroller 48

xiii

Figure 4.14 ESP32-WROOM development board architecture and pinouts 49

Figure 4.15 Pinouts of MQ-135 environmental sensor .. 50

Figure 4.16 Sensitivity characteristics of MQ-135 environmental sensor 50

Figure 4.17 Experimental setup for node3 ESP32 and sensor MQ-135 .. 52

Figure 4.18 Node1 raspberry Pi 3 receiving data from DHT22 temperature-humidity sensor 53

Figure 4.19 Node2 Arduino UNO receiving sensor data from BME280 sensor 54

Figure 4.20 Node3 ESP32 receiving sensor air quality data fromMQ-135 environmental sensor 55

Figure 4.21 Protocol selection interface for the nodes to receive data on the gateway 55

Figure 4.22 Protocol assigning from gateway to nodes for sending payloads 56

Figure 4.23 Node2 data received by gateway over WebSocket protocol 57

Figure 4.24 Node3 air quality data received by gateway over MQTT protocol 58

Figure 4.25 Node1 data received by gateway over CoAP protocol ... 59

Figure 4.26 Node1 data received by gateway over Modbus TCP/IP protocol 60

Figure 4.27 Node1 data received by gateway over HTTP protocol ... 61

Figure 4.28 Table structure for data storage in gateway local database .. 62

Figure 4.29 Data storage table in gateway local database .. 62

Figure 4.30 Data sent from gateway to cloud database.. 63

Figure 4.31 Gateway sending node3 air quality data to KEPServerEX ... 64

Figure 4.32 KEPServerEX data logging in Excel .. 65

Figure 4.33 Gateway sending temperature humidity data to Azure IoT Hub 66

Figure 4.34 Data ingestion to Azure Data Explorer database .. 66

Figure 4.35 Temperature humidity real-time data visualization in Azure IoT web application 67

Figure 5.1 Cloud based ThingsBoard platform integration with muti-protocol gateway 70

Figure 5.2 Configuration for MQTT mapping in JSON format ... 71

xiv

Figure 5.3 Gateway-ThingsBoard configuration parameters ... 72

Figure 5.4 Sensor data formatted to JSON data format for message payload 72

Figure 5.5 Gateway configuration as device on ThingsBoard cloud platform 73

Figure 5.6 Gateway access token credentials generated on ThingsBoard 74

Figure 5.7 Gateway publishing Node1 data to ThingsBoard Cloud .. 75

Figure 5.8 Gateway publishing node1 data to ThingsBoard cloud .. 76

Figure 5.9 Gateway publishing node3 data to ThingsBoard cloud .. 77

Figure 5.10 Latest telemetry received by the device on ThingsBoard cloud platform 78

Figure 5.11 Real-time data visualization dashboard on ThingsBoard platform 79

xv

LIST OF SYMBOLS AND ABBREVIATIONS

CPSs Cyber Physical Systems

IoT Internet of Things

IIoT Industrial Internet of Things

ARM Advanced RISC Machine

RPi Raspberry PI

CCGX Color Control GX

OS Operating System

M2M Machine-to-Machine

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

MQTT MQ Telemetry Transport

CoAP Constrained Application Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

SCTP Stream Control Transmission Protocol

AMQP Advanced Message Queuing Protocol

FTP File Transfer Protocol

JSON JavaScript Object Notation

CSV Comma Separated Values

TSV Tab-Separated Values

ORC Optimized Row Columnar

OPC UA OPC Unified Architecture

COM Component Object Model

xvi

DCOM Distributed Component Object Model

CAN Controller Area Network

URL Uniform Resource Locator

URI Uniform Resource Identifier

SSL Secure Sockets Layer

SASL Simple Authentication and Security Layer

TLS Transport Layer Security

QoS Quality of Service

XML Extensible Markup Language

PLC Programmable Logic Controller

HMI Human Machine Interface

SDN Software Defined Network

Git Global Information Tracker

AI Artificial intelligence

HTML HyperText Markup Language

RFID Radio-frequency Identification

RTU Remote Terminal Unit

REST Representational State Transfer

API Application Programming Interface

UI User Interface

LAN Local Area Network

LTE Long-Term Evolution

GPIO General-Purpose Input/Output

PWM Pulse-Width Modulation

xvii

RAM Random Access Memory

MCU Microcontroller Unit

PPM Parts Per Million

hPa Hectopascal

kΩ Kilo Ohms

µA Micro Ampere

AQI Air Quality Index

SQL Structured Query Language

VCC Voltage Common Collector

GND Ground

SDA Serial Data

SCL Serial Clock

xviii

LIST OF APPENDICES

Appendix A NODE devices code and algorithm ... 92

Appendix B Gateway code and algorithm ... 99

1

 INTRODUCTION

Industry 4.0, fourth industrial revolution brought about by introduction of IoT and CPSs

(Kagermann, Helbig, Hellinger, & Wahlster, 2013), has emerged as a promising approach to

provide extensive connectivity in manufacturing environment (Li, Lai, & Poor, 2012). The

evolution of smart manufacturing technology is changing rapidly, and coupled with increasing

commercial demand, laminated modeling shows many advantages in providing customized and

specifically designed products (Meng, Y., Yang, Chung, Lee, & Shao, 2018). Mass customized

and complex products leads to a greater need of information and more flexible automation solutions

(ElMaraghy, 2005). This flexibility and more advanced information processing requires more

intelligence in the system. It's also designed for human workers, therefore it requires smart factory

(Zuehlke, 2008). Smart manufacturing relies on machine-to-machine communication, which

makes it possible for manufacturing items like devices, machines, systems, and people to

communicate and share data easily which allows for dynamic configuration and autonomous

collaboration between them (Lu & Asghar, 2020). However, the challenges in linked machine

collaboration, interoperability, and communication still exist (Meng, Z. Z., Wu, & Gray, 2017).

Although the crucial technical issues of network connectivity (Wollschlaeger, Sauter, &

Jasperneite, 2017) have been addressed adequately, the technologies are not ready for

communication between heterogeneous machines in a flexible and seamless manner(Meng, Z. Z.

et al., 2017). One of the challenges that arises as a result of this evolution is the growing need for

interoperability at various levels of the manufacturing ecosystem (Zeid, Sundaram, Moghaddam,

Kamarthi, & Marion, 2019).

Manufacturing ecosystems have evolved into interconnected networks of automation devices,

services, and businesses as a result of recent advancements in manufacturing technology, including

cyber-physical systems, the industrial internet, artificial intelligence (AI), and machine learning

(Zeid et al., 2019). Cyber-Physical Systems (CPS) are collections of physical and computer

components that are integrated with each other to operate a process safely and efficiently. The

concept of industrial wireless CPS is based on the interaction between the cyber and physical

worlds, including industrial wireless devices and physical components(e.g., sensors and actuators),

and cyber components (e.g., processing and storage devices)(Pan et al., 2019). Difficulty in the

communication of cyber physical systems, such as machines, sensors and devices, insufficient

2

middle-ware interfaces, or APIs to deploy heterogeneous manufacturing resources are challenges

to enable interoperable cloud manufacturing applications. Furthermore, the rapid advancement of

machine learning algorithms and computing power has created new opportunities to assist

manufacturing processes and decisions with additional data insights (Zeid et al., 2019).

Industry 4.0 initiative (W., 2014) aims to develop efficient and low-cost production with flexible

workflows for producing high-quality personalized products at low costs. Industry 4.0 uses Cyber-

Physical Systems (CPS) in its highly intelligent and flexible manufacturing process. In particular,

manufacturing automation needs personalized-product-based manufacturing process automation

and vertical integration of manufacturing systems. Both collectively form dynamic end-to-end

engineering integration. For organizations, such integration can lead to better collaboration

between different roles and functions (Schuh, Potente, Varandani, Hausberg, & Fränken, 2014).

Increased knowledge sharing and co-operation can also decentralize decision-making and increase

the autonomy of individuals (Mattsson, Karlsson, Fast-Berglund, & Hansson, 2014). Furthermore,

system integration is an enabler to implement IoT, CPS, and Smart Factories (Hermann, Pentek, &

Otto, 2015). Successful system integration requires good strategies for managing system

heterogeneity and middleware connectivity. However, integrating new devices to benefit different

industry sectors simultaneously requires significant challenges as part of what is being called the

Industrial Internet of Things (IIoT) (Serpanos & Wolf, 2018). IIoT devices have the following

unique characteristics such as low processing power and storage capacity, narrow data download,

low bandwidth, and limited battery life (Sisinni, Saifullah, Han, Jennehag, & Gidlund, 2018).

Given the ubiquity of these devices and facing such limitations, it is necessary to develop new

types of communication protocols designed to deal with these limitations (Garrocho et al., 2020).

Generally, the used protocols are based on communication through cloud and between machines

(Kshetri, 2017). A scalable interoperability solution needs the ability to automatically (without

much effort) adjust the semantic relationships of dynamic information systems. Semantic

interoperability must be achieved in interworking solutions to provide a common meaning for the

data exchanged by heterogeneous devices, even if the heterogeneous devices belong to different

domains (Cavalieri, 2021). Different communication protocols are employed in IoT, e.g., HTTP,

CoAP, MQTT, Web Sockets, AMQP, among others. The main driving force for the design of such

protocols is the hardware limitations of embedded devices, which impede the use of traditional

3

network protocols. Communication protocol integration enables interoperability between multiple

devices and services and, one possible solution is to design a multi-protocol strategy (Desai, Sheth,

& Anantharam, 2015). Though existing standards such as MTConnect, OPC-UA enable industrial

object specifications and information-rich M2M communications, the information models

generated by these standards are not semantically defined, making semantic understanding and

intelligent decision-making difficult (Grangel-González, 2017). Therefore, it is important to

identify the gap between the current state of information and communication systems for

manufacturing operations and what is required to achieve the future interconnected heterogonous

systems of autonomous entities. In aforementioned situation, an IoT system which has capability

of interchanging between access protocols may overcome the said challenges in interconnected

heterogenous systems.

1.1 Research Questions

The problematic is divided into two research questions (Q1 and Q2). The first question Q1

addresses how heterogenous devices can be connected and shared information with each other by

means of structuring any data with different access standards. The second question Q2 directs to

make a low-cost interoperable system for collaborative M2M interoperable optimization in small

and medium enterprises.

Q1: What are the advantages of an IoT interoperable system to assist interconnecting

heterogenous devices with different access standards?

It has been difficult to successfully integrate interoperability among different manufacturing

operations and processes to accomplish data-driven monitoring, prediction, control, and

optimization. The intention of this question is to distinguish the outcomes of interoperable IoT

system that enables machine to machine communication between manufacturing items like

machines, devices, systems etc.

Q2: What IoT solution can be provided to make this interoperable system cost effective for

small and medium enterprises?

Large enterprises use advanced levels of interoperability management methods and tools to handle

complexity more comprehensively. Conversely, SMEs deals with the obstacles of autonomous

4

interoperability between business, manufacturing functionalities and distributed control systems.

The reason for this question is to identify cost-effective interoperable IoT systems for SMEs to

move to CPS-based automation paradigms with digital modularity and interoperability during real-

time end-to-end integration

1.2 Thesis Structure

This thesis is structured as follows: Chapter 2 discusses interoperability standards, finds the gap

among current interoperable solutions and challenges implementing interoperable communication,

it also addresses different communication protocols and their characteristics ; Chapter 3 describes

the research objectives and steps taken to accomplish the objectives with research design strategies

Chapter 4 demonstrates development of the proposed interoperable system, communication with

different devices, sensors and integration of different cloud and industrial databases ; Chapter 5

tests feasibility of deployment model and discusses results and limitations of the proposed gateway;

finally, Chapter 6 discusses conclusions and future work.

5

 STATE OF THE ART

Design and development of interchanging and interoperable structure between IoT standards to

achieve seamless connectivity in heterogeneous systems require consideration of many areas

including industrial Internet of Things connectivity and accessibility, exchanging information

between standards and format, analyzing interoperable requirements and limitations. This research

project will involve setting up an IoT interoperable structure for heterogenous device connectivity.

Before doing so, this chapter will start with presenting a literature review on interoperable

communication and their challenges in implementation, existing interoperable solutions, and their

limitations. The second part of this literature review will discuss gateway based interoperable

approaches, characteristics, advantages and disadvantages of communication standards and their

comparison.

2.1 Industrial Internet of Things(IIoT)

The Industrial Internet of Things (IIoT) has emerged as a general concept of the application of the

Internet of Things to the industrial sector. IIoT primarily refers to an industrial framework in which

many devices or machines are connected and synchronized using Internet platform technology in

the context of the machine-to-machine and Internet of Things (Sisinni et al., 2018). Compared to

the Internet of Things (IoT) in the private sector, the focus of the industrial sector is on networking

the machine and end-to-end process chains. In fact, this is a generalization of Industry 4.0 and

seems to focus on the efficiency of industrial processes. Industrial IoT allows manufacturers to

digitize almost any part of their business. The fundamental characteristics of IIoT lead to

requirements that need to be met by the reference architecture. Key requirements identified by the

International Telecommunication Union (ITU) include interoperability, identity-based

connectivity, network and service autonomy, location-based service integration, security and

privacy, as well as capabilities for management of things and services, including plug and play

(Serpanos & Wolf, 2018).

6

2.2 Interoperable Communication between Cyber-Physical Systems

Advances in embedded systems and information and communication technology have further

expanded the adoption of wireless connectivity within CPS. CPS represents the edge of the Internet

of Things (IoT). This is a vision that allows people and things to connect anytime, anywhere, to

anything, to anyone, ideally through any path / network or service (Vermesan et al., 2009).

However, due to the rising complexity that is beyond human grasp, gadgets without the capacity

to adjust themselves to the environment will be unable to dynamically participate in the production

line in Industry 4.0. As a result, "intelligent interoperability" is crucial in "enabled the enabler" and

ensuring that research projects in the field of IoT play a prominent role in Industry 4.0 (Lelli, 2019).

In other words, the device must have the ability to describe itself in terms that both machines and

humans can understand. Therefore, they facilitate an implicit or explicit semantic description of

themselves (Hermann et al., 2015).

The European Telecommunication Standards Institute (ETSI) and the European Interoperability

Framework (EIF) define four levels of interoperability in complex systems. Technique, syntax,

semantic, and cross-domain interoperability (Izza, 2009). In addition, to unlock the full potential

of IoT vision, we need standards that enable horizontal and vertical interoperability, operation, and

programming across devices and platforms, regardless of model or manufacturer (Hatzivasilis et

al., 2018).

2.2.1 Technical Interoperability

Technical interoperability is generally linked with hardware or software components, systems, and

platforms that enable machine-to-machine communication, and is frequently concentrated on

communication protocols and the infrastructure required for those protocols to function (Kubicek,

Cimander, & Scholl, 2011). The main limitation in achieving technical interoperability between

heterogeneous systems is the issue of old interoperability between old and new systems. The

technical interoperability specification is by listing a list of existing standards that interfaces,

interconnect services, data integration services, data exchanges, and communication protocols must

use to achieve interoperability. It will be configured. This approach works if interoperability

between stations are considered, but if end users want to easily customize their stations to meet

different operational needs, more actions are required (R.L., 2005).

7

2.2.2 Syntactic Interoperability

For industrial systems, syntactic interoperability entails establishing generic structures for data

flow across heterogeneous systems and components at various levels from multiple suppliers and

platforms (Givehchi, Landsdorf, Simoens, & Colombo, 2017). Two or more systems can interact

and share data through syntactic interoperability, but the interface and programming languages

must be compatible. Manufacturing equipment must be able to parse messages to accurately decode

the message to its pieces, such as message content, language, and sender, to establish syntactic

interoperability at the industry level.

2.2.3 Semantic Interoperability

Interoperability at the semantic level includes the technology needed to enable communication

platforms to share the meaning of information. Interoperability between the components of a large

distributed system is the ability to exchange services and data with each other. Semantic

interoperability ensures an agreement and common understanding between system requesters and

providers, such as messaging protocols, procedure names, error codes, and argument types.

Semantic interoperability in heterogeneous industrial systems is a promising approach to

addressing the complexity of multi-vendor and multi-technology systems (Loskyll, 2012).

2.2.4 Cross-domain Interoperability

The new IoT platform provides a heterogeneous way to access things and their data. Cross-domain

interoperability allows to build an IoT ecosystem with cross-platform, cross-standard, and cross-

domain IoT services and applications. Such interoperability requires the extraction of data and

services to obtain a common subset of information and services in the cooperating domain. This

includes, for example, business process interoperability (BPI). This allows systems in different

domains to integrate and communicate with each other using a well-defined standard business

language (Honkola, Laine, Brown, & Oliver, 2009).

2.2.5 Horizontal Interoperability

Horizontal interoperability enables network-independent open standards and networking with a

variety of existing vertical M2M systems on IoT platforms. Open standards are an important tool

8

for providing interoperability between and within different domains. Horizontal integration

involves coordinating information flows and systems across different systems so that all data can

be accessed and analyzed on a single platform. The main function of this type of horizontal platform

is to enable the development of services that are independent of the underlying heterogeneous

network devices. Most solutions only provide cross-domain compatibility and typically act as a

closed silo with a narrow application focus that imposes specific data formats and interfaces.

Mechanisms for resolving these issues and achieving horizontal interoperability include gateway

proxies for messaging protocols. The multi-protocol ecosystem allows gateways to extend their

capabilities and interact with devices that support a variety of protocols (Hatzivasilis et al., 2018).

2.2.6 Vertical Interoperability

Vertical Interoperability is the capability of manufacturing enterprises to exchange technical and

enterprise information in a comprehensible manner. SmartFactoryKL, an EU-funded initiative,

demonstrated one of the fewest vertical integrations of information technology in an organization

with the shop floor (Weyer, Schmitt, Ohmer, & Gorecky, 2015). By designing a standardized plug-

and-play multivendor interface, the research and development took a step toward Industry 4.0 and

decentralized corporate integration. To accomplish vertical integration, the project employs

technologies such as RFID, web services, and OPC UA (Weyer et al., 2015). Multivendor

interfaces, on the other hand, necessitate multi-vendor protocol integration to monitor, manage,

and process data at all phases of development.

Facilitating product interoperability in a multi-vendor, multi-network, and multi-service context is

one of the main goals of the creation of interoperability standards. Multiple standards from several

organizations that create standards are frequently the foundation of complex goods and systems.

Users benefit from a far wider range of products thanks to interoperability, and manufacturers can

take advantage of the economies of scale that a larger market delivers. Therefore, interoperability

is essential to the success of contemporary technologies, and market demand has made sure that

interoperability has a central place in standardization.

9

2.3 Challenges in Implementation of Interoperability

Given the complexity of the process, the factors that influence interoperability should be

multivariate (Zeid et al., 2019). Key interoperability barriers include data inconsistencies,

scalability, inconsistent data formats or standards, connectivity in the IoT space, and increased

operational costs when using and installing various commercially available products.

▪ Data from heterogeneous sources can lead to data layer inconsistencies and requires more

resources to optimize unstructured data (Kadadi, Agrawal, Nyamful, & Atiq, 2014). In the

heterogeneous environment, one of the main problems with schema integration is resolving

data inconsistencies that may exist in different data sources of semantically identical data.

This semantically identical data resolves data representation conflicts when represented

differently in different data sources.

▪ Integrating new data from multiple resources with data from legacy systems creates

scalability issues (Kadadi et al., 2014). To connect non-interoperable devices and

applications, custom own developed middleware is needed. This is a time-consuming

process and needs to be updated as new components are integrated. Introducing different

types of sensors and embedded systems is difficult.

▪ There are no rules or standards set at the application level. That cannot combine or

complement the data collected from different sensors and devices. It is not possible to

integrate devices from different manufacturers. No network infrastructure has multiple

communication protocols such as MQTT, CoAP, HTTP, Modbus, and software from

multiple vendors that always connect different devices and networks.

▪ There is no common data format syntax for semantic level integration and interoperable

peer-to-peer communication between CPS for effective M2M information exchange and

faster action plans for sustainable Industry 4.0 manufacturing.

▪ Service providers are associated with and adhere to IoT devices or software provided by a

single vendor. This can result in higher operating costs later and can lead to problems with

product functionality and stability.

10

2.4 Existing Interoperable Standards and their Limitations

Few years after the initial development of the Internet, several methods, and frameworks for

exchanging data between machines and applications were proposed. GE Fanuc Automation has

developed “Cimplicity”, which enables factory and plant monitoring with XML-based data via

WebViewScreen. This service can also generate and display alerts (Waurzyniak, 2001). Another

application, called FactoryFlow, has been developed by UGS to provide offline access to factory

floor processes, plans, and simulation data. MDSI has developed an application called OpenCNC

for the purpose of accessing data on CNC machines from the Internet. This application is a

software-only machine tool controller that installs on a Windows PC to collect real-time data and

publish it to a database. This gives the user access to the OpenCNC "Important Events" file created

from the collected PLC data (Wang, Orban, Cunningham, & Lang, 2004). The development of

custom applications and interfaces such as Cimplicity, WebView, FactoryFlow, and OpenCNC has

led to the initiative to develop open communication standards that allow Internet connectivity to

manufacturing facilities ("MTConnect is the communication standard of choice for

manufacturing," 2017). Existing standards, such as MTConnect, OPC-UA, and AutomationML,

enable M2M communication with a wealth of industrial object specifications and information, so

the information model generated from these standards is semantically undefined. Understanding

meaning and intelligent decision-making are challenges (Lu & Asghar, 2020). Also, there are

several solutions (proposed or implemented) with the aim of increasing IoT interoperability which

still lack full-duplex (connectivity in both direction) integration.

2.4.1 OPC UA

The OPC UA (OPC Unified Architecture) technology was created to provide genuine unified

connection based on a safe and easy platform to allow corporate interoperability and address

enterprise integration difficulties (Mai, Vu, & Myeong-Jae, 2011). OPC extends the very

successful OPC communication protocol, which is utilized in horizontal integration transferring

data across automation systems and vertical integration transferring data between different layers

of industrial automation (de Souza et al., 2008). OPC Server is built on COM / DCOM component

technology, which makes it not only dependent on the Windows platform, but also has several

technical flaws in data transfer and security across the network. OPC UA provides a standard and

11

comprehensive address space, service model, and security model, allowing a single OPC UA server

to combine data, alarms, and events, as well as historical data, into its address space and employ a

set of uniform services to provide them with an external interface. In comparison to earlier OPC

specifications, OPC UA included more new capabilities, such as a sophisticated data structure, an

unified address space, platform independence, and improved security (Qiao & Feng, 2011).

With OPC UA, the server typically maintains a complete information model. Whether the

information space is divided into different namespaces and information models, or almost all OPC

UA servers use the same information model, each server provides all the namespaces it needs. This

is both an advantage and a disadvantage. The advantage is that the server is completely self-

contained and applications that use this information only need to communicate with this one server.

This reduces communication effort and client complexity. On the other hand, this has many

drawbacks. Especially for small devices, the additional information model introduces high

overhead due to additional memory requirements. In fact, the memory required for the information

model is one of the major obstacles to deploying OPC UA in inexpensive microcontrollers.(Iatrou

& Urbas, 2016a, 2016b). Objects Linking and Embedding for Process Control-Integrated

Architecture (OPC UA) is an industrial communication framework that is being heavily promoted

for the integration of distributed systems. It has many promising properties, but there are still

situations where other communication protocols have advantages (Derhamy, Rönnholm, Delsing,

Eliasson, & Deventer, 2017). The HTTP and TCP protocols are supported by OPC UA. Message-

based security is used by the OPC UA technology, which implies messages may be sent through

HTTP and TCP ports. OPC UA is unable to work in a multiprotocol environment. For OPC UA

clients, gaining access to non-OPC UA services is also an issue.

2.4.2 MTConnect

MTConnect is a protocol created by the Association for Manufacturing Technology (AMT) that

provides open, royalty-free device connectivity standards and technologies, as well as simple

software or firmware devices. Transfers data over the network using the Internet Protocol for

broader interoperability between numerical control devices. The adapter obtains data from the

machine and passes it on to the agent. The data is stored on a TCP server, and the agent offers a

REST interface, which allows the data to be obtained through HTTP request-reply. As a result,

12

many users can have access to the machine's real-time data collection. Basic architecture of

MTConnect device connection process is illustrated in Figure 2.1

Figure 2.1 General architecture of device connected using MTConnect standard

Although MTConnect provides many benefits as a standard, it also has several limitations.

Communication between numerical controls involves bidirectional data flow. However,

MTConnect is a read-only protocol because the data comes only from the device. Both client-side

and server-side devices are required to achieve bidirectional information flow between devices

(Xiao, Huang, & Zhao, 2018). An important area of Industry 4.0 is the ability to communicate

between machines. However, MTConnect cannot communicate with each other or read information

from other devices. This is due to the nature of data exchange in the architecture of this protocol,

as the adapter can only communicate and provide local variables for the device. Therefore, it lacks

functionality as a standalone program and requires the use of another service (Parto, 2017).

MTConnect currently only provides data in XML format. XML is a human-readable and machine-

readable web format. However, this format is so large and so complex to analyze that it makes it

difficult to develop and integrate IoT applications. JSON, on the other hand, is not only human and

machine readable, but also lightweight and very easy to parse. Therefore, most web apps and APIs

communicate in JSON, and MTConnect is not a viable option for integrating these services (Parto,

2017).

2.4.3 Other Interoperable Approaches

H. Derhamy et al. developed a multi-protocol solution for IoT interoperability issues (Derhamy,

Eliasson, & Delsing, 2017). The solution includes protocol implementation translators based on

13

Service Oriented Architecture (SOA), intermediate format to reduce the number of translations

necessary. The system also detects protocol incompatibilities and perform the translation. Barros

et al. introduced Internet of Things Multiprotocol Message Broker (IoTM2B) strategy to integrate

various communication protocols such as HTTP, MQTT and CoAP and their performance

evaluation based on two scenarios, machine-to-machine (M2M) protocols Communication and

cloud-based environment (Barros et al., 2019). This strategy extends IoT DSM to provide

integration with embedded devices Via various protocols. Derhamy et al. proposed interoperability

solution consists of a multi-protocol translator that is injected into the service exchange on demand

(Derhamy, Rönnholm, et al., 2017). The main contribution of this research is to suggest ways to

map OPC UAs to intermediate formats. Intermediate formats can be mapped to other standard IoT

protocols such as CoAP, HTTP, and MQTT.

2.5 Research Gap

Given the increasing importance of interoperability in IIoT, solutions that can automatically

integrate and analyze data across systems are essential. Interoperable solutions facilitate the rapid

creation of IoT applications across platforms and domains, eliminating the need for application

developers to own or operate an IoT infrastructure or platform (Zarko, 2019). Typical architecture

in production environments includes numerous devices, sensors, and gateways that potentially

communicate via different protocols. This sort of design works well when there are only a few

systems to integrate. However, it leads to a difficult-to-maintain architecture when there are a larger

number of components since the systems are connected point-to-point and the components are

hardwired together. Modern architectures require more flexibility. Many manufacturing companies

look for interoperability, adaptability, flexibility, and ease of implementation for the cyber-physical

systems. The information exchange between the heterogeneous systems imposes the need for an

interoperability solution.

Thus, a functional decomposition of such solutions leads us to the following main issues. Different

systems use different communication mechanisms (OPC UA, MQTT, HTTP, CoAP) to provide or

consume data. The system uses a variety of data formats such as OPC UA data models, plain bytes,

tabular CSV, and Excel files. Different data semantics coexist. In fact, each system has its own

semantics in generating or interpreting data. Communication protocols for propagating data, such

14

as request / response and publish / subscribe, use different interaction paradigms. The main issue

with current interoperable solutions is that there isn't a method that fits well with integration of IoT

protocols in a gateway and effective interoperable communication to interconnect the sensors, IIoT

devices, and machines and cloud integration for compatible platforms.

To overcome the challenges with current interoperable solutions, we noticed from the literature

review that an IoT gateway would play a vital role to enable data communication using different

network protocols which can establish bridging among heterogenous devices.

2.6 IoT Gateway

With the rapid development of the Internet of Things (IoT), there is an increasing demand for

ubiquitous connectivity to integrate multiple heterogeneous networks such as Zigbee ad hoc

networks, wireless LANs, and wired networks. In general, IoT Gateway bridges various sensor and

discovery domain networks with public or local area networks to support communication with

different communication protocols and data formats. Therefore, an IoT gateway can connect

multiple nodes with multiple sensors through different networks, it also performs many other tasks

such as this IoT gateway performs protocol translation, aggregating all data, local processing, and

filtering of data before sending it to application domain, locally storing data and providing device

security. At the same time, a gateway becomes an ideal device for network management functions,

since while exchanging messages with the sensor nodes, it can map the network and establish a

comprehensive knowledge of the network(Wilder, Jose, Harold, & Alvarado, 2021). Figure 2.3

exemplifies main characteristics of the IoT gateway(Wilder et al., 2021).

15

Figure 2.2 Main characteristics of the IoT gateway

Reprinted from (Wilder et al., 2021)

IoT gateways have been developed for industrial IoT applications. For example, (Dionisio, Malhao,

& Torres, 2020) have developed a versatile, based on the Raspberry Pi platform. It can monitor

critical parameters of the shop-floor factory through open-source software, both for smartphone

and Desktop / Laptop computers, as well as storing data for remote analysis. They presented a

gateway based on Raspberry Pi firmware and the OPC UA protocol for data transmission. They

created an OPC UA to MQTT conversion module for connecting shop floor equipment and devices

to an external cloud server and database.

Another self-configuration supported gateway is the one proposed in (Kang & Choo, 2018) which

is designed for in-home-scale environments. They used the IoTivity framework to create the test

bench. The proposed testbed's three server devices are based on a Raspberry Pi embedded system.

The goal of this gateway is to ensure interoperability between devices that don't have IP-based

communication capabilities. This gateway employed the CoAP (Constrained Application Protocol)

protocol for device-to-device (D2D) communications to achieve this goal.

16

As a possible solution to interoperability problem caused by the heterogeneity of IoT devices

(Wilder et al., 2021) proposed a IoT gateway. They established gateway acts as the hub of a

paradigm in which multiple wireless nodes can send data using a variety of communication

protocols, including Wi-Fi, Bluetooth, ZigBee, and Ethernet. They used the Samsung Artik 1020

development kit to create the gateway, which is a high-performance, multi-protocol embedded

board with Bluetooth, ZigBee, and Wi-Fi wireless communication capabilities. They employed a

wireless node made up of six sensors that measured environmental temperature, relative humidity,

sun radiation, wind speed, rainfall level, and wind direction. The wireless nodes use ZigBee, Wi-

Fi, and Bluetooth to send data from sensors to the gateway.

According to the needs of the IoT ecosystem and the current requirements of the IoT applications,

IoT gateway must have the option to choose different protocols communication which need to be

selected based on their applications and capabilities. Each of these protocols have distinct features

and capabilities, which complex the identification of a protocol suitable for specific use cases. The

CoAP protocol's hibernate architecture and binary data format make it ideal for applications related

to automation, mobile phones, microcontrollers, and more. Another protocol widely used in IoT

applications is MQTT. This is recommended for network scenarios where bandwidth consumption

needs to be reduced and the processing and storage capacity of the devices involved in the

communication is low (Wilder, Jose, Harold, & Alvarado, 2021). Like CoAP, WebSocket

protocol’s standard connectivity helps simplify many of the complexities and difficulties involved

in the operation of bi-direction communication. This protocol can be applied to IoT networks where

data is continuously communicated between multiple devices. However, one problem is that

industrial and manufacturing sensors are primarily connected to programmable logic controllers

(PLCs) to collect large amounts of sensor data and send it to communication systems (John &

Vorbröcker, 2020). To enable IoT connectivity for these sensors connected to PLCs, the controller

needs to configure with Modbus TCP protocol. There are some other devices which do not support

any of these protocols and require to transfer large amounts of data. For these devices, HTTP

protocol is widely used. For example, manufacturing and 3-D printing rely on the HTTP protocol

due to the large amounts of data it can publish. Based on the capabilities and requirements of the

sensor data transmission, users set access protocols for the bidirectional communication between

nodes and gateway. In order to design interoperable connectivity, proper protocol needs to be

17

addressed initially in terms of seamless communication among different distributed cyber physical

systems. We performed a study to for a better understanding of the industry specific

communication protocols to design a protocol selection framework for the interoperable IoT

gateway.

2.7 IoT Communication Standards

The Internet of Things covers a wide range of industries and use cases, from single constrained

devices to large-scale cross-platform deployments of embedded technologies and cloud systems

that connect in real time. A key issue here is the architecture and platform used by the machines

and software packages. A better understanding of the subject can be achieved by studying industry-

specific communication protocols and their respective logical semantics (Zeid et al., 2019). Based

on the IoT devices and their applications, there are different application-layer IoT protocols such

as MQTT, CoAP, AMQP, HTTP etc.

2.7.1 MQTT

MQTT, which was first launched in 1999, is one of the earliest M2M communication protocols. It

was created by IBM's Andy Stanford-Clark and Arlen Nipper (Eurotech). It's a lightweight M2M

messaging protocol built for limited networks that uses publish/subscribe messaging

(Bandyopadhyay & Bhattacharyya, 2013). Designed to support remote monitoring, it provides low

latency, secure messaging, and efficient delivery of data to one or more recipients over vulnerable

networks. It is TCP-based and asynchronous and can integrate a publish-subscribe communication

model.

Advantages of data transfer MQTT is good, reliable, easy to build. It uses less network resources

even in conditions of unstable (Uy & Nam, 2019). The overall structure of the data transmission

system using the MQTT protocol is shown in Figure 2.3

18

Figure 2.3 Overview structure of data transmission system using MQTT protocol

The MQTT client publishes the message to the MQTT broker. This broker can be subscribed to by

other clients and retained for future subscriptions. Each message is published to one address.

Customers can subscribe to multiple topics and receive all messages published on each topic. If

the message is sent to the broker but the client has not yet subscribed, the packet is not stored in

the broker and waits for the client to send it. Another great feature of MQTT is the three levels of

quality of service (QoS) to ensure the delivery of messages. QoS Level: QoS0-Maximum once,

QoS1-At least once, QoS2-Exactly once.

2.7.2 CoAP

Constrained Application Protocol (CoAP) is a service layer protocol used by resource-constrained

low-power sensors and devices connected over a lossy network, especially when there are many

sensors and devices on the network. CoAP is one of the most popular IoT communication

protocols, especially in the context of advanced metering and distributed intelligence applications,

as it extends the scope of HTTP to restricted devices (Silva, Carvalho, Soares, & Sofia, 2021).

Many manufacturers use CoAP in their IoT devices since it is lightweight and energy efficient.

CoAP is based on a client/server approach and uses REST to increase interoperability. Its design

has been carefully worked to fit constrained devices in terms of battery, memory, storage. Running

over UDP. Its lightweight design makes it a promising protocol for embedded devices. While

widely available and highly interoperable, also providing inbuilt support for content negotiation

and discovery, CoAP remains a one-to-one protocol based on a client/server model (Silva et al.,

2021).

The methods supported in CoAP are based on the RESTful structure which are listed as follows:

19

• GET: operation to retrieve representation in resource identified by the URI request.

• POST: request that the server build a new subordinate resource with the parent URI specified.

• PUT: requests that the enclosed message content be used to update/create the resource indicated

by the request URI.

• DELETE: requests resource identified by the request URI to delete. URI in CoAP is similar to

HTTP, where the unsecure URL starts with CoAP:// and the secure URI is CoAPs:// (Alghamdi,

Lasebae, & Aiash, 2013)

2.7.3 HTTP

HTTP supports a RESTful web architecture for requests / responses. Like CoAP, HTTP uses a

Universal Resource Identifier (URI) instead of a topic. The server uses the URI to send the data,

and the client uses the URI to receive the data. HTTP is a text-based protocol that does not define

the size of headers and message payloads, but depends on the web server or programming

technology (Naik, 2017). HTTP uses TCP as a default transport protocol and TLS/SSL for security.

The HTTP protocol uses the GET, POST, PUT, and DELETE commands to exchange/remove data

between the client and server. The REST architecture is shown in Figure 2.4 below.

Figure 2.4 HTTP protocol over REST architecture

2.7.4 WebSocket

The WebSocket protocol is an application layer protocol designed for continuous data exchange

between clients and servers. This enables bidirectional data transfer in web sessions and

20

asynchronous communication, which is considered a viable alternative to HTTP polling. This

means that both sides can send data at any time while the connection is established. The protocol

is divided into two parts: handshake and data transmission. In the handshake, the client and server

basically establish initial communication over HTTP and the port. The default is 80. In this first

communication, the client requests a communication type update. It can exchange data using the

WebSocket protocol after the validation is validated.

Since the WebSocket is a TCP-based protocol, it requires a TCP connection to be established

between client and server before any WebSocket-based interaction can occur. Handshaking a TCP

connection requires three messages to be exchanged between client and server. Three-Way

handshake or a TCP 3-way handshake is a three-step process that requires both the client and server

to exchange synchronization and acknowledgment packets before the real data communication

process starts. At this point, two peers that have direct access to the plain TCP protocol can start

sending application-specific payload data to each other. However, for WebSocket-based

communication, WebSocket session need to be established. To establish a session, the client sends

a WebSocket upgrade request to the server, which responds with a WebSocket upgrade response.

From this point on, even web-based clients and servers can send and receive data in asynchronous

full-duplex mode (Skvorc, Horvat, & Srbljic, 2014). Sequence diagram of a WebSocket session

over TCP protocol is shown below in Figure 2.5

Figure 2.5 WebSocket over TCP sequence diagram

Reprinted from (Skvorc et al., 2014)

21

2.7.5 Modbus TCP

Modbus TCP / IP is one of the basic Modbus variations aimed at monitoring and controlling

automated devices and is a simple vendor-independent communication protocol. Modbus TCP

clients and servers listen and receive data over port 502. The Modbus / TCP protocol provides a

client / server mode for communication between devices on an Ethernet network. There are four

types of mode messages: Modbus request, Modbus acknowledgment, Modbus display, and

Modbus response. A Modbus request is a message sent by a client to initiate an event. The Modbus

display is a request message received from the server. A Modbus response is a response message

sent by the server. A Modbus acknowledgment is a response message received from a client. The

client-server architecture of basic Modbus TCP/IP communication is shown in Figure 2.6

Figure 2.6 Client-Server architecture of basic Modbus TCP/IP communication

2.7.6 AMQP

The Advanced Message Queuing Protocol (AMQP) is a lightweight M2M protocol, designed for

reliability, security, provisioning and interoperability (Foster, 2017). It follows a well-understood

practices of data framing, client / server option negotiation, and connection processing. AMQP

currently assumes stream-based transport (usually TCP). Sends sequential frames between

channels, allowing multiple channels to share a single TCP connection. Therefore, communication

22

between the client and the broker is connection oriented. Reliability is one of AMQP's core features

and provides two preliminary quality of service (QoS) levels for message delivery: Unsettle format

(not reliable) and settle format (reliable).

2.8 Comparison of IoT Standard Protocols

This section presents a comparative analysis of the four widely accepted and emerging messaging

protocols for IoT systems MQTT, CoAP, AMQP, HTTP, WebSocket and Modbus TCP based on

several criteria to introduce their characteristics comparatively. The comparative study of these IoT

standards and protocols is shown in Table 2.1.

Table 2.1 Comparison of Different IoT Standards and Protocols

Aspects HTTP CoAP MQTT AMQP WebSocket Modbus

TCP

Communication

approach

Client/

Server

Client/

Server

Client/

Broker,

Client/

Server

Client/

Broker,

Client/

Server

Client/

Server

Client/

Server

Messaging

pattern

Request/

Response

Request/

Response

Publish/

Subscribe

Request/

Response

Publish/

Subscribe

Request/

Response

Request/

Response

Transport

protocol

TCP UDP, SCTP TCP TCP,

SCTP

TCP TCP

Security TLS/SSL DTLS TLS/SSL TLS/SSL

SASL

TLS/SSL

23

Table 2.1 Comparison of Different IoT Standards and Protocols (cont’d and end)

QoS/Reliability Reliable

(over

TCP)

Confirmable

/Non-

Confirmable

message

Guarante

ed

Message

Arrival

Broker

Redunda

ncy

Reliable Limited

Default Port 80/443 5683/5684 1883/888

3

5671/567

2

80/443 502

Binary Payload No Yes Yes Yes Yes No

Method Get, Post,

Put, Patch,

Delete

Get, Post,

Put,

Delete

Publish,

Subscribe

Publish,

Consume

Bi-

directional

communica

tion

Read/

Write

Request

Message Size Undefined Small and

Undefined

Maximu

m

260MB

Undefine

d

Should not

exceed

64KB

Maximu

m 255

bytes

Data

Persistency

No No Yes Yes Yes No

These messaging protocols are very extensive and different from each other because they have

been evolved through different processes and needs. Interoperable integration and uniform access

of these different IoT standards are required to provide seamless connectivity with different type

of CPSs, devices, resources, and applications. Furthermore, organizations and current cloud-based

24

platforms provide expensive interoperable and compatibility tools which are costly investment for

small manufacturing companies. Therefore, it is important to propose a communication protocol

selection framework and a low-cost interoperable IoT system to interconnect IoT objects and

heterogenous devices and machines with different access protocols to support interoperability

across the small and medium enterprises.

2.9 Literary Review Conclusion

Chapter 2 presented challenges implementing interoperable communication, existing interoperable

systems, and their limitations such as OPC UA, MTConnect. It also presented gateway based

interoperable systems facing IoT challenges for different protocols. The chapter also discussed

multiple access protocols and their characteristics to find suitable protocol for different applications

and machine to machine communication. These concepts had to be reviewed to understand the

objectives which will be listed in the next chapter.

25

 RESEARCH METHODOLOGY

It is clear that the main challenges of the current communication architecture are the smooth

integration and interoperability of disparate communication standards, which are already supported

by Internet of Things devices and sensors created expressly for certain purposes at various periods.

However, it is important to develop an integrated solution, where heterogenous CPSs, sensors,

devices are uniformly made discoverable, given the ability to connect with other entities, and

closely integrated with Internet infrastructure and services which will enable M2M data

optimization and robustness in manufacturing industries. To overcome the challenges developing

an interoperable solution, the problematic need to be addressed. This chapter proposed the research

objectives and research design based on the problem statements and literature review defined in

the previous two chapters.

3.1 Research Objectives

The objective of this research project is to demonstrate an IoT interoperable system for M2M

communications among heterogenous cyber physical systems with low computational capabilities.

The system includes a protocol selection framework for connecting different devices and systems

with different applications and capabilities and cost-effective gateway for connecting heterogenous

devices or nodes with different access protocols, bridge the communication and perform the

conversion. For industrial communication in automation technology, industrial networking

protocols such as HTTP/HTTPS, MQTT, Modbus RTU & Modbus TCP/IP, CoAP, WebSocket,

AMQP are widely used. To demonstrate an interoperable system to communicate with devices with

different protocols, a common platform is required which can access multiple protocols.

Using the above data as inputs and studied variables, we will be working towards two methods.

▪ Defining a protocol selection framework among HTTP, MQTT, CoAP, WebSocket

Modbus TCP protocol based on the capabilities and requirements of the device and sensor

data transmission.

▪ Developing the interoperable IoT multiprotocol conversion system in a low cost IoT

gateway with above mentioned common access protocols for M2M communications among

heterogenous cyber physical systems with low computational capabilities.

26

The next section will present the methods and design procedure used to accomplish the objectives

set above. The objectives indicate to design an interoperable middleware that can connect multiple

devices, nodes and sensors with different access protocols and enable duplex communication

between them. According to this vision, the next section presents research framework of this work

consisting into the design of protocol selection framework and interoperable gateway architecture

for seamless interoperable connectivity between heterogenous devices and machines via access

communication protocols.

3.2 Research Design

Considering the interoperable infrastructure required for Industry 4.0, this thesis presents an

interoperable solution of multiprotocol gateway. The objective of the proposed platform is to

develop an interoperable system which is able to connect heterogenous devices with different

protocol, process and store the data, exchange the data to different machines and to the cloud. The

main contribution of the research is proposing protocol selection framework among HTTP,

MQTT, CoAP, WebSocket, Modbus TCP and low-cost IoT gateway for developing effective

interoperable M2M communication and cloud integration for compatible platforms. The contents

in this section are categorized in two levels of protocol selection framework and gateway. The

protocol selection framework presents a diagram for selecting different protocols based on the user

end application requirements. The gateway section shows the general architecture of the platform

and explains the structure of data exchange, data formatting and protocol bridging within the

platform.

3.2.1 Protocol Selection Framework

To facilitate safe and high-speed data transfer among end IoT devices, protocol selection

framework is designed from the understanding and study about communication protocols discussed

in literature review among MQTT, CoAP, HTTP, WebSocket and Modbus TCP for the nodes

and/or sensors to send data to the gateway. The diagram provides general automated system which

allows users to select the suitable protocol for the application in regards of their standards and data

transmission capabilities. In the Figure 3.1, protocol selection block diagram is shown to select the

appropriate protocol for the IoT devices.

27

Figure 3.1 Protocol selection block diagram for applicable IoT systems

3.2.2 Gateway Design

The second part of the proposed objective is the middleware gateway which is a high performance

and multi-protocol embedded board that is also accessible through LAN network and wireless

communications. This gateway provides wide range of access capability, protocol interworking

and interoperable managing and controlling of the sensor nodes. The gateway uses wireless

communication protocol (e.g., Zigbee, Bluetooth, Wi-Fi) and LAN network to acquire the packet

from the heterogenous sensor nodes, and use the 3G/4G, DSL and other network interfaces to send

28

the packets to the database server and Internet. The architecture of the gateway is defined with four

modules. These modules are the key functions of the embedded communication.

3.2.2.1 Data Formatting

This module is responsible for formatting the collected data into a standard format and finally

sending it to the database server. Heterogeneous nodes and sensors send data over different

protocols, so they send data in different data formats. The gateway uses JSON format to

systematize the representation of the data from the nodes and sensors. This format has important

advantages such as simplicity and low resource consumption (Wilder et al., 2021). An example of

the representation of the data recorded by the temperature and humidity sensor, in JSON format, is

shown in Figure 3.2. As can be seen in this figure, the first three parameters are ‘node-id’, ‘protocol’

and ‘device’, which correspond to the identification of the remote node, connected sensors and

device with the node and the communication protocol by which the sensor device send the data.

Figure 3.2 Example of systematized data format

The following parameters are sensor device’s fields ‘sensor-id’, ‘temperature’, ‘relative humidity’,

‘humidity’ and ‘time’, which collect the sensor information and data with the time. There are some

other parameters for example ‘network_key’ which will be used to identify the communication

network as Bluetooth, Wi-Fi, or others. Besides, the parameter ‘gateway-id’ which will be used

29

later to identify the gateway. The gateway identification will be useful when there is multiple

gateways transferring information among each other.

3.2.2.2 Protocol Bridging

The proposed IoT gateway acts as a bridge between different protocols, mainly between HTTP,

MQTT, CoAP, WebSocket and Modbus TCP. The gateway continuously being ready for listening

for these multiprotocol connection requests and message payload with the standardized format.

In my proposed system, the gateway is acting as server with MQTT broker software contains and

facilitates the communication from different nodes transferring messages from publisher to

subscriber and subscriber to publisher. The broker installed on the gateway was Mosquitto, a well-

known broker that implements several versions of the MQTT protocol and is a relatively

lightweight software message broker (Light, 2017) and it has low power profile. In this regard, no

data is initially sent through the Internet which is also an advantage in terms of security. This

provides a minimal way of communication that does not require any cloud-based broker. The

proposed bi-directional gateway can transfer the sorted data from the database and send to the

application client and to the cloud with required protocol. Three threads are opened in the main

process. The first one is to listen and accept on the multiple node connections. The second one is

to read the commands from the software user interface module and read data from the IOT Gateway

and parse the data, then send it to the MQTT broker for publishing. The third one is to show the

received data on a webpage using Paho provided MQTT JavaScript client. It is also responsible for

receiving configuration parameters that users can enter through the user interface and send to nodes

and other gateways. In this case, in communication between gateways, the connected node and

sensor act as subscribers and the gateway acts as publisher.

In the gateway, WebSocket communication technology also is adopted in MQTT broker as

WebSocket provides full-duplex communication channels over a single TCP/IP connection. When

the gateway starts, it creates a server socket which uses a particular port 80 for regular WebSocket

connections. WebSocket server in the gateway, becomes ready for listening nodes configured with

WebSocket protocol. When user configure node with WebSocket protocol for data transfer, the

node creates client socket and tries to establish a communication link to the gateway server using

its IP address and port number.

30

Another well-known protocol for communication between nodes and gateway servers is HTTP,

which the user can configure. The server is installed on the local area network's IoT gateway. This

server represents the data gateway server to which data from the nodes would be transferred. On

the IoT gateway, an Apache web server is deployed and configured. HTTP is a request-response

protocol that communicates between a client and a server. In the system, a node containing sensor

devices makes an HTTP request to the server, which is subsequently answered by the server. The

data given to the server via POST is saved in the HTTP request's request body. As a result, node

sends data to the server gateway.

Another highly interoperable protocol for embedded devices with increased levels of security is

CoAP. CoAP combined with size-optimized and reliable datagram communication. CoAP has two

sublayers. H. Messaging sublayer and request / response sublayer. CoAP provides a URI like (coap:

//). This task installs a secure implementation of the CoAP server on the IoT gateway. Python 3

and the Aiocoap library are used to install the CoAP server on the gateway. In the proposed system,

both the client and the server are co-located, communicate over the same network, and the gateway

acts as a local server. A node that acts as a CoAP client can use a browser add-on (Copper (Cu)

CoAP User-Agent) to send data to the server on a specific port 5683. The IoT gateway, which acts

as a server, listens on specific ports for data received from clients. Nodes that use the CoAP

communication protocol detect that the server is running at a gateway IP address that uses a

particular port. After finding the service, the node sends a GET or PUT request to access the server.

The gateway server reviews these requests and operates accordingly.

Modbus TCP server is also provided by the IoT gateway. A related feature of Modbus TCP is that

it is supported by both proprietary and open source hardware / software, allowing different devices

to seamlessly exchange the information made possible by this protocol (González, Calderón, &

Portalo, 2021). The ability to interconnect older-type equipment for instance PLC plays an

important role for industrial machine to machine communication. The IoT gateway uses

pyModbusTCP, a Modbus/TCP client library for Python which gives access to Modbus/TCP server

through the Modbus Client object. Modbus TCP/IP clients and server listen and receive Modbus

data via port 502. When user set Modbus TCP protocol for the node, node acts as client and it

initiates the communication by sending request to the IoT gateway server to transfer data. The IoT

gateway server is aimed to build up the peer-to-peer communication that encapsulate/de-

31

encapsulate the incoming serial frames/TCP packages. These incoming serial data frames are read

and written as holding register. The type of register being addressed by a Modbus request is

determined by the function code. Once a connection is established, the gateway server imparts the

node with the queried information until the node finishes the connection. Protocol bridging

demonstration is shown below in Figure 3.3.

Figure 3.3 Protocol bridging for multiple nodes with different protocols

3.2.2.3 Interoperable communication among nodes and gateways

In the protocol bridging section, it is showed that multiple nodes with multiple protocol mainly

MQTT, HTTP, WebSocket, CoAP and Modbus TCP send data simultaneously to the proposed IoT

gateway. Another important function of the architecture is that the IoT gateway is able to

communicate with the nodes and other gateways with the same protocol that nodes use to

communicate with the gateway or different protocol in terms of the data type and data transfer

requirements. For instance, node1 uses CoAP protocol to send data to IoT gateway. For sending

payload from IoT gateway to node1, user can set any of MQTT, HTTP, WebSocket, CoAP and

Modbus TCP protocol to communicate simultaneously. For the communication between multiple

gateways, this protocol interoperability might play a significant role in industrial machine to

32

machine communication. An example is given below in Figure 3.4 to illustrate the interoperable

protocol communication among the nodes and gateways in the proposed architecture.

Figure 3.4 Interoperable protocol communication among the nodes and gateways

3.2.2.4 Data Process and Storage

The MySQL database management system can be used to record the time it takes to send and

receive messages transmit over the network, where all data is stored after each session and record

data is calculated. In the IoT gateway, in the local network can be configured so that when the

nodes transmit data over this multiple protocol, after the data standardization process is done,

primarily data are stored in local database with protocol-id and other values to identify the data for

cloud and other database data transfer. Gateway data formatting methods play an important role in

addressing the challenges of data integration from a variety of devices and systems for general

systematization and representation in JSON format. To handle huge amounts of data and address

data integration and data interoperability challenges, multiple databases can be integrated for high

reliability and fast access to data. By adopting cloud-native services, developers can also take

advantage of advanced technologies such as AI, machine learning (ML), and natural language

processing (NLP).

33

3.3 Methodology Conclusion

In the research methodology chapter, we presented the steps taken to reach research objectives. An

IoT protocol selection framework has been designed for the users to select suitable protocol for the

application based on hardware capabilities and data transmission requirements. Also, we presented

design of interoperable IoT gateway consisting of four modules including data formatting, protocol

bridging, interoperable communication among nodes or devices and gateways, and data processing

with storage.

34

 RESEARCH DEVELOPMENT

In order to evaluate the proposed solution for interoperability in Chapter 3, an IoT gateway

architecture was implemented. The implemented system involves communication among IoT

gateway and three remote wireless nodes. The nodes are connected with three different sensors.

The gateway is designed to connect any IoT and industrial sensors. The three nodes and sensors

are taken based on the availability and cost effectiveness. The solution proposed in this research

aims at enabling interoperable connectivity from heterogenous devices and data acquired from

different communication protocols and also extending these networks towards the IoT universe.

The purpose of the application is to develop interoperability gateways which provides a reliable

and uniform way of industry 4.0 cyber physical systems for easy interoperability. The proposed

architecture is designed, implemented, and verified to evaluate quality of service of the gateway.

To this purpose, the following modules have been implemented within the application: This chapter

is consisting of 6 parts: (i) multi-protocol gateway development(ii)multi-protocol server integration

(iii)node microcontrollers and sensors integration (iv)nodes to gateway interoperable

communication (v) bi-directional communication among nodes and gateways (vi) data storage to

multiple databases. Figure 4.1 shows the implementation details of the architecture in this project.

Figure 4.1 Proposed multi-protocol gateway architecture implementation framework

35

4.1 Multi-Protocol Gateway Development

For the development of the gateway, Raspberry Pi 4 development board was used, which is a high

performance and multi-protocol embedded board. Initially, multiple single board computers were

compared to find the cost efficient and complex task management compatible gateway. The table

4.1 is provided to show the comparison among Raspberry Pi 4, Raspberry Pi 3, Arduino Mega,

Beagle Bone and Intel Galileo.

Table 4.1 Comparison of Efficient Gateways for Smart IoT Environment

 Raspberry Pi 4 Raspberry Pi

3

Beagle Bone Intel Galileo

Processor Quad core 64-

bit ARM-

Cortex A72

Broadcom

BCM2837

64bit Quad

Core

ARM Cortex-A8 Quark

SoC X1000,

32-bit Intel

Frequency 1.5GHz 1.2GHz 1GHz 400MH

RAM 4GB 1GB 512MB 512 KB on-chip SRAM

256Mb DRAM

Operating

System

Raspbian,

Debian,

Fedora,

ARCH Linux

ARM, RISC

OS, Ubuntu

Core et.

Raspbian,

Debian,

Fedora,

ARCH Linux

ARM) and

FreeBSD

Etc.

Android, Debian,

Angstrom, Yocto,

Fedora, Ubuntu

etc.

Arduino, Linux

distribution for Galileo,

Rocket etc.

Power 15.3W 10W 15W 15W

36

Table 4.1 Comparison of Efficient Gateways for Smart IoT Environment (cont’d and end)

Cost 70 CAD 45 CAD 70 CAD 100 CAD

Based on the comparison of multiple single board computer, Raspberry Pi 4 has been selected as

IoT gateway to implement the proposed architecture. As in the research work, it is proposed that

heterogeneous nodes with different sensors communicate with the IoT gateway over different

protocols and for the interoperable communication compatible functionalities, Raspberry Pi 3

Model B is preferred. Raspberry Pi is proposed as IoT gateway because of its low cost, high

processing capability, sufficient amount of random-access memory (RAM), 40 input/output GPIO

pins, RJ45 port and Wi-Fi connectivity for smart Internet of Things environment. In this research,

MQTT broker, HTTP, WebSocket, CoAP, ModbusTCP server are implemented in Raspberry Pi 4.

The Pi 4 is continuously being ready for listening for these multiprotocol connection requests and

message payload with the standardized format through 802.11 b/g/n/ac Wireless LAN network.

Figure 4.2 shows the Raspberry Pi 4 4GB model which is used in this research for the proposed

system development.

Figure 4.2 Architecture of Raspberry Pi 4 Model B

37

4.2 Multiple Server Configuration on the Gateway

MQTT, HTTP, CoAP, Modbus TCP and WebSocket server are integrated in the gateway. In our

experiments we use a high speed, 32 GB class 10 (30 MB/s), micro-SD card for storage. This

ensures that the storage device is not the system bottleneck. Raspbian OS has been installed in the

system to configure all the servers and install the required software and libraries.

4.2.1 MQTT Broker Configuration

The software that is being used here is Mosquito MQTT broker software, which is installed on the

Raspberry pi by using command “sudo apt-get install mosquitto mosquitto-clients”. By installing

it on the raspberry pi and starting it as a MQTT broker which handles the messages. Installation

set up the broker and allow it to start on boot. After installation series of commands in the terminal

of Raspberry username and password can be set and when everything is established, Mosquitto

software broker will be started by using command “mosquitto /etc/mosquitto/mosquitto.conf”. And

by following this sequence the clients are ready to connect to the broker to publish or subscribe the

topic. After these installations, following command “mosquito -v” on the terminal shows

Mosquitto running on the system and in what ports the server is ready to listen connection requests.

Figure 4.3 illustrates the correct installation and start-up Mosquitto MQTT broker on the terminal.

Figure 4.3 Mosquitto MQTT broker running on terminal

4.2.2 HTTP Server (Apache Web Server)

The Apache web server (HTTP server) is installed on the Raspberry Pi 4 IoT gateway. Apache can

communicate between nodes and the server over the HTTP and HTTPS web protocols. Apache

server has been installed with the command “sudo apt install apache2 -y”. The Apache server uses

38

HTTP (Hyper Text Transfer Protocol) to distribute website services online and supports four

application profiles: Apache, Apache Full, Apache Secure, and OpenSSH. The Apache profile

opens the port 80 (http traffic), while Apache secure opens only port 443 (SSL/TLS traffic).

Because in this work both HTTP and HTTPS is used, Apache Full is enabled as it opens both port

80 and port 443. Figure 4.4 demonstrates apache2 Raspbian version running on the gateway.

Figure 4.4 Apache3 Raspbian version webserver installation confirmation

4.2.3 Modbus TCP Server

Modbus is more suitable for rapid system development because it allows data and commands to

pass between the two devices without requiring the knowledge of how data is processed or how

outside communication is implemented. For Modbus TCP/IP communication, an open-source and

full Modbus protocol called “pyModbus” is used. It works as fully implemented Modbus server

and supports read/write on discrete and register. In the proposed communication architecture, the

Raspberry Pi is configured as the Modbus TCP server. In the Raspberry Pi, a Modbus TCP/IP

context must be generated using its IP address before trying to create a connection to the nodes.

Before data communication over nodes, the gateway will create a register map for all data types

with desired size. 30 registers are written initially for receiving read/write requests from the clients.

More registers can be added for further development. Since the server cannot perform read or write

operations in Modbus TCP/IP protocol, it only accepts read or write requests from the client and

replies to a message to the client once the operation has been completed. Mapping of the holding

registers for Modbus communication are illustrated in Figure 4.5.

39

Figure 4.5 Register mapping for Modbus communication

All the data that need to be exchanged between the gateway and nodes must be converted to

registers as holding registers and input registers will be used. Each variable, regardless of integer

or floating point, will be represented by 2 registers. It is easy to convert integer variables to such

format. For floating points, they can be converted to integers just by multiplying the absolute value

by 100 in order to preserve 2 decimals. The precision of the data can be easily adjusted based on

either nodes requirement or data size limitation set by the Modbus register. Actually, both the

gateway and the nodes are presented as actual data format for each Modbus register.

4.2.4 CoAP Server Implementation

In this work, the aiocoap Python CoAP library was used to implement the CoAP protocol (Maciej

Wasilak & Amsüss, 2014). Simple CoAP server is installed with a single resource. The data of the

nodes is stored in this resource. The first access method is PUT, which allows the node linked to

the sensors to send data to the server running on the Raspberry Pi 4 IoT gateway. Furthermore, the

GET method enables nodes with actuators to register with the resource, allowing nodes to be alerted

when the server begins any feedback command or data transfer.

The PUT method requests that the resource identified by the request URI be updated or added with

the enclosed payload. The message is triggered by assigning a PUT request to the resource. This

40

allows the process to notify the CoAP server of state changes in a simple and standard way. The

resource is implemented as a special PUT handler that updates the resource status according to the

PUT payload and triggers the delivery of the payload to the publisher. CoAP messages use two

types of identifiers, message identifiers. This allows messages to be paired with acknowledgments

and tokens for more general purposes. Figure 4.6 illustrates CoAP payload requests function for

transferring from node microcontroller to Raspberry Pi 4 IoT server gateway.

Figure 4.6 CoAP requests for node sensors

The GET method gets information about the resource identified by the request URI. A node with

an actor waiting for a protocol response. When the server sends the payload with the response

device ID, the node receives the request and checks the current status of the connected actuators

communicating through the node's GPIO pins. In this task, the LEDs on the receiving node are

connected via GPIO. For each payload status change request from the server, the node acts as a

controller by changing GPIO.output (relay_pin, GPIO.HIGH) or GPIO.output (relay_pin,

GPIO.LOW) according to the monitoring resource status change request. In Figure 4.7 trigger

observe payloads are illustrated and invoked automatically by the GPIO library when the value on

targeted GPIO pin changes.

41

Figure 4.7 CoAP payload observing from GPIO output

The response obtained in the main function is a message like the request message, just that it has a

different code. The response code is denoted in Python with some utility functions. For instance,

in this work, successful response code is provided in Figure 4.8 is 2.04 which embeds in the

successful 2.00 group.

Figure 4.8 CoAP successful response code on message receiving

4.2.5 WebSocket Server Deployment

As WebSocket enables bidirectional communication in real time over the web, WebSocket server

will be deployed in the gateway for horizontal interoperable communication. Node.js file is created

to open the requested file and return the content to the client. Later on, socket.io is installed which

is the client side WebSocket “library” needed to connect to a WebSocket server. It’s WebSocket

42

API will be used to communicate between server and the clients. After enabling Node.js html

server, http does the handling requests and serving content and URL helps to parse requested URLs.

The data is converted using the built-in Python JSON library. To make the request another package

was imported on the script named "requests". With the help of requests.post() method the formatted

payload was sent to the server and the response came from the server was also printed to the

console. The script will wait for a specified number of time and then will repeat the process from

the beginning.

4.3 Node Microcontrollers for different Sensor Integration

In our proposed framework, we have showed that we can add multiple nodes which can access to

the gateway. For the development, we demonstrated three different nodes which establish

communication with the gateway with different communication protocol. These nodes are

embedded with three different sensors to present data communication among the nodes and

gateway. Here in this research work, we are using the nodes so that sensors send the data it contains.

Wi-Fi interface and GPIOs in microcontroller on the SoC can be used for general purpose as well,

so our sensors and actuators can be directly connected to node.

4.3.1 Node1 as Raspberry Pi 3 and Sensor DHT22

The Raspberry Pi3 Model B has been selected as the wireless sensor node to provide an intelligent

solution for real-time and efficient communication with the gateway. Equipped with the Broadcom

BCM2387 chipset and 2GHz quad-core ARM Cortex-A53 (64-bit), the Raspberry Pi 3 Model B is

an intelligent node for IEEE 802.11 b / g / n Wi-Fi and IEEE 802.11 Bluetooth communication.

The processor features 1GB of LPDDR2 memory and a 40-pin GPIO header on the Pi, providing

access to 27 GPIO, UART, I 2C, SPI, 3.3 and 5V sources. Each pin in the GPIO header is the same

as its predecessor, Model B +. The sensor is connected via the GPIO pin of the microprocessor.

Accordingly, on this research, the sensor used is digital-output relative humidity & temperature

sensor/module. Initially, temperature and humidity sensors which are widely used in IoT

applications were compared: DHT22, DHT11 and DS18B20. The Table 4.2 is provided below to

show the comparison:

43

Table 4.2 Comparison of Different Temperature and Humidity Sensors

Sensor DHT22 DHT11 DS18B20

Measures Temperature

Humidity

Temperature

Humidity

Temperature

Temperature Range -40 to 80⁰C 0 to 50⁰C -55 to 125⁰C

Humidity Range 0 to 100% 20 to 90% ~

Supply Voltage 3 to 6 VDC 3 to 5.5 VDC 3 to 5.5V VDC

Accuracy +/- 0.5⁰C +/- 2⁰C +/-0.5⁰C

Communication Digital via Single

Bus

Digital via Single Bus Digital via Single Bus

Minimum Response

Time

2 Seconds 6 seconds <10 seconds

Price Per Unit 7.29 CAD 6.32 CAD 7.79 CAD

The DHT22 has been selected because it has low power consumption, low price, better accuracy,

fast response time and an acceptable humidity and temperature range than the other three sensors.

DHT22 which is capacitive-type humidity and temperature sensor, utilizes exclusive digital-signal-

collecting-technique and humidity sensing technology, assuring its reliability and stability. Figure

4.9 shows the module of the temperature and humidity sensor used in this research.

44

Figure 4.9 Pinouts of DHT22 temperature-humidity sensor

The temperature and humidity data are processed by the node (Raspberry Pi 3). When

communication between RPi3 and DHT22 initiates, program of the node transforms voltage level

of DATA BUS from high to low level and this process takes at least 1ms to ensure DHT22 could

detect RPi's signal, then RPi waits 20 to 40us for DHT22's response. In this research, DHT22 sensor

is connected using the Raspberry Pi3 through GPIO pins. The DHT 22 sensor has three pins: VCC,

signal and GND. V cc pin is connected to Raspberry Pi GPIO (General Purpose Input/Output) pin

of 3V, the signal pin is connected to GPIO 04 pin and GND pin of the sensor to the GND GPIO

pin of the Raspberry Pi. The connection between DHT22 sensor and node raspberry pi 3B is shown

in Figure 4.10.

Figure 4.10 DHT22 sensor connection with node1 Raspberry Pi 3B

45

4.3.2 Node2 as Arduino Uno Wi-Fi Rev2 and Sensor BME280

For the integration of sensor with node 2, Arduino Uno Wi-Fi R2 is used which is ATmega4809

based microcontroller board integrated with Wi-Fi and Bluetooth module. Due to the presence of

Wi-Fi connection ability, Arduino Uno Wi-Fi R2 is widely used for high performance and cost

effective IoT applications. The Table 4.3 is provided to show the comparison different Arduino

microcontroller boards to select the most efficient one for node2 application.

Table 4.3 Comparison of Different Microcontroller Boards

 Arduino Uno Wi-Fi

R2

Arduino Mega

2560

Arduino Nano

33 BLE

Arduino Due

Processor ATmega4809 ATmega2560 nRF52840

microcontroller

ATSAM3X8E

Cortex-M3

Clock Speed 16MHz 16MHz 16MHz 84MHz

Memory 6KB SRAM, 48KB

flash, 256 bytes

EEPROM

256 KB of

flash memory

8 KB of

SRAM and 4

KB of

EEPROM

32KB of

program

memory, 1KB of

EEPROM, 2KB

of RAM

512KB of ROM

and 96KB RAM

Pins 14 digital I/O pins,

5 PWM channels, 6

analog inputs

16 analog

inputs, 15

PWM channels

14 digital I/O, 6

analog inputs

54 digital I/O

pins, 12 PWM

channels, 12

analog inputs,

and 2 analog

outputs

Communication I2C, SPI, UART I2C, SPI,

UART

I2C, SPI, UART UART,

USARTS, USB,

I2C, SPI, CAN

Wireless

Connectivity

Built in Wi-Fi,

Bluetooth

None Bluetooth None

46

Table 4.3 Comparison of Different Microcontroller Boards (cont’d and end)

Shield

Compatibility

5V 5V 3.3V 3.3V

Cost 53 CAD 48 CAD 28 CAD 48 CAD

Based on the comparison of different Arduino board, Arduino Uno Wi-Fi module has been chosen

for implementation of node2 with sensor for its built-in Wi-Fi and 5V shield capability. The

Arduino Uno Wi-Fi Rev2 is based on the 8-bit ATmega4809 microcontroller, and it has NINA-

W102 u-Blox series Wi-Fi and Bluetooth module for wireless connectivity and ATECC608A high-

security cryptographic microchip accelerator for implementing various authentication and

encryption protocols. The microcontroller module is a self-contained SoC with a built-in TCP/IP

protocol stack for network connectivity. The board has 14 digital input/output pins, 5 PWM

outputs, 6 analogue inputs, a 16 MHz ceramic resonator, a USB connection, a power connector, an

ICSP header, and a reset button, making it a strong controller for implementing communication

through the gateway. The pinouts of the Arduino UNO Wi-Fi microcontroller are shown in Figure

4.11.

Figure 4.11 Arduino UNO Wi-Fi microcontroller with pinouts

47

The proposed system uses Arduino IDE (Integrated Development Environment) software to

program the Arduino Uno Wi-Fi board. The Arduino IDE is an editor for compiling signal

processing algorithms, compiling them into binary files, and then downloading them to the Arduino

MCU via a USB serial port connection. Algorithm programming with a comprehensive suite of

high-level, easy-to-use controls for I / O interfaces and peripheral configurations relies entirely on

the connection and mapping of sensors to microcontrollers. The code is written in the IDE and uses

the C / C ++ language to embed communication with the sensor. For this task, the Arduino

microcontroller is programmed as a WebSocket client. The board collects the sensor's real-time

measurements via the I / O interface and exposes the real-time data to the gateway server via socket

communication.

For the integration of node2 sensor, bme280 is used which is an environmental sensor, which was

designed for applications where size and low power consumption are crucial constraints. The

sensor is able to measure pressure, humidity, temperature. The sensor supports performance

requirements for emerging applications such as context awareness, and high accuracy over a wide

temperature range. An additional advantage of the sensor is that the response time is extremely fast

especially in the pressure measurement at very low noise. As a result, in this research work for

node2 we are working only with the pressure data. Figure 4.12 demonstrates the pinout for the

BME280 Pressure sensor.

Figure 4.12 BME280 Pressure-Altitude sensor pinouts

In this research development, bme280 sensor’s VCC input is connected through 5V output pin of

Arduino UNO rev2. SDA (I2C1 Data) of the MCU is connected to sensor’s SDA pin. The SDA

48

includes a fixed pull-up from 1.8kΩ to 3.3V. This is suitable for I2C bus communication. Since the

sensor communicates over the I2C bus, the implementation of the wire library enables the I2C pins

on the MCU. The Wire library uses a 7-bit I2C address that identifies the sensor device. The library

uses a 32-byte buffer. Therefore, all communications must be within this limit. Figure 4.13

illustrates the setup of node2 with Arduino Uno W-Fi board and BME280 sensor.

Figure 4.13 BME280 sensor connection wiring with Arduino UNO W-Fi microcontroller

4.3.3 Node3 as ESP32 and Sensor as MQ-135

For 3rd sensor integration, we used the ESP32-WROOM-32 board as node3. It is a high-

performance general-purpose Wi-Fi and Bluetooth module used to implement a variety of

applications, from low power sensor networks to the most demanding IoT applications. The Esp32

includes two low-power 32-bit Xtensa LX6 microprocessors with a chip quiescent current of less

than 5µA, making it suitable for low-battery and portable electronics applications. This board was

chosen for this development because it has 802.11 b / g / n (802.11n to 150 Mbit / s) compliant Wi-

Fi capabilities. The board has analog and digital GPIOs that can be used to integrate the sensor

with the analog output. Figure 4.14 demonstrates the architecture and GPIO pinout of the esp32

development board.

49

Figure 4.14 ESP32-WROOM development board architecture and pinouts

In this research, ESP32 microcontroller is programmed with the Arduino software integrated

development environment (IDE). The program is written in C++ and uploaded in the esp32

microcontroller through the open-source Arduino Software via USB cable. In this work, the ESP32

microcontroller is programmed as an MQTT client. The board collects the measured real-time

values of the sensor, displays the values on the Arduino IDE Serial Monitor, and continuously

publishes real-time data to the gateway server.

For the integration of node3 sensor, MQ-135 gas sensor has been deployed. Widely used in air

quality meters, the MQ-135 sensor is suitable for detecting ammonia (NH3), sulfur (S), benzene

(C6H6), CO2, smoke, and other harmful gases. The unit of air pollution is PPM (parts per million).

To measure PPM gas, analog pins require to be used. The analog TTL operates and operates at 5

volts, so it can be easily integrated into node3's ESP32 MCU. Figure 4.15 shows the pinout of the

MQ-135 environmental sensor.

50

Figure 4.15 Pinouts of MQ-135 environmental sensor

The sensor which has very less latency is reliable and cost-effective implementation for node3

sensor device. The MQ-135 gas sensor uses SnO2, which has high resistance in clear air, as the

material of the gas sensor. As the amount of harmful gas increases, so does the resistance of the

gas sensor. Figure 3 is an excerpt from the MQ-135 data sheet, showing the typical sensitivity

characteristics of the MQ-135 to a variety of gases measured at temperatures of 20 ° C. Humidity:

65%, O2 concentration: 21%, RL = 20 kΩ, Ro = Sensor resistance at 100 ppm NH3 in clean air,

Rs = Sensor resistance at various gas concentrations. According to the sensitivity characteristics,

Rs / Ro is the resistance ratio. The resistance RL can be identified when the resistance sensor

changes depending on the gas concentration (RO) (Kant & Bhattacharya, 2017). Sensitivity

characteristics of MQ-135 sensor is illustrated in the figure 4.16 below.

Figure 4.16 Sensitivity characteristics of MQ-135 environmental sensor

51

MQ135 Air Quality Sensor that can detect the level of various air pollutants. The AQI is an index

for reporting daily air quality. It depicts how clean or polluted the air is, and what associated health

effects might be a concern. The AQI is divided into six categories. Each category corresponds to a

different level of health concern. Table 4.4 illustrates values of different Air Quality index and air

quality status (Kinnera, Subbareddy, & Luhach, 2019).

Table 4.4 Different Air Quality Range with Status

In this proposed development, MQ-135 sensor’s VCC input is connected through 5V output pin

of ESP32 WROOM board. Sensor’s analog pin A0 is connected through the Analog pin of the

microcontroller. ESP32 pulls the analog data of the sensor through the Analog pin A035. The

GND Pin (Ground) of the sensor is connected with the MCU accordingly. The raw data fetched

from the sensors is properly converted to PPM in the embedded code developed in Arduino IDE

for ESP32 MCU. Figure 4.17 illustrates the experimental setup of node3 with ESP32 Wroom

board and MQ-135 gas sensor.

52

Figure 4.17 Experimental setup for node3 ESP32 and sensor MQ-135

4.4 Communication between node Microcontrollers and the Sensors

For the development of the proposed design, three different nodes and three different sensors are

used. Sensors are connected through the GPIO pins and I/O interface of the node Microcontrollers.

Three sensors DHT22 sensor, BME280 sensor, MQ-135 are connected to three node

microcontrollers Raspberry Pi 3, Arduino Uno Rev2 and ESP32. These sensors collect the data

from surroundings like temperature, humidity, pressure, air quality and send these accumulated

data to nodes. The node microcontroller and microprocessor work on these data, process it and

transmit the obtained results to gateway server though their communication protocol

4.4.1 Node1: Raspberry Pi 3 and DHT22 Communication

For node1, Temp-humid.py is a python script which is used for monitoring temperature and

humidity using the DHT22 sensor. The DHT22 Temperature/Humidity sensor is connected through

the GPIO pins of the node RPi 3. Adafruit GPIO Python library and the Adafruit DHT22 library

are used to receive the data from the sensor. Figure 4.18 illustrates the sensor value of the DHT22

temperature humidity sensor acquired by the node Raspberry Pi on the command line.

53

Figure 4.18 Node1 raspberry Pi 3 receiving data from DHT22 temperature-humidity sensor

4.4.2 Node2: Arduino Uno Wi-Fi Rev2 with BME280 Sensor Communication

In node2, Arduino Uno Wi-Fi Rev2 gathers data from the sensor BME280 using

pressure_altitude.ino script on the Arduino IDE. The code has been run by including the needed

libraries: the Wire library to use I2C, and the Adafruit_Sensor and Adafruit_BME280 libraries to

interface with the BME280 sensor. The Wire library implementation uses a 32-byte buffer;

therefore, any communication should be within this limit. A variable called

SEALEVELPRESSURE_HPA is created to save the pressure at the sea level in hectopascal. In the

Arduino script, bme.readPressure() reads barometric pressure in hPa (Hectopascal = millibar) and

bme.readAltitude(SEALEVELPRESSURE_HPA) estimates approximate altitude in meters based

on the pressure at the sea level. To enable Wi-Fi connection with the network, <WiFiClient.h>

library was set in the script on Arduino IDE. <ArduinoHttpClient.h> and <Arduino-WebSocket-

Fast.h> libraries are added to the script to communicate through WebSocket protocol. Figure 4.19

shows the pressure and altitude acquired by the sensor on COM port 5 of the Arduino IDE.

54

Figure 4.19 Node2 Arduino UNO receiving sensor data from BME280 sensor

4.4.3 Node3: ESP32 with MQ-135 Gas Sensor Communication

For node3, MQ135 Air Quality sensor has been interfaced with ESP32 Wroom MCU. For

compilation, AirQualityIndex.ino script has been written on Arduino IDE to communicate with the

sensor and ESP32. Analog input A035 of the ESP32 was enabled to receive analog data from the

sensor module. MQ-135 sensor module measured gas concentration in PPM. Multiple thresholds

were added according to Air Quality Index chart (Kinnera et al., 2019) to determine the air quality

status for the sensor data. <wifi.h> library with setup () function are included to start a connection

to Wi-Fi network. As the sensor was configured to communicate with MQTT protocol through

node, <PubSubClient.h> library has been added to the script. The PubSubClient library provides a

client for publishing/subscribing message with a server that supports MQTT. Figure 4.20 shows

air quality index received by the node on port COM4.

55

Figure 4.20 Node3 ESP32 receiving sensor air quality data fromMQ-135 environmental sensor

4.5 Communication Protocol Selection for the Nodes

User assign communication protocol for the nodes connected with sensors to send data to the

gateway. This configuration sets in what communication protocol the assigned node will

communicate with the gateway. As the gateway is developed to receive any data over the MQTT,

HTTP, CoAP, Modbus TCP/IP and WebSocket protocol, to visualize the data communication

protocols need to be selected on the user interface. Figure 4.21 demonstrates protocol selection

option for the nodes from the user interface.

Figure 4.21 Protocol selection interface for the nodes to receive data on the gateway

56

Node1 is associated with Raspberry Pi. Due to node1’s processing power capabilities as per the

protocol selection framework demonstrated in previous chapter, HTTP client, CoAP client and

Modbus TCP Client has been configured in the node1. Therefore, Node1 is able to communicate

with any of these three protocols by enabling communication from the interface. Node1 was

selected as HTTP, CoAP and Modbus TCP protocol separately from server end. As node2 is

configured as WebSocket client, from the user interface of gateway WebSocket has been selected

as data communication protocol. In this regard, gateway server was worked as WebSocket server

and the node2 was worked as WebSocket client. Here, node3 is configured as MQTT client, so that

node3 is able to publish messages to MQTT broker through MQTT protocol. From the user

interface, MQTT protocol is selected for node3 to publish sensor data to the gateway server.

Moreover, another significant function of the proposed system is that the gateway server is also

able to interconnect with the nodes and other gateways with the same protocol that nodes use to

communicate with the gateway or different communication protocol in terms of the data type and

data transfer requirements.

Based on the capabilities of our proposed architecture, the gateway is able to run bi-directional

communication. As a result, users are able to set access protocols for the communication between

nodes and gateway. The software platform provides interface which allows users to select the

suitable protocol for gateway to nodes payload transfer in regards of their standards and data

transmission capabilities. For gateway to nodes communication, the interface let users to integrate

nodes, also it allows users to set communication protocol required for the gateway to send payloads

to nodes for machine control, feedback control and alarms. Figure 4.22 demonstrates the interface

where user can set communication protocol for server to communicate with node’s working access

protocol.

Figure 4.22 Protocol assigning from gateway to nodes for sending payloads

57

4.6 Communication between Node Microcontroller and Gateway

The nodes are connected to the gateway. When user assign a protocol for the node to gateway

communication. Node transfer sensor data to the gateway with the assigned protocol. In this

development, node2 Arduino Uno with bme280 pressure sensor send data over WebSocket

Protocol so that we enabled WebSocket protocol for gateway Node2 end protocol selection

configuration. As node3 ESP32 send data over MQTT protocol, we permitted MQTT broker

subscribing for node3 in the configuration end. For the experiment, we configured node1

communicating with HTTP, CoAP and Modbus TCP protocol so that we enabled our server end

by assigning node1 with this protocol respectively.

4.6.1 Node2 Data Received by Gateway over WebSocket Protocol

For node2, we configured WebSocket as communication protocol as per the framework since our

requirement is to establish bidirectional communication between the node2 Arduino Uno and the

gateway. When the gateway is configured to receive data from node2 over WebSocket, it creates a

server socket which uses a particular port 80 for regular WebSocket connections. Here, WebSocket

server in the gateway, becomes ready for listening nodes configured with WebSocket protocol. In

the experiment, node2 created client socket and tries to establish a communication link to the

gateway server using its IP address and port number 80. When the communication established

between node 2 and gateway server, server received pressure and altitude from node2 Arduino Uno

Wi-Fi and showed the data to the interface. Figure 4.23 demonstrated node2 data received by the

gateway over WebSocket protocol.

Figure 4.23 Node2 data received by gateway over WebSocket protocol

58

4.6.2 Node3 Data Transfer to Gateway over MQTT protocol

Node 3 is configured to send data over MQTT protocol according to protocol selection framework

designed in Chapter 3. Node3 device is esp32 which uses low bandwidth, the sensor connected to

node 3 communicates with high latency and due to unreliable network characteristics, node 3 is

configured to communicate over MQTT protocol. To establish connection from node 3 to gateway,

it was selected from the interface so that gateway enables mosquito subscribing to receive data

from the sensor. Here, the gateway is devising as MQTT broker which facilitates the

communication from node3 transferring messages from publisher to subscriber and subscriber to

publisher. Node3 ESP32 with environmental sensor provides air quality data in ppm unit. In

regards, reading data from sensor and sending data to the gateway broker, PubSubClient MQTT

library is used on the node3 end. The PubSubClient library enables publish/subscribe messaging

with a server that supports MQTT. In order to distinguish data sent by the node3, a topic string

“/client/node2/mqtt” is used. Here, client node3 is publishing Air Quality values using different

string for each value. On the other side, the broker gateway is configured to subscribe to the topic

which node3 is using to publish the values. After node3 connects to the gateway broker, it starts a

loop reading from the environmental sensor every 10 seconds and publishing the value to the topic

“/client/node3/mqtt/”. After receiving data on the gateway, data is sent to the web interface for

demonstrating the real-time values and transforming data for storing into databases. In addition,

for encrypted communication between the gateway broker and the client node3, TLS (Transport

Layer Security) and SSL (Secure Sockets Layer) encryption is used. Figure 4.24 illustrated node3

sensor MQ-135 air quality data received by the gateway over MQTT protocol.

Figure 4.24 Node3 air quality data received by gateway over MQTT protocol

59

4.6.3 Node1 Data Transfer to Gateway over CoAP Protocol

Node1 Raspberry Pi 3B will use the AdaFruit DHT library methods to retrieve the DHT22 sensor's

current temperature and humidity readings. Also, data will be formatted into JSON in order to be

transmitted to the gateway. After the gateway is configured to receive data from node1 over CoAP

protocol, CoAPthon Python library the script is activated to create a CoAP endpoint on the

gateway. The CoAPthon library is a Python implementation of the CoAP protocol. This package

contains a helper client class that uses the CoAP path and port during initialization. The object is

created on the node with the path to the gateway endpoint and the default CoAP port 5683. This

CoAP client object is used to send a POST message containing data to the gateway. To retrieve the

readings from the DHT22 sensor, the Adafruit DHT22 library was imported to the python script of

node1. This library contains a read_retry () method that will attempt to read the temperature and

humidity data from the DHT22 sensor and return values as floating-point decimals; if no reading

is available, it will try again up to a specified number of retries, defaulting to fifteen. This default

limit is specified by the CoAPthon package. Once the sensor data is returned, the payload is

constructed. The payload consists of the temperature and humidity data formatted into a JSON

object. This data is converted using the built-in PythonJSON library. A CoAP message is sent to

the gateway using the formatted payload. The response message from node1 is output to the

console. As soon as the gateway server receives the data, the data is processed, saved, and the

interface dashboard is updated. The device is identified by a device access token sent as part of the

request. The dashboard in Figure 4.25 displays values of temperature(T), relative humidity (RH)

and timestamp.

Figure 4.25 Node1 data received by gateway over CoAP protocol

60

4.6.4 Node1 Data Transfer to Gateway over Modbus TCP Protocol

To demonstrate Modbus TCP communication between the client and gateway, node1 was

configured as Modbus client. The communication model between node1 and gateway is client-

server and the physical medium for exchanging data is the wireless network. In the experimental

setup, node1 Raspberry Pi 3 works as a Modbus TCP client that transfers temperature and humidity

data to gateway which works as Modbus TCP server. The core of the configuration node1 is capable

of initiating a TCP connection with the gateway server, forming, and sending Modbus request,

receiving, and interpreting the response, and maintaining or closing the TCP connection. For full

read/write protocol on discrete and register and payload builder/decoder utilities PyModbusTCP

library has been used. Server was set up to hold all the discrete inputs, coils, holding registers and

input registers. Node1 was defined as ModbusTcpClient with the local IP address 192.168.0.106/24

and port 502 of the server gateway. As the gateway had register map for all data types with desired

size, these registers received read/write requests from the node client. The precision of the data was

adjusted based on data size limitation set by the Modbus register. By selecting Modbus TCP

protocol for node1 from the dashboard, Figure 4.26 showed datetime, temperature and humidity

value that is received from the node1 client.

Figure 4.26 Node1 data received by gateway over Modbus TCP/IP protocol

4.6.5 Node1 Data Transfer to Gateway over HTTP Protocol

In the experiment, for the demonstration of node sending data over HTTP protocol to the gateway,

node1 Raspberry Pi 3B was also configured as client. Node1 has on-board Wi-Fi connectivity that

helps in making wireless communication a successful attempt. The proposed design uses an Apache

web server to create a local HTTP server. When a website is created, a server is required to host

the website. PHP helps interpret the page and makes the page available to the client when the

61

request is generated. In this scenario, a Python script is written for client / server communication

within the localhost. The node client sent a request message to the gateway to send temperature

and humidity data, and the gateway processed it and responded to the request message to the node.

A POST request is sent, so the body content type is specified. The content type is sent in the request

as the header specified by calling the addHeader method of the HTTP client object. This method

received the name of the header as the first input and its value as the second input. Node1 then used

the POST method to send the request to the HTTP client object, passing the body of the request as

a string as input. When data was successfully sent from node1 to the gateway, the gateway returned

an HTTP response code to node1. The web interface in Figure 4.27 shows how the gateway

received temperature and humidity data from the node1 endpoint over the HTTP protocol.

Figure 4.27 Node1 data received by gateway over HTTP protocol

4.7 Data Collection and Storage

In this research, the gateway is a platform which provides various services exclusively targeted for

building IoT applications. It handles real-time data collection, visualizes the collected data, has

ability to store data to databases and create APIs and communication hub for other devices. Here,

node1, node2 and node3 connected to the dht22 temperature-humidity sensor, bme280 pressure-

altitude sensor, MQ-135 air quality sensor send data to the gateway using their communication

protocols. The gateway is designed to receive the data, process data in JSON format and store

incoming data to databases. Three databases are presented to visualize and process for other server

and device communications. We divided the databases into (i) local and cloud database (ii)

KEPServerEX data logging and communication and (iii) Azure IoT hub databases.

62

4.7.1 Data Store to Local and Cloud Database

After processing data received from the nodes, the gateway initially send data to MariaDB which

is a Linux-based relational database management server compatible with MySQL. These data are

inserted into the database using MariaDB connector whose table structure is shown in Figure 4.28.

The table structure used in this study to receive data from different nodes as device_id and protocols

as protocol_id to insert configuration values. The application is configured as a background process

and runs 24 hours nonstop and producing 17280 rows of data each day from each node. Data

reading interval can be modified from the interface.

Figure 4.28 Table structure for data storage in gateway local database

In the framework, different protocols are assigned with a number. Here, MQTT, HTTP,

ModbusTCP, CoAP and WebSocket are assigned with protocol_id 1, 2, 3, 4 and 5 respectively.

Data received from different nodes with different protocols are stored in local databases in

MariaDB server. The following result in Figure 4.29 highlights node1 temperature humidity data

with CoAP protocol received in MariaDB database.

Figure 4.29 Data storage table in gateway local database

63

The data comes in the gateway is sent into the database created in cloud server. This table shown

can be fetched from web browser/PhpMyAdmin by using the cloud web address. In this sense, each

time the data of the nodes get updated, or requests made by the client, data are received by the

gateway. The gateway then establishes connection with the cloud database and attends the requests

through the APIs, which can modify a record in the table, read or add a new entry. In this way, it

is possible to view the data in the remote web interface or to register the users to the application.

The data can be retrieved from the cloud server when needed to send any signal to nodes and other

gateways. The sensor values transferred to the cloud database from the gateway are shown in Figure

4.30.

Figure 4.30 Data sent from gateway to cloud database

4.7.2 KEPServerEX Data Logging and Communication

KEPServerEX v6 was used as OPC Server to connect the gateway with HMI and Data Logger. To

provide customers with a single source for industrial data, KEPServerEX uses OPC (Open Platform

Communications) and many connection protocols. HMI serves as an OPC Client, requesting data

from or sending orders to the hardware via the OPC server. The data acquisition middleware

employed KEPServerEX with a MQTT client that could subscribe to data from various nodes on

the gateway. To monitor, manage, and connect with PLCs and other devices, the data acquisition

64

middleware is linked to other Modbus, OPC driver platforms. In this experiment, the gateway

collects data from various nodes and edge devices and sends it to Kepware's KEPServerEX OPC

server MQTT client. Figure 4.31 demonstrates that data from the node3 ESP32 Wi-Fi

microcontroller was being able to be accumulated in KEPServerEX OPC Server using MQTT

protocol and subsequently transferred Air Quality data into Microsoft Access Data Logger. Then,

node3 data from the KEPServerEX OPC Server were logged and recorded in the Microsoft Access

database. The configured tag names were displayed on the OPC quick client.

Figure 4.31 Gateway sending node3 air quality data to KEPServerEX

The collected data is sent to the database processing layer via the OPC protocol and to the display

layer via the MQTT communication protocol. The presentation layer uses the client to complete

the display analysis of the data stored on the server according to the appropriate logic code. This

task is configured to access the Microsoft Access database and store the data in Microsoft Excel.

Changes in this air quality index are recorded in a Microsoft Excel file. The designed gateway data

logging system can be stored in local and cloud databases and used to communicate with other

KEPServerEX drivers and industrial processes. From the Figure 4.32, we demonstrated Air Quality

data with the corresponding timestamp that received from the MQTT client through the

KEPServerEX.

65

Figure 4.32 KEPServerEX data logging in Excel

4.7.3 Data Store to Azure IoT Hub and Data Explorer Databases

Microsoft's Azure IoT Hub service enables two-way communication between IoT devices and

Azure. In this experiment, Azure IoT Hub environment will be deployed and connected through a

gateway with nodes to the cloud platform. This environment uses Azure Data Explorer and other

Azure IoT suites to provide messaging capabilities between devices and cloud services. Azure Data

Explorer is a fast, scalable data exploration service for log and telemetry data that allows to merge,

store, and analyze heterogeneous data. Azure IoT Hub was created to get the connection string for

the gateway. A free tier was selected for testing and evaluation purposes in order to use the free

subscription. With free subscription, 500 devices can be connected to the hub and transferred up to

8,000 messages per day. After retrieving the primary connection string, the gateway establishes

communication with the IoT hub and sends data to the hub using the MQTT protocol. The gateway

relayed temperature and humidity data to the Azure IoT hub, as illustrated in Figure 4.33, for

demonstration purposes.

66

Figure 4.33 Gateway sending temperature humidity data to Azure IoT Hub

Connecting Azure Data Explorer table to IoT hub, TestTable table has been mapped for the node1

incoming data. Azure Data Explorer includes database functionality for receiving and storing data.

By grouping and aggregating the data, the data is converted to JSON format and stored according

to different categories via a simple JDBC storage method. TestTable was created to map incoming

data to the temperature, humidity, and JSON data types of the table columns. The supported data

formats for transferring data to Azure Data Explorer tables are Avro, CSV, JSON, MULTILINE

JSON, ORC, TSV, TXT etc. Figure 4.34 demonstrates temperature humidity data receiving on the

Azure Data Explorer database.

Figure 4.34 Data ingestion to Azure Data Explorer database

67

4.8 Visualization of Real-Time Node Data in Web Application

The Azure App Service Web Apps feature provides a Platform as a Service (PAAS) for hosting

web applications. Azure App Service supports web applications developed in many popular

languages. In this case, it will be deployed to a Linux infrastructure-based gateway. To visualize

node data in a web application, environment variables require to be configured. In order to read

the data from the Azure IoT hub, the web app had to create a connection string and a consumer

group name. Deploying code to App Service, Git, and FTP uses user-level deployment

credentials. Figure 4.35 shows deployment to show temperature & humidity real time data on

web page https://temhum.azurewebsites.net. When the node sends data to the gateway, the

gateway processes it and sends it to Azure IoT hub for a plot of the gateway's 50 most recent

readings.

Figure 4.35 Temperature humidity real-time data visualization in Azure IoT web application

4.9 Development Conclusion

In this research development chapter, we implemented IoT multi-protocol gateway which can

accept client-originated messages in various protocols on a low-cost microprocessor and

demonstrated protocol interoperability among three different nodes and three different sensors.

Temperature, humidity, pressure, altitude, and air quality sensors are used to illustrate wide range

68

of sensor data transmission in the proposed gateway. Other industrial and low powered sensors can

be used as well. We also presented multiple server integration and communication for effective

protocol conversion and bridging in the gateway. The last part of the development showed

integration of different cloud and industrial access databases such as Azure and KEPServerEX with

different data formats.

69

 RESULTS AND DISCUSSION

Interoperable IoT multiprotocol conversion system has been implemented in a low cost IoT

gateway with multiple nodes via 5 industry standard access protocols in Chapter 4. In this section,

a case study will be demonstrated to analyze a workflow involving data collection via nodes with

sensors, gateway integration via a parametric control mechanism, and visualization modules to

facilitate management and monitoring, with the goal of testing feasibility of the interoperability

concept of integrating any platforms with the developed multi-protocol gateway. The objective is

to test feasibility of the developed multi-protocol gateway by a case study to demonstrate

interoperable access to any IoT open-source platform that connects via any of the 5 industry

standard protocols (MQTT, CoAP, HTTP, Modbus TCP and WebSocket) and supports cloud

implementations.

5.1 Case Study: Implementation on ThingsBoard Platform

The case study refers to implementation communication between gateway and ThingsBoard IoT

platform. ThingsBoard is an open-source IoT platform built on the Java 8 platform that functions

as an IoT gateway between registered devices communicating via HTTP, CoAP, and MQTT

protocols to collect, analyse, visualise, and manage data (Paolis, Luca, & Paiano, 2018).

ThingsBoard uses a powerful server-side API to securely provision, monitor, and control Internet

of Things entities. Establish connections between devices, resources, customers, and other entities.

The platform is designed to collect and store telemetry data in a fault-tolerant and scalable manner.

There are built-in or custom widgets and customizable dashboards for visualizing data. Customers

can view and use these dashboards. Specifies the data processing rule chain. Not only does this

allow to transform and normalize device data, but it also triggers alerts based on incoming telemetry

events, attribute updates, device inactivity, and user activity (Casillo et al., 2021). It provides a

ready-to-use IoT solution for server-side infrastructure for a variety of IoT applications in the cloud

or on-premises and presently supports three database options: SQL, NoSQL, and hybrid databases.

These databases are used by the ThingsBoard platform to store entities such as devices, assets,

dashboards, users, alerts, and telemetry data such as attributes, time series sensor readings,

statistics, and events. The security features of ThingsBoard consist of company-recommended

70

encryption algorithms, including SSL, and a sort of tool registration credentials, including the

acquisition of X.509 certificates and access tokens. (Henschke, Wei, & Zhang, 2020).

5.2 Configuration with ThingsBoard Platform

ThingsBoard cloud infrastructure is proposed to demonstrate smooth protocol integration with

multi-protocol enabled gateway. The gateway using Raspberry Pi 4 acquire data from different

sensor and IoT devices, transform, convert, and transfer the data to ThingsBoard IoT platform to

monitor and visualise sensors data. In this experiment, the gateway used MQTT protocol to send

the node and sensor data formatted as JavaScript Object Notation (JSON) to the ThingsBoard cloud

endpoint at regular intervals. MQTT is a lightweight protocol and has a smaller header size per

message than HTTP, so it was prioritized over HTTP in the project. HTTP, a heavy protocol,

requires more overhead and message size than MQTT. ThingsBoard is configured to monitor and

visualise data by creating IoT Dashboards and updating in real-time. Figure 5.1 illustrates the

integration details between the gateway and the ThingsBoard platform.

Figure 5.1 Cloud based ThingsBoard platform integration with muti-protocol gateway

5.2.1 Gateway Configuration

The multi-protocol gateway receives sensor data from three different nodes with different

protocols, process the data before sending to ThingsBoard Platform. Three different nodes

Raspberry Pi 3, Arduino Uno and ESP32 embedded with DHT22 temperature-humidity sensor,

BME280 atmospheric pressure, altitude sensor, and MQ135 air quality sensor send sensor values

to the proposed multi-protocol gateway with Modbus TCP, WebSocket and MQTT protocol

respectively. The gateway is configured to receive and store the data to the local database and cloud

71

database. Gateway ThingsBoard packages has been installed in the gateway. mqtt.json connector

file has been created to map the sensor data and values in the JSON format. By commenting out

hashes in the configuration, a connector is activated. A name, type, and configuration file

parameters are required for each connector. It is feasible to obtain multiple connectors can be active

at the same time if the files are specified with different name and configurations. Figure 5.2 shows

the mapping strategies for the mqtt.json connector.

Figure 5.2 Configuration for MQTT mapping in JSON format

The gateway uses an access token to access the web interface of the ThingsBoard cloud server. The

Device information tab contains the access token that is used to authenticate the gateway. The file

'tb_gateway.yaml' in the configuration folder for the ThingsBoard platform on the gateway is used

to configure the connection to the ThingsBoard server. The hostname or IP address of the

ThingsBoard server, as well as the port of the MQTT service on the server, are defined in this main

configuration file. The access token is pasted underneath the security label as seen in Figure 5.3.

Memory storage is used for storing incoming data before being sent to the server. Telemetry sent

by the gateway for logging in the platform is inserted into the SQLite database table before being

transferred to the ThingsBoard. No other relational database, such as PostgreSQL or MySQL, was

used for this task because only one table was needed to store the data. SQLite is easy to set up and

72

manage. SQLite only needs database files, so it doesn't need a server. SQLite and data file path

./data/data.db file have been initiated to store the data before sending to the platform.

Figure 5.3 Gateway-ThingsBoard configuration parameters

To deliver data to the ThingsBoard endpoint, a Python script using mqtt paho and JSON libraries

is loaded. Figure 6.1 shows how the proposed gateway communicates node data to ThingsBoard

over MQTT as JSON strings, where measured parameter values are represented by key-value pairs.

Once the gateway receives sensor data, the payload is constructed. The payload consists of the

temperature, humidity, pressure, altitude, and air quality data formatted into a JSON object, shown

in Figure 5.4. This data is converted using the built-in Python JSON library. The JSON string of a

typical client message could be:

Figure 5.4 Sensor data formatted to JSON data format for message payload

73

5.2.2 ThingsBoard Configuration

ThingsBoard support device management features using Web UI and REST API. With

administrator access gateway_device01 is created which bridges communication through the

proposed gateway. Device ID 11e62fa0-e690-11ec-a502-79978f9d7342 is generated for the

gateway_device01. It is also configured as gateway in the ThingsBoard platform which is depicted

in Figure 5.5. The device is also assigned to certain customer which allows Customer users to fetch

device data using REST APIs or Web UI.

Figure 5.5 Gateway configuration as device on ThingsBoard cloud platform

The standard treatment of data sent to the telemetry endpoint include identifying the device

delivering the data, storing the values, and updating any dashboards associated to that device. The

device is recognised by the device access token provided in the request. The ThingsBoard access

token utilised for the gateway in this study is shown in Figure 5.6. In this work, we'll use $ACCESS

TOKEN, which stands for access token device credentials. In the username field, the application

must send a MQTT CONNECT message with the username $ACCESS TOKEN. The following

are possible return codes and their causes during the connect sequence: (i) 0x00 Connected -

Successfully connected to ThingsBoard MQTT server. (ii)0x04 Connection Refused, bad username

or password - Username is empty. (iii) 0x05 Connection Refused, not authorized - Username

contains invalid $ACCESS_TOKEN.

74

Figure 5.6 Gateway access token credentials generated on ThingsBoard

When the data is received by the ThingsBoard cloud, it is processed by the ThingsBoard cloud's

rules engine. Data handling has not been subjected to any additional rules for this investigation.

ThingsBoard allows defining rules to apply to incoming messages and message processing plugins.

Filters for receiving messages, processors for adding metadata to messages, and actions for

converting messages to new custom messages passed to plugins are all part of the rule engine.

These functions can be used to perform some basic data processing activities, but not more complex

steps. Aggregating data over time is not easy because it cannot track previously received values.

Also, each rule script only allows access to values received from a single device, so it does not

allow aggregation of values received from multiple devices at the same time. ThingsBoard also

offers the possibility to create several containers called assets to reconstruct the data to upload the

results of the data processing. ThingsBoard provides a REST API for managing entities such as

devices and assets, retrieving data from telemetry, and a REST plugin for sending HTTP requests

to external endpoints. Each access token is used to provide bridging between the gateway device

and the ThingsBoard. Next, a connection to the MQTT broker is established through the

Connection feature of ThingsBoard. The MQTT system is an API endpoint that allows telemetry

to be uploaded to ThingsBoard. Finally, the telemetry is uploaded to the ThingsBoard using the

MQTT publishing feature.

75

5.3 Gateway Transferring Node1 data to ThingsBoard

The proposed multiprotocol gateway receives DHT22 sensor temperature-humidity data

transferred by Node1 Raspberry Pi 3 through Modbus TCP protocol and publish the data to

ThingsBoard cloud over MQTT protocol. Since the gateway cannot perform read or write

operations for Modbus TCP/IP protocol, it accepts read/write requests and replies to a message to

node1 client. As the gateway has register map for all data types with desired size, these registers

receive read/write requests from the node1 Raspberry pi 3. For full read/write protocol on discrete

and register and payload builder/decoder utilities PyModbusTCP library has been used. The

precision of the data is changed based on the Modbus register on the gateway's data size constraint.

“json.dumps(data)” is used to convert the sensor data to JSON format. To publish telemetry data

to ThingsBoard server node, gateway publish message to the following topic:

“v1/devices/me/telemetry”. Access token 'UEUAObQdVgtGjbRDXj80' and publishing broker

“thingsboard.cloud” and port 1883 are also initialized to publish data into the platform. Figure 5.7

demonstrates gateway publishing sensor data receiving from node1 to the ThingsBoard platform.

Figure 5.7 Gateway publishing Node1 data to ThingsBoard Cloud

5.4 Gateway Sending Node2 data to ThingsBoard

The proposed multiprotocol gateway receives BME280 sensor pressure-altitude data transferred

by Node2 Arduino UNO Wi-Fi through WebSocket protocol and publish the data to ThingsBoard

cloud over MQTT protocol. WebSocket API is used to receive sensor data from the nodes to the

gateway. With the help of requests.post () method the formatted payload is received and stored to

76

the local database. The data is converted using the built-in Python JSON library. In this experiment,

WebSocket server in the gateway, becomes ready for listening data from node3 which

communicates over WebSocket protocol. Node2 Arduino Uno creates client socket and tries to

establish a communication link to the gateway server using its IP address and port number 80.

When the communication established between node 2 and gateway server, gateway receives

pressure and altitude values from node2 Arduino Uno Wi-Fi. Gateway enables publishing pressure

and altitude telemetry data real-time to publish message to the following topic:

“v1/devices/me/telemetry” on ThingsBoard platform. The gateway also transfers data stored in the

database based on the scheduling policy set by the administrator. To publish data into the platform,

the access token and publishing broker "thingsboard.cloud" are also set up, as well as port 1883.

Figure 5.8 shows the gateway sending sensor data from Node1 to the ThingsBoard platform.

Figure 5.8 Gateway publishing node1 data to ThingsBoard cloud

5.5 Gateway Publishing Node3 data to ThingsBoard

The proposed multiprotocol gateway receives MQ135 environmental sensor air quality index data

transferred by Node3 ESP32 through MQTT protocol and publish the data to ThingsBoard cloud

over MQTT protocol. The PubSubClient library enables publish/subscribe messaging on the

gateway that supports MQTT. The gateway acting as MQTT broker is configured to subscribe to

the topic which node3 is using to publish the values. After node3 connects to the gateway, it starts

a loop reading from the environmental sensor every 10 seconds by subscribing the value to the

topic “/client/node3/mqtt/”. After receiving data on the gateway, data is sent to the to publish

77

telemetry data to ThingsBoard cloud to the topic “v1/devices/me/telemetry”. Before publishing

sensor values to ThingsBoard platform, “json.dumps(data)” is used to process the sensor data to

JSON format. paho.Client("control1"), access token 'UEUAObQdVgtGjbRDXj80' and publishing

broker “thingsboard.cloud” and port 1883 are also set to publish data into the platform. Figure 5.9

demonstrates gateway publishing air quality sensor data receiving from node3 to the ThingsBoard

platform.

Figure 5.9 Gateway publishing node3 data to ThingsBoard cloud

5.6 Real-time Visualization on ThingsBoard

ThingsBoard's integration APIs allow custom applications to be built, and they use their own data

visualisation tools. The software's complex stack technology ensures seamless performance, while

its error-free data analytics provide real-time insights into the device usage patterns. Using the

MQTT transport protocol, the multiprotocol gateway sends all sensor information to the

ThingsBoard cloud platform. The platform receives data under topic “v1/devices/me/telemetry”

and stores in SQL(PostgreSQL) databases which stores entities (devices, assets, customers,

dashboards, etc.) and telemetry data (attributes, time series sensor readings, statistics, events). SQL

storage is used as the experiment is considered to receive less than 5000 data points per second.

The latest time series data values are queried within a specified time range using flexible

aggregation. When the

message is successfully saved to the rule engine queue specified in the device profile, the device

that delivers the message containing the time series data to the ThingsBoard receives an

78

acknowledgment. ThingsBoard can receive multiple telemetry data independently from multiple

devices at the same time, but here a gateway is configured to run the experiment. Devices

configured as Gateway_device01 on the ThingsBoard platform receive telemetry data from the

multi-protocol gateway. As seen in Figure 5.10, gateway is sending all the Temperature 26.3 degree

Celsius, humidity 76.9%, atmospheric pressure 1002.82 hPa, altitude 87.40 meter, and air quality

index 22 values which are received by the gateway_device01 device on the ThingsBoard platform

with timestamp.

Figure 5.10 Latest telemetry received by the device on ThingsBoard cloud platform

Customizable IoT dashboards can be created using the Web UI. Numerous widgets that visualise

data from multiple devices may be included in an IoT dashboard. Dashboard is created from the

Dashboard group. ThingsBoard gives developers access to a large library of pre-set widgets

organized into macro categories such as time series, recent values, controls, alarms, and static

widgets. Different types of graphical solutions are available in each category, including charts and

tables, maps, simple HTML maps, GPIO (general purpose input / output) controllers, analog and

digital gauges. Entity aliases determines specific devices and assets to display on the dashboard. A

single entity is configured for displaying gateway_device01 data to the widget library.

ThingsBoard also allows users to create comprehensive dashboards for data visualisation that are

updated in real-time and can be modified with over 30 widgets. Here, analog gauges and digital

79

gauges are used to show graphical visualization for temperature, humidity, atmospheric pressure,

altitude, and air quality index. All these widgets show float value of the sensors. The dashboard in

Figure 5.11 has five display widgets: one showing the last temperature reading, one showing all

the last percentage humidity readings for the previous hour, one showing the last atmospheric

pressure reading, one showing last altitude and air quality index readings at Cote des Neiges area

in Montreal, Canada. This type of widgets uses values of entity attributes or time series as a data

source. Different widgets can be set for same entity attribute to demonstrate wide range of

visualization interface.

Figure 5.11 Real-time data visualization dashboard on ThingsBoard platform

5.7 Results

As discussed in the 2.5 Research Gap, different interaction paradigms are used in communication

protocols for data propagation, such as request/response and publish/subscribe. The typical

architecture in production environments consists of a large number of gadgets, sensors, and

gateways that might converse via various protocols. The fundamental problem with current

interoperable solutions is that there isn't a good way to integrate many IoT protocols into a gateway,

have efficient interoperable communication to connect the sensors, IIoT devices, and machines,

and integrate the cloud for platforms that are compatible. To overcome these challenges, we

proposed an interoperable IoT system in a low-cost gateway that can communicate with different

and heterogenous devices. To demonstrate communication between the gateway, connected

80

devices and platforms, we have taken three different embedded devices Raspberry Pi3, Arduino

Uno Wi-Fi and ESP32.We also have used three different sensors DHT22, BME280 and MQ135

embedded with the above mentioned three devices. Our feasibility study of interoperable

communication includes following approaches.

▪ Different devices with different protocols will transfer sensor data to gateway.

▪ Gateway receives data from different protocol, bridges communication and transfer to

database

▪ Gateway transfers sensor data to third party cloud platform with platform specific protocol

The gateway receives data from three different embedded device Raspberry Pi 3, Arduino Uno Wi-

Fi and ESP32 over three different protocols such as Modbus TCP, WebSocket and MQTT. The

gateway receives the signal, processes, and transfers the sensors values real time into ThingsBoard

IoT platform over MQTT protocol. To address the IoT Interoperability challenges, the gateway can

provide the strategy of using different protocol integration, and data conversion, as well as

integrating real-time data analysis with Kafka and Spark platforms on ThingsBoard platform for

big data analytic applications. Integrating different protocol-enabled devices into each system

enables the scalability, automation, and flexibility of Industry 4.0 manufacturing systems.

Performing feasibility experiment with the proposed and developed interoperable IoT gateway and

open source ThingsBoard IoT platform concludes following results.

▪ The IoT gateway communicates with any device with any of the 5 protocols such as MQTT,

CoAP, HTTP, WebSocket and ModbusTCP

▪ IoT gateway works as a hub and receives data from different devices with any of the above

mentioned 5 protocols

▪ The gateway transforms the data with JSON format, communicates with the third party

ThingsBoard platform

▪ As ThingsBoard communicates via MQTT protocol, gateway transfers sensors data to the

platform with MQTT protocol.

▪ Gateway also receives signal and input from the third party IoT platform. Thus, both way

duplex communication is achieved. . This communication is bidirectional as it allows two-

way communication with the gateway.

81

 Successful integration of the multi-protocol gateway to the open source IoT ThingsBoard platform

supports interoperable data exchanges compatibility of the proposed gateway which succeeds

overcoming the challenges described in research gap. This multi-protocol gateway performs data

formatting, protocol bridging per gateway architecture mentioned in the research design in chapter

3. The IoT interoperable gateway system will solve the interoperable challenges described in the

literature review. Developing interoperable IoT architecture on a low-cost hardware which also

satisfies RQ1 and RQ2 discussed in 1.1 Research Questions, and it could be used as interoperable

middleware in small and medium enterprises. Interoperable integration and uniform access of these

different IoT standards are provided to ensure seamless connectivity with different type of CPSs,

devices, resources, and applications.

5.8 Limitations

Although the proposed IoT gateway can be used as a potential connectivity option for connecting

heterogenous devices, machines, sensors, low powered CPSs, it has some limitations. One problem

is while there are many other protocols used in the industrial communication, it can communicate

through only 5 protocols MQTT, CoAP, HTTP, WebSocket and ModbusTCP. IoT systems are

interconnected and communicate through networks. Therefore, despite all security measures, the

system remains largely uncontrollable and can lead to various types of network attacks especially

more prone to overall destruction in DoS attacks. The hardware that is used to implement the

gateway is low powered and low processing power. For connecting more than 30 devices and

performing more complex tasks, Raspberry Pi IoT gateway won’t be useful because it doesn’t have

the resources and the capacity to help due to its limited capacity and capabilities. In that case, for

more connected devices, powerful gateway is required to implement the proposed interoperable

system.

82

 CONCLUSION AND RECOMMENDATIONS

This chapter provides a summary on the approach adopted by this research work, major

contributions and points out some areas and scope of future work.

6.1 Conclusion

For interoperable M2M communication between heterogenous devices, we proposed and

developed an interoperable middleware gateway by enabling multi-protocol integration to maintain

robustness and immediate action plan towards sustainable Industry 4.0 manufacturing. In this

research, we introduced an interoperable middleware gateway based IoT solution which can

effectively handle IoT data from multi-protocol enabled devices, and transmit data to interconnect

IoT objects, applications, heterogenous devices and machines with different access protocols. For

collaborative M2M optimization with intelligent adaptation and integration at semantic level, we

discussed findings of common access protocols to structure any data so that the manner of

processing the information will be interpretable among the cyber-physical systems. This research

presented protocol selection framework which allows users to select the suitable protocol for the

application in regards of their standards and data transmission capabilities to accelerate safe and

high-speed data transfer among end IoT devices. The research work implemented IoT multi-

protocols such as HTTP, MQTT, CoAP, WebSocket, and Modbus TCP enabled low-cost gateways

for effective full-duplex interoperable M2M communication and cloud integration among cyber-

physical systems. The research also introduced data formatting method in the gateway to overcome

data integration challenges from different devices and systems for a common systematization and

representation in JSON format. To accommodate sheer scope of data and to address data integration

and data interoperability challenges, three data storages and databases are presented for high

reliability and rapid access to data. This is achieved by deploying the proposed Middleware

gateway to local and cloud database, OPC Server based KEPServerEX to connect HMI and Data

Logger, and Microsoft Azure IoT hub databases. In this research, we evaluated the potential gain

of deploying the middleware gateway in a case study to provide a real-time cloud based integration

and visualization module that facilitates sensor-based data collection between nodes, gateway

integration with parametric control mechanisms and, interoperability management and to examine

the potential benefits of analyzing the included workflow with the goal of validating the

83

interoperability concept of integrating any platforms via any of the industry standard protocols

MQTT, CoAP, HTTP, Modbus TCP and WebSocket with the developed multi-protocol gateway.

6.2 Future Work

There can be some future work to extend the functionality and connectivity of the multi-protocol

gateway. Future development can be expanding the supported OPC UA service and AMQP, CAN,

CC-Link protocols implementation and PLC and other controllers bridging in the gateway. Future

experimental tests will evaluate the performance of data analytics systems in terms of

responsiveness, flexibility, and scalability in large, real-world scenarios. Implementing large

number of multi-protocol gateways and devices in mesh network with scalability would be useful

for long range Industrial IoT networks and large industrial manufacturing plants. Furthermore, fog

and edge computing paradigm for data processing and AI techniques can be included in future

work by examining the gateway module's connection, data transmission and synchronization

capabilities. Future study could concentrate on delivering IoT security via the IoT Edge gateway,

which is one of the primary difficulties facing IoT networks. The protocols and standards for IoT

communication are continually changing. As a result, additional research into other protocols to

include in the suggested middleware solution will be useful.

84

REFERENCES

Adamson, G., Wang, L., Holm, M., & Moore, P. (2017). Cloud manufacturing – a critical review

of recent development and future trends. International Journal of Computer Integrated

Manufacturing, 30(4-5), 347-380. DOI: 10.1080/0951192X.2015.1031704

Alghamdi, T., Lasebae, A., & Aiash, M. (2013). Security Analysis of the Constrained Application

Protocol in the Internet of Things. 2013 Second International Conference on Future Generation

Communication Technology (FGCT). DOI: 10.1109/FGCT.2013.6767217

Bandyopadhyay, S., & Bhattacharyya, A. (2013). Lightweight Internet protocols for web

enablement of sensors using constrained gateway devices. 2013 International Conference on

Computing, Networking and Communications (ICNC) 334-340. DOI:

10.1109/ICCNC.2013.6504105

Barros, V., Junior, S., Bruschi, S., Monaco, F., & Estrella, J. (2019). An IoT Multi-Protocol

Strategy for the Interoperability of Distinct Communication Protocols applied to Web of Things.

DOI: 10.1145/3323503.3349546

Casillo, M., Colace, F., Santo, M. D., Lorusso, A., Mosca, R., & Santaniello, D. (2021). VIOT_Lab:

A Virtual Remote Laboratory for Internet of Things Based on ThingsBoard Platform. Paper

presented at the 2021 IEEE Frontiers in Education Conference (FIE). Retrieved from

https://ieeexplore.ieee.org/document/9637317/

Cavalieri, S. (2021). Semantic Interoperability between IEC 61850 and oneM2M for IoT-Enabled

Smart Grids. Sensors, 21(7). DOI: 10.3390/s21072571

De S., L. M. S., Spiess, P., Guinard, D., Koehler, M., Karnouskos, S., & Savio, D. (2008).

SOCRADES: A web service based shop floor integration infrastructure. In The Internet of Things.

Lecture Notes in Computer Science (Vol. 4952): Springer, Berlin, Heidelberg.

Derhamy, H., Eliasson, J., & Delsing, J. (2017). IoT Interoperability—On-Demand and Low

Latency Transparent Multiprotocol Translator. IEEE Internet of Things Journal, 4(5), 1754 - 1763.

DOI: 10.1109/JIOT.2017.2697718

https://doi.org/10.1080/0951192X.2015.1031704
http://dx.doi.org/10.1109/FGCT.2013.6767217
https://10.0.4.85/ICCNC.2013.6504105
http://10.0.4.121/3323503.3349546
https://ieeexplore.ieee.org/document/9637317/
https://doi.org/10.3390/s21072571
https://10.0.4.85/JIOT.2017.2697718

85

Derhamy, H., Rönnholm, J., Delsing, J., Eliasson, J., & Deventer, J. v. (2017). Protocol

interoperability of OPC UA in service oriented architectures. Paper presented at the 2017 IEEE

15th International Conference on Industrial Informatics (INDIN), Emden, Germany. Retrieved

from https://ieeexplore.ieee.org/document/8104744/

Desai, P., Sheth, A., & Anantharam, P. (2015, Jun 27-Jul 02). Semantic Gateway as a Service

architecture for IoT Interoperability. Paper presented at the IEEE 3rd International Conference on

Mobile Services MS, New York, NY (pp. 313-319).DOI: 10.1109/MobServ.2015.51

Dionisio, R., Malhao, S., & Torres, P. (2020). Development of a Smart Gateway for a Label Loom

Machine using Industrial IoT Technologies. International Journal of Online and Biomedical

Engineering (iJOE), 16(4), 6-14. DOI: 10.3991/ijoe.v16i04.11853

Elattar, M., Wendt, V., & Jasperneite, J. (2017). Communications for Cyber-Physical Systems.

Springer Series in Wireless Technology: Springer, Cham.

ElMaraghy, H. A. (2005). Flexible and reconfigurable manufacturing systems paradigms.

International Journal of Flexible Manufacturing Systems, 17(4), 261-276. DOI: 10.1007/s10696-

006-9028-7

Foster, A. (2017). Messaging technologies for the industrial internet and the internet of things

whitepaper. PrismTech.

Garrocho, C. T. B., Klippel, E., Machado, A. V., Ferreira, C. M. S., Cavalcanti, C., & Oliveira, R.

A. R. (2020, Nov 23-27). Blockchain-based Machine-to-Machine Communication in the Industry

4.0 applied at the Industrial Mining Environment. Paper presented at the 10th Brazilian

Symposium on Computing Systems Engineering (SBESC), Florianopolis, Brazil (pp. 1-8).DOI:

10.1109/SBESC51047.2020.9277852

Givehchi, O., Landsdorf, K., Simoens, P. T. W., & Colombo, A. W. (2017). Interoperability for

industrial cyber-physical systems : an approach for legacy systems. IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, 13 3370–3378. DOI: 10.1109/TII.2017.2740434

González, I., Calderón, A. J., & Portalo, J. M. (2021). Innovative Multi-Layered Architecture for

Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart

Microgrid. Sustainability 2021, 13(4), 2234. DOI: 10.3390/su13042234

https://ieeexplore.ieee.org/document/8104744/
https://doi.org/10.1109/MobServ.2015.51
https://doi.org/10.3991/ijoe.v16i04.11853
https://doi.org/10.1007/s10696-006-9028-7
https://doi.org/10.1007/s10696-006-9028-7
https://doi.org/10.1109/SBESC51047.2020.9277852
https://doi.org/10.1109/TII.2017.2740434
https://doi.org/10.3390/su13042234

86

Grangel-González, I. (2017). Semantic Data Integration for Industry 4.0 Standards. Paper

presented at the European Knowledge Acquisition Workshop. Retrieved from

https://link.springer.com/chapter/10.1007/978-3-319-58694-6_36

Guinard, D., & Trifa, V. (2016). Building the web of things: with examples in node. js and

raspberry pi: Manning Publications Co.

Hatzivasilis, G., Askoxylakis, I., Alexandris, G., Anicic, D., Bröring, A., Kulkarni, V., . . .

Spanoudakis, G. (2018). The Interoperability of Things: Interoperable solutions as an enabler for

IoT and Web 3.0. Paper presented at the 2018 IEEE 23rd International Workshop on Computer

Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, Spain.

Retrieved from https://ieeexplore.ieee.org/document/8514952/

Henschke, M., Wei, X., & Zhang, X. (2020). Data Visualization for Wireless Sensor Networks

Using ThingsBoard. Paper presented at the 2020 29th Wireless and Optical Communications

Conference (WOCC). Retrieved from https://ieeexplore.ieee.org/document/9114929/

Hermann, M., Pentek, T., & Otto, B. (2015). Design Principles for Industrie 4.0 Scenarios: A

Literature Review.

Honkola, J., Laine, H., Brown, R., & Oliver, I. (2009). Cross-Domain Interoperability: A Case

Study. Smart Spaces and Next Generation Wired/Wireless Networking 22-31. DOI: 10.1007/978-

3-642-04190-7_3

Iatrou, C. P., & Urbas, L. (2016a). Efficient OPC UA binary encoding considerations for embedded

devices. 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) 1148-1153.

DOI: 10.1109/INDIN.2016.7819339

Iatrou, C. P., & Urbas, L. (2016b). OPC UA hardware offloading engine as dedicated peripheral

IP core. Paper presented at the 2016 IEEE World Conference on Factory Communication Systems

(WFCS), Aveiro, Portugal. Retrieved from https://ieeexplore.ieee.org/document/7496520/

Izza, S. (2009). Integration of industrial information systems: from syntactic to semantic

integration approaches. 3 1-57. DOI: 10.1080/17517570802521163

John, T., & Vorbröcker, M. (2020). Enabling IoT connectivity for ModbusTCP sensors. Paper

presented at the 2020 25th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA). Retrieved from https://ieeexplore.ieee.org/document/9211999/

https://link.springer.com/chapter/10.1007/978-3-319-58694-6_36
https://ieeexplore.ieee.org/document/8514952/
https://ieeexplore.ieee.org/document/9114929/
http://dx.doi.org/10.1007/978-3-642-04190-7_3
http://dx.doi.org/10.1007/978-3-642-04190-7_3
https://doi.org/10.1109/INDIN.2016.7819339
https://ieeexplore.ieee.org/document/7496520/
https://doi.org/10.1080/17517570802521163
https://ieeexplore.ieee.org/document/9211999/

87

Kadadi, A., Agrawal, R., Nyamful, C., & Atiq, R. (2014). Challenges of data integration and

interoperability in big data. 2014 IEEE International Conference on Big Data (Big Data) 38-40.

DOI: 10.1109/BigData.2014.7004486

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for

implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German

manufacturing industry; final report of the Industrie 4.0 Working Group: Forschungsunion.

Kang, B., & Choo, H. (2018). An experimental study of a reliable IoT gateway. ICT Express, 4(3),

130-133. DOI: 10.1016/j.icte.2017.04.002

Kant, R., & Bhattacharya, S. (2017). Sensors for Air Monitoring. In Environmental, Chemical and

Medical Sensors (pp. 9- 30): SpringerLink.

Kinnera, B. K. S., Subbareddy, S., & Luhach, A. (2019). IOT based Air Quality Monitoring System

Using MQ135 and MQ7 with Machine Learning Analysis. Scalable Computing: Practice and

Experience, 20 599- 606. DOI: 10.12694/scpe.v20i4.1561

Kshetri, N. (2017). Can Blockchain Strengthen the Internet of Things? IT Professional, 19(4), 68-

72. DOI: 10.1109/MITP.2017.3051335

Kubicek, H., Cimander, R., & Scholl, H. (2011). Layers of Interoperability. In Organizational

Interoperability in E-Government (pp. 85-96): Springer, Berlin, Heidelberg.

Lelli, F. (2019). Interoperability of the Time of Industry 4.0 and the Internet of Things. Future

Internet, 11(2), 36. DOI: 10.3390/fi11020036

Li, H. S., Lai, L. F., & Poor, H. V. (2012). Multicast Routing for Decentralized Control of Cyber

Physical Systems with an Application in Smart Grid. Ieee Journal on Selected Areas in

Communications, 30(6), 1097-1107. DOI: 10.1109/JSAC.2012.120708

Light, R. (2017). Mosquitto: server and client implementation of the MQTT protocol. The Journal

of Open Source Software, 2. DOI: 10.21105/joss.00265

Loskyll, M. (2012). Towards Semantic Interoperability in Industrial Production. In Semantic

Interoperability: Issues, Solutions, Challenges (pp. 71-104).

https://doi.org/10.1109/BigData.2014.7004486
https://doi.org/10.1016/j.icte.2017.04.002
http://10.0.49.150/scpe.v20i4.1561
https://doi.org/10.1109/MITP.2017.3051335
https://doi.org/10.3390/fi11020036
https://doi.org/10.1109/JSAC.2012.120708
https://doi.org/10.21105/joss.00265

88

Lu, Y. Q., & Asghar, M. R. (2020). Semantic communications between distributed cyber-physical

systems towards collaborative automation for smart manufacturing. Journal of Manufacturing

Systems, 55 348-359. DOI: 10.1016/j.jmsy.2020.05.001

Maciej Wasilak, & Amsüss, C. (2014). chrysn/aiocoap. Retrieved from

http://github.com/chrysn/aiocoap/

Mai, S., Vu, V. T., & Myeong-Jae, Y. (2011). An OPC UA client development for monitoring and

control applications. Paper presented at the Proceedings of 2011 6th International Forum on

Strategic Technology, Harbin, China. Retrieved from

https://ieeexplore.ieee.org/document/6021120/

Mattsson, S., Karlsson, M., Fast-Berglund, A., & Hansson, I. (2014, Apr 28-30). Managing

production complexity by empowering workers: six cases. Paper presented at the 47th CIRP

Conference on Manufacturing Systems, Univ Windsor, Windsor, Canada (Vol. 17, pp. 212-

217).DOI: 10.1016/j.procir.2014.02.041

Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and

Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12). DOI:

10.3390/SU10124779

Meng, Z. Z., Wu, Z. P., & Gray, J. (2017). A Collaboration-Oriented M2M Messaging Mechanism

for the Collaborative Automation between Machines in Future Industrial Networks. Sensors,

17(11). DOI: 10.3390/s17112694

Mourad, M. H., Nassehi, A., Schaefer, D., & Newman, S. T. (2020). Assessment of interoperability

in cloud manufacturing. Robotics and Computer-integrated Manufacturing, 61. DOI:

10.1016/j.rcim.2019.101832

Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP

and HTTP. Paper presented at the 2017 IEEE International Systems Engineering Symposium

(ISSE). Retrieved from https://ieeexplore.ieee.org/document/8088251/

Pan, F., Pang, Z., Wen, H., Luvisotto, M., Xiao, M., Liao, R., & Chen, J. (2019). Threshold-Free

Physical Layer Authentication Based on Machine Learning for Industrial Wireless CPS. IEEE

Transactions on Industrial Informatics, 15(12), 6481-6491. DOI: 10.1109/TII.2019.2925418

https://doi.org/10.1016/j.jmsy.2020.05.001
http://github.com/chrysn/aiocoap/
https://ieeexplore.ieee.org/document/6021120/
https://doi.org/10.1016/j.procir.2014.02.041
https://doi.org/10.3390/SU10124779
http://dx.doi.org/10.3390/s17112694
https://doi.org/10.1016/j.rcim.2019.101832
https://ieeexplore.ieee.org/document/8088251/
https://doi.org/10.1109/TII.2019.2925418

89

Paolis, L. T. D., Luca, V. D., & Paiano, R. (2018). Sensor data collection and analytics with

thingsboard and spark streaming. Paper presented at the 2018 IEEE Workshop on Environmental,

Energy, and Structural Monitoring Systems (EESMS). Retrieved from

https://ieeexplore.ieee.org/document/8405822/

Parto, M. (2017). A secure MTConnect compatible IoT platform for machine monitoring through

integration of fog computing, cloud computing, and communication protocols. (Georgia Institute

of Technology). Retrieved from

https://smartech.gatech.edu/bitstream/handle/1853/59283/PARTODEZFOULI-THESIS-2017.pdf

Qiao, L., & Feng, L. (2011). The future of the device integration: Field device integration. Paper

presented at the 2011 IEEE 2nd International Conference on Software Engineering and Service

Science, Beijing. Retrieved from https://ieeexplore.ieee.org/document/5982422/

R.L., C. (2005). Toward technical interoperability in telemedicine. Telemed J E Health, 11 384–

404. DOI: 10.1089/tmj.2005.11.384

Schuh, G., Potente, T., Varandani, R., Hausberg, C., & Fränken, B. (2014). Collaboration Moves

Productivity to the Next Level. Procedia CIRP, 17 3-8. DOI: 10.1016/j.procir.2014.02.037

Serpanos, D., & Wolf, M. (2018). Industrial Internet of Things. In Internet-of-Things (IoT)

Systems: Architectures, Algorithms, Methodologies (pp. 37-54). Cham: Springer International

Publishing.

Shang, C., & You, F. (2019). Data Analytics and Machine Learning for Smart Process

Manufacturing: Recent Advances and Perspectives in the Big Data Era. Engineering, 5(6), 1010-

1016. DOI: 10.1016/j.eng.2019.01.019

Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the

concept and of energy management approached in production based on the Internet of Things

paradigm. 2014 IEEE International Conference on Industrial Engineering and Engineering

Management 697-701. DOI: 10.1109/IEEM.2014.7058728

Silva, D., Carvalho, L. I., Soares, J., & Sofia, R. C. (2021). A Performance Analysis of Internet of

Things Networking Protocols: Evaluating MQTT, CoAP, OPC UA. Applied Sciences, 11(11).

DOI: 10.3390/app11114879

https://ieeexplore.ieee.org/document/8405822/
https://smartech.gatech.edu/bitstream/handle/1853/59283/PARTODEZFOULI-THESIS-2017.pdf
https://ieeexplore.ieee.org/document/5982422/
https://doi.org/10.1089/tmj.2005.11.384
https://doi.org/10.1016/j.procir.2014.02.037
https://doi.org/10.1016/j.eng.2019.01.019
https://doi.org/10.1109/IEEM.2014.7058728
https://doi.org/10.3390/app11114879

90

Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of

Things: Challenges, Opportunities, and Directions. Ieee Transactions on Industrial Informatics,

14(11), 4724-4734. DOI: 10.1109/TII.2018.2852491

Skvorc, D., Horvat, M., & Srbljic, S. (2014). Performance evaluation of Websocket protocol for

implementation of full-duplex web streams. Paper presented at the 2014 37th International

Convention on Information and Communication Technology, Electronics and Microelectronics

(MIPRO), Opatija, Croatia. Retrieved from https://ieeexplore.ieee.org/document/6859715/

Uy, N. Q., & Nam, V. H. (2019). A comparison of AMQP and MQTT protocols for Internet of

Things. Paper presented at the 2019 6th NAFOSTED Conference on Information and Computer

Science (NICS). Retrieved from https://ieeexplore.ieee.org/document/9023812/

Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A.,Doody, P.

(2009). Internet of Things Strategic Research Roadmap. The Cluster of European Research Proje,

Tech. Rep.

W., M. (2014). Industrie 4.0: Smart Manufacturing for the Future. Berlin: Retrieved from

http://www.gtai.de/GTAI/Navigation/EN/Invest/Service/publications,did=917080.html

Wang, L., Orban, P., Cunningham, A., & Lang, S. (2004). Remote real-time CNC machining for

web-based manufacturing. Robotics and Computer-integrated Manufacturing, 20 563-571. DOI:

10.1016/J.RCIM.2004.07.007

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical

systems in manufacturing. Journal of Manufacturing Systems, 37 517-527. DOI:

10.1016/j.jmsy.2015.04.008

Waurzyniak, P. (2001). Electronic intelligence in manufacturing. Manufacturing Engineering, 127

44-44.

Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0 - Standardization

as the crucial challenge for highly modular, multi-vendor production systems. IFAC-

PapersOnLine, 48(3), 579-584. DOI: 10.1016/j.ifacol.2015.06.143

Wilder, C., Jose, M., Harold, P., & Alvarado, J. D. (2021). Internet of things: a multiprotocol

gateway as solution of the interoperability problem. In Bonaventuriana (Ed.), Mechatronics,

Electronics and Telecommunications Advances Towards Industry 4.0 (pp. 24): arXiv.

https://doi.org/10.1109/TII.2018.2852491
https://ieeexplore.ieee.org/document/6859715/
https://ieeexplore.ieee.org/document/9023812/
http://www.gtai.de/GTAI/Navigation/EN/Invest/Service/publications,did=917080.html
https://doi.org/10.1016/J.RCIM.2004.07.007
https://doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1016/j.ifacol.2015.06.143

91

Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication:

Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial

Electronics Magazine, 11(1), 17-27. DOI: 10.1109/MIE.2017.2649104

Xiao, W., Huang, H., & Zhao, G. (2018). Communication methodology between machine tools

using MTConnect protocol. MATEC Web of Conferences, 175. DOI:

10.1051/matecconf/201817503066

Zarko, I. P. (2019). Why Interoperability Matters to Your or Any IoT Solution. 2019 15th

International Conference on Telecommunications (ConTEL) 1-1. DOI:

10.1109/ConTEL.2019.8848558

Zeid, A., Sundaram, S., Moghaddam, M., Kamarthi, S., & Marion, T. (2019). Interoperability in

Smart Manufacturing: Research Challenges. Machines, 7(2). DOI: 10.3390/machines7020021

Zuehlke, D. (2008). SmartFactory – from Vision to Reality in Factory Technologies. IFAC

Proceedings Volumes, 41(2), 14101-14108. DOI: 10.3182/20080706-5-KR-1001.02391

http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.1051/matecconf/201817503066
https://doi.org/10.1109/ConTEL.2019.8848558
http://dx.doi.org/10.3390/machines7020021
https://doi.org/10.3182/20080706-5-KR-1001.02391

92

APPENDIX A NODE DEVICES CODE AND ALGORITHM

A.1 Node1 Raspberry Pi 3B Sending Temperature-Humidity Data to Gateway over HTTP,

CoAP and ModbusTCP Protocol

import time

import paho.mqtt.client as mqtt

from pyModbusTCP.client import ModbusClient

import Adafruit_DHT

import datetime

import requests

import urllib

import logging

import asyncio

from aiocoap import *

DHT_SENSOR = Adafruit_DHT.DHT22

DHT_PIN = 4

ip = "192.168.0.106"

deviceId = 'node1'

client_server = mqtt.Client(deviceId)

client_server.username_pw_set(username="project", password="A_project_b")

host_server = ip

flag = 0

protocol_selection = 1

protocol_sub_topic = "/client/"+deviceId

mqtt_pub_topic = "/client/"+deviceId+"/mqtt"

websocket_pub_topic = "/client/"+deviceId+"/websocket"

htttp_url = "http://" + ip + "/http?"

SERVER_HOST = ip

SERVER_PORT = 502

c = ModbusClient()

c.host(SERVER_HOST)

c.port(SERVER_PORT)

logging.basicConfig(level=logging.INFO)

delay_time = 10

def on_message(client, userdata, message):

 if(message.topic == protocol_sub_topic):

 print("message received " ,str(message.payload.decode("utf-8")))

 print("message topic=",message.topic)

 print("message qos=",message.qos)

93

 print("message retain flag=",message.retain)

 global protocol_selection

 protocol_selection = int(str(message.payload.decode("utf-8")))

def protocol_selection_loop():

 if(protocol_selection == 2):

 print("http")

 elif(protocol_selection == 3):

 print("modbus")

 elif(protocol_selection == 4):

 print("coap")

 else:

 print("invalid")

def take_time():

 # print("reading time") #--------------

 time_now = datetime.datetime.now()

 time_now = str(time_now)

 time_now = time_now.split(".")

 time_now = str(time_now[0])

 # print("from take time: "+ str(time_now))

 return time_now

async def main_put(str):

 context = await Context.create_client_context()

 # context = self.get_context_data(object=self.object)

 await asyncio.sleep(2)

 payload = str.encode("ascii")

 request = Message(code=PUT, payload=payload, token=None,

uri="coap://"+ip+"/put_request")

 response = await context.request(request).response

 print('Result: %s\n%r'%(response.code, response.payload.decode("ascii")))

def on_connect(client_server, userdata, flags, rc):

 global flag;

 flag = 1

 print("connected ok")

def on_pub (client_server, userdata, result):

 print("data published")

def on_disconnect(client, userdata, rc):

 global flag;

 flag = 0

94

 print("disconnected")

while True:

 try:

 humidity, temperature = Adafruit_DHT.read_retry(DHT_SENSOR, DHT_PIN)

 if (flag == 0):

 client_server.connect(host_server, port=1883, keepalive=60,

bind_address="")

 client_server.on_message = on_message

 client_server.on_connect = on_connect

 client_server.on_disconnect = on_disconnect

 client_server.on_publish = on_pub

 client_server.subscribe(protocol_sub_topic)

 client_server.loop_start()

 if humidity is not None and temperature is not None:

 data_send =

"\"Temperature\":"+str("{:.2f}".format(temperature))+","+"\"Humidity\":"+str("

{:.2f}".format(humidity))

data_send = "\"Temperature\":"+str("{:.2f}".format(temperature))

 temp = str("{:.2f}".format(temperature))

 hum = str("{:.2f}".format(humidity))

 payload = take_time()

 payload += "|"

 payload += data_send

 print(payload)

 protocol_selection_loop()

 #Publish data over HTTP

 if(protocol_selection == 2): X

 print("2")

 temp_url = htttp_url

 time_ = take_time()

 f = { 't' : str(temp) , 'rh' : str(hum) , 'time' : str(time_),

'device': deviceId }

 payload = urllib.parse.urlencode(f);

 temp_url += payload

 print(temp_url)

 x = requests.get(temp_url)

 print(x.status_code)

 if(x.status_code == 200):

 print(x.text)

 else:

 print("failed")

 # time.sleep(delay_time)

 #Publish data over Modbus TCP

 elif(protocol_selection == 3):

 print("3")

95

 if not c.is_open():

 if not c.open():

 print("unable to connect to

"+SERVER_HOST+":"+str(SERVER_PORT))

 new_time = take_time()

 new_time = new_time.split(" ")

 date1 = new_time[0]

 date1 = date1.split("-")

 time1 = new_time[1]

 time1 = time1.split(":")

 if c.is_open():

 temp = int(float(temp) * 100)

 hum = int(float(hum) * 100)

 if (deviceId == 'node1'):

 is_ok = c.write_single_register(1, 1)

 is_ok = c.write_single_register(2, temp)

 is_ok = c.write_single_register(3, hum)

 is_ok = c.write_single_register(4, int(time1[0]))

 is_ok = c.write_single_register(5, int(time1[1]))

 is_ok = c.write_single_register(6, int(time1[2]))

 is_ok = c.write_single_register(7, int(date1[2]))

 is_ok = c.write_single_register(8, int(date1[1]))

 is_ok = c.write_single_register(9, int(date1[0]))

 #Publish data over CoAP

 elif(protocol_selection == 4):

 print("4")

 payload += "@"+deviceId

 asyncio.get_event_loop().run_until_complete(main_put(payload))

 # time.sleep(delay_time)

 else:

 print("invalid")

 time.sleep(delay_time)

 else:

 print("Failed to get data from DHT22")

 # 2021-11-01 11:42:46|T:25.00,RH:72.60

 except Exception as e:

 print("Exception Message: {} ".format(e))

96

A.2 Node2 Arduino UNO Wi-Fi Sending BME280 Sensor Pressure and Altitude Data to

Gateway over WebSocket Protocol

#include <WiFi.h>

#include <WebServer.h>

#include <WebSocketsClient.h>

#include <ArduinoJson.h>

#include <Wire.h>

#include <SPI.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BME280.h>

#define BME_SCK 13

#define BME_MISO 12

#define BME_MOSI 11

#define BME_CS 10

// Wifi Credentials

const char* ssid = "MagicMan"; // Wifi SSID

const char* password = "Sabbir1234"; //Wi-FI Password

WebSocketsClient webSocket; // websocket client class instance

StaticJsonDocument<100> doc; // Allocate a static JSON document

void setup() {

 // Connect to local WiFi

 WiFi.begin(ssid, password);

 Serial.begin(9600);

 while (WiFi.status() != WL_CONNECTED) {

 Serial.print(".");

 delay(500);

 }

 Serial.println();

 Serial.print("IP Address: ");

 Serial.println(WiFi.localIP()); // Print local IP address

 delay(2000); // wait for 2s

 //address, port, and URL path

 webSocket.begin("192.168.0.106", 81, "/");

 // webSocket event handler

 webSocket.onEvent(webSocketEvent);

 // if connection failed retry every 5s

 webSocket.setReconnectInterval(5000);

}

void loop() {

 webSocket.loop(); // Keep the socket alive

}

void webSocketEvent(WStype_t type, uint8_t * payload, size_t length) {

 if (type == WStype_TEXT)

 {

 DeserializationError error = deserializeJson(doc, payload); // deserialize

incoming Json String

 if (error) { // Print erro msg if incomig String is not JSON formated

 Serial.print(F("deserializeJson() failed: "));

 Serial.println(error.c_str());

 return;

 }

 const String pin_stat = doc["PIN_Status"];

 const float BME280_Pdata=bme.readPressure() / 100.0F;

 const float BME280_Adata=bme.readAltitude(SEALEVELPRESSURE_HPA);

97

 // Print the received data for debugging

 Serial.print(String(pin_stat));

 Serial.print(String(BME280_Pdata));

 Serial.println(String(BME280_Adata));

 }

}

A.3 Node3 ESP32 Sending MQ135 Sensor Air Quality Data to Gateway over MQTT Protocol

#include <WiFi.h>

#include <PubSubClient.h>

#include <SPI.h>

#include <WiFiClientSecure.h>

#define MQ135_THRESHOLD_1 300

const int anPin = 35; //set analog pin
const char* ssid = "MagicMan";//WIFI ssid

const char* password = "Sabbir1234";//Wifi password

const char* mqtt_server = "192.168.0.106";//mqtt server

const char* mqtt_username = "project";

const char* mqtt_password = "A_project_b";

const char* mqtt_topic = "/client/node3/mqtt";

const char* clientID = "client_RFID"; // MQTT client ID

WiFiClient wifiClient;

//WiFiClientSecure wifiClient;

PubSubClient client(mqtt_server, 1883, wifiClient);

void callback(char* topic, byte* payload, unsigned int length) {

 Serial.print("message arrived : ");

 Serial.println(topic);

 Serial.print("messahe: ");

 for (int i = 0;i < length; i++) {

 Serial.println((char)payload[i]);

 }

 Serial.println();

 if (String(topic)=="/device/node3/mqtt") {

 Serial.print("hagu");

 if (topic=="1") {

 Serial.println("one");

 }

 else if (topic=="0"); {

 Serial.println("zero");

 }

 Serial.println(".................");

}

}

void connect_MQTT(){

 if (client.connect(clientID, mqtt_username, mqtt_password)) {

 Serial.println("Connected to MQTT Broker!");

 client.subscribe("/device/node2/websocket");

 }

98

 else {

 Serial.println("Connection to MQTT Broker failed...");

 }

}

void setup_wifi() {

 delay(10);

 // We start by connecting to a WiFi network

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 randomSeed(micros());

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

}

void setup() {

Serial.begin(9600);

delay(1000);

setup_wifi();

delay(500);

connect_MQTT();

Serial.setTimeout(2000);

client.setCallback(callback);

client.subscribe("/device/node2/websocket");

Serial.println("done");

}

void loop() {

//connect_MQTT();

client.subscribe("/device/node2/websocket");

delay(3000);

int MQ135_data = (analogRead(anPin))/11.5;

Serial.print("AirQuality Index: ");

Serial.print(MQ135_data);

delay(500);

Serial.println("PPM");

String ppm = " PPM";

String qual= ("\"AirQuality\": ");

delay(2000);

//client.publish(mqtt_topic, String(qual+MQ135_data+ ppm).c_str());

client.publish(mqtt_topic, String(qual+MQ135_data).c_str()); //publish MQ135

data to broker

Serial.println("Published mama");

}

99

APPENDIX B GATEWAY CODE AND ALGORITHM

B.1 KEPServerEX Data Logging and Communication on Gateway from Node 3 ESP32 over MQTT Protocol

import paho.mqtt.client as mqtt

import paho.mqtt.client as mqtt

import requests

import sys

import MySQLdb

import mysql.connector

from datetime import date, datetime, timedelta

import time

import json

MQTT_ADDRESS = '192.168.0.106'

MQTT_USER = 'project'

MQTT_PASSWORD = 'A_project_b'

MQTT_TOPIC = "/client/node3/mqtt"

user_mysql = "admin"

pwd_mysql = "raspberry"

topic = "AirQuality"

openDoor = json.dumps({"val1":"2500"})

client_id = "rfidManager"

topic = "AirQuality"

openDoor = json.dumps({"val1":"2500"})

def on_connect(client, userdata, flags, rc):

 print('Connected with result code ' + str(rc))

 client.subscribe(MQTT_TOPIC)

def on_message(client, userdata, message):

 message.payload = message.payload.decode("utf-8")

 print(str(message.payload))

 p= str(message.payload)

 data = {"Value" : p}

100

 imei= json.dumps(data)

 publish(client, imei)

 #b=open("/home/pi/abc.txt", "a")

 #b.write(str(msg.payload))

def publish (client, imei):

 client.publish(topic, imei)

def main():

 mqtt_client = mqtt.Client()

 mqtt_client.username_pw_set(MQTT_USER, MQTT_PASSWORD)

 mqtt_client.on_connect = on_connect

 mqtt_client.on_message = on_message

mqtt_client.on_publish = on_publish

 mqtt_client.connect(MQTT_ADDRESS, 1883)

 mqtt_client.loop_forever()

if __name__ == '__main__':

 print('MQTT to InfluxDB bridge')

 main()

B.2 Gateway Transferring Data to Local MySQL Database

import MySQLdb

import paho.mqtt.client as mqtt

from time import sleep

client1_http = "/client/node1/http"

client1_modbus = "/client/node1/modbus""

client1_coap = "/client/node1/coap"

client2_websocket = "/client/node2/websocket"

client3_mqtt = "/client/node3/mqtt"

ip = "192.168.0.106"

deviceId = 'server_db_saver'

client_server = mqtt.Client(deviceId)

client_server.username_pw_set(username="project", password="A_project_b")

host_server = ip

101

flag = 0

db = MySQLdb.connect(host="localhost",user="admin", passwd="!shahed@",db="server")

cur = db.cursor()

def on_message(client, userdata, message):

 print("message topic=",message.topic)

 msg = str(message.payload.decode("utf-8"))

 print(msg)

 png = msg.split("|")

 time = str(png[0])

 print(time)

 print (png)

 data = str(png)

 print(data)

 if(message.topic == client1_coap):

 protcol = "4"

 node = "1"

 cur.execute('INSERT INTO data(protocol_id,device_id,data,time)

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))

 elif(message.topic == client1_modbus):

 protcol = "3"

 node = "1"

 x = cur.execute('INSERT INTO data(protocol_id,device_id,data,time)

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))

 print(x)

 elif(message.topic == client1_http):

 protcol = "2"

 node = "1"

 cur.execute('INSERT INTO data(protocol_id,device_id,data,time)

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))

 elif(message.topic == client2_websocket):

 protcol = "5"

 node = "2"

102

 cur.execute('INSERT INTO data(protocol_id,device_id,data) VALUES(%s,%s,%s)',(protcol,node,data))

 elif(message.topic == client3_mqtt):

 protcol = "1"

 node = "3"

 cur.execute('INSERT INTO data(protocol_id,device_id,data,time)

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))

 db.commit()

def on_connect(client_server, userdata, flags, rc):

 global flag;

 flag = 1

 print("connected ok")

def on_disconnect(client, userdata, rc):

 global flag;

 flag = 0

 print("disconnected")

while True:

 if (flag == 0):

 client_server.connect(host_server, port=1883, keepalive=60, bind_address="")

 client_server.on_message = on_message

 client_server.on_connect = on_connect

 client_server.on_disconnect = on_disconnect

 client_server.subscribe(client1_http)

 client_server.subscribe(client1_modbus)

 client_server.subscribe(client1_coap)

 client_server.subscribe(client2_websocket)

 client_server.subscribe(client3_mqtt)

 client_server.loop_start()

 sleep(1)

103

B.3 Gateway Transferring Node 1 Data to ThingsBoard Cloud Platform

import paho.mqtt.client as paho #mqtt library

import paho.mqtt.client as mqtt

import paho.mqtt.client as mqtt

import os

import json

import time

from datetime import datetime

from time import sleep

ACCESS_TOKEN='UEUAObQdVgtGjbRDXj80' #Token of your device

broker="thingsboard.cloud" #host name

port=1883 #data listening port

MQTT_ADDRESS = '192.168.0.106'

MQTT_USER = 'project'

MQTT_PASSWORD = 'A_project_b'

MQTT_TOPIC = "/client/node1/mqtt"

def on_connect(client, userdata, flags, rc):

 print('Connected with result code ' + str(rc))

 client.subscribe(MQTT_TOPIC)

def on_publish(client,userdata,result): #create function for callback

 print("data published to thingsboard \n")

 pass

client1= paho.Client("control1") #create client object

client1.on_publish = on_publish #assign function to callback

client1.username_pw_set(ACCESS_TOKEN) #access token from thingsboard device

client1.connect(broker,port,keepalive=60) #establish connection

#while True:

def on_message(client, userdata, message):

 payload= message.payload.decode("utf-8")

 print(str(message.payload))

 png = payload.split("|")

 time = str(png[0])

 print(time)

 data="{"

 data+= str(png[1])

104

 data+="}"

 ret= client1.publish("v1/devices/me/telemetry",data) #topic-v1/devices/me/telemetry

 print("Gateway Publishing Node1 data to ThingsBoard Cloud")

 print(data);

time.sleep(5)

def main():

mqtt_client = mqtt.Client()

mqtt_client.username_pw_set(MQTT_USER, MQTT_PASSWORD)

mqtt_client.on_connect = on_connect

mqtt_client.on_message = on_message

mqtt_client.on_publish = on_publish

mqtt_client.connect(MQTT_ADDRESS, 1883)

mqtt_client.loop_forever()

if __name__ == '__main__':

print('MQTT to InfluxDB bridge')

main()

	DEdicaTION
	Acknowledgements
	Résumé
	Abstract
	Table OF CONTENTS
	List of tables
	List of figures
	List of symbols and abbreviations
	LIST OF APPENDICES
	Chapter 1 INTRODUCTION
	1.1 Research Questions
	1.2 Thesis Structure

	Chapter 2 STATE OF THE ART
	2.1 Industrial Internet of Things(IIoT)
	2.2 Interoperable Communication between Cyber-Physical Systems
	2.2.1 Technical Interoperability
	2.2.2 Syntactic Interoperability
	2.2.3 Semantic Interoperability
	2.2.4 Cross-domain Interoperability
	2.2.5 Horizontal Interoperability
	2.2.6 Vertical Interoperability

	2.3 Challenges in Implementation of Interoperability
	2.4 Existing Interoperable Standards and their Limitations
	2.4.1 OPC UA
	2.4.2 MTConnect
	2.4.3 Other Interoperable Approaches

	2.5 Research Gap
	2.6 IoT Gateway
	2.7 IoT Communication Standards
	2.7.1 MQTT
	2.7.2 CoAP
	2.7.3 HTTP
	2.7.4 WebSocket
	2.7.5 Modbus TCP
	2.7.6 AMQP

	2.8 Comparison of IoT Standard Protocols
	2.9 Literary Review Conclusion

	Chapter 3 RESEARCH METHODOLOGY
	3.1 Research Objectives
	3.2 Research Design
	3.2.1 Protocol Selection Framework
	3.2.2 Gateway Design
	3.2.2.1 Data Formatting
	3.2.2.2 Protocol Bridging
	3.2.2.3 Interoperable communication among nodes and gateways
	3.2.2.4 Data Process and Storage

	3.3 Methodology Conclusion

	Chapter 4 research DEVELOPMENT
	4.1 Multi-Protocol Gateway Development
	4.2 Multiple Server Configuration on the Gateway
	4.2.1 MQTT Broker Configuration
	4.2.2 HTTP Server (Apache Web Server)
	4.2.3 Modbus TCP Server
	4.2.4 CoAP Server Implementation
	4.2.5 WebSocket Server Deployment

	4.3 Node Microcontrollers for different Sensor Integration
	4.3.1 Node1 as Raspberry Pi 3 and Sensor DHT22
	4.3.2 Node2 as Arduino Uno Wi-Fi Rev2 and Sensor BME280
	4.3.3 Node3 as ESP32 and Sensor as MQ-135

	4.4 Communication between node Microcontrollers and the Sensors
	4.4.1 Node1: Raspberry Pi 3 and DHT22 Communication
	4.4.2 Node2: Arduino Uno Wi-Fi Rev2 with BME280 Sensor Communication
	4.4.3 Node3: ESP32 with MQ-135 Gas Sensor Communication

	4.5 Communication Protocol Selection for the Nodes
	4.6 Communication between Node Microcontroller and Gateway
	4.6.1 Node2 Data Received by Gateway over WebSocket Protocol
	4.6.2 Node3 Data Transfer to Gateway over MQTT protocol
	4.6.3 Node1 Data Transfer to Gateway over CoAP Protocol
	4.6.4 Node1 Data Transfer to Gateway over Modbus TCP Protocol
	4.6.5 Node1 Data Transfer to Gateway over HTTP Protocol

	4.7 Data Collection and Storage
	4.7.1 Data Store to Local and Cloud Database
	4.7.2 KEPServerEX Data Logging and Communication
	4.7.3 Data Store to Azure IoT Hub and Data Explorer Databases

	4.8 Visualization of Real-Time Node Data in Web Application
	4.9 Development Conclusion

	Chapter 5 RESults and discussion
	5.1 Case Study: Implementation on ThingsBoard Platform
	5.2 Configuration with ThingsBoard Platform
	5.2.1 Gateway Configuration
	5.2.2 ThingsBoard Configuration

	5.3 Gateway Transferring Node1 data to ThingsBoard
	5.4 Gateway Sending Node2 data to ThingsBoard
	5.5 Gateway Publishing Node3 data to ThingsBoard
	5.6 Real-time Visualization on ThingsBoard
	5.7 Results
	5.8 Limitations

	Chapter 6 Conclusion and RECOMMENDATIONS
	6.1 Conclusion
	6.2 Future Work

	REFERENCES
	Word Bookmarks
	Annexe

