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RÉSUMÉ 

L'industrie 4.0 est apparue comme une stratégie potentielle pour fournir une connectivité étendue 

dans l'environnement de production, qui évolue rapidement, combinée à une demande commerciale 

croissante et à une fabrication personnalisée de masse. La personnalisation de masse et les produits 

complexes nécessitent plus de données et une communication M2M plus adaptable qui facilite 

l'échange de données fluide et l'interaction entre les composants industriels dans la fabrication 

intelligente. L'intégration de dispositifs IoT industriels au profit de différents secteurs industriels 

nécessite simultanément une connectivité réseau étendue, une communication interopérable et une 

collaboration entre les machines en réseau. Bien que les problèmes techniques critiques liés à la 

connectivité réseau aient été correctement résolus, la technologie n'est pas prête pour une 

communication flexible et transparente entre des machines disparates. L'un des défis qui découle 

de ce développement est le besoin croissant de normes et de protocoles interopérables à différents 

niveaux de l'écosystème de fabrication. Compte tenu de l'infrastructure interopérable requise pour 

l'industrie 4.0, le document fournit une solution interopérable sécurisée et rentable pour les 

traducteurs multiprotocoles. La principale contribution de mémoire est une méthode pour 

cartographier les multi-protocoles IoT, y compris HTTP, MQTT, CoAP, WebSocket et Modbus 

TCP dans une passerelle à faible coût, ainsi que pour fournir une communication M2M 

interopérable en duplex intégral efficace et une intégration dans le cloud pour une compatibilité. 

plates-formes. 
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ABSTRACT 

Industry 4.0 has emerged as a potential strategy to provide extensive connectivity in the production 

environment, which is rapidly evolving combined with rising commercial demand, mass 

personalized manufacturing. Mass customization and complicated products necessitate more data 

and more adaptable M2M communication that facilitates smooth data interchange and interaction 

between industrial components in smart manufacturing. Integrating industrial IoT devices to 

benefit different industry sectors simultaneously requires extensive network connectivity, 

interoperable communication, and collaboration among the networked machines. While critical 

technical issues with network connectivity have been properly addressed, the technology is not 

ready for flexible and seamless communication between disparate machines. One of the challenges 

that arises as a result of this development is the growing need for interoperable standards and 

protocols at various levels of the manufacturing ecosystem. Considering the interoperable 

infrastructure required for Industry 4.0, the research work provides a secure and cost-effective 

interoperable solution for multi-protocol translators. The key contribution of the research is a 

method for mapping IoT multi-protocols including HTTP, MQTT, CoAP, WebSocket, and 

Modbus TCP into a low-cost gateway, as well as providing effective full-duplex interoperable 

M2M communication and cloud integration for compatible platforms. 
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 INTRODUCTION 

Industry 4.0, fourth industrial revolution brought about by introduction of IoT and CPSs 

(Kagermann, Helbig, Hellinger, & Wahlster, 2013), has emerged as a promising approach to 

provide extensive connectivity in manufacturing environment (Li, Lai, & Poor, 2012). The 

evolution of smart manufacturing technology is changing rapidly, and  coupled with increasing 

commercial demand, laminated modeling shows many advantages in providing customized and 

specifically designed products (Meng, Y., Yang, Chung, Lee, & Shao, 2018). Mass customized 

and complex products leads to a greater need of information and more flexible automation solutions 

(ElMaraghy, 2005). This flexibility and more advanced information processing requires more 

intelligence in the system. It's also designed for  human workers, therefore it requires smart factory 

(Zuehlke, 2008). Smart manufacturing relies on machine-to-machine communication, which 

makes it possible for manufacturing items like devices, machines, systems, and people to 

communicate and share data easily which allows for dynamic configuration and autonomous 

collaboration between them (Lu & Asghar, 2020). However, the challenges in linked machine 

collaboration, interoperability, and communication still exist (Meng, Z. Z., Wu, & Gray, 2017). 

Although the crucial technical issues of network connectivity (Wollschlaeger, Sauter, & 

Jasperneite, 2017) have been addressed adequately, the technologies are not ready for 

communication between heterogeneous machines in a flexible and seamless manner(Meng, Z. Z. 

et al., 2017). One of the  challenges that arises as a result of this evolution is the growing need for 

interoperability at various levels of the manufacturing ecosystem (Zeid, Sundaram, Moghaddam, 

Kamarthi, & Marion, 2019). 

Manufacturing ecosystems have evolved into interconnected networks of automation devices, 

services, and businesses as a result of recent advancements in manufacturing technology, including 

cyber-physical systems, the industrial internet, artificial intelligence (AI), and machine learning 

(Zeid et al., 2019). Cyber-Physical Systems (CPS) are collections of physical and computer 

components that are integrated with each other to operate a process safely and efficiently. The 

concept of industrial wireless CPS is based on the interaction between the cyber and physical 

worlds, including industrial wireless devices and physical components(e.g., sensors and actuators), 

and cyber components (e.g., processing and storage devices)(Pan et al., 2019). Difficulty in the 

communication of cyber physical systems, such as machines, sensors and devices, insufficient 
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middle-ware interfaces, or APIs to deploy heterogeneous manufacturing resources are challenges 

to enable interoperable cloud manufacturing applications. Furthermore, the rapid advancement of 

machine learning algorithms and computing power has created new opportunities to assist 

manufacturing processes and decisions with additional data insights (Zeid et al., 2019). 

Industry 4.0 initiative (W., 2014) aims to develop efficient and low-cost production with flexible 

workflows for producing high-quality personalized products at low costs. Industry 4.0 uses Cyber-

Physical Systems (CPS) in its highly intelligent and flexible manufacturing process. In particular, 

manufacturing automation needs personalized-product-based manufacturing process automation 

and vertical integration of manufacturing systems. Both collectively form dynamic end-to-end 

engineering integration. For organizations, such integration can lead to better collaboration 

between different roles and functions (Schuh, Potente, Varandani, Hausberg, & Fränken, 2014). 

Increased knowledge sharing and co-operation can also decentralize decision-making and increase 

the autonomy of individuals (Mattsson, Karlsson, Fast-Berglund, & Hansson, 2014). Furthermore, 

system integration is an enabler to implement IoT, CPS, and Smart Factories (Hermann, Pentek, & 

Otto, 2015). Successful system integration requires good strategies for managing system 

heterogeneity and middleware connectivity. However, integrating new devices to benefit different 

industry sectors simultaneously requires significant challenges as part of what is being called the 

Industrial Internet of Things (IIoT) (Serpanos & Wolf, 2018). IIoT devices have the following 

unique characteristics such as low processing power and storage capacity, narrow data download, 

low bandwidth, and limited battery life (Sisinni, Saifullah, Han, Jennehag, & Gidlund, 2018). 

Given the ubiquity of these devices and facing such limitations, it is necessary to develop new 

types of communication protocols designed to deal with these limitations (Garrocho et al., 2020). 

Generally, the used protocols are based on communication through cloud and between machines 

(Kshetri, 2017). A scalable interoperability solution needs the ability to automatically (without 

much effort) adjust the semantic relationships of dynamic information systems. Semantic 

interoperability must be achieved in  interworking solutions to provide a common meaning for the 

data exchanged by heterogeneous devices, even if the heterogeneous devices belong to different 

domains (Cavalieri, 2021). Different communication protocols are employed in IoT, e.g., HTTP, 

CoAP, MQTT, Web Sockets, AMQP, among others. The main driving force for the design of such 

protocols is the hardware limitations of embedded devices, which impede the use of traditional 
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network protocols. Communication protocol integration enables interoperability between multiple 

devices and services and, one possible solution is to design a multi-protocol strategy (Desai, Sheth, 

& Anantharam, 2015). Though existing standards such as MTConnect, OPC-UA enable industrial 

object specifications and information-rich M2M communications, the information models 

generated by these standards are not semantically defined, making semantic understanding and 

intelligent decision-making difficult (Grangel-González, 2017). Therefore, it is important to 

identify the gap between the current state of information and communication systems for 

manufacturing operations and what is required to achieve the future interconnected heterogonous 

systems of autonomous entities. In aforementioned situation, an IoT system which has capability 

of interchanging between access protocols may overcome the said challenges in interconnected 

heterogenous systems. 

1.1 Research Questions 

The problematic is divided into two research questions (Q1 and Q2). The first question Q1 

addresses how heterogenous devices can be connected and shared information with each other by 

means of structuring any data with different access standards. The second question Q2  directs to 

make a low-cost interoperable system for collaborative M2M interoperable optimization in small 

and medium enterprises.  

Q1: What are the advantages of an IoT interoperable system to assist interconnecting 

heterogenous devices with different access standards? 

It has been difficult to successfully integrate interoperability among different manufacturing 

operations and processes to accomplish data-driven monitoring, prediction, control, and 

optimization. The intention of this question is to distinguish the outcomes of interoperable IoT 

system that enables machine to machine communication between manufacturing items like 

machines, devices, systems etc. 

Q2: What IoT solution can be provided to make this interoperable system cost effective for 

small and medium enterprises? 

Large enterprises use advanced levels of interoperability management methods and tools to handle 

complexity more comprehensively. Conversely, SMEs deals with the obstacles of autonomous 
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interoperability between business, manufacturing functionalities and distributed control systems. 

The reason for this question is to identify cost-effective interoperable IoT systems for SMEs to 

move to CPS-based automation paradigms with digital modularity and interoperability during real-

time end-to-end integration 

1.2 Thesis Structure 

This thesis is structured as follows: Chapter 2 discusses interoperability standards, finds the gap 

among current interoperable solutions and challenges implementing interoperable communication, 

it also addresses different communication protocols and their characteristics ; Chapter 3 describes 

the research objectives and steps taken to accomplish the objectives with research design strategies 

Chapter 4 demonstrates development of the proposed interoperable system, communication with 

different devices, sensors and integration of different cloud and industrial databases ; Chapter 5 

tests feasibility of deployment model and discusses results and limitations of the proposed gateway; 

finally, Chapter 6 discusses conclusions and future work. 
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 STATE OF THE ART 

Design and development of interchanging and interoperable structure between IoT standards to 

achieve seamless connectivity in heterogeneous systems require consideration of many areas 

including industrial Internet of Things connectivity and accessibility, exchanging information 

between standards and format, analyzing interoperable requirements and limitations. This research 

project will involve setting up an IoT interoperable structure for heterogenous device connectivity. 

Before doing so, this chapter will start with presenting a literature review on interoperable 

communication and their challenges in implementation, existing interoperable solutions, and their 

limitations. The second part of this literature review will discuss gateway based interoperable 

approaches, characteristics, advantages and disadvantages of communication standards and their 

comparison.  

2.1 Industrial Internet of Things(IIoT) 

The Industrial Internet of Things (IIoT) has emerged as a general concept of the application of the 

Internet of Things to the industrial sector. IIoT primarily refers to an industrial framework in which 

many devices or machines are connected and synchronized using Internet platform technology in 

the context of the machine-to-machine and Internet of Things (Sisinni et al., 2018). Compared to 

the Internet of Things (IoT) in the private sector, the focus of the industrial sector is on networking 

the machine and end-to-end process chains. In fact, this is a generalization of Industry 4.0 and 

seems to focus on the efficiency of industrial processes. Industrial IoT allows manufacturers to 

digitize almost any part of their business. The fundamental characteristics of IIoT lead to 

requirements that need to be met by the reference architecture. Key requirements identified by the 

International Telecommunication Union (ITU) include interoperability, identity-based 

connectivity, network and service autonomy, location-based service integration, security and 

privacy, as well as capabilities for management of things and services, including plug and play 

(Serpanos & Wolf, 2018). 
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2.2 Interoperable Communication between Cyber-Physical Systems 

Advances in embedded systems and information and communication technology have further 

expanded the adoption of wireless connectivity within CPS. CPS represents the edge of the Internet 

of Things (IoT). This is a vision that allows people and things to connect anytime, anywhere, to 

anything, to anyone, ideally through any path / network or service (Vermesan et al., 2009). 

However, due to the rising complexity that is beyond human grasp, gadgets without the capacity 

to adjust themselves to the environment will be unable to dynamically participate in the production 

line in Industry 4.0. As a result, "intelligent interoperability" is crucial in "enabled the enabler" and 

ensuring that research projects in the field of IoT play a prominent role in Industry 4.0 (Lelli, 2019). 

In other words, the device must have the ability to describe itself in terms that both machines and 

humans can understand. Therefore, they facilitate an implicit or explicit semantic description of 

themselves (Hermann et al., 2015). 

The European Telecommunication Standards Institute (ETSI) and the European Interoperability 

Framework (EIF) define four levels of interoperability in complex systems. Technique, syntax, 

semantic, and cross-domain interoperability (Izza, 2009). In addition, to unlock the full potential 

of IoT vision, we need standards that enable horizontal and vertical interoperability, operation, and 

programming across devices and platforms, regardless of model or manufacturer (Hatzivasilis et 

al., 2018). 

2.2.1 Technical Interoperability 

Technical interoperability is generally linked with hardware or software components, systems, and 

platforms that enable machine-to-machine communication, and is frequently concentrated on 

communication protocols and the infrastructure required for those protocols to function (Kubicek, 

Cimander, & Scholl, 2011). The main limitation in achieving technical interoperability between 

heterogeneous systems is the issue of old interoperability between old and new systems. The 

technical interoperability specification is by listing a list of existing standards that interfaces, 

interconnect services, data integration services, data exchanges, and communication protocols must 

use to achieve interoperability. It will be configured. This approach works if interoperability 

between stations are considered, but if end users want to easily customize their stations to meet 

different operational needs, more actions are required (R.L., 2005). 
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2.2.2 Syntactic Interoperability 

For industrial systems, syntactic interoperability entails establishing generic structures for data 

flow across heterogeneous systems and components at various levels from multiple suppliers and 

platforms (Givehchi, Landsdorf, Simoens, & Colombo, 2017). Two or more systems can interact 

and share data through syntactic interoperability, but the interface and programming languages 

must be compatible. Manufacturing equipment must be able to parse messages to accurately decode 

the message to its pieces, such as message content, language, and sender, to establish syntactic 

interoperability at the industry level. 

2.2.3 Semantic Interoperability 

Interoperability at the semantic level includes the technology needed to enable communication 

platforms to share the meaning of information. Interoperability between the components of a large 

distributed system is the ability to exchange services and data with each other. Semantic 

interoperability ensures an agreement and common understanding between system requesters and 

providers, such as messaging protocols, procedure names, error codes, and argument types. 

Semantic interoperability in heterogeneous industrial systems is a promising approach to 

addressing the complexity of multi-vendor and multi-technology systems (Loskyll, 2012). 

2.2.4 Cross-domain Interoperability 

The new IoT platform provides a heterogeneous way to access things and their data. Cross-domain 

interoperability allows to build an IoT ecosystem with cross-platform, cross-standard, and cross-

domain IoT services and applications. Such interoperability requires the extraction of data and 

services to obtain a common subset of information and services in the cooperating domain. This 

includes, for example, business process interoperability (BPI). This allows systems in different 

domains to integrate and communicate with each other using a well-defined standard  business 

language (Honkola, Laine, Brown, & Oliver, 2009). 

2.2.5 Horizontal Interoperability 

Horizontal interoperability enables network-independent open standards and networking with a 

variety of existing vertical M2M systems on IoT platforms. Open standards are an important tool 
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for providing interoperability between and within different domains. Horizontal integration 

involves coordinating information flows and systems across different systems so that all data can 

be accessed and analyzed on a single platform. The main function of this type of horizontal platform 

is to enable the development of services that are independent of the underlying heterogeneous 

network devices. Most solutions only provide cross-domain compatibility and typically act as a 

closed silo with a narrow application focus that imposes specific data formats and interfaces. 

Mechanisms for resolving these issues and achieving horizontal interoperability include gateway 

proxies for messaging protocols. The multi-protocol ecosystem allows gateways to extend their 

capabilities and interact with devices that support a variety of protocols (Hatzivasilis et al., 2018). 

2.2.6 Vertical Interoperability 

Vertical Interoperability is the capability of manufacturing enterprises to exchange technical and 

enterprise information in a comprehensible manner. SmartFactoryKL, an EU-funded initiative, 

demonstrated one of the fewest vertical integrations of information technology in an organization 

with the shop floor (Weyer, Schmitt, Ohmer, & Gorecky, 2015). By designing a standardized plug-

and-play multivendor interface, the research and development took a step toward Industry 4.0 and 

decentralized corporate integration. To accomplish vertical integration, the project employs 

technologies such as RFID, web services, and OPC UA (Weyer et al., 2015). Multivendor 

interfaces, on the other hand, necessitate multi-vendor protocol integration to monitor, manage, 

and process data at all phases of development. 

Facilitating product interoperability in a multi-vendor, multi-network, and multi-service context is 

one of the main goals of the creation of interoperability standards. Multiple standards from several 

organizations that create standards are frequently the foundation of complex goods and systems. 

Users benefit from a far wider range of products thanks to interoperability, and manufacturers can 

take advantage of the economies of scale that a larger market delivers. Therefore, interoperability 

is essential to the success of contemporary technologies, and market demand has made sure that 

interoperability has a central place in standardization. 



9 

 

2.3 Challenges in Implementation of Interoperability 

Given the complexity of the process, the factors that influence interoperability should be 

multivariate (Zeid et al., 2019). Key interoperability barriers include data inconsistencies, 

scalability, inconsistent data formats or standards, connectivity in the IoT space, and increased 

operational costs when using and installing various commercially available products.  

▪ Data from heterogeneous sources can lead to  data layer inconsistencies and requires more 

resources to optimize  unstructured data (Kadadi, Agrawal, Nyamful, & Atiq, 2014). In the 

heterogeneous environment, one of the main problems with schema integration is resolving 

data inconsistencies that may exist in different data sources of semantically identical data. 

This semantically identical data resolves data representation conflicts when represented 

differently in different data sources. 

▪ Integrating new data from multiple resources  with data from legacy systems creates 

scalability issues (Kadadi et al., 2014). To connect non-interoperable devices and 

applications, custom own developed middleware is needed. This is a time-consuming 

process and needs to be updated as new components are integrated. Introducing different 

types of sensors and embedded systems is difficult. 

▪ There are no rules or standards set at the application level. That cannot combine or 

complement the data collected from different sensors and devices. It is not possible to 

integrate devices from different manufacturers. No network infrastructure has multiple 

communication protocols such as MQTT, CoAP, HTTP, Modbus, and software from 

multiple vendors that always connect different devices and networks. 

▪ There is no common data format syntax for semantic level integration and interoperable 

peer-to-peer communication between CPS for effective M2M information exchange and 

faster action plans for sustainable Industry 4.0 manufacturing. 

▪ Service providers are associated with and adhere to IoT devices or software provided by a 

single vendor. This can result in higher operating costs later and can lead to problems with 

product functionality and stability. 
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2.4 Existing Interoperable Standards and their Limitations 

Few years after the initial development of the Internet, several methods, and frameworks for 

exchanging data between machines and applications were proposed. GE Fanuc Automation has 

developed “Cimplicity”, which enables factory and plant monitoring with XML-based data via 

WebViewScreen. This service can also generate and display alerts ( Waurzyniak, 2001). Another 

application, called FactoryFlow, has been developed by UGS to provide offline access to factory 

floor processes, plans, and simulation data. MDSI has developed an application called OpenCNC 

for the purpose of accessing data on CNC machines from the Internet. This application is a 

software-only machine tool controller that installs on a Windows PC to collect real-time data and 

publish it to a database. This gives the user access to the OpenCNC "Important Events" file created 

from the collected PLC data (Wang, Orban, Cunningham, & Lang, 2004). The development of 

custom applications and interfaces such as Cimplicity, WebView, FactoryFlow, and OpenCNC has 

led to the initiative to develop open communication standards that allow Internet connectivity to 

manufacturing facilities ("MTConnect is the communication standard of choice for 

manufacturing," 2017). Existing standards, such as MTConnect, OPC-UA, and AutomationML, 

enable M2M communication with a wealth of industrial object specifications and information, so 

the information model generated from these standards is semantically undefined. Understanding 

meaning and intelligent decision-making are challenges (Lu & Asghar, 2020). Also, there are 

several solutions (proposed or implemented) with the aim of increasing IoT interoperability which 

still lack full-duplex (connectivity in both direction) integration. 

2.4.1 OPC UA 

The OPC UA (OPC Unified Architecture) technology was created to provide genuine unified 

connection based on a safe and easy platform to allow corporate interoperability and address 

enterprise integration difficulties (Mai, Vu, & Myeong-Jae, 2011). OPC extends the very 

successful OPC communication protocol, which is utilized in horizontal integration transferring 

data across automation systems and vertical integration transferring data between different layers 

of industrial automation (de Souza et al., 2008). OPC Server is built on COM / DCOM component 

technology, which makes it not only dependent on the Windows platform, but also has several 

technical flaws in data transfer and security across the network. OPC UA provides a standard and 
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comprehensive address space, service model, and security model, allowing a single OPC UA server 

to combine data, alarms, and events, as well as historical data, into its address space and employ a 

set of uniform services to provide them with an external interface. In comparison to earlier OPC 

specifications, OPC UA included more new capabilities, such as a sophisticated data structure, an 

unified address space, platform independence, and improved security (Qiao & Feng, 2011). 

With OPC UA, the server typically maintains a complete information model. Whether the 

information space is divided into different namespaces and information models, or almost all OPC 

UA servers use the same information model, each server provides all the namespaces it needs. This 

is both an advantage and a disadvantage. The advantage is that the server is completely self-

contained and applications that use this information only need to communicate with this one server. 

This reduces communication effort and client complexity. On the other hand, this has many 

drawbacks. Especially for small devices, the additional information model introduces high 

overhead due to additional memory requirements. In fact, the memory required for the information 

model is one of the major obstacles to deploying OPC UA in inexpensive microcontrollers.(Iatrou 

& Urbas, 2016a, 2016b). Objects Linking and Embedding for Process Control-Integrated 

Architecture (OPC UA) is an industrial communication framework that is being heavily promoted 

for the integration of distributed systems. It has many promising properties, but there are still 

situations where other communication protocols have advantages (Derhamy, Rönnholm, Delsing, 

Eliasson, & Deventer, 2017). The HTTP and TCP protocols are supported by OPC UA. Message-

based security is used by the OPC UA technology, which implies messages may be sent through 

HTTP and TCP ports. OPC UA is unable to work in a multiprotocol environment. For OPC UA 

clients, gaining access to non-OPC UA services is also an issue. 

2.4.2 MTConnect 

MTConnect is a protocol created by the Association for Manufacturing Technology (AMT) that 

provides open, royalty-free device connectivity standards and technologies, as well as simple 

software or firmware devices. Transfers data over the network using the Internet Protocol for 

broader interoperability between numerical control devices. The adapter obtains data from the 

machine and passes it on to the agent. The data is stored on a TCP server, and the agent offers a 

REST interface, which allows the data to be obtained through HTTP request-reply. As a result, 
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many users can have access to the machine's real-time data collection. Basic architecture of 

MTConnect device connection process is illustrated in Figure 2.1 

 

Figure 2.1 General architecture of device connected using MTConnect standard 

Although MTConnect provides many benefits as a standard, it also has several limitations. 

Communication between numerical controls involves bidirectional data flow. However, 

MTConnect is a read-only protocol because the data comes only from the device. Both client-side 

and server-side devices are required to achieve bidirectional information flow between devices 

(Xiao, Huang, & Zhao, 2018). An important area of Industry 4.0 is the ability to communicate 

between machines. However, MTConnect cannot communicate with each other or read information 

from other devices. This is due to the nature of data exchange in the architecture of this protocol, 

as the adapter can only communicate and provide local variables for the device. Therefore, it lacks 

functionality as a standalone program and requires the use of another service (Parto, 2017). 

MTConnect currently only provides data in XML format. XML is a human-readable and machine-

readable web format. However, this format is so large and so complex to analyze that it makes it 

difficult to develop and integrate IoT applications. JSON, on the other hand, is not only human and 

machine readable, but also lightweight and very easy to parse. Therefore, most  web apps and APIs 

communicate in JSON, and MTConnect is not  a viable option for integrating these services (Parto, 

2017). 

2.4.3 Other Interoperable Approaches 

H. Derhamy et al. developed a multi-protocol solution for IoT interoperability issues (Derhamy, 

Eliasson, & Delsing, 2017). The solution includes protocol implementation translators based on 
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Service Oriented Architecture (SOA), intermediate format to reduce the number of translations 

necessary. The system also detects protocol incompatibilities and perform the translation. Barros 

et al. introduced Internet of Things Multiprotocol Message Broker (IoTM2B) strategy to integrate 

various communication protocols such as HTTP, MQTT and CoAP and their performance 

evaluation based on two scenarios, machine-to-machine (M2M) protocols   Communication and 

cloud-based environment (Barros et al., 2019). This strategy extends IoT DSM to provide 

integration with embedded devices Via various protocols. Derhamy et al. proposed interoperability 

solution consists of a multi-protocol translator that is injected into the service exchange on demand 

(Derhamy, Rönnholm, et al., 2017). The main contribution of this research is to suggest ways to 

map OPC UAs to intermediate formats. Intermediate formats can be mapped to other standard IoT 

protocols such as CoAP, HTTP, and MQTT. 

2.5 Research Gap 

Given the increasing importance of interoperability in IIoT, solutions that can automatically 

integrate and analyze data across systems are essential. Interoperable solutions facilitate the rapid 

creation of IoT applications across platforms and domains, eliminating the need for application 

developers to own or operate an IoT infrastructure or platform (Zarko, 2019). Typical architecture 

in production environments includes numerous devices, sensors, and gateways that potentially 

communicate via different protocols. This sort of design works well when there are only a few 

systems to integrate. However, it leads to a difficult-to-maintain architecture when there are a larger 

number of components since the systems are connected point-to-point and the components are 

hardwired together. Modern architectures require more flexibility. Many manufacturing companies 

look for interoperability, adaptability, flexibility, and ease of implementation for the cyber-physical 

systems. The information exchange between the heterogeneous systems imposes the need for an 

interoperability solution.  

Thus, a functional decomposition of such solutions leads us to the following main issues. Different 

systems use different communication mechanisms (OPC UA, MQTT, HTTP, CoAP) to provide or 

consume data. The system uses a variety of data formats such as OPC UA data models, plain bytes, 

tabular CSV, and Excel files. Different data semantics coexist. In fact, each system has its own 

semantics in generating or interpreting data. Communication protocols for propagating data, such 
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as request / response and publish / subscribe, use different interaction paradigms. The main issue 

with current interoperable solutions is that there isn't a method that fits well with integration of IoT 

protocols in a gateway and effective interoperable communication to interconnect the sensors, IIoT 

devices, and machines and cloud integration for compatible platforms.  

To overcome the challenges with current interoperable solutions, we noticed from the literature 

review that an IoT gateway would play a vital role to enable data communication using different 

network protocols which can establish bridging among heterogenous devices.   

2.6 IoT Gateway 

With the rapid development of the Internet of Things (IoT), there is an increasing demand for 

ubiquitous connectivity to integrate multiple heterogeneous networks such as Zigbee ad hoc 

networks, wireless LANs, and wired networks. In general, IoT Gateway bridges various sensor and 

discovery domain networks with public or local area networks to support communication with 

different communication protocols and data formats. Therefore, an IoT gateway can connect 

multiple nodes with multiple sensors through different networks, it also performs many other tasks 

such as this IoT gateway performs protocol translation, aggregating all data, local processing, and 

filtering of data before sending it to application domain, locally storing data and providing device 

security. At the same time, a gateway becomes an ideal device for network management functions, 

since while exchanging messages with the sensor nodes, it can map the network and establish a 

comprehensive knowledge of the network(Wilder, Jose, Harold, & Alvarado, 2021). Figure 2.3 

exemplifies main characteristics of the IoT gateway(Wilder et al., 2021). 
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Figure 2.2 Main characteristics of the IoT gateway 

Reprinted from (Wilder et al., 2021) 

IoT gateways have been developed for industrial IoT applications. For example, (Dionisio, Malhao, 

& Torres, 2020) have developed a versatile, based on the Raspberry Pi platform. It can monitor 

critical parameters of the shop-floor factory through open-source software, both for smartphone 

and Desktop / Laptop computers, as well as storing data for remote analysis. They presented a 

gateway based on Raspberry Pi firmware and the OPC UA protocol for data transmission. They 

created an OPC UA to MQTT conversion module for connecting shop floor equipment and devices 

to an external cloud server and database. 

Another self-configuration supported gateway is the one proposed in (Kang & Choo, 2018) which 

is designed for in-home-scale environments. They used the IoTivity framework to create the test 

bench. The proposed testbed's three server devices are based on a Raspberry Pi embedded system. 

The goal of this gateway is to ensure interoperability between devices that don't have IP-based 

communication capabilities. This gateway employed the CoAP (Constrained Application Protocol) 

protocol for device-to-device (D2D) communications to achieve this goal. 
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As a possible solution to interoperability problem caused by the heterogeneity of IoT devices 

(Wilder et al., 2021) proposed a IoT gateway. They established gateway acts as the hub of a 

paradigm in which multiple wireless nodes can send data using a variety of communication 

protocols, including Wi-Fi, Bluetooth, ZigBee, and Ethernet. They used the Samsung Artik 1020 

development kit to create the gateway, which is a high-performance, multi-protocol embedded 

board with Bluetooth, ZigBee, and Wi-Fi wireless communication capabilities. They employed a 

wireless node made up of six sensors that measured environmental temperature, relative humidity, 

sun radiation, wind speed, rainfall level, and wind direction. The wireless nodes use ZigBee, Wi-

Fi, and Bluetooth to send data from sensors to the gateway.  

According to the needs of the IoT ecosystem and the current requirements of the IoT applications, 

IoT gateway must have the option to choose different protocols communication which need to be 

selected based on their applications and capabilities. Each of these protocols have distinct features 

and capabilities, which complex the identification of a protocol suitable for specific use cases. The 

CoAP protocol's hibernate architecture and binary data format make it ideal for applications related 

to automation, mobile phones, microcontrollers, and more. Another protocol widely used in IoT 

applications is MQTT. This is recommended for network scenarios where bandwidth consumption 

needs to be reduced and the processing and storage capacity of the devices involved in the 

communication is low (Wilder, Jose, Harold, & Alvarado, 2021). Like CoAP, WebSocket 

protocol’s standard connectivity helps simplify many of the complexities and difficulties involved 

in the operation of bi-direction communication. This protocol can be applied to IoT networks where 

data is continuously communicated between multiple devices. However, one problem is that 

industrial and manufacturing sensors  are primarily connected to programmable logic controllers 

(PLCs) to collect large amounts of sensor data and send it to  communication systems (John & 

Vorbröcker, 2020). To enable IoT connectivity for these sensors connected to PLCs, the controller 

needs to configure with Modbus TCP protocol. There are some other devices which do not support 

any of these protocols and require to transfer large amounts of data. For these devices, HTTP 

protocol is widely used. For example, manufacturing and 3-D printing rely on the HTTP protocol 

due to the large amounts of data it can publish. Based on the capabilities and requirements of the 

sensor data transmission, users set access protocols for the bidirectional communication between 

nodes and gateway. In order to design interoperable connectivity, proper protocol needs to be 
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addressed initially in terms of seamless communication among different distributed cyber physical 

systems. We performed a study to for a better understanding of the industry specific 

communication protocols to design a protocol selection framework for the interoperable IoT 

gateway.   

2.7 IoT Communication Standards 

The Internet of Things covers a wide range of industries and use cases, from single constrained 

devices to large-scale cross-platform deployments of embedded technologies and cloud systems 

that connect in real time. A key issue here is the architecture and platform used by the machines 

and software packages. A better understanding of the subject can be achieved by studying industry-

specific communication protocols and their respective logical semantics (Zeid et al., 2019). Based 

on the IoT devices and their applications, there are different application-layer IoT protocols such 

as MQTT, CoAP, AMQP, HTTP etc.   

2.7.1 MQTT 

MQTT, which was first launched in 1999, is one of the earliest M2M communication protocols. It 

was created by IBM's Andy Stanford-Clark and Arlen Nipper (Eurotech). It's a lightweight M2M 

messaging protocol built for limited networks that uses publish/subscribe messaging 

(Bandyopadhyay & Bhattacharyya, 2013). Designed to support remote monitoring, it provides low 

latency, secure messaging, and efficient delivery of data to one or more recipients over vulnerable 

networks. It is TCP-based and asynchronous and can integrate a publish-subscribe communication 

model. 

Advantages of data transfer MQTT is good, reliable, easy to build. It uses less network resources 

even in conditions of unstable (Uy & Nam, 2019). The overall structure of the data transmission 

system using the MQTT protocol is shown in Figure 2.3 
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Figure 2.3 Overview structure of data transmission system using MQTT protocol 

The MQTT client publishes the message to the MQTT broker. This broker can be subscribed to by 

other clients and retained for future subscriptions. Each message is published to one address. 

Customers can subscribe to multiple topics and receive all messages published on each topic.  If 

the message is sent to the broker but the client has not yet subscribed, the packet is not stored in 

the broker and waits for the client to send it. Another great feature of MQTT is the three levels of 

quality of service (QoS) to ensure the delivery of messages. QoS Level: QoS0-Maximum once, 

QoS1-At least once, QoS2-Exactly once. 

2.7.2 CoAP 

Constrained Application Protocol (CoAP) is a service layer protocol used by resource-constrained 

low-power sensors and devices connected over a lossy network, especially when there are many 

sensors and devices on the network. CoAP is one of the most popular IoT communication 

protocols, especially in the context of advanced metering and distributed intelligence applications, 

as it extends the scope of HTTP to restricted devices (Silva, Carvalho, Soares, & Sofia, 2021). 

Many manufacturers use CoAP in their IoT devices since it is lightweight and energy efficient. 

CoAP is based on a client/server approach and uses REST to increase interoperability. Its design 

has been carefully worked to fit constrained devices in terms of battery, memory, storage. Running 

over UDP. Its lightweight design makes it a promising protocol for embedded devices. While 

widely available and highly interoperable, also providing inbuilt support for content negotiation 

and discovery, CoAP remains a one-to-one protocol based on a client/server model (Silva et al., 

2021).  

The methods supported in CoAP are based on the RESTful structure which are listed as follows: 
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• GET: operation to retrieve representation in resource identified by the URI request.  

• POST: request that the server build a new subordinate resource with the parent URI specified. 

• PUT: requests that the enclosed message content be used to update/create the resource indicated 

by the request URI. 

• DELETE: requests resource identified by the request URI to delete. URI in CoAP is similar to 

HTTP, where the unsecure URL starts with CoAP:// and the secure URI is CoAPs:// (Alghamdi, 

Lasebae, & Aiash, 2013) 

2.7.3 HTTP 

HTTP supports a RESTful web architecture for requests / responses. Like CoAP, HTTP uses a 

Universal Resource Identifier (URI) instead of a topic. The server uses the URI to send the data, 

and the client uses the URI to receive the data. HTTP is a text-based protocol that does not define 

the size of headers and message payloads, but depends on the web server or  programming 

technology (Naik, 2017). HTTP uses TCP as a default transport protocol and TLS/SSL for security. 

The HTTP protocol uses the GET, POST, PUT, and DELETE commands to exchange/remove data 

between the client and server. The REST architecture is shown in Figure 2.4 below. 

 

Figure 2.4 HTTP protocol over REST architecture 

2.7.4 WebSocket 

The WebSocket protocol is an application layer protocol designed for continuous data exchange 

between clients and servers. This enables bidirectional data transfer in web sessions and 
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asynchronous communication, which is considered a viable alternative to HTTP polling. This 

means that both sides can send data at any time while the connection is established. The protocol 

is divided into two parts: handshake and data transmission. In the handshake, the client and server 

basically establish initial communication over HTTP and the port. The default is 80. In this first 

communication, the client requests a communication type update. It can exchange data using the 

WebSocket protocol after the validation is validated. 

Since the WebSocket is a TCP-based protocol, it requires a TCP connection to be established 

between client and server before any WebSocket-based interaction can occur. Handshaking a TCP 

connection requires three messages to be exchanged between client and server. Three-Way 

handshake or a TCP 3-way handshake is a three-step process that requires both the client and server 

to exchange synchronization and acknowledgment packets before the real data communication 

process starts. At this point, two peers that have direct access to the plain TCP protocol can start 

sending application-specific payload data to each other. However, for WebSocket-based 

communication, WebSocket session need to be established. To establish a session, the client sends 

a WebSocket upgrade request to the server, which responds with a WebSocket upgrade response. 

From this point on, even web-based clients and servers can send and receive data  in asynchronous 

full-duplex mode (Skvorc, Horvat, & Srbljic, 2014). Sequence diagram of a WebSocket session 

over TCP protocol is shown below in Figure 2.5 

 

Figure 2.5 WebSocket over TCP sequence diagram 

Reprinted from (Skvorc et al., 2014) 
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2.7.5 Modbus TCP 

Modbus TCP / IP is one of the basic Modbus variations aimed at monitoring and controlling 

automated devices and is a simple vendor-independent communication protocol. Modbus TCP 

clients and servers listen and receive data over port 502. The Modbus / TCP protocol provides a 

client / server mode for communication between devices on an Ethernet network. There are four 

types of mode messages: Modbus request, Modbus acknowledgment, Modbus display, and 

Modbus response. A Modbus request is a message sent by a client to initiate an event. The Modbus 

display is a request message received from the server. A Modbus response is a response message 

sent by the server. A Modbus acknowledgment is a response message received from a client. The 

client-server architecture of basic Modbus TCP/IP communication is shown in Figure 2.6 

 

Figure 2.6 Client-Server architecture of basic Modbus TCP/IP communication 

2.7.6 AMQP 

The Advanced Message Queuing Protocol (AMQP) is a lightweight M2M protocol, designed for 

reliability, security, provisioning and interoperability (Foster, 2017). It follows a well-understood 

practices of data framing, client / server option negotiation, and connection processing. AMQP 

currently assumes stream-based transport (usually TCP). Sends sequential frames between 

channels, allowing multiple channels to share a single TCP connection. Therefore, communication 
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between the client and the broker is connection oriented. Reliability is one of AMQP's core features 

and provides two preliminary quality of service (QoS) levels for message delivery: Unsettle format 

(not reliable) and settle format (reliable). 

2.8 Comparison of IoT Standard Protocols 

This section presents a comparative analysis of the four widely accepted and emerging messaging 

protocols for IoT systems MQTT, CoAP, AMQP, HTTP, WebSocket and Modbus TCP based on 

several criteria to introduce their characteristics comparatively. The comparative study of these IoT 

standards and protocols is shown in Table 2.1. 

Table 2.1 Comparison of Different IoT Standards and Protocols  

Aspects HTTP CoAP MQTT AMQP WebSocket Modbus 

TCP 

Communication 

approach 

Client/ 

Server 

Client/ 

Server 

Client/ 

Broker, 

Client/ 

Server 

Client/ 

Broker, 

Client/ 

Server 

Client/ 

Server 

Client/ 

Server 

Messaging 

pattern 

Request/ 

Response 

Request/ 

Response 

Publish/ 

Subscribe 

Request/ 

Response 

Publish/ 

Subscribe 

Request/ 

Response 

Request/

Response 

Transport 

protocol 

TCP UDP, SCTP TCP TCP, 

SCTP 

TCP TCP 

Security TLS/SSL DTLS TLS/SSL TLS/SSL 

SASL 

TLS/SSL  
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Table 2.1 Comparison of Different IoT Standards and Protocols (cont’d and end) 

QoS/Reliability Reliable 

(over 

TCP) 

Confirmable

/Non-

Confirmable 

message 

Guarante

ed 

Message 

Arrival 

Broker 

Redunda

ncy 

Reliable Limited 

Default Port 80/443 5683/5684 1883/888

3 

5671/567

2 

80/443 502 

Binary Payload No Yes Yes Yes Yes No 

Method Get, Post, 

Put, Patch, 

Delete 

Get, Post, 

Put, 

Delete 

Publish, 

Subscribe 

Publish, 

Consume 

Bi-

directional 

communica

tion 

Read/ 

Write 

Request 

Message Size Undefined Small and 

Undefined 

Maximu

m 

260MB 

Undefine

d 

Should not 

exceed 

64KB 

Maximu

m 255 

bytes 

Data 

Persistency 

No No Yes Yes Yes No 

 

These messaging protocols are very extensive and different from each other because they have 

been evolved through different processes and needs. Interoperable integration and uniform access 

of these different IoT standards are required to provide seamless connectivity with different type 

of CPSs, devices, resources, and applications. Furthermore, organizations and current cloud-based 



24 

 

platforms provide expensive interoperable and compatibility tools which are costly investment for 

small manufacturing companies. Therefore, it is important to propose a communication protocol 

selection framework and a low-cost interoperable IoT system to interconnect IoT objects and 

heterogenous devices and machines with different access protocols to support interoperability 

across the small and medium enterprises. 

2.9 Literary Review Conclusion 

Chapter 2 presented challenges implementing interoperable communication, existing interoperable 

systems, and their limitations such as OPC UA, MTConnect. It also presented gateway based 

interoperable systems facing IoT challenges for different protocols. The chapter also discussed 

multiple access protocols and their characteristics to find suitable protocol for different applications 

and machine to machine communication. These concepts had to be reviewed to understand the 

objectives which will be listed in the next chapter.  
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 RESEARCH METHODOLOGY 

It is clear that the main challenges of the current communication architecture are the smooth 

integration and interoperability of disparate communication standards, which are already supported 

by Internet of Things devices and sensors created expressly for certain purposes at various periods. 

However, it is important to develop an integrated solution, where heterogenous CPSs, sensors, 

devices are uniformly made discoverable, given the ability to connect with other entities, and 

closely integrated with Internet infrastructure and services which will enable M2M data 

optimization and robustness in manufacturing industries. To overcome the challenges developing 

an interoperable solution, the problematic need to be addressed. This chapter proposed the research 

objectives and research design based on the problem statements and literature review defined in 

the previous two chapters. 

3.1 Research Objectives 

The objective of this research project is to demonstrate an IoT interoperable system for M2M 

communications among heterogenous cyber physical systems with low computational capabilities. 

The system includes a protocol selection framework for connecting different devices and systems 

with different applications and capabilities and cost-effective gateway for connecting heterogenous 

devices or nodes with different access protocols, bridge the communication and perform the 

conversion. For industrial communication in automation technology, industrial networking 

protocols such as HTTP/HTTPS, MQTT, Modbus RTU & Modbus TCP/IP, CoAP, WebSocket, 

AMQP are widely used. To demonstrate an interoperable system to communicate with devices with 

different protocols, a common platform is required which can access multiple protocols. 

Using the above data as inputs and studied variables, we will be working towards two methods. 

▪ Defining a protocol selection framework among HTTP, MQTT, CoAP, WebSocket 

Modbus TCP protocol based on the capabilities and requirements of the device and sensor 

data transmission. 

▪ Developing the interoperable IoT multiprotocol conversion system in a low cost IoT 

gateway with above mentioned common access protocols for M2M communications among 

heterogenous cyber physical systems with low computational capabilities.  
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The next section will present the methods and design procedure used to accomplish the objectives 

set above. The objectives indicate to design an interoperable middleware that can connect multiple 

devices, nodes and sensors with different access protocols and enable duplex communication 

between them. According to this vision, the next section presents research framework  of this work 

consisting into the design of protocol selection framework and interoperable gateway architecture 

for seamless interoperable connectivity between heterogenous devices and machines via access  

communication protocols. 

3.2 Research Design 

Considering the interoperable infrastructure required for Industry 4.0, this thesis presents an 

interoperable solution of multiprotocol gateway. The objective of the proposed platform is to 

develop an interoperable system which is able to connect heterogenous devices with different 

protocol, process and store the data, exchange the data to different machines and to the cloud. The 

main contribution of the research is proposing protocol selection  framework among HTTP, 

MQTT, CoAP, WebSocket, Modbus TCP and low-cost IoT gateway for developing effective 

interoperable M2M communication and cloud integration for compatible platforms. The contents 

in this section are categorized in two levels of protocol selection framework and gateway. The 

protocol selection framework presents a diagram for selecting different protocols based on the user 

end application requirements. The gateway section shows the general architecture of the platform 

and explains the structure of data exchange, data formatting and protocol bridging  within the 

platform. 

3.2.1 Protocol Selection Framework 

To facilitate safe and high-speed data transfer among end IoT devices, protocol selection 

framework is designed from the understanding and study about communication protocols discussed 

in literature review among MQTT, CoAP, HTTP, WebSocket and Modbus TCP for the nodes 

and/or sensors to send data to the gateway. The diagram provides general automated system which 

allows users to select the suitable protocol for the application in regards of their standards and data 

transmission capabilities. In the Figure 3.1, protocol selection block diagram is shown to select the 

appropriate protocol for the IoT devices.  
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Figure 3.1 Protocol selection block diagram for applicable IoT systems 

3.2.2 Gateway Design 

The second part of the proposed objective is the middleware gateway which is a high performance 

and multi-protocol embedded board that is also accessible through LAN network and wireless 

communications. This gateway provides wide range of access capability, protocol interworking 

and interoperable managing and controlling of the sensor nodes. The gateway uses wireless 

communication protocol (e.g., Zigbee, Bluetooth, Wi-Fi) and LAN network to acquire the packet 

from the heterogenous sensor nodes, and use the 3G/4G, DSL and other network interfaces to send 
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the packets to the database server and Internet. The architecture of the gateway is defined with four 

modules. These modules are the key functions of the embedded communication. 

3.2.2.1 Data Formatting 

This module is responsible for formatting the collected data into a standard format and finally 

sending it to the database server. Heterogeneous nodes and sensors send data over different 

protocols, so they send data in different data formats. The gateway uses JSON format to 

systematize the representation of the data from the nodes and sensors. This format has important 

advantages such as simplicity and low resource consumption (Wilder et al., 2021). An example of 

the representation of the data recorded by the temperature and humidity sensor, in JSON format, is 

shown in Figure 3.2. As can be seen in this figure, the first three parameters are ‘node-id’, ‘protocol’ 

and ‘device’, which correspond to the identification of the remote node, connected sensors and 

device with the node and the communication protocol by which the sensor device send the data. 

 

Figure 3.2 Example of systematized data format 

The following parameters are sensor device’s fields ‘sensor-id’, ‘temperature’, ‘relative humidity’, 

‘humidity’ and ‘time’, which collect the sensor information and data with the time. There are some 

other parameters for example ‘network_key’ which will be used to identify the communication 

network as Bluetooth, Wi-Fi, or others. Besides, the parameter ‘gateway-id’ which will be used 
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later to identify the gateway. The gateway identification will be useful when there is multiple 

gateways transferring information among each other.  

3.2.2.2 Protocol Bridging  

The proposed IoT gateway acts as a bridge between different protocols, mainly between HTTP, 

MQTT, CoAP, WebSocket and Modbus TCP. The gateway continuously being ready for listening 

for these multiprotocol connection requests and message payload with the standardized format.  

In my proposed system, the gateway is acting as server with MQTT broker software contains and 

facilitates the communication from different nodes transferring messages from publisher to 

subscriber and subscriber to publisher. The broker installed on the gateway was Mosquitto, a well-

known  broker that implements several versions of the MQTT protocol and  is a relatively  

lightweight software message broker (Light, 2017) and it has low power profile. In this regard, no 

data is initially sent through the Internet which is also an advantage in terms of security. This 

provides a minimal way of communication that does not require any cloud-based broker. The 

proposed bi-directional gateway can transfer the sorted data from the database and send to the 

application client and to the cloud with required protocol. Three threads are opened in the main 

process. The first one is to listen and accept on the multiple node connections. The second one is 

to read the commands from the software user interface module and read data from the IOT Gateway 

and parse the data, then send it to the MQTT broker for publishing. The third one is to show the 

received data on a webpage using Paho provided MQTT JavaScript client. It is also responsible for 

receiving configuration parameters that users can enter through the user interface and send to nodes 

and other gateways. In this case, in communication between gateways, the connected node and 

sensor act as subscribers and the gateway acts as publisher.  

In the gateway, WebSocket communication technology also is adopted in MQTT broker as 

WebSocket provides full-duplex communication channels over a single TCP/IP connection. When 

the gateway starts, it creates a server socket which uses a particular port 80 for regular WebSocket 

connections. WebSocket server in the gateway, becomes ready for listening nodes configured with 

WebSocket protocol. When user configure node with WebSocket protocol for data transfer, the 

node creates client socket and tries to establish a communication link to the gateway server using 

its IP address and port number.     
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Another well-known protocol for communication between nodes and gateway servers is HTTP, 

which the user can configure. The server is installed on the local area network's IoT gateway. This 

server represents the data gateway server to which data from the nodes would be transferred. On 

the IoT gateway, an Apache web server is deployed and configured. HTTP is a request-response 

protocol that communicates between a client and a server. In the system, a node containing sensor 

devices makes an HTTP request to the server, which is subsequently answered by the server. The 

data given to the server via POST is saved in the HTTP request's request body. As a result, node 

sends data to the server gateway. 

Another highly interoperable protocol for embedded devices with increased levels of security is 

CoAP. CoAP combined with size-optimized and reliable datagram communication. CoAP has two 

sublayers. H. Messaging sublayer and request / response sublayer. CoAP provides a URI like (coap: 

//). This task installs a secure implementation of the CoAP server on the IoT gateway.  Python 3 

and the Aiocoap library are used to install the CoAP server on the gateway. In the proposed system, 

both the client and the server are co-located, communicate over the same network, and the gateway 

acts as a local server. A node that acts as a CoAP client can use a browser add-on (Copper (Cu) 

CoAP User-Agent) to send data to the server on a specific port 5683. The IoT gateway, which acts 

as a server, listens on specific ports for data received from clients. Nodes that use the CoAP 

communication protocol detect that the server is running at a gateway IP address that uses a 

particular port. After finding the service, the node sends a GET or PUT request to access the server. 

The gateway server reviews these requests and operates accordingly. 

Modbus TCP server is also provided by the IoT gateway. A related feature of Modbus TCP is that 

it is supported by both proprietary and open source hardware / software, allowing different devices 

to seamlessly exchange the information made possible by this protocol (González, Calderón, & 

Portalo, 2021). The ability to interconnect older-type equipment for instance PLC plays an 

important role for industrial machine to machine communication. The IoT gateway uses 

pyModbusTCP, a Modbus/TCP client library for Python which gives access to Modbus/TCP server 

through the Modbus Client object.  Modbus TCP/IP clients and server listen and receive Modbus 

data via port 502. When user set Modbus TCP protocol for the node, node acts as client and it 

initiates the communication by sending request to the IoT gateway server to transfer data. The IoT 

gateway server is aimed to build up the peer-to-peer communication that encapsulate/de-
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encapsulate the incoming serial frames/TCP packages. These incoming serial data frames are read 

and written as holding register. The type of register being addressed by a Modbus request is 

determined by the function code. Once a connection is established, the gateway server imparts the 

node with the queried information until the node finishes the connection. Protocol bridging 

demonstration is shown below in Figure 3.3. 

 

Figure 3.3 Protocol bridging for multiple nodes with different protocols 

3.2.2.3 Interoperable communication among nodes and gateways 

In the protocol bridging section, it is showed that multiple nodes with multiple protocol mainly 

MQTT, HTTP, WebSocket, CoAP and Modbus TCP send data simultaneously to the proposed IoT 

gateway.  Another important function of the architecture is that the IoT gateway is able to 

communicate with the nodes and other gateways with the same protocol that nodes use to 

communicate with the gateway or different protocol in terms of the data type and data transfer 

requirements. For instance, node1 uses CoAP protocol to send data to IoT gateway. For sending 

payload from IoT gateway to node1, user can set any of MQTT, HTTP, WebSocket, CoAP and 

Modbus TCP protocol to communicate simultaneously. For the communication between multiple 

gateways, this protocol interoperability might play a significant role in industrial machine to 
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machine communication. An example is given below in Figure 3.4 to illustrate the interoperable 

protocol communication among the nodes and gateways in the proposed architecture.  

 

Figure 3.4 Interoperable protocol communication among the nodes and gateways 

3.2.2.4 Data Process and Storage 

The MySQL database management system can be used to record the time it takes to send and 

receive messages transmit over the network, where all data is stored after each session and record 

data is calculated. In the IoT gateway, in the local network can be configured so that when the 

nodes transmit data over this multiple protocol, after the data standardization process is done, 

primarily data are stored in local database with protocol-id and other values to identify the data for 

cloud and other database data transfer. Gateway data formatting methods play an important role in 

addressing the challenges of data integration from a variety of devices and systems for general 

systematization and representation in JSON format. To handle huge amounts of data and address 

data integration and data interoperability challenges, multiple databases can be integrated for high 

reliability and fast access to data. By adopting cloud-native services, developers can also take 

advantage of advanced technologies such as AI, machine learning (ML), and natural language 

processing (NLP). 
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3.3 Methodology Conclusion 

In the research methodology chapter, we presented the steps taken to reach research objectives. An 

IoT protocol selection framework has been designed for the users to select suitable protocol for the 

application based on hardware capabilities and data transmission requirements. Also, we presented 

design of interoperable IoT gateway consisting of four modules including data formatting, protocol 

bridging, interoperable communication among nodes or devices and gateways, and data processing 

with storage. 
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 RESEARCH DEVELOPMENT 

In order to evaluate the proposed solution for interoperability in Chapter 3, an IoT gateway 

architecture was implemented. The implemented system involves communication among IoT 

gateway and three remote wireless nodes. The nodes are connected with three different sensors. 

The gateway is designed to connect any IoT and industrial sensors. The three nodes and sensors 

are taken based on the availability and cost effectiveness. The solution proposed in this research 

aims at enabling interoperable connectivity from heterogenous devices and data acquired from 

different communication protocols and also extending these networks towards the IoT universe. 

The purpose of the application is to develop interoperability gateways which provides a reliable 

and uniform way of industry 4.0 cyber physical systems for easy interoperability. The proposed 

architecture is designed, implemented, and verified to evaluate quality of service of the gateway. 

To this purpose, the following modules have been implemented within the application: This chapter 

is consisting of 6 parts: (i) multi-protocol gateway development(ii)multi-protocol server integration 

(iii)node microcontrollers and sensors integration (iv)nodes to gateway interoperable 

communication (v) bi-directional communication among nodes and gateways (vi) data storage to 

multiple databases. Figure 4.1 shows the implementation details of the architecture in this project. 

 

Figure 4.1 Proposed multi-protocol gateway architecture implementation framework 
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4.1 Multi-Protocol Gateway Development 

For the development of the gateway, Raspberry Pi 4 development board was used, which is a high 

performance and multi-protocol embedded board. Initially, multiple single board computers were 

compared to find the cost efficient and complex task management compatible gateway. The table 

4.1 is provided to show the comparison among Raspberry Pi 4, Raspberry Pi 3, Arduino Mega, 

Beagle Bone and Intel Galileo.  

Table 4.1 Comparison of Efficient Gateways for Smart IoT Environment 

 Raspberry Pi 4 Raspberry Pi 

3 

Beagle Bone Intel Galileo 

Processor Quad core 64-

bit ARM-

Cortex A72 

Broadcom 

BCM2837 

64bit Quad 

Core 

ARM Cortex-A8 Quark 

SoC X1000, 

32-bit Intel 

Frequency 1.5GHz 1.2GHz 1GHz 400MH 

RAM 4GB 1GB 512MB 512 KB on-chip SRAM 

256Mb DRAM 

Operating 

System 

Raspbian, 

Debian, 

Fedora, 

ARCH Linux 

ARM, RISC 

OS, Ubuntu 

Core et.  

Raspbian, 

Debian, 

Fedora, 

ARCH Linux 

ARM) and 

FreeBSD 

Etc. 

Android, Debian, 

Angstrom, Yocto, 

Fedora, Ubuntu 

etc. 

Arduino, Linux 

distribution for Galileo, 

Rocket etc. 

Power 15.3W 10W 15W 15W 
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Table 4.1 Comparison of Efficient Gateways for Smart IoT Environment (cont’d and end) 

Cost 70 CAD 45 CAD 70 CAD 100 CAD 

 

Based on the comparison of multiple single board computer, Raspberry Pi 4 has been selected as 

IoT gateway to implement the proposed architecture. As in the research work, it is proposed that 

heterogeneous nodes with different sensors communicate with the IoT gateway over different 

protocols and for the interoperable communication compatible functionalities, Raspberry Pi 3 

Model B is preferred. Raspberry Pi is proposed as IoT gateway because of its low cost, high 

processing capability, sufficient amount of random-access memory (RAM), 40 input/output GPIO 

pins, RJ45 port and Wi-Fi connectivity for smart Internet of Things environment. In this research, 

MQTT broker, HTTP, WebSocket, CoAP, ModbusTCP server are implemented in Raspberry Pi 4. 

The Pi 4 is continuously being ready for listening for these multiprotocol connection requests and 

message payload with the standardized format through 802.11 b/g/n/ac Wireless LAN network. 

Figure 4.2 shows the Raspberry Pi 4 4GB model which is used in this research for the proposed 

system development. 

 

 

 

 

 

 

 

 

Figure 4.2 Architecture of Raspberry Pi 4 Model B 
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4.2 Multiple Server Configuration on the Gateway 

MQTT, HTTP, CoAP, Modbus TCP and WebSocket server are integrated in the gateway. In our 

experiments we use a high speed, 32 GB class 10 (30 MB/s), micro-SD card for storage. This 

ensures that the storage device is not the system bottleneck. Raspbian OS has been installed in the 

system to configure all the servers and install the required software and libraries. 

4.2.1 MQTT Broker Configuration 

The software that is being used here is Mosquito MQTT broker software, which is installed on the 

Raspberry pi by using command “sudo apt-get install mosquitto mosquitto-clients”. By installing 

it on the raspberry pi and starting it as a MQTT broker which handles the messages. Installation 

set up the broker and allow it to start on boot. After installation series of commands in the terminal 

of Raspberry username and password can be set and when everything is established, Mosquitto 

software broker will be started by using command “mosquitto /etc/mosquitto/mosquitto.conf”. And 

by following this sequence the clients are ready to connect to the broker to publish or subscribe the 

topic. After these installations, following command “mosquito -v” on the terminal shows 

Mosquitto running on the system and in what ports the server is ready to listen connection requests.  

Figure 4.3 illustrates the correct installation and start-up Mosquitto MQTT broker on the terminal.  

  

 

Figure 4.3 Mosquitto MQTT broker running on terminal 

4.2.2 HTTP Server (Apache Web Server) 

The Apache web server (HTTP server) is installed on the Raspberry Pi 4 IoT gateway. Apache can 

communicate between nodes and the server over the HTTP and HTTPS web protocols. Apache 

server has been installed with the command “sudo apt install apache2 -y”. The Apache server uses 
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HTTP (Hyper Text Transfer Protocol) to distribute website services online and supports four 

application profiles: Apache, Apache Full, Apache Secure, and OpenSSH. The Apache profile 

opens the port 80 (http traffic), while Apache secure opens only port 443 (SSL/TLS traffic). 

Because in this work both HTTP and HTTPS is used, Apache Full is enabled as it opens both port 

80 and port 443. Figure 4.4 demonstrates apache2 Raspbian version running on the gateway.  

 

Figure 4.4 Apache3 Raspbian version webserver installation confirmation 

4.2.3 Modbus TCP Server 

Modbus is more suitable for rapid system development because it allows data and commands to 

pass between the two devices without requiring the knowledge of how data is processed or how 

outside communication is implemented. For Modbus TCP/IP communication, an open-source and 

full Modbus protocol called “pyModbus” is used. It works as fully implemented Modbus server 

and supports read/write on discrete and register. In the proposed communication architecture, the 

Raspberry Pi is configured as the Modbus TCP server. In the Raspberry Pi, a Modbus TCP/IP 

context must be generated using its IP address before trying to create a connection to the nodes. 

Before data communication over nodes, the gateway will create a register map for all data types 

with desired size. 30 registers are written initially for receiving read/write requests from the clients. 

More registers can be added for further development.  Since the server cannot perform read or write 

operations in Modbus TCP/IP protocol, it only accepts read or write requests from the client and 

replies to a message to the client once the operation has been completed. Mapping of the holding 

registers for Modbus communication are illustrated in Figure 4.5. 
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Figure 4.5 Register mapping for Modbus communication 

All the data that need to be exchanged between the gateway and nodes must be converted to 

registers as holding registers and input registers will be used. Each variable, regardless of integer 

or floating point, will be represented by 2 registers. It is easy to convert integer variables to such 

format. For floating points, they can be converted to integers just by multiplying the absolute value 

by 100 in order to preserve 2 decimals. The precision of the data can be easily adjusted based on 

either nodes requirement or data size limitation set by the Modbus register. Actually, both the 

gateway and the nodes are presented as actual data format for each Modbus register. 

4.2.4 CoAP Server Implementation 

In this work, the aiocoap Python CoAP library was used to implement the CoAP protocol (Maciej 

Wasilak & Amsüss, 2014). Simple CoAP server is installed with a single resource. The data of the 

nodes is stored in this resource. The first access method is PUT, which allows the node linked to 

the sensors to send data to the server running on the Raspberry Pi 4 IoT gateway. Furthermore, the 

GET method enables nodes with actuators to register with the resource, allowing nodes to be alerted 

when the server begins any feedback command or data transfer. 

The PUT method requests that the resource identified by the request URI be updated or added with 

the enclosed payload. The message is triggered by assigning a PUT request to the resource. This 
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allows the process to notify the CoAP server of state changes in a simple and standard way. The 

resource is implemented as a special PUT handler that updates the resource status according to the 

PUT payload and triggers the delivery of the payload to the publisher. CoAP messages use two 

types of identifiers, message identifiers. This allows messages to be paired with acknowledgments 

and tokens for more general purposes. Figure 4.6 illustrates CoAP payload requests function for 

transferring from node microcontroller to Raspberry Pi 4 IoT server gateway. 

 

Figure 4.6 CoAP requests for node sensors 

The GET method gets information about the resource identified by the request URI. A node with 

an actor waiting for a protocol response. When the server sends the payload with the response 

device ID, the node receives the request and checks the current status of the connected actuators 

communicating through the node's GPIO pins. In this task, the LEDs on the receiving node are 

connected via GPIO. For each payload status change request from the server, the node acts as a 

controller by changing GPIO.output (relay_pin, GPIO.HIGH) or GPIO.output (relay_pin, 

GPIO.LOW) according to the monitoring resource status change request. In Figure 4.7 trigger 

observe payloads are illustrated and invoked automatically by the GPIO library when the value on 

targeted GPIO pin changes.  
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Figure 4.7 CoAP payload observing from GPIO output 

The response obtained in the main function is a message like the request message, just that it has a 

different code. The response code is denoted in Python with some utility functions. For instance, 

in this work, successful response code is provided in Figure 4.8 is 2.04 which embeds in the 

successful 2.00 group.  

 

Figure 4.8 CoAP successful response code on message receiving 

4.2.5 WebSocket Server Deployment 

As WebSocket enables bidirectional communication in real time over the web, WebSocket server 

will be deployed in the gateway for horizontal interoperable communication. Node.js file is created 

to open the requested file and return the content to the client. Later on, socket.io is installed which 

is the client side WebSocket “library” needed to connect to a WebSocket server. It’s WebSocket 
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API will be used to communicate between server and the clients. After enabling Node.js html 

server, http does the handling requests and serving content and URL helps to parse requested URLs. 

The data is converted using the built-in Python JSON library. To make the request another package 

was imported on the script named "requests". With the help of requests.post() method the formatted 

payload was sent to the server and the response came from the server was also printed to the 

console. The script will wait for a specified number of time and then will repeat the process from 

the beginning. 

4.3 Node Microcontrollers for different Sensor Integration 

In our proposed framework, we have showed that we can add multiple nodes which can access to 

the gateway. For the development, we demonstrated three different nodes which establish 

communication with the gateway with different communication protocol. These nodes are 

embedded with three different sensors to present data communication among the nodes and 

gateway. Here in this research work, we are using the nodes so that sensors send the data it contains. 

Wi-Fi interface and GPIOs in microcontroller on the SoC can be used for general purpose as well, 

so our sensors and actuators can be directly connected to node. 

4.3.1 Node1 as Raspberry Pi 3 and Sensor DHT22 

The Raspberry Pi3 Model B has been selected as the wireless sensor node to provide an intelligent 

solution for real-time and efficient communication with the gateway. Equipped with the Broadcom 

BCM2387 chipset and 2GHz quad-core ARM Cortex-A53 (64-bit), the Raspberry Pi 3 Model B is 

an intelligent node for IEEE 802.11 b / g / n Wi-Fi and IEEE 802.11 Bluetooth communication. 

The processor features 1GB of LPDDR2 memory and a 40-pin GPIO header on the Pi, providing 

access to 27 GPIO, UART, I 2C, SPI, 3.3 and 5V sources. Each pin in the GPIO header is the same 

as its predecessor, Model B +. The sensor is connected via the GPIO pin of the microprocessor. 

Accordingly, on this research, the sensor used is digital-output relative humidity & temperature 

sensor/module. Initially, temperature and humidity sensors which are widely used in IoT 

applications were compared: DHT22, DHT11 and DS18B20. The Table 4.2 is provided below to 

show the comparison: 
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Table 4.2 Comparison of Different Temperature and Humidity Sensors 

Sensor DHT22 DHT11 DS18B20 

Measures Temperature 

Humidity 

Temperature 

Humidity 

Temperature 

Temperature Range -40 to 80⁰C 0 to 50⁰C -55 to 125⁰C 

Humidity Range 0 to 100% 20 to 90% ~ 

Supply Voltage 3 to 6 VDC 3 to 5.5 VDC 3 to 5.5V VDC 

Accuracy +/- 0.5⁰C +/- 2⁰C +/-0.5⁰C 

Communication Digital via Single 

Bus 

Digital via Single Bus Digital via Single Bus 

Minimum Response 

Time 

2 Seconds 6 seconds <10 seconds 

Price Per Unit 7.29 CAD 6.32 CAD 7.79 CAD 

 

The DHT22 has been selected because it has low power consumption, low price, better accuracy, 

fast response time and an acceptable humidity and temperature range than the other three sensors. 

DHT22 which is capacitive-type humidity and temperature sensor, utilizes exclusive digital-signal-

collecting-technique and humidity sensing technology, assuring its reliability and stability. Figure 

4.9 shows the module of the temperature and humidity sensor used in this research. 
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Figure 4.9 Pinouts of DHT22 temperature-humidity sensor 

The temperature and humidity data are processed by the node (Raspberry Pi 3). When 

communication between RPi3 and DHT22 initiates, program of the node transforms voltage level 

of DATA BUS from high to low level and this process takes at least 1ms to ensure DHT22 could 

detect RPi's signal, then RPi waits 20 to 40us for DHT22's response. In this research, DHT22 sensor 

is connected using the Raspberry Pi3 through GPIO pins. The DHT 22 sensor has three pins: VCC, 

signal and GND. V cc pin is connected to Raspberry Pi GPIO (General Purpose Input/Output) pin 

of 3V, the signal pin is connected to GPIO 04 pin and GND pin of the sensor to the GND GPIO 

pin of the Raspberry Pi. The connection between DHT22 sensor and node raspberry pi 3B is shown 

in Figure 4.10. 

 

Figure 4.10 DHT22 sensor connection with node1 Raspberry Pi 3B 
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4.3.2 Node2 as Arduino Uno Wi-Fi Rev2 and Sensor BME280 

For the integration of sensor with node 2, Arduino Uno Wi-Fi R2 is used which is ATmega4809 

based microcontroller board integrated with Wi-Fi and Bluetooth module. Due to the presence of 

Wi-Fi connection ability, Arduino Uno Wi-Fi R2 is widely used for high performance and cost 

effective IoT applications. The Table 4.3 is provided to show the comparison different Arduino 

microcontroller boards to select the most efficient one for node2 application.  

Table 4.3 Comparison of Different Microcontroller Boards 

 Arduino Uno Wi-Fi 

R2 

Arduino Mega 

2560 

Arduino Nano 

33 BLE 

Arduino Due 

Processor ATmega4809 ATmega2560 nRF52840 

microcontroller 

ATSAM3X8E 

Cortex-M3 

Clock Speed 16MHz 16MHz 16MHz 84MHz 

Memory 6KB SRAM, 48KB 

flash, 256 bytes 

EEPROM 

256 KB of 

flash memory 

8 KB of 

SRAM and 4 

KB of 

EEPROM 

32KB of 

program 

memory, 1KB of 

EEPROM, 2KB 

of RAM 

512KB of ROM 

and 96KB RAM 

Pins 14 digital I/O pins, 

5 PWM channels, 6 

analog inputs 

16 analog 

inputs, 15 

PWM channels 

14 digital I/O, 6 

analog inputs 

54 digital I/O 

pins, 12 PWM 

channels, 12 

analog inputs, 

and 2 analog 

outputs 

Communication I2C, SPI, UART I2C, SPI, 

UART 

I2C, SPI, UART UART, 

USARTS, USB, 

I2C, SPI, CAN 

Wireless 

Connectivity 

Built in Wi-Fi, 

Bluetooth 

None Bluetooth None 
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Table 4.3 Comparison of Different Microcontroller Boards (cont’d and end) 

Shield 

Compatibility 

5V 5V 3.3V 3.3V 

Cost 53 CAD 48 CAD 28 CAD 48 CAD 

 

Based on the comparison of different Arduino board, Arduino Uno Wi-Fi module has been chosen 

for implementation of node2 with sensor for its built-in Wi-Fi and 5V shield capability. The 

Arduino Uno Wi-Fi Rev2 is based on the 8-bit ATmega4809 microcontroller, and it has NINA-

W102 u-Blox series Wi-Fi and Bluetooth module for wireless connectivity and ATECC608A high-

security cryptographic microchip accelerator for implementing various authentication and 

encryption protocols. The microcontroller module is a self-contained SoC with a built-in TCP/IP 

protocol stack for network connectivity. The board has 14 digital input/output pins, 5 PWM 

outputs, 6 analogue inputs, a 16 MHz ceramic resonator, a USB connection, a power connector, an 

ICSP header, and a reset button, making it a strong controller for implementing communication 

through the gateway. The pinouts of the Arduino UNO Wi-Fi microcontroller are shown in Figure 

4.11. 

 

Figure 4.11 Arduino UNO Wi-Fi microcontroller with pinouts 
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The proposed system uses Arduino IDE (Integrated Development Environment) software to 

program the Arduino Uno Wi-Fi board. The Arduino IDE is an editor for compiling signal 

processing algorithms, compiling them into binary files, and then downloading them to the Arduino 

MCU via a USB serial port connection. Algorithm programming with a comprehensive suite of 

high-level, easy-to-use controls for I / O interfaces and peripheral configurations relies entirely on 

the connection and mapping of sensors to microcontrollers. The code is written in the IDE and uses 

the C / C ++ language to embed communication with the sensor. For this task, the Arduino 

microcontroller is programmed as a WebSocket client. The board collects the sensor's real-time 

measurements via the I / O interface and exposes the real-time data to the gateway server via socket 

communication. 

For the integration of node2 sensor, bme280 is used which is an environmental sensor, which was 

designed for applications where size and low power consumption are crucial constraints. The 

sensor is able to measure pressure, humidity, temperature. The sensor supports performance 

requirements for emerging applications such as context awareness, and high accuracy over a wide 

temperature range. An additional advantage of the sensor is that the response time is extremely fast 

especially in the pressure measurement at very low noise. As a result, in this research work for 

node2 we are working only with the pressure data. Figure 4.12 demonstrates the pinout for the 

BME280 Pressure sensor. 

 

Figure 4.12 BME280 Pressure-Altitude sensor pinouts 

In this research development, bme280 sensor’s VCC input is connected through 5V output pin of 

Arduino UNO rev2. SDA (I2C1 Data) of the MCU is connected to sensor’s SDA pin. The SDA 
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includes a fixed pull-up from 1.8kΩ to 3.3V. This is suitable for I2C bus communication. Since the 

sensor communicates over the I2C bus, the implementation of the wire library enables the I2C pins 

on the MCU. The Wire library uses a 7-bit I2C address that identifies the sensor device. The library 

uses a 32-byte buffer. Therefore, all communications must be within this limit. Figure 4.13 

illustrates the setup of node2 with Arduino Uno W-Fi board and BME280 sensor.  

 

Figure 4.13 BME280 sensor connection wiring with Arduino UNO W-Fi microcontroller 

4.3.3 Node3 as ESP32 and Sensor as MQ-135 

For 3rd sensor integration, we used the ESP32-WROOM-32 board as node3. It is a high-

performance general-purpose Wi-Fi and Bluetooth module used to implement a variety of 

applications, from low power sensor networks to the most demanding IoT applications. The Esp32 

includes two low-power 32-bit Xtensa LX6 microprocessors with a chip quiescent current of less 

than 5µA, making it suitable for low-battery and portable electronics applications. This board was 

chosen for this development because it has 802.11 b / g / n (802.11n to 150 Mbit / s) compliant Wi-

Fi capabilities. The board has analog and digital GPIOs that can be used to integrate the sensor 

with the analog output. Figure 4.14 demonstrates the architecture and GPIO pinout of the esp32 

development board. 
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Figure 4.14 ESP32-WROOM development board architecture and  pinouts 

In this research, ESP32 microcontroller is programmed with the Arduino software integrated 

development environment (IDE).  The program is written in C++ and uploaded in the esp32 

microcontroller through the open-source Arduino Software via USB cable. In this work, the ESP32 

microcontroller is programmed as an MQTT client. The board collects the measured real-time 

values of the sensor, displays the values on the Arduino IDE Serial Monitor, and continuously 

publishes real-time data to the gateway server. 

For the integration of node3 sensor, MQ-135 gas sensor has been deployed. Widely used in air 

quality meters, the MQ-135 sensor is suitable for detecting ammonia (NH3), sulfur (S), benzene 

(C6H6), CO2, smoke, and other harmful gases. The unit of air pollution is PPM (parts per million). 

To measure PPM gas, analog pins require to be used. The analog TTL operates and operates at 5 

volts, so it can be easily integrated into node3's ESP32 MCU. Figure 4.15 shows the pinout of the 

MQ-135 environmental sensor.  
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Figure 4.15 Pinouts of MQ-135 environmental sensor 

The sensor which has very less latency is reliable and cost-effective implementation for node3 

sensor device. The MQ-135 gas sensor uses SnO2, which has high resistance in clear air, as the 

material of the gas sensor. As the amount of harmful gas increases, so does the resistance of the 

gas sensor. Figure 3 is an excerpt from the MQ-135 data sheet, showing the typical sensitivity 

characteristics of the MQ-135 to a variety of gases measured at temperatures of 20 ° C. Humidity: 

65%, O2 concentration: 21%, RL = 20 kΩ, Ro = Sensor resistance at 100 ppm NH3 in clean air, 

Rs = Sensor resistance at various gas concentrations. According to the sensitivity characteristics, 

Rs / Ro is the resistance ratio. The  resistance RL can be identified when the resistance sensor 

changes depending on the gas concentration (RO) (Kant & Bhattacharya, 2017). Sensitivity 

characteristics of MQ-135 sensor is illustrated in the figure 4.16 below. 

 

Figure 4.16 Sensitivity characteristics of MQ-135 environmental sensor 
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MQ135 Air Quality Sensor that can detect the level of various air pollutants. The AQI is an index 

for reporting daily air quality. It depicts how clean or polluted the air is, and what associated health 

effects might be a concern. The AQI is divided into six categories. Each category corresponds to a 

different level of health concern. Table 4.4 illustrates values of different Air Quality index and air 

quality status (Kinnera, Subbareddy, & Luhach, 2019). 

Table 4.4 Different Air Quality Range with Status 

 

In this proposed development, MQ-135 sensor’s VCC input is connected through 5V output pin 

of ESP32 WROOM board. Sensor’s analog pin A0 is connected through the Analog pin of the 

microcontroller. ESP32 pulls the analog data of the sensor through the Analog pin A035. The 

GND Pin (Ground) of the sensor is connected with the MCU accordingly. The raw data fetched 

from the sensors is properly converted to PPM in the embedded code developed in Arduino IDE 

for ESP32 MCU. Figure 4.17 illustrates the experimental setup of node3 with ESP32 Wroom 

board and MQ-135 gas sensor.  
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Figure 4.17 Experimental setup for node3 ESP32 and sensor MQ-135 

4.4 Communication between node Microcontrollers and the Sensors 

For the development of the proposed design, three different nodes and three different sensors are 

used. Sensors are connected through the GPIO pins and I/O interface of the node Microcontrollers. 

Three sensors DHT22 sensor, BME280 sensor, MQ-135 are connected to three node 

microcontrollers Raspberry Pi 3, Arduino Uno Rev2 and ESP32. These sensors collect the data 

from surroundings like temperature, humidity, pressure, air quality and send these accumulated 

data to nodes. The node microcontroller and microprocessor work on these data, process it and 

transmit the obtained results to gateway server though their communication protocol 

4.4.1 Node1: Raspberry Pi 3 and DHT22 Communication 

For node1, Temp-humid.py is a python script which is used for monitoring temperature and 

humidity using the DHT22 sensor. The DHT22 Temperature/Humidity sensor is connected through 

the GPIO pins of the node RPi 3. Adafruit GPIO Python library and the Adafruit DHT22 library 

are used to receive the data from the sensor. Figure 4.18 illustrates the sensor value of the DHT22 

temperature humidity sensor acquired by the node Raspberry Pi on the command line.  
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Figure 4.18 Node1 raspberry Pi 3 receiving data from DHT22 temperature-humidity sensor 

4.4.2 Node2: Arduino Uno Wi-Fi Rev2 with BME280 Sensor Communication 

In node2, Arduino Uno Wi-Fi Rev2 gathers data from the sensor BME280 using 

pressure_altitude.ino script on the Arduino IDE. The code has been run by including the needed 

libraries: the Wire library to use I2C, and the Adafruit_Sensor and Adafruit_BME280 libraries to 

interface with the BME280 sensor. The Wire library implementation uses a 32-byte buffer; 

therefore, any communication should be within this limit. A variable called 

SEALEVELPRESSURE_HPA is created to save the pressure at the sea level in hectopascal. In the 

Arduino script, bme.readPressure() reads barometric pressure in hPa (Hectopascal = millibar) and 

bme.readAltitude(SEALEVELPRESSURE_HPA) estimates approximate altitude in meters based 

on the pressure at the sea level. To enable Wi-Fi connection with the network, <WiFiClient.h> 

library was set in the script on Arduino IDE. <ArduinoHttpClient.h> and <Arduino-WebSocket-

Fast.h> libraries are added to the script to communicate through WebSocket protocol. Figure 4.19 

shows the pressure and altitude acquired by the sensor on COM port 5 of the Arduino IDE. 
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Figure 4.19 Node2 Arduino UNO receiving sensor data from BME280 sensor 

4.4.3 Node3: ESP32 with MQ-135 Gas Sensor Communication  

For node3, MQ135 Air Quality sensor has been interfaced with ESP32 Wroom MCU. For 

compilation, AirQualityIndex.ino script has been written on Arduino IDE to communicate with the 

sensor and ESP32. Analog input A035 of the ESP32 was enabled to receive analog data from the 

sensor module. MQ-135 sensor module measured gas concentration in PPM. Multiple thresholds 

were added according to Air Quality Index chart (Kinnera et al., 2019) to determine the air quality 

status for the sensor data. <wifi.h> library with setup () function are included to start a connection 

to Wi-Fi network. As the sensor was configured to communicate with MQTT protocol through 

node, <PubSubClient.h> library has been added to the script. The PubSubClient library provides a 

client for publishing/subscribing message with a server that supports MQTT.  Figure 4.20 shows 

air quality index received by the node on port COM4. 
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Figure 4.20 Node3 ESP32 receiving sensor air quality data fromMQ-135 environmental sensor 

4.5 Communication Protocol Selection for the Nodes 

User assign communication protocol for the nodes connected with sensors to send data to the 

gateway. This configuration sets in what communication protocol the assigned node will 

communicate with the gateway.  As the gateway is developed to receive any data over the MQTT, 

HTTP, CoAP, Modbus TCP/IP and WebSocket protocol, to visualize the data communication 

protocols need to be selected on the user interface. Figure 4.21 demonstrates protocol selection 

option for the nodes from the user interface. 

 

Figure 4.21 Protocol selection interface for the nodes to receive data on the gateway 
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Node1 is associated with Raspberry Pi. Due to node1’s processing power capabilities as per the 

protocol selection framework demonstrated in previous chapter, HTTP client, CoAP client and 

Modbus TCP Client has been configured in the node1. Therefore, Node1 is able to communicate 

with any of these three protocols by enabling communication from the interface. Node1 was 

selected as HTTP, CoAP and Modbus TCP protocol separately from server end. As node2 is 

configured as WebSocket client, from the user interface of gateway WebSocket has been selected 

as data communication protocol.  In this regard, gateway server was worked as WebSocket server 

and the node2 was worked as WebSocket client. Here, node3 is configured as MQTT client, so that 

node3 is able to publish messages to MQTT broker through MQTT protocol. From the user 

interface, MQTT protocol is selected for node3 to publish sensor data to the gateway server. 

Moreover, another significant function of the proposed system is that the gateway server is also 

able to interconnect with the nodes and other gateways with the same protocol that nodes use to 

communicate with the gateway or different communication protocol in terms of the data type and 

data transfer requirements.  

Based on the capabilities of our proposed architecture, the gateway is able to run bi-directional 

communication. As a result, users are able to set access protocols for the communication between 

nodes and gateway. The software platform provides interface which allows users to select the 

suitable protocol for gateway to nodes payload transfer in regards of their standards and data 

transmission capabilities. For gateway to nodes communication, the interface let users to integrate 

nodes, also it allows users to set communication protocol required for the gateway to send payloads 

to nodes for machine control, feedback control and alarms. Figure 4.22 demonstrates the interface 

where user can set communication protocol for server to communicate with node’s working access 

protocol.  

 

Figure 4.22 Protocol assigning from gateway to nodes for sending payloads 
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4.6 Communication between Node Microcontroller and Gateway 

The nodes are connected to the gateway. When user assign a protocol for the node to gateway 

communication. Node transfer sensor data to the gateway with the assigned protocol. In this 

development, node2 Arduino Uno with bme280 pressure sensor send data over WebSocket 

Protocol so that we enabled WebSocket protocol for gateway Node2 end protocol selection 

configuration. As node3 ESP32 send data over MQTT protocol, we permitted MQTT broker 

subscribing for node3 in the configuration end. For the experiment, we configured node1 

communicating with HTTP, CoAP and Modbus TCP protocol so that we enabled our server end 

by assigning node1 with this protocol respectively.  

4.6.1 Node2 Data Received by Gateway over WebSocket Protocol 

For node2, we configured WebSocket as communication protocol as per the framework since our 

requirement is to establish bidirectional communication between the node2 Arduino Uno and the 

gateway. When the gateway is configured to receive data from node2 over WebSocket, it creates a 

server socket which uses a particular port 80 for regular WebSocket connections. Here, WebSocket 

server in the gateway, becomes ready for listening nodes configured with WebSocket protocol. In 

the experiment, node2 created client socket and tries to establish a communication link to the 

gateway server using its IP address and port number 80.  When the communication established 

between node 2 and gateway server, server received pressure and altitude from node2 Arduino Uno 

Wi-Fi and showed the data to the interface. Figure 4.23 demonstrated node2 data received by the 

gateway over WebSocket protocol.  

 

Figure 4.23 Node2 data received by gateway over WebSocket protocol 
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4.6.2 Node3 Data Transfer to Gateway over MQTT protocol 

Node 3 is configured to send data over MQTT protocol according to protocol selection framework 

designed in Chapter 3. Node3 device is esp32 which uses low bandwidth, the sensor connected to 

node 3 communicates with high latency and due to unreliable network characteristics, node 3 is 

configured to communicate over MQTT protocol. To establish connection from node 3 to gateway, 

it was selected from the interface so that gateway enables mosquito subscribing to receive data 

from the sensor. Here, the gateway is devising as MQTT broker which facilitates the 

communication from node3 transferring messages from publisher to subscriber and subscriber to 

publisher. Node3 ESP32 with environmental sensor provides air quality data in ppm unit. In 

regards, reading data from sensor and sending data to the gateway broker, PubSubClient MQTT 

library is used on the node3 end. The PubSubClient library enables publish/subscribe messaging 

with a server that supports MQTT. In order to distinguish data sent by the node3, a topic string 

“/client/node2/mqtt” is used. Here, client node3 is publishing Air Quality values using different 

string for each value. On the other side, the broker gateway is configured to subscribe to the topic 

which node3 is using to publish the values. After node3 connects to the gateway broker, it starts a 

loop reading from the environmental sensor every 10 seconds and publishing the value to the topic 

“/client/node3/mqtt/”. After receiving data on the gateway, data is sent to the web interface for 

demonstrating the real-time values and transforming data for storing into databases. In addition, 

for encrypted communication between the gateway broker and the client node3, TLS (Transport 

Layer Security) and SSL (Secure Sockets Layer) encryption is used. Figure 4.24 illustrated node3 

sensor MQ-135 air quality data received by the gateway over MQTT protocol. 

 

Figure 4.24 Node3 air quality data received by gateway over MQTT protocol 
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4.6.3 Node1 Data Transfer to Gateway over CoAP Protocol 

Node1 Raspberry Pi 3B will use the AdaFruit DHT library methods to retrieve the DHT22 sensor's 

current temperature and humidity readings. Also, data will be formatted into JSON in order to be 

transmitted to the gateway. After the gateway is configured to receive data from node1 over CoAP 

protocol, CoAPthon Python library the script is activated to create a CoAP endpoint on the 

gateway. The CoAPthon library is a Python implementation of the CoAP protocol. This package 

contains a helper client class that uses the CoAP path and port during initialization. The object is 

created on the node with the path to the gateway endpoint and the default CoAP port 5683. This 

CoAP client object is used to send a POST message containing data to the gateway. To retrieve the 

readings from the DHT22 sensor, the Adafruit DHT22 library was imported to the python script of 

node1. This library contains a read_retry () method that will attempt to read the temperature and 

humidity data from the DHT22 sensor and return values as floating-point decimals; if no reading 

is available, it will try again up to a specified number of retries, defaulting to fifteen. This default 

limit is specified by the CoAPthon package. Once the sensor data is returned, the payload is 

constructed. The payload consists of the temperature and humidity data formatted into a JSON 

object. This data is converted using the built-in PythonJSON library. A CoAP message is sent to 

the gateway using the formatted payload. The response message from node1 is output to the 

console. As soon as the gateway server receives the data, the data is processed, saved, and the 

interface dashboard is updated. The device is identified by a device access token sent as part of the 

request. The dashboard in Figure 4.25 displays values of temperature(T), relative humidity (RH) 

and timestamp.  

 

Figure 4.25 Node1 data received by gateway over CoAP protocol 
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4.6.4 Node1 Data Transfer to Gateway over Modbus TCP Protocol 

To demonstrate Modbus TCP communication between the client and gateway, node1 was 

configured as Modbus client.  The communication model between node1 and gateway is client-

server and the physical medium for exchanging data is the wireless network. In the experimental 

setup, node1 Raspberry Pi 3 works as a Modbus TCP client that transfers temperature and humidity 

data to gateway which works as Modbus TCP server. The core of the configuration node1 is capable 

of initiating a TCP connection with the gateway server, forming, and sending Modbus request, 

receiving, and interpreting the response, and maintaining or closing the TCP connection. For full 

read/write protocol on discrete and register and payload builder/decoder utilities PyModbusTCP 

library has been used. Server was set up to hold all the discrete inputs, coils, holding registers and 

input registers. Node1 was defined as ModbusTcpClient with the local IP address 192.168.0.106/24 

and port 502 of the server gateway. As the gateway had register map for all data types with desired 

size, these registers received read/write requests from the node client. The precision of the data was 

adjusted based on data size limitation set by the Modbus register. By selecting Modbus TCP 

protocol for node1 from the dashboard, Figure 4.26 showed datetime, temperature and humidity 

value that is received from the node1 client.   

 

Figure 4.26 Node1 data received by gateway over Modbus TCP/IP protocol 

4.6.5 Node1 Data Transfer to Gateway over HTTP Protocol 

In the experiment, for the demonstration of node sending data over HTTP protocol to the gateway, 

node1 Raspberry Pi 3B was also configured as client. Node1 has on-board Wi-Fi connectivity that 

helps in making wireless communication a successful attempt. The proposed design uses an Apache 

web server to create a local HTTP server. When a website is created, a server is required to host 

the website. PHP helps interpret the page and makes the page available to the client when the 
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request is generated. In this scenario, a Python script is written for client / server communication 

within the localhost. The node client sent a request message to the gateway to send temperature 

and humidity data, and the gateway processed it and responded to the request message to the node. 

A POST request is sent, so the body content type is specified. The content type is sent in the request 

as the header specified by calling the addHeader method of the HTTP client object. This method 

received the name of the header as the first input and its value as the second input. Node1 then used 

the POST method to send the request to the HTTP client object, passing the body of the request as 

a string as input. When data was successfully sent from node1 to the gateway, the gateway returned 

an HTTP response code to node1. The web interface in Figure 4.27 shows how the gateway 

received temperature and humidity data from the node1 endpoint over the HTTP protocol. 

 

Figure 4.27 Node1 data received by gateway over HTTP protocol 

4.7 Data Collection and Storage 

In this research, the gateway is a platform which provides various services exclusively targeted for 

building IoT applications. It handles real-time data collection, visualizes the collected data, has 

ability to store data to databases and create APIs and communication hub for other devices. Here, 

node1, node2 and node3 connected to the dht22 temperature-humidity sensor, bme280 pressure-

altitude sensor, MQ-135 air quality sensor send data to the gateway using their communication 

protocols. The gateway is designed to receive the data, process data in JSON format and store 

incoming data to databases. Three databases are presented to visualize and process for other server 

and device communications. We divided the databases into (i) local and cloud database (ii) 

KEPServerEX data logging and communication and (iii) Azure IoT hub databases. 
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4.7.1 Data Store to Local and Cloud Database 

After processing data received from the nodes, the gateway initially send data to MariaDB which 

is a Linux-based relational database management server compatible with MySQL. These data are 

inserted into the database using MariaDB connector whose table structure is shown in Figure 4.28. 

The table structure used in this study to receive data from different nodes as device_id and protocols 

as protocol_id to insert configuration values. The application is configured as a background process 

and runs 24 hours nonstop and producing 17280 rows of data each day from each node. Data 

reading interval can be modified from the interface.  

 

Figure 4.28 Table structure for data storage in gateway local database 

In the framework, different protocols are assigned with a number. Here, MQTT, HTTP, 

ModbusTCP, CoAP and WebSocket are assigned with protocol_id 1, 2, 3, 4 and 5 respectively. 

Data received from different nodes with different protocols are stored in local databases in 

MariaDB server. The following result in Figure 4.29 highlights node1 temperature humidity data 

with CoAP protocol received in MariaDB database.  

 

Figure 4.29 Data storage table in gateway local database 
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The data comes in the gateway is sent into the database created in cloud server. This table shown 

can be fetched from web browser/PhpMyAdmin by using the cloud web address. In this sense, each 

time the data of the nodes get updated, or requests made by the client, data are received by the 

gateway. The gateway then establishes connection with the cloud database and attends the requests 

through the APIs, which can modify a record in the table, read or add a new entry. In this way, it 

is possible to view the data in the remote web interface or to register the users to the application. 

The data can be retrieved from the cloud server when needed to send any signal to nodes and other 

gateways. The sensor values transferred to the cloud database from the gateway are shown in Figure 

4.30.  

 

Figure 4.30 Data sent from gateway to cloud database 

4.7.2 KEPServerEX Data Logging and Communication 

KEPServerEX v6 was used as OPC Server to connect the gateway with HMI and Data Logger. To 

provide customers with a single source for industrial data, KEPServerEX uses OPC (Open Platform 

Communications) and many connection protocols. HMI serves as an OPC Client, requesting data 

from or sending orders to the hardware via the OPC server. The data acquisition middleware 

employed KEPServerEX with a MQTT client that could subscribe to data from various nodes on 

the gateway. To monitor, manage, and connect with PLCs and other devices, the data acquisition 
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middleware is linked to other Modbus, OPC driver platforms. In this experiment, the gateway 

collects data from various nodes and edge devices and sends it to Kepware's KEPServerEX OPC 

server MQTT client. Figure 4.31 demonstrates that data from the node3 ESP32 Wi-Fi 

microcontroller was being able to be accumulated in KEPServerEX OPC Server using MQTT 

protocol and subsequently transferred Air Quality data into Microsoft Access Data Logger. Then, 

node3 data from the KEPServerEX OPC Server were logged and recorded in the Microsoft Access 

database. The configured tag names were displayed on the OPC quick client.  

 

Figure 4.31 Gateway sending node3 air quality data to KEPServerEX 

The collected data is sent to the database processing layer via the OPC protocol and to the display 

layer via the MQTT communication protocol. The presentation layer uses the client to complete 

the display analysis of the data stored on the server according to the appropriate logic code. This 

task is configured to access the Microsoft Access database and store the data in Microsoft Excel. 

Changes in this air quality index are recorded in a Microsoft Excel file. The designed gateway data 

logging system can be stored in local and cloud databases and used to communicate with other 

KEPServerEX drivers and industrial processes. From the Figure 4.32, we demonstrated Air Quality 

data with the corresponding timestamp that received from the MQTT client through the 

KEPServerEX.   



65 

 

 

Figure 4.32 KEPServerEX data logging in Excel 

4.7.3 Data Store to Azure IoT Hub and Data Explorer Databases 

Microsoft's Azure IoT Hub service enables two-way communication between IoT devices and 

Azure. In this experiment, Azure IoT Hub environment will be deployed and connected through a 

gateway with nodes to the cloud platform. This environment uses Azure Data Explorer and other 

Azure IoT suites to provide messaging capabilities between devices and cloud services. Azure Data 

Explorer is a fast, scalable data exploration service for log and telemetry data that allows to  merge, 

store, and analyze heterogeneous data. Azure IoT Hub was created to get the connection string for 

the gateway. A free tier was selected for testing and evaluation purposes in order to use the free 

subscription. With free subscription, 500 devices can be connected to the hub and transferred up to 

8,000 messages per day. After retrieving the primary connection string, the gateway establishes 

communication with the IoT hub and sends data to the hub using the MQTT protocol. The gateway 

relayed temperature and humidity data to the Azure IoT hub, as illustrated in Figure 4.33, for 

demonstration purposes. 
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Figure 4.33 Gateway sending temperature humidity data to Azure IoT Hub 

Connecting Azure Data Explorer table to IoT hub, TestTable table has been mapped for the node1 

incoming data. Azure Data Explorer includes database functionality for receiving and storing data. 

By grouping and aggregating the data, the data is converted to JSON format and stored according 

to different categories via a simple JDBC storage method. TestTable was created to map incoming 

data to the temperature, humidity, and JSON data types of the table columns. The supported data 

formats for transferring data to Azure Data Explorer tables are Avro, CSV, JSON, MULTILINE 

JSON, ORC, TSV, TXT etc. Figure 4.34 demonstrates temperature humidity data receiving on the 

Azure Data Explorer database. 

 

Figure 4.34 Data ingestion to Azure Data Explorer database 
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4.8 Visualization of Real-Time Node Data in Web Application 

The Azure App Service Web Apps feature provides a Platform as a Service (PAAS) for hosting 

web applications. Azure App Service supports web applications developed in many popular 

languages. In this case, it will be deployed to a Linux infrastructure-based gateway. To visualize 

node data in a web application, environment variables require to be configured. In order to read 

the data from the Azure IoT hub, the web app had to create a connection string and a consumer 

group name. Deploying code to App Service, Git, and FTP uses user-level deployment 

credentials. Figure 4.35 shows deployment to show temperature & humidity real time data on 

web page https://temhum.azurewebsites.net. When the node sends data to the gateway, the 

gateway processes it and sends it to Azure IoT hub for a plot of the gateway's 50 most recent 

readings.

 

Figure 4.35 Temperature humidity real-time data visualization in Azure IoT web application 

4.9 Development Conclusion 

In this research development chapter, we implemented IoT multi-protocol gateway which can 

accept client-originated messages in various protocols on a low-cost microprocessor and 

demonstrated protocol interoperability among three different nodes and three different sensors. 

Temperature, humidity, pressure, altitude, and air quality sensors are used to illustrate wide range 
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of sensor data transmission in the proposed gateway. Other industrial and low powered sensors can 

be used as well. We also presented multiple server integration and communication for effective 

protocol conversion and bridging in the gateway.  The last part of the development showed 

integration of different cloud and industrial access databases such as Azure and KEPServerEX with 

different data formats.  
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 RESULTS AND DISCUSSION 

Interoperable IoT multiprotocol conversion system has been implemented in a low cost IoT 

gateway with multiple nodes via 5 industry standard access protocols in Chapter 4.  In this section, 

a case study will be demonstrated to analyze a workflow involving data collection via nodes with 

sensors, gateway integration via a parametric control mechanism, and visualization modules to 

facilitate management and monitoring, with the goal of testing feasibility of the interoperability 

concept of integrating any platforms with the developed multi-protocol gateway. The objective is 

to test feasibility of the developed multi-protocol gateway by a case study to demonstrate 

interoperable access to any IoT open-source platform that connects via any of the 5 industry 

standard protocols (MQTT, CoAP, HTTP, Modbus TCP and WebSocket) and supports cloud 

implementations. 

5.1 Case Study: Implementation on ThingsBoard Platform 

The case study refers to implementation communication between gateway and ThingsBoard IoT 

platform. ThingsBoard is an open-source IoT platform built on the Java 8 platform that functions 

as an IoT gateway between registered devices communicating via HTTP, CoAP, and MQTT 

protocols to collect, analyse, visualise, and manage data (Paolis, Luca, & Paiano, 2018). 

ThingsBoard uses a powerful server-side API to securely provision, monitor, and control Internet 

of Things entities. Establish connections between devices, resources, customers, and other entities. 

The platform is designed to collect and store telemetry data in a fault-tolerant and scalable manner. 

There are built-in or custom widgets and customizable dashboards for visualizing data. Customers 

can view and use these dashboards. Specifies the data processing rule chain. Not only does this 

allow to transform and normalize device data, but it also triggers alerts based on incoming telemetry 

events, attribute updates, device inactivity, and user activity (Casillo et al., 2021). It provides a 

ready-to-use IoT solution for server-side infrastructure for a variety of IoT applications in the cloud 

or on-premises and presently supports three database options: SQL, NoSQL, and hybrid databases. 

These databases are used by the ThingsBoard platform to store entities such as devices, assets, 

dashboards, users, alerts, and telemetry data such as attributes, time series sensor readings, 

statistics, and events. The security features of ThingsBoard consist of company-recommended 
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encryption algorithms, including SSL, and a sort of  tool registration credentials, including the 

acquisition of X.509 certificates and  access tokens. (Henschke, Wei, & Zhang, 2020). 

5.2 Configuration with ThingsBoard Platform 

ThingsBoard cloud infrastructure is proposed to demonstrate smooth protocol integration with 

multi-protocol enabled gateway. The gateway using Raspberry Pi 4 acquire data from different 

sensor and IoT devices, transform, convert, and transfer the data to ThingsBoard IoT platform to 

monitor and visualise sensors data. In this experiment, the gateway used MQTT protocol to send 

the node and sensor data formatted as JavaScript Object Notation (JSON) to the ThingsBoard cloud 

endpoint at regular intervals. MQTT is a lightweight protocol and has a smaller header size per 

message than HTTP, so it was prioritized over HTTP in the project. HTTP, a heavy protocol, 

requires more overhead and message size than MQTT. ThingsBoard is configured to monitor and 

visualise data by creating IoT Dashboards and updating in real-time. Figure 5.1 illustrates the 

integration details between the gateway and the ThingsBoard platform. 

 

Figure 5.1 Cloud based ThingsBoard platform integration with muti-protocol gateway 

5.2.1 Gateway Configuration 

The multi-protocol gateway receives sensor data from three different nodes with different 

protocols, process the data before sending to ThingsBoard Platform. Three different nodes 

Raspberry Pi 3, Arduino Uno and ESP32 embedded with DHT22 temperature-humidity sensor, 

BME280 atmospheric pressure, altitude sensor, and MQ135 air quality sensor send sensor values 

to the proposed multi-protocol gateway with Modbus TCP, WebSocket and MQTT protocol 

respectively. The gateway is configured to receive and store the data to the local database and cloud 
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database. Gateway ThingsBoard packages has been installed in the gateway. mqtt.json connector 

file has been created to map the sensor data and values in the JSON format. By commenting out 

hashes in the configuration, a connector is activated. A name, type, and configuration file 

parameters are required for each connector. It is feasible to obtain multiple connectors can be active 

at the same time if the files are specified with different name and configurations. Figure 5.2 shows 

the mapping strategies for the mqtt.json connector. 

 

Figure 5.2 Configuration for MQTT mapping in JSON format 

The gateway uses an access token to access the web interface of the ThingsBoard cloud server. The 

Device information tab contains the access token that is used to authenticate the gateway. The file 

'tb_gateway.yaml' in the configuration folder for the ThingsBoard platform on the gateway is used 

to configure the connection to the ThingsBoard server. The hostname or IP address of the 

ThingsBoard server, as well as the port of the MQTT service on the server, are defined in this main 

configuration file. The access token is pasted underneath the security label as seen in Figure 5.3. 

Memory storage is used for storing incoming data before being sent to the server. Telemetry sent 

by the gateway for logging in the platform is inserted into the SQLite database table before being 

transferred to the ThingsBoard. No other relational database, such as PostgreSQL or MySQL, was 

used for this task because only one table was needed to store the data. SQLite is easy to set up and 



72 

manage. SQLite only needs database files, so it doesn't need a server. SQLite and data file path 

./data/data.db  file have been initiated to store the data before sending to the platform. 

 

Figure 5.3 Gateway-ThingsBoard configuration parameters 

To deliver data to the ThingsBoard endpoint, a Python script using mqtt paho and JSON libraries 

is loaded. Figure 6.1 shows how the proposed gateway communicates node data to ThingsBoard 

over MQTT as JSON strings, where measured parameter values are represented by key-value pairs. 

Once the gateway receives sensor data, the payload is constructed. The payload consists of the 

temperature, humidity, pressure, altitude, and air quality data formatted into a JSON object, shown 

in Figure 5.4. This data is converted using the built-in Python JSON library. The JSON string of a 

typical client message could be: 

 

Figure 5.4 Sensor data formatted to JSON data format for message payload 
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5.2.2 ThingsBoard Configuration 

ThingsBoard support device management features using Web UI and REST API. With 

administrator access gateway_device01 is created which bridges communication through the 

proposed gateway.  Device ID 11e62fa0-e690-11ec-a502-79978f9d7342 is generated for the 

gateway_device01. It is also configured as gateway in the ThingsBoard platform which is depicted 

in Figure 5.5. The device is also assigned to certain customer which allows Customer users to fetch 

device data using REST APIs or Web UI. 

 

Figure 5.5 Gateway configuration as device on ThingsBoard cloud platform 

The standard treatment of data sent to the telemetry endpoint include identifying the device 

delivering the data, storing the values, and updating any dashboards associated to that device. The 

device is recognised by the device access token provided in the request. The ThingsBoard access 

token utilised for the gateway in this study is shown in Figure 5.6. In this work, we'll use $ACCESS 

TOKEN, which stands for access token device credentials. In the username field, the application 

must send a MQTT CONNECT message with the username $ACCESS TOKEN. The following 

are possible return codes and their causes during the connect sequence: (i) 0x00 Connected - 

Successfully connected to ThingsBoard MQTT server. (ii)0x04 Connection Refused, bad username 

or password - Username is empty. (iii) 0x05 Connection Refused, not authorized - Username 

contains invalid $ACCESS_TOKEN. 
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Figure 5.6 Gateway access token credentials generated on ThingsBoard 

When the data is received by the ThingsBoard cloud, it is processed by the ThingsBoard cloud's 

rules engine. Data handling has not been subjected to any additional rules for this investigation. 

ThingsBoard allows defining rules to apply to incoming messages and message processing plugins. 

Filters for receiving messages, processors for adding metadata to messages, and actions for 

converting messages to new custom messages passed to plugins are all part of the rule engine. 

These functions can be used to perform some basic data processing activities, but not more complex 

steps. Aggregating data over time is not easy because it cannot track previously received values. 

Also, each rule script only allows access to values received from a single device, so it does not 

allow aggregation of values received from multiple devices at the same time. ThingsBoard also 

offers the possibility to create several containers called assets to reconstruct the data to upload the 

results of the data processing. ThingsBoard provides a REST API for managing entities such as 

devices and assets, retrieving data from telemetry, and a REST plugin for sending HTTP requests 

to external endpoints. Each access token is used to provide bridging between the gateway device 

and the ThingsBoard. Next, a connection to the MQTT broker is established through the 

Connection feature of ThingsBoard. The MQTT system is an API endpoint that allows telemetry 

to be uploaded to ThingsBoard. Finally, the telemetry is uploaded to the ThingsBoard using the 

MQTT publishing feature.  
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5.3 Gateway Transferring Node1 data to ThingsBoard 

The proposed multiprotocol gateway receives DHT22 sensor temperature-humidity data 

transferred by Node1 Raspberry Pi 3 through Modbus TCP protocol and publish the data to 

ThingsBoard cloud over MQTT protocol. Since the gateway cannot perform read or write 

operations for Modbus TCP/IP protocol, it accepts read/write requests and replies to a message to 

node1 client. As the gateway has register map for all data types with desired size, these registers 

receive read/write requests from the node1 Raspberry pi 3. For full read/write protocol on discrete 

and register and payload builder/decoder utilities PyModbusTCP library has been used. The 

precision of the data is changed based on the Modbus register on the gateway's data size constraint. 

“json.dumps(data)” is used to convert the sensor data to JSON format. To publish telemetry data 

to ThingsBoard server node, gateway publish message to the following topic: 

“v1/devices/me/telemetry”. Access token 'UEUAObQdVgtGjbRDXj80' and publishing broker 

“thingsboard.cloud” and port 1883 are also initialized to publish data into the platform. Figure 5.7 

demonstrates gateway publishing sensor data receiving from node1 to the ThingsBoard platform. 

 

Figure 5.7 Gateway publishing Node1 data to ThingsBoard Cloud 

5.4 Gateway Sending Node2 data to ThingsBoard 

The proposed multiprotocol gateway receives BME280 sensor pressure-altitude data transferred 

by Node2 Arduino UNO Wi-Fi through WebSocket protocol and publish the data to ThingsBoard 

cloud over MQTT protocol. WebSocket API is used to receive sensor data from the nodes to the 

gateway. With the help of requests.post () method the formatted payload is received and stored to 
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the local database. The data is converted using the built-in Python JSON library. In this experiment, 

WebSocket server in the gateway, becomes ready for listening data from node3 which 

communicates over WebSocket protocol. Node2 Arduino Uno creates client socket and tries to 

establish a communication link to the gateway server using its IP address and port number 80.  

When the communication established between node 2 and gateway server, gateway receives 

pressure and altitude values from node2 Arduino Uno Wi-Fi. Gateway enables publishing pressure 

and altitude telemetry data real-time to publish message to the following topic: 

“v1/devices/me/telemetry” on ThingsBoard platform.  The gateway also transfers data stored in the 

database based on the scheduling policy set by the administrator. To publish data into the platform, 

the access token and publishing broker "thingsboard.cloud" are also set up, as well as port 1883. 

Figure 5.8 shows the gateway sending sensor data from Node1 to the ThingsBoard platform. 

 

Figure 5.8 Gateway publishing node1 data to ThingsBoard cloud 

5.5 Gateway Publishing Node3 data to ThingsBoard 

The proposed multiprotocol gateway receives MQ135 environmental sensor air quality index data 

transferred by Node3 ESP32 through MQTT protocol and publish the data to ThingsBoard cloud 

over MQTT protocol. The PubSubClient library enables publish/subscribe messaging on the 

gateway that supports MQTT. The gateway acting as MQTT broker is configured to subscribe to 

the topic which node3 is using to publish the values. After node3 connects to the gateway, it starts 

a loop reading from the environmental sensor every 10 seconds by subscribing the value to the 

topic “/client/node3/mqtt/”. After receiving data on the gateway, data is sent to the to publish 
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telemetry data to ThingsBoard cloud to the topic “v1/devices/me/telemetry”. Before publishing 

sensor values to ThingsBoard platform, “json.dumps(data)” is used to process the sensor data to 

JSON format. paho.Client("control1"), access token 'UEUAObQdVgtGjbRDXj80' and publishing 

broker “thingsboard.cloud” and port 1883 are also set to publish data into the platform. Figure 5.9 

demonstrates gateway publishing air quality sensor data receiving from node3 to the ThingsBoard 

platform. 

 

Figure 5.9 Gateway publishing node3 data to ThingsBoard cloud 

5.6 Real-time Visualization on ThingsBoard 

ThingsBoard's integration APIs allow custom applications to be built, and they use their own data 

visualisation tools. The software's complex stack technology ensures seamless performance, while 

its error-free data analytics provide real-time insights into the device usage patterns. Using the 

MQTT transport protocol, the multiprotocol gateway sends all sensor information to the 

ThingsBoard cloud platform. The platform receives data under topic “v1/devices/me/telemetry” 

and stores in SQL(PostgreSQL) databases which stores entities (devices, assets, customers, 

dashboards, etc.) and telemetry data (attributes, time series sensor readings, statistics, events). SQL 

storage is used as the experiment is considered to receive less than 5000 data points per second. 

The latest time series data values are queried within a specified time range using flexible 

aggregation. When the  

message is successfully saved to the rule engine queue specified in the device profile, the device 

that delivers the message containing the time series data to the ThingsBoard receives an 
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acknowledgment. ThingsBoard can receive multiple telemetry data independently from multiple 

devices at the same time, but here a gateway is configured to run the experiment. Devices 

configured as Gateway_device01 on the ThingsBoard platform receive telemetry data from the 

multi-protocol gateway. As seen in Figure 5.10, gateway is sending all the Temperature 26.3 degree 

Celsius, humidity 76.9%, atmospheric pressure 1002.82 hPa, altitude 87.40 meter, and air quality 

index 22 values which are received by the gateway_device01 device on the ThingsBoard platform 

with timestamp.   

 

Figure 5.10 Latest telemetry received by the device on ThingsBoard cloud platform 

Customizable IoT dashboards can be created using the Web UI. Numerous widgets that visualise 

data from multiple devices may be included in an IoT dashboard. Dashboard is created from the 

Dashboard group. ThingsBoard gives developers access to a large library of pre-set widgets 

organized into macro categories such as time series, recent values, controls, alarms, and static 

widgets. Different types of graphical solutions are available in each category, including charts and 

tables, maps, simple HTML maps, GPIO (general purpose input / output) controllers, analog and 

digital gauges. Entity aliases determines specific devices and assets to display on the dashboard. A 

single entity is configured for displaying gateway_device01 data to the widget library. 

ThingsBoard also allows users to create comprehensive dashboards for data visualisation that are 

updated in real-time and can be modified with over 30 widgets. Here, analog gauges and digital 
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gauges are used to show graphical visualization for temperature, humidity, atmospheric pressure, 

altitude, and air quality index. All these widgets show float value of the sensors. The dashboard in 

Figure 5.11 has five display widgets: one showing the last temperature reading, one showing all 

the last percentage humidity readings for the previous hour, one showing the last atmospheric 

pressure reading, one showing last altitude and air quality index readings at Cote des Neiges area 

in Montreal, Canada. This type of widgets uses values of entity attributes or time series as a data 

source. Different widgets can be set for same entity attribute to demonstrate wide range of 

visualization interface. 

 

Figure 5.11 Real-time data visualization dashboard on ThingsBoard platform 

5.7 Results 

As discussed in the 2.5 Research Gap, different interaction paradigms are used in communication 

protocols for data propagation, such as request/response and publish/subscribe. The typical 

architecture in production environments consists of a large number of gadgets, sensors, and 

gateways that might converse via various protocols. The fundamental problem with current 

interoperable solutions is that there isn't a good way to integrate many IoT protocols into a gateway, 

have efficient interoperable communication to connect the sensors, IIoT devices, and machines, 

and integrate the cloud for platforms that are compatible. To overcome these challenges, we 

proposed an interoperable IoT system in a low-cost gateway that can communicate with different 

and heterogenous devices. To demonstrate communication between the gateway, connected 
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devices and platforms, we have taken three different embedded devices Raspberry Pi3, Arduino 

Uno Wi-Fi and ESP32.We also have used three different sensors DHT22, BME280 and MQ135 

embedded with the above mentioned three devices. Our feasibility study of interoperable 

communication includes following approaches. 

▪ Different devices with different protocols will transfer sensor data to gateway. 

▪ Gateway receives data from different protocol, bridges communication and transfer to 

database 

▪ Gateway transfers sensor data to third party cloud platform with platform specific protocol 

The gateway receives data from three different embedded device Raspberry Pi 3, Arduino Uno Wi-

Fi and ESP32 over three different protocols such as Modbus TCP, WebSocket and MQTT. The 

gateway receives the signal, processes, and transfers the sensors values real time into ThingsBoard 

IoT platform over MQTT protocol. To address the IoT Interoperability challenges, the gateway can 

provide the strategy of using different protocol integration, and data conversion, as well as 

integrating real-time data analysis with Kafka and Spark platforms on ThingsBoard platform for 

big data analytic applications. Integrating different protocol-enabled devices into each system 

enables the scalability, automation, and flexibility of Industry 4.0 manufacturing systems. 

Performing feasibility experiment with the proposed and developed interoperable IoT gateway and 

open source ThingsBoard IoT platform concludes following results. 

▪ The IoT gateway communicates with any device with any of the 5 protocols such as MQTT, 

CoAP, HTTP, WebSocket and ModbusTCP 

▪ IoT gateway works as a hub and receives data from different devices with any of the above 

mentioned 5 protocols 

▪ The gateway transforms the data with JSON format, communicates with the third party 

ThingsBoard platform 

▪ As ThingsBoard communicates via MQTT protocol, gateway transfers sensors data to the 

platform with MQTT protocol. 

▪ Gateway also receives signal and input from the third party IoT platform. Thus, both way 

duplex communication is achieved. . This communication is bidirectional as it allows two-

way communication with the gateway. 
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 Successful integration of the multi-protocol gateway to the open source IoT ThingsBoard platform 

supports interoperable data exchanges compatibility of the proposed gateway which succeeds 

overcoming the challenges described in research gap. This multi-protocol gateway performs data 

formatting, protocol bridging per gateway architecture mentioned in the research design in chapter 

3. The IoT interoperable gateway system will solve the interoperable challenges described in the 

literature review. Developing interoperable IoT architecture on a low-cost hardware which also 

satisfies RQ1 and RQ2 discussed in 1.1 Research Questions, and it could be used as interoperable 

middleware in small and medium enterprises. Interoperable integration and uniform access of these 

different IoT standards are provided to ensure seamless connectivity with different type of CPSs, 

devices, resources, and applications. 

5.8 Limitations 

Although the proposed IoT gateway can be used as a potential connectivity option for connecting 

heterogenous devices, machines, sensors, low powered CPSs, it has some limitations. One problem 

is while there are many other protocols used in the industrial communication, it can communicate 

through only 5 protocols MQTT, CoAP, HTTP, WebSocket and ModbusTCP. IoT systems are 

interconnected and communicate through networks. Therefore, despite all security measures, the 

system remains largely uncontrollable and can lead to various types of network attacks especially 

more prone to overall destruction in DoS attacks. The hardware that is used to implement the 

gateway is low powered and low processing power. For connecting more than 30 devices and 

performing more complex tasks, Raspberry Pi IoT gateway won’t be useful because it doesn’t have 

the resources and the capacity to help due to its limited capacity and capabilities. In that case, for 

more connected devices, powerful gateway is required to implement the proposed interoperable 

system. 
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 CONCLUSION AND RECOMMENDATIONS 

This chapter provides a summary on the approach adopted by this research work, major 

contributions and points out some areas and scope of future work.   

6.1 Conclusion 

For interoperable M2M communication between heterogenous devices, we proposed and 

developed an interoperable middleware gateway by enabling multi-protocol integration to maintain 

robustness and immediate action plan towards sustainable Industry 4.0 manufacturing. In this 

research, we introduced an interoperable middleware gateway based IoT solution which can 

effectively handle IoT data from multi-protocol enabled devices, and transmit data to interconnect 

IoT objects, applications, heterogenous devices and machines with different access protocols. For 

collaborative M2M optimization with intelligent adaptation and integration at semantic level, we 

discussed findings of common access protocols to structure any data so that the manner of 

processing the information will be interpretable among the cyber-physical systems. This research 

presented protocol selection framework which allows users to select the suitable protocol for the 

application in regards of their standards and data transmission capabilities to accelerate safe and 

high-speed data transfer among end IoT devices. The research work implemented IoT multi-

protocols such as HTTP, MQTT, CoAP, WebSocket, and Modbus TCP enabled low-cost gateways 

for effective full-duplex interoperable M2M communication and cloud integration among cyber-

physical systems. The research also introduced data formatting method in the gateway to overcome 

data integration challenges from different devices and systems for a common systematization and 

representation in JSON format. To accommodate sheer scope of data and to address data integration 

and data interoperability challenges, three data storages and databases are presented for high 

reliability and rapid access to data. This is achieved by deploying the proposed Middleware 

gateway to local and cloud database, OPC Server based KEPServerEX to connect HMI and Data 

Logger, and Microsoft Azure IoT hub databases. In this research, we evaluated the potential gain 

of deploying the middleware  gateway in a case study to provide a real-time cloud based integration 

and visualization module that facilitates sensor-based data collection between nodes, gateway 

integration with parametric control mechanisms and, interoperability management and to examine 

the potential benefits of analyzing the included workflow with the goal of validating the 
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interoperability concept of integrating any platforms via any of the industry standard protocols 

MQTT, CoAP, HTTP, Modbus TCP and WebSocket with the developed multi-protocol gateway. 

6.2 Future Work 

There can be some future work to extend the functionality and connectivity of the multi-protocol 

gateway. Future development can be expanding the supported OPC UA service and AMQP, CAN, 

CC-Link protocols implementation and PLC and other controllers bridging in the gateway. Future 

experimental tests will evaluate the performance of data analytics systems in terms of 

responsiveness, flexibility, and scalability in large, real-world scenarios. Implementing large 

number of multi-protocol gateways and devices in mesh network with scalability would be useful 

for long range Industrial IoT networks and large industrial manufacturing plants. Furthermore, fog 

and edge computing paradigm for data processing and AI techniques can be included in future 

work by examining the gateway module's connection, data transmission and synchronization 

capabilities. Future study could concentrate on delivering IoT security via the IoT Edge gateway, 

which is one of the primary difficulties facing IoT networks. The protocols and standards for IoT 

communication are continually changing. As a result, additional research into other protocols to 

include in the suggested middleware solution will be useful. 

 

 

 

 

 

 

 

 



84 

REFERENCES 

 

Adamson, G., Wang, L., Holm, M., & Moore, P. (2017). Cloud manufacturing – a critical review 

of recent development and future trends. International Journal of Computer Integrated 

Manufacturing, 30(4-5), 347-380. DOI: 10.1080/0951192X.2015.1031704 

Alghamdi, T., Lasebae, A., & Aiash, M. (2013). Security Analysis of the Constrained Application 

Protocol in the Internet of Things. 2013 Second International Conference on Future Generation 

Communication Technology (FGCT). DOI: 10.1109/FGCT.2013.6767217 

Bandyopadhyay, S., & Bhattacharyya, A. (2013). Lightweight Internet protocols for web 

enablement of sensors using constrained gateway devices. 2013 International Conference on 

Computing, Networking and Communications (ICNC) 334-340. DOI: 

10.1109/ICCNC.2013.6504105 

Barros, V., Junior, S., Bruschi, S., Monaco, F., & Estrella, J. (2019). An IoT Multi-Protocol 

Strategy for the Interoperability of Distinct Communication Protocols applied to Web of Things. 

DOI: 10.1145/3323503.3349546 

Casillo, M., Colace, F., Santo, M. D., Lorusso, A., Mosca, R., & Santaniello, D. (2021). VIOT_Lab: 

A Virtual Remote Laboratory for Internet of Things Based on ThingsBoard Platform. Paper 

presented at the 2021 IEEE Frontiers in Education Conference (FIE). Retrieved from 

https://ieeexplore.ieee.org/document/9637317/ 

Cavalieri, S. (2021). Semantic Interoperability between IEC 61850 and oneM2M for IoT-Enabled 

Smart Grids. Sensors, 21(7). DOI: 10.3390/s21072571 

De S., L. M. S., Spiess, P., Guinard, D., Koehler, M., Karnouskos, S., & Savio, D. (2008). 

SOCRADES: A web service based shop floor integration infrastructure. In The Internet of Things. 

Lecture Notes in Computer Science (Vol. 4952): Springer, Berlin, Heidelberg. 

Derhamy, H., Eliasson, J., & Delsing, J. (2017). IoT Interoperability—On-Demand and Low 

Latency Transparent Multiprotocol Translator. IEEE Internet of Things Journal, 4(5), 1754 - 1763. 

DOI: 10.1109/JIOT.2017.2697718 

https://doi.org/10.1080/0951192X.2015.1031704
http://dx.doi.org/10.1109/FGCT.2013.6767217
https://10.0.4.85/ICCNC.2013.6504105
http://10.0.4.121/3323503.3349546
https://ieeexplore.ieee.org/document/9637317/
https://doi.org/10.3390/s21072571
https://10.0.4.85/JIOT.2017.2697718


85 

Derhamy, H., Rönnholm, J., Delsing, J., Eliasson, J., & Deventer, J. v. (2017). Protocol 

interoperability of OPC UA in service oriented architectures. Paper presented at the 2017 IEEE 

15th International Conference on Industrial Informatics (INDIN), Emden, Germany. Retrieved 

from https://ieeexplore.ieee.org/document/8104744/ 

Desai, P., Sheth, A., & Anantharam, P. (2015, Jun 27-Jul 02). Semantic Gateway as a Service 

architecture for IoT Interoperability. Paper presented at the IEEE 3rd International Conference on 

Mobile Services MS, New York, NY (pp. 313-319).DOI: 10.1109/MobServ.2015.51 

Dionisio, R., Malhao, S., & Torres, P. (2020). Development of a Smart Gateway for a Label Loom 

Machine using Industrial IoT Technologies. International Journal of Online and Biomedical 

Engineering (iJOE), 16(4), 6-14. DOI: 10.3991/ijoe.v16i04.11853 

Elattar, M., Wendt, V., & Jasperneite, J. (2017). Communications for Cyber-Physical Systems. 

Springer Series in Wireless Technology: Springer, Cham. 

ElMaraghy, H. A. (2005). Flexible and reconfigurable manufacturing systems paradigms. 

International Journal of Flexible Manufacturing Systems, 17(4), 261-276. DOI: 10.1007/s10696-

006-9028-7 

Foster, A. (2017). Messaging technologies for the industrial internet and the internet of things 

whitepaper. PrismTech.  

Garrocho, C. T. B., Klippel, E., Machado, A. V., Ferreira, C. M. S., Cavalcanti, C., & Oliveira, R. 

A. R. (2020, Nov 23-27). Blockchain-based Machine-to-Machine Communication in the Industry 

4.0 applied at the Industrial Mining Environment. Paper presented at the 10th Brazilian 

Symposium on Computing Systems Engineering (SBESC), Florianopolis, Brazil (pp. 1-8).DOI: 

10.1109/SBESC51047.2020.9277852 

Givehchi, O., Landsdorf, K., Simoens, P. T. W., & Colombo, A. W. (2017). Interoperability for 

industrial cyber-physical systems : an approach for legacy systems. IEEE TRANSACTIONS ON 

INDUSTRIAL INFORMATICS, 13 3370–3378. DOI: 10.1109/TII.2017.2740434 

González, I., Calderón, A. J., & Portalo, J. M. (2021). Innovative Multi-Layered Architecture for 

Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart 

Microgrid. Sustainability 2021, 13(4), 2234. DOI: 10.3390/su13042234 

https://ieeexplore.ieee.org/document/8104744/
https://doi.org/10.1109/MobServ.2015.51
https://doi.org/10.3991/ijoe.v16i04.11853
https://doi.org/10.1007/s10696-006-9028-7
https://doi.org/10.1007/s10696-006-9028-7
https://doi.org/10.1109/SBESC51047.2020.9277852
https://doi.org/10.1109/TII.2017.2740434
https://doi.org/10.3390/su13042234


86 

Grangel-González, I. (2017). Semantic Data Integration for Industry 4.0 Standards. Paper 

presented at the European Knowledge Acquisition Workshop. Retrieved from 

https://link.springer.com/chapter/10.1007/978-3-319-58694-6_36 

Guinard, D., & Trifa, V. (2016). Building the web of things: with examples in node. js and 

raspberry pi: Manning Publications Co. 

Hatzivasilis, G., Askoxylakis, I., Alexandris, G., Anicic, D., Bröring, A., Kulkarni, V., . . . 

Spanoudakis, G. (2018). The Interoperability of Things: Interoperable solutions as an enabler for 

IoT and Web 3.0. Paper presented at the 2018 IEEE 23rd International Workshop on Computer 

Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, Spain. 

Retrieved from https://ieeexplore.ieee.org/document/8514952/ 

Henschke, M., Wei, X., & Zhang, X. (2020). Data Visualization for Wireless Sensor Networks 

Using ThingsBoard. Paper presented at the 2020 29th Wireless and Optical Communications 

Conference (WOCC). Retrieved from https://ieeexplore.ieee.org/document/9114929/ 

Hermann, M., Pentek, T., & Otto, B. (2015). Design Principles for Industrie 4.0 Scenarios: A 

Literature Review. 

Honkola, J., Laine, H., Brown, R., & Oliver, I. (2009). Cross-Domain Interoperability: A Case 

Study. Smart Spaces and Next Generation Wired/Wireless Networking 22-31. DOI: 10.1007/978-

3-642-04190-7_3 

Iatrou, C. P., & Urbas, L. (2016a). Efficient OPC UA binary encoding considerations for embedded 

devices. 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) 1148-1153. 

DOI: 10.1109/INDIN.2016.7819339 

Iatrou, C. P., & Urbas, L. (2016b). OPC UA hardware offloading engine as dedicated peripheral 

IP core. Paper presented at the 2016 IEEE World Conference on Factory Communication Systems 

(WFCS), Aveiro, Portugal. Retrieved from https://ieeexplore.ieee.org/document/7496520/ 

Izza, S. (2009). Integration of industrial information systems: from syntactic to semantic 

integration approaches. 3 1-57. DOI: 10.1080/17517570802521163 

John, T., & Vorbröcker, M. (2020). Enabling IoT connectivity for ModbusTCP sensors. Paper 

presented at the 2020 25th IEEE International Conference on Emerging Technologies and Factory 

Automation (ETFA). Retrieved from https://ieeexplore.ieee.org/document/9211999/ 

https://link.springer.com/chapter/10.1007/978-3-319-58694-6_36
https://ieeexplore.ieee.org/document/8514952/
https://ieeexplore.ieee.org/document/9114929/
http://dx.doi.org/10.1007/978-3-642-04190-7_3
http://dx.doi.org/10.1007/978-3-642-04190-7_3
https://doi.org/10.1109/INDIN.2016.7819339
https://ieeexplore.ieee.org/document/7496520/
https://doi.org/10.1080/17517570802521163
https://ieeexplore.ieee.org/document/9211999/


87 

Kadadi, A., Agrawal, R., Nyamful, C., & Atiq, R. (2014). Challenges of data integration and 

interoperability in big data. 2014 IEEE International Conference on Big Data (Big Data) 38-40. 

DOI: 10.1109/BigData.2014.7004486 

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for 

implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German 

manufacturing industry; final report of the Industrie 4.0 Working Group: Forschungsunion. 

Kang, B., & Choo, H. (2018). An experimental study of a reliable IoT gateway. ICT Express, 4(3), 

130-133. DOI: 10.1016/j.icte.2017.04.002 

Kant, R., & Bhattacharya, S. (2017). Sensors for Air Monitoring. In Environmental, Chemical and 

Medical Sensors (pp. 9- 30): SpringerLink. 

Kinnera, B. K. S., Subbareddy, S., & Luhach, A. (2019). IOT based Air Quality Monitoring System 

Using MQ135 and MQ7 with Machine Learning Analysis. Scalable Computing: Practice and 

Experience, 20 599- 606. DOI: 10.12694/scpe.v20i4.1561 

Kshetri, N. (2017). Can Blockchain Strengthen the Internet of Things? IT Professional, 19(4), 68-

72. DOI: 10.1109/MITP.2017.3051335 

Kubicek, H., Cimander, R., & Scholl, H. (2011). Layers of Interoperability. In Organizational 

Interoperability in E-Government (pp. 85-96): Springer, Berlin, Heidelberg. 

Lelli, F. (2019). Interoperability of the Time of Industry 4.0 and the Internet of Things. Future 

Internet, 11( 2), 36. DOI: 10.3390/fi11020036 

Li, H. S., Lai, L. F., & Poor, H. V. (2012). Multicast Routing for Decentralized Control of Cyber 

Physical Systems with an Application in Smart Grid. Ieee Journal on Selected Areas in 

Communications, 30(6), 1097-1107. DOI: 10.1109/JSAC.2012.120708 

Light, R. (2017). Mosquitto: server and client implementation of the MQTT protocol. The Journal 

of Open Source Software, 2. DOI: 10.21105/joss.00265 

Loskyll, M. (2012). Towards Semantic Interoperability in Industrial Production. In Semantic 

Interoperability: Issues, Solutions, Challenges (pp. 71-104). 

https://doi.org/10.1109/BigData.2014.7004486
https://doi.org/10.1016/j.icte.2017.04.002
http://10.0.49.150/scpe.v20i4.1561
https://doi.org/10.1109/MITP.2017.3051335
https://doi.org/10.3390/fi11020036
https://doi.org/10.1109/JSAC.2012.120708
https://doi.org/10.21105/joss.00265


88 

Lu, Y. Q., & Asghar, M. R. (2020). Semantic communications between distributed cyber-physical 

systems towards collaborative automation for smart manufacturing. Journal of Manufacturing 

Systems, 55 348-359. DOI: 10.1016/j.jmsy.2020.05.001 

Maciej Wasilak, & Amsüss, C. (2014). chrysn/aiocoap. Retrieved from 

http://github.com/chrysn/aiocoap/ 

Mai, S., Vu, V. T., & Myeong-Jae, Y. (2011). An OPC UA client development for monitoring and 

control applications. Paper presented at the Proceedings of 2011 6th International Forum on 

Strategic Technology, Harbin, China. Retrieved from 

https://ieeexplore.ieee.org/document/6021120/ 

Mattsson, S., Karlsson, M., Fast-Berglund, A., & Hansson, I. (2014, Apr 28-30). Managing 

production complexity by empowering workers: six cases. Paper presented at the 47th CIRP 

Conference on Manufacturing Systems, Univ Windsor, Windsor, Canada (Vol. 17, pp. 212-

217).DOI: 10.1016/j.procir.2014.02.041 

Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and 

Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12). DOI: 

10.3390/SU10124779 

Meng, Z. Z., Wu, Z. P., & Gray, J. (2017). A Collaboration-Oriented M2M Messaging Mechanism 

for the Collaborative Automation between Machines in Future Industrial Networks. Sensors, 

17(11). DOI: 10.3390/s17112694 

Mourad, M. H., Nassehi, A., Schaefer, D., & Newman, S. T. (2020). Assessment of interoperability 

in cloud manufacturing. Robotics and Computer-integrated Manufacturing, 61. DOI: 

10.1016/j.rcim.2019.101832 

Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP 

and HTTP. Paper presented at the 2017 IEEE International Systems Engineering Symposium 

(ISSE). Retrieved from https://ieeexplore.ieee.org/document/8088251/ 

Pan, F., Pang, Z., Wen, H., Luvisotto, M., Xiao, M., Liao, R., & Chen, J. (2019). Threshold-Free 

Physical Layer Authentication Based on Machine Learning for Industrial Wireless CPS. IEEE 

Transactions on Industrial Informatics, 15(12), 6481-6491. DOI: 10.1109/TII.2019.2925418 

https://doi.org/10.1016/j.jmsy.2020.05.001
http://github.com/chrysn/aiocoap/
https://ieeexplore.ieee.org/document/6021120/
https://doi.org/10.1016/j.procir.2014.02.041
https://doi.org/10.3390/SU10124779
http://dx.doi.org/10.3390/s17112694
https://doi.org/10.1016/j.rcim.2019.101832
https://ieeexplore.ieee.org/document/8088251/
https://doi.org/10.1109/TII.2019.2925418


89 

Paolis, L. T. D., Luca, V. D., & Paiano, R. (2018). Sensor data collection and analytics with 

thingsboard and spark streaming. Paper presented at the 2018 IEEE Workshop on Environmental, 

Energy, and Structural Monitoring Systems (EESMS). Retrieved from 

https://ieeexplore.ieee.org/document/8405822/ 

Parto, M. (2017). A secure MTConnect compatible IoT platform for machine monitoring through 

integration of fog computing, cloud computing, and communication protocols. (Georgia Institute 

of Technology). Retrieved from 

https://smartech.gatech.edu/bitstream/handle/1853/59283/PARTODEZFOULI-THESIS-2017.pdf 

Qiao, L., & Feng, L. (2011). The future of the device integration: Field device integration. Paper 

presented at the 2011 IEEE 2nd International Conference on Software Engineering and Service 

Science, Beijing. Retrieved from https://ieeexplore.ieee.org/document/5982422/ 

R.L., C. (2005). Toward technical interoperability in telemedicine. Telemed J E Health, 11 384–

404. DOI: 10.1089/tmj.2005.11.384 

Schuh, G., Potente, T., Varandani, R., Hausberg, C., & Fränken, B. (2014). Collaboration Moves 

Productivity to the Next Level. Procedia CIRP, 17 3-8. DOI: 10.1016/j.procir.2014.02.037 

Serpanos, D., & Wolf, M. (2018). Industrial Internet of Things. In Internet-of-Things (IoT) 

Systems: Architectures, Algorithms, Methodologies (pp. 37-54). Cham: Springer International 

Publishing. 

Shang, C., & You, F. (2019). Data Analytics and Machine Learning for Smart Process 

Manufacturing: Recent Advances and Perspectives in the Big Data Era. Engineering, 5(6), 1010-

1016. DOI: 10.1016/j.eng.2019.01.019 

Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the 

concept and of energy management approached in production based on the Internet of Things 

paradigm. 2014 IEEE International Conference on Industrial Engineering and Engineering 

Management 697-701. DOI: 10.1109/IEEM.2014.7058728 

Silva, D., Carvalho, L. I., Soares, J., & Sofia, R. C. (2021). A Performance Analysis of Internet of 

Things Networking Protocols: Evaluating MQTT, CoAP, OPC UA. Applied Sciences, 11(11). 

DOI: 10.3390/app11114879 

https://ieeexplore.ieee.org/document/8405822/
https://smartech.gatech.edu/bitstream/handle/1853/59283/PARTODEZFOULI-THESIS-2017.pdf
https://ieeexplore.ieee.org/document/5982422/
https://doi.org/10.1089/tmj.2005.11.384
https://doi.org/10.1016/j.procir.2014.02.037
https://doi.org/10.1016/j.eng.2019.01.019
https://doi.org/10.1109/IEEM.2014.7058728
https://doi.org/10.3390/app11114879


90 

Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of 

Things: Challenges, Opportunities, and Directions. Ieee Transactions on Industrial Informatics, 

14(11), 4724-4734. DOI: 10.1109/TII.2018.2852491 

Skvorc, D., Horvat, M., & Srbljic, S. (2014). Performance evaluation of Websocket protocol for 

implementation of full-duplex web streams. Paper presented at the 2014 37th International 

Convention on Information and Communication Technology, Electronics and Microelectronics 

(MIPRO), Opatija, Croatia. Retrieved from https://ieeexplore.ieee.org/document/6859715/ 

Uy, N. Q., & Nam, V. H. (2019). A comparison of AMQP and MQTT protocols for Internet of 

Things. Paper presented at the 2019 6th NAFOSTED Conference on Information and Computer 

Science (NICS). Retrieved from https://ieeexplore.ieee.org/document/9023812/ 

Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A.,Doody, P. 

(2009). Internet of Things Strategic Research Roadmap. The Cluster of European Research Proje, 

Tech. Rep. 

W., M. (2014). Industrie 4.0: Smart Manufacturing for the Future. Berlin: Retrieved from 

http://www.gtai.de/GTAI/Navigation/EN/Invest/Service/publications,did=917080.html 

Wang, L., Orban, P., Cunningham, A., & Lang, S. (2004). Remote real-time CNC machining for 

web-based manufacturing. Robotics and Computer-integrated Manufacturing, 20 563-571. DOI: 

10.1016/J.RCIM.2004.07.007 

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical 

systems in manufacturing. Journal of Manufacturing Systems, 37 517-527. DOI: 

10.1016/j.jmsy.2015.04.008 

Waurzyniak, P. (2001). Electronic intelligence in manufacturing. Manufacturing Engineering, 127 

44-44. 

Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0 - Standardization 

as the crucial challenge for highly modular, multi-vendor production systems. IFAC-

PapersOnLine, 48(3), 579-584. DOI: 10.1016/j.ifacol.2015.06.143 

Wilder, C., Jose, M., Harold, P., & Alvarado, J. D. (2021). Internet of things: a multiprotocol 

gateway as solution of the interoperability problem. In Bonaventuriana (Ed.), Mechatronics, 

Electronics and Telecommunications Advances Towards Industry 4.0 (pp. 24): arXiv. 

https://doi.org/10.1109/TII.2018.2852491
https://ieeexplore.ieee.org/document/6859715/
https://ieeexplore.ieee.org/document/9023812/
http://www.gtai.de/GTAI/Navigation/EN/Invest/Service/publications,did=917080.html
https://doi.org/10.1016/J.RCIM.2004.07.007
https://doi.org/10.1016/j.jmsy.2015.04.008
https://doi.org/10.1016/j.ifacol.2015.06.143


91 

Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial Communication: 

Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial 

Electronics Magazine, 11(1), 17-27. DOI: 10.1109/MIE.2017.2649104 

Xiao, W., Huang, H., & Zhao, G. (2018). Communication methodology between machine tools 

using MTConnect protocol. MATEC Web of Conferences, 175. DOI: 

10.1051/matecconf/201817503066 

Zarko, I. P. (2019). Why Interoperability Matters to Your or Any IoT Solution. 2019 15th 

International Conference on Telecommunications (ConTEL) 1-1. DOI: 

10.1109/ConTEL.2019.8848558 

Zeid, A., Sundaram, S., Moghaddam, M., Kamarthi, S., & Marion, T. (2019). Interoperability in 

Smart Manufacturing: Research Challenges. Machines, 7(2). DOI: 10.3390/machines7020021 

Zuehlke, D. (2008). SmartFactory – from Vision to Reality in Factory Technologies. IFAC 

Proceedings Volumes, 41(2), 14101-14108. DOI: 10.3182/20080706-5-KR-1001.02391 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1109/MIE.2017.2649104
http://dx.doi.org/10.1051/matecconf/201817503066
https://doi.org/10.1109/ConTEL.2019.8848558
http://dx.doi.org/10.3390/machines7020021
https://doi.org/10.3182/20080706-5-KR-1001.02391


92 

APPENDIX A   NODE DEVICES CODE AND ALGORITHM 

A.1 Node1 Raspberry Pi 3B Sending Temperature-Humidity Data to Gateway over HTTP, 

CoAP and ModbusTCP Protocol 

import time 

import paho.mqtt.client as mqtt 

from pyModbusTCP.client import ModbusClient 

import Adafruit_DHT 

import datetime 

import requests 

import urllib 

 

import logging 

import asyncio 

from aiocoap import * 

 

 

DHT_SENSOR = Adafruit_DHT.DHT22 

DHT_PIN = 4 

 

ip = "192.168.0.106" 

 

deviceId = 'node1' 

client_server = mqtt.Client(deviceId) 

client_server.username_pw_set(username="project", password="A_project_b") 

host_server = ip 

 

 

flag = 0 

protocol_selection = 1 

protocol_sub_topic = "/client/"+deviceId 

mqtt_pub_topic = "/client/"+deviceId+"/mqtt" 

 

websocket_pub_topic = "/client/"+deviceId+"/websocket" 

 

htttp_url = "http://" + ip + "/http?" 

 

SERVER_HOST = ip 

SERVER_PORT = 502 

c = ModbusClient() 

c.host(SERVER_HOST) 

c.port(SERVER_PORT) 

 

logging.basicConfig(level=logging.INFO) 

 

 

delay_time = 10 

 

 

def on_message(client, userdata, message): 

    if(message.topic == protocol_sub_topic): 

        print("message received " ,str(message.payload.decode("utf-8"))) 

        print("message topic=",message.topic) 

        print("message qos=",message.qos) 



93 

        print("message retain flag=",message.retain) 

         

        global protocol_selection  

        protocol_selection = int(str(message.payload.decode("utf-8"))) 

 

 

def protocol_selection_loop(): 

   

    if(protocol_selection == 2): 

         

        print("http") 

     

    elif(protocol_selection == 3): 

        print("modbus") 

    elif(protocol_selection == 4): 

        print("coap") 

    else: 

        print("invalid")         

     

     

def take_time(): 

    # print("reading time") #-------------- 

    time_now = datetime.datetime.now() 

    time_now = str(time_now) 

    time_now = time_now.split(".") 

    time_now = str(time_now[0]) 

    # print("from take time: "+ str(time_now)) 

    return time_now 

 

 

async def main_put(str): 

 

    context = await Context.create_client_context() 

    # context = self.get_context_data(object=self.object) 

 

    await asyncio.sleep(2) 

 

    payload = str.encode("ascii") 

    request = Message(code=PUT, payload=payload, token=None, 

uri="coap://"+ip+"/put_request") 

 

    response = await context.request(request).response 

 

    print('Result: %s\n%r'%(response.code, response.payload.decode("ascii")))     

 

 

def on_connect(client_server, userdata, flags, rc): 

    global flag; 

    flag = 1 

    print("connected ok") 

 

def on_pub (client_server, userdata, result): 

    print("data published") 

 

def on_disconnect(client, userdata, rc): 

   global flag; 

   flag = 0 



94 

   print("disconnected") 

 

     

 

while True: 

    try: 

        humidity, temperature = Adafruit_DHT.read_retry(DHT_SENSOR, DHT_PIN) 

        if (flag == 0):  

            client_server.connect(host_server, port=1883, keepalive=60, 

bind_address="") 

            client_server.on_message = on_message 

            client_server.on_connect = on_connect 

            client_server.on_disconnect = on_disconnect 

            client_server.on_publish = on_pub 

            client_server.subscribe(protocol_sub_topic) 

            client_server.loop_start() 

         

        if humidity is not None and temperature is not None: 

             

            data_send = 

"\"Temperature\":"+str("{:.2f}".format(temperature))+","+"\"Humidity\":"+str("

{:.2f}".format(humidity)) 

#            data_send = "\"Temperature\":"+str("{:.2f}".format(temperature)) 

            temp = str("{:.2f}".format(temperature)) 

            hum = str("{:.2f}".format(humidity)) 

            payload = take_time() 

            payload += "|" 

            payload += data_send 

            print(payload) 

             

            protocol_selection_loop() 

         

         

             #Publish data over HTTP    

            if(protocol_selection == 2): X 

                print("2") 

                temp_url = htttp_url 

                time_ = take_time() 

                 

                f = { 't' : str(temp) , 'rh' : str(hum) , 'time' : str(time_), 

'device': deviceId } 

                payload = urllib.parse.urlencode(f); 

                temp_url += payload 

                print(temp_url) 

                 

                x = requests.get(temp_url) 

                print(x.status_code) 

                if(x.status_code == 200): 

                    print(x.text) 

                     

                else: 

                    print("failed") 

                     

                # time.sleep(delay_time) 

                #Publish data over Modbus TCP 

            elif(protocol_selection == 3): 

                print("3") 
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                if not c.is_open(): 

                    if not c.open(): 

                        print("unable to connect to 

"+SERVER_HOST+":"+str(SERVER_PORT)) 

                new_time = take_time() 

                new_time = new_time.split(" ") 

                 

                date1 = new_time[0] 

                date1 = date1.split("-") 

                 

                time1 = new_time[1] 

                time1 = time1.split(":") 

 

                 

                if c.is_open(): 

                     

                    temp = int(float(temp) * 100) 

                    hum = int(float(hum) * 100) 

                     

                    if (deviceId == 'node1'): 

                        is_ok = c.write_single_register(1, 1) 

                        is_ok = c.write_single_register(2, temp) 

                        is_ok = c.write_single_register(3, hum) 

                        is_ok = c.write_single_register(4, int(time1[0])) 

                        is_ok = c.write_single_register(5, int(time1[1])) 

                        is_ok = c.write_single_register(6, int(time1[2])) 

                        is_ok = c.write_single_register(7, int(date1[2])) 

                        is_ok = c.write_single_register(8, int(date1[1])) 

                        is_ok = c.write_single_register(9, int(date1[0])) 

                        

                     

                        

                #Publish data over CoAP 

            elif(protocol_selection == 4): 

                print("4") 

                payload += "@"+deviceId 

                asyncio.get_event_loop().run_until_complete(main_put(payload)) 

                 

                # time.sleep(delay_time) 

                 

                 

            else: 

                print("invalid") 

                 

            time.sleep(delay_time)    

                 

        else: 

            print("Failed to get data from DHT22") 

            # 2021-11-01 11:42:46|T:25.00,RH:72.60 

             

         

             

             

        

             

    except Exception as e: 

            print("Exception Message: {} ".format(e)) 
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A.2 Node2 Arduino UNO Wi-Fi Sending BME280 Sensor Pressure and Altitude Data to 

Gateway over WebSocket Protocol 

#include <WiFi.h> 

#include <WebServer.h> 

#include <WebSocketsClient.h> 

#include <ArduinoJson.h> 

#include <Wire.h> 

#include <SPI.h> 

#include <Adafruit_Sensor.h> 

#include <Adafruit_BME280.h> 

#define BME_SCK 13 

#define BME_MISO 12 

#define BME_MOSI 11 

#define BME_CS 10 

// Wifi Credentials 

const char* ssid = "MagicMan"; // Wifi SSID 

const char* password = "Sabbir1234"; //Wi-FI Password 

WebSocketsClient webSocket; // websocket client class instance 

StaticJsonDocument<100> doc; // Allocate a static JSON document 

 

void setup() { 

  // Connect to local WiFi 

  WiFi.begin(ssid, password); 

  Serial.begin(9600); 

  while (WiFi.status() != WL_CONNECTED) { 

    Serial.print("."); 

    delay(500); 

  } 

  Serial.println(); 

  Serial.print("IP Address: "); 

  Serial.println(WiFi.localIP()); // Print local IP address 

  delay(2000); // wait for 2s 

  //address, port, and URL path  

  webSocket.begin("192.168.0.106", 81, "/");  

  // webSocket event handler 

  webSocket.onEvent(webSocketEvent); 

  // if connection failed retry every 5s 

  webSocket.setReconnectInterval(5000); 

} 

void loop() { 

  webSocket.loop(); // Keep the socket alive 

} 

void webSocketEvent(WStype_t type, uint8_t * payload, size_t length) { 

  if (type == WStype_TEXT) 

  { 

    DeserializationError error = deserializeJson(doc, payload); // deserialize 

incoming Json String 

    if (error) { // Print erro msg if incomig String is not JSON formated 

      Serial.print(F("deserializeJson() failed: ")); 

      Serial.println(error.c_str()); 

      return; 

    } 

    const String pin_stat = doc["PIN_Status"];  

    const float BME280_Pdata=bme.readPressure() / 100.0F; 

    const float BME280_Adata=bme.readAltitude(SEALEVELPRESSURE_HPA); 
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    // Print the received data for debugging 

    Serial.print(String(pin_stat)); 

    Serial.print(String(BME280_Pdata)); 

    Serial.println(String(BME280_Adata)); 

    

  } 

} 

 

A.3 Node3 ESP32 Sending MQ135 Sensor Air Quality Data to Gateway over MQTT Protocol 

#include <WiFi.h> 

#include <PubSubClient.h> 

#include <SPI.h> 

#include <WiFiClientSecure.h> 

#define MQ135_THRESHOLD_1 300  

 

const int anPin = 35; //set analog pin 
const char* ssid = "MagicMan";//WIFI ssid 

const char* password = "Sabbir1234";//Wifi password 

const char* mqtt_server = "192.168.0.106";//mqtt server 

const char* mqtt_username = "project"; 

const char* mqtt_password = "A_project_b"; 

const char* mqtt_topic = "/client/node3/mqtt"; 

const char* clientID = "client_RFID"; // MQTT client ID 

WiFiClient wifiClient; 

//WiFiClientSecure wifiClient; 

PubSubClient client(mqtt_server, 1883, wifiClient);  

 

void callback(char* topic, byte* payload, unsigned int length) { 

  Serial.print("message arrived : "); 

  Serial.println(topic); 

 

  Serial.print("messahe: "); 

  for (int i = 0;i < length; i++) { 

    Serial.println((char)payload[i]); 

  } 

  Serial.println(); 

  if (String(topic)=="/device/node3/mqtt") { 

  Serial.print("hagu"); 

  if (topic=="1") { 

    Serial.println("one"); 

  } 

  else if (topic=="0"); { 

    Serial.println("zero"); 

    

  } 

  Serial.println("................."); 

} 

} 

 

void connect_MQTT(){ 

 if (client.connect(clientID, mqtt_username, mqtt_password)) { 

    Serial.println("Connected to MQTT Broker!"); 

    client.subscribe("/device/node2/websocket"); 

  } 
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  else { 

    Serial.println("Connection to MQTT Broker failed..."); 

  } 

}   

 

void setup_wifi() { 

    delay(10); 

    // We start by connecting to a WiFi network 

    Serial.println(); 

    Serial.print("Connecting to "); 

    Serial.println(ssid); 

    WiFi.begin(ssid, password); 

    while (WiFi.status() != WL_CONNECTED) { 

      delay(500); 

      Serial.print("."); 

    } 

    randomSeed(micros()); 

    Serial.println(""); 

    Serial.println("WiFi connected"); 

    Serial.println("IP address: "); 

    Serial.println(WiFi.localIP()); 

} 

 

void setup() { 

Serial.begin(9600); 

delay(1000); 

setup_wifi(); 

delay(500); 

connect_MQTT(); 

Serial.setTimeout(2000); 

client.setCallback(callback); 

client.subscribe("/device/node2/websocket"); 

Serial.println("done"); 

} 

 

void loop() { 

//connect_MQTT(); 

client.subscribe("/device/node2/websocket"); 

delay(3000); 

int MQ135_data = (analogRead(anPin))/11.5; 

Serial.print("AirQuality Index: "); 

Serial.print(MQ135_data); 

delay(500); 

Serial.println("PPM"); 

String ppm = " PPM"; 

String qual= ("\"AirQuality\": "); 

delay(2000); 

//client.publish(mqtt_topic, String(qual+MQ135_data+ ppm).c_str()); 

client.publish(mqtt_topic, String(qual+MQ135_data).c_str()); //publish MQ135 

data to broker 

Serial.println("Published mama"); 

 

}
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APPENDIX B   GATEWAY CODE AND ALGORITHM 

B.1 KEPServerEX Data Logging and Communication on Gateway from Node 3 ESP32 over MQTT Protocol 

import paho.mqtt.client as mqtt 

import paho.mqtt.client as mqtt 

import requests 

import sys 

import MySQLdb 

import mysql.connector 

from datetime import date, datetime, timedelta 

import time 

import json 

 

MQTT_ADDRESS = '192.168.0.106' 

MQTT_USER = 'project' 

MQTT_PASSWORD = 'A_project_b' 

MQTT_TOPIC =  "/client/node3/mqtt" 

user_mysql      = "admin" 

pwd_mysql       = "raspberry" 

 

topic = "AirQuality" 

 

openDoor = json.dumps({"val1":"2500"}) 

client_id = "rfidManager" 

topic = "AirQuality" 

 

openDoor = json.dumps({"val1":"2500"}) 

 

 

def on_connect(client, userdata, flags, rc): 

    print('Connected with result code ' + str(rc)) 

    client.subscribe(MQTT_TOPIC) 

 

def on_message(client, userdata, message): 

    message.payload = message.payload.decode("utf-8") 

    print(str(message.payload)) 

    p= str(message.payload) 

    data = {"Value" : p} 
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    imei= json.dumps(data) 

    publish(client, imei) 

    #b=open("/home/pi/abc.txt", "a") 

    #b.write(str(msg.payload)) 

def publish (client, imei): 

    client.publish(topic, imei) 

 

def main(): 

    mqtt_client = mqtt.Client() 

    mqtt_client.username_pw_set(MQTT_USER, MQTT_PASSWORD) 

    mqtt_client.on_connect = on_connect 

    mqtt_client.on_message = on_message 

#    mqtt_client.on_publish = on_publish 

 

    mqtt_client.connect(MQTT_ADDRESS, 1883) 

    mqtt_client.loop_forever() 

 

if __name__ == '__main__': 

    print('MQTT to InfluxDB bridge') 

    main() 

 

B.2 Gateway Transferring Data to Local MySQL Database 

import MySQLdb 

import paho.mqtt.client as mqtt 

from time import sleep 

 

client1_http = "/client/node1/http" 

client1_modbus = "/client/node1/modbus"" 

client1_coap = "/client/node1/coap" 

client2_websocket = "/client/node2/websocket" 

client3_mqtt = "/client/node3/mqtt" 

 

ip = "192.168.0.106" 

 

deviceId = 'server_db_saver' 

client_server = mqtt.Client(deviceId) 

client_server.username_pw_set(username="project", password="A_project_b") 

host_server = ip 
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flag = 0 

 

 

db = MySQLdb.connect(host="localhost",user="admin", passwd="!shahed@",db="server")  

cur = db.cursor() 

 

def on_message(client, userdata, message): 

     

    print("message topic=",message.topic)     

    msg = str(message.payload.decode("utf-8")) 

    print(msg) 

    png = msg.split("|") 

    time = str(png[0]) 

    print(time) 

    print (png) 

    data = str(png) 

    print(data) 

     

 

    if(message.topic == client1_coap): 

        protcol = "4" 

        node = "1" 

        cur.execute('INSERT INTO data(protocol_id,device_id,data,time) 

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))  

 

    elif(message.topic == client1_modbus): 

        protcol = "3" 

        node = "1" 

        x = cur.execute('INSERT INTO data(protocol_id,device_id,data,time) 

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))  

        print(x) 

  

    elif(message.topic == client1_http): 

        protcol = "2" 

        node = "1" 

        cur.execute('INSERT INTO data(protocol_id,device_id,data,time) 

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))  

  

    elif(message.topic == client2_websocket): 

        protcol = "5" 

        node = "2" 
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        cur.execute('INSERT INTO data(protocol_id,device_id,data) VALUES(%s,%s,%s)',(protcol,node,data))  

  

    elif(message.topic == client3_mqtt): 

        protcol = "1" 

        node = "3" 

 

        cur.execute('INSERT INTO data(protocol_id,device_id,data,time) 

VALUES(%s,%s,%s,%s)',(protcol,node,data,time))  

    db.commit() 

  

 

def on_connect(client_server, userdata, flags, rc): 

    global flag; 

    flag = 1 

    print("connected ok") 

 

 

def on_disconnect(client, userdata, rc): 

   global flag; 

   flag = 0 

   print("disconnected") 

 

 

while True: 

    if (flag == 0):  

            client_server.connect(host_server, port=1883, keepalive=60, bind_address="") 

            client_server.on_message = on_message 

            client_server.on_connect = on_connect 

            client_server.on_disconnect = on_disconnect 

            client_server.subscribe(client1_http) 

            client_server.subscribe(client1_modbus) 

            client_server.subscribe(client1_coap) 

            client_server.subscribe(client2_websocket) 

            client_server.subscribe(client3_mqtt) 

            client_server.loop_start() 

    sleep(1) 
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B.3 Gateway Transferring Node 1 Data to ThingsBoard Cloud Platform 

import paho.mqtt.client as paho                     #mqtt library 

import paho.mqtt.client as mqtt 

import paho.mqtt.client as mqtt 

import os 

import json 

import time 

from datetime import datetime 

from time import sleep 

ACCESS_TOKEN='UEUAObQdVgtGjbRDXj80'                 #Token of your device 

broker="thingsboard.cloud"                          #host name 

port=1883                                           #data listening port 

MQTT_ADDRESS = '192.168.0.106' 

MQTT_USER = 'project' 

MQTT_PASSWORD = 'A_project_b' 

MQTT_TOPIC =  "/client/node1/mqtt" 

 

def on_connect(client, userdata, flags, rc): 

    print('Connected with result code ' + str(rc)) 

    client.subscribe(MQTT_TOPIC) 

 

 

 

def on_publish(client,userdata,result):             #create function for callback 

    print("data published to thingsboard \n") 

    pass 

client1= paho.Client("control1")                    #create client object 

client1.on_publish = on_publish                     #assign function to callback 

client1.username_pw_set(ACCESS_TOKEN)               #access token from thingsboard device 

client1.connect(broker,port,keepalive=60)           #establish connection 

 

#while True: 

def on_message(client, userdata, message):   

   payload= message.payload.decode("utf-8") 

   print(str(message.payload)) 

   png = payload.split("|") 

   time = str(png[0]) 

   print(time) 

   data="{" 

   data+= str(png[1]) 
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   data+="}" 

   ret= client1.publish("v1/devices/me/telemetry",data) #topic-v1/devices/me/telemetry 

   print("Gateway Publishing Node1 data to ThingsBoard Cloud") 

   print(data); 

#   time.sleep(5) 

def main(): 

mqtt_client = mqtt.Client() 

mqtt_client.username_pw_set(MQTT_USER, MQTT_PASSWORD) 

mqtt_client.on_connect = on_connect 

mqtt_client.on_message = on_message 

# mqtt_client.on_publish = on_publish 

mqtt_client.connect(MQTT_ADDRESS, 1883) 

mqtt_client.loop_forever() 

if __name__ == '__main__': 

print('MQTT to InfluxDB bridge') 

main() 
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