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RÉSUMÉ

Les dispositifs microfluidiques et les laboratoires sur puce reposent sur des effets d’échelle domi-
nant dans les dimensions submillimétriques à micrométriques. Par exemple, les forces de surface
(e.g., la tension superficielle) dominent par rapport aux forces de volume (e.g., la gravité) à l’échelle
submillimétrique. Il s’agit d’un effet souhaitable lors de la conception de microsystèmes capillaires,
car les forces de surface sont critiques pour le pompage, l’obtention d’un contrôle supérieur sur le
débit et tous les effets capillaires en général. D’autre part, les pertes visqueuses augmentent con-
sidérablement plus les systèmes sont miniaturisés, ce qui augmente la pression capillaire requise
pour entraîner les fluides. La microfluidique capillaire repose sur cette plage optimale où les forces
capillaires dominent sur les forces volumiques et la résistance hydraulique.

L’objectif de cette thèse est de développer des outils analytiques et numériques pour une meilleure
conception et optimisation d’éléments microfluidiques capillaires dans le cadre de diagnostics de
précision et de sécurité embarquées sur puce. Pour atteindre cet objectif, des cadres théoriques
pour de nouveaux phénomènes d’écoulement capillaire sont établis et des outils numériques sont
développés pour aider à comprendre et à prédire le comportement des écoulements capillaires dans
des microstructures complexes, fournissant ainsi de nouveaux paradigmes pour le fonctionnement
et l’optimisation des dispositifs. Ces nouveaux écoulements capillaires comprennent les écoule-
ments auto-coalescents et les écoulements inverses de Washburn, deux types d’écoulement capil-
laire offrant un contrôle supérieur sur le déplacement des fluides dans les microstructures permet-
tant un transport d’espèces dispersives et réactives plus précis.

Les écoulements auto-coalescents améliorent la résolution spatio-temporelle des réactifs reconsti-
tués sur puce, facilitant les cinétiques biochimiques complexes nécessitant un contrôle précis des
distributions de concentration d’un ou plusieurs réactifs. L’auto-coalescence se produit lorsqu’une
goutte d’eau est confinée dans une microstructure, étirée le long d’une barrière capillaire, puis se
rétracte sur elle-même. L’écoulement à surface libre résultant peut être simplifié en utilisant la pro-
priété d’invariance des équations de Navier-Stokes sous des transformations galiléennes pour régu-
lariser les conditions aux frontières qui sont dynamiques et en montrant que les modules d’auto-
coalescence peuvent être approximés par des cellules de Hele-Shaw dans lesquelles les équations
de Navier-Stokes sont réduites à un simple écoulement potentiel 2D. Puisque l’équation de Laplace
est invariante de sous transformations conformes, c’est-à-dire que les solutions sont équivalentes
sous des transformations préservant les angles locaux, des outils de distorsion spatiale conforme
sont utilisés pour fournir une solution implicite générale aux écoulements auto-coalescents. Des
solutions asymptotiques explicites sont fournies au voisinage de l’interface capillaire mobile, mon-
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trant une augmentation linéaire de la vitesse semblable aux écoulements potentiels sur un cylindre
infini, et infiniment loin du ménisque, montrant une diminution exponentielle de la vitesse, math-
ématiquement analogue au phénomène de digitation visqueuse de Saffman-Taylor. La diminution
exponentielle de la vitesse est une caractéristique clé de l’auto-coalescence et est fondamentale
pour minimiser les effets dispersifs dans les microcanaux.

Les écoulements inverses de Washburn ont été découverts pour la première fois numériquement à
l’aide de méthodes de suivi d’interface pour les écoulements multiphasiques, soit la méthode du
volume de fluide (VOF pour « Volume Of Fluid ») pour l’évolution de l’interface avec la méthode
des volumes finis (FVM pour « Finite Volume Method ») pour la discrétisation spatiale et le modèle
de force de surface continue (CSF pour « Continuous Surface Force ») pour la tension superficielle.
La modélisation des écoulements capillaires est laborieuse en raison des approximations de la mé-
canique des milieux continus qui sont erronés à l’échelle moléculaire où se produit le phénomène
de mouillage. C’est-à-dire que les interfaces capillaires se déplacent sur les parois solides en raison
de la dynamique moléculaire, soit que les molécules se fixent, se détachent et entrent constamment
en collision avec le solide, et cela n’est pas pris en compte par la formulation continue de la dy-
namique des fluides. La solution analytique des équations de Navier-Stokes pour les écoulements
dans un coin montre un comportement singulier pour la pression conduisant à des contraintes sin-
gulières à l’interface capillaire. Cet effet non physique est également capturé par des méthodes
numériques et doit être corrigé correctement lorsque des simulations d’écoulement capillaire sont
effectuées.
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ABSTRACT

Microfluidic devices and lab-on-chip systems rely on scaling effects dominating in the sub-millimetre
to micro-metre range. For instance, surface forces (e.g. surface tension) dominate over volume
forces (e.g. gravity) at the sub-millimetre scale. This is a desirable effect when designing capillary-
driven microsystems, as surface forces serve as the driving mechanism for pumping, obtaining
superior control over the flow, and all capillary effects in general. On the other hand, viscous losses
increase significantly the more systems are miniaturized which increases required capillary pres-
sures to drive the flow. Capillary-driven microfluidics relies on this optimal range where capillary
forces dominate over volume forces and hydraulic resistance.

The objective of this thesis is to develop analytical and numerical tools for better design and op-
timization of capillary-driven microfluidic elements in the framework of precision diagnostics and
embedded security features on chip. To achieve this objective, theoretical frameworks for novel
capillary flow phenomena are established, and numerical tools are developed to help understand
and predict capillary flow behaviour in complex microstructures, thereby providing new paradigms
for device operation and optimization. Novel capillary flows include self-coalescing and reverse-
Washburn flows, two types of flow providing superior control over the flow in microstructures
allowing for more accurate mass transport of dispersive and reactive species.

Self-coalescing flows in microstructures enhances the spatiotemporal resolution of reconstituted
reagents on chip, facilitating complex bio-chemical kinetics requiring a precise control over the
concentration distributions of one or multiple reagents. Self-coalescence occurs when a droplet
of water is confined in a microstructure, stretched along a capillary pinning line, and subsequently
retracts on itself. This resulting free-surface flow can be simplified by using the invariance property
of the Navier-Stokes equations under Galilean transformations to regularize the dynamic bound-
ary conditions and showing that self-coalescence modules can be approximated by Hele-Shaw
cells in which the Navier-Stokes equation is reduced to a simple 2D potential flow. Because the
Laplace equation is conformally invariant, i.e. solutions are equivalent under transformations pre-
serving local angles, conformal mapping tools are used to provide a general implicit solution to
self-coalescing flows. Explicit asymptotic solutions are provided in the vicinity of the moving cap-
illary interface, showing a linear increase in velocity akin to potential flows over an infinite cylinder,
and infinitely far from the meniscus, showing an exponential decrease of the velocity mathemati-
cally akin to the Saffman–Taylor instability and potential flows over back steps. The exponential
decrease in velocity is a key feature of self-coalescence and fundamental in minimizing dispersive
effects in microchannels.
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Reverse-Washburn flows where first discovered numerically using interface tracking methods for
multiphase flows, i.e. the Volume Of Fluid (VOF) method for interface evolution with the Fi-
nite Volume Method (FVM) for discretization and the Continuous Surface Force (CSF) model for
surface tension modelling. Modelling capillary flows is challenging due to continuum mechanics
breaking down at the molecular scale where the phenomenon of wetting occurs. That is, capillary
interfaces can move on solid walls because molecules constantly attach, detach, and collide with
the solid, and this is not captured by the continuum formulation of fluid dynamics. The analytical
solution to the Navier-Stokes equations for corner flows displays a singular behaviour for the pres-
sure in the corner leading to singular stresses at the capillary interface. This non-physical effect is
also captured by numerical methods and must be taken correct when capillary flow simulations are
conducted.



ix

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF SYMBOLS AND ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The natural challenges: infectious diseases . . . . . . . . . . . . . . . . . 3
1.1.2 The human challenge: falsified medicines and diagnostic products . . . . . 4

1.2 Objectives & thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Modelling in microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Constitutive equations of fluid dynamics . . . . . . . . . . . . . . . . . . . 8
2.1.2 Application of conformal mapping to potential flows . . . . . . . . . . . . 11
2.1.3 Taylor-Aris dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Capillary effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Calculating the Young-Laplace pressure in complex geometries . . . . . . 18
2.1.6 Washburn flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Concus-Finn criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.8 Saffman-Taylor viscous fingering . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Numerical modelling of capillary flows . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Modelling interface evolution . . . . . . . . . . . . . . . . . . . . . . . . 24



x

2.2.2 Modelling surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Numerical modelling of capillary flows in this thesis . . . . . . . . . . . . 28

2.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 3 SELF-COALESCING FLOWS IN MICROFLUIDICS FOR PULSE-SHAPED
DELIVERY OF REAGENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Background : Hele-Shaw approximation in self-coalescence . . . . . . . . . . . . 34
3.3 SC free boundary problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Numerical solution of the flow inside a SCM . . . . . . . . . . . . . . . . . . . . . 36
3.5 Solving the Schwarz-Christoffel mapping . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Asymptotic solutions and self-coalescing flow modes . . . . . . . . . . . . . . . . 41

3.6.1 Flow profile far from the meniscus . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Flow profile far from the meniscus: link with Saffman-Taylor viscous fin-

gering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.3 Entrance region flow profile . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6.4 Physical interpretation of Self-Coalescence . . . . . . . . . . . . . . . . . 49

3.7 Additional details regarding the conformal mapping methodology . . . . . . . . . 51
3.7.1 Schwarz-Christoffel mapping numerical solution . . . . . . . . . . . . . . 51
3.7.2 Defining velocity numerically in the physical frame of reference . . . . . . 52
3.7.3 Solving the parameter problem a posteriori . . . . . . . . . . . . . . . . . 53
3.7.4 Exact mapping of the SCM with the Schwarzian operator (open problem) . 54

3.8 Rapid quantitative assays using SCMs . . . . . . . . . . . . . . . . . . . . . . . . 56
3.8.1 Reactive flows in SCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.8.2 Resorufin production from two coupled enzyme reaction cascades . . . . . 58
3.8.3 Model implementation using finite differences . . . . . . . . . . . . . . . 60

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 4 ARTICLE 1: A SIMPLE STATIC CONTACT ANGLE-BASED MESH-DEPENDENCY
CORRECTION FOR 3D CAPILLARY FLOW SIMULATIONS . . . . . . . . . . . . . 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Numerical methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Benchmark case and the mesh-dependency problem . . . . . . . . . . . . . . . . . 71
4.4 The dynamics of capillary flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Boundary conditions and mesh-dependent results . . . . . . . . . . . . . . . . . . 72
4.6 Contact angle-based correction and mesh optimization . . . . . . . . . . . . . . . 77
4.7 3D simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xi

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Supplementary videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

CHAPTER 5 ARTICLE 2: DYNAMICS OF ACCELERATING CAPILLARY FLOW . . . 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 The Dynamics of Capillary Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.1 Derivation of the Bosanquet and Reverse-Bosanquet equations . . . . . . . 91
5.6.2 Digital twins and numerical methodology . . . . . . . . . . . . . . . . . . 92
5.6.3 Derivation of the Washburn and reverse-Washburn equations for a self-

coalescence module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

CHAPTER 6 GENERAL DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1 Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents . . . . 99
6.2 A simple static contact angle-based mesh-dependency correction for 3D capillary

flow simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 The dynamics of accelerating capillary flow . . . . . . . . . . . . . . . . . . . . . 100
6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

CHAPTER 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Towards a complete SC solution . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.2 Washburn-Reverse-Washburn cycles . . . . . . . . . . . . . . . . . . . . . 106
7.2.3 Customizable flows with electrocapillary-driven microfluidics . . . . . . . 106
7.2.4 SCM-based benchmark tests . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.5 A comparative study between different CFD software packages . . . . . . 107
7.2.6 Full coupling of capillary dynamics with mass transport . . . . . . . . . . 107

7.3 Final words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xii

LIST OF TABLES

Table 1.1 Scaling laws of typical physical quantities and dimensionless groups in mi-
crofluidics with respect to space (length, size, distance, etc.) and time. . . . . 2

Table 2.1 Scaling laws of typical dimensionless groups in microfluidics with respect to
the length, L0, and height, H0, of a 2D channel and the physical macroscopic
variables of the filling liquid. . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 3.1 Parameter description and values used in COMSOL simulations. . . . . . . 41
Table 3.2 Definition of species and example of initial values. . . . . . . . . . . . . . . 60
Table 3.3 Diffusion coefficient for the coupled enzymatic reactions from Eq. 3.61-3.71. 61
Table 3.4 Reaction coefficients for the coupled enzymatic reactions from Eq. 3.61-3.71. 61
Table 4.1 Physical parameters for the simulations. . . . . . . . . . . . . . . . . . . . . 72
Table 4.2 Mesh details for the capillary pump case. . . . . . . . . . . . . . . . . . . . 81
Table 5.1 Definition of parameters and variables for a SCM as shown in Fig. 5.2. . . . 94
Table F.1 Vitesses du réseau D2Q9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table F.2 Poids pour le réseau D2Q9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table F.3 Erreur sur le rayon final de deux goutes qui coalescent et de l’auto-coalescence

d’un carré. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



xiii

LIST OF FIGURES

Figure 1.1 Hydrophobic leaf from the Butchart garden on the Island of Vancouver. . 1
Figure 1.2 Plage à Heist (pointillism) depicting a Kelvin–Helmholtz instability in the

clouds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 1.3 Organization of the thesis work. . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2.1 Capillary modelling flow chart. . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.2 Flow in a Hele-Shaw cell (W ≫ H and H → 0). . . . . . . . . . . . . . . 11
Figure 2.3 S-C mapping of the upper half-plane to the semi-infinite strip. . . . . . . 13
Figure 2.4 Z map of a back step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.5 The School of Athens (rectangle) mapped into a back step. . . . . . . . . 15
Figure 2.6 Z map of an inclined back step. . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2.7 Contact angles arising from a tri-phase equilibrium point. . . . . . . . . . 18
Figure 2.8 Washburn flow between two parallel plates. . . . . . . . . . . . . . . . . 20
Figure 2.9 Liquid pinning on a CPL of edge steepness π −δ and contact angle θ . . . 21
Figure 2.10 Saffman-Taylor viscous fingering resulting from air displacing a spin coated

thin film (a Hele-Shaw cell). . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 2.11 Simulation of a water droplet at equilibrium using VOF-FVM, CSF and

interface compression in OpenFOAM. . . . . . . . . . . . . . . . . . . . 29
Figure 3.1 Resuspension of printed amaranth dye in a microchannel. . . . . . . . . . 33
Figure 3.2 Experimental resuspension of amaranth dye deposited by inkjet printing

in the SCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3.3 Fluorescent microspheres (4.8 µm diameter) revealing stagnancy of the

flow far from the receeding meniscus. (See Video A.15) . . . . . . . . . . 34
Figure 3.4 Reference frame change Z → Z∗ and Schwarz-Christoffel mapping Z∗ → Ω. 37
Figure 3.5 Geometry of the curved meniscus in a SCM. . . . . . . . . . . . . . . . . 38
Figure 3.6 Comparison of a uPIV experiment with a 3D Navier-Stokes finite ele-

ment model and the simplified case of a Hele-Shaw cell using conformal
mapping for different number of vertices N. . . . . . . . . . . . . . . . . 42

Figure 3.7 Comparison of the asymptotic exponential velocity decay when far from
the meniscus with the conformal mapping solution and experimental uPIV. 44

Figure 3.8 Numerical (dash-dot) and asymptotic (dot) solutions of the orthogonal
velocity in the SCM as a function of position along the CPL for various
contact angles θw and λ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . 45



xiv

Figure 3.9 Filling of a SCM observed in fluorescence with a mirror symmetry at the
lower boundary (left) and oil STVF in glycerin. . . . . . . . . . . . . . . 46

Figure 3.10 Different analytical maps providing an exponential velocity decay far
from the inlet with characteristic decay lengths proportional to W/π . . . . 47

Figure 3.11 Self-similarity of the velocity near the origin with respect to λ with con-
stant r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.12 Comparison between the orthogonal flow profile within the SCM (blue
solid line) and the flow over a cylinder (black dashed line) with identical
radii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.13 Linear asymptote near the origin and exponential asymptote far from the
meniscus. Comparison with the quasi-analytic S-C solution and experi-
mental uPIV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.14 Numerical domain of the SCM. . . . . . . . . . . . . . . . . . . . . . . . 52
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CHAPTER 1 INTRODUCTION

Capillary phenomena can be observed in everyday life such as dew drops on leaves observed after
the rain or in the morning after a clear night (Fig. 1.1), or droplets of water coalescing and splitting
on the window of a moving train. The formal study of liquid movement at submillimetre-scales
has its origin tracing back to Pierre Simon de Laplace (1749-1827) and Thomas Young (1773-
1829) [1, 2] with experiments dating back to the early 18th century [3, 4]. However, it took until
the early 1990s, with the prior advent of micro and nanotechnology1,2, for applied microfluidics to
emerge. A key feature of microfluidics is the effects of scaling laws at the submillimetre scale (Tab.
1.1). Because surface forces scale as L2 and volume forces scale as L3, surface forces generally
dominate over volume forces at submillimetre scales. For instance, this is the case for gravity
and surface tension. As a result, we can engineer capillary-driven systems impossible to design at
larger scales. Limits at the other end of the scale also exist. Hydraulic resistance increases as L−4

which limits how small devices can be engineered from physical limits, e.g. increase in required
driving pressures, or functional limits, e.g. cell damage due to high shear stresses in microchannels.
Hence, “There’s Plenty of Room at the Bottom” should be rephrased for microfluidics as “There’s
an Optimal Amount of Room at the Bottom”.

Figure 1.1 Hydrophobic leaf from the Butchart garden on the Island of Vancouver.3

From a first principle point of view, liquids can be represented as discrete particles, i.e. atoms and

1Physicist and Nobel laureate Richard P. Feynman gave a seminal nanotechnology lecture entitled “There’s Plenty
of Room at the Bottom” at an American Physical Society meeting at Caltech on December 29, 1959. This lecture is
renowned by some to be the starting point that seeded the concept of nanotechnology.

2First termed as such by Norio Taniguchi in 1974.
3Courtesy of Thomas Gervais, 2022.
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Table 1.1 Scaling laws of typical physical quantities and dimensionless groups in microfluidics
with respect to space (length, size, distance, etc.) and time.

Time L0 T1 Capillary displacement (Eq. 4.10) L1/2 T1/2

Distance L1 T0 Capillary velocity L1/2 T−1/2

Area L2 T0 Capillary acceleration L1/2 T−3/2

Volume L3 T0 Washburn time (Eq. 4.11) L1 T0

Velocity L1 T−1 SC velocity decay length (Eq. 3.29) L1 T0

Acceleration L1 T−2 Diffusion time (Eq. A.10) L2 T0

Hydrostatic pressure (Eq. 5.2) L1 T0 Young-Laplace pressure (Eq. 4.9) L−1 T0

Critical contact angle (Eq. 4.13) L0 T0 Hydraulic resistance (Eq. 5.2) L−4 T0

Reynolds number (Eq. 4.12) L2 T−1 Capillary number (Eq. 4.12) L1 T−1

Webber number (Tab. 2.1) L3 T−2 Péclet number (Tab. 2.1) L2 T−1

Laplace number (Eq. 5.6) L1 T0 Courant number (Eq. 2.73) L0 T0

molecules, interacting through a given potential, e.g. Lennard-Jones potential [5, 6], varying as a
function of distance between the particles. Assuming a large number of particles is modelled, a
statistical representation of the system can be given using the Boltzmann equation [7]. This equa-
tion represents the temporal evolution of the entire 6-dimensional phase space, containing the set
of all possible positions and momenta in 3 dimensions, of probability density functions describ-
ing the probability of finding particles in the phase space. Lastly, in the same way a pointillism
painting turns into an image with non discernable dots when viewed from afar (Fig. 1.2), the
behaviour of particles may be volume-averaged from which arise a continuum4 of macroscopic
variables, e.g. velocity, density, and viscosity, evolving in time as described by the Navier-Stokes
transport equations [8, 9]. Capillary dynamics can be modelled using all the previously mentioned
levels of approximation [10], and different analytical and numerical methods to achieve this will
be presented throughout this thesis.

Applications of microfluidics range from thermal and chemical process engineering [12–14], mi-
croreactors [15–17], lab-on-a-chip devices (LOCD) and BioMEMS [18–21], biology and medicine
[19, 22, 23], and security features embedding on chip [24–27] to name a few. With advances in
analytical, numerical, and manufacturing techniques in microtechnology, applied microfluidics for
analysis has now reached enough maturity to be highly driven by applications and problem-oriented
agendas [28, 29].

4If you are reading this on a screen, you are actively approximating discrete particles (pixels) as a continuum.
5Plage à Heist is a painting by the Belgian artist Georges Lemmen (1865–1916). (Georges Lemmen, Public

domain, via Wikimedia Commons)
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Figure 1.2 Plage à Heist5(pointillism) depicting a Kelvin–Helmholtz instability [11] in the clouds.

1.1 Motivation and problems

1.1.1 The natural challenges: infectious diseases

The 21st century has already seen several infectious disease outbreaks [30] including the 2003
severe acute respiratory syndrome (SARS) coronavirus, the 2009 swine flu pandemic caused by the
H1N1 influenza virus, the 2012 Middle East respiratory syndrome (MERS) coronavirus outbreak,
the 2013–2016 Western African Ebola virus epidemic, the 2015–2016 Zika virus epidemic, and not
least the COVID-19 pandemic.

Globally, as of July 2022, there has been more than half a billion confirmed cases of COVID-
19, including more than 6.4 million deaths, reported to the World Health Organization (WHO)
[31]. Diagnostic testing for SARS-CoV-2 has been central in identifying COVID-19 cases as well
as reducing transmission. Diagnostic testing methods now include at least 400 RDTs that are
commercially available worldwide [32].

In 2010 and 2016, infectious diseases claimed 15 and 8.2 million lives worldwide, respectively, and
two-thirds of them were caused by only 20 different diseases [33, 34]. Estimates suggest that we
could save more than 1.2 million lives annually with the accessibility of point-of-care diagnostics
(POCDs) in resource-limited regions for the screening of only 4 different infectious diseases [35].
Recent estimates show that precise and effective diagnosis could eradicate 90% of the current global
malaria threat by 2030 [36]. This is one of several factors responsible for the increase in public and
private awareness and funding of POCDs [37]. A 2022 report from Research and Markets projects
that the global market for POCDs and RDTs will grow from USD 43.2 billion as of 2022 to USD
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72.0 billion by 2027 [38]. This trend is also exacerbated by key factors such global increases in
respiratory disease cases, e.g. COVID-19 and influenza, and improved access to POCDs through
online platforms [39, 40].

1.1.2 The human challenge: falsified medicines and diagnostic products

Sadly, this growing market also attracts criminals producing counterfeited and defect goods for
lucrative reasons. The World Health Association (WHO) estimated in 2010 that more than 8%
of POCDs and rapid diagnostic tests (RDTs) were counterfeited with a rising trend as the market
for POCDs and RDTs increases [41, 42]. In that same year, global healthcare fraud costs were
estimated to USD 260 billion [43] including counterfeit drugs [44, 45]. This is worst in resource-
limited regions such as Africa. For example, malaria RDTs were sold for syphilis screening tests
in Mozambique, counterfeited malaria rapid tests were sold in the South African Republic and
HIV RDTs with tempered expiry date were sold in the Democratic Republic of the Congo [46].
Furthermore, WHO estimated that up to 50% of consumed medicines in developing countries are
counterfeited. Counterfeiting of tests for COVID-19 [47, 48], Ebola [49], malaria [41, 46], tuber-
culosis [46], HIV [50, 51], glucose control [46, 52] and pregnancy [46, 53] were observed to name
a few.

Counterfeited products can cause serious health problems and even death. In response, there has
been an increase in research and development in the past few years for new anti-counterfeit tech-
nologies for medical devices and pharmaceutics [54–56]. Some examples are QR-codes written by
lithography [24, 57], DNA-QR codes [58], moirés security features [59] and high-content optical
codes embedded in microchannels [26].

In summary, motivation for this work is two-fold: capillary dynamics can help design 1) precise
microfluidic-based POCD tests that are vital to detect and combat infectious diseases worldwide,
and 2) novel security features on diagnostic tests to combat the recently observed proliferation of
tests counterfeiting. Analytical and numerical analysis of free-surface flows using computational
fluid dynamics (CFD) tools and analytical methods provides us with an understanding of the key
features of capillary flows, a vital part for further optimization and technological innovation in
those two areas.

1.2 Objectives & thesis outline

Capillary-driven microfluidic systems are paramount when optimizing, designing and developing
autonomous microfluidic systems [60]. For instance, they are vital in implementing autonomous
immunoassays with superior control over the flow signal sensing, and they allow easy splitting of
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samples into smaller volumes for multiplexing [20]. Capillary dynamics can also be used for the
implementation of crypto-anchors [61, 62], highly secure digital fingerprints embedded in prod-
ucts, for the security of POCDs and RDTs using high resolution resuspension of spotted dyes in
microstructures [63]. Crypto-anchors can take many forms, such as optical codes, tiny computers
or shade of magnetic inks that can authenticate products’ originality, their content and if they have
been used before.

Analytical and numerical modelling can be used to predict experimental results, reduce the need
for costly and time-consuming experiments, develop proof of concepts and design rules, and un-
derstand the physical principles behind observed phenomena. Analytical modelling provides direct
relationships between all variables of a given system based on underlying physics principles. How-
ever, it is challenging to predict exact experimental results with analytical methods. On the other
hand, numerical methods can be used to solve complex systems more akin to experimental condi-
tions. However, only one set of conditions may be analysed at a time and numerical methods do
not provide a direct relationship between physical variables and physics.

With an approach from physics, we can develop new microfluidic elements that can be added to
the vast microfluidics library. These devices can provide increased control over the flow and mass
transport in microfluidic devices. In this thesis, I develop a framework for both analytical and nu-
merical modelling of capillary processes, and describe how these methods can be used to discover
and characterize new types of flows and engineer new generations of microfluidic elements. The
outline of the thesis is presented in Fig. 1.3, and the main objectives are as follow:

• Understand and characterize newly discovered self-coalescing flows, which allows reagent
reconstitution with minimal dispersion;

• Develop a numerical framework for modelling complex capillary driven flows in microstruc-
tures, which can be used as a tool to predict behavior of liquids in microsystems and optimize
their design where analytical tools are limited;

• Predict, understand, and characterize Reverse-Washburn flows, a new capillary flow regime
which provides enhanced control over passive flows in microchannels.

To achieve these objectives, the development of analytical and numerical tools is conducted to pro-
vide design rules and optimize devices operation with respect to flow control and mass transport
of diffusive and reactive species in microstructures. More specifically, 1) self-coalescence is char-
acterized and modelled, which can be used to increase spatiotemporal resolutions of reconstituted
reagents deposited by inkjet printing in microstructures, 2) complex capillary flows can be mod-
elled precisely using a numerical contact angle correction, which helps understand, predict, and
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Figure 1.3 Organization of the thesis work. The central research objective of this thesis is to predict,
characterize, and better understand capillary flows through modelling for optimization and design
of devices providing enhanced control over the flow and accurate mass transport of diffusive and
reactive species.

characterise capillary flows in cases where analytical tools cannot, and 3) numerical modelling is
used to discover and characterise a new type of capillary flow, and the theoretical framework is
developed.
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CHAPTER 2 LITERATURE REVIEW

The following literature review is split in two main sections: 1) a review of important notions in
microfluidics, capillary dynamics, and mass transport relevant for this work in Section 2.1, and 2)
a review of capillary flow modelling using numerical methods in Section 2.2. A brief summary of
the thesis structure is also provided in Section 2.3 with important acknowledgments for some of
the work in this thesis.

2.1 Modelling in microfluidics

In this section, we describe important notions of theoretical microfluidics and methods for analyt-
ical and numerical analysis. Modelling in capillary dynamics can be summed up as presented in
Fig. 2.1. Herein, we focus on applied numerical and analytical methods for continuum mechanics.
Although, statistical and atomistic methods are briefly discussed in Section 2.2 and Appendix F.
We first lay down the general constitutive equations of fluid dynamics and mass transport in Sec-
tion 2.1.1 as well as relevant dimensional analyses (Section 2.1.1) that can be used to simplify these
equation (Section 2.1.1). Applications of conformal mapping to potential flows, critical for the the-
oretical framework developed in Chapter 3, is introduced in Section 2.1.2, and important notions
of capillary dynamics and capillary pinning on sharp edges are presented in Sections 2.1.4-2.1.7.

Figure 2.1 Capillary modelling flow chart.
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2.1.1 Constitutive equations of fluid dynamics

In physics, the continuity equation is a mathematical expression that describes local conservation
laws. In other words, it expresses how much of some physical quantity there is in a bounded region
and how it is transported. Let us take for example an arbitrary extensive physical parameter Φ in a
volume Ω bounded by a surface ∂Ω. The total amount of Φ in Ω at a fixed time is the sum of the
intensive parameter ϕ (units of Φ per unit of volume) all over the domain. Thus expressed as

Φ =
∫

Ω

ϕdΩ (2.1)

This physical quantity is transported within a velocity field u, and some of that quantity is created
and annihilated at a rate s (units of ϕ per second) within Ω. Therefore, the variation of Φ through
time is the rate at which it is transported in and out of Ω added to the rate at which the quantity is
created and annihilated. Put in mathematical terms, the temporal variation of Φ is

∂Φ

∂ t
=−

∮
∂Ω

ϕu ·dS︸ ︷︷ ︸
transported

−
∫

Ω

sdΩ︸ ︷︷ ︸
created/anihilated

(2.2)

where dS is the infinitesimal surface vector. From the divergence theorem, this can be rewritten as

∂Φ

∂ t
=−

∫
Ω

∇ · (ϕu)dΩ−
∫

Ω

sdΩ (2.3)

and from Reynolds transport theorem

∫
Ω

(
∂ϕ

∂ t
+∇ · (ϕu)+ s

)
dΩ = 0 (2.4)

For the integral to be zero, the integrand has be zero. Thus, the general continuity equation

∂ϕ

∂ t
+∇ · (ϕu)+ s = 0 (2.5)

Special cases of the continuity equation commonly used in fluid mechanics are the conservation
of mass, momentum, and energy. Derivations of those the mass and momentum equations are
provided in Appendix C.

For an incompressible isothermal Newtonian fluid with no mass source, the Navier-Stokes equation
simplify to

∇ ·u = 0 (2.6)
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ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+µ∇

2u+ f (2.7)

where p is the pressure, f is an external momentum source term, e.g. gravity and surface tension, ρ

is the density of the fluid and µ is its viscosity. The transport of reactive and diffusive and species
is described by

∂C
∂ t

= ∇ · (D∇C)−∇ · (uC)+R (2.8)

where C is the concentration, D the diffusion coefficient, and R is a reaction term. Commonly
encountered reaction terms in enzymatic reactions and lateral flow immunoassays are obtained
from first and second order kinetics, and Michaelis-Menten kinetics [64].

Dimensionless forms of transport equations

It is useful to think of fluid dynamics in terms of dimensionless groups to understand and predict
outcomes of complex systems with leading scaling laws. Introducing surface tension and gravity
in the Navier-Stokes equation, we obtain

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+µ∇

2u+ρg+σκ(∇α) (2.9)

where g is the gravitational acceleration vector, and σκ(∇α) is a continuum formulation for mod-
elling surface tension [65] with κ being the curvature of a multiphase field α , and σ is the surface
tension1.

Buckingham’s theorem [66, 67] indicates that the system may be described by a combination of 3
dimensionless groups. Adimensionalizing the Navier-Stokes equation with the following dimen-
sionless parameters:

x = L0x̃, u =U0ũ, t =
L0

U0
t̃, p =

µU0

L0
p̃, ∇ =

∇̃

L0
, κ =

κ̃

L0
, g = gg̃ (2.10)

we obtain the following equivalent dimensionless Navier-Stokes equation:

Re
(

∂ ũ
∂ t̃

+ ũ · ∇̃ũ
)
=−∇̃ p̃+ ∇̃

2ũ+St−1g̃+Ca−1
κ̃(∇̃α) (2.11)

We
(

∂ ũ
∂ t̃

+ ũ · ∇̃ũ
)
= Ca

(
−∇̃ p̃+ ∇̃

2ũ
)
+Bog̃+ κ̃(∇̃α) (2.12)

where the dimensionless groups are defined in Tab. 2.1. Adding mass transport of diffusive and

1Many other formulations exist to introduce surface tension effects, we selected this one specifically because of its
relevance to the current work.
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reactive species to the picture, an additional dimensionless group is needed. Introducing

C =C0C̃, R =
C0U0

L0
R̃ (2.13)

we obtain the following dimensionless convection-diffusion-reaction equation:

∂C̃
∂ t̃

= ∇̃ · (Pé−1
∇̃C̃)− ∇̃ · (ũC̃)+ R̃ (2.14)

Table 2.1 Scaling laws of typical dimensionless groups in microfluidics [68] with respect to the
length, L0, and height, H0, of a 2D channel and the physical macroscopic variables of the filling
liquid. Typical values for systems filling with water and small ions diffusing in water at normal
temperature and pressure (NTP) in microfluidics: L0 = 1cm, H0 = 50µm, U0 = 1mms−1, ρ =
1000kgm−3, µ = 1mPas, σ = 72.9×10−3 Jm−2. D = 2×10−9 m2 s−1.

Number Symbol Definition Value Relation

Reynolds Re
ρU0H2

0
µL0

2.5×10−4 inertial force
viscous force

Capillary Ca
µU0

σ
1.4×10−5 viscous force

surface tension

Webber We Re ·Ca 3.4×10−9 inertial force
surface tension

Laplace La
Re
Ca

,
Re2

We
1.8×101 inertia*surface tension

momentum transport

Bond Bo
ρgH2

0
σ

3.4×10−4 gravity
surface tension

Stokes St
Ca
Bo

4.1×10−2 viscous force
gravity

Schmidt Sc
µ

ρD
5.0×102 momentum diffusion

molecular diffusion

Péclet Pé Re ·Sc 1.3×10−1 convection
diffusion

Simplification of the Navier-Stokes equations

Because of scaling effects in microfluidics, inertial and gravitational effects are negligible with
respect to viscous in surface tension effects and the Reynolds and Bond numbers are generally
very small. Furthermore, when looking for a single-phase flow solution where capillarity acts as a
pressure boundary condition, we may also neglect capillary effects from the momentum equation
(provided boundary conditions are treated accordingly). Thus, neglecting inertial, and gravitational,
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and capillary effects in Eq. 2.11 and looking for a stationary flow solution, we obtain the (time-
independent) Stokes flow equation:

∇p = µ∇
2u (2.15)

In cases where the flow is confined in a structure that is much thinner than it is wide, e.g. infinite
parallel plates separated by an infinitesimally small gap H → 0 along the z-axis, also known as a
Hele-Shaw cell [69], we may assume that the pressure gradient along the same axis vanishes to
zero, as per the lubrication theory [70]. This simplifies Eq. 2.15 to

u =−z(H − z)
2µ

∇p (2.16)

where p ≡ p(x,y) and the flow profile along the z-axis is parabolic, i.e. Poiseuille flow [71], and
velocity in the direction of the same axis is zero (Fig. 2.2). From the incompressibility condition,
∇ ·u = 0, Eq. 2.16 may be rewritten as a simple potential flow obeying Laplace’s equation on a 2D
domain:

∇
2 p = 0 (2.17)

Figure 2.2 Flow in a Hele-Shaw cell (W ≫ H and H → 0). Neumann boundary conditions on the
side walls (top and bottom), and Dirichlet boundary conditions are set on the planes (in and out of
the page).

Although significantly simpler than the Navier-Stokes equations, Eq. 2.17 may not be trivial to
solve analytically on complex domains. In the following section, we introduce how potential flows
may be solved using complex analysis and provide solutions to simple problems relevant for this
work.

2.1.2 Application of conformal mapping to potential flows

Generalizing the pressure to a complex potential Ψ(z) where z = x+ iy, Laplace’s equations be-
comes ∇2

z Ψ(z) = 0 where ∇2
z = (d/dz)(d/dz̄). This equation is conformally invariant [72] and
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can be solved using conformal mapping tools. A very useful map, critical for the work in Chapter
3 of this thesis, is obtained by the Schwarz-Christoffel (S-C) mapping. This convenient transfor-
mation discovered by two German mathematicians, Herman Amandus Schwarz (1843-1921) and
Elwin Bruno Christoffel (1829-1900), consists in mapping the upper complex plane Im > 0 into
the interior of a polygon [73, 74].

Let us first define a generic problem with its corresponding formalism. Consider Z, the interior of a
polygon Γ formed by the z1, ...,zn vertices and φ1, ...,φn exterior angles (see Fig. 2.3). The vertices
are indexed in counterclockwise order from the inside of the polygon. The external angles of Γ

must obey
n

∑
k=1

φk = 2π (2.18)

where φk ∈ [−π,π]. The goal is to find a function ζ = f (τ) which satisfies

zk = f (tn) (2.19)

where
t1 < t2 < ... < tn−1 < ∞ (2.20)

The S-C formula for a half-plane reads

f (τ) = A+C
∫ T n−1

∏
k=1

(τ − tk)−
φk
π dτ (2.21)

where A and C are complex constants, zk = f (tk) for k ∈N∗ ≤ n−1 and f is any map from the upper
half-plane {T ∈ C : Im > 0} to {Z ∈ C}. Examples of this transformation, of relative importance
for the work in Chapter 3, follows.

Mapping the semi-infinite strip

We first give the example mapping of the upper half complex plane to the semi-infinite strip as
shown in 2.3. The polygon Γ could be formed by the following coordinate-angle system:

z1 = iW φ1 = π/2 (2.22)

z2 = 0 φ2 = π/2 (2.23)

z3 → ∞ φ3 → π (2.24)
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Figure 2.3 S-C mapping of the upper half-plane to the semi-infinite strip.

The next step is to define (in a semi-arbitrary manner2) the tk values. Let us use t1 =−1, t2 = 1 and
t3 → ∞. This translates into the S-C integral (Eq. 2.21)

f (τ) = A+C
∫ T 1√

τ +1
√

τ −1
dτ (2.25)

= A+C arccosh(τ) (2.26)

where f (−1) = z1, f (1) = z2 and f (∞) = z3. From these conditions, the integration constants are
calculated to be A = 0, and C =W/π , and the mapping solution from T to Z is

f (τ) =
W
π

arccosh(τ) (2.27)

Mapping a back step

The back step geometry (Fig. 2.4) is commonly encountered in fluid dynamics. Because inviscid
flows can recapitulate flows at very large Reynolds numbers, this model may represent either an
abrupt change in the width of a shallow ideal river from a bird’s-eye view, or an abrupt step in depth
as exemplified by an immersed concrete dam or flow over a riverbed [72]. For a back step domain,
we define the following coordinate-angle system:

z1 →−∞+ iW/2 φ1 → π (2.28)

z2 = 0 φ2 =−π/2 (2.29)

z3 =−iW/2 φ3 = π/2 (2.30)

z4 → ∞− iW/2 φ4 → π (2.31)

Let us have t1 = 0, t2 = t∗ ∈ (0,1), t3 = 1 and t4 → ∞. This translates into the S-C integral (Eq.

2A specific definition of the tk-values might be preferable in some circumstances for integration purposes. How-
ever, as long as the condition from Eq. 2.20 is respected the solution should be the same.
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Figure 2.4 Z map of a back step.

2.21)

f (τ) = A+C
∫ T 1

τ

√
τ − t∗

τ −1
dτ = A+CI (2.32)

where f (0) = z1, f (t∗) = z2, f (1) = z3 and f (∞) = z4. For integration convenience, let us define
t∗ = 1/4. The solution to this integral is

I =−arctanh

(
2

√
τ −1/4

τ −1

)
− i4arctan

( √
3

2 + i
√

τ −1√
τ −1/4

)
(2.33)

From the two limits
lim

τ→t∗
I = 0 lim

τ→t∗
(A+CI) = 0 (2.34)

we find the first integration constant A = 0. Similarly, from

lim
τ→1

I =−i
π

2
lim
τ→1

(CI) =−i
W
2

(2.35)

we find the second integration constant C =W/π . The mapping solution from T to Z can then be
given by

f (τ) =−W
π

[
arctanh

(
2

√
τ −1/4
τ −1

)
+ i4arctan

( √
3

2 + i
√

τ −1√
τ −1/4

)]
(2.36)

A visual representation of the back step mapping from a rectangle is given in Fig. 2.5. The rectangle
W is mapped in the upper half plane (UHP) T using the transformation [75]

t(w) =−i
w+1
w−1

(2.37)

and the UHP T is mapped in the back step polygon Z using the transformation from Eq. 2.36 with
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a width of 1.

Figure 2.5 The School of Athens3(rectangle) mapped into a back step.

Mapping an inclined back step

A generalization of the back step geometry can be done by replacing the step with an inclined step
of angle θ as shown in Fig. 2.6. The coordinate-angle system thus becomes

Figure 2.6 Z map of an inclined back step.

z1 →−∞+ iW/2 φ1 → π (2.38)

z2 = 0 φ2 =−θ (2.39)

z3 =
W cotθ

2
− i

W
2

φ3 = θ (2.40)

z4 → ∞− iW/2 φ4 → π (2.41)

Let us have t1 = 0, t2 = t∗ ∈ (0,1), t3 = 1 and t4 → ∞. This translates into the S-C integral (Eq.

3The School of Athens is a fresco by the Italian Renaissance artist Raffaello Sanzio da Urbino (1483-1520).



16

2.21)

f (τ) = A+C
∫ T 1

τ

(
τ − t∗

τ −1

)θ/π

dτ (2.42)

where f (0) = z1, f (t∗) = z2, f (1) = z3 and f (∞) = z4. For integration convenience, let us define
t∗ = (1/2)π/θ . The solution to this integral is

I =
∫ T 1

τ

τ −
(1

2

) π

θ

τ −1

 θ

π

dτ =
π(τ −1)

π −θ

(
τ −2−

π

θ

τ −1

)θ/π(
τ −1

2π/θ −1
+ τ

)− θ

π

F(θ ,τ) (2.43)

where
F(θ ,τ)≡ F1

(
1− θ

π
;−θ

π
,1;2− θ

π
;

τ −1

−1+2−
π

θ

,1− τ

)
(2.44)

is the Appell hypergeometric function of two variables [76, 77]. From the two limits

lim
τ→1

I = 0 lim
τ→1

(A+CI) =
W cotθ

2
− i

W
2

(2.45)

we find the first integration constant A =W (cotθ − i)/2. Similarly, from the limits

lim
τ→t∗

I =−π cotθ

2
− i

π

2
lim

τ→t∗

(
W cotθ

2
− i

W
2
+CI

)
= 0 (2.46)

we obtain the second integration constant C = W (cos(2θ)− isin(2θ))/π . The mapping solution
from T to Z is then given by

f (τ) =
1
2

W


2e−2iθ (τ −1)

(
τ−1

2π/θ−1
+ τ

)− θ

π

(
τ−2−

π
θ

τ−1

)θ/π

F(θ ,τ)

π −θ
+ cot(θ)− i

 (2.47)

This map is suggesting that the general solution of self-coalescing flows in elongated structures,
discussed at length in Chapter 3, follows a hypergeometric function behaviour. The natural pro-
gression from the semi-infinite strip to the back step and the inclined back step shows how the
shape of the moving meniscus only impacts the flow in its vicinity. This is put in evidence in Fig.
3.10 and will be discussed in more details in Section 3.6 and Section 3.7.4.

2.1.3 Taylor-Aris dispersion

Taylor dispersion, or Taylor-Aris dispersion (TAD) and an effect of critical importance for Chapter
3, was first described by the British fluid dynamitist G. I. Taylor [78], and was generalized for
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arbitrary Péclet numbers a few years later by Rutherford Aris [79]. TAD is a convection-diffusion
effect occurring when a steady-state Poiseuille flow (e.g. Eq. 2.16) is established in a channel with
diffusion of a solute. Assuming an initially flat profile, the shear flow drives the solute forward
faster in the middle of the channel than near the walls, where velocity is zero. This has for effect
a stretching of the concentration profile, which then diffuses and homogenizes laterally. The effect
may be generalized by an effective diffusion coefficient that increases in the direction of the flow.
The effective diffusion coefficient in 1D can be written as [80]

K = D
(

1+
Pé2

k

)
(2.48)

where k is a parameter depending on the channel’s geometry. For a rectangular channel of height
H and width W ,

k =
420
17

(
1+2.4

H
W

+

(
H
W

2))
(2.49)

and for a cylindrical channel k = 48.

2.1.4 Capillary effects

Due to scaling effects in microfluidics, surface forces, e.g. surface tension, dominate over volume
forces, e.g. gravity. This makes capillary effects vital in designing microfluidic devices. Capillary
effects can be characterized by the Gibbs free energy [81] we define as

G(p,T ) =U + pV −T S (2.50)

where p is pressure, T is the temperature, U is the internal energy, V is volume, S is the entropy,
and H =U + pV is the enthalpy. Taking the total differential of Eq. 2.50, and assuming the system
is at equilibrium or quasi-equilibrium, we obtain the variation in Gibbs free energy

δG = δU + pδV +V δ p−T δS−SδT = 0 (2.51)

In simple capillary systems without gravity or changes in temperature, variations in Gibbs free
energy originate from variations in surface energy GS and pressure-volume energy Gp,V , thus

δG = δGS +∆pδV = 0 (2.52)

where ∆p is commonly referred to as the Young-Laplace pressure drop [1, 2]. In its most general
form, the pressure drop is given by the product between the curvature of the interface, κ , and
surface tension, σ , between the two liquids.
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Using back of the envelope calculations we can calculate the surface tension of liquids from simple
thermodynamics. The molecular weight of water at NTP is roughly M = 18.015gmol−1, and the
volume of one molecule of water is given by V = MNA/ρ , where NA is Avogadro’s constant, and
ρ = 1000kgm−3 is water’s density at NTP. The projected area of the molecule on a flat surface,
i.e. the capillary interface, can be calculated as A = CV 2/3 where C is a geometric shape factor,
e.g. C = 1 if we approximate the molecule’s shape to be a cube, and C = (9π/16)1/3 ≈ 1.209
for a sphere. Knowing that the average thermal energy carried by particles is nkBT/2, where n is
the number of degrees of freedom, we calculate the Gibbs free energy per area at equilibrium or
quasi-equilibrium:

σ ≡
(

∂G
∂A

)
p,V

=
nkBT
2C

(
ρNA

M

)2/3

(2.53)

Assuming a close packing of molecules with 6 neighbors and one neighbor missing due to the
water/air interface, and knowing molecular bonds carry an energy of roughly 2kBT , we obtain for
water at NTP σ ∈ [71.1,86.0] Jm−2 for a packing of spheres and cubes respectively. The measured
value for water/air surface tension at NTP is 72.9 Jm−2 [68].

For a capillary interface in contact with a solid surface, an equilibrium point between the solid-
liquid, liquid-gas, and solid-gas surface tensions is reached (Fig. 2.7). The contact angle θ is
given by the tri-phase (solid-liquid-gas) equilibrium point where the Gibbs energy is minimized. In
mathematical terms,

cosθ =
σsg −σsl

σlg
(2.54)

where for water and θ > 90◦ we call the surface hydrophobic4, and for θ < 90◦ hydrophilic5.

Figure 2.7 Contact angles arising from a tri-phase equilibrium point.

2.1.5 Calculating the Young-Laplace pressure in complex geometries

Calculating the capillary pressure drop resulting from an equilibrium of the total Gibbs free energy
in systems composed of multiple walls with different contact angles can be simplified by calculating

4From the greek "phobos" meaning "fear".
5From the greek root "phil" meaning "love".
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changes in surface energy for the solid-gas, solid-liquid, and liquid-gas phases. For a change of
surface area δS, the variation of the total Gibbs free energy, δGS , at equilibrium is given by

δGS = ∑
i

σiδSi (2.55)

where i denotes the different surface energy changes in the system, i.e. not limited to tri-phase
systems. For a solid-liquid-gas system, the variation in surface energy is given by

δGS = σsgδSsg +σslδSsl +σlgδSlg (2.56)

where δSsg, δSsl , and δSlg correpsond to a gain (or loss if negative) in solid-gas, solid-liquid, and
liquid-gas surface area. From Eq. 2.52, we obtain the Young-Laplace pressure drop:

∆p =
1

δV

(
σsgδSsg +σslδSsl +σlgδSlg

)
(2.57)

Variations in solid-gas and solid-liquid surface energy are generally equal and of opposite sign, for
which we write δS = δSsg =−δSsl . For a meniscus moving in a channel of cross-sectionnal area
A and a translational symmetry of the meniscus as it moves a distance δx, i.e. a straight or locally
straight channel, we can write δV = δxδA and δSi = δxδℓi where δℓi is the peripheral length
bounding the surface A for the phase i. In this case, we can simplify the Young-Laplace pressure
to

∆p =
1
A
[
δℓ(σsg −σsl)+σlgδℓlg

]
(2.58)

From the contact angle’s definition in Eq. 2.54, we can rewrite Eq. 2.58 as

∆p =
σ

A
[
δℓcosθ +δℓlg

]
(2.59)

where the liquid-gas surface tension is commonly referred to as "surface tension" alone, i.e. σ ≡
σlg. It is made evident from the previous equation that creation of an air-water interface is equiva-
lent to wetting a superhydrophobic wall, and on the other hand retraction of an air-water interface
is equivalent to wetting a superhydrophilic wall. For a channel of width W and height H, and one
side of the channel being exposed to air, we obtain

∆p =
σ

HW
[(2W +H)cosθ −H] (2.60)

where [(2W +H)cosθ −H]/HW is the effective curvature of the capillary interface. This result is
akin to the capillary pressure obtained at the moving front of menisci in self-coalescence modules
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and will be discussed at length in this thesis (mostly Chapter 3 and 5). For a cylindrical tube of
radius R, we simply recover ∆p = 2σ cosθ/R.

2.1.6 Washburn flows

The underlying physics of capillary-driven flows can be described by the Washburn equation [82].
Washburn flows occur from a trade-off between capillary forces and viscous losses when filling
microchannel. The Young-Laplace pressure drop is given by ∆psurf = σκ (Fig. 2.8), where κ =

∇s ·n is the curvature of the capillary interface calculated from the surface divergence of the normal
surface vector n. Assuming the pressure drop ∆p between the meniscus’ interface and the inlet
is constant when filling a straight channel of arbitrary cross-sectional shape of surface A, and
that Poiseuille’s flow is fully developed, the flow rate is described by the Hagen-Poiseuille law,
hydrodynamic equivalent of Ohm’s law, and can be written as

∆psurf = xRhyd,xA
dx
dt

(2.61)

where Rhyd,x is the hydraulic resistance per unit length of the channel. Rearranging the terms, we
obtain the following first-order nonlinear ordinary differential equation:

x
dx
dt

=
σκ

ARhyd,x
(2.62)

Introducing the arbitrary length scale, ℓ, and the Washburn time, τ , the solution for x(0) = 0 can be
rewritten as

x(t) = ℓ

√
t
τ

(2.63)

where τ = Aℓ2Rhyd,x/2σκ . For a capillary-driven flow confined between two identically hy-
drophilic parallel plates of height H, width W , and contact angle θ , we have A = HW , κ =

2cosθ/H, Rhyd,x = 12η/WH3, ℓ= H, and τ = 3ηH/σ cosθ .

Hp0

θ

θ

p0 p0 −∆psurf

Figure 2.8 Washburn flow between two parallel plates.
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2.1.7 Concus-Finn criterion

The pinning stability of a meniscus on a sharp corner of angle α is known as the Concus-Finn
(CF) criterion [83–86], a phenomenon first investigated by Gibbs in 1961 [81]. Concus and Finn
proposed that the shape of a surface pinned in a corner can be obtained by minimizing the energy of
the system. An easy way to represent the minimization in the context of liquid pinning on a CPL,
is presented in Fig. 2.9. Minimization of the energy occurs when the curvature is maximal, i.e.
when the meniscus is a straight line. In other words, assuming no external pressure is applied on
the system, the condition π − δ −θ < θ must be obeyed at equilibrium. Otherwise, the meniscus
either hasn’t reached equilibrium or is moving forward on the edge. We obtain from that condition
the critical contact angle

θc =
π −δ

2
(2.64)

Figure 2.9 Liquid pinning on a CPL of edge steepness π −δ and contact angle θ .

Thus, if θ < θc the criterion is not met and there exists no stable solution to the minimization of
surface energy and the pinning fails. Otherwise, the interface is stable. A large body of literature
exists on the theoretical, numerical, and experimental investigation of the CF criterion in pores,
corners, and complex configurations [10, 87–97].

2.1.8 Saffman-Taylor viscous fingering

Saffman-Taylor viscous fingering (STVF), also known as Saffman-Taylor instability, occurs when
a less viscous fluid is driven in a more viscous fluid in a media abiding by Darcy’s law, e.g. porous
media such as soils or Hele-Shaw cells (Fig. 2.10). This phenomenon of instability of liquid
surfaces in porous media and Hele-Shaw cells was pointed out by Taylor [98] and verified exper-
imentally by Lewis [99] in 1950 (Fig. 3.9). It was followed by a seminal paper by Saffman and
Taylor in 1958 [100] describing the necessary criterion for stability. The stability of STVF was then
further discussed by Bensimon [101] in a WKB approximation framework and complex analysis.
A brief description of how STVF arises is presented in Appendix B.

7Attribution: Claire Trease, Kingston University, CC BY-SA 4.0, via Wikimedia Commons.
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Figure 2.10 Saffman-Taylor viscous fingering resulting from the air displacing a spin coated thin
film. The colours are resulting from thin-film interference.7

2.2 Numerical modelling of capillary flows

Theory and simulation of matter can be classified in time and length scales [102]. From the most
fundamental scales up, we can classify them as: 1) ab initio (electronic) and semiempirical meth-
ods [103, 104], 2) atomistic methods [105, 106], 3) mesoscopic methods [107], and 4) continuum
methods [108]. Because of the relatively large scale of systems in microfluidics and micro pro-
cess engineering with respect to sub-atomistic scales, mesoscopic and continuum methods are pre-
ferred [109].

Modelling gas-fluid or immiscible fluid-fluid interfaces where surface tension plays an vital role is a
common problem in computational fluid dynamics (CFD) known as the interface tracking problem.
A large body of literature exists on solving this problem using multiple different approaches [109–
113], from atomistic models with interacting potentials, to continuum mechanics with the Navier-
Stokes equations [10, 114]. Once a scale class and a model is chosen, equations are discretized
and solved using numerical methods (Fig. 2.1). We list some of the well-known properties of
continuum CFD discretization methods (FDM, FVM, FEM) and LBM here below [108, 109]:

Finite Difference Method

• Simple one-for-one replacement of differential operators;
• Meshes must be structured, and curved meshes must be transformed so that discretized equa-

tions can be written on structured cartesian meshes (i.e. no complex geometries and struc-
tures);

• Neumann boundary conditions are approximated;
• Easy to implement.
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Finite Volume Method

• Simple flux calculations through surfaces;
• Complex geometries and structures can be accommodated without coordinate transforma-

tions;
• Normal flux integration on surfaces guarantees conservation through the domain;
• Generally more strenuous to implement than FDM.

Finite Element Method

• Requires notions of functional analysis;
• Complex geometries and structures can be accommodated without coordinate transforma-

tions;
• Neumann boundary conditions are exact;
• Generally more strenuous to implement than FVM.

Lattice Boltzmann Method

• Originates from a mesoscopic description of fluid dynamics and can incorporate physical
terms interacting at the sub-continuous scale;

• Complex geometries and structures can be accommodated, but issues may arise depending
on the chosen LB formulation (e.g. in corners);

• Complex boundary effect occurring at the mesoscopic scale can be modelled using the bounce-
back boundary condition;

• Easy to implement (similar structure as FDM).

Mesoscopic multiphase CFD models include the multiphase lattice Boltzmann method (MLBM)
[113, 115]. The lattice Boltzmann method (LBM) originated from the lattice gas automata [116,
117] and derived from the minimal form of the Boltzmann kinetic equation. It consists in evolving
discretized particle distribution functions on a grid. MLBM has been reported to be a powerful tool
for the study of electrowetting [118,119], self-priming of liquids [95], and powerful software pack-
ages have been developed based on this formulation [120, 121]. An example of implementation of
the MLBM using colour functions is presented in Appendix F. Nevertheless, MLBM is still under
a lot of development and standards (community consensus) have yet to be established. Further-
more, the intrinsic mesoscopic nature of MLBM does not provide any advantage, with respect to
continuum methods, in solving main challenges (spurious currents, and contact line singularities)
in capillary dynamics modelling [122–125]. These challenges will be addressed in more details in
Section 2.2.2.

In microfluidics, the ratio between the mean free path of particles and the characteristic length scale
of devices, characterized by the Knudsen number, is orders of magnitude smaller than unity and the
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continuum interpretation of fluids applies [126]. Continuum-based methods for multiphase flows
describing gas-liquid or immiscible liquid-liquid interface evolutions are numerous [109–112,127],
and several open source and commercial softwares have been developed to model them [128–132].
A comparative study between different classification scales of fluids in a CF criterion validation
framework shows promising results using FVM with the volume of fluid (VOF) method for finite
interface modelling [10]. FVM is often preferred to FDM and FEM for its intrinsic conservation
of physical quantities, including conservation of the phase field which is critical in calculating
the interface location. Many open source and commercial software packages such as OpenFOAM
[128], Ansys-Fluent [130], Gerris [129], and others use the VOF method with a FV discretization
or variations thereof.

2.2.1 Modelling interface evolution

The fundamental idea behind sharp interface calculation methods originates from the Marker And
Cell (MAC) formulation [133–135]. In this method, connected Lagrangian particles, or markers,
are advected throughout the Eulerian domain. As the interface moves on the mesh, particles are
deleted or added for proper resolution of the interface. These types of methods are generally known
as Front Tracking (FT) methods [136, 137]. An other sharp interface calculation method akin to
FT formulation are dynamic grid approaches where the interface is connected by grid nodes and
moves with the mesh. Moving unstructured grid methods are generally based on the arbitrary
Lagrangian–Eulerian (ALE) formulation [138]. FT methods are challenging to use for the study
of capillarity as they generally can not deal with important interface topological deformations as
observed in coalescence, breakup and pinning phenomena. And in cases where they can, they
require complex algorithms [139]. On the other hand, topological changes are well captured by
Eulerian methods.

The volume of fluid (VOF) method was first developed by Nichols and Hirt [140–142]. This method
is based on the advection of a phase field, or volume fraction, by a simple first order transport
equation we can write as

Dα

Dt
≡ ∂α

∂ t
+(u ·∇)α = 0 (2.65)

where D/Dt is the material derivative operator, and α is the phase field taking values between 0
and 1, and a single set of Navier-Stokes equations is solved for the mixture. For an incompressible
isothermal mixture, the Navier-Stokes equations are described by Eq. 2.6 and Eq. 2.7 with density
and viscosity defined respectively as

ρ = αρ1 +(1−α)ρ2 (2.66)
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µ = αµ1 +(1−α)µ2 (2.67)

where 1 and 2 denotes the two fluids. The interface is reconstructed from the phase field and can be
either have a zero (sharp) or finite thickness. The advection of a phase field using Eulerian methods
removes the difficulty MAC and ALE types of formulations have in modelling large topological
deformations. However, the resolution of interfaces with Eulerian methods is dependent on the
size of the local mesh. Examples of reconstruction methods for sharp interfaces with the VOF
method are the Simple Line Interface Calculation (SLIC) method [143, 144], the Piecewise Linear
Interface Calculation (PLIC) method, and the Piecewise Parabolic Interface Calculation (PPIC)
method [145].

SLIC methods splits mixed-fluid cells (0<α < 1) in a piecewise constant manner in the direction of
the cell. They are seldomly used nowadays, as gold standards gravitate towards the PLIC method
and variations thereof [109]. In the PLIC method, the interface is reconstructed in the direction
normal to the unit vector, reconstructed from neighboring cells, that points towards the positive
phase. With the volume fraction known from α , and the unite vector, a surface can be reconstructed
analytically and cut the cell where appropriate. Analytical reconstructions are only possible for
single cuts on a given set of cell shapes, notably orthogonal hexahedral cells [146], triangular
cells [147] and tetrahedral cells [148]. However, hybrid methods can be used where interfaces
are reconstructed analytically where they can, and using other methods where they cannot, e.g.
in OpenFOAM PLIC reverts back to interface compression [149] where it can’t be applied [150].
Higher order methods such as the PPIC method reconstruct the interface using a similar approach,
but with non-linear interface reconstruction schemes such as parabolic schemes [145], cubic splines
[151, 152], and quadratic splines [153]. However, higher order schemes have not yet proven to be
superior to more conventional methods such as the PLIC method.

A popular model for finite interface reconstruction using the VOF method, as implemented in the
interFoam solver of OpenFOAM [128], us the following model [149]

∂α

∂ t
+∇ · (αu)−∇ · [α(1−α)ur] = 0 (2.68)

where ∇ · [α(1−α)ur] is an artificial compression term that has the advantage of being conserva-
tive, i.e. the total volume of phase is conserved after the operation. The compression velocity term
is defined as

ur = n f min
[
Cγ

|φ f |
|S f |

,max
|φ f |
|S f |

]
(2.69)

where φ f is the volume flux across the surface f , S f is the surface area, n f is the unit vector of
that surface, and Cγ ∈ [0,4] is a constant whereby Cγ > 1 enhances the compression, and Cγ = 0
removes compression.
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Level Set (LS) method [154–157] is another technique used for interface tracking on Eulerian
meshes. As opposed to FT methods, the LS method can model and capture interfaces with strong
deformations. Similarly, as the VOF method, the LS method consists in adverting a LS function,
φ , through the domain and reconstruct the interface at a given φ value, e.g. generally at φ = 0.5.
A popular LS model, e.g. as used in COMSOL Multiphysics [131], is to model the interface by
solving the following equation:

Dφ

Dt
= γ∇ ·

(
ε∇φ −φ(1−φ)

∇φ

∥∇φ∥

)
(2.70)

where the parameter ε determines the thickness of the interface and should be equal to the largest
value of the mesh size, and γ is a stabilization parameter. However, this parameter needs to be
fine tuned for each specific problem and might result in strong diffusion of the interface or long
computational times. Furthermore, signed distance-based LS methods are known to suffer from
artificial mass losses, which is a critical flaw in modelling capillary interface as this directly affects
the position of the meniscus in time. Several authors have assessed mass losses in LS methods
and provide mass correction steps [158–161]. LS methods were successfully modified to be con-
servative [162, 163] and have been used in microfluidics [164], but this has yet to be implemented
successfully in convenient open source or commercial CFD software packages.

The phase-field (PF) method [165] consists in solving the Cahn–Hilliard equation [166]:

∂α

∂ t
= D∇

2(α3 −α −β∇
2
α) (2.71)

where D is a diffusion coefficient and α is the phase field taking values between −1 and 1. To bound
the phase field between 0 and 1, as in the VOF method, the simple transformation α → 2α −1 can
be applied. The diffusing quantity α3−α−β∇2α is a a chemical potential, and

√
β is the interface

thickness. This method issues from a free energy formulation of nonuniform systems, making it
the only model with a pure grounding in physics. However, high-order discretization schemes are
required to capture the fourth-order term in Eq. 2.71, making it computationally intensive.

2.2.2 Modelling surface tension

With the reconstructed interface, surface tension forces are calculated and applied to the Eulerian
grid. Line integrals are used to compute surface tension from sharp FT (Lagrangian) methods
[136, 137, 167, 168] in conjunction with the immersed boundary, or immersed interface, method
[169] to transpose the source term on the Eulerian grid.

The Continuous Surface Force (CSF) method [65] calculates the curvature of the interface, κ from
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calculating the gradient of the phase field:

κ = ∇ ·
(

∇α

|∇α|

)
(2.72)

The momentum source term κ(∇α) is then added is in Eq. 5.10. The CSF method is explicit
and requires a time step restriction to ensure numerical stability [65, 170]. However, methods have
been implemented to reduce that restriction [171, 172]. On the other hand, the Continuous Surface
Stress (CSS) and Sharp Surface Force (SSF) methods have the advantage of being intrinsically
conservative and have been used by [145, 173].

A comparative study of the CSF, CSS, and SSF methods was conducted for a droplet and bubble
relaxation benchmark [174, 175] and for droplets formation in T-junctions [176]. Droplets forma-
tion in T-junctions were also investigated using the PLIC method [177]. More recently, PLIC, CSF,
SSF, and variations thereof, were also assessed for spontaneous imbibition in a microchannel [178].
CSF was also experimentally validated for capillary flows in SU8 and PDMS micropumps with pil-
lars [179].

Transport problems with interface tracking and surface tension are challenging due to, in part,
spurious currents (Fig. 2.11), also known as parasitic flow or artificial currents [180]. Spurious
currents have the effect of increasing the flow velocity locally, increasing the simulation time by
orders of magnitudes due to the Courant number limit on numerical time steps [181]. The Courant
number is defined as

Co =U
∆t
∆x

(2.73)

where U is the flow velocity, ∆x is the cell size, and ∆t is the numerical time step. Co is calcu-
lated in every directions, i.e. x,y,z in 3D, and the numerical time step is calculated from ∆t =

Comax maxΩ {∆x/U} on the whole numerical domain Ω, with Comax being the maximal attributed
Courant number (generally Comax < 1 for stability). Another important numerical time step limiter
is the von Neumann stability criterion, also known as Fourier stability criterion, which limits time
steps for the Forward Time Centered Space (FTCS) scheme in the following way:

D
∆t

∆x2 ≤ 1
2

(2.74)

where D is the diffusion coefficient. However, convection is generally the highest limiter in CFD
for laminar flows of water-like fluids. Numerical time steps might also be limited by reaction, e.g.
Section 3.8, in which case ∆t has to be small enough for the FTCS scheme to capture the physics
of the problem or higher order temporal discretization schemes have to be used. Explicit-time
integration schemes include, for example, the Lax–Wendroff method [182] and the Runge–Kutta
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method [183, 184]. Implicit-time integration may also be preferred for unconditional stability;
however, accuracy is not guaranteed. A large body of literature exists on how to reduce spurious
currents using the CSF and CSS models [145, 167, 185–187]. There has been substantial work in
the previous year to reduce spurious currents, and even completely eradicate them using accurate
adaptive solver for surface-tension-driven interfacial flows [174, 188]. However, spurious currents
are still a main issue for unstructured meshes, non-adaptive solvers, and most CFD codes whether
commercial or open source. A parametric analysis of spurious currents in OpenFOAM (VOF-FVM
with compressive CSF) for a droplet of water was done and details are provided in Appendix H.

An other challenge in modelling capillary flows is contact line dynamics on walls with Dirichlet
boundary conditions using continuum (or mesoscopic) methods. Solving a moving capillary line
on a wall is equivalent to a moving Neumann boundary condition (free-surface) on a static wall
with a Dirichlet boundary condition of zero velocity. This corner flow problem is a classic problem
of fluid dynamics and is known as Taylor’s scraping flow [189], named after the British physicist
G. I. Taylor., and was generalized shortly after by Moffatt [190] for free-surface flows (Neumann
boundary condition). The resulting pressure in cylindrical coordinates centered at r = 0 in the
corner is given by

p(r,θ)− p∞ =
2µU

r
θ cosθ sinβ −β cosβ sinθ

sinβ cosβ −β
(2.75)

where β is the angle of the corner, i.e. contact angle, and θ the angle coordinate. This result is
obviously physically wrong as we approach r → 0 since the pressure becomes singular8. More
details on that effect and its characterization are given in Appendix G (in French).

Contact angles in OpenFOAM are imposed by updating the surface vector to the multiphase inter-
face in the first cell layer using the dot product relation with the surface vector to the wall. Knowing
the cosine of the angle between the two vectors (from the contact angle) and knowing the surface
vector to the wall, we can find and fix the value of the surface vector to the multiphase interface.

Interface evolution and surface tension modelling are still under a lot of research. More recently,
several methods were implemented in OpenFOAM, including the iso-advector method [192, 193],
the PLIC method [194], and some variants thereof such as the Multicut PLIC (MPLIC) method
[150].

2.2.3 Numerical modelling of capillary flows in this thesis

Chibbaro et al. compared the VOF method, LBM and MD in a CF criterion validation frame-
work [10], i.e. a condition that is paramount in the operation and modelling of capillary-driven

8Huh and Scriven famously noted that "not even Herakles could sink a solid if the physical model were entirely
valid, which they are not." [191]
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Figure 2.11 Simulation of a water droplet at equilibrium using VOF-FVM, CSF and interface com-
pression in OpenFOAM. Although the droplet phase field (left) shows it is static in space, the
velocity field (right) shows heavy spurious currents in the vicinity of the capillary interface. The
domain size is 1 mm, and the water droplet radius is 100 µm.

microfluidics, such as phaseguides [195], valves [196] and self-coalescence modules [197]. MD
failed in modelling the pinning of the meniscus for contact angles close to the critical CF criterion.
Both LBM and VOF were successful in modelling the pinning. Furthermore, VOF was able to
reproduce all the physical properties of the flow, as opposed to LBM and MD which had some
discrepancies regarding surface tension and vapor density.

Because of the prevalence of VOF-FVM in the literature, comparative studies such as Chibbaro et

al. [10], and available software packages [109], both commercial and open source, this method was
selected for the multiphase computational work in this thesis (Chapter 4 and III), with OpenFOAM
[128] as CFD solution. OpenFOAM is an open source C++ library that uses a tensorial approach to
continuum-based CFD using object-oriented techniques [198], making it easy to develop reliable
and robust codes rapidly. Also, OpenFOAM has one of the largest, if not the largest, user base
in open source CFD solutions. Furthermore, other methods such as the LS and PS methods as
implement in the FEM commercial software COMSOL Multiphysics [131] were tested (using the
LS and PF methods) for basic test cases, e.g. benchmark of a 2D rectangular channel, and showed
unreasonable simulation and convergence time with important mass losses.

Surface tension effects are calculated from the curvature of the phase field in Eq. 2.7, which is
obtained from the CSF formulation [65], and is defined according to Eq. 2.72. The phase field,
α , is advected by a simple first order transport equation and the interface is calculated using the
compression scheme described in Eq. 2.68. All simulations in this thesis take Cγ = 1 (Eq. 2.69) as



30

recommended by Deshpande et al. [199].

In OpenFOAM, the pressure-momentum equations are solved using the PIMPLE (PIso-siMPLE)
algorithm [200], a combination of the PISO (Pressure-Implicit with Splitting of Operators) for
transient flows and SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm for
steady flows [201]. However, for non-inertial loop, the PIMPLE algorithm has a single inner loop
which is equivalent to the PISO algorithm. In pseudo-code, the PISO algorithm with interface
evolution reads:

Initialize fields
Start computational loop

while t < tend

while momentum not converged (PISO loop)
Momentum prediction: Solve for velocity field based on p

Pressure correction: Solve for p based on momentum predictions
Momentum correction: Update velocity field from pressure correction

Interface evolution from velocity field
Interface reconstruction/smoothing
Calculate time step dt from the Courant number
Update time t = t +dt

End computational loop

2.3 Thesis Structure

The main objectives of this thesis are to 1) understand and characterize newly discovered self-
coalescing flows, which allows reagent reconstitution with minimal dispersion, 2) develop a nu-
merical framework for modelling complex capillary driven flows in microstructures, which can be
used as a tool to predict behavior of liquids in microsystems and optimize their design where an-
alytical tools are limited, and 3) predict, understand, and characterize new types of capillary flow
providing enhanced control over passive flows in microchannels.

The general thesis structure is as follow. In Chapter 3, I detail my contributions with regard to our
publication in Nature [197] (available in Appendix A). I discuss the characteristics of the flow in the
SCMs which prevents the accumulation and smearing of reagents when resuspended. The different
methods of analysis and their conclusions are briefly presented and a link with Saffman-Taylor
Viscous Fingering (STVF) is made. Second, challenges in modelling capillary flows are presented
and a solution is provided (Chapter 4 and publication in Computers & Fluids [202]). Finally, I
describe how modelling tools can help predict and characterize new phenomena in microfluidics,
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such as accelerating capillary flows (Chapter 5 and submitted in Physical Review Fluids).

It is important to acknowledge that some of the work in my thesis wouldn’t have been possi-
ble without collaborations with other incredible scientists, engineers, and researchers. In Chapter
3, Emmanuel Delamarche (E.D.) conceived the research. Onur Gökçe (O.G.) discovered self-
coalescing flows, designed SCMs and experiments, and conducted the experiments. Thomas Ger-
vais (T.G.) developed the theoretical framework and contributed to the experimental design. I
performed the conformal mapping calculations and the numerical simulations, and contributed to
the theoretical framework. O.G., I and T.G. analysed the data. Yuksel Temiz (Y.T.) fabricated mi-
crofluidic chips and documented them using scanning electron microscopy. O.G., T.G. and E.D.
wrote the manuscript. All authors discussed and provided input to the manuscript. Finally, the Na-
ture manuscript was supplemented by over 20 figures and a 20 page long appendix describing the
mathematical derivation leading to the analysis of self-coalescence, which I wrote alone under the
supervision of T.G. The application section of Chapter 3 is part of a publication by Marco Rocca
(M.R.) et al. [203]. In this work, M.R. and E.D. conceived the research, T.G. developed the theoret-
ical model, and I wrote the software for running simulations and validated theoretical results with
numerical experiments. In Chapter 4, I conceptualized and visualized the research, established
the methodology, conducted the formal analysis, and wrote the original draft. T.G. supervised
the research, and T.G. and I reviewed and edited the manuscript. In Chapter 5, I conceived the
research, developed the theoretical models, conducted the numerical simulations, analysed experi-
mental results, and compared theoretical, numerical, and experimental results. Y.T. and I designed
the SCMs. Y.T. designed and conducted the experiments, and fabricated the SCMs. T.G. super-
vised the research. All authors discussed the results. T.G. and I wrote, reviewed, and edited the
paper with inputs from all authors.
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CHAPTER 3 SELF-COALESCING FLOWS IN MICROFLUIDICS FOR
PULSE-SHAPED DELIVERY OF REAGENTS

Chapter Overview

In this theme , I detail my contributions with respect the our publication in Nature [197] regard-
ing self-coalescing flows in microfluidics for pulse-shaped delivery of reagents (Appendix A). The
characteristics of SC flows are discussed and the accurate ressuspension of reagents in SCMs, i.e.
prevention of accumulation and smearing of reagents, is explained. Analytical and numerical anal-
yses are conducted and results show SC flow behaviour is mathematically akin to Saffman-Taylor
Viscous Fingering (STVF). In this research, I performed all conformal mapping calculations and
numerical simulations, and co-developed to the theoretical framework with my advisor Thomas
Gervais. Emmanuel Delamarche conceived the research, Onur Gökçe discovered self-coalescing
flows, designed SCMs and experiments, and conducted the experiments, and Yuksel Temiz fabri-
cated microfluidic and documented them using scanning electron microscopy. The chapter ends
with an application section for which I wrote the software for running simulations and validated
theoretical results with numerical experiments. This research was led by Marco Rocca and Em-
manuel Delamarche, and the results are published in Lab on a Chip [203].

3.1 Introduction

Methods for the integration and release of reagents in microsystems are numerous [204] and are
ubiquitous when designing BioMEMS. A key method for the integration of reagents in microstruc-
tures is by inkjet printing [205–207]. Picograms of deposited reagents dry quickly [208, 209] and
have long shelf life, which is critical in the pharmaceutical and diagnostic industries [210]. Re-
lease methods include paper networks [211], degradation of hydrogels [212] and rehydration of
dried reagents [213]. However, no reported methods provide a precise control over the release of
reagents in microstructures, and releasing reagents still proves to be a challenge [204].

When wetting printed reagents in microchannels, a strong accumulation of reagents occurs at the
capillary filling front (Fig. 3.1) because of convection, and a spreading of reagents in the direction
of the flow occurs because of an increase in effective diffusivity due to strong local shear flows. This
is known as the Taylor-Aris dispersion (TAD) effect, and is a challenge for any applications where
dispersion has to be precisely controlled in microchannels, e.g. rapid diagnostic tests (RDT) and
lateral flow immunoassay, lab-on-chip devices (LOCD), point-of-care and precision diagnostics,
and integrated security features on chip [26, 55]. In BioMEMS, the challenge arises when precise
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quantity of reagents are needed in controlled volume of samples for accurate and effective diagnosis
or analysis.

Figure 3.1 Resuspension of printed amaranth dye in a microchannel. Accumulation of dye at the
capillary front because of convection and spreading of the concentration profile by TAD.

The reagent resuspension challenge can be tackled by confining a drop of water in a microstruc-
ture, wetting printed reagents in a manner which prevents the accumulation of reagents at the filling
front. By controlling the flow rate, TAD can be minimized in such a way as to maximize the spa-
tiotemporal resolution of reagent concentration profiles and send pulses of reagents downstream
of microchannels. Filling of the microstructure occurs in 3 phases: 1) water is confined in one
part of the device where no reagents are printed (Fig. 3.2), confinement occurs from a capillary
pinning line (CPL), 2) the capillary filling front reaches the end of the CPL, and 3) the capillary
interface “folds” back onto itself in a process we call self-coalescence (SC). This phenomenon will
be discussed at length in the following sections. Because dispersive effects are intrinsically linked
to flow dynamics, characterizing the transport of reagents in self-coalescence modules (SCM) re-
quires characterizing flow dynamics in the SC phase. Physical hints from experimental velocity
maps (e.g. Fig. 3.3) and simulations were used to build an accurate model of SC flows.

Figure 3.2 Experimental resuspension of amaranth dye deposited by inkjet printing in the SCM.
The fluid fills the upper part of the device (t1) to reach the end of the CPL (t2) and start filling in
the orthogonal flow mode (t3) preventing the accumulation of reagents at the capillary front. (See
Video A.16)

In order to determine the key properties of SC flows and extract key behavior and scaling laws, we
performed several approximations to reduce the full 3D, time-dependent free boundary Stokes flow
into a form tractable analytically. In this section, we provide a step by step development of the key
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Figure 3.3 Fluorescent microspheres (4.8 µm diameter) revealing stagnancy of the flow far from the
receeding meniscus. (See Video A.15)

results obtained in Eq. A.1 and A.2 in the paper and a step by step construction of Fig. A.1e by
using Hele-Shaw theory and conformal mapping to solve this type of time-dependent free-boundary
flow problem.

3.2 Background : Hele-Shaw approximation in self-coalescence

In physical terms, a 3D Navier-Stokes flow can be converted to a Hele-Shaw cell with minimal
error (concentrated along the domain boundaries) if three conditions are respected: i) the flow is
planar; ii) the Reynolds number is small (Stokes flow); iii) the path followed by a fluid element
in the flow field is much larger than the cell depth (that is: H2 ≪ L2

c , where Lc ∼ W ). SCMs
can be conveniently described by a quasi 2D flow in a Hele-Shaw cell, since the above conditions
should be respected for several practical reasons. First, the stability of the meniscus over the CPL
and the Laplace burst pressure at the diversion rail will be increased as the channel depth is made
smaller. Secondly, making the device wider increases possibilities for printing reagents as the
printing surface becomes larger. Thirdly, upon reconstitution, the spotted reagent concentration
increases in the fluid when the ratio of H/W is kept small.

In this paper, we consider the height-averaged Hele-Shaw cell, with the governing equations:

vave(x,y) =
1
H

∫ z=H

z=0
v(x,y,z)dz =− H2

12η
∇∇∇p(x,y) (3.1)

Furthermore, for incompressible fluids (e.g. water), conservation of mass requires that the diver-
gence of the flow field be zero (∇∇∇ ·vave = 0) outside of flow sources, yielding Laplace’s equation

∇
2 p(x,y) = 0 (3.2)

In purely 2D flows governed by Laplace equation, the pressure can be generalized to a com-
plex potential function of the form Ψ(z) = φ(x,y) + iψ(x,y), where z = x + iy, and φ(x,y) =
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−(H2/12η)p(x,y) is the velocity potential and ψ(x,y) is the stream function [80]. Thus, Laplace’s
equation can be written using a single complex variable z, as

∇
2
z Ψ(z) = 0 (3.3)

with ∇2
z = d/dz(d/dz). This equation is well known to be conformally invariant and a rich body of

literature is dedicated to solving this type of 2D Laplace problem using conformal mapping [214].

3.3 SC free boundary problem formulation

In studying self-coalescence (SC), we first observe experimentally (Video A.15) that, when a con-
stant flow rate is introduced in a thin, elongated microstructure, the velocity of the meniscus (the
leading air/water interface) moves at constant speed Um (Fig. 3.4a). Therefore the shape of the
meniscus does not vary and propagates as a kinematic wave (or shock) inside the channel. Spec-
tacular progress since the early work of Polubarinova-Kochina and Galin (1945) have been made
to study free boundary flow in Hele-Shaw cells using conformal mapping, a powerful analytical
technique that uses transformations in the complex plane to map a geometry onto another simpler
one, while leaving Laplace’s equation invariant [214, 215].

In general, solutions to free boundary problems are challenging to obtain. Typically, one seeks a
mapping of the expanding reference domain (the physical domain) onto a simpler one (typically the
unit circle) with fixed boundaries. The problem is then solved in this fixed domain and the inverse
mapping is used to find the solution in the physical domain.

In the self-coalescing flow problem, we are in the presence of an expanding domain (the water-filled
part of the channel) and the unknown complex potential associated to the problem is time-dependent
(Ψ(z)→ Ψ(z, t)). The boundary conditions (Fig. 3.4a) are also defined on a moving wall Γ(z, t):

Re
{

dΨ

dz

}
=


U, z →−∞;

−Um, z = Γ2;

0, z →+∞,

Im
{

dΨ

dz

}
z={Γ1,Γ2}

= 0, Re{Ψ}=− H2

12η
pcap, (3.4)

where Γ1 and Γ2 are respectively the upper and lower boundary of the SCM.

Instead of solving the mixed boundary condition problem directly, we exploit the translational
symmetry of the structure and observe that by adding a linear potential term of the form Ψ′(z, t) =

A1z+A2(t), Eq. 3.3 remains invariant. Furthermore, in the reference frame of the moving meniscus,
the translational invariance of the problem suggests that Ψ∗ = Ψ∗(z∗), with z∗ = z +Umt. By
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selecting the potential associated to the reference change to be exactly Ψ′(z, t) = Um(z+Umt) =

Umz∗, the new potential becomes Ψ∗(z∗) = Ψ(z, t) +Um(z +Umt) and the boundary conditions
expressed above in Eq. 3.4 simplify to:

Re
{

dΨ∗

dz∗

}
=

U +Um, z∗ →−∞;

Um, z∗ →+∞,
and Re

{
∂Ψ∗

∂n

}
z∗={Γ1,Γ2}

= 0, (3.5)

where we introduce here the operator ∂/∂n, the derivative in the direction normal to the boundary
Γ(z∗), with ∂/∂n = 0 representing a boundary condition of the Neumann type.

Physically, we observe that the addition of the potential Ψ′(z∗) corresponds to a Galilean transform
in a reference frame moving at constant velocity −Um with respect to the laboratory reference
frame (Fig. 3.4b). The problem can therefore now be solved in the reference frame of the moving
meniscus using a standard conformal map z∗ = f (ω) to map the physical plane Z∗ onto the upper
half complex plane Ω with regular Neumann boundary conditions everywhere on Γ(z∗) except at
±∞ (Fig. 3.4c). This property applies to all flows studied in this article and stems directly from the
invariance of the Navier-Stokes equation under a Galilean Transform for the particular elongated
geometry studied.

These two findings, 1) using the fact that Navier-Stokes equation is invariant under a Galilean
transformation, and 2) that the appropriate reference frame suggested leaves the domain regular
with only Neumann boundary conditions, the only kind tractable using conformal mapping, are the
two key physical observations required to implement our analytical strategy. Even though they are
simple, finding and formalizing them took significant efforts and was, in some way, a lucky turn of
events.

3.4 Numerical solution of the flow inside a SCM

Several numerical methods can be used to analyze SC in elongated geometries. FEM provide an
accurate description of the flow profile. However, it yields no insight on the relationship between
the flow properties and the geometrical parameter. Simple scaling arguments offer asymptotic
solutions in certain specific flow regimes, but offer no possibility to connect these regimes together.
In this view, conformal mapping offers an attractive approach to model SC as it provides both.
First, it yields a quasi-analytical solution with arbitrary precision of the phenomenon (Section 3.5).
Secondly, this map can be approximated locally to yield asymptotic solutions at every point of
interest (as in Sections 3.6.1 and 3.6.3). The general solution strategy is to observe that the circular
arc of the meniscus can be approximated by a series of N linear segments (Fig. 3.5). Thus, the
Z∗ domain can be mapped onto Ω using Schwarz-Christoffel transformation [72] and every vertex
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(a) —————————————————————————————————————
——–

Ψ∗(z∗) = Ψ(z, t)+Umz∗ ⇕ Ψ(z, t) = Ψ∗(z∗)−Umz∗

z∗ = z+Umt −− z = z∗−Umt
(b) —————————————————————————————————————
——–

z∗(ω) ⇕ ω(z∗)

(c) —————————————————————————————————————
——–

Figure 3.4 Reference frame change Z → Z∗ and Schwarz-Christoffel mapping Z∗ → Ω.
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zn ∈ Z∗ can be mapped from an associated prevertex ωn ∈ Ω. It follows that an infinite number of
segments would form a perfect circle. In practice, yet, an N-sided polygon with arbitrarily large
N is sufficient. The expression for the circle’s radius and the z∗N+1 vertex location are respectively
given by

Figure 3.5 Geometry of the curved meniscus in a SCM.

r =
λW

1+ cosθw
, z∗N+1 = λW

(
tan

θw

2
− i
)

(3.6)

where θw is the dynamic contact angle at constant velocity Um and λ is the ratio between the
width of the returning flow zone and the total width of the SCM. The exterior angle βN+1 tends
towards β ≡ π − θw as the number of vertices N gets larger, and the exterior angles along the
meniscus are given by β2≤n≤N = −β/N and β1 = −β/2N. According to the Riemann mapping
theorem [216, 217], we can arbitrarily fix three prevertices in Ω to map any points in Z∗ as long
as the ordering is kept the same. Choosing ω0 = 0, ωN+1 = 1 and ω∞ → ∞, we are left with N

unknown prevertices located in the interval (0,1). Thus, the function mapping Ω to Z∗ can be
written as

z∗(ω) =C1 +C2

∫
ω

1

1
ω ′

{
∏

N
n=1 (ω

′−ωn)
1
N

ω ′−1

}1− θw
π

dω
′ (3.7)

wherein z∗(1) = C1 = z∗N+1. The two source terms are located at ±∞ in the Z∗ plane. Using Eq.
3.7, they are mapped at 0 and ∞ in the Ω plane. It ensues that the potential in Ω is

Ψ
∗(ω) =

2q
2π

ln(ω) (3.8)

where q is the volume of fluid going through the system per second in unit height, i.e. q = Q∗/H

where Q∗ = Q/λ is the flow rate in the moving reference frame. The point source at ω0 has for
value 2q since only the upper complex plane is included (Fig. 3.4c). From the boundary conditions
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expressed in Eq. 3.5, we find q =UmW . Knowing the expression for the complex velocity:

V =Vx − iVy =
dΨ

dz
=

(
dΨ∗

dω

dω

dz∗
− dΨ′

dz∗

)
dz∗

dz
=

q
πω

(
dz∗

dω

)−1

−Um (3.9)

it follows that

V ∗
(ω) =V +Um =

WUm

πω

(
dz∗

dω

)−1

(3.10)

and from Eq. 3.7 we get

V ∗
(ω) =

q
πC2

{
ω −1

∏
N
n=1 (ω −ωn)

1
N

}1− θw
π

(3.11)

Since V ∗
= Um when ω → ∞, we find the second integration constant to be C2 = W/π . Subse-

quently, the complex velocity can be expressed as

V ∗
(ω) =Um

{
ω −1

∏
N
n=1 (ω −ωn)

1
N

}1− θw
π

(3.12)

with the mapping solution

z∗(ω) = z∗N+1 +
W
π

∫
ω

1

1
ω ′

{
∏

N
n=1 (ω

′−ωn)
1
N

ω ′−1

}1− θw
π

dω
′ (3.13)

Thus, from Eq. 3.13 we can map any point of Ω to Z∗. Yet, we still have to define the N unknown
prevertices. The values of ωn are found by equating the known values of z∗ to the integral form of
z∗, i.e.

|z∗j − z∗i |=
W
π

∫
ω j

ωi

1
ω ′

{
∏

N
n=1 (ω

′−ωn)
1
N

ω ′−1

}1− θw
π

dω
′ (3.14)

Thus, we proceed by building a set of N equations with N unknowns (the prevertices). This process
is known as the parameter problem and can be solved numerically [218]. Once we have the location
of all the prevertices, we proceed by inverting Eq. 3.13 to find ω(z∗) and substitute it in Eq. 3.12 to
get the complex velocity as a function of z∗. Comparison of this quasi-analytical solution with uPIV
data and a 3D laminar incompressible Navier-Stokes model reveals the accuracy of this approach
(Supl. Fig. 3.6). The FEM model and the quasi-analytical model are evaluated at half-height (H/2)
whereas the uPIV experiment data are taken on the full height of the SCM, hence the two models
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forming a velocity envelope over the experiment.

Thus, SCMs can be accurately modelled when converted to a Hele-Shaw cell when far from the
boundaries at the side walls. More details regarding the calculation of the prevertices ωn for Eq.
3.13 are presented in following section.

3.5 Solving the Schwarz-Christoffel mapping

The map from Eq. 3.13, although compact, is not appropriate for numerical treatment. Indeed, the
unknown vertices ωn spread exponentially in Ω in such a way that they are extremely close towards
ω = 0. With a relatively high N, which is required to capture the behavior of the flow near the
origin (Fig. 3.6), it becomes impossible to solve with finite precision arithmetic. This is known
as the crowding phenomenon [218]. To prevent this effect, we would like to map from a domain
closer in resemblance to the original geometry. In this case, that would be an infinite strip open at
both ends.

Mapping from the bi-infinite strip of width δ/π introducing ω = exp(δ t), we find

z∗(t) = z∗N+1 +δ
W
π

exp

[
δ

2

(
1− θw

π

) N

∑
n=1

tn

]∫ t

0

∏
N
n=1 sinh

1
N

[
δ

2 (t
′− tn)

]
sinh

(
δ

2 t ′
)


1− θw

π

dt ′ (3.15)

with

V ∗
(t) =Um exp

[
−δ

2

(
1− θw

π

) N

∑
n=1

tn

] sinh
(

δ

2 t ′
)

∏
N
n=1 sinh

1
N

[
δ

2 (t
′− tn)

]


1− θw
π

(3.16)

In this map the prevertices tn are spread linearly instead of exponentially, hence getting around
the crowding of prevertices close to the origin. Then, by the same process introduced in the last
section, we build and solve a system of N equations with the N unknown prevertices, invert the
map and substitute the result in the complex velocity. A comparison of the quasi-analytical result
with a finite element model and uPIV experiments are shown in Fig. 3.6.

The FEM platform COMSOL Multiphysics® was used to model simulate 3D and 2D flows in
SCMs. Both geometries were defined using COMSOL’s CAD tools. The parameters used in the
models are shown in Tab. 3.1. 3D laminar and 2D potential flows were respectively defined us-
ing COMSOL’s Laminar Flow and Mathematics modules, i.e. the incompressible Navier-Stokes
equations and the Laplace equation. In both cases, the problem is solved in the reference frame of
the moving meniscus (the Z∗ domain in Section 3.3) and plotted in the laboratory reference frame
(the Z domain) with the transformation z∗ = z+Ut. This equivalence specifically implies the in-
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variance property of the Navier-Stokes equation under a Galilean transformation. These equations
were both solved using the built-in steady-state fully coupled solver. Elements were manually re-
fined on the meniscus’ boundary to obtain sufficient numerical accuracy. Parametric sweeps were
used to study the impact of the total width, contact angle and flow rate on the velocity field. The
orthogonal velocity component was taken from a line going through the SCM along the x-axis at
different y-positions and at mid-height in the Navier-Stokes case.

Preliminary 3D laminar flow simulations were also conducted to understand the general behaviour
of flow decay in SCMs. The effects of topological changes in the SCM such as trenches versus
rails, channel width and height, meniscus topology and others, were investigated. It was found that
trenches were preferable to rails, as far as the flow is concerned, because of the flow constriction
occuring above rails. Furthermore, the flow was found to decay exponentially regardless of the
shape of the meniscus, and the decay scales with the width of the system. These results were
valuable to give early design rules for SCMs, and helped to develop the theoretical framework
explaining how the flow behaves [219].

Table 3.1 Parameter description and values used in COMSOL simulations.

Parameter Description Value
H Channel height 50 µm
W Channel total width 500 µm
L Channel length 1 cm

θw Contact angle (experimentally measured) varies (default 116 deg)
Q Flow rate 0.5−1.5 µL min−1

ρ Water density at NTP 1 kg m−3

µ Water viscosity at NTP 1 mPa s

3.6 Asymptotic solutions and self-coalescing flow modes

To elicit the flow properties of self-coalescing flows would require solving Eq. 3.13 analytically,
which is not possible as the integral does not possess a primitive, nor would the resulting function
be invertible. Although numerical solutions can be provided, to extract the length and time scales
of the phenomenon, we proceed to find asymptotic solutions of fully developed flow regions near
and past the meniscus.

3.6.1 Flow profile far from the meniscus

Far past the meniscus the flow velocity decreases to zero, but it is the functional form of this decay
to zero that will reveal the scales relevant to the problem. To find the asymptotic solution when
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Figure 3.6 Comparison of a uPIV experiment with a 3D Navier-Stokes finite element model and
the simplified case of a Hele-Shaw cell using conformal mapping for different number of vertices
N. The N = 1 problem approximates a circle arc with a line and the problem solved in that case
is simply the flow near a slanted back drop as described in Section 2.1.2 above. The experimental
and numerical parameters are U = 1 mm/s, H = 50 µm, W = 500 µm, λ = 0.5, θw = 116◦.

z ≫ zN+1 (ω ≫ 1), we introduce the variable changes ε = 1/ω , where dω =−dε/ε2, in Eq. 3.13:

z∗(ω) = z∗N+1 −
W
π

∫
ε

1

1
ε ′

{
∏

N
n=1 (1−ωnε ′)

1
N

1− ε ′

}1− θw
π

dε
′ (3.17)

Applying a Laurent series expansion at ε = 0 yields

g(ε) =

{
∏

N
n=1 (1−ωnε ′)

1
N

1− ε ′

}1− θw
π

=
∞

∑
k=0

ak

k!
ε

k (3.18)

where ak = g(k)(0) and a0 = 1. Using the above approximation, Eq. 3.17 reduces to:

z∗(ε) = z∗N+1 −
W
π

[
−α + lnε +

∞

∑
k=1

+
ak

kk!
ε

k

]
(3.19)
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and substitution of ω back into Eq. 3.19 yields

z∗(ω) = z∗N+1 +
W
π

[
α + lnω −

∞

∑
k=1

ak

kk!

(
1

ωk

)]
(3.20)

where α = ∑
∞
k=1 ak/kk! is a real constant composed of all the prevertices of the polygonal menis-

cus. The position of these prevertices can only be found numerically. Nevertheless, we know by
definition that ωn(n) is a monotonically increasing function of value comprised between ω0 = 0
and ωN+1 = 1. Furthermore, the exact position of the prevertices will also depend on the system’s
contact angle since a higher contact angle will spread them over a longer meniscus in Z∗.

From equations 3.10 and 3.20, the complex velocity is calculated to be

V ∗
(ω) =Um

[
1+

∞

∑
k=1

ak

k!ωk

]−1

(3.21)

Looking for the leading order of the complex velocity when ω ≫ 1, we get

V ∗
(ω) =Um

[
1− a1

ω

]
+O

(
1

ω2

)
(3.22)

In a similar manner, looking for the leading order of the map for large ω yields

z∗(ω) = z∗N+1 +
W
π
(α + lnω)+O

(
1
ω

)
(3.23)

which can be inverted to
ω(z∗) = exp

[
π

W

(
z∗− z∗N+1

)
−α

]
(3.24)

It follows from equations 3.24 and 3.22 that the velocity behaves asymptotically as

V ∗
(z∗) =Um

[
1+Aexp

(
− π

W
z∗− iλπ

)]
(3.25)

where the real dimensionless geometric constant for large N is given by

A ≡ A(W,λ ,θw) =−
(

1− θw

π

)(
1−

N

∑
n=1

ωn

N

)
exp
[

α +λπ tan
θw

2

]
(3.26)

The parameter A is only composed of geometric parameters, hence geometric constant, such as the
contact angle θw, the width of the SCM and the position of all the prevertices of the polygonal
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meniscus. In this analysis, numerically finding a lumped value for A is sufficient as the individual
values of ak and ωn do not appear anywhere else.

Going back into the laboratory reference frame, i.e. V =V ∗−Um with z∗ → z+Umt, the complex
velocity profile can be compactly written as

V (x,y, t) =UmAexp
[
− π

W
(x+ i(y+λW )+Umt)

]
, x+ iy+Umt → ∞ . (3.27)

From Eq. 3.27, we observe that the leading order of the velocity profile is purely imaginary when
y+λW =W/2, that is orthogonal to the propagation velocity of the meniscus (Fig. 3.7). Since Eq.
3.27 clearly demonstrates that the exponential decay profile always scales with W/π regardless of
the position of the CPL inside the channel or any other physical parameters (Fig. 3.8), SCMs can
be engineered with λ ∼ 1, such as to leave maximum space for reagent printing while negligibly
affecting dispersion.

Figure 3.7 Comparison of the asymptotic exponential velocity decay when far from the meniscus
with the conformal mapping solution and experimental uPIV. The experimental and numerical pa-
rameters are U = 1 mm/s, H = 50 µm, W = 500 µm, λ = 0.5, θw = 116◦, N = 100.

3.6.2 Flow profile far from the meniscus: link with Saffman-Taylor viscous fingering

When a fluid penetrates a Hele-Shaw cell containing a fluid of higher viscosity, the interface be-
tween the two phases may, under some stability criterions, form a stable surface [100]. In an
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Figure 3.8 Numerical (dash-dot) and asymptotic (dot) solutions of the orthogonal velocity in the
SCM as a function of position along the CPL for various contact angles θw and λ = 0.5.

elongated channel, that surface can take the shape of a single stable finger, also known as the
Saffman-Taylor viscous fingering (STVF) phenomenon. To obey Laplace’s equation and for the
presure to decay to zero far downstream the cell, the velocity must behave as

V (z∗) =C exp(−z∗/Lc) (3.28)

where C is a complex proportionality constant and Lc the characteristic length of the velocity decay
[101]. For a cell of width 2W and a single finger of width 2λW , Lc is calculated to be

Lc =
W
π

(3.29)

Indeed, when viewing the no flux boundary condition at the bottom channel wall as a mirror sym-
metry, the link between SC and a receding form of STVF becomes obvious (Fig. 3.9, Video A.17).
Yet, there are many fundamental differences between SC and STVF which suggest they are two
separate, albeit mathematically related, phenomena. First, SC implies two discontinuities in the
free surface to occur, respectively at the meniscus contact points with the CPL and the wall, while
STVF studies the expansion/contraction of a smooth free surface.

Second, due to capillary pinning, SC can be engineered for any value of λ while Saffman and
Taylor have made the well-known observation that values of λ < 1/2 never occur in STVF for low
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capillary number flows (Ca ∼ 10−5 in our study).

Third, SC is in general contact angle-dependent, and similar to STVF only for the particular case
of θw = π/2 used in combination with a straight CPL. The conformal mapping approach employed
here yields a general analytic framework to study and control SC over straight CPLs but the method
can handle multiple shapes of CPLs, such as those used to create phaseguides [195]. It reveals the
form of the dependence of the proportionality constant A on the meniscus velocity, the contact
angle, and the geometry of the system. This asymptotic decay behavior is also observed for a
large class of problems where a given potential is fixed at two opposite points of an elongated
structure. A few examples are provided in Fig. 3.10. This is suggesting that for sufficiently well
behaved menisci shapes, i.e. no obstruction of the flow path, an exponential velocity decay may be
recovered far away from the meniscus. This is important from a design perspective as this suggests
CPLs and SCMs can be given any shape, provided the Concus-Finn criterion holds, and SC will
occur with an exponential velcoity decay.

Figure 3.9 Filling of a SCM observed in fluorescence with a mirror symmetry at the lower boundary
(left) and oil STVF in glycerin [100].

3.6.3 Entrance region flow profile

Another important distinction between SC and STVF is revealed when studying the flow near the
meniscus contact point with the CPL. Due to a 2nd order discontinuity in the free surface absent
in STVF, the y-component of the velocity profile is exactly zero at the contact point and is exper-
imentally observed to increase linearly when moving downstream. This linear velocity increase
past the contact point and its persistence downstream also plays an important role in determining
the reagent reconstitution length scale and time scale. These, in turn, will determine the maximum
resolution achievable during reconstitution.

When our Schwarz-Christoffel map is used to probe the solution near the origin, we observe a
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self-similarity of the flow with respect to λ when the radius of the meniscus is kept constant (Fig.
3.11.)

Figure 3.11 Self-similarity of the velocity near the origin with respect to λ with constant r. The
parameters are U = 1 mm/s, H = 50 µm, θw = 116◦ and N = 100.

This suggests a flow map asymptotically akin to the flow map around a circular cylinder (Fig. 3.12).
To elucidate that property, we use a Joukowski transformation w = (1/2)(z+ 1/z) for a circle of
radius r centered in z∗ =−ir with an upstream flow velocity of U +Um. This map is given by

w(z∗) =
(U +Um)r

2

(
z∗+ ir

r
+

r
z∗+ ir

)
(3.30)

from which we get the complex velocity in the moving reference frame

V ∗
(z∗) =

U +Um

2

(
1− r2

(z∗+ ir)2

)
(3.31)

Computing the map and comparing with Eq. 3.31 makes clear that the flow near the tip of the
meniscus connecting with the CPL can be approximated in this way (Fig. 3.12). Proceeding with
a Taylor expansion of first order on Eq. 3.31 we extract the linear behavior of the velocity near the
origin:

V ∗
(z∗) = (U +Um)

(
1+ i

z∗

r

)
+O(z2) (3.32)
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Figure 3.12 Comparison between the orthogonal flow profile within the SCM (blue solid line) and
the flow over a cylinder (black dashed line) with identical radii. The velocity is zero at the meniscus
contact point with the CPL and at the top of the cylinder. Downstream of z1, the velocity increases
linearly in both cases and with the same slope. The radii are given by r/W = 0.89 with W =
500 µm, H = 50 µm, λ = 0.5, θw = 116◦, U = 1 mm/s and N = 100.

Thus, we find the expression for the linear behavior presented in Fig. 3.11 which makes clear
the self-similarity of the solution and provides a simple solution for the flow near the tip of the
meniscus connecting with the CPL. In the laboratory reference frame, we obtain

V (x,0, t) = (U +Um)

(
1+ i

x+Umt
r

)
−U, (3.33)

where r = λW/(1+ cosθw) is the radius of the meniscus and U is the flow velocity at the inlet.

3.6.4 Physical interpretation of Self-Coalescence

At last we have a full solution to the problem and asymptotic flow behaviors to the leading order
both right upstream and right downstream of the moving meniscus. Together, the simple Eq. 3.27
and Eq. 3.33 provide insight into the complex phenomenon of self-coalescence (Fig. 3.13). They
reveal that (i) SC flow is a kinematic wave propagating at the velocity of the air/water interface,
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(ii) the magnitude of the velocity field decays exponentially to zero past the meniscus regardless of
its shape (step function, circular arc, etc.), the straight path followed downstream, or the position
of the horizontal CPL relative to the channel centre, (iii) downstream from the meniscus SC flow
decay scales with only one parameter, the width of the channel, and is always of characteristic
length Ld = W/π and time td = W/(Umπ) (respectively 159 µm and 238 ms in experiments with
H = 50 µm, W = 500 µm, λ = 1/2 and Qin = 0.5 µL/s, Fig. 1d). (iv) at the meniscus contact point
with the CPL, the orthogonal velocity vy is exactly zero and increases linearly (Eq. 3.33) before
peaking and decaying exponentially.

The solutions provide useful scaling laws, e.g. exponential decay of the velocity as a function of the
width of the channel, but physical limits exist bounding the scalability of devices. For instance, the
model assumes a flow continuum requiring a small Knudsen number [126], i.e. the average distance
a molecule or particle travels before a collision with another molecule or particle must be smaller
than the characteristic length of the device. Thus, molecular flows would not abide by the same
scaling laws. At the other end of the scale, volume forces such as gravity impose an upper bound
on the scalability of devices as per Bond’s number (Tab. 2.1). If devices were fabricated such as to
have a Bond number closer to or higher than unity, capillary forces would not be strong enough to
drive the liquid mass and other inertial effects might prevent proper functioning of devices.

Figure 3.13 Linear asymptote near the origin and exponential asymptote far from the meniscus.
Comparison with the quasi-analytic S-C solution and experimental uPIV. The experimental and
numerical parameters are U = 1 mm/s, H = 50 µm, W = 500 µm, λ = 0.5, θw = 116◦, N = 100.
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3.7 Additional details regarding the conformal mapping methodology

In the following section, we provide additional details regarding the conformal mapping method-
ology, i.e. 1) obtaining the Schwarz-Christoffel mapping numerical solutions, 2) converting the
obtained pressure map into velocity in the physical frame of reference, 3) reverse-engineering the
parameter problem when a flow solution is already known, and 4) introducing the open problem of
mapping the SCM exactly, i.e. with curves, using the Schwarzian operator. Points 1-3 are critical
for comparison of the analytical results with experiments and simulations, and point 4 establishes
the theoretical framework for an exact mapping of SCMs which abstains from converting a circle
into a polygon.

3.7.1 Schwarz-Christoffel mapping numerical solution

The numerical determination of the Schwarz-Christoffel (SC) transformation is a well-known com-
putational problem which consists into solving a system of nonlinear equations for some unknowns.
In other words, we must find all the ω j parameters of the conformal transformation

z(ω) = C1 +C2

∫
ω

ω0

N

∏
j=1

(
ω

′−ω j
)−φ j/π dω

′ (3.34)

This is known is commonly know as it parameter problem. One possible formulation of that prob-
lem is to solve the path length difference between two known points in the Z plane, i.e.

|zi − z j|= |z(ωi)− z(ω j)|= C2

∫
ω j

ωi

N

∏
j=1

(
ω

′−ω j
)−φ j/π dω

′ (3.35)

Extracting N +2 equations from Eq. 3.35, N equations for ω j=[1,N] and 2 for C1 and C2, or other
possible formulations, we have to solve a constrained system of N + 2 nonlinear equations. For
numerical purposes, it is often preferable to use the disk mapping formulation of the SC transfor-
mation,

z(ω) = C1 +C2

∫
ω

ω0

N

∏
j=1

(
1− ω ′

ω j

)−φ j/π

dω
′ (3.36)

to avert singularities.

The parameter problem can be solved using the Schwarz-Christoffel toolbox for MATLAB devel-
oped by Driscoll [218]. Let us first define a vector of complex coordinates z defining a bounded
polygon P in the Z plane. The function polygon() returns a structure containing the coordinates
z j with their respective exterior angles φ j. The function hplmap() returns a compound function
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that transforms P into the complex upper half plane Ω. We can extract the ω j values of the param-
eter problem from that function. The default formulation of the system with this function considers
ω1 = −1, ω[2,N−2] ∈ (−1,1), ωN−1 = 1 and ωN = ∞. We can also solve Laplace’s equation using
lapsolve() by fixing proper Dirichlet and Neumann conditions on the domain.

Although this toolbox is very efficient and accurate, it has numerical limits. Numerical instabilities
occur in the case of elongated structures (high aspect ratios) and when evaluated points are near the
z j values (singularities). Furthermore, in geometries where vertices are closely packed, a crowding
phenomenon occurs near ω1 as values of ω[2,N−2] tend towards ω1, and these values can get so
close that their difference with ω1 is smaller than machine epsilon.

3.7.2 Defining velocity numerically in the physical frame of reference

Let us find the numerical solution to Laplace’s equation in the domain of the SCM as shown in
Fig. 3.14. For simplicity, consider the labeling of the vortices as ∂Pi = zizi+1. A constant pressure
condition (Dirichlet condition) is set at the inlet and outlet, i.e. p= p0 on ∂P1 and p= 0 on ∂PN+4.
All other boundaries are set to Neumann conditions.

Computing the pressure field with lapsolve() function from Driscoll’s toolbox yields a function
which we evaluate in discrete space. In this case, a square grid discretization of the space is con-
sidered. Let us label the coordinates as (xi, j,yi, j) ∈ P∀[i, j] ∈ N. Evaluating p for every discrete
coordinates in P gives us a pressure matrix of elements pi, j.

Knowing from Hele-Shaw theory that

u =− H2

12µ
∇pi, j (3.37)

the velocity field can be computed by taking the gradient of pi j using the finite difference method

.z1

.z2 .
z3

.
z4

.
z5

.
...

.
.zN+3 . zN+4

. zN+5

ℓ

(1−λ )W

ℓm ℓ

W

L

θw

Figure 3.14 Numerical domain of the SCM.
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(FDM). In this case, a simple central difference is used (Eq. 3.38).

∇pi, j =

(
∂ pi, j

∂xi, j
,
∂ pi, j

∂yi, j

)
=

(
pi+1, j − pi−1, j

xi+1, j − xi−1, j
,

pi, j+1 − pi, j−1

yi, j+1 − yi, j−1

)
(3.38)

To obtain the maximal velocity in the channel, i.e. u(z = H/2), simply multiply Eq. 3.37 by 3/2.

Fixing the proper velocity at the inlet is the next problem in line. For now, the pressure is fixed
at an arbitrary value, e.g. p0 = 1. We know from Hagen-Poiseuille law that the pressure drop in
laminar flows is proportional to the product between the flow rate and the hydraulic resistance:

∆p = QRhyd (3.39)

Solving the system a first time using an arbitrary inlet pressure and finding the velocity at the inlet
(or outlet), we can find the proper Dirichlet condition to get a specific inlet velocity. Put simply,

p1 = p0
u1

u0
(3.40)

The next step is to change the reference frame of the velocity field back into the laboratory reference
frame. In other words, subtracting the velocity of the meniscus Um to the x-component of u. From
that field, we compute the pressure map by integrating the gradient of pressure. This is done using
the MATLAB function intgrad2() developed by John D’Errico [220]. This function takes in
two fields, in this case x- and y-components of the velocity, with mesh dimensions and returns the
integrated gradient using FDM.

3.7.3 Solving the parameter problem a posteriori

We can also reverse engineer the parameter problem from a known solution to validate asymptotic
flow solutions in SCMs. Knowing

V (x,y, t)≈UmÃexp
[
− π

W
(x+ iy+Umt)

]
(3.41)

where Ã is a complex dimensionless constant (equivalent but slightly different from Eq. 3.26)
defined as

Ã = α

(
1− θw

π

)
exp
[

α

(
1− θw

π

)
+λπ tan

(
θw

2

)
− iλπ

]
(3.42)
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and α is a function of the sum of vertices in the Ω map approximating the meniscus, i.e ω3 to ωN+3

according to Fig. 3.14.

α = 1−
N+2

∑
j=3

ω
( j−1)(N− j)
j

N +1
(3.43)

The value of α converges as the number of vertices and domain length increases (perfect circle and
infinite domain approximation) as shown in Fig. 3.15.

Figure 3.15 Convergence of α and Ã with respect to the domain length L and number of vertices N.

3.7.4 Exact mapping of the SCM with the Schwarzian operator (open problem)

Shortly after the discovery of Schwarz-Christoffel transforms, Schwarz also provided a method to
map domains made of circular arcs rather than linear segments. Realizing that the self-coalescence
geometry is composed of three straight lines (circular arcs with infinite radii of curvature) and
one circular arc or radius r = λW/(1+ cosθw), we put some more efforts in trying to exploit this
method to achieve an exact map which eschews the need to convert a circle into a polygon as we
did in the previous section. Finding the function f that Maps the region of a polygon containing
circular arcs in the Z complex plane to the upper half complex plane Ω can be done using the
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Schwarzian operator

{ f ,ω}=
(

f ′′(ω)

f ′(ω)

)′
− 1

2

(
f ′′(ω)

f ′(ω)

)2

(3.44)

Using the properties of { f ,ω} and Liouville’s Theorem,

{ f ,ω}= 1
2

N

∑
n=1

(1−α2
n )

(ω −ωn)2 +
1
2

N

∑
n=1

γn

ω −ωn
+ c (3.45)

where αn ≡ θn/π are the interior angles of the polygon, c is a constant, and

γn =
1−α2

n
αn

g′(ωn)

g(ωn)
(3.46)

where
f (ω) = (ω −ωn)

αng(ω) (3.47)

The mapping function f (ω) is given by

f (ω) =
y1(ω)

y2(ω)
(3.48)

where y1(ω) and y2(ω) are two linearly independent solutions of the Schwarzian differential equa-
tion

y′′(ω)+
1
2
{ f ,ω}y(ω) = 0 (3.49)

In cases of open polygons with vertices located at infinities, it may be preferable to map from the
bi-infinite strip

ω(t) = eδ t (3.50)

Assuming t0 =−∞ and t∞ =+∞, the Schwarzian operator becomes

1
δ 2{ f , t}=−1

2
α0 +

1
2

N

∑
n=1

1−α2
n

(1− e−δ (t−tn))2
+

N

∑
n=1

γ ′′n
1− e−δ (t−tn)

(3.51)

and γ ′′n obeys

(1−α
2
0 )+

N

∑
n=1

[2γ
′′
n +(1−α

2
n )] = (1−α

2
∞) (3.52)

More details regarding the Schwarzian operator, and a more detailed development of the previous
equations can be found in Howell’s work [221, 222] and [223]. The SCM mapping problem can
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then be written as

z0 =−∞, α0 = 0, ω0 = 0, t0 =−∞;

z1 = 0, α1 = 1, ω1 ∈ (0,1), t1 ∈ (−∞,0);

z2 = λW [tan(θ/2)− i] , α2 = θ/π, ω2 = 1, t2 = 0;

z∞ = ∞, α∞ = 0, ω∞ = ∞, t∞ = ∞.

(3.53)

Put explicitly, the Schwarzian operator becomes

1
δ 2{ f , t}= 1

2

[
1− (θ/π)2

(1− e−δ t)2

]
+

γ ′′1
1− e−δ (t−t1)

+
γ ′′2

1− e−δ t
(3.54)

where from condition 3.52

γ
′′
1 + γ

′′
2 =

(θ/π)2 −1
2

(3.55)

From the Riemann mapping theorem [216, 217], only 3 of 4 vertices can be defined and we are
left with one unknown, i.e. t1. Schwarz’s initial analysis shows that the mapping of the strip
into any polygons involving 3 circular arcs or less will yield conformal maps in terms of Appell’s
hypergeometric function. However, when 4 circular arcs are involved in our case, the mapping is
not as straightforward. Such geometries are known to generate conformal maps in the form of Heun
functions [224–226] (a generalization of the hypergeometric function). However, these functions,
as the number of singularities they content is larger than 3, will have several isomorphisms due to
the fact that the position of singularities in the complex plane can be permuted using Riemann’s
mapping theorem. There are 192 symmetries for the Heun Function [227], and finding the ones that
pertain to the nature of my problem was found to be a fundamental mathematical problem outside
the scope of this thesis and certainly outside the scope of my expertise in conformal mapping.
This is still an open problem to be solved. The analytical framework developed in Section 3.6
suggests that the general flow solution will decay exponentially asymptotically far from the origin,
and increase linearly for large λ values asymptotically close to the origin. Fig. 3.10 also suggests
that the general solution will decay exponentially regardless of the shape of the meniscus, provided
the shape of the meniscus is well behaved.

3.8 Rapid quantitative assays using SCMs

Other researchers at IBM Research Zurich were concentrating on applications of the SCM. Yet one
key challenge remained. Now that the hydrodynamics of SC flows is well understood, there remains
to account for the diffusion, dispersion and reaction of reagents spotted in these devices. As it turns



57

out, SCM devices were found to be effective to measure the activity of certain human enzymes,
such as Glucose-6-phosphate dehydrogenase (G6PD), and to identify their deficiencies. This pro-
cess involved the conversion of enzymatic substrates into detectable fluorescent compounds. Un-
derstanding the diffusion of enzymes, and substrates within the SCM and their reaction to generate
fluorescence compounds via a Michaelis-Menten kinetics [64] was key to make an enzymatic rapid
diagnostic test for G6PD deficiency using small blood samples. My work in this section has been to
solve numerically within SCM geometries the reaction-diffusion model proposed by the IBM team
and developed by my advisors T. Gervais and E. Delamarche. The results from this work have been
published in [203].

3.8.1 Reactive flows in SCMs

The convection-diffusion-reaction equation describes reactive flows occurring from a combination
of passive molecular diffusion, convection from a flow field, and a reaction (source or sink) term.
Assuming n species of concentration Cn diffusing at a rate Dn in a flow field u ≡ (u,v,w), the
reactive flow can be described by n equations of the form

∂Cn

∂ t
= ∇ · (Dn∇Cn)︸ ︷︷ ︸

Diffusion

−∇ · (uCn)︸ ︷︷ ︸
Convection

+ Rn︸︷︷︸
Reaction

(3.56)

where Rn is the reaction term creating or annihilating Cn that can be a function of all species, i.e.
Rn ≡ Rn(C1,C2,C3, ...). A priori Eq. 3.56 is three-dimensional, and could be solved numerically as
is, but in the case of reactive flows occuring in SCMs it can be tremendously simplified. Assuming
immediate lateral and vertical homogenization, i.e. infinite diffusion speed in y and z when H ≪
W ≫ L, Eq. 3.56 can be reduced to

∂Cn

∂ t
= Dn

∂ 2Cn

∂x2 − ∂

∂x
(uCn)+Rn (3.57)

where here we also assumed Dn to be constant. From Eq. 3.27, we know that in a SCM flow decays
exponentially as u(x, t) ∼ exp(−π(x+Umt)/W ) as in a shock wave behaviour, i.e. exponential
decay with translational symmetry in time. Again, in cases where the SCM’s width is much smaller
than its length, W ≪ L, u(x, t) decays rapidly towards zero and the flow can be assumed inexistant,
and Eq. 3.57 can be further reduced to

∂Cn

∂ t
= Dn

∂ 2Cn

∂x2 +Rn (3.58)

In the next section, an example of reactive flow occurring in a SCM is given in the scope of rapid
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quantitative assays for determining G6PD deficiency, a widespread metabolic disorder causing
hemolytic anemia [203]. Although I will be making use of technical terms explaining the cou-
pled enzyme reaction cascades, I want to reiterate that the reaction-diffusion model was proposed
by the IBM team and developed by my advisors. My outlook on this section is purely as a modeller,
and as the model is required for me to explain the simulation procedure, I have no choice but to
detail the equations.

3.8.2 Resorufin production from two coupled enzyme reaction cascades

The conversion of RZ into RF∗ by DP requires NADPH, which is provided from the reduction of
NADP+ during the conversion of G6P into 6PGL by the enzyme G6PD as described by Eqs 3.59-
3.60, Tab. 3.2 and Fig. 3.16. Initially, G6P, NADP+, RZ, and DP are spotted into the SCM and
dried. The enzyme G6PD is brought in the SCM with the reconstitution buffer and the reaction
starts. Expressed in the form of Eq. 3.58, and following the same assumptions to obtain said
equation, Eq. 3.59-3.60 can be written as a set of 11 coupled diffusion-reaction equations. The
reaction terms in Eqs 3.61-3.71 represent a series of enzymatic reactions described by bimolecular
binding kinetics and Michaelis-Menten kinetics [64]. More details regarding how to obtain these
reactive terms are provided in [203]. Diffusion and reaction coefficients are provided in Tab. 3.3
and Tab. 3.4. References for all values are provided in [203].

G6P+NADP++G6PD ⇋ 6PGL+NADPH+G6PD+H+ (3.59)

RZ+DP+NADPH ⇋ RF∗+NADP++DP+H+ (3.60)
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Figure 3.16 Schematic of resorufin production from two coupled enzyme reaction cascades.

∂ [G6P]
∂ t

= DG6P∇
2[G6P]− kcat,1[G6PD∗][G6P]

KM,1 + [G6P]
(3.61)

∂ [6PGL]
∂ t

= D6PGL∇
2[6PGL]+

kcat,1[G6PD∗][G6P]
KM,1 + [G6P]

(3.62)

∂ [NADP+]
∂ t

= DNADP+∇
2[NADP+]− kcat,1[G6PD∗][G6P]

KM,1 + [G6P]
+

kcat,2[DP∗][RZ]
KM,2 + [RZ]

(3.63)

∂ [NADPH]
∂ t

= DNADPH∇
2[NADPH]+

kcat,1[G6PD∗][G6P]
KM,1 + [G6P]

− kcat,2[DP∗][RZ]
KM,2 + [RZ]

(3.64)

∂ [RZ]
∂ t

= DRZ∇
2[RZ]− kcat,2[DP∗][RZ]

KM,2 + [RZ]
(3.65)

∂ [RF∗]
∂ t

= DRF∗∇
2[RF∗]+

kcat,2[DP∗][RZ]
KM,2 + [RZ]

(3.66)

∂ [G6PD∗]
∂ t

= DG6PD∗∇
2[G6PD∗]+ kon,1[G6PD][NADP+]− koff,1[G6PD∗] (3.67)

∂ [G6PD]
∂ t

= DG6PD∇
2[G6PD]− kon,1[G6PD][NADP+]+ koff,1[G6PD∗] (3.68)

∂ [DP∗]
∂ t

= DDP∗∇
2[DP∗]+ kon,2[G6PD][NADP+]− koff,2[DP∗] (3.69)

∂ [DP]
∂ t

= DDP∇
2[DP]− kon,2[G6PD][NADP+]+ koff,2[DP∗] (3.70)

∂ [H+]
∂ t

= DH+∇
2[H+]+

kcat,1[G6PD∗][G6P]
KM,1 + [G6P]

− kcat,2[DP∗][RZ]
KM,2 + [RZ]

(3.71)
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Table 3.2 Definition of species and example of initial values.

Species Initial value Definition
G6P 43460 µM Glucose-6-phosphate, substrate of G6PD enzyme
6PGL 0 6-phosphogluconolactone, product of G6P conversion
NADP+ 2173 µM Cofactor binding to G6PD, product of DP RZ conversion
NADPH 0 Cofactor binding to DP, product of G6PD G6P conversion
RZ 2173 µM Resazurin, fluorescence precursor and substrate of DP
RF∗ 0 Resorufin, fluorescent molecule, product of RZ conversion by DP
G6PD∗ 0 Activated G6PD
G6PD 0.012 µM Enzyme which needs to be quantified in the assay
DP∗ 0 Activated DP
DP 388 µM Diaphorase enzyme
H+ 0 Hydrogen ion, inert

3.8.3 Model implementation using finite differences

The characteristic diffusion time for the selected geometric scales with ℓ/D in every independent
dimension. Knowing that the thickness of the SCM is much smaller than the width, which is
smaller than the length, we can approximate that tm ≈ L2/D ≫ W 2/D ≫ H2/D where tm is the
measurement window. With this assumption, a 1D model is sufficiently accurate to capture all
the physics of the problem as argued in the previous section. In extreme cases where reagents are
heavier, time scales widthwise could reach the same order of magnitude as time scales lengthwise.
The current model implementation does not treat such cases, but a second dimension could easily
be added if need be.

Numerical simulations of Eqs 3.61-3.71 are completed using Finite Differences (FD) with a second
order central FD scheme in space and an explicit first order FD scheme in time. Space is discretized
on a uniform grid of size ∆x and time steps ∆t are defined using two tolerance criterions. First, to
correctly capture the physics of the problem we set a tolerance factor on the amount of mass that
can react within a time interval ∆t. This is to ensure smooth mass changes even when reactions
are fast. The second tolerance criterion is a simple upper limit set by the von Neumann stability
condition, i.e. the diffusion stability limit. An example of time step evolution through a simulation
is given in Fig. 3.17.

The discretized FD equations read

Ct+∆t
n,i =Ct

n,i +∆t

[
Dn

Ct
n,i−1 −2Ct

n,i +Ct
n,i+1

∆x2 +Rt
n,i

]
(3.72)

where Cn,i and Rn,i are respectively the concentration and reaction rate at time t and grid node i
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Table 3.3 Diffusion coefficient for the coupled enzymatic reactions from Eq. 3.61-3.71.

Parameter Value Units
DG6P 534 µm2 s−1

D6PGL 534 µm2 s−1

DNADP+ 420 µm2 s−1

DNADPH 420 µm2 s−1

DRZ 480 µm2 s−1

DRF∗ 480 µm2 s−1

DG6PD∗ 74 µm2 s−1

DG6PD 74 µm2 s−1

DDP∗ 74 µm2 s−1

DDP 74 µm2 s−1

DH+ 1000 µm2 s−1

Table 3.4 Reaction coefficients for the coupled enzymatic reactions from Eq. 3.61-3.71.

Parameter Value Units
kcat,1 222.21 s−1

kcat,2 3.73 s−1

kon,1 1 s−1 µM−1

kon,2 1 s−1 µM−1

koff,1 7 s−1

koff,2 350 s−1

KM,1 52 µM
KM,2 1500 µM

for the nth specie. Diffusion constants and reaction rates are taken from Tab. 3.3 and Tab. 3.4.
Neumann boundary conditions are set at both ends of the 1D domain and initial concentrations
are set by the user. In this study, G6PD is homogeneous throughout the domain and the other
solutions are constant by parts with steps widths defined by the spotting diameter such as to mimic
experiments. An example of initial concentration values is presented in 3.2. Convergence analyses
in space and time and comparison with analytical asymptotic solutions were done to ensure the
code is reliable. Simulation speed is highly dependent of reactions speed. Assuming an initial set
of concentrations as portrayed in 3.2 with a discretized 1D space of 1000 nodes, simulations for 10
min of physical time takes roughly 120-130s on a single CPU on a laptop. Time steps in this case
are largely reaction limited. The FD method was selected for its implementation speed and the non-
existence of geometrical complexities for the problem at hand. The code was built in-house from
scratch and written using MATLAB R2018a. A pseudocode of the routine for EnzModSimulator
(EMS) is presented as follow:
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Figure 3.17 Time step throughout a simulation.

Program start
Read parameters
Initialize fields
Start computational loop

while t < tend

if Approximations on reactions exist
Initialize fields accordingly

else
Initialize all fields

Calculate reaction limiters RLim

Initialize source terms R

while R > RLim

Reduce time step dt

Calculate source terms R

if dt > dtD (von Neumann stability condition)
dt = dtD

Calculate diffusion and update fields
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Update time t = t +dt

End computational loop
Post-processing
End of program

Five level of approximations are also available with the code in conjunction with the full 11 equa-
tions model: 1) quasi steady state of enzyme-cofactor complex, 2) well mixed volumes, 3) approx-
imations on G6PDH enzymatic kinetics, 4) approximations on diaphorase enzymatic kinetics, and
5) approximate asymptotic solution (analytic).

In 1, the equilibrium between co-factors and enzyme is rapidly achieved such that [NADPH∗] and
[DP∗] can be considered in quasi-steady state at all times, i.e.

[NADPH∗] = [NADPH]0
[NADP+]

Kd,1 + [NADP+]
(3.73)

[DP∗] = [DP]0
[NADPH]

Kd,2 + [NADPH]
(3.74)

where Kd,1 = koff,1/kon,1 and Kd,2 = koff,2/kon,2. In 2, we suppose that all volumes are well mixed,
with the effect of canceling all Laplacian terms in Eqs 3.61-3.71. In 3, NADP+ is assumed over-
abundant with respect to G6PDH, and that [G6P] is always much larger than KM,1. Put in mathe-
matical form

d[G6P]
dt

=−kcat,1[G6PDH]0 (3.75)

which has for solution
[G6P](t) = [G6P]0 − kcat,1[G6PDH]0t (3.76)

In 4, we are neglecting the saturation of the DP enzyme leading to

d[RF∗]
dt

=−kcat,2[DP]0

(
[G6P]0 − [G6P]− [RF∗]

Kd,2

)(
[RZ]0 − [RF∗]

KM,2 + [RZ]0 − [RF∗]

)
(3.77)

and combining this results with 3 we obtain

d[RF∗]
dt

=−kcat,2[DP]0

(
kcat,1[G6PDH]0t − [RF∗]

Kd,2

)(
[RZ]0 − [RF∗]

KM,2 + [RZ]0 − [RF∗]

)
(3.78)

Finally, in 5, an asymptotic development of last equation is done for initial times, i.e. when [RF∗]≫
[RZ]0. The solution is given by

X(τ)≈
(

K +1
α

)2(
ατ

K +1
− (1− e−ατ/(K+1))

)
(3.79)
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where

X =
[RF∗]
[RZ]0

; τ =
t
τ0

; τ0 =
[RZ]0

kcat,1[G6PDH]0
; α =

kcat,2[DP]0

kcat,1[G6PDH]0

[RZ]0

Kd,2
; K =

KM,2

[RZ]0
(3.80)

Simple validation steps [228] were conducted by comparing simplified models to numerical results.
A validation case is presented in Appendix ?? with a text input file example in Appendix ??. This
code was also used to produce all numerical results in Rocca et al. [203]. Concentration of species
in time and space for the full model with the initial conditions presented in Tab. 3.2 are presented
in Fig. 3.18.

3.9 Conclusion

Flows within elongated capillary-driven microstructures devices can be solved using advanced nu-
merical methods for multiphase flows. However, by using the invariance property of the Navier-
Stokes equations under Galilean transformations, the flow can be analysed in a reference frame
where the meniscus is static in space. Thus, reducing the domain of analysis to the water domain
with static boundaries. Consequently, simpler numerical methods can used to find flow solutions.
However, this is limited to elongated structures with translational symmetries.

In the particular case of SC along a straight CPL, we describe how a Galilean transform placing
oneself in the reference frame of the moving meniscus transforms all moving boundary conditions
(Stefan) into regular (Neumann) boundary conditions. The Hele-Shaw apporoximation of the flow
in self-coalescence is used in conjuction with the Galilean transformation to formulate a SC free
boundary problem that can be solved using conformal mapping. Conformal mapping solutions of
the flow inside a SCM are provided using the Schwarz-Christoffel mapping and mapping over an
infinite cylinder.

Asymptotic solutions and self-coalescing flow modes are provided in the vicinity and far away from
the CPL-meniscus contact point. By combination of the two asymptotes (Eq. 3.27 and 3.32), the
general formulation of the complex velocity in the laboratory reference frame can be encompassed
between two simple expressions, i.e. a linear increase followed by an exponential decrease of the
velovity as we get furhter away from the CPL-meniscus contact point. We then describe how flow
orthogonality (Eq. 3.27) and its characteristic decay length W/π is invariant no matter the choice
of contact angle, meniscus shape, flow velocity, or the horizontal path followed downstream of the
obstacle, and as such, is a key signature of self-coalescing flows as described here.

A mathematical analogy between the theory of Saffman-Taylor and SC flows is found when far
from the curved interface. Indeed, a SCM with a mirror symmetry in SC mode does look somewhat
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Figure 3.18 Spatial and temporal evolution of species from initially spotted region. From left to
right and top to bottom: 0 s, 20 s, 100 s, 200 s, 300 s, and 500 s.
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like a receding STVF (Fig. 3.9). Yet, there are some key differences. For instance, SC arises from a
capillary pinning of the air/water interface which is not smooth at the contact point of the meniscus
with the CPL. SC can also be achieved for arbitrary λ values compared to STVF were only values
of λ < 1/2 where recorded for small capillary numbers (Ca ∼ 10−5 in our study). Furthermore, SC
can be accurately modelled using a simple conformal map in a static domain while STVF cannot.
We also describe how SC can take any value of contact angle at its tip while STVF arises from the
specific case where the contact angle is π/2, i.e. when the tip of the finger is smooth.

The SCM is a key solution regarding the resuspension and control of release of reagents in mi-
crochannels. An example of how SCMs can be used for rapid quantitative assays in the context
glucose-6-phosphatedehydrogenase (G6PD) and hemoglobin combination on a capillary-driven
microfluidic chip is provided. A quick description of the FD-based CFD software that was written
and used for this work is given.



67

CHAPTER 4 ARTICLE 1: A SIMPLE STATIC CONTACT ANGLE-BASED
MESH-DEPENDENCY CORRECTION FOR 3D CAPILLARY FLOW SIMULATIONS

Authors: Samuel Castonguay, Thomas Gervais

Chapter Overview

In this theme, I develop a numerical framework for modelling complex capillary driven flows in 
microstructures. This methodology can be used to predict behavior of liquids in microsystems 
and optimize their design where analytical tools are limited. In this work, I conceptualized and 
visualized the research, established the methodology, conducted the formal analysis, and wrote the 
original draft. My advisor Thomas Gervais supervised the research, and we both reviewed and 
edited the manuscript. This work was published in Computers & Fluids, June 27, 2021 [202].

Abstract

Precise modelling of contact angle is ubiquitous in capillary driven multiphase flow simulations. 
From a simple 2D rectangular capillary benchmark, we demonstrate and discuss the dependence 
of capillary dynamics on the mesh size with respect to Washburn’s equation. Mesh-dependency is 
dominated by an underestimation of viscous losses for coarser meshes and transits to ever increas-
ing stress-related errors due the Navier-Stokes equations breaking down in the vicinity of moving 
contact lines subjected to several known boundary conditions. Furthermore, computational lim-
its generally impose mesh sizes for which none of the errors are negligible. We show that for 
Washburn-like flows, a simple modification of the static contact angle value is adequate to correct 
the dynamics of the flow. This semi-analytic correction has the advantage of requiring no modi-
fication of the source code or implementation of new boundary conditions, and thus can be easily 
used with any codes whether commercial or not. Simulations of a self-coalescence module and a 
capillary pump are presented as 3D verification test cases of the method.

4.1 Introduction

With an increasing interest for capillary flows and their applications in recent years, i t i s impor-
tant to develop engineering and modelling tools to predict and control precisely the behavior of 
capillary flows in numerous c ontexts. Some of the most prominent fields include petroleum engi-
neering [229], micro process engineering [13] and lab-on-chip devices [230, 231]. In the case of
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microfluidic systems, we find capillary flows in capillary pumps [232], valves [233], phaseguides
[195], and more recently self-coalescence modules [197]. Since complex capillary phenomena
cannot be modelled analytically, we need to rely on powerful numerical tools taking into account
all physically relevant phenomena to achieve realistic predictions.

It is well established in fluid mechanics that the Navier-Stokes (NS) equations describe the flow
dynamics of incompressible Newtonian liquids such as water in normal temperature and pressure
conditions. However, it is not the case for multiphase flows because of intrinsic multiscale effects
that come into play [234].

For instance, interface tracking methods using Eulerian descriptions of the flow predominantly use
a continuous representation of the multiphase interface with a phase transition length of the order
of the local mesh size. Since mesh sizes are generally orders of magnitude larger than the phys-
ical multiphase transition thickness, Eulerian-based interface tracking is highly mesh dependent.
Furthermore, any continuum formulation of fluid dynamics is prompt to mesh dependencies due to
improper treatment of wall stresses in the vicinity of moving contact lines on walls with Dirichlet
boundary conditions such as no-slip boundary conditions [190, 191, 235, 236]. This error occurs
because the classical continuum description of fluid mechanics breaks down at the mesoscopic and
microscopic scales.

Since stress-related errors increase with mesh refinement and hydrodynamics-related errors and
interface thickness decrease with mesh refinement, we must find a systematic method to correct the
different errors or find an acceptable compromise between them for the problem at hand.

Reducing or correcting mesh-dependency is generally done using either partial slip boundary con-
ditions or localized body forces that reduce wall stress or mesh-dependent contact angle boundary
conditions that compensate for stress increases [173, 237–239]. However, these methods either are
not appropriate for capillary flow cases, require mesh sizes and time steps considerably smaller than
what can be achieved in practice, or use pre-factors that are not a priori known. This is even more
true for simulations with high geometric aspect ratios as commonly encountered in microfluidics.

In this work, we propose a simple static contact angle-based mesh-dependency correction to com-
pensate for non physical stresses in the case of capillary flows behaving as per Washburn’s equation.
We calculate a correction factor from a simple a posteriori semi-analytical match of Washburn’s
equation for a 2D rectangular capillary benchmark, and use this correction a priori for complex
capillary flows in 3D microstructures. In this study, we use this method for 3D simulations of
complex capillary devices such as self-coalescence modules [197] and capillary pumps [232].

Capillary flow simulations in this paper are done using interFoam, an incompressible two-phase
flow solver part of the open source finite volume library Open∇FOAM (Open Field Operation and
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Manipulation) that uses cell-centered finite volume formulations [240,241]. However, the presented
correction method is valid for any CFD approach using a continuum formulation of fluid dynamics.

The performance of interFoam has already been investigated in the case of surface tension-
dominated flows [199], segmented liquid-gas flows in microchannels [176] and spontaneous flows
in capillary pumps [179, 242]. More recently, interFoam and modified versions thereof was suc-
cessful at simulating droplet coalescence [243], micro-jets [244], corner flows in square capillar-
ies [245] and pore waterflooding [246, 247]. However, we find a lack of an in-depth analysis of
mesh-dependency and grid convergence in the case of capillary-dominated flows in microchannels.

The solution procedure utilises the PISO (pressure-implicit with splitting of operators) algorithm
for transient pressure-velocity coupling [248]. The transient term is solved using a first order Euler
scheme with a fixed maximal Courant number to define time steps.

In this work, we first draw a quick summary of the constitutive equations and numerical procedure.
We then conduct a validation procedure [228] by proxy using Washburn’s equation to explore mesh-
dependency and grid convergence issues for a 2D rectangular capillary benchmark from which we
build our correction methodology. Finally, we test the correction method for the simulation of a
self-coalescence module and a capillary pump.

4.2 Numerical methodology

We solve the Navier-Stokes equations for an incompressible flow of two immiscible Newtonian
fluids. The mass and momentum conservation equations for a fluid of density ρ and viscosity µ are
respectively

∇ ·u = 0 (4.1)

∂ρu
∂ t

+∇ · (ρuu) =−∇p+µ∇
2u+F (4.2)

where u is the velocity vector field, p the pressure scalar field, and F accounts for additional body
forces on the fluid. Because of scaling laws in microfluidics, gravity can be neglected and only
surface tension effects, Fγ , are significant. The surface tension body force is calculated from the
curvature of interfaces forming between the two liquids. Calculating this term requires additional
information regarding the transport of phases from which we can track multiphase interfaces and
calculate their curvature. For an extensive review on the subject, we refer to [109].

In the VOF formulation [201], we solve a single set of NS equations (Eq. 4.1-4.2) coupled with a
phase field α from which we derive density and viscosity fields as follow :

ρ = αρ1 +(1−α)ρ2 (4.3)
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µ = αµ1 +(1−α)µ2 (4.4)

where α ∈ [0,1] is a scalar field referring to the fraction between the cell volume occupied by one
phase and the total volume of the control cell. The phase field is advected by a simple first order
transport equation given by

∂α

∂ t
+∇ · (αu) = 0 (4.5)

As a consequence of the Eulerian nature of the method it is difficult to resolve sharp fluid inter-
faces on arbitrary meshes. For instance, solving the transport equations with Eq. 4.5 as is would
result in strong numerical diffusion of multiphase interfaces. To counter this numerical artifact, a
compression term [249] is introduced in the phase transport equation from which Eq. 4.5 becomes

∂α

∂ t
+∇ · (αu)−∇ · [α(1−α)ur] = 0 (4.6)

with
ur = n f min

[
Cγ

|φ f |
|S f |

,max
|φ f |
|S f |

]
(4.7)

where φ f , S f and n f are respectively the volume flux across the surface f , the surface area and the
unit vector of that surface, and Cγ ∈ [0,4] is a constant. For Cγ = 0 there is no compression and for
Cγ > 1 compression is enhanced. All simulations in this work take Cγ = 1 since other values are
known to worsen interface diffusion and curvature errors [199].

Surface tension body forces Fγ are calculated using the continuum surface force (CSF) formulation
[65] :

Fγ = γκ(∇α) (4.8)

where κ = ∇ · (∇α/|∇α|) is the curvature of the phase field. The CSF model has been selected
for its extensive use in the literature [243, 245, 250]. For other surface force formulations and their
assessment we refer to [178].

Constant pressure boundary conditions, p = 0, are imposed on all inlets and outlets and constant
pressure gradients, ∇p = 0, are imposed on all walls. It has been shown by [242] that static contact
angle boundary conditions are best for the simulation of capillary flows in microsystems such as
capillary pumps, thus constant contact angle boundary conditions for α are set throughout this
study. This is done by updating the surface vector to the multiphase interface in the first cell layer
using the dot product relation with the surface vector to the wall and the cosine of the contact angle.
Boundary conditions for u will be specified in Section 4.3.

Meshes for benchmark cases and self-coalescence modules are respectively 2D and 3D struc-
tured cartesian grids constructed using Open∇FOAM’s built-in utility blockMesh. Capillary pump
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meshes are unstructured and constructed from 3D structured cartesian grids snapped to the geome-
try using blockMesh and snappyHexMesh utilities. Most simulations are conducted in parallel on
a homebrewed server with 2 Intel Xeon CPUs. Simulations with ∼ 0.5 M cells or more are run on
Calcul Québec’s supercomputers Mammouth Parallèle II and Béluga.

4.3 Benchmark case and the mesh-dependency problem

We first begin our analysis of the effect of meshing on capillary flows with the benchmark case
of a 2D rectangular capillary (Fig. 4.1) of dimensions L × H for which we know analytically
the displacement x(t) of the liquid-gas interface. All simulations use the same set of physical
parameters as displayed in Tab. 4.1. The choice of parameters is made from, but not limited to,
commonly encountered water-air capillary microsystems under standard conditions for temperature
and pressure.

4.4 The dynamics of capillary flow

Moving inertialess fluids due to capillary pumping in small conduits have been described by Lucas
and Washburn [82, 251] from a balance between viscous losses and capillary action. Assuming a
fully developed Poiseuille flow profile in a 2D rectangular capillary tube (Fig. 4.1), the pressure
balance equation reads

12µ

H2 xẋ =
2γ

H
cosθ (4.9)

where the left-hand side of the equation is the Hagen-Poiseuille law, akin to Ohm’s law in elec-
trodynamics, and the right-hand side the Young-Laplace pressure drop. Solving Eq. 4.9 assuming

Figure 4.1 Benchmark case of spontaneous imbibition in a 2D rectangular microchannel. The
microchannel dimensions are L×H with L/H = 100. θ is the contact angle and ∆ the mesh size.
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Table 4.1 Physical parameters for the simulations.

Parameter Description Value
θ Contact angle 40◦ - 80◦

γ Surface tension 72 J m−2

ρ1 Liquid density 1000 kg m−3

µ1 Liquid viscosity 1 mPa s
ρ2 Gas density 1 kg m−3

µ2 Gas viscosity 14.8 µPa s

x(0) = 0 leads to Washburn’s equation [68] :

x = H

√
t
τ

(4.10)

with the Washburn characteristic time
τ =

3µH
γ cosθ

(4.11)

These approximations are true in cases where both the Reynolds and the Capillary numbers are
smaller than unity. In the case of capillary driven flow in a 2D rectangular microchannel, we have

Re =
ρUH2

µL
, Ca =

µU
γ

(4.12)

Assuming U = ẋ, we can take from Eq. 4.9 that U = H2/2τx. Because Washburn’s equation for
velocity is is monotonously decreasing and is singular at x = 0 due to the absence of inertia, we
take the maximum velocity to be at a distance 5H in the channel and the minimal velocity to be at
a distance L. For θ = 60◦, we have Re ∈ [0.036,0.72]< 1 and Ca ∈ [0.00083,0.017]≪ 1.

4.5 Boundary conditions and mesh-dependent results

In this section, we present and discuss results that are mesh dependent regardless of the veloc-
ity boundary conditions applied. Simulations of the benchmark case when implementing no-slip
boundary conditions are shown in Fig. 4.2. This figure illustrates the volume fraction, measured for
every time step and equivalent to x(t)/L, from which we measure the Washburn characteristic time
presented in Fig. 4.3. Three different convergence zones are observed when τ evolves with ∆ : (i)
when H/∆ ≲ 3, errors due to capillary pressure and hydraulic resistance underestimation dominate
which results in smaller Washburn characteristic times which increase logarithmically with respect
to the mesh size, (ii) when 3 ≲ H/∆ ≲ 8, the Washburn characteristic time convergence transits
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from a the pre-asymptotic region dominated by pressure-related and hydrodynamics-related errors
to a region dominated by stress-related errors due to improper treatment of wall stress by contin-
uum mechanics, and (iii) when H/∆ ≳ 8, the flow slows down due to an increase in stress which
is measured as a steady logarithmic increase in τ . This is made evident by measuring stress as a
function of ∆ as presented in Fig. 4.4. Stress was found to increase as a power of 3/2 with respect
to ∆. The general behavior depicted by the three zones in Fig. 4.2 is invariant of the contact angle
as shown in Fig. 4.5. The only noted difference is a decrease in the logarithmic steepness of τ in
region (iii) with an increase in θ .

Logarithmic dependence of contact lines position with respect to the mesh size has also been ob-
served and treated using a contact angle-based method by [238] for two test cases : 1) a 2D with-
drawing plate, and 2) a 2D spreading droplet. However, 3D capillary flows introduce additional
degrees of complexity making this approach inappropriate. For instance, 3D simulations of mi-
crosystems rarely permit meshes finer than ∆ ∼ H/10 due to high aspect ratios and computational
limits. We find ourselves most of the time in region (ii) of Fig. 4.3. This in turn makes a sys-
tematic correction method difficult to develop as numerical and modelling errors in the transitory
convergence region are of the same order. An other difficulty arises when modelling devices that
are contact angle-sensitive due to pinning on sharp corners such as self-coalescence modules [197]
and phaseguides [252] since we cannot correct θ at will. Indeed, contact angle-based corrections
must be small enough to ensure the Concus-Finn criterion [83] is respected. This criterion states
that a stable interface in an edge can only exists if the wall’s contact angle does not exceed the
so-called critical contact angle given by the surface properties and topology of the channel. The
critical contact angle on a sharp edge of angle π −δ (e.g. Fig. 4.9b) can be written as

θc =
π −δ

2
(4.13)

Another approach amongst scientists and engineers to resolve this challenge has been to introduce
partial slip, also known as Navier-slip, boundary conditions on walls to obtain bounded solutions
[191, 253]. Introducing the physical boundary’s normal n, we define the partial slip boundary
condition as

f u+( f −1)
∂u
∂n

= 0 (4.14)

wherefor f = 1 and f = 0 we respectively impose a Dirichlet boundary condition u = 0 and a
Neumann boundary condition ∂u/∂n = 0. However, partial slip boundary conditions do not solve
the mesh-dependency problem in the case of capillary flows in microchannels as displayed in Fig.
4.6. We also observe that a decrease in f , i.e. an increase in slip length, speeds up the flow due to
reduced viscous losses and tends to worsen the mesh-dependency steepness.
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Figure 4.2 Volume fraction as a function of time for the benchmark case with θ = 60◦.

Figure 4.3 Evaluated Washburn characteristic time as a function of mesh size for the benchmark
case with θ = 60◦. We delimit three regions of interest: (iii) the asymptotic logarithmic conver-
gence towards stress singularity, (ii) the transitory convergence, and (i) the pre-asymptotic loga-
rithmic convergence.
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Figure 4.4 Normalized stress on the walls ∥τxy∥ with respect to the mesh size ∆ near the contact
line.

Figure 4.5 Evaluated Washburn characteristic time normalized with respect to cosθ as a function
of the mesh size ∆ and the contact angle θ .
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Figure 4.6 Evaluated Washburn characteristic time normalized with respect to cosθ as a function
of the mesh size ∆ for different partial slip values f .

As proposed by [173] we could select a mesh dependent slip length to solve the problem. However,
this type of correction can only be applied when the numerical value for τ is above the theoretical
value, making it a one-way correction only. Furthermore, a mesh size of H/32 would require
a correction of f ≈ 0.5 as seen in Fig. 4.6. Such a high slip value on walls puts us far from
a Poiseuille-like flow and prompt to numerical instabilities such as increased spurious currents
[199], which in turn slows down simulations and increases flow errors in the vicinity of capillary
interfaces.

An other important issue many CFD codes suffer from, including interFoam, are parasitic currents
in surface tension dominated flows [199]. Parasitic currents were quantified and are shown to in-
crease with mesh refinement and decrease with larger contact angles. This error does not show any
influence on the shape of the flow rate, but it could contribute to the numerical discrepancies made
evident above. However, parasitic currents bring serious concerns in capillary flows with velocities
smaller than parasitic currents due to time step limitations imposed by the Courant number.

In light of the reasons stated above, a novel approach is evidently essential to accurately model
capillary flows. This is even more true for 3D simulations exhibiting high geometric aspect rations,
as often encountered in many applications. We proceed next to develop a static contact angle-based
correction that is both versatile and easy to use without requiring access to the source code.
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4.6 Contact angle-based correction and mesh optimization

As proposed by [238], we search for a mesh-dependency corrector G(∆) of the form

cosθnum = cosθ +G(∆) (4.15)

where θnum is the measured numerical contact angle, θ is the physical static contact angle. Ideally,
that correction should be invariant of geometry and physical parameters. Furthermore, G(∆) should
be as small as possible to ensure the Concus-Finn criterion is respected as discussed in the previous
section. In [238], G(∆) is based on the theoretical analysis of Cox [254]. However, this model
assumes an asymptotic logarithmic convergence as depicted in Fig. 4.3iii which is not realizable
for most 3D capillary flow simulations in microfluidics with high geometrical aspect ratios nor
does it minimize G(∆). Our approach is to measure a posteriori the exact correction needed to
correspond to a known solution of the flow for a simple test case which is then used a priori for
large 3D simulation cases. From Eq. 4.11 and Eq. 4.15 we can write

G(∆) = cosθ

(
cosθnum

cosθ
−1
)
= cosθ

(
τ

τnum
−1
)

(4.16)

where τnum is the measured Washburn characteristic time. G(∆) is then injected back into Eq. 4.15
to find the corrected contact angle θcorr. This process can be repeated to refine the value of θcorr

using the relation
cosθi = cosθi−1 +Gi(∆), i ∈ N∗ (4.17)

where cosθ0 ≡ cosθ and θcorr would be equal to the last value of θi calculated. Because this
correction method is based on the ratio of the numerical and physical Washburn characteristic times
(Eq. 4.11), it is valid as long as Washburn’s assumptions for Eq. 4.9 hold and it is independent of
geometry and physical parameters other than the contact angle itself.

We test this procedure for the benchmark case and display the corrected contact angle θcorr in Fig.
4.7a and the associated corrected Washburn characteristic time τcorr in Fig. 4.7b as a function of
the the mesh size. The finer the mesh gets, the larger the gap between the physical and numerical
contact angles gets as a result of the increase in stress error. We calculate the relative error on τcorr

with respect to Eq. 4.11 and show that the error diminishes on average by an order of magnitude per
iteration of Eq. 4.17 as displayed in Fig. 4.7c. Simulations are repeated using the corrected static
contact angle for wall boundary conditions and mesh-independent results are obtained as presented
in Fig. 4.7d. We repeat this procedure with different contact angles to measure the influence of θ

on G(∆) and conclude from Fig. 4.8 that a decrease in θ leads to an increase in G(∆). This is to
be expected since an increase in θ worsens the steepness of the logarithmic increase in stress as
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previously depicted in Fig. 4.5. Extreme cases where the corrected contact angle reaches either
half or double the physical contact angle happens when ∆ ∼ H/64 and ∆ ∼ H/2 for θ = 40◦. For
all physical contact angles, the optimal grid size to minimize G(∆) is in-between ∆ ∼ H/4 and
∆ ∼ H/6. Excluding θ = 40◦, all corrected contact angles are within a ±5◦ gap with respect to
their associated physical contact angle in the interval from ∆ ∼ H/4 to ∆ ∼ H/16. This leaves
us enough leeway to optimize G(∆) whilst having a small enough interface thickness to properly
capture the physics of most capillary microfluidics problems. The correction methodology was
tested and can be used for contact angles smaller than 40◦ if the Washburn equation assumptions
are respected and as long as the contact angle correction is smaller than the physical contact angle.

4.7 3D simulation results

To demonstrate that the a posteriori correction proposed in the previous chapter can be used a priori

for larger 3D simulations, we proceed with simulations of a Self-Coalescence Module (SCM) [197]
and a capillary pump [232]. All physical constants are the same as presented in Tab. 4.1 and a
contact angle θ = 60◦ is used for both cases.

The SCM’s schematic is displayed by the two cross-sections in Fig. 4.9a-b and snapshots of the
simulation are shown in Fig. 4.9c respectively in the initialisation, transition and self-coalescence
stages. A full video of the simulation is available in Supplementary Video 4.13. The aspect ratio
of the device is L/H = 100 which makes a correction approach assuming asymptotic convergence
towards stress singularity (Fig. 4.3iii) unfathomable because of computational costs. We would
require more than 5 million cells only to reach H/∆ = 16 and tens of millions of cells to reach
H/∆ = 32. In addition, because the meniscus pinning stability on the trench (Fig. 4.9b) is contact
angle sensitive as per Concus-Finn’s criterion, contact angle corrections must not exceed nor be
close to (π − δ )/2 to properly model the pinning. Thus, an increase in mesh refinement past the
transitory convergence zone (Fig. 4.3ii) is not physically nor computationally viable. We repeat
the simulation for three different grids with and without the a priori correction and measure the
volume fraction. The results are displayed respectively in Fig. 4.10a and Fig. 4.10b. With the
correction applied, we reach an outstanding match between the simulations results for all three
meshes and Eq. 4.10 in the initialization stage. This could be expected to some degree because
the mesh is a uniform structured grid and the geometry is not much different from a 2D capillary
assuming W ≫ H. Nonetheless, because of this strong match with theory, SCMs could potentially
be the basis for new benchmark test cases for incompressible two-phase flow solvers involving both
capillary flow dynamics and pinning stability.

The second test case is a capillary pump as depicted in Fig. 4.11a. The grid for this second case
is unstructured and not uniform. Meshing details are presented in Tab. 4.2 and the aspect ratio of
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Figure 4.7 Correction procedure for the 2D rectangular microchannel benchmark case with θ = 60◦.
θcorr and τcorr (a-b) are calculated a posteriori repeatedly, showing an overall decrease in the error
Err = |τcorr − τ|/τ as i increases (c). The i = 2 correction is kept and used a priori to fix mesh-
dependencies of the same case (d).



80

Figure 4.8 Corrected contact angle θcorr(i = 2) with respect to the mesh size ∆ for different physical
contact angles θ .

the device is L/H ≈ 65, where L is the diagonal length. As for the SCM, this makes a correction
approach assuming asymptotic convergence towards stress singularity not possible. Snapshots of
the simulation are displayed in Fig. 4.11b and a full video is available in Supplementary Video
4.14. We repeat the same procedure as with the first case by comparing the results with and without
correction. The volume fraction measurements are respectively displayed in Fig. 4.12a and Fig.
4.12b. Here again, we observe a substantive reduction of the mesh dependency effect on the volume
fraction in time, however less than for the SCM. This is because the capillary pump mesh is not
regular with constant H/∆ everywhere and the fact that we use a singe correction value. To consider
different cell sizes, we would have to implement a boundary condition that reads the local cell size
∆ and returns the proper value for θnum locally. Nevertheless, even for an unstructured non uniform
mesh the mesh-dependency is still reduced significantly.

4.8 Conclusion

The VOF method can serve to model complex capillary flows in 3D microstructures such as SCMs,
capillary pumps and micro-valves. However, the results are highly mesh-dependent due to intrinsic
multiscale effects not considered by continuum mechanics. To make this point evident, we verified
the code using a 2D rectangular capillary benchmark case for which we know analytically the



81

Figure 4.9 Top view of a self-coalescence module schematic (a) in the initialization stage (t1) and
self-coalescence stage (t2), cross-sectional view of the schematic (b) and simulation snapshots (c)
taken at t =35 ms, 85 ms and 122 ms. The main channel dimensions are L×W ×H = 6000×600×
60 µm3, the trench dimensions are L×w×h = 6000×60×60 µm3 with δ = π/2, the contact angle
is θ = 60◦ and λ = 0.5.

Table 4.2 Mesh details for the capillary pump case.

∆ = H/4 ∆ = H/6 ∆ = H/8
Number of cells 103,920 350,712 834,256
Max aspect ratio 3.47992 3.52884 3.47588
Max mesh non-orthogonality 25.8235 26.5289 27.1862
Average mesh non-orthogonality 2.98406 2.15215 1.61587
Max skewness 1.98284 1.57256 1.30628
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Figure 4.10 Capillary filling of the self-coalescence module (a) without correction, and (b) with
correction. The number of cells for the three meshes are 72,960; 246,240 and 583,680.

Figure 4.11 Top view of a capillary pump schematic (a) and simulation snapshots (b) taken at
t =21 ms (left) and 64 ms (right). The cross-sectional area of pillars is L1×W1 = 75×45 µm2 with
rounded corners of radii W1/2, the longitudinal gap between pillars is L2 = 15 µm, the lateral gap
between pillars is W2 = 45 µm, the height of the capillary pump is H = 15 µm and the contact angle
is θ = 60◦.
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Figure 4.12 Capillary filling of a capillary pump (a) without correction, and (b) with correction.

solution for the displacement of the meniscus. Several verification steps where done using different
partial slip and contact angle values showing a dependence of the results on mesh size regardless
of boundary conditions.

To remediate the situation, we developed a novel correction approach for capillary flows abiding
by Washburn’s equation hypotheses. A static contact angle-based correction is found a posteriori

from a simple 2D benchmark case which is in turn used a priori for complex 3D simulations. This
methodology was successfully applied to the simulations of a SCM and a capillary pump. The cor-
rection procedure proves to be efficient at reducing the mesh-dependency even for unstructured non
uniform meshes. In addition, we introduced the notion of optimal grid to minimize the error caused
by improper treatment of stress at walls which implies a compromise between interfaces’ sharp-
ness and the proximity of corrected and physical contact angles. With the correction procedure,
the VOF method gives us a solid framework to optimize and design new generations of capillary
autonomous microsystems.

Simulation results of the SCM shows that it could serve as a basis for future 3D benchmark test
cases to study the performance of incompressible two-phase flow solver. A great variety of cap-
illary phenomena are involved in understanding how SCMs work including Washburn’s law, the
Concus-Finn criterion and the Bosanquet law [255] in cases where inertia is dominant. For its
close relation with Saffman-Taylor viscous fingers [100], a SCM-based benchmark could also be
used to provide further insights into the modelling of receding Saffman-Taylor viscous fingers with
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forced geometrical configurations using pinning lines.

Lastly, the correction procedure introduced in this work is not limited to the VOF method and can
be used for any continuum based CFD method. Furthermore, this method has the advantage of not
requiring any access to the internal code of the CFD software or library used, i.e. it can be used
with any commercial, open source or in-house codes.

4.9 Supplementary videos

Video 4.13 Water volume fraction of a filling SCM. (Flash Player required)

Video 4.14 Water volume fraction of a filling capillary pump. (Flash Player required)
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CHAPTER 5 ARTICLE 2: DYNAMICS OF ACCELERATING CAPILLARY FLOW

Authors: Samuel Castonguay, Yuksel Temiz, Emmanuel Delamarche, Thomas Gervais

Chapter Overview

In this theme, I used numerical modelling to discover and characterise Reverse-Washburn flows, 
and I lay down the theoretical framework describing them. This novel type of capillary flow pro-
vides a superior control over passive flows in microchannels. In this work, I conceived the research, 
developed the theoretical models, conducted the numerical simulations, analysed experimental re-
sults, and compared theoretical, numerical, and experimental results. Yuksel Temiz and I designed 
the SCMs. Yuksel also designed and conducted the experiments, and fabricated the SCMs. My 
advisor Thomas Gervais supervised the research. All authors discussed the results. Thomas and 
I wrote, reviewed, and edited the paper with inputs from all authors. This work was submitted in 
Physical Review Fluids, March 8, 2022.

Abstract

We present an important corollary to Washburn’s equation in capillary dynamics. We show that, 
during capillary filling, in cases where flow path decreases with time, an accelerating capillary flow 
or reverse-Washburn flow regime o ccurs. We provide a description of this phenomenon following 
Washburn’s classic analysis and characterize a "reverse-Washburn" capillary flow regime in both 
inertial and viscous regimes. This regime is observed and characterized in experiments and nu-
merical simulations of recently discovered self-coalescence flows, opening the door to engineering 
devices with naturally accelerating capillary inflows.

5.1 Introduction

The penetration of liquids into capillaries and porous bodies is ubiquitous in many natural and in-
dustrial processes. The first analytical assessment of the dynamics of capillary flow was done by 
Lucas and Washburn [82, 251] a century ago and its governing equation is commonly referred to 
as Washburn’s equation. However, an important corollary to this equation has been omitted. In 
situations where the flow path shortens, viscous losses decrease with respect to time resulting in an 
accelerating flow. These shortening flow paths can simply be due to the spontaneous dewetting of 
fluids, in which case the fluid is receding in an emptying channel. However, more interesting cases
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have been discovered recently in which a net positive flow can be introduced in a channel, all the
while inducing capillary acceleration. In this letter, we follow the classic derivation of Washburn’s
equation and generalize it to characterize such capillary inflow. We also derive the inertial equiva-
lent of this expression, namely the generalized Bosanquet equation for accelerating capillary flows.
Finally, we use our model to describe the experimental behavior of accelerating capillary inflows
as evidenced in self-coalescence flow - or zipper flow - physics [197] with supporting experiments
and numerical simulations.

Capillary Flows are found in soil water retention [256], petroleum engineering [229, 257], au-
tonomous microfluidic systems [197, 232], rapid diagnostic tests [258], anticounterfeiting fea-
tures [26] and fuel cells [259, 260] to name a few. Decelerating capillary flow is a critical issue
in many systems where precise spontaneous imbibition is limited by an upstream hydraulic resis-
tance build-up [261,262], and any convection-limited transport problems [263,264] where the flow
is driven by surface tension. In the later case, accelerating capillary flows could be used to engineer
thinner boundary layers resulting in enhanced heat and mass transport to the surfaces.

The dynamics of capillary flow can be controlled through engineering of a specific device topology
or by introducing external forces. Some examples include electro-osmotic pumping [265], geo-
metric constrictions [266, 267] and solid-liquid surface tension manipulations such as wettability
gradients and thermal gradients [28]. However, none apply to unaltered passive systems where the
dynamic is simply defined by a pressure balance between capillary pressure and viscous losses, as
per Washburn’s classic derivation. The aim of this letter is to i) develop the general equation of
motion for accelerating capillary flow with and without inertia, and ii) use it to describe the exper-
imental behavior of accelerating flows with net capillary filling as evidenced in self-coalescence
flow - or zipper flow - physics [197] with supporting experiments and numerical simulations. In
the following work, self-coalescence is achieved using a straight capillary pinning line, but can be
generalized to any shapes where coalescence occurs in a confined area, e.g. spirals, sharp turns, and
slow meanders. This process also describes the filling dynamics of other capillary microsystems
such as capillary pumps and microfluidic phaseguides.

5.2 The Dynamics of Capillary Flow

Washburn-like flows, as discovered by Lucas and Washburn 101 years ago [82, 251], occur when
an imbalance exists between free surface energy change rate and viscous dissipations, yielding a
net time varying force driving the fluid in a filling channel. The analytical model is derived as per
the original paper by Washburn [82], and we refer to [68] for more details on capillary flow theory
in general.
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Disregarding any influence other than an increase in surface energy FS and a decrease in pressure-
volume Helmholtz free energy FpV , the variation of the total Helmholtz free energy F at equilibrium
dictates the balance between these forces

δF = δFS +δFpV = δFS +δV ∆pS = 0 (5.1)

where δV is the variation in volume (Fig. 5.1) and ∆pS is the capillary pressure also known as the
Young-Laplace pressure drop.

Viscous dissipation of energy in a fully developed Poiseuille flow is given by the hydraulic analog
of Ohm’s law, i.e. the Hagen-Poiseuille law

∆p = RQ (5.2)

where R is the hydraulic resistance and Q is the flow rate. The hydraulic resistance can be decom-
posed in several components varying along the length of the capillary with respect to several factors
such as geometry and physical properties [268,269]. Here, we will focus on general systems where
the hydraulic resistance can be decomposed in a constant part, R0, and a linearly varying one in
space, xRx, where x is the moving capillary interface’s position and Rx is the hydraulic resistance
per unit length. The constant part can be expressed as an effective pre-filled length we define as
L0 = R0/Rx. Introducing the effective displacement ξ = L0 + x and the adimensional variables
x̃ = x/ℓ, ξ̃ = ξ/ℓ and t̃ = t/τ with ℓ an arbitrary length and τ =ARxℓ

2/2∆pS the Washburn char-
acteristic time constant, and combining Eq. 5.1-5.2 we obtain the following equation of motion

ξ̃
dξ̃

dt̃
=±1

2
(5.3)

where the ± sign denotes when the flow is accelerating (negative) and decelerating (positive).
Solving Eq. 5.3 assuming ξ̃ (0) = ξ̃0 yields

ξ̃
2 − ξ̃

2
0 =±t̃ (5.4)

With ξ̃0 = 0 and taking the positive branch of the solution, we recover the canonical form of Wash-
burn’s classic equation ξ̃ =

√
t̃. In honor of the previous work by Washburn [82] on this topic a

century ago and for its direct relation with the former equation, we label the negative branch of this
result as the "Reverse-Washburn equation". This present analysis assumes an identical system for
the Washburn and Reverse-Washburn (R-W) regimes. However, in practice, the presence of topo-
logical asymmetries and different wetting dynamics complexifies the analysis, and two different
Washburn characteristic time constants arises (SCM derivation details in Appendix C).
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Figure 5.1 Schematic of a filling capillary of arbitrary cross-sectional shape, cross-sectional area A
and length L. Cut-plane along the x-axis in dashed lines.

Following the analysis by Rideal and Bosanquet [255, 270] we can further extend the model to
take into account inertial effects, thus removing the non-physical singular velocity occurring in
Washburn’s equation when x → 0 (see Appendix A).

5.3 Methodology

Self-coalescence flow modules (SCM) can be readily fabricated using standard silicon microma-
chining techniques. A brightfield image of the SCM device is presented in Fig. 5.2(a), and cross-
sectional schematics with all relevant parameters for numerical simulations are presented in Fig.
5.2(b-c).

SCM chips were fabricated on 4-inch single-side-polished Si wafers (Si-Mat, Germany) using pho-
tolithographic patterning of two SU-8 layers (MicroChem Corp.). Two layouts to pattern rails (clear
mask) and microfluidic channels (dark mask) were designed in L-Edit software and transferred to
glass/Cr masks using a direct laser writing system (DWL 2000, Heidelberg Instruments, Germany).
For the rails, SU-8 3025 was spin-coated and patterned at a thickness of about 33 µm following the
recipe provided by the supplier. A second SU-8 layer for the microchannels was then patterned
using the same SU-8 photoresist but with a slightly modified recipe to achieve 57 µm-deep chan-
nels (Suppl. Fig. 5.5-5.6). The chips were then diced after protecting the wafer surface using a
thin photoresist layer. Following cleaning of individual chips in acetone and then isopropanol, the
chips were dried using N2 and their surface was sealed using a DF-1050 dry film resist (Nagase
ChemteX, USA) laminated at 45 ◦C, forming close rectangular microchannels. A simple holder
with liquid loading reservoirs was 3D-printed to accommodate the chip and load samples (Suppl.
Fig. 5.7). After applying about 20 µL liquid sample to the reservoir (Suppl. Fig. 5.8), videos of the
capillary filling were acquired at 60fps using Nikon 1 J3 camera connected to a stereo microscope
(Leica MZ16). Data was acquired by tracking the meniscus position manually frame-by-frame us-
ing MATLAB. High quality images were taken using a Nikon 90i microscope, for planar views,
and a custom-built microscope, for slanted image planes.



89

Figure 5.2 Brightfield image of the self-coalescence module (a) using the microscope at an angle
of 45◦, self-coalescence module schematic in the Washburn and R-W regimes ((b) at t1 and t2
respectively) and cross-section of the device along the capillary pinning line (c). The materials are
SU-8 on silicon wafer. The channel dimensions are L×W ×H = 5200×500×57 µm3, the rail’s
position is λ = 0.5 and its cross-sectional area is w×h = 25×33 µm2. θ0, θ1 and θ2 are effective
contact angles determined from each individual experiment.

Full 3D dynamics of R-W flows under the continuum limit approximation has been further carried
out using a Volume-of-flow (VOF) method. Singular stresses in the vicinity of moving contact
lines due to the continuum formalism breaking down at the molecular scale are dealt with using a
recently developed semi-analytic static contact angle correction [202]. The position is tracked at
every time step using the volume fraction of water in the whole domain and scaled from 0 to L using
probes at the end of the channel for proper adimensionalization. The domain is discretized from a
regular orthogonal grid that is snapped on the device’s geometry, and the problem is solved using
the "interFoam" solver from OpenFOAM. Details regarding numerical modelling are provided in
Appendix B.

5.4 Results & Discussion

Experiments and simulations were performed for two different liquids, i) deionized (DI) water, and
ii) a glucose standard solution of 1 mg/mL (Sigma-Aldrich) to mimic Newtonian organic liquids.
The viscosity of water, density and air/water interfacial tension are respectively 1 mPas, 1000 kg
and 72 mJ/m2 at ≈ 20 ◦C. At 0.1%(w/w), physical properties of the glucose solution are not ex-
pected to divert significantly from water [271,272]. However, an increase in glucose concentration
is expected to increase density, viscosity and surface tension. Because other factors, such as surface
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roughness, have greater impact on the flow dynamics, we use the same physical properties for both
liquids and take into account all variations in the Washburn time constants by mean of the effective
contact angle calculation.

Experiment and simulation snapshots are presented in Fig. 5.3. Contact angles on the SU-8 side
walls θ1 and θ2 are dynamic in nature due to surface roughness and impacts wettability [273,274].
However, an effective static contact angle can be extracted, as per Cassie’s law [275], from a fit
of Washburn’s characteristic time and the rate of increase of ξ̃ 2. With θ0 = 85◦, the measured
average effective contact angles on the SU-8 walls and standard error interval in both regimes are
respectively θ1 = 91.0±1.2◦ and θ2 = 108.3±1.4◦ (n = 8) for DI water and θ1 = 86.5±0.8◦ and
θ2 = 103.3±0.9◦ (n = 7) for the glucose solution. This is in agreement with observations in Fig.
5.3(a) where the wetting dynamics of SU-8 is slightly hydrophobic for DI water. We also observed
that the glucose displayed slightly lower contact angles with the surface than DI water in general,
resulting in shorter filling times as made evident in Fig. 5.4. All data sets are presented in Sup.
Fig. 5.9. When the moving front reaches positions near the inlet and outlet (x → 0), we observe a
discrepancy with the theory due to additional liquid-surface energy gains and losses not considered
by the model. Our experimental results show that there is a match between theory and experiments
to within 16% and 2% respectively for the Washburn time constant and Reverse-Washburn time
constant. Contact angles are given within 1.3% and 0.9%. Numerical results are also in agreement
with both theory and experiments in the Washburn and Reverse-Washburn regimes.

5.5 Conclusion

To conclude, we have observed and characterized here at least one instance in which capillary
velocity accelerates during filling without resorting to channel branching or making changes in the
surface properties of the device. Also, there is a significant advantage of using self-coalescence
as the acceleration is continuous, easily controllable, and occurs without using high resolution
branching which takes large amount of space on a chip and requires high precision fabrication.
Furthermore, self-coalescence can be generalized to any geometries where coalescence occurs in
confined areas.

The setup is also useful with most liquids with high surface tension that spontaneously wet a sur-
face. Alternatively, the system can be biased with a positive pressure to introduce liquids that do
not spontaneously wet the surface, such as water in hydrophobic channels, as done in Gökçe et

al. [197]. In this work, DI water and a glucose solution were used to simulate biological liquids
that are ubiquitous in lab on chip devices.

Thus self coalescence flow modules provide a simple way towards engineering accelerating flows
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Figure 5.3 Side-by-side comparison of experiments (a) and simulations (b). From top to bottom,
i) the meniscus moves forward and decelerates in time due to an increase in path length, ii) the
meniscus enters the transition zone towards self-coalescence, and iii) the meniscus moves backward
whilst accelerating due to a reduction in the length of the flow path. We can observe in (a) that SU-8
is slightly hydrophobic, as taken into account in our theoretical and numerical models.

to enhance mass transfer and compensate for binding site depletion in surface-based sensors [263,
264], or to speed up lengthy steps in capillary assays. Finally, the pumping capability of SCMs
can be scaled up by placing several modules in parallel to generate accelerating flows of arbitrary
volumes [276].

5.6 Appendix

5.6.1 Derivation of the Bosanquet and Reverse-Bosanquet equations

In the following section, we derive the theoretical form of the Reverse-Bosanquet equation, thus ex-
tending the work of Rideal and Bosanquet [255,270] to account for inertia in accelerating capillary
flows. Introducing the density of the liquid, ρ , the new equation of motion reads

La
d
dt̃

(
ξ̃

dξ̃

dt̃

)
+ ξ̃

dξ̃

dt̃
=±1

2
(5.5)
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where, again, the ± sign denotes when the flow path increases (positive) and decreases (negative),
and

La =
γρLc

µ2 (5.6)

is the Laplace number with a characteristic length Lc = 2κµ2/(ARxℓ)
2. The Laplace number

characterises inertia and surface tension with respect to momentum transport. Thus, the leftmost
part of Eq. 5.5 accounts for inertial effects, and the remaining terms are equivalent to Washburn’s
equation (Eq. 5.3), i.e. the capillary pressure and viscous losses where the negative sign denotes a
decrease in hydraulic resistance. Substituting u = ξ̃ dξ̃/dt̃ in Eq. 5.5 and assuming u(0) = u0, we
obtain

u =

(
u0 ∓

1
2

)
e−t̃/La ± 1

2
(5.7)

Reinjecting ξ̃ into 5.7 and solving assuming ξ (0) = ξ0 yields

ξ̃
2 − ξ̃

2
0 = La(±1−2u0)

(
e−t̃/La −1

)
± t̃ (5.8)

Finally, introducing the adimensional velocity ṽ = dξ̃/dt̃, we can rewrite Eq. 5.8 as

ξ̃
2 − ξ̃

2
0 = La

(
±1−2ξ̃0ṽ0

)(
e−t̃/La −1

)
± t̃ (5.9)

where ṽ0 is the initial velocity of the meniscus. Eq. 5.9 clearly shows the equivalence of the
Bosanquet and Washburn equations and the Reverse-Bosanquet and Reverse-Washburn equations
when inertia is neglected, i.e. when the Laplace number is null.

5.6.2 Digital twins and numerical methodology

For a laminar incompressible isothermal flow of a liquid mixture with a spatially defined density,
ρ ≡ ρ(x), and viscosity, µ ≡ µ(x), the conservation of momentum, ρu, with an external body force
F can be written as

∂ρu
∂ t

+∇ · (ρuu) =−∇p+µ∇
2u+F (5.10)

with the incompressible mass conservation condition ∇ ·u = 0. For a two-phase mixture, we can
define a phase field α ∈ [0,1] which is advected in space using the simple first order transport
equation

∂α

∂ t
+∇ · (αu) = 0 (5.11)

This is known as the volume of fluid (VOF) method. In practice, a compression term has to be added
to Eq. 5.11 to mitigate numerical diffusion and smearing of the interface [249]. Physical properties
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of the mixture are simply obtained from a linear combination of the two fluids’ individual properties
with the phase field acting as a weight function, i.e. ρ =αρ1+(1−α)ρ2 and µ =αµ1+(1−α)µ2,
where the subscripts 1 and 2 denotes the two liquids. Assuming no external force other than the
capillary force is exerted on the system, we can write F using the continuum surface force (CSF)
formulation [65] as F = γκ(∇α) where κ = ∇ · (∇α/|∇α|) is the curvature of the multiphase
interface. Singular stress’ in the vicinity of moving contact lines due to the continuum formalism
breaking down at the molecular scale are dealt with using a simple semi-analytic static contact
angle correction [202]. We solve these equations numerically using "interFoam", a solver from the
open source library Open∇FOAM using the finite volume method (FVM). The mesh is generated
and snapped on the geometry using the meshing utilities "blockMesh" and "snappyHexMesh" from
the same library. Compromising between simulation time and results quality, we opt for an initial
grid of uniform mesh size ∆ = H/6 for a total of 205,914 cells after the snapping iterations.

5.6.3 Derivation of the Washburn and reverse-Washburn equations for a self-coalescence
module

In the following section, we solve the equations of motion for a moving meniscus in a SCM as
depicted in Fig. 5.2 in the accelerating and decelerating regimes. The symbols "+" and "−" are
used to label variables and parameters in the decelerating and accelerating regimes respectively, i.e.
positive and negative velocity. Introducing the dimensionless variables x̃± = x±/ℓ and t̃± = t/τ±,
and the capillary pinning line (rail) height h and width w, we fist calculate the variation of the total
Helmholtz free energy at equilibrium. Assuming a translation symmetry of the capillary interface
when moving along the x-axis by an infinitesimal displacement δx, the variations in surface energy
are given by

δF+
S = (γsl − γsg)δx [2(1−λ )W +H +h]+ γlgδx(H −h) (5.12)

and
δF−

S = (γsl − γsg)δx [2λW +H +h]− γlgδx(H −h) (5.13)

where γsl , γsg and γlg are respectively the solid-liquid, solid-gas and liquid-gas surface tensions.
The variations in volume are simply given by δV+ = δx [(1−λ )WH −hw] and δV− = δxλWH.
With these quantities defined, we can calculate the Laplace pressure drop from Eq. 5.1 knowing
that cosθ = (γsl − γsg)/γlg and γlg ≡ γ . We define all relevant parameters and variables according
to Fig. 5.2 in Tab. 5.1.

In the R-W equation of Tab. 5.1, ∆t̃d is a normalized delay time (with respect to t̃−) that takes
into account the Washburn filling time ∆t+ and the transition time in-between the Washburn and
R-W regimes when the meniscus moves along the wall at x = L. We also assumed in Tab. 5.1 that
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Table 5.1 Definition of parameters and variables for a SCM as shown in Fig. 5.2.

Definition Washburn Reverse-Washburn

Section width W+ = (1−λ )W W− = λW

Cross-sectional area A+ = HW+−hw A− = HW−

Curvature
κ+ =[2W+ cosθ0 +(H +h)cosθ1

+ (H −h)]/A+

κ− =[2W− cosθ0 +(H +h)cosθ2

− (H −h)]/A−

Variable hydraulic resistance Rx =
12µ

H3W+

(
f

1− (w+0.63H)/W+
+

1− f
1−0.315H/W+

)
Characteristic time τ+ =

A+Rxℓ
2

2γκ+
τ− =

A−Rxℓ
2

2γκ−

Filling time ∆t+ = τ+

(
1− ξ̃ 2

0

)
∆t− = τ−

(
1− ξ̃ 2

0

)
Meniscus position ξ̃+ =

√
ξ̃ 2

0 + t̃+ ξ̃− =
√

ξ̃ 2
0 +∆t̃d − t̃−

no liquid spills over in the y < 0 region above the rail. To take into account each individual sur-
faces’ physical properties, we simply have to recalculate Eq. 5.12-5.13 accordingly. The variable
hydraulic resistance can be bounded within a defined interval. The maximal value of the interval
is obtained when h → H, where the hydraulic resistance is approximated by a closed rectangular
channel of width W+−w. The minimal value is obtained when h → 0, where the hydraulic resis-
tance is obtained from a rectangular channel of width W+ with a symmetry plane on the side of
the liquid-gas interface. The exact value of the hydraulic resistance can be expressed as a linear
combination of both extremes weighted by a factor f . This weight factor is calculated numerically
using finite element analysis (COMSOL Multiphysics) of a laminar stationary single phase flow
in the approximated flow path geometry. Solid-liquid interfaces are set to zero velocity Dirichlet
boundary conditions and the liquid-gas interface to a Neumann boundary condition. The resulting
weight factor is f = 0.8207 for H = 57µm and h = 33µm.
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Figure 5.4 Superposition of the experimental (red), numerical (blue) and theoretical (black) results
for a Washburn- Reverse-Washburn cycle in a capillary structure. The inset is the same data set
squared to emphasize the square root behavior of the Washburn and R-W regimes. Experimental
error bars are obtained from the frame rate of the camera and the distance travelled by the meniscus
within the exposure time. The cyan dashed lines are obtained from the standard error of the linear
fit in both regimes with n being the number of points used for the fits.
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5.7 Supplementary Material

Figure 5.5 Brightfield image of the chip with a focus on the chip’s inlet (top) and outlet valve
(bottom) using the Lego microscope, a custom-designed and full-motorized microscopy system
that can take images at different angles. Instructions, software and all design files are open source
and can be found at https://github.com/IBM/MicroscoPy.



97

Figure 5.6 Brightfield image of the entire chip with control channels (high inlet hydraulic resistance
on the right side).

Figure 5.7 Chip placed on the loading pad.

Figure 5.8 Experimental setup for pipetting under a microscope.
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Figure 5.9 Experimental data sets for DI water (a) and the glucose solution (b). When the meniscus
is near the inlet or outlet, additional liquid-surface energy terms not considered in the model creates
a discrepancy between experiments and theory. Energy is used to stretch the meniscus near the inlet,
which reduces its speed, and this energy is given back near the outlet, which increases its speed.
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CHAPTER 6 GENERAL DISCUSSION

6.1 Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents

The delivery of high spatiotemporal resolution pulses of reagents in microsystems is ubiquitous in
BioMEMS applications, and more recently in embedded security features in microfluidic systems.
The self-coalescence module (SCM) confines a droplet of water in a microstructure and make it
fold onto itself by SC. This type of flow prevents reagent accumulation at the capillary filling front.

Boundary conditions are regularized by using the invariance property of the Navier-Stokes equa-
tions under Galilean transformations, and the resulting flow problem is simplified using potential
flow theory in a Hele-Shaw cell. Approximating the circular arc of the returning meniscus with a
polygon of N segments, we use the Schwarz-Christoffel transformation to map the original domain
onto the upper half complex plane.

Finding the position of the vertices, known as the parameter problem, may be done analytically
up to a given number of vertices as per the Riemann mapping theorem. If the number of vertices
prevent finding an explicit general solution, numerical methods are required to find the vertices.
However, as N → ∞ it is numerically challenging to find the vertices in the complex map as they
spread exponentially around the origin, i.e. the crowding phenomenon. To get around this chal-
lenge, instead of mapping from the upper half plane, we map from the bi-infinite strip using an
additional conformal transformation, thus finding the map solution for the SCM.

We proceed with an asymptotic analysis of the general implicit solution to find key characteristics
of SC flows in the vicinity of the moving meniscus and far away from it. The asymptotic study
far from the meniscus reveals that the flow decays exponentially, and that a single parameter value
—the width of the system —is required characterize the decay length. This is a characteristic of
solutions obeying Laplace’s equation and reflects the behavior of evanescent waves. On the other
hand, the asymptotic study in the vicinity of the moving meniscus reveals a linearly increasing
velocity and self-similarity with respect to λ . This suggests that the flow around the meniscus is
alike that of the classical 2D flow over a cylinder.

Conformal mapping is a powerful tool that can be used to study SC flows in elongated structures
in the moving reference frame of the meniscus and by approximating the meniscus as an N-sided
curve. Using analytical methods gives us the possibility of finding elegant asymptotic solutions
that can lead to simple design rules, i.e. the flow velocity increases linearly close to the meniscus
and decays asymptotically towards zero as we get further from it. Lastly, this study reveals link to
Saffman-Taylor viscous fingering (STVF) and we describe how SC and STVF are analogous and
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how they differ.

6.2 A simple static contact angle-based mesh-dependency correction for 3D capillary flow
simulations

Capillary driven multiphase flow simulations do not converge with mesh refinement due to viscous
losses underestimation for coarse meshes, and contact line dynamics singularities when the mesh is
refined. This is because the continuum formulation of fluid mechanics breaks down at the molecular
level and does not capture wetting dynamics occurring at that scale. Physically, molecules attach,
detach, and collide with the solid wall, allowing the capillary interface to move.

We provide a semi-analytical correction function based on the Washburn equation to easily correct
the singular contact line behaviour in a small Reynolds and Capillary numbers limit. This method-
ology can be used with any CFD codes as it does not require modification or implementation in the
source code directly. Although, this methodology could also be automated by implementing it in
available software packages.

The correction methodology consists in calculating a corrected static contact angle from simple
2D simulations a-posteriori, and use that correction for complex 3D capillary flow simulations
a-priori. This methodology was shown to be effective even in complex geometries such as cap-
illary pumps. 3D simulations of two microfluidic devices were conducted to demonstrate mesh-
independency using the method.

6.3 The dynamics of accelerating capillary flow

An important corollary to Washburn’s equation is presented in cases where viscous losses diminish
in time, resulting in accelerating capillary flow. We label this phenomenon the "Reverse-Washburn"
capillary flow regime in the low Laplace number limit, and "Reverse-Bosanquet" capillary flow
regime in the high Laplace number limit. RW was first discovered through simulations, and subse-
quently observed and characterized in experiments. The theoretical framework is derived as per the
original papers by Washburn [82] and Bosanquet [255] in their respective non-inertial and inertial
formulations. The resulting theory holds for any given channel as long as viscous losses change
linearly (positively or negatively) along the channel (i.e. constant, or periodic, change in hydraulic
resistance). The net Laplace pressure on the meniscus is described from a free energy formulation
as described by Gibbs’ free energy.

Accelerating flows are studied in the case of self-coalescence occurring in a passive SCM, but can
be generalized to any shapes where coalescence occurs in a confined area, e.g. sharp turns, spirals,



101

and slow meanders. This process also describes the behaviour of filling dynamics in other capillary
microsystems such as capillary pumps and microfluidic phaseguides.

Accelerating flows could compensate for boundary layer depletion in surface-based reactions with
the acceleration of the flow replenishing the captured species near the surface, and major applica-
tions have been found in reagent reconstitution on chip and have been established [197].

6.4 Limitations

In Chapter 3, the general mapping solution (Eq. 3.12-3.13) uses a piecewise linear approximation
of the meniscus and needs to be solved numerically. This model could be improved using a more
appropriate transformation such as the modified Schwarz-Christoffel transformation for polygons
with circular arcs [222]. This would also solve the problem of requiring a numerical input to obtain
the amplitude of the exponential decay for the asymptotic solution far from the meniscus, and the
limit of small λ values for the asymptotic solution in the vicinity of the moving meniscus.

In Chapter 4, the contact angle correction methodology is fundamentally issued from physics, but
requires an empiric (numeric) input to quantify the amplitude of the correction. Although the values
could be tabulated and a simple interpolation could be used to make the correction general for any
cases, provided the correction does not exceed the contact angle itself, it would be preferable to
obtain a simple equation that can account for the correction without an empiric input or tabulated
data. However, producing the tabulated data can be tedious as correction values are dependent
on both the contact angle and the mesh size, and simulation time increases significatly with mesh
refinement.

The correction methodology is only valid for small Reynolds numbers and small capillary numbers
limit. In cases where Re ≫ 1 the flow is not fully developed and the Hagen-Poiseuille law does
not hold. On the other hand, when Ca ≫ 1 visco-capillary effects might distort the shape of the
meniscus and the constant radius approximation used to calculate the Laplace pressure might not
hold. The correction method relies on those two quantities being lower than or close to unity.

For devices with more than one length scale, we select the dimension for which the impact on the
flow is greatest. However, this might not be appropriate in cases where the length scales are of
the same order of magnitude. For instance, in SCMs there are two length scales: H and λW . We
take H to compute the correction function because this is the dimension with the greatest impact
on viscous loses and capillary pressure. The same idea would follow for any other device. The
method was not tested for cases where H/W ≈ 1 where an additional length scale would have to
be added or for cases with irregular and more complex geometries. However, we should expect a
correction function bounded by the values for the smallest and longest dimension in the flow path
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cross-section, and from a first estimation the correction function should follow a relation akin to
that for hydraulic radii calculations. However, further research is required for the general case.
Nonetheless the capillary pump test case shows that even for H/W ≈ 5 and a relatively complex
geometry, a single length scale simplification works fine.

Most CFD codes suffer from parasitic currents when modeling capillary dominated flows, including
interFoam. Parasitic currents were quantified and are shown to increase with mesh refinement and
decrease with larger contact angles (see Fig. 6.1). The currents amplitude stays within a factor of
2 in general and a factor of 6 at worst. This error does not influence flow behavior in power 1/2,
but it could contribute to the value of the correction function. Spurious currents can bring serious
concerns when one wants to compute slower capillary flows due to the physical and computational
times scaling linearly when U < Us due to time step limitations imposed by the Courant number
(Appendix H). For instance, this is a problem encountered in Chapter 5.

Figure 6.1 Spurious currents as a fonction of cell size for different contact angles with interFoam
(VOF-FVM) and compressive CSF.

In Chapter 5, Washburn and Reverse-Washburn flow regimes were difficult to reproduce experi-
mentally due to surface roughness, which has for effect a reduction in the effective contact angle
and uneven filling rates. Groves caused by DRIE etching on the side walls could also be a poten-
tial cause for discrepancies observed between theory, simulations, and experiments. The effective
contact angles were all close to 90◦ which makes simulations extremely intensive due to spurious
currents (100+ CPUs for more than a week of computing) and slow filling rates. Nonetheless, ev-
idence of the Reverse-Washburn effect was provided, but results could be improved substantially.
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The Reverse-Bosanquet effect (Eq. 5.9) would require re-thinking the experiment from scratch.

A phenomenon that has been observed numerically, and has yet to be observed in experiments, is
the "bubble" shape the meniscus takes when SC starts at the end of a CPL. A possible explanation is
that the bubble is resulting from a balance between hydraulic pressure and capillary pressure. The
bubble expands to minimize its surface energy, and doing so shrinks the flow path (Fig. 6.2-6.3)
which increase the hydraulic resistance and the pressure locally. The width of the bubble might be
described by a power law akin to Bretherton’s law for the motion of long bubbles in tubes [277],
but would have to be investigated further.

Figure 6.2 Schematic of the formation of a bubble in SCMs (a), and numerical results of the width
of the bubble with respect to time (b) using VOF-FVM with the compressive CSF model.
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Figure 6.3 Simulation snapshots of (a) a SCM without diversion barrier, and (b) design of a SCM
in the shape of an Archimedean spiral with the "buble" shape made evident when self-coalescence
occurs. These are also examples of WRW cycles.
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CHAPTER 7 CONCLUSION

7.1 Thesis contributions

The three main contributions of this thesis are as follow: 1) a full characterization of self-coalescing
flows in microfluidics for pulse-shaped delivery of reagents using conformal mapping, 2) the devel-
opment of a simple static contact angle-based mesh-dependency correction for 3D capillary flow
simulations which allowed for the simulation of SCMs, phaseguides, and capillary pumps, and 3)
a generalization of the Washburn equation for accelerating flows with supporting numerical, made
possible from de second contribution, and experimental results. More details are provided on each
theme here below. Finally, this thesis is concluded by a discussion on limitations of this work and
recommendations for future research.

7.2 Future research

During the course of those past five years of research, several projects arose, and ideas explored,
without them making the cut for this thesis. Nonetheless, here are some recommendations of top-
ics that could be further explored following the work from this thesis. Notably, 1) a complete
SC solution using the Schwarzian differential equation, 2) WRW flow cycling, 3) SCM-based
electrocapillary-driven microfluidics, 4) benchmarking the SCM for numerical tests, 5) compare
and asses the performance of different CFD software packages, and 6) couple capillary flow mod-
elling with additional transport equation for dispersive and reactive species.

7.2.1 Towards a complete SC solution

The mapping solution to the SCM (Eq. 3.27) is not complete as it still requires an input of numerical
data. In addition, the asymptotic solution close to the meniscus (Eq. 3.33) are only valid for large
meniscus radii and when λ ≳ 0.1, which is fortunately the case for the applications we make of
SCMs, i.e. large spotting areas are sought. A possible approach to resolve this challenge is to
use a modified Schwarz-Christoffel transformation directly mapping polygons with circular arcs
[222] instead of regular polygons. The conformal map f is then found by solving the Schwarzian
differential equation

y′′(ω)+
1
2
{ f ,ω}y(ω) = 0 (7.1)

where { f ,ω} is the Schwarzian operator (see discussion in Section 3.7.4). With an asymptotic
analysis of the Schwarzian differential equation, the theoretical model could be refined. From our
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analysis in this paper, we expect the solution to be akin to the Gamma function, or more precisely
Appell’s hypergeometric function (as in Eq. 2.44 for the inclined back step).

7.2.2 Washburn-Reverse-Washburn cycles

Flows in capillary pumps are known to decrease in speed the more the are filled up due to an
increase in viscous losses and a constant, or periodic, capillary pressure. In a SCM, viscous losses
increase as liquid fills the first part of the channel, and once SC begins when the liquid reaches
the end of the CPL, viscous losses decrease. Thus, the flow accelerates, and we introduced in
this thesis RW flows. By the combination of both Washburn and Reverse-Washburn flows we
can engineer flows that are cycling between the two modes (WRW cycles). Thus, giving us a
superior control over the speed at which fluids move in capillary-driven microstructures. We can
also quantify the efficiency at which a surface can be wetted using WRW cycles. Simple back
of the envelope calculations reveal that filling an arbitrary surface with N straight channels takes
between N times (in serial) to twice (in parallel) as much time than it would take to fill the same
surface with N SCMs. This has potential applications for capillary pumping, and surface reaction
engineering [263].

7.2.3 Customizable flows with electrocapillary-driven microfluidics

Using electrowetting in combination with autonomous capillary pumping —Washburn-type flows
and WRW cycles —we could engineer devices providing even greater control over the flow. The
flow rate in a passively filling channel through capillarity can be given as a function of the contact
angle, and the change in contact angle under an applied potential, V , is given by (cosθ −cosθ0)∼
V 2, where θ0 is the initial contact angle without electric potential. Combining the two phenomena,
we can engineer flow rates exceeding the limits of electrowetting and under the threshold of elec-
trolysis. The module could be used to minimize TAD in capillary-driven microstructures, and to
enhance the capabilities of capillary pumping, e.g. filling in otherwise impossible configurations
and controllable pumping. However, by introducing electrodes in the system for electrowetting we
lose some of the autonomy (passive nature) of the device.

7.2.4 SCM-based benchmark tests

SCMs rely on three very important concepts in microfluidics: 1) self-coalescence, 2) Washburn and
Reverse-Washburn flows, and 3) the Concus-Finn criterion. By benchmarking SCMs for numerical
simulations, we could test different solvers and measure their performance in simulating these
features. For instance, test cases in OpenFOAM showed that meniscus pinning fails when the
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meshing resolution of a CPL is less than 4 times its height due to interface diffusion reaching over
the rail. Furthermore, analytical description of all these concepts are given in this thesis, i.e. Eq.
3.12-3.13 for the flow within SCMs during self-coalescence with asymptotes given by Eq. 3.27 and
Eq. 3.33, Eq. 5.4 for the position, velocity, and acceleration of the meniscus during Washburn and
Reverse flows, and Eq. 2.64 for the Concus-Finn criterion.

SCMs could also be used to study Kelvin–Helmholtz (KH) instabilities [11] in microenvironments
as fluid velocities go in opposite directions in the initial filling stage, i.e. liquid 1 moves in the
positive direction, and liquid 2 in the negative opposite direction. In a water-air system, this effect
is negligible because of the low Capillary and Webber number (Tab. 2.1), but experiments could
be run where that is not the case. And if not physically, this is a numerical experiment that can
be run to test stability of some solvers. For example, SCM test cases with mesh refinement across
the interface showed KH-like instabilities forming in some flow regimes, whereas no refinement
didn’t. If observed experimentally, the "bubble" effect described in the limitations of this work
(Fig. 6.2-6.3) could also be used as a benchmark test criteria with structures akin to SCMs.

7.2.5 A comparative study between different CFD software packages

As presented in Section 2.2, several open-source and commercial CFD software platforms ex-
ist, with different approaches with respect to modelling surface evolution and surface tension. A
comparative study comparing the pros and cons, the performance, and the accuracy of the dif-
ferent methods would be valuable to understand what better tool to use for a given problem in
capillary dynamics. Notably, potential software platforms include OpenFOAM [128], discussed at
length in this thesis, Ansys-Fluent [130], Gerris [129], COMSOL Multiphysics [131], and STAR-
CCM+ [132] to name a few.

7.2.6 Full coupling of capillary dynamics with mass transport

Coupling mass transport equations with VOF and study the recirculation of reagents at the capillary
front when in reconstitution would be an interesting and valuable avenue following this work.
The open source solver interMixingFoam from OpenFOAM, using a three-phase formulation of
VOF with one dispersive phase, and has recently been used to model double-flow liquid injectors
[278]. However, the available literature on that subject is very sparse, and rigorous validation work
in a microfluidics framework has yet to be done. Test cases with the interMixingFoam solver
were done for reconstitution of dispersive species in SCMs and straight microchannels, however
spurious currents were significantly disrupting reconstitution at the capillary interface due to the
non-physical velocities. This should be investigated further. Ultimately, a complete free-surface
model with multiple dispersive and reactive species could be implemented and numerical results



108

could be compared with experimental results from [203].

7.3 Final words

Contributions presented in this thesis helped understand self-coalescing flows, which allows reagent
reconstitution with minimal dispersion and pointed, thanks to the dedicated work of E. Delamarche
and his team at IBM, to meaningful applications in point-of-care diagnostics and security in the
diagnostic test industry. A full characterisation of the flow has been developed and provide tools
to understand and use this novel type of flow for precision diagnostics and the integration of se-
curity features on chip. A numerical framework for modelling complex capillary driven flows in
microstructures was also developed. These tools are useful to predict the behavior of liquids in
microsystems and optimize their design where analytical methods cannot. Analytical, and numer-
ical modelling were used to predict, understand, and characterize Reverse-Washburn flows, a new
capillary flow regime providing enhanced control over passive flows in microchannels. These flows
have potential applications in better engineering surface reactions on chip by providing enhanced
control over the flow.

Spurious currents and contact line singularities are a main issue in modelling capillary driven flows,
although they can be mitigated or corrected in specific cases. It would be valuable to find a general
solution to these problems. Ideally, these solutions should be computationally unintensive and not
restricted to structured meshes and adaptive solvers.

Critical steps modellers should always take, in my opinion, are to 1) understand problems from a
physical point of view, 2) understand the limits of a given model (e.g. continuum mechanics and
contact line dynamics), 3) reduce the complexity of the model as much as possible, but not too
much, 4) understand where modelling might fail and how to adapt numerical models accordingly,
and 5) always validate results (convergence analyses, compare with theory and experiments). In
this way, modellers prevent committing GIGO, i.e. "garbage in, garbage out" [279]. It is of my
opinion that more modellers should take Charles Babbage’s view on computational work1,2.

Open-source CFD software packages like OpenFOAM provide powerful community-based tools
and help pushing the frontier of knowledge in computational physics and surpasses in many ways
commercial options. I am looking forward to seeing what the open-source CFD community will
become, and how community-based CFD software packages will evolve.

1Charles Babbage (1791-1871) seeded the idea of digital programmable computers.
2Excerpt from Passages from the Life of a Philosopher [280]: On two occasions I have been asked, "Pray, Mr.

Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to
apprehend the kind of confusion of ideas that could provoke such a question.
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APPENDIX A SELF-COALESCING FLOWS IN MICROFLUIDICS FOR
PULSE-SHAPED DELIVERY OF REAGENTS

A.1 Abstract

Microfluidic systems can deliver portable point-of-care diagnostics without the need for external
equipment or specialist operators, by integrating all reagents and manipulations required for a par-
ticular assay in one device [281]. A key approach is to deposit picogram quantities of dried reagents
in microchannels with micrometre precision using specialized inkjet plotters [26, 282–284]. This
means that reagents can be stored for long periods of time and reconstituted spontaneously when
adding a liquid sample. But it is challenging to carry out complex operations using multiple
reagents, because shear flow enhances their dispersion and they tend to accumulate at moving liquid
fronts, resulting in poor spatiotemporal control over the concentration profile of the reconstituted
reagents [204]. One solution is to limit the rate of release of reagents into the liquid [213,285–287].
However, this requires the fine-tuning of different reagents, conditions and targeted operations, and
cannot readily produce the complex, time-dependent multireagent concentration pulses required
for sophisticated on-chip assays. Here we report and characterize a capillary flow phenomenon
that we term self-coalescence, which is seen when a confined liquid with a stretched air–liquid
interface is forced to ‘zip’ back onto itself in a microfluidic channel, thereby allowing reagent re-
constitution with minimal dispersion. We provide a comprehensive framework that captures the
physical underpinning of this effect. We also fabricate scalable, compact and passive microfluidic
structures—‘self-coalescence modules’, or SCMs—that exploit and control this phenomenon in or-
der to dissolve dried reagent deposits in aqueous solutions with precise spatiotemporal control. We
show that SCMs can reconstitute multiple reagents so that they either undergo local reactions or are
sequentially delivered in a flow of liquid. SCMs are easily fabricated in different materials, readily
configured to enable different reagent manipulations, and readily combined with other microflu-
idic technologies, so should prove useful for assays, diagnostics, high-throughput screening and
other technologies requiring efficient preparation and manipulation of small volumes of complex
solutions.

A.2 Theory

The key to translating self-coalescence into a useful microfluidic technology is first to elicit and
characterize its physical underpinnings (see also Chapter 3), in order to demonstrate how air–liquid
interfaces can be manipulated such that the characteristic time and length over which dispersion oc-
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curs scale with the width, W, of the microfluidic channel rather than its length, L (assuming that W
is much less than L). To implement the concept, we use a shallow channel geometry (whose height,
H, is much less than W ) to confine the liquid within a Hele-Shaw cell—a quasi-two-dimensional
planar flow model whereby flow is always considered to be locally parabolic and propagating in
the direction of the pressure gradient [69]. Within the flow plane, the fluid is further confined
laterally by a capillary pinning line (CPL) [288] that acts as a Laplace pressure barrier [289] and
geometrically forces the liquid to self-coalesce—that is, to fold onto itself and release its surface
free energy to spill over the CPL. Making the CPL straight creates a translational symmetry in the
self-coalescence process that results in the fluid propagating at the velocity of the capillary front. In
this process, following the path of least resistance, most of the flow occurs right behind the moving
liquid front, where the fluid rapidly comes to a rest (Fig. A.1a, b and Supplementary Video A.15).

Free-boundary flows are known to be challenging to model and to compute numerically, let alone
analytically [214]. A complete solution to the problem can be reached by numerical modelling.
Alternatively, recognizing the conformal invariance of the advection–diffusion transport equation
in shallow microfluidic devices [290], and that all boundary conditions become regular in the ref-
erence frame of the moving meniscus (Fig. A.1c), a complete solution can be obtained using a
Schwarz–Christoffel mapping [218] (see section 3.3). Two simple asymptotic solutions can be
further derived via this conformal mapping approach to obtain the main velocity field along the
CPL both near its contact point (where x is much less than W ) and far downstream of the meniscus
contact point (where x is much greater than W ):

V̄near(x, t)≈Um + i(U +Um)

(
x+Umt

t

)
(A.1)

V̄far(x, t) = A(W,λ ,θw)Ume−
π

W (x+Umt+iλW ) (A.2)

where the variables x and t are respectively the horizontal distance from the meniscus tip and the
time elapsed; r = λW/(1+ cosθw) is the radius of the circular meniscus; Um is the meniscus
velocity; U is the flow velocity at the inlet; A(W,λ ,θw) is a constant geometric factor that depends
on the channel width and wall contact angle; λ is the width fraction of the channel cross-section at
which self-coalescence occurs; i is the imaginary unit; and e is Euler’s number (section 3.6).

The exponential form of Equation A.1 has been extensively studied in the case of Saffman–Taylor
viscous fingering in a long straight channel, which yields a similar exponential decay of the velocity
field with characteristic decay length Ld = W/π and time td = Ld/Um (Fig. A.1d) [101]. In the
context of self-coalescence, this decay constant explains the short flow lifetime before stagnation
is achieved (Ld is roughly 160 µm; td is approximately 240ms; assuming that W = 500 µm and
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Figure A.1 Description and modelling of self-coalescence in a microchannel. a, Top view of a
microchannel (of width W and length L) that is partially filled with a liquid. During Stokes flow (at
flow rate Qin), this setting fosters three flow modes: longitudinal flow (where x< 0), self-coalescing
flow (0< x < LSC), and stagnancy (‘no flow’, where x > LSC), with LSC being the penetration length
of a self-coalescing flow. Um is the meniscus velocity, γ the surface tension, and θw the contact an-
gle. b, Image of fluorescent microspheres (diameter 4.8 µm) in 10 µgmL−1 fluorescein solution
during self-coalescence (W is 500 µm; microchannel height is 50 µm; Qin is 500 nL/min; Re is
roughly 0.001; and θw = 116◦). Streaks and dots respectively reveal moving and stationary parti-
cles. The CPL, implemented with a 5-µm-wide trench, is not visible after background subtraction.
c, Two-dimensional (2D) Hele-Shaw model (top and middle) and 3D Navier–Stokes simulation
(bottom) of self-coalescence in the same channel geometry as in panel b and at half the channel
height. The colour map shows pressure, and the middle and bottom panels share the same colour
map. Blue, velocity streamlines, and grey, isobars. The gaps between arrowheads show the dis-
placement of a particle at regular time intervals (180 ms). (Continued on the following page.)
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Figure A.1 d, Log plots of the orthogonal velocity (Vy) of self-coalescing flows for three channel
widths and at different y positions as indicated, highlighting the asymptotic form of the orthogonal
velocity component: near the meniscus the flow is transitional, increasing steadily until it reaches a
peak and then decaying exponentially downstream of the offset. e, Plotted are Vy values for particles
from all z-planes at y = 0 from velocimetry data (semi-transparent dots, n = 772 from 12 locations
in 3 experiments), along with the maximum Vy predicted by the 2D Hele-Shaw model (blue), the
2D asymptotic model (black, Vy,far = 5.26e−πx/500 mms−1; dotted, Vy,near = 0.0045x mms−1) and
the 3D Navier–Stokes simulation (red). PIV, particle image velocimetry.

Um = 1mms−1). The analytical results for these two asymptotic behaviours, as well as the full
Schwarz–Christoffel mapping solution (see section 3.4), reveal a strong match with finite-element-
method simulations and experiments, further verifying the model (Fig. A.1e). To achieve self-
coalescence the CPL can be made straight, but in general can be of any shape, from sharp turns
to spirals and slow meanders. This process thus also explains the filling dynamics within capillary
pumps [232] and around microfluidic phaseguides [195]—capillary structures often used to control
wetting in microsystems. Even more importantly, the process reveals how the phenomena can be
precisely triggered and controlled to engineer minimally dispersive flows.

A.3 Reagent reconstitution and scalability

We use the practical implementation of self-coalescence here to control reagent reconstitution un-
der the form of a SCM. The SCM is a microchannel having two CPLs and a vent (Fig. A.2a). The
first CPL (the leading barrier) ensures longitudinal flow, whereas the second (the diversion barrier)
acts as a capillary burst valve [291] and prevents the liquid from exiting the SCM before the SCM is
completely filled. A gap between the leading and diversion barriers forces self-coalescence to be-
gin next to the diversion barrier. The effectiveness of reagent reconstitution using self-coalescence
becomes apparent when it is compared with reconstitution in a microchannel that lacks a leading
barrier, illustrated in Fig. A.2b, c using amaranth dye and water. In this case, the longitudinal flow
leads to the strong accumulation of amaranth dye near the liquid filling front, which creates a con-
centration spike that is an order of magnitude higher than the uniform concentration attained when
using self-coalescence (Fig. A.2d and Extended Data Fig. A.6). When self-coalescence is used
to reconstitute reagents printed at any fixed point in that region, the Péclet number, Pé, associated
with the flows depends on the local velocity above a reagent spot, which peaks linearly (Equation
A.1) before decaying exponentially with time as the meniscus moves away (Equation A.2). Thus
Pé ≡ |Vfar|H/D, which approximates to e−πWt/λW , making Taylor–Aris dispersion, whose magni-
tude scales roughly as Pé2, vanishingly small almost immediately after reagents have been wetted,
and practically eliminating any form of convective reagent dispersion during reconstitution (Fig.



140

A.2b and Supplementary Video A.16).

There are numerous ways to implement SCMs in different materials—using, for example, silicon
substrates and microfabrication or polymeric materials via hot embossing or injection moulding,
and using different geometries such as depressed (trench-like) or protruding (rail-like) CPLs (Ex-
tended Data Fig. A.7). The material compatibility is further supported by the fact that the contact
angle has only a mild influence on self-coalescence, and no influence at all on the exponential-
decay length scale (section 3.6). Capillary pinning can also be achieved by patterning hydrophobic
layers [292].

When performing chemistry at the microscale, it is a common requirement to use solutions that
have a well defined composition and volumes that range from nanolitres up to a few microlitres.
The volume of the SCM determines the maximum volume of the solution that can be prepared,
and the amount of deposited reagent determines its resulting concentration, as demonstrated here
with amaranth dye reconstitution in SCMs of different dimensions (Fig. A.3 and Extended Data
Fig. A.8). We tested the stability of leading barriers using different channel geometries and filling
conditions (Extended Data Fig. A.9). Modelling and experiments reveal simple rules of thumb for
designing stable SCMs: wide SCMs are preferred over long SCMs that accumulate more hydraulic
resistance during filling.

A.4 Reagent pulse shaping

The preparation of solutions with uniform concentration profiles is perhaps the greatest practical
challenge solved by SCMs. In fact, any arbitrary concentration profile can be generated using one
or several reagents and specific spotting patterns. However, a broadening of the initial reagent con-
centration profile is inevitable owing to Taylor–Aris dispersion once the solution sets in motion and
exits the SCM (section A.9.2). The magnitude of the dispersion and the resulting concentration
profile at time t and distance d from the diversion barrier can be computed exactly by convolv-
ing the spotted reagent profile with the Green’s functions that describe reagent profile evolution
during SCM filling and reagent delivery (section A.9.3). The approach yields a powerful design
tool, which we use for reagent pulse shaping under Taylor–Aris dispersion in a way that is con-
ceptually analogous to optical amplitude pulse shaping in dispersive media [293], where the spatial
frequency distribution of the input concentration signal replaces the frequency content of a light
pulse, concentration replaces the pulse amplitude, and the dispersive channel acts as the dispersive
optical medium (section A.9.4).

This modelling strategy for concentration pulse shaping allows us to define spotting patterns that
will give specific concentration profiles of reconstituted amaranth and brilliant blue dye without
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Figure A.2 SCM for reagent reconstitution. a, Illustration of the components forming a SCM and
the locations of dried, spotted reagents. b, Time series of bright-field microscope images showing
the reconstitution of amaranth in a SCM filled with water over the course of 75 s. c, Reconstitution
of amaranth in a control experiment (with no self-coalescence) shows strong reagent accumulation.
d, Mean concentration profiles of amaranth solutions using a 375-nL SCM (red, n = 6) and a 375-
nL control microchannel (black, n = 6, Qin = 500nL/min). Inset, the amaranth concentration was
measured at d = 3mm downstream of the SCM outlet.
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Figure A.3 Scalability of SCMs. a, The width (W ) and depth (HSCM) of a SCM and the length
of the deposited reagent pattern (Lreagent) determine the volume in which a reagent reconstitutes
(Vreagent). The final concentration of the reagent after reconstitution can simply be adjusted with
the amount of deposited reagent (mreagent). b, Mean concentration profiles (n = 6; measurement
distance d = 3mm) of amaranth, reconstituted in SCMs with varied lateral dimensions (HSCM =
50µm for all; Qin = 500nL/min).

having to optimize the patterns empirically (Fig. A.4). We can readily release reagents consec-
utively with minimal intermixing (Fig. A.4a), achieve steady concentration ranges (Fig. A.4b),
and merge reagents at preprogrammed distances downstream (Fig. A.4c). It is also possible to
integrate two different reagents and release them downstream either sequentially with minimum
dispersion (section A.9.5) and a separated profile (Fig. A.4d), or mixed with an intercalated profile
(Fig. A.4e), or with a gradient/counter-gradient profile (Fig. A.4f), in close agreement with the
theoretical predictions of our concentration pulse shaping model (Extended Data Fig. A.10 and
section A.9.6).

A.5 Biochemical reactions in SCMs

SCM variants that have a modified vent to purge a surplus of liquid and no diversion barrier can
maintain the distribution profiles of reconstituted reagents for long durations, with minimal diffu-
sion effects. This allows several biochemical reactions to be run in spatially segregated regions
inside single SCMs, akin to using individual wells in a microtitre plate to perform simultaneous
experiments (Fig. A.5). We illustrate this with a multistep enzymatic assay that uses a fluoromet-
ric readout to quantify the activity of glucose-6-phosphate dehydrogenase (G6PDH) [294], with a
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Figure A.4 Reagent pulse shaping and generation of complex concentration profiles. These mean
concentration profiles of reconstituted reagent were obtained using various deposition patterns, flow
rates, Qin values and measurement distances, d (n = 6 for each plot). The experimental profiles
(optical micrographs) above the plots were obtained before the liquids exited the SCM (13-mm
long). a, Well separated reagent spots disperse and acquire a broader concentration profile as they
travel in the SCM and the downstream channel, at both the optimal flow rate, 83 nL/min (top) and a
fast flow rate, 1.5 µL/min (bottom). b, Sufficiently dense spotting of reagents leads to homogenous
concentration profiles. c, Evolution of the concentration domains of a reagent spotted at two main
locations. d–f, Sequential delivery of two types of reagent, which were spotted such that they were
well separated (d), co-homogenizing (e), or forming gradients (f).
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glucose-6-phosphate (G6P) substrate, the co-factors nicotinamide adenine dinucleotide phosphate
(NADP+) and magnesium (Mg2+), and a fluorescent reporter system that is based on the reduction
of resazurin by diaphorase spotted in a first SCM (SCM 1) (Fig. A.5a; note that diaphorase is
spotted separately from its substrates in order to avoid undesired enzymatic activity during storage
of the SCM). When the carrier fluid is introduced, these reagents reconstitute homogeneously and
proceed to the next SCM, where reaction kinetics (which depend on the G6PDH concentration) can
be characterized using the fluorescence signal of resorufin. SCMs are also powerful tools for cali-
brating such an enzymatic reaction, where the ambient temperature, slight variations in the amount
of deposited reagents, or the possible decay of reagents over time might alter the reaction kinetics.
Such a calibration can be performed by spotting a gradient of G6PDH in SCM 2 and measuring
the resulting kinetics (Fig. A.5a). The amount of deposited G6PDH and the maximum speed of
the enzymatic reaction (Fig. A.5b) exhibit the expected linear relation, as shown by a calibration
curve (Fig. A.5c, black). These calibration data match quantification data (Fig. A.5c, orange),
which were obtained by loading a buffer spiked with various amounts of G6PDH into SCMs con-
taining all other reagents. It was possible to measure in only 2 min as little as 0.75 µUµL−1 of
G6PDH—a concentration 130 times lower than the 10% activity cut-off used in clinical tests to
diagnose inherited G6PDH deficiency [295], which affects 400 million people worldwide [296].

A.6 Conclusion

Self-coalescence is a very general concept and applicable to other biochemical assays. We use it
here also to perform isothermal recombinase polymerase amplification (RPA) [297] for the detec-
tion of DNA sequences of human papilloma virus (HPV) types 16 and 18 (Fig. A.5d). For this
implementation, the reaction master mix (containing enzymes, nucleotides, and so on) for RPA
was deposited in SCM 1, and other reagents (primers, Mg2+ and SYBR Green dye) were deposited
in SCM 2. The flow was paused for 3 min once SCM 1 was filled in order to allow complete recon-
stitution of the viscous RPA master mix. A self-timing SCM can also be used to delay the release
of liquids (Extended Data Fig. A.11 and section A.9.3).

RPA is a more complicated chemical system than G6PDH quantification and requires finer opti-
mization. For example, increasing the concentration of SYBR Green yields a better signal-to-noise
ratio, but such intercalating dyes interfere with polymerase reactions and delay the onset of DNA
amplification (Fig. A.5e and Extended Data Fig. A.12a). Similarly, amplification reactions accel-
erate with increasing Mg2+ concentration (Fig. A.5f and Extended Data Fig. A.12b), but too much
Mg2+ can lead to unspecific amplification and high background noise owing to the formation of
primer dimers. Reaction conditions can be readily mapped by spotting reagents in a SCM, as done
here using step-function gradients of SYBR Green and Mg2+ (Fig. A.5d). A DNA concentration
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Figure A.5 Biochemical reactions in SCMs. a, Implementation of a fluorometric reaction for quan-
tifying active G6PDH. To calibrate the reaction (top), all reagents except the G6PDH analyte are
deposited alternatingly into SCM 1, where they reconstitute and homogenize in a buffer before
filling SCM 2. SCM 2 contains a G6PDH gradient and a counter gradient of additives. To quantify
active G6PDH in a buffer (bottom), only one SCM is used. Fluorescence signals are measured over
separate detection windows (dashed rectangles). Extra buffer from SCM 1 is purged at the entrance
of SCM 2 using a vent/waste channel. b, Calibration data from a single experiment, based on the
highest rate of change in resorufin fluorescence (∆F/∆t; dashed lines) at different G6PDH concen-
trations (coloured lines). c, Data from calibration (black) and quantification assays (orange) show
a linear relationship between ∆F/∆t and G6PDH for low concentrations, and a saturation profile
for higher concentrations (faint data points, omitted from the regression analysis), as expected for
such an enzyme-concentration activity curve. The calibration and assay data are not significantly
different (n, number of data points; m, slope of fit; d.f., degrees of freedom; error bars, standard
deviation; calibration, ten experiments or more; quantification, five experiments or more). The in-
set shows the regression analysis of calibration and assay data pooled together. d, Implementation
of RPA using SCMs, where SCM 1 contains the RPA reaction master mix and SCM 2 contains the
rest of the reagents. RPA reaction kinetics are characterized locally by measuring fluorescence over
concentration gradients of SYBR Green, Mg2+ or DNA template. A multiplexed quantification of
DNA concentration can be realized by depositing primers for different templates in separate areas
of SCM 2. e, f, Optimization data from single experiments at different SYBR Green (e) and Mg2+

(f) concentrations, for amplifying ten copies per microlitre of HPV-18 DNA. g, DNA concentra-
tion calibration data from one experiment for HPV-18 DNA quantification (threshold, 100). h, i,
Individual traces (based on five experiments) of fluorescence signals from the HPV-18 detection
window (h) and the HPV-16 detection window (i) when the test was run with no template (blue),
with 1,000 copies per microlitre of unmatched template (unspecific, red), or with 1,000 copies per
microlitre of matching template (specific, black). j, Amplification onset times from different tests
(white, specific; red, unspecific; blue, no template). ∗∗∗P < 0.001; NS, not significant; error bars,
standard error of the mean.
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gradient in a SCM can also be used to calibrate the real-time RPA reaction for quantifying DNA
(Fig. A.5g and Extended Data Fig. A.12c). Moreover, different sets of primers can be deposited
at different locations of SCMs for multiplexed detection of multiple target sequences (Fig. A.5h, i)
with high specificity and reproducibility (Fig. A.5j).

The minimal dispersion of reagents in SCMs enables the localization of neighbouring reactions
without compartmentalization, so that complex biochemical reactions can be implemented in nano-
litre volumes of liquids in a single or several combined SCMs. This capability should have far-
reaching consequences for biological assays and diagnostics, but could also prove to be a game-
changing technology for chemistry at the microscale, and have impacts on the synthesis and dis-
covery of new materials and research in the life sciences.
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A.7 Method

A.7.1 Chip fabrication and reagent deposition

Silicon wafers with a 600-nm thermally grown oxide layer were processed using standard pho-
tolithography and deep reactive-ion etching (DRIE) (Extended Data Fig. A.7a). Briefly, microchan-
nels were patterned on the oxide layer using a 1.2-µm-thick AZ 6612 positive-tone photoresist and a
glass/chromium photomask. Following a mild plasma cleaning to remove the photoresist residues
and to activate the surface, the oxide layer was etched in buffered hydrofluoric acid (BHF). The
photoresist was striped in a plasma asher and a new layer of AZ 6612 photoresist was spin-coated
and patterned to define CPL geometries. The silicon substrate was anisotropically etched for 30 µm
using DRIE (Alcatel AMS 200). Following the removal of the photoresist layer, both microchan-
nels and CPLs were etched for 50 µm using DRIE and the oxide layer as a hard mask. Subsequently,
the oxide layer was removed in BHF and the wafer was diced. The quality of the fabrication was
verified using scanning electron microscopy (Zeiss Leo 1550) and optical interferometry (Veeco
Wyco NT1100).

We also fabricated SCMs in a polymeric photoresist (SU-8) as part of capillary-driven microflu-
idic chips, and designed SCMs with relaxed dimensions and rounded corners for fabrication using
injection moulding. SCMs should also be compatible with other replication techniques involving
polydimethylsiloxane (PDMS) moulding and hot embossing.

We prefer using narrow trenches (5-µm wide) to create leading barriers and a step down to create
diversion barriers (Extended Data Fig. A.7b–f): this implementation has the advantage of not
increasing the flow resistance over the CPL, is robust, and is easily fabricated in silicon channels of
any thickness using standard lithography and DRIE (Extended Data Fig. A.7a). Notwithstanding,
protruding leading barriers (that is, a rail-like geometry) provide better stability than trenches for
the same SCM height, because the smaller liquid–vapour interface leads to a proportionally larger
Laplace pinning pressure. The geometry of the diversion barrier is not critical as this barrier is
challenged only when the SCM is completely filled. However, if the gap between the leading barrier
and the diversion barrier is too narrow (for example, less than 200 µm in 50-µm-deep SCMs), it
pins the liquid, which in turn increases the pressure on the barriers and can result in their failure.

The surface of the microfluidic chips was cleaned using an air plasma (for 2 min with a coil power
of 200 W; Tepla 100-E). Within 10 min after cleaning, the chips were silanized by immersing them
in a solution of 0.1% trichloro(octyl)silane (Sigma-Aldrich) in heptane (Sigma-Aldrich) for 2 min.
After rinsing the chips with ethanol (Fluka) and drying them under a stream of nitrogen, solutions of
erioglaucine disodium (Sigma-Aldrich, hereon referred to as brilliant blue) and amaranth (Sigma-
Aldrich), each at 30 mgmL−1 in water, were deposited in microfluidic structures using an inkjet
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spotter (Nano-Plotter 2.1, Gesim GmbH) equipped with a PicoTip-A piezoelectric pipette (Gesim
GmbH). First, the reagents were spotted in two alignment marks (one visible in Extended Data
Fig. A.8) located at opposite sides of the chips. The difference between the programmed spotting
coordinates and the effective location of spots was used to eliminate any misalignment. After
spotting specific patterns of reagents on microfluidic chips, the chips were sealed with 3-mm-
thick slabs of PDMS (Dow Corning Slygard 184). The volume of jetted droplets was measured
by depositing 1,000 droplets of amaranth or brilliant blue solution at a spot on a clean surface,
letting the spot dry, reconstituting the spot in 1 µL of water and measuring the concentration of the
reconstitution with a spectrophotometer (Tecan Infinite M200). The volume of the droplets varied
slightly from 40 pL to 60 pL between different spotting sessions, but was stable within the same
session. The amount of deposited reagents was calibrated according to the droplet volume.

The patterns of reagents spotted in SCMs or control channels are detailed below. In experiments
in which the dissolution in a SCM was compared with the dissolution in a control channel (Fig.
A.2d) and in volume scaling experiments (Fig. A.3b), 5- to 15-mm-long lines comprising 25-ng
spots (250-µm pitch) of amaranth were spotted. In experiments in which reagent pulse shaping
was evaluated by using the amaranth dye (Fig. A.4a–c), either four 100-ng spots (3-mm pitch; Fig.
A.4a), ten 100-ng spots (1-mm pitch; Fig. A.4b) or two 3-mm-long lines comprising 25-ng spots
(250-µm pitch) were spotted with 3-mm separation between the lines (Fig. A.4c). In experiments
in which the sequential delivery of multiple reagents was demonstrated (Fig. A.4d), one 3-mm-
long line comprising 15-ng spots (250-µm pitch) of amaranth and another one of brilliant blue
were spotted with 3-mm separation between the lines. In experiments in which in situ mixing
of multiple reagents was demonstrated (Fig. A.4e), six 15-ng spots (1.5-mm pitch) of amaranth
intercalated with six 15-ng spots (1.5-mm pitch) of brilliant blue were spotted. In experiments in
which concentration gradients were generated (Fig. A.4f), 30 spots (300-µm pitch) of amaranth
gradually decreasing in mass from 15 ng to 0 ng were spotted over 30 spots (300-µm pitch) of
brilliant blue gradually increasing in mass from 0 ng to 15 ng.

In the chips in which reagent pulse shaping was evaluated (Extended Data Fig. A.13a), a narrow
loop geometry [298] was used to minimize the effect of the turn on dispersion.

A.7.2 Particle image velocimetry

SCMs with a length of 15 mm, a width of 0.5 mm, a depth of 50 µm, and 5-µm-wide trenches were
filled at a constant flow rate (active pumping, Kent Scientific Genie syringe pump, 0.5 µL/min)
with a 10 µL/min fluorescein sodium (Fluka) aqueous solution containing 0.02% fluorescent mi-
crospheres (size 4.8 µm; Thermo-Scientific Fluoro-Max). The filling was imaged using a fluores-
cence microscope (Nikon Eclipse 90i, Nikon DS-1QM/H) at a rate of 15 frames per second (fps),
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with a 60-ms exposure per frame. The displacement of particles crossing the leading barrier during
the 60-ms exposure was measured manually in each frame from the particle streaks on the images.
These measurements were used to calculate the velocity of the particles. The position of the mea-
sured particles was determined from the midpoint of the streaks. In order to display the velocity
streamlines as in Fig. A.1b, 15 subsequent frames were aligned (taking the position of the curved
meniscus as reference) in an image stack, the maximum projection of the image stack was taken,
and the projected image was inverted. For this, images of the particles that sediment during lon-
gitudinal flow were manually removed from each frame for visual clarity. Fiji [299] was used for
data extraction and image processing.

A.7.3 Optical measurements of reagent reconstitution

Microfluidic chips having SCMs or control microchannels spotted with reagents were placed under
a stereo microscope (Leica MX16). The optical zoom, lighting intensity, and colour and exposure
settings of the RGB CMOS camera (Leica MC170 HD) were identical for all experiments. Before
the start of the experiments, the roll and the pitch of the microfluidic chips were corrected with a
custom tiltable XY stage. A syringe pump (Kent Scientific Genie) was connected to the microflu-
idic chips with 1/32-inch tubing (Extended Data Fig. A.14a). Before each experiment, the rate
of pumping was calibrated. During the experiments, microfluidic chips were filled with water at a
constant flow rate (indicated by Qin for different sets of experiments). Videos (30 fps, 1,280 × 720
pixels) of the liquid carrying reconstituted reagents were recorded at fixed locations. Acquisition
was stopped when the reagent solution was completely flushed away from the imaging area.

Video files were processed to extract the absorbance of solutions. This was done by defining a
region of interest (ROI) on each video, centred on the downstream microchannel at a fixed distance
(indicated by d for different sets of experiments) away from the diversion barrier. The ROIs were
200-µm wide and covered the width of the microchannel (180–500 µm). The mean intensity value
over time of individual video channels was extracted from the area defined by the ROIs. For
experiments with only amaranth dye, the intensity values from the green channel were used for
further analysis; for experiments with amaranth and brilliant blue dyes, the intensity values from
the red and blue channels were used. The absorbance signal was calculated by taking the negative
logarithm of the quotient of the intensity values over the mean value of signal coming only from
water.

The absorbance signal was converted into concentration values using calibration curves taken for
different sets of experiments. For this, solutions of dyes with known concentrations were filled into
the microfluidic chips and the intensity values were processed as described above. The exponential
fit to the calibration data was used to transform the absorbance values to concentration values
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(Extended Data Fig. A.6c, d). For experiments in which both amaranth and brilliant blue dyes were
used, the calibration curves and the absorbance data were used after linear spectral unmixing [300]
(Extended Data Fig. A.13b–e). Matlab was used for these analyses.

A.7.4 General preparation for biochemical reactions in SCMs

To implement biochemical reactions using SCMs (Fig. A.5), we fabricated microfluidic chips
containing SCMs with protruding CPLs (that is, rails instead of trenches) in silicon and silanized
them as above. These chips had a channel depth of 100 µm and 40-µm-high rails (Extended Data
Fig. A.7g, h). The reagents were deposited inside SCMs using the inkjet spotter equipped with a
NanoTip piezoelectric pipette (GeSiM GmbH). The droplet volume for each reagent solution was
characterized as above. After deposition of reagents, the chips were sealed using a PDMS that had
been passivated by exposure to a 0.2% bovine serum albumin (BSA, Sigma-Aldrich) solution in 50
mM Tris-HCl (pH 7.5) for 10 min.

A.7.5 Spotting scheme for G6PDH reactions

To quantify G6PDH activity (Fig. A.5a–c), we adapted a fluorometric protocol [294] for imple-
mentation inside SCMs.

All solutions were prepared in a 20 mM Tris-HCl (pH 7.8) buffer (Fluka) containing 0.2% BSA
additive. Solutions containing diaphorase and G6PDH also contained 3% trehalose (Fluka) and 1
mM tris(2-carboxyethyl)phosphine (TCEP; Thermo Scientific).

In the calibration configuration, SCM 1 (width 0.5 mm, length 33 mm, rail width 30 µm; Extended
Data Fig. A.7g) was patterned using two solutions. The first solution contained 0.1 UµL−1 di-
aphorase (Sigma-Aldrich) and was deposited as discrete spots over a distance of 30 mm with a
1-mm pitch. Each spot was formed using four inkjet-deposited droplets (with a total volume of
roughly 2.5 nl). The second solution contained the substrates and co-factors, namely 200 mM
MgCl2 (Sigma-Aldrich), 40 mM G6P (Sigma-Aldrich), 2 mM NADP+ (Sigma-Aldrich) and 0.2
mM rezasurin (Sigma-Aldrich). The substrate solution was also deposited using a 1-mm pitch
along 30 mm, but with a 0.5-mm shift relative to the diaphorase spots, and with each spot formed
using eight dispensed droplets (approximately 4.5 nl).

SCM 2 (width 0.5 mm, length 30 mm) was patterned so as to have three regions with different
G6PDH concentrations and one region without any G6PDH for blank measurements. Each region
consisted of 5-mm-long lines of spots with a 0.5-mm pitch, and was separated from another region
by 2 mm. In different experiment sets, either one (585 pL), two or four droplets of solution con-
taining 0.52× 10−4 UµL−1 G6PDH (Sigma-Aldrich), or two, four or eight droplets of the same
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solution, were deposited to form regions with increasing G6PDH concentration. In order to achieve
comparable reaction kinetics from different regions, we needed to compensate for additives in the
G6PDH solution that were also deposited at different amounts. This was achieved by spotting a
solution containing only the additives over the spots of G6PDH to adjust the total deposited amount
per spot to four or eight droplets.

In the quantification configuration, we used only SCM 2, and patterned it identically to SCM 1 in
the calibration configuration.

A.7.6 Spotting scheme for recombinase polymerase amplification

We implemented isothermal recombinase polymerase DNA amplification [297] (RPA) using SCMs
(Fig. A.5d–j and Extended Data Fig. A.12a–c) by adapting and applying the reagents from a com-
mercially available kit (TwistDx TwistAmp Basic). Quantitative synthetic HPV-18 DNA (ATCC
VR-3241SD) and quantitative synthetic HPV-16 DNA (ATCC VR-3240SD) were purchased and
used in the amplification reactions as the template. Primer sequences were taken from the litera-
ture [301] and the primers were purchased (Integrated DNA Technologies). The following primers
were used in the experiments (5’-3’):

HPV-16 forward: TTGTTGGGGTAACCAACTATTTGTTACTGTT

HPV-16 reverse: CCTCCCCATGTCTGAGGTACTCCTTAAAG

HPV-18 forward: GCATAATCAATTATTTGTTACTGTGGTAGATACCACT

HPV-18 reverse: GCTATACTGCTTAAATTTGGTAGCATCATATTGC

In all experiments, SCM 1 (width 1 mm, length 28 mm, rail width 75 µm, rail split with a 15-µm-
wide trench; Extended Data Fig. A.7h) was patterned with the 2× RPA master mix, prepared by
reconstituting the pellet from the kit in 1 mM TCEP solution. The RPA master mix was deposited
along a 25-mm line of spots, with a 1-mm pitch, and with each spot formed using 100 droplets
(approximately 50 nl).

SCM 2 (width 0.5 mm, length 30 mm) was patterned with all other reagents necessary for the RPA
reaction. For optimization of the SYBR Green concentration, a DNA-Mg mix consisting of 100
copies per microlitre of HPV-18 DNA, 140 mM magnesium acetate (MgOAc; Fluka), 5 µm of
each HPV-18 primer, 3% trehalose and 0.2% BSA was deposited as a 28-mm line of spots with
a 0.5-mm pitch, and with each spot formed using five droplets (approximately 3 nl). Over these
spots, a step-function-like gradient of SYBR Green was created by depositing a 50× SYBR Green
(Invitrogen) solution containing 0.2% BSA along 4-mm segments having a 0.5-mm pitch, with the
segments formed either with one (roughly 600 pl), two, three, four, five, seven or ten droplets,
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without additional spacing between segments.

For optimization of the Mg2+ concentration, a 24-mm line of spots of DNA solution, containing
250 copies per microlitre of HPV-18 DNA, 12.5 µm of each HPV-18 primer and 3% trehalose, was
patterned in SCM 2 with a 0.5-mm-pitch and with each spot formed by two droplets (approximately
1.2 nl). A similar second line, which was formed using spots (two droplets, approximately 1.2 nl) of
125× SYBR Green, 75 mM MgOAc, 3% trehalose and 0.2% BSA, was patterned with a 0.25-mm
shift from the first line. Over the second line, a step-function-like gradient of Mg2+ was formed
by depositing 50 mM MgOAc solution on 4-mm segments having a 0.5-mm pitch, and with the
segments formed either by zero, one (roughly 600 pl), two, three, four or five droplets, and no
additional spacing between segments.

For calibration of DNA concentration to amplification onset time, two 18-mm lines each with a 0.5-
mm pitch and spots of two droplets (roughly 1.2 nl) were patterned with a 0.25-mm offset between
them. The first line consisted of spots of 125× SYBR Green, 95 mM MgOAc, 3% trehalose
and 0.2% BSA. The second line consisted of spots of 95 mM MgOAc, 8.4 µm of each HPV-18
primer and 3% trehalose. Over the second line, a step-function-like gradient of HPV-18 DNA was
patterned by depositing two droplets (roughly 1.2 nl) of DNA solution containing 3% trehalose
along 4-mm segments with a 0.5-mm pitch, with the segments spotted from different DNA solutions
having 250, 2,500 or 25,000 copies per microlitre of HPV-18 DNA. No calibration was performed
for HPV-16.

For multiplexed detection of HPV-16 and HPV-18 DNA, SCM 2 was patterned similarly to the
spotting scheme for DNA calibration, but without any DNA spotted. Additionally, one half of
SCM 2 was patterned using HPV-16 primers and the other half using HPV-18 primers.

A.7.7 Biochemical reactions in SCMs, data acquisition and analysis

To start the biochemical reactions, spotted and sealed chips were filled only with buffer, or with
buffer containing G6PDH or DNA under active pumping at varied flow rates and at room temper-
ature (Extended Data Fig. A.14a). Each chip carried elements for five experiments. Experiments
were run one after another. In all experiments, SCM 1 was filled at a rate of 1.0 µL/min, and SCM
2 at 0.5 µL/min during longitudinal flow and 3.5 µL/min during self-coalescing flow. For RPA re-
actions, the flow was paused for 3 min after SCM 1 was filled for the rehydration and reconstitution
of the RPA master mix.

For calibration of the G6PDH reaction, the chips were filled with 50 mM Tris-HCl (pH 7.8) solu-
tion. For G6PDH quantification experiments, chips were manually filled using a micropipette (Ex-
tended Data Fig. A.14b) with 50 mM Tris-HCl (pH 7.8) solutions containing 0.625–7.5 µUµL−1
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G6PDH, 0.2 mM TCEP, 0.6% trehalose and 0.04% BSA.

For calibration of the RPA reaction and for optimization of SYBR Green and MgOAc concentra-
tions, the chips were filled with 25 mM Tris-HCl (pH 7.9) solution containing 100 mM potassium
acetate (Sigma-Aldrich), 5.4% polyethylene glycol (molecular weight 35 kDa; Sigma-Aldrich) and
0.05% Tween-20 (Fluka). For the multiplexed detection of HPV-16 and HPV-18, the chips were
filled with the same solution additionally containing 1,000 copies per microlitre of HPV-16 or
HPV-18 DNA.

After the chips were filled, they were swiftly transferred to a microtitre plate reader (Tecan Infinite
M200) using a custom-made aluminium adaptor (Extended Data Fig. A.14c). While the reac-
tions ran, the reader scanned along SCM 2 and measured the fluorescence signal every millimetre.
G6PDH reactions were run at 25 ◦C. The conversion of rezasurin to resorufin was measured at
560-nm excitation and 595-nm emission using a sampling time interval of 5 s. RPA reactions were
run at 33-36 ◦C. SYBR Green fluorescence was measured using 490-nm excitation and 525-nm
emission wavelengths every 10 s. Subsequent analyses were run only on the measurements taken
at detection windows (roughly 150 nL, determined by the point spread function of the excitation
beam of the plate reader; full width at half maximum roughly 3 mm as measured), centred over re-
gions with different concentrations of G6PDH, SYBR Green, Mg2+ or DNA (for optimization and
calibration), or at detection windows centred over regions with G6PDH assay reagents or primers
(for quantification).

The kinetics of the G6PDH reaction was characterized from the fastest rate of fluorescence change
(∆F/∆t) for each reaction at different G6PDH concentrations [302]. The quality of the calibration
curve was assessed using linear regression (LinearModel class in Matlab). To evaluate whether
calibration and quantification experiments agreed, we applied analysis of covariance (ANCOVA;
‘aoctool’ function in Matlab).

The amplification onset of RPA reactions was extracted first by subtracting the background from the
signal and later by applying a threshold to the logarithm of the data. The quality of the calibration
curve was assessed using linear regression (LinearModel class in Matlab). To test whether detection
of HPV-16 or HPV-18 DNA produced signals with significantly earlier onset times than unspecific
amplification, we applied a two-sample t-test (‘ttest2’ function in Matlab).
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Figure A.6 Characterization of reagent dissolution in SCMs and control experiments. a, Bright-
field microscope images of microfluidic chips in silicon, each chip being composed of a rounded
inlet (left), a SCM (middle), and a meandering channel (right) used for conveniently measuring
the concentration profile of the solution exiting the SCM. b, Amaranth solutions from a SCM
(left) and in a control microchannel (right) are readily visualized using the meandering channels.
c, Calibration curve for quantification of the concentration of reconstituted amaranth (n = 4 for
each concentration). Error bars represent standard error of the mean. d, Concentration profiles of
amaranth solution reconstituted in SCMs or control microchannels (Qin = 500 nL/min). Means
of individual acquisitions are displayed with dark coloured lines and individual acquisitions with a
lighter shading. Amaranth solution was inkjet spotted into SCMs at 100 ngmm−1 (250-µm pitch).
The reagent accumulation in the control was so strong that the amaranth solution was diluted ×30
before deposition to keep the absorbance signal in the dynamic range of the camera. The concen-
tration profile from control experiments shown in Fig. A.2d is scaled up from this diluted signal.
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Figure A.7 Fabrication steps for SCMs with depressed barriers, and scanning electron microscopy
images of representative SCMs. a, Silicon wafers are processed by standard photolithography and
multiple steps of deep reactive-ion etching (DRIE). Specifically, a 1.2-µm-thick AZ 6612 photore-
sist layer is patterned (step 1) to mask the SiO2 layer during etching in buffered hydrofluoric acid
(BHF; step 2). A new layer of AZ 6621 is patterned (step 3), exposing the areas that are etched to
form the trenches during the first DRIE step (step 4). Later, using the patterned SiO2 layer as the
mask, a second DRIE step forms the microchannels while preserving the trenches (step 5). After
dicing, the chips are cleaned and silanized in trichloro(octyl)silane solution (step 6). After reagent
deposition, chips are sealed with a layer of polydimethylsiloxane (PDMS; step 7). b, Image of
a SCM fabricated in silicon, with yellow frames highlighting particular regions shown below. c,
The leading barrier with a trench geometry. Here, for visual clarity, the trench width is 20 µm, but
5-µm-wide trenches were used in experiments. The curved end of the leading barrier facilitates the
initiation of self-coalescing flow. d, Diversion barrier with a step-down geometry. e, Raised verti-
cal CPLs at the entrance of the SCM help to keep the meniscus away from the side wall coloured
in blue. f, The barrier at the vent entrance (arrowhead) ensures that liquid does not enter the vent.
The depths of the SCM (HSCM), outlet (Houtlet) and barriers (Hbarrier) are shown on the images.
g, h, Scanning electron microscopy (SEM) images of the devices used in G6PDH reactions (g) and
in RPA reactions (h). (The numbers 1-2 and 1-4 are device numbers.).
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Figure A.8 SCM volume scaling experiments. a, Bright-field microscope images of devices fabri-
cated in silicon (numbered 1-1 to 1-5) in which volume scaling experiments were performed. As
discussed in Fig. A.1d, the velocity of the self-coalescing flow decays more quickly in narrower
than in wider SCMs. In order to maintain a quick decay of the self-coalescing flow velocity in wide
SCMs, the leading barrier is simply shifted towards the area in which reagents are deposited. Ama-
ranth is deposited at 100 ngmm−1 (250-µm pitch). A spotting alignment mark is used to align the
inkjet spotter head with the microfluidic chips for precise targeting of the deposition location. b,
Bright-field microscope images showing the amaranth solution in the meandering channels, recon-
stituted in the SCMs shown in panel a. c, Time series of bright-field microscope images showing
the reconstitution of amaranth in a 1-mm-wide SCM (Qin = 500 nL/min). Typically, in wide SCMs
(wider than 0.5 mm), lateral homogenization of the reconstituted reagent is complete at the narrow
outlet of the SCM (as seen here), and can be enhanced, if necessary, by adding a Dean vortex mixer,
a chaotic mixer, or a simple meandering channel. Larger volumes of solution with reconstituted
reagents can also be achieved using an array of parallel SCMs. SCMs are easily scaled; however,
making them longer decreases the maximum filling flow rate because the pressure at the inlet needs
to be lower than the Laplace pressure over the CPL.
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Figure A.9 Assessment of the stability of the leading barrier. a, During longitudinal flow, the
hydraulic pressure (Phydraulic) increases as the hydraulic resistance (Rhydraulic) increases with
the distance travelled by the liquid. The leading barrier is able to preserve the longitudinal flow as
long as the pinning forces (PLaplace) can balance the increasing hydraulic pressure and the pressure
exerted by the resistance to wetting (Rwetting). In order to investigate this effect, the width (W =
75, 100, 125, 150, 175 or 200 µm) and the height (H = 30, 45 or 90 µm) of the longitudinal flow
area and the filling flow rate (Qin = 0.75, 1.5 or 3.0 µL/min) were varied. During experiments,
the maximum distance along which the liquid remains pinned was measured. b, Bright-field (left)
and SEM (right) images of devices in which stability-assessment experiments are performed. c,
Experimental data support theoretical predictions that: first, a smaller liquid–vapour interface can
bear a higher hydraulic pressure; second, the hydraulic radius of the longitudinal flow area needs
to be large in order to fill deeper structures or for high filling flow rates; and third, the flow rate
challenges the stability of the leading barrier. Data points are means of experiments (n = 8 or more;
error bars represent standard error of the mean). Conditions in which the liquid was not pinned at
the CPL (longitudinal flow length = 0 mm) or the liquid travelled to the end of the test device
(longitudinal flow length = 65 mm) are excluded from the plot.
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Figure A.10 Predicted complex concentration profiles from diffusion–dispersion models. a, Illus-
tration of the experimental method for analysing dispersion in SCMs and in downstream channels
at distance d. C, concentration. b–g, Predicted concentration profiles for experiments shown in
Fig. A.4 (C(t) in arbitrary units). b, c, Results of controlling the spotting pitch to generate spiked
(b) or flat (c) concentration pulses at optimal (Pé = 5.6; top panels) and large (Pé = 100; lower
panels) Péclet numbers, at constant spotted reagent mass. d, Signal decorrelation over time due
to Taylor–Aris dispersion for several positions of the detection zone (Pé = 13). e, Pulsing of two
spatially resolved different reagents (Pé = 13). f, Pulsing of a flat profile of two mixed reagents by
alternated spotting and flow control (Pé = 13). g, Pulsing of two linear concentration gradients to a
detection zone (Pé = 13).
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Figure A.11 Release of reconstituted reagents from a SCM with time delays. A chamber of volume
Vdelay at the entrance of the vent adds a delay before a liquid leaves the SCM. a, Time series of
images showing filling of the delay chamber while reconstituted amaranth diffuses. Reagents in
area A, but not in area B, have additional time to reconstitute/diffuse while the rest of the SCM fills
(t = 0 s). If needed, using a delay chamber gives additional time for the reconstitution/diffusion of
the B reagents. Arrowheads mark the liquid filling front in the delay chamber. b, Effect of delay on
the concentration profile of points A and B. Without any delay, point B disperses more than it does
with a delay, and its profile is broader (n = 9; Qin = 200 nL/min). c, Measured delay provided by
different delay chambers. The dashed line is the identity line; error bars represent standard error of
the mean; n = 6; Qin = 200 nL/min.

Figure A.12 Optimization and calibration of RPA reactions in SCMs. a, b, Optimization data for
SYBR Green concentration (a; four experiments) and Mg2+ concentration (b; five experiments)
for amplification of ten copies per microlitre of HPV-18 DNA. c, DNA concentration calibration
(seven experiments) for HPV-18 DNA quantification. Plots show amplification onset time extracted
from SYBR Green fluorescence signals. Error bars represent standard errors of the mean.
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Figure A.13 Characterization of dissolution of multiple reagents in SCMs. a, Bright-field image of
the device in which reagent pulse shaping and complex profile generation experiments were per-
formed. The diversion barrier of these SCMs has a trench geometry in order to keep the dimensions
of the dispersion analysis channel identical to the dimensions of the SCM. b, Absorbance calibra-
tion curve, and, c, the calibration curve after linear spectral unmixing of the amaranth signal. d, e,
As for panels b, c, but for the brilliant blue signal. n = 6 for each data point. Error bars represent
standard errors of the mean.
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Figure A.14 Experimental setup. a, The setup for filling SCMs and documenting the dissolution of
food dyes. b, Filling SCMs manually using a micropipette for G6PDH quantification experiments.
c, Measuring the fluorescence signal from G6PDH and RPA reactions using a microtitre plate
reader fitted with a custom-made aluminium adaptor.
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A.8 Supplementary Videos

Video A.15 Fluorescent microspheres revealing the streamlines of a self-coalescing flow. 4.8 µm
fluorescent microspheres suspended in a liquid are injected into a SCM (0.5-mm-wide) at 0.5
µL/min flow rate. The video is in real time with each frame acquired over a 60 ms exposure.
(Flash Player required)

Video A.16 Reagent reconstitution in a SCM. a SCM (L×W ×D, 5 mm × 0.5 mm × 50 µm)
spotted with amaranth dye is filled with water at 0.5 µL/min flow rate. The video is accelerated
(3×). (Flash Player required)
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Video A.17 Self-coalescence and Saffman–Taylor viscous fingering. Filling of a SCM observed
using fluorescent microparticles. The experimental image is only the top half of the video. The
part below the central mirror symmetry line (located at the device wall) is simply a reflection of the
upper half made to highlight a similitude between self-coalescence and Saffman–Taylor viscous
fingering. The height of the SCM is 50 µm and its width is 500 µm with a flow rate of 0.5 µL/min
and λ = 1/2. The video is shown along with the discussion in section 3.6.1. (Flash Player required)

A.9 Supplementary Information: Pulse shaping approach in channels with inherent Taylor-
Aris Dispersion

This section is a complement to the section on reagent pulse shaping and Taylor-Aris dispersion
(TAD) control inside a SCM and downstream of it. It is closely associated with data presented in
Figure A.3 and A.4 in the paper and refers to Extended Data Figure 5 and 6. As TAD is suppressed
during OF (observed in Fig. A.2b, Suppl. Vid. 2), passive diffusion is the only dispersive pro-
cess acting on the samples inside the SCM. Homogenization through diffusion can have a positive
impact on operation, if one seeks to produce a uniform reagent concentration from reconstituted
reagents, or a negative one, if one seeks to produce patterns with high spatial frequency content.
Lateral homogenization is often desired and can be further controlled and amplified by the use of
a delay chamber (Extended Data Fig. A.11). Finally, once the SCM is full and the diversion rail
bursts, TAD is unavoidable in the channel downstream of the SCM. We developed a software to
predict the shape of the pulses at any point in time and space downstream of a SCM from the initial
reagent spotting patterns. By carefully selecting the flow conditions to minimize TAD, we demon-
strate that a high information content can be transported downstream of a SCM towards a detection
zone (DZ), a region of interest where the reagents interact (sensor, cell culture chamber, etc.), form-
ing an assay in the most general sense of the term. In this section, we describe each of these effects
using a Green’s functions approach and show how they can be used efficiently to minimize TAD
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and predict reagent pulse profile. We further demonstrate, using our simple software, how this
approach can be used to perform reagent “signal processing” or “amplitude pulse-shaping” using a
SCM.

A.9.1 Passive diffusion inside the SCM following a reconstitution

During OF, the dried reagent dot is only briefly exposed to a moving fluid, and the corresponding
orthogonal and longitudinal flow velocities quickly decay to zero. The time constant for this decay
at a fixed dot position, using the module of the velocity profile found in Eq. 3.27, is of the same
magnitude as the flow far from the meniscus:

V ∼ e−
π

W Ut (A.3)

With the typical parameters used in our experiments (W = 500 µm, H = 50 µm, U = 0.67 mm/s),
the critical time scale and flow length scale over a reagent dot is respectively t = 240 ms and
LC = 159 µm, leaving very little time and space for TAD to occur before flow becomes stagnant.
However, once the fluid is stagnant, diffusion immediately starts to broaden the concentration peaks
produced by the reconstituted reagents.

Also, reconstitution time, i.e. tr = LSCM/U (tr = 14 s with the data above), is typically much smaller
than lateral diffusion time tD = W 2/2D (tD = 275 s for small molecules with D = 450 µm2/s). If
pulses are sent immediately after reconstitution, then diffusive blurring is minimal and pulse shape
evolution can be directly inferred using the TAD associated Green’s function and following the
method described in section A.9.3 below.

To further decrease the reconstitution time, we can increase the flow rate within the chamber. How-
ever, we need to keep in mind that the CPL can only withstand pressures below the Laplace pres-
sure. We find that

Qmax =
HW
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x

)
(A.4)

where R0 is the channel hydraulic resistance when wetted over its full length, L, H and W are the
channel height and width, respectively, x is the wetted SCM length during longitudinal flow, and
θw is the contact angle between the fluid and the SCM surface. Consequently, if the hydraulic
resistance or the flow rate is too high during longitudinal flow, while free surface is created above
the CPL, the liquid will cross the leading barrier before reaching the diversion barrier. Equation
A.4 implies a quadratic filling time (t ∼ x2 when x ≫ H) for the liquid filling flow phase, as per
Washburn’s equation [82], but SCMs can still be filled within a few seconds.
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A.9.2 General formulation of the diffusion problem inside the SCM

The initial concentration generated by a spotted dot of dried reagents will depend on the volume
in which it is being resuspended; the shallower the SCM, the higher the concentrations achievable.
For fast resuspension events in shallow channels, the concentration will quickly homogenize in the
vertical direction (tD = H2/2D = 2.75 s with the above data). The initial concentration C0 arising
from a single dot of a given species shortly after resuspension is thus given by C0 = mr/MrSH,
where mr is the mass of reagent spotted, Mr is the molecular mass of the species, S is the surface of
the spot and H the channel height.

If left long enough, a point source of reagent reconstituted inside a SCM will slowly homogenize
through passive diffusion, following the time-dependent diffusion equation

∂G
∂ t

= D
(

∂ 2G
∂x2 +

∂ 2G
∂y2

)
+δ (t − t ′)δ (x− x′)δ (y− y′) (A.5)

where G(x,x′,y,y′, t, t ′) is Green’s function for a point source of reconstituted reagent concentration.
The z component of the equation have been neglected as they homogenize much faster than the
other two if H ≪ W ≪ L. The evolution of a general initial concentration profile C(x,y, t = 0) =
C0(x,y) through pure diffusion in a SCM, can be obtained using the problem’s associated Green’s
function in long 2D strip (L ≫W ). Here the boundary conditions are no flux at the side walls, and
a vanishing concentration profile at L ≫W , yielding

Gx,y,t =
1

W
e
− (x−x′)2

4D(t−t′)√
4πD(t − t ′)

{
1+

∞

∑
n=0

2
nπ

e−
n2π2D

W2 (t−t ′) cos
(nπy

W

)
cos
(

nπy′

W

)}
(A.6)

where Gx,y,t ≡Gx,y,t(x,x′,y,y′, t, t ′), y ∈ (0,W ) is the lateral spatial coordinate and x is the longitudi-
nal spatial coordinate. The complete spatial concentration profile at t = 0 can always be computed
from the initial condition, by performing a triple convolution integral:

C(x,y, t) = ⟨C ∗Gx,y,t⟩=
1

W

∫
∞

−∞

∫
∞

−∞

∫ W

0
C0(x′,y′)δ (t ′)Gx,y,t(x,x′,y,y′, t, t ′)dx′dy′dt ′ (A.7)

A.9.3 Delay chambers as a tool to control reagent homogenization in SCM

The various stages of reagent reconstitution and dispersion inside a SCM and its subsequent deliv-
ery to a detection zone downstream are summarized in Supplementary Figure A.18.
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Figure A.18 Reagent transport inside a SCM. Top: Reagent resuspension (t = 0); Middle: Passive
diffusion in stagnant flow during SCM or delay chamber filling; Bottom: Taylor dispersion during
flow downstream of a SCM into a detection channel (side view).

Lateral homogenization using delay chambers

If left long enough, the complex reagent patterns reconstituted inside a SCM will slowly homog-
enize through passive diffusion. To study the decoupled lateral diffusion, we assume a spotting
distribution independent of x, C(x,y,0)≡C0(y), that is homogeneous in the longitudinal direction.
Equation A.7 then simplifies to:

C(y, t) = ⟨ρ ∗Gy⟩=
1

W

∫ W

0
C0(y)Gy(y,y′, t)dy′ (A.8)

with

Gy(y,y′, t) =
1

W

{
1+

∞

∑
n=0

2
nπ

e−
t

tn cos
(nπy

W

)
cos
(

nπy′

W

)}
(A.9)

where tn = W 2/(n2π2D). From Eq. A.9, we observe that the homogenization time scale corre-
sponds to decay time of the first eigenvalue (n = 1), the slowest of all decay time constants. Thus
homogenization time can be extracted and is worth

t1 =
W 2

π2D
(A.10)

Three times this time constant will correspond to a lateral homogenization roughly 95% (1− e−3)
complete no matter the initial shape of the reagent profile, and the delay chamber volume can be
precisely set to add this extra time for diffusion to occur. In the diffusion of small molecules (D ∼
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500 µm/s) in the SCM design introduced above, we find 3t1 = 152 s (Suppl. Fig. A.18).

Longitudinal homogenization using delay chambers: from discrete dot patterns to continuous
reagent concentrations

Alternatively, in some instances, the delay chamber can be used to allow sufficient time for a
concentration pattern made of printed dots to diffuse and generate a smooth concentration profile.
To isolate the effect of longitudinal homogenization in the general problem formulation found in
Eq. A.7, we consider here initial concentration profile that are laterally homogeneous, C(x,y,0)≡
C0(x). Thus, Eq. (A.7) reduces to

C(x, t) = ⟨C ∗Gx,y,t⟩=
1

W

∫
∞

−∞

∫
∞

−∞

C0(x)δ (t ′)Gx,t(x,x′, t, t ′)dx′dt ′ (A.11)

where

Gx,t(x,x′, t, t ′) =
e
− (x−x′)2

4D(t−t′)√
4πD(t − t ′)

(A.12)

The latter 1D Green’s function, Eq. A.12, indicates that a point source of reagents located at x′ will
diffuse to form a Gaussian of mean x′ and standard deviation σ(t) =

√
2Dt. Therefore, it can be

used to compute a minimal resolution criterion between two closely spaced reagent dots such that
they remain spatially resolved after time t. To do so, we find the autocorrelation function of two
reagent dots, assumed point sources without loss of generality, separated by a distance ∆x. The
autocorrelation function as a function of spacing ∆x and time t, thus becomes:

AC(∆x, t) = ⟨C(x, t)∗C(x−∆x, t)⟩x =C2
0

∫
∞

−∞

e−
x2

4Dt
√

4πDt
e−

(x−∆x)2
4Dt

√
4πDt

dx =
C2

0
2

e−
∆x2

4σ(t)√
πσ(t)

(A.13)

As expected, the autocorrelation is maximum when ∆x = 0 and decays strongly such that when
∆x = 2nσ , its value is AC(2nσ , t)/ACmax = e−n2

. The critical time under which a 2nσ peak sepa-
ration is achieved for two pulses separated by a distance ∆x is thus

tcrit <
∆x2

8n2D
(A.14)

Thus, for reagents dots of amaranth separated by ∆x = 500 µm, the critical time to maintain a 6σ

spacing (high spatial resolution) is t < 7.7 s. The SCM filling must be done under this time if the
goal is to elute spatially resolved peaks from the SCM.

Alternatively, in most applications, the problem is rather to achieve a smooth concentration profile
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for an array of resuspended reagent dots. Then, the critical time over which two concentration dots
will strongly overlap (∆x = σ ,n = 1/2 in Eq. A.14) is given by the simple t > ∆x2/2D. For a
typical spotting pitch ∆x = 250 µm for amaranth, we get t > 69 s.

A delay chamber can be used to precisely set this time to ensure pulses are smoothed or mixed
before being sent downstream of the SCM.

A.9.4 Amplitude pulse shaping using a SCM

Once a SCM is filled with a specific pattern of reconstituted reagent and the diversion rail bursts,
Taylor dispersion is unavoidable in the channel. Typically, a SCM is used to send a train of reagent
pulses of precise shape to a DZ (an antibody array, a SPR sensor, a cell culture chamber, etc.),
located at a distance d downstream of a channel. Therefore, dispersion starts occurring inside
the SCM as soon as the diversion rail bursts and the fluid in the SCM is set in motion towards
the DZ. Following Taylor’s classical analysis, the reagent disperses under Stokes flow in a long,
shallow channel of rectangular cross section HW as prescribed by a simple 1D diffusion model
with effective diffusion coefficient:

K = D
(

1+
Pé2

k

)
(A.15)

where D is the reagent diffusion coefficient, Pé =UH/D is the Péclet number, U is the mean flow
velocity, H the channel height, and k a proportionality constant depending on the channel geometry.
For a rectangular channel of aspect ratio H/W , k is found to be [80]

k =
420
17

(
1+2.4

H
W

+

(
H
W

)2
)

(A.16)

wherein the specific case where the aspect ratio is 1 : 10, k = 30.88.

In a SCM, the time at which the diversion rail bursts can be viewed as the time at which TAD starts
operating inside the SCM. We define it as t = tburst . Whatever spatial reagent pattern CSCM(x,y, tburst)

contained in the SCM at that precise moment will propagate and disperse in the detection channel,
downstream of the SCM. When a delay chamber is used to laterally homogenize reagents, the ini-
tial distribution function becomes simply CSCM(x, tburst). The Green’s function associated with 1D
diffusion in an infinite medium is identical to Eq. A.12 with the TAD coefficient K replacing the
diffusion constant D:

Gx(x,x′, t, t ′) =
e
− (x−x′)2

4K(t−t′)√
4πK(t − t ′)

(A.17)
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The convolution of Gx with the initial concentration profile gives the pulse shape as it propagates
downstream of a channel towards a detection zone. In the case where the concentration has previ-
ously been laterally homogenized using a delay chamber, we get:

C(x, t) = ⟨CSCM ∗G⟩=
∫

∞

−∞

∫
∞

−∞

CSCM(x′, t ′)δ (t ′− tburst)Gx,t(x,x′, t, t ′)dx′dt ′ (A.18)

Here, the input concentration profile CSCM is the output of the Green’s function for passive diffusion
in the delay chamber.

In Fourier space, we observe that the channel is inherently dispersive and that dispersion of the
initial concentration profile strongly increases with spatial frequency ν , such that higher spatial
frequency quickly vanish, leaving only the fundamental spatial frequency remaining after sufficient
time has elapsed:

F{C(x, t)}= F{C0(x)}e−ν2Kt (A.19)

where F is the Fourier operator.

Nevertheless, as discussed in section A.9.5 a significant spatial information component can be kept
in the pulse by minimizing Taylor dispersion inside the channel.

A.9.5 Minimizing TAD over a travelled distance d

No matter their initial separation distance ∆x, two reagent pulses will eventually decay in a single
Gaussian peak after sufficient time has elapsed. In TAD, dispersion is either dominated by pure
diffusion (when Pé ≪ 1) or by fluid advection (when Pé ≫ 1). In either extreme cases of Pé → 0
and Pé → ∞, information content in the pulses will be completely lost once they reach the DZ
at distance d. The optimal Pé to minimize TAD can be found using the autocorrelation function
described in subsection A.9.3 above. The critical distance travelled by two pulses separated by a
distance ∆x over which they will lose a 2nσ spatial resolution can be found by adapting Eq. A.15
and is given

dcrit =Utcrit (A.20)

where

dcrit <
U∆x2

8n2K
=

∆x2

8Hn2
Pé

1+Pé2/k
(A.21)

No matter what the resolution requirement n is, this distance will be maximal when

∂dcrit(Pé)
∂Pé

= 0 ⇒ Pé =
√

k (A.22)
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At this critical Pé, dcrit = ∆x2
√

k/16Hn2. Knowing the distance d of a detection zone from a SCM,
it is therefore possible to calculate the optimal mean velocity to carry the SCM’s reagents with
minimal dispersion:

Uopt =

√
kD
H

(A.23)

For a SCM with a 50×500 µm2 cross section, we find that Pé = 5.6, and the optimal mean velocity
and associated flow rates are respectively Uopt = 56 µm/s, and Qopt = 83 nL/s.

This simple result has very powerful implications for SCMs, but also in any type of transport prob-
lems where concentration peaks are eluted in a dispersive media (e.g. chromatography, capillary
electrophoresis). In the context of microfluidics, these optimal flow conditions have been hinted
at, although not specifically stated, in Bontoux et al. [303] The general result states that, when
sending pulses in a dispersive channel over a fixed distance, there exists an optimal flow rate such
that the samples are minimally dispersed over this distance, and the resulting effective dispersion
coefficient is K = 2D.

A.9.6 Exploring the possibilities of reagent pulse shaping using SCM with a simple software

To predict the shape of pulses sent down from SCMs, we have written a code using MapleTM

software to calculate the profile of a complex pulse specified by sets of printed dots at arbitrary
spatial resolution. The software first computes the distribution of the reconstituted reagents C(x,y, t)

using the output of the SCM’s Green function. When reconstitution time is short, each dot can also
be directly modelled using a Dirac peak

C0,i(x,y) = (mr,i/H)δ (x− xi)δ (y− yi) (A.24)

with a mass of reagent
mr,i ∝

∫
C0,idV (A.25)

The reagent distribution in the channel is then convoluted with the Green’s function describing TAD
to obtain C(x, t) as in Eq. A.18. Results in Extended Data Figure 5 summarize the concentration
profiles achieved at a specific DZ located at a distance d downstream of the diversion rail for various
spotted dot distributions representing i) regular spotting with different pitch (Extended Data Fig.
A.10b-c); ii) the effect on peak resolution of varying the DZ distance d (Extended Data Fig. A.10d);
iii) minimizing overlap using two consecutive homogeneous reagents (Extended Data Fig. A.10e);
iv) achieving fast oscillation when pulsing two reagents or complete mixing (Extended Data Fig.
A.10f); v) to generate counter-gradients (Extended Data Fig. A.10g); or 6) to generate arbitrary
pulse shapes with multiple reagents within the limits imposed by TAD. An outstanding match was
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found between the results predicted by the software and experimental results presented in Figure
A.4.

In all cases, making longer SCM will allow the possibility to arbitrarily increase spatial resolution
between pulses; making them shallower also decreases Pé and the resulting dispersion. Thus, SCM
are a versatile platform to generate complex reagent pulses within a simple passive microdevice.
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APPENDIX B SAFFMAN–TAYLOR INSTABILITY

Assuming two fluids, denoted by the indices i = 1,2, are embedded in a porous medium of constant
isotropic permeability, k, and an initial unperturbed pressure field pi,0 where p1,0 = p2,0 at the fluid-
fluid interface. Driving the fluid of viscosity µ1 into the fluid of viscosity µ2, the pressure within the
two fluids has to obey Darcy’s law, i.e. p ∼ x, and the pressure at the interface must be continuous
in such a way that p1 = p2 = pσ at the interface. Thus, the scalar pressure field can be written as

pi,0 = pσ +
vµi

k
x (B.1)

where v is the flow velocity. For simplicity, let us assume an initial flat interface at x = 0 in the
x− y plane. A small perturbation of the interface’s flatness may be represented by

x(y) = ε exp(iqy+at) (B.2)

where |ε| ≪ 1 and q = 2πn/W is the wave vector associated with the width, W , of the cell, n is a
positive integer, and a is the temporal amplification of the wave. The pressure field in both fluids
may then be written as

pi = pi,0 + p′i(x)exp(iqy+at) (B.3)

To obey Darcy’s law, i.e. the Laplace equation ∇2 p = 0, the pressure fields must be harmonic and
perturbations must decay at both ends of the domain. In other words, p′i(x) must vary as eqx or
e−qx, and we can write p′i(x) = p′ie

s(i)qx where p′i={1,2} are constants to be determined and s(i) is
the sign function for which s(1) = +1 and s(2) =−1. From the incompressibility conditions

− k
µi

∂ p′i
∂x

∣∣∣
x=0

= aε (B.4)

we obtain
p′i =−s(i)

aεµi

qk
(B.5)

Finally, from the continuity condition, Eq. B.1 and B.3, we can write the temporal growth of the
perturbations as

a = qv
(

µ2 −µ1

µ1 +µ2

)
(B.6)

Thus, if the driving fluid is less viscous than the driven fluid, i.e. µ2 > µ1, perturbation growth
ensues. The current stability analysis only holds for fluids without surface tension. Adding surface
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tension to the picture changes the growth rate significantly by introducing a pressure jump across
the interface. The perturbation growth rate after including surface tension effects can be written as

a =
qv(µ2 −µ1)−q3σκ

µ1 +µ2
(B.7)

where σ is the surface tension between the two fluids, and κ is the curvature of the interface. For
more details on how to obtain Eq. B.7, we refer to [101, 304].
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APPENDIX C CONSERVATION OF MASS AND MOMENTUM FOR A CONTINUUM

Starting from the general continuity equation (Eq. 2.5), and assuming there are no sources or sinks
in the volume element Ω, i.e. s = 0, mass conservation is expressed by replacing the intensive
parameter by the fluid density ρ:

∂ρ

∂ t
+∇ · (ρu) = 0 (C.1)

For incompressible fluids, the density is invariant and therefore

∇ ·u = 0 (C.2)

Momentum conservation is expressed by replacing ϕ with ρu, hence

∂ρu
∂ t

+∇ · (ρuu)+ s = 0 (C.3)

where uu is a dyadic product and s is a body force per volume unit exerted on Ω. From the product
rule, we can rewrite the momentum conservation as

u
∂ρ

∂ t
+ρ

∂u
∂ t

+uu ·∇ρ +ρ∇ ·uu+ s = 0 (C.4)

and knowing the divergence of a dyadic is ∇ · (ab) = (∇ ·a)b+a ·∇b,

u
∂ρ

∂ t
+ρ

∂u
∂ t

+uu ·∇ρ +ρ(∇ ·u)u+ρu ·∇u+ s = 0 (C.5)

equivalent to

u
∂ρ

∂ t
+ρ

∂u
∂ t

+(u ·∇ρ +ρ∇ ·u)u+ρu ·∇u+ s = 0 (C.6)

From the product rule and regrouping,

u
(

∂ρ

∂ t
+∇ · (ρu)

)
+ρ

(
∂u
∂ t

+u ·∇u
)
+ s = 0 (C.7)

where the leftmost part is the conservation of mass as derived in Eq. C.1. Thus, the conservation
of momentum can be written as

ρ

(
∂u
∂ t

+u ·∇u
)
+ s = 0 (C.8)
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The body forces s in a fluid can be split in two distinct parts, i.e. body forces and internal stresses
such that

ρ

(
∂u
∂ t

+u ·∇u
)
= fs + fb (C.9)

Body forces can be of several origins, such as gravitational, electro-magnetic, and surface tension
to name a few. For simplicity, we group them all as fb = ∑i fi. On the other hand, internal stresses
can be expressed as the divenrgence of the Cauchy stress tensor:

fs = ∇ ·σσσ = ∇ ·

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (C.10)

The Cauchy stress tensor diagonal components are normal stresses. They can be either tensions, if
σii > 0, or compressions, if σii < 0. The other components are shear stresses. It is common to split
the stress tensor to remove the internal stresses due to pressure gradients. Thus,

σσσ =−

p 0 0
0 p 0
0 0 p

+
σxx + p σxy σxz

σyx σyy + p σyz

σzx σzy σzz + p

=−pI+ τττ (C.11)

where I is the second-order (3× 3) identity tensor and τττ is known as the viscous stress tensor.
Combining everything together so far, we obtain the equation of conservation of momentum for
any fluids

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+∇ · τττ +∑

i
fi (C.12)

also known as the Navier-Stokes equation. For Newtonian fluids, i.e. fluids with viscous stresses
increasing linearly with respect to strain rate, the constraint tensor τττ can be written as

τττ = 2µS− 2
3

µ(∇ ·u)I (C.13)

where µ is the dynamic viscosity of the fluid (Pa·s), and S = (∇u+∇u⊤)/2 is the strain rate tensor.
For incompressible fluids, ∇ ·u from the conservation of mass, and the constraint tensor reduces
to τττ = 2µS ≡ µ∇2u. Thus, for incompressible isothermal Newtonian fluids, the Navier-Stokes
equation becomes

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+µ∇

2u+∑
i

fi (C.14)
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APPENDIX D ENZMODSIMULATOR CODE VALIDATION

Figure D.1 Validation of the EMS code by comparing results to simplified models. It is expected
that the asymptotic model only represents the full model for small times.
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Figure D.1 Validation of the EMS code by comparing results to simplified models. It is expected
that the asymptotic model only represents the full model for small times (continued)
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Figure D.1 Validation of the EMS code by comparing results to simplified models. It is expected
that the asymptotic model only represents the full model for small times (continued)
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Figure D.1 Validation of the EMS code by comparing results to simplified models. It is expected
that the asymptotic model only represents the full model for small times (continued)
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APPENDIX E ENZMODSIMULATOR INPUT FILE EXAMPLE

# ––––––––––––––––––––––––––––––––––––- #:0
# ––––– Simulation Parameters –––––––––––––––––––– #:0
# ––––––––––––––––––––––––––––––––––––- #:0
Domain length L [mm]: 13
Simulation time [s]: 600
Filling time (delay) [s]: 0
# ––––––––––––––––––––––––––––––––––––- #:0
# ––––– Model Options –––––––––––––––––––––––– #:0
# ––––––––––––––––––––––––––––––––––––- #:0
Dimension: 1
Level of approximation: 0
Solve hydrogen equation: 0
# ––––––––––––––––––––––––––––––––––––- #:0
# ––––– Simulation Options –––––––––––––––––––––- #:0
# ––––––––––––––––––––––––––––––––––––- #:0
Writing precision (number of decimals): 16
Negative concentrations limiter: 0
Reaction limiter value: 0.001
Diffusion limiter value: 0.5
Manual time step [s]: 0
# ––––––––––––––––––––––––––––––––––––- #:0
# ––––– 1D Simulation Options –––––––––––––––––––– #:0
# ––––––––––––––––––––––––––––––––––––- #:0
Number of elements: 1000
FDM scheme order in space: 2
Probe location x0 [mm]: 0.5
Probe location x1 [mm]: 3
Spot radius [um]: 75
Spot pitch [um]: 300
Number of figures to print: 21
# ––––––––––––––––––––––––––––––––––––- #:0
# ––––– Physical Constants –––––––––––––––––––––- #:0
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# ––––––––––––––––––––––––––––––––––––- #:0
Diffusion constant D_G6P [um2.s-1]: 534
Diffusion constant D_6PGL [um2.s-1]: 534
Diffusion constant D_NADP+ [um2.s-1]: 420
Diffusion constant D_NADPH [um2.s-1]: 420
Diffusion constant D_RZ [um2.s-1]: 480
Diffusion constant D_RF* [um2.s-1]: 480
Diffusion constant D_G6PDH* [um2.s-1]: 74
Diffusion constant D_G6PDH [um2.s-1]: 74
Diffusion constant D_DP* [um2.s-1]: 74
Diffusion constant D_DP [um2.s-1]: 74
Diffusion constant D_H+ [um2.s-1]: 1000
Bimolecular kinetics constant k_on_1 [s-1.M-1]: 1e6
Bimolecular kinetics constant k_on_2 [s-1.M-1]: 1e6
Bimolecular kinetics constant k_off_1 [s-1]: 7
Bimolecular kinetics constant k_off_2 [s-1]: 350
Catalytic rate constant k_cat_1 [s-1]: 222.21
Catalytic rate constant k_cat_2 [s-1]: 3.73
Michaelis-Menten constant K_M_1 [M]: 52e-6
Michaelis-Menten constant K_M_2 [M]: 1500e-6
# ––––––––––––––––––––––––––––––––––––- #:0
# ––––– Initial Fields –––––––––––––––––––––––- #:0
# ––––––––––––––––––––––––––––––––––––- #:0
Initial concentration C_G6P_0 [uM]: 43460
Initial concentration C_6PGL_0 [uM]: 0
Initial concentration C_NADP+_0 [uM]: 2173
Initial concentration C_NADPH_0 [uM]: 0
Initial concentration C_RZ_0 [uM]: 2173
Initial concentration C_RF*_0 [uM]: 0
Initial concentration C_G6PDH*_0 [uM]: 0
Initial concentration C_G6PDH_0 [uM]: 0.01875
Initial concentration C_DP*_0 [uM]: 0
Initial concentration C_DP_0 [uM]: 388
Initial concentration C_H+_0 [uM]: 0
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APPENDIX F MULTIPHASE LATTICE BOLTZMANN METHOD
IMPLEMENTATION (IN FRENCH) / IMPLÉMENTATION DE LA MÉTHODE DE

BOLTZMANN SUR RÉSEAU.

F.1 Introduction

La méthode de Boltzmann sur réseau (LBM) se situe dans les méthodes dites mésoscopiques, étant
issue fondamentalement de la physique statistique mésoscopique. Dans la LBM, on étudie le com-
portement de distributions de particules et non des quantités physiques macroscopiques comme en
mécanique des fluides classique (e.g. équations de Navier-Stokes). Une avenue en pleine matura-
tion de la LBM est celle des fluides multiphases.

Plusieurs approches de modélisation existent en LBM multiphase, soit l’approche de Rothman et
Keller [117], l’approche de Shan et Chen [305], les modèles à énergie libre [306], champs moyens
[307] et champs médians [308], pour ne nommer que ceux-ci. Une discussion plus approfondie
relatives à certains modèles peut être trouvée dans Huang et al., 2015 [309].

Les fluides multiphases ont de multiples applications, par exemple, dans le domaine de la minia-
turisation de laboratoires sur puces (pompes capillaires, guides de phase, microfluidique sur papier,
valves capillaires, etc.) Dans cette annexe, nous donnons un exemple d’implémentation de la LBM
à plusieurs composants.

F.2 Théorie

Les fondements de la LBM résident dans la physique statistique, en particulier dans la théorie ciné-
tique des gaz. Soit une distribution de particules f ≡ f (x,c, t) donnée au temps t et en un point (x,c)
de l’espace phase, où x≡ (x,y,z) et c≡ (cx,cy,cz) avec 3 dimensions spatiales. On intègre cn f dans
l’espace des vitesses pour obtenir les différentes quantités Πn représentant des variables physiques
macroscopiques comme la densité ρ ≡ ρ(x, t), la vitesse u ≡ u(x, t) et la densité d’énergie totale
E ≡ E(x, t) :

Π0 = ρ =
∫

c
f dc (F.1)

Π1 = ρu =
∫

c
c f dc (F.2)

Π2 = ρE =
∫

c
∥c∥2 f dc (F.3)
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où ∥ · ∥ est la norme Euclidienne. Si on centre la vitesse u par rapport au centre de la distribution
locale de vitesse (on assume un distribution symétrique), on peut calculer la densité d’énergie
interne e ≡ e(x, t) :

Π2 = ρe =
∫

c
∥U∥2 f dc (F.4)

où U ≡ c−u est la vitesse relative locale. En intégrant dans l’espace de phase, on peut calculer les
variables extensives associées aux quantités Πn, e.g. la masse :

M =
∫

c

∫
x

f dxdc (F.5)

F.2.1 Équation d’état

Selon la théorie cinétique des gaz, l’énergie cinétique totale d’une molécule d’un gaz parfait est
donnée par

e =
3
2

kBT (F.6)

où kB est la constante de Boltzmann et T la température. Selon la loi des gaz parfait, la pression est
donnée par

p = ρkBT (F.7)

d’où en combinant les équations F.6 et F.7 on obtient l’équation d’état

ρe =
3
2

p (F.8)

F.2.2 Équation de transport de Boltzmann et LBM

Pour étudier le comportement de la distribution f dans le temps, on prend sa dérivée totale :

d f
dt

=
∂ f
∂ t

+ ẋ ·∇x f + ċ ·∇c f (F.9)

avec laquelle on obtient l’equation de transport de Boltzmann :

∂ f
∂ t

+ c ·∇x f +g ·∇c f = Ω( f ) (F.10)

où Ω est l’opérateur de collision et g est l’accélération résultante d’une force externe appliquée sur
le volume de gaz, e.g. l’accélération gravitationnelle. Le terme de collision peut être simplifié en
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le substituant par l’opérateur de Bhatnagar-Gross-Krook (BGK), soit

Ω =− f − f (e)

τ
(F.11)

où f (e) est la distribution à l’équilibre, soit lorsque t → ∞, et τ est un temps caractéristique de
relaxation. Cette approximation, même si considérable, conserve la masse et respecte le théorème
H.

On obtient la distribution à l’équilibre en posant Ω( f ) = 0 et on trouve :

f (e) = ρ

(
1

2πkBT

) 3
2

e−
∥c−u∥
2kBT (F.12)

On peut également obtenir cette distribution à partir du formalisme de l’ensemble canonique (voir
par exemple S. Salinas, Introduction to Statistical Physics, setion 6.2 [310]).

En approximant la distribution à l’équilibre par un polynôme d’ordre 2 (méthode de Champman-
Enskog), on obtient

f (e) = ρ

(
1

2πkBT

) 3
2

e−
∥c∥2
2kBT

(
1+

(c ·u)
kBT

+
(c ·u)2

kBT
− u2

kBT

)
+O(u3) (F.13)

Finalement, en discrétisant le tout sur un réseau LBM, on obtient

f (e)i ≈ ρ

(
1+3(ci ·u)+

9
2
(ci ·u)2 − 3

2
u2
)

(F.14)

Pour simplifier la notation, on a assumé que la vitesse du réseau c = ∆x/∆t = 1 comme dans S.
Leclaire [311].

Pour un fluide à plusieurs phases, on doit ajouter une contribution multiphase φ et Φ qui dépendent
respectivement de la densité initiale ρ0 et du gradient de densité :

f (e)i ≈ ρ

(
φ(ρ0)+3(ci ·u)+

9
2
(ci ·u)2 − 3

2
u2
)
+Φ(∇ρ) (F.15)

F.3 Modélisation numérique

Pour ce travail, la méthode de Reis et Phillips [312], qui dérive de la méthode de Rothman et
Keller [117], a été choisie en suivant principalement les travaux de S. Leclaire [311, 313–317].
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Posons les grandes lignes du modèle. Pour chaque fluide non miscible k, on associe une fonction
de distribution f k

i (x, t) où x est le vecteur position dans le réseau DnQm et t est le temps. Pour ce
travail, on modélise deux fluides, soit k = {r,b}, sur un réseau D2Q9 ayant les vitesse |c⟩ décrites
à la Table F.1. La distribution de couleur combinée (color-blind distribution) est alors donnée par
fi(x, t) = f r

i (x, t)+ f b
i (x, t). En considérant des conditions périodiques partout sur les frontières du

domaine, le coeur de l’algorithme est :

1. collision BGK : | f (x, t1)⟩= Ω(1) (| f (x, t0)⟩);
2. perturbation multiphase : | f (x, t2)⟩= Ω(2) (| f (x, t1)⟩);
3. recoloriage :

∣∣ f k(x, t3)
〉
= Ω(3) (∣∣ f k(x, t2)

〉)
, ∀ k;

4. advection : | f (x+ |c⟩ , t0)⟩= | f (x, t3)⟩,

où Ω(1), Ω(2) et Ω(3) sont respectivement l’opérateur de collision BGK, l’opérateur de collision
multiphase (perturbation) et l’opérateur de recoloriage. On peut ensuite calculer la pression dans
le fluide k avec l’équation d’état, soit [317] :

pk = ρk
3(1−αk)

5
(F.16)

où αk est un paramètre de stabilité d’interface entre 0 et 1 qui doit respecter

ρ0
r

ρ0
b
=

1−αb

1−αr
(F.17)

où ρ0
k est la densité initiale du fluide k.

Table F.1 Vitesses du réseau D2Q9

i ci
0 (+0,+0)
1 (+c,+0)
2 (+0,+c)
3 (−c,+0)
4 (+0,−c)
5 (+c,+c)
6 (−c,+c)
7 (−c,−c)
8 (+c,−c)
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Table F.2 Poids pour le réseau D2Q9

D2Q9 {i : |ci|2 = 0} {i : |ci|2 = 1} {i : |ci|2 = 2}
Wi 4/9 1/9 1/36
φi 0 1/5 1/20
ϕi 1 -1/5 -1/20
ψi -8/3 -1/6 1/12
ξi 0 1/2 1/8
Bi -4/27 2/27 5/108

F.3.1 Collision BGK

L’opérateur de collision BGK se note :

Ω
(1) (| f ⟩) = | f ⟩−M−1KM(| f ⟩−

∣∣∣ f (e)〉) (F.18)

avec la notation MRT standard [311]. Pour ce travail, nous avons implémenté un temps de relax-
ation unique, soit

Ω
(1) (| f ⟩) = | f ⟩−ωeff(| f ⟩−

∣∣∣ f (e)〉) (F.19)

où ωeff est le facteur de relaxation constant et la distribution à l’équilibre est donnée par (la notation
des poids suit celle de S. Leclaire et al., 2017 [311] et leur valeurs sont présentés à la Table F.2) :∣∣∣ f (e)〉= ν̄ [φi(u ·∇ρ)+ξi(G : |c⟩⊗ |c⟩)]+ρ

[
φi +ϕiᾱ +3(|c⟩ ·u)+ 9

2
(|c⟩ ·u)2 − 3

2
u2
]

(F.20)

où le tenseur G est définit par
G = (u⊗∇ρ)+(u⊗∇ρ)T (F.21)

ᾱ est la moyenne géométrique par la densité du paramètre de stabilisation [311] :

ᾱ =
ρr

ρr +ρb
αr +

ρb

ρr +ρb
αb (F.22)

et ν̄ est la moyenne harmonique par la densité de la viscosité

1
ν̄
=

ρr

ρr +ρb

1
νr

+
ρb

ρr +ρb

1
νb

(F.23)

Il faut noter que d’autres méthodes [315] sont disponibles pour calculer ν̄ , ce qui peut grandement
affecter la stabilité de l’interface pour de grands ratios de viscosité et de densité. Le facteur de
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relaxation est alors donné par

ωeff =
2

6ν̄ +1
(F.24)

F.3.2 Perturbation multiphase

La tension de surface se modélise par un opérateur de perturbation, soit

Ω
(2) (| f ⟩) = | f ⟩−

∣∣ f pert〉 (F.25)

où ∣∣ f pert〉= AF
[
Wi

(F · |c⟩)2

∥F∥2 −Bi

]
(F.26)

Le gradient de la fonction de couleur F est donnée par

F = ∇

(
ρr −ρb

ρ

)
(F.27)

et le paramètre A est définit à partir de la tension de surface σ et du facteur de relaxation comme
suit :

A =
9
4

ωeffσ (F.28)

Toutefois, même si cet opérateur introduit l’effet de la tension de surface, il n’impose pas l’immiscibilité
des fluides.

F.3.3 Recoloriage

Pour s’assurer que les fluides soient non miscibles, on introduit l’opérateur de recoloriage :

(Ωr)(3)(| f r⟩) = ρr

ρ
| f r⟩+β

ρrρb

ρ2 cos(|θ⟩)
∣∣∣ f (e)|u=0

〉
(F.29)

(Ωb)(3)(
∣∣∣ f b
〉
) =

ρr

ρ

∣∣∣ f b
〉
−β

ρrρb

ρ2 cos(|θ⟩)
∣∣∣ f (e)|u=0

〉
(F.30)

avec β un paramètre qui affecte l’épaisseur de l’interface, généralement entre 0.7 et 0.99 [317], et
|θ⟩ l’angle entre le gradient de couleur F et la vitesse du réseau |c⟩.

Le but de cet opérateur est de renvoyer du fluide r vers le fluide r et vice-versa pour le fluide b tout
en conservant la masse des deux. Ainsi, on réduit l’épaisseur de l’interface diffuse.
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F.4 Vérification

La méthode est implémentée en série (un seul processeur) en utilisant le langage C++. Deux cas
sont utilisé pour la vérification du code. Dans un premier temps, on place deux sphères 2D de rayon
R1 = L/8 (Fig. F.1) dans une boîte carré de surface L×L avec un maillage de taille h. En raison
de la tension de surface, les deux sphères coalescent pour former une sphère de rayon R2 =

√
2R1.

Dans un deuxième temps, on place une goutte carrée qui auto-coalesce comme présenté à la Fig.
F.2. La définition de l’erreur est donnée comme

Err =
|R2 −Rnum

2 |
R2

(F.31)

Les résultats des simulations pour les deux gouttes et le carré sont présentés aux Fig. F.1 et F.2 et
les erreurs sont présentées à la Tab. F.3 et aux Fig. F.3 et F.4 respectivement.

Table F.3 Erreur sur le rayon final de deux goutes qui coalescent et de l’auto-coalescence d’un
carré.

1/h Errgouttes Errcarré
32 5.719×10−2 5.239×10−2

64 4.269×10−2 2.470×10−2

128 1.334×10−2 1.085×10−2

256 1.505×10−3 3.929×10−3
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Figure F.1 Coalescence de deux gouttes avec la LBM (fonction de couleur). Les paramètres sont
ρr = ρb = 1, νr = νb = 1/6, σ = 0.1 et β = 0.99.

(a) t = 0 (b) t = 1

(c) t = 3 (d) t = 101
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Figure F.2 Fonction de couleur d’un carré auto-coalescent. Les paramètres sont ρr = ρb = 1, νr =
νb = 1/6, σ = 0.1 et β = 0.99.

(a) t = 0 (b) t = 300

(c) t = 1000 (d) t = 10000
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Figure F.3 Erreur en fonction de la taille du maillage pour la simulation de deux gouttes qui coa-
lescent.

Figure F.4 Erreur en fonction de la taille du maillage pour la simulation de l’auto-coalescence d’un
carré.
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APPENDIX G HEURISTIC PROOF AND DECOUPLING OF MODELLING AND
DISCRETIZATION ERRORS FOR CAPILLARY DYNAMIC SIMULATIONS WITH

MOVING CONTACT LINES IN MICROFLUIDIC CHANNELS (IN FRENCH) / PREUVE
HEURISTIQUE ET DÉCOUPLAGE DES ERREURS DE MODÉLISATION ET DE

DISCRÉTISATION POUR DES SIMULATIONS DE DYNAMIQUE CAPILLAIRE AVEC
LIGNE DE CONTACT EN MOUVEMENT DANS UN CANAL MICROFLUIDIQUE.

G.1 Modélisation multiphase en microfluidique

En raison d’une augmentation de l’intérêt pour les systèmes capillaires autonomes en microflu-
idique [197,318], il est important de développer des outils de modélisation capable de prédire avec
précision le comportement des écoulements multiphases dans ces microstructures. Cependant, ceci
n’est pas une tâche simple en raison d’effets multi-échelle intrinsèque à de tels écoulements. Pour
cette étude, nous utiliserons la librairie OpenFOAM (Open Field Operation and Manipulation) qui
utilise une formulation centrée aux cellules de la méthode des volume finis pour résoudre, prin-
cipalement, des problèmes de transport. Plus de détails sur les équations à résoudre ainsi que les
algorithmes utilisés suivront à la Section G.3. Le but de cette étude est de découpler les erreurs
de modélisation et les erreurs de discrétisation pour des simulations de dynamique capillaire avec
ligne de contact en mouvement dans un canal microfluidique.

G.2 Défi des lignes de contact en mouvement

Modéliser une interface en mouvement utilisant des méthodes Eulériennes, e.g. éléments-, volumes-
et différences finies, requiert généralement l’utilisation d’interfaces diffuse dont l’épaisseur dépend
linéairement en fonction du pas de grille [109]. De plus, les modèles continus de la mécanique
des fluides, e.g. les équations de Navier-Stokes, ne représentent pas avec précision les phénomènes
physiques intrinsèquement mésoscopique et microscopique tel le déplacement d’une ligne de con-
tact sur un mur avec friction (condition de Dirichlet) [173]. Cela vient du fait que la pression, et
donc la contrainte, au point de contact triphasique solide-liquide-gaz est singulière pour un écoule-
ment de Stokes dans un coin avec une condition des Dirichlet sur l’une des deux (ou les deux)
surfaces. Ceci est un résultat classique de la mécanique des fluides développé par Taylor pour
deux conditions de Dirichlet et subséquemment Moffat avec une des deux surfaces possédant une
condition de Neumann, ce qui est le cas avec une interface capillaire [190]. La pression en coor-
données polaires selon le développement de Taylor et Moffat est respectivement donnée par l’Éq.
G.1 et G.2. Ce résultat est évidemment non physique lorsque r → ∞, et il faut en tenir compte
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lors de toute modélisation numérique de lignes de contact en mouvement utilisant une formulation
continue de la mécanique des fluides.

p(r,θ)− p∞ =
2µU

r
β sinθ + sinβ sin(β −θ)

β 2 − sin2
β

(G.1)

p(r,θ)− p∞ =
2µU

r
θ cosθ sinβ −β cosβ sinθ

sinβ cosβ −β
(G.2)

G.3 Méthodologie numérique (VOF)

Pour cette étude, nous utiliserons le modèle « Volume Of Fluid » (VOF). Dans ce modèle, un
seul système d’équations de Navier-Stokes dans lequel on ajoute un terme de tension de surface
dans l’équation de conservation de quantité de mouvement qui est calculé à partir du gradient du
champ de phase α , où α = 0 dénote l’air et α = 1 dénote l’eau, dans le modèle CSF (Continuum
Surface Force formulation) [65]. La viscosité et la densité de la mixture est définie spatialement
par une simple pondération obtenue avec le champ de phase. Le champ de phase est advecté
par une équation de transport de premier ordre auquel on ajoute un terme de compression pour
mitiger la diffusion numérique de l’interface [249]. La discrétisation spatiale est une simple grille
orthogonale structurée faite à l’aide de l’outil blockMesh d’OpenFOAM. Les simulations plus
larges (H/∆ ≥ 16) sont lancées en parallèle sur 10 CPU sur un serveur « homebrewed » possédant
2 CPU Intel Xeon. La parallélisation est une division simple du domaine en 10 parties égales selon
la longueur. L’algorithme PISO (Pressure-Implicit with Splitting of Operators) est utilisé pour le
couplage pression-vitesse transitoire.

G.3.1 Équations constitutives du modèle VOF

On résout les équations de Navier-Stokes pour un écoulement incompressible composé d’un mélange
de deux fluides Newtoniens non miscibles. La conservation de la masse et de la quantité de mou-
vement s’écrit:

∇ ·u = 0 (G.3)

∂ρu
∂ t

+∇ · (ρuu) =−∇p+µ∇
2u+F (G.4)

où ρ est la densité, µ est la viscosité, u est le champ vectoriel de vitesse, p est la pression, et
F et le terme de tension de surface. Dans la formulation VOF, on résout une seule équation de
Navier-Stokes (Eq. G.4) avec

ρ = αρ1 +(1−α)ρ2 (G.5)
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et
µ = αµ1 +(1−α)µ2 (G.6)

Le transport du champ de phase est effectué par

∂α

∂ t
+∇ · (αu)−∇ · [α(1−α)ur] = 0 (G.7)

avec
ur = n f min

[
Cγ

|φ f |
|S f |

,max
|φ f |
|S f |

]
(G.8)

où φ f , S f et n f sont respectivement le flux de volume à travers la surface f , l’aire de la surface et le
vecteur unitaire normal à cette surface, et Cγ ∈ [0,4] est une constante de compression. La tension
de surface Fγ est calculée en utilisant le modèle « Continuum Surface Force » (CSF) [65] :

Fγ = γκ(∇α) (G.9)

où κ = ∇ · (∇α/|∇α|) est la courbure du champ de phase.

G.4 Test « benchmark » et dynamique capillaire

Pour être en mesure de découpler les erreurs de modélisation et les erreurs de discrétisation, nous
devons premièrement définir une métrique. Considérons le test benchmark d’un canal rectangulaire
2D d’une longueur et d’une hauteur H. Les conditions frontières sont 1) angle de contact θ constant
en paroi, 2) condition de Dirichlet u = 0 en paroi, et 3) pression nulle à l’entrée et à la sortie du
canal. La solution analytique au déplacement du ménisque dans le canal est donnée par une balance
de la pression de Laplace et la pression hydraulique, soit la loi d’Hagen-Poiseuille, l’équivalent
hydrodynamique de la loi d’Ohm en électrodynamique. La solution à l’équation différentielle non
linéaire obtenue par ce système est donnée par l’équation de Washburn [82]. Ici, on assume que
les effets inerties sont nuls. C’est pourquoi la vitesse est singulière en x = 0, ce qui est évidement
non physique. Pour bien capturer la physique proche de x = 0, il faut inclure un terme inertiel
à la balance de pression. Cela est donné par l’équation de Bosanquet [255]. Cependant, pour
cette étude, on assume que ce terme additionnel est négligeable puisqu’on fera nos mesures loin
de x = 0. Ces équations sont des résultats classiques de la mécanique des fluides et ont été validés
en laboratoire à maintes reprises. Nous utiliserons l’équation de Washburn pour faire une étape de
validation numérique [228] par proxy. L’équation de Washburn pour ce cas spécifique est donnée
par

x = H

√
t
τ

(G.10)
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et où la constant de temps de Wahsburn, τ , est donnée par

τ =
3µH
cosθ

(G.11)

La métrique utilisée pour l’analyse sera la constante de temps tau de l’équation de Washburn. On
commence notre analyse par une démonstration de la dépendance en maillage des simulations.
À la Fig. G.2, on observe que plus le maillage est fin plus le liquide met de temps à remplir le
canal (fraction de volume de 1). Cela se traduit en une augmentation de la constante de temps de
Washburn (Fig. G.3). Cela est attendu puisque 1) l’erreur de discrétisation vient en effet réduire
la résistance hydraulique du canal, et 2) l’erreur de modélisation augmente la contrainte au point
triphasique de la ligne de contact. On observe deux zones de convergence logarithmique, soit une
zone de superconvergence préasymptotique lorsque H/∆ < 4, et une zone de convergence vers la
solution singulière lorsque H/∆> 8. Notre hypothèse est que les erreurs de discrétisation dominent
la première zone et les erreurs de modélisation dominent la seconde.

G.5 Analyse et méthodologie

La première étape de notre analyse consiste à vérifier l’indépendance des simulations selon la dis-
crétisation en temps. Pour ces simulations, le pas de temps numérique est limité par la convection
et donc le nombre de Courant [181]. On choisit une discrétisation spatiale H/∆ = 6, un angle de
contact theta = 60 deg et on refait les simulations avec différents Comax. Comme montré à la Fig.
G.4, on observe très peu de variation (moins de 0.5%) pour tout Comax < 1. On continue notre
analyse avec Comax = 0.2.

Pour être en mesure de discerner les erreurs de modélisation et les erreurs de discrétisation spatiale,
on doit mesurer la pression de Laplace du ménisque en mouvent. Comme la pression du ménisque
est invariante dans l’espace et dans le temps, excepté proche de t = 0 où des effets transitoires
sont présents pour la stabilisation de l’interface, on peut calculer la pression au ménisque, pm, en

Figure G.1 Schéma
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Figure G.2 Fraction de volume dépendante en fonction du maillage.

Figure G.3 Augmentation de la constante de temps de Washburn en fonction du maillage. On
dénote deux régimes logarithmiques: une superconvergence préasymptotique, ainsi qu’une conver-
gence asymptotique divergente.
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Figure G.4 Quasi-invariance des résultats en fonction de la discrétisation en temps limitée par le
nombre de Courant.

calculant le minimum de la pression en un point fixe, i.e. le moment où le ménisque passe par ce
point. On choisit le point (x,y) = (H,L)/2 où on vient calculer la pression pour tous les pas de
temps ∆t déterminés par Comax.

On mesure d’importantes fluctuations de la pression (Fig. G.5). Ces fluctuations de la pression
sont liées à l’augmentation des courants parasites plus ∆ est petit [199]. Cela expliquerait pourquoi
les fluctuations semblent augmenter avec le raffinement du maillage. Cependant, une étude plus
approfondie serait nécessaire pour bien élucider cet artéfact numérique. On compare les pressions
mesurées à la pression de Laplace théorique (pth = 1200 Pa).

G.5.1 Mesure de la pression moyennée (méthode I)

Pour obtenir une valeur plus exacte de la pression, on fait un moyennage temporel de la pression.
On cherche alors un intervalle δ t approprié qui diminue suffisamment les fluctuations pour avoir
un profil de pression plus lisse, tel qu’illustré à la Fig. G.6.

On fait le moyennage avec différents δ t, et on présente quelque exemple. Pour δ t = 1.2207×
10−5 s les fluctuations sont encore importantes de manière générale. Pour δ t = 4.8828×10−5 s les
fluctuations sont importantes dans certaines régions, mais commencent à diminuer dans certaines
zones proches de t = 25ms. Pour δ t = 1.9531× 10−4 s le profil de pression est suffisament lisse
(Fig. G.7).
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Figure G.5 Mesure de la pression pour différents maillages en un point fixe dans l’espace.

Figure G.6 Schéma du choix d’un intervalle δ t pour calculer le temps moyen et la pression moyenne
(t̄, p̄).
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Figure G.7 Profil de pression moyenné sur différents intervalles temporels.

Pour faire un meilleur choix de δ t, on trace le graphique de la pression de Laplace numérique pm

en fonction de l’intervalle de moyennage temporel δ t (Fig. G.8). On observe que pour de petites et
grandes valeurs de δ t, pm varie significativement par rapport à la valeur théorique. Cela est attendu
puisque pour δ t petit, les fluctuations sont encore grandes, et pour δ t grand, la valeur de pm est
diluée par le plateau de pression p = 0 avant le passage du ménisque.

G.5.2 Mesure de la pression moyennée (méthode II)

Pour vérifier que l’on ne commet pas un grande erreur sur la mesure de pm en raison du plateau
de pression p = 0 avant le passage du ménisque au point (x,y) = (H,L)/2, on refait le moyennage
avec une seconde méthode. Cette fois-ci, on définit à quel moment le ménisque passe par la sonde
de pression et on calcule le premier moyennage à partir de ce point (Fig. G.9). De cette manière,
on ne vient pas diminuer la valeur de pm avec les valeurs voisines.

Une fois de plus, on fait le moyennage avec différents δ t, et quelque exemples sont présentés à la
Fig. G.10. Les conclusions sont identiques à la méthode précédente. Cela est attendu puisque, en
dehors d’une zone de changement abrupt de pression, la pression moyennée devrait être similaire
peu importe le point de référence du moyennage.

Comme vu précédemment, on présente la pression de Laplace numérique pm en fonction de l’intervalle
de moyennage temporel δ t. On observe que les valeurs fluctuent beaucoup moins qu’à la Fig. G.11,
ce qui était le but de la seconde méthode. On doit maintenant choisir un δ t pour continuer notre
analyse. Ici, on choisit δ t = 1.9531×10−4 s.

La Fig. G.12 démontre que la pression de Laplace numérique pm ne varie pas significativement
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Figure G.8 Pression au ménisque en fonction du moyennage temporel pour différents maillages.

Figure G.9 Schéma du choix d’un intervalle δ t centré sur pm pour calculer le temps moyen et la
pression moyenne (t̄, p̄).
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Figure G.10 Profil de pression moyenné sur différents intervalles temporels centrés sur pm.

Figure G.11 Pression au ménisque en fonction du moyennage temporel avec la méthode centrée sur
pm pour différents maillages.
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en fonction du type de méthode utilisée pour le moyennage temporel de la pression avec δ t =

1.9531× 10−4 s. Cependant, cela peut servir de base pour argumenter d’une erreur sur la mesure
de quelques pourcents en fonction de la méthode. Soit, environs 2,5 % dépendant du maillage
utilisé.

Pour continuer notre analyse du découplage des erreurs de modélisation et des erreurs de discréti-
sation, on doit mesurer la vitesse en entrée du canal. Pour ce faire, on mesure le débit et on divise
celui-ci par la surface de l’entrée d’eau. Le résultat en fonction du maillage est comparé à la théorie
donnée par l’équation de Washburn à cette figure.

Pour calculer les erreurs sur la résistance hydraulique, on substitue la pression de Laplace mesurée
dans la loi de Hagen-Poiseuille. Connaissant le débit numérique, on calcule la résistance hy-
draulique numérique et on la compare à la résistance hydraulique théorique donnée pour des
plaques parallèles [68]. L’erreur entre la résistance hydraulique numérique et théorique est moins
de 2%, ce qui est amplement dans la marge de l’erreur commise sur la mesure de la pression (Fig.
G.14). On observe également une convergence d’ordre 1.5 sur la résistance hydraulique. Comme
la mesure de la résistance hydraulique dépend de la mesure de la vitesse, 0n s’attendrait à un ordre
de convergence de deux avec la méthode des volumes finis, cependant l’ordre est peut-être réduit
en raison de la formulation CSF pour le calcul de la pression ou autres parties du code. Une autre
hypothèse est que la vitesse calculée à la frontière converge différemment puisqu’elle est liée à
la condition frontière p = 0. En effet, les valeurs en frontières peuvent converger différemment
dépendant des méthodes utilisées. Une étude plus approfondie de cette convergence 1.5 devrait
être faite pour être plus rigoureux, mais cela n’est pas nécessaire pour les objectifs de ce travail.

G.6 Resultats

Finalement, pour combiner tous les morceaux du puzzle, on doit redériver l’équation de Washburn
avec les variables utilisées pour cette étude. Soit, la résistance hydraulique et la pression de Laplace.
La constante de temps de Washburn exprimée en fonction de la résistance hydraulique et de la
pression de Laplace s’exprime comme

τ
∗ =

WH3Rhyd,L/2

∆pL
(G.12)

Pour calculer l’impact de l’erreur de modélisation sur tau, on substitue ∆p par pm et Rhyd,L/2 par
Rhyd,th. D’autre part, pour calculer l’impact de l’erreur de discrétisation sur tau, on substitue ∆p par
pth et Rhyd,L/2 par Rnum.

Pour terminer, on compare les résultats sur à la Fig. G.15. On observe bien deux zones de con-
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Figure G.12 Pression de Laplace calculée avec les deux méthodes et comparaison avec la valeur
théorique.

Figure G.13 Vitesse moyennée à l’entrée du canal microfluidique.
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Figure G.14 Résistance hydraulique en fonction du maillage comparée à la valeur théorique.

vergence, soit 1) une zone contrôlée par les erreurs sur la pression de Laplace, i.e. les erreurs
de modélisation en raison de la pression singulière donnée par l’analyse de Taylor et Moffatt, et
2) une zone contrôlée par les erreurs sur la résistance hydraulique, i.e. les erreurs de discrétisa-
tion sur le champ de vitesse. Initialement, les erreurs de discrétisation dominent et deviennent
négligeables par rapport aux erreurs de modélisation pour H/∆ > 8. Pour H/∆ > 4 et H/∆ < 8,
les erreurs de discrétisation et de modélisation sont du même ordre. Cela est important à savoir
puisqu’en général, pour la simulation de dispositifs microfluidique capillaire, nous sommes dans
cet intervalle de résolution de maillage.

Pour comparer la constante de Washburn obtenue théoriquement par les valeurs calculés on sub-
stitue ∆p par pm et Rhyd,L/2 par Rnum dans l’Éq. G.12. On observe que l’on est bien dans un
intervalle d’environ 5% avec la valeur simulée, ce qui concorde bien avec la résolution approximée
de la méthode de calcul. En théorie, si les méthodes de calcul étaient parfaitement exactes et que
seules les erreurs sur la pression et la résistance hydraulique sont significatives, on devrait voir la
courbe Rhyd + pm parfaitement épouser les résultats de simulation.

G.7 Conclusion

Dans cette étude, nous avons découplé les erreurs de modélisation et les erreurs de discrétisation
pour des simulations de dynamique capillaire avec ligne de contact en mouvement dans un canal
microfluidique. Pour H/∆ > 8, les erreurs de modélisation dominent, et pour H/∆ < 4, les erreurs
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Figure G.15 Constante de temps de Washburn simulée comparée aux erreurs de discrétisation et de
modélisation (résistance hydraulique et pression de Laplace).

Figure G.16 Substitution des valeurs calculés dans l’équation de Washburn et comparaison entre la
constante de Washburn calculée et simulée.
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de discrétisation dominent. Entre ces deux intervalles, les erreurs sont environ du même ordre
de grandeur. Pour faire une étude plus rigoureuse, une analyse statistique des fluctuations de la
pression et établir une métrique plus précise pour en faire le moyennage temporel pourrait être
fait. Par exemple, on pourrait faire une analyse de Fourier des fluctuations et imposer un filtre
fréquentiel adéquat en fonction des différentes fréquences mesurées. Cette méthode est gardée
pour des travaux futurs.
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APPENDIX H PARAMETRIC ANALYSIS OF SPURIOUS CURRENTS IN OPENFOAM
(VOF-FVM WITH COMPRESSIVE CSF)

Video H.1 Spurious currents for a droplet of water. (Flash Player required)
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Figure H.2 Execution time with respect to the physical simulation time tend. The spurious velocities
Us are constant with respect to U . If U <Us, the execution time tsim is proportional to tend.

Figure H.3 Execution time with respect to surface tension γ with γ0 = 0.072Nm−1. Spurious
currents are proportional to surface tension: tsim ∼ γ0.6.
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Figure H.4 Execution time with respect to density ρ with ρ0 = 1000kgm−3. Spurious currents are
inversely proportional to density: tsim ∼ ρ−0.4.

Figure H.5 Execution time with respect to viscosity ν = µ/ρ with µ0 = 0.001Pa · s. Spurious
currents are inversely proportional to viscosity within 2 orders of magnitude of µ0: tsim ∼ ν−0.5.
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