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RÉSUMÉ

Dans les problèmes de tournées de véhicules, la minimisation des coûts est rarement le seul
objectif à considérer. D’autres objectifs doivent également être pris en compte dans la pra-
tique, tel le partage équitable de la charge de travail entre les chauffeurs (équité, balancement
des routes). On sait que la minimisation des coûts est susceptible de mener à des solutions où
la charge de travail n’est pas distribuée équitablement. Autrement dit, des coûts additonnels
doivent être encourus pour obtenir des solutions équitables. Il arrive souvent en pratique
que l’équité doive être atteinte sur un certain nombre de périodes (e.g., journées) et non à
chaque période. Dans ce mémoire, un problème de tournées de véhicules multi-périodes avec
un objectif visant l’équité sur l’ensemble des périodes est résolu à l’aide d’une méthode en
deux phases. Dans la première phase, une solution de distance minimale est produite pour
le problème de tournées de véhicules associé à chaque période. Les routes ainsi obtenues
sont ensuite distribuées entre les chauffeurs dans la seconde phase afin d’atteindre l’équité au
niveau de la distance totale parcourue par chacun des chauffeurs sur l’ensemble des périodes.
Une étude expérimentale démontre les bénéfices de cette approche sur des instances tests
dérivées d’instances classiques pour le problème de tournées de véhicules avec contraintes de
capacité. Les résultats démontrent en particulier que l’équité entre les chauffeurs peut être
atteinte sans coût additionnel si le nombre de périodes est suffisamment grand.
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ABSTRACT

In vehicle routing problems, cost minimization is rarely the only concern. There are other
objectives that must be taken into account. One of these objectives is a fair distribution of
the workload among drivers (equity, balance). It is known that minimizing operations costs is
prone to lead to poorly balanced solutions, which means that better-balanced solutions lead to
additional operations costs. In many real life problems, equity must be achieved over a certain
number of periods (e.g., days), not within each period. In this thesis, a multi-period vehicle
routing problem with an equity objective is addressed with a two-phase problem-solving
methodology. In the first phase, a minimum-distance solution is produced for each period.
The routes obtained are then combined in a second phase to achieve equity among drivers
with regard to their total distance traveled over all periods. A computational study shows the
benefits of this two-phase algorithm, based on instances derived from standard benchmark
instances for the capacitated vehicle routing problem. The results show in particular that
workload equity can be attained at no additional operations cost when the number of periods
is sufficiently large.
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CHAPTER 1 INTRODUCTION

These days, numerous businesses operate in the transportation, distribution, and supply
chain services. To stay alive in such a competitive environment, businesses need to focus on
improving their distribution strategies. To this end, they must consider not only profit but
also employees’ and customers’ satisfaction. Improving fairness among employees enhances
their motivation to provide high-quality services to customers. Enhanced service quality to
customers, in turn, generates more profit by favoring the emergence of loyal customers who
may also recommend your services and products to other people. Thus, customer and driver
satisfaction should not be overlooked.

1.1 Basic concepts

The classical VRP with capacity constraints is known in previous studies as the Capacitated
Vehicle Routing Problem (CVRP). It is a variant of the Vehicle Routing Problem (VRP)
which has been studied for many years by many researchers (Toth and Vigo, 2002). This
problem involves a set of customers, each with a specific amount of demand, and a fleet
of capacitated vehicles located at a central depot. In this problem, the demand of every
customer must be served exactly once by a vehicle. The goal is to create a set of feasible
(i.e., capacity obedient) routes, one for each vehicle, that start and end at the depot and
that minimize the cost (i.e., total distance traveled by the vehicles). Since the vehicles have a
fixed capacity, multiple routes are typically needed to serve all customers. This combinatorial
optimization problem is an extension of the Traveling Salesman Problem (TSP) where a single
uncapacitated vehicle travels a single route to serve all customers at minimum cost. These
problems are NP-hard which means that no polynomial-time algorithm is known to solve
them. Consequently, solving any VRP variant requires heuristic approaches when large-sized
instances are considered (Ribeiro and Lourenço, 2001; Vidal et al., 2013).

There is an extensive and diverse variety of VRPs reported in the literature (Chatonnay
et al., 2014). They can be divided into different categories depending on their characteristics
such as the underlying network, the demand of customers, the fleet of vehicles, the objective,
the constraints, etc.

Multi-objective VRPs have also been considered in a number of studies. Multi-objective
VRPs are variants of the VRP where different, often conflicting, objectives are considered.
These problems optimize the cost as well as other objectives related to vehicles, drivers,
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or customers. For example, customer satisfaction and timely delivery are as important or
even more important than operational costs in some sectors like the delivery of perishable
goods. In other sectors, fair workload distribution among drivers is a crucial issue. The main
reason for studying multi-objective VRPs is to better represent real-life problems (Jozefowiez
et al., 2008a). Solving multi-objective problems lead to a set of trade-off solutions called non-
dominated or Pareto-optimal solutions.

Many different objectives have been considered in the literature on VRP and its variants.
Generally speaking, there are two large classes of objectives: monetary (cost) and non-
monetary (service quality, reliability, consistency, ...). Monetary objectives are related to
money (revenue, cost) or any equivalent of it, like distance or travel time. Non-monetary
objectives, although not directly related to money, can be decisive for the medium or long-
term viability of an organization, especially if they can be achieved at little additional cost
(Matl et al., 2018). In recent work, Vidal et al. (2020) divide the objectives used in VRPs
into seven groups:

• Profitability: alternative cost structures, profits, outsourcing;
• Service quality: cumulative objectives, on time service, service fulfillment;
• Equity: workload balance, service equity, collaborative planning;
• Consistency: customer-oriented, temporal, delivery;
• Simplicity: route compactness, geographical separation of routes, navigation complex-

ity;
• Reliability: expected losses, probability of failure;
• Externalities: nocive emissions, safety risks, noise and congestion.

It should be noted that other ways to categorize objectives are reported in some older papers
like Jozefowiez et al. (2008b). Without going into details, the latter divides the objectives
among those that are related to routes, node/arc activities and resources.

• Objectives related to routes: cost, profit, makespan, route balancing, utilization of avail-
able capacity, risk aversion;

• Objectives related to node/arc activities: number of violated constraints, customer
and/or driver’s waiting time due to earliness or lateness, customer satisfaction, cov-
erage, customer-driver consistency;

• Objectives related to resources (vehicles and goods): number of vehicles (since less ve-
hicles leads to less investment costs, less emissions of CO2 and less drivers’ salaries),
risk aversion, utility or disutility measures.
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Multi-period VRPs represent another class of VRPs, which are defined over a planning hori-
zon of several periods. A frequency of service (i.e., a subset of time periods) is first defined for
each customer over the planning horizon, as well as a corresponding demand. The objective
is to minimize the total cost over the planning horizon. An important point is that decisions
made in one period are not independent of decisions made in other periods (Coene et al.,
2010). Multi-period VRPs are surveyed and classified in Mourgaya and Vanderbeck (2006).
There are also multi-objective VRPs that are reported in the literature for problems defined
over a planning horizon that spans multiple time periods (Bansal and Goel, 2018).

1.2 Equity and VRP

Many companies in various routing-related industries seek to provide high-quality service and
a balanced workload to improve customer or driver satisfaction. Equity is one of those ob-
jectives. Equity tries to provide fairness among different players in the distribution network.
In many studies, fairly allocating workload between drivers is called workload equity. Fairly
distributing services or products among customers or, when there is more than one shipper,
fairly sharing other resources among shippers are other types of equity objectives that are
introduced in the literature review.

1.2.1 Workload equity and VRP

This section focuses on workload equity in the VRP and its implementation in various prob-
lems. As mentioned in Section 1.2, the purpose of workload equity is the fair distribution of
workload resources among drivers.

According to the terminology of Matl et al. (2018), an equity metric refers to the type of
workload to be balanced among routes (e.g., served demand, distance traveled). An equity
measure provides a value for a given allocation of workloads among drivers, like the difference
between the highest and lowest workloads. An equity objective is then obtained by combining
a metric with a measure. Bi-objective VRPs with cost as the first objective and equity as
the second objective are called VRP with “route balancing” (Jozefowiez et al., 2007, 2009).
It should be noted that some studies rather account for equity through constraints.

There are different types of equity measures introduced in previous studies (Matl et al., 2018;
Lozano et al., 2016; Halvorsen-Weare and Savelsbergh, 2016), like Min-Max, where the route
with the largest workload is minimized, Range which is the difference between the maximum
and minimum workloads, Mean Absolute Deviation (MAD) which is the average of the
absolute differences between each workload and the average workload, etc. Different equity
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measures, each with its pros and cons, are presented in detail in the literature review. The
equity objective is important, not only because it allows a fair distribution of the workload
among drivers, which leads to the driver and customer satisfaction, but also because it
produces more robust solutions when unexpected events occur, like a sudden demand increase
among customers, and reduces bottlenecks (Mourgaya and Vanderbeck, 2007).

1.3 Problem statement- multi-period VRP with workload balance

A cost increase is typically observed when workload equity is taken into account in classical
single-period VRPs (Matl et al., 2019). Yet, it is likely that considering equity over multiple
periods will alleviate this effect and the cost-related objectives will not grow as much because
over multiple periods, we have much more flexibility for balancing the workload of drivers.

This thesis addresses a multi-period VRP, where distance-based workload equity must be
achieved over the whole planning horizon. This is called the multi-period VRP with workload
balance (MVRPB). Thus, even if it is not necessary for the workload to be equal in each
period, we want to attain as much as possible workload equity among drivers over the planning
horizon. This is a concern since there are many circumstances in real life where the workload
is defined over a rather long planning horizon (just think of nurse scheduling problems, for
example).

In the MVRPB, different subsets of customers need to be visited in different periods of
the planning horizon, with possibly different demands. Thus, we have a different VRP
associated with each time period of the planning horizon, where each VRP is defined over
the subset of customers that have a demand for that period. The goal is to generate routes
in each time period while accounting for the total distance traveled by all vehicles over the
planning horizon, as well as a form of equity among the drivers with regard to the total
distance traveled by each one of them. To be more precise, the equity objective minimizes
the maximum vehicle workload (i.e., total distance traveled by a vehicle over the planning
horizon) through the Min-Max measure. As previously mentioned, equity among drivers
only applies to the whole planning horizon, not to individual time periods. Also, each driver
is associated with at most one route in a given time period, while each route needs to be
associated with a driver.

1.4 A brief overview of the proposed solution method

When workload equity is sought in single-period VRPs, the routing costs tend to grow.
But, by considering workload equity over multiple periods, this cost increase may be mostly
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alleviated. This issue has motivated us to develop a two-stage optimization approach for our
problem in which in the first step, a CVRP is solved in each time period while minimizing the
cost, which is the total distance traveled by the vehicles. Then, in a second step, the routes
obtained in the first step for each time period are assigned to the drivers to attain workload
equity, while making sure that each driver is assigned to at most one route from each time
period. Thus, efficiency is achieved in the first step and equity in the second step. We obtain
the cost optimal routes in the first phase. And, then we provide a balance workload among
them in the second phase. We can’t guarantee that there are no other alternative cost optimal
routes in the first phase. But we can guarantee that we provide an equal workload among
the routes obtained in the first phase. We refer to these steps as (1) route optimization, and
(2) multi-period workload balancing.

The computational results obtained with the two-step optimization approach show that eq-
uity can be reached over multiple periods without increasing the cost if the number of periods
is sufficiently large.

Phase 2:
Allocate routes to drivers

over the planning horizon to
reach equity

Phase 1:
Form vehicle routes in each
time period to minimize

operations costs

Figure 1.1 Two-phase approach

To solve the problem in the first and second steps, we take advantage of VRPSolver (Pessoa
et al., 2020), which provides a generic branch-and-cut-and-price (BCP) framework that can
solve many classes of MILPs. Our test instances come from a CVRP benchmark introduced
in Uchoa et al. (2017). In the first step, since an individual CVRP must be solved in each
period, VRPSolver provides a powerful exact solver for this purpose. VRPSolver is also used
in the second step by modeling the multi-period workload balancing problem as a bin packing
problem. Adapting VRPSolver to address bin packing problems, along with a binary search
to appropriately determine the size of the bins, proves to be an efficient approach for the
second step.
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CHAPTER 2 LITERATURE REVIEW

For the first time, Dantzig and Ramser (1959) introduced the VRP in their paper and called
it the truck dispatching problem. Since then, several papers presented various models and
solution approaches for the VRP and its variants. Although minimizing the total length of
the routes, as well as the number of vehicles used, are the most common objectives in previous
studies (Tang and Miller-Hooks, 2006), other objective functions are considered to address
the needs of real-life applications. In the following, we will take a look at these different
objectives in the context of VRPs.

2.1 Objectives for VRPs

Monetary objectives can not be seen as pure costs only, where pure costs refer to routing costs
that should be minimized, like total distance, total travel time, etc. Sometimes, routing costs
need to be considered along with other measures. For example, in Baldacci et al. (2020), the
authors are interested in minimizing the total cost per load and also in maximizing the total
profit associated with each route. Stavropoulou et al. (2019) consider the most profitable
customers to be the most frequent ones. Then, the objective is to determine vehicle routes
that maximize the net profit (difference between total gain and total cost).

Due to high demand, a company may outsource its shipping and delivery activities to sub-
contractors leading to a special case of VRP. In this regard, Gahm et al. (2017) study a VRP
in which the shipping company can use a private fleet, common carriers, or a combination of
both to maximize profit. In this problem, the common carriers propose a volume discount
and the subcontractor provides two vehicle rental options.

Monetary objectives are not always the main concern, such as in healthcare logistics, relief op-
erations in natural disasters, humanitarian logistics, or public transportation. Furthermore,
there are objectives that are looking neither for cost minimization nor driver and customer
satisfaction nor providing service to the public; in practice, logistics and transportation ac-
tivities have undesirable side effects, which are called externalities (e.g., nocive emissions).
Thus, some objectives take into account the efforts to reduce the side effects of transportation
and logistics activities.

Cumulative objectives are typically used in service-focused environments. For example, Ex-
pósito Márquez et al. (2019) examine different measures for service quality objectives based
on time metrics. The cumulative objective function measures the total time that customers
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have to wait to be served from the starting time of the routes. The minimization of the sum of
arrival times at each individual customer tends to favor a good service distribution over time.
Huang et al. (2012) use a cumulative objective to minimize total arrival times or customers’
waiting time. Energy minimizing VRP and school-bus routing problems are two other ap-
plications where cumulative objectives are used (Kara et al., 2008). Expósito Márquez et al.
(2019) point out that on-time performance is aimed at minimizing the earliness or lateness at
customer locations (Soman and Patil, 2020; Stavropoulou et al., 2019); it is particularly use-
ful in passenger transportation, like school bus routing problems. Cumulative objectives are
also found in other time-sensitive applications, like courier services. In practice, in service-
focused objectives, it is not always possible to fulfill all requests in terms of delivery time
or amount delivered to each customer. They play a role when a minimum level of service
to customers is required. For example, Orlis et al. (2019) implement service level as a soft
constraint and as a minimum allowable percentage of fulfilled requests.

Equity is aimed at a fair distribution of resources, responsibilities, and benefits among drivers
or customers. Fair distribution of the workload resources among drivers is called workload
equity. It maintains employee satisfaction, reduces overtime, and reduces bottlenecks in
resource utilization. The workload resources can correspond to travel time (distance), the
number of served customers, served demand, etc. (Matl et al., 2018). In Huang et al.
(2012), one of the objectives is fair distribution of services or products among customers in
humanitarian relief logistics. They focus on equitable service to all aid recipients, which is
referred to as service equity. Tinoco et al. (2017) share the capacity of the fleet of vehicles
(ships) between two shippers to fairly allocate the cost reduction among them, which is known
as co-loading or collaborative planning; in their problem, the long-term goal is reducing the
number of vehicles, consequently costs and emissions.

Consistency can be important for drivers and regular (commercial) customers (Kovacs et al.,
2014). Arrival time consistency is used in particular to obtain predictable service start times
for regular customers (e.g., similar service time every day, as in Campelo et al. 2019). Person-
oriented consistency means the preference of regular customers to be served by familiar
faces. Similarly, drivers like to serve the same customers along well-known routes in well-
known service areas. Furthermore, when the drivers are familiar with their routes, learning
requirements decrease and efficiency increases (Rodríguez-Martín et al., 2019). Delivery
consistency is concerned with the delivery of a consistent quantity of goods or a consistent
level of service (Coelho et al., 2012). On the other hand, inconsistency may be a desirable
objective in the transportation of valuable objects to reduce the risk of robbery (Kovacs
et al., 2014). Promoting the visual attractiveness of routes in VRP is another objective that
simplifies practical fulfillment effectively. This can be implemented through compactness
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maximization, minimization of route overlap and crossing, and route complexity minimization
(Rossit et al., 2019). There are several classifications for compactness but in a few words,
a route with customers that are geographically clustered is more appealing (Rossit et al.,
2019). For example, Lei et al. (2015) maximize compactness and minimize dissimilarity of
districts in different periods.

Rossit et al. (2016) minimize cost with respect to an upper bound on the number of shared
nodes between routes. When there is little or no overlap and crossing of routes, they are
said to be separated. Separated routes make coordination easier because a local change in
a route does not lead to a dramatic change in other routes. Also, distribution companies
prefer routes that are easier to navigate. This objective can be evaluated, for example, by
the number of right or left turns (Vidal, 2017).

In real-life problems, identifying reliable routes can be a concern due to the occurrence of
unexpected events. A good way to account for uncertainty and find cost-effective routes
is through stochastic or robust VRP models by representative scenarios, probability dis-
tributions, or uncertainty sets. Travel time, demand at customers, and the occurrence of
new requests are the main sources of uncertainty in VRPs (Vidal et al., 2020). Salavati-
Khoshghalb et al. (2019) minimize the expected cost to serve stochastic demand and Zhang
et al. (2019a) maximize the joint probability of punctual arrivals and minimize the potential
risk of failure.

Logistics and transportation in VRP have side effects. One of the disadvantages of road
transportation is the increase in the amount of greenhouse gas emissions. Bektaş and Laporte
(2011) study the Pollution-Routing Problem that minimizes not only common objectives of
VRP such as time, distance, and cost but also the total greenhouse emissions. Among all
factors, load and speed can vary while traversing an arc, so the authors report the effect
of load and speed on gas emissions. They show that load and speed have an impact on
the amount of energy consumed and gas emissions and that there is no direct relationship
between cost and emission objectives. Wang et al. (2019) also minimize fuel consumption
(based on fuel type, vehicle type, and road characteristics) and drivers’ wage. Besides, when
hazardous materials are transported, the most important concern is to minimize the risk
or severity of an accident which is in close relationship with the design of a route (Vidal
et al., 2020). Grabensch-weiger et al. (2018) minimize load-dependent and load-independent
emissions and minimize disturbance of routes.

It is worth mentioning that non-monetary objectives such as service quality, reliability, and
consistency will lead to better performance in terms of cost at a strategic or tactical level.
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2.1.1 Overview of problems based on different objective functions

Table 2.1 provides a compact view of the different kinds of objectives and corresponding
solution methods reported in the literature for VRPs.
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Table 2.1: An overview of recent problems with different objective functions and assumptions

Class Author Application Approach Solution method Objective function
Performance
ratio

Baldacci
et al. (2020)

VRP with fractional ob-
jective function

Single objec-
tive

Exact method
Min total cost per load /
Max profit over time

Profit Maxi-
mizing

Stavropoulou
et al. (2019)

VRP with consistency
constraints

Single objec-
tive

Adaptive Tabu Search
Selection of most prof-
itable customer (difference
between gain and cost)

Outsourcing
Gahm et al.
(2017)

VRP with private fleet
and common carrier offer-
ing volume discounts, and
rental options

Single objec-
tive

VNS
Minimize the sum of fixed
vehicle costs, travel costs,
and common carrier costs

Cumulative
objectives

Huang et al.
(2012)

Relief routing problem
Joint opti-
mization

GRASP
Min cost, total arrival
times (customers’ waiting
time) and inequity

On-time per-
formance

Soman and
Patil (2020)

Service Quality in VRP
single objec-
tive

A scatter search method

Minimize the sum of in-
ventory holding, trans-
portation, tardiness, and
backorder costs

Service
fulfillment

Orlis et al.
(2019)

Service level fulfilment in
coin and banknote distri-
bution

Soft con-
straint

Branch-and-cut

Maximize the difference
between collected rev-
enues and transportation
costs

Workload
balance

Zhang et al.
(2019b)

VRP with route balancing Bi-objective
Multi-objective memetic
algorithm

Min cost and inequality
(longest tour and Range)

Service
equity

Huang et al.
(2012)

Relief routing problem
Joint opti-
mization

GRASP
Min cost, total arrival
times (customers’ waiting
time) and inequity

najme
Text Box
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Table 2.1: An overview of recent problems with different objective functions and assumptions (continued and end)

Class Author Application Approach Solution method Objective function

Collaborative
planning

Tinoco et al.
(2017)

Collaborative shipping by
can-order policy to reduce
the number of vehicles,
costs and emissions

Single objec-
tive

Exact method
Fair allocation of cost re-
duction

Arrival time
consistency

Campelo
et al. (2019)

Servicing customers in a
consistent TW minimize
total cost

Constraint

Mathematical
programming-based
decomposition approach
(Matheheuristic)

Serving customers incon-
sistent time while min-
imizing expected travel
costs

Person
oriented
consistency

Rodríguez-
Martín et al.
(2019)

Drivers consistency in all
periods of planning hori-
zon

Constraint Branch-and-cut

Minimize cost so that each
customer is served by the
same vehicle/driver each
time

Delivery con-
sistency

Coelho et al.
(2012)

Consistency in quantity
of delivered to each cus-
tomer+ other features of
consistency

Lower and
upper bound
constraints

ALNS metaheuristics
Minimize cost with all cus-
tomers being served a spe-
cific amount

Compactness
Lei et al.
(2015)

Minimizes compactness,
dissimilarity, and equity
measure

Weighted
sum

Adaptive large neighbor-
hood search

Minimize ratio of the ter-
ritory’s (route’s) perime-
ter to the total perimeter
of the service area, dissim-
ilarity of districts in differ-
ent periods and variance
on average profit of the
sales man

Separation
Rossit et al.
(2016)

Increasing visual attrac-
tiveness to produce nicer
routes which leads to real
saving for companies

Constraint Heuristic

Minimize cost with re-
spect to upper bound
on the number of shared
nodes between routes
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Table 2.1: An overview of recent problems with different objective functions and assumptions (continued)

Class Author Application Approach Solution method Objective function

Separation
Constantino
et al. (2015)

Assign tasks to vehicle
routes to minimize overlap

Single objec-
tive/ Upper
and lower
bound con-
straint for
overlapping

Heuristic
Minimize number of edges
/nodes shared by two or
more routes

Navigation
complexity

Vidal (2017)
Minimizes number of
turns in routes

Aggregation

Iterated local search
(ILS)/ unified hybrid ge-
netic search (UHGS) with
extended neighborhoods

Min turn penalties and to-
tal cost

Expected
cost or loss

Salavati-
Khoshghalb
et al. (2019)

Minimizes the expected
cost to serve stochastic de-
mand

Single objec-
tive

Integer L-shaped algo-
rithm within a branch-
and-cut algorithm

Minimize the expected
cost

Risk of fail-
ure

Zhang et al.
(2019a)

Maximizes the joint prob-
ability of punctual arrivals
and minimizes the poten-
tial risk of failure

Single objec-
tive

Benders Decomposition

Maximize the joint proba-
bility of punctual arrivals
/ Min potential riskiness
(Violation of deadlines)

Emissions
Wang et al.
(2019)

Integrated production and
vehicle routing problem

Multi-
objective

Hybrid Tabu Search

Minimizes fuel consump-
tion (based on fuel, vehicle
type, and road character-
istics) and drivers wage

Safety risk
Grabensch-
weiger et al.
(2018)

Minimization of CO2

emissions as well as
disturbance to urban
neighborhoods

Bi-objective

Three variants of e-
constraint method as
well as the balanced box
method

Minimize load-dependent
and load-independent
emissions and minimize
disturbance of routes
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2.1.2 Interaction between objectives

In this section, we shortly review the conflicts and overlaps between some objective functions.
Here, overlap means that the previous classifications are not that rigid and that some objec-
tives can pertain to two or more of the categories mentioned by Vidal et al. (2020). Conflict
refers to the effect of one objective on the solution structure of the other one.

There is some overlap between service equity and service quality objectives in the literature.
For example, Huang et al. (2012) aim to provide quick, sufficient and equal service to increase
service quality. Standard Deviation (SD) and Range measures are used in the objective
to increase equity and effectiveness (quick and sufficient distribution). The objective of
minimizing the length of the longest tour (makespan) leads to equity among drivers and
customer satisfaction in dial-a-ride problems, that is, minimization of the makespan is fair
from the last customer’s perspective in terms of time (Jozefowiez et al., 2008b). Tang and
Miller-Hooks (2006) examine the effect of objective functions in the context of humanitarian
relief efforts, where the true goal is to minimize the arrival time of relief parcels. It is worth
noting that minimization of total routing cost does not lead to the minimization of the latest
arrival times or sum of arrival times. On the other hand, minimization of the latest arrival
times or sum of arrival times has a small marginal cost and leads to equity. In some studies,
there is an overlap between outsourcing and collaborative planning when there is an option
of using outsourced vehicles to share the capacity between several manufacturers with the
same customers but complementary food products (Sprenger and Mönch, 2012). Cumulative
objectives can be advantageous both in service quality objectives and objectives related to
energy consumption (Kara et al., 2008).

Huang et al. (2012) consider efficiency (cost minimization), effectiveness (quick and sufficient
distribution), and equity objectives in a weighted sum objective, and show how they affect
route structure and resource utilization. Their study shows that effectiveness and equity lead
to similarities in route structure, as opposed to efficiency where the routes have a different
structure. Bertazzi et al. (2015a) compare the optimal solution of Min-Max solutions and
the classic Min-cost solutions from the worst-case perspective. Their results on a set of test
problems confirm that in the worst case, the longest route of the optimal Min-cost solution is
k times the longest route of the optimal Min-Max solution, and the Min-Max total distance
is at most k times the Min-cost total distance, where k is the number of available vehicles.

These studies demonstrate that the choice of objective function plays a significant role not
only in the application but also in the structure of the produced VRP solutions.
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2.2 VRP and equal workload

This chapter reviews previous studies on the VRP, where equal workload among drivers is
considered. This issue for the VRP emerged in the 1990s, almost 35 years after the VRP was
introduced. To the best of our knowledge, more than 70 papers were published on this topic
since the 1990s. In the following, we go through some of the single-period and most of the
multi-period papers on this topic.

The first studies that considered workload equity evolved around single-period problems.
The earliest work Bowerman et al. (1995) considered workload equity in a multi-objective
single-period routing problem. They used a variance measure with route length and number
of transported students metrics as equity objectives for an urban school routing problem.
Since then, several papers studied workload equity among drivers in the VRP in a single
period context. Golden et al. (1997) proposed the use of Min-Max measure for equity in
their single-period CVRP, which was then solved by an adaptive memory heuristic. In their
mode, Lee and Ueng (1999) sought to find the shortest travel path and the best possible
balance in the vehicle working time simultaneously. The balance workload measure is a
semi-variance measure, which minimizes the sum of the working time difference between
each vehicle and the vehicle with the shortest working time in the single-period setting.
Jozefowiez et al. (2002) used the Range measure to balance the length of the tours in
a bi-objective single-period VRP model. They solved their model with a multi-objective
heuristic algorithm. Zhang et al. (2019b) develop a multi-objective memetic algorithm to
solve a single-period bi-objective VRP. The authors use a Min-Max measure along with
a route cost metric. In Lehuédé et al. (2020), a single-period bi-objective VRP with cost
minimization and lexicographic Min-Max measure using a route duration metric is solved
with a multi-directional local search heuristic. Vega-Mejia et al. (2019) optimize equity among
drivers in a multi-objective single-period vehicle loading problem with loading constraints in
which weight-bearing strength of three-dimensional items is considered. For equity purposes,
the objective function is a combination of the Range measure and served demand metric.
Two other objectives are the minimization of the total time needed to deliver all the items
and the minimization of the shift of the gravity center inside the container of each vehicle
after unloading boxes at each stop along the delivery route.

After a while, and in order to solve problems with assumptions closer to real-world problems,
workload equity was introduced over a longer multi-period planning horizon. Ribeiro and
Lourenço (2001) is one of the first papers to consider equity over a scheduling horizon of
many periods. The problem is solved using a weighted sum of three objectives consisting of
cost, equity, and market shares. The equity objective minimizes the standard deviation of
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the drivers’ workloads at the end of the planning horizon, where the workload corresponds to
the total amount delivered by a driver. In this paper, only small-size instances were solved
exactly with Lingo.

Blakeley et al. (2003) use the Range measure in a multi-period setting and develop a heuristic
to solve an elevator maintenance company’s problem, which assigns technicians to customers
and schedules their routes. The authors minimize travel time, overtime, and unbalanced
workload (travel times) within each period through a weighted sum approach.

Mourgaya and Vanderbeck (2007) examined a Periodic VRP (PVRP) from a tactical point
of view using a hierarchical approach. In this problem, the dates of customers’ visits are
determined to attain some service level. Then, customers are assigned to vehicles to achieve
equity concerning deliveries to customers. Equity is reached through a constraint that bounds
the served demand of each cluster of customers (less than vehicle capacity) in each time
period. The problem is solved with a column generation-based heuristic. Groër et al. (2009)
studied a multi-period VRP where a utility company must balance the daily workload of
their meter readers. They set a lower and an upper bound on the number of customers and
the length of each daily route. The solution method is a hybrid of heuristics and integer
programming.

Jozefowiez et al. (2009) and Oyola and Løkketangen (2014) present different algorithms to
solve a bi-objective single-period VRP in which they minimize the total length of routes
as well as the difference between the maximal and the minimal route length (Range). In
Gulczynski et al. (2011) a PVRP is addressed where an equal workload is looked for within
each period. The equity metric is the number of served customers and the equity measure is
the Range. The problem is then solved with an integer programming-based heuristic. Liu
et al. (2013) formulated a PVRP with an equity objective for home health care logistics where
three types of patients’ demands should be satisfied. The equity objective is the Min-Max
of travel time. The solution method is a combination of tabu search and local search.

Schönberger (2016) balance the route duration in each period of a multi-period VRP with
pick-up requests. In this case, however, this is handled by introducing an upper bound con-
straint. Messaoudi et al. (2019) propose a PVRP in which multiple frequencies of visits are
considered simultaneously for each customer while taking into consideration cost minimiza-
tion, minimization of the number of stops to the same customer (consistency), and balanced
workload objectives within each period. The equity objective of this study is the Min-Max
of the service time. The authors report a case study in a hygiene service company with more
than 6000 customers and 69,951 requests for visits over three months.

In Liu et al. (2020), the authors balance the workload among routes with the Min-max
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measure and route time metric on each day of the planning horizon for a periodic home
health care assignment problem. A method based on the partition of the service area into
regions is used to solve the problem. The results show the effectiveness of the algorithm to
solve this problem.

Introducing equity considerations in the VRP was frequently done through a multi-objective
approach, where the equity objective is typically in conflict with the distance minimization
objective. Although equity is often applied through a multi-objective approach in the VRP,
there are also studies in which equity is modeled with constraints (e.g., Fallah et al. (2020))
or as the primary objective (e.g., Lopez et al. (2014); Liu et al. (2013); Golden et al. (1997)).

It is worth pointing out that Blakeley et al. (2003); Mourgaya and Vanderbeck (2007); Groër
et al. (2009); Gulczynski et al. (2011); Liu et al. (2013); Schönberger (2016); Linfati et al.
(2018); Messaoudi et al. (2019) and Liu et al. (2020) implement equity for every single time
period regardless of the drivers’ workload over the total planning horizon.

As we can see, there is not so much work on multi-period VRPs that account for equity, even
less when equity is considered over multiple periods. Even though the aforementioned papers
consider multiple periods for workload balanced VRPs, most of them focus on case studies
for very specific problems or solve only instances of small size. Due to the scarce number
of studies in the literature on VRPs with workload equity over multiple periods (instead of
equity within a single period), there is definitely room for research in this area, especially if
we consider that the multi-period problems occur quite often in real life.

2.2.1 Desirable properties of inequality measures

In Matl et al. (2018), eight desirable properties of so-called inequality measures are proposed,
where an inequality measure I(x) represents the non-equity or unfairness of a given workload
allocation. Thus, x is preferred over x′ if I(x) < I(x′). In the following, X is the set of all
feasible allocations.

1. (Inequality Relevance) If xi = xj for all i and j in X, then I(x) = 0, otherwise I(x) > 0;

2. (Transitivity) Let I(x) ≥ I(x′) and I(x′) ≥ I(x′′), then I(x) ≥ I(x′′);

3. (Scale Invariance) I(x) = I(λx) for λ ∈ R \ {0}. (i.e., the unit of measure has no
impact);

4. (Translation Invariance) Let α ∈ R, and u be a unit vector of length n. Then I(x) =
I(x + αu). (i.e., the value remains the same if a constant is added to every workload);
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5. (Population Independence) The measures which satisfy this property are not affected by
the number of possible outcomes in the workload distribution. In population dependant
measures a direct comparison of distributions of different sizes is not possible. To
overcome this we can replicate each population a certain number of times such that
both resulting populations are of the same size (e.g., the lowest common multiple of
the original sizes);

6. (Anonymity or Symmetry) Let x′ be a permutation of the elements in x, then I(x) =
I(x′);

7. (Monotonicity) Let x′ be such that x′i = xi + δi for at least one i in x . If δi ≥ 0 for all
such i and δi > 0 for at least one i, then I(x′) ≥ I(x);

8. (Pigou-Dalton Transfer Principle (PD)) Let x′ be formed as follows: x′i = xi + δ, x′j =
xj − δ, x′k = xk, for all k /∈ {i, j}. If 0 ≤ δ < xj − xi, then I(x′) ≤ I(x). Thus a
transfer of workload from j to i is beneficial. That is, a transfer from a shorter route
to a longer route, other things remaining unchanged, leads to less equitable solutions
(Karsu and Morton (2015)). A transfer is said to be progressive (favoring the worse-off
party) if 0 ≤ δ < xj − xi , and regressive otherwise.

With regard to the PD principle, it is important to distinguish two different types of metrics:
those whose sum is constant over all solutions (e.g., total demand or number of customers in
typical VRPs), and those whose sum is variable (e.g., total distance traveled):

Definition 1. (Constant/Variable Sum Equity metric). An equity metric is constant-sum if∑n
i=1 xi is identical for all solutions x ∈ X and is variable-sum otherwise.

It should be noted that the PD principle applies in the case of constant-sum metrics. Another
important concept when considering an equity objective is workload inconsistency:

Definition 2. (Workload Inconsistency). A solution x is workload inconsistent if there exists
another solution x′ ∈ X such that ∑n

i=1 xi ≥
∑n
i=1 x

′
i and xi ≥ x′i for all i = 1, . . . , n, but

I(x) < I(x′).

This situation occurs in particular when a solution is preferred over another one with shorter
routes (i.e., the length of one or more routes is increased to artificially achieve equity).
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2.2.2 Common inequality measures

In the following, we present the inequality measures reported in previous studies. First, we
look at six inequality measures examined by Matl et al. (2018).

• Min-Max Maxni=1{xi}
This measure is aimed at minimizing the maximum (or worst) workload. Clearly, this
measure cannot discriminate between solutions with the same maximum workload.
For example, if we assume four routes, the measure would not discriminate between
workload allocations (20,15,10,5) and (20,10,10,10), while the second is clearly more
equitable. Also, (19,19,11,1) would be preferred over (20,10,10,10). In both examples,
the total workload over all routes is the same.

• Lexicographic Min-Max
This measure not only minimizes the worst workload, but also the second-worst (subject
to minimization of the first), the third-worst (subject to minimization of the first two),
and so on. It addresses the issue of distinguishing between solutions with the identical
maximum workload. Lehuédé et al. (2020) address a VRP with cost minimization and
lexicographic Min-Max measure with a multi-directional local search heuristic.

• Range Maxni=1{xi} −Minni=1{xi}
Here, we minimize the Range which is the difference between the maximum and
minimum workloads. It has some pros and cons. It is simple and easy to understand
and apply. But it is not sensitive to the workload values between the minimum and
maximum. Also, it does not account for the absolute workload values. For example
(10,9,8,7) would be preferred over (5,4,2,1), even though all workloads are smaller in
the latter.

• Mean Absolute Deviation (MAD) 1/n∑n
i=1 | xi − x̄ |

The MAD is the average of the absolute differences between each workload and the
mean workload. As opposed to previous measures, MAD takes into account every
workload, not just extreme values.

• Standard Deviation (SD)
√∑n

i=1(xi−x̄)2

n

Despite the fact that this measure satisfies almost all axioms, the disadvantage is its
computational complexity. Also, it is not as intuitive as the previous measures for
decision-makers.

• Gini Coefficient 1
2n2x̄

∑n
i=1

∑n
j=1 | xi − xj |

This coefficient has a value between 0 and 1. Once again, a major disadvantage is its
computational complexity. Mandell (1991) has proposed an equivalent linear formula-
tion of this measure.
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Lozano et al. (2016) have also introduced some inequality measures that have not been
mentioned previously. They are listed below.

• All-min ∑n
i=1(xi −Minni=1{xi})

This measure minimizes the sum of the differences between a workload and the mini-
mum workload over all workloads.

• Variance (Var)
∑n

i=1(xi−x̄)2

n

This is basically the same as SD.
• Rel 1

n

∑n
i=1

(
Maxn

i=1{xi}−xi

Maxn
i=1{xi}

)
This measure is aimed at minimizing the average relative deviation of the workload
values from the maximum workload.
Schwarze and Voss (2013) have also proposed other measures:

• Rel’ ∑n
i=1 | xi − x̄ |

Here, we want to minimize the sum of absolute differences between the workload values
and their average x̄.
In a bi-objective mixed capacitated general routing problem, Halvorsen-Weare and
Savelsbergh (2016) introduce some other new measures, along with some measures
already mentioned:

• ∑n
i=1(xi − x̄)

This measure is similar to the variance measure. Its computational complexity is good
and it takes into account all workloads.

• ∑n
i=1 | xi − xTG |

For some real-life routing problems there may exist a target route distance that all
routes should be close to. This is denoted as xTG in the above formulation.

• Max-Min Minni=1{xi}
In contrast with 3.2.1, this measure is aimed at maximizing the minimum workload.
When balanced routes are not required and we are looking for solutions without too
long or too short routes, the Min-Max and Max-Min measures can be used. These two
measures can lead to completely different solutions. For instance, the solution obtained
with Min-Max is close to the one obtained when minimizing the total distance traveled,
while Max-Min is close to the Range measure.
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2.3 Analysis and evaluation of equity objectives

In the literature, different inequality measures have been analyzed and compared. This is
briefly surveyed in the following.

Baños et al. (2013) consider the balanced workload among vehicles (drivers) using a Range
measure based on both traveled distance or served demand. Their results confirm the role of
the metric used on the solutions produced.

Schwarze and Voss (2013) provide a comparison between six equity measures. Among them,
Range, All-Min, and Rel involve a difference, that is, workload values are subtracted. Hence,
minimization of these measures leads to maximization of workload values with a negative
sign, thus increasing the probability of producing unwanted solutions. Besides, Rel’ and Var
are difficult to calculate because they are nonlinear. The measure Min-Max is linear and,
furthermore, it does not include differences between workload values, which motivated the
authors’ choice for Min-Max.

Halvorsen-Weare and Savelsbergh (2016) examine the effect of different equity measures on
the Pareto solutions in a bi-objective mixed capacitated general routing problem. Their
conclusion is that the type of equity measure selected affects the size of Pareto optimal
solutions as well as the solution produced.

Lozano et al. (2016) solve VRP benchmark instances with an evolutionary algorithm (EA)
based on two mutation operators and seven inequality measures: All-Min, Range, Min-
Max, Rel, Var, MAD, and Gini. Thus, 14 different configurations were compared. The
experiments have shown that Var, MAD, and Gini performed better, even when compared
with Range and Min-Max which are widely used.

Zhang et al. (2019b) claim that the Range measure leads to distorted solutions (i.e., non-TSP
optimal at the route level or artificially balanced routes at the solution level). Accordingly,
they use a Min-Max measure in their work.

Matl et al. (2018) conclude that the objective function by itself does not seem to have such
a great impact on solution quality. But they argue about a possible correlation between the
characteristics of a VRP instance and an appropriate equity objective. They claim that no
measure satisfies every desirable property, and none is strictly better than the others over
all relevant aspects (as shown in Table 2.2). Then, based on some previous theorems and
observations, they conclude that:

• Monotonic measures ⇒ Solutions which are not workload inconsistent
• Monotonic measures ⇒ TSP optimal solutions
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Table 2.2 Inequality measures and their properties

Property Ineq. Tran Scale Translation Population Anon Monot
Rel. sitive Inv. Inv. Ind. ymous onicity P.D.

Min-Max * * * Weak Weak
Lexi.Min-Max * * * Strong Strong

Range * * * * * Weak
Mean abs. dev. * * * * * Weak

SD * * * * * Strong
Gini coeff. * * * * * Strong
All-min * * * * Weak
Var * * * * * Strong
Rel * * * * * Weak
Rel’ * * * * Weak∑n

i=1(xi − x̄) * * * * Weak∑n
i=1 | xi − xTG | * * Weak
Max-Min * * * * * Weak

• TSP-optimal solutions ⇒ Workload consistent or Workload inconsistent solutions
• Non-monotonic measures ⇒ Workload consistent or Workload inconsistent solutions
• Non-monotonic measures ⇒ TSP optimal or non-TSP optimal solutions

They confirm that cost-optimal VRP solutions are usually quite poorly balanced. On average,
the longest route is about twice as long as the shortest one. On the other hand, they show that
the marginal additional cost to improve equity is usually low. They also conclude that more
sophisticated equity measures do not necessarily result in more reasonable trade-off solutions.
In particular, monotonic measures, such as Min-Max or its lexicographic extension, are
appropriate when workloads are based on variable-sum metrics (e.g., distance).

Matl et al. (2019) state that the structure of a solution mostly depends on the equity metric
(workload), as opposed to the equity measure. They assert that for an equity objective
with constant-sum resources all solutions are Pareto-optimal, without any consideration for
the equity measure. Also, for an equity measure with a variable-sum workload, the Pareto-
optimality of every allocation is not guaranteed, and choosing a monotonic measure plays a
key role.

We summarize some of the results reported in their paper that are useful from our research
point of view.

• Combining route distance (variable-sum) with non-monotonic measures can lead to an
optimal solution with non-TSP-optimal routes or even an optimal solution where all
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routes are longer than those in a sub-optimal solution (workload inconsistency);

• The number of trade-off solutions increases with the complexity of an equity measure.
Besides, balancing distance versus load, and balancing load versus the number of cus-
tomers produces an increase in the number of trade-off solutions;

• For the same workload resource, most solutions found through an equity measure can
be found with another equity measure. Also, for a given workload resource, solutions
that optimize an equity measure tend to be of high quality for other equity measures
as well.
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CHAPTER 3 ORGANIZATION OF THE DOCUMENT

In this chapter, we present the thesis organization. Chapter 1 discusses the importance
of driver satisfaction in vehicle routing problems. It also introduces the basic concepts of
the vehicle routing problem (VRP) and its variants. Finally, workload equity, in particular
multi-period workload equity, is discussed.

Chapter 2 introduces different objectives reported in the literature when solving VRPs. It
reviews works on workload equity and introduces different measures and metrics proposed in
the literature to reach equity. It shows in particular that few studies have addressed workload
equity in a multi-period context, while none of them have examined its marginal cost. To fill
this gap, we wrote the article to present a multi-period vehicle routing problem with an equity
objective. This article has been submitted to Computers and Operations Research journal on
2022/06/29. Chapter 4, in Section 4.3, proposes the statement of this multi-period vehicle
routing problem with an equity objective. A two-phase solution approach is then developed
to solve this problem, as described in Section 4.4. A computational study in Section 4.5
shows the performance and benefits of this two-phase approach.

Chapter 5 provides a general discussion of our problem-solving methodology. Finally, Chapter
6 summarizes the contributions and limitations of this work. It also offers future research
directions.
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Abstract. An equitable distribution of workload is essential when deploying vehicle routing 
solutions in practice. For this reason, previous studies have formulated vehicle routing prob-
lems with workload-balance objectives or constraints, leading to trade-off solutions between 
routing costs and workload equity. These methods consider a single planning period; how-
ever, equity is often sought over several days in practice. In this work, we show that workload 
equity over multiple periods can be achieved without impact on transportation costs when 
the planning horizon is sufficiently large. To achieve this, we design a two-phase method 
to solve multi-period vehicle routing problems with workload balance. Firstly, our approach 
produces solutions with minimal distance for each period. Next, the resulting routes are 
allocated to drivers to obtain equitable workloads over the planning horizon. We conduct 
extensive numerical experiments to measure the performance of the proposed approach and 
the level of workload equity achieved for different planning-horizon lengths. For horizons of 
five d a ys o r  m o r e, w e  o b s erve t h a t n e a r-optimal w orkload e q u ity a n d  o p t imal r o uting costs 
are jointly achievable.
Keywords: Vehicle routing problem, Multiple periods, Workload equity, Optimization
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4.1 Introduction

Competition between companies in the transportation and distribution sectors has created
a need to improve many business practices. Although minimizing distribution costs is es-
sential, drivers’ and clients’ satisfaction should also not be neglected. Equitable workload
assignments, especially, are fundamental to maintaining employee satisfaction at the work-
place and can significantly impact the quality of services provided to clients. In recent works
on vehicle routing problems with equity considerations, workload balancing is often treated
as a second objective—along with cost minimization—in a bi-objective problem. In this con-
text, Matl et al. (2019) reported that the marginal cost of balancing routes is reasonable in
most cases: nearly 40% of Pareto-optimal solutions have an additional cost that does not
exceed 10% of the minimum-cost solution. Solutions that account for equity also appear
more robust against unexpected events, such as a sudden increase in demand, because bot-
tlenecks are reduced (Matl et al., 2019; Mourgaya and Vanderbeck, 2007). Yet, such extra
costs remain significant given that the transportation sector operates with very tight profit
margins.

In most previous studies, we noted that the definition of workload equity was unnecessarily
restrictive, as it focused on the balance between different drivers’ workloads for each day
separately. In practical situations, however, workload differences among drivers can be ac-
ceptable on each given day as long as the total workload over a longer time horizon (e.g., a
week) remains equitable. To capture this notion, we formally define and study a multi-period
VRP with workload balance (MVRPB). In this problem, customer requests are known on a
longer planning horizon, and the goal is to find routes that optimize distance and workload
balance over the entire planning horizon. To solve the MVRPB, we propose a two-phase so-
lution approach. In the first phase, a solution with optimal distance is found for each period
by optimally solving the corresponding VRPs. The resulting routes are then combined in a
second phase to obtain equitable workloads among drivers based on the total distance trav-
eled over the periods. We use this methodology to evaluate to which extent the length of the
planning horizon can impact equitable solutions. Therefore, this work makes the following
contributions:

1. We study workload balance among drivers over an extended planning horizon. With
this viewpoint, we show that workload equity can be achieved with a very limited
impact on economic efficiency.

2. We formally introduce the MVRPB and a simple and efficient two-phase approach for
its solution. This approach also permits obtaining bounds on the best possible workload
equity.
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3. Through extensive numerical experiments, we demonstrate the performance of the pro-
posed solution approach. Moreover, we measure (i) the gap between the equity level
achieved by the two-phase method and perfect equity and (ii) the benefits of considering
a longer planning horizon.

The remainder of this paper is organized as follows. Section 4.2 reviews related works for
single and multi-period VRPs. Section 4.3 defines the MVRPB, and Section 4.4 describes
the proposed two-phase solution approach. Section 4.5 presents a computational study based
on test instances derived from well-known capacitated VRP benchmark instances. Finally,
Section 4.6 concludes the paper and discusses research perspectives.

4.2 Related Studies

Single-period planning. The classical capacitated VRP (CVRP) seeks a set of routes
starting and ending at a central depot and visiting a given set of clients (Vidal et al., 2020).
Each client is characterized by a demand quantity and must be serviced in a single visit.
The total demand of the clients over each route should not exceed the vehicle’s capacity
(considered to be identical for all vehicles). The objective of the problem is to minimize
the total traveled distance. The CVRP is NP-hard as it generalizes the traveling salesman
problem (TSP). Consequently, no optimal (i.e., exact) polynomial-time algorithm is known
for its solution. Moreover, the best existing exact approaches can only solve medium-sized
problems counting a few hundred customers in less than a few hours. Accordingly, heuristic
approaches are widely used in practical settings (Ribeiro and Lourenço, 2001; Vidal et al.,
2013).

Bowerman et al. (1995) were among the first to introduce an equity objective in the context
of a school bus routing problem. They used a variance measure to balance the length of the
drivers’ routes and the number of students transported. In addition, they considered two
additional criteria within a multi-objective framework. Since that work, numerous papers
have considered workload balance objectives in single-period VRPs with different equity
measures (see, e.g., Golden et al. 1997; Lee and Ueng 1999; Jozefowiez et al. 2009; Lopez
et al. 2014; Oyola and Løkketangen 2014; Bertazzi et al. 2015b; Galindres Guancha et al.
2018; Va et al. 2018; Vega-Mejia et al. 2019; Zhang et al. 2019b; Lehuédé et al. 2020; Londono
et al. 2021). The Min-Max measure and the difference between the maximum and minimum
workloads (called Range by Matl et al. 2018) are most commonly used. When considering
distance as the workload metric, Min-Max minimizes the longest route in a solution (see,
e.g., Lopez et al. 2014), whereas Range minimizes the difference between the longest and
shortest route (see, e.g., Londono et al. 2021). We refer the reader to Halvorsen-Weare and
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Savelsbergh (2016), Lozano et al. (2016), and Matl et al. (2018) for a comprehensive list of
equity measures.

No solution simultaneously optimizes cost and equity in most situations, especially when
considering equity within a single period. Consequently, equity is often considered within
multi-objective approaches, in which trade-off solutions have to be found between equity
and other objectives such as distance. Many studies along this line refer to the resulting
problem as the VRP with “route balancing” (Jozefowiez et al., 2007, 2009). Some studies
have examined how equity objectives affect the shape of the Pareto front in a bi-objective
context (Baños et al., 2013; Halvorsen-Weare and Savelsbergh, 2016; Lozano et al., 2016;
Schwarze and Voss, 2013; Zhang et al., 2019b). Matl et al. (2018, 2019) extensively discussed
six equity measures based on eight desirable properties. They claim that no measure satisfies
every property or is strictly better than the others for all relevant properties. They also show
that a monotonic equity measure such as Min-Max, which is based on a variable-sum metric
such as distance, avoids non-TSP-optimal solutions and inconsistent solutions and therefore
should be an objective of choice. A solution is non-TSP optimal if at least one route can
be rearranged while improving its distance. Inconsistency occurs when a given solution is
preferred over another solution even though all of its routes are longer. In both cases, the
distance of one or more routes has been artificially increased to improve the equity objective.

Multi-period planning. Multi-period VRPs are defined over a time horizon of several
periods and generally aim to minimize the total routing cost over all periods. In the periodic
VRP (PVRP), each client is characterized by a visit frequency representing how many visits
are requested over the planning horizon and a list of patterns representing acceptable visit-
day combinations. Solving this problem requires selecting a visit pattern for each client and
generating the routes for each period. As a consequence, the decisions made at each period
become interdependent (Coene et al., 2010). Mourgaya and Vanderbeck (2006) presented
several PVRP variants and classified them based on their objectives, constraints, and solution
methods. Equity is one of the objectives discussed in that study.

Some studies considered multi-period VRPs and measured equity within each period. Papers
in this category generally arise from real-life case studies and involve different workload
equity objectives. Blakeley et al. (2003) studied the problem of an elevator-maintenance
company that assigns technicians to clients. The objective was to minimize a weighted sum
of travel time, overtime, and unbalanced workload in each period. To reach equity, the
authors designed heuristics that optimize a Range measure on the travel times. Groër et al.
(2009) studied a multi-period VRP to balance the workload of meter readers over a month
for a utility company. To achieve a good balance, they set a lower and upper bound on the
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number of clients and the length of each daily route. They also constrain the deviation of a
client’s bill from one month to the next. Their three-stage methodology combines heuristics
and integer programming. Gulczynski et al. (2011) presented a PVRP in which an equal
workload is sought within each period. The overall objective is a weighted sum of distance
and Range measure over the number of clients served. The problem was solved with an
integer-programming-based heuristic.

Mourgaya and Vanderbeck (2006) designed a hierarchical heuristic to solve an industrial
PVRP application with 16 658 visits over a time horizon of 20 days. At a tactical level, the
method allocates each client to a combination of days and vehicles. The objective considered
at this stage involves minimizing the maximal workload over the days and vehicles subject
to additional geographical restrictions. At the operational level, the method minimizes the
traveled distance.

Mourgaya and Vanderbeck (2007) then studied a tactical planning problem that required
choosing visit days for clients subject to service level constraints. Once the visit days were
selected, the clients were assigned to vehicles to achieve equity among drivers. At this stage,
equity was modeled by a constraint that bounds the workload (served demand) associated
with each cluster of clients. In another work, Linfati et al. (2018) developed a two-phase
heuristic to balance the number of medication deliveries to patients among the drivers for
each day of the planning horizon. They considered a Range measure within a weighted-
sum objective that also accounts for extra hours, extra capacity, as well as daily and client
clustering costs. Finally, Messaoudi et al. (2019) introduced a PVRP with different possible
visit frequencies for each client. They relied on objectives that minimize the total route cost
and the number of stops to the same client and included a workload balance component
between vehicles for each period. This component of the objective minimizes the maximum
service time over the weeks of the planning horizon and the days of the week. Furthermore,
they imposed a maximum route duration for each vehicle. A decomposition approach was
used first to assign clients to weeks, and then to assign them to a day within the selected
week. A variant of the classical VRP was finally solved for each day using a three-phase
adaptive large-neighborhood search. This algorithm was applied in a case study for a hygiene
service company performing more than 69 951 visits for 6000 clients over 12 weeks, leading
to significant practical savings.

Liu et al. (2013) studied a PVRP for home health care in which three types of patients require
services. The primary objective was to reach equity by minimizing the maximum route time
for all vehicle routes over the week. The solution method combined tabu search and local
search. Liu et al. (2020) balanced the workload among routes for a periodic home health
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care assignment problem by partitioning the service area into regions. Finally, Schönberger
(2016) set upper bounds on route duration to ensure daily workload balance in a multi-period
VRP.

Ribeiro and Lourenço (2001) was, to our knowledge, one of the very few studies considering
a multi-period VRP in which equity is evaluated over multiple periods. The problem is
solved with a weighted sum objective considering cost, equity, and market share. The equity
objective minimizes the standard deviation of the workloads over many periods, where the
workload corresponds to the demand served by each driver. Small instances were solved with
a commercial solver. Huang et al. (2019) studied a PVRP for which the objective function
minimizes the total workload of all drivers, and the maximum workload difference between
two drivers cannot exceed a threshold. The equity metric, in this case, corresponds to the
sum of travel and service times. The results show that workload equity among drivers can
be achieved at a reasonable cost. Finally, Mancini et al. (2021) recently considered workload
balance and service consistency in a collaborative multi-period VRP, where the number of
clients assigned to a carrier over the planning horizon is constrained. They also examined
how workload balance and service consistency impact the total solution cost.

As seen in this review, very few studies have focused on multi-period VRPs that account
for equity, and even fewer studies have considered equity over multiple periods. The present
study fills this critical methodological gap. It proposes a simple solution approach for an
equitable vehicle routing problem defined over multiple periods, and analyses the resulting
equity depending on the planning horizon.

4.3 Problem Statement

The MVRPB can be formally defined on a complete graph G = (V , E), where V is the
set of vertices and E is the set of edges. Let V = {0} ∪ C, where C is a set of vertices
representing clients and vertex 0 is the depot. The cost dij corresponds to the length of edge
(i, j) ∈ E representing a direct trip from i to j. For simplicity, we assume that all distances
dij are integer. Each client i ∈ C is characterized by a list of visit days (i.e., periods) within
a planning horizon of T periods and by a demand quantity qti on each of these days (i.e.,
demand quantities can differ between days). Finally, m drivers are available through the
planning horizon to perform the visits, and we are given an unlimited fleet of homogeneous
vehicles with capacity Q located at the depot.

Solving the MVRPB amounts to finding routes for each day in such a way that (i) each
client is visited on each requested day, (ii) each route for a given day is assigned to a single
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driver, (iii) no driver operates more than one route in a day, and (iv) no route exceeds the
vehicle capacity. Note that drivers may not necessarily work during each day of the planning
horizon. The objectives are to optimize distance and balance the drivers’ workloads over the
planning horizon.

Matl et al. (2018) discussed different equity metrics (e.g., travel time, distance, demand
quantity served, number of clients) and equity measures (e.g., the maximum workload of a
driver, the difference between the smallest and largest workloads, and the standard deviation
of workloads). In this work, we focus on distance-based workload equity among drivers.
Therefore, the workload of a driver is the total distance traveled by the driver over the
planning horizon. We use the Min-Max equity measure, which aims to achieve equity by
minimizing the maximum total distance of the routes traveled by any driver over the planning
horizon.

4.4 Solution Approach

To solve the MVRPB, we design a two-phase solution approach. As seen in the remainder
of this section, our approach follows a hierarchical objective: it first guarantees a routing
solution with minimum cost (i.e., with minimum total distance over the planning horizon)
and then maximizes workload balance. This permits us to evaluate the extent to which
workload equity can be ensured over a longer planning horizon without sacrificing economic
efficiency. Moreover, as seen in the following, the optimal routes found in the first phase will
permit us to calculate a bound on the best possible workload equity for any solution.

Our method unfolds in two stages. Firstly, it solves a CVRP for each period considering
only the deliveries of this period and minimizing cost (total distance). Then, it solves an
allocation problem to assign routes to drivers on each period, intending to optimize workload
balance. The remainder of this section details the techniques designed to perform each step
efficiently.

4.4.1 First Phase – Distance Optimization

The first phase consists of solving one CVRP per period t ∈ T to obtain high-quality routing
plans minimizing distance. We rely on mixed-integer linear programming (MILP) techniques
to solve these problems. We first present a compact mathematical formulation of the problem
and then discuss its solution by branch-and-price.

Table 4.1 summarizes the notations used in the mathematical models. For each period t, the
resulting CVRPt subproblem can be mathematically formulated using a three-index undi-
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Table 4.1 Notations used in the mathematical programs
Sets C Set of clients

E Set of edges
V Set of nodes, V = C ∪ {0}
Ct Set of clients in period t ∈ T
Et Set of edges in period t ∈ T
Vt Set of vertices in period t ∈ T , Vt = Ct ∪ {0}
Rt Set of routes in period t ∈ T

Parameters T Number of time periods
m Number of drivers (i.e., maximum number of vehicle routes in each period)
Q Capacity of each vehicle
qti Demand of client i ∈ Ct in period t ∈ T
dij Distance of edge (i, j) ∈ E

Variables yir Binary variable equal to 1 if client i is on route r, i ∈ C, r ∈ Rt.
xijr Binary variable equal to 1 if edge (i, j) ∈ E is on route r, i, j ∈ V , r ∈ Rt.

rected formulation, as in Baldacci et al. (2010). In this formulation, the cut set for any
S ⊆ Ct is defined as δ(S) = {(i, j) ∈ Et : i ∈ S, j /∈ S or i /∈ S, j ∈ S}:

(CV RPt) min
m∑
r=1

∑
(i,j)∈Et

dijxijr (4.1)

s.t.
m∑
r=1

yir = 1 i ∈ Ct (4.2)
∑
i∈Ct

qtiyir ≤ Q r ∈ {1, . . . ,m} (4.3)
∑

(i,j)∈δ({i})
xijr = 2yir i ∈ Ct, r ∈ {1, . . . ,m} (4.4)

∑
(i,j)∈δ(S)

xijr ≥ yir S ⊆ Ct : |S| ≥ 2, i ∈ S, r ∈ {1, . . . ,m} (4.5)

xijr ∈ {0, 1} (i, j) ∈ Et\{(0, j) : j ∈ Ct}, r ∈ {1, . . . ,m} (4.6)

x0jr ∈ {0, 1, 2} j ∈ Ct, r ∈ {1, . . . ,m} (4.7)

yir ∈ {0, 1} i ∈ Ct, r ∈ {1, . . . ,m} (4.8)

Objective (4.1) minimizes the total routing cost. Constraints (4.2) force each client to be
served by exactly one route. Constraints (4.3) ensure that capacity constraints are respected.
Constraints (4.4) are flow-conservation constraints for the routes that also link the x and
y variables. Constraints (4.5) are the sub-tour-elimination constraints. These constraints
guarantee that each route contains the depot.

Previous studies on integer programming approaches for the CVRP indicate that directly
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solving Model (4.1–4.8) is ineffective for medium instances with more than a few dozen
clients and that combining cuts and column generation generally provides better results.
Accordingly, we exploit the VRPSolver framework (Pessoa et al., 2020) for an efficient solution
to this problem. This solver provides a generic branch-and-cut-and-price (BCP) framework
for many classes of MILPs, including, among others, the considered problem setting. It has
achieved a competitive or superior performance on standard test instances when compared
with specialized VRP algorithms and is currently available at https://vrpsolver.math.
u-bordeaux.fr/.

This algorithmic framework relies on the solution of successive pricing subproblems that
take the form of resource-constrained shortest paths (RCSPs) on a path-generator graph
(VRPGraph). A bidirectional-labeling dynamic programming algorithm is then used to solve
the RCSPs. VRPSolver relies on the concept of packing sets to generalize well-known cuts.
Essentially, a packing set is a subset of arcs such that at most one arc from the given
subset appears in the paths that are part of an optimal solution. Packing sets are defined in
accordance with the application considered and the associated model. In our specific case,
the packing sets represent limited memory rank-1 cuts (a generalization of the subset row cuts
– Jepsen et al. 2008) and rounded capacity cuts (Laporte and Nobert, 1983). The branching
rule in VRPSolver is based on accumulated resource consumption and, if needed to enforce
integrality, on a generalization of the branching rule of Ryan and Foster (1981).

Finally, the performance of VRPSolver depends on the availability of a good initial upper
bound (UB) to limit the search. To find such an initial solution and bound, we use the hybrid
genetic search (HGS – Vidal et al. 2012; Vidal 2022), a state-of-the-art metaheuristic for the
CVRP. HGS could be used as a stand-alone approach for the first phase in time-critical
applications, or if the scale of the problems becomes too large for an exact solution. Still,
we opted to additionally rely on the exact algorithm in this phase, as this will allow us to
obtain lower bounds on the best achievable workload equity (see next section).

4.4.2 Second Phase – Equitable Workload Allocation

The second phase of the algorithm takes as input the solution R∗ found in the previous
phase, represented as the set of optimal routes R∗t for each period. It seeks to achieve a fair
distribution of these routes among m identical drivers. In this stage, we use a Min-Max
objective to minimize the maximum workload of any driver (i.e., the maximum total distance
driven by a driver over all periods).

https://vrpsolver.math.u-bordeaux.fr/
https://vrpsolver.math.u-bordeaux.fr/
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MILP formulation and bounds

This allocation problem can also be mathematically formulated as a MILP. Let dr represent
the distance driven on each route r ∈ R∗t found in the first phase, and let ztrk be a binary
variable equal to 1 if route r is assigned to driver k in time period t. Finally, let ∆ be a
continuous variable capturing the maximum distance for a driver over the planning horizon.
The best possible workload equity for the considered set of routes can be found by solving
the following model:

min ∆ (4.9)

s.t.
T∑
t=1

∑
r∈R∗

t

drz
t
rk ≤ ∆ k ∈ {1, . . . ,m} (4.10)

∑
r∈R∗

t

ztrk ≤ 1 t ∈ {1, . . . , T}, k ∈ {1, . . . ,m} (4.11)

m∑
k=1

ztrk = 1 t ∈ {1, . . . , T}, r ∈ R∗t (4.12)

ztrk ∈ {0, 1} t ∈ {1, . . . , T}, r ∈ R∗t , k ∈ {1, . . . ,m} (4.13)

∆ ∈ R+. (4.14)

Objective (4.9) and Constraints (4.10) model the minimization of the maximum workload
over all drivers. Constraints (4.11) ensure that each driver serves at most one route in each
period, whereas Constraints (4.12) ensure that each route is assigned to exactly one driver
in each period. Finally, Constraints (4.13) and (4.14) define the domain of the decision
variables. Note that the inequality in Constraints (4.11) can be replaced by an equality if
the number of drivers matches the number of routes found in the first phase in any given
period t. The resulting formulation can be viewed as a variant of the bin packing problem
(BPP) with conflicts (Capua et al., 2018).

Let ∆opt(R) be the optimal workload produced by solving the allocation problem for a given
first-phase routing solution R, and let D(R) be the total distance of all routes of a solution
R over all periods. The following bounds are valid:

Property 1 The best possible workload allocation for a routing solution R is such that

∆opt(R) ≥
⌈
D(R)
m

⌉
. (4.15)

Proof. The proof directly derives from the formulation of the assignment problem. Summing
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Constraint (4.10) over k ∈ {1, . . . ,m} gives:

m∑
k=1

T∑
t=1

∑
r∈Rt

drz
t
rk ≤ m∆opt(R). (4.16)

Next, using Equation (4.12) leads to:

T∑
t=1

∑
r∈Rt

dr ≤ m∆opt(R) =⇒ ∆opt(R) ≥ D(R)
m

(4.17)

Finally, since the distances dij are integer, then ∆opt(R) is also an integer, and the right-hand
side of the inequality can be rounded up, giving the announced result.

Property 2 Let ∆opt be the best possible workload equity achievable in any solution of the
MVRPB (including first-stage solutions that are not optimal in terms of distance), then:

∆opt ≥
⌈
D(R∗)
m

⌉
. (4.18)

Proof. As a consequence of Property 1, the best possible workload equity over all possible
routing solutions R satisfies the following relation:

∆opt = min
R

∆opt(R) ≥ min
R

⌈
D(R)
m

⌉
=
⌈

minRD(R)
m

⌉
=
⌈
D(R∗)
m

⌉
. (4.19)

This relation gives us a lower bound LB = dD(R∗)/me, which permits us to evaluate how far
our MVRPB solutions are from the best possible workload equity, calculated by assuming that
the total amount of workload from distance-optimal routing solutions is evenly distributed
among drivers. It is important to remark that ∆opt can be smaller than ∆opt(R∗) since the
best workload balance over multiple periods can involve routes that do not belong to any
optimal CVRP solution of a given period. In contrast, the bound announced in Property 2
holds for any MVRPB solution.

Set-partitioning reformulation and solution approach

A direct solution of Formulation (4.9–4.14) using standard MILP solvers such as CPLEX is
ineffective. This is partly due to symmetry, given that all drivers are considered identical,
and renumbering them produces equivalent solutions. One way to circumvent this issue is to
solve this problem as a sequence of set-partitioning feasibility problems for different values
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of ∆ as defined in Model (4.20–4.22).

∑
σ∈Ω∆

λσ = m (4.20)

∑
σ∈Ω∆

aσrλσ = 1 t ∈ {1, . . . , T}, r ∈ R∗t (4.21)

λσ ∈ {0, 1} σ ∈ Ω∆ (4.22)

In this formulation, each element σ ∈ Ω∆ represents an admissible combination of routes
(i.e., a schedule) that a driver can operate over the planning horizon without exceeding a
workload of ∆. Each constant aσr takes value 1 if and only if r belongs to σ. Each binary
variable λσ takes value 1 if this schedule is selected for one driver. Constraints (4.20) ensure
that work schedules are created for the m drivers, and Constraints (4.21) ensure that each
route appears exactly in one schedule.

Binary search strategy. Finding a feasible solution of Model (4.20–4.22) for a given ∆
means that there exists a feasible allocation of the routes to drivers in such a way that the
maximum workload over the planning horizon does not exceed ∆. Therefore, the optimal
workload balance is such that ∆opt(R∗) ≤ ∆. In contrast, proving that this model is infeasible
would imply that ∆opt(R∗) > ∆.

With this, we develop a strategy based on a binary search to locate ∆opt(R∗). Initially, we
start with ∆ = LB =

⌈
D(R∗)
m

⌉
and solve Model (4.20–4.22). If this model is feasible, then we

have attained the best possible workload equity. Otherwise, this means there is no solution
with a workload balance of ∆ =

⌈
D(R∗)
m

⌉
. In this case, we use a construction heuristic to

find an initial feasible solution and therefore an upper bound (UB) value for ∆. This heuristic
consists in ordering the items (i.e., all the routes over the planning horizon) by decreasing
workload (distance) and then following this order to insert them iteratively into a compatible
bin (i.e., a driver that does not operate a route on that day) that has the current smallest
workload. At this point, we have a range for the optimum (integer) value and locate it by
binary search, using Model (4.20–4.22) to determine feasibility at each step. This process
stops when the model for ∆opt(R∗)− 1 is infeasible and the model for ∆opt(R∗) is feasible.

Solution of each subproblem. Model (4.20–4.22) contains an exponential number of
variables σ ∈ Ω∆, therefore a direct solution approach is impractical. To solve this problem,
we rely once again on the branch-and-price framework provided by VRPSolver. Pessoa
et al. (2021) provides adaptations of VRPSolver to the classical BPP and other variants
such as vector packing, variable-sized BPP, and variable-sized BPP with optional items. To
solve our problem with VRPSolver, we essentially need to redefine the path-generator graph
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(VRPGraph).

Figure 4.1 represents the VRPGraph for the classical BPP, assuming that I items need to
be packed. Each node in this graph corresponds to one item, except node v0, representing a
starting point. Item i of weight wi is loaded in the bin each time we use arc ai+ along the
path from the start node to the end node (conversely, item i is not loaded in the bin if arc
ai− is used). Next, each path generated in this graph that does not exceed the bin capacity
defines a new packing (column) for the column-generation algorithm. Capacity is the only
resource consumed in VRPGraph, and a packing set is made of a subset of arcs with nonzero
consumption of the resource.

v0 v1 v2 v3 vI−1 vI

a1+

a1−

a2+

a2−

a3+

a3−

. . .

aI+

aI−

Figure 4.1 Path-generator graph for the BPP.

Figure 4.2 provides an adapted path-generator graph for Problem (4.20–4.22). In this graph,
nodes correspond to periods, except the first node P0, which represents a starting point. An
arc of type aij+ then goes from Pi−1 to Pi for each possible route j ∈ {1, 2, 3, . . . , ni} in
period Pi, where ni is the number of routes in period Pi. If one of these parallel arcs is
used, the corresponding route is assigned to the driver and contributes to the driver’s total
workload (total distance limited to ∆, which stands as the bin’s capacity). An arc of type ai−
is also available to represent the possibility of assigning no route to the driver in period Pi.
With these conventions, a path from the start node to the end node that does not exceed the
workload limit ∆ corresponds to a feasible assignment of routes to a driver over the planning
horizon.

P0 P1 P2 P3 P4 P5

a11+

a12+
. . .

a1n1+

a1−

a21+

a22+
. . .

a2n2+

a2−

a31+

a32+
. . .

a3n3+

a3−

a41+

a42+
. . .

a4n4+

a4−

a51+

a52+
. . .

a5n5+

a5−

Figure 4.2 Path-generator graph for the second-stage model.

We use the standard parameter setting of VRPSolver with just a minor modification to its
diving heuristic. VRPSolver typically uses a diving heuristic before branching to improve
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the primal solution (Sadykov et al., 2019), but only at the root node. In contrast, our
implementation allows strong diving at each node to quickly locate feasible solutions. If such
a solution is found, then the solver can be immediately stopped since the model is known to
be feasible.

In general, VRP solver uses heuristic pricing during diving. When we use strong diving at
each node, VRPSolver would be able to confirm that the feasibility problem (BPP) is feasible
in a few seconds, by showing that the LB is equal to the upper bound (number of available
bins).

4.5 Computational Study

The goal of our experimental study is twofold: (i) evaluating the performance of the pro-
posed solution approach and especially the computational effort needed for each of its steps,
and (ii) measuring to which extent workload equity can be achieved over multiple periods
without sacrificing economic efficiency, by simply allocating cost-optimal routes to drivers in
an equitable fashion as done in our two-phases approach.

Our experiments are conducted on a 2.4GHz Intel Gold 6148 Skylake processor with 8GB of
RAM. The VRPSolver interface is implemented in Julia v1.4.2 with JuMP v0.18. VRPSolver
uses BaPCod, a C++ library for implementing a generic BCP, and CPLEX 12.8 to solve the
linear and mixed-integer linear programs. All experiments have been conducted on a single
thread.

4.5.1 Test Instances

To construct test instances for the MVRPB, we rely on a subset of the CVRP instances
of Uchoa et al. (2017), as they include diverse characteristics: distribution and number of
clients, depots locations, and average route length. The complete set contains 100 Euclidean
instances with 100 to 1000 clients. The distances are rounded to the nearest integer as in the
original instances.

Since the MVRPB is defined in a multi-period context, we had to modify the original in-
stances. Therefore, we selected the instances X-n200-k36, X-n204-k19, X-n209-k16, X-n214-
k11, X-n219-k73, X-n223-k34, X-n228-k23, X-n233-k16, X-n237-k14, and X-n242-k48 includ-
ing between 199 and 241 clients from Uchoa et al. (2017). We generated three different
10-period MVRPB configurations for each of these ten instances by randomly selecting 50,
75, or 100 clients in each period. Finally, for each period and client with demand d in the
original instance, we randomly selected a new demand realization from a uniform integer
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distribution in {d0.5 × de . . . , d1.5 × de}. This way, clients can have different demands at
different periods. We repeated this generation (customers and demands selection) ten times
for each configuration, leading to 10 × 3 × 10 = 300 MVRPB instances defined over 10 pe-
riods. Finally, to obtain instances with fewer periods T ∈ {2, 3, 5, 7}, we retained the first
T periods of each 10-period instance. The number of drivers in each 10-period instance was
set to the maximum number of routes from optimal CVRP solutions over the ten periods.
Consequently, some drivers may be idle for a given period. The number of drivers in the 2-,
3-, 5-, and 7-period instances is kept identical to the number of drivers in the corresponding
10-period instance.

4.5.2 Computational Performance

We first evaluate the performance of each of the two steps of the proposed approach: the
computational effort needed to find optimal CVRP solutions in each period, and the effort
to find an equitable workload allocation in the second step. We refer to these steps as (1)
route optimization and (2) multi-period workload balancing.

Route optimization. Tables 4.2 to 4.4 report the performance of the route-optimization
step for the 10-period instances with 50, 75, and 100 clients in each period. For brevity, the
results are presented in aggregated form, with one line for each original instance of Uchoa
et al. (2017), by averaging over the 10 corresponding MVRPB instances and 10 periods.
From left to right, the columns report the names of the associated original instances, the
average traveled distance per period in the solutions found by HGS and VRPSolver, the
average computational time of these two methods, and finally, the number #k of drivers.

Table 4.2 Performance of the route-optimization step, for MVRPB instances with 50 clients
per period

Instance Distance T(s) #k
HGS VRPSolver HGS VRPSolver

X-n200-k36 16284.45 16281.48 15.8 614.1 10.0
X-n204-k19 7200.85 7200.85 14.0 7.8 5.3
X-n209-k16 9699.69 9699.69 14.2 14.2 4.8
X-n214-k11 3782.88 3782.88 14.2 52.1 3.4
X-n219-k73 28562.15 28562.15 13.4 2.3 17.0
X-n223-k34 11464.69 11464.17 13.1 7.3 9.5
X-n228-k23 7652.85 7652.72 14.1 25.5 7.3
X-n233-k16 6704.64 6704.64 12.8 12.9 4.5
X-n237-k14 7980.45 7980.45 13.1 31.4 3.0
X-n242-k48 19970.99 19970.05 15.0 7.6 12.1
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Table 4.3 Performance of the route-optimization step, for MVRPB instances with 75 clients
per period

Instance Distance T(s) #k
HGS VRPSolver HGS VRPSolver

X-n200-k36 23388.65 23379.47 28.7 185.5 14.7
X-n204-k19 9294.97 9294.97 22.0 31.6 7.9
X-n209-k16 13272.78 13272.68 24.5 60.1 6.6
X-n214-k11 4881.22 4881.20 25.2 268.2 5.0
X-n219-k73 41826.76 41826.76 20.3 2.8 25.0
X-n223-k34 16035.39 16034.47 20.8 23.4 13.3
X-n228-k23 10379.97 10379.84 21.8 239.4 10.2
X-n233-k16 8480.25 8479.83 19.6 253.3 6.3
X-n237-k14 10870.43 10870.43 21.7 34.9 5.0
X-n242-k48 28644.96 28640.61 27.3 123.6 17.2

Table 4.4 Performance of the route-optimization step, for MVRPB instances with 100 clients
per period

Instance Distance T(s) #k
HGS VRPSolver HGS VRPSolver

X-n200-k36 30780.50 30758.06 47.6 979.1 19.6
X-n204-k19 11535.58 11534.75 32.5 470.4 10.0
X-n209-k16 16724.49 16722.15 39.9 420.6 8.3
X-n214-k11 6076.82 6076.64 39.2 1041.6 6.1
X-n219-k73 55473.58 55473.58 27.6 2.7 34.0
X-n223-k34 20522.69 20519.90 31.8 69.3 17.1
X-n228-k23 12888.06 12887.60 32.2 950.6 12.5
X-n233-k16 10288.46 10287.92 27.0 1296.1 8.0
X-n237-k14 13518.71 13518.58 35.0 697.4 6.0
X-n242-k48 37262.13 37247.82 40.9 324.4 22.4
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As seen in these experiments, the computational time used by VRPSolver to optimally solve
the underlying CVRP problem for each period is generally small, with a median value of 25.0
seconds. However, on a handful of cases, the computational time may be long, reaching 12.8
hours in the worst case (one exceptional case in 3 000 CVRP single-period sub-problems).
In contrast, HGS has a more controllable computational time, ranging from 11.4 seconds
to 2.43 minutes, with a median value of 21.8 seconds. We observe that the initial solutions
found by HGS were almost optimal in terms of their distance, with an average distance
over all instances of 16715.0 compared to 16712.9 for VRPSolver, i.e., with an average gap
error of only 0.013% from optimal solution values. Given this, we recommend using HGS
as the underlying solution approach for the route optimization step in practical time-critical
applications. In the context of this study, we decided to complete the solution process to
achieve proven optima with VRPSolver, as this will subsequently permit us to derive bounds
on the best possible workload balance through Equation (4.18).

Finally, we must observe that the problems associated with each period are independent, such
that it is possible to solve them in parallel. We used this observation in our experiments, as
the multi-core structure of our processor permitted us to independently solve the CVRPs as-
sociated with each period on a different core, therefore maximizing our utilization of available
computational resources and reducing the total time needed to conduct our experiments.

Multi-period workload balancing. In the workload balancing step, the routes of the
optimal CVRP solution for each period are assigned to drivers to minimize the maximum
(Min-Max) total distance traveled by each driver over the entire planning horizon. We build
our analysis on three key workload measurements:

• UB – The initial workload produced by the constructive approach described in Sec-
tion 4.4.2. The workload corresponds to the largest total distance for a driver over the
entire planning horizon.

• Opt – The optimal workload obtained after completing the binary search.
• LB – The lower bound of Equation (4.18), which assumed that distance is optimal and

workload equity is perfect (often this does not match a practical solution).

Tables 4.5 to 4.7 report the workload values of UB, Opt, and LB for the different instances,
with a varying number of periods and with 50, 75, and 100 clients in each period, respectively.
Each line in the tables corresponds to an average value over ten different MVRPB instances.
These tables also indicate the average number of binary-search operations in our algorithm
and the average solution time.



Table 4.5 Performance of the multi-period workload balancing step – MVRPB instances with 50 clients per period
Tests 2 periods 3 periods 5 periods 7 periods 10 periods

LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s)
X-n200-k36 3199.6 3551.5 3551.5 10.0 6.46 4858.2 5291.1 5033.9 9.7 7.18 8084.7 8630.9 8090.3 10.0 56.35 11372.8 11989.7 11372.8 1.0 8.47 16274.3 16907.1 16274.5 3.0 279.05
X-n204-k19 2735.3 3185.4 3185.4 10.1 6.54 4107.5 4570.4 4320.7 9.8 6.80 6810.6 7095.7 6822.5 9.1 5.82 9584.2 9721.3 9585.0 7.0 18.75 13663.1 13883.5 13663.1 1.0 9.39
X-n209-k16 4077.9 4846.0 4846.0 11.0 6.65 6167.3 7088.4 6421.1 10.9 7.36 10276.2 10574.6 10304.9 9.1 5.78 14297.5 14690.3 14300.5 9.4 23.59 20353.8 20725.2 20353.8 1.0 8.15
X-n214-k11 2256.0 2644.0 2644.0 10.1 6.39 3403.7 3643.4 3546.0 8.9 5.98 5608.7 5886.0 5652.8 9.2 5.89 7939.2 8186.8 7946.5 8.7 14.93 11333.4 11498.9 11333.5 1.6 8.62
X-n219-k73 3378.8 3696.6 3696.6 9.9 6.68 5012.3 5469.3 5035.8 9.9 6.03 8377.7 8650.5 8377.7 1.0 740.10 11778.3 12115.5 11778.3 2.2 17.72 16801.8 17059.7 16801.8 1.0 23.96
X-n223-k34 2436.9 2909.9 2909.9 10.3 6.19 3630.5 4052.6 3708.1 9.6 5.34 5991.6 6285.4 5994.4 9.3 49.34 8438.0 8702.3 8438.0 1.0 7.77 12101.1 12276.0 12101.2 1.7 439.17
X-n228-k23 2084.1 2705.4 2705.4 10.7 6.30 3156.1 3665.2 3412.0 10.0 4.98 5254.3 5650.0 5271.0 9.3 12.61 7291.4 7592.9 7291.5 1.9 11.91 10513.6 10815.5 10513.6 1.3 9.87
X-n233-k16 2998.2 3541.6 3541.6 10.5 6.73 4524.8 5116.2 4785.1 9.9 6.18 7560.4 8115.5 7594.1 9.7 6.62 10527.6 11028.3 10530.8 9.8 20.70 15072.1 15367.5 15072.1 1.0 7.69
X-n237-k14 5336.4 5718.7 5718.7 9.7 6.39 7995.7 8451.0 8196.9 9.9 5.63 13326.9 13647.9 13384.9 8.4 6.71 18636.1 18856.6 18646.0 8.2 8.15 26601.9 26985.1 26602.1 2.6 8.58
X-n242-k48 3329.5 3875.0 3875.0 10.6 6.71 4957.2 5583.6 5063.6 10.2 5.53 8224.7 8669.3 8226.3 9.7 52.25 11365.1 11899.5 11509.3 2.1 10.54 16527.5 16799.3 16527.5 1.0 18.65

Ave. 3183.3 3667.4 3667.4 10.3 6.50 4781.3 5293.1 4952.3 9.9 6.10 7951.6 8320.6 7971.9 8.5 94.15 11123.0 11478.3 11139.9 5.1 14.25 15924.3 16231.8 15924.3 1.5 81.31

Table 4.6 Performance of the multi-period workload balancing step – MVRPB instances with 75 clients per period
Tests 2 periods 3 periods 5 periods 7 periods 10 periods

LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s)
X-n200-k36 3201.3 3463.1 3463.1 9.6 6.67 4788.9 5201.0 4916.3 9.8 7.60 7954.8 8459.4 7955.3 6.0 23.64 11132.6 11608.2 11132.6 1.0 11.97 15919.8 16472.8 15919.8 1.0 20.89
X-n204-k19 2345.8 2695.6 2695.6 9.8 6.78 3540.7 3841.5 3622.5 9.4 6.78 5895.7 6219.6 5898.7 9.6 27.47 8257.0 8633.6 8257.0 1.0 7.93 11786.4 11941.7 11786.4 1.0 13.86
X-n209-k16 4089.0 4606.9 4606.9 10.4 6.62 6136.5 6724.1 6284.7 10.1 6.68 10188.3 10686.7 10196.7 9.9 16.26 14216.4 14493.9 14216.8 4.2 22.23 20224.5 20496.7 20224.5 1.0 15.97
X-n214-k11 1951.2 2292.2 2292.2 9.7 6.29 2918.5 3289.1 3090.3 9.7 6.40 4846.5 5115.8 4859.4 9.1 8.21 6805.0 7026.2 6805.5 5.1 13.41 9762.8 9945.0 9762.8 1.0 9.21
X-n219-k73 3349.5 3604.7 3604.7 9.6 7.28 5002.9 5498.0 5014.2 9.7 11.77 8337.8 8553.9 8337.9 1.8 1705.40 11696.1 11979.5 11696.1 1.0 20.36 16731.2 17034.0 16731.3 1.9 52.37
X-n223-k34 2424.1 2770.6 2770.6 9.9 6.71 3604.4 3978.5 3653.8 9.5 7.57 5983.5 6219.6 5984.0 5.2 132.47 8404.2 8601.1 8404.2 1.0 10.84 12071.3 12249.7 12071.3 1.0 22.66
X-n228-k23 2033.6 2466.4 2462.6 10.0 6.82 3053.9 3622.9 3188.7 10.1 7.28 5017.0 5348.4 5020.6 9.7 51.00 7103.5 7431.2 7103.5 1.0 7.72 10217.8 10484.5 10217.8 1.0 17.36
X-n233-k16 2709.8 3103.9 3103.9 10.0 6.62 4055.7 4570.3 4251.0 9.9 7.38 6818.4 7142.7 6827.9 9.5 11.17 9532.3 9847.3 9532.4 1.9 11.33 13525.2 13792.1 13525.2 1.0 13.70
X-n237-k14 4313.7 5148.3 5148.3 11.1 7.14 6472.5 7475.0 6965.4 10.9 7.04 10835.0 11452.6 10854.5 9.2 7.68 15187.6 15520.8 15189.3 9.4 20.20 21741.2 21826.9 21741.2 1.0 8.68
X-n242-k48 3411.4 3886.9 3886.9 10.4 6.97 5107.4 5707.5 5171.3 10.1 8.16 8470.0 8984.9 8470.2 2.8 194.67 11752.5 12041.8 11752.5 1.0 12.82 16658.9 16882.6 16658.9 1.0 22.91

Ave. 2982.9 3403.9 3403.5 10.1 6.79 4468.1 4990.8 4615.8 9.9 7.67 7434.7 7818.4 7440.5 7.3 217.80 10408.7 10718.4 10409.0 2.7 13.88 14863.9 15112.6 14863.9 1.1 19.76

Table 4.7 Performance of the multi-period workload balancing step – MVRPB instances with 100 clients per period
Tests 2 periods 3 periods 5 periods 7 periods 10 periods

LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s) LB UB Opt #It T(s)
X-n200-k36 3161.3 3439.1 3407.4 9.4 7.61 4727.0 5311.2 4834.0 10.0 8.86 7865.5 8477.5 7865.5 1.0 76.79 10982.5 11470.7 10982.5 1.0 13.99 15703.2 16244.7 15703.2 1.0 25.56
X-n204-k19 2309.4 2607.1 2607.1 9.6 7.21 3460.6 3731.8 3507.1 9.1 7.99 5763.0 6048.3 5764.1 9.5 90.53 8071.2 8337.0 8071.2 1.0 10.42 11527.4 11775.4 11527.4 1.0 12.66
X-n209-k16 4043.6 4448.2 4448.2 10.1 8.00 6062.4 6610.1 6173.2 10.1 6.33 10137.2 10570.4 10140.8 9.8 35.44 14176.1 14523.5 14176.1 1.0 8.28 20204.7 20512.9 20204.7 1.0 11.06
X-n214-k11 1969.8 2176.2 2176.2 9.2 7.96 2967.3 3311.4 3053.0 9.2 5.91 4987.2 5239.6 4994.1 8.9 10.83 7026.2 7299.6 7026.4 2.5 10.80 9986.3 10105.7 9986.3 1.0 9.27
X-n219-k73 3239.3 3486.3 3486.3 9.5 7.36 4879.9 5296.2 4886.1 9.8 21.87 8159.9 8477.6 8159.9 1.0 15.04 11397.0 11765.1 11397.0 1.0 31.32 16316.2 16654.4 16316.2 1.0 102.17
X-n223-k34 2384.1 2708.7 2708.7 9.7 6.95 3603.1 3871.1 3631.7 9.1 9.55 6054.6 6243.3 6054.6 1.0 433.94 8413.6 8631.7 8413.6 1.0 12.68 12001.9 12232.6 12001.9 1.0 20.40
X-n228-k23 2012.2 2479.0 2479.0 10.3 7.32 3064.6 3598.2 3180.6 10.0 8.19 5112.6 5417.1 5114.5 7.4 29.32 7169.0 7410.0 7169.0 1.0 9.67 10325.3 10654.1 10325.3 1.0 12.57
X-n233-k16 2524.4 2955.2 2923.2 10.0 7.58 3754.3 4308.4 3885.5 10.0 7.79 6307.1 6874.5 6310.2 9.9 28.01 8849.7 9410.8 8849.7 1.0 11.70 12602.4 12996.6 12602.4 1.0 10.34
X-n237-k14 4487.4 4942.2 4942.2 10.3 7.41 6733.5 7343.4 6919.2 10.3 7.22 11209.6 11801.3 11218.6 10.1 11.40 15710.0 15927.3 15710.3 3.4 14.09 22531.5 22764.5 22531.5 1.0 9.66
X-n242-k48 3386.4 3832.8 3832.8 10.3 7.17 5049.7 5545.3 5072.4 9.8 10.15 8254.0 8804.4 8254.0 1.0 1467.53 11637.7 12000.6 11637.9 2.9 552.76 16633.5 16834.3 16633.5 1.0 32.24

Ave. 2951.8 3307.5 3301.1 9.8 7.46 4430.2 4892.7 4514.3 9.7 9.39 7385.1 7795.4 7387.6 6.0 219.88 10343.3 10677.6 10343.4 1.6 67.57 14783.2 15077.5 14783.2 1.0 24.59

41
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As seen in these experiments, only a few seconds are required in most cases to complete
an optimal multi-period workload balancing step. This confirms the efficiency of our two-
stage solution approach. Generally, instances involving a larger number of routes and drivers
(e.g., X-n219-k73) lead to more complex workload balancing problems. Again, there is also
inherent variability due to the exact solution process, given that MILP approaches can exhibit
substantially different computation times when solving instances of similar sizes. Overall, the
computational time of the second step ranges from 4.40 to 7600.99 seconds with a median
value of 8.53 seconds.

The workload allocation created by the initial construction approach (described in Sec-
tion 4.4.2) is optimal (i.e., UB = Opt) for 298 out of 300 MVRPB instances with 2 periods,
as well as for 15 out of 300 MVRPB instances with 3 periods. In contrast, as soon as the
number of periods becomes greater than five, the initial construction approach is unlikely
to lead to the best possible workload allocation, and the underlying mathematical model
produces much better solutions.

When the planning horizon contains five days or more, we frequently notice cases of “per-
fect” workload equity, where the obtained workload balance matches the theoretical lower
bound (i.e., Opt = LB). The ability to achieve perfect balance comes as a consequence of
the increased number of possible assignment solutions, which grows exponentially with the
number of periods. In practice, in cases with five periods or more, it is sufficient to focus
on cost-optimal routing solutions and to create equitable workloads by careful assignment.
Finally, as our binary search strategy includes a first step to verify if a solution with perfect
balance exists, all the cases for which perfect balance is possible are solved in a single call to
the feasibility subproblem. In the other cases, it generally takes between 7 to 11 steps.

4.5.3 Planning-Horizon Length and Workload Equity

The previous section showed that near-perfect workload equity is achievable, in practice,
for planning horizons with at least five periods. To visualize more clearly the impact of
the number of periods over workload equity, Figure 4.3 provides additional boxplot repre-
sentations of the Gap(%) between the ideal workload (LB from Equation (4.18)) and the
optimal solution value (Opt) of our two-phases approach. We used the following calculation:
Gap = 100 × (Opt − LB)/LB. We provide separate plots for the cases with 50, 75, or 100
customers per period. Each boxplot corresponds to the data of a given planning horizon
with T ∈ {2, 3, 5, 7, 10} periods, therefore gathering gap measurements from 100 instances.
The whiskers indicate the minimum, first quartile (Q1), median, third quartile (Q3), and
maximum. The minimum corresponds to Q1− 1.5× interquartile range, while the maximum
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corresponds to Q3 + 1.5 × interquartile range. Outliers that fall beyond the minimum and
maximum range are additionally depicted as small circles.
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Figure 4.3 Convergence of Opt toward LB as the number of periods increases for instances
with 50, 75, and 100 clients in each period.

These boxplots give another viewpoint on the convergence toward the best possible equity
as the number of periods increases. In the vast majority of the cases (excluding a few
outliers), a planning horizon of five days is sufficient to find equitable solutions with workload
discrepancies below 1% between drivers. In these situations, there is no need to seek a trade-
off between routing costs and workload equity since optimal routing solutions can be used to
achieve equity. Another benefit of our two-stage approach is its flexibility since additional
constraints, decisions, and objectives (i.e., routing attributes – Vidal et al. 2013) only need
to be integrated with the first phase of the solution approach.

Finally, in the cases with very few periods (e.g., 2 or 3 days), we observe that focusing the
search on optimal routing solutions does not permit achieving the best possible workload
equity. In such situations, it would be helpful to consider alternative routing solutions.
One possibility would consist in producing multiple routing solutions for each period and
extending the workload balancing step to include all these alternatives. Another approach,
more complex to develop in practice, would be to solve the routing and driver-allocation
problem in an integrated manner, considering distance and workload equity in a bi-objective
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solution method. However, in both cases, the user would need to specify a trade-off between
acceptable extra routing costs and the desired workload equity level.

4.6 Conclusions

In this work, we have revisited workload equity in vehicle routing with a longer-term perspec-
tive, considering a planning horizon of several days. We have shown that a two-phase opti-
mization approach can identify the most equitable solutions with minimal distance. When the
planning horizon exceeds five days, the resulting solutions are optimal in terms of distance
and near-optimal (below 1% gap) in terms of equity. Therefore, workload equity appears
to be achievable without integrated approaches and trade-off calibration, and without any
compromise on operational efficiency.

Several important research perspectives are open in connection with this study. Firstly, our
work focused on deterministic settings, where the complete customer demand is known on
the planning horizon. Practical situations often involve dynamically-revealed request in-
formation, and therefore it is an open question to determine to what extent multi-period
workload equity is achievable in dynamic contexts. Another important aspect of practical
delivery systems concerns delivery consistency. When the same driver regularly visits the
same areas or clients, the service quality and the satisfaction of drivers and clients generally
increases (Kovacs et al., 2014). Our approach towards equitable workload allocation largely
benefits from the exponential number of possible route-driver allocation combinations. How-
ever, consistency may significantly reduce the number of allocation possibilities, such that
new approaches may be needed to conciliate three key aspects in a multi-period setting: cost
efficiency, workload equity, and delivery consistency.
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CHAPTER 5 GENERAL DISCUSSION

Driver satisfaction in the distribution sector and other related sectors has attracted more at-
tention recently. Gradually, industry owners realize that the satisfaction of their employees is
important for the success of their company. Thus, finding a good trade-off between employee
satisfaction and routing cost has become an important challenge in this sector.

The literature review indicates that the marginal cost of equity in CVRP, although often
reasonable, is not negligible. This fact motivated us to investigate the CVRP over a multi-
period planning horizon. Our intuition is that a higher level of equity can be reached at little
or no marginal cost in a multi-period context. There are a few studies that consider equal
workload objective in a multi-period context and a few of them seek this objective through
the whole planning horizon rather than inside each single period.

On this, we defined the MVRPB. The goal of the MVRPB is to create a set of routes for
each day such that each client is visited once to serve its demand on each requested day, and
each route of each day does not exceed the vehicle capacity. The objectives are to optimize
distance and to balance the workload of a driver over the planning horizon.

To this end, a two-phase approach is proposed where efficiency is achieved in the first phase
and equity in the second phase. An exact algorithm is used in the first phase to solve the
CVRP associated with each period, so that nothing is sacrificed with regard to the routing
cost (distance). Then, the second phase allocates the routes in these minimum cost solutions
to the drivers with the aim of achieving equity with regard to the total distance traveled by
each driver over the whole planning horizon.

It is shown that equity improves with the number of periods increase, thus supporting the
hypothesis that it is easier (with less routing cost) to achieve equity over multiple periods
than over a single period. So, we do not need to seek a trade-off between routing costs
and workload equity since optimal routing solutions can be used to achieve equity. In the
cases with very few periods (e.g., 2 or 3 days), we observe that focusing the search on
optimal routing solutions does not permit achieving the best possible workload equity. In
such situations, it would be helpful to consider alternative routing solutions.

Furthermore, we observed that the solutions are perfectly or quasi-perfectly balanced for a
relatively small number of periods (i.e., 7-period and 10-period instances). Therefore, there
is no need to resort to sophisticated multi-period problem-solving approaches in such cases
to reach equity.
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

In this thesis, we studied workload equity among drivers for a VRP in a multi-period setting.
In the following, we first present a summary of the contributions achieved by this thesis.
Then we highlight its limitations and indicate possible future research directions.

6.1 Summary of Work

This thesis studied the MVRPB with the aim of balancing the workload among drivers and
quantify its impact on the routing cost. To this end, we first designed a two-phase method
for the MVRPB where the first phase focuses on efficiency (cost) and the second phase on
workload equity. In Chapter 4, it is shown that equity can be attained at no additional cost
when the number of periods is large enough. More precisely, almost perfect equity in the
workload of drivers was observed on the instances with a small number of periods (2-, 3- and
5-period instances), while perfect equity was reached on the instances with a larger number
of periods (7- and 10- period instances). Thus, the proposed two-phase method is a simple
but effective approach to solve the problem and there is no need to develop complicated
bi-objective solution approaches to reach equity among drivers when the number of periods
is sufficiently large.

These results should provide valuable insights to decision-makers for reaching equity over a
given planning horizon for free.

6.2 Limitations

We decided to focus on the CVRP since this is the canonical vehicle routing problem. Other
classes of VRPs, which are closer to real-life applications, would however be worth investigat-
ing. In Section 6.3 we describe how this limitation in our study may lead to future research
directions.

6.3 Future Research

To cover the previously mentioned limitation, further extensions of this work may consider
adaptations of our two-phase algorithm for other classes of VRPs. We can think, for example,
of VRPs with time windows or even VRPs in stochastic or dynamic settings, which are more
realistic and provide opportunities to probe the efficiency of this method for problems that
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are closer to real life.

Also, we observed that perfect equity is not reached when the number of periods is small (i.e.,
2-, 3- and 5-period instances). In this regard, we may investigate an integrated approach
where equity is considered when a CVRP is solved in each time period. Furthermore, solving
the integrated problem in which routes are constructed while accounting for equity will
provide a baseline to compare the performance of our two-phase algorithm.

Finally, another research direction would be to consider the MVRPB with person-oriented
consistency. Consistency is a subject that is praised in multi-period contexts and leads to
customer and driver satisfaction (Kovacs et al., 2014). There are three different types of
consistency: arrival time consistency, delivery consistency, and person-oriented consistency,
where the latter encourages drivers to visit as much as possible the same customers over
the planning horizon. Clearly, person-oriented consistency is in conflict with cost and equity
objectives, since it impacts the choice of customers to be served by each driver in different pe-
riods of the planning horizon. Considering person-oriented consistency and equity together in
a multi-period setting makes the problem more challenging but closer to real-life applications.
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