
Titre:
Title:

Parallel Discontinuous Finite Element SN Solver in Cartesian and
Hexagonal Geometries for the Boltzmann Transport Equation in
DRAGONS5

Auteur:
Author:

Atyab Ahmad Calloo

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Calloo, A. A. (2022). Parallel Discontinuous Finite Element SN Solver in Cartesian
and Hexagonal Geometries for the Boltzmann Transport Equation in DRAGONS5
[Ph.D. thesis, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/10518/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10518/

Directeurs de
recherche:

Advisors:
Alain Hébert

Programme:
Program:

Génie nucléaire

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10518/
https://publications.polymtl.ca/10518/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Parallel Discontinuous Finite Element SN Solver in Cartesian and Hexagonal
Geometries for the Boltzmann Transport Equation in DRAGON5

ATYAB AHMAD CALLOO
Département de génie physique

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie nucléaire

Août 2022

© Atyab Ahmad Calloo, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Parallel Discontinuous Finite Element SN Solver in Cartesian and Hexagonal
Geometries for the Boltzmann Transport Equation in DRAGON5

présentée par Atyab Ahmad CALLOO
en vue de l’obtention du diplôme de Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

André GARON, président
Alain HÉBERT, membre et directeur de recherche
Guy MARLEAU, membre
Wesley FORD, membre externe

iii

To mum & dad,

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor, Dr. Alain Hébert, for
his guidance throughout all these years. His knowledge and insights into reactor physics were
invaluable to a lot of what follows. Special thanks also to Dr. Guy Marleau who made me
feel welcome at the Institute. The support and informal chats were very much appreciated.

I would also like to thank the other jury members, Dr. Wesley Ford and Dr. André Garon, for
having accepted to be on the committee and devoting their time to reading and evaluating
this work. Moreover, some of the work here would not have happened without the fruitful
exchanges with Dr. Romain Le Tellier and Dr. Nicolas Martin, thank you.

As they say, “it takes a village”. So thank you in no particular order, to the continued friend-
ship of all my fellow graduate students: Luca Liponi, Aaron Greganti, Clément Liégeard,
Marie Decrooq, Kévin Fröhlicher, Noémie Rohel, Vivian Salino and Ahmed Naceur. We had
a lot of good times inside and outside the office.

Thank you to my long-distance friends: Saadiyah, Saleeqah and Baba for your constant
support and presence even through the distance. You were always just a WhatsApp or Skype
call away and you always answered no matter what or when. Your friendship means a lot to
me even if this work has kept us apart at times. To all the international friends I made while
in Montreal...well, you guys have been the absolute best. Our weekly meet-ups in McCarold’s
became my lifeblood at some point and, ultimately, you made Montreal home. Special thanks
to Zofia for hosting the house parties, to Adrien for all the conversations remaking the world,
to Mario for his constant support and boundless warmth, and to Mauricio for becoming like
a brother to me.

Finally, I would like to thank my family. I always wondered why they were left last but I now
understand words are not enough. Still, I try. My sister-in-law, Sandra, for becoming the
sister I never had, always welcoming me and being there to listen. My brother, Ansār, for
his unwavering belief in me since I was five, and to whom I owe my passion for the physical
sciences. My partner, Golnaz, for her overwhelming love, tenderness and support. If it were
not for her, I am not quite certain I would have finished this. Last but definitely not the
least, my parents, Swaleyha and Parveez. You have overcome countless adversities and made
countless sacrifices for me to get here. Thank you.

v

RÉSUMÉ

Cette thèse avait comme but de départ le développement et l’implémentation d’un solveur
rapide d’ordonnées discrètes, dit SN , pour les Réacteurs à Neutrons Rapides (RNRs) dans
le code DRAGON5 de Polytechnique Montréal. Cela a entraîné une analyse et une étude de
plusieurs aspects de l’algorithme de résolution : la discrétisation spatiale, le maillage hexag-
onal structuré, l’accélération synthétique et la parallélisation du calcul sur plusieurs pro-
cesseurs. Chacune de ces quatre parties forme un morceau du puzzle qu’est cette recherche.

Une étude précédente avait démontré que les solveurs SN étaient parmi les plus précis des
méthodes déterministes pour la modélisation des RNRs. Cependant, dépendant des cas de
figures, ils pouvaient aussi être 100 à 1000 fois plus lents que d’autres solveurs déterministes.
Le désavantage de ces autres solveurs : ils étaient beaucoup moins précis, parfois de l’ordre
de plusieurs centaines de pcm du calcul référence Monte-Carlo.

Les solveurs SN utilisés étaient tous basés sur la méthode des éléments finis Discontinus de
Galerkin (DG) pour la discrétisation spatiale. On s’est donc amené à questionner l’importance
de cette méthode et l’avons implémenté dans DRAGON5. Une autre discrétisation, le schéma
Différences Diamants (DD) d’ordre élevé, était aussi déjà implémentée dans le code. Puisqu’il
n’y avait pas eu de comparaison de ces deux méthodes sur des problèmes à valeurs propres,
on a creusé la question. On démontre qu’une fois les deux méthodes convergées spatialement
et angulairement, les différences en termes de pcm sont négligeables.

Le maillage hexagonal intervenant principalement pour les RNRs, cette fonctionnalité n’était
pas présente dans DRAGON5. Une revue de la littérature a démontré plusieurs façons de
traiter le problème et on a choisi un sous-maillage des hexagones en losanges. Cette méthode,
élégante dans son approche, permet de retrouver des éléments orthogonaux en utilisant une
transformation affine. Les interventions sur le code étaient alors stratégiques mais minimales.

On a commencé à explorer l’accélération du calcul à travers l’utilisation d’une accélération
synthétique. Cette méthode, bien établie, emploie en général l’équation de diffusion. On
s’est attardé cependant dans cette thèse sur l’application du solveur SPn de DRAGON5,
discrétisé avec les éléments finis mixtes-duaux de Raviart-Thomas (RT). On baptise cette
accélération RT-SPnSA. Un travail préliminaire avait mis en place cette méthode mais elle
était très instable pour les ordres spatiaux élevés et les conditions frontières de réflexion. Une
nouvelle technique impose la correction du flux à travers des fractions mis à l’échelle pour
les moments supérieurs. Cela permet donc de coupler l’ordre RT-0 avec n’importe quel ordre
de l’équation du transport – ce qui diminue le coût. Cette méthode couplé avec une nouvelle

vi

technique de corriger les flux aux bords s’est révélée être très efficace.

L’équation SPn a aussi permis de tester des ordres angulaires et des sources de diffusion
anisotropes. Ces paramètres améliorent légèrement la qualité des résultats mais c’est l’usage
de l’accélération chaque deux à quatre itérations de transport qui a le meilleur résultat. On
présente aussi une analyse Fourier qui démontre que la méthode n’est pas stable incondition-
nellement même si elle démontre des signes de cohérence partielle. Testée sur des cas plus
réalistes, on observe des réductions de temps de calculs d’environ 60% à 80%.

Finalement, contexte actuel oblige, la diminution du temps de calcul à travers la paralléli-
sation sur plusieurs coeurs a été implémentée. La plupart des méthodes de parallélisation
emploient ou sont basées sur la stratégie Koch-Baker-Alcouffe (KBA). Un maillage hexagonal
présente des subtilités qui rendent le problème légèrement différent d’un maillage cartésien
structuré. Cela porte principalement sur l’inter-connectivité de trois entre les hexagones et
donc la distribution et flexibilité du nombre de macrocellules dans le plan hexagonal. On
décrit ainsi la méthode de parallélisation mise en place, qui est basée sur la distribution des
processeurs sur les octants, les macrocellules et les angles, en utilisant l’interface de pro-
grammation, “Message Passing Interface” (MPI). Cette implémentation a été faite dans une
librairie à part, qu’on a nommé WYVERN, et qui fera bientôt partie du code DRAGON5.

Même si le code est loin d’être optimisé, on observe des diminutions de temps de calcul
d’environ 40 à 80 fois, sur les benchmarks Takeda. La parallélisation semble mieux marcher
sur le maillage hexagonal et l’on postule que c’est peut-être dû à une distribution non-égale
des macrocellules mais de plus amples études sont nécessaires. Un modèle de parallélisation
hybride permettrait aussi de tirer davantage du potentiel de tous les processeurs.

Le développement de toutes ces méthodes permet la simulation du coeur d’un RNR fictif
avec trente-trois groupes d’énergies. Avec une approximation DG cubique et une quadrature
S10, ce benchmark possède environ 4.99×109 degrés de liberté. On estime le temps de calcul
séquentiel non-accéléré à environ 130 jours. L’utilisation de WYVERN avec RT-SPnSA sur
154 coeurs permet de réduire ce temps à environ 25 heures.

vii

ABSTRACT

In this dissertation, we set out to develop and implement a fast discrete-ordinate (SN) trans-
port solver for Fast Neutron Reactors (FNRs) in the Polytechnique Montréal DRAGON5
code. This entailed the investigation of various aspects of the resolution algorithm: the spa-
tial discretisation method, structured hexagonal resolution meshes, the synthetic acceleration
and the parallelisation over several processors. These arguably disjointed research areas came
together to make a cohesive whole in this goal (and solver).

It had been shown through a previous study that solvers based on the SN method are among
the most accurate for resolving FNRs. However, depending on the test case, they were also
about two to three orders of magnitude slower than solvers based on other deterministic
methods (Pn and SPn) – although the latter were sometimes hundreds of pcm off from the
the reference value. The SN solvers used were based on the Discontinuous Galerkin Finite
Element Method (DGFEM), so for this reason, we began there.

DGFEM is a spatial discretisation method that is quite popular in neutron transport theory.
However, there had not been to date an eigenvalue problem comparison with the High Order
Diamond Difference (HODD) method, which was already present in the code. After having
implemented DGFEM using Legendre polynomials, we embarked on that. It was observed
that once each method had converged angularly and spatially (for each spatial discretisation
order), there was negligible differences between them. Moreover, linear DGFEM struggled
more if the computational mesh was not sufficiently refined, compared to linear HODD.

FNRs mostly are based on a hexagonal geometry. This meant that the solver, which had
essentially been developed to work with orthogonal grids, had to be modified accordingly.
There are various ways of dealing with honeycomb meshes but after a review of the available
literature, a lozenge-based submeshing approach was carried out. This was elegant in its
implementation as an affine transformation of lozenges can yield square elements. This
implied strategic but minimal modifications to the existing code. We took the opportunity
to describe the implementation in detail as we found that to be quite lacking in the literature.

Subsequently, the acceleration of the code was explored through a synthetic acceleration.
While the latter usually predominantly features the diffusion equation at its core, we made
use of the DRAGON5 SPn solver, discretised with the mixed-dual Raviart-Thomas (RT)
finite elements, to give something we dubbed RT-SPnSA. Even though a prior study set up
the framework for this, the acceleration was widely unstable at higher polynomial orders in
the transport equation and with reflective boundary conditions (b.c.). A correction approach

viii

where the zeroth moment correction is applied as a scaled fraction to the higher moments
proved to be very successful. This also allowed the use of the zeroth order of RT with
every order of the transport equation for minimum intensity. A novel approach to deal with
reflective boundary conditions is also outlined in this work.

The use of SPn allowed the testing of variable angular orders and anisotropic scattering
sources for the acceleration. We found that, while they helped to some extent for highly
anisotropic problems, nothing was as impactful as applying the acceleration every two or four
transport iterations. A Fourier Analysis (FA) of RT-SPnSA demonstrated that it was not
unconditionally stable, although it showed signs of stability that indicated partial consistency.
Ultimately, when tested on benchmarks that are more representative of real-world problems,
we found reduction in calculation times ranging from 60% (reflective b.c.) to 80% (void b.c.).

Finally, increasingly available and powerful computational resources along with more ac-
cessible parallelisation strategies make High Performance Computing (HPC) an inevitable
solution to diminishing calculation times. In SN neutron transport, most parallelisation
strategies are based on the Koch-Baker-Alcouffe (KBA) algorithm or variations thereof. A
structured hexagonal mesh presents subtle differences with the Cartesian structured grid
that we outline in this document. This is mostly regarding the three-fold inter-connectivity
of hexagons and consequently, the distribution and flexibility in the amount of macrocells
in the hexagonal plane. We also describe the parallelisation strategy chosen, based on a
distribution of available processes over a virtual processor grid of octants, macrocells and
angles, using the Message Passing Interface (MPI) model. The implementation was done in
a separate library called WYVERN, which is expected to become part of the main DRAGON5
code library at some point this year.

Even though the code is far from optimised at this point in time, we observed gains in compu-
tational times of up to 40× in Cartesian geometry and up to 80× in hexagonal geometry, in
the benchmarks run. While we hypothesise that this difference might be due to the difference
in how the macrocells are distributed, more investigation is needed. Hybrid parallelisation
strategies should also be considered to extract the most out of the available hardware.

For now, having implemented all the methods and algorithms described, we simulated a
mock three-dimensional hexagonal Fast Breeder Reactor (FBR) core with thirty-three en-
ergy groups. With an S10 quadrature, this corresponded to 6.23× 108 unknowns for a linear
DGFEM approximation and 4.99×109 unknowns for cubic. Using a lower order (S2) calcula-
tion, the unaccelerated sequential run times were estimated at about 29 hours and 130 days
respectively. Using WYVERN on 154 cores, with RT-SPnSA, the calculations were brought
down to about 75 minutes and just over 25 hours.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiv

LIST OF ACRONYMS . xxi

LIST OF APPENDICES . xxiv

CHAPTER 1 INTRODUCTION 1
1.1 Background History and Current Status of Nuclear Power 1
1.2 Basic Concepts of Nuclear Reactors . 4
1.3 Scope of Research Project . 8
1.4 Thesis Outline . 11

CHAPTER 2 REACTOR PHYSICS BACKGROUND 12
2.1 The Boltzmann Transport Equation (BTE) 12

2.1.1 Steady state . 14
2.1.2 Overview of numerical resolution . 15

2.2 Deterministic Resolution of the Transport Equation 16
2.2.1 keff and external iterations . 16
2.2.2 Energy discretisation . 17
2.2.3 Anisotropic scattering source density 18
2.2.4 Angular discretisation: the Pn, SPn and SN methods 18
2.2.5 Space-angle sweep operation and Source Iteration (SI) 24
2.2.6 Summary of resolution algorithm . 25

2.3 The DRAGON5 Code . 25
2.3.1 General overview . 27
2.3.2 Calculation overview and relevant modules 27

x

CHAPTER 3 SPATIAL DISCRETISATION METHODS 30
3.1 Review of Discretisation Methods . 30

3.1.1 The Diamond Difference (DD) method 31
3.1.2 The High Order Diamond Difference (HODD) method 32
3.1.3 General overview of Finite Element Methods (FEMs) 36
3.1.4 The Discontinuous Galerkin Finite Element Method (DGFEM) 39
3.1.5 High Order Diamond Difference (HODD) as Discontinuous Petrov-Galerkin

Finite Element Method (DPGFEM) 41
3.2 Implementation in DRAGON5 . 41

3.2.1 Choice of function space . 41
3.2.2 Lagrange vs Legendre polynomials in DRAGON5 43
3.2.3 Implementation example and details 44
3.2.4 Single-cell and inner iteration solution algorithm 48

3.3 Numerical Results . 49
3.3.1 One-group 2D simple benchmark: 2D-CNS 51
3.3.2 Four-group 2D AIC assembly: 2D-AIC 56
3.3.3 Four-group 3D small FNR core, Takeda Model 2: 3D-TAK2 63

3.4 Concluding Remarks . 72

CHAPTER 4 HEXAGONAL GEOMETRY IMPLEMENTATION 73
4.1 Potential Avenues for Hexagonal Representation 73
4.2 Handling of the Hexagonal Geometry in DRAGON5 75
4.3 Solution Algorithm and Implementation Details 78

4.3.1 Number of sweep directions . 79
4.3.2 Outgoing fluxes . 80
4.3.3 Outgoing fluxes between lozenges A and C 80
4.3.4 Overall algorithm . 81

4.4 Numerical Results . 82
4.4.1 One-group benchmarks: 2D-SNA and 3D-SNA 82
4.4.2 Four-group 3D small FNR core, Takeda Model 4: 3D-TAK4 88

4.5 Concluding Remarks . 91

CHAPTER 5 SYNTHETIC ACCELERATION (SA) 95
5.1 Introduction . 95
5.2 Theoretical Background and Prior Work . 97

5.2.1 Source iteration and synthetic acceleration 97
5.2.2 Prior Diffusion Synthetic Acceleration (DSA) formulations 98

xi

5.2.3 Fourier Analysis (FA) . 100
5.3 RT-SPn Synthetic Acceleration (RT-SPnSA) 102

5.3.1 Flux correction . 104
5.3.2 Treatment of reflective boundary conditions 105

5.4 Parametric Study . 106
5.4.1 Numerical Fourier analysis using DRAGON5 106
5.4.2 2D-AIC test case . 108

5.5 Benchmark Results: 3D-TAK2 and 3D-TAK4 114
5.6 Concluding Remarks . 114

CHAPTER 6 PARALLEL IMPLEMENTATION IN WYVERN 120
6.1 Brief Introduction to Parallelisation Solutions 120
6.2 Outline of Prior Parallelisation Work in SN Neutron Transport 122

6.2.1 The KBA method . 122
6.2.2 Beyond KBA . 125

6.3 Choice of Parallelisation Strategy . 126
6.4 Cartesian Implementation in WYVERN . 127

6.4.1 3D-TAK2 benchmark . 131
6.5 Hexagonal Implementation in WYVERN . 133

6.5.1 Parallel hexagonal sweep algorithm and implementation details 133
6.5.2 3D-TAK4 benchmark . 136
6.5.3 Mock FBR core: 3D-FBR . 138

6.6 Concluding Remarks . 141

CHAPTER 7 CONCLUSION 144
7.1 Conclusion and Findings . 144
7.2 Future Work . 145

REFERENCES 147

APPENDICES . 156

xii

LIST OF TABLES

Table 3.1 Cross-section data for the 2D-CNS benchmark. 52
Table 3.2 Summarised results for the 2D-CNS benchmark. Λ denotes the poly-

nomial order, and subm. the submeshing. Three significant figures are given,
except for keff . 55

Table 3.3 Cross-section data for the 2D-AIC benchmark. All fission neutrons are
emitted in group g = 1. The energy group limits are at 53, 4 and 0.353 eV. . 61

Table 3.4 Summarised results for the 2D-AIC benchmark. Λ denotes the polyno-
mial order, and subm. the submeshing. Three significant figures are given,
except for keff . 62

Table 3.5 Quoted literature values for various methods for the 3D-TAK2 bench-
mark, reproduced from Takeda and Ikeda [16]. 66

Table 3.6 Summarised results for the 3D-TAK2 benchmark. Λ denotes the poly-
nomial order, and subm. the submeshing. Three significant figures are given,
except for keff . 71

Table 4.1 Quoted literature values for 2D-SNA using SNATCH, reproduced from
[65]. 84

Table 4.2 Summarised results for the 2D-SNA benchmark. Λ denotes the poly-
nomial order, and subm. the submeshing. Three significant figures are given,
except for keff . 85

Table 4.3 Quoted literature values for 3D-SNA using SNATCH, reproduced from
[65]. 87

Table 4.4 Summarised results for the 3D-SNA benchmark. Λ denotes the poly-
nomial order, and subm. the submeshing. Three significant figures are given,
except for keff . 88

Table 4.5 Quoted literature values for various methods for the 3D-TAK4 bench-
mark, reproduced from Takeda and Ikeda [16]. 89

Table 4.6 Description of the colour representation in the 3D-TAK4 benchmark (see
Fig. 4.9). 91

Table 4.7 Summarised results for the 3D-TAK4 benchmark. Λ denotes the poly-
nomial order, and subm. the submeshing. Three significant figures are given,
except for keff . 94

xiii

Table 5.1 Results for 3D-TAK2 with S6. Acceleration was RT-0 SP1 isotropic. Λ
is the polynomial order, subm. the submeshing, accel. the acceleration method
used. Three significant figures given, except for keff 117

Table 5.2 Results for 3D-TAK4 with S10. Acceleration was RT-0 SP1 isotropic. Λ
is the polynomial order, subm. the submeshing, accel. the acceleration method
used. Three significant figures given, except for keff 118

Table 6.1 ID values for the different processes of the virtual process grid for a
small 2D test with two macrocells along each axis, run with three directions
per octant, with two octants run simultaneously. 130

Table 6.2 Summarised results obtained using WYVERN for the 3D-TAK2 bench-
mark presented in Chap. 3 with S6 quadrature and mesh refinement of 3. Note
that the ‘series’ data point for Λ = 3 is an estimated value. 134

Table 6.3 Summarised results obtained using WYVERN for the 3D-TAK4 bench-
mark presented in Chap. 4 with S6 DG-3 and no mesh refinement. Note that
the ‘series’ data point is an estimated value. 137

Table 6.4 Summarised results obtained using WYVERN for the 3D-TAK4 bench-
mark presented in Chap. 4 with S6 DG-3 and RT-SPnSA with the recom-
mended parameters from Chap. 5, for two different lozenge mesh refinements.
Note that the ‘series’ data points are estimated values. 139

Table 6.5 Accelerated sequential and parallelised results obtained using DRAGON5
and WYVERN respectively for the 3D-FBR benchmark, with RT-SPnSA using
the recommended parameters from Chap. 5. Note that the data in italic are
estimated values. 142

Table 6.6 Description of the colour representation for each region in the 3D-FBR

benchmark, given in Fig. 6.9. 142

xiv

LIST OF FIGURES

Figure 1.1 Plots of cross section against incident energy for the fission and radiative
capture reactions for Uranium-235 and Uranium-238. Data for plots obtained
from https://www.nndc.bnl.gov/endf. 6

Figure 2.1 Octant showing the quadrature points for the S6 order, illustrating the
differences between the LS and product quadratures. 23

Figure 2.2 Two different types of sweep. The numbers correspond to the order in
which the cells are computed in each case. 25

Figure 2.3 Simplified flowchart highlighting some of the most salient steps and
loops required in the deterministic resolution of the Boltzmann Transport
Equation (BTE). This is, by no means, an exhaustive diagram. It only high-
lights the points discussed in this dissertation. 26

Figure 2.4 Diagram showing some of the core modules and functions of the DRAGON5
code. This is by no means exhaustive. For example, the module MAC: designed
to read cross-section values directly into memory (e.g., for simple benchmark-
ing problems) is not portrayed. Also not shown are the ‘sub-modules’ encap-
sulating each of the solvers in the FLU: module, amongst which is the one
containing the SN solver. More information can be found in the user manual
[33]. The modules are shown in rectangular shaded boxes and the module
input/output are encircled. This was reproduced, with permission, from [22]. 29

Figure 3.1 Domain subdivision for slab geometry. 31
Figure 3.2 Illustration of meshing and reference element in 2D. 45
Figure 3.3 The four different ways that the columnar sweep proceeds depending on

direction of neutron travel. The fading colour represents progression along the
y-axis and the changing colour progression along the x-axis. The orientation
of the domain is the same throughout. 49

Figure 3.4 Description of the simple monoenergetic 2D benchmark, 2D-CNS. The
dimensions are in cm. The domain is symmetric along the diagonal, and reflec-
tive boundary conditions are applied on left and bottom sides, and vacuum on
the right and top. See Table 3.1 for the cross-section data. Red corresponds
to mixture 1, green to 2, and blue to 3. The black region indicates a void. The
un-submeshed calculation grid is 5× 5. 52

Figure 3.5 2D-CNS benchmark: S4 convergence rates for the maximum error, ϵmax,
as a function of the number of unknowns. 53

https://www.nndc.bnl.gov/endf

xv

Figure 3.6 2D-CNS benchmark: S6 convergence rates for the maximum error, ϵmax,
as a function of the number of unknowns. 54

Figure 3.7 2D-CNS benchmark: S8 convergence rates for the maximum error, ϵmax,
as a function of the number of unknowns. 54

Figure 3.8 Representation of the 2D-AIC benchmark domain on the left. Reflective
boundary conditions are applied on all sides. The dimensions are in cm, and
the cross-section data is given in Tab. 3.3. Cyan is mix 1, red mix 2, dark red
mix 3 and blue mix 4. On the right is the initial computational mesh before
any further refinement. 57

Figure 3.9 2D-AIC benchmark: S6 convergence rates for the maximum error, ϵmax,
as a function of the number of unknowns. The second plot forgoes HODD-0
for better clarity. 58

Figure 3.10 2D-AIC benchmark: S6 convergence rates for the keff , as a function of
CPU time. The second plot forgoes HODD-0 for better clarity. 59

Figure 3.11 2D-AIC benchmark: scalar flux surface plots for energy groups 1 to 4
given in that order, with energy group 1 at the top. These contrast HODD and
DGFEM (at lower discretisation levels), as well as the reference calculation. 64

Figure 3.12 2D-AIC benchmark: surface plots of the difference between the two
scalar flux maps of HODD and DGFEM from Figure 3.11, for the four energy
groups. From left to right, top to bottom: group 1, group 2, group 3 and
group 4. 65

Figure 3.13 Domain of the 3D-TAK2 benchmark at various angles. Dimensions are
in cm. Reflective boundary conditions are used on the inner sides (right and
bottom on (a), and out-of-page on (c)) while vacuum boundary conditions are
applied to the top, bottom, and outer sides. The initial computational mesh
before subsequent submeshing is shown on (a) and (b). Red is the core, light
green the axial blanket, dark green the radial blanket, orange the control rod
and yellow the sodium-filled Control Rod Position (CRP). 67

Figure 3.14 3D-TAK2 benchmark: S4 convergence rates for the maximum error,
ϵmax, as a function of the number of unknowns. 67

Figure 3.15 3D-TAK2 benchmark: S4 convergence rates for the keff , as a function
of CPU time. 68

xvi

Figure 3.16 3D-TAK2 benchmark: scalar flux surface plots for energy groups 1
and 4 given in that order, with energy group 1 at the top. These contrast
HODD and DGFEM (at lower discretisation levels), as well as the reference
calculation. The orientation of the domain is the same as that used in the
overall representation of Figure 3.13. 69

Figure 3.17 3D-TAK2 benchmark: surface plots of the difference between the two S4

scalar flux maps of HODD-1 and DG-1 from Figure 3.16, for the four energy
groups. From left to right, top to bottom: group 1, group 2, group 3 and group
4. This side orientation was chosen for clarity and because it shows most of
the salient details. It is the same as the side orientation shown in Figure 3.13. 70

Figure 4.1 Two ways of splitting up the hexagon into quadrilaterals. Top: splitting
into trapezia. Bottom: splitting into lozenges. The calculation geometry is
shown on the left with the corresponding reference geometry given on the
right. This specific arrangement of the reference elements (especially for the
lozenges) was only chosen to facilitate with the visual representation. 74

Figure 4.2 Lozenge submesh and its associated refinement in the hexagonal geometry. 75
Figure 4.3 Affine transformations for each of the lozenges (top to bottom: A,

B, and C) making up the hexagon, and the associated Jacobian matrices.
The translation is not taken into account in the Jacobian and is not really
important to the procedure. It is only shown to represent the relative position
of the lozenges within a hexagon centred at the origin. H is the length of one
side of the hexagon or the lozenge. 76

Figure 4.4 The six different ways that the hexagonal columnar sweep can proceed
depending on the direction of neutron travel. The orientation of the domain
is the same throughout. The incoming sides where the flux is assumed to be
known at the beginning of each sweep is shown in pink. The sweep progression
is then as follows: it starts with the darkest red colour and proceeds with the
fading red colours; it then moves on to the next colour, from darkest to lightest
and so on. The blue colours indicate the lozenge sweep within the hexagon,
again from darkest to light; this is highlighted with the dashed arrow. . . . 79

Figure 4.5 Highlighted edges, on lozenges and corresponding reference elements,
where the x side of lozenge C connects to the y side of lozenge A. 81

xvii

Figure 4.6 This image should be interpreted in conjunction with Fig. 4.5. A 3D
representation is used: the xy-plane correspond to the u- and v-axes while
the z-axis is the flux, ψ. The corresponding reference elements of all three
lozenges are drawn to help with the visual orientation. This image shows how
dummy fluxes represented on the x side of lozenge C are mirrored onto the y
side of lozenge A such that the gradients are reversed. 81

Figure 4.7 Description of the one-group hexagonal 2D benchmark, 2D-SNA. Each
hexagon side is 19 cm. Vacuum boundary conditions are applied on the whole
edge of the domain. See Table 3.3 for the cross-section data. Red corresponds
to mixture 1, green to 2, blue to 3, and grey indicates a void. The initial
un-refined computational mesh is also shown. 84

Figure 4.8 Description of the simple one-group hexagonal 3D benchmark, 3D-

SNA. Each hexagon side is 19 cm. Reflective boundary conditions are applied
at the plane z = 0 cm and vacuum is applied to the rest of the domain. See
Table 3.3 for the cross-section data. Red corresponds to mixture 1, green to
2, and blue to 3. The grey region indicates a void. The initial un-submeshed
computational mesh is also shown. 86

Figure 4.9 Domain of the 3D-TAK4 benchmark at various angles. Dimensions are
in cm; side of one hexagon is 7.5 cm. Vacuum boundary conditions are applied
to the whole outer edge of the domain. The initial computational mesh before
subsequent mesh refinement is shown in all subfigures. Refer to Tab. 4.6 for a
description of the materials. 90

Figure 4.10 3D-TAK4 benchmark: scalar flux surface plots for energy groups 1 to
4, with group 1 at the top. These contrast the unrefined and subm. 4 meshes.
The view and orientation are the same as Fig. 4.9a. 92

Figure 4.11 3D-TAK4 benchmark: surface plots of the difference between the two
scalar flux maps of HODD and DGFEM for S10 subm.1, for the four energy
groups. From left to right, top to bottom: group 1, group 2, group 3 and
group 4. 93

Figure 5.1 Variation of the eigenvalue, ρ in terms of the error frequency, ω. . . . 103
Figure 5.2 Variation of spectral radii with mesh size in terms of Mean Free Path

(MFP) for the RT-SPnSA scheme using RT-0 SP1 isotropic source. Different
SN angles for the HODD-0 test case are shown, as well as the S2 source
iteration case. 109

xviii

Figure 5.3 Variation of spectral radii with mesh size in terms of Mean Free Path
(MFP) for the RT-SPnSA scheme using RT-k SP1 isotropic source. Each row
top to bottom: HODD-0; HODD/DG-1; HODD/DG-2; DG-3. 110

Figure 5.4 Variation of spectral radii with mesh size in terms of Mean Free Path
(MFP) for an anisotropic test case using the RT-SPnSA scheme with either an
RT-k SP1 isotropic or anisotropic source. Each row top to bottom: HODD-0;
HODD-1; DG-1. The plots on the right are identical to those on the left but
the y-axis is zoomed on, to better see the variation and improvement of using
anisotropic scattering with the SPn equation. 111

Figure 5.5 Variation of spectral radii with mesh size in terms of Mean Free Path
(MFP) for an anisotropic test case using the RT-SPnSA scheme with either an
RT-k SP1 isotropic or anisotropic source. Each row top to bottom: HODD-2;
DG-2; DG-3. The plots on the right are identical to those on the left but
the y-axis is zoomed on, to better see the variation and improvement of using
anisotropic scattering with the SPn equation. 112

Figure 5.6 S8 calculations with SP1 isotropic source Synthetic Acceleration (SA):
plots of computational time and number of inner iterations for the unacceler-
ated and accelerated calculations. There are three cases for the latter: starting
the SA on the 2nd, 4th and 6th transport iteration. 113

Figure 5.7 S16 calculations with SP1 isotropic source SA: plots of computational
time and number of inner iterations for the unaccelerated and accelerated
calculations. There are three cases for the latter: starting the SA on the 2nd,
4th and 6th transport iteration. 114

Figure 5.8 S8 calculations with SP1 anisotropic source SA: plots of computational
time and number of inner iterations for the unaccelerated and accelerated
calculations. There are three cases for the latter: starting the SA on the 2nd,
4th and 6th transport iteration. 115

Figure 5.9 Top: S8 calculations with SP3 isotropic source SA. Bottom: S8 cal-
culations with SP3 anisotropic source SA. Plots of computational time and
number of inner iterations for the unaccelerated and accelerated calculations.
There are three cases for the latter: starting the SA on the 2nd, 4th and 6th
transport iteration. 115

xix

Figure 5.10 Top: S8 calculations with SP1 isotropic source SA. Middle: S8 cal-
culations with SP1 anisotropic source SA. Bottom: S8 calculations with SP3

anisotropic source SA. Plots of computational time and number of inner it-
erations for the unaccelerated and accelerated calculations. Instead of only
starting the SA after 2, 4 or 6 iterations, here, SPnSA was applied every 2, 4
or 6 iterations. 116

Figure 6.1 Example domain and associated Directed Acyclic Graph (DAG) show-
ing the dependencies of the sweep. 124

Figure 6.2 Schematic showing how the MPI_COMM_WORLD communicator comprising
12 ranks is split into different communicators working on either the same
octant (red), the same angular direction (dashed green) or the same macrocell
(blue). This is assuming a 2D test case with two macrocells along each axis,
2 octants and 3 angular directions per octant. 128

Figure 6.3 Small 2D test domain along with graphs showing sweeps for each of the
three directions for the 1st octant. The process assigned to each cell is shown
in red as a superscript. 128

Figure 6.4 Time against number of processors obtained using WYVERN for the
3D-TAK2 benchmark presented in Chap. 3. The plots on the right are the
same as those on the left, except with a logarithmic y scale. The first plot
point is the series calculation, the next is parallelisation over angles only and
the subsequent ones represent parallelisation over angles and an increasing
number of macrocells along each of the three cardinal axes, in the order: 1, 2,
3, 6. The ‘perfect’ curves refer to expected computation times in the absence
of communication times. 135

Figure 6.5 Left: example of a 2D hexagonal domain with 19 hexagons, each con-
sidered a macrocell – one macrocell being represented as 3× 4 elements of the
computational mesh. Right: DAG for one direction showing the dependencies
and constraints. 137

Figure 6.6 Wavefront sweep showing the need for information from two wavefronts
prior for the resolution of the blue wavefront. 138

xx

Figure 6.7 Time against number of processors obtained using WYVERN for the
3D-TAK4 benchmark presented in Chap. 4. Calculations run with S6 DG-3
no lozenge mesh refinement and no acceleration. The plots on the right are
the same as those on the left, except with a logarithmic y scale. The first
plot point is the series calculation, the next is parallelisation over angles only
and the subsequent ones represent parallelisation over angles and an increasing
number of macrocells along the z axis, in the order: 1, 2, 3, 6. The ‘perfect’
curves refer to expected computation times in the absence of communication
times. 139

Figure 6.8 Time against number of processors obtained using WYVERN for the
3D-TAK4 benchmark presented in Chap. 4. Calculations run with S6 DG-3
and RT-SPnSA with recommended values from Chap. 5. The plots on the
right are the same as those on the left, except with a logarithmic y scale.
The first plot point is the series calculation, the next is parallelisation over
angles only and the subsequent ones represent parallelisation over angles and
an increasing number of macrocells along the z axis, in the order: 1, 2, 3,
6. The ‘perfect’ curves refer to expected computation times in the absence of
communication times. 140

Figure 6.9 Domain of the 3D-FBR benchmark at various angles. Dimensions are
in cm; side of one hexagon is 10.104 cm. Vacuum boundary conditions are
applied to the whole outer edge of the domain. The initial computational
mesh before subsequent refinement is shown in all subfigures. Refer to Tab.
6.6 for a description of the materials. (A small mistake slid through in the
input geometry file for the presented results: it should have been the the
light green mix and not a void (light grey mix), around the top centre of the
domain.) . 143

xxi

LIST OF ACRONYMS

Nuclear Reactors

ASTRID Advanced Sodium Technological Reactor for Industrial Demonstration

BWR Boiling Water Reactor

CANDU CANada Deuterium Uranium

FBR Fast Breeder Reactor

FNR Fast Neutron Reactor

GFR Gas-cooled Fast Reactor

LFR Lead-cooled Fast Reactor

NPP Nuclear Power Plant

PWR Pressurised Water Reactor

SFR Sodium-cooled Fast Reactor

SMR Small Modular Reactor

VVER Vodo-Vodyanoi Enyergeticheskiy Reaktor

Institutions & Companies

ARC Advanced Reactor Concepts

CEA Alternative Energies and Atomic Energy Commission (French: Commissariat
à l’énergie atomique et aux énergies alternatives)

CNSC Canada Nuclear Safety Commission

DRAC Digital Research Alliance of Canada

GEH GE-Hitachi

GIF Generation IV International Forum

TAMU Texas A&M University

xxii

Transport Theory & Numerical Methods

b.c. boundary conditions

BTE Boltzmann Transport Equation

CMR Coarse Mesh Rebalance

DD Diamond Difference

DFEM Discontinuous Finite Element Method

DG Discontinuous Galerkin

DGFEM Discontinuous Galerkin Finite Element Method

DPGFEM Discontinuous Petrov-Galerkin Finite Element Method

DSA Diffusion Synthetic Acceleration

FA Fourier Analysis

FEM Finite Element Method

FVM Finite Volume Method

HODD High Order Diamond Difference

LS Level Symmetric

M4S Modified Four Step

MMS Method of Manufactured Solutions

MFP Mean Free Path

NSR Numerical Spectral Radius

PDE Partial Differential Equation

RT Raviart-Thomas

SA Synthetic Acceleration

SI Source Iteration

xxiii

Parallelisation

API Application Programming Interface

CPU Central Processing Unit

DAG Directed Acyclic Graph

GPU Graphic Processing Unit

HPC High Performance Computing

KBA Koch-Baker-Alcouffe

MIMD Multiple Instruction, Multiple Data

MISD Multiple Instruction, Single Data

SIMD Single Instruction, Multiple Data

SISD Single Instruction, Single Data

SPMD Single Program, Multiple Data

MPI Message Passing Interface

OpenMP Open Multi-Processing

PCE Parallel Computational Efficiency

PUE Processor Usage Efficiency

Other

AIC Ag-In-Cd (Silver-Indium-Cadmium)

COB Change-Of-Basis

CRP Control Rod Position

d.o.f. degrees of freedom

PDF Probability Density Function

xxiv

LIST OF APPENDICES

Appendix A Matlab scripts for generating DGFEM equations 156
Appendix B HODD as DPGFEM . 173
Appendix C Analytical Equations for the DSA . 177

1

CHAPTER 1 INTRODUCTION

This chapter presents a brief historical account of nuclear energy as well as an outline
of the relevant nuclear reactors. While this might not be immediately pertinent to the
project, it serves to frame how and where this project hopes to contribute to making
a difference. Some prior nuclear and reactor physics is assumed; however, most of the
necessary concepts are recapitulated in Chapter 2. This chapter goes on to describe
the preceding study that directly provoked this work and sets forth the scope of this
dissertation. It then concludes by outlining the rest of the document.

1.1 Background History and Current Status of Nuclear Power

The neutron was discovered by James Chadwick ninety years ago, in 1932. From that point
on, things would progress rapidly. In 1934, Enrico Fermi used neutron bombardment to create
artificially radioactive nuclei, while also demonstrating that slow neutrons were more efficient
for this purpose. In 1938, the term ‘nuclear fission’ was coined by Otto Frisch after Otto
Hahn and his collaborators successfully fragmented the uranium nucleus into lighter nuclei.
In 1942 – a mere four years later, during the Manhattan project, the first human-made self-
sustaining chain reaction was set up in Chicago Pile-1 (CP-1). The first human-made nuclear
reactor had been invented.

Over the course of World War II and development of the atomic weapon, the West and
Soviet Union had acquired technologies that scientists realised could be used for commercial
electricity production.[1] Hence, after the war, focus very much shifted to that, especially
after President Eisenhower’s “Atoms for Peace” speech to the UN General Assembly in 1953.
Over the ’50s, ’60s and ’70s, the United States, Canada, Europe (mostly the United Kingdom
and France) and the Soviet Union concurrently would test out a number of ideas. The Soviet
Union built the first power plant intended for civil purposes in Obninsk in 1954. Lacking
access to enrichment technologies, the United Kingdom built a number of gas-cooled graphite-
moderated reactors using natural uranium. France took a similar approach before settling
on the now more classic design of Pressurised Water Reactors (PWRs) which are light-water-
cooled and light-water-moderated, and use enriched uranium. The latter had arisen from
significant research done by the US Navy, initially meant to power submarines – water being
the easily-accessible commodity in that case. The US also developed the Boiling Water
Reactor (BWR). Canada went yet another route, using heavy water1 and natural uranium

1Heavy water is water, H2O, where the hydrogen atoms have an extra neutron in the nucleus.

2

to power the CANada Deuterium Uranium (CANDU) reactors.

While as from the early ‘80s, the industry seemed to decline somewhat with many planned
reactors being cancelled and few new orders, the industry would pick up again in the late ’90s
and early 2000s with the new wave of so-called third-generation reactors. These are similar
to the reactors mentioned so far in that they are thermal reactors too – albeit with much
improved designs in terms of safety and efficiency. In thermal reactors, after neutrons are
produced during the fission process, they have to be slowed down – also called moderated –
before they are able to cause further fission and sustain a chain reaction. The term thermal
stems from the fact that neutrons need to lose energy to the point that they are in near
thermal equilibrium with uranium atoms. A brief overview of the inner workings of a nuclear
reactor is given in Sec. 1.2. However, specifics have been covered extensively in the literature
and will not be included in this thesis. We recommend the text in [2] and the references
therein for further reading. A handful of third-generation reactors are currently being built
in Europe and the US. However, the industry boomed in Asia, more specifically in China
and India. China alone has seventeen reactors currently under construction, all planned to
go into operation before 2027. The US, UK and France have only six combined. [3]

As we just discussed, so far, the reactors have all been thermal reactors. However, there is
another broad subset of nuclear reactors called Fast Neutron Reactors (FNRs). As the name
suggests, the aforementioned moderating effect is not at all desired in FNRs so as to keep
the neutrons at much higher energies. This leads to differences in design, coolant and fuel
composition amongst other things but therein lies the main difference. Experimental and
even commercial prototypes of FNRs were also built (by most of the countries mentioned),
though much less extensively. In fact, the first ever “nuclear power plant” was an FNR; it
was the Experimental Breeder Reactor I (EBR-I) in Idaho in the US and powered four 200 W
bulbs on the 20th of December 1951. Water could not be used as a coolant because of its
moderating properties. Hence, a liquid metal mixture of NaK (sodium-potassium) was used.
Despite a partial core meltdown during a scheduled transient test where the main coolant flow
was stopped, the results of subsequent testing were so overwhelmingly positive that a second
one, the EBR-II was built and started operations in 1964. This should have been followed by
the Integral Fast Reactor (IFR). However, for mostly political reasons, this was cancelled in
1994. A similar situation repeated itself in France with the Phenix and Superphenix reactors
in the ’90s and early 2000s. In spite of these cancellations and shut-downs, the EBR and
Phenix series were both highly successful in their goals. Between them, they demonstrated
the feasibility of breeding more fuel, the use of liquid metal sodium as a coolant, the ability
to burn nuclear waste from thermal reactors and the possibility to operate safely.

3

ASTRID, the Advanced Sodium Technological Reactor for Industrial Demonstration, was
a planned experimental demonstrator Sodium-cooled Fast Reactor (SFR) in France, with
an output of 100-200 MWe2. It subsequently became a partnered project between France,
Japan and the USA. Unfortunately, France indefinitely shelved the project in 2019. However,
there definitely seems to be some corporate interest in the US again regarding FNRs. GE-
Hitachi (GEH) introduced the PRISM reactor, based on the EBR and IFR designs. It is a
compact modular SFR currently being marketed to the UK government as a way of burning
its stockpile of plutonium. GEH is also collaborating with a relatively new nuclear reactor
design company, TerraPower on the Natrium concept [4]. This utilises the PRISM reactor
coupled with a thermal storage system of molten salt. In this way, the reactor can always
operate at full capacity and provide the follow-through power from the thermal storage during
peak demand. They recently obtained a grant from the government and released plans for a
demonstration unit in Wyoming.

Another design currently being developed is one by Advanced Reactor Concepts (ARC) for a
fast sodium-cooled Small Modular Reactor (SMR) with an output of 100 MWe, also based on
the EBR-II. Back in March 2017, ARC and GEH agreed to pool their resources together to
collaborate on the design of this reactor. They were looking to deploy in Canada and started
the regulatory review process with the Canada Nuclear Safety Commission (CNSC). In 2019,
they successfully cleared Phase 1 of the preliminary review process and entered Phase 2. [5]
Just recently, in April 2022, they announced that they were able to raise funds from the
private sector and the province of New Brunswick. [6] This marks significant progress for the
deployment of their SMR at the Point Lepreau Nuclear Generating Station (PLNGS) site,
owned by New Brunswick Power (NB Power).

There has also been significant progress in the field of FNRs in the eastern hemisphere. The
Prototype Fast Breeder Reactor (PFBR), a fast reactor of 500 MWe, has been built in India.
It has, unfortunately, been plagued by delays and budget increases. Construction started in
2004 and it was initially supposed to be commissioned in 2010 but is now scheduled to go
fully operational only by the end of this year, 2022. [7] In China, the China Experimental
Fast Reactor (CEFR), rated at 20 MWe and located outside Beijing, first became critical
in 2010. It successfully maintained full operational power for three days in 2014 [8]. It is
assumed that it still operational now; not much information seems to be available. China
is also working on the China Fast Reactor 600 (CFR-600), a demonstrator reactor under
construction, expected to be connected to the grid in 2023. Japan currently only has the
Jōyō experimental research SFR. The Monju reactor, afflicted by incidents, mismanagement

2MWe stands for ‘MegaWatt electric’, where Watt is the SI unit of power and the term electric signifies
that it is the actual amount of power output that has been successfully converted from thermal power.

4

and negative public opinion was never a success, and closed down in 2016.

All that being said, Russia is perhaps the most successful with three operational FNRs and
two in construction. The BOR-60, an SFR, has been in operation since December 1969 and
had had its licence extended to 2020 [9]. It is unclear whether this has been extended again.
There is also the SFR BN-series: the BN-600 and its larger sibling, the BN-800, so named after
their nominal electrical power (600 MWe and 864 MWe). The former has been in operation
since 1980 and the latter achieved full power in August 2016. They are both connected to the
electrical grid. A third proposed reactor, the BN-1200, has now been shelved for decision until
the mid 2030s [10]. The two in construction are the BREST reactor, a pilot demonstrator
Lead-cooled Fast Reactor (LFR), and the MBIR, a multipurpose research reactor capable of
using lead, lead-bismuth mixture, sodium and gas as coolants.

It is perhaps impossible, however, to talk about FNRs without at least mentioning the
Generation IV International Forum (GIF). In 2001, through an effort of the US Department
of Energy, the international nuclear community convened to create this organisation. This
was in recognition of the potential that nuclear energy and advanced reactor designs held but
also the acknowledgement that it would take collaboration and cooperation to bring them
to fruition. After reviewing roughly a hundred concepts, six reactor designs were chosen to
focus research on. They would address a certain number of concerns: environmental and
economical sustainability, optimal usage of resources (ideally through a closed fuel cycle),
inherent design safety, and resistance against proliferation, amongst others. Six designs were
retained, these being the SFR, the SuperCritical Water-cooled Reactor (SCWR), the LFR,
the Gas-cooled Fast Reactor (GFR), the Molten Salt Reactor (MSR), and the Very High
Temperature Reactor (VHTR).[11, 12] The SFR is undoubtedly the one where the most
experience lies, and as we have seen, this is where countries seem to be pouring a lot of
attention. This particular research will focus on numerical and computational methods for
the modelling of the neutron distribution in SFRs – and PWRs too along the way.

1.2 Basic Concepts of Nuclear Reactors

The primary idea behind nuclear reactors is that they convert the energy released by fission
of heavy nuclei in the nuclear reactor core into electricity. These heavy nuclei can be elements
such as Uranium-235, Uranium-238 and Plutonium-2393 amongst others. The number after
the element is indicative of the total number of protons and neutrons in the nuclei of atoms.
For example, considering that the number of protons is a constant for elements – 92 in the

3These are oft abbreviated as U-235, U-238 and Pu-239.

5

case of Uranium, Uranium-238 has 146 neutrons, three more than Uranium-235.

The fission reaction itself is induced by an incident neutron. This, upon collision with a
heavy nucleus (such as the aforementioned ones), has a certain probability of splitting it
into usually two daughter nuclei, as well as two or three additional neutrons and an average
energy of 200 MeV in the form of heat. This released heat is then carried away from the core
by a coolant. If this coolant is water, it can be turned into steam immediately and drive
conventional turbines to generate electricity. More often however, this coolant is enclosed in
a primary circuit, and there is an exchange of heat with a secondary circuit of water/steam
which runs the turbines.

The extra neutrons resulting from the fission process can then generate more fission reactions.
In time, this can set up a self-sustaining chain reaction. However, this depends entirely
on having the right conditions, amongst which are the type of reactor, its geometry, its
dimensions, and its fuel composition.

For example, if we consider the fuel, the isotope U-238 makes up for a much more substantial
proportion of naturally-occurring uranium, at around 99.3%. This and U-235, the other
isotope making up most of the rest, have vastly different cross sections of neutron capture
and fission. The cross section – commonly denoted as σx with the subscript x indicative of
the type of interaction – can be understood as the probability of interaction. Fig. 1.1 shows
graphs of cross sections versus incident neutron energy for U-235 and U-238.

It can be seen that Uranium-235 has a much higher probability of fission at low energies.
Coupled with the fact that more uranium reserves (than were initially thought to exist) were
discovered, this pushed early reactor development towards thermal reactors. These slow
down the neutrons in a process called moderation, which is achieved through nearly-elastic
collisions with light nuclei, generally the hydrogen atoms in water molecules. At low energies
though, the probability of radiative capture4 also increases for both isotopes (as seen on
Fig. 1.1) as well as for the water that is usually being used as moderator. Because of this
complication, within an industrial-sized reactor, there will not be enough neutrons emitted
through fission to provide a self-sustaining reaction with natural uranium. As such, uranium
enriched in U-235 normally has to be used as fuel.

Today, the most common type of nuclear reactor around the world is the Pressurised Water
Reactor (PWR). These use slightly-enriched (2.0 - 5.0%) uranium dioxide pellets as fuel,
clad with a zirconium metal alloy (Zircaloy). Light water is used both as a moderator and a
coolant. PWRs also generally include two coolant loops to reduce the spread of radioactivity

4Radiative capture is a reaction where the incident neutron is captured by the nucleus and a gamma
photon is emitted, but no fission is induced.

6

(a) U-235

(b) U-238

Figure 1.1 Plots of cross section against incident energy for the fission and radiative capture
reactions for Uranium-235 and Uranium-238. Data for plots obtained from https://www.
nndc.bnl.gov/endf.

https://www.nndc.bnl.gov/endf
https://www.nndc.bnl.gov/endf

7

within the system. The water in the primary loop stays liquid under high pressure while the
water in the second loop is turned into steam to drive the turbines.

Three other types of reactors are the Boiling Water Reactor (BWR), the Vodo-Vodyanoi
Enyergeticheskiy Reaktor (VVER), and the CANada Deuterium Uranium (CANDU) reactor.
The first is very similar to PWRs, except that it consists of a single coolant loop where the
water is turned into steam in the reactor pressure vessel itself. The second is also very much
like PWRs but feature a hexagonal lattice and is surrounded by a heavy reflector made of
stainless steel. VVERs are present in Russia but also India, Turkey, Bulgaria, Slovakia,
Finland and Ukraine, amongst other countries. There is a concern about supporting VVERs
in European countries for safety analyses and operation. CANDUs, on the other hand, use
natural uranium as fuel. To overcome the problem of the resulting lower neutron economy,
heavy water is used as moderator and coolant instead of light water. Since the hydrogen
already has an extra neutron, it has a much lower affinity for neutron absorption.

In addition, as noted in the preceding section, on the opposite side of thermal reactors are
FNRs. These are designed to keep the neutrons at high energies and operate under these
conditions. If we look at Fig. 1.1 again, at high energies, we can see that while the absolute
probability of fission is lower, the relative probability taken with respect to the probability
of radiative capture is much higher. This is the case for both uranium isotopes. And while
it is difficult to maintain the neutrons at very high energies constantly, there can be much
more fission of Uranium-238 now, since the absolute probability of fission of U-238 is higher
than that of radiative capture. As an aside, many of the long-lived radioactive waste isotopes
have a similar behaviour. This is yet another advantage of FNRs in that they are able to
burn these as fuel and get much shorter-lived radioactive waste as as result.

On top of that, FNRs tend to have a better neutron economy than thermal reactors. This
means that overall, considering neutrons lost to capture, leakage and otherwise, it is possible
for more than one net neutron to result from each fission reaction. Hence, there are now
neutrons available to breed more fuel. Put simply, one way of achieving this would be to turn
Uranium-238 into Uranium-239 via neutron capture and subsequently, into Plutonium-239
via two beta-decays5. This, coupled with the higher fission rate of Uranium-238 means that
FNRs make much more efficient use of the fuel element (U-238) which is mostly unused in
thermal reactors, stretching the available uranium reserves available today that much further
into the future.

Another aspect that tends to be specific of FNRs – albeit not exclusively: for e.g., VVERs

5A beta-decay (or β-decay) is a radioactive process whereby a neutron spontaneously undergoes a trans-
formation into a proton accompanied by the emission of an energetic electron (β particle) and an antineutrino.

8

too – is the hexagonal design of the reactor fuel pins. For FNRs at least, this is a direct
consequence of requiring the fission reactions to occur at high energies. Indeed, for a planar
geometry, hexagons are the best polygons when it comes to packing [13] as efficiently and
as closely as possible6. If neutrons are able to cause fission reactions soon after being born,
they would have lost as little energy as conceivable. This is why it is desirable and important
to have the fuel pins well packed. For this reason, FNR fuel pins are hexagonal, arranged in
a honeycomb pattern, and ultimately the reactor core tends to be in the same shape too.7

Also, again because of the need to maintain the neutrons at high velocities, water cannot
be used to siphon heat away from the fuel in FNRs. For that reason, liquid metal or liquid
metal alloys are used. These moderate much less and have better heat transfer properties
than water, as well as contribute to passive safety features by allowing for natural circulation
of heat in accident scenarios.

Unfortunately, this can also be a drawback. An SFR reactor for example uses liquid sodium.
This requires exotic materials for the piping and containment, not to mention the fact that
sodium spontaneously catches fire when exposed to air. Other drawbacks include shorter
timescales because of fewer delayed neutrons leading to a higher level of unpredictability; a
positive void coefficient for the coolant; a higher fissile load required for start-up; and much
less experience in operation reactor-years compared to thermal reactors.

1.3 Scope of Research Project

The modern study and safe operation of a nuclear reactor, whether thermal or fast, relies
on the computational simulation of its reactor core and power distribution. Accurately rep-
resenting the growth and distribution of the neutron population is key since neutrons are
the direct cause of fission – and hence, release of energy. In fact, the mathematical mod-
elling of neutral particle steady-state transport relies on the representation of movement of
these particles in a six-dimensional phase space8 as influenced by their interaction with un-
derlying materials. This can be described by the Boltzmann Transport Equation (BTE), a
linear balance equation. Fast and accurate solutions to the BTE are central to the safe con-
trolled operation of Nuclear Power Plants (NPPs). Owing to the complexity of the equation,
computer simulations are always employed to solve the equation in real-world scenarios.

6While this was first postulated as far as back as 36 BC, it was only proven in 1999 by Hales [13].
Regardless of the proof, this was a well-accepted statement that saw widespread use in industry after taking
inspiration from nature [14].

7As an aside, thermal reactors usually have a square-ish design because of the need to moderate the
neutrons in between its birth and subsequent collision with a fuel nuclei. Therefore, in this case, some
distance is a desirable feature.

8In steady-state, these are space (3 degrees of freedom (d.o.f.)), energy (1 d.o.f.), and direction (2 d.o.f.).

9

Numerous solvers and codes currently exist to solve the BTE. However, these were mostly
built and optimised with thermal reactors in mind. Fast reactors, as we have just seen, have
important differences – the neutron energy spectrum for one of course, but also the design of
the core and the layout of the various components inside it. Of course, with the right data
set, one could expect that the numerical methods that are the backbone of these solvers,
should also work well for fast reactors. That said, it is known that numerical methods can
be quite fickle in that respect. And even if they do work well, the question was also one of
their performance, in terms of accuracy, speed, and efficiency.

This is exactly what a previous study by Bay [15], endeavoured to quantify in 2013. They
had access to several French software as well as the Polytechnique Montréal in-house code,
DRAGON5/DONJON5. Some of them had similarities in between them, which made it useful
for comparison purposes to ensure that results were consistent across different solvers. Bay
compared these solvers in their ability to accurately model a small SFR core for an eigenvalue
problem – more on that in Chap. 2. The benchmarks were based on the Takeda Model 4 [16]:
the original benchmark as well as one with modifications to more closely resemble the CFV9

variant [17] of the ASTRID reactor core. These solvers and their respective code or platform
were TRIVAC5/DONJON5; SNATCH/PARIS; VARIANT/ERANOS; MINARET/APOLLO3;
and MINOS/APOLLO3. [15, 18, 19, 20, 21]

The specifics of each solver are not really important for this discussion. What is, however,
are Bay’s results. They found that solvers based on the discrete ordinates (SN)10 method
were overall much more accurate than both Pn and SPn

10 solvers, with Pn being the better
of the two – around up to one order of magnitude for Pn and around up to two for SPn.
However, SN solvers were also slower – several orders of magnitude slower in fact. Ultimately,
Bay’s recommendation was that Pn solvers seem to represent a good middle-ground between
accuracy and speed. However, none of the SN solvers they tested had all of the following
aspects:

■ able to use and compare both the High Order Diamond Difference (HODD) and the
Discontinuous Galerkin Finite Element Method (DGFEM) spatial discretisations;

■ able to model in Cartesian (1D/2D/3D) and hexagonal geometries (2D/3D);

■ a Synthetic Acceleration (SA) in lozenge-based hexagonal geometries; and

■ a parallelised sweeping algorithm, made rapid in its execution by using High Perfor-

9French: Coeur à Faible Vidange – a core with low reactivity effect in case of sodium drainage.
10Method(s) of discretising the direction (angular) phase space. Th(-is/-ese) will be elaborated upon to

some extent in Chap. 2.

10

mance Computing (HPC) methods such as Single Program, Multiple Data (SPMD)
constructs.

What we are trying to express with all of this terminology here – and we do ask the reader
to please bear with us until Chap. 2 for more details on these – is that with relatively recent
advances in both numerical methods analysis and high-performance computing, there are
ways of making the SN solver (i.e., the more accurate one) much faster, without comprising on
accuracy of the computation. And in this way, Bay’s work forms the basis of this dissertation.
By implementing, testing and researching the shortcomings listed above, what are the answers
that can be obtained? And by how much is it possible to reduce the computational time of an
SN solver with the resources that we currently have at our disposal?

Therefore, the overarching goal of this research and dissertation is the development in the code
DRAGON5 of a parallel discontinuous finite element SN solver in Cartesian and hexagonal
geometries for the Boltzmann transport equation.

Through previous projects at Polytechnique Montréal, an SN HODD solver for the Cartesian
domain had already been implemented, along with a first draft of a compatible acceleration
technique. This was the starting point. It was decided to also implement DGFEM since
the solvers tested by Bay all relied on this spatial discretisation. There was also a certain
belief in the community that DGFEM was just better. As such, it was deemed interesting to
compare the two techniques. And because this work sits within the framework of developing
an accurate and precise solver for FNRs, we decided to implement high-order polynomials –
up to at least parabolic, and cubic in the case of DG.

The next step was handling the hexagonal geometry that is intrinsic to VVERs and FNRs.
There are a few ways to do so. However, for reasons of convenience, a lozenge-based approach,
coupled with an affine transformation, was chosen. This method, splits each hexagonal mesh
element of the domain into three lozenges. These can then be transformed into the Cartesian
reference mesh elements. This has a few advantages but the obvious and biggest one is that
it enables us to build upon the existing Cartesian solvers.

A significant portion of time was also spent on the investigation and optimisation of the
SA (i.e., the acceleration technique) that was previously set up with HODD. The search
for consistent or compatible fast SAs in the industry is an ongoing and seemingly never-
ending one. As it will be seen, many improvements and additions were made to the method,
and it was coupled with DGFEM too. Several analyses based on the Fourier Analysis (FA)
technique (which is the standard to use in the field) were run for both methods, as well as
numerical benchmarks to evaluate its performance.

11

On top of accelerating the computation through numerical methods such as the Diffusion
Synthetic Acceleration (DSA), it can also be done through High Performance Computing
(HPC) – essentially throwing more computer cores (Central Processing Units (CPUs)) at it.
This was the last step in this work. A couple of parallelisation solutions were investigated: the
Open Multi-Processing (OpenMP) Application Programming Interface (API) and Message
Passing Interface (MPI) standard. OpenMP was found to be lacking for our applications
and we shifted mostly to MPI. This part of the work was done in a separate library called
WYVERN. While there were substantial gains in the computation times, these more or less
levelled off after a hundred cores or so. This prevented a massively parallel implementation.
However, what has been done represents an important first step for the SN solver.

1.4 Thesis Outline

Owing to the arguably somewhat disjointed nature of the parts that make up this dissertation,
a traditional literature review chapter has been eschewed. Instead, the next chapter will
succinctly summarise the basic concepts of reactor and nuclear physics as well as give a brief
presentation of the DRAGON5 code. Chapters 3 to 6 will then address each of the four
main topics in the order: spatial discretisation, hexagonal geometry, synthetic acceleration
and parallelisation. Each will be something of a self-contained part with its own literature
review, theory, numerical results and discussion. The last chapter will then summarise the
whole dissertation and its major findings, before finally taking a look towards the future.

12

CHAPTER 2 REACTOR PHYSICS BACKGROUND

The aim of this chapter is to provide more technical – albeit still general – background
information which will serve as a foundation for the rest of the project. It will go
over pertinent already-established knowledge on or around the project. Most of these
elements would have been constantly used for this work, but might not have been
directly modified, implemented or researched. For this reason, an overview of these finds
its place here. It is therefore meant either as a refresh for the already knowledgeable
reader, or as a guide for the unfamiliar one.

Considering the popularity and widespread application of the Boltzmann Transport
Equation (BTE), its full derivation is omitted here, and it is only briefly described. A
more complete presentation can be found in the book by Hébert [22]. The focus of this
chapter shifts instead to the deterministic resolution of the transport equation. The
discretisation of its various phase spaces is outlined – in more or less detail depending on
their relevancy to this project. Also, due to its complex nature, the transport equation
requires several iterative loops for its resolution. An overview of these is presented,
leading to a description of the general algorithm. Finally, a concise description of the
code used, DRAGON5, for most of the development work is given.

2.1 The Boltzmann Transport Equation (BTE)

The Boltzmann Transport Equation (BTE) is an integrodifferential equation governing the
balance of neutrons. Considering an infinitesimal phase space volume, drdΩdE, in the
geometric domain D, defined in R3, with boundary Γ, it is given by:

1
v

∂ψ

∂t
(r, E,Ω, t) =−Ω · ∇ψ(r, E,Ω, t)︸ ︷︷ ︸

Streaming loss

−Σ(r, E, t)ψ(r, E,Ω, t)︸ ︷︷ ︸
Collision

+
∫ ∞

0
dE ′

∫
4π
d2Ω′ Σs (r, E ← E ′,Ω← Ω′, t)ψ (r, E ′,Ω′, t)︸ ︷︷ ︸

Scattering

+
Jfiss∑
j=1

χj(r, E)
4π

∫ ∞
0

dE ′ νΣf,j (r, E ′, t)ϕ (r, E ′, t)
︸ ︷︷ ︸

Fission

+Qext (r, E,Ω, t)︸ ︷︷ ︸
External source

,

(2.1)

where

13

■ v – the neutron speed ;

■ ψ(r, E,Ω, t) – the angular flux of particles at the point r (= {x, y, z} ∈ R3), in direc-
tion Ω (= {θ, φ} ∈ [0, π]× [0, 2π]) (where θ and φ are the polar and azimuthal angles
respectively) with energy E, at time t ;

■ ϕ(r, E ′, t) – the integrated flux of particles over the unit sphere, given by

ϕ(r, E ′, t) =
∫

4π
d2Ω ψ(r, E ′,Ω, t) ; (2.2)

■ Σ(r, E, t) – the total macroscopic cross section1, which comprises all the possibilities
of interaction ;

■ Σs(r, E ← E ′,Ω← Ω′) – the scattering macroscopic cross section at the point r for a
neutron with direction Ω′ and energy E ′ which is scattered into the direction Ω with
energy E ;

■ Jfiss – the number of fissionable isotopes, with each represented by subscript j ;

■ χ(r, E) – the fission spectrum of the neutrons ;

■ νΣf,j(r, E ′) – the macroscopic cross section for neutron production by fission for each
fissionable isotope, j, multiplied by ν, the average number of neutrons produced per
fission ; and

■ Qext (r, E,Ω, t) – an external source of neutrons if present.

Quite evidently, the term on the left hand side is the rate of change of neutrons. On the right
hand side, the first two terms are respectively the neutrons streaming out of the considered
infinitesimal phase space volume and neutrons colliding with nuclei – both of which represent
losses. The other terms describe neutron production: neutrons scattering into the phase
volume, fission and an external source. The division by 4π in the fission term indicates that
neutrons produced by fission are assumed to be emitted in an isotropic distribution. Equation
2.1 can also be condensed in operator form as

1
ν

∂ψ

∂t
(r, E,Ω, t) = −Lψ(r, E,Ω, t) + Sψ(r, E,Ω, t) + Fϕ(r, E, t) +Qext (r, E,Ω, t) , (2.3)

where L is the streaming and collision operator, S the scattering operator and F , of course,
the fission operator.

1The cross section is a property of the material in which the neutron is travelling and can be understood
as a measure of the probability of an interaction event.

14

The two most common boundary conditions used in reactor physics for the transport equation
are the vacuum and reflective boundary conditions, both of which can represented with the
albedo boundary condition which is given as, ∀r ∈ Γ−

ψ(r, E,Ω, t) = β ψ(r, E,Ω′, t) , (2.4)

where Γ− is the inflow boundary of D, defined by Γ− = {r ∈ Γ : Ωn ·n(r) < 0}, with n being
the unit outward normal to Γ, and where Ω′ is the direction of the outgoing particle. For
vacuum boundary conditions (b.c.), β = 0 while for reflective b.c., β = 1 and Ω ·n = −Ω′ ·n.

2.1.1 Steady state

A nuclear reactor operating under normal conditions is considered a multiplying medium
because of the presence of fissionable material which can lead to a cascade of neutrons. Such
a system is a critical when the rate of production of neutrons is equal to the rate of removal
of neutrons from the system, i.e., when there is a time-independent self-sustaining chain
reaction. If more neutrons are produced than removed, the system is said to be supercritical,
and subcritical inversely.

If we consider the time-independent form of Eqn 2.3 with, for example, void boundary con-
ditions as given above, i.e.,

Lψ(r, E,Ω) = Sψ(r, E,Ω) + Fϕ(r, E) +Qext (r, E,Ω) , (2.5)

this can be difficult to solve as, mathematically, this only yields non-negative solutions when
the system is critical. However, this equilibrium state is not known a priori when carrying
out calculations, and can often only be attained with a fine tuning of the parameters of the
simulated reactor or domain.

Hence, the equality between both sides of the equation is artificially conserved by introducing
an eigenvalue, the effective multiplication factor, keff .2 This eigenvalue adjusts the average
number, ν, of neutrons produced per fission, so that the steady-state BTE is given by,

Lψ(r, E,Ω) = Sψ(r, E,Ω) + 1
keff
Fϕ(r, E) +Qext(r, E,Ω) . (2.6)

2Another method of balancing the steady state equation is through the α eigenvalue method. The k
eigenvalue method has grown in preference with the community over the years because of its advantages such
as its ease of numerical implementation and physical interpretation amongst others. Please refer to [23] for
more details.

15

The keff governs the criticality of the reactor, i.e., whether the nuclear chain reaction is self-
sustaining or not. In this way, information is obtained about the state of the reactor and
which adjustments have to be made to achieve a critical reactor.

■ keff < 1 – more neutrons are consumed than produced, hence the reactor is subcritical,
and the flux decays exponentially.

■ keff = 1 – the neutron population holds steady, the reactor is said to be critical, and
the reaction is self-sustaining.

■ keff > 1 – more neutrons are produced than consumed, resulting in a supercritical
reactor.

2.1.2 Overview of numerical resolution

Analytical resolution of the transport equation is generally possible only for extremely simple
scenarios. This is obviously not the case for a nuclear reactor. The geometries involved are
exceedingly complex, as are the material compositions. For this reason, one has to model the
problem numerically.

There are two main classes of methods for solving the transport equation: Monte Carlo and
deterministic methods. A brief overview of each is given below. But, as this work focuses on
a subset of deterministic methods, they are discussed in more detail thereafter, in Sec. 2.2.

The Monte Carlo method Also known as the stochastic method, the Monte Carlo
method involves the simulation of a colossal number of particles and uses the generated
data to obtain a statistical representation of the problem.

Here, solving the partial differential equations are not required per se since the underlying
physics of the problem is represented by Probability Density Functions (PDFs) defined using
a continuous energy representation of the cross sections. Random sampling (using a random
number generator) from these PDFs yield starting conditions for a neutron which is then
followed until its ‘death’ by capture (absorption or fission) or leakage. The interactions of
the neutron throughout its life are simulated according to the geometry and composition of
the system, as well as the collision laws. All the interactions of the neutron are recorded. This
process is repeated for an enormous number of neutrons, leading to a fairly representative
view of reality. It is the best estimate model using the input parameters for that problem.
Statistical averages of the desired observations (also known as scores), with a calculated
variance, can then be obtained from the data collected. [2, 22, 24]

16

However, because of its need to simulate the ‘lives’ of a huge number of neutrons so as to
have an accurate picture, the Monte Carlo method is also usually characterised by very long
computational times. For this reason, in the nuclear industry, it is mostly used as a validation
and benchmarking tool for deterministic methods. It is also used in cases where the problem
is too difficult to model deterministically, such as in very low-flux regions far from the core,
for example, to calculate the neutron fluence at the wall of a reactor pressure vessel.

Deterministic methods Deterministic methods are based on a discretisation of the phase
space variables: space r (= {x, y, z}), energy E, and direction Ω (= {θ, φ}). This leads to
a system of coupled equations in matrix form with matricial operators which can then be
solved numerically through efficient algorithms. As such, they are much faster, which is why
it is mostly used in industry for production calculations. However, they are also not as exact
since discretising inherently implies approximating.

2.2 Deterministic Resolution of the Transport Equation

This section will describe each step of the deterministic resolution of the transport equation,
in a top-down approach. This will include the different discretisation methods.

2.2.1 keff and external iterations

Solving for the effective multiplication factor, keff , is carried out via the power iteration
method. These iterations are said to be external as they are over the outer level of the
equation, as opposed to the inner iterations that are over the flux. This will be clearer when
summarising in Sec. 2.2.6.

If we consider the source-free time-independent BTE, i.e.,

Lψ(r, E,Ω) = Sψ(r, E,Ω) + 1
keff
Fϕ(r, E) . (2.7)

and have starting guesses for the keff and scalar flux, ϕ(r, E), the iterative scheme can be
written as

Lψ(p+1)(r, E,Ω) = Sψ(p+1)(r, E,Ω) + 1
k

(p)
eff
Fϕ(p)(r, E) , (2.8)

where (p) indicates the power iteration number. The value for the next iterate ϕ(r, E) is
computed by inverting the streaming-and-collision and scattering operators, and integrating

17

over the unit sphere, as such:

ϕ(p+1)(r, E) =
∫

4π
d2Ω ψ(p+1)(r, E,Ω)

= 1
k

(p)
eff

∫
4π
d2Ω (L − S)−1

(
Fϕ(p)(r, E)

)
.

(2.9)

Integrating Eqns. 2.7 and 2.8 over the complete phase space domain, we get respectively
∫ ∫ ∫

r,E,Ω
dr dE dΩ

(
(L − S)ψ(p+1)(r, E,Ω)

)
= 1
k

(p+1)
eff

∫ ∫ ∫
r,E,Ω

dr dE dΩ Fϕ(p+1)(r, E) ,

and
∫ ∫ ∫

r,E,Ω
dr dE dΩ

(
(L − S)ψ(p+1)(r, E,Ω)

)
= 1
k

(p)
eff

∫ ∫ ∫
r,E,Ω

dr dE dΩ Fϕ(p)(r, E) .

Equating the right sides of the two equations and rearranging, we are able to find

k
(p+1)
eff = k

(p)
eff

∫ ∫ ∫
r,E,Ω

dr dE dΩ Fϕ(p+1)(r, E)∫ ∫ ∫
r,E,Ω

dr dE dΩ Fϕ(p)(r, E)
, (2.10)

which represents the overall external iteration scheme.

2.2.2 Energy discretisation

Energy discretisation, through the multigroup formalism, involves dividing the energy domain
into a number, G, of groups. This results into a system of G equations which are then coupled
through the source terms. For brevity’s sake and because it is not the focus of this work, the
multigroup formalism will not be detailed. Only the result is stated below (see [22] for more
details), with the group-wise transport equation given by

Ω · ∇ψg(r,Ω) + Σg(r)ψg(r,Ω) = Qg(r,Ω) , g = [1, G] , (2.11)

with
Qg(r,Ω) =

G∑
g′=1

∫
4π
d2Ω′ Σg←g′

s (r,Ω← Ω′) ψg′(r,Ω′) +

1
4πkeff

∑
i

χg
i

G∑
g′=1

νΣg′

f,i(r)ϕg′(r) ,
(2.12)

18

where the summation over i represents the sum of various fissile isotopes. Also, it should be
noted that the cross-sections are assumed to be piecewise constant over each energy group.

This system of equations is solved using an iterative scheme as well. In the high-energy
groups, because the neutrons are only losing energy (down-scattering), the scattering source is
known. As there is no coupling between the groups, each group can be solved for individually.
However, in the thermal region of energy, there is the possibility of neutrons gaining in energy.
In this case, couplings arise between the implicated energy groups and they have to be solved
for simultaneously using something like a Gauss-Seidel scheme. More details can be found
in the texts [2], [22], and [24], and the references therein.

For the rest of the document, the g index will be omitted but implied, in an effort to alleviate
the notation.

2.2.3 Anisotropic scattering source density

In order to handle anisotropic scattering, the scattering cross section is usually expanded
in terms of Legendre polynomials. Most domains are more or less homogeneous such that
the collision incident angle is usually negligible and Σs(r,Ω ← Ω′) instead depends on the
outgoing scattering angle. Using the addition theorem of spherical harmonics [22], the end
result for the scattering source term is given as,

Q(r,Ω) =
∞∑

l=0

2l + 1
4π Σs,l(r)

l∑
m=−l

Rm
l (Ω) ϕm

l (r) (2.13)

where Rm
l (Ω) are the real spherical harmonics, and the summation to infinity represents the

exact solution; however in calculations, this is usually truncated to some order L. ϕm
l (r) are

the flux moments defined by

ϕm
l (r) =

∫
4π
d2Ω′ Rm

l (Ω′)ψ(r,Ω′) . (2.14)

2.2.4 Angular discretisation: the Pn, SPn and SN methods

The two main types of angular discretisation are the discrete ordinates, SN , and spherical
harmonics, Pn, methods. Another method that is derived somewhat heuristically from the
Pn method is the SPn method. While the diffusion equation is not an angular discretisation
– it is instead used in full-core calculations due to its low computational cost – a brief outline
is presented in this subsection due to its relationship to the Pn method.

19

The Pn method

The Pn method consists of expanding the flux in terms of the real spherical harmonics,
Rm

l (Ω), up to a certain order, n. [25, 26] These spherical harmonics form an orthogonal
set of basis functions and allows for the representation of the flux over the surface of a unit
sphere. Again, an infinite expansion would lead to an exact representation of the flux but
this is of course not realistic feasible. This leads to the angular flux being expressed as

ψ(r,Ω) =
n∑

l=0

2l + 1
4π

l∑
m=−l

ϕm
l (r)Rm

l (Ω) , (2.15)

where n is odd and is the term to which the expansion is truncated.

Similarly to the preceding section, ϕm
l (r) is given by

ϕm
l (r) =

∫
4π
d2ΩRm

l (Ω)ψ(r,Ω) (2.16)

and the within-group scattering source by

Q(r,Ω) =
L∑

l=0

2l + 1
4π Σs,l(r)

l∑
m=−l

Rm
l (Ω) ϕm

l (r)

=
L∑

l=0

2l + 1
4π

l∑
m=−l

Rm
l (Ω) Qm

l (r) ,
(2.17)

where L ≤ n.

The Pn equations can then be derived by multiplying the BTE by the real spherical harmonics
and integrating over the unit sphere. This leads to a system of (n + 1)2 coupled equations
for each energy group, which implies a quadratic increase in the number of unknowns as the
order is increased. Hence, beyond the first few orders, this method is somewhat less desirable
in 3D (and to some extent, 2D).

That said, in 1D slab geometry, the equations are much simpler since there is only one angular
variable, µ. Following the same method just outlined but where the real spherical harmonics
reduce to Legendre polynomials and the unit sphere is instead the domain −1 ≤ µ ≤ 1, the
resulting (n+ 1) Pn equations can be written as [22]

l

2l + 1
d

dx
ϕl−1(x) + l + 1

2l + 1
d

dx
ϕl+1(x) + Σ(x)ϕl(x) = Ql(x) , (2.18)

where 0 ≤ l ≤ n.

20

The spherical harmonics method does a good job for periodic regular solutions but struggles
with discontinuous solutions. For reactor physics applications, this means it is efficient for
optically thick diffusive media, but inefficient conversely or in highly anisotropic media. A
potential disadvantage is that for high Pn orders, it might be necessary to store more angular
moments than needed by the scattering source. This leads to increased memory requirements.
Also, because the streaming term is not diagonal, as the order increases, this leads to a denser
matrix which means a heavier computational requirement.

P1 approximation and diffusion equation One way of deriving the diffusion equation
is by considering the first two equations of 2.18, i.e., the P1 equations. Assuming the flux,
as well as the scattering source, is a linear function of angle, we get,

d

dx
ϕ1 + Σ(x)ϕ0 = Σs0ϕ0

d

dx

(1
3ϕ0

)
+ Σ(x)ϕ1 = Σs1ϕ1 .

(2.19)

From the second equation,

ϕ1 = −
[

1
3(Σ− Σs1)

]
d

dx
ϕ0 = −D d

dx
ϕ0 , (2.20)

where D is defined as the diffusion coefficient. Substituting for ϕ1 in the first equation then
yields the 1D diffusion equation as

− d

dx
D
d

dx
ϕ0 + Σϕ0 = Σs0ϕ0 . (2.21)

Eqn. 2.21 is the legacy diffusion equation. However, production calculations do not rely on
Eqn. 2.20 for the definition of the diffusion coefficient [22].

The SPn method

A common misconception is that the SPn method is also based on a spherical harmonics
expansion. This is not entirely correct. It is instead based on the 1D Pn equations (given by
Eqn. 2.18) which are then heuristically assumed to be correct in three dimensions. It was
originally presented by Gelbard [27] whose approach was based on the following methodology

1. for even l, replace d
dx

with the divergence operator, and

2. for odd l, replace d
dx

with the gradient operator.

21

This yields, for 0 ≤ l ≤ n,

l

2l + 1∇ · Φl−1(r) + l + 1
2l + 1∇ · Φl+1(r) + Σ(r)ϕl(r) = Ql(r) , l even

l

2l + 1∇ϕl−1(r) + l + 1
2l + 1∇ϕl+1(r) + Σ(r)Φl(r) = Ql(r) , l odd.

(2.22)

While this was initially a heuristic approach, there has since been asymptotic and variational
derivations of these equations. We especially find that the asymptotic presentation by Pom-
raning [28] is easy to understand and makes the most intuitive sense. It demonstrates the
equations by considering a domain where a local planar symmetry can be asymptotically
assumed within the context of a slowly-varying flux. This allows for the angular variable, Ω,
to be simplified by projection on the rotational axis, leading to a 1D approximation.

This addresses in some part the issue of the square increase in the number of variables with
regular Pn, while at the same time resulting in a better approximation than a 3D P1 or
straightforward 1D calculation. However, it has been observed that increasing the order does
not significantly improve the solution, which is why low orders are used. SPn is also generally
used for full core calculations (similar to the diffusion method).

It should be noted that, in the linear anisotropic approximation of the flux and scattering
source, the diffusion equation, the P1 equations and SP1 are all equivalent.

The discrete ordinates (SN) method

The discrete ordinates method – also called the SN method – is a collocation method which
was first used for radiative transfer. It was implemented by Chandrasekhar [29] in the early
1940’s and then adapted and applied to reactor physics problems by Carlson [30] in the early
to mid 1950s.

The SN method uses quadrature rules to recast the integral over angle to a summation.
Therefore, when considering a three-dimensional domain, this essentially discretises the con-
tinuous angular phase space of the unit sphere into a discrete number of permitted directions
of travel for the neutrons over that sphere. This integral over angle is performed for the
angular flux, ψ(r,Ω) of the transport equation so as to obtain the scalar (or integrated) flux,
ϕ(r) at each point in space.

In 3D, over one octant of a considered unit sphere at a point in space, this is given by

2
π

∫ 1

0
dµ
∫ π/2

0
dφf(µ, η, ξ) ≈

M∑
n=1

ωnf(µn, ηn, ξn), (2.23)

22

where η =
√

1− µ2 cosφ, ξ =
√

1− µ2 sinφ, M (= N(N + 2)/8)3 is the number of directions
for one octant and N is known as the order of the method. The sum of all the weights is 4π,
and each is given by

ωn =
∫

Ωn

d2Ω . (2.24)

In 1D, this quadrature rule is written

∫ 1

−1
dµf(µ) ≈

M∑
n=1

ωnf(µn), (2.25)

where ωn are the weights, µn the base points, and M = N(N + 2)/4 for the whole angular
domain.

Several types of quadratures have been used with the discrete ordinates method. Initially,
quadratures were based on Gauss mechanical quadratures, i.e., on the zeroes of the Legendre
polynomials of the first kind and the associated weights - these are the Gauss-Legendre
quadratures.

The product quadrature is somewhat based on this too. It relies on using one type of quadra-
ture in one dimension, and another for the two remaining dimensions. For example, a
Gauss-Legendre quadrature (on the polar axis) can be used together with a Gauss-Chebyshev
quadrature (on the azimuthal plane). An example is given in Fig. 2.1a.

Perhaps the most popular and the one used throughout this work, the Level Symmetric (LS)
quadrature (see Fig. 2.1b), was developed in 1961 by Carlson and Lee [31]. These have
the advantage of being rotationally invariant in π/2 increments. Hence, the base points on
one octant can be duplicated to the others. These are useful in domains where there is
no preferential direction of travel and hence, results in a better representation of the flux.
Without this, undesirable bias could be introduced in the computation by the labelling of
the axes. [31] The main drawback here is the limitation in the number of discrete directions:
beyond a certain point, physically unrealistic weights appear, and hinder the resolution.

Various types of quadratures have been developed, and a review of them all is beyond the
scope of this work. However, one point of note is that there is no intrinsic LS quadrature for
a three-dimensional hexagonal geometry. Indeed, it would not be possible to reconcile the
planar three-fold (π/3) azimuthal symmetry with the polar π/2 symmetry. That being said,
it is entirely possible to use the usual LS even with hexagonal geometry. With a sufficient
number of directions, the biases mentioned earlier can be mitigated.

Applying the quadrature rule to the compact-form transport equation given by Eqn. 2.11,
3 This is only strictly true for the Level Symmetric (LS) quadrature and might not be for others.

23

(a) Product quadrature. (b) LS quadrature.

Figure 2.1 Octant showing the quadrature points for the S6 order, illustrating the differences
between the LS and product quadratures.

we obtain the decoupled set of equations for each direction given by,

Ωn · ∇ψn(r) + Σ(r)ψn(r) = Qn(r) , (2.26)

where 1 ≤ n ≤ M and M = N(N + 2)3 for the whole unit sphere, ψn(r) = ψ(r,Ωn) and
Qn(r) = Q(r,Ωn) for notation simplicity, and where Ωn denotes the permitted direction
of travel by the quadrature rule. LS quadratures will be assumed for the rest of the docu-
ment unless otherwise specified. The spherical harmonics moments of the flux, equivalent to
Eqn. 2.14 without the multigroup discretisation, then becomes

ϕm
l (r) =

M∑
n=1

ωnR
m
l (Ωn)ψn(r) . (2.27)

Solving Eqn. 2.26 for each direction and then finding the integrated flux using Eqn. 2.27
allows for the resolution of the BTE.

Compared to the Pn method, SN is better able to model highly anisotropic or optically thin
media, without needing to substantially increase the order. In turn, this leads to decreased
memory requirements. Also, owing to this decoupling of the directions of neutron travel, the
streaming term is diagonal which leads to a more computationally efficient resolution. The
directions are only dependent on each other for the calculation of the scalar flux, which is
necessary for the source calculation. As it will be seen in later sections, this is one of the
parallelisation solutions employed for increased performance.

24

However, it also does come with its fair share of disadvantages. The flip side of not being
dependent on the entire angular phase space is that it is inefficient in optically thick (i.e.,
diffusive) media. Also, in domains with point sources and low diffusivity, ray effects can
appear. This is the result of high angular discontinuities between the permitted directions of
travel. It is more prominent at low orders, and can be mitigated by increasing the order or
using angular smearing techniques.

2.2.5 Space-angle sweep operation and Source Iteration (SI)

At this point, the next step in the discretisation process is about dealing with the spatial
variable/domain. However, because part of the focus of this work was on the implementation
of a new – at least as far as DRAGON5 is concerned – spatial discretisation method, we will
leave the full discussion of this part to the next chapter.

For now, suffice it to say that the domain is usually meshed into a number of elements
and the discretised transport equation is solved over each mesh element. Depending on the
discretisation schemes, the resolution might be global, i.e., over the whole domain at once,
or local, i.e., over each element at a time. For reasons that will be clearer in Chap. 3, the
latter method is preferred. In that case, there are different ways that the elements in the
domain can be traversed, a couple of which are shown in Fig. 2.2.

Thus, in this way, the domain can be swept for each direction, Ωn, to obtain the solution
in each mesh element. This is repeated for all directions in the quadrature set, and after
applying the quadrature rule summation, the scalar flux is obtained. This is a single space-
angle sweep. This also forms the basis of the Source Iteration (SI) method. An educated (or
random) guess is made for the starting incoming angular flux which allows the space-angle
sweep to start. Once the scalar flux is calculated, the scattering source can be recomputed.
This is one source iteration, also called inner iteration, and is better illustrated below by
considering the source-free scattering SN equations,

Ωn · ∇ψ(κ+1)
n (r) + Σ(r)ψ(κ+1)

n (r) =
L∑

l=0

2l + 1
4π Σs,l(r)

l∑
m=−l

Rm
l (Ωn) ϕm,(κ)

l (r) ,

ϕ
m,(κ+1)
l =

M∑
n=1

ωnR
m
l (Ωn)ψκ+1

n (r) ,
(2.28)

where κ is the source iteration index, which is not the same as the power iteration index, p,
that we saw earlier. The equation does not change significantly if there are fission or external
sources present, except for the added terms. This can also be expressed in operator notation,

25

(a) "Columnar" sweep where the domain is tra-
versed vertically for the given direction. Cells are
computed in a soley sequential manner.

(b) Wavefront-like sweep. Cells in a wavefront
perpendicular to the direction of propagation
could be computed at the same time.

Figure 2.2 Two different types of sweep. The numbers correspond to the order in which the
cells are computed in each case.

as done before,
ψ(κ+1)

n = L−1Sϕ(κ) ,

ϕ(κ+1) = Dψ(κ+1)
n ,

(2.29)

where D is the quadrature operator, and it is understood that the L operator is inverted
within the space-angle sweep framework.

2.2.6 Summary of resolution algorithm

As a means of perhaps more easily visualising the steps discussed thus far, the general
resolution algorithm is summarised as a flow diagram in Fig. 2.3. This also makes it more
obvious why the source and power iterations are respectively called the inner and outer
iterations.

2.3 The DRAGON5 Code

The DRAGON5 code is an open-source reactor physics code developed at Polytechnique
Montréal [18], with more than forty years of expertise and counting. There are already a
lot of resources, including its data structure, user and developer manuals, detailing its many
functions and capabilities amongst other things. However, since most of the development
carried out in this dissertation were implemented there, we seek to present a brief overview
of the code. This will help to understand the why or how of some algorithms implementations,
design decisions or code limitations.

26

Figure 2.3 Simplified flowchart highlighting some of the most salient steps and loops required
in the deterministic resolution of the Boltzmann Transport Equation (BTE). This is, by no
means, an exhaustive diagram. It only highlights the points discussed in this dissertation.

27

2.3.1 General overview

DRAGON5 is actually made up of four main static libraries each having a somewhat different
function. A concise description of each is given below.

■ Utilib – contains some linear algebra functions, steam tables, plotting tools, pseudo-
random number generators and some other basic mathematical functions.

■ Ganlib – is the kernel of the program, insofar that it provides for the interface between
the input files, the software and the output. This is where the information for the
input language CLE-2000 is housed, as well as the structure for the custom data type,
the LCM object. Through these, Ganlib is able to provide the modularity of the code.
Interoperability for multiphysics applications with other software is also possible by
ensuring that the data is in the correct format.

■ Trivac – is mostly the finite element solver for the diffusion and SPn equations.

■ Dragon – is the core of the software. Amongst other things, it contains modules for
defining the geometry, the tracking information for different types of discretisation,
the material information (i.e., cross-sections) and the flux resolution, including self-
shielding, leakage and burnup calculations.

These are all mostly coded in Fortran and compiled using the Fortran2008 standard, except
for the Ganlib kernel which is mostly in C. The compilation of the software is usually carried
out in the order shown above because of the dependency of the libraries, although Utilib and
Ganlib are independent.

An additional library, Donjon, encompasses everything related to full-core computations,
including but not limited to supporting the definition of fuel channels, building extended
material information objects, and simulating reactivity mechanisms and transient calcula-
tions. Consideration of this additional library gives the nuclear core code, DONJON5 –
which still technically depends on all the above libraries to function.

2.3.2 Calculation overview and relevant modules

A simple calculation is usually carried on an input file written in CLE-2000. This scripting
language was developed specifically for this purpose, to allow for relatively easy customisation
of the test problem without the need for developer knowledge of the code. This input file will
contain calls to the relevant modules, after which the output will be contained in an LCM
object data type. This data type can be of two forms: associative tables or heterogeneous

28

lists. Associative tables have a directory-like structure, where each contained record or sub-
directory is accessed using a name key. Heterogeneous lists are based on the same idea but
accessed with integer keys.

The LCM object can either be stored in memory (termed a LINKED_LIST in this case) if it
is to be used within the same calculation or saved to disk as ASCII or binary files for use
later. Indeed, some modules require, as (an) input, LCM object(s) which were output by
other modules. This flow of information is shown to some extent in Fig. 2.4. As one might
expect, most calculations start with description of the geometry, handled by the aptly-named
module GEO:.

The MAC: module (not portrayed on Fig. 2.4) reads a macrolib containing the material infor-
mation (macroscopic cross-sections) directly. A macrolib can be generated from multiparam-
eter databases in SAPHYB or MPO format [32] using interpolation modules SCR: or MCR:. A
multiparameter database contains information for each isotope present in fuel channels in the
reactor and processed by Donjon modules. The MAC: module ensures that the information is
coherent with the geometry and formats the data accordingly.

The resulting output from GEO: is then needed by one of the tracking modules. Depending
on the method of angular and/or spatial discretisation, the latter are responsible for the
sub-meshing of the domain if needed and its subsequent numbering as well as the calculation
of the relevant parameters such as lengths/areas/volumes of elements and/or integration
lines and/or graph of operations and so on. The SNT: module was capable of handling
1D spherical, 1D/2D tube, 1D/2D/3D Cartesian geometries; additional 2D/3D hexagonal-
geometry capabilities were added through this dissertation.

The ASM: module is used to build the collision probability matrices or other assembly matrices
needed by some resolution methods such as the Raviart-Thomas spatial discretisation used
in the SPn or diffusion solver. For this reason, it is not very pertinent to the SN resolution
except in the case where a Synthetic Acceleration (SA) (please refer to Chap. 5) is requested
by the user.

Finally, using the LCM objects from MAC:, the tracking module (here, SNT:), and ASM:,
FLU: handles the flux resolution. This is taken care of by one of the ‘sub-modules’ (termed
CDOOR in DRAGON5’s development jargon, for ‘computation door’) depending on the type of
tracking selected by the user. In our case, it is the sub-module4 that contains the SN solver.
The bulk of the modifications and additions were done in the FLU: module.

4Note the use of the term ‘sub-module’. Although not employed in DRAGON5’s jargon, we adopt the
term here somewhat liberally to highlight the fragmentation between each solver.

29

Figure 2.4 Diagram showing some of the core modules and functions of the DRAGON5 code. This is by no means exhaustive. For
example, the module MAC: designed to read cross-section values directly into memory (e.g., for simple benchmarking problems)
is not portrayed. Also not shown are the ‘sub-modules’ encapsulating each of the solvers in the FLU: module, amongst which is
the one containing the SN solver. More information can be found in the user manual [33]. The modules are shown in rectangular
shaded boxes and the module input/output are encircled. This was reproduced, with permission, from [22].

30

CHAPTER 3 SPATIAL DISCRETISATION METHODS

Several codes in the industry use a discontinuous finite element approximation as
spatial discretisation, and there is a general consensus that because of its perceived
stronger mathematical foundation, the Discontinuous Galerkin Finite Element Method
(DGFEM) is intrinsically better. On top of that, as we have already talked about
in Chap. 1, the SN codes tested by Bay [15] for their study of Fast Neutron Re-
actors (FNRs) were all based on DGFEM. Hence, it was deemed important that
the discontinuous finite element method be investigated and implemented within the
DRAGON5 code for this project.

Also, as the High Order Diamond Difference (HODD) method was already available in
the code, we endeavoured to try and discern the differences between the two spatial
discretisations. That comparison work was done to some extent by Schunert [34], albeit
on a Method of Manufactured Solutions (MMS) benchmark suite. In this project, we
present results for numerical eigenvalue-problem benchmarks for each method, as it has
been implemented within DRAGON5.

This chapter begins with a review of the HODD before discussing the finite element
method more generally. We then derive the DGFEM equations and describe prior work
in the field. The next section outlines its implementation in DRAGON5 by explaining
the rationale behind the choice of solution space and giving an implementation example.
A pseudo-code algorithm also helps to portray the functioning of the method within
the domain sweep. Numerical results are then put forth for three benchmarks. These
serve to both verify and validate the implementation of DGFEM and for comparison
purposes. The two different spatial discretisation methods are analysed mostly in terms
of the keff , the absorption rates and the computation times.

3.1 Review of Discretisation Methods

An in-depth review of all spatial discretisation methods applied to the transport equation,
while interesting, would be well beyond the confines of this dissertation. Hence, the focus
will really be on the diamond difference and finite element methods. Other methods will be
referenced at times if only to provide context. For a thorough review, we highly recommend
the works of Schunert [34] and Hébert [35], and the references therein as a starting point.

31

3.1.1 The Diamond Difference (DD) method

The High Order Diamond Difference (HODD) method, as its name suggests, is but a high-
order polynomial expansion of the Diamond Difference (DD) method. Hence, that is the
starting point of our discussion.

In this subsection, as this is a preliminary discussion, we will consider the one-dimensional
form of the SN transport equation (given in the preceding chapter by Eqn. 2.26), i.e.,

µn
∂ψn(x)
∂x

+ Σ(x)ψn(x) = Qn(x) , 1 ≤ n ≤M , (3.1)

where M = N(N+2)/4. Now, let us consider a slab geometry domain D as shown in Fig. 3.1,
with a meshingMh into elements i such that ⋃i∈Mh

i = D and the cross-sections are constant
per mesh element, i.e., ∀x ∈ i,Σ(x) = Σi. Integrating Eqn. 3.1 over each mesh, we obtain

µn

∆xi

(ψn,i+1/2 − ψn,i−1/2) + Σiψn,i = Qn,i , (3.2)

where the index over each element is made explicit, the i±1/2 fluxes are the interface values
and ψn,i is the mesh-averaged flux, and ∆xi is the mesh width. Within the mesh-sweep
paradigm discussed in Sec. 2.2.5, it can be assumed that one of the interface fluxes is known
as an incoming flux.

However, we still have one equation with two unknowns. An auxiliary1 equation is needed.
This is usually obtained by assuming that the dependent variable has a given shape so that
an interpolation equation can be constructed. The system of equation(s) can then be closed.
The diamond difference scheme gives this equation as,

ψn,i = 1
2(ψn,i−1/2 + ψn,i+1/2) . (3.3)

xi-3/2 xi-1/2 xi+1/2xi-1 xi+3/2xi+1xi

sub-volume i-1 sub-volume i sub-volume i+1

x

∆xi-1 ∆xi+1∆xi

Figure 3.1 Domain subdivision for slab geometry.

1These are sometimes also called complementary or closure or completeness equations but all refer to
more or less the same thing.

32

It is also interesting to note that while this method itself assumes an average single-value
flux in the cell element (i.e., ψn,i), the auxiliary equation represents a linear variation of flux
within the cell.

3.1.2 The High Order Diamond Difference (HODD) method

The High Order Diamond Difference (HODD) method builds upon the DD scheme through
a generalisation of the representation of the flux to high-order spatial polynomials. The idea
being, as in finite element methods, that as the order is increased, there is a better represen-
tation of the flux. This was demonstrated for the discrete ordinates transport equation by
Hébert [35] in 1D and 2D, and then further extended to 3D by Martin and Hébert [36]. We
present in this subsection the method for the 2D case. This, in our opinion, alleviates the text
of the extra notation associated with a 3D problem without over-simplifying the concepts.
As shown by Schunert [34] and Jeffers [37], there can be a couple of ways to arrive at the
equations governing the method but our development here is based on Hebert’s method.

We begin with the 2D SN transport equation,

µn
∂ψn(x, y)

∂x
+ ηn

∂ψn(x, y)
∂y

+ Σ(x, y)ψn(x, y) = Qn(x, y) , (3.4)

where 1 ≤ n ≤M = N(N+2)/2. As in the previous subsection, the domain is meshed albeit
this time with rectangular elements, each identified by its position {i, j} with sides, ∆xi and
∆yj, and constant cross-section, Σi,j. We then apply the following change of variables,

u = 1
∆xi

[
x− 1

2(xi−1/2 + xi+1/2)
]
,

v = 1
∆yj

[
y − 1

2(yj−1/2 + yj+1/2)
]
.

(3.5)

such that we are on the reference mesh element defined by −1/2 ≤ u ≤ 1/2 and −1/2 ≤ v ≤
1/2. This is a common practice in spatial discretisation methods so as to have standardised
equations that are scaled through mesh element constants. This gives the discretised equation
on the reference element as

µn

∆xi

∂ψn,i,j(u, v)
∂u

+ ηn

∆yj

∂ψn,i,j(u, v)
∂v

+ Σi,jψn,i,j(u, v) = Qn,i,j(u, v) . (3.6)

It is now assumed that the flux (and source) can be developed using a polynomial series
expansion. This series expansion is usually truncated to an arbitrary order, Λ. Any polyno-
mial series could potentially be used. In the DRAGON5 SN solver, the normalised Legendre

33

polynomials, P̃ (u)α and P̃ (v)β, were implemented, with 0 ≤ α ≤ Λ and 0 ≤ β ≤ Λ. The
first four polynomials in the series are

P̃0(u) = 1 ,

P̃1(u) = 2
√

3u ,

P̃2(u) =
√

5(6u2 − 1/2) ,

P̃3(u) =
√

7(20u3 − 3u) .

(3.7)

The flux and source are then expressed as

ψn,i,j(u, v) =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(v) ψ[α,β]
n,i,j ,

Qn,i,j(u, v) =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(v) Q[α,β]
n,i,j ,

(3.8)

where each expansion coefficient (also called Legendre moments here) is defined as

ψ
[α,β]
n,i,j =

∫ 1/2

−1/2
duP̃α(u)

∫ 1/2

−1/2
dvP̃β(v) ψn,i,j(u, v) ,

Q
[α,β]
n,i,j =

∫ 1/2

−1/2
duP̃α(u)

∫ 1/2

−1/2
dvP̃β(v) Qn,i,j(u, v) ,

(3.9)

where we have made use of the orthogonality of Legendre polynomials.

Multiplying Eqn. 3.6 by a series of test functions – in this case, the Legendre polynomials –
and integrating over the domain gives,

µn

∆xi

∫ 1/2

−1/2
duP̃α(u)

∫ 1/2

−1/2
dvP̃β(v)∂ψn,i,j(u, v)

∂u
+ ηn

∆yj

∫ 1/2

−1/2
duP̃α(u)

∫ 1/2

−1/2
dvP̃β(v)∂ψn,i,j(u, v)

∂v
+

Σi,j

∫ 1/2

−1/2
duP̃α(u)

∫ 1/2

−1/2
dvP̃β(v)ψn,i,j(u, v) =

∫ 1/2

−1/2
duP̃α(u)

∫ 1/2

−1/2
dvP̃β(v)Qn,i,j(u, v) .

(3.10)

In DRAGON5, HODD was already implemented for solution expansions from the zeroth/flat
order up to parabolic, i.e., 0 ≤ Λ ≤ 3 for the 1D/2D/3D Cartesian geometries. We added
hexagonal geometry capability in this work (see Chap. 4). Also, as variable-order expansion
has not been implemented (yet), the same order is used for expansion for every dimension.

As an example, for a value of Λ of 1, after considerable algebra, the first four Legendre

34

moments of the flux are given by the following equations,

µn

∆xi

(ψ[∗,0]
n,i+1/2,j − ψ

[∗,0]
n,i−1/2,j) + ηn

∆yj

(ψ[0,∗]
n,i,j+1/2 − ψ

[0,∗]
n,i,j−1/2) + Σi,jψ

[0,0]
n,i,j = Q

[0,0]
n,i,j

√
3 µn

∆xi

(ψ[∗,0]
n,i−1/2,j + ψ

[∗,0]
n,i+1/2,j − 2ψ[0,0]

n,i,j) + ηn

∆yj

(ψ[1,∗]
n,i,j+1/2 − ψ

[1,∗]
n,i,j−1/2) +

Σi,jψ
[1,0]
n,i,j = Q

[1,0]
n,i,j

(3.11)
µn

∆xi

(ψ[∗,1]
n,i+1/2,j − ψ

[∗,1]
n,i−1/2,j) +

√
3 ηn

∆yj

(ψ[0,∗]
n,i,j−1/2 + ψ

[0,∗]
n,i,j+1/2 − 2ψ[0,0]

n,i,j) +

Σi,jψ
[0,1]
n,i,j = Q

[0,1]
n,i,j

√
3 µn

∆xi

(ψ[∗,1]
n,i−1/2,j + ψ

[∗,1]
n,i+1/2,j − 2ψ[0,1]

n,i,j) +
√

3 ηn

∆yj

(ψ[1,∗]
n,i,j−1/2 + ψ

[1,∗]
n,i,j+1/2 − 2ψ[1,0]

n,i,j) +

Σi,jψ
[1,1]
n,i,j = Q

[1,1]
n,i,j ,

where we have made use of the following definitions,

ψ
[∗,β]
n,i±1/2,j =

∫ 1/2

−1/2
dvP̃β(v) ψn,i,j(±1/2, v)

ψ
[α,∗]
n,i,j±1/2 =

∫ 1/2

−1/2
duP̃α(u) ψn,i,j(u,±1/2) ,

(3.12)

which represent the Legendre moments of the boundary fluxes on the trace of the element
domain (i.e., the edges of the mesh element), which is itself the reduction of the flux defined
on the whole domain. We also point out that lowest-order HODD (i.e., HODD-0) simply
amounts to the usual DD scheme, as expected.

However, we still have the same problem as before: while the obtained balance equations
are exact, there are more unknowns than equations, even when accounting for the incom-
ing fluxes being known. In fact, if we define ζ as the number of dimensions, there are[
(Λ + 1)ζ + (ζ − 1)(Λ + 1)(ζ−1)

]
unknowns and (Λ + 1)ζ equations. To solve this, Hébert [35]

obtained the closure relations first in 1D by generalising the diamond difference scheme in
such a way that the (Λ + 1)th order equation had a trivial solution. By analogy, these were

35

then extrapolated to 2D, and are given as

ψ
[∗,β]
n,i∓1/2,j =

2ψ[0,β]
n,i,j − ψ

[∗,β]
n,i±1/2,j if Λ = 0,

ψ
[∗,β]
n,i±1/2,j ∓ 2

√
3ψ[1,β]

n,i,j if Λ = 1,

2ψ[0,β]
n,i,j + 2

√
5ψ[2,β]

n,i,j − ψ
[∗,β]
n,i±1/2,j if Λ = 2,

· · ·

(3.13)

with the upper sign for µn < 0, and lower sign for µn > 0, as well as,

ψ
[α,∗]
n,i,j∓1/2 =

2ψ[α,0]
n,i,j − ψ

[α,∗]
n,i,j±1/2 if Λ = 0,

ψ
[α,∗]
n,i,j±1/2 ∓ 2

√
3ψ[α,1]

n,i,j if Λ = 1,

2ψ[α,0]
n,i,j + 2

√
5ψ[α,2]

n,i,j − ψ
[α,∗]
n,i,j±1/2 if Λ = 2,

· · ·

(3.14)

with the upper sign for η < 0, and lower sign for η > 0

Substituting the unknown outgoing fluxes in the Legendre moments SN equations (Eqns. 3.11)
using the relevant closure relations, a system of equations is obtained allowing us to solve
for the Legendre moments, i.e. the mesh-centred fluxes, ψ[α,β]

n,i,j . There are (Λ + 1)ζ degrees of
freedoms (d.o.f.s) or unknowns, corresponding to these Legendre moments.

In this form, the High Order Diamond Difference (HODD) method has often been classified
as a variant of the Finite Volume Method (FVM), insofar that this method decomposes the
domain into homogeneous mesh elements before integrating the equation of conservation over
each element. Using the product rule and divergence theorem (the equivalent of integration
by parts in multiple dimensions), the volume (in 3D) integrals over the streaming terms are
recast to surface integrals. The remaining volume and surface integrals can then be written
in terms of volume- and surface-averaged expressions of the dependent variable. However,
we shall see later that this is actually not correct (refer to section 3.1.5).

Nevertheless, the DD method has been analysed extensively. While it was originally expected
to feature second-order accuracy [38] while retaining only the zeroth moment source, it has
since been demonstrated that this does not hold in practice for realistic problems [39, 40],
and is dependent on the smoothness of the problem at hand and the error norm used in
computations. This result appears to have led to some decline in its popularity. Furthermore,
it seems that this conclusion was assumed heuristically for HODD by part of the community.

Another aspect of HODD is that it enforces more coupling of the dependent variable in
between mesh elements, when compared with discontinuous finite element methods. This can

36

lead to a lack of robustness of the method in optically thick regions and also lead to negative
average angular (and potentially, scalar) flux values. These negative values can actually lead
to instabilities sometimes when coupled with an acceleration method. For this reason, a
quick and dirty fix usually is to check for negative values and set these to zero, although this
is actually limited to the HODD-0 (i.e., the classical DD scheme) approximation.

3.1.3 General overview of Finite Element Methods (FEMs)

Within the finite element method framework, the solution to a Partial Differential Equation
(PDE) under consideration is approximated by a linear combination of polynomials – or more,
generally, functions, that are taken from a finite-dimensional trial function space. Similar to
the HODD method we just discussed (refer to Eqn. 3.8), the unknowns being solved for are
the expansion coefficients of this linear combination of functions.

There are a few approaches to obtaining the FEM formulation. All of them, though, require
an integral formulation whereby the PDEs are integrated over some domain of interest. One
approach is the direct variational method, also called the Rayleigh-Ritz method. In this case,
the equations are obtained from substitution of the trial functions into a functional equivalent
to the PDE, and then finding the stationary points of that functional with respect to the
expansion coefficients [41, 42].

Perhaps the more common approach though is the weighted-residual method whereby the
residual of the approximate solution is taken to be orthogonal to a set of weighting (or test)
functions with respect to some inner product. For a general PDE,

∆u(r) = f(r) ,with u(a) = ua, u(b) = ub , (3.15)

defined over some domain D such that r ∈ D, let us consider the approximate solution, ū,

ū(r) =
Λ∑

i=1
uivi(r) (3.16)

where the trial functions, vi(r), are taken from a solution space P , subset of the Sobolev
space, L2(D) such that ū ∈ V = {v ∈ P}. The residual, R, is then given by

R = ∆ū(r)− f(r) . (3.17)

Considering test functions, wj(r) (j = [1,Λ]) taken from another space, Q, with similar

37

properties, the weighted-residual method gives Λ equations represented by
∫
D
wjRdr = 0 , j = [1,Λ] , (3.18)

forming a system of equations allowing for the resolution of the expansion coefficients, ui.
If the solution space for the trial and test functions are the same, the method is sometimes
referred to as the Galerkin or Bubnov-Galerkin (finite element) method.

The finite element scheme can be further subdivided into two different types: continuous and
discontinuous. The main difference between the two is whether the approximate solution is
continuous globally or not, i.e., across the whole domain. In continuous FEM, the test and
trial function spaces are supported across two or more adjacent cells of the domain mesh
such that continuity is forced at the cell boundaries. This means that the solution boundary
values are unique at the interface independent of the cell from which the trace is calculated.
Because the boundary value is unique, this means that the solution is unique, and that the
solution is pointwise continuous.

On the other hand, in the Discontinuous Finite Element Method (DFEM), the support for
the test and trial functions is restricted locally to each cell element in the domain mesh.
This entails that the flux is expanded in terms of piece-wise basis functions which are zero
everywhere except on the element on which they are defined. This now means that the
solution boundary values are not unique and will differ depending on which cell element the
interface is approached from. Some form of ‘continuity’ is applied between cells only in a
weak (integral) sense.

While this might not appear ground-breaking, the difference is massive when it comes to the
resolution algorithm and its implementation. Continuous FEM leads to a globally coupled,
albeit sparse, matrix with the end result of having to compute a global system of simultaneous
equations. The computational requirements can be enormous, both in terms of memory and
processing power.

However, with DFEM, the global domain-wise matrix features a block-like arrangement with
very little coupling between each block. Indeed, this arises because of the local and uncoupled
supports of the function spaces. Each block correspond to a cell element and is characterised
by that cell and the test and trial functions. Due to this local property, the resolution can
be done by a mesh sweep if the information (the aforementioned coupling) only transmits in
one direction. This was illustrated on Fig. 2.2 in Sec. 2.2.5.

This allows each cell element to be considered individually. While this local matrix is fully
dense, it is several orders of magnitude smaller (depending on the size of the problem, of

38

course). The size will depend solely on the expansion order of the function spaces – and
the dimensionality of the problem at hand. Mathematically, the mesh sweep makes use of
the fact that the global domain-wise matrix in this case is either lower or upper triangular.
Treating one cell at a time is then somewhat akin to using forward or backward substitution,
respectively.

In neutron transport, when using the discrete-ordinate method, the information only propa-
gates downstream. For this reason, the DFEM is a perfect fit. As the neutron is only allowed
to travel along certain directions and with these already known, the sweep can start upstream
and then move downstream along with the allowed direction of neutron travel.

This method was actually first developed within the reactor physics community by Reed
and Hill [43] at the Los Alamos National Laboratory (LANL) in 1973 and has since gained
tremendous popularity. Numerous applications can be found in the literature although until
recently, most applications were limited to solution spaces with linear polynomials. Some
recent applications of high-order polynomial expansions for the solution space are the works
of Wang and Ragusa [44, 45], Schunert et al. [46], Schunert [34], and Le Tellier [47].

In [44] and [45], Wang and Ragusa implemented high-order DFEM for two-dimensional un-
structured triangular meshes using hierarchical basis sets. They analysed the numerical
convergence of the method and were able to verify theoretical convergence: in the L2 norm,
the rate is given by at least (p+ 1), with p being the spatial approximation order, depending
on the regularity of the solution. Wang and Ragusa also showed, as expected, that quadratic,
cubic or quartic polynomial expansions yielded successively more accurate results, albeit at
the cost of more calculation resources and time. However, they found out that beyond cubic
polynomial expansions, the gains were not worth the extra effort.

Moreover, a comparison work, carried out in [46] and [34], actually compared DFEM, HODD
with a couple of other discretisation methods on a Method of Manufactured Solutions (MMS)
benchmark suite. They showed that DFEM and HODD have about the same grind times,
although as the order increased, the time for DFEM seemed to increase more than the others.
That said, their results showed the discontinuous finite element scheme outperforming the
DD and HODD methods in more or less every scenario, with “HODD method for all orders
fail[ing] dramatically for optically coarse meshes”. While this does not bode well for our
comparison, we will endeavour to see if we obtain similar results on our numerical benchmarks.

39

3.1.4 The Discontinuous Galerkin Finite Element Method (DGFEM)

We present in this section the Discontinuous Galerkin Finite Element Method (DGFEM) as
applied to the (two-dimensional2) discrete-ordinate transport equation. This demonstration
was heavily inspired by the works of Schunert [34] and Le Tellier [47].

We repeat once more the discrete-ordinate transport equation for each direction of neutron
travel, Ωn, and ∀r ∈ D,

Ωn · ∇ψn(r) + Σ(r)ψn(r) = Qn(r) , (3.19)

where D is the domain, defined in R2, with boundary Γ, and with boundary conditions,
∀r ∈ Γ−,

ψn(r) = ψBC
n (r) , (3.20)

where Γ− is the inflow flow boundary of D, defined by Γ− = {r ∈ Γ : Ωn · n(r) < 0}, with
n being the unit outward normal to Γ.

If we consider a meshing Mh of the domain D into elements ξ, each with boundary ∂ξ,
such that ⋃ξ∈Mh

ξ = D, the trial and test solution space, V p
h , of discontinuous piece-wise

polynomial functions, υ, is given by

V p
h =

{
υ ∈ L2(D) : ∀ξ ∈Mh, υ|ξ ∈ Qp(ξ)

}
(3.21)

where Qp(ξ) is the space of polynomials up to degree p, supported on the element ξ.

Also, for two arbitrary neighbouring elements, ξ1 and ξ2, with shared boundary b = ∂ξ1∩∂ξ2,
functions from the solution space are double-valued such that

■ for the trace taken within ξ1, υ|+b∩∂ξ1 = υ|−b∩∂ξ2 ; and

■ for the trace taken within ξ2, υ|+b∩∂ξ2 = υ|−b∩∂ξ1 ;

where the ± superscripts indicates whether the restriction of the function is from the element
or the neighbouring element respectively.

With this formalism in place, we can apply the method of weighted residuals: substituting in
Eqn. 3.19 a solution, ψn,h ∈ V p

h , multiplying the resulting equation by a function wh ∈ V p
h and

integrating by parts over each element, the local Discontinuous Galerkin (DG) formulation

2For consistency with the HODD demonstration.

40

is given as, in its weak or variational form,∫
ξ
(−ψn,h (Ωn · ∇wh) + Σψn,hwh) ds+

∫
∂ξ\Γ−

(n ·Ωn)F∗w+
h dl =∫

ξ
Qnwhds−

∫
∂ξ∩Γ−

(n ·Ωn)ψBC
n w+

h dl ,
(3.22)

where ds and dl indicate surface and line integrals respectively. F∗ is the numerical flux on
the boundaries. In neutron transport, the upwinding rule is used such that

F∗ =

ψn,h|+ if b ∩ ∂ξ+

ψn,h|− if b ∩ ∂ξ− ,
(3.23)

where ∂ξ+ and ∂ξ− are respectively the outflow and inflow boundary of the element, ξ.

Applying the above, we get∫
ξ
(−ψn,h (Ωn · ∇wh) + Σψn,hwh) ds+

∫
∂ξ+

(n ·Ωn)ψ+
n,hw

+
h dl+∫

∂ξ−\Γ−
(n ·Ωn)ψ−n,hw

+
h dl =

∫
ξ
Qnwhds−

∫
∂ξ−∩Γ−

(n ·Ωn)ψBC
n w+

h dl ,
(3.24)

and after integrating by parts again, we get the strong form,∫
ξ
((Ωn · ∇ψn,h)wh + Σψn,hwh) ds−

∫
∂ξ−\Γ−

(n ·Ωn)
(
ψ+

n,h − ψ−n,h

)
w+

h dl−∫
∂ξ−∩Γ−

(n ·Ωn)ψ+
n,hw

+
h dl =

∫
ξ
Qnwhds−

∫
∂ξ−∩Γ−

(n ·Ωn)ψBC
n w+

h dl .
(3.25)

If we now consider that our element lies at inflow boundary, Γ−, of the domain such that
∂ξ− ∈ Γ−, the DGFEM scheme is written as∫

ξ
((Ωn · ∇ψn,h)wh + Σψn,hwh) ds−

∫
∂ξ−

(n ·Ωn)ψ+
n,hw

+
h dl =∫

ξ
Qnwhds−

∫
∂ξ−

(n ·Ωn)ψ−n,hw
+
h dl .

(3.26)

This can be more compactly summarised as∫
ξ
((Ωn · ∇ψn,h)wh + Σψn,hwh) ds−

∫
∂ξ−

(n ·Ωn) Jψn,hKw+
h dl =

∫
ξ
Qnwhds . (3.27)

where Jψn,hK =
(
ψ+

n,h − ψ−n,h

)
was used as the jump operator.

41

3.1.5 High Order Diamond Difference (HODD) as Discontinuous Petrov-Galerkin
Finite Element Method (DPGFEM)

As we mentioned earlier in Sec. 3.1.2, the HODD scheme is frequently seen as a variant
of FVM. However, in their PhD dissertation, Schunert [34] goes on to demonstrate how it
is actually a discontinuous Petrov-Galerkin finite element scheme. This is a finite element
method whereby the set of trial functions is taken from a different space than that for the
test functions. While the test functions are still given by the set of Legendre polynomials
(refer to Eqn. 3.8), the flux is now given by trial functions of the form,

ψn,i,j(u, v) =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(v) ψ[α,β]
n,i,j +

Λ∑
β=0

P̃Λ+1(u)P̃β(v) ψ[Λ+1,β]
n,i,j

+
Λ∑

α=0
P̃α(u)P̃Λ+1(v) ψ[α,Λ+1]

n,i,j .

(3.28)

We find here, embedded in the trial functions, the (Λ+1)th order that Hébert uses to derive the
closure relations. Formulated thusly, these auxiliary equations arise differently. The boundary
fluxes on the exterior and interior traces of each element are taken to be distinct. Indeed,
on the exterior incoming boundary, the flux is expanded only up to order Λ. The difference
between that and the restriction of the flux taken on the interior trace is then required to be
orthogonal to the test space with respect to an inner product. Hence, continuity is enforced
on the boundary fluxes only in an integral sense and only up to order Λ. We present an outline
of Schunert’s proof in Appendix B but more detail can be found in the dissertation. As an
aside, we point out that this was also demonstrated to some extent, seemingly separately, by
Jeffers [37] who built their demonstration upon the work of Hennart and Valle [48].

3.2 Implementation in DRAGON5

In this section, we will look at how the DG method was implemented in the SN solver of
the Polytechnique Montréal lattice code, DRAGON5. The choice of the polynomial basis set
for spanning the solution will be presented and similar to the HODD case, some example
equations will be given. Also, anticipating the discussion around the hexagonal geometry
and parallel computation implementation, the single-cell solution algorithm will be outlined.

3.2.1 Choice of function space

Once the DG equations have been obtained, as in Eqn. 3.27, all that is left is choosing the
polynomial function space for the trial/test functions. From there, it is a simple matter of

42

some algebra to derive the equation for each cell unknown and the implementation. The-
oretically, as long as function spaces have the same span, the numerical results should be
similar. Hence, what matters would be the order and family of the function space – as well
as numerical constraints, if any.

Order can sometimes be a confusing term, as distinct fields or even authors employ it differ-
ently. In this work, order will designate the highest power of either the x, y or z variable in
the spanning polynomial function. The same highest power is used for every variable. The
family of the function space is characterised by which cross-terms are kept for a given order.
There are two main ones that tend to be used in finite element analysis, these being the
Lagrange and ‘serendipity’ families [49].

A common basis set used to expand the solution is the Lagrange polynomials. If we consider
a line element with support points (points at which we wish to determine to value of the
dependent variable) placed at equidistant intervals, Lagrange polynomials have the property
of having a value of unity at one point, and zero at all the others, and are given by

lnk (x) = (x− x0)(x− x1) . . . (x− xk−1)(x− xk+1) . . . (x− xn)
(xk − x0)(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn) =

n∏
i=0
i ̸=k

(x− xi)
(xk − xi)

, (3.29)

thereby being equal to 1 at xk and zero at the other n points.

From this, one can devise a systematic way of generating shape functions for a solution space
in any dimension, simply by multiplying Lagrange polynomials in the number of coordinates
required. If we look at this solution space, it can be seen that all cross-terms are retained,
with support points laid out in a regular grid. For this reason, the Lagrange basis set lends
its name to the Lagrange family of polynomials. Indeed, other polynomial basis set can be
part of the Lagrange as long as all cross-terms are included.

With the seredipity family however, not all cross-terms are included. Only support points
along the edges of the cell element are retained3. They were originally devised heuristically
(hence, the name) but a formal method has since been devised [49]. The direct consequence
is in the reduced number of degrees of freedom or unknowns to solve for per cell.

For the Lagrange family, in 2D the total number of unknowns for Cartesian cell elements is
(Λ + 1)2 where Λ is the order, while for the serendipity family, this is (Λ + 1)2 − (Λ − 1),
1 ≤ Λ ≤ 3. As a result, it is expected that the serendipity set would be faster, but also less
accurate. It was known from the work of Bay [15] that high-order expansions were needed to

3This is true up to the cubic order; beyond that, some internal nodes need to be added to ensure
completeness of the polynomials.

43

accurately resolve test cases involving FNRs. For this reason, accuracy was deemed important
and it was chosen to go with the Lagrange family polynomials.

3.2.2 Lagrange vs Legendre polynomials in DRAGON5

We initially started with Lagrange polynomials as the spanning set for the solution space.
However, various subroutines in DRAGON5 were programmed to work with the average flux
within a cell element to compute outputs and parameters correctly. With the Legendre
polynomials used with HODD, the averages just correspond to the zeroth moment of the
flux. Indeed, if the average for a 1D reference element is defined as,

ϕ̄i =
∫ 1/2

−1/2
du ϕl,i(u) , (3.30)

with
ϕl,i(u) =

M∑
n=1

ωnP̃l(µn)ψn,i(u)

=
M∑

n=1
ωnP̃l(µn)

Λ∑
α=0

ψα
n,iP̃α(u) ,

(3.31)

the average can be written as

ϕ̄i =
M∑

n=1
ωnP̃l(µn)

Λ∑
α=0

ψα
n,i

∫ 1/2

−1/2
du P̃α(u)

=
M∑

n=1
ωnP̃l(µn)

Λ∑
α=0

ψα
n,i

∫ 1/2

−1/2
du P̃α(u)P̃0(u) ,

(3.32)

since P̃0(u) = 1. Using the orthogonality property of Legendre polynomials, we can now
write,

ϕ̄i =
M∑

n=1
ωnP̃l(µn)ψ0

n,i , (3.33)

since
∫ 1/2
−1/2 du P̃α(u)P̃0(u) = 0 if α ̸= 0.

Now, this is not the case with Lagrange polynomials obviously. So there needed to be an
added computation after each inner iteration to compute the averages for each element so
that the scattering source for the next iteration could be correctly calculated. And although
the number of degrees of freedom between HODD and DGFEM is the same for a given order
and problem dimensionality, the main array of unknowns, termed FUNKNO in the code, had
to be increased in length to accommodate these extra values. While, at the time, we did
not immediately realise it, all of this caused our benchmarks running with DGFEM to be

44

perceivably slower than with HODD [50].

Once this was recognised, as a lot of the coding was already done with Lagrange polynomials,
we tried using a Change-Of-Basis (COB) matrix to make the switch to Legendre polynomials.
Unfortunately, this yielded mixed results. In the end, the solver was recoded from scratch
using Legendre polynomials, and we will see in Sec. 3.3, the results were much better.

3.2.3 Implementation example and details

As an example, we will now derive the Legendre moments equations for the two-dimensional
linear order case. The Legendre polynomials as well as the compact DGFEM transport
equation are repeated respectively below for convenience,

P̃0(u) = 1 ,

P̃1(u) = 2
√

3u ,

P̃2(u) =
√

5(6u2 − 1/2) ,

P̃3(u) =
√

7(20u3 − 3u) ,

(3.34)

and
∫

ξ
((Ωn · ∇ψn,h)wh + Σψn,hwh) ds−

∫
∂ξ−

(n ·Ωn)
(
ψ+

n,h − ψ−n,h

)
w+

h dl =
∫

ξ
Qnwhds . (3.35)

Assuming an orthogonal meshing (Fig. 3.2a) of the domain – as is the case in DRAGON5–
such that each element ξ can also be denoted by conventional indices {i, j}. Each element
has sides ∆xi and ∆yj. As with the HODD method, we apply a change of variable (Eqn. 3.5)
such that we are on a reference element (shown in Fig. 3.2b), ξ̂, bounded by −1/2 ≤ u ≤ 1/2
and −1/2 ≤ v ≤ 1/2.

We thus obtain

µn

∆xi

∫
ξ̂
du dv P̃α(u)P̃β(v) ∂

∂u
ψn,i,j(u, v) + ηn

∆yj

∫
ξ̂
du dv P̃α(u)P̃β(v) ∂

∂v
ψn,i,j(u, v)+∫

ξ̂
du dv P̃α(u)P̃β(v)Σψn,i,j(u, v)−

µn

∆xi

∫
ξr−

du (n ·Ωn) P̃α(u)
(
ψn,i,j(u, ξr−)|+ − ψn,i,j(u, ξr−)|−

)
−

ηn

∆yj

∫
ξr−

dv (n ·Ωn) P̃β(v)
(
ψn,i,j(ξr−, v)|+ − ψn,i,j(ξr−, v)|−

)
=∫

ξ̂
du dv P̃α(u)P̃β(v)Qn,i,j(u, v) ,

(3.36)

45

(a) Example of regular structured meshing in
DRAGON5.

(b) Reference element: square of side length
1, centred at (0, 0).

Figure 3.2 Illustration of meshing and reference element in 2D.

where we have dropped the h subscript in favour of the element indices {i, j}, and as before,
the ± superscripts respectively indicates whether the restriction of the function on the in-
coming boundary is on the element or from the neighbouring inflow element. In the case of
the latter, these would have been computed prior in the sweep and are hence known values
and ultimately form part of the source.

Approximating the flux on an element, ξ̂ as,

ψn,i,j(u, v) =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(v) ψ[α,β]
n,i,j , (3.37)

this can be substituted into Eqn. 3.36 above. The equations for each Legendre moment, ψ[α,β]
n,i,j ,

can then be obtained after testing the transport equation against each of the combination of
functions, P̃α(u)P̃β(v), with α or β having range [0,Λ]4.

Before deriving the equations, we also would like to somewhat more elegantly represent the
flux on the boundaries. It is not necessary: the flux restriction on the boundary from the
incoming cells, i.e., the Legendre moments that were calculated from previous neighbouring
cells in the sweep can be used directly. However, we find the following representation way
more intuitive as well as result in less confusingly written equations.

4To be explicit, for example, for linear order in 2D, Λ = 1, this means testing against P̃0(u)P̃0(v),
P̃1(u)P̃0(v), P̃0(u)P̃1(v), and P̃1(u)P̃1(v).

46

Assuming that the flux on the bottom edge (i.e., v = −1/2) of the cell can be expanded as

φn,j−(u) =
Λ∑

α=0
P̃α(u) φ[α]

n,j− , (3.38)

and given the restriction of the adjacent flux on that boundary as

ψn,i,j(u,−1/2)|− =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(−1/2) ψ[α,β]
n,i,j |− , (3.39)

an equivalence can be found between the two sets of Legendre moments, φ[α]
n,j− and ψ

[α,β]
n,i,j |−.

Similar relations can be found for each of the – in the 2D case – four boundaries.

For the 2D linear order, we hence derive in a direction-agnostic form,(
|µn|
∆xi

+ |ηn|
∆yj

)
ψ

[0,0]
n,i,j +

√
3 µn

∆xi

ψ
[1,0]
n,i,j +

√
3 ηn

∆yj

ψ
[0,1]
n,i,j + Σi,jψ

[0,0]
n,i,j =

Q
[0,0]
n,i,j + sgn(µn) µn

∆xi

φ
[0]
n,i− + sgn(ηn) ηn

∆yj

φ
[0]
n,j−

−
√

3 µn

∆xi

ψ
[0,0]
n,i,j +

(
3 |µn|

∆xi

+ |ηn|
∆yj

)
ψ

[1,0]
n,i,j +

√
3 ηn

∆yj

ψ
[1,1]
n,i,j + Σi,jψ

[1,0]
n,i,j =

Q
[1,0]
n,i,j −

√
3 µn

∆xi

φ
[0]
n,i− + sgn(ηn) ηn

∆yj

φ
[1]
n,j−

(3.40)

−
√

3 ηn

∆yj

ψ
[0,0]
n,i,j +

(
|µn|
∆xi

+ 3 |ηn|
∆yj

)
ψ

[0,1]
n,i,j +

√
3 µn

∆xi

ψ
[1,1]
n,i,j + Σi,jψ

[0,1]
n,i,j =

Q
[0,1]
n,i,j + sgn(µn) µn

∆xi

φ
[1]
n,i− −

√
3 ηn

∆yj

φ
[0]
n,j−

−
√

3 ηn

∆yj

ψ
[1,0]
n,i,j −

√
3 µn

∆xi

ψ
[0,1]
n,i,j +

(
3 |µn|

∆xi

+ 3 |ηn|
∆yj

)
ψ

[1,1]
n,i,j + Σi,jψ

[1,1]
n,i,j =

Q
[1,1]
n,i,j −

√
3 µn

∆xi

φ
[1]
n,i− −

√
3 ηn

∆yj

φ
[1]
n,j− ,

47

with the inflow boundary Legendre moments given as,

φ
[0]
n,j− = ψ

[0,0]
n,i,j|− + sgn(µn)

√
3ψ[1,0]

n,i,j|−

φ
[1]
n,j− = ψ

[0,1]
n,i,j|− + sgn(µn)

√
3ψ[1,1]

n,i,j|−

φ
[0]
n,i− = ψ

[0,0]
n,i,j|− + sgn(ηn)

√
3ψ[0,1]

n,i,j|−

φ
[1]
n,i− = ψ

[1,0]
n,i,j|− + sgn(ηn)

√
3ψ[1,1]

n,i,j|− ,

(3.41)

where we have made use of the sign operator, sgn(). This can also be written in matrix form

TΨn,i,j = Qn,i,j , (3.42)

where

T =

(
|µn|
∆xi

+ |ηn|
∆yj

+ Σi,j

) √
3 µn

∆xi

√
3 ηn

∆yj
0

−
√

3 µn

∆xi

(
3 |µn|

∆xi
+ |ηn|

∆yj
+ Σi,j

)
0

√
3 ηn

∆yj

−
√

3 ηn

∆yj
0

(
|µn|
∆xi

+ 3 |ηn|
∆yj

+ Σi,j

) √
3 µn

∆xi

0 −
√

3 ηn

∆yj
−
√

3 µn

∆xi

(
3 |µn|

∆xi
+ 3 |ηn|

∆yj
+ Σi,j

)

(3.43)

Ψn,i,j =

ψ

[0,0]
n,i,j

ψ
[1,0]
n,i,j

ψ
[0,1]
n,i,j

ψ
[1,1]
n,i,j

 , (3.44)

and

Qn,i,j =

Q

[0,0]
n,i,j + sgn(µn) µn

∆xi
φ

[0]
n,i− + sgn(ηn) ηn

∆yj
φ

[0]
n,j−

Q
[1,0]
n,i,j −

√
3 µn

∆xi
φ

[0]
n,i− + sgn(ηn) ηn

∆yj
φ

[1]
n,j−

Q
[0,1]
n,i,j + sgn(µn) µn

∆xi
φ

[1]
n,i− −

√
3 ηn

∆yj
φ

[0]
n,j−

Q
[1,1]
n,i,j −

√
3 µn

∆xi
φ

[1]
n,i− −

√
3 ηn

∆yj
φ

[1]
n,j−

 . (3.45)

In DRAGON5, the DG method was implemented from the zeroth/flat up to the cubic order,
i.e., 0 ≤ Λ ≤ 3 for the 1D/2D/3D Cartesian and hexagonal geometries (more on that in
Chap. 4). Similar to HODD, variable-order expansion is not used, leading to the number of
d.o.f.s per cell per angle to be also given by (Λ + 1)ζ , where ζ is the dimension. Of course,
the matrices, T, Ψn,i,j, and Qn,i,j, will change accordingly.

It is feasible to derive these by hand for simple cases. But at high dimensions and orders, the

48

matrices become quite large and it is much easier to use a scripting language. Indeed, for the
3D case at cubic order, the matrix of coefficients is of size 64 × 64. It would be unrealistic
to derive this by hand. Hence, we used Matlab and its symbolic functions capabilities. Part
of the scripts are given in Appendix A. The rest will be hosted on the DRAGON5 Archives
webpage [51].

3.2.4 Single-cell and inner iteration solution algorithm

With the equations now in hand, we can have a look at the resolution algorithm for one cell
element and how that fits in the inner iteration procedure. While this is essentially the same
as with HODD, it is useful to document so as to better grasp the changes necessary for the
hexagonal geometry and the parallelism implementations.

The procedure for a single cell for a single direction basically consists of four stages:

1. identifying the incoming faces/edges and picking up the incoming fluxes corresponding
for the cell being solved. For the first iteration, this can consist of a rough estimate, a
random number, unity or zero ;

2. assembling the matrix of coefficients and source vector to be computed according to
Eqn. 3.40, more generally, Eqn. 3.36 ;

3. solving the system of equations ; and

4. computing the outgoing fluxes – which will correspond to the restriction of the adjacent
flux on the boundary for some cell(s) further down in the sweep.

A slighted more detailed (compared to Sec. 2.2.5) look at one inner iteration is shown in Alg.
1. This is essentially the backbone of an inner iteration subroutine5 in DRAGON5; there is
one per dimension for each of HODD and DG. The single cell procedure outlined in points
1-4 above are represented at line numbers 15 to 18. Moreover, we would like to add the
following comments:

■ The source term, including scattering and fission, has already been calculated outside
of this algorithm.

■ The order in which the directions over the unit circle (sphere) are looped over does not
matter much, but this is usually carried out quadrant by quadrant.

5The past tense might have been a more appropriate tense here. This algorithm was modified following
the parallelism implementation, and does not exist in this exact form anymore – more on this in Chap. 6.
That being said, this is suitable for the purpose of our discussion right now.

49

■ The resolution of the system of equations, TΨn,i,j = Qn,i,j, is done in the ALSBD subrou-
tine in DRAGON5. It uses a relatively straightforward Gaussian elimination method
with partial pivoting.

■ Depending on the direction of neutron travel, there are four main ways of sweeping
the domain. While this might make intuitive sense for some, this is represented in Fig.
3.3. So, while we represented the loop in the x− and y− directions quite simply in the
algorithm, the loops are usually reversed using a index.

■ If the entries of all relevant arrays (such as the volume, material, flux, source and
others) are all stored in the same particular order, then the sweep over the domain can
be done implicitly without the use of a graph. This is exemplified in Alg. 1 by the use
of the two loops over the elements in the x− and y− directions. Indeed, it is important
to ensure that the outgoing fluxes are passed on to the correct elements during the
sweep.

■ The scalar fluxes (ϕm,[α,β]
l,i,j) and outgoing surface fluxes (φ[α]

n,BC , φ[β]
n,BC) are all held in

the same array in the code, FUNKNO.

Figure 3.3 The four different ways that the columnar sweep proceeds depending on direction
of neutron travel. The fading colour represents progression along the y-axis and the changing
colour progression along the x-axis. The orientation of the domain is the same throughout.

3.3 Numerical Results

This section will present numerical results for two- and three-dimensional eigenvalue-problem
benchmarks. These will serve to verify and validate the DGFEM implementation within the
DRAGON5 SN solver, as well as showcase the differences, if any, with the HODD method.

Results for both methods will be compared against reference solutions. These might have
been obtained from the literature or from a calculation run at high angular and spatial

50

Algorithm 1: Representation of one inner iteration for the 2D case.
input : Qm,[α,β]

l,i,j , φ[α]
n,BC , φ[β]

n,BC

output: ϕm,[α,β]
l,i,j , φ[α]

n,BC , φ[β]
n,BC

/* Initialise flux. */
1 ϕ

m,[α,β]
l,i,j = 0.0

/* Loop over directions in unit sphere. */
2 for n = 1 to N(N + 2)/2 do

/* Swap φ
[·]
n,BC with φ

[·]
m,BC such that Ωm · n = −Ωn · n if needed */

/* n is the normal to the boundary in question */
3 if u = ±1/2 or v = ±1/2 boundary is reflective then
4 Υ = φ

[α/β]
n,BC /* Υ is a temporary variable. */

5 φ
[α/β]
n,BC ← φ

[α/β]
m,BC

6 φ
[α/β]
m,BC ← Υ

/* Loop over elements in domain. */
7 for i = 1 to lx do /* lx = # of elements along x-axis */
8 if i == 1 then
9 φ

[β]
n,i− ← φ

[β]
n,BC

10 else
11 φ

[β]
n,i− ← φ

[β]
n,i+

12 for j = 1 to ly do
13 if j == 1 then
14 φ

[α]
n,j− ← φ

[α]
n,BC

15 else
16 φ

[α]
n,j− ← φ

[α]
n,j+

17 Assemble matrix of coefficients, T, and source vector, Qn,i,j.
18 Solve system of equations TΨn,i,j = Qn,i,j.

19 Compute the outgoing fluxes, φ[β]
n,i+ and φ

[α]
n,j+.

20 Sum angular fluxes over directions to obtain scalar flux such that
21 ϕ

m,[α,β]
l,i,j = ϕ

m,[α,β]
l,i,j + 2ωnψ

m,[α,β]
l,i,j .

/* Store out. fluxes on v = ±1/2 for next inner iteration. */
22 φ

[α]
n,BC ← φ

[α]
n,j+

/* Store outgoing fluxes on u = ±1/2 for next inner iteration. */
23 φ

[β]
n,BC ← φ

[β]
n,j+

51

discretisation with a relatively fine submeshing. In the latter, HODD will be used for the
spatial discretisation as that is the already established method in DRAGON5. A mix of
eigenvalues (the keff), errors on group-wise absorption rates, and computational times will be
given. The absorption rate is calculated using

Ra,i = 1
Vi

∫
Vi

d3r [Σ(r)− Σs(r)]ϕ(r) , (3.46)

where i denotes the cell element of calculation, and Vi its volume. The maximum and average
errors are then respectively worked out on these reaction rate values using the equations
below:

ϵmax = max
i

{
|Ra,i −R∗a,i|

R∗a,i

}
and ϵ̄ = 1

Vcore

∑
i

Vi

|Ra,i −R∗a,i|
R∗a,i

. (3.47)

where the asterisk denotes the reference value, and Vcore is the volume of the whole domain.
In the case of multi-group problems, this is carried out for each group, and the largest values
are then retained across all groups.

The results will be detailed for various parameters:

■ the angular order, N ,

■ the spatial order, Λ, and

■ the spatial submesh, subm., i.e., the number of sub-regions into which each cell element
of the domain is further divided.

Finally, a convergence criterion of 1× 10−5 was applied on both the source (inner) iteration
and power (outer) loops. It should be noted that in DRAGON5, the convergence criterion
is applied to the whole unknown flux vector, the aforementioned FUNKNO. This is interesting
because it means the convergence is also tested on the outgoing surface boundary fluxes.

3.3.1 One-group 2D simple benchmark: 2D-CNS

This is a simple monoenergetic criticality benchmark with anisotropic scattering that was
devised by Hébert [35]. As we first used it in a conference paper [50] in the Canadian Nuclear
Society (CNS) annual meeting, we will refer to it as the 2D-CNS benchmark in this work.

Given the simplicity of this benchmark, it was used mostly as a quick litmus test to verify
whether our DGFEM implementation was correct. We also frequently used it as a simple
benchmark when debugging. Fig. 3.4 shows the domain geometry and material mixtures,
with the cross-section data given in Tab. 3.1. Reflective boundary conditions were used on
the left and bottom sides of the domain while vacuum is applied to the right and top sides.

52

The initial meshing (before any further submeshing) was an equidistant 5× 5 grid.

Figure 3.4 Description of the simple monoenergetic 2D benchmark, 2D-CNS. The dimensions
are in cm. The domain is symmetric along the diagonal, and reflective boundary conditions
are applied on left and bottom sides, and vacuum on the right and top. See Table 3.1 for
the cross-section data. Red corresponds to mixture 1, green to 2, and blue to 3. The black
region indicates a void. The un-submeshed calculation grid is 5× 5.

A reference solution was calculated using an S18 HODD-2 discretisation with a submeshing
of 5. The obtained results are summarised in Tab. 3.2. As mentioned, HODD is only
implemented up to parabolic order, i.e., Λ = 2, so this part of the table is empty. Also
empty is DG-0, i.e., the flat order of DGFEM. While this is technically present, DG-0
performs so poorly that this is not worth including. Going forward, this will be true for the
rest of the document.

The results are also partly represented graphically in Figures 3.5 to 3.7, with plots of the
maximum error, ϵmax, against the number of unknowns. Here, we are using the number of
unknowns in the whole domain, per direction, per group and per anisotropy level. Accounting

Table 3.1 Cross-section data for the 2D-CNS benchmark.

Mix. Σ Σs0 Σs1 νΣf
(cm−1) (cm−1) (cm−1) (cm−1)

1 0.025 0.013 0.0 0.0155
2 0.025 0.024 0.006 0.0
3 0.075 0.0 0.0 0.0

53

for these would not change the shape of the plots, just shift them further up. Hence, this
leaves the number of unknowns as the number of cell elements multiplied by the number of
Legendre moments to be solved for.

An aside here about the number of unknowns: It was mentioned earlier that the number
of d.o.f.s or unknowns is given by (Λ + 1)ζ for both HODD and DGFEM, where Λ is
the expansion order for each dimension, and ζ is the number of dimensions. We would
like to draw the reader’s attention to the fact that depending on the implementation (see
subsection 3.1.5), this might not always be the case. For example, it can be seen in the
work of [46], where the number of unknowns for HODD is given as (Λ + 1)ζ + ζ(Λ + 1).

Looking over the results from Tab. 3.2, we can see that the results are very similar for com-
parable parameters. There are some slight differences, with no submeshing for linear order,
HODD appears to consistently produce better results. However, looking at the maximum
error for the same data points, we can see that the error for DG is actually quite smaller,
roughly half as small. This is perhaps better illustrated in Figures 3.5-3.7 with the con-
vergence plots. The linear case is where the difference is more clear, with DG dropping to
around the converged maximum error with just one mesh refinement.

Figure 3.5 2D-CNS benchmark: S4 convergence rates for the maximum error, ϵmax, as a
function of the number of unknowns.

54

Figure 3.6 2D-CNS benchmark: S6 convergence rates for the maximum error, ϵmax, as a
function of the number of unknowns.

Figure 3.7 2D-CNS benchmark: S8 convergence rates for the maximum error, ϵmax, as a
function of the number of unknowns.

55
Table 3.2 Summarised results for the 2D-CNS benchmark. Λ denotes the polynomial order, and subm. the
submeshing. Three significant figures are given, except for keff .

DD DG

SN Λ subm. k†
eff ∆keff ϵmax ϵ̄ Time k†

eff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

4 0 1 0.986067 -623 155 25 0.005 - - - - -
2 0.9903339 -196 29.1 3.67 0.012 - - - - -
3 0.9911037 -120 3.69 1.21 0.045 - - - - -
4 0.9913744 -92 1.53 0.836 0.04 - - - - -
5 0.9914996 -79.9 2.01 0.88 0.074 - - - - -

1 1 0.991689 -60.9 39.1 6.82 0.012 0.990421 -188 13.7 3.87 0.014
2 0.9917193 -57.9 4.33 0.949 0.045 0.991528 -77.0 2.85 0.959 0.036
3 0.9917208 -57.8 2.76 0.864 0.083 0.9916601 -63.8 2.17 0.855 0.08
4 0.9917211 -57.7 2.59 0.855 0.14 0.9916945 -60.4 2.38 0.855 0.179
5 0.9917212 -57.7 2.51 0.85 0.256 0.9917072 -59.1 2.46 0.854 0.217

2 1 0.9917202 -57.8 17.3 2.7 0.031 0.9917133 -58.5 9.48 1.66 0.03
2 0.9917212 -57.7 2.71 0.867 0.191 0.9917208 -57.8 2.59 0.852 0.152
3 0.9917212 -57.7 2.5 0.85 0.308 0.9917211 -57.7 2.54 0.852 0.282
4 0.9917213 -57.7 2.54 0.852 0.451 0.9917212 -57.7 2.52 0.851 0.461
5 0.9917213 -57.7 2.51 0.85 0.693 0.9917212 -57.7 2.52 0.851 0.678

3 1 - - - - - 0.9917208 -57.8 1.68 0.809 0.089
2 - - - - - 0.9917212 -57.7 2.55 0.853 0.35
3 - - - - - 0.9917212 -57.7 2.51 0.851 0.805
4 - - - - - 0.9917213 -57.7 2.52 0.851 1.43
5 - - - - - 0.9917212 -57.7 2.52 0.851 2.23

6 0 1 0.986241 -606 155 24.9 0.007 - - - - -
2 0.9906151 -168 23.1 2.91 0.022 - - - - -
3 0.9913819 -91.7 5.13 1.16 0.059 - - - - -
4 0.9916507 -64.8 2.28 0.658 0.092 - - - - -
5 0.9917746 -52.4 2.07 0.596 0.131 - - - - -

1 1 0.991968 -33.0 35 6.48 0.03 0.9907091 -159 16.3 3.88 0.024
2 0.9919937 -30.5 5.51 0.784 0.076 0.9918028 -49.6 1.54 0.578 0.118
3 0.9919946 -30.4 1.85 0.49 0.174 0.9919335 -36.5 1.29 0.494 0.161
4 0.9919948 -30.4 1.59 0.475 0.291 0.991968 -33.1 1.46 0.485 0.257
5 0.9919949 -30.4 1.58 0.476 0.445 0.9919807 -31.8 1.5 0.48 0.46

2 1 0.9919942 -30.4 17.5 2.55 0.069 0.9919858 -31.3 8.11 1.29 0.057
2 0.9919949 -30.4 1.72 0.487 0.227 0.9919943 -30.4 1.79 0.488 0.24
3 0.9919949 -30.4 1.58 0.476 0.503 0.9919947 -30.4 1.55 0.474 0.488
4 0.991995 -30.4 1.55 0.474 0.933 0.9919949 -30.4 1.54 0.473 0.865
5 0.9919949 -30.4 1.54 0.473 1.43 0.9919949 -30.4 1.54 0.473 1.41

56
Table 3.2 (continued)

DD DG

SN Λ subm. k†
eff ∆keff ϵmax ϵ̄ Time k†

eff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

3 1 - - - - - 0.9919944 -30.4 1.2 0.536 0.198
2 - - - - - 0.9919949 -30.4 1.54 0.473 0.736
3 - - - - - 0.9919949 -30.4 1.54 0.473 1.67
4 - - - - - 0.9919949 -30.4 1.54 0.473 3
5 - - - - - 0.9919949 -30.4 1.54 0.473 4.44

8 0 1 0.9863902 -591 155 24.9 0.008 - - - - -
2 0.9907833 -152 21.5 2.8 0.068 - - - - -
3 0.991543 -75.5 5.21 1.07 0.099 - - - - -
4 0.9918108 -48.8 3.04 0.527 0.157 - - - - -
5 0.9919342 -36.4 1.51 0.362 0.216 - - - - -

1 1 0.992126 -17.2 34.3 6.42 0.042 0.9908831 -142 17.3 3.85 0.042
2 0.9921527 -14.6 5.63 0.692 0.131 0.9919631 -33.5 1.11 0.368 0.138
3 0.9921537 -14.5 1.14 0.25 0.292 0.9920926 -20.6 0.866 0.278 0.277
4 0.992154 -14.4 1.01 0.247 0.469 0.9921269 -17.2 0.95 0.261 0.443
5 0.9921541 -14.4 0.987 0.246 0.702 0.9921398 -15.9 0.961 0.254 0.702

2 1 0.9921531 -14.5 17.2 2.43 0.105 0.9921443 -15.4 7.77 1.17 0.09
2 0.9921541 -14.4 1.14 0.258 0.449 0.9921533 -14.5 1.24 0.26 0.408
3 0.9921541 -14.4 0.991 0.247 0.964 0.9921539 -14.5 0.994 0.247 0.929
4 0.9921541 -14.4 0.991 0.247 1.6 0.9921541 -14.4 0.989 0.247 1.41
5 0.9921541 -14.4 0.987 0.247 2.29 0.9921541 -14.4 0.987 0.247 2.25

3 1 - - - - - 0.9921534 -14.5 1.29 0.362 0.34
2 - - - - - 0.9921541 -14.4 0.982 0.246 1.3
3 - - - - - 0.9921541 -14.4 0.985 0.247 2.82
4 - - - - - 0.9921541 -14.4 0.986 0.247 4.75
5 - - - - - 0.9921541 -14.4 0.987 0.247 7.73

† Reference keff is 0.9922985, obtained using an S18 HODD-2 method with a submeshing of 5.

3.3.2 Four-group 2D AIC assembly: 2D-AIC

The 2D-AIC benchmark was also devised by Hébert [52] and is quite a bit more complex. It
is a four-group mock-up of a production Pressurised Water Reactor (PWR) assembly and
features large spatial and angular anistropic effects because of the presence of inserted poison
pins. These pins are made of a silver-indium-cadmium alloy – these elements have respective
symbols Ag, In and Cd, hence the name AIC.

The domain is represented in Fig. 3.8, and the four-group cross-section data given in Tab.

57

3.3. Reflective boundary conditions are used on all sides of the domain to simulate an infinite
lattice, as is usually the case in industry lattice calculations.

This benchmark was very much simplified from its original case [53]: it was made purely
Cartesian and the number of energy groups decreased from 26 to 4, with limits at 53, 4
and 0.353 eV. However, Hébert [52] points out that many characteristics from the actual
production assembly are kept. For example, the difference in keff between an isotropic (P0)
and anisotropic (P1) scattering source is around ≈ 2380 pcm.

Figure 3.8 Representation of the 2D-AIC benchmark domain on the left. Reflective boundary
conditions are applied on all sides. The dimensions are in cm, and the cross-section data is
given in Tab. 3.3. Cyan is mix 1, red mix 2, dark red mix 3 and blue mix 4. On the right is
the initial computational mesh before any further refinement.

Similarly to the previous benchmark, the reference solution was calculated using an S18

HODD-2 discretisation with a five-fold mesh refinement, and the results are summarised in
Table 3.4. These calculations were run in series with no synthetic acceleration on the Digital
Research Alliance of Canada (DRAC) cluster Graham.

The results are very similar to the 2D-CNS benchmark. The DGFEM implementation per-
forms very similarly to HODD. One thing of note is that for higher order (especially parabolic
and above), it would seem that mesh refinement does not really do much – at least, for this
benchmark. The solution has already converged. Except perhaps in the case of HODD-1,
it would seem that it struggles a bit more with the unrefined mesh, yielding values for the
keff further away from its converged values, compared to DG. The maximum error results
are also partially represented in Figure 3.9.

58

(a) With HODD-0.

(b) Without HODD-0.

Figure 3.9 2D-AIC benchmark: S6 convergence rates for the maximum error, ϵmax, as a
function of the number of unknowns. The second plot forgoes HODD-0 for better clarity.

The computational time taken the computations are very much in line with what we would
expect. As the number of mesh elements or directions increase, the CPU time increases
proportionally. For example, going from S4 to S6, the number of directions doubles, and
so does the time taken. There are small differences between the two methods, with HODD
being very slightly faster. Plots of errors in keff against time are given in Figure 3.10.

We have noticed that running calculations on the DRAC can lead to slight variations in
the computational time taken for computations. These can range anywhere from 1% to
around 15%. We speculate that this might be due to things like how much load is on the
node at the time or maybe the data is not stored in a contiguous manner. In any case,
while this has not been investigated, they appear to be random. So, with that in mind,

59

(a) With HODD-0.

(b) Without HODD-0.

Figure 3.10 2D-AIC benchmark: S6 convergence rates for the keff , as a function of CPU time.
The second plot forgoes HODD-0 for better clarity.

given that the computational times seem to be consistently faster for HODD, we think
that this might be the method, and not these variations.

Finally, we thought it would be interesting to look at surface plots of the scalar plots. These
were generated using the open-source data-analysis and visualisation application, ParaView
[54]. Figure 3.11 shows these surface plots for S8 HODD/DG-1 with a mesh refinement of 2,
as well as the reference calculation. There is no discernible differences between HODD and
DG when looking at only these. And comparing with the reference solution, both do very
well approximating the solution with the lower resolution.

With ParaView, we can also subtract between two data sets to find the differences as long as

60

the underlying mesh is the same. Hence, Figure 3.12 shows the differences between the scalar
fluxes for HODD and DGFEM from Figure 3.11. The largest variation is in the lowest energy
group but this variation is mostly confined to the poison pins. In fact, this is mostly true
across all groups. This is not entirely surprising as it was expected for HODD to struggle
more in anisotropic regions. Still, this variation is only about 1%.

61

Table 3.3 Cross-section data for the 2D-AIC benchmark. All fission neutrons are emitted in group g = 1. The energy group
limits are at 53, 4 and 0.353 eV.

g Mix Σg Σg→1
s0 Σg→2

s0 Σg→3
s0 Σg→4

s0 Σg→1
s1 Σg→2

s1 Σg→3
s1 Σg→4

s1 νΣg
f

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

1 1 0.5316 0.4973 3.134E-2∗ 2.304E-3 2.228E-4 0.2735 1.410E-2 3.050E-4 1.245E-5 0.0
2 0.4097 0.3908 8.546E-4 0.0 0.0 0.04793 -2.640E-4 0.0 0.0 0.01632
3 0.4072 0.3885 8.562E-4 0.0 0.0 0.04981 -2.624E-4 0.0 0.0 0.01652
4 0.4240 0.3738 2.439E-4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 1 0.9352 0.0 0.6570 0.2528 2.412E-2 0.0 0.4253 0.1203 3.373E-3 0.0
2 0.6286 0.0 0.4407 8.057E-3 0.0 0.0 5.419E-3 -2.453E-3 0.0 0.09259
3 0.6223 0.0 0.4387 8.591E-3 0.0 0.0 3.100E-3 -2.610E-3 0.0 0.09136
4 1.0476 0.0 0.4102 7.370E-4 0.0 0.0 -6.161E-2 0.0 0.0 0.0

3 1 0.9931 0.0 0.0 0.7176 0.2707 0.0 0.0 0.4286 6.426E-2 0.0
2 0.4594 0.0 0.0 0.3785 1.203E-2 0.0 0.0 9.014E-3 -2.572E-3 0.1129
3 0.4599 0.0 0.0 0.3780 1.229E-2 0.0 0.0 1.142E-2 -2.604E-3 0.1143
4 2.7503 0.0 0.0 0.4956 3.248E-3 0.0 0.0 -2.326E-1 0.0 0.0

4 1 1.5931 0.0 0.0 1.163E-2 1.5650 0.0 0.0 5.064E-3 0.4384 0.0
2 0.7508 0.0 0.0 5.318E-3 0.3983 0.0 0.0 -7.338E-4 8.769E-3 0.6508
3 0.7504 0.0 0.0 5.236E-3 0.3984 0.0 0.0 -7.231E-4 8.764E-3 0.6500
4 11.194 0.0 0.0 4.985E-3 0.2996 0.0 0.0 0.0 0.0 0.0

∗: 3.134E-2 should be read as 3.134× 10−2.

62
Table 3.4 Summarised results for the 2D-AIC benchmark. Λ denotes the polynomial order, and subm. the
submeshing. Three significant figures are given, except for keff .

DD DG

SN Λ subm. k†
eff ∆keff ϵmax ϵ̄ Time k†

eff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

4 0 1 0.9469103 3240 21.2 5.1 0.367 - - - - -
2 0.9128222 -170 9.83 2.97 1.63 - - - - -
3 0.9107411 -379 9.5 3.04 3.26 - - - - -
4 0.9105441 -398 9.07 3.06 5.67 - - - - -
5 0.9105403 -399 8.87 3.02 9.16 - - - - -

1 1 0.9167795 225 7.36 1.74 1.24 0.9103752 -415 10.1 3.75 1.2
2 0.9105386 -399 8.58 2.93 5.18 0.9102691 -426 8.82 3.09 5.14
3 0.91043 -410 8.59 2.98 11.2 0.9103753 -415 8.65 3.02 11.7
4 0.9104243 -410 8.59 2.99 20.2 0.9103971 -413 8.62 3 21.6
5 0.9104274 -410 8.6 2.99 31.2 0.9104031 -412 8.61 3 35.1

2 1 0.9113917 -314 8.33 2.76 4.04 0.9105515 -398 8.6 2.87 4.37
2 0.9104236 -410 8.59 2.99 15.8 0.9104217 -410 8.59 2.98 17.1
3 0.9104274 -410 8.6 2.99 36.1 0.9104132 -411 8.6 2.99 41
4 0.9104271 -410 8.6 2.99 65.2 0.9104182 -411 8.6 2.99 75.2
5 0.9104228 -410 8.6 2.99 99.4 0.9104192 -411 8.6 2.99 125

3 1 - - - - - 0.9104783 -405 8.58 2.97 14
2 - - - - - 0.9104142 -411 8.6 2.99 57.5
3 - - - - - 0.9104202 -411 8.6 2.99 130
4 - - - - - 0.9104206 -411 8.6 2.99 231
5 - - - - - 0.9104206 -411 8.6 2.99 370

6 0 1 0.948131 3360 21 5.11 0.674 - - - - -
2 0.9150842 55.7 5.82 1.54 3.13 - - - - -
3 0.9124346 -209 5.74 1.84 6.18 - - - - -
4 0.9121562 -237 5.4 1.81 11.5 - - - - -
5 0.9121342 -239 5.2 1.76 18 - - - - -

1 1 0.918336 381 3.68 1.21 2.27 0.9122064 -232 6.86 2.57 2.56
2 0.9122439 -228 4.81 1.63 9.55 0.9119289 -260 5.24 1.81 9.7
3 0.9121355 -239 4.87 1.64 21.6 0.9120476 -248 5 1.71 22.1
4 0.9121441 -238 4.88 1.64 38.6 0.912086 -244 4.93 1.68 39.2
5 0.9121396 -239 4.88 1.64 61.5 0.9121041 -242 4.91 1.66 63.7

2 1 0.9133948 -113 4.21 1.45 7.59 0.9121546 -237 4.87 1.59 7.8
2 0.9121409 -239 4.88 1.64 31 0.9121141 -241 4.88 1.66 32.9
3 0.9121445 -238 4.88 1.64 70.5 0.9121271 -240 4.88 1.65 75.1
4 0.9121394 -239 4.89 1.64 126 0.9121315 -240 4.89 1.64 136
5 0.9121381 -239 4.88 1.64 195 0.9121333 -239 4.89 1.64 232

63
Table 3.4 (continued)

DD DG

SN Λ subm. k†
eff ∆keff ϵmax ϵ̄ Time k†

eff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

3 1 - - - - - 0.9121557 -237 4.86 1.67 26.1
2 - - - - - 0.9121296 -240 4.88 1.64 106
3 - - - - - 0.912136 -239 4.88 1.64 245
4 - - - - - 0.9121364 -239 4.88 1.64 436
5 - - - - - 0.9121361 -239 4.89 1.64 700

8 0 1 0.9477884 3330 21.1 4.97 1.08 - - - - -
2 0.9155012 97.4 3.54 1.06 4.47 - - - - -
3 0.9131584 -137 3.46 1.21 10 - - - - -
4 0.912832 -170 3.25 1.15 18.2 - - - - -
5 0.91283 -170 3.07 1.07 29.2 - - - - -

1 1 0.9188837 436 4.06 1.06 3.66 0.9130214 -151 4.9 1.87 3.79
2 0.9129794 -155 2.66 0.927 15.1 0.9126708 -186 3.14 1.12 15.6
3 0.9128875 -164 2.77 0.927 34.5 0.9127844 -174 2.89 1.01 35.7
4 0.9128937 -163 2.77 0.933 60.2 0.9128295 -170 2.83 0.976 63.7
5 0.9128892 -164 2.77 0.936 99 0.9128516 -168 2.8 0.96 103

2 1 0.9142289 -29.8 2.01 0.764 12.4 0.9128666 -166 2.71 0.901 13
2 0.9128928 -163 2.78 0.928 50.5 0.9128571 -167 2.77 0.95 51.8
3 0.9128887 -164 2.77 0.937 112 0.9128776 -165 2.77 0.94 122
4 0.9128849 -164 2.77 0.938 201 0.9128816 -164 2.77 0.939 218
5 0.9128858 -164 2.77 0.938 325 0.9128825 -164 2.77 0.939 354

3 1 - - - - - 0.9128822 -164 2.74 0.973 42.4
2 - - - - - 0.9128827 -164 2.78 0.938 172
3 - - - - - 0.9128833 -164 2.77 0.939 392
4 - - - - - 0.9128833 -164 2.77 0.939 711
5 - - - - - 0.9128848 -164 2.77 0.938 1090

† Reference keff is 0.9145269, obtained using an S18 HODD-2 method with a submeshing of 5.

3.3.3 Four-group 3D small FNR core, Takeda Model 2: 3D-TAK2

The 3D-TAK2 benchmark is a three-dimensional isotropic four-group five-mixture eigenvalue
problem, documented by Takeda and Ikeda [16]. There are two variations of this benchmark,
one with the control rod completely withdrawn, and one where it is half inserted. We have
chosen to do the latter as it presents more complexity. The quoted literature values for the
keff are given in Table 3.5.

64

(a) S8 HODD-1 subm.2 (b) S8 DG-1 subm.2 (c) Ref. calc., (S18 HODD-2 subm.5)

Figure 3.11 2D-AIC benchmark: scalar flux surface plots for energy groups 1 to 4 given in
that order, with energy group 1 at the top. These contrast HODD and DGFEM (at lower
discretisation levels), as well as the reference calculation.

65

Figure 3.12 2D-AIC benchmark: surface plots of the difference between the two scalar flux
maps of HODD and DGFEM from Figure 3.11, for the four energy groups. From left to
right, top to bottom: group 1, group 2, group 3 and group 4.

66

Table 3.5 Quoted literature values for various methods for the 3D-TAK2 benchmark, repro-
duced from Takeda and Ikeda [16].

Method keff precision
Monte Carlo 0.9589 ±0.0002

S4 0.9594 ±0.0001
S8 0.9593 ±0.0002
P7 0.9647 -

A quarter of the core is shown in Figure 3.13, as well as the initial computational mesh.
While this initial mesh is not the one recommended by Takeda and Ikeda [16], the highest
mesh refinement used in the calculations roughly approximates it. The cross sections have
not been reproduced in this document but can be found in [16].

Since we only have the keff in the literature, we chose to also run a calculated reference using
an S10 HODD-2 discretisation with a submeshing of 4. With this level of refinement, it
actually very closely resembles Takeda’s recommended mesh. The results are summarised in
Table 3.6, and we also provide convergence plots (Figures 3.14 and 3.15), as well as scalar
fluxes surface plots (Figures 3.16 and 3.17).

Overall, the results are very much in line with what we expect, and have seen so far with 2D
cases. The calculated reference keff is respectively within 35 pcm (or a precision of 0.00035)
and 75 pcm from the S8 and Monte Carlo quoted the literature values – which is quite
acceptable.

We do observe from the summarised results and convergence plots (Figures 3.14 and 3.15)
that for this isotropic test case, HODD-1 (and even to some extent HODD-0) outperforms
DG-1. This is in line with the expectation that with a smoother solution, HODD shines
better than DG.

With the surface plots of the scalar flux (Figure 3.16) and the difference between HODD
and DG (Figure 3.17), we find that the scalar fluxes are again very similar, with differences
centred around the control rod again. In this region, while DG seems to offer a smoother
flux, HODD seems to overestimate in one mesh, and then underestimate in the neighbouring
one so as to compensate.

67

(a) Top view. (b) Side view. (c) Overall view.

Figure 3.13 Domain of the 3D-TAK2 benchmark at various angles. Dimensions are in cm.
Reflective boundary conditions are used on the inner sides (right and bottom on (a), and
out-of-page on (c)) while vacuum boundary conditions are applied to the top, bottom, and
outer sides. The initial computational mesh before subsequent submeshing is shown on (a)
and (b). Red is the core, light green the axial blanket, dark green the radial blanket, orange
the control rod and yellow the sodium-filled Control Rod Position (CRP).

Figure 3.14 3D-TAK2 benchmark: S4 convergence rates for the maximum error, ϵmax, as a
function of the number of unknowns.

68

Figure 3.15 3D-TAK2 benchmark: S4 convergence rates for the keff , as a function of CPU
time.

69

(a) S4 HODD-1 subm.1 (b) S4 DG-1 subm.1 (c) Ref. calc., (S10 HODD-2 subm.4)

Figure 3.16 3D-TAK2 benchmark: scalar flux surface plots for energy groups 1 and 4 given
in that order, with energy group 1 at the top. These contrast HODD and DGFEM (at lower
discretisation levels), as well as the reference calculation. The orientation of the domain is
the same as that used in the overall representation of Figure 3.13.

70

Figure 3.17 3D-TAK2 benchmark: surface plots of the difference between the two S4 scalar
flux maps of HODD-1 and DG-1 from Figure 3.16, for the four energy groups. From left
to right, top to bottom: group 1, group 2, group 3 and group 4. This side orientation was
chosen for clarity and because it shows most of the salient details. It is the same as the side
orientation shown in Figure 3.13.

71
Table 3.6 Summarised results for the 3D-TAK2 benchmark. Λ denotes the polynomial order, and subm. the
submeshing. Three significant figures are given, except for keff .

DD DG

SN O. subm. k†
eff ∆keff ϵmax ϵ̄ Time k†

eff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

2 0 1 0.9584814 -117 105 14.9 2.48 - - - - -
2 0.9589372 -71.5 90.4 9.22 20.9 - - - - -
3 0.9590641 -58.8 86.7 8.49 81.1 - - - - -

1 1 0.9591543 -49.8 86.5 7.72 22.5 0.9577716 -188 92 9.5 20.7
2 0.9591693 -48.3 87.8 7.9 184 0.9589058 -74.7 90.1 8.13 182
3 0.9591702 -48.2 88.1 7.9 697 0.9590738 -57.9 89.2 7.98 638

2 1 0.9591698 -48.3 87.8 7.92 355 0.9591303 -52.2 89.1 7.89 331
2 0.9591707 -48.2 88.2 7.9 2750 0.9591627 -49 88.4 7.9 2760
3 0.9591705 -48.2 88.3 7.9 9720 0.9591676 -48.5 88.3 7.9 9320

3 1 - - - - - 0.9591612 -49.1 88.4 7.91 3630
2 - - - - - 0.9591692 -48.3 88.3 7.9 29100
3 - - - - - 0.95917 -48.2 88.3 7.9 98900

4 0 1 0.9589314 -72.1 62.4 8.11 7.03 - - - - -
2 0.9592796 -37.3 11.6 2.05 58.4 - - - - -
3 0.9594365 -21.6 8.69 1.35 233 - - - - -

1 1 0.9594949 -15.8 7.27 1.22 66.5 0.9582973 -136 12.6 2.7 61.1
2 0.9595526 -10 6.58 0.874 536 0.959309 -34.3 7.49 1.12 520
3 0.959555 -9.7 6.52 0.882 1880 0.959465 -18.7 6.86 0.958 1750

2 1 0.9595656 -8.7 6.54 0.919 1020 0.9595026 -15 6.54 0.861 988
2 0.9595556 -9.7 6.51 0.884 8290 0.9595474 -10.5 6.54 0.886 8080
3 0.9595554 -9.7 6.55 0.885 28900 0.9595525 -10 6.54 0.885 28300

3 1 - - - - - 0.9595493 -10.3 6.55 0.892 10900
2 - - - - - 0.9595543 -9.8 6.55 0.884 88000
3 - - - - - 0.9595549 -9.7 6.55 0.884 300000

6 0 1 0.9589735 -67.9 61.4 7.46 17 - - - - -
2 0.9593314 -32.1 6.12 1.45 120 - - - - -
3 0.9594978 -15.5 3.75 0.793 455 - - - - -

1 1 0.9595516 -10.1 5.17 0.785 129 0.95837 -128 11.9 2.16 122
2 0.9596105 -4.2 2.92 0.33 1060 0.959371 -28.1 2.87 0.559 1020
3 0.9596136 -3.9 2.89 0.333 3860 0.9595249 -12.8 2.74 0.404 3520

2 1 0.9596297 -2.3 3.98 0.402 2090 0.9595611 -9.1 2.9 0.32 1970
2 0.9596143 -3.8 2.89 0.335 16900 0.959606 -4.6 2.92 0.337 16100
3 0.9596141 -3.8 2.89 0.336 57000 0.9596112 -4.1 2.9 0.336 55800

72
Table 3.6 (continued)

DD DG

SN O. subm. k†
eff ∆keff ϵmax ϵ̄ Time k†

eff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

3 1 - - - - - 0.9596089 -4.4 2.99 0.349 21900
2 - - - - - 0.9596129 -3.9 2.9 0.335 176000
3 - - - - - - - - - -

† Calculated reference value keff is 0.9596524, obtained using an S10 HODD-2 method with subm. 4.

3.4 Concluding Remarks

In this chapter, we have reviewed the theory and methodology behind the HODD and
DGFEM methods. While the latter is not a new method, it was novel for DRAGON5. As
such, we have briefly detailed how it was implemented in the DRAGON5 code with regards
to its sweep and algorithm. We also explained our reasoning behind our choice of basis func-
tions. To verify our implementation, we tested our implementation on two 2D benchmarks,
and found very good agreement between the two methods. Finally, we positively validated
both methods against the Takeda Model 2 Case 2 benchmark.

73

CHAPTER 4 HEXAGONAL GEOMETRY IMPLEMENTATION

The motivation behind hexagonal geometries in Fast Neutron Reactors (FNRs) has
already been outlined in Chap. 1. Therefore, here, we focus solely on methodologies
and the implementation in DRAGON5. Indeed, a brief outline of various approaches
is given, before turning to the choice that was made in DRAGON5 as well as some
implementation details. Finally, similarly to the previous chapter, a number of verifi-
cation and validation benchmark results are presented and analysed, for both HODD
and DGFEM. We also take the opportunity to compare the two on this geometry.

4.1 Potential Avenues for Hexagonal Representation

Hexagonal geometries – and how to properly model them – have been of interest for some time
in the reactor physics community. Indeed, quite often, in core simulations (i.e., the second
step in a two-level scheme), hexagonal assemblies are homogenised to reduce the required
computational resources and time for simulations. That being said, it is known that in some
cases (for e.g., [16]), the flux within an assembly can vary quickly within the hexagonal plane,
making one mesh element per hexagon too coarse.

Various methods and schemes have been devised. The simplest might just be to develop
finite difference equations (similar to the Diamond Difference (DD) scheme equations in Sec.
3.1.1) along the three axes of symmetry of the hexagon.

These equations can be developed either along the faces or along the vertices, and one
hexagonal element can even be submeshed into smaller overlapping hexagonal elements. This
was developed and implemented by Yamasaki et al. [55]. While the the use of the DD
method meant that the code was relatively rapid, it was also shown to present instabilities
for development along the faces. Considering the fluxes at the vertices was much more stable
and produced good results.

A somewhat more “exotic” method involves using specially-adapted high-order basis func-
tions on the whole hexagonal element, such as Gout’s Wachspress finite elements [56]. It is
expected that these high-order polynomials, adapted to the six-sided polygon, will be faster
than having to submesh the hexagonal element – all the while being able to capture enough
of the rapidly-changing flux without having to give up too much of the accuracy of the solu-
tion. This is currently being implemented in an in-house prototype code at the Alternative
Energies and Atomic Energy Commission (French: Commissariat à l’énergie atomique et aux
énergies alternatives) (CEA) [56] and is showing promising results.

74

Another method is the subdivision of each hexagonal mesh into six equilateral triangles.
This is extremely popular because a lot of finite element codes are already conventionally
programmed to work with triangular elements. Hence, within such a paradigm, not many or
even no additional tweaks need be made to the code to ensure it can accurately model these
geometries. As an example, a couple of codes that do use this method are the CEA solver
MINARET [20], and the Texas A&M University (TAMU) code XUTHUS [57].

Figure 4.1 Two ways of splitting up the hexagon into quadrilaterals. Top: splitting into
trapezia. Bottom: splitting into lozenges. The calculation geometry is shown on the left
with the corresponding reference geometry given on the right. This specific arrangement of
the reference elements (especially for the lozenges) was only chosen to facilitate with the
visual representation.

It is also possible to cut up the hexagon into other shapes – beyond dividing into arbitrary
shapes and using an unstructured mesh solver that is. Indeed, it is possible to partition
the hexagon into either trapezia1 or lozenges. These shapes can then be mapped onto the
reference square element by using a transformation. These are both represented in Fig. 4.1.
There are two ways of doing these transformations: a conformal map which conserves angles

1Note that the trapezium is generally termed ‘trapezoid’ in North American English and, in British
English, both ‘trapeziums’ and ‘trapezia’ are accepted forms for the plural.

75

and shapes at the infinitesimal scale, but not the general size or curvature and an affine
transformation which conserves lines and parallelism but not distances or angles.

Schneider [58] investigated these for the diffusion equation discretised using a dual-space finite
element representation. As affine transformations, he considered the bilinear and Piola2

mappings for trapezia and lozenges respectively, while for conformal transformations, he
looked at the Schwarz-Christoffel transformation [59, 60] for both shapes. He found that
affine transformations generally resulted in better results with a slight advantage for lozenges.

Lozenge-based submeshing was also quite successfully implemented for the discrete-ordinates
transport equation in the CEA solver ERANOS [61] as well as some work by Valle and Mund
[62]. The latter used a Gordon blending technique [63] for the transformation where a
relationship is found between the reference element and each lozenge. This then allows for
the direction cosines in the transport equation to be modified, as well as find scaled values
for the material cross-section and source terms. Private communication with the first author
of [61] allowed us to ascertain that they used a transformation of the differential operators
and vectors similar to that outlined in [64].

4.2 Handling of the Hexagonal Geometry in DRAGON5

For this work, it was chosen to divide the hexagons into lozenges similar to the work done
by Le Tellier et al. [61]. This method brings about a certain elegance and ease to the
implementation. Indeed, as the High Order Diamond Difference (HODD) and Discontinuous
Galerkin Finite Element Method (DGFEM) solvers had already been set up in Cartesian
geometry, it was convenient to use this method as it made the code implementation much
more convenient and straight-forward.

Figure 4.2 Lozenge submesh and its associated refinement in the hexagonal geometry.

As we have seen, the hexagon is first split into three lozenges and each individual lozenge
can then be further sub-meshed if needed, as shown in Fig. 4.2. These lozenges can then

2Schneider [58] used the Piola transformation as he was using a dual-space finite element representation
and he needed to ensure continuity of the current vector between lozenges. This is not present in the SN

method for the transport equation and hence, a simpler affine transformation is used – as we will see later.

76

be mapped onto reference square elements (denoted by ξ̂) by using a transformation FU , as
shown in Fig. 4.3, where U denotes the lozenge under consideration. The associated Jacobian
matrices, also shown in Fig. 4.3, can be obtained by finding

Jξ̂,U =
(
∂xi

∂ui

)
i,j

,

having determinant |Jξ̂,U |. These matrices represent the shear and/or rotation that the
reference element undergoes.

Jξ̂,A = H

2

 1 1
−
√

3
√

3

Jξ̂,B = H

2

2 1
0
√

3

Jξ̂,C = H

2

2 −1
0
√

3

Figure 4.3 Affine transformations for each of the lozenges (top to bottom: A, B, and C)
making up the hexagon, and the associated Jacobian matrices. The translation is not taken
into account in the Jacobian and is not really important to the procedure. It is only shown
to represent the relative position of the lozenges within a hexagon centred at the origin. H
is the length of one side of the hexagon or the lozenge.

77

These transformations are all fairly straight-forward save for one thing. If we consider the
left and right sides of the reference element to be the x sides, and the top and bottom the
y sides, we can find corresponding x and y sides for the lozenges. There is no ambiguity for
lozenges B and C, as it is only a shear transformation. If FA is viewed as a π/3 anticlockwise
rotation followed by a shear, then the North-West and South-East sides of the lozenge are
the x sides, and the others y. This is all to point out that the x side of lozenge C is connected
to the y side of lozenge A. This will be important later on.

We now begin with the DGFEM formulation of the transport equation obtained previously
in Sec. 3.1.4, and reproduced below:∫

ξ̂

(
Ωn · ∇̂ψn,h + Σψn,h

)
whdŝ =

∫
ξ̂
Qnwhdŝ+

∫
∂ξ̂−

(n̂ ·Ωn) Jψn,hKw+
h dl̂ , (4.1)

where the hat (̂·) notation is used to explicitly represent that it is defined on the reference
element, ξ̂. It is possible to have the same equation defined on the lozenge, i.e.,∫

U
(Ωn · ∇ψn,h + Σψn,h)whds =

∫
U
Qnwhds+

∫
∂U−

(n ·Ωn) Jψn,hKw+
h dl , (4.2)

where the changes are on the operators, vectors and integration limits. We can then find the
equivalence between Eqn. 4.1 and Eqn. 4.2 by using the transformed operators and vectors,

∇ = J−T

ξ̂,U
∇̂

ds = |Jξ̂,U |dŝ

dl = ∥Jξ̂,U t̂∥dl̂ ,

(4.3)

and obtain,

∫
ξ̂

(
Ωn · (J−T

ξ̂,U
∇̂ψn,h) + Σψn,h

)
wh |Jξ̂,U |dŝ

=
∫

ξ̂
Qnwh |Jξ̂,U |dŝ+

∫
∂ξ̂−

(n ·Ωn)Jψn,hKw+
h ∥Jξ̂,U t̂∥dl̂ , (4.4)

where ∥·∥ is the Euclidean norm in R2 and t̂ is the unit tangent vector to the inflow boundary,
∂

ˆ̂
ξ−, of the reference element. It should be noted that while n̂ is the unit normal to ξ̂, n is

the unit normal to the lozenge element, U .

Of additional particular interest here is that while the Jacobian matrix is different for each
of the three lozenges, the determinant and ∥Jξ̂,U t̂∥ are in fact the same for all of them; this

78

greatly helps with the implementation. They are given by

|Jξ̂,U | =
√

3H2

2
∥JK,U t̂∥ = H .

(4.5)

For a general Jacobian matrix, Jξ̂,U , whose elements are given by

Jξ̂,U =
A B

C D

 ,

if we make the x and y dependence explicit (as well as expand Ω into µ and η), akin to Eqn.
3.36, we can see somewhat more clearly that the changes to the equation are not extensive:

(µnD − ηnB)
∫

ξ̂
du dv P̃α(u)P̃β(v) ∂

∂u
ψn,i,j(u, v)+

(−µnC + ηnA)
∫

ξ̂
du dv P̃α(u)P̃β(v) ∂

∂v
ψn,i,j(u, v)+

√
3H2

2

∫
ξ̂
du dv P̃α(u)P̃β(v)Σ−

(µnD − ηnB)
∫

ξr−
du P̃α(u)

(
ψn,i,j(u, ξr−)|+ − ψn,i,j(u, ξr−)|−

)
−

(−µnC + ηnA)
∫

ξr−
dv P̃β(v)

(
ψn,i,j(ξr−, v)|+ − ψn,i,j(ξr−, v)|−

)
=

√
3H2

2

∫
ξ̂
du dv P̃α(u)P̃β(v)Qn,i,j(u, v) ,

(4.6)

where, effectively, we end up with modified direction cosines given by

µH
n = µnD − ηnB

ηH
n = −µnC + ηnA .

(4.7)

Similar equations can be derived in 3D hexagonal-z geometry using the same approach.

4.3 Solution Algorithm and Implementation Details

This section describes some of the differences and subtleties that have been to be taken into
account when implementing the sweep in hexagonal geometry. To do so, we will be mostly
contrasting with the 2D Cartesian sweep that we described in Chap. 3 as this greatly helps
to illustrate the point.

79

4.3.1 Number of sweep directions

One of the biggest differences that one encounters almost immediately when starting to
implement the sweep in hexagonal geometry is the number of sweep directions. Indeed, as
we discussed previously in Sec. 3.2.4, for the 2D Cartesian geometry, there are four major
sweep directions, as had been exemplified in Fig. 3.3. In hexagonal geometry, however, there
are six major directions, as shown in Fig. 4.4.

Figure 4.4 The six different ways that the hexagonal columnar sweep can proceed depending
on the direction of neutron travel. The orientation of the domain is the same throughout.
The incoming sides where the flux is assumed to be known at the beginning of each sweep is
shown in pink. The sweep progression is then as follows: it starts with the darkest red colour
and proceeds with the fading red colours; it then moves on to the next colour, from darkest
to lightest and so on. The blue colours indicate the lozenge sweep within the hexagon, again
from darkest to light; this is highlighted with the dashed arrow.

We show there how the sweep proceeds depending on the general direction, for a “columnar”
style sweep.3 The sweep starts with the dark red hexagon; it then proceeds from darkest

3It is also possible to have a wavefront-style sweep for hexagons but we will look at that in more detail

80

to lightest colour, moving from colour to colour. It should be noted that the sweep on the
lozenges also changes depending on direction; it is represented in blue, again from darkest to
lightest within each domain.

4.3.2 Outgoing fluxes

For the Cartesian algorithm, we mentioned how it was straightforward to sweep the geometry
implicitly. Indeed, there, the columns are always of the same size, and there are two outgoing
sides for each element with each side always connecting to the same relative columns.

With the hexagonal plane, it is slightly more complicated. The columns are of differing
lengths. While there are consistently three outgoing sides for the hexagons, these only cor-
respond to two columns, so one would have to be mindful of that. Additionally, while the
hexagons themselves consistently have three outgoing sides, the solver deals with the lozenges,
so these would have to correspond correctly.

Hence, instead of trying to find an implicit way through appropriate loops and arrays to
sweep through the domain, we decided to compute a connectivity matrix early on, for each
direction. This was similar to a graph in that it allowed us to know the following: for each
of the six cardinal sweeping direction, each side of each element was connected to the side of
another element – which side (x or y), which lozenge (A, B or C) and which hexagon (within
the numbering system of the GEO: module of DRAGON5) is it? This was implemented in a
new subroutine, SNGRPH, within the SN tracking module, SNT:.

4.3.3 Outgoing fluxes between lozenges A and C

Passing the outgoing flux from lozenge C to lozenge A (or vice-versa) is a very important
aspect. Indeed, as mentioned previously in Sec. 4.2, the x side of lozenge C connects to the
y side of lozenge A. This is shown in Fig. 4.5 where the relevant edges have been highlighted
in red and green, for both the lozenges and the corresponding reference elements.

Now consider the reference frame of the reference elements where dummy boundary fluxes
have been drawn on the red edge. This is shown in Fig. 4.6 where a three-dimensional
representation has been used – the u and v axes on the xy-plane and ψ on the z-axis. We can
see that when the outgoing flux of the x side is passed from lozenge C to A, the red flux that
was sloping upwards with increasing v becomes a green flux that now slopes downwards with
increasing u. Simply put, the gradient has been reversed. Hence, for odd Legendre moments
of the boundary fluxes, one should be exceptionally careful to make this adjustment.

in Chap. 6.

81

Figure 4.5 Highlighted edges, on lozenges and corresponding reference elements, where the x
side of lozenge C connects to the y side of lozenge A.

Figure 4.6 This image should be interpreted in conjunction with Fig. 4.5. A 3D representation
is used: the xy-plane correspond to the u- and v-axes while the z-axis is the flux, ψ. The
corresponding reference elements of all three lozenges are drawn to help with the visual
orientation. This image shows how dummy fluxes represented on the x side of lozenge C are
mirrored onto the y side of lozenge A such that the gradients are reversed.

4.3.4 Overall algorithm

Having discussed the previous points, the overall algorithm is given in Alg. 2. As with the
Cartesian 2D case, while quite detailed, it is not exhaustive. This is done in an effort to keep
it readable. We wish to highlight the following points:

■ As this geometry was implemented with only vacuum boundary conditions, the outgoing
fluxes on the domain boundaries are not of consequence.

■ As inputs are the matrices HEXSWP and LOZSWP given the sweep within the domain for
different directions; this corresponds to Fig. 4.4. There is also CONNEC which indicates
to which side of which lozenge of which hexagon, each side of each lozenge of hexagon
is connected to, using the numbering system of the GEO: module in DRAGON5.

■ φ
[α]
n,BC and φ[β]

n,BC correspond to the outgoing boundary fluxes in between the hexagons.

■ There are now four loops to sweep over the whole domain: loops over hexagons, over

82

lozenges and over the x and y submeshes of the lozenges.

4.4 Numerical Results

Three benchmarks will be presented in this section: a one-group anisotropic 2D simple bench-
mark (2D-SNA), a one-group anisotropic 3D simple benchmark (3D-SNA) and a four-group
3D small FNR (3D-TAK4). The first two were intended for verification and validation, while
the last one was drawn from the Takeda benchmarks [16] to really test the solver.

Similarly to the previous chapter, the same parameters are investigated and the results
presented are keff values, errors on the absorption rate distribution, and the computational
times. The overall discussion will, however, be done after all the results are presented.

No acceleration methods were used yet for all calculations in this section and a Level Sym-
metric (LS) quadrature was used in all computations. While the latter is not necessarily
optional for the hexagonal geometry (for e.g., not rotationally invariant on the hexagonal
plane with respect to π/3 increments), it was expected that it would do fine in cases where
the whole geometry is considered. Finally, the convergence criterion was again 10−5.

4.4.1 One-group benchmarks: 2D-SNA and 3D-SNA

Having implemented the methods described in the previous two sections, we verified and
validated the solver with each of a 2D and 3D one-group benchmark. While not realistic,
these were devised by Hébert [65] in an effort to sharply increase the transport and anisotropic
effects. Also available in the same paper were the keff values from another discrete-ordinates
solver, SNATCH. This would hence allow for a larger verification of the solver.

SNATCH [61] is a DGFEM-based SN solver, with a lozenge-based submeshing too. However,
it features different basis functions which are hierarchical and based on both Legendre and
Lagrange basis functions. Also, it uses a product quadrature, with n directions on the
azimuthal plane and m directions on the polar half plane. This is represented as HQn,m

giving a total of 12×n×m directions on the unit sphere. This means that while both HQ1,2

and S4 have 24 directions over the unit sphere, HQ4,5 has 240 directions and S14 has 224.

The 2D benchmark, 2D-SNA, is described in Fig. 4.7. The cross-sections are the same as for
the 2D-CNS benchmark – see Tab. 3.3. The SNATCH reference results are given in Tab. 4.1
while the results obtained from DRAGON5 are in Tab. 4.2. We did not have access to the
raw data from the SNATCH computations so each set of calculations (from SNATCH and
DRAGON5) used their own reference calculation for the computation of the ∆keff , ϵmax and
ϵ̄. These are clearly marked in the tables.

83

Algorithm 2: Representation of the sweep for the 2D hexagonal case.
input : Qm,[α,β]

l,i,j , HEXSWP(Nhex,6), LOZSWP(3,6), CONNEC(3,Nhex × 2,6)
output: ϕm,[α,β]

l,i,j

local : φ[α]
n,BC , φ[β]

n,BC , JAC(4,3)

/* Initialise flux. */
1 ϕ

m,[α,β]
l,i,j = 0.0

/* Loop over directions in unit sphere. */
2 for n = 1 to N(N + 2)/2 do
3 Determine cardinal direction, iDIR.

/* Loop over hexagons in domain. */
4 for jH = 1 to Nhex do /* Nhex = # of hexagons */
5 iH = HEXSWP(jH,iDIR)

/* Loop over lozenges within each hexagon. */
6 for jL = 1 to 3 do
7 iL = LOZSWP(jL,iDIR)
8 Compute µH

n and ηH
n using JAC(4,iL).

/* Loop over submeshes within each lozenge. */
9 for i = 1 to mx do /* mx = # of submesh/lozenge */

10 φ
[β]
n,i− ← φ

[β]
n,BC/φ

[β]
n,i+

11 for j = 1 to my do /* my = mx */
12 φ

[α]
n,j− ← φ

[α]
n,BC/φ

[α]
n,j+

13 Solve system of equations TΨn,i,j = Qn,i,j.

14 Compute the outgoing fluxes, φ[β]
n,i+ and φ

[α]
n,j+.

15 if iL = 1 or iL = 3 then
16 Multiply odd Legendre moments by −1.

17 Sum angular fluxes over directions to obtain scalar flux such that
18 ϕ

m,[α,β]
l,i,j = ϕ

m,[α,β]
l,i,j + 2ωnψ

m,[α,β]
l,i,j .

/* Store outgoing fluxes on lozenge y-side. */
19 if j == my then
20 Store φ[α]

n,BC from φ
[α]
n,j+ using CONNEC.

/* Store outgoing fluxes on lozenge x-side. */
21 if i == mx then
22 Store φ[β]

n,BC from φ
[β]
n,j+ using CONNEC.

84

Figure 4.7 Description of the one-group hexagonal 2D benchmark, 2D-SNA. Each hexagon
side is 19 cm. Vacuum boundary conditions are applied on the whole edge of the domain.
See Table 3.3 for the cross-section data. Red corresponds to mixture 1, green to 2, blue to
3, and grey indicates a void. The initial un-refined computational mesh is also shown.

Table 4.1 Quoted literature values for 2D-SNA using SNATCH, reproduced from [65].

HQn,m O. subm. keff ∆keff ϵmax ϵ̄

(pcm) (%) (%)

HQ1,2 1 1 1.000606 -170.7 5.11 0.98
2 1.000898 -141.5 3.76 0.94
3 1.000960 -135.3 3.61 0.95

2 1 1.000969 -134.4 3.44 0.94
2 1.000999 -131.4 3.57 0.95
3 1.001005 -130.8 3.61 0.95

HQ4,5 1 1 1.002094 -21.9 1.67 0.43
2 1.002281 -3.2 0.28 0.07
3 1.002304 -0.9 0.09 0.03

2 1 1.002313 0.1 0.08 0.02
2 1.002314 0.1 0.00 0.00
3 1.002313 SNATCH ref.

85
Table 4.2 Summarised results for the 2D-SNA benchmark. Λ denotes the polynomial order, and subm. the
submeshing. Three significant figures are given, except for keff .

DD DG

SN Λ subm. keff ∆keff ϵmax ϵ̄ Time keff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

4 0 1 1.001075 -125 7.74 1.71 0.053 - - - - -
2 1.001898 -43.1 3.83 0.679 0.185 - - - - -
3 1.002044 -28.5 3.3 0.546 0.371 - - - - -

1 1 1.002175 -15.4 3.81 0.664 0.138 1.001958 -37.1 3.26 0.667 0.13
2 1.002176 -15.2 2.58 0.432 0.513 1.002143 -18.5 3.05 0.458 0.521
3 1.002174 -15.5 2.95 0.464 1.16 1.002165 -16.4 3.01 0.463 1.16

2 1 1.002168 -16.1 2.57 0.444 0.441 1.002175 -15.4 3.13 0.474 0.426
2 1.002175 -15.4 2.95 0.465 1.64 1.002175 -15.4 2.94 0.463 1.69
3 1.002176 -15.3 2.91 0.461 3.76 1.002175 -15.3 2.92 0.46 3.75

3 1 - - - - - 1.002174 -15.5 2.93 0.464 1.28
2 - - - - - 1.002175 -15.4 2.91 0.46 5.24
3 - - - - - 1.002176 -15.3 2.91 0.46 11.8

14 0 1 1.001212 -112 5.85 1.33 0.458 - - - - -
2 1.002054 -27.4 0.878 0.273 1.54 - - - - -
3 1.002202 -12.7 0.497 0.133 3.19 - - - - -

1 1 1.002330 0.1 1.18 0.333 1.17 1.002106 -22.3 1.68 0.458 1.28
2 1.002330 0.1 0.0628 0.0153 4.72 1.002293 -3.6 0.297 0.0839 4.57
3 1.002329 0 0.0212 0.00333 10.1 1.002317 -1.2 0.104 0.0291 10.1

2 1 1.002325 -0.4 0.151 0.0199 3.72 1.002326 -0.2 0.132 0.029 3.84
2 1.002329 0 0.028 0.00282 14.6 1.002328 -0.1 0.0208 0.00281 14.5
3 1.002329 0 0.0126 0.00114 33.1 1.002329 DRAGON5 ref. 32.8

3 1 - - - - - 1.002327 -0.2 0.0341 0.00677 12
2 - - - - - 1.002329 0 0.00653 0.000609 47.6
3 - - - - - 1.002329 0 0.0126 0.00102 105

Comparing the results from DRAGON5 with those of SNATCH, it can be seen that when the
results have converged (both angularly and spatially), there is only a difference of 1.6 pcm
between the two – which is an excellent agreement between the two solvers. Moreover, the
results from DRAGON5 are able to approach the reference keff much faster, even at S4.

In a similar fashion, the domain for 3D benchmark, 3D-SNA, is given in Fig. 4.8, and the cross
sections in Tab. 3.3. This test case is made of 3 distinctive layers with the 0 ≤ z < 50 cm
layer being exactly the same as the 2D-SNA benchmark. A reflective boundary condition is

86

applied at z = 0 cm while vacuum is present on the rest. Only layer 1 has its submeshing
further refined when the subm. parameter is increased; layers 2 and 3 are left as is. The
literature values of SNATCH are given in Tab. 4.3 while the results from DRAGON5 are
summarised in Tab. 4.4. As with the 2D-SNA benchmark, each set of calculation has its own
reference calculation clearly marked in the tables.

The results for the 3D-SNA benchmark from DRAGON5, on their own, are very similar to
what we have seen so far, both for the Cartesian (2D and 3D) and hexagonal 2D cases:
very good agreement between HODD and DGFEM but with DGFEM struggling a bit more
with less refined meshes. However, this time, there is a much larger difference between the
two solvers – about 430 pcm. While this might have indicated an issue with our solver, we
decided to test with a benchmark that had quoted literature Monte Carlo values.

(a) Layer 1: 0 ≤ z < 50 cm (b) Layer 2: 50 ≤ z < 60 cm (c) Layer 3: 60 ≤ z < 70 cm

Figure 4.8 Description of the simple one-group hexagonal 3D benchmark, 3D-SNA. Each
hexagon side is 19 cm. Reflective boundary conditions are applied at the plane z = 0 cm and
vacuum is applied to the rest of the domain. See Table 3.3 for the cross-section data. Red
corresponds to mixture 1, green to 2, and blue to 3. The grey region indicates a void. The
initial un-submeshed computational mesh is also shown.

87

Table 4.3 Quoted literature values for 3D-SNA using SNATCH, reproduced from [65].

HQn,m O. subm. keff ∆keff ϵmax ϵ̄

(pcm) (%) (%)

HQ1,2 1 1 0.752581 -139.0 11.01 2.42
2 0.754311 34.0 11.72 2.44
3 0.754807 83.6 11.79 2.53

2 1 0.754117 14.6 12.24 2.57
2 0.754603 63.2 12.02 2.48
3 0.754983 101.2 11.88 2.57

HQ4,5 1 1 0.752114 -185.7 2.65 0.66
2 0.753531 -44.0 0.68 0.13
3 0.753890 -8.1 0.08 0.03

2 1 0.753404 -56.7 1.88 0.37
2 0.753746 -22.5 0.61 0.10
3 0.753971 SNATCH ref.

88

Table 4.4 Summarised results for the 3D-SNA benchmark. Λ denotes the polynomial order, and subm. the
submeshing. Three significant figures are given, except for keff .

DD DG

SN Λ subm. keff ∆keff ϵmax ϵ̄ Time keff ∆keff ϵmax ϵ̄ Time
(pcm) (%) (%) (s) (pcm) (%) (%) (s)

4 0 1 0.7510752 -724 31.2 6.86 0.547 - - - - -
2 0.7556428 -267 26.1 5.99 3.01 - - - - -
3 0.7564842 -183 25.2 5.87 9.35 - - - - -

1 1 0.7569891 -133 26.2 3.11 3.4 0.7561832 -213 22.9 3.63 3.37
2 0.7570121 -130 25.3 3.05 21.2 0.7568968 -142 23.4 3.57 20.9
3 0.7570118 -130 25.4 3.05 67.1 0.7569786 -134 23.7 3.56 66.9

2 1 0.7570086 -131 24.7 3.15 44.3 0.7570125 -130 24.7 3.14 43.3
2 0.7570123 -130 24.6 3.15 273 0.7570124 -130 24.7 3.14 271
3 0.7570131 -130 24.5 3.15 840 0.7570125 -130 24.7 3.14 825

3 1 - - - - - 0.7570118 -130 24.7 3.15 426
2 - - - - - 0.7570125 -130 24.6 3.15 2600
3 - - - - - 0.7570129 -130 24.6 3.15 7790

14 0 1 0.7525744 -574 11.8 3.49 5.07 - - - - -
2 0.7571055 -121 9.28 2.9 27.2 - - - - -
3 0.7579356 -38.1 8.96 2.85 86.1 - - - - -

1 1 0.7582908 -2.6 1.04 0.402 31.7 0.7575588 -75.8 2.04 0.731 30.5
2 0.7583100 -0.6 0.725 0.229 189 0.7582338 -8.2 1.58 0.501 185
3 0.7583105 -0.6 0.725 0.229 626 0.7583118 -0.4 1.59 0.503 628

2 1 0.7583149 -0.1 0.488 0.0939 415 0.7583157 -0.1 0.13 0.0233 400
2 0.7583168 0.1 0.386 0.0862 2600 0.7583160 0 0.0206 0.00268 2470
3 0.7583167 0 0.373 0.0862 8010 0.7583163 DRAGON5 ref. 7630

3 1 - - - - - 0.7583162 0 0.219 0.0557 5540
2 - - - - - - - - - -
3 - - - - - - - - - -

4.4.2 Four-group 3D small FNR core, Takeda Model 4: 3D-TAK4

This subsection presents the results for the Takeda Model 4 benchmark [16] based on the
KNK-II fast reactor core. There are 3 cases of this model which place the control rod at
different points: completely out, half in and completely in. We chose to model and present
the results for the control rod completely in case (commonly referred to as ‘Case 3’) as this

89

is the one that can present the most difficulty for solvers to accurately portray.

That being said, in and of itself, this benchmark can be notoriously difficult to model. It
is not a pure FNR as it also contains regions with moderator, meaning there are thermal
effects as well. The thermal and fast fluxes both need to be properly resolved. The quoted
literature values [16] are reproduced in Tab. 4.5.

Table 4.5 Quoted literature values for various methods for the 3D-TAK4 benchmark, repro-
duced from Takeda and Ikeda [16].

Method keff precision
Monte Carlo 0.8799 ±0.0003

S8 0.8927 ±0.0110
P7 0.8819 ±0.0100

It can be seen that there is quite the discrepancy between the Monte Carlo and the S8 results
– about 1280 pcm worth in fact. Takeda and Ikeda [16] note, in fact, that this “is because
the flux varies rapidly with positions in the hexagonal plane, making one mesh per hexagon
too coarse to be accurate” for the SN solver. The paper states that there were two SN solvers
used to compute this benchmark: one was a DD solver Bando et al. [66] (possibly on the
whole hexagon) and the other is just cited as “private communication” but it could be safe to
assume it was also DD considering the codes available at the time. We, therefore, expected
that with the lozenge submeshing and high-order polynomials, the results should be much
better.

The domain is drawn in Fig. 4.9 with a description of the various regions in Tab. 4.6. Also,
while the benchmark uses 36 meshes axially, we went with 38 as it came about naturally
from the subdivision of our layers when inputting the data. These axial meshes do match up
pretty well though and we do not expect it to make much of a difference. When refining the
mesh, only the hexagonal plane mesh was subdivided; i.e., the axial mesh remained constant
throughout. Considering the size of the problem, we did not run a high SN order (> 12)
calculation as reference, choosing instead to focus on the keff values. Some of the calculations
run took nearly a week to complete and the compute time available on the Digital Research
Alliance of Canada (DRAC) clusters was indeed limited to a week.

The results are summarised in Tab. 4.7. It can be observed that as the calculation is properly
resolved both angularly and spatially (for e.g., at S10 DD/DG-1 subm.3), the results agree
very well with the Monte Carlo reference value – around 50 pcm for DG and a mere 2 pcm
for DD. This verifies and validates our hexagonal solver in DRAGON5.

90

(a) Cut-through top view at z = 95 cm. (b) Cut-through side view 1: through black line.

(c) Cut-through side view 2: through red line. (d) Overall view with part removed.

Figure 4.9 Domain of the 3D-TAK4 benchmark at various angles. Dimensions are in cm; side
of one hexagon is 7.5 cm. Vacuum boundary conditions are applied to the whole outer edge
of the domain. The initial computational mesh before subsequent mesh refinement is shown
in all subfigures. Refer to Tab. 4.6 for a description of the materials.

91

Table 4.6 Description of the colour representation in the 3D-TAK4 benchmark (see Fig. 4.9).

Region Description
Steel
Axial blanket
Axial reflector
Test zone
Driver without moderator
Driver with moderator
Reflector without moderator
Reflector with moderator
KNK-1 reflector
Sodium steel zone
Control rod

Surface plots of the scalar flux are also given in Fig. 4.10 as well as error surface plots for DG
and DD in Fig. 4.11. The surface plots demonstrates how the flux indeed varies very rapidly
even within one hexagonal element. Even if it is only the average fluxes that are plotted in
each element (the flux is not actually reconstructed using all the degrees of freedoms (d.o.f.s)),
Fig. 4.10 shows clearly how much smoother the flux is when using a subm. of 4.

Finally, the error surface plots in Fig. 4.11 brings an idea of where DD and DG perform
differently. This was plotted for the linear order at S10. So, while DD was within a 1̃00 pcm
of the reference keff , DG was more than 650 pcm away. Comparing with Fig. 4.10, we find
that the largest differences tend to be where the flux is actually average. For the faster
groups, these tend to be the control rods and the driver-without-moderator region while for
the slower groups, there are the driver-with-moderator and reflectors regions. Still, even the
largest differences are only about 1% or less of the actual flux.

4.5 Concluding Remarks

The SN solver was expanded to hexagonal geometry in 2D and 3D for both the HODD
and DGFEM methods. The theory was outlined as well as the more subtle points that we
think one should be aware of during implementation. A pseudo-code algorithm was given to
summarise everything. Benchmark results were then presented. These included test cases
with results from another reliable solver from a national research laboratory in France, and
a well-known test case from the literature. The results obtained with DRAGON5 were very
much in line with the quoted values, allowing us to validate our solver. Again, we found that
HODD performed comparably, if not better than DGFEM most of the time.

92

(a) S10 DG-1 subm.1 (b) S10 DG-1 subm.4

Figure 4.10 3D-TAK4 benchmark: scalar flux surface plots for energy groups 1 to 4, with group
1 at the top. These contrast the unrefined and subm. 4 meshes. The view and orientation
are the same as Fig. 4.9a.

93

Figure 4.11 3D-TAK4 benchmark: surface plots of the difference between the two scalar flux
maps of HODD and DGFEM for S10 subm.1, for the four energy groups. From left to right,
top to bottom: group 1, group 2, group 3 and group 4.

94

Table 4.7 Summarised results for the 3D-TAK4 benchmark. Λ denotes the polynomial order, and subm. the
submeshing. Three significant figures are given, except for keff .

DD DG

SN Λ subm. keff ∆keff Time keff ∆keff Time
(pcm) (s) (pcm) (s)

2 0 1 0.8634277 1650 61.1 - - -
2 0.8737065 619 249 - - -
3 0.8750459 485 580 - - -

1 1 0.8777618 214 421 0.8694615 1040 434
2 0.8767351 316 1760 0.8751626 474 1810
3 0.8766908 321 4010 0.8760252 387 4100

2 1 0.8766767 322 6460 0.8764135 349 6220
2 0.8766865 321 25100 0.8766070 329 24700
3 0.8766868 321 57000 0.8766532 325 55400

3 1 - - - 0.8765851 331 62900
2 - - - 0.8766687 323 251000
3 - - - 0.8766788 322 567000

6 0 1 0.8665104 1340 339 - - -
2 0.8767435 316 1430 - - -
3 0.8780870 181 2640 - - -

1 1 0.8807698 -87 1630 0.8728631 704 1650
2 0.8797427 15.7 7050 0.8783911 151 7270
3 0.8797078 19.2 16400 0.8791765 72.3 17400

2 1 0.8796850 21.5 37300 0.8795780 32.2 36300
2 0.8797044 19.6 146000 0.8796658 23.4 142000
3 0.8797033 19.7 326000 0.8796878 21.2 316000

3 1 - - - 0.8796571 24.3 371000

10 0 1 0.8667960 1310 840 - - -
2 0.8769145 299 3250 - - -
3 0.8782655 163 8080 - - -

1 1 0.8809062 -101 6500 0.8731214 678 5750
2 0.8799127 -1.27 22500 0.8785824 132 23000
3 0.8798766 2.34 55600 0.8793559 54.4 54800

2 1 0.8798544 4.56 93600 0.8797545 14.6 91400
2 0.8798733 2.67 366000 0.8798349 6.51 352000

95

CHAPTER 5 SYNTHETIC ACCELERATION (SA)

This chapter is the first way in which an attempt is made at trying to reduce the
calculation time. Synthetic Accelerations (SAs) have long been used in the industry
and have proven to be effective. However, they are seldom stable for all cases while
at the same time being easy of implementation. Here, we look at a different form of
synthetic acceleration as applied to HODD and DGFEM.

We begin by defining and exemplifying the idea of synthetic acceleration before moving
on to the theory behind it. We then present an overview of the Diffusion Synthetic
Acceleration (DSA), which is perhaps the most well-known and used SA. A synopsis
of the Fourier Analysis (FA) method is also given. The implementation within the
DRAGON5 code is then outlined, followed by Fourier analyses for the acceleration
method as well as how tweaking some parameters of said method affected the resolution
speed. Finally, the method is applied to some of the benchmarks seen thus far to see
how much time can be gained.

5.1 Introduction

As mentioned previously, in Sec. 2.2, solving the neutron transport equation involves the well-
established iterative scheme known as the Source Iteration (SI). However, for diffusive media,
i.e., scattering-dominated1, this converges very slowly. Hence, the idea was the following:
accelerate the overall resolution by using a less computationally intensive calculation – also
termed low-order – in between each transport (high-order) iteration.

As a result, this would yield a correction to the input flux that had been initially given
to the low-order computation. The hope is that the sum of the original input plus the
correction will allow for a faster convergence on the following transport iteration. While the
the Synthetic Acceleration (SA) method is an additive (linear) scheme, the correction can
also be multiplicative in other methods. Depending on the acceleration scheme used and the
problem at hand, this method can work extremely well.

Numerous acceleration schemes have been devised over the years, a lot of which has been
thoroughly described in a seminal review article by Adams and Larsen [67]. Examples include

■ using the Coarse Mesh Rebalance (CMR) method where the problem is solved on a
coarser spatial mesh;

1Scattering-dominated regions are sometimes also termed optically thick.

96

■ newer variants on the CMR method such as the Spatially Variant Rebalance (SPV) or
Response Matrix Acceleration (RMA) methods as described by Ford [68];

■ using a transport equation of lower angular order, i.e., when solving in S10 for example,
an S2 transport iteration is used as the intermediate step;

■ using the diffusion equation as the low-level operation, leading to the Diffusion Synthetic
Acceleration (DSA); and

■ the KP Method which is a family of methods where a number of low-order level opera-
tions with differential operators of different orders are used. In this simplest form, this
reduces to the DSA.

The last three are synthetic accelerations and known in the mathematical community as pre-
conditioning methods, and the SI scheme can also be shown to be equivalent to a Richardson
matrix iteration scheme [67]. Perhaps the most well-known schemes are the DSA and its
derivatives, which have been applied with quite a lot of success. [57, 69, 70, 71]

In this work, however, we aim to use the SPn equation discretised using the Raviart-Thomas
(RT) method, as the low-level approximation for the synthetic acceleration. This will allow
us to test a few things:

■ Is the RT discretisation of the SPn equation consistent with the High Order Diamond
Difference (HODD) or Discontinuous Galerkin (DG) methods, insofar that the acceler-
ation scheme is unconditionally stable? If not, when is it unstable and how much does
that affect benchmark cases?

■ The isotropic SP1 equations are equivalent to the isotropic diffusion equation. However,
do higher-order SPn equations or considering an anisotropic scattering source offer any
advantages?

Basic functionalities of this SA (SPn equation discretised using the Raviart-Thomas (RT)
method) had been previously implemented in DRAGON5 [36] for the HODD spatial dis-
cretisation. However, it was unstable with the higher-polynomial orders of HODD or with
reflective boundary conditions. New more stable algorithms were devised and it was extended
to the Discontinuous Galerkin Finite Element Method (DGFEM) as well as hexagonal geome-
tries. Fourier analyses were carried out and the number of iterations and computational times
were quantified for benchmark cases in an attempt to answer the aforementioned questions.
We will henceforth refer to the implemented method as RT-SPnSA or SPnSA.

97

5.2 Theoretical Background and Prior Work

This section starts by presenting the formalism behind the Synthetic Acceleration (SA). The
general DSA formulation is then outlined, as well as some description of previous studies.
While we do not investigate a DSA in this work, we think it is important to understand the
method as it is the closest point of comparison with SPnSA– not to mention the equivalence
at lowest order for isotropic cases. It also sheds light on the idea of consistency. Finally, the
Fourier Analysis (FA) method is described. The theory presented here has been somewhat
adapted from the most salient points of Adams and Larsen [67].

5.2.1 Source iteration and synthetic acceleration

We reproduce below the isotropic scattering transport equation with an external source,

Ω · ∇ψ(r,Ω) + Σ(r)ψ(r,Ω) = Σs(r)
4π ϕ(r) +Qext (r,Ω) , (5.1)

where
ϕ(r) = ϕ0(r) =

∫
4π
d2Ω ψ(r,Ω) , (5.2)

and the notation is the same as in Chap. 2. In operator notation, we have

Lψ = Sψ +Qext , (5.3)

where the explicit spatial and angular dependencies are dropped to lighten the notation.

The scattering source depends on the angular flux – which is what is being solved for. Because
of this cyclic dependency, an iterative scheme is needed. This is the Source Iteration (SI)
scheme, and it can explicitly shown by

Lψ(κ+1) = Sψ(κ) +Qext where κ ≥ 0, (5.4)

where κ is the iteration index and the initial flux can be random, uniform or an educated
guess. When the difference between successive scalar fluxes is less than a pre-set convergence
criterion, the iterations are stopped.

As the SI scheme is notoriously slow to converge in systems where neutrons undergo a high
number of collisions, we want to represent an accelerated scheme. To analyse this, consider
step (κ+1) being redefined to (κ+1/2) to represent the source iteration before the correction
such that,

Lψ(κ+1/2) = Sψ(κ) +Qext where κ ≥ 0. (5.5)

98

Step (κ+1) will now represent the flux after the low-order correction. After subtracting Eqn.
5.5 from Eqn. 5.3, and expanding:

L(ψ − ψ(κ+1/2)) = S(ψ − ψ(κ))

= S(ψ − ψ(κ+1/2)) + S(ψ(κ+1/2) − ψ(κ)) ,
(5.6)

we observe,
ψ = ψ(κ+1/2) + (L − S)−1S(ψ(κ+1/2) − ψ(κ)) , (5.7)

which defines the full exact solution ψ. However, this still requires the inversion of the full
transport operator (L − S)−1 – which would be quite inefficient. Therefore, (L − S)−1 is
replaced by a ‘low-order’ operator, M, such that M ≈ (L − S)−1. This is the synthetic
acceleration. Eqn. 5.7 is then written as

ψ(κ+1) = ψ(κ+1/2) +MS(ψ(κ+1/2) − ψ(κ)) , (5.8)

where the (κ+ 1) step has been explicitly shown.

5.2.2 Prior DSA formulations

Starting with Eqn 5.1 above and using Larsen’s four-step approach [39], it is possible to
derive the equations to the Diffusion Synthetic Acceleration (DSA) method. In fact, this is
outlined in Appendix C. The DSA scheme is given by:

Ω · ∇ψ(κ+1/2)(r,Ω) + Σ(r)ψ(κ+1/2)(r,Ω) = Σs(r)
4π ϕ(κ)(r) +Qext (r,Ω) ; (5.9a)

−∇· 1
3Σ(r)∇F

(κ+1)
0 (r)+(Σt(r)− Σs(r))F (κ+1)

0 (r) = Σs(r)
(
ϕ

(κ+1/2)
0 (r)− ϕ(κ)

0 (r)
)

; (5.9b)

ϕ
(κ+1)
0 (r) = ϕ

(κ+1/2)
0 (r) + F

(κ+1)
0 (r) . (5.9c)

The first equation is the usual transport source iteration; the second equation yields a correc-
tion, F (κ+1)

0 (r), to the scalar flux using a diffusion equation and the output from the source
iteration; the final equation is simply an additive correction to obtain the new flux.

However, quite clearly, this is only analytical. For deterministic numerical simulations, this
needs to be discretised. An issue of crucial importance when it comes to DSAs is the search for
a consistent spatial discretisation scheme for both transport and diffusion equations. Indeed,
in 1971, Reed [72] demonstrated that the method was unstable for cases where the cells had
widths greater than one Mean Free Path (MFP). An MFP is the average distance travelled

99

by a neutron in between interactions and is given by 1
Σ .

A breakthrough came with Alcouffe’s paper in 1977 [73]. Indeed, he showed that the choice of
the difference method for the diffusion equation is important to ensure a convergent solution
and that it was possible to have stability for all mesh sizes. His realisation was that the
discretisations of the transport and diffusion equations had to be intimately linked for them
to be consistent. Using this, he was able to derive a discretised diffusion equation that yielded
a stable DSA. He further demonstrated that the instability obtained by Reed [72] were due
to this very fact – or rather, the lack thereof.

Then in 1982, Larsen [39] showed that if the discretised diffusion equation is derived from the
discretised transport equation, this always ensures a completely consistent DSA, i.e., stable
and convergent for all mesh sizes. This is known as the standard linear DSA. However, it
also results in an algebraically complex equation – which can be difficult to solve for. It
was applied to the discontinuous Finite Element Method (FEM) and implemented for the
3D discrete-ordinate transport equation with isotropic scattering, on a mesh of unstructured
tetrahedral elements, by Warsa et al. [71] in 2002. And it indeed yielded a computationally
ineffective DSA because complex mixed P1 equations2 based on a DGFEM discretisation
needed to be solved at every iteration. “Partially consistent” still outperformed it under
most circumstances, except in highly diffusive media at high SN orders. And that is the
hope when devising partially consistent schemes: that the reduction in complexity is not
offset by worse performance and/or instability.

Khalil [74] tried to get around this issue of complexity by applying the same discretisation
method used for the transport equation directly to the analytical diffusion equation. Starting
from that point (instead of the discretised transport equation) resulted in an algebraically
much simpler process. This was highly successful in 1D but its performance in higher dimen-
sions was unclear [75], and there does not seem to have been much work done on it since.
Yet another popular DSA method is the Modified Four Step (M4S) method by Adams and
Martin [75]. However, it is also well-known that this is unstable at intermediate mesh cell
sizes (in terms of MFP).

More recently, in 2009, Wang [57] developed a DSA scheme similar to Warsa et al. [71],
based on the P1 equations. It was only partially consistent as only the zeroth moment of
the transport equation was retained. This was applied to adaptive mesh refinement code for
unstructured meshes. It was quite successful but was shown to lose some effectiveness for
void boundaries and strong material discontinuities. Also, Févotte [69] designed a DSA for

2P1 equations are the zeroth and first moments of the transport equation but without the second and
higher order moments, as a linearly anisotropic flux is assumed.

100

use in piecewise domain calculations that was shown to perform as well as regular partially
consistent DSAs.

5.2.3 Fourier Analysis (FA)

To properly characterise the performance of the SI scheme and any DSA scheme used to
accelerate it, the convention in the community has been to use Fourier Analysis (FA). Most
novel DSA schemes are profiled with one as they are implemented. There are various ways of
describing as well as implementing it, and in this section, we take inspiration from the works
of Févotte [69] and, Adams and Larsen [67].

The idea behind the technique is to decompose the error into frequencies (or modes) that
are represented by Fourier wavenumbers, and then study how each frequency is dampened
through the iterative process. The more the errors are suppressed, the better the method,
and the faster the convergence. It is important that a broad range of error modes be tested.
The mode that is slowest to dampen will eventually characterise the iterative process if
present in a particular problem. Its dampening rate will be the lowest and is known as the
spectral radius. If ever it is higher than 1, the scheme is unstable for that particular case.
Fourier analyses are usually performed for simple homogeneous test cases or periodic doubly
heterogeneous ones.

Considering an infinite one-dimensional homogeneous slab geometry, represented by a do-
main D = [0, L] with reflective boundary conditions, the transport equation with isotropic
scattering reduces to,

µ
∂ψ(κ+1)

∂x
(x, µ) + Σψ(κ+1)(x, µ) = Σs

2

∫ −1

−1
dµ′ψ(κ)(x, µ′) +Q(x, µ) , (5.10)

with boundary conditions,
ψ(κ+1)(0, µ) = ψ(κ+1)(0,−µ)

ψ(κ+1)(L, µ) = ψ(κ+1)(L,−µ) .

Introducing the scattering ratio, c = Σs/Σ, and using the 1D equivalent of Eqn. 5.2, this
becomes,

µ
∂ψ(κ+1)

∂x
(x, µ) + Σψ(κ+1)(x, µ) = cΣϕ(κ)(x) +Q(x, µ) . (5.11)

Applying the same procedure as in Sec. 5.2.1 (when the general formulation of the synthetic

101

acceleration was derived), Eqn. 5.10 is subtracted from its exact equivalent, to give,

µ
∂f (κ+1)

∂x
(x, µ) + Σf (κ+1)(x, µ) = cΣF (κ)(x) . (5.12)

where F is defined as previously and f (κ) = ψ(x, µ) − ψ(κ)(x, µ); these represent the errors
after the κth iteration on the scalar and angular fluxes respectively. The above demonstration
shows that analysing the convergence to a given flux ψ for a system with an arbitrary source
Q(x, µ) is essentially the same as analysing the convergence to zero (i.e., no error) for system
with the source set to 0.

For initial scalar error given by

F (0)(x) = cos (ωΣx) , (5.13)

where ω = 2π
ΣL

and ωΣ is the Fourier wavenumber denoting the frequency for this initial error,
the first iteration yields,

f (1)(x, µ) = c µ ω sin(ωΣx) + c cos(ωΣx)
2(µ2ω2 + 1) . (5.14)

Integrating to find the new scalar error gives,

F (1) =
∫ −1

−1
f (1)(x, µ)dµ

= c arctanω
ω

F (0)(x) .
(5.15)

It should be noted that the same equation is obtained when initialising the error with an odd
mode (i.e., using sin()).

A recursive relation can then be obtained such that

F (κ+1) =
(
c arctanω

ω

)κ

F (0)(x) , (5.16)

which implies that errors of the form, F (0)(x) are eigenfunctions of the SI operator, with
eigenvalues c arctan ω

ω
. Therefore, for reasonable initial errors,

∥∥∥F (κ+1)
∥∥∥ ≤ ∥∥∥∥c arctanω

ω

∥∥∥∥κ∥∥∥F (0)(x)
∥∥∥

≤ ρκ
SI

∥∥∥F (0)(x)
∥∥∥ (5.17)

102

where
ρSI = c arctanω

ω
. (5.18)

A similar analysis can be carried for the diffusion equation [69] to obtain the eigenvalue for
the DSA scheme as

ρDSA = ω2 ρSI(ω) + 3ρSI(ω)− 3c
ω2 − 3c+ 3 . (5.19)

Now that the eigenvalue has been obtained as a function of the error frequency, Eqns. 5.18
and 5.19 can be plotted, as shown in Fig. 5.1, for a value of c = 1. It can clearly be seen
that the largest eigenvalue, i.e., the spectral radius, is c = 1 for in the case of only source
iteration and occurs at ω = 0. This explains why SI can be painfully slow in highly optically
thick regions. On the other hand, for DSA, the spectral radius is roughly 0.2247 for ω ≈ 2.5.
This shows that the DSA is much more efficient at suppressing the error modes.

5.3 RT-SPn Synthetic Acceleration (RT-SPnSA)

As previously outlined in the introduction of this chapter, we make use of the SPn equations
(summarised in Sec. 2.2.4) for the synthetic acceleration in this work. As previously men-
tioned, only isotropic-source SP1 equations are equivalent to the diffusion equation in cases
where the P1 scattering terms are vanishing. With RT-SPnSA, the correction step (Eqn.
5.9b) of the SA scheme changes to

l

2l + 1∇ · F (κ+1)
l−1 (r) + l + 1

2l + 1∇ · F (κ+1)
l+1 (r) + Σ(r)F (κ+1)

l (r) = Q
(κ+1/2)
l (r) , l even

l

2l + 1∇F
(κ+1)
l−1 (r) + l + 1

2l + 1∇F
(κ+1)
l+1 (r) + Σ(r)F (κ+1)

l (r) = Q
(κ+1/2)
l (r) , l odd ,

(5.20)

where Fl(r) is as previously defined and F
(κ+1)
l (r) is the correction on the current, given by

F
(κ+1)
l (r) = Φ(κ+1)

l (r)− Φ(κ+1/2)
l (r) . (5.21)

Moreover,

Q
(κ+1/2)
l (r) =

L∑
l=0

2l + 1
4π Σs,l(r)

l∑
m=−l

Rm
l (Ω) (ϕm,(κ+1/2)

l (r)− ϕm,(κ)
l (r)) , (5.22)

and similarly for Q
(κ+1/2)
l (r), the source using the current correction.

Eqn. 5.20 is simply the SPn equations seen earlier (Eqn. 2.22), but defined with the correction
in fluxes. These are then discretised using the Raviart-Thomas (RT) spatial discretisation,

103

Figure 5.1 Variation of the eigenvalue, ρ in terms of the error frequency, ω.

a mixed dual space finite element method. This was thoroughly described in an article by
Hébert [76]. For this reason, this will not be detailed here.

The motivation behind the use of the RT-discretised SPn as an SA was the finding of a perfect
numerical agreement of results [77] in 1D between the HODD flat order (i.e., HODD-0) of the
SN equation and the RT flat order3 (i.e., RT0) of the Pn equation. As we discussed in Sec.
2.2.4, the Pn and SPn equations are equivalent in 1D. This then allowed for the speculation
that there would perhaps be some sort of partial consistency between these two spatial
discretisations – at least in 1D. This was then assumed heuristically for higher dimensions.

The RT-discretised SPn solver Hébert [76] had already been implemented in DRAGON5.
An isotropic SP1 solver with RT-k spatial discretisation (where k is the same order as the
HODD order for the SN transport equation) was tested as a synthetic acceleration. The
results were promising but with our tests, the acceleration was unstable with high-order
transport equations and reflective boundary conditions.

This work goes further in the implementation and investigation. First, new algorithms were
devised for the correction of fluxes as well as the treatment of reflective boundary conditions.
These are described below. Also, this SA was studied with DGFEM. And while the afore-
mentioned perfect numerical agreement of results does not hold true in this case, considering
how close the results are for HODD and DGFEM, it was expected to perform well.

In the next section, we present a numerical Fourier Analysis (FA) of the improved RT-SPnSA.
3The flux is flat order, the current is first order.

104

This investigates the stability of the acceleration method: if the spatial discretisations are
consistent, one should observe unconditional stability for all mesh sizes. Moreover, the fact
that SPn equations are being used allows us to investigate whether higher-order SPn (for e.g.,
SP3) or source anisotropy improves the acceleration method. These questions are examined,
and we present numerical results for some of the benchmarks already seen thus far.

5.3.1 Flux correction

The scalar flux in either of the HODD or DGFEM methods and the even-parity flux in RT
are both expanded using Legendre polynomials, i.e., in 2D,

ϕm
l (u, v) =

Λ∑
α

Λ∑
β

P̃α(u)P̃β(v) ϕm,[α,β]
l . (5.23)

As such, if both the SN and the SPn problems are properly converged, one might expect
them to be equivalent. And when running separate calculations on a test case, the moments
are indeed very similar.

However, when linear polynomials (or indeed any higher order) are used to expand the flux
for the transport problem, using the RT-1 discretisation as the acceleration could result
in a substantially slower convergence or no convergence altogether for certain test cases.
Admittedly, these were particular demanding featuring high scattering ratios and anisotropy
(the 2D-AIC benchmark).

That being said, this was not observed when using the HODD-0 discretisation with RT-0.
As such, a solution was found in applying the zeroth moment correction as a scaled fraction
to the higher moments. This is perhaps better represented as,

ϕ[α,β](κ+1) = ϕ[α,β](κ+1/2) ×
(

1 + F [0,0](κ+1/2)

ϕ[0,0](κ+1/2)

)
, (5.24)

where α and β cannot both be zero. The ·ml indices were dropped to lighten the notation. It
should be noted that, while this amounts to a linear correction for the zeroth moment, it is
non-linear for all higher moments.

A similar proportionality calculation was carried out to obtain the corrections to the anisotropic
fluxes. Indeed, while the mixed-dual Raviart-Thomas method calculates the odd-parity flux
(l = 1) intrinsically, these are edge fluxes, and not centre fluxes, as in HODD/DFE. Not
to mention, the current (equivalent to the l = 1 flux here) is set to zero when dealing with
reflective boundary conditions in this method.

105

5.3.2 Treatment of reflective boundary conditions

As seen in Sec. 3.2.4, when reflective (or albedo) boundary conditions are present, the out-
going boundary surface fluxes for each direction, Ωn, are stored in between each transport
sweep, and used to initialise the next sweep. Therefore, when a synthetic acceleration method
is applied, these surface fluxes also need to be corrected. If not, again, depending on the test
case, one might end up with a slower convergence or none at all.

Recall, from Sec. 2.2.4, the scalar flux is given from the quadrature rule by

ϕ
m,[α,β]
l,i,j =

M∑
n=1

ωnR
m
l (Ωn)ψ[α,β]

n,i,j , (5.25)

where M is the number of directions over the unit sphere, and we have made explicit the
spatial discretisation through the [α, β] superscript. The difficulty here is: while every spa-
tial moment of each angular moment, i.e. ψ[α/β]

n,i,j , of the surface flux (corresponding to each
direction) needs to be corrected, the only correction available and usable from the SA is for
the isotropic integrated volumetric flux, i.e. ϕm,[α,β]

l,i,j with l = m = 0.

We describe below a method to deal with this. While it is relatively straightforward, we were
unable to find any such description in a review of current literature. The method is outlined
below for the right side of a two-dimensional reference square element; the remaining sides
or a 3D test case follow by analogy. Therefore,

1. Obtain the uncorrected scalar surface flux, ϕ(1/2, v)(κ+1/2), by evaluating the uncor-
rected scalar volumetric flux on the boundary,

ϕ(1/2, v)(κ+1/2) =
Λ∑

α=0

Λ∑
β=0

√
2α + 1 P̃β(v) ϕ[α,β](κ+1/2) . (5.26)

This allows us to get the uncorrected surface flux moments as

ϕ[∗,β](κ+1/2) =
Λ∑

α=0

√
2α + 1 ϕ[α,β](κ+1/2) , ∀β = [0,Λ] . (5.27)

2. Boundary surface fluxes can also be viewed as outgoing/incoming currents, and they
can fall in one of four categories for a square reference element: µn > 0, µn < 0, ηn > 0,
and ηn < 0, where Ωn = (µn, ηn).
Hence, a different value for spatial moments of the uncorrected scalar surface flux can
be acquired by integrating the angular surface fluxes over only the relevant half of the
SN quadrature. For example, in the case of the right (x+) boundary, instead of Eqn.

106

5.25, we have

ϕ
[∗,β](κ+1/2)
BF =

M∑
n=1

µn>0

ωn ψ
[∗,β](κ+1/2)
n , ∀β = [0,Λ] , (5.28)

where we have used the subscript BF to indicate that this is obtained from the surface
Boundary F luxes, and we consider only the isotropic flux such that Rm

l (Ωn) = 1.
ϕ[∗,β](κ+1/2) and ϕ

[∗,β](κ+1/2)
BF will not be equal as the order of operations (evaluation at

the boundary and integration/quadrature formula) does matter in this case. However,
this allows for the obtention of a ratio of the two,

R[β] = ϕ
[∗,β](κ+1/2)
BF

ϕ[∗,β](κ+1/2) , ∀β = [0,Λ] . (5.29)

3. Step 1 is then repeated with the accelerated scalar volumetric flux, to give the acceler-
ated surface flux moments, ϕ[∗,β](κ+1).

4. An estimate of ϕ[∗,β](κ+1)
BF is then calculated using ϕ[∗,β](κ+1) and R[β],

ϕ
[∗,β](κ+1)
BF = ϕ[∗,β](κ+1) ×R[β] , ∀β = [0,Λ] . (5.30)

5. Finally, each corrected angular moment of the surface flux is calculated using

ψ[∗,β](κ+1)
n = ψ[∗,β](κ+1/2)

n

ϕ
[∗,β](κ+1/2)
BF

× ϕ[∗,β](κ+1)
BF , ∀β = [0,Λ] . (5.31)

5.4 Parametric Study

We first assess RT-SPnSA through a one-dimensional Fourier analysis and a test case we
found particularly difficult to resolve during our testing. It is investigated whether the
angular order of the SPn equation or the anisotropy of the source scattering has any effect on
the acceleration. Also, with the way the flux correction was implemented, it made it possible
to use non-matching RT orders for the SA. Essentially, this means that, for example, RT-0
can be applied to accelerate HODD/DG-1 or RT-1 with HODD/DG-2.

5.4.1 Numerical Fourier analysis using DRAGON5

Fourier analyses are usually carried out analytically by starting with an error of the shape
given by Eqn. 5.13 and propagating this through the transport and synthetic acceleration
equations to obtain the eigenvalue equation and subsequently the spectral radius. However,

107

for this work, this was done computationally using the DRAGON5 code. The procedure is
essentially the same and is tedious only insofar as the amount of data to process. The results
presented in this section were run with the initial error containing even modes only (refer to
Eqn. 5.13); however similar results were obtained for odd modes (not presented).

This is carried out for a homogeneous one-dimensional test problem with domain, D = [0, L]
where L = 10 cm, with vacuum on one end and reflective boundary conditions on the other.
A constant unitary source was present throughout and the scattering ratio, c, was set to 0.99,
unless otherwise specified.

The range of Fourier wavelengths investigated was ωΣ = [0, 2π
L

). As this was done computa-
tionally, the range of values was discrete. We used 60 equally spaced discrete values in that
range. In our testing, increasing this discretisation did not yield different results.

For mesh elements with a width greater than 1 MFP, the number of elements was kept
constant. The total cross-section, Σ, was changed from 1 to 100000 cm−1 to vary the optical
thickness. However, for elements with spacing smaller than 1 MFP, Σ was kept constant at
1 cm−1, and the mesh was steadily refined down. This was done in an effort to keep leakage
from affecting the results. This simulation setup was based on the work of Wang [57].

Finally, the calculation was allowed to run for four iterations for each Fourier wavelength,
and the eigenvalue calculated using

ρωΣ =

√√√√ ∥ϕ(κ) − ϕ(κ−1)∥
∥ϕ(κ−2) − ϕ(κ−3)∥

, (5.32)

where in this case κ = 4. Note that, in the literature, there are various ways of computing the
eigenvalue numerically (see [75] and [69] for example) but Wang [57] seemed to suggest this
equation and letting the calculation run for a few iterations would be a way to reduce numer-
ical oscillations in the eigenvalue. And this is indeed what was observed in our simulations.
The Numerical Spectral Radius (NSR) is then given by

NSR = max(ρωΣ) . (5.33)

The RT-SPnSA equation initially used was an RT-0 SP1 with an isotropic source. At that
point, it was essentially equivalent to the diffusion equation and what was being tested was
the consistency of the Raviart-Thomas (RT) discretisation with either HODD or DG.

The spectral radius for the SA is given in Fig. 5.2 for different angles for the HODD-0
spatial discretisation, as well as the spectral radius for the source iteration S2 problem. The

108

unaccelerated NSR are exactly where we would expect with c = 0.99. For the accelerated
problems, even though S2 is wildly unstable, S4, S8 and S16 are all completely stable for all
mesh sizes. While this was very encouraging, once c was increased to 0.9999, more or less all
the test cases became unstable. For this reason, c was kept at 0.99 and the quadrature at S8

in the rest of the presented numerical Fourier results.

Fig. 5.3 shows how the NSR varies when different transport spatial discretisation orders
are tested. Various RT-k discretisations are tested for the same HODD/DG order, Λ. For
HODD-0, the RT-0 acceleration is already stable and increasing k is not helpful at all. For
the remaining orders, there seems to be a couple of trends emerging. First, RT-0 seems to
offer more or less the same acceleration profile regardless of Λ. Also, except in the case of
linear transport discretisation (Λ = 1), RT-2 seems to consistently offer a stable acceleration
at all mesh sizes. We repeated the same experiment with SP3, hopeful that the results would
be improved. This was, unfortunately, not the case: the results, while not exactly similar,
offered the same – and sometimes, even worse – instabilities around the same regions.

Finally, we were curious to see if using an anisotropic scattering source with the SPn equation
would make any difference when analysing an anisotropic problem. The problem investigated
was identical to the one so far but with an additional anisotropic scattering cross-section,
given by

Σs,1 = µ̄Σs,0 , (5.34)

where µ̄ = 0.99. The results are given in Fig. 5.4 and Fig. 5.5 where the SA is compared
when using either an isotropic or anisotropic scattering source with the SP1 equation. The
use of the isotropic scattering source in this anisotropic test case results in wildly unstable
acceleration. For example, in the case of HODD-0, the unstable peak is about 30 times higher
than in the isotropic test (Fig. 5.3), and RT-2 is not stable at all anymore. Fig. 5.4 and Fig. 5.5
show that while using an anisotropic source did not bind these spectral radii to make the
problem stable at all mesh sizes, the peaks were drastically reduced – as demonstrated on
the right-hand side images which show a zoom on the y-axes.

5.4.2 2D-AIC test case

The benchmark that we were initially unable to make work with the synthetic acceleration (in
its prior state) was the 2D-AIC one, described in Sec. 3.3.2. In fact, it was failing to converge,
and that was what prompted us to review the whole algorithms for the flux correction and
surface fluxes. It seemed only fitting to retest it and see how it fares. We also present here,
for this more realistic test case, the impact, if any, of some of the parameters investigated

109

Figure 5.2 Variation of spectral radii with mesh size in terms of Mean Free Path (MFP) for
the RT-SPnSA scheme using RT-0 SP1 isotropic source. Different SN angles for the HODD-0
test case are shown, as well as the S2 source iteration case.

for the numerical Fourier Analysis (FA). All results presented here are run using a quadratic
(Λ = 2) spatial discretisation, and usually S8 quadrature unless otherwise specified

Fig. 5.6 shows the reduction in calculation time and number of inner iterations from the un-
accelerated to the accelerated simulation when using the ‘basic’ SP1 isotropic source equation
but with different RT-k schemes. All these plots have three data points for the accelerated
calculations – each corresponding to when the SA starts being applied. Indeed, it was known
from previous experiments that applying the SA after a few unaccelerated transport itera-
tions could be very beneficial to the overall computation. We wanted to verify if that was
still the case and sought to quantify for how many iterations waiting would be helpful.

Interestingly, even though from the Fourier analysis, it was RT-2 that was the most stable, we
see here that RT-0 provides the most gains in computational times and number of iterations.
While the higher time could be attributed to the higher computational cost of the RT-2
discretisation, one could have expected the number of iteration to be very similar. Instead,
for DGFEM, there is a difference of around 20-25%. Also, when the quadrature is increased
to S16 (see Fig. 5.7), the difference between RT-2 and RT-0 is much smaller as the SA now
represents a smaller percentage of the computation time.

Also, SPnSA seems to work better with DGFEM – at least in this case. We suspect that it
has to do with how the reflective boundary surface flux correction was implemented. HODD
and DGFEM define the flux differently on the boundaries. While HODD uses the closure
relationships (Eqn. 3.13 and 3.14), Eqn. 5.26 is more representative of the flux for DGFEM.

110

Figure 5.3 Variation of spectral radii with mesh size in terms of Mean Free Path (MFP) for
the RT-SPnSA scheme using RT-k SP1 isotropic source. Each row top to bottom: HODD-0;
HODD/DG-1; HODD/DG-2; DG-3.

111

Figure 5.4 Variation of spectral radii with mesh size in terms of Mean Free Path (MFP) for
an anisotropic test case using the RT-SPnSA scheme with either an RT-k SP1 isotropic or
anisotropic source. Each row top to bottom: HODD-0; HODD-1; DG-1. The plots on the
right are identical to those on the left but the y-axis is zoomed on, to better see the variation
and improvement of using anisotropic scattering with the SPn equation.

112

Figure 5.5 Variation of spectral radii with mesh size in terms of Mean Free Path (MFP) for
an anisotropic test case using the RT-SPnSA scheme with either an RT-k SP1 isotropic or
anisotropic source. Each row top to bottom: HODD-2; DG-2; DG-3. The plots on the right
are identical to those on the left but the y-axis is zoomed on, to better see the variation and
improvement of using anisotropic scattering with the SPn equation.

113

Figure 5.6 S8 calculations with SP1 isotropic source SA: plots of computational time and
number of inner iterations for the unaccelerated and accelerated calculations. There are three
cases for the latter: starting the SA on the 2nd, 4th and 6th transport iteration.

Overall, however, compared with the previous implementation where the RT order, k, was
fixed to the transport discretisation order, Λ, there are big improvements – the decrease in
computational times for RT-0 more than doubles compared with the gain for RT-2.

We investigate again the anisotropic source SPnSA, shown in Fig. 5.8; there are slight im-
provements but nothing quite significant – which, again, is somewhat counter-intuitive to the
results seen in the Fourier analysis. The SP3 equation SA was also computed, both with an
isotropic and anisotropic source, given in Fig. 5.9 for the S8. The results degrade significantly
unfortunately. As the SN order was increased, we found this degradation to reverse course
and actually turn into an improvement. This is not shown here as the plots are somewhat
repetitive.

Finally, a very interesting ‘trick’ – for want of a better word – was suggested by Adams [78]:
instead of just starting the SA a few iterations later, it could be applied every x number of
iterations. This proved to be highly successful, as demonstrated in Fig. 5.10. In fact, there
is not much, if any, difference now between isotropic and anisotropic source. Also, while the
results for SP3 here are quite worse than SP1, it should be noted that these differences all
but disappear at higher SN orders.

Based on Fig. 5.10, we feel confident recommending that this particular SA, be used with an
RT-0 SP1 isotropic source configuration, while being applied every few (2 or 4) iterations.

114

Figure 5.7 S16 calculations with SP1 isotropic source SA: plots of computational time and
number of inner iterations for the unaccelerated and accelerated calculations. There are three
cases for the latter: starting the SA on the 2nd, 4th and 6th transport iteration.

5.5 Benchmark Results: 3D-TAK2 and 3D-TAK4

We now apply RT-SPnSA to two three-dimensional benchmarks – one Cartesian: 3D-TAK2

and one hexagonal: 3D-TAK4– from Chap. 3 and Chap. 4. The specific configuration used is
the one previously recommended: RT-0 SP1 isotropic source every x iteration. x was {2,4}
for the Cartesian case, {2,4,6} for the hexagonal one. The results are given in Tab. 5.1 and
Tab. 5.2 respectively. Note that the differences in keff are not given as there was usually less
than a couple pcm of difference between the unaccelerated and accelerated keff results.

For 3D-TAK2, with no mesh refinement, there is about a 50% reduction in computational
times even if the number of iterations go down by about 75% (except in the HODD-0 sce-
nario). However, as soon as the mesh is refined, the drop in computational time reflect the
decrease in number of iterations. Overall, compared to the unaccelerated calculation, the SA
is able to provide about a 75% reduction in time.

The results are very similar with 3D-TAK4 except for the fact that now, the best option for
x is 4. Indeed, this is something that was observed across the board for hexagonal cases,
applying the acceleration every 2 iterations resulted in an unstable scheme that sometimes
even diverged.

5.6 Concluding Remarks

Novel algorithms were applied in the flux and surface flux corrections for a synthetic accel-
eration based on a Raviart-Thomas (RT) discretisation of the SPn equations. This allowed

115

Figure 5.8 S8 calculations with SP1 anisotropic source SA: plots of computational time and
number of inner iterations for the unaccelerated and accelerated calculations. There are three
cases for the latter: starting the SA on the 2nd, 4th and 6th transport iteration.

Figure 5.9 Top: S8 calculations with SP3 isotropic source SA. Bottom: S8 calculations with
SP3 anisotropic source SA. Plots of computational time and number of inner iterations for
the unaccelerated and accelerated calculations. There are three cases for the latter: starting
the SA on the 2nd, 4th and 6th transport iteration.

116

Figure 5.10 Top: S8 calculations with SP1 isotropic source SA. Middle: S8 calculations with
SP1 anisotropic source SA. Bottom: S8 calculations with SP3 anisotropic source SA. Plots
of computational time and number of inner iterations for the unaccelerated and accelerated
calculations. Instead of only starting the SA after 2, 4 or 6 iterations, here, SPnSA was
applied every 2, 4 or 6 iterations.

117
Table 5.1 Results for 3D-TAK2 with S6. Acceleration was RT-0 SP1 isotropic. Λ is the polynomial order,
subm. the submeshing, accel. the acceleration method used. Three significant figures given, except for keff .

DD DG

Λ subm. accel. keff Time # iter. keff Time # iter.
(s) (s)

0 1 no acc. 0.9589735 17 3122 - - -
every 2nd 0.9589742 3.81 670 - - -
every 4th 0.9589741 4.48 830 - - -

2 no acc. 0.9593314 120 3254 - - -
every 2nd 0.9593269 30.2 674 - - -
every 4th 0.9593269 36.1 850 - - -

3 no acc. 0.9594978 455 3208 - - -
every 2nd 0.9595025 109 699 - - -
every 4th 0.9595025 128 869 - - -

1 1 no acc. 0.9595516 129 3196 0.95837 122 3164
every 2nd 0.9595544 57.6 1341 0.9583729 57 1370
every 4th 0.9595548 60.8 1435 0.9583711 61.4 1493

2 no acc. 0.9596105 1060 3216 0.959371 1020 3211
every 2nd 0.9596144 291 835 0.9593751 302 913
every 4th 0.9596145 331 978 0.9593751 329 1010

3 no acc. 0.9596136 3860 3217 0.9595249 3520 3215
every 2nd 0.9596179 857 741 0.9595291 857 775
every 4th 0.9596179 1030 903 0.9595292 1010 913

2 1 no acc. 0.9596297 2090 3198 0.9595611 1970 3198
every 2nd 0.9596334 941 1406 0.9595646 931 1420
every 4th 0.9596338 960 1437 0.9595635 948 1447

2 no acc. 0.9596143 16900 3217 0.959606 16100 3216
every 2nd 0.9596183 4770 891 0.9596102 4640 874
every 4th 0.9596184 5410 1001 0.9596103 5310 994

3 no acc. 0.9596141 57000 3216 0.9596112 55800 3218
every 2nd 0.9596183 14000 756 0.9596154 13700 755
every 4th 0.9596183 16800 910 0.9596154 16300 904

3 1 no acc. - - - 0.9596089 21900 3199
every 2nd - - - 0.9596119 9660 1393
every 4th - - - 0.9596105 10100 1462

2 no acc. - - - 0.9596129 176000 3215
every 2nd - - - 0.9596171 49500 889
every 4th - - - 0.959617 56000 1002

118
Table 5.2 Results for 3D-TAK4 with S10. Acceleration was RT-0 SP1 isotropic. Λ is the polynomial order,
subm. the submeshing, accel. the acceleration method used. Three significant figures given, except for keff .

DD DG

Λ subm. accel. keff Time # iter. keff Time # iter.
(s) (s)

0 1 no acc. 0.866796 840 4284 - - -
every 2nd diverged - - -
every 4th 0.8667991 169 842 - - -
every 6th 0.8667992 179 890 - - -

2 no acc. 0.8769145 3250 4335 - - -
every 2nd diverged - - -
every 4th 0.8769171 656 909 - - -
every 6th 0.8769172 907 955 - - -

3 no acc. 0.8782655 8080 4311 - - -
every 2nd 0.8782649 3000 1470 - - -
every 4th 0.8782687 1620 917 - - -
every 6th 0.8782688 1850 971 - - -

1 1 no acc. 0.8809062 6500 4417 0.8731214 5750 4452
every 2nd diverged diverged

every 4th 0.8809069 1370 1015 0.8731231 1450 973
every 6th 0.880907 1450 1065 0.8731228 1020 1029

2 no acc. 0.8799127 22500 4322 0.8785824 23000 4458
every 2nd 0.8799167 9140 1678 diverged

every 4th 0.8799163 4910 913 0.8785841 4760 878
every 6th 0.8799162 5710 1023 0.8785841 6460 1001

3 no acc. 0.8798766 55600 4322 0.8793559 54800 4459
every 2nd 0.8798805 17900 1406 0.8793581 28100 2167
every 4th 0.8798801 12100 926 0.8793575 11600 910
every 6th 0.8798799 12400 1013 0.8793575 13100 1005

2 1 no acc. 0.8798544 93600 4419 0.8797545 91400 4421
every 2nd 0.8798561 43200 2033 diverged

every 4th 0.8798554 21500 1013 0.8797554 21300 1021
every 6th 0.8798555 22700 1072 0.8797554 22200 1072

2 no acc. 0.8798733 366000 4324 0.8798349 352000 4323
every 2nd 0.8798773 117000 1396 0.8798388 120000 1447
every 4th 0.8798768 78100 929 0.8798383 75200 909
every 6th 0.8798767 89000 1053 0.8798383 86900 1052

3 no acc. estimated 843000 4324 estimated 823000 4323
every 2nd diverged 0.879859 242000 1309

119
Table 5.2 (continued)

DD DG

Λ subm. accel. keff Time # iter. keff Time # iter.
(s) (s)

every 4th 0.879873 173000 917 0.8798585 172000 929
every 6th 0.8798728 199000 1050 0.8798584 185000 1000

3 1 no acc. - - - estimated 945000 4420
every 2nd - - - diverged

every 4th - - - 0.8798276 218000 1023

us to investigate various parameters such as the angular order of the SPn equations, the
presence of an isotropic or anisotropic source and the spatial order of the RT discretisation.
Numerical Fourier analyses were presented. These showed that the scheme was conditionally
stable depending on the SN order and the level of scattering and anisotropy present. A case
that was known to be previously difficult to accelerate with the earlier scheme was investi-
gated as well. Based on these, we were able to recommend an RT-0 SP1 isotropic source
equation for the synthetic acceleration. Results were presented for the Takeda Models 2 and
4 benchmarks, showing a possible reduction of up to 75% in computational time.

120

CHAPTER 6 PARALLEL IMPLEMENTATION IN WYVERN

We knew that High Performance Computing (HPC) would be a part of the project
from the very beginning even if we were not entirely certain which form it would take.
For reasons explained in this chapter, we chose the Message Passing Interface (MPI)
standard as the framework upon which to build our scheme. This implementation was
done in a separate static library called WYVERN, which we expect will become part of
the main DRAGON5 code library this year.

A brief introduction to some of the parallelisation solutions is first given to showcase
the diversity of available strategies. We then briefly discuss the work that has been
done for the SN transport equation in the past. The Cartesian implementation of the
parallelisation strategy in WYVERN is then outlined followed by the hexagonal one.
Numerical results for the calculations for the Takeda benchmarks seen in preceding
chapters are given to highlight the decrease in computational time. Finally, a full core
mock breeder reactor is simulated.

6.1 Brief Introduction to Parallelisation Solutions

The use of parallelism in a solver can allow for tremendous gains in computational time.
Larger and more complex problems can be solved in, frequently, vastly smaller timeframes.
The current landscape in HPC has become quite diverse – both in terms of hardware and
parallelisation paradigms.

With regards to hardware, there are two main types: multicore processors and Graphic
Processing Units (GPUs). Multicore processors are essentially an extension of one Central
Processing Unit (CPU) whereby several of the latter make up a multicore processor. They
can be further grouped onto a socket – sometimes also called CPU-chip. These can be
subsequently combined to make up a computing node, which can be viewed as one computer.
Several of these computers together make up a computer cluster1. Each CPU usually runs
one computation thread at the same time, although some CPUs are able to run two or more
threads in parallel. Finally, each CPU also contains Single Instruction, Multiple Data (SIMD)
(see below) units, with their own dedicated memory (called registers), able to carry out vector
operations on data that can fit on the register. In this case, vector operations usually refer
to the relatively simple operations2 carried out synchronously on the whole set of data.

1The clusters used for this work are part of the Digital Research Alliance of Canada (DRAC).
2These include things like arithmetic, compare, data-type conversion or data and memory management

operations amongst others. While the list is ever growing, it is a much smaller set of possible instructions

121

Now, the concept of parallelism is often classified according to what is known as Flynn’s
Taxonomy [79]. There are four main categories:

■ Single Instruction, Single Data (SISD) – essentially, a sequential computer;

■ Single Instruction, Multiple Data (SIMD) – all processing units execute the same in-
struction but using different data. This is suitable for problems with a high degree of
regularity. It can be part of the hardware design in which case the units are in lockstep;

■ Multiple Instruction, Single Data (MISD) – this is much more unusual, the most famous
example was the Space Shuttle flight controller for fault tolerance;

■ Multiple Instruction, Multiple Data (MIMD).

There are different ways in which each of these categories can be implemented. For example,
as mentioned earlier, vectorisation capabilities are built right into CPUs. Auto-vectorisers
present in compilers can take advantage of this, based on the level of optimisation flags at
compile time. Unfortunately, this is notoriously unreliable for all but the simplest and most
obvious of loops. Another method is through compiler vector intrinsics but it can degrade
code readability. Optimised libraries for linear algebra such as INTEL MKL or EIGEN have
also been developed.

There is also the INTEL SPMD Compiler (ispc) [80] which was specifically developed to
address the lack of languages and compilers to take advantage of modern CPU hardware.
ispc delivers high performance with speed increases of up to 35× having been demonstrated
on four-core systems.

Another parallelisation model is the threads model which is somewhat of an extension on the
SIMD and MIMD, leading to a Single Program, Multiple Data (SPMD) model. It is a type of
shared memory programming, where a main program creates a certain number of processes
(threads) that are run concurrently and usually perform the same tasks on different data.
In this case, because the memory is shared3 between the threads, they all have access to the
same information. The main process loads and acquires all the necessary system resources.
This means that they can also overwrite information that might still be needed by other
threads if not done correctly – leading to a race condition.

One implementation of this model is the OpenMP Application Programming Interface (API).
It is an industry standard available in C/C++ and Fortran. It is a fork-and-join model em-
ployed mostly in parallel for-loops, although SIMD directives and task-based parallelism have

than the x86 set.
3Shared memory systems, in general, have the ability for all processors to access memory as global address

space. Hence, while the processors might operate independently, they all share the same memory resources.

122

recently been added. Another similar but task-based standard is INTEL TBB (Threading
Building Blocks). It is more powerful in that it is capable of creating graphs of dependent
tasks. Unfortunately, it is only available in C++.

The last model to be addressed here is the Message Passing Interface (MPI) API. Vec-
torisation taps into the potential of a CPU; threads makes it possible to use the resources
(processors and memory) of a computer or a whole compute node; MPI allows the use of
several nodes at the same time, leading again to an SPMD model. MPI relies on a distributed
memory paradigm whereby nodes have a communication network in between them. Each
CPU has their own allocated memory and are unable to see the others’. Communication and
exchange of information must be done explicitly by the developer.

Finally, of course, some of these methods can be combined to take full advantage of available
resources – so long as the language, compiler and the methods themselves all support it!

6.2 Outline of Prior Parallelisation Work in SN Neutron Transport

As briefly alluded to in Sec. 2.2.5, the sweep in discrete-ordinates transport does lend itself
to parallelisation over the spatial domain. Moreover, as seen in Alg. 1, all directions within
one octant of the unit sphere (and even over the whole sphere given no albedo boundary
conditions) are independent of one another except for the quadrature summation at the end
of the sweep. This means that they could potentially be parallelised as well. There is no
dearth of work done on the parallelisation of the sweep for the discrete ordinates transport
equation. In this section, we succinctly look at some of the most salient works in the literature.

6.2.1 The Koch-Baker-Alcouffe (KBA) method

Perhaps the most famous parallel sweep algorithm in SN neutron transport is the Koch-
Baker-Alcouffe (KBA) [81, 82, 83] method – named for the authors of the seminal paper.

Considering an example domain with a given direction, Ω, of neutron travel, as shown in
Fig. 6.1a, the first indexed cell element that has both incoming sides known and can be
computed is cell 1. After that, either of cells 2 or 6 can be computed; then either 3, 7 or 11;
and so on. In fact, this is much better represented with a graph, drawn in Fig. 6.1b. This
shows the dependencies and constraints of the cell computations. Because in this case, these
dependencies are in one direction only and do not loop back, this is known as a Directed
Acyclic Graph (DAG).

Now, the graph shows quite clearly that some cells can be computed simultaneously, leading

123

to an obvious parallelisation strategy. One method is to distribute the available processes
over the width of the graph, as represented in Fig. 6.1c. Each processor then has a ‘column’
of tasks assigned to it. Tasks on the same level – or wavefront – of the DAG can be computed
simultaneously. Initially, some processors are idle, until it reaches a point where all processors
are busy; this would be the 4th step. After that, it reaches a point again (6th step) where not
all the processors are working.

As an aside, it should be noted that a cell is not necessarily just one element in the compu-
tational mesh. In fact, it is usually more advantageous to group mesh cells together into a
macrocell. This provides the arithmetic intensity4 needed such that the computation time is
not overshadowed by communication time. This is shown in Fig. 6.1a where the underlying
computational mesh has been represented for the cell indexed 1.

Before going further, we will define some helpful metrics used to evaluate the performance
of a parallelised code. The speed-up is defined as the ratio of the serial computation wall
time5 to the parallel computation wall time. Parallel efficiency is a closely related metric, in
that it is the speedup divided by the number of processors. This gives the speed-up, S, and
parallel efficiency, ηe, as

S = Ts

Tp

, ηe = S

Nproc.

, (6.1)

where Nproc. is the number of processors, and the indices s and p denote serial and parallel
respectively. There are also the theoretical equivalents of the speed-up and parallel efficiency,
respectively Stheo. and the Parallel Computational Efficiency (PCE), which are essentially S
and ηe in the absence of communication costs. These will be dependent on the algorithm
implemented. In Fig. 6.1, Stheo. = 3.125 and PCE ≈ 0.78. The PCE has been shown to be
about a third for an infinite cubic mesh [83] and represents an upper bound on the efficiency.

While we are on the topic of efficiency, it would be interesting to briefly talk about scalability.
This refers to the ability of the software to make efficient use of the available computational
resources. For example, it is rarely the case that doubling the amount of resources halves the
computational time. There are a variety of underlying factors at play such as the nature of
the methods or hardware used and the amount of code that is executed sequentially, amongst
others. There are two main scalability tests: strong and weak scaling. In strong scaling, the
problem size is fixed while the number of CPUs increases. In the ideal case, the computational
time taken will reduce proportionally to the increase in CPUs. In weak scaling, the problem

4Although we sometimes use the term loosely, strictly, arithmetic intensity is defined as the ratio of the
number of floating point operations to the main memory traffic (both read and write).

5Wall time is the ‘regular’ elapsed time regardless of the number of threads, CPUs or nodes running, for
example, as experienced by a wall-mounted clock – hence the name. This differs from core time which takes
into account how many cores are running.

124

(a) Example of a 2D domain with a spatial grid of 4× 5 macrocells – each macrocell being 3× 3
elements of the computational mesh. The numbers in the cells merely represent a cell identifying
index – not the computation order. The direction, Ω, of neutron travel is indicated.

(b) Directed Acyclic Graph (DAG) for one direc-
tion showing the dependencies and constraints.

(c) Distribution of macrocells with each proces-
sor assigned a column of cells along the DAG.

Figure 6.1 Example domain and associated Directed Acyclic Graph (DAG) showing the
dependencies of the sweep.

125

size is increased proportionally to the increase in number of CPUs, such that the calculation
time should ideally stay constant. It is usually easier to achieve higher efficiency with weak
scaling as the number of cores increases, as opposed to with strong scaling. [84]

Finally, another interesting metric to look at is the Processor Usage Efficiency (PUE). As
previously mentioned, in the example in Fig. 6.1, some of the processors are idle for some
of the time, leading to an uneven use of the computational resources. The PUE can be
viewed as the number of agglomerated steps for which all processors are busy. For this given
example, the PUE is 5/8 = 0.625 for the one given direction of neutron travel.

Both the PCE and PUE can be increased by concatenating the different directions in one
octant together, effectively increasing the work pipeline. In our current example, when the
first processor has finished computing cell 17 for the given direction, it can start working on
macrocell 1 for the next direction. This gives rise to the Koch-Baker-Alcouffe (KBA) scheme
where the work for several directions (usually within the same octant) is pipelined together.
If considering a number M ′ of directions per octant, in this case, the PUE would increase to
(2×M ′)/((2×M ′) + 3). A lot, if not most, of the processor idle time is eliminated with the
PCE for an S8 computation on a large 3D test case reaching 91% [85].

While we have presented here a 2D model with the processors arranged in a linear fashion,
the discussion for a three-dimensional Cartesian grid is not that much more different save for
the processors now arranged in a 2D virtual process grid.

6.2.2 Beyond KBA

The KBA scheme or variations on it remain the most implemented parallelisation scheme
for the SN method. While it was initially for structured two- or three-dimensional meshes,
Pautz [85] extended this work to unstructured meshes in 2001. The Oak Ridge National
Laboratory (ORNL) code also uses it concurrently with parallelisation over energy to provide
better scalability. The code PENTRAN [86] uses a 3D virtual process grid with one dimension
for each of space, angle and energy.

In 2013, Adams et al. [87] presented a variant of the KBA method where the sweep is
parallelised over a volumetric decomposition of the spatial domain. They used a 3D process
grid mapped to a volumetric spatial domain decomposition. Each process has to compute a
number, Ag, of energy groups, Am of directions and Az of z-planes within the spatial block,
before communication occurs between the processes.

More importantly, they published provably optimal scheduling algorithms for the sweep op-
eration where all octants are computed at once, on both structured [87] and unstructured [88]

126

grids. They presented results showing that their algorithms allows for the completion of the
sweeps in the minimum possible number of stages. They achieved weak scaling results of 60%
efficiency [87] on the order of 105 cores, with an eight-processor calculation as the reference.
They do note the use and indispensability of the STAPL [89] library which provides all the
parallel containers and handles all the vectorisation and communication.

A lot of new development was also fairly recently done in the DOMINO code through the PhD
work of Moustafa [90, 91, 92, 93] where a hybrid parallelisation model was implemented. They
approached the problem from a bottom-up perspective and initially studied the efficiency of
the SIMD vectorisation of the sweep by building on top of the EIGEN library. They showed
that it was limited by the padding in the arrays that was necessary to ensure data alignment
in the vector registers. However, vectorisation over the directions of neutron travel were
much more successful, reaching about 63% of the peak performance of their tested CPU.

They then went on to investigate the parallelisation of the sweep using three different emerg-
ing task-based models: INTEL TBB [94], STARPU [95] and PARSEC [96]. Task-based
models work with tasks, instead of lower-level threads – the task being defined as the inver-
sion of the transport operator on a macrocell to allow for sufficient grind on data already
pipelined into memory, thus going from memory bound to compute bound. These tasks are
then mapped onto the hardware at runtime by an intrinsic task scheduler. Each of these
investigated models was coupled with MPI for the distributed memory aspect to run on sev-
eral nodes at the same time. As a result, they found that while they all performed well, they
most efficient was PARSEC, reaching about 34% of the theoretical peak performance of their
cluster.

Finally, they also implemented a parallelised synthetic acceleration and coupled it with their
fully parallel transport solver. After validation on, amongst others, the Takeda [16] bench-
marks, they were able to run a full Pressurised Water Reactor (PWR) core with 26 energy
groups, comprising of about 1.02× 1012 unknowns in a mere 45 minutes using 1536 cores.

6.3 Choice of Parallelisation Strategy

Before diving into the specifics of our current implementation, it is important to justify the
choice of parallelisation strategy. Indeed, as outlined in Chap. 1, the primary objective was
the investigation into and the development of a rapid SN solver on hexagonal geometries.
For this reason, we put aside (at least for this project) SIMD vectorisation. Indeed, without
resorting to libraries, the complexity of array padding and vector intrinsics might not have
been feasible within a reasonable timeframe.

127

Moreover, Moustafa [91] had shown that this was a far more suitable prospect for paralleli-
sation over angles. On top of that, they had only vectorised the sweep for the Diamond
Difference (DD) method which meant only a few floating point operations. For higher or-
der spatial discretisation, the vectorisation of the matrix resolution (whether by Gaussian
elimination or otherwise) would prove to be much more complex.

An OpenMP implementation was also carried out by Hébert [51] in DRAGON5 and investi-
gated. However, as we were limited to about 40 cores6 per node, investigating a parallelisation
over angles and macrocells would not be easily feasible. For 3D cases, such a scenario would
generate enough concurrent computations to necessitate, in general, at least 2 nodes.

Indeed, as this represented our first foray into parallelism, the main implementation goal was
the parallelisation over angles and macrocells while investigating and adapting KBA to the
hexagonal geometry. This does decrease the PUE but if sufficient processors are available,
the angles can be distributed over different sets of processors at the same time such that the
speedup is increased. However, communication times can drastically increase such that the
observed speedup can be much less than the theoretical one.

Therefore, we settled on the MPI paradigm. This was chosen due to the advantage of
distributed memory parallelism and the number of processors it can give access to, while
remaining very much accessible and feasible.

6.4 Cartesian Implementation in WYVERN

At the time of writing, the MPI implementation resides in a separate library called
WYVERN that relies on the whole DRAGON5 code library described in Sec. 2.3. For tech-
nical reasons, it was not possible to use the scripting language CLE-2000 with WYVERN,
which is part of the reason for this decision. It is expected that WYVERN will be added
to the DRAGON5 code repository at some point this year, along with a draft user manual.

The way the processes (also called ranks in MPI jargon) were organised was through the
use of communicators. Communicators can be somewhat of a complex idea within MPI but
simply put, they are a group of ranks that have an associated context, essentially a tag which
facilitates communication between ranks within a communicator. The communicator which
regroups all ranks at runtime is known as MPI_COMM_WORLD.

A rudimentary scheduler was set up using the MPI_COMM_SPLIT function to split the MPI
communicator into subsets of communicators, as shown in Fig. 6.2. This was done using a

6The Narval cluster (which is one of the DRAC clusters) has 64 cores but default resource allocation
groups have incredibly low priority, rendering it all but nearly unusable.

128

simple algorithm with integer division and the modulus function, as given in Alg. 3 where
we used [·/·] to represent integer division. Noct. represents the number of octants to be
computed simultaneously while Ndir. and Nmcel. have similar definitions for angular directions
and macrocells respectively.

Figure 6.2 Schematic showing how the MPI_COMM_WORLD communicator comprising 12 ranks is
split into different communicators working on either the same octant (red), the same angular
direction (dashed green) or the same macrocell (blue). This is assuming a 2D test case with
two macrocells along each axis, 2 octants and 3 angular directions per octant.

Figure 6.3 Small 2D test domain along with graphs showing sweeps for each of the three
directions for the 1st octant. The process assigned to each cell is shown in red as a superscript.

Using the rank numbers, it is possible to obtain (lines 3-6 in Alg. 3) three IDs that define
the position of the processes on a 3D grid. These are then used to group together processes
that will be working on the same direction (SAME_ANG) or the same macrocell (SAME_CEL).

It is perhaps easier to illustrate with a simple example. Consider a small 2D domain with two

129

Algorithm 3: How different processes are distributed over a 3D virtual process grid.
input : Noct., Ndir., Nmcel.
output: IDGRID_I, IDGRID_J, IDGRID_K, SAME_OCT, SAME_CEL, SAME_ANG

/* Obtain world rank and size. */
1 call MPI_COMM_SIZE(MPI_COMM_WORLD, IS_WRL, IERROR)
2 call MPI_COMM_RANK(MPI_COMM_WORLD, IR_WRL, IERROR)

/* Obtain grid IDs for each process. */
3 IDGRID_I = [IR_WRL/(Ndir.Nmcel.)]
4 IR_OCT = IR_WRL− (Ndir. ∗Nmcel. ∗ IDGRID_I)
5 IDGRID_J = MOD(IR_OCT, Nmcel.)
6 IDGRID_K = [IR_OCT/Nmcel.]

/* Split into number of octants. Line 7 below: regroup ranks with
same tag IDGRID_I from initial communicator MPI_COMM_WORLD into new
communicator SAME_OCT according to the order defined by IR_WRL. */

7 call MPI_COMM_SPLIT(MPI_COMM_WORLD, IDGRID_I, IR_WRL, SAME_OCT, IERROR)
8 call MPI_COMM_RANK(SAME_OCT, IR_OCT, IERROR)

/* Split into number of directions. */
9 call MPI_COMM_SPLIT(SAME_OCT, IDGRID_J, IR_OCT, SAME_CEL, IERROR)

10 call MPI_COMM_RANK(SAME_CEL, IR_CEL, IERROR)

/* Split into number of simultaneous macrocells. */
11 call MPI_COMM_SPLIT(SAME_OCT, IDGRID_K, IR_OCT, SAME_ANG, IERROR)

130

macrocells along each axis run with S4, i.e. three directions per octant, the calculation is run
with twelve processes, and two octants are computed at the same time. The domain along
with the graphs for one octant containing the cell indices with the rank IDs in superscript
are shown in Fig. 6.3. The whole rank distribution is also given in Tab. 6.1.

Table 6.1 ID values for the different processes of the virtual process grid for a small 2D test
with two macrocells along each axis, run with three directions per octant, with two octants
run simultaneously.

IR_WRL 0 1 2 3 4 5 6 7 8 9 10 11
IDGRID_I 0 0 0 0 0 0 1 1 1 1 1 1
IR_OCT 0 1 2 3 4 5 0 1 2 3 4 5
IDGRID_J 0 1 0 1 0 1 0 1 0 1 0 1
IDGRID_K 0 0 1 1 2 2 0 0 1 1 2 2

A few things to note here :

■ The implementation is still somewhat in its infancy stages, so the exact number of
processes needed must be passed along at runtime to ensure everything works correctly.
Too few or too many may result in unexpected behaviour.

■ Moreover, in its current form, the implementation is rigidly synchronous, resulting in
computational times that quickly level off with increasing number of cores used.

■ While the parallelisation over octants was implemented, it is seldom, if ever, used.
The calculations were run on the Digital Research Alliance of Canada (DRAC) clusters
where our research group only has a default resource allocation. Requesting a few nodes
for a computation of a few hours or a day already entails a waiting period of days at
times. Parallelisation over octants would require more nodes and hence, more waiting.
For this reason, we limit ourselves to a study over angles and macrocells.

Finally, Alg. 4 shows how the backbone of our initial (Alg. 1) inner iteration changes. This
is represented in 2D but similar changes were done for the 3D case. We wish to highlight the
following points:

■ How we handle reflective or albedo boundary conditions are not represented in an effort
to help readability but it is fairly straightforward to manage.

■ The number of macrocells along each axis is assumed constant to simplify things. Also,
the number of wavefronts in 2D is calculated using nwave. = Nmcel. +Nmcel. − 1.

131

■ The macrocell indices within the domain can be deduced implicitly using the wavefront
index, iwave. and Nmcel..

■ It can be seen that the changes to the code, while strategically placed, remain mini-
mal. Using the virtual process grid indices (IDGRID_I, IDGRID_J, and IDGRID_K) and
the number of octants, macrocells and angles (Noct., Nmcel., and Ndir.) over which to
parallelise, it is possible to limit which process enters which loops.

Algorithm 4: Representation of one parallelised inner iteration for the 2D case, as
implemented in WYVERN using MPI.

input : Qm,[α,β]
l,i,j , φ[α]

n,BC , φ[β]
n,BC

output: ϕm,[α,β]
l,i,j , φ[α]

n,BC , φ[β]
n,BC

1 for ioct. = (1 + IDGRID_I) : Noct. : 4 do
/* Loop over wavefronts. */

2 for iwave. = 1 : 1 : nwave. do
/* Loop over macrocells in each wavefront. */

3 for imcel. = (1 + IDGRID_J) : Nmcel. : cells/wavefront do
/* Loop over directions in one octant. */

4 for idir. = (1 + IDGRID_K) : Ndir. : Ndir. do
/* Loop over elements in macrocell. */

5 for i = 1 : 1 : lx/Nmcel. do
6 for j = 1 : 1 : ly/Nmcel. do
7 Solve system of equations TΨn,i,j = Qn,i,j.

8 Compute the outgoing fluxes, φ[β]
n,i+ and φ

[α]
n,j+.

9 Store BC in temp. variables, Υ[β]
n,i− ← φ

[β]
n,i+, Υ[α]

n,j− ← φ
[α]
n,j+

10 Sum to obtain scalar flux ϕm,[α,β]
l,i,j = ϕ

m,[α,β]
l,i,j + 2ωnψ

m,[α,β]
l,i,j .

11 call MPI_ALL_REDUCE on Υ[β]
n,i− and Υ[α]

n,j−.
12 φ

[β]
n,BC ← Υ[β]

n,i−

13 φ
[α]
n,BC ← Υ[α]

n,j−

14 call MPI_ALL_REDUCE on ϕ
m,[α,β]
l,i,j

6.4.1 3D-TAK2 benchmark

We had noticed with 2D test cases (not presented) that the increase in speed-up scales better
with increasing number of processors for higher SN orders and higher spatial discretisation

132

order, Λ. This was not surprising as the arithmetic intensity would increase with these two
parameters such that calculation times would be less overshadowed by communication time.

We present in this section results for the 3D-TAK2 benchmark with S6 quadrature and a mesh
refinement of 3. We do not apply any synthetic acceleration at this point to see the speed-up
thanks to only the parallelisation. The results, run on the DRAC cluster, BELUGA, are
presented in tabular form (Tab. 6.2) and plotted in Fig. 6.4. We found that this presentation
made it easier to see clearly the number of processors and how they were distributed over
the virtual grid. High Order Diamond Difference (HODD) is used for Λ = 0, while the
rest are run using Discontinuous Galerkin Finite Element Method (DGFEM). It should be
emphasised that within each order, Λ, these results correspond to strong scaling tests.

Tab. 6.2 refer to two theoretical values: Smcel.+ang.
theo. and ttheo., and two experimentally measured

values: tmeas. and Smcel.+ang.
meas. . Smcel.+ang.

theo. is the expected speed-up from the parallelisation over
macrocells and angles. While speed-up from parallelisation over angles, Sang.

theo., is simply the
number of directions per octant7, the speed-up from macrocells, Smcel.

theo. , is given by

Smcel.
theo. = number of macrocells in domain

number of wavefronts . (6.2)

The overall theoretical speed-up is then

Smcel.+ang.
theo. = Smcel.

theo. × S
ang.
theo. , (6.3)

and the ttheo. is the serial computation time multiplied by Smcel.+ang.
theo. , and represents the

expected result in the absence of communication time.

On the other hand, tmeas. refers to the experimentally measured computational time for each
calculation, and Smcel.+ang.

meas. is calculated using that and the sequential time.

It can be seen that while for low number of processes, the observed speedup is pretty close
to the theoretical speedup, this quickly changes as the number of processes increases. This
is partly due to the communication time, but also probably to the unoptimised code.

Finally, a note on running calculations on DRAC clusters: we observed during our exper-
iments that the same calculations run at different points in time yielded slightly different
results – within the realm of about 10-15%. While we would have liked to run all computa-
tions about five to 10 times, established an average and standard deviation, again, with our
limited resource allocation, this would not have been realistic – especially given our priority

7Recall, at this point in time, one has to provide exactly the number of processes to fit the number of
direction per octant if one wishes to parallelise the computation over angles.

133

had plummeted even further after all the testing and development.

Looking over the plots in Fig. 6.4, we can see quite clearly that indeed, as the order – and
hence, arithmetic intensity – increases, the efficiency of implementation remains higher for
longer. Overall, while we are only able to see a decrease of about six times for HODD-0, for
DG-3, we observe nearly 42× with 182 cores. Again, recall that these are strong scaling tests
within each order Λ. As such, having measured speed-ups that are more than 50% than the
theoretical speed-ups on 162 cores is not bad for a first implementation.

The plots do also indicate more clearly something that we mentioned: that the parallelisa-
tion scheme as it has been implemented has a parallel efficiency that degrades rapidly, as
exemplified by the non-linear nature of the plots (both theoretical and experimental).

6.5 Hexagonal Implementation in WYVERN

Hexagons have a three-fold connectivity between each other. While this is definitely more
regular than an unstructured grid, it is more complex than an orthogonal grid. As such,
this requires appropriate handling. Having already explained quite thoroughly our Cartesian
implementation of the parallelisation, in section, we will focus on what makes the hexagonal
implementation different.

6.5.1 Parallel hexagonal sweep algorithm and implementation details

A hexagonal planar grid has the marked difference of having three-way dependencies between
each hexagonal element, unlike two-way dependencies in a flat Cartesian grid. This means
that three incoming sides need to be known before being able to compute a hexagon, implying
that for inner hexagons, three hexagons need to be computed before they can be processed.
This has two direct consequences:

1. The Directed Acyclic Graph (DAG) is constricted throughout the sweep such that,
compared to a Cartesian grid of similar number of macrocells, less cells may be com-
puted at the same time. This is shown in Fig. 6.5, with an example domain and its
associated DAG.

2. On the hexagonal plane, the number of macrocells is not variable like it is within a
Cartesian domain. Indeed, the hexagons cannot be regrouped such that one process
solves all the hexagons in that group before communication between processes happens
again. We do not offer a mathematical proof but it seems that, without fail, some
hexagons would need information from other processes. Without resorting to domain

134

Table 6.2 Summarised results obtained using WYVERN for the 3D-TAK2 benchmark pre-
sented in Chap. 3 with S6 quadrature and mesh refinement of 3. Note that the ‘series’ data
point for Λ = 3 is an estimated value.

Λ Nmcel. Nproc. proc. SKBA+ang.
theo. ttheo. tmeas. SKBA+ang.

meas.
grid (s) (s)

0 series 1 1 - 455 455 -
ang. only 6 6 × 1 6 75.8 105 4.33

2 18 6 × 3 12 37.9 74 6.15
1 series 1 1 - 3520 3520 -

ang. only 6 6 × 1 6 587 799 4.41
2 18 6 × 3 12 293 666 5.29
3 36 6 × 6 23.2 152 504 6.98

2 series 1 1 - 55800 55800 -
ang. only 6 6 × 1 6 9300 11900 4.69

2 18 6 × 3 12 4650 8680 6.43
3 36 6 × 6 23.2 2410 4730 11.8
6 162 6 × 27 81 689 2110 26.5

3 series 1 1 - 591300 591300 -
ang. only 6 6 × 1 6 98600 111000 5.33

2 18 6 × 3 12 49300 76900 7.69
3 36 6 × 6 23.2 25500 42800 13.8
6 162 6 × 27 81 7300 14100 41.9

135

Figure 6.4 Time against number of processors obtained using WYVERN for the 3D-TAK2
benchmark presented in Chap. 3. The plots on the right are the same as those on the
left, except with a logarithmic y scale. The first plot point is the series calculation, the
next is parallelisation over angles only and the subsequent ones represent parallelisation over
angles and an increasing number of macrocells along each of the three cardinal axes, in the
order: 1, 2, 3, 6. The ‘perfect’ curves refer to expected computation times in the absence of
communication times.

136

decomposition techniques, we have only been able to have the number of hexagons as
the number of macrocells. Grouping some hexagons together does not appear possible.

This is slightly different for a 3D hexagonal case though. It is possible to have a variable
number of macrocells along the z axis. While this ultimately allows for better efficiencies,
we expect the results to be worse than with Cartesian geometries.

Also, while we had initially implemented a column-like sweep within the hexagonal domain
(as illustrated previously in Fig. 4.4), Fig. 6.5 shows clearly that the sweep for a parallelisation
is different. The graph subroutine we had previously written had to be adapted to take that
into consideration.

Lastly, in the two-dimensional Cartesian sweep, two arrays corresponding to one column
and one row of the domain of surface boundary fluxes are kept in memory to propagate the
sweep – the sizes of which do not change. Indeed, as the sweep progresses, information in
these arrays are continuously being overwritten as they are not needed beyond each current
sweep. However, for the hexagonal sweep, consider Fig. 6.6. If the orange wavefront is to be
computed, information is needed from the purple wavefront as well as the blue wavefront,
which is two wavefronts prior.

We do not provide an algorithm here as beyond the latter point, it is extremely similar to
what we have seen Alg. 2 and Alg. 4.

6.5.2 3D-TAK4 benchmark

Results for parallelised computations of the 3D-TAK4 benchmark using an S6 DG-3 configu-
ration are presented here to demonstrate the possible gains in calculation wall time.

Indeed, Tab. 6.3 and Fig. 6.7 show the unaccelerated results, while Tab. 6.4 and Fig. 6.8
summarise accelerated (using RT-SPnSA with the recommended parameters of Chap. 5)
results for mesh refinements of 1 and 2. All discussions around the theoretical speed-up
values and DRAC from the previous section apply here too. And, again, the results essentially
correspond to strong scaling tests when comparing for the same Λ values.

While expected, it is comforting to note that the use of the synthetic acceleration does not
really affect the performance of the parallelisation implementation. Also, the submeshed
benchmark offered slightly higher speed-ups that the unrefined one – again, an anticipated
result. Less anticipated is the fact that for a similar number of processes, the speed-up for
the hexagonal benchmark is higher than the Cartesian one – about nearly one and a half as
much. It would suggest than an uneven distribution of macrocells along the geometry could
be helpful.

137

Figure 6.5 Left: example of a 2D hexagonal domain with 19 hexagons, each considered a
macrocell – one macrocell being represented as 3 × 4 elements of the computational mesh.
Right: DAG for one direction showing the dependencies and constraints.

Table 6.3 Summarised results obtained using WYVERN for the 3D-TAK4 benchmark pre-
sented in Chap. 4 with S6 DG-3 and no mesh refinement. Note that the ‘series’ data point
is an estimated value.

Nmcel. Nproc. proc. SKBA+ang.
theo. ttheo. tmeas. SKBA+ang.

meas.
grid (s) (s)

series 1 1 - 340000 340000 -
ang. only 4 4 × 1 4 85100 127000 2.68

1 32 4 × 8 23.3 14600 16100 21.1
2 60 4 × 15 45.1 7550 8860 38.3
3 92 4 × 23 65.4 5200 6640 51.2
6 180 4 × 45 119 2850 4700 72.4

138

Figure 6.6 Wavefront sweep showing the need for information from two wavefronts prior for
the resolution of the blue wavefront.

6.5.3 Mock Fast Breeder Reactor (FBR) core: 3D-FBR

Finally, in this section, a mock Fast Breeder Reactor (FBR) core is simulated. The domain
is given in Fig. 6.9 with the material description in Tab. 6.6. This is a previously unpub-
lished benchmark similar to the core investigated by Bay [15]. SAPHYB-formatted 33-group
multiparameter cross-section libraries were obtained using 295-group DRAGON5 simplified
colorset calculations. All the information and libraries can be found on the official DRAGON5
distribution website [51] – more specifically, in the Donjon/data/fbr_core_proc directory.

The idea here is to run a test case that is as close as possible to a full-core calculation usually
run in the industry. These are usually so demanding that it would take days to run, if not
more than a month. The test case with 1.02 × 1012 unknowns run by Moustafa [91] in 45
minutes was actually a PWR benchmark with 26 energy groups, and linear anisotropy.

3D-FBR is a 33-energy-group benchmark with 547 hexagons on the radial plane, meant to
be run at a quartic order of anisotropy. Unfortunately, because of limits in the amount of
memory that was available per node, for such a big benchmark, we could only run at linear
anisotropy. Indeed, while this does not affect the number of unknowns to be solved for, it
greatly impacts the amount of memory used for storing the spherical harmonic moments of
the flux. We also had to reduce the recommended of total sublayers from 23 to 12.

The results are given in Tab. 6.5, where the number of unknowns, Nunk., is calculated using

Nunk. = Nhex. × 3×Nz ×Ng ×Ndir. × Λ3 , (6.4)

139

Figure 6.7 Time against number of processors obtained using WYVERN for the 3D-TAK4
benchmark presented in Chap. 4. Calculations run with S6 DG-3 no lozenge mesh refinement
and no acceleration. The plots on the right are the same as those on the left, except with a
logarithmic y scale. The first plot point is the series calculation, the next is parallelisation over
angles only and the subsequent ones represent parallelisation over angles and an increasing
number of macrocells along the z axis, in the order: 1, 2, 3, 6. The ‘perfect’ curves refer to
expected computation times in the absence of communication times.

Table 6.4 Summarised results obtained using WYVERN for the 3D-TAK4 benchmark pre-
sented in Chap. 4 with S6 DG-3 and RT-SPnSA with the recommended parameters from
Chap. 5, for two different lozenge mesh refinements. Note that the ‘series’ data points are
estimated values.

subm. Nmcel. Nproc. proc. SKBA+ang.
theo. ttheo. tmeas. SKBA+ang.

meas.
grid (s) (s)

1 series 1 1 - 78500 78500 -
ang. only 4 4 × 1 4 19600 29200 2.69

1 32 4 × 8 23.3 3370 3850 20.4
2 60 4 × 15 45.1 1740 2150 36.5
3 92 4 × 23 65.4 1200 1600 49.1
6 180 4 × 45 119 658 1130 69.5

2 series 1 1 - 314000 314000 -
ang. only 4 4 × 1 4 78500 117000 2.68

1 32 4 × 8 23.3 13500 13829 22.7
2 60 4 × 15 45.1 6970 7660 41.0
3 92 4 × 23 65.4 4800 5580 56.3
6 180 4 × 45 119 2630 3540 88.7

140

Figure 6.8 Time against number of processors obtained using WYVERN for the 3D-TAK4
benchmark presented in Chap. 4. Calculations run with S6 DG-3 and RT-SPnSA with
recommended values from Chap. 5. The plots on the right are the same as those on the left,
except with a logarithmic y scale. The first plot point is the series calculation, the next is
parallelisation over angles only and the subsequent ones represent parallelisation over angles
and an increasing number of macrocells along the z axis, in the order: 1, 2, 3, 6. The ‘perfect’
curves refer to expected computation times in the absence of communication times.

141

where Nhex., Nz and Ng are the number of planar hexagons, z-layers, and energy groups
respectively. This means that, for example, at an S10 DG-1 configuration without any lozenge
mesh refinement, this problem stands at 6.23× 108 unknowns.

Tab. 6.5 shows again that with increasing Λ, the measured speed-ups get increasingly closer
to the theoretical speed-ups. In this case however, the effect is more pronounced than for
the 3D-TAK2 benchmark. This is possibly due to the fact that the planar domain size is
bigger than previously seen and also the fact that there are less z-layers compared to the
3D-TAK4 benchmark, meaning that the macrocells are effectively smaller in this benchmark.
Hence, until there is enough arithmetic intensity (such as in DG-3), the measured speed-ups
are unfortunately even less than 50% of the theoretical ones.

For example, sequentially, the S10 DG-1 calculation was 52400 s with RT-SPnSA and esti-
mated at 102000 s without. With WYVERN and RT-SPnSA, using 154 cores, this ran in
just over 75 minutes, representing a speed-up of 11.6× over the accelerated sequential run –
which is significant, but very much under the expected speed-up (see Tab. 6.5).

That being said, running S2 DG-3 in series took 748000 s without the Synthetic Acceleration
(SA) and 374000 s with. This allowed us to estimate that for the accelerated sequential S10

DG-3 calculation, it would take nearly 65 days, and probably more than four months without
SA. Using WYVERN and RT-SPnSA, the same S10 DG-3 calculation took just over a day
using 154 cores. This is a speed-up of over sixty times on the accelerated sequential run.

6.6 Concluding Remarks

A preliminary framework for the parallelisation of the sweep in Cartesian and hexagonal
geometries was set up in the DRAGON5 code through a separate library named WYVERN.
This was done using a KBA-style (adapted in the case of hexagonal geometries) approach
but without the use of pipelining, such that the parallelisation was over both macrocells
and angles. The parallelisation over octants was also set up but not tested due to a lack of
resources. This was achieved by distributing processes over a 3D virtual process grid using
mostly the MPI_COMM_SPLIT function of MPI API. Together with the synthetic acceleration,
we were able to model a Fast Neutron Reactor (FNR) mock core with 4.99× 109 unknowns
(in one particular configuration) in just under 25 hours, using 154 cores – down from an
estimated unaccelerated sequential runtime of around four months.

142

Table 6.5 Accelerated sequential and parallelised results obtained using DRAGON5 and
WYVERN respectively for the 3D-FBR benchmark, with RT-SPnSA using the recommended
parameters from Chap. 5. Note that the data in italic are estimated values.

SN Λ Nunk. Nmcel. Nproc. proc. SKBA+ang.
theo. tmeas. SKBA+ang.

meas.
grid (s)

6 1 2.49× 108 series 1 1 - 19100 -
1 56 4×14 41.3 4740 4.03

2 8.42× 108 series 1 1 - 249600 -
1 56 4×14 41.3 16100 15.5

3 1.99× 109 series 1 1 - 2244000 -
1 56 4×14 41.3 96900 23.2
2 108 4×27 81.0 68700 32.7

10 1 6.23× 108 series 1 1 - 52400 -
1 154 11×14 114 4510 11.6

2 2.11× 109 series 1 1 - 624000 -
1 154 11×14 114 15600 40.0

3 4.99× 109 series 1 1 - 5610000 -
1 154 11×14 114 89500 62.6

Table 6.6 Description of the colour representation for each region in the 3D-FBR benchmark,
given in Fig. 6.9.

Region Description
Void
Internal fissile fuel assembly
External fertile fuel assembly
Internal fertile fuel assembly
COSU control rod
COSV control rod follower
ARRE shutdown rod
ARSV shutdown rod follower
REFS reflector
PLNA sodium plenum
VSXP expansion bellow

143

(a) Cut-through view at z = 150 cm. (b) Overall view with part removed.

(c) Cut-through side view 1: through black line.

(d) Cut-through side view 2: through blue line.

Figure 6.9 Domain of the 3D-FBR benchmark at various angles. Dimensions are in cm; side
of one hexagon is 10.104 cm. Vacuum boundary conditions are applied to the whole outer
edge of the domain. The initial computational mesh before subsequent refinement is shown
in all subfigures. Refer to Tab. 6.6 for a description of the materials. (A small mistake slid
through in the input geometry file for the presented results: it should have been the the light
green mix and not a void (light grey mix), around the top centre of the domain.)

144

CHAPTER 7 CONCLUSION

This chapter summarises the work done through this dissertation as well as the major
findings. Some possible avenues for continuing the research are also suggested.

7.1 Conclusion and Findings

This work was initially inspired by the results of Bay [15] who found that SPn solvers lacked
when it came to modelling Fast Neutron Reactors (FNRs) correctly, and that SN solvers,
while very precise and accurate, were around 100 × slower. From this result, we set out to
develop a parallel SN solver using discontinuous finite elements that would be able to bridge
this gap.

This goal required a few interlocking parts that had to be completed before it would be
achieved. We first set out to implement a Discontinuous Galerkin Finite Element Method
(DGFEM) solver in DRAGON5 and compared it with the High Order Diamond Difference
(HODD). While the DGFEM method is not new by any means, this is a new solver capability
in the code upon which new methods can be added.

Also, there was and still is a certain belief that DGFEM is just better. This is not what
we found. In the eigenvalue-problem benchmarks we investigated, we found that once fully
converged, both methods agree to a few pcm, taking about the same number of iterations
and computational time. Moreover, very often, HODD would yield a more accurate result at
a lower mesh refinement than DGFEM would. While it is true, as demonstrated by Schunert
[34], that DG is slightly better at dealing with highly anisotropic meshes or optically thick
regions, the differences are not, in our opinion, enough to discard HODD as a method.

The next rung on the ladder was adapting the solvers to hexagonal geometries. We outlined
the reasoning behind the choice to use a lozenge-based submeshing of the hexagon. The ease
of implementation has been more formally shown. We personally found that this had been
lacking in previous literature. The implementation entails some subtleties which we highlight
in this document. Furthermore, we took the opportunity to compare the two spatial discreti-
sation schemes again on this new geometry using the well-known Takeda benchmarks [16].
Both methods performed very well getting within a few pcms of the Monte-Carlo reference
value. It should be noted that a lot of new reactor and Gen-IV designs are hexagonal. Being
able to model them could allow us to carry out more advanced reactor studies.

At this point, we sought to use the well-established synthetic acceleration technique to ac-

145

celerate our computation. While this is usually based on a diffusion solver, having access to
an SPn solver allowed us to apply it as a synthetic acceleration and test parameters such as
the SPn order and the source anisotropy. While it was a novel study, we ultimately found
out that using SP1 with an isotropic source and applying the acceleration every two to four
transport iterations yielded the best results.

Moreover, this particular solver had been spatially discretised using Raviart-Thomas (RT)
finite elements. As this was the first application of this spatial discretisation to either HODD
or DGFEM, we presented a one-dimensional Fourier Analysis (FA) to investigate the con-
sistency of the discretisation schemes. While not unconditionally stable, we showed that it
accelerated our computations from about 60% and up to 80% in a lot of cases. This was in
large part thanks to a novel algorithm for dealing with reflective or albedo boundary condi-
tions as well as the implementation of a new flux correction method. In the latter, the zeroth
moment is applied as a scaled fraction to higher moments, allowing low-order (spatially) SPn

calculations to accelerate high order transport iterations.

Finally, using the Message Passing Interface (MPI) Application Programming Interface (API)
and a Koch-Baker-Alcouffe (KBA)-style method, the transport sweep was parallelised in the
SN solvers. This was done by creating a 3D virtual process grid distributing the processes
over octants, macrocells and angles. The KBA sweep was also investigated for hexagonal
geometries. While very similar to the Cartesian sweep, some differences were highlighted and
explained. This was implemented in a separate library called WYVERN that will hopefully
become part of the larger DRAGON5 code.

While the solvers are far from being optimised, gains of up to 80× could be observed on
3D hexagonal benchmarks. Coupled with the synthetic acceleration, WYVERN was able to
model a mock full Fast Breeder Reactor (FBR) core with about 4.99×109 unknowns in about
25 hours using 154 cores, down from an expected 65 days. In this first exploratory work,
the focus of implementation has been more on speed rather than efficiency. While this leads
to a somewhat uneven – and sometimes even rather poor – use of resources, the aim was to
provide a first step proof-of-concept.

7.2 Future Work

It is safe to say that there are many other avenues for exploration within this work. We had
hoped to investigate quite a few of them but could not, for lack of time.

The HODD and DGFEM solvers could be tested with the serependity family of polynomials
and investigate the difference with the Lagrange family currently implemented. This could

146

represented a substantial decrease in degrees of freedom (d.o.f.) and hence computation time.
Variable-order expansion for the polynomials in different dimensions or hierarchical bases
could also be experimented with.

However, the area with definitely the most untapped potential is the parallelism. As we
mentioned, the High Performance Computing (HPC) landscape has become incredibly diverse
and we have only explored a small space. To begin with, our current implementation could
probably benefit a lot from a hybrid MPI + OpenMP model. Indeed, in hindsight, taking
advantage of shared memory parallelism on nodes could have helped with runtimes but mostly
with the issue of available memory on nodes when trying to run huge real-world simulations.

Furthermore, the way the parallelisation is currently programmed is quite rigid and decidedly
synchronous. This results in very limited efficiency that levels off quickly. Reviewing the
parallelisation strategy from a bottom-up approach similar to the work of Moustafa [91] would
yield a lot of performance gains. This would probably entail a vectorised distributed task-
based approach. However, if the code is properly vectorised and the algorithm is significantly
rethought (using for example, domain decomposition approaches), the sheer computing power
of Graphic Processing Units (GPUs) could be harnessed as well.

147

REFERENCES

[1] World Nuclear Association, Outline History of Nuclear Energy, 2020. [Online]. Avail-
able: https://world-nuclear.org/information-library/current-and-future-
generation/outline-history-of-nuclear-energy.aspx (visited on 07/19/2022).

[2] W. M. Stacey, Nuclear Reactor Physics, 2nd ed. Wiley-VCH, 2007.

[3] World Nuclear Association, Plans For New Reactors Worldwide, 2022. [Online]. Avail-
able: https://www.world- nuclear.org/information- library/current- and-
future-generation/plans-for-new-reactors-worldwide.aspx.

[4] The Natrium technology: Providing reliable, carbon-free energy to complement wind and
solar, 2021. [Online]. Available: https://www.ans.org/news/article-2782/the-
natrium-technology-providing-reliable-carbonfree-energy-to-complement-
wind-and-solar/ (visited on 08/01/2022).

[5] Canadian Nuclear Safety Commission (CNSC), Phase 1 Pre-Licensing Vendor De-
sign Review Executive Summary: ARC Nuclear Canada Inc. 2022. [Online]. Available:
https://nuclearsafety.gc.ca/eng/reactors/power-plants/pre-licensing-
vendor-design-review/arc-nuclear-canada-executive-summary.cfm (visited on
04/10/2022).

[6] Financial Post, ARC Canada Closes $30 Million Series A Financing, 2022. [Online].
Available: https://financialpost.com/pmn/press- releases- pmn/business-
wire-news-releases-pmn/arc-canada-closes-30-million-series-a-financing
(visited on 04/19/2022).

[7] World Nuclear News, Minister foresees 2022 completion date for Indian FBR, 2021.
[Online]. Available: https : / / world - nuclear - news . org / Articles / Minister -
foresees-2022-completion-date-for-Indian (visited on 01/05/2022).

[8] World Nuclear News, Chinese fast reactor completes full-power test run, 2014. [Online].
Available: http://www.world- nuclear- news.org/NN- Chinese- fast- reactor-
completes-full-power-test-run-1912144.html (visited on 02/28/2017).

[9] A. l. Izhutov et al., “Prolongation of the BOR-60 reactor operation”, Nuclear Engineer-
ing and Technology, vol. 47, no. 3, pp. 253–259, 2015, issn: 17385733. doi: 10.1016/
j.net.2015.03.002.

https://world-nuclear.org/information-library/current-and-future-generation/outline-history-of-nuclear-energy.aspx
https://world-nuclear.org/information-library/current-and-future-generation/outline-history-of-nuclear-energy.aspx
https://www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx
https://www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx
https://www.ans.org/news/article-2782/the-natrium-technology-providing-reliable-carbonfree-energy-to-complement-wind-and-solar/
https://www.ans.org/news/article-2782/the-natrium-technology-providing-reliable-carbonfree-energy-to-complement-wind-and-solar/
https://www.ans.org/news/article-2782/the-natrium-technology-providing-reliable-carbonfree-energy-to-complement-wind-and-solar/
https://nuclearsafety.gc.ca/eng/reactors/power-plants/pre-licensing-vendor-design-review/arc-nuclear-canada-executive-summary.cfm
https://nuclearsafety.gc.ca/eng/reactors/power-plants/pre-licensing-vendor-design-review/arc-nuclear-canada-executive-summary.cfm
https://financialpost.com/pmn/press-releases-pmn/business-wire-news-releases-pmn/arc-canada-closes-30-million-series-a-financing
https://financialpost.com/pmn/press-releases-pmn/business-wire-news-releases-pmn/arc-canada-closes-30-million-series-a-financing
https://world-nuclear-news.org/Articles/Minister-foresees-2022-completion-date-for-Indian
https://world-nuclear-news.org/Articles/Minister-foresees-2022-completion-date-for-Indian
http://www.world-nuclear-news.org/NN-Chinese-fast-reactor-completes-full-power-test-run-1912144.html
http://www.world-nuclear-news.org/NN-Chinese-fast-reactor-completes-full-power-test-run-1912144.html
https://doi.org/10.1016/j.net.2015.03.002
https://doi.org/10.1016/j.net.2015.03.002

148

[10] World Nuclear Association, Nuclear Power in Russia, 2021. [Online]. Available: https:
//world-nuclear.org/information-library/country-profiles/countries-o-
s/russia-nuclear-power.aspx (visited on 07/10/2022).

[11] Welcome to Generation IV International forum, 2020. [Online]. Available: https://
www.gen-4.org/gif/.

[12] World Nuclear Association, Generation IV Nuclear Reactors, 2020. [Online]. Avail-
able: https://world-nuclear.org/information-library/nuclear-fuel-cycle/
nuclear- power- reactors/generation- iv- nuclear- reactors.aspx (visited on
07/10/2022).

[13] T. C. Hales, “The Honeycomb Conjecture”, Discrete and Computational Geometry,
vol. 25, no. 1, pp. 1–22, 2001, issn: 01795376. doi: 10.1007/s004540010071. eprint:
9906042 (math).

[14] “Bioinspired engineering of honeycomb structure - Using nature to inspire human in-
novation”, Progress in Materials Science, vol. 74, pp. 332–400, 2015, issn: 00796425.

[15] C. Bay, “Étude des Performances de Solveurs Déterministes sur un Coeur Rapide à
Caloporteur Sodium”, M. Sc. A. report, Polytechnique Montréal, 2013.

[16] T. Takeda and H. Ikeda, “3-D neutron transport benchmarks”, Journal of Nuclear
Science and Technology, vol. 28, no. 7, pp. 656–669, 1991, issn: 00223131. doi: 10.
1080/18811248.1991.9731408.

[17] CEA, “Les réacteurs à neutrons rapides de 4ème génération à caloporteur sodium - Le
démonstrateur technologique ASTRID”, Direction de l’énergie nucléaire, Dec. 2012.

[18] G. Marleau, A. Hébert, and R. Robert, “New Computational Methods Used in the Lat-
tice Code Dragon”, in Proc. Int. Topl. Mtg. on Advances in Reactor Physics, Charleston,
USA: American Nuclear Society, 1992.

[19] J. M. Ruggieri et al., “ERANOS 2.1: International code system for GEN IV fast reac-
tor analysis”, Proceedings of the 2006 International Congress on Advances in Nuclear
Power Plants, ICAPP’06, no. June 2015, pp. 2–10, 2006.

[20] J.-Y. Moller and J.-J. Lautard, “MINARET, A Deterministic Neutron Transport Solver
for Nuclear Core Calculations”, in International Conference on Mathematics and Com-
putational Methods Applied to Nuclear Science and Engineering (M&C), Rio de Janeiro,
RJ, Brazil: American Nuclear Society, May 2011, isbn: 978-85-63688-00-2.

[21] A.-M. Baudron and J.-J. Lautard, “MINOS: a simplified pn solver for core calculation”,
Nuclear science and engineering, vol. 155, no. 2, pp. 250–263, 2007, issn: 00295639. doi:
10.13182/NSE07-A2660.

https://world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear-power.aspx
https://world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear-power.aspx
https://world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear-power.aspx
https://www.gen-4.org/gif/
https://www.gen-4.org/gif/
https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/generation-iv-nuclear-reactors.aspx
https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/generation-iv-nuclear-reactors.aspx
https://doi.org/10.1007/s004540010071
9906042
https://doi.org/10.1080/18811248.1991.9731408
https://doi.org/10.1080/18811248.1991.9731408
https://doi.org/10.13182/NSE07-A2660

149

[22] A. Hébert, Applied Reactor Physics, 3rd ed., J. Yelon, Ed. Montréal: Presses Interna-
tionales Polytechnique, 2020, isbn: 9782553017353.

[23] E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport. John
Wiley & Sons, 1984, isbn: 0-471-09245-2.

[24] J. J. Duderstadt and W. R. Martin, Transport Theory. New York, Chichester, Brisbane,
London: John Wiley & Sons, 1979.

[25] C. Mark, “The Spherical Harmonics Methods I (General Development of the Theory)”,
Chalk River National Laboratory, Chalk River, Ontario, Tech. Rep. 491, Feb. 1957.

[26] C. Mark, “The Spherical Harmonics Methods, II (Application to Problems with Plane &
Spherical Symmetry)”, Chalk River National Laboratory, Chalk River, Ontario, Tech.
Rep. 490 (Reprint), 1958.

[27] E. M. Gelbard, “Application of Spherical Harmonics Method to Reactor Problems”,
Westinghouse Electric Corp. Bettis Atomic Power Lab., Pittsburgh, Pennsylvania,
USA, Tech. Rep., 1960.

[28] G. C. Pomraning, “Asymptotic and variational derivations of the simplified PN equa-
tions”, Annals of Nuclear Energy, vol. 20, no. 9, pp. 623–637, 1993, issn: 03064549.
doi: 10.1016/0306-4549(93)90030-S.

[29] S. Chandrasekhar, Radiative Transfer. Dover Publications Inc., 1960, p. 393, isbn:
0-486-60590-6.

[30] B. G. Carlson, “Solution of the Transport Equation by Sn Approximations”, Los Alamos
National Laboratory, Tech. Rep. 1599, Oct. 1953.

[31] B. G. Carlson and C. E. Lee, “Mechanical Quadrature and the Transport Equation”,
Los Alamos National Laboratory, Tech. Rep. 2573, Aug. 1961.

[32] S. Loubiere et al., “APOLLO2, Twelve Years Later”, in International Conference on
Mathematical and Computation (M&C), American Nuclear Society, 1999.

[33] G. Marleau, A. Hébert, and R. Roy, “A User Guide for DRAGON Version5”, Polytech-
nique Montreal, Tech. Rep., 2022.

[34] S. Schunert, “Development of a Quantitative Decision Metric for Selecting the Most
Suitable Discretization Method for SN Transport Problems”, Ph.D. dissertation, North
Carolina State University, 2013, p. 93.

[35] A. Hébert, “High order diamond differencing schemes”, Annals of Nuclear Energy,
vol. 33, no. 17-18, pp. 1479–1488, 2006, issn: 03064549. doi: 10.1016/j.anucene.
2006.10.003.

https://doi.org/10.1016/0306-4549(93)90030-S
https://doi.org/10.1016/j.anucene.2006.10.003
https://doi.org/10.1016/j.anucene.2006.10.003

150

[36] N. Martin and A. Hébert, “A three-dimensional SN high-order diamond differencing
discretization with a consistent acceleration scheme”, Annals of Nuclear Energy, vol. 36,
no. 11-12, pp. 1787–1796, 2009, issn: 03064549. doi: 10.1016/j.anucene.2009.08.
014.

[37] R. S. Jeffers, “Spatial Goal-Based Error Estimation and Adaptive Mesh Refinement
(AMR) for Diamond Difference Discrete Ordinate (DD-SN) Methods”, Ph.D. disserta-
tion, Imperial College London, 2017.

[38] N. K. Madsen, “Convergence of singular difference approximations for the discrete
ordinate equations in x - y geometry”, Mathematics of Computation, vol. 26, no. 117,
pp. 45–50, 1972.

[39] E. W. Larsen, “Spatial Convergence Properties of the Diamond Difference Method in
x,y Geometry”, Nuclear Science and Engineering, vol. 80, no. 4, pp. 710–713, 1982,
issn: 0029-5639. doi: 10.13182/NSE82-a18980.

[40] J. I. Duo and Y. Y. Azmy, “Error Comparison of Diamond Difference, Nodal, and
Characteristic Methods for Solving Multidimensional Transport Problems with the
Discrete Ordinates Approximation”, Nuclear Science and Engineering, vol. 156, no. 2,
pp. 139–153, 2007, issn: 00295639. doi: 10.13182/NSE05-91.

[41] F. Brezzi, L. D. Marini, and E. Süli, “Discontinuous Galerkin Methods for First-Order
Hyperbolic Problems”, Mathematical Models and Methods in Applied Sciences, vol. 14,
no. 12, pp. 1893–1903, 2004, issn: 0218-2025. doi: 10.1142/S0218202504003866.

[42] Y. Nakasone, S. Yoshimoto, and T. A. Stolarski, “Basics of Finite-Element Method”, in
Engineering Analysis with ANSYS Software, 1st ed., Elsevier Butterworth-Heinemann,
2006, ch. 1, pp. 1–36.

[43] W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport equa-
tion”, Los Alamos Scientific Laboratory, Tech. Rep. LA-UR-73-479, 1973.

[44] Y. Wang and J. C. Ragusa, “A high-order discontinuous Galerkin method for the SN
transport equations on 2D unstructured triangular meshes”, Annals of Nuclear Energy,
vol. 36, no. 7, pp. 931–939, 2009, issn: 03064549. doi: 10.1016/j.anucene.2009.03.
002.

[45] Y. Wang and J. C. Ragusa, “On the Convergence of DGFEM Applied to the Discrete
Ordinates Transport Equation for Structured and Unstructured Triangular Meshes”,
Nuclear Science and Engineering, vol. 163, no. 1, pp. 56–72, 2009, issn: 00295639.

https://doi.org/10.1016/j.anucene.2009.08.014
https://doi.org/10.1016/j.anucene.2009.08.014
https://doi.org/10.13182/NSE82-a18980
https://doi.org/10.13182/NSE05-91
https://doi.org/10.1142/S0218202504003866
https://doi.org/10.1016/j.anucene.2009.03.002
https://doi.org/10.1016/j.anucene.2009.03.002

151

[46] S. Schunert, Y. Y. Azmy, D. Fournier, and R. Le Tellier, “Comparison of the Accuracy
of Various Spatial Discretization Schemes of the Discrete Ordinates Equations in 2D
Cartesian Geometry”, in International Conference on Mathematics and Computational
Methods Applied to Nuclear Science & Engineering Science (M&C), ANS, Ed., Rio de
Janeiro, RJ, Brazil, May 2011, isbn: 9788563688002.

[47] R. Le Tellier, “Interfaces en physique des réacteurs nucléaires - Contribution à la mod-
élisation et au développement de méthodes numeriques associées en neutronique et
physique du corium”, Thèse d’habilitation à diriger des recherches, Université Greno-
ble Alpes, 2019. doi: 10.13140/RG.2.2.27006.84801.

[48] J. P. Hennart and E. del Valle, “A generalized nodal finite element formalism for discrete
ordinates equations in slab geometry part I: Theory in the continuous moment case”,
Transport Theory and Statistical Physics, vol. 24, no. 4-5, pp. 449–478, 1995, issn:
15322424. doi: 10.1080/00411459508206013.

[49] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis
and Fundamentals, 6th ed. Elsevier, 2005. doi: 10.1016/b978- 1- 85617- 633- 0.
00020-4.

[50] A. A. Calloo and A. Hébert, “Development and Evaluation of a Discontinuous Galerkin
Method in the DRAGON5 Code”, in 38th Annual Conference of the Canadian Nu-
clear Society and 42nd Annual CNS/CNA Student Conference, Saskatoon, SK, Canada:
Canadian Nuclear Society, Jun. 2018.

[51] A. Hébert, Dragon Version5 Download and Information Page, 2022. [Online]. Available:
http://merlin.polymtl.ca/version5.htm (visited on 07/01/2022).

[52] A. Hébert, “High-Order Linear Discontinuous and Diamond Differencing Schemes Along
Cyclic Characteristics”, Nuclear Science and Engineering, vol. 184, 2016. doi: http:
//dx.doi.org/10.13182/NSE16-82.

[53] A. Canbakan and A. Hébert, “Accuracy of a 2-level scheme based on a subgroup method
for pressurized water reactor fuel assembly models”, Annals of Nuclear Energy, vol. 81,
pp. 164–173, 2015, issn: 18732100. doi: 10.1016/j.anucene.2015.03.034.

[54] U. Ayachit, The ParaView Guide: A Parallel Visualization Application. Clifton Park,
NY, USA: Kitware, Inc., 2015, isbn: 1930934300.

[55] M. Yamasaki, T. Takeda, Y. Tahara, and M. Nakano, “Development of Transport Code
for Hexagonal Geometry”, Journal of Nuclear Science and Technology, vol. 29, no. 12,
pp. 1143–1151, 1992, issn: 0022-3131. doi: 10.1080/18811248.1992.9731650.

https://doi.org/10.13140/RG.2.2.27006.84801
https://doi.org/10.1080/00411459508206013
https://doi.org/10.1016/b978-1-85617-633-0.00020-4
https://doi.org/10.1016/b978-1-85617-633-0.00020-4
http://merlin.polymtl.ca/version5.htm
https://doi.org/http://dx.doi.org/10.13182/NSE16-82
https://doi.org/http://dx.doi.org/10.13182/NSE16-82
https://doi.org/10.1016/j.anucene.2015.03.034
https://doi.org/10.1080/18811248.1992.9731650

152

[56] D. Labeurthre, A. Calloo, and R. Le Tellier, “Extending Gout’s Wachspress Finite
Elements on Regular Hexagons to Higher Orders”, in International Conference on
Mathematical and Computational Methods Applied to Nuclear Science and Engineering
(M&C), Raleigh, North Carolina: American Nuclear Society, 2021.

[57] Y. Wang, “Adaptive mesh refinement solution techniques for the multigroup SN trans-
port equation using a high-order discontinuous finite element methods”, Ph.D. disser-
tation, Texas A&M University, 2009.

[58] D. Schneider, “Éléments finis mixtes duaux pour la résolution numérique de l’équation
de la diffusion neutronique en géométrie hexagonale”, Ph.D. dissertation, University of
Paris VI, 2000.

[59] H. A. Schwarz, “Ueber einige Abbildungsaufgaben.”, 1869.

[60] E. B. Christoffel, “Sul problema delle temperature stazionarie e la rappresentazione
di una data superficie”, Annali di Matematica Pura ed Applicata (1867-1897), vol. 1,
no. 1, pp. 89–103, 1867.

[61] R. Le Tellier, C. Suteau, D. Fournier, and J. M. Ruggieri, “High-order discrete ordinate
transport in hexagonal geometry: A new capability in ERANOS”, Il Nuovo Cimento
C, vol. 33, no. 1, pp. 121–128, 2010. doi: 10.1393/ncc/i2010-10565-5.

[62] E. del Valle and E. H. Mund, “RTk/SN Solutions of the 2D Multigroup Transport
Equations in Hexagonal Geometry”, in Physics of Reactors (PHYSOR), Seoul, Oct.
2002, pp. 1–10.

[63] J. Hennart, E. Mund, and E. Del Valle, “A composite nodal finite element for hexagons”,
Nuclear Science and Engineering, vol. 127, no. 2, 1997, issn: 00295639. doi: 10.13182/
NSE97-A28593.

[64] A. Ern and J.-L. Guermond, Finite Elements I: Approximation and Interpolation.
Springer, 2021, isbn: 9783030563417. doi: 10.1007/978-3-030-56341-7.

[65] A. Hébert, “A Raviart-Thomas-Schneider implementation of the simplified Pn method
in 3-D hexagonal geometry”, in International Conference on the Physics of Reactors
(PHYSOR), American Nuclear Society, 2010, pp. 163–181, isbn: 9781617820014.

[66] M. Bando, T. Yamamoto, Y. Saito, and T. Takeda, “Three-Dimensional Transport
Calculation Method for Eigenvalue Problems Using Diffusion Synthetic Acceleration”,
Journal of Nuclear Science and Technology, vol. 22, no. 10, pp. 841–850, 1985, issn:
00223131. doi: 10.1080/18811248.1985.9735733.

[67] M. L. Adams and E. W. Larsen, “Fast Iterative Methods for Discrete-Ordinates Particle
Transport Calculations”, Progress in Nuclear Energy, vol. 40, no. I, pp. 3–159, 2002.

https://doi.org/10.1393/ncc/i2010-10565-5
https://doi.org/10.13182/NSE97-A28593
https://doi.org/10.13182/NSE97-A28593
https://doi.org/10.1007/978-3-030-56341-7
https://doi.org/10.1080/18811248.1985.9735733

153

[68] W. Ford, “The Advancement of Stable, Efficient and Parallel Acceleration Methods for
the Neutron Transport Equation”, Ph.D. dissertation, Université Paris-Saclay, 2019.

[69] F. Févotte, “Piecewise Diffusion Synthetic Acceleration scheme for neutron transport
simulations in optically thick systems”, Annals of Nuclear Energy, vol. 118, pp. 71–80,
2018, issn: 18732100. doi: 10.1016/j.anucene.2018.03.044.

[70] S. Schunert et al., “A flexible nonlinear diffusion acceleration method for the SN trans-
port equations discretized with discontinuous finite elements”, Journal of Computa-
tional Physics, vol. 338, pp. 107–136, 2017, issn: 10902716. doi: 10.1016/j.jcp.
2017.01.070.

[71] J. S. Warsa, T. A. Wareing, and J. E. Morel, “Fully Consistent Diffusion Synthetic
Acceleration of Linear Discontinuous SN Transport Discretizations on Unstructured
Tetrahedral Meshes”, Nuclear Science and Engineering, vol. 141, pp. 236–251, 2002,
issn: 00295639.

[72] W. H. Reed, “The Effectiveness of Acceleration Techniques for Iterative Methods in
Transport Theory”, Nuclear Science and Engineering, vol. 45, no. 3, pp. 245–254, 1971,
issn: 0029-5639. doi: 10.13182/NSE71-a19077.

[73] R. E. Alcouffe, “Diffusion Synthetic Acceleration Methods for the Diamond-Differenced
Discrete-Ordinates Equations.”, Nuclear Science and Engineering, vol. 64, no. 2, pp. 344–
355, 1977, issn: 00295639. doi: 10.13182/NSE77-1.

[74] H. Khalil, “Effectiveness of a Consistently Formulated Diffusion-Synthetic Acceleration
Differencing Approach”, Nuclear Science and Engineering, vol. 98, no. 3, pp. 226–243,
1988, issn: 00295639. doi: 10.13182/NSE88-A22324.

[75] M. L. Adams and W. R. Martin, “Diffusion Synthetic Acceleration of Discontinuous Fi-
nite Element Transport Iterations”, Nuclear Science and Engineering, vol. 111, pp. 145–
167, 1992, issn: 00295639.

[76] A. Hébert, “Mixed-Dual Implementations of the Simplified Pn Method”, Annals of
Nuclear Energy, vol. 37, no. 4, pp. 498–511, 2010, issn: 03064549. doi: 10.1016/j.
anucene.2010.01.006.

[77] A. Hébert, “The Search for Superconvergence in Spherical Harmonics Approximations”,
Nuclear Science and Engineering, vol. 154, no. 2, pp. 134–173, 2006, issn: 00295639.
doi: 10.13182/NSE06-A2623.

https://doi.org/10.1016/j.anucene.2018.03.044
https://doi.org/10.1016/j.jcp.2017.01.070
https://doi.org/10.1016/j.jcp.2017.01.070
https://doi.org/10.13182/NSE71-a19077
https://doi.org/10.13182/NSE77-1
https://doi.org/10.13182/NSE88-A22324
https://doi.org/10.1016/j.anucene.2010.01.006
https://doi.org/10.1016/j.anucene.2010.01.006
https://doi.org/10.13182/NSE06-A2623

154

[78] M. L. Adams, “New nonlinear methods for linear transport calculations”, in Joint in-
ternational conference on mathematical methods and supercomputing in nuclear appli-
cations (M&C & SNA), Karlsruhe, Apr. 1993, pp. 683–694. [Online]. Available: http:
//inis.iaea.org/Search/search.aspx?orig_q=RN:25062078.

[79] M. J. Flynn, “Some computer organizations and their effectiveness”, IEEE Transactions
on Computers, vol. C-21, no. 9, pp. 948–960, 1972, issn: 00189340. doi: 10.1109/TC.
1972.5009071.

[80] M. Pharr and W. R. Mark, “ispc: A SPMD compiler for high-performance CPU pro-
gramming”, in Innovative Parallel Computing (InPar), San Jose: IEEE, May 2012,
isbn: 9781467326322. doi: 10.1109/InPar.2012.6339601.

[81] K. R. Koch, R. S. Baker, and R. E. Alcouffe, “A Parallel Algorithm for 3D SN Transport
Sweeps”, Los Alamos National Laboratory, Tech. Rep., 1992.

[82] K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the first-order form of the
3-D discrete ordinates equation on a massively parallel processor”, Transactions of the
American Nuclear Society, vol. 65, no. 108, pp. 198–199, 1992.

[83] R. S. Baker and K. R. Koch, “An Sn algorithm for the massively parallel CM-200
computer”, Nuclear Science and Engineering, vol. 128, no. 3, pp. 312–320, 1998, issn:
00295639. doi: 10.13182/NSE98-1.

[84] Digital Research Alliance of Canada, Scalability, 2019. [Online]. Available: https://
docs.alliancecan.ca/wiki/Scalability/en (visited on 07/08/2022).

[85] S. D. Pautz, “An Algorithm for Parallel SN Sweeps on Unstructured Meshes”, Los
Alamos National Laboratory, Tech. Rep., 2001.

[86] G. G. Davidson, T. M. Evans, J. J. Jarrell, S. P. Hamilton, T. M. Pandya, and
R. N. Slaybaugh, “Massively parallel, three-dimensional transport solutions for the
k-eigenvalue problem”, Nuclear Science and Engineering, vol. 177, no. 2, pp. 111–125,
2014, issn: 00295639. doi: 10.13182/NSE12-101.

[87] M. P. Adams et al., “Provably Optimal Parallel Transport Sweeps on Regular Grids”,
in International Conference on Mathematics and Computational Methods Applied to
Nuclear Science & Engineering (M&C), Sun Valley, Idaho, USA: American Nuclear
Society, 2013.

[88] M. P. Adams et al., “Provably optimal parallel transport sweeps on semi-structured
grids”, Journal of Computational Physics, vol. 407, p. 109 234, 2020, issn: 10902716.
doi: 10.1016/j.jcp.2020.109234.

http://inis.iaea.org/Search/search.aspx?orig_q=RN:25062078
http://inis.iaea.org/Search/search.aspx?orig_q=RN:25062078
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.13182/NSE98-1
https://docs.alliancecan.ca/wiki/Scalability/en
https://docs.alliancecan.ca/wiki/Scalability/en
https://doi.org/10.13182/NSE12-101
https://doi.org/10.1016/j.jcp.2020.109234

155

[89] G. Tanase et al., “The STAPL Parallel Container Framework”, in ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2011, isbn: 9781450301190.

[90] S. Moustafa, I. Dutka-Malen, L. Plagne, A. Ponçot, and P. Ramet, “Shared Memory
Parallelism for 3D Cartesian Discrete Ordinates Solver”, in Joint International Con-
ference on Supercomputing in Nuclear Applications and Monte Carlo (SNA + MC),
Paris, France, Oct. 2013.

[91] S. Moustafa, “Massively Parallel Cartesian Discrete Ordinates Method for Neutron
Transport Simulation”, Ph.D. dissertation, Université de Bordeaux, 2015.

[92] S. Moustafa, M. Faverge, L. Plagne, and P. Ramet, “3D Cartesian Transport Sweep
for Massively Parallel Architectures with PaRSEC”, Proceedings - 2015 IEEE 29th
International Parallel and Distributed Processing Symposium, IPDPS 2015, pp. 581–
590, 2015. doi: 10.1109/IPDPS.2015.75.

[93] S. Moustafa, I. Dutka-Malen, L. Plagne, A. Ponçot, and P. Ramet, “Shared mem-
ory parallelism for 3D Cartesian discrete ordinates solver”, Annals of Nuclear Energy,
vol. 82, pp. 179–187, 2015, issn: 18732100. doi: 10.1016/j.anucene.2014.08.034.

[94] James Reingers, Intel Threading Building Blocks, 1st ed. Sebastopol: O’Reilly & Asso-
ciates, Inc., 2007. doi: 10.1535/itj.1201.03.

[95] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures”, Concurrency and
Computation: Practice and Experience, vol. 23, pp. 187–198, 2011, issn: 15320634. doi:
10.1002/cpe.

[96] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra,
“DAGuE: A generic distributed DAG engine for High Performance Computing”, Par-
allel Computing, vol. 38, no. 1-2, pp. 37–51, 2012, issn: 01678191. doi: 10.1016/j.
parco.2011.10.003.

https://doi.org/10.1109/IPDPS.2015.75
https://doi.org/10.1016/j.anucene.2014.08.034
https://doi.org/10.1535/itj.1201.03
https://doi.org/10.1002/cpe
https://doi.org/10.1016/j.parco.2011.10.003
https://doi.org/10.1016/j.parco.2011.10.003

156

APPENDIX A MATLAB SCRIPTS FOR GENERATING DGFEM
EQUATIONS

(Note: all scripts make about 2000 lines especially the parts for formatting into DRAGON5-
friendly Fortran code. For this reason, we only reproduce part here. The rest will be hosted
on the DRAGON5 Archives webpage [51].)

1 % %%
2 %%% SET THE OPTIONS IN THE FIRST SECTION (HERE) %%%
3 % %%
4

5 clc ;
6 clear all ; close all ; format loose % compact
7 format short %long
8

9 dim = 2;
10 order = 1;
11 len_ret = 50 ;
12

13 % Specify if using Lagrange (lag = true) or Legendre (lag = false)
14 % polynomials .
15 lag = false ;
16

17 % If using Lagrange polynomials , convert to Legendre basis (true) or not
18 % (false) .
19 conv = false ;
20 % if lag; conv = true ; end
21

22 hodd = false ;
23

24 syms MU ETA XI SIG
25

26 %% Set cases depending on dimension and build Change -Of -Base matrices if
27 % needed
28

29 if dim == 1 ;
30 cases = {’G’; ’L’} ;
31 elseif dim == 2 ;
32 cases = {’GG’; ’LG’; ’GL’; ’LL’};
33 elseif dim == 3 ;
34 cases = {’GGG ’; ’LGG ’; ’GLG ’; ’LLG ’; ’GGL ’; ’LGL ’; ’GLL ’; ’LLL ’};

157

35 else
36 error(’main: cannot process this dimension . Check input.’)
37 end
38

39 if lag
40 % Get Change -Of -Basis matrices for DG and DD to Standard
41 S_DG = getCOBmatrix (dim ,2, order) ;
42 S_DD = getCOBmatrix (dim ,1, order) ;
43

44 % Get Change -Of -Basis matrices from DG to DD , and vice -versa
45 DD_DG = sym(inv(S_DD)*S_DG) ;
46 DG_DD = sym(inv(S_DG)*S_DD) ;
47 end
48

49 %% HODD
50

51 if hodd
52 if dim ==1
53 [mat_terms , res_q , jump_q] = get1DmatDD (order ,cases) ;
54 elseif dim ==2
55 [mat_terms , res_q , jump_q] = get2DmatDD (dim ,order) ;
56 elseif dim ==3
57 [mat_terms , res_q , jump_q] = get3DmatDD (dim ,order) ;
58 end
59 end
60

61

62 %% Get DG local matrix , source vector , and jump terms vector (for each
case

63 % e.g. GG , LG , GL , LL)
64

65 if ~hodd
66 if dim ==1
67 [mat_terms , res_q , jump_q] = get1Dmatrices (lag ,order ,cases) ;
68 elseif dim ==2
69 [mat_terms , res_q , jump_q] = get2Dmatrices (lag ,dim ,order) ;
70 elseif dim ==3
71 [mat_terms , res_q , jump_q] = get3Dmatrices (lag ,dim ,order) ;
72 end
73 end
74

75

76 %% USEFUL FOR "DG LAGRANGE EXPRESSED IN LEGENDRE " ONLY (? - TBC).
77 % Transform DG matrices and vectors to DD matrices and vectors

158

78

79 if dim == 1;
80 for i_cases =1: length (cases)
81 if lag && conv
82 new_mat (:,:, i_cases) = simplify (DD_DG *(mat_terms (:,:, i_cases)*...
83 DG_DD)) ;
84 new_q (:,1, i_cases) = simplify (DD_DG*res_q (:,1, i_cases)) ;
85 new_j (:,1, i_cases) = collect (simplify ...
86 (DD_DG* jump_q (:,1, i_cases)),MU) ;
87 else
88 new_mat (:,:, i_cases) = mat_terms (:,:, i_cases) ;
89 new_q (:,1, i_cases) = res_q (:,1, i_cases) ;
90 new_j (:,1, i_cases) = jump_q (:,1, i_cases) ;
91 end
92 end
93 else
94 if lag && conv
95 new_mat = simplify (DD_DG *(mat_terms *DG_DD)) ;
96 new_q = simplify (DD_DG*res_q) ;
97 for i_cases =1: length (cases)
98 new_j (:, i_cases) = collect (simplify (DD_DG* jump_q (:, i_cases)) ,...
99 [MU ETA XI]) ;

100 end
101 else
102 new_mat = mat_terms ;
103 new_q = res_q;
104 new_j = jump_q ;
105 end
106 end

159

1 function [mat_terms , result_q , jump_q] = ...
2 get2Dmatrices (lag ,dim ,order)
3

4 % %%%%%%%% IMAGE SHOWING POSITIONS OF VARIABLES , REF. DISCONTINUITY
%%%%%%%%

5 % ooh oog
6 % +------------------------+
7 % ooa | iic iid | oof
8 % | |
9 % | |

10 % | |
11 % | |
12 % | |
13 % | |
14 % | |
15 % | |
16 % | |
17 % | |
18 % oob | iia iib | ooe
19 % +------------------------+
20 % ooc ood
21 %

%%

22

23 syms MU ETA SIG QQQ
24 syms ABSMU ABSETA
25 if lag
26 syms ooa oob ooc ood ooe oof oog ooh ooi ooj ook ool oom oon ooo oop
27 syms iia iib iic iid iie iif iig iih iii iij iik iil iim iin iio iip
28 varDG = [iia iib iic iid iie iif iig iih iii iij iik iil iim iin iio

iip] ;
29 else
30 syms PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 P10 P11 P12 P13 P14 P15

P16
31 varDG = [PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 P10 P11 P12 P13 P14 P15

P16] ;
32 end
33 alpha = [1 2 3 4]; beta = [1 2 3 4];
34 cases = {’GG’; ’LG’; ’GL’; ’LL’};
35

36

37 %%
38

160

39 count_m = 1;
40 % mat_vjump = sym(zeros ((order +1) ^2,(order +1) ^2, length (cases)));
41 for j=1:(order +1)
42 for i=1:(order +1)
43 X = [alpha(i),beta(j)];
44 disp(X);
45

46 for k=1: length (cases)
47 curCase =char(cases(k));
48 switch curCase
49 case ’GG’;
50 jump = getJumpVal (order , alpha(i), beta(j), 1, curCase);
51 case ’LG’;
52 jump = getJumpVal (order , alpha(i), beta(j), 1, curCase);
53 case ’GL’;
54 jump = getJumpVal (order , alpha(i), beta(j), 1, curCase);
55 case ’LL’;
56 jump = getJumpVal (order , alpha(i), beta(j), 1, curCase);
57 end
58 % disp(jump)
59

60 if lag
61 [term_J_MU , term_J_ETA , term_S_MU , term_S_ETA , term_SIGMA]...
62 = get2DTerms (dim ,order ,alpha(i),beta(j)) ;
63 else
64 [term_J_MU , term_J_ETA , term_S_MU , term_S_ETA , term_SIGMA]...
65 = get2DLeg (dim ,order ,alpha(i),beta(j),curCase) ;
66 jump (1:2) = 1 ;
67 end
68

69 result (i,j,k) = collect (...
70 MU * term_J_MU *jump (1) + ...
71 ETA * term_J_ETA *jump (2) + ...
72 MU * term_S_MU + ...
73 ETA * term_S_ETA + ...
74 SIG*term_SIGMA , varDG) ;
75 % ooa oob ooc ood ooe oof oog ooh]) ;
76 % disp(result (i,j,k))
77 result_q (k,(i -1) +(j -1) *(order +1) +1) = collect (QQQ*term_SIGMA , ...
78 varDG) ;
79

80 end
81

82 % %%%%%%%%%%%%%%%%%%%%%%%%% GREP COEFFS .

161

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83 for i_cases = 1:4
84 for i_var =1:(order +1) ^2
85 [cfs ,trms] = coeffs (result (i,j, i_cases), varDG(i_var)) ;
86 if length (trms) == 2;
87 % to make sure not to assign if required variable
88 % varDG(i_var) is not present
89 var(i_var , i_cases) = cfs (1) ;
90 else
91 var(i_var , i_cases) = 0 ;
92 end
93 end
94 [cfs ,trms] = coeffs (result (i,j, i_cases), varDG) ;
95 %

--%
96 temp = cfs(trms == 1) ;
97 if isempty (temp) == 1; temp = 0; end
98 jump_q (i_cases ,(i -1) +(j -1) *(order +1) +1) = 0 - temp ;
99 end

100

101 % %%%%%%%%%%%%%%%%%%%%%%%% COMPARE COEFFS .
%%%%%%%%%%%%%%%%%%%%%%%%%%%

102 for i_cases = 2:4
103 for i_var =1:(order +1) ^2
104 lg_eq = isequal (var(i_var ,1) ,var(i_var , i_cases));
105 % var(i_var ,1)
106 % var(i_var , i_cases)
107 if(lg_eq == 0) && (i_cases ~=4)
108 checkCoeff (var(i_var ,1) ,var(i_var , i_cases),dim) ;
109 elseif (lg_eq == 0) && (i_cases ==4)
110 [var(i_var ,1)] = findABS (var(i_var ,1) ,var(i_var , i_cases),

dim) ;
111 end
112 end
113 end
114

115 mat_terms (count_m ,:) = var (: ,1) ;
116 count_m = count_m +1;
117

118 end
119 end
120

121 result_q = transpose (result_q (1 ,:)) ;
122 % just want to take one case since should be same for all cases.

162

123 jump_q = transpose (jump_q) ;
124

125 end

163

1 function [term_J_MU , term_J_ETA , term_S_MU , term_S_ETA , term_SIGMA] ...
2 = get2DLeg (dim ,order ,alpha ,beta ,curCase , varargin)
3

4 %
%%%

5 syms U V
6 syms L1(U)
7 syms PHI
8 syms P0xm P0ym % P0xp P0yp
9 syms PH1

10 syms MU ETA SIG
11 if order == 0
12 L1(U) = 1 ;
13 E1 = collect (L1(U)*L1(V), [U V]) ;
14 %

%%
15 PHI(U,V) = collect (PH1*E1 , [U V]) ; % flux Inside domain
16 % PHO(U,V) = collect (PHA*E1 , [U V]) ; % flux Outside domain
17 %

%%
18 PHImmv = P0xm ;
19 PHIppv = P0xm ;
20 PHImmu = P0ym ;
21 PHIppu = P0ym ;
22 elseif order == 1
23 syms L2(U)
24 syms PH2 PH3 PH4
25 syms P1xm P1ym % P1xp P1yp
26 L1(U) = 1 ;
27 L2(U) = 2* sqrt (3)*U ;
28 E1 = collect (L1(U)*L1(V), [U V]) ;
29 E2 = collect (L2(U)*L1(V), [U V]) ;
30 E3 = collect (L1(U)*L2(V), [U V]) ;
31 E4 = collect (L2(U)*L2(V), [U V]) ;
32 %

%%
33 PHI(U,V) = collect (PH1*E1 + PH2*E2 + PH3*E3 + PH4*E4 , [U V]) ;
34 %expand , collect , combine
35 %

%%
36 PHImmv = P0xm + P1xm*L2(V) ;
37 PHIppv = P0xm + P1xm*L2(V) ;
38 PHImmu = P0ym + P1ym*L2(U) ;
39 PHIppu = P0ym + P1ym*L2(U) ;

164

40 elseif order == 2
41 syms L2(U) L3(U)
42 syms PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9
43 syms P1xm P1ym P2xm P2ym
44 L1(U) = 1 ;
45 L2(U) = 2* sqrt (3)*U ;
46 L3(U) = sqrt (5) *(6*U*U - 1/2) ;
47 E1 = collect (L1(U)*L1(V), [U V]) ;
48 E2 = collect (L2(U)*L1(V), [U V]) ;
49 E3 = collect (L3(U)*L1(V), [U V]) ;
50 E4 = collect (L1(U)*L2(V), [U V]) ;
51 E5 = collect (L2(U)*L2(V), [U V]) ;
52 E6 = collect (L3(U)*L2(V), [U V]) ;
53 E7 = collect (L1(U)*L3(V), [U V]) ;
54 E8 = collect (L2(U)*L3(V), [U V]) ;
55 E9 = collect (L3(U)*L3(V), [U V]) ;
56 %

%%
57 PHI(U,V) = collect (PH1*E1 + PH2*E2 + PH3*E3 + PH4*E4 + PH5*E5 ...
58 + PH6*E6 + PH7*E7 + PH8*E8 + PH9*E9 , [U V]) ;
59 %

%%
60 PHImmv = P0xm + P1xm*L2(V) + P2xm*L3(V) ;
61 PHIppv = P0xm + P1xm*L2(V) + P2xm*L3(V) ;
62 PHImmu = P0ym + P1ym*L2(U) + P2ym*L3(U) ;
63 PHIppu = P0ym + P1ym*L2(U) + P2ym*L3(U) ;
64 elseif order == 3
65 syms L2(U) L3(U) L4(U)
66 syms PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 P10 P11 P12 P13 P14 P15 P16
67 syms P1xm P1ym P2xm P2ym P3xm P3ym
68 L1(U) = 1 ;
69 L2(U) = 2* sqrt (3)*U ;
70 L3(U) = sqrt (5) *(6*U*U - 1/2) ;
71 L4(U) = sqrt (7) *(20*U^3 - 3*U) ;
72 E1 = collect (L1(U)*L1(V), [U V]) ;
73 E2 = collect (L2(U)*L1(V), [U V]) ;
74 E3 = collect (L3(U)*L1(V), [U V]) ;
75 E4 = collect (L4(U)*L1(V), [U V]) ;
76 E5 = collect (L1(U)*L2(V), [U V]) ;
77 E6 = collect (L2(U)*L2(V), [U V]) ;
78 E7 = collect (L3(U)*L2(V), [U V]) ;
79 E8 = collect (L4(U)*L2(V), [U V]) ;
80 E9 = collect (L1(U)*L3(V), [U V]) ;
81 E10 = collect (L2(U)*L3(V), [U V]) ;

165

82 E11 = collect (L3(U)*L3(V), [U V]) ;
83 E12 = collect (L4(U)*L3(V), [U V]) ;
84 E13 = collect (L1(U)*L4(V), [U V]) ;
85 E14 = collect (L2(U)*L4(V), [U V]) ;
86 E15 = collect (L3(U)*L4(V), [U V]) ;
87 E16 = collect (L4(U)*L4(V), [U V]) ;
88 %

%%
89 PHI(U,V) = collect (PH1*E1 + PH2*E2 + PH3*E3 + PH4*E4 + PH5*E5 ...
90 + PH6*E6 + PH7*E7 + PH8*E8 + PH9*E9 + P10*E10 + P11*E11 ...
91 + P12*E12 + P13*E13 + P14*E14 + P15*E15 + P16*E16 , [U V]) ;
92 %

%%
93 PHImmv = P0xm + P1xm*L2(V) + P2xm*L3(V) + P3xm*L4(V) ;
94 PHIppv = P0xm + P1xm*L2(V) + P2xm*L3(V) + P3xm*L4(V) ;
95 PHImmu = P0ym + P1ym*L2(U) + P2ym*L3(U) + P3ym*L4(U) ;
96 PHIppu = P0ym + P1ym*L2(U) + P2ym*L3(U) + P3ym*L4(U) ;
97 else
98 error(’get2DLeg : ORDER not available ! Choose another order .’)
99 end

100 %
%%%

101 % In PHImmv for example , the ’v’ indicates that this is a function in
102 % terms of v, i.e. PHImmv = f(v) .
103 PHImpv = collect (PHI (-1/2,V) , [U V]) ;
104 PHIpmv = collect (PHI(1/2,V) , [U V]) ;
105 PHImpu = collect (PHI(U , -1/2) , [U V]) ;
106 PHIpmu = collect (PHI(U, 1/2) , [U V]) ;
107 %

%%%
108 DIFF_PHI_U = diff(PHI ,U) ;
109 DIFF_PHI_V = diff(PHI ,V) ;
110 PHI_AV = int ((int(PHI ,U , -1/2 ,1/2)),V , -1/2 ,1/2) /...
111 int ((int (1,U , -1/2 ,1/2)),V , -1/2 ,1/2) ;
112 %

%%%
113

114

115 if alpha ==1
116 if curCase (1) ==’G’
117 jump_MU = (PHImpv - PHImmv)*L1 (-1/2) ;
118 elseif curCase (1) ==’L’
119 jump_MU = (PHIppv - PHIpmv)*L1(1/2) ;
120 end

166

121 if beta ==1
122 if curCase (2) ==’G’
123 jump_ETA = (PHImpu - PHImmu)*L1 (-1/2) ;
124 elseif curCase (2) ==’L’
125 jump_ETA = (PHIppu - PHIpmu)*L1(1/2) ;
126 end
127 term_J_MU = int(L1(V)*(jump_MU),V , -1/2 ,1/2) ;
128 term_J_ETA = int(L1(U)*(jump_ETA),U , -1/2 ,1/2) ;
129 term_S_MU = int(L1(V)*(int(L1(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
130 -1/2 ,1/2) ;
131 term_S_ETA = int(L1(U)*(int(L1(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
132 -1/2 ,1/2) ;
133 term_SIGMA = int ((int(L1(U)*L1(V)*PHI ,U , -1/2 ,1/2)),V ,...
134 -1/2 ,1/2) ;
135 elseif beta ==2
136 if curCase (2) ==’G’
137 jump_ETA = (PHImpu - PHImmu)*L2 (-1/2) ;
138 elseif curCase (2) ==’L’
139 jump_ETA = (PHIppu - PHIpmu)*L2(1/2) ;
140 end
141 term_J_MU = int(L2(V)*(jump_MU),V , -1/2 ,1/2) ;
142 term_J_ETA = int(L1(U)*(jump_ETA),U , -1/2 ,1/2) ;
143 term_S_MU = int(L2(V)*(int(L1(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
144 -1/2 ,1/2) ;
145 term_S_ETA = int(L1(U)*(int(L2(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
146 -1/2 ,1/2) ;
147 term_SIGMA = int ((int(L1(U)*L2(V)*PHI ,U , -1/2 ,1/2)),V ,...
148 -1/2 ,1/2) ;
149 elseif beta ==3
150 if curCase (2) ==’G’
151 jump_ETA = (PHImpu - PHImmu)*L3 (-1/2) ;
152 elseif curCase (2) ==’L’
153 jump_ETA = (PHIppu - PHIpmu)*L3(1/2) ;
154 end
155 term_J_MU = int(L3(V)*(jump_MU),V , -1/2 ,1/2) ;
156 term_J_ETA = int(L1(U)*(jump_ETA),U , -1/2 ,1/2) ;
157 term_S_MU = int(L3(V)*(int(L1(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
158 -1/2 ,1/2) ;
159 term_S_ETA = int(L1(U)*(int(L3(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
160 -1/2 ,1/2) ;
161 term_SIGMA = int ((int(L1(U)*L3(V)*PHI ,U , -1/2 ,1/2)),V ,...
162 -1/2 ,1/2) ;
163 elseif beta ==4
164 if curCase (2) ==’G’

167

165 jump_ETA = (PHImpu - PHImmu)*L4 (-1/2) ;
166 elseif curCase (2) ==’L’
167 jump_ETA = (PHIppu - PHIpmu)*L4(1/2) ;
168 end
169 term_J_MU = int(L4(V)*(jump_MU),V , -1/2 ,1/2) ;
170 term_J_ETA = int(L1(U)*(jump_ETA),U , -1/2 ,1/2) ;
171 term_S_MU = int(L4(V)*(int(L1(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
172 -1/2 ,1/2) ;
173 term_S_ETA = int(L1(U)*(int(L4(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
174 -1/2 ,1/2) ;
175 term_SIGMA = int ((int(L1(U)*L4(V)*PHI ,U , -1/2 ,1/2)),V ,...
176 -1/2 ,1/2) ;
177 end
178 elseif alpha ==2
179 if curCase (1) ==’G’
180 jump_MU = (PHImpv - PHImmv)*L2 (-1/2) ;
181 elseif curCase (1) ==’L’
182 jump_MU = (PHIppv - PHIpmv)*L2(1/2) ;
183 end
184 if beta ==1
185 if curCase (2) ==’G’
186 jump_ETA = (PHImpu - PHImmu)*L1 (-1/2) ;
187 elseif curCase (2) ==’L’
188 jump_ETA = (PHIppu - PHIpmu)*L1(1/2) ;
189 end
190 term_J_MU = int(L1(V)*(jump_MU),V , -1/2 ,1/2) ;
191 term_J_ETA = int(L2(U)*(jump_ETA),U , -1/2 ,1/2) ;
192 term_S_MU = int(L1(V)*(int(L2(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
193 -1/2 ,1/2) ;
194 term_S_ETA = int(L2(U)*(int(L1(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
195 -1/2 ,1/2) ;
196 term_SIGMA = int ((int(L2(U)*L1(V)*PHI ,U , -1/2 ,1/2)),V ,...
197 -1/2 ,1/2) ;
198 elseif beta ==2
199 if curCase (2) ==’G’
200 jump_ETA = (PHImpu - PHImmu)*L2 (-1/2) ;
201 elseif curCase (2) ==’L’
202 jump_ETA = (PHIppu - PHIpmu)*L2(1/2) ;
203 end
204 term_J_MU = int(L2(V)*(jump_MU),V , -1/2 ,1/2) ;
205 term_J_ETA = int(L2(U)*(jump_ETA),U , -1/2 ,1/2) ;
206 term_S_MU = int(L2(V)*(int(L2(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
207 -1/2 ,1/2) ;
208 term_S_ETA = int(L2(U)*(int(L2(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...

168

209 -1/2 ,1/2) ;
210 term_SIGMA = int ((int(L2(U)*L2(V)*PHI ,U , -1/2 ,1/2)),V ,...
211 -1/2 ,1/2) ;
212 elseif beta ==3
213 if curCase (2) ==’G’
214 jump_ETA = (PHImpu - PHImmu)*L3 (-1/2) ;
215 elseif curCase (2) ==’L’
216 jump_ETA = (PHIppu - PHIpmu)*L3(1/2) ;
217 end
218 term_J_MU = int(L3(V)*(jump_MU),V , -1/2 ,1/2) ;
219 term_J_ETA = int(L2(U)*(jump_ETA),U , -1/2 ,1/2) ;
220 term_S_MU = int(L3(V)*(int(L2(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
221 -1/2 ,1/2) ;
222 term_S_ETA = int(L2(U)*(int(L3(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
223 -1/2 ,1/2) ;
224 term_SIGMA = int ((int(L2(U)*L3(V)*PHI ,U , -1/2 ,1/2)),V ,...
225 -1/2 ,1/2) ;
226 elseif beta ==4
227 if curCase (2) ==’G’
228 jump_ETA = (PHImpu - PHImmu)*L4 (-1/2) ;
229 elseif curCase (2) ==’L’
230 jump_ETA = (PHIppu - PHIpmu)*L4(1/2) ;
231 end
232 term_J_MU = int(L4(V)*(jump_MU),V , -1/2 ,1/2) ;
233 term_J_ETA = int(L2(U)*(jump_ETA),U , -1/2 ,1/2) ;
234 term_S_MU = int(L4(V)*(int(L2(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
235 -1/2 ,1/2) ;
236 term_S_ETA = int(L2(U)*(int(L4(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
237 -1/2 ,1/2) ;
238 term_SIGMA = int ((int(L2(U)*L4(V)*PHI ,U , -1/2 ,1/2)),V ,...
239 -1/2 ,1/2) ;
240 end
241 elseif alpha ==3
242 if curCase (1) ==’G’
243 jump_MU = (PHImpv - PHImmv)*L3 (-1/2) ;
244 elseif curCase (1) ==’L’
245 jump_MU = (PHIppv - PHIpmv)*L3(1/2) ;
246 end
247 if beta ==1
248 if curCase (2) ==’G’
249 jump_ETA = (PHImpu - PHImmu)*L1 (-1/2) ;
250 elseif curCase (2) ==’L’
251 jump_ETA = (PHIppu - PHIpmu)*L1(1/2) ;
252 end

169

253 term_J_MU = int(L1(V)*(jump_MU),V , -1/2 ,1/2) ;
254 term_J_ETA = int(L3(U)*(jump_ETA),U , -1/2 ,1/2) ;
255 term_S_MU = int(L1(V)*(int(L3(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
256 -1/2 ,1/2) ;
257 term_S_ETA = int(L3(U)*(int(L1(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
258 -1/2 ,1/2) ;
259 term_SIGMA = int ((int(L3(U)*L1(V)*PHI ,U , -1/2 ,1/2)),V ,...
260 -1/2 ,1/2) ;
261 elseif beta ==2
262 if curCase (2) ==’G’
263 jump_ETA = (PHImpu - PHImmu)*L2 (-1/2) ;
264 elseif curCase (2) ==’L’
265 jump_ETA = (PHIppu - PHIpmu)*L2(1/2) ;
266 end
267 term_J_MU = int(L2(V)*(jump_MU),V , -1/2 ,1/2) ;
268 term_J_ETA = int(L3(U)*(jump_ETA),U , -1/2 ,1/2) ;
269 term_S_MU = int(L2(V)*(int(L3(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
270 -1/2 ,1/2) ;
271 term_S_ETA = int(L3(U)*(int(L2(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
272 -1/2 ,1/2) ;
273 term_SIGMA = int ((int(L3(U)*L2(V)*PHI ,U , -1/2 ,1/2)),V ,...
274 -1/2 ,1/2) ;
275 elseif beta ==3
276 if curCase (2) ==’G’
277 jump_ETA = (PHImpu - PHImmu)*L3 (-1/2) ;
278 elseif curCase (2) ==’L’
279 jump_ETA = (PHIppu - PHIpmu)*L3(1/2) ;
280 end
281 term_J_MU = int(L3(V)*(jump_MU),V , -1/2 ,1/2) ;
282 term_J_ETA = int(L3(U)*(jump_ETA),U , -1/2 ,1/2) ;
283 term_S_MU = int(L3(V)*(int(L3(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
284 -1/2 ,1/2) ;
285 term_S_ETA = int(L3(U)*(int(L3(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
286 -1/2 ,1/2) ;
287 term_SIGMA = int ((int(L3(U)*L3(V)*PHI ,U , -1/2 ,1/2)),V ,...
288 -1/2 ,1/2) ;
289 elseif beta ==4
290 if curCase (2) ==’G’
291 jump_ETA = (PHImpu - PHImmu)*L4 (-1/2) ;
292 elseif curCase (2) ==’L’
293 jump_ETA = (PHIppu - PHIpmu)*L4(1/2) ;
294 end
295 term_J_MU = int(L4(V)*(jump_MU),V , -1/2 ,1/2) ;
296 term_J_ETA = int(L3(U)*(jump_ETA),U , -1/2 ,1/2) ;

170

297 term_S_MU = int(L4(V)*(int(L3(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
298 -1/2 ,1/2) ;
299 term_S_ETA = int(L3(U)*(int(L4(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
300 -1/2 ,1/2) ;
301 term_SIGMA = int ((int(L3(U)*L4(V)*PHI ,U , -1/2 ,1/2)),V ,...
302 -1/2 ,1/2) ;
303 end
304 elseif alpha ==4
305 if curCase (1) ==’G’
306 jump_MU = (PHImpv - PHImmv)*L4 (-1/2) ;
307 elseif curCase (1) ==’L’
308 jump_MU = (PHIppv - PHIpmv)*L4(1/2) ;
309 end
310 if beta ==1
311 if curCase (2) ==’G’
312 jump_ETA = (PHImpu - PHImmu)*L1 (-1/2) ;
313 elseif curCase (2) ==’L’
314 jump_ETA = (PHIppu - PHIpmu)*L1(1/2) ;
315 end
316 term_J_MU = int(L1(V)*(jump_MU),V , -1/2 ,1/2) ;
317 term_J_ETA = int(L4(U)*(jump_ETA),U , -1/2 ,1/2) ;
318 term_S_MU = int(L1(V)*(int(L4(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
319 -1/2 ,1/2) ;
320 term_S_ETA = int(L4(U)*(int(L1(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
321 -1/2 ,1/2) ;
322 term_SIGMA = int ((int(L4(U)*L1(V)*PHI ,U , -1/2 ,1/2)),V ,...
323 -1/2 ,1/2) ;
324 elseif beta ==2
325 if curCase (2) ==’G’
326 jump_ETA = (PHImpu - PHImmu)*L2 (-1/2) ;
327 elseif curCase (2) ==’L’
328 jump_ETA = (PHIppu - PHIpmu)*L2(1/2) ;
329 end
330 term_J_MU = int(L2(V)*(jump_MU),V , -1/2 ,1/2) ;
331 term_J_ETA = int(L4(U)*(jump_ETA),U , -1/2 ,1/2) ;
332 term_S_MU = int(L2(V)*(int(L4(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
333 -1/2 ,1/2) ;
334 term_S_ETA = int(L4(U)*(int(L2(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
335 -1/2 ,1/2) ;
336 term_SIGMA = int ((int(L4(U)*L2(V)*PHI ,U , -1/2 ,1/2)),V ,...
337 -1/2 ,1/2) ;
338 elseif beta ==3
339 if curCase (2) ==’G’
340 jump_ETA = (PHImpu - PHImmu)*L3 (-1/2) ;

171

341 elseif curCase (2) ==’L’
342 jump_ETA = (PHIppu - PHIpmu)*L3(1/2) ;
343 end
344 term_J_MU = int(L3(V)*(jump_MU),V , -1/2 ,1/2) ;
345 term_J_ETA = int(L4(U)*(jump_ETA),U , -1/2 ,1/2) ;
346 term_S_MU = int(L3(V)*(int(L4(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
347 -1/2 ,1/2) ;
348 term_S_ETA = int(L4(U)*(int(L3(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
349 -1/2 ,1/2) ;
350 term_SIGMA = int ((int(L4(U)*L3(V)*PHI ,U , -1/2 ,1/2)),V ,...
351 -1/2 ,1/2) ;
352 elseif beta ==4
353 if curCase (2) ==’G’
354 jump_ETA = (PHImpu - PHImmu)*L4 (-1/2) ;
355 elseif curCase (2) ==’L’
356 jump_ETA = (PHIppu - PHIpmu)*L4(1/2) ;
357 end
358 term_J_MU = int(L4(V)*(jump_MU),V , -1/2 ,1/2) ;
359 term_J_ETA = int(L4(U)*(jump_ETA),U , -1/2 ,1/2) ;
360 term_S_MU = int(L4(V)*(int(L4(U)*DIFF_PHI_U ,U , -1/2 ,1/2)),V ,...
361 -1/2 ,1/2) ;
362 term_S_ETA = int(L4(U)*(int(L4(V)*DIFF_PHI_V ,V , -1/2 ,1/2)),U ,...
363 -1/2 ,1/2) ;
364 term_SIGMA = int ((int(L4(U)*L4(V)*PHI ,U , -1/2 ,1/2)),V ,...
365 -1/2 ,1/2) ;
366 end
367 end

172

1 function jump = getJumpVal (order , alpha , beta , gamma , curCase)
2

3 if (order ==1) || (order ==2) || (order ==3) || (order ==0)
4

5 jump (1, 1) = false; % for mu direction
6 jump (2, 1) = false; % for eta direction
7 jump (3, 1) = false; % for xi direction
8

9 if alpha ==1 && curCase (1) ==’G’
10 jump (1) = true;
11 elseif alpha ==(order +1) && curCase (1) ==’L’
12 jump (1) = true;
13 end
14

15 if length (curCase) > 1
16 if beta ==1 && curCase (2) ==’G’
17 jump (2) = true;
18 elseif beta ==(order +1) && curCase (2) ==’L’
19 jump (2) = true;
20 end
21 end
22

23 if length (curCase) > 2
24 if gamma ==1 && curCase (3) ==’G’
25 jump (3) = true;
26 elseif gamma ==(order +1) && curCase (3) ==’L’
27 jump (3) = true;
28 end
29 end
30

31 else
32 error(’getJumpVal : not valid value of order.’)
33 end
34

35 end

173

APPENDIX B HODD AS DPGFEM

(This appendix is adapted from Schunert’s proof [34]. While most of their presentation is
three-dimensional, we stick with 2D for consistency with the rest of this document as well as
for the greater simplicity of the proof without loss of generality.)

We start with the Discontinuous Finite Element Method (DFEM) formulation derived in
subsection 3.1.4. Note that while the test and trial solution spaces in that presentation are
from the same space, it changes nothing to the derivation to assume they are not. The
formulation is reproduced below for easy accessibility,∫

ξ
((Ωn · ∇ψn,h)wh + Σψn,hwh) ds−

∫
∂ξ−

(n ·Ω) Jψn,hKw+
h dl =

∫
ξ
Qnwhds . (B.1)

where Jψn,hK =
(
ψ+

n,h − ψ−n,h

)
was used as the jump operator.

Now, consider the two-dimensional problem whereby the flux within a cell element can instead
be approximated as

ψn,i,j(u, v) =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(v) G[α,β]
n,i,j +

Λ∑
β=0

1√
2(Λ + 1) + 1

P̃Λ+1(u)P̃β(v) G[Λ+1,β]
n,i,j

+
Λ∑

α=0

1√
2(Λ + 1) + 1

P̃α(u)P̃Λ+1(v) G[α,Λ+1]
n,i,j ,

(B.2)

where G are just generic expansion coefficients, and the test (weight) space is given by

W =
{
P̃α(u)P̃β(v), 0 ≤ α, β ≤ Λ

}
. (B.3)

We consider throughout this demonstration only the direction of neutron travel defined by
µ > 0, η > 0. This is sufficient as the rest follow by analogy. This means that the unknowns
are the cell Legendre moments and the face Legendre moments on the right and top sides of
the square reference element.

174

These can be obtained with their respective usual definitions, i.e.,

ψ
[α,β]
n,i,j =

∫ 1/2

−1/2

∫ 1/2

−1/2
du dvP̃α(u) P̃β(v) ψn,i,j(u, v) ,

ψ
[∗,β]
n,i+,j =

∫ 1/2

−1/2
dv P̃β(v) ψn,i,j(+1/2, v) ,

ψ
[α,∗]
n,i,j+ =

∫ 1/2

−1/2
du P̃α(u) ψn,i,j(u,+1/2) .

(B.4)

It can be shown that Eqn. B.2 can be recast in the following form

ψn,i,j(u, v) =
Λ∑

α=0

Λ∑
β=0

P̃α(u)P̃β(v) ψ[α,β]
n,i,j

+
Λ∑

β=0

1√
2(Λ + 1) + 1

P̃Λ+1(u)P̃β(v)
ψ[∗,β]

n,i+,j −
Λ∑

α=0

√
2α + 1 ψ[α,β]

n,i,j

+

Λ∑
α=0

1√
2(Λ + 1) + 1

P̃α(u)P̃Λ+1(v)
ψ[∗,β]

n,i,j+ −
Λ∑

β=0

√
2β + 1 ψ[α,β]

n,i,j

 .

(B.5)

It might be easier to see this if we consider a specific example. For the 2D case with Λ = 1
for the incoming left edge: from the definition of ψ[∗,β]

n,i+,j and ψ[α,β]
n,i,j (Eqn. B.4), we obtain

ψ
[∗,β]
n,i+,j = G

[0,β]
n,i,j +

√
3G[1,β]

n,i,j +
√

5G[2,β]
n,i,j ,

ψ
[α,β]
n,i,j = G

[α,β]
n,i,j ,

leaving the first square bracket term as G[Λ+1,β]
n,i,j .

Looking at Eqn. B.5 above, we can see that we have more unknowns than equations, specifi-
cally, the (Λ+1)th-order terms. Schunert [34] then proposes to impose that the approximated
angular flux be continuous on the incoming surface in an integral sense. This, as we will see,
ensures that a solution can be found.

The flux on the interior trace of the incoming face can be obtained by simply substituting
the appropriate coordinates in Eqn. B.5. Considering again only the left incoming edge, this

175

is given by

ψn,i,j(−1/2, v) =
Λ∑

α=0

Λ∑
β=0

√
2α + 1 (−1)α P̃β(v) ψ[α,β]

n,i,j

+
Λ∑

β=0
(−1)Λ+1 P̃β(v)

ψ[∗,β]
n,i+,j −

Λ∑
α=0

√
2α + 1 ψ[α,β]

n,i,j

+

Λ∑
α=0

√
2α + 1√

2(Λ + 1) + 1
(−1)α P̃Λ+1(v)

ψ[∗,β]
n,i,j+ −

Λ∑
β=0

√
2β + 1 ψ[α,β]

n,i,j

 ,

(B.6)

while, on the exterior trace, the flux is expanded in terms of Legendre polynomials (P̃β(v))
and surface Legendre moments (ψ[∗,β]

n,i−,j), up to order Λ,

ψ−n,i,j(−1/2, v) =
Λ∑

β=0
P̃β(v) ψ[∗,β]

n,i−,j . (B.7)

Now, requiring the angular flux to be continuous at the interface in an integral sense es-
sentially means that the difference of the interior and exterior traces should be zero when
weighed against the test space on that restricted domain of the surface, i.e.,

∫ 1/2

−1/2
dvP̃β(v)Jψn,i,j(−1/2, v)K =

∫ 1/2

−1/2
dvP̃β(v)

(
ψn,i,j(−1/2, v)− ψ−n,i,j(−1/2, v)

)
= 0 ,

(B.8)
with β = [0,Λ]. This condition is the same as not requiring pointwise continuity across the
whole of the boundary.

Looking at the difference between the traces, we find

ψn,i,j(−1/2, v)− ψ−n,i,j(−1/2, v) =
Λ∑

β=0
P̃β(v)

[
(−1)Λ+1 ψ

[∗,β]
n,i+,j − ψ

[∗,β]
n,i−,j

]

+
Λ∑

α=0

Λ∑
β=0

√
2α + 1 P̃β(v) ψ[α,β]

n,i,j

[
(−1)α − (−1)Λ+1

]
+ other terms ,

(B.9)

where only terms that would be non-zero when weighed against the test space have been
retained. Indeed, terms in P̃Λ+1(v) would be orthogonal to P̃β(v), β = [0,Λ] within Eqn. B.8
and are implicitly gathered in “other terms”. Therefore, substituting the retained terms back

176

in Eqn. B.8 gives

[
(−1)Λ+1 ψ

[∗,β]
n,i+,j − ψ

[∗,β]
n,i−,j

]
+

Λ∑
α=0

√
2α + 1 ψ[α,β]

n,i,j

[
(−1)α − (−1)Λ+1

]
= 0 , β = [0,Λ] . (B.10)

Multiplying by (−1)Λ+1 throughout and rearranging yields

[
ψ

[∗,β]
n,i+,j − (−1)Λ+1 ψ

[∗,β]
n,i−,j

]
=

Λ∑
α=0

√
2α + 1 ψ[α,β]

n,i,j

[
1 + (−1)α+Λ

]
, β = [0,Λ] , (B.11)

which are actually the exact same auxiliary equations given by Hébert [35] for the x-axis.
Considering the two incoming edges, this leads to 2(Λ+1) auxiliary equations or constraints.

Having imposed the condition Eqn. B.8, the strong formulation of the DFEM equation (Eqn.
B.1) reduces to ∫

ξ
((Ωn · ∇ψn,h)wh + Σψn,hwh) ds =

∫
ξ
Qnwhds . (B.12)

Substituting in the flux representation (given by Eqn. B.5) leads to (Λ + 1)2 equations with
(Λ + 1)2 + 2(Λ + 1) unknowns. Making use of the aforementioned constraints, this reduces
to (Λ + 1)2 unknowns, hence ensuring that the problem is well-defined. The resulting set of
equations are then identical to those derived by Hébert [35].

177

APPENDIX C ANALYTICAL EQUATIONS FOR THE DSA

We begin with Eqn 5.1, with the iteration indices made explicit,

Ω · ∇ψ(κ+1/2)(r,Ω) + Σt(r)ψ(κ+1/2)(r,Ω) = Σs(r)
4π ϕ(κ)(r) +Qext (r,Ω) , (C.1)

and ϕ is defined as before,

ϕ(r) = ϕ0(r) =
∫

4π
d2Ω ψ(r,Ω) , (C.2)

where the 0 subscript indicates that it is the zeroth moment of the angular flux – when
considering an expansion of the angular flux in real spherical harmonics written in terms of
polynomials of direction cosines [22].

Using Larsen’s [39] four-step approach, one takes the zeroth and first moment of Eqn. C.1 to
get,

∇ · Φ(κ+1/2)
1 (r) + Σt(r)ϕ(κ+1/2)

0 (r) = Σs(r)ϕ(κ)
0 (r) + q0(r) , (C.3a)

1
3∇ϕ

(κ+1/2)
0 (r) + 2

3∇ · Φ
(κ+1/2)
2 (r) + Σt(r)Φ(κ+1/2)

1 (r) = q1(r) , (C.3b)

where
Φ1(r) =

∫
4π
d2Ω Ωψ(r,Ω) ,

Φ2(r) =
∫

4π
d2Ω 1

2(3ΩΩ− I)ψ(r,Ω) ,

q0(r) =
∫

4π
d2Ω Qext (r,Ω) ,

q1(r) =
∫

4π
d2Ω ΩQext (r,Ω) .

(C.4)

This is the first step, and produces a scalar equation and a vector equation. Step 2 is the
definition of the acceleration equations, obtained by the re-indexing of some of the iteration
indices,

∇ · Φ(κ+1)
1 (r) + Σt(r)ϕ(κ+1)

0 (r) = Σs(r)ϕ(κ+1)
0 (r) + q0(r) , (C.5a)

1
3∇ϕ

(κ+1)
0 (r) + 2

3∇ · Φ
(κ+1/2)
2 (r) + Σt(r)Φ(κ+1)

1 (r) = q1(r) . (C.5b)

These equations define the end-of-iteration fluxes, with the former being a statement of

178

conservation of neutrons such that the balance at the end of iteration will be correct. If a
linearly anisotropic flux is assumed, Φ(κ+1/2)

2 (r) is null. Hence, leaving the (κ + 1/2) index
implicitly implies that as it will be eliminated in the next step.

Indeed, step 3 is subtracting Eqns. C.3 from Eqns. C.5 to obtain Eqns. C.6 for the correc-
tions:

∇ · F (κ+1)
1 (r) + (Σt(r)− Σs(r))F (κ+1)

0 (r) = Σs(r)
(
ϕ

(κ+1/2)
0 (r)− ϕ(κ)

0 (r)
)
, (C.6a)

1
3∇F

(κ+1)
0 (r) + Σt(r)F (κ+1)

1 (r) = 0 , (C.6b)

where

F
(κ+1)
0 (r) = ϕ

(κ+1)
0 (r)− ϕ(κ+1/2)

0 (r) ,

F
(κ+1)
1 (r) = Φ(κ+1)

1 (r)− Φ(κ+1/2)
1 (r) .

The final step is eliminating the current correction, F 1 by substituting Eqn. C.6b into Eqn.
C.6a, to obtain a diffusion equation for the flux correction,

−∇· 1
3Σt(r)∇F

(κ+1)
0 (r)+(Σt(r)− Σs(r))F (κ+1)

0 (r) = Σs(r)
(
ϕ

(κ+1/2)
0 (r)− ϕ(κ)

0 (r)
)
. (C.8)

The usual DSA scheme is then given by Eqns. C.1 and C.8 (both reproduced below for ease)
as well as Eqn. C.9:

Ω · ∇ψ(κ+1/2)(r,Ω) + Σt(r)ψ(κ+1/2)(r,Ω) = Σs(r)
4π ϕ(κ)(r) +Qext (r,Ω) ;

−∇ · 1
3Σt(r)∇F

(κ+1)
0 (r) + (Σt(r)− Σs(r))F (κ+1)

0 (r) = Σs(r)
(
ϕ

(κ+1/2)
0 (r)− ϕ(κ)

0 (r)
)

;

ϕ
(κ+1)
0 (r) = ϕ

(κ+1/2)
0 (r) + F

(κ+1)
0 (r) . (C.9)

	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Background History and Current Status of Nuclear Power
	1.2 Basic Concepts of Nuclear Reactors
	1.3 Scope of Research Project
	1.4 Thesis Outline

	2 REACTOR PHYSICS BACKGROUND
	2.1 The Boltzmann Transport Equation (BTE)
	2.1.1 Steady state
	2.1.2 Overview of numerical resolution

	2.2 Deterministic Resolution of the Transport Equation
	2.2.1 keff and external iterations
	2.2.2 Energy discretisation
	2.2.3 Anisotropic scattering source density
	2.2.4 Angular discretisation: the Pn, SPn and SN methods
	2.2.5 Space-angle sweep operation and Source Iteration (SI)
	2.2.6 Summary of resolution algorithm

	2.3 The DRAGON5 Code
	2.3.1 General overview
	2.3.2 Calculation overview and relevant modules

	3 SPATIAL DISCRETISATION METHODS
	3.1 Review of Discretisation Methods
	3.1.1 The DD method
	3.1.2 The High Order Diamond Difference (HODD) method
	3.1.3 General overview of Finite Element Methods (FEMs)
	3.1.4 The Discontinuous Galerkin Finite Element Method (DGFEM)
	3.1.5 High Order Diamond Difference (HODD) as DPGFEM

	3.2 Implementation in DRAGON5
	3.2.1 Choice of function space
	3.2.2 Lagrange vs Legendre polynomials in DRAGON5
	3.2.3 Implementation example and details
	3.2.4 Single-cell and inner iteration solution algorithm

	3.3 Numerical Results
	3.3.1 One-group 2D simple benchmark: 2D-CNS
	3.3.2 Four-group 2D AIC assembly: 2D-AIC
	3.3.3 Four-group 3D small FNR core, Takeda Model 2: 3D-TAK2

	3.4 Concluding Remarks

	4 HEXAGONAL GEOMETRY IMPLEMENTATION
	4.1 Potential Avenues for Hexagonal Representation
	4.2 Handling of the Hexagonal Geometry in DRAGON5
	4.3 Solution Algorithm and Implementation Details
	4.3.1 Number of sweep directions
	4.3.2 Outgoing fluxes
	4.3.3 Outgoing fluxes between lozenges A and C
	4.3.4 Overall algorithm

	4.4 Numerical Results
	4.4.1 One-group benchmarks: 2D-SNA and 3D-SNA
	4.4.2 Four-group 3D small FNR core, Takeda Model 4: 3D-TAK4

	4.5 Concluding Remarks

	5 SYNTHETIC ACCELERATION (SA)
	5.1 Introduction
	5.2 Theoretical Background and Prior Work
	5.2.1 Source iteration and synthetic acceleration
	5.2.2 Prior DSA formulations
	5.2.3 Fourier Analysis (FA)

	5.3 RT-SPn Synthetic Acceleration (RT-SPnSA)
	5.3.1 Flux correction
	5.3.2 Treatment of reflective boundary conditions

	5.4 Parametric Study
	5.4.1 Numerical Fourier analysis using DRAGON5
	5.4.2 2D-AIC test case

	5.5 Benchmark Results: 3D-TAK2 and 3D-TAK4
	5.6 Concluding Remarks

	6 PARALLEL IMPLEMENTATION IN WYVERN
	6.1 Brief Introduction to Parallelisation Solutions
	6.2 Outline of Prior Parallelisation Work in SN Neutron Transport
	6.2.1 The KBA method
	6.2.2 Beyond KBA

	6.3 Choice of Parallelisation Strategy
	6.4 Cartesian Implementation in WYVERN
	6.4.1 3D-TAK2 benchmark

	6.5 Hexagonal Implementation in WYVERN
	6.5.1 Parallel hexagonal sweep algorithm and implementation details
	6.5.2 3D-TAK4 benchmark
	6.5.3 Mock FBR core: 3D-FBR

	6.6 Concluding Remarks

	7 CONCLUSION
	7.1 Conclusion and Findings
	7.2 Future Work

	REFERENCES
	APPENDICES

