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RÉSUMÉ

Les microréseaux offrent une diversité de ressources énergétiques distribuées pour fournir de
l’électricité aux propriétaires de bâtiments, et ainsi contribuer à la réduction de la facture
énergétique et les émissions de gaz à effet de serre. En effet, les sources d’énergies renouve-
lables sont propres et peu coûteuses, mais elles ont la particularité d’avoir un caractère inter-
mittent. Pour la clientèle de grande puissance, les microréseaux peuvent également contribuer
à l’écrêtage de la demande de pointe locale. Cependant, définir le dimensionnement et l’opé-
ration optimaux d’un microréseau compte tenu des incertitudes liées à la génération et à la
consommation est un grand défi. Ces incertitudes doivent être adéquatement modélisées pour
la gestion optimale d’un microréseau. L’optimisation stochastique offre un cadre approprié
pour l’ople dimensionnement et l’opération du microréseau dans un contexte incertain. Ce-
pendant, il existe un besoin accru pour le développement d’approches de génération et de
réduction de scenarios pour limiter le temps de calcul de tels problèmes. Dans cette étude,
un problème d’optimisation stochastique en deux étapes comprenant le dimensionnement et
le fonctionnement d’un microréseau pour la réduction de la charge de pointe est proposé.
Un réseau antagoniste génératif (GAN) a été proposé pour générer des scénarios de profils
de puissance PV et de demande électrique. En raison d’un grand nombre de scénarios, la
technique de réduction de scénarios K-medoids a été appliqué. Les résultats du cas d’étude
d’un campus canadien ont démontré que la méthode proposée réduisait les coûts ainsi que la
demande de pointe en utilisant des systèmes de production d’énergie PV et du stockage sur
batterie.
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ABSTRACT

Microgrids offer a diversity of distributed energy resources to supply electricity to building
owners, and thus contribute to the reduction of energy bills and greenhouse gas emissions.
Indeed, renewable energy sources are clean and inexpensive, but they have the particularity
of being intermittent. For large-power customers, microgrids can also contribute to local
peak-shaving. However, defining the optimal sizing and operation of a microgrid considering
generation and consumption uncertainties is a big challenge. These uncertainties must be
adequately modeled for the optimal management of a microgrid. Stochastic optimization
provides an appropriate framework for microgrid sizing and operation under uncertainty.
However, there is an increased need for the development of scenarios generation and reduc-
tion approaches to limit the computation time of such problems. In this study, a two-stage
stochastic optimization problem including sizing and operation of a MG and peak load re-
duction has been solved. A generative Adversarial Network (GAN) was proposed to generate
PV power and electrical load demand scenarios. Due to a large number of scenarios, the
K-medoids scenario reduction technique has been applied. The results of the case study of a
Canadian university campus, showed that the proposed method decreased costs and properly
shaved peak loads using PV power generation and battery storage systems.
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CHAPTER 1 INTRODUCTION

1.1 Background and Motivation

Nowadays, environmental issues have been highlighted due to the increase of the global
greenhouse gas (GHG) emissions from fossil fuels. As long as the world’s population grows,
the side effects of using fuel-based energies increase due to the growth of energy demand.
Environmental and economic issues caused by increasing fuel-based energy usage led to the
integration of other energy resources into the power systems. Solar radiation and wind energy
are two renewable energy sources (RES) that can generate power through Photovoltaic (PV)
panels and wind turbines (WT). RES are free, clean and have significant economic and
environmental advantages. However, RES suffer from uncertainties in their nature. They are
hard to predict, and they are highly dependent on meteorological conditions. The integration
of RES needs energy management systems that can properly manage the available resources
and their interactions with the grid to satisfy the power demands. The presence of distributed
energy resources (DER) to supply the demand creates a need for a new technology named
microgrid (MG) to integrate different power resources and control them in a power system
[1–3].

MG is a small power system composed of DER, energy storage system (ESS) and local loads.
It can operate in grid-connected or in island modes. MGs have been widely used in the
recent decade due to their environmental and economical advantages for power suppliers and
consumers. For the power suppliers, MGs help to increase the grid’s flexibility and decrease
the losses in the network. They offer the possibility to provide power locally, and increase
the grid reliability. For the users, MGs provide local power for consumers and reduce the
electricity bill, especially in peak hours when purchasing power from the main grid may
lead to some penalties [2, 4]. MG can operate as a backup system for the utility grid when
the demand is high in peak hours. The power generated from DER are uncertain and not
available all the time. Hence, when power generation is insufficient, the ESS provides electrical
energy to the load, and if necessary, purchases electricity from the main grid ; when the power
generation is higher than the load demand, the excess energy is stored in the ESS or sold to
the main grid to ensure reliable operation of the system [5].

Sizing and operation of MG are two critical factors of the MG system. Oversizing MG will
lead to an increase of the investment costs, that cause cost overruns related to the excess
in infrastructure capacity. From another viewpoint, undersizing MG will lead to a large
mismatch between power generation and demand that causes deficit in power supply in
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MG. PV power generation are time-varying, that highly rely on weather conditions and are
challenging to predict [6]. Hence, problems of MG sizing and operation become more difficult
to solve due to the the uncertainties of these parameters [4].

The problems of MG sizing and operation are solved using optimization approaches that are
restricted by many constraints. The type of optimization problems relies on the nature of
the modeling MG components and the objectives. Stochastic programming (SP) is one of
the techniques used to integrate uncertainties in the modeling when uncertain parameters
are accessible in MG [7, 8]. Scenario generation is one of the main feature of stochastic
optimization [9] that allows capturing the uncertainties and considering the probability of
occurrence for each scenario [10] in the optimization problem. Solving stochastic optimization
with a large number of scenarios led to introducing scenario reduction approaches, that help
reducing the computational aspect of solving stochastic optimization. These optimization
problems are solved to achieve various goals for the MGs.

One of the objectives of the MG problems is peak load shaving (PLS) in buildings. PLS
strategies might use on-site generation and storage to satisfy the load in peak hours. PLS
strategies have economic and environmental advantages for many buildings. It allows them
to reduce the electricity bills, and to decrease the GHG emissions through energy efficiency
measures. PLS could be performed using demand-side management (DMS) programs, local
ESS, electric vehicle (EV) through V2B concept, or a combination of many mechanisms. Each
PLS strategy has both advantages and drawbacks ; however, the advantages of the RES-ESS
approach are more than its disadvantages among other available approaches. Using renewable
energy sources helps buildings’ energy management system (EMS) to take the exceeding
energy from these resources instead of buying from the primary grid. This lead to producing
lower fuel-based generations and lower production of GHG. Along with RES benefits, ESS
helps the MGs to shave the peak by storing the power in off-peak hours to use during peak
and avoiding the waste of RES powers in off-peak hours [11,12].

1.2 Problem statement

As discussed above, it is well-known that RES have advantages for MGs due to providing
cheap and clean energy. However, RES generations are not available at all times. RES de-
pend on weather conditions such as temperature, humidity, the season of the year, etc. The
uncertainty of these types of energies is a big challenge. The uncertainties of demand load
also make another problem since it is hard to predict the consumer’s energy usage. Including
the uncertainties in MG operation is critical.
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Consequently, due to selected MG components, sizing MG and operation of energy flow in
MG is critical. In terms of oversizing, the user should pay more investment costs while the
produced energy is wasted more than the principal usage for MGs in island mode. If the MG
is undersized, the available power can not satisfy the demand, creating additional costs for
the users to provide energy from the network.

PLS with RES-ESS technologies is challenging due to the uncertain nature of RES and loads.
The scheduling of MG for PLS using RES is hard to achieve since the EMS of MG can not
rely on a predetermined and specific power to satisfy the demand. In addition, predicting the
peak loads is another challenge since the program can not detect peaks properly to manage
the demand. So considering the uncertainties of loads and RES in the problem of PLS makes
a big challenge. PLS using renewable energies and batteries is a way to encourage building
owners to use RES-ESS technologies.

Stochastic programming is critical to solving the optimization problem with RES and load
uncertainties. There is a need for a proper scenario analysis method with a reliable ability to
capture possible scenarios in the future. The more accurate scenario generation methods, the
better MG scheduling. A large number of scenarios could capture more future fluctuations.
However, a more extensive scenario set makes the stochastic problem more complex since
the optimal solution must be found for all scenarios. The importance of scenario reduction
techniques shows here. The scenario reduction must be appropriate to capture the main
structure of the initial scenario set in the reduced set.

The problem of peak shaving using stochastic optimization is solved in [13] ; however, the
microgrid sizing is not included in their modeling. Sizing MG has benefits for MG operation
by defining the proper size of available components so the problem of stochastic optimization.
Another study considering two-stage stochastic optimization for sizing microgrid and opera-
tion in-home energy management is proposed in [14]. However, the previous work does not
discuss the scenario generation and reduction approaches. Scenario generation using GAN
is proposed in [15–23] for renewable energies and in [24] for load forecast error. Except [16]
which uses generated wind power scenarios for scheduling MG operation, other papers do
not use the generated scenarios in the field of MG.

Generally, the solution to the problem is based on sizing MG, defining the optimal operational
power flows, and considering peak shaving. Due to uncertainties associated with MG compo-
nents, this is typically a complex problem. There is a need for a way to capture uncertainties
adequately. The problem becomes even more complicated in the presence of a large number
of scenarios. Here a scenario reduction approach must be entered and explore whether the
solving procedure is more straightforward.
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1.3 Research objectives and Contributions

This study proposes a two-stage stochastic optimization approach to minimize microgrid
investment and operation costs, considering shaving the peak loads. It includes both sizing
and operation. The proposed method applied the scenario generation technique of conditional
Generative adversarial network (C-GAN) and the k-medoids scenario reduction to decrease
the complexity of the scenario analysis part. The method was tested on an actual case study
related to a university campus.

1. Develop a two-stage stochastic optimization strategy for reducing peak loads on a
university campus, considering MG investment and operational costs.

2. Develop a scenario generation technique incorporating conditional GAN for PV power
and load uncertainties.

3. Propose a scenario reduction strategy based on the K-medoids approach to lower the
stochastic optimization problem’s computing time.

4. Implement the suggested technique on a university campus in Montreal.

1.4 Outline of Dissertation

Chapter 1 of the thesis defines the background and motivation, problem statement, research
objectives and contributions, and the outline of the dissertation. In chapter 2, a literature
review is presented consisting of microgrid definition, sizing microgrids, energy management
system including available optimization approaches, stochastic optimization for microgrids,
and scenario generation and reduction. Chapter 3 includes the article of this work. A conclu-
sion and discussion, limitations, and future research opportunities are presented in chapter
4.
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CHAPTER 2 LITERATURE REVIEW

2.1 Microgrid definition

By increasing the world population, the energy demand raised. The conventional sources of
energy are limited, and due to increasing demand, the price of supplying energy using these
sources has also increased. Moreover, using fuel-based energy sources cause environmental
issues such as increasing greenhouse gas (GHG) emissions and global warming. These issues
inspired decision-makers to find new ways to include the available power resources in nature
to supply energy. A definition of the microgrid is widely used in the literature which is
developed for the U.S. Department of Energy by the Microgrid Exchange Group as : "[A
microgrid is a group of interconnected loads and distributed energy resources within clearly
defined electrical boundaries that acts as a single controllable entity with respect to the grid.
A microgrid can operate in both grid-connected or island mode [25]."

MGs are a group of distributed energy resources (DER), local loads, and storage systems.
Diesel generators, microturbines, fuel cells, and renewable generators (photovoltaic panels,
wind turbines, etc.) might be used as generation resources in microgrids. Moreover, electric
vehicles (EVs) can play an important role as energy providers and storage system. The
storage systems help MG consider the mismatches between available power generations and
demand [1, 4, 26]. Fig.2.1 shows a sample of a microgrid with different DER.

Figure 2.1 Microgrid distributed resources
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Microgrids have been widely used in recent years. Energy security, economic benefits, and
clean energy integration are the three primary factors pushing the microgrid integration in
buildings. MGs help increase networks and buildings’ ability to provide reliable energy and
flexibility at each moment [1, 4].
MGs have advantages for both utility providers and building owners. For utility providers,
MGs send the additional local generated power to the main grid. Moreover, during high-
demand hours, MGs assist the main grid in managing power flows. For the building owners,
MGs help to shave the peak and reduce electricity bill by providing power from on-site
generation and storage and reducing the power bought from the main grid [4].
MGs studies have two main components : sizing and operation [27]. The following literature
will discuss state-of-the art related to sizing MGs.

2.2 Sizing microgrids

MGs include renewable generation units (e.g., PV panels and wind turbines), conventional
power generation systems, electrical storage system (ESS), thermal storage system (TSS),
electrical and thermal loads [28]. PV-based MGs have been widely used microgrids in recent
years due to available solar energy worldwide. However, solar power depends on the envi-
ronmental conditions, and the PV-based MGs need a backup when there is no solar energy
available such as on cloudy days. Batteries play an important role here. Batteries store power
during off-peak hours and use it when the system needs it, especially during peak hours. To
design a MG, finding the optimal size of MG components is critical [29,30]. The current stu-
dies on MG sizing are in the form of optimization problems with the aims of minimizing the
cost of investment and power generation and decreasing the greenhouse gas (GHG) emissions.
Deterministic and stochastic approaches are available to solve the sizing problems. There are
a lot of technical, environmental and economical constraints which are feed to the algorithm.
Sizing problems are solved with a wide range of approaches. Fig.2.2 includes the available
approaches in the literature to solve sizing problems. The explanation of each method along
with the state-of-the art for each category is included in [29].

Table.2.1 shows some studies applying various approaches for sizing PV and battery in the
MG.

A novel approach for sizing MG for a residential building was proposed in [41], which the
demand response of home electrical applicants was considered. It consisted of PV panels,
wind turbines, and batteries. The problem was solved as a mixed-integer linear programming
(MILP) applied to a real case study in Okinawa [41].
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Figure 2.2 Microgrid sizing optimization methods

Table 2.1 Some literature works related to differnt sizing approaches

Reference Battery PV Method
[31] X X Numerical
[32] X X Probabilistic
[33] X X Analytical
[34] X X Analytical
[35] X X Iterative
[36] X X Linear programming
[37] X X Linear programming
[38] X X Trade off
[39] X X Multi objective
[40] X X Artificial intelligence

A study was developed in [42] for sizing the battery in a PV-battery MG and defining its
optimal operation. The MG also includes diesel generator and wind turbine.

The sizing and placement of the battery in a PV-based MG using Genetic Algorithm Linear
Programming (GALP) are investigated in [43]. The battery’s daily charging or discharging
schedule is proposed while minimizing the cost of energy flow. A study for optimal sizing and
capacity of battery and PV is developed in [44]. The approach was implemented in a real
household case study ; however, the method was not in the form of an optimization problem.

Bi-level stochastic programming was proposed to size the battery and assess its operation in
a MG with the presence of PV generations. The advantages of the battery were discussed by
testing the system with PV and with or without battery storage system [45].

A sizing of PV-battery system for residential households is proposed in [46] to investigate
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the economic aspects of applying such a system. It is shown that the profits increased if the
battery was added to the PV system.

In [47], a study is conducted to find the optimal size of a PV-battery system for households.
The strategy is proposed as two configurations, PV panels alone and one that combines both
PV and battery. The practical operation is applied to real cases in Australia.

Another study was proposed in [48] to indicate the optimal sizing of PV and battery as the
"here-and-now" decisions in addition to minimizing the operational cost as "wait-and-see"
decisions. The problem has been formulated as two-stage robust optimization considering
the uncertainties of PV and load for residential buildings.

Two-stage stochastic programming was proposed for optimal sizing and planning MG in a
residential building. The first stage aims to optimal investment cost while the second stage
solves to get to the optimal solution for system operation cost. The scenario generation me-
thod has not been discussed ; however, it is mentioned that six typical scenarios are considered
for the whole year, which multiplied total stochastic formulation by 365 days [14].

2.3 Energy management system in microgrids

The energy management system (EMS) in MGs has the role of controlling the powers of
the buildings. EMS in MGs is responsible for providing an optimal scheme in which the
power is supplied by the available energy resources such as RES, ESS, etc. A comprehensive
review of energy management system techniques from different perspectives in [7] considered
the available approaches for EMS strategies in the state-of-the art as three main classes :
classical, heuristic, and intelligent techniques. In this study, the classical methods applied in
EMS will be discussed.

Classical methods include minimizing/maximizing an objective function formulated as li-
near/nonlinear problems to deal with the problem’s constraints and find the decision va-
riables. The classical methods can be categorized into certainty and uncertainty problems.
The available approaches for certainty problems are linear programming (LP), mixed integer
programming (MIP) and nonlinear programming (NLP) [49, 50], Mixed-integer linear pro-
gramming (MILP) [51–56] and mixed integer nonlinear programming (MINLP) [57,58]. The
uncertainty problems are solved using dynamic programming (DP) [59, 60] and stochastic
programming (SP) [7].

This work focuses on stochastic programming approaches applied in EMS in MGs.
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Figure 2.3 Numerical methodologies in EMS of MGs

2.4 Stochastic optimization for MGs

Stochastic programming (optimization) techniques are used to solve optimization problems
tackled with uncertainties. The uncertainties are captured with scenario analysis methods.
The importance of scenario realization approaches is to capture the uncertain behaviors of
parameters in stochastic optimization [14].

An algorithm to address the optimal energy exchange optimization of MGs in the distri-
bution network is proposed in [21], considering the load consumption and renewable power
generation uncertainties. This work also proposed a new method for energy exchange opti-
mization that consider the economic, reliability, and effect of different risk strategies on the
operation of MGs. They generated the scenarios from PDF of uncertain parameters. They
reduced the 2000 scenarios into 30 by utilizing the scenario reduction method to simplify the
computations.

In [6], the combination of MILP and stochastic chance-constraint optimization is applied
on EMS on MG with on-site storage, renewable sources, and electric vehicles. However, the
scenario analysis is not mentioned in their work. They concluded that the stochastic approach
was better than a non-stochastic model in all charging cases.

An approach consisting of deterministic model predictive control (MPC) and stochastic MPC
(SMPC) to address the problem of optimal energy management in grid-connected microgrids
is proposed in [61]. However, scenario generation and reduction techniques are not discussed
in this work.
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A new approach proposed in [62] by a two-stage hierarchical energy management system for
smart homes considering both day-ahead and actual operation stages. The authors mode-
led the PV solar generation as the uncertainty in the research. They used Beta probability
density function and formulated the PV generations, and used Wasserstein distance-based
scenario generation and K-medoids-based scenario reduction for scenario generation and re-
duction, respectively. The case study was a home energy management (HEM) system that
used MATLAB optimization toolbox to solve.

The coordination problem between the plug-in electric vehicle (PEV) and wind power in MG
is assessed in [63]. A two-layer stochastic control method that balances the power supply and
demand in the first layer and then sends the power references to the second layer to control
the system is proposed. An online probabilistic wind power forecasting method is proposed
to manage the uncertainty of wind power in the controller design.

A stochastic model predictive control (SMPC) method for optimal scheduling of microgrid
considering the uncertainties of both supply (renewable generation uncertainties) and demand
(utility of load demand uncertainty) is presented in [64]. They modeled the uncertainties of
wind power by the non-Gaussian predictive distribution.

A stochastic optimization model considering the uncertainties of PV and load for day-ahead
scheduling of distributed energy resources in a microgrid is proposed in [65]. They used the
Monte-Carlo technique for scenario generation by using a three-month historical period to
calculate the quantiles and the covariance matrix to generate Normal Gaussian scenarios.
They also used probabilistic distance and fast forward selection methods for scenario reduc-
tion.

A two-stage robust optimization model to address the joint optimization of day-ahead and
uncertain near the real-time operation of microgrids is presented in [66]. They used Mixed
Integer Linear Programming (MILP) in the first stage to model the day-ahead problem. They
also used robust modeling of the uncertainties to model the uncertain real-time operation
in the second stage. They considered the uncertainties of renewable energy resources (in
their case studies, they just considered wind turbines) and real-time market price without
discussing scenario generation or reduction approach.

A two-stage stochastic optimization method for optimal scheduling of microgrids in the short-
term time scale with interdependent electricity and natural gas networks is proposed in [67].
They used the PDFs of renewable energies to capture the uncertainties, define the scenarios,
and use the SCENRED tool/GAMS method to reduce the number of scenarios.

Optimal operation of microgrids with the presence of renewable energy sources and demand
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response using stochastic optimization is studied in [68]. The authors used a scenario tree
to create the scenarios using the probability density function of Weibull, Beta, and Normal
distribution,. A scenario reduction method based on DE (Differential Evolution) was used to
reduce the number of scenarios.

Another study is proposed in [69] in which the uncertainty of electricity consumption in a mi-
crogrid is presented. The two-stage stochastic programming is addressed in which the battery
capacity and operational decisions were considered in the first and second stages, respectively.
They considered wind, PV, and electricity demand uncertainties in the optimization model.
The authors did not use any specific scenario generation or reduction method.

A two-stage approach for an energy management system to minimize the operation cost of a
network of microgrids is developed in [70]. The first stage is an hour ahead, and the second
stage is related to a 5-min time resolution schedule, respectively. The authors considered
the uncertainties of wind and solar power as Beta distribution and the uncertainties of load
and price as a Gaussian distribution function and used the backward method for scenario
reduction.

As discussed so far, uncertainty modeling in stochastic optimization approaches applied to
MG is critical. Uncertainty modeling supports the energy management system to present
uncertainty of parameters including output power of RES, loads, electricity price and fossil
fuel price [71] which affects both planning and operation of EMS. Probabilistic, possibilistic,
interval analysis, and scenario analysis methods are available for modeling uncertainties.
Scenario analysis is the most effective method among all other approaches. Scenario analysis
methods provide a scenario set made by the possible values of the uncertain parameters
in the future assigned with a probability of occurrence. Scenario generation and scenario
reduction are subsets of scenario analysis [10]. In the following sections, scenario generation
and reduction methods will be discussed.

2.4.1 Scenario generation techniques

A comprehensive review of scenario generation methods is presented in [10]. Scenario gene-
ration methods are divided in two main subsets : Parametric and non-parametric scenario
generation methods [10]. However, in [72] another subset entitled learning-based methods,
is presented including NN-based models. Figure.2.4 shows a summary of available scenario
generation methods.

Parametric methods are specified by the characteristics of the input (historical data). It
is divided into two main groups : uncertain feature modeling and scenario sampling. Due
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Figure 2.4 Summary of scenario generation methods

to uncertain model features, some methods use probability distribution functions (PDF) of
uncertain parameters to generate scenarios. Weibull, Beta, Gamma, lognormal and normal
distributions are the PDFs introduced to capture the uncertainty of one parameter in the
literature [21, 67, 68, 70]. Other probabilistic methods are developed to include the joint un-
certainties of more than one parameter in cases of correlation between uncertain parameters,
for example, wind and solar, solar and load, etc. [6, 65]. More information on such methods
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is available in [10]. The references [65] and [6] proposed Monte Carlo scenario sampling me-
thods for scenario generation in smart grid. The probabilistic methods cannot capture the
uncertainties well since the predetermined distributions are limited, and in some cases, they
need massive data set to be considered as inputs [10].

Non-parametric methods assign each input data to a scenario using distribution-free ap-
proaches such as quantile regression, kernel density estimation, and Markov chain [72].
Neural network (NN) based models are a subset of non-parametric approaches in [10] and
in [72] in the group of learning-based models. The accuracy of NN-based methods is high,
and they are mainly applied to generate RES scenarios than load. Feed-forward NN, artifi-
cial NN, Long-short term memory (LSTM), and Generative adversarial network (GAN) are
NN-based models for scenario generation. Compared with probabilistic sampling and avai-
lable non-parametric methods, NN-based models can illustrate the non-linearity aspects of
scenarios ; however, it is more complex to learn a fitted model well [10].

In [23], GAN was applied for scenario generation of wind power and solar radiation for the
first time. In [73], and [19], GAN was applied to generate wind power scenarios. Another
study proposed to generate wind power scenarios for multiple wind farms using conditional
Wasserstein GAN (C-WGAN) [18]. In [74], GAN proposed to generate PV power forecasting
and concluded that GAN performs well in generating new data for the day-ahead prediction
horizon. GAN proposed to generate scenarios of wind power and solar radiation in [17], [20]
and [75]. However, the application of the generated scenarios is not shown in the optimization
problems of smart grids in the previous papers.
A sequence GAN was proposed in [16] to generate wind power scenarios and analyze a MG
operation case study. However, the stochastic modeling of the optimization problem as well as
the modeling of the constraints is not discussed in detail. The results showed the performance
of GAN besides kernel density estimation and Gaussian distribution.
Compared to applications of GAN to RES scenario generation, a few studies proposed GAN
for scenario generation of load. [24] used C-GAN to capture load forecast uncertainties.
However, the generated scenarios have not been analyzed in MG scheduling case studies.

It is worth mentioning that a few studies use scenario generation techniques for weekly,
monthly, or yearly time horizons, and most of them are for day-ahead simulations. In addition,
due to the vast computational time of solving stochastic problems in the presence of scenarios,
scenario reduction techniques must be used to decrease the complexity of problems [10].
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2.4.2 Scenario reduction techniques

Scenario reduction is the technique that allows reducing the original number of scenario set
into a smaller set so that the characteristics of the original set are saved. Scenario reduction
methods are needed to computationally enhance solving the optimization problems when
the scenario set is extensive. However, the reduction method must be efficient and properly
capture the uncertainties [10]. The available reduction techniques include reduction based on
scenario-distance [21,76], scenario tree [67,70], clustering reduction [14,62,68] techniques, and
reduction using optimization methods. All methods other than clustering-based techniques
are still time-consuming and expensive in terms of reducing the large scenario set [10].

Figure 2.5 Summary of scenario reduction methods
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CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT

In this chapter, the general organization of the dissertation according to research objectives
is presented.

Chapter 1 includes the introduction of the dissertation in which the background and motiva-
tion of the research, as well as the problem and research objectives, are presented. In chapter
2, microgrid context, sizing of MG’s components, and various optimization approaches to
solve the problem were reviewed. In particular stochastic optimization for MGs along with
scenario generation and reduction techniques have been reviewed. In chapter 4, the main
body of this study is included. It is stochastic optimization for peak load shaving in MG of
district buildings with a focus on scenario generation and reduction methods, including both
sizing and operation in MG.

In the existed studies, the problem of sizing and operation of MG was presented. Some studies
considered the uncertain parameters in MG operation. Peak shaving was a part of objectives
in some previous works. But managing all these aspects of MG is critical. Hence in chapter
4, a novel approach that provides sizing, operation, scenario generation, and reduction with
the aim of extending the method to a real case study of district buildings has been proposed.

In chapter 5, the general discussion of the proposed methodology and the extracted results
have been conducted. In chapter 6, the summary of works as well as the limitation and future
research opportunities have been presented.
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CHAPTER 4 ARTICLE 1 STOCHASTIC OPTIMIZATION AND
SCENARIO GENERATION FOR PEAK LOAD SHAVING IN SMART

DISTRICT MICROGRID SIZING AND OPERATION

Authors : Fatemeh Bagheri, Hanane Dagdougui, Michel Gendreau
Manuscript submitted to : Energy and Buildings, 2022

Abstract : Microgrids play an essential role in the integration of multiple distributed energy
resources in buildings. They can meet critical loads in buildings while reducing peak loads
and congestion and providing other types of ancillary services to the main electrical grid.
Sizing the components of microgrids and scheduling their optimal operation while jointly
integrating uncertain renewable energy generation and loads can significantly affect its ability
to meet these objectives. In fact, microgrids face great challenges due to renewable energies
and load uncertainties. In this paper, a two-stage stochastic programming model for optimal
sizing and operation of various distributed energy resources for peak load shaving in district
buildings is proposed. The first stage is related to the planning of photovoltaic panels and
batteries, while the second stage aims to find the optimal operation of the system in grid-
connected mode. The uncertainties are related to photovoltaic power generation and loads.
The Generative Adversarial Network (GAN) is implemented to generate the scenarios of
uncertain parameters, and the k-medoids classical method for scenario reduction is applied
to decrease the number of scenarios. The proposed two-stage stochastic optimization is tested
for a real case study of a university campus in Canada.

Keywords : Energy Management, Microgrid, Sizing, Operation, Scenario generation, Scenario
reduction, Peak load shaving, Two-stage stochastic optimization

4.1 Introduction

Distribution systems around the world are undergoing significant transformations in their
operation, portrayed by significant active asset driven entities, integration of Distributed
Energy Resources (DER), and digital and cloud computing technologies. In this regard, buil-
dings are important to grid modernization, playing a vital role to help balance energy use
during the time of peak demand through appropriate aggregation and coordination mecha-
nisms. The growing integration of on-site assets like solar photovoltaic (PV) panels and
storage systems into buildings has demonstrated its enormous economical and environmental

:

:
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Nomenclatures
Symbols
PV : Photovoltaic panel
ESS : Energy storage system
STC : Standard Test Conditions
MG : Microgrid
EMS : Energy management system
RES : Renewable energy sources
B : Battery energy storage system
C : Cost
i/I : Time slot set i=1,...,I
s/S : Scenario set s=1,...,S

Parameters
CP V : The investment cost of PV panel ($/m2)
CB : The investment cost of battery ($/KWh)
Li,s : Building load at time slot i and scenario s
P P V

i,s : The PV output power of unit panel (1m2) rated at 200 W
ρs : The probability of scenario s
AMax

P V ,BMax : Limit size of PV installation area and battery energy capacity
∆T : Controlling time interval
ηch,ηdch : The battery charging and discharging efficiency

Variables
SB : The installation energy capacity of the battery
SP V : The installation size of the PV panel
P P V,G

i,s : The power flow from PV to the grid at time i in scenario s
P P V,B,ch

i,s : The power flow from PV to the battery at time i in scenario s
P P V,L

i,s : The power flow from PV to the load at time i in scenario s
PBL,dch

i,s : The power flow from battery to the load at time i in scenario s
PGL

i,s : The power flow from grid to the load at time i in scenario s
PGB,ch

i,s : The power flow from grid to the battery at time i in scenario s
PGLP

i,s : The power flow from grid to the load at time i in scenario s during peaks when
the battery and PV can not satisfy all loads

benefits [77,78]. Consequently, the local flexibility should be efficiently managed by buildings’
operators in a way that minimizes the adverse effects on the power system and reduces energy
consumption. When the pricing mechanism depends on the declared maximum peak load,
such as for industrial, commercial and institutional buildings, the reduction of peak demand
is a powerful solution for the grid and buildings operators. There are various approaches
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to Peak Load Shaving (PLS), they usually depend on pricing mechanisms and the deployed
DER and demand side-management strategies. In [67,79,80], three PLS strategies are discus-
sed based on energy storage system (ESS), electric vehicles and demand side management. In
particular, Building MicroGrid (BMG) with PV and energy storage systems is a key solution
that enables buildings to fully employ the available ressources to reduce/shave the peak load,
while maintaining the local comfort. MG is a group of DER together with energy storage
systems (ESS) and loads that can be operate in islanded or grid-connected modes [81]. The
main purpose of using MG is to enhance the flexibility of buildings to reduce their peak
load and thus minimizing the electricity bill. In this regard, the available flexibility of the
MG is also highly dependent on the size of microgrid’s components. The desire of building
operators is to decrease the investment costs of MG while, ensuring significant peak shaving.
Hence, it is of high importance to reach an optimal system configuration to avoid oversizing
or undersizing microgrids and reach an overall system size and cost. The high uncertainties
related to RES [82] and loads [83], makes the sizing and operation of MGs in the context of
buildings a challenging task.

Several methods have been proposed to size [84–86] and control microgrids [87–90]. In this
perspective, the RES and loads have uncertainties which must be considered to define the
optimal sizing of the renewable generators [91]. In this case, deterministic optimization ap-
proaches could not be used to solve such problem since uncertainties are made of probabilities
and it needs to handled with appropriate tools such as stochastic methods [92]. One of the
main characteristic of solving stochastic optimization is the existence of a probability distri-
bution of the uncertain parameter. The high computational complexity of stochastic opti-
mization is related to the number of uncertain parameters, which increases dramatically the
number of scenarios involved in the optimization [93]. To avoid the large computational com-
plexity, scenario reduction techniques are required to decrease the number of scenarios [94].

There is a vast body of literature on the application of stochastic optimization approaches to
optimal power flow (OPF-based) problems, which is investigated and reviewed in this paper.

4.2 Literature review

This section presents the literature review covering the application of stochastic optimization
in the field of MGs. The type of available uncertainties in the system is discussed as well as
the scenario generation and reduction approaches. At the end of the section, research gap
will be identified.
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4.2.1 Stochastic optimization for MGs operation

There has been a rich number of research papers addressing the energy management issues
of MGs. Stochastic optimization approaches for optimal MG operation with the presence
of uncertainties have been carried out. Luo et al. [62] investigated a two-stage hierarchical
energy management system for smart homes considering both day-ahead and actual operation
stages. Despite of author’s efforts to apply the scenario generation and reduction of PV ge-
neration scenarios, they did not include the uncertainties related to the load. Aboli et al. [66]
proposed a two-stage stochastic model to address the joint optimization of day-ahead and
uncertain real-time operation of MGs combining mixed-integer linear programming (MILP)
and robust optimization. They considered the uncertainties of RES and real-time market
price with no implementation of scenario generation or reduction techniques. Sedighizadeh
et al. [68] addressed the stochastic problem of optimal operation of MGs with the presence of
RES and future electricity demand. The authors made scenario tree using probability distri-
bution functions (PDFs) and reached a logical number of scenarios using differential evolution
scenario reduction method. The majority of their work was focused on the operation of MGs
and not sizing. Wang et al. [70] developed a two-stage approach for an energy management
system considering the uncertainties of RES and load. PDF and Backward method are ap-
plied for scenario generation and reduction respectively. Zhang et al. [95] developed an online
learning-based control algorithm to address the MG energy dispatching problem with random
renewable generation and EVs usage pattern. In their work the patterns of energy generation,
consumption and storage availability are all random and unknown at the beginning, and the
MG controller is formulated as a Markov Decision Process (MDP). Shams et al. [67] pre-
sented a two-stage stochastic optimization method for optimal scheduling of MGs. Authors
considered RES as well as electrical and thermal demands. PDFs related to RES are used to
capture the uncertainties and define the scenarios. Kou et al. [64] proposed a stochastic model
predictive control method to optimally schedule MGs considering the joint uncertainties of
RES and load. In [63], authors addressed a similar problem with the existence of RES and
plug-in electric vehicles (PEV) uncertainties, where an assessment of the coordination bet-
ween the PEV and wind power in MGs is considered. They proposed a two-layer stochastic
control method which balances the power supply and demand in the first layer and then sends
the power references to the second layer to control the system. An online probabilistic wind
power forecasting method is implemented to manage wind power uncertainty. Gazijahani et
al. [21] proposed an algorithm for optimal energy exchange optimization of MGs in 24 hour-
ahead using stochastic formulation. The stochastic modelling of RES and load consumption
are considered in their three risk-based strategies. The main focus in their objective function
is assessing various risk strategies in MGs considering the financial and economical ones.
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Ravichandran et al. [6] proposed a MILP and a stochastic chance-constrained optimization
for online optimal power control in MGs. They considered uncertainties related to electric
vehicles connection and disconnection times to MGs as well as RES. Scenario reduction me-
thods has not been applied in this work. Silve et al. [65] proposed a stochastic optimization
model considering the uncertainties of RES and load. Monte Carlo technique for scenario
generation, probabilistic distance and fast forward selection methods are used. Lazaroiu et
al. [96] used both stochastic and deterministic approaches to solve an optimization problem
in MG in the presence of uncertainties related to RES. However, scenario generation or re-
duction techniques are not deployed in this work. Cominesi et al. [97] proposed a two-layer
method consisting of deterministic model predictive control (MPC) as the higher level and
stochastic MPC as the lower level. The stochastic MPC (online) is applied each 1 min and
with time step of 15 min to control the uncertainties effect on the optimization problem
while the higher level (offline) economically optimize the problem. However, the potential of
scenario generation was not exploited in their work.

4.2.2 Planning and sizing MGs

Some works in the literature investigated both sizing and optimal operation of microgrids.
Prathapaneni and Detroja [98] proposed an integrated planning and operation approach for
an islanded MG with the presence of distributed renewable energy generators. They employed
sizing to find the optimal sizes of diesel generators, PV panels and batteries. The approach was
not stochastic optimization but considered the uncertainties of load and RES in sizing MG.
Zheng et al. [14] proposed a multi-year two-stage stochastic optimization problem considering
both sizing and operation. Their paper comprises work concerned with developing a method
for maximizing benefit for residential building owners taking into account the inflation rates
in prices during the years. The approach was tested on public IEEE data set and does not
fully consider the problems that can appear in real situations. In [27], the authors investigated
a method for sizing MG in order to minimize the annual costs, greenhouse gas emissions and
energy losses, while maximizing the annual benefit due to the deferral of upgrades. The MGs’
components were sized and applied on scheduling MG operation using Gray Wolf Optimizer
approach. In [99], the authors constructed an algorithm to optimize the size of PV panels,
wind turbines, fuel cell and diesel generator aiming to minimize the total costs and the
total greenhouse gas emissions of the MG. However, the uncertainties of the RES parameters
is not considered. The method presented in [100] is about optimal sizing and planning of
PV-battery systems using non-stochastic method. It was worth mentioning that the method
performs well for different tariff structures which are considered in their work. In [101] the
objective of the investigation is to size a hybrid system based on PV, wind turbine, diesel and
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battery with the aim of minimizing the net present and emission costs while the uncertainties
of the components is not included in their work.

4.2.3 Uncertainties modelling in MGs

Scenario generation methods are divided in two main subsets : parametric and non-parametric
scenario generation methods [10]. However, in [72] another subset entitled learning-based
method, is presented including NN-based models. Parametric methods are specified by the
characteristics of the input (historical data). It is divided into two main groups : uncertain
feature modeling and scenario sampling. Due to uncertain model features, some methods use
probability distribution functions (PDF) of uncertain parameters to generate scenarios. Wei-
bull, Beta, Gamma, lognormal and normal distributions are the PDFs introduced to capture
the uncertainty of one parameter in the literature [21, 67, 68, 70]. The probabilistic methods
cannot capture the uncertainties well since the predetermined distributions are limited, and
in some cases, they need massive data set to be considered as inputs [10]. Non-parametric
methods assign each input data to a scenario using distribution-free approaches such as quan-
tile regression, kernel density estimation, and Markov chain [72].
Neural network (NN) based models are a subset of non-parametric approaches in [10] and
in [72] in the group of learning-based models. The accuracy of NN-based methods is high,
and they are mainly applied to generate RES scenarios than load. Feed-forward NN, artificial
NN, Long-short term memory (LSTM), and Generative adversarial network (GAN) are NN-
based models for scenario generation. Compared with probabilistic sampling and available
non-parametric methods, NN-based models can illustrate the non-linearity aspects of scena-
rios ; however, it is more complex to learn a fitted model well [10]. It is worth mentioning that
a few studies use scenario generation techniques for weekly, monthly, or yearly time horizons,
and most of them are for day-ahead simulations. In addition, due to the vast computational
time of solving stochastic problems in the presence of scenarios, scenario reduction techniques
must be used to decrease the complexity of problems [10]. A number of uncertainties models
are proposed to include RES and load uncertainties in MGs. In [102], the interval prediction
technique, which includes point forecast combined with a forecast error, is used to model the
lower/upper bounds of uncertainties. The authors proposed orthogonal array (OA) to find
the possible scenario set. Defining the PDF of forecast error in addition to finding suitable
OA matrix are the challenges of their method. In [62], a Wasserstein distance-based scenario
generation attached with the PDF of the PV solar power is employed for generating scena-
rios. The beta distribution is selected to define the characteristics of solar radiation and is
discredited by Wasserstein method. In [21,67,68,70], PDFs of uncertain parameters are used
for generating scenarios. In [6,65], the authors proposed Monte Carlo simulation in order to
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generate the scenarios.
It is worth that the aforementioned approaches depend on the distributions of the uncertain
parameters. Defining the most exact distribution applied to historical data is critical specially
in planning and operation of MGs. Using the predetermined PDFs leads to apparent losses
in generating realistic scenarios. Most of the approaches can not capture the non-linearity of
historical data. GAN is a type of Neural Network-based model which is distribution-free, and
there is no need to know the PDFs of uncertain parameters before scenario generation. In
GAN, the randomness of the parameters is described well due to generating scenarios. Mo-
reover, the non-linearity correlations could be considered to generate realistic scenarios [10].
Chen et al. [23] used GAN to generate scenarios of RES consisting of wind speed and solar
radiation for the first time. Jiang et al. [73] and Yuan et al. [19] used GAN for generating
wind power scenarios. Zhang et al. [18] proposed a conditional GAN to generate wind power
scenarios for muti-locations. Wang et al. [74] proposed GAN to generate PV power forecasting
and concluded that GAN performs well in generating new data for the day-ahead prediction
horizon. Dong et al. [17], Qiao et al. [20] and Chen et al. [75] proposed GAN to generate
scenarios of wind power and solar radiation. However, the application of the generated sce-
narios is not shown in the optimization problems of smart grids in previous literature. Yang
et al. [103] generated the electric vehicle charging uncertainties via GAN. Wang et al. [24]
modeled the load uncertainty using conditional GAN. Liang et al. [16] generated wind power
scenarios and studied the performance of generated scenarios in a MG operation case study.
However, the stochastic modeling of the optimization problem is not discussed. As far as we
know from the literature, no work used GAN scenario generation in MGs for peak shaving
using stochastic optimization.

4.2.4 Peak load shaving and reduction

One of the most critical energy management strategies in the context of buildings is peak
shaving (or reduction). Various peak shaving strategies have been proposed in the literature.
These studies focused on presenting a set of options to better control the building’s peak
load. In [104], the authors presented a MPC approach to shave the peak using battery for a
household with the presence of PV system in a low voltage grid. The main objective of their
work is to maximize the contribution of the battery and peak shaving in a single electri-
city price scenario. They implemented uncertainties related PV generation in the modeling,
however the approach did not include finding the suitable sizing for technologies. In [105],
the role of battery, i.e. size and operational decisions, on peak shaving is evaluated simulta-
neously with the goal of reducing the load demand. The problem was solved using a linear
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programming without considering effects of uncertainties in the proposed model. In [106],
the authors proposed modeling, simulation, and sizing problem of an energy storage system
for residential electricity peak shaving. Despite considering sizing problem, authors did not
exploit the potential of RES as a complimentary option to support peak shaving and charge
the batteries. In [107], the authors released a method to size MG with the prediction of load
and PV generation. However, the uncertainties of PV generation and load were not discussed
in their work. In [108], authors proposed a mathematical model to shave the peak by schedu-
ling the charging/discharging process in EV. The model considered EV energy requirements,
arrival and departure times, power charging/discharging and battery constraints without any
RES integration. A method to shave the peak in a local electricity system in the presence
of RES and energy storage system is proposed in [109]. A scenario tree approach is used for
scenario generation while assuming equal probabilities.

4.2.5 Research gap and major contributions

A closer look to the literature reveals a number of gaps and shortcomings in the topic of
MGs. Table.4.1 includes a summary of literature. There is clearly an increasing need and
scope for simultaneously sizing and operating MGs with the aim of peak shaving in buil-
dings. Given the rising prevalence of stochastic optimization, there is an essential need to
generate accurate scenarios, while reducing the computational complexities. To the best of
our knowledge, this study is the second attempt to use GAN scenarios generation technique
for the two-stage stochastic programming in MGs. The first attempt was in [16], which uses
sequence-GAN to generate wind power scenarios and use them for MG scheduling. This work
is conducted in response to the need to an approach which includes sizing, operation, peak
shaving, stochastic optimization and scenario generation and reduction in the field of MGs.
The major contributions of our work are as follows :

1. Develop a two-stage stochastic optimization approach for a university campus to reduce
peak loads, while considering MG investment and maintenance costs.

2. Develop a scenario generation approach utilising conditional GAN to capture the un-
certainties of PV power and load.

3. Propose a scenario reduction approach based on the K-medoids approach to reduce the
computing time of the stochastic optimization problem.

4. Simulate the proposed approach using real-world data on a University campus in Mon-
treal region.
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Table 4.1 Summary of literature

Reference Publication
year

MG
characteristics

Grid
connection

mode

Sizing
and

operation
Uncertainty Scenario

generation
Scenario
reduction

Peak
Shaving Objective function

RES ESS Industrial/
residential load Connected RES Load

Cominesi et al. [97] 2015 X X X X —– X X —– —– —– minimize the
operational cost

Lazaroiu et al. [96] 2016 X X X X —– X —– —– —– —– minimize the
operational cost

Kou et al. [63] 2016 X —– —– X —– X —– —– —– —–

minimize the
power exchange
between MG
and main-grid

Silva et al. [65] 2018 X X X X —– X X Monte Carlo —– —– minimize the
operation cost

Wang et al. [70] 2018 X X X X —– X X PDF Backward selection
method —– minimize system

operation cost

Gazijahani et al. [21] 2018 X X X X —– X X PDF Kantorovich
distance —–

minimize operation
and maintenance cost/
minimize the energy

not-supplied

Ravichandran et al. [6] 2018 X X —– X —– X —– Monte Carlo —– —– maximize the
economical benefit

Zhang et al. [95] 2018 X X X X —– X —– —– —– —– minimize the
operation cost

Shams et al. [67] 2018 X X X X —– X X PDF Forward selection
method —– minimize the

operation cost

Kou et al. [64] 2018 X —– X X —– X X —– —– —– minimize the
operation cost

Luo et al. [62] 2019 X X X X —– X —–
Wasserstein
distance
metric

K-medoids —–
minimize the

home electricity
cost

Aboli et al. [66] 2019 X X —– X —– X —– —– —– —– minimize operational
cost of controllable units

Sedighizadeh et al. [68] 2019 X X X X —– X X PDF Deferential Evolution
(DE) clustering —– minimize operational

cost and emissions

Liang & Tang. [16] 2020 X —– X —– —– X —– SeqGAN —– —– minimize
operation cost

Nieta et al. [109] 2021 X X X X —– X X —– —– X
minimize

operation cost

Zheng et al. [14] 2021 X X X X X X X —– K-means —– maximize
net benefit

Current work 2022 X X X X X X X C-GAN K-medoids X
minimize operational cost

and
peak shaving

4.3 Methodological approach

4.3.1 Uncertainty modeling

For handling the uncertainties related to the stochastic programming approach, two main
procedures are required. First, the scenarios associated to PV power generation and loads
are generated using Generative Adversarial Network (GAN). Second, given the large number
of generated scenarios, an approach for scenario reduction is employed.

Scenario generation : Generative Adversarial Networks (GANs)

The theory of Generative adversarial networks (GAN) was originally proposed by Goodfellow
[110]. A review of the theoretical part of GAN is presented by Li et al. [111]. The idea of
GAN is to launch a MinMax game between two interconnected networks i.e., generator (G)
and discriminator (D). Fig.4.1 shows the structure of GAN. Compared with the classical
scenario generation methods, GAN does not need to know the predetermined distributions
of the inputs (historical data). The generator (G) learns the distribution of real samples
in order to generate new samples based on noise inputs that comes from a known random
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distribution such as Gaussian or Uniform. The discriminator (D) tries to find out if the data
is categorized in real historical data or generated data by GAN.

The generator and discriminator train simultaneously. The generator tries to minimize the
difference between generated and real samples. Hence, the samples become more realistic
while the discriminator tries to maximize the probability of distinguishing whether a sample
is real. Meanwhile, the discriminator aims to minimize the probability of indicating that the
sample is generated.

The conditional GAN (C-GAN) is a development of GAN which is proposed by [112]. In
C-GAN, the input data to the generator is in the form of the historical data in addition
to a label. The labels indicates the information of the classes. Discriminator also takes the
generated samples as well as real historical samples attached with the labels to distinguish
whether a sample from a specific class is generated or real. Fig.4.1 shows the architecture of
C-GAN, that includes other inputs as class labels in addition to historical data.

Figure 4.1 GAN basic architecture

Scenario reduction : K-medoids

Due to the large number of generated scenarios and to compromise between the solution
accuracy and computational burden, scenario reduction methods are employed. Scenario
reduction helps to decrease the total number of scenarios to a feasible number to decrease
the run-time of the algorithm and computationally reduce the algorithm [18, 113–115]. The
idea of the proposed method is to group the reduced scenarios into k clusters [18]. The
reduced scenarios set will be defined by solving an optimization problem :

∑
gm∈gd

mingn /∈gd
d(gm, gn)
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where gm and gn are two scenarios of total scenario set G. gd is the reduced scenario set that
has k scenarios. d(gm, gn) is the distance between two scenarios. As indicated in [18], this
method uses the idea of k−medoids clustering in which the problem decreases the distance
between the medoids and other scenarios in related cluster. The medoids are the points of
the whole scenario set and have the lowest average dissimilarity to the entire scenario set.
All other scenario data are assigned to the clusters with minimum distance with its medoids.
In the clusters, a non-medoid data is selected, and the cost of substituting the new medoid
with the old one is determined. This process is repeated till the most representative medoids
have been selected for each cluster [116]. By solving this program, the minimum number of
scenario vectors that are similar to the initial set will be obtained.

4.3.2 Mathematical modeling

In this section, the mathematical formulation of the optimization problem will be discussed.
In this work, the two-stage stochastic optimization approach is proposed.

Two-stage stochastic energy management problem formulation

In the current work, a two-stage stochastic programming formulation is developed to model
the load and PV uncertainties. Fig.4.3 shows the architecture of the corresponding microgrid.
The determination of the optimal size of the MG components is one of the objectives of the
current work. The large power consumer pricing scheme (LG) [117] is the basic price consi-
dered to supply power for the system. Fig.4.2 shows the simulation process of the proposed
approach.

Objective function

The objective of the first stage is to minimize the investment costs related to MG, while for
the second stage, the aim is to minimize the monthly operation costs taking into account the
peak shaving strategy (Eq.4.1).

Min(Obj) =CRF × (SP VCP V + SBCB)+

SP VCP V
mnt + SBCB

mnt+
Ns∑
s=1

ρs × {
I∑

i=1
Cbuy · PGLP

i,s }

(4.1)

The two first terms of the objective are related to the first stage, i.e., the capital and main-
tenance costs for the selected PV and battery system. The capital recovery factor (CRF ) is
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Figure 4.2 Simulation process

used to convert the initial capital cost to an annual capital cost [118], which accounts for the
actual interest rate (r) and the expected lifetime of the microgrid (ninv). In this study we
considered r = 0.06 and ninv = 20 years. SP V (m2) and SB (kWh) are the installation area
of PV panels and battery capacity respectively while CP V ($/m2) and CB ($/kWh) are the
initial capital costs of the PV and battery units. CP V

mnt and CB
mnt is the annual maintenance

costs of PV and battery units which are considered as 10% of the investment costs.

CRF = r(1 + r)ninv

(1 + r)ninv − 1 (4.2)

The second stage which includes the scenarios aims to minimize the operational costs. ρs is
the probability of scenarios, Ns is the total number of scenarios in each month, Cbuy is the
cost of purchasing power from the main grid and PGLP

i,s is the power purchased from the main
grid during peak hours, i.e., after 5 MW threshold. The objective is to minimize the PGLP

i,s

considering the PV power and the power stored in the battery in peak times.

The decision variables are :
P P V,G

i,s : power sent from PV to the main grid
P P V,B,ch

i,s : power sent from PV to charge the battery system
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P P V,L
i,s : power sent from PV to satisfy building load
PBG

i,s : power sent from battery to the main grid
PBL,dch

i,s : power sent from the battery to satisfy building load
PGB,ch

i,s : power sent from the main grid to battery
PGL

i,s : power sent from the main grid to building load in off-peak hours
PGLP

i,s : power sent from the main grid to building during peak hours.
SP V : total size of PV installation area
SB : total battery capacity size

Constraints

The battery charging/discharging process is modeled by Eq.4.3 in scenario s at time i. It
is assumed that the batteries can be charged from PV panels and the main grid. They are
discharged to satisfy part of the building’s load during peak periods. It is worth to mention
that since our goal is to shave the peak, we do not allow the charging of the batteries during
peak hours (when the total load exceeds the subscribed power of 5MW).

Ei,s = Ei−1,s + [(PGB,ch
i,s + P P V,B,ch

i,s ) · ηch −
(PBL,dch

i,s )
ηdch

] ·∆T (4.3)

— PGB,ch
i,s = 0 if Li,s ≥ 5000

— PBL,dch
i,s = 0 if Li,s < 5000

Eq.4.4 defines that the total energy storage system at time i in scenario s cannot exceed the
maximum state of charge multiplied by the total size of the batteries. Also, it is applied for
the minimum state of charge of the batteries.

SOCmin · SB 6 Ei,s 6 SOCmax · SB (4.4)

Eq.4.5 states that the product of charging and discharging powers of batteries must be
0 at each time in each scenario. This constraint allows avoiding charging and discharging
simultaneously.

(PGB,ch
i,s + P P V,B,ch

i,s )× PBL,dch
i,s = 0 (4.5)

Eq.4.6 states that the total charging power of the batteries, which is the sum of the power
from main grid and the PV power during off-peak hours, must be positive and less than the
maximum power of each battery in (kW), i.e., β, multiplied by the number of the batteries,
i.e., NB.
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0 6 PGB,ch
i,s + P P V,B,ch

i,s 6 β ·NB (4.6)

Eq.4.7 indicates that the total discharging power of the batteries cannot exceed the the
maximum power of each battery in (kW), i.e., β, multiplied by the number of the batteries.

0· 6 PBL,dch
i,s 6 β ·NB (4.7)

Eq.4.8 is the power balance constraint which indicates that the total load at time i in scenario
s must be supplied from PV, main grid, battery discharging and power from main grid during
peak. If the load is less than 5000 kW, there is no power flow from PV and batteries to the
building.

P P V,L
i,s + PGL

i,s + PBL,dch
i,s + PGLP

i,s = Li,s (4.8)

if Li,s ≤ 5000 then
P P V,L

i,s = PBL,dch
i,s = PGLP

i,s = 0
else

PGL
i,s = 5000

end if

Eq.4.9 indicates that the total PV power can be used to satisfy the building load directly, to
charge the battery or to sell power to the main grid.

P P V,L
i,s + P P V,B,ch

i,s + P P V,G
i,s = SP V · P P V

i,s (4.9)

0 6 P P V,G
i,s (4.10)

0 6 PGL
i,s (4.11)

Eq.4.12 illustrates that the optimal capacity of battery can not be more than the maximum
battery capacity, which is defined by users. Moreover, Eq.4.13 indicates that the optimal
installation area for PV panels can not exceed the total rooftop area of the buildings.

0 6 SB 6 Bmax (4.12)
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0 6 SP V 6 AMax
P V (4.13)

Figure 4.3 Microgrid architecture.

The output power of PV panels is calculated using Eq.4.14 [119].

PP V (t) = NP V ηP V PST C
Gi(t)
GST C

[1 + (Tc − TST C)CT ] (4.14)

where NP V is the number of PV panels, ηP V is efficiency of panels, PST C is the nominal power
(W) under standard test conditions (STC), Gi(t) is the solar radiation at operating point
(kW/m2) and i = 1, ..., 8760, GST C is solar radiation at STC conditions (kW/m2), CT is
the power temperature coefficient (%/C◦), TST C is the temperature at STC conditions (C◦),
Tc(t) is the Cell temperature (C◦), Tc = Ta + (TNOCT−20)

800 ·Gi(t), Ta is the ambient temperature
(C◦) and TNOCT is the normal operating cell temperature (C◦).
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4.3.3 LG pricing

In Quebec, large consumers such as campuses can follow the LG pricing scheme with a fixed
subscribed power. In this scheme, the campus is charged according to the maximum amount
of power during the billing period. However, if the demand is less than the subscribed power
during a certain billing period, the campus will be charged for its subscribed power. The
additional costs must be paid in terms of exceeding the subscribed power. According to
the definition given by Hydro-Quebec utility, LG Rate applies to an annual contract whose
minimum billing demand is 5000 (kW ) or more, unless the contract is principally related to
an industrial activity. The tariff which applies to this pricing system is 13.781($/kW ) and
0.3596($/kWh) [117]. Hence, the total LG pricing tariff is equal to :

CLG = max(Pmax, 5000)× 13.781 + ET × 0.3596 (4.15)

where Pmax is the maximum monthly power and ET is the total monthly energy. Since our
focus is on peak power shaving, we consider only the power price in the calculations.

4.4 Results and discussion

In this section, the application and numerical results are discussed. The data used in this
paper are gathered from the building energy management system of a university campus
in downtown Montreal. It consists of five buildings (residential, commercial and educatio-
nal/office buildings) representing a diverse mix of load patterns. In this work, the generated
scenarios are representative of monthly scenarios, i.e., in each month the selected scenarios
are the most appropriate representation of that month. So the time resolution is i = 1, ..., 288
which is daily profile with 5 minutes time resolution. The monthly bills are calculated based
on the maximum power called from the main grid during the month so if the peak shaving
is implemented in a daily profile it could work for total month.

4.4.1 Simulation setup

The two-stage stochastic problem formulated in the previous section is solved and the nu-
merical analysis show the capability of the optimization method. The simulation setup has
three main parts : 1) scenario generation via C-GAN, 2) scenario reduction and 3) solving
two-stage stochastic problem. We extended the python code of scenario generation via condi-
tional GAN, which was available in [23]. In this work, this code has been implemented on
real historical data of PV power and load of a university campus, taking into account the
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months labels as conditions. The total generated scenarios form the main scenario set. Then,
the process of scenario reduction starts by selecting the k-medoids that have the minimum
dissimilarity to all scenario sets and making the clusters. Other scenario data are assigned to
one of the clusters with the minimum distance with its medoid. Once the scenario reduction
techniques are completed, the most representative medoid has been selected for each cluster.
The probability assigned to each medoid is calculated by counting the components of that
cluster and dividing it by the total main scenario set. For scenario reduction, the K-medoids
approach has been implemented via python. Then the probabilities and the scenarios for
each month fed to the stochastic optimization problem. The optimization problem has been
solved with JuMP programming language [120], which is open-source and is used to solve a
wide range of optimization problems. The stochastic programs package has been used in the
current study.

4.4.2 Data

In this study, we propose the real historical data of electrical load and solar radiation of a
university campus located in downtown Montreal, Canada. The load data was recorded for
five district buildings with a time resolution of 15 minutes from January 2015 to December,
24, 2016. The MG sizing and operation consider the total load of the buildings. In order to
prepare data for C-GAN simulations, we transform the load data in 5 minutes resolution by
triplicating each row. The available rooftop area of the total buildings is 1880m2. The solar
radiation data is applied on unit PV panel with the area of 1 m2 and a nominal power of
200 W to find the power of each panel at time i in scenario s. In addition, we create the
calendar data to use them as conditions for GAN. We shuffled the data and 90% were used
for training and 10% for testing. Fig.4.4 shows the original loads of typical scenarios in all
months. It shows that in some months there is peak after 7 PM and the highest peak occurs
in July for the available data set.

4.4.3 Scenario generation using C-GAN

In this paper, we propose C-GAN to generate scenarios of PV power generation and loads.
In this case, we generate 2500 scenarios for both PV power generation and building loads.
Auto-Correlation coefficient is considered as a metric to show the performance of C-GAN
for generating the scenarios. Fig.4.5 and Fig.4.6 illustrate the real data and the generated
samples of PV power and load as well as the auto-correlation coefficients for all month. The
samples are selected from the validation data set that has not been used for training C-GAN.
In Fig.4.5, it is shown that the C-GAN performs better in generating the scenarios in Spring
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Figure 4.4 Real load profiles in typical days in all months.

and Summer. The Fig.4.6 shows similar performance for all months. It is worth mentioning
that the reference paper which was selected for scenario generation using C-GAN, i.e., [23]
was originally proposed for generating RES scenarios and in this work we also implement
it on real historical data of load to capture the ability of the method on different data sets
other than RES. In [10, 17, 121], mean, variance, skewness, and kurtosis were introduced as
statistical indexes to evaluate the generated scenarios. Skewness shows whether the proposed
distribution is symmetric or not compared with the Normal distribution, and it can be posi-
tive, zero, or negative. The normal distribution has a skewness of zero. Kurtosis defines the
steepness of the distribution. The kurtosis of Normal distribution is 3. The values greater than
3 show the distribution is steeper than the Normal distribution and below 3 shows it is smoo-
ther than the Normal distribution. Skewness = E(X−µ)3/σ3 andKurtosis = E(X−µ)4/σ4

where E is the expectation, µ is the mean of the samples of X, σ is the standard deviation of
X [17]. Table.4.2 includes the four metrics mentioned above of the validation scenarios and
generated scenarios for PV power and load. In spring and summer, the differences between
the values for validation and generated samples are lower for both PV power and load.
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Figure 4.5 Real data vs generated samples of PV output power of a PV unit in typical days
in all month which have not been used as training data. The auto-correlation functions states
that the generated samples can follow the correlation to time properly

Scenario reduction using K-medoids

The K-medoids reduction technique is implemented by K=5, 10, 12, 15 for each uncertain
parameter. Due to the large computational program, in this study, we use the K=5. Since
the scenarios are generated monthly, hence, the reduction is also reached monthly. Thus, for
each month, we reduced the scenarios into 5 among all 2500 generated scenarios. The total
number of scenarios in each month is 52 = 25. Fig.4.7 and Fig.4.8 show the reduced scenarios
of PV and load in typical months assigned with their probabilities.

4.4.4 Numerical results

The sizing problem shows that the proposed microgrid consists of 899 kWh battery storage
system and a 800 m2 rooftop PV array. Each PV has the nominal power of 200 W and area
of 1 m2.

The second stage is solved given the optimal battery and PV sizes. The scenarios are generated
monthly, and each profile with the indicated probability represented the days in that month.

Fig.4.9 shows the optimal operation in a typical scenario in July. As it is illustrated, the
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Figure 4.6 Real data vs generated samples of load in typical days in all month which have not
been used as training data. The auto-correlation functions states that the generated samples
can follow the correlation to time

0 4 8 12 16 20 24

Hour

0

50

100

150

P
o

w
e
r 

o
u

tp
u

t 
o

f 
o

n
e

 P
V

 p
a

n
e

l 
(W

)

PV,S
1

=0.014

PV,S
2

=0.121

PV,S
3

=0.090

PV,S
4

=0.330

PV,S
5

=0.445

0 4 8 12 16 20 24

Hour

0

50

100

150

P
o

w
e
r 

o
u

tp
u

t 
o

f 
o

n
e

 P
V

 p
a

n
e

l 
(W

)

PV,S
1

=0.086

PV,S
2

=0.094

PV,S
3

=0.355

PV,S
4

=0.400

PV,S
5

=0.064

0 4 8 12 16 20 24

Hour

0

50

100

150

P
o

w
e

r 
o

u
tp

u
t 

o
f 

o
n

e
 P

V
 p

a
n

e
l 
(W

)

PV,S
1

=0.344

PV,S
2

=0.086

PV,S
3

=0.102

PV,S
4

=0.459

PV,S
5

=0.010

0 4 8 12 16 20 24

Hour

0

50

100

150

P
o

w
e

r 
o

u
tp

u
t 

o
f 

o
n

e
 P

V
 p

a
n

e
l 
(W

)

PV,S
1

=0.387

PV,S
2

=0.068

PV,S
3

=0.178

PV,S
4

=0.258

PV,S
5

=0.109

September

December April

July

Figure 4.7 Reduced scenarios of PV power
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Table 4.2 Comparison of statistical metrics of validation scenarios (Val) and generated sce-
narios (Gen) for all months.

PV power Load

Month Samples Expectation
(W )

Variance
(W 2) Skewness Kurtosis Expectation

(kW )
Variance
(kW 2) Skewness Kurtosis

Dec Val 2.52 4.32 1.62 4.45 4660.20 621.992 -0.50 1.63
Gen 2.07 3.62 2.2 7.63 4855.05 639.452 -0.71 2.15

Jan Val 5.65 9.342 1.34 3.09 4603.45 786.122 -0.60 1.66
Gen 5.72 9.172 1.97 6.28 4673.95 750.122 -0.77 2.24

Feb Val 6.58 10.062 1.24 3.03 4758.13 552.482 -0.49 1.65
Gen 5.51 10.212 2.45 9.01 4870.72 587.362 -0.69 2.24

March Val 33.08 42.732 0.81 2.00 4454.94 772.382 -0.62 1.70
Gen 33.6 43.612 0.90 2.21 4525.52 684.672 -0.71 2.22

April Val 45.64 52.752 0.62 1.69 4020.81 592.912 -0.58 1.72
Gen 45.38 552 0.72 1.87 4228.61 538.922 -0.39 2.32

May Val 52.25 56.382 0.47 1.53 3414.94 512.872 0.0063 1.25
Gen 52.79 55.362 0.46 1.60 3525.88 517.482 0.0004 1.98

June Val 57.08 58.362 0.38 1.47 4229.63 770.942 -0.59 1.66
Gen 56.97 59.742 0.42 1.51 4402.14 614.432 -0.53 2.19

July Val 56.92 56.832 0.41 1.49 4760.14 905.382 -0.58 1.66
Gen 56.56 58.822 0.38 1.47 4849.86 848.692 -0.81 2.12

Aug Val 46.72 52.282 0.53 1.58 4313.53 601.972 -0.47 1.62
Gen 46.83 53.342 0.59 1.73 4437.83 641.702 -0.50 2.21

Sep Val 41.02 48.792 0.65 1.73 4223.13 778.822 -0.37 1.50
Gen 42.2 52.862 0.81 2.02 4362.95 632.632 -0.59 2.33

Oct Val 6.27 6.622 1.45 3.91 4014.83 632.632 -0.47 1.68
Gen 6.14 9.612 1.87 6.01 4162.51 546.142 -0.23 2.46

Nov Val 9.96 5.152 1.81 5.08 4272.29 693.662 -0.60 1.70
Gen 2.44 5.062 3.25 15.96 4339.90 531.572 -0.64 2.46

battery charged in off-peak hours via main grid and PV powers. During peak periods, if
the PV power is available, its power is used to satisfy peak. In addition, the battery can be
discharged and if there is insufficient power in the battery system, the remaining powers can
be bought from the main grid to satisfy the loads.

Fig.4.10 shows the result of the proposed method in one of the scenarios in a typical day in
July without peak. In this case, the PV power generation is sold to the main grid. Fig.4.11
illustrates the optimal operation of the MG in a typical scenario in December. As it was
expected, in Winter, the PV power is less available and the majority of power is coming from
the battery energy storage system. In this case, an additional power needs to be purchased
from the main grid during peak hours (lower than the original peak load). To show the
effectiveness of using PV and batteries, we made a comparison between three cases. Case 1
considers that no PV and battery are available. In this case, the building must provide the
power only from the main grid. Case 2 indicates the addition of PV panels. The PV power
is fed to the building when available, and no power is saved for future uses. Case 3 defines
the system when both PV and battery are available, and in this case, the battery can save
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Figure 4.8 Reduced scenarios of Load
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Figure 4.9 A typical scenario in July with peak

power in off-peak hours to use it during on-peak periods.

The summary of the operation in typical scenarios for the all months and following three
cases is proposed in Table.4.3.
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Figure 4.10 A typical scenario without peak
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Figure 4.11 A typical scenario in December with peak

Case 1 : without PV power and battery storage

Case 1 shows the additional costs, i.e., the cost which should be paid due to peak in typical
scenarios for one year. The charges in January are more than other months. December and
September are in second and third degrees due to the additional costs. In December, January,
and February which are winter months, the costs are $7,393.43, $8,085.04 and $4,014.98
respectively. In March the cost is lower than the winter with a value of $3,705.09. However,
it is increased to reach a value of $6,215.08 in April and a value of $5,952.16 in May. In the
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first month of Summer i.e. June, the cost is higher than July and August (maybe because of
the vacations in the campus) which reaches $5,553.58, $4,878.77 and $3,885.87 respectively.
With starting the next semester in September, the costs reaches a value of $7,356.23 and for
October and November it would be $1,818.09 and $4,712.76. It is indicated that the total
penalty reaches about 63,571.14$ for the whole year.

Case 2 : with PV power and without battery storage

Case 2 indicates the effect of PV power generation on reducing the peak. The highest PV
generation is for the spring and summer months. In comparison with Case 1, PV power has
$124.44, $93.57 and $180.94 as saving money for December, January and February. In March,
the saved money is $384.76 and in April is $601.95. The highest profit is for May with $833.33.
In June, July and August, it remains high with $526.57, $601.67 and $593.82 respectively. In
autumn the PV power decreases and the saving money reaches a value of $390.27, $227.11
and $241.71 for September, October and November respectively It is showed that PV power
generation could decrease the costs by 4,800.19$ due to total peak shaving of 348.32 kW for
all months.

Case 3 : with PV power and battery storage

Case 3 illustrates the importance of battery storage system in MG since it can store energy
in off-peak hours and use it during peak times. The PV-battery system decreases the costs
incredibly leading to a saving of $6322.44 in September, $6133.78 in April and $5762.52 for
December. The saved money in January and February is $2696.53 and $4014.95 respectively.
In May, June and July the profits are $4936.49, $5494.62 and $4844.84 respectively. In August,
it is lower with the value of $3859.50. In October and November the amount of saved money
is $1814.40 and 2828.82. It is showed that using battery along with the PV power could shave
about 3,802.79 kW of power and decrease the costs from $63,571.14 to $11,164.89 and save
around $50,000 for one year. Fig.4.12 shows the power sent from the main grid during peak
(PGLP ) in the three cases. The significant effect of the PV-Battery system in peak shaving
is shown for February, March, April, June, July, and October. Fig.4.13 shows the reduction
of the expenses in the three cases. It is indicated that the PV-Battery system decreased the
costs.
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Figure 4.12 Power sent from the main grid during peak hour among three cases. Case 1 :
without PV and battery, Case 2 : with PV, Case 3 : with PV and battery.
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Table 4.3 Summary of statistics in typical scenarios in all months in three cases. Case 1 :
without PV and battery, Case 2 : with PV, Case 3 : with PV and battery.

Case 1 Case 2 Case 3
Month Profit ($) PLS (kW) Profit ($) PLS (kW) Profit ($)
1 -8,085.04 6.79 -7,991.47 195.38 -5,392.51
2 -4,014.98 13.13 -3,834.03 291.34 -0.02
3 -3,705.09 27.92 -3,320.33 268.58 -3.79
4 -6,215.08 43.68 -5,613.12 445.09 -81.29
5 -5,952.16 60.47 -5,118.82 358.21 -1,015.67
6 -5,553.58 38.21 -5,027.00 398.71 -58.95
7 -4,878.77 43.66 -4,277.09 351.56 -33.92
8 -3,885.87 43.09 -3,292.05 280.06 -26.37
9 -7,356.23 28.32 -6,965.95 458.78 -1,033.78
10 -1,818.09 16.48 -1,590.98 131.66 -3.68
11 -4,712.76 17.54 -4,471.04 205.27 -1,883.93
12 -7,393.43 9.03 -7,268.99 418.15 -1,630.91
Total -63,571.14 348.32 -58,770.94 3802.79 -11,164.89

4.5 Conclusions

In this work, a two-stage stochastic programming model for peak load shaving in Campus-
integrated microgrid is proposed. The conditional GAN (C-GAN) is implemented to generate
the scenarios of PV power generation and load to capture the uncertainties of these para-
meters. The only input for generating scenarios via GAN is the historical data, and there
is no need for any other assumptions related to the distributions of historical data. Due to
the computational complexity of stochastic programming with a large number of scenarios,
K-medoids clustering-based approach is used for scenario reduction. The objectives of the
two-stage stochastic model is to minimize the investment and operation costs while redu-
cing/shaving the peak. The proposed method has been applied on a real-world case study of
a university campus in Canada.
The proposed C-GAN performs better for generating PV power scenarios than load. Howe-
ver, future works have a space for using other deep learning techniques along with GAN to
generate more accurate scenarios. The lack of data for generating more scenarios by GAN was
a limitation of this study. Finding methods for generating scenarios that do not need large
data sets is another future work. The effectiveness of using the PV-battery system in the
two-stage stochastic model is shown in the three cases. The results show that using PV and
battery can decrease the peak and also the costs considerably. However, PV and battery do
not cover the total peak loads in some months, such as January. Therefore, there is a need to
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add more flexibility components to the building such as demand response management and
vehicle-to-grid concept. Future works could consider electric vehicle and demand response
strategies as another sources of flexibility to solve the problem of peak shaving.
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CHAPTER 5 GENERAL DISCUSSION

This chapter presents a general discussion of the proposed framework and results. The main
objective of this study was to propose a two-stage stochastic optimization for peak load
shaving in a district buildings. The first stage decisions include the optimal sizing of MG
components, i.e., installed PV power and battery capacity. The second stage defines the
optimal power flows in MG in oerder to minimize the operation cost including peak load
shaving.

The proposed stochastic optimization approach shows that it is necessary to model uncer-
tainties properly. We selected the conditional GAN to generate monthly PV power and load
scenarios by investigating the available scenario generation methods. For each month, 2500
scenarios for PV power and 2500 for load have been generated, representing the characte-
ristics of PV power and load on days of the month. The auto-correlation coefficients of the
generated and the real data in typical scenarios in all months were assessed to show the
ability of C-GAN to generate scenarios. The results showed that C-GAN performed better
on PV power than load.

The generated scenarios were included in the stochastic optimization problem for peak load
shaving purpose. Since solving the stochastic problem for 356 days of 24 hours is very complex,
the proposed method was implemented for each month. Due to the large number of scenarios,
it is needed to decrease the scenario set into a smaller set while keeping keep the characteristics
of the main set. In this regard, the scenario reduction technique has been applied. Hence,
the PV power and load scenarios are decreased into five scenarios for each of them, and the
entire scenarios is reduced to 52 = 25 scenarios for each month.

Three cases, including MG without PV and battery, MG with PV and without battery, and
the third case, MG with both PV and battery storage system, were considered for testing
the proposed methodology to decrease costs. The results show that the costs were decreased
significantly when the PV-battery is applied to MG operation.
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

This chapter presents the summary of the contribution followed by a discussion on the limi-
tations of the study and future research opportunities.

6.1 Summary of Works

In this study, first, a comprehensive review is done to define the gaps in MG sizing and
operation, including the available optimization techniques. Due to the advantages of MG,
there is a need for optimal sizing of its components. Over-sizing and under-sizing MGs are two
main problems that affect the MG operation costs. Over-sizing makes additional investment
costs for the users, while under-sizing leads to a large mismatch between the generated power
and actual demand. Consequently, the importance of sizing and operation simultaneously is
shown when MG consumers try to minimize both investment and operation costs. RES are
clean energy resources that can provide power to end-users. RES are weather-related data
affected by the seasonality effects. Moreover, there are uncertainties in the load demand
due to the variability of users’ demands. Hence, there is a need for optimization techniques
to include those uncertainties. To capture the uncertainties, scenario generation techniques
become essential. It is used to present the random nature of the parameters. In addition, a
massive number of scenarios make the stochastic programming complex, and there is a need
for techniques to decrease the total scenarios into a smaller set along with keeping the main
characteristics of the scenario set. Peak load shaving strategies and handling the challenges
mentioned earlier are also critical.

No study includes all of the challenges stated above. There is a gap in the field of MG for a
study that considers sizing, operation, peak load shaving, scenario generation, and reduction
simultaneously. In this work, a framework for peak load shaving in MGs using the PV power
and the energy storage system has been proposed. Due to PV power generation and load
uncertainties, two-stage stochastic optimization has been implemented. In the first stage,
the optimal sizes of PV and battery have been defined. In the second stage, the optimal
power flows of the system have been indicated. Conditional GAN (C-GAN) was proposed
as a scenario generation technique. Due to a large number of scenarios, a classical scenario
reduction method has been implemented to decrease the computation time of solving the
stochastic problem.

The results of the scenario generation method were analyzed by auto-correlation coefficients



45

between real historical and the generated scenarios. The proposed C-GAN performed better to
generate RES scenarios than a load with the condition of the month. The proposed framework
is tested on a real case study of a university campus in Montreal, including the integration
of residential, commercial, and institutional buildings. The simulation results were assessed
using three cases where no PV and battery were available, with PV power, and when the
battery was added to the system. The PV-battery system decreased the costs as well as shave
the peak significantly.

6.2 Limitations

The scenario generation via C-GAN is implemented in this study. In this regard, we applied
the proposed method to PV power generation and load data. The results were better for PV
power generation. It shows that the reference paper [23] is weak in the application of scenario
generation on other parameters than RES.

Besides the advantages of implementing stochastic optimization and scenario generation using
NN-based methods like C-GAN, the approach has some drawbacks. To implement C-GAN, it
is not required to know the distribution of the historical data via predetermined formulations.
However, NN-based scenario generation methods need extensive data set to learn the models
properly and generate more accurate scenarios. The current data set was limited in our case
study.

Moreover, stochastic optimization considers the variability of uncertain parameters in the
decision-making process, and it leads to more reliable solutions, but stochastic optimization is
computationally. To increase the computational efficiency, the operation of MG is conducted
for typical scenarios in different months.

6.3 Future Research

Due to the weakness of the proposed scenario generation on loads, it is shown that there is
a need to develop a methodology that can work for all types of uncertain parameters.

Moreover, making a framework that can work well on small data set to generate reliable
scenarios is another future study.

Integrating components other than PV and battery into MG for peak shaving will help
satisfy more loads locally. The technologies may include also electric vehicles. However, it is
needed to have access to real EV charging station data that is limited too. Demand response
programs also can be added to this study to assess the effect of different pricing mechanisms
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and incentive demand response in the current work.

The current case study includes the integration of five district building’s load. In future work,
for each building, a MG will be applied to manage each building’s load locally.
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