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RÉSUMÉ

L’apprentissage profond est de plus en plus déployé dans les systèmes à grande échelle et
les systèmes critiques grâce aux percées récentes en apprentissage automatique. On utilise
maintenant des applications logicielles intégrant l’apprentissage profond dans la vie de tous
les jours, incluant les finances, l’énergie, la santé et les transports. L’approche tradition-
nelle du développement logiciel est déductive, consistant en l’écriture de règles qui dictent
le comportement du système avec un programme codé. En apprentissage profond, ces rè-
gles sont plutôt inférées de façon inductive à partir de données d’apprentissage. Malgré
ce changement de paradigme permettant des progrès transformationnels dans plusieurs do-
maines d’applications, des inquiétudes quant à leur fiabilité ont été soulevées et ont rendu
la recherche sur la qualité des logiciels incluant des réseaux de neurones d’une importance
primordiale. Premièrement, les programmes d’entraînement des réseaux de neurones mod-
ernes sont devenus plus complexes, incorporant le non-déterminisme inhérent et les subtilités
cachées derrière une pile de boîtes à outils. En conséquence, les bogues tels que des er-
reurs de codage, des mauvaises configurations et l’abus d’interface de programmation (API)
se produisent fréquemment, selon des études récentes. Par conséquent, nous concevons des
débogueurs automatisés qui s’appuient sur l’analyse de code statique et de la dynamique
d’entraînement, tout en étant conceptuellement découplés des APIs, des modèles et d’autres
choix d’implémentation. Nos outils de débogage sont implémentés pour fonctionner avec les
bibliothèques populaires, et leurs évaluations sont menées sur de vrais programmes bogués de
StackOverflow et Github. Deuxièmement, même un programme d’entraînement sans bogue
peut aussi produire des modèles non fiables en raison de la tendance de l’apprentissage basé
sur les données au biais de sélection, aux fausses corrélations et aux déviations de distribu-
tion. Ces modèles non fiables se basent sur des raccourcis injustifiés et des biais inductifs
médiocres qui ne correspondent pas aux exigences de l’application ou aux propriétés du sys-
tème. De plus, les développeurs ont tendance à inclure des opérations post-entraînement
comme la compression de taille des paramètres, qui peuvent altérer négativement les biais
inductifs sans être identifiés avant le déploiement. Traditionnellement, le test du modèle re-
pose sur l’estimation de ses performances sur des échantillons de test qui sont indépendants
et distribués de manière identique. Cependant, ces tests échouent souvent à exposer les dé-
fauts inhérents du modèle car les échantillons retenus pour le test héritent souvent des mêmes
biais que les données d’apprentissage. En outre, les attaques contradictoires se concentrent
sur la révélation des vulnérabilités de modèle contre des entrées malveillantes qui ne corre-
spondent pas forcément aux conditions réelles. En parallèle, les tendances de test automatisé
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des réseaux de neurones s’oriente vers la conception de critères de couverture structurelle
sans preuve de corrélation avec l’aptitude de révélation des défauts, et elles sont évaluées
sur leur capacité à guider la génération des images déformées pour les applications de vision
par ordinateur. En ce qui concerne les dérives distributionnelles, la modélisation générative
est limitée par la malédiction de la dimensionnalité. Les détecteurs dépendants du modèle
se basent sur la quantification de l’incertitude ou l’analyse des patrons d’activation, ce qui
les rendent sujets à la dégradation de fiabilité face aux entrées significativement décalées.
Dans cette thèse, nous construisons des méthodes de test pour les réseaux de neurones, qui
sont sensibles au domaine et qui intègrent des métaheuristiques de recherche pour faire face
aux larges espaces de recherche. Ces méthodes produisent systématiquement des entrées de
test qui évaluent la robustesse nécessaire pour l’application, la cohérence avec les sensibilités
déduites de la physique et les inefficacités de la quantification des paramètres. Ces objectifs
de test vérifient que les biais inductifs encodés par le modèle ou son homologue quantifié
sont alignés avec les exigences de l’application et les processus physiques liés au système
modélisé. Continuant l’exploitation des connaissances du domaine, nous développons une
nouvelle stratégie de détection des entrées hors distribution qui se base sur la régularité, qui
est l’une des propriétés a priori courantes du système, afin de détecter les profils de sensi-
bilité suspects indiquant des entrées assez décalées et probablement hors distribution. Les
évaluations de nos méthodes sont menées soit sur des cas d’étude dans divers domaines tels
que la reconnaissance d’objets, de la parole et de texte, soit sur des applications d’ingénierie
aéronautique, telles que l’optimisation de la conception basée sur des modèles de substitut
et la modélisation des performances du système, fournies par notre partenaire industriel,
Bombardier Aéronautique.
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ABSTRACT

Deep Learning (DL) is increasingly becoming an integral part of intelligent software systems
in critical aspects of our daily lives, from finance and energy to health and transportation.
Traditionally, software logic is developed deductively, by encoding the rules that govern the
program’s behavior into the code. In contrast, Deep Neural Networks (DNNs) derived induc-
tively (i.e., learned) these rules from the training data. Despite this paradigm shift enabling
transformational progress across a wide range of domains, concerns over their trustworthiness
have been raised and have made research on DL software quality of paramount importance.
First, the training programs of modern DNNs have become more complex, incorporating
inherent nondeterminism and hidden intricacies of a deeply-growing pile of toolkits. As a
result, bugs such as coding faults, misconfigurations, and API misuses occur more frequently,
according to recent studies on DL bugs. Therefore, we design automated DL debuggers that
rely on static code analysis and training dynamics monitoring, while being conceptually de-
coupled from APIs, Models, and other implementation choices. Our debugging tools are
implemented to work on mainstream DL libraries, and their assessments are conducted on
real buggy programs from StackOverflow and Github. Second, even a bug-free DL training
program can still produce unreliable DNNs because of the data-driven learning’s proneness
to selection bias, spurious correlations, and distributional shifts. In such cases, an optimized
DNN might have learned unjustified shortcuts and poor inductive biases that misaligned with
the application requirements or the system properties. Furthermore, modern DL pipelines
tend to include post-training operations such as size compression or domain transition, which
can adversely alter the patterns captured by the DNN without being identified before deploy-
ment. Conventional testing of a DNN reposes in estimating its performance on independent
and identically distributed (iid) held-out test samples. However, iid tests often fail to expose
the inherent model’s flaws because the held-out samples often inherit the same biases of the
training data. Besides, adversarial attacks focus on maliciously-crafted inputs that reveal
model vulnerabilities against likely-unforeseeable data in real-world conditions. In parallel,
DL software testing trends focus on designing structural coverage criteria with no evidence of
correlation to fault-revealing abilities, and they are evaluated on how well they generate dis-
torted images for computer vision applications. In regards to distributional drifts, generative
modeling is limited by the curse of dimensionality, while model-dependent detectors based on
uncertainties or activation maps suffer from reliability degeneration on shifted inputs. In this
thesis, we build search-based and domain-aware DL testing methods that incorporate meta-
heuristics to cope with high-dimensional search spaces, as well as means to interface with the
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domain knowledge. The proposed methods systematically produce test inputs that probe for
application-specific robustness, consistency with physics-grounded sensitivities, and elusive
quantization inefficiencies. These test objectives ensure that the inductive biases encoded
by the DNN or its quantized counterpart are aligned with the application requirements and
system-related physics processes. In keeping with domain awareness, we develop a novel out-
of-distribution (OOD) detection strategy based on smoothness, which is one of the common
apriori system properties, to detect suspicious DNN local-sensitivity profiles that indicate
shifted and likely OOD inputs. The evaluations of our methods are conducted on either
open-source DL study cases across various domains like object, speech, and text recognition,
or aircraft engineering applications, such as surrogate-based design optimization and system
performance modeling, provided by our industrial partner, Bombardier Aerospace.
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CHAPTER 1 INTRODUCTION

With the continuous innovation in Deep Learning (DL), we have witnessed impressive devel-
opment of DL software systems; breakthroughs continue to occur in every corner of this field.
These intelligent applications have become a part of modern life: security authentication,
e-health, and driverless transportation. By 2030, AI is expected to produce extra economic
profits of 13 trillion U.S. dollars, which contribute 1.2% annual growth to the GDP of the
whole world [2]. However, along with their rapid and revolutionary advances, DL software
systems have also exposed their untrustworthy sides through the widely-reported fatal acci-
dents of self-driving cars [3, 4]. Thus, concerns around trustworthiness have become a huge
obstacle for DL to overcome to further advance as a field, and become more widely adopted.
Therefore, research on quality assurance(QA) methods and tools that can aid in releasing
trustworthy DL software systems is now a high priority for academia and industry. In the
following, we introduce the DL software systems, their trustworthiness challenges, and the
limitations of existing QA approaches. Then, we present our research statement, the outline
and the contributions of the present thesis.

1.1 Deep Learning Software Systems

Deep Learning (DL) modernizes various legacy neural network ingredients to enhance the
capacity of learning and remove the preliminary feature engineering step. DL stacks thou-
sands of computational layers and makes them learning through the leverage of normalization
layers [5], residual shortcut connections [6], and momentum-based stochastic optimizers [7].
The data-to-model pipeline remains fairly consistent with similar main steps: data ingestion,
preprocessing, model building, training, and performance evaluation. In addition, DL intro-
duces advanced operations over classic machine learning to support designing system models
for different application use cases beyond standalone explanatory or predictive statistical
models. Among the operations, transfer learning allows the reuse of pretrained models on
new applications, whereas post-training compression methods, such as quantization or prun-
ing, allow the reduction of the model footprint for deployment on edge devices. Nowadays,
DL software systems represent the next generation of software systems [8] that comprise DL
components besides traditional software components. DL components include (1) the data
that are collected and preprocessed; (2) the deep neural network (DNN) that is specified and
designed for solving a targeted learning problem; (3) the training program that implements
the iterative learning algorithm to fit the DNN’s parameters on the data. DL components



2

equip a software system with self-learning capabilities through optimized DNNs [9] that sta-
tistically derive their logic from the collected data. By inferring the logic of the system
based on data, the lack of or difficulty of encoding formally the specification is mitigated.
For instance, DL components can be an inexpensive alternative to building aircraft system
performance models without thoroughly formulating the physics-based differential equations
governing the system’s behavior.

1.2 Disruptive Challenges to Trustworthy DL systems

Firstly, the training program is the most software-intensive component in the DL pipeline,
which can be buggy like any traditional program, as reported by previous studies [1, 10, 11].
Since the training program implements the DNN design and its learning algorithm, a bug
may obstruct the DNN optimization or worse, prevent the training process from converging
to optimal DNNs without explicit errors [12]. Listed below are three of the most common
root causes of DL bugs that we address in this thesis.

Coding Faults: Like any human written code, DNN training programs may contain miss-
ing and wrong code statements that cause a deviation between the algorithm and its
implementation. For instance, most of these coding faults result in incorrect math op-
erations, leading to erroneous outcomes such as flipped sign result, inverted order of
calculations, or wrong data transformations.

Misconfigurations: DNN training programs implement highly-configurable algorithms, where
setting up the appropriate configuration, given the context, becomes a challenging task.
Hence, misconfigurations assemble all the wrong and poor choices for the configuration
of the training program’s components, including the DNN design and the optimization
routines. For instance, most misconfigurations in relation with random initializers, loss
functions, normalization methods and optimization hyperparameters, lead to training
pathologies and likely inefficient DNNs.

API Misuses: While DL libraries provide a rich set of API routines, their generic-purpose
nature imposes many assumptions that practitioners should be aware of. As an exam-
ple, most of these routines’ arguments are set by default to recommended values that
may not be appropriate to solve certain problems. Thus, API misuses, i.e., the usage of
API routines without fully understanding their inner functioning and–or checking that
their assumptions are fulfilled, are likely to yield unexpected results such as runtime
exceptions or ineffective learning.
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Secondly, a bug-free and correctly-designed DNN training program is able to produce an
optimized DNN that fits the training samples, i.e., yielding low loss values. Nevertheless,
there is no guarantee that this best-fitted DNN has captured useful patterns and essential
structure to perform as expected in deployment scenarios. Indeed, the DNN parameters fit-
ting that is primarily guided by the average loss minimization on training data is prone to
minority ignorance, confounding factors, and overfitting. In addition, �modern DL pipelines
can include post-training operations on parameters like quantization, which should be care-
fully performed to avoid catastrophic degradation. Unfortunately, the conventional testing
that evaluates the DNN performance on independent and identically distributed (iid) data
samples that should be held-out to be a proxy for future entries, is agnostic to these mis-
conceptions. Indeed, the test sample is generally a portion of the collected data similarly to
its training counterpart; so it is likely to inherit the same biases. In the following, we detail
the DNN misconceptions associated with the above-mentioned issues that are �tackled by our
research works.

Weak Inductive Biases: During the optimization, the DNN encapsulated weak inductive
biases that cannot enable generalization beyond the training distribution because of
spurious correlations, i.e., features that are strongly associated with the label in the
training data, but are not associated with the label in some practically important
settings. Indeed, DNN fitting using empirical risk minimization is prone to shortcut
learning, where the DNN learns easily how to generalize well on the collected iid data,
but only some of its patterns are well-aligned to the intended solution to the prediction
problem.

Risky Post-Training Compression: When performing a post-training operation on the
DNN parameters, practitioners simply watch for potential degradations of predictive
performance on test samples. However, the induced variations in the DNN’s learned
patterns that are practically relevant for the prediction problem, remain uncovered
during evaluations on arbitrary test examples, while adversely impacting its robustness
and generalizability in real-world scenarios.

Acute Distributional Shifts: The optimal DNN based on iid performance evaluations
may fail dramatically in operation because of structural mismatches between training
and deployment; thus, the inductive biases encoded by the DNN become less credible.
In fact, if iid data suffers from selection bias or out-of-dateness, the optimized DNNs are
limited by their DL pipeline design, and hence, they should be avoided under operating
conditions that are substantially different from those exploited by the DL pipeline.
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1.3 Limitations of Current DL Software Quality Assurance Trends

Adversarial attacks [13] focus on DNN robustness assessment against constrained input per-
turbations that are maliciously crafted to falsify the DNN predictions. They facilitate early
detection of security vulnerabilities aiming to reinforce the defense mechanisms. Besides,
structural coverage-guided DL testing approaches [14] use input perturbations along with
designed data transformations to enrich the test data and derive synthetic test inputs that
are able to trigger uncovered structural patterns of DNN activations. Despite their success
in exposing DNN failures, subsequent studies [15] show that uncovering these activation pat-
terns is not directly correlated to enhancing the rate at which DNN faults are exposed, but
it indeed indicates certain induced-behavioral diversity among the generated test inputs. In
regards to the exposed failures, they result from sampling repeatedly from the large input
space of perturbed/transformed data. Aside from structural coverage, these existing DL test-
ing methods are primarily designed to explore the derived synthetic test inputs within the
neighbors of original sets, which limits their application to certain data transformations [16].
In consequence, most of their evaluations are exclusively conducted on computer-vision mod-
els, where the input images are simply floating-point 3D arrays [17–23]. Furthermore, DL
testing trends continue to focus on the development of innovative testing components, such
as adequacy criteria and test generation algorithms, while maintaining straightforward data
derivation rules and baseline DNNs as proof-of-concept implementations. Nonetheless, the
disconnection between application requirements and actual DL test cases reduces the gener-
ation of DL test cases into simply a uniform degradation of DNN performance. The latter
occurs because the employed data transformations are capable of producing synthetic inputs
sufficiently different from their originals, but the test generation process has no application-
sensitive guidance to assess the credibility of the DNN’s inductive biases in regards to rele-
vant dimensions that have to be handled by a candidate solution to the underlying prediction
problem. In regards to distributional drifts, the curse of high dimensionality limits the use of
generative models for recognizing the out-of-distribution (OOD) data points within the input
space, while current trends in model-dependent OOD detection involve inferring uncertainty
estimates along with prediction or exposing OOD inputs based on unexpected patterns of
activation. Clearly, these techniques rely on either a data-driven calibration or data-related
features that may degrade in reliability with significant distributional shifts and can be mis-
leading as well.
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1.4 Research Statement

Investigating DL bug studies and former quality assurance methods, we made the following
observations:

- DL crash-inducing bugs are typically caused by coding errors or API misuses that can
be detected through static analysis of the program code, while taking into consideration
the DL fundamentals, best practices, and DL library’s intricacies.

- The majority of silent DL bugs come from computations errors or misconfigurations
that can be detected by monitoring the training program’s behavior in order to detect
unstable learning dynamics or inefficient trained models.

- The generation of synthetic inputs that are valid and optimized for test adequacy cri-
teria, is limited by the large and complex input space of DL applications. In contrast,
crafting the transformations needed to derive these novel inputs using a sample of the
original data simplifies the validation process and mitigates the curse of high dimen-
sionality.

- Using semantically-preserving transformations, test inputs are derived to assess the
robustness of the model. Domain knowledge can be utilized to build input transfor-
mations that assess the consistency of model behaviors to foreknown properties and
characteristics.

- If distributional shifts are significant, the use of statistically-learned features or un-
certainties for out-of-distribution(OOD) detection can be misleading. Apriori system
properties, derived deductively from domain knowledge, may provide more stable and
robust OOD input recognition.

Leveraging concepts from software testing, deep learning, and domain knowledge, this the-
sis contributes to three important aspects of DL software quality assurance: (i) automated
debugging methods specialized for DNN training programs, including both static code inspec-
tion and dynamic behavior monitoring; (ii) search-based and domain-aware DL testing ap-
proaches that assess application-specific robustness, consistency with physics-grounded sensi-
tivities, and elusive quantization inefficiencies; and (iii) smoothness-based out-of-distribution
(OOD) detection strategy that identifies suspicious DNN behaviors against shifted and likely
OOD inputs based on a common apriori system property like smoothness.
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1.5 Thesis Overview

1. A static rule-based DL program debugger. We develop a static debugger that abstracts
the learning program skeleton and components into a meta-model. Then, by running a
technologically-aware parser module on the DL code, our static debugger instantiates
the meta-model and creates a compiled object model for the underlying learning pro-
gram that allows it to detect faults and design inefficiencies as violations of designed
model-based verification rules. In the evaluation, we implement a tool covering main-
stream DL toolkits such as Tensorflow and Keras in order to assess the effectiveness of
our approach on real-world buggy programs.

2. A dynamic property-based DL program debugger. We build a dynamic debugging ap-
proach that aims to bridge theoretical and practical knowledge in order to equip expert
and especially non-expert DL practitioners with automated verification routines that
validate, starting from the model construction and data loading, the fundamental DL
principles; then, watch continuously the training dynamics during the execution to
make sure of the stability and proper convergence of the data fitting process. For
assessment, we implement a Tensorflow-based tool to test our elaborated checks on
real-world learning programs.

3. A search-based DL testing approach. We construct a generic-purpose DL testing ap-
proach to fill in the gap between iid evaluations and required application-specific gen-
eralization. By searching over the transformations instead of the inputs, we develop
practical metamorphic testing pipelines for many DL domains. Then, we use and
assess various nature-inspired, population-based metaheuristics that are suitable for
driving the generations of data transformations towards diverse regions with high fault-
detecting capabilities. DeepEvolution is examined for its potential to expose hidden
weaknesses of both optimized and compressed DNNs to maintain, respectively, reliable
and stable predictions when applied to regular and unusual usage scenarios.

4. A physics-based adversarial machine learning. We propose a physics-guided model
testing that formulate the physics first principles and system-related design properties in
the format of input-output sensitivities to expose physics inconsistencies of the model’s
mapping function. Next, a search-based approach was applied to explore constrained
neighbors of each genuine input aiming at finding those on which the model violates the
foreknown physics-grounded sensitivities. Moreover, all the revealed counter-examples
should be exploited by physics-informed regularization techniques that perform fine-
tuning to constrain the neural network’s optimization with the desired level of physics
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consistency. Our proposed physics-based adversarial ML is evaluated on two DL-based
performance models for aircraft systems, for which the sensitivity rules can be derived
beforehand by aircraft engineers.

5. A smoothness-based out-of-distribution detector. We introduce our smoothness-based
OOD detection strategy that ensures selective and reliable predictions on only the ID
inputs. Specifically, we create pointwise sensitivity profiles that can distinguish ID
and OOD samples based on their adherence to smooth domain regions. Our method is
deployed as a novel criterion for the systematic switch between the surrogate and its HF
model counterpart in hybrid optimization settings. The evaluation was conducted on
three aircraft design variables study cases with regard to the effects on design assessment
errors and overhead costs of HF model requests.

1.6 Thesis contributions

• Our static DL program debugger enables detecting the bugs through code inspection
inexpensively, and without even a single training iteration. It has covered 23 common
errors and poor design practices of DL training programs, and provides associated
detection rules that successfully finds 64 faults and design inefficiencies in 34 real-world
DL programs extracted from Stack Overflow posts and GitHub repositories. Hence,
our approach reaches a recall of 70.5% and a precision of 100% in revealing both DL
faults and design issues.

• Our dynamic DL program debugger defines a catalog of 21 pitfalls relative to training
program’s components including data loader, parameters, activations, optimization,
and regularization. We demonstrate� how these training pitfalls can be captured on-
running by our designed verification routines, operating on intermediate DNN states
and optimization dynamics. Its effectiveness was evaluated in exposing both DL cod-
ing bugs and misconfigurations with (precision, recall), respectively, equal to (90%,
96.4%) and (77%, 83.3%). Its comparison with Amazon Sagemaker Rule-based Debug-
ger(SMD) shows that it outperforms SMD by detecting 75% rather than 60% of the
total of reported bugs in real-world buggy programs extracted from StackOverflow and
GitHub. Its usability evaluation was conducted in collaboration with two DL engineers,
and they were able to successfully locate and fix 93.33% of bugs contained in 10 buggy
training programs.

• Our search-based DL testing approach succeeds in revealing DNN erroneous behaviors.
Precisely, it achieves, averagely, 41%, 24.5%, and 5% of misclassification detection
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rates for the studied DL domains, respectively, image, audio, and text. DeepEvolution
was also able to expose hidden quantization inefficiencies. Specifically, it reaches, on
average, 21.5%, 24%, and 2% of divergence exposure rates when comparing genuine
and quantized DNNs designed for visual, speech, and natural language text recognition.
Throughout all the study cases, DeepEvolution outperformed its competing alternative,
TensorFuzz, which is Google Brain’s coverage-guided fuzzing framework specialized for
DNNs.

• Our physics-guided adversarial testing method was able to detect DNN violations of
three types of physics-grounded sensitivity rules through the following assertions: (i)
invariance test (i.e., output remains constant under input perturbation); (ii) directional
expectation tests (i.e., decreasing or increasing output under input perturbation). Next,
our physics-informed adversarial training technique allows fine-tuning the parameters of
the DNN to update the inductive biases towards complying with the physics grounded
sensitivities, while maintaining a low error rate in predictions. Based on two industrial
case studies of aircraft system performance models, we show that our adversarial testing
using Genetic Algorithm(GA) was capable of generating up to hundreds of physics
inconsistencies. Then, its follow-up physics-guided regularization succeeded in fixing
on average 88.5% of the detected violations, which leads to an average of 6% gain in
the predictive performance on the original test data.

• Our smoothness-based OOD detector demonstrates the potential of exploiting apri-
ori system properties like smoothness to effectively expose OODs, thereby avoiding
the pure data-driven predictions and uncertainties that are often misleading and over-
confident. We carry out an industrial assessment on three surrogate aircraft design
models, concluding that SmOOD does cover averagely 85% of actual OODs on all the
study cases, and when SmOOD is set up as a surrogate/HF switcher in hybrid surrogate
optimization settings, we obtain a decrease error rate of 34.65% and a computational
speed up rate of 58.36×, averagely.

1.7 Organisation of the thesis

The rest of this thesis is organised as follows:

• Chapter 2 presents the fundamental concepts and methods related to deep learning
trustworthiness that are needed to understand our research works.

• Chapter 3 outlines the literature review of the related studies and research works.
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• Chapter 4 � describes our static rule-based debugging method for DNN training pro-
grams: design, implementation, and assessment on DNN programs using TensorFlow
and Keras.

• Chapter 5 presents our dynamic property-based debugging approach for DNN train-
ing programs: design, implementation, and evaluation on real-world TensorFlow-based
DNN programs.

• Chapter 6 � details our search-based DL testing approach for metamorphic transfor-
mation generation, its Tensorflow-based implementation, and its evaluation results on
visual, speech and natural language recognition models.

• Chapter 7 outlines our physics-based adversarial ML: testing and regularization phases,
as well as their �effectiveness on aircraft system performance models.

• Chapter 8 presents our smoothness-based OOD detection method for DNNs and its
performance evaluation on hybrid surrogate aircraft design optimization.

• Chapter 9 summarizes and concludes the thesis, and discusses the limitations and future
work.
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CHAPTER 2 BACKGROUND

Chapter Overview Section 2.1 introduces the concepts and methods of Deep learning.
Section 2.2 describes the concepts and methods of software quality assurance, especially for
programs without oracle. Finally, Section 2.3 concludes the chapter.

2.1 Deep Learning

Over the last decade, the growing amount of data and the advent of GPUs have enabled
the application of deep learning in automation tasks across various domains. In this section,
we describe the deep neural networks (DNNs), which are the backbone behind DL, their
engineering process and challenges, as well as their software development.

2.1.1 Deep Neural Networks

A deep neural network (DNN) is an artificial neural network with a stack of multiple com-
putational layers, hence the adjective “deep”. DNNs are often much harder to train than
shallow neural networks [24]. However, they are endued with a hierarchical features learning
that lets them capture increasingly complex patterns directly from the data when they are
appropriately designed and trained. DNNs include many variants of architectures that have
found success in several domains. We present in the following the Deep Feed-Forward Neural
Network and its popular variant Convolutional Neural Network.

Deep Feed-Forward Neural Networks

Feedforward neural network (FNN) architecture is the quintessential and the most used neural
network [25]. The objective of FNNs is to learn the mapping of a fixed-size input (for example,
a signal vector) to a fixed-size output (for example, a probability for each label). Apart from
the input and output layers, FNN contains a cascade of multiple intermediate layers, which
are called hidden layers because the ground truth data does not provide the desired values for
these layers. Last, the name feedforward arises from the fact that information flows through
the processing layers in a feed-forward manner, i.e., from input layer, through hidden layers
and finally to the output layer. Figure 2.1 illustrates a simple FNN.

A FNN encapsulates a mapping function f that maps the input x to its corresponding output
y as presented in Equation 2.1. If y is a category label, the FNN solves a classification problem
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Figure 2.1 Schema of feedforward neural network

and if y is a continuous value, the FNN performs a regression task.

y = f(x;W, b) (2.1)

Where W : weights and b: biases represent the learnable parameters.
Given the training data D = {(xi, ti);∀i ∈ [1, n]}, the FNN training algorithm aims to find
the best approximation function f ∗ by learning the optimal values of its inner parameters
W ∗ and b∗. To do that, a loss function, loss(f, x, t) is leveraged to measure how well the
prediction y = f(x) matches the ground truth output t. Considering the example of multi-
nomial classification problem, we have y, a vector of probabilities where y(j) represents the
probability that x belongs to the label j and t, a one-hot encoding label where t(j) = 1 if
j is the true label; otherwise t(j) = 0. The most common loss function is the cross entropy
loss(f, x, t) = −∑j t(j) log(y(j)).
To estimate the loss over all the training data loss(f,D), we use an expectation, as formulated
in Equation 2.2, that can be either the average or the sum of data instances’ losses.

loss(f,D) = Ei[loss(f, xi, yi)] = ED[loss(f,D)] (2.2)

Therefore, the optimal parameters W ∗ and b∗ result in the best function approximation that
spawns the minimum possible estimated loss in the training data D.

W ∗, b∗ = argmin
W,b

ED[loss(f ∗, D)] (2.3)

The loss minimization problem can be solved, iteratively, using gradient descent algorithm,
where the following equations represent an iteration’s updates :

W (t+1) = W (t) − ηED[loss(f (t), D)]W ; b(t+1) = b(t) − ηED[loss(f (t), D)]b (2.4)

As introduced, the FNN assembles multiple computational layers and each layer l perform a
computation; so it encapsulates a kind of sub-function fl(x;Wl, bl) with inner parameters Wl
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and bl. Thus, the approximate mapping function f of an FNN with L layers is a composite
function formulated as below :

f(x;W, b) = fL(fL−1(...(f1(x;W1, b1)...);WL−1, bL−1);WL, bL) (2.5)

Where W = {Wl,∀l ∈ [1, L]} and b = {bl, ∀l ∈ [1, L]}.
Given the huge number of parameters to approximate, the computation of gradients would
be very time-consuming. Deep learning relies on a fast algorithm, named backpropagation,
that applies the derivative chain rule principle to compute, sequentially, all these derivative
backing from the output to the first hidden layer, while taking full advantage of the derivatives
estimated w.r.t previous layers. Backpropagation is based on two alternatives main phases,
respectively, forward pass and backward pass, which are detailed below.
Forward Pass. Each hidden layer l contains a set of computation units, called neurons,
that perform a linear transformation zl of their inputs from previous layers and pass the
result through an activation function Φl. The latter is a non-linear transformation al that
allows adding non-linearity in the approximated mapping function in order to be insensitive
to irrelevant variations of the input. The layer’s computation can be written as:

zl = Wlal−1 + bl,∀l ∈ [1, L] (2.6)

al = Φl(zl),∀l ∈ [1, L] (2.7)

We note that a0 which is the input layer activation is equal to the input data x. The hidden
layers share generally the same activation function. We denote them Φ1 = Φ2 = ... = ΦL = Φ.
We denote the activation function of the output layer by Ψ = ΦL.
Backward Pass. First, we introduce an intermediate quantity, δ, where δl is the vector of
error associated to the layer l. δl is computed as the gradient of the loss with respect to the
weighted input zl. In the following, we present the equations used by the backpropagation
algorithm to compute the error for every layer. We refer the reader to the work of Goodfellow
et al. [25] for the proof and in-depth details.

δL = losszL = ∇a(loss)�Ψ′(zL); δl = losszl = W (l+1)T δl+1 � Φ′(zl) (2.8)

In Equation 2.8, � is the Hadamard product, which is an elementwise product of two vectors
in a way that for each component j, v � u means (u� t)j = sjtj.
Second, we formulate the gradient of loss w.r.t the DNN parameters using the computed
error term δ.

lossWl = δla
(l−1)T ; lossbl = δl (2.9)
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Last, we perform both of weights and biases iteration updates in the opposite direction of
their gradients w.r.t the loss.

W (i+1) = W (i) − ηδla(l−1)T ; b(i+1) = b(i) − ηδl (2.10)

In practice, the backpropagation algorithm does not loop over the training examples and
perform the forward and backward passes on each example separately. Indeed, it relies on
mini-batch stochastic gradient descent that computes both passes on a mini-batch of examples
simultaneously. This is done by formulating the equations presented above as fully matrix-
based formulas given the input matrix X = [x1, x2, ..., xm] of a mini-batch containing m

examples. Thus, the parameters updates are based on the average of loss gradients estimated
over all the examples of the batch, which leads to more stable gradient updates.

Deep Convolutional Neural Networks

Convolutional Neural Network (CNN) represents a particular type of feedforward network
that is designed to process data in the form of multiple arrays, such as 2D images and
audio spectrograms, or 3D videos [25]. A CNN contains the following specialized layers that
transform the 3D input volume to a 3D output volume of neuron activations: Convolutional
Layer, Activation Layer, and Pooling Layer.
Convolutional Layer. The main building block of this type of transformation layer is
the convolution. A convolution provides a 2D feature map, where each unit is connected to
local regions in the input data or previous layer’s feature map through a multi-dimensional
parameter called a filter or kernel. These filters play the role of feature detectors. The feature
map is produced by sliding the filter over the input data, then computing products between
the filter entries and the local input region at each spatial position, to infer the corresponding
feature map response. Different filters are performed in a layer and resulting feature maps
are stacked in 3D volumes of output neurons. The separate filters aim to detect distinctive
local motifs in the same local regions. However, all units in one feature map share the same
filter, because motifs are generally invariant to location.
Activation Layer. As in any FNN layer, we use an activation function to add non-linearity
to the computed value. The activation layer applies the activation function on the extracted
feature map as an element wise operation (i.e., per feature map output). The resulting
activation map indicates the state of each neuron, i.e., active or not.
For each hidden neuron (i, j) in a feature map:

aij = Φ(zij); (2.11)
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Pooling Layer. The pooling layer ensures spatial pooling operation to reduce the dimen-
sionality of each feature map and to retain the most relevant information by creating an
invariance to small shifts and distortions. Depending on the chosen spatial pooling opera-
tions, it can be average or max pooling that computes, respectively, the average or max of
all elements in a pre-defined neighboring spatial window size. Therefore, these neighboring
pooling makes the resulting activation maps smaller and robust to irrelevant variance, which
helps shortening the training time and controlling the overfitting.
Figure 2.2 shows a typical architecture of CNN with two main stages: (1) multiple stack
of convolution, activation, and pooling that ensure the detection of relevant features from
the input data; (2) the final activation map is flatten to be a vector of features and is fed
to a fully-connected neural network that performs the prediction on top of these extracted
features to estimate the labels’ scores or the predict value.

Figure 2.2 Schema of convolutional neural network

Other Mainstream DNN Architectures

Recurrent neural networks (RNN) [25] learn patterns from sequential inputs like sequence of
words or time series signals. RNN uses the same parameters at every step, in addition to
the features found at earlier ones, in order to search local features on the current features.
As a result of repeated multiplication with the same weight, they suffer from vanishing
gradients. The most common way to circumvent the vanishing problem is using long-short-
term memory (LSTM) and its derivatives. Indeed, the gating mechanisms built into LSTMs
(forget, update, and output gates) control information flows across steps and keep track of
the features relevant to sequence assessment. Moreover, a new class of DNN was recently
introduced called Transformers [26]. The latter represent encoder-decoder networks that
incorporate attention mechanisms to focus on the relevant parts of high-dimensional inputs.
First, they encode the input vectors into positional embeddings. Then, they compute the
pairwise inner product between each pair of embeddings to search systematically for a set
of positions in the encoder provided states where the most relevant information is available.
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Therefore, the decoder phase leverages the extracted features to predict the target output.

2.1.2 DNN-based Model Engineering

First, DL engineers collect labeled data that incorporate the knowledge required to perform
the target task. The collected data is divided into three different datasets: training dataset,
validation dataset, and testing dataset. After readying these data sets, DL engineer designs
and configures the DNN by choosing the architecture, setting up initial hyperparameters
values, and selecting variants of mathematical components that include activation functions,
loss functions, and gradient-based optimizers. DL engineer should consider application re-
quirements, data complexity, and best practices or guidelines from other similar works. After
preparing the DL system ingredients (i.e., data and model design), the training process starts
and systematically evolves the decision logic learning towards effectively resolving the target
task. Indeed, training a DNN-based model using an optimizer consists in gradually minimiz-
ing the loss measure with respect to the training dataset. Once the model’s parameters are
estimated, hyperparameters are tuned by evaluating the model performance on the validation
dataset, and selecting the next hyperparameters values according to a search-based approach
that aims to optimize the performance of the model. This process is repeated using the
newly selected hyperparameters until a best-fitted model is obtained. Last, this best-fitted
model is tested using the testing dataset to verify if it meets the predictive performance re-
quirement. Throughout the above-explained model engineering process, we show how DNN
automatically derives the computational solution to a specific task from the data; however,
these complex models that handle high-dimensional data with no prior feature engineering
can be difficult to train. Hence, we describe in the following the DNN training challenges
and simple and advanced regularization techniques proposed for DNN.

2.1.3 Difficulty of training DNNs

Traditionally, machine learning algorithms design the loss function and constraints carefully;
ensuring that the minimization problem is convex, where any found local minimum is guar-
anteed to be a global minimum. When training a deep neural network, the loss function
is not only non-convex but also tends to have a large number of “kinks”, flat regions, and
sharp minima [27]. This makes the loss minimization problem poorly-conditioned, and conse-
quently, makes it hard to solve. Indeed, conditioning refers to how swiftly a function changes
with respect to small variations in its entries [25], hence, high sensitive functions lead to poor
conditioning. In fact, the Hessian matrix of the loss encapsulates all the second-derivatives
that represent the curvature of the loss surface. The condition number which is the ratio
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between the largest and the smallest eigenvalue is very important because a high condition
number indicates a situation of ill-conditioning, where some parameters have huge curvature
while others have smaller one. Such a situation results in a pathological loss curvature, and
a first-order gradient descent would have difficulty progressing. Nevertheless, practitioners
succeed to train modern DNNs using first-order gradient-based optimization. This practical
trainability success is highly dependent on the design of DNN, the choice of optimizer, param-
eters initialization, normalization, regularization, and a variety of hyperparameters. However,
finding adequate configurations and parameters can be very challenging and the optimization
of neural networks is still an open problem. In practice, training a DNN for a novel problem,
context or data requires a series of trial-and-error using different configuration choices and
hyperparameters tuning. These configuration choices have a strong effect on the conditioning
of the minimization problem. However, novel DNN design components like skip-connections
of ResNet, advanced regularization and reparameterization techniques [28, 29] have shown
an ability to improve the Lipschitzness of the loss function, which means a loss exhibiting
a significantly better smoothness. These smoothing effects impact the performance of the
training algorithm in a major way because it provides more confidence that the estimated
gradient direction for each training step remains a fairly accurate estimate of the actual gra-
dient direction after taking that step. This enables performing update steps without high risk
of running into a sudden change of the loss landscape; including flat region (corresponding to
vanishing gradient) or sharp local minimum (causing exploding gradients). In other words,
finding good ways to configure and parametrize the DNN ensures the stability of the loss
function and better predictiveness of its computed gradients. Below, we explain in detail the
regularization techniques used for DNN.

2.1.4 Regularization of DNN Training

Given the high capacity of DNNs, developing regularization techniques that stabilize the
training evolution and prevent the model from overfitting the training data, has been one of
the major research efforts in the deep learning field.

Standard Regularization Techniques

The standard regularization techniques consist in adding restrictions on the values of the
trained parameters, i.e., by adding a penalty term Ω(W ) in the loss function loss(f ∗, D)
(see the regularized loss from Equation 2.12) that can be seen as a soft constraint on the
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magnitude of parameters to restrict and smooth their corresponding distributions.

˜loss(W, b,D) = loss(W, b,D) + λΩ(W ) (2.12)

Where λ fixes the relative contribution of the norm penalty omega; so setting λ = 0 means
no regularization and larger values of λ correspond to more regularization. The most popular
penalty consists in penalizing the weights of the linear computations; keeping their values
closer to the origin by using L2-norm (Ω(W ) = 1

2W
2
2 ) and–or enhancing the sparsity of the

weights by using L1-norm (Ω(W ) = W1). With the gradient-based learners, we compute
the gradient of the weight penalty term Ω(wi) w.r.t weight wi as described in the following
formula.

∂Ω
∂wi

=

 2×w(t)
i , if Ω(w) = ‖w‖2

2

1× sign
(
w(t)
i

)
, if Ω(w) = ‖w‖1

(2.13)

From the above formula, we can see that L2-norm penalty continuously reduces the magnitude
of the weights proportionally to it while L1-norm reduces the magnitude by a constant. Thus,
L2-norm and L1-norm pushes, respectively, the magnitude of weights towards increasingly
lower and zero values. Moreover, the defined hyperparameter, λ, controls the strength of
the applied regularization. It is therefore important to adjust it appropriately, taking into
account the design of the model and the complexity of the target problem but concerning
changes w.r.t size of batches, it has been shown that scaling the λ by 1/m, wherem is the size
of the batch, can make it comparable across different size of batches [30], which avoids tuning
manually λ. Intuitively, the training algorithm tries to approximate an unknown distribution
by minimizing the empirical error on a sample of data; so a large sample is likely to be more
representative of this unknown distribution, and as a result, less regularization might be
needed in order to capture the maximum information about the target data distribution.

Advanced Regularization Techniques

The advanced regularization techniques for DNNs include normalization and stochasticity to
the DNN inner computations [31]. In fact, manipulating randomly the DNN architecture,
over training passes, minimizes the risks that the learned parameters are highly customized
to the underlying training data. Furthermore, normalizing the input of each layer, not only
the input data, improve furthermore the smoothness of the loss landscape towards more sta-
ble gradient-based optimization, and fortunately, higher chances to avoid saddle points and
ineffective local minima.
Dropout. One of the most frequently used regularization techniques is dropout [32], which
randomly deactivates a subset of neurons from the dropped dense or convolutional layer at
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every training iteration. Indeed, the degree of randomness of dropout should be adjusted
with respect to the width of the layer using a hyperparameter, pkeep, which represents the
neurons’ retention probability. At inference time, dropping neurons is stopped and compen-
sated by multiplying all the weights in the layer by pkeep in order to keep the distribution
of the layer outputs (i.e., results of the layer’s affine transformation) during inference time
close to the distribution during training time. Mathematically, for each hidden layer l, we
define a binary mask ml, where each element can be 1 with predefined probability pkeep.
Thus, the dropped out version of the hidden layer output zl masks out units using element-
wise production, zld = ml � zl. Intuitively, dropout reduces the risk of overfitting by making
the DNN robust against the deactivation of some neurons, which forces the DNN to rely on
population behavior instead of the activity of other feature detectors unit (i.e., preventing
the co-adaptation of feature detectors). Indeed, model ensembling, a well-known technique
in statistical learning, consists in combining the output of multiple models, each trained dif-
ferently in some respect, to generate one final answer. The resulting improvements on the
performance metrics explain its domination over recent machine learning competitions [25],
however, it requires a much larger training time by definition (compared to training only
one model). More fundamentally, dropout [33] simulates model ensembling without creat-
ing multiple neural networks by combining the predictions of multiple sub-DNNs resulting
from dropping, randomly, different subset of neurons between every two consecutive training
passes.
Batch-normalisation. Another interesting regularization strategy designed for DNN is
Batch-normalisation (Batchnorm). It relies on continuously normalizing intermediate acti-
vations across batches during a mini-batch loss minimization [34]. Indeed, the proceeded
normalization is based on the standardization of each intermediate feature using the pre-
computed mean and standard deviation on the current batch, respectively, µB = 1

m

∑m
i=1 xi

and σ2
B = 1

m

∑m
i=1(xi − µB)2 given the batch data B of size m. The normalized activations

x̂i = xi−µB√
σ2

B+ε
would have zero mean and unit standard deviation. However, the resulting

reduction of magnitude may induce information loss caused by the distortions in the learned
intermediary features, and consequently, the degradation of model’s learning capacity. There-
fore, batch-normalization performs a linear transformation to scale and shift the normalized
activations, ai = αx̂i + β with aim of preserving the expressiveness of the DNN through
learning additionally both of the parameters α and β. In addition, batch-normalisation also
computes two other statistics, E[x] and V ar[x], which represent, respectively, the moving
average and the moving variance of the flowing data during all the training. Thus, at the
test time, we use population mean(E[x]) and population variance(V ar[x]) to standardize the
layer outputs instead of using batch mean(µB) and batch variance(σ2

B).
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Santurkar et al. [5] investigated the fundamental reasons behind the effectiveness of batch
normalization in regularizing modern DNNs. They found that normalizing continuously all
the inputs of hidden layers (i.e., all the activations) instead of normalizing only the inputs,
makes the surface of loss smoother, which ensures faster convergence and safer training using
relatively higher learning rates for which unnormalized DNNs (i.e., standard variants without
batchnorm) diverge. This positive effect on the loss landscape is called better conditioning
of loss minimization problem, which is described explicitly in the following sub-section.

2.1.5 DNN-based Software Development

DNN-based programs are implemented as traditional software using programming languages
such as Python, but �include high-dimensional algebraic computations and automatic differ-
entiation of� �derivatives. Due to the growing amount of training data and the increasing
depth of DNN architecture, their implementations should support parallel and distributed
execution in order to leverage the power of high-performance computing hardware archi-
tectures. Recent advances in Deep Learning have led to the release of several DL software
libraries such as Theano [35], Torch [36], Caffe [37], and Tensorflow [38] in order to assist
ML practitioners in developing and deploying state-of-the-art DNNs. These libraries provide
optimized implementations of compute-intensive and parallel algebraic calculations that take
full advantage of high-performance and distributed hardware infrastructures. Most DL en-
gineers today leverage existing DL frameworks to encode the designed DNN into programs.
Ready-to-use features and routines offered by DL libraries often have to trade off between
the coverage of novel DL functionalities and the ease of rapid implementation and extension
of DNN software prototypes. As a compromise solution, they uniformly include, for each
newly-implemented DL functionality, a bundle of automated steps and default settings fol-
lowing its common usage trends in the community. This enables quick prototyping of regular
DNNs while keeping the flexibility to try other configurations with the tweakable setting
options available for every provided DL routine. As a consequence, DL developers should be
aware of the intricacies of these DL libraries to choose the appropriate configurations and
avoid breaking their implicit assumptions in regard to the usage of their built-in routines.

2.2 Software Quality Assurance

Software quality assurance (SQA) consists of standards, procedures, and activities that can be
employed during various stages of the software development process to ensure the quality of
the delivered software product. Basically, SQA incorporates and implements software testing
and program verification methodologies to identify errors, bugs, or missing requirements. In
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this way, SQA activities aid the development process in reducing bugs beforehand, preventing
hidden defects from occurring during deployment. Below, we detail the main methods of SQA
pertinent to the present thesis.

2.2.1 Software Testing

Software testing requires the generation of test inputs. There have been efforts to automate
the process of generating test inputs in order to circumvent the combinatorial explosion of
all possible inputs for large size programs, which has proven that its exhaustive enumeration
is an undecidable problem [39]. In the following, we describe two established generation
techniques, which are recently used for DL testing.

Pseudo Test Oracle

When it is well-defined based on methods introduced below, a pseudo test oracle [40] is able
to distinguish a program’s correct behavior from an incorrect behavior. Moreover, those
automated pseudo oracle can be improved, over time, to become more effective in detecting
inconsistencies.
We detail some standard pseudo-oracle that have been adapted for testing DL systems:

Metamorphic Testing Metamorphic testing [41] is a derived test oracle that allows finding
erroneous behaviors by detecting violations of identified metamorphic relations (MR). The
first step is to construct MRs that relate inputs in a way that the relationship between their
corresponding outputs becomes known in prior, so the desired outputs for generated test
cases can be expected. For example, a metamorphic relation for testing the implementation
of the function sin(x) can be the transformation of input x to π − x that allows examining
the results by checking if sin(x) differs from sin(π − x). The second step is to leverage those
defined MRs in order to automatically generate partial oracles for follow-up test cases, i.e.,
genuine test inputs could be transformed with respect to one MR, allowing the prediction
of the desired output. Therefore, any significant differences between the desired and the
obtained output would break the relation, indicating the existence of inconsistencies in the
program execution. As the example of sin(x), breaking the relation between x and π − x

stating that sin(x) = sin(π − x) indicates the presence of an implementation bug without
needing to examine the specific values computed through execution. The efficiency of the
metamorphic testing depends on the used MRs. MRs can be identified manually from specific
properties of the algorithm implemented by the program under test, or inferred automatically
by tracking potential relationships among the output of test cases run that hold across
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multiple executions. However, automatically generated MRs need to be analyzed by an
expert to ensure that they are correct considering the domain knowledge.

Differential Testing The differential testing [42] creates a partial test oracle that detects
erroneous behaviors by observing whether similar programs yield different outputs regarding
identical inputs. The intuition behind this approach is that any divergence between pro-
grams’ behaviors, solving the same problem, on the same input data indicates the presence
of a bug in one of them. It is quite related to N -version programming that aims to produce,
independently, alternative program versions of one specification, so that if these multiple
program versions return different outputs on one identical input, then a “voting” mechanism
is leveraged to identify the implementations containing a bug. Davis and Weyuker [40] dis-
cussed the application of differential testing for ‘non-testable’ programs. The testing process
consists of building at first multiple independent programs that fulfill the same specification,
but which are implemented in different ways, e.g., different developers’ teams, or different
programming languages. Then, we provide the same test inputs to those similar applications,
which are considered as cross-referencing oracles, and watch differences in their execution to
mark them as potential bugs.

Property-Based Testing Property-based testing (PBT) is a practical testing method [43]
that provides a systematic way for reasoning about the properties of the appropriate pro-
gram’s behaviors instead of the correct outcomes. For example, one may validate that a
random data generator can produce probabilities within [0, 1], while abstracting away from
the actual probabilities. It follows the philosophy of invariant detection, which defines a set
of invariant properties that allow aligning an incorrect execution against the expected exe-
cution [44]. Indeed, PBT defines the essential properties that the under-test program must
respect in any possible execution scenario, rather than searching for the exhaustive set of
all valid input-output pairs. These properties should represent high-level specifications, de-
scribing the program’s correctness. First, PBT requires the collection of sufficient properties
about the component under test (such as its function, program, or system). Then, the ver-
ification process starts by generating inputs for the component relying on specific heuristics
to cover the equivalent classes of data inputs. Afterward, it validates for all the generated
inputs that all preconditions, invariant properties on intermediary results, and postcondi-
tions associated with the component under test are totally true. When a property is failed,
the counterexample is shrunk by searching the minimal combination of input elements that
causes the property to fail. In fact, large inputs may cause the failure of multiple properties;
so shrinking the input allows developers to extract the smallest part of inputs that is capable
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of reproducing a particular failure, which is essential for fixing the bug.

Test Adequacy Assessment

Test adequacy assessment consists of estimating to which extent the generated test cases
are ‘adequate’ to terminate the testing process with confidence that the program under
test is implemented properly. In the following, we introduce widely-used techniques for the
assessment of test adequacy and enhancement of test sets, from which researchers borrowed
inspiration for testing DL systems.

Code coverage : it includes different test adequacy criteria that measure the proportion
of the program’s source code that is executed by test cases. It helps assessing the
amount of internal logic triggered when testing the program. For example, one can use
statement coverage (i.e., run each statement at least one time), branch coverage (i.e.,
try each branch from any decision point at least once), and path coverage (i.e., test the
different possible sequence of decisions from entry to the program exit). Indeed, test
cases achieving high coverage are more likely to uncover the hidden bugs because the
portions of code that have never been executed have a higher probability of containing
defects and to work improperly.

Mutation Testing : it assesses the effectiveness of the test cases in revealing faults inten-
tionally introduced into the source code of mutants [45]. Indeed, test cases should be
robust enough to kill the mutant code (i.e., the mutant failed the test). A mutation is
a single syntactic change that is made to the program code; so each mutant differs from
the original version by one mutation. The latter can be categorized into 3 types: (1)
statement mutation: changes done to the statements by deleting or duplicating a line
of code; (2) decision mutation: one can change arithmetic, relational, and logical op-
erators; (3) value mutation: values of primary variables are modified such as changing
a constant value to much larger or smaller values. The ratio of killed mutants against
all the created mutants is called the mutation score, which measures how much the
generated test cases are efficient in detecting injected faults.

Test adequacy assessment is required to guide the test generation toward optimizing the
testing effort and producing effective test cases that enhance the chances of detecting defects.
The test data generation process is the subject of the next subsection.
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Test Data Generation

Generating test inputs for software is a crucial task in software testing. In the earliest
days, test data generation was a manual process mainly driven by the tester, which inspects
the specification and the code of the program. However, this traditional practice is costly
and laborious since it requires a lot of human time and effort. Researchers have worked to
automate the test inputs generation process, but automation in this area is still limited. In
fact, exhaustive enumeration of all possible inputs is infeasible for large size programs and
previous attempts to automate the generation of inputs for real-world software applications
have proven that it is an undecidable problem [39].

Coverage-guided Fuzzing (CGF) [46]: A fuzzing process maintains an input corpus
containing inputs to the program under test. Mutations are applied randomly to those inputs,
and coverage-guided fuzzing retains only those mutated inputs that trigger new structural
coverage, such as statement or branch coverage, in the corpus. CGF has proven highly
effective at detecting errors in traditional software. Indeed, AFL and libFuzzer are two
widely-used fuzzers that succeed to expose serious bugs in real software systems.

Search-based Software Testing (SBST) [47]: It formulates the code coverage criteria
as a fitness function, which can compare and contrast candidate solutions from the space
of possible inputs in terms of the covered portions of the code. Using this fitness function,
SBST leverages metaheuristic search techniques, such as Genetic Algorithm, to drive the
search into potentially promising areas of the input space; generating effective test cases and
increasing the code coverage.

SBST for DL Testing: Since we propose a search-based approach for DNN models, we
detail furthermore this software testing approach. The latter uses metaheuristics [48] that
represent computational approaches, solving an optimization problem by iteratively attempt-
ing to ameliorate a candidate solution with respect to a fitness function. They require only
few or no assumptions on the properties of both the objective function and the input search
space. However, they do not provide any guarantee of finding an optimal solution. Their
applicability in structural testing is suitable as these problems frequently encounter compet-
ing constraints and require near optimal solutions, and these metaheuristics seek solutions
for combinatorial problems at a reasonable computational cost. Specifically, nature-inspired
population-based metaheuristics possess intrinsically complex routines and non-determinism
that make them a high potential candidate for spotting vulnerable regions in the large, multi-
dimensional input space of the DL models. In the following, we describe two widely-used
metaheuristic algorithms in testing deep learning software systems. Indeed, they succeed in
crafting black-box adversarial examples efficiently with few queries and they have achieved
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white-box comparable performances in different application domains including computer-
vision [49–52], natural language processing [53–55], and speech assistance DNNs [56].
Particle Swarm Optimization(PSO) [57] mimics the behavior of a swarm of birds to
search a very large space of candidate solutions. PSO maintains a population of candidate
solutions called particles. As particles move in the search space, they seek better solutions
to the problem based on their fitness values. The inertia weight, w, affects particle velocity
and search space expansion. The movement of each particle within an iteration is guided
by its local best position, pbest, which refers to exploring its best neighbour regions, while
at the same time being guided toward a global best position¸ gbest, by all particles, which
refers to exploiting the highest fitness region found. The PSO algorithm employs two trust
coefficients, ϕp and ϕg, which set up a particle’s confidence in itself (cognitive coefficient)
and in its neighbors (social coefficient).
Genetic Algorithm(GA) [58] emulates the behavior of biological evolution, including
basic selection, crossover, and mutation operations that can lead to, potentially, better indi-
viduals in every generation. By using a tournament selection strategy, GA selects a rparents of
individuals to become parents for the next generation. Breeding is done by randomly picking
matching pairs of parents and using one of these binary crossovers [59], one-point, two-point,
or uniform, to produce new offspring. Each parent in a couple will be assigned a relative
importance based on its fitness level. At the end of the breeding, we apply mixed random
mutations to alter the features of the offspring in order to maintain and introduce diversity
into the new generation. Indeed, every descendant can be subject to a mutation, depending
on a fixed probability, pmutation.

2.2.2 Software Verification

Software verification can be done automatically through model checking that verifies whether
a system’s finite-state model satisfies a given specification [60–63]. Indeed, model checking
investigates all the reachable states of a model that are expressed formally and checks whether
some given property is satisfied. If the given property is satisfied, a witness will be generated,
i.e., a path starting from the initial state and leading to the state in which the property is
satisfied. Otherwise, in the case that the property is not satisfied, which is called refutation,
a counterexample will be generated, i.e., a path starting from the initial state and leading to
the state in which the property is violated. In the following, we detail Graph Transformation
Systems (GTS) that used to specify the system components and their interactions, as well
as, its role in the model checking of system’s behaviors.
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Graph Transformation Systems (GTS)

Graph transformation system (GTS) [64] (also called graph grammar) is a formal language
for the specification of software systems, in particular those with dynamic structures. The
definition of an attributed GTS consists of a triplet (TG, HG, R) in which TG is a type graph,
HG is a host graph, and R is a set of rules for graph transformation. TG is defined by four
components, TG = (TGN , TGE, src, trg). TGN and TGE includes all node types and edge
types respectively. src and trg are two functions src : TGE → TGN and trg : TGE → TGN ,
that determine the source/destination nodes of an edge, respectively. The initial configuration
of a system specified by GTS is presented by the host graph which is an instance of the type
graph. Therefore, each component of the host graph, node or edge, must have a component
type in the type graph. A host graph HG may instantiate from a type graph TG using a graph
morphism function typeG : HG→ TG, in which the components of HG are instantiated from
TG. Other configurations or states of a system are generated by successive applications of
transformation rules on the host graph. A transformation rule r in R is defined by a triplet
(LHSr, RHSr, NACr) in which LHSr (left-hand side) represents the preconditions of the
rule whereas RHSr (right-hand side) describes the postconditions. Moreover, there may be a
Negative Application Condition (NAC) for the rule r, meaning that the rule r can be applied
only when NACr does not exist in the host graph. By applying the rule r to the host graph
HG, which is an instance model of the meta-model or type graph, a matching of the LHSr
in HG is replaced by RHSr. Formally, a graph morphism exists between LHSr and the
instance model HG. The application of a rule is performed in four steps: (1) find a matching
of LHSr in HG, (2) check NACr that forbid the presence of certain nodes and edges, (3)
remove a part of the host graph that can be mapped to LHSr but not to RHSr, and (4) add
new nodes and edges that can be mapped to the RHSr but not to the LHSr.

GTS Applied for Program Verification

In GTS, all enabled graph transformation rules can be applied to the host (start or initial
state) graph recursively. By application of the first matched rule, a new graph is generated
from the host graph. This process ends when further application of any rule over the last
graph becomes impossible. Hence, all reachable graphs from the host graph resulting from
all possible interleavings of rule applications form a state space. Indeed, this graph-based
automatic process can be leveraged to verify statically the program constraints on elements
like macros and comments [65]. Moreover, researchers have proposed several program verifi-
cation approaches [66–68] that model the buggy program as a graph using designed or learned
meta-model.� �Then, they apply consecutive graph transformations to detect and locate the
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bugs as well as further graph editing to fix them.

2.3 Chapter Summary

In this chapter, we briefly introduce the key concepts and methodologies that are related
to deep learning and software quality assurance, in order to ease the understanding of the
different DL testing and debugging approaches presented in this thesis.

In the following chapter, we present a literature review and discussion of the research works
that exist in the area of trustworthy artificial intelligence systems.
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CHAPTER 3 Literature Review

In this chapter, we review recent empirical studies of bugs and misconceptions encountered
in DNN training programs and models. We then report existing approaches for debugging
and testing DNN-based software systems. Throughout the following review, we discuss the
identified gaps in the literature that have been exploited in our research.

Chapter Overview Sections, 3.1 and 3.2, introduce studies on, respectively, DL software
bugs and misconceptions when engineering DL models. Section 3.3 presents research trends
in debugging DL training programs. Sections 3.4 and 3.5 describe the existing methods
specialized in test input generation and OOD detection for DL models. Section 3.6 concludes
the chapter.

3.1 Studies on DL Software Bugs

The growing application of self-learning software systems in important domains such as au-
tonomous driving systems and facial authentication systems makes the identification and
characterisation of faults that occur in such software systems of paramount importance. One
of the first papers, considering faults experienced by practitioners when building DL-based
programs that use mainstream data manipulation, automatic differentiation, and tensors
computation libraries, is the empirical study by Zhang et al. [10]. The authors manually
examined about 175 TensorFlow-based buggy programs, which were collected from Stack-
Overflow(SO) Q&A posts and Github public projects, with the aim of providing insights into
the main root causes and behavioral symptoms of the DL software-specific bugs. They clas-
sified DL buggy program’s symptoms into crash-inducing, low effectiveness (i.e., degradation
of model performance metrics), and low efficiency (i.e., degradation of program resources con-
sumptions). The principal categories of root causes were found to be in the algorithm design
like incorrect model parameter or structure (21.7%) and in the software implementation such
as API misuse (18.9%) and unaligned tensor (13.7%). Then, Islam et al. [11] extended the
investigated cases to include DL-based programs using other DL libraries competing along
with TensorFlow, such as Theano, Caffe, Keras and PyTorch. The empirical study was con-
ducted on a total of 2716 high-quality posts from Stack Overflow and 500 bug fix commits
from Github including five popular DL libraries. Regarding causal analysis, they adopted
the same list of root causes identified in [10]. However, they analyzed the prevalence of DL
bugs, the fault patterns, the relationship and the evolution of different types of DL bugs.
They found that data-related and logic bugs are the most severe type of DL bugs appearing
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in almost half of the occurrences and major root causes of these bugs are Incorrect Model
Parameter (IPS) and Structural Inefficiency (SI) showing up more than 43% of the times. As
of March 2021, recently-published taxonomy of real DL software system faults [1] represent
the most complete research work on the identification and classification of DL system-specific
bugs. To build the taxonomy, Humbatova et al. adopted the same data sources, SO and
Github, as well as the same DL libraries that have been formerly considered. Nevertheless,
they conducted interviews with 20 researchers and practitioners describing the problems they
have encountered in their experience. In a similar way, the validation of the final taxonomy
was performed by a survey involving a different set of 21 practitioners, where 50% of the
participants experienced almost all the fault categories (13/15).

In this thesis, when designing debugging approaches for DL software systems, we rely on
these previous investigations of DL faults to define the scope of targeted faults, study their
symptoms and their identified detection challenges, and extract reproducible and relevant
faulty DL programs on which we conduct the empirical evaluations of our proposed tools.

3.2 Studies on DL Model Misconceptions

In the context of computer vision, Szegedy et al. [69] show that universal approximator DL
models such as deep convolutional neural networks can react in unexpected and incorrect
ways to even slight pixel-based perturbations of their benign inputs. Then, Engstrom et
al. [70] showed the vulnerability of CNNs against craftly-transformed images using affine
transformations (such as translations and rotations). In the above-mentioned categories of
adversarial examples, the malicious inputs were intentionally and carefully crafted using
automated data generation [71]. Instead, recent research work [72] relied on real input data
and showed that CNNs cannot be robust even against simple guess-and-check of naturally-
occurring situations related to the application domain, like taking pictures from another
perspective angle. In more realistic conditions, Banerjee et al. [73] examined the bug reports
of autonomous driving systems from a set of 12 AI-based vehicle manufacturers and found
that the issues in machine learning systems and decision control represent the primary cause
of 64% of all the self-driving failures (i.e., the vehicle was forced to hand over control to
the driver) based on their NLP-based automated classification of issue reports that have
been collected during a cumulative total of 1, 116, 605 miles in California. Such findings
led researchers to develop systematic adversary attacks to stress these vulnerabilities in the
model learned patterns and assess the robustness of the neural networks. We refer to the
extensive survey by Biggio and Roli [13] for more details about adversarial machine learning.

Although the paradigm shift of DL software development has enabled transformational
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progress across a wide range of domains, DNNs are prone to emerging misconceptions, due
to their structure complexity and vast number of parameters involved. Arjovsky et al. [74]
discussed and illustrated how the “spurious correlations” occur in real-world scenarios, es-
pecially, when facing data biases such as selection biases, confounding factors, and other
peculiarities [75–77]. Geirhos et al. [78] studied the phenomenon of “Shortcut Learning”
where a statistical learning model successfully finds shortcuts that represent decision rules
allowing to perform well on the available datasets but fail to transfer to more challenging
and corner cases that can happen in real-world scenarios. Indeed, conventional DL pipelines
involve a training phase that is characterized by a neural network design, a training dataset,
and a learning algorithm. Then, an independent and identically distributed (iid) evalua-
tion procedure that represents the testing phase, where the predictive performance of the
trained DNN is estimated on unseen data samples drawn from the same distribution. Nev-
ertheless, iid performance evaluations often fail to expose the inherent model’s flaws [79],
especially, when distribution drifts occur in production environments, or when a selection
bias is introduced during data collection. In such cases, even iid-optimal DNNs can incorpo-
rate unjustified shortcuts and spurious associations [80,81]. Recently, a group of Google Brain
researchers [79] have reported evidence of underspecification of DL pipelines in a variety of
real work applications from computer vision, medical imaging, natural language processing,
and clinical risk prediction. Throughout all their study cases, they show how the iid perfor-
mance evaluations attribute equivalent predictive scores to multiple predictors, but the latter
behave very differently and even mistakenly on unseen entries at deployment settings.

Due to their huge complexity and large numbers of parameters, modern DNNs demand in-
tensive memory and computational requirements. To deploy them in resource-limited edge
devices, numerous techniques for compressing the DNNs, such as quantization [82] and prun-
ing [83], are designed to, respectively, reduce the arithmetic precision of tensors and remove
the redundant parameters. Nonetheless, an information loss induced by such compression
may lead to unstable states for the learned parameters that remain unidentified before de-
ployment. Indeed, two DNN versions of different precision can easily achieve equivalent
held-out performance on iid data, but perform quite differently in real-world settings [19,21]
because limited and often biased iid test inputs are agnostic to some relevant inductive biases
encoded by the optimized DNN.

Like their ancestors in supervised machine learning, deep neural networks fundamentally
inherit a closed-world assumption [84], and provide no guidance on how to handle out-
of-distribution data (OOD) [85]. In fact, their data-driven learning process via empirical
risk minimization (ERM) [25] can produce biased models that are susceptible to outliers,
unfair to minor subsets of data, or prone to out-of-distribution samples [86]. Therefore, their
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generalization capability is guaranteed on novel configurations, but drawn from the same or
close distribution as the training set, called in-distribution data (ID). In reality, distributional
shifts often occur in real scenarios for many reasons, such as domain transition, temporal
evolution, or selection bias, which degrades the model’s performance since certain captured
correlations may not hold on these shifted inputs. According to the core notions of model
over-parametrization and complexity, modern neural networks can behave worse than their
simpler counterparts when exposed to OOD inputs [74, 87,88].

When designing model testing approaches for DL software systems, we target essentially the
issues raised by the above model misconceptions. First, we aim to systematically produce
major and minor functional test suites that cover the desired requirements of the application.
Second, we derive domain-specific test cases from the expert domain knowledge to assess the
consistency of the inductive biases with known properties of the input-output mappings. Both
proposed DL tests have the potential to enhance the conventional DL pipeline by providing
task-oriented performance assessments against system specifications and deployment domain
conditions. Last, we also develop an OOD detection mechanism, exploiting domain knowledge
and apriori system properties, to delimit the predictive capability of the trained DNN and
restrict its use on the trusted boundaries.

3.3 Debugging Methods Proposed for Learning Programs

In the following, we discuss the learning program debugging methods that have been proposed
to check whether the ML algorithm is correctly implemented (i.e., free from coding errors)
and configured (i.e., the model architecture and training hyperparameters are selected well).

3.3.1 Software Testing Using Pseudo-Oracle

Software testing consists in assessing the program internal states and outputs in order to
find potential erroneous behaviors or bugs. This quality assessment requires a test oracle,
which allows distinguishing between the correct and incorrect obtained results of the program
under test. However, statistical learning programs fall into the category of “non-testable”
programs [89], for which we do not have a specified test oracle, because these programs
are written to determine an answer. In the field of software testing, pseudo-oracle methods,
which represent partial oracles built from program properties, different implementations, etc.,
were leveraged to distinguish a program’s correct behavior from an incorrect behavior under
certain circumstances. Thus, preliminary research works on debugging ML programs have
adapted the most successful pseudo-oracle testing techniques: (1) Metamorphic testing [41]
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defines metamorphic relations (MRs), which relate input transformations to their expected
changes on the model’s predictions. For example, a metamorphic relation for testing the
implementation of sin(x) can be the transformation of input x to π−x and checks the expec-
tation on the outputs, sin(x) = sin(π− x); (2) Mutation testing [45] consists of intentionally
introducing faults into the program and then assessing the effectiveness of the test cases in
killing the mutant program (i.e., the mutant failed the test). The ratio of killed mutants
against all the created mutants is called the mutation score, which measures how much the
generated test cases are efficient in detecting injected faults.

Murphy et al. [90] introduced metamorphic testing to ML in 2008. They defined several
Metamorphic Relationships (MRs). For instance, they performed transformations including
the addition of constant value to numerical attributes; multiplying numerical attributes by a
constant value; permuting the order of inputs; reversing the order of inputs; removing a por-
tion of inputs; adding additional instances. These MRs were shown to be effective at finding
misconfigurations and bugs in three well-known ML applications: Marti-Rank, SVM-Light,
and PAYL [91]. Xie et al. [92] proposed MRs specialized for testing the implementations of
supervised classifiers. The MRs are based on five types of transformations: (1) application
of affine transformations to input features;(2) permutation of the order of labels or features;
(3) addition of uninformative and informative new features; (4) duplication of some training
instances; and (5) removal of arbitrary classes or instances. The evaluation of these new
MRs were able to reveal 90% of the injected faults in Weka’s implementations of k-Nearest
Neighbors (kNN) and Naive Bayesian (NB). Recent research works [93] have investigated the
application of metamorphic testing to modern machine learning algorithms, with non-linear
modeling capabilities, such as SVM with non-linear kernel and deep residual neural networks
(ResNET). To illustrate the designed metamorphic relations, we mention some of data trans-
formations applied to SVM such as changing features or instances orders, linear scaling of
the features, and the ones adopted for ResNets, which include normalization or scaling the
test data, or re-ordering the convolution operations. The evaluation was done on mutated
training programs using MutPy (i.e., a tool for python code mutation) and the results show
that the proposed MT approach can find 71% of the injected faults.

The above-mentioned metamorphic testing approaches have been evaluated against mutated
learning programs using traditional program mutators that simply alter code instructions.
This could not be representative for DL software-specific bugs. Hence, Ma et al. [94] defined
a set of source-level mutation operators to mutate the source of a ML program by injecting
faults. These operators allow injecting faults in the training data (using data mutation
operators) and the model training source code (using program mutation operators). After the
faults are injected, the ML program under test is executed, using the mutated training data or
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code, to produce the resulting mutated DNNs. The data mutation operators are intended to
introduce potential data-related faults that could occur during data engineering (i.e., during
data collection, data cleaning, and–or data transformation). Program mutation operators’
mimic implementation faults that could potentially exist in the model implementation code.
These mutation operators are semantic-based and specialized for DNNs’ code. Indeed, the
DNN programs’ mutation framework can be used to assess the effectiveness of test data
and specify its weaknesses based on evaluation metrics related to the killed mutated models
count. DL engineers can leverage this technique to improve data generation and increase the
identification of corner-cases DNN behaviors.

3.3.2 Diagnosis via Visualization

Many VA systems (VAS) provide a model’s diagnosis that allow detecting issues on different
abstraction levels. Some of them focus on feature importance and model behaviors against
real [95] or adversarial [96] examples; others focus on neuron activations [97]. Moreover,
advanced visualization systems [98] [99] go beyond the diagnosis of the DNN and propose
refinements required to overcome the detected issues. For instance, Liu et al. [98] constructed
an interactive VAS, CNNvis, that extracts successive snapshots of the on-training CNN and
analyzes it in-depth using rectangle packing, matrix ordering, and biclustering-based edge
bundling in order to cluster the neurons, their interactions, their derived features and roles
in relation with the target task. Instead of conducting offline diagnosis, Pezzotti et al. [99]
proposed an online progressive VAS that provides continuous live feedback on the on-training
DNN. Both of these previous works on diagnosis and refinement via visualization demonstrate
how rich visual insights can be interpreted by an expert to identify possible modeling issues
and make decisions about DNN’s refinements. Nevertheless, diagnoses via VAS are inter-
active sessions that require DL engineers to select components to watch beforehand. This
makes diagnosis via VAS an expensive process that focuses, particularly, on data and design
improvements to enhance the performance results of the trained DNN.

3.3.3 Heuristic-based Checks on Learning Program Structure and Behavior

We have published early-stage research work [100] on cataloging the DL training pitfalls
related to real DL faults. We have also proposed a learning program debugging technique
that leverages heuristic-based checks to verify the program automatically during training.
The list of training pitfalls were formally explained using fundamentals of statistical learn-
ing and illustrated by concrete examples. The verification routines were written based on
statistical metrics estimated on multiple states aggregated from a recent bunch of training
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steps. This enables debugging the DNN program on-training to uncover potential training
issues such as saturated neurons’ activations or highly-fluctuating loss that can be caused
by widely-common DL faults. We evaluated our former approach on a mixed set of buggy
training programs including mutated examples from a synthetic dataset [93] and real-world
Tensorflow programs from Zhang et al. SO dataset [10]. On the same line of work, Schoop
et al. [101] focused on three main common training program issues: overfitting, improper
data normalization, and unconventional hyperparameters. They aimed to extend DL de-
velopment tools to spot the occurrences of these issues through metric-based heuristics and
produce human-readable error messages. Recently, a new debugging tool for learning pro-
grams, UMLAUT, has been implemented relying on a selection of 10 heuristics [102] that
solves a subset of the common DL bugs from the DL faults taxonomy [1]. To detect issues,
they statically analyze a snapshot of the program prior to the execution, or dynamically
verify the program status during the training runtime. Once a heuristic check is failed, the
error message is displayed to the user including context and fix suggestions summarized from
the heuristic’s sources by the authors. The tool was evaluated through a user study with 15
participants and the results showed its effectiveness in helping the participating developers
find significantly more bugs compared to non-assisted debugging sessions. Although the cod-
ified heuristics are widely-accepted, they cover common issues mostly experienced by novice
DL developers. The heuristics also make use of fixed thresholds inspired by well-spreaded
practices in the ML community. This makes the approach not applicable to novel and specific
learning contexts and not suitable for supporting DL research as evidenced by the evaluation
that uses one and only simple neural network with injected faults. Besides, the implementa-
tion of checks was based on hard-coded callbacks built on top of Keras, which may not scale
easily to support other DL libraries and even past versions of Keras. This can explain the
choice of controlled experiments with junior developers and synthetic buggy Keras programs
(i.e., a base code plus injected bugs) for the proposed tool’s performance evaluation, than
assessing its effectiveness on the real-world buggy training programs from publicly-available
bug reports [1, 10,11].

3.4 Model Testing Approaches

Next, we discuss the model testing methods that have been proposed to assess the perfor-
mance of the learned model on systematically-produced test inputs. This builds confidence
that the model behaves properly in normal functional conditions, corner-case and rare sce-
narios, and is sufficiently robust against exceptional or extreme conditions.
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3.4.1 Adversarial Robustness Testing

Adversarial robustness testing consists in designing adversary data generators that allow de-
velopers to detect the data variation (δ) and the natural input (x) yielding an adversarial
example x̂ = x + δ, for which the model does not satisfy a given property C. The model
robustness represents the first major property that has been relatively well-studied for su-
pervised learning problems using adversarial testing.

Szegedy et al. [69] first used box-constrained L-BFGS (i.e., Limited memory Broyden Fletcher
Goldfarb Shanno algorithm) to find adversarial examples. Then, Goodfellow et al. [71] pro-
posed Fast Gradient Sign Method (FGSM) that allows fast generation of adversarial exam-
ples, given the finding that the main cause of adversarial examples is the linear nature of
neural networks. Since then, several whitebox adversarial testing methods have been released.
Among them, we find Basic Iterative Method (BIM) [103] extending FGSM with iterative
procedures, DeepFool) [104], crafting malicious input through iterative linearization of the
on-testing neural network and other improved techniques such as Jacobian-based Saliency
Map Attack (JSMA) [105] and Carlini/Wagner attack (CW) [106].

Blackbox adversarial robustness testing is less effective than whitebox ones because they re-
quire a large number of queries, but they can expose different adversarial examples and are
better representative of external attack system simulations. Papernot et al. [107] explored
blackbox attacks based on the phenomenon of transferability [108]. Narodytska et al. [109]
performed a local-search-based attack. Chen et al. [110] and Bhagoji et al. [111] proposed
blackbox attacks based on gradient estimation [112]. Moon et al [113] leveraged algorithms
in combinatorial optimization. Alzantot et al. [51] recently reported about GenAttack, a
gradient-free optimizer that uses Genetic Algorithms (GA) to apply imperceptible pertur-
bations on inputs. Alzantot et al. conducted a series of experiments and reported that
GenAttack can successfully fool state-of-the-art image recognition models with significantly
fewer queries.

The major limitation of these adversarial robustness testing techniques is the impracticality
of the generated adversarial examples. For example, the adversarial images generated for
computer-vision models often contain only tiny, undetectable, and imperceptible perturba-
tions, since any visible change would require manual inspection to ensure the correctness of
the model’s decision. This can result in strange aberrations or simplified representations in
synthetic datasets, which in turn can have hidden knock-on effects on the performance of
a ML model when unleashed in a real-world setting. These adversarial testing techniques
that target only on the output of the model (ignoring the internal state details of the mod-
els under test) often fail to uncover different erroneous behaviors of the model, even after
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performing a large number of tests. This is because the generated adversarial data often
fail to cover the possible functional behaviors of the model adequately. An outcome that is
not surprising given that the adversarial data are generated to fool the models with respect
to their predictions without considering information about their structure. To help improve
over these limitations, SE researchers have invented structural coverage criteria as described
below, which use internal structure specificities to guide the generation of more relevant test
cases.

3.4.2 Model-level Mutation Testing

Model-level mutation testing is a white-box testing technique that changes the parameters’
values or the structure of the model under test, and then, it verifies if the test data are able
to kill the mutants (i.e., there exists at least one test case that fails on the mutant). Shen
et al. [114] propose five mutation operators, including (1) deleting one neuron in input layer,
(2) deleting one or more hidden neurons, (3) changing one or more activation functions, (4)
changing one or more bias values, and (5) changing weight value. Ma et al. [94] complement
their data mutations and program mutations, by model-level mutation operators that include
changing the weights, shuffling the weights between neurons in neighboring layers, etc. These
operators directly change the structure and the parameters of neural network models to scale
the number of resulting mutated models in an effective way, and for covering more fine-grained
model-level problems.

3.4.3 DNN-based Structural Testing

Pei et al. proposed DeepXplore [17], the first white-box approach for systematically testing
deep learning models. DeepXplore is capable of automatically identifying erroneous behav-
iors in deep learning models without the need of manual labeling. The technique makes
use of a new metric named Neuron Coverage (NC), which estimates the amount of neural
network’s logic explored by a set of inputs. This neuron coverage metric computes the rate
of activated neurons in the neural network. It was inspired by the code coverage metrics used
for traditional software systems. The approach circumvents the lack of a reference oracle,
by using differential testing. DeepXplore leverages a group of similar deep neural networks
that solve the same problem. The test data generation is based on domain-constrained data
transformations to create many realistic visible differences (e.g., different lighting, occlusion,
etc.) and automatically detect erroneous behaviors of deep neural networks against valid and
realistic synthetic inputs. In the end of the testing process, the generated data is kept for
future training, to have more robustness in the model.
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Building on the pioneer work of Pei et al., Tian et al. proposed DeepTest [18], a tool for
automated testing of DNN-driven autonomous cars. In DeepTest, Tian et al. expanded the
notion of neuron coverage proposed by Pei et al. for CNNs (Convolutional Neural Networks),
to other types of neural networks, including RNNs (Recurrent Neural Networks). Moreover,
instead of randomly injecting perturbations in input image data, DeepTest focuses on gen-
erating realistic synthetic images by applying realistic image transformations like changing
brightness, contrast, translation, scaling, horizontal shearing, rotation, blurring, fog effect,
and rain effect, etc. They also mimic different real-world phenomena like camera lens dis-
tortions, object movements, different weather conditions, etc. They argue that generating
inputs that maximize neuron coverage cannot test the robustness of trained DNN unless the
inputs are likely to appear in the real-world. They provide a neuron-coverage-guided greedy
search technique for efficiently finding sophisticated synthetic tests which capture different
realistic image transformations that can increase neuron coverage in a self-driving car DNNs.
To compensate for the lack of a reference oracle, DeepXplore used differential testing. How-
ever, DeepTest leverages metamorphic relations (MRs) to create a test oracle that allows it to
identify erroneous behaviors without requiring multiple DNNs or manual labeling. Tian et al.
defined metamorphic relations between the car behaviors across the proposed image-based
transformations. Since it is hard to specify in advance the correct steering angle for each
transformed image, they assume that the predicted angle for a transformed scene driving is
correct if it varies from its genuine one to less than λ times the mean squared error produced
by the original data set. λ is a configurable parameter that helps to strike a balance between
the false positives and false negatives.

Next, Sun et al. [115] examined the effectiveness of the neuron coverage metric introduced
by DeepXplore and reported that 100% neuron coverage can be easily achieved by a few
test data points while missing multiple incorrect behaviors of the model. To illustrate this
fact, they showed how 25 randomly selected images from the MNIST test set yield a close
to 100% neuron coverage for an MNIST classifier. Thereby, they argue that testing DNNs
should take into account the semantic relationships between neurons in adjacent layers in the
sense that deeper layers use previous neurons’ information represented by computed features
and summarize them in more complex features. To propose a solution to this problem, they
adapted the concept of Modified Condition/Decision Coverage (MC/DC) [116] developed by
NASA. The concepts of “decision” and “condition” in the context of DNN-based systems
correspond to testing the effects of first extracted less complex features, which can be seen as
potential factors, on more complex features which are intermediate decisions. Consequently,
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they specify each neuron in a given layer as a decision and its conditions are its connected
input neurons from the previous layer. They propose a testing adequacy evaluation that is
based on a set of four criteria inspired by MC/DC. As an illustration of proposed criteria,
we detail their notion of Sign-Sign(SS) coverage, which is very close to the idea of MC/DC.
Since the neurons’ computed outputs are numeric continuous values, the SS coverage cannot
catch all the interactions between neurons in successive layers. Since the changes observed on
a neuron’s output can be either a sign change or a value change, they added three additional
coverage criteria to overcome the limitations of SS, i.e., Value-Sign Coverage, Sign-Value
Coverage, and Value-Value Coverage. These three additional criteria allow detecting differ-
ent ways in which changes in the conditions can affect the models’ decision.

Despite the relative success of neuronal coverage in estimating the behavioral changing of
neural networks’ activations, Ma et al. [117] remarked that the real DNN state space is very
large and it can be relevant to take into account the interactions between the different neu-
rons, however, given the size of neurons, this can lead to a combinatorial explosion. To help
address this issue, they proposed DeepCT, which is an adaptation of combinatorial testing
(CT) techniques to deep learning models, in order to reduce the testing coverage space.
CT [118] has been successfully applied to test traditional software requiring many config-
urable parameters. It helps to sample test input parameters from a huge original space that
are likely related to undetected errors in a program. For example, the t-way combinatorial
test set covers all the interactions involving t input parameters, in a way that exposes effi-
ciently the faults under the assumption of a proper input parameters’ modeling. In DeepCT,
K-way CT is adapted to allow for effectively selecting samples of neuron interactions inside
different layers with the aim of decreasing the number of test cases.

Then, Ma et al. [22] generalized the concept of neuron coverage by proposing DeepGauge, a
set of multi-granularity testing criteria for Deep Learning systems. DeepGauge measures the
testing quality of test data (whether it being genuine or synthetic) in terms of its capacity
to trigger both major function regions as well as the corner-case regions of DNNs (Deep
Neural Networks). It separates DNNs testing coverage in two different levels. Neuron-level
coverage criteria include: (1) K-multisection Neuron Coverage (KMNC): the ratio of cov-
ered k-multisections of neurons; (2)Neuron Boundary Coverage (NBC): the ratio of covered
boundary region of neurons; (3)Strong Neuron Activation Coverage (SNAC): the ratio of
covered hyperactive boundary region. Layer-level coverage criteria include: (1)Top-k Neuron
Coverage (TKNC): the ratio of neurons in top-k hyperactived state on each layer; (2)Bottom-
k Neuron Coverage (BKNC): the ratio of neurons in top-k hypoactived state on each layer.
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Relying on DeepGauge’s fine-grained structural coverage criteria, DeepHunter [19] imple-
ments a coverage-guided fuzzing that consists in continuously applying mutations on corpus
of inputs, triggering uncovered DNN’s states, in order to enhance DNN’s coverage and gen-
erate diverse synthetic inputs.

In our previous research work [21], we defined two levels of neuron coverage and used it to
build a novel test adequacy measure that is robust against plateauing during the optimiza-
tion process (i.e., reaching a state of little or no change after a time of progress). In fact,
the coverage-based measure captures both local-neuron coverage (i.e., neurons covered by a
generated test input that were not covered by its corresponding original input) and global-
neuron coverage (i.e., neurons covered by a generated test input that were not covered by all
previous test inputs). Regarding the test data generation, we have proposed, DeepEvolution,
a search-based testing method specialized for DNN software that relies on population-based
metaheuristics to explore the search space of semantically-preserving metamorphic transfor-
mations. Since these metaheuristics are gradient-free optimizers, they ensure the maximiza-
tion of neuron coverage-based fitness, while keeping a wide variety of input transformations
thanks to their flexibility (as they do not require prior assumptions).

The evaluations of all above-mentioned structural coverage-based testing methods have shown
that the enhancement of structural coverage criteria are correlated with the growth of novel
adversarial examples, which indicates that the unfamiliar inputs are more likely to trigger
erroneous behaviors and the coverage-guided exploration promotes diversity in the gener-
ated synthetic inputs. Hence, the test data generation yields more effective test cases with
both higher functionality assessment and fault-revealing ability. Nevertheless, recent re-
search works cast doubt on the effectiveness of structural coverage. Li et al. [15] argue
that the structural coverage criteria could be misleading because their preliminary explo-
ration shows that adversarial examples are pervasively distributed in the finely divided space
defined by such coverage criteria; so the correlation between high structural coverage and
fault-revealing capabilities (i.e., number of exposed adversarial examples) is more likely due
to the adversary-oriented search rather than the resulting enhancement of the structural
coverage criteria.

3.4.4 Distance-based Coverage Testing

Odena and Goodfellow [119] explore the input space to find new test entries that trigger
different behavioral neural network’s states. They encode the activations of all neurons
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as a state vector. Then, they use a fast approximate nearest neighbor algorithm based
on euclidean distance to measure how much a new triggered state vector is meaningfully
different from the previous ones. This allows them to decide if it should be preserved or
deleted for improving the diversity of the forthcoming test input generations. Kim et al. [23]
proposed a fine-grained test adequacy metric, named Surprise Adequacy (SA) that quantifies
how much surprising a given input is to the DNN under test with respect to the training
data. The intuition behind this criterion is that effective test inputs should be sufficiently
surprising compared to the training data. The surprise of an input is quantitatively measured
as behavioral differences observed in a given input relatively to the training data. Kim et
al. defined two concrete instances of their SA metric, given DNN’s activations trace (AT)
that represent a vector of neurons’ activations : (1) Likelihood-based SA which uses Kernel
Density Estimation (KDE) to estimate the probability density of each activation in AT, and
computes the relative likelihood of new input’s activation values with respect to estimated
densities; and (2) Distance-based SA which uses the Euclidean distance between a given
input’s AT and the nearest AT of training data in the same class.

3.5 OOD detection strategies

A wide range of detection strategies [120, 121] has been released to overcome the out-of-
distribution challenge. Deep generative models [122–124] have been leveraged to model
efficiently the distribution of inputs p(x) on the training samples. Then, a membership
test is performed on any input x: if p(x) is low, x will be assigned to ∈ Dood, and vice
versa. However, this generative modeling faces limitations on large-scale and/or complex
input distributions. In contrast, model-dependent OOD detection methods focus on the dis-
tribution of model’s intricacies, such as hidden features, softmax probability outputs, and
uncertainty scores, rather than directly modeling input distributions [125]. Several model-
dependent methods [85, 121] have been proposed for classification neural networks. A few
research works have focused on regression neural networks through thresholding on uncer-
tainty estimates [126]. Bayesian approaches [127–129] approximate the posterior distribution
of neural networks parameters through an ensemble of models. Regarding Non-Bayesian
ensembling approaches, Kendall and Gal [130] adds the expected prediction’s variance as
additional network’s output. Hence, the variance of a prediction is also improved by the
learning algrithm, guided by the minimization of the negative log likelihood on the data. Mi
et al. [131] proposed training-free uncertainty estimation that leverages the average of output
deviations under input or feature map perturbations as a surrogate for uncertainty measure-
ment. One challenge with these uncertainty-based methods is their reliability degeneration
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on out of distribution inputs on which they may be falsely overconfident [132]. Therefore,
OOD examples can be identified by their predicted variances beyond the confidence interval
obtained for ID samples. Mi et al. [131] proposed training-free uncertainty estimation that
injects tolerable perturbations into either inputs or feature maps during inference and uses
the induced variance of the outputs as a surrogate for uncertainty measurement. Recently,
Santana el al. [133] proposed a classification-based OOD detector to separate benign and
adversarial inputs, relying on multiple features extracted from the inputs in order to build
robust DL regression models that forecast photovoltaic power generation. In this thesis,
we aim to exploit apriori system properties like smoothness in order to mitigate the flaws
of data-driven uncertainty estimations, and to develop a novel OOD detection strategy for
regression models under conditions of smoothness that makes use of the mapping function’s
sensitivity profiling to capture potentially OODs.

3.6 Chapter Summary

Over the last decade, researchers and big tech companies have been working increasingly
to investigate the reliability issues raised by DL-enabled software systems and to develop
quality assurance approaches to ensure their trustworthiness when deployed in real-world
settings. In this chapter, we explain the main DL program bugs and model misconceptions
reported in the literature. We then review the debugging and testing techniques proposed to
detect these issues at both the implementation and modeling levels. We also review out-of-
distribution detection mechanisms designed to detect when a trained model has crossed the
trusted boundary. Finally, we present the identified gaps that we have exploited to release
our novel techniques described in the following chapters.
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CHAPTER 4 NEURALINT: A STATIC RULE-BASED DL PROGRAM
DEBUGGER

Many developers, entrepreneurs, and researchers are showing an increasing enthusiasm in de-
veloping Deep Learning (DL) applications in a variety of domains. Easy-to-use libraries such
as TensorFlow or Keras have been released to simplify the development process. However,
leveraging these libraries to implement a training program is still challenging, in particular
for developers who are not experts in machine learning and neural networks. Indeed, DL
developers usually relies on the rich set of APIs provided by DL libraries that can be config-
ured and adapted to solve new problems. However, their generic-purpose nature requires the
incorporation of many assumptions. Their misuses, i.e., the usage of APIs without fully un-
derstanding their inner functioning and–or checking that their assumptions are fulfilled, are
likely to result in erroneous behavior. In addition, poor design choices and coding mistakes
can also result in divergences between the written source code and the algorithm’s mathe-
matical formulation of the implemented training program. For instance, let us consider the
program in Figure 4.1 which is extracted from Stack Overflow (SO) post #44322611 and is
reported to have a low accuracy.

Figure 4.1 Simplified example DL program from SO_44322611.

This program which implements a Convolutional Neural Network (CNN) has three issues.
The first issue (i.e., 1O) is a bug due to the incompatibility between the softmax as out-
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put activation and binary_crossentropy as loss function. In fact, developers should have
chosen categorical_crossentropy because it works with one-hot encoding labels and softmax
activation to solve multi-label classification problems (including binary labels problems)1.
This kind of API misuse error can be identified by verifying the consistency of the involved
mathematical operations. For instance, error 1O induces an inconsistency between the loss
function and the last layer activation. The other two errors are 2O decreasing filters count
224 > 55 > 13 and 3O decreasing filtering spatial size (11, 11) > (5, 5) > (3, 3), which repre-
sent poor structural CNN choices that violate the common design patterns of effective and
optimal CNN architectures [135, 136]. These structural errors are often detected through
manual code reviews which is time consuming. A static code analysis using automated tools
can significantly speed up this process. In this chapter, we examine common structural errors
and design inefficiencies occurring in DL programs and propose NeuraLint, a model-based
verification approach for their detection. To design NeuraLint, we first propose a meta-model
for DL programs that includes their base skeleton and fundamental properties. This meta-
model captures their essential properties independent of available DL libraries. Considering
the proposed meta-model, we specify for each fault or design issue, a verification rule that
can be used to detect its occurrence. Finally, we propose a checking process to verify models
of DL programs that are conforming to the meta-model. We employ graph transformations
to implement NeuraLint. We present a type graph for the meta-model and graph transforma-
tions for the verification rules. We evaluate our approach NeuraLint by finding various types
of faults and design issues in 28 synthesized examples built from common problems reported
in the literature [1] and 34 real-world DL programs extracted from GitHub repositories and
SO posts. The results show that NeuraLint effectively detects faults and design issues in
both synthesized and real-world examples.

Chapter Overview. Section 4.1 presents our meta-modeling of DL programs. Section 4.2
introduces the studied issues and rules for their detection. Section 4.3 presents our proposed
approach NeuraLint. Section 4.4 reports the empirical evaluation of NeuraLint. Finally,
Section 4.5 concludes the chapter.

4.1 Meta-modeling DL Programs

With the proliferation of libraries supporting the development of DL programs, a fundamen-
tal question emerges: is there any generic representation of DL programs that is independent
from these libraries? In other terms, can we define a meta-model of DL programs and how
1 We refer the reader to [134] for more practical use cases about how to choose the last layer activation and
loss function when using the Keras Library.



43

can we model a DL program? Answering this question would pave the way for the application
of model-driven engineering techniques to the detection of errors in DL programs. In [137],
researchers proposed a meta-model for meta-learning. They presented an overview of the
meta-learning concepts –on a meta-modelling level– with possible variabilities and discussed
how their meta-model could be integrated into existing modelling frameworks and tools.
However, while their meta-model includes "Learning Block", "Learning Algorithm", "Opti-
mizer" and "Hyperparameters", no further details like specifications of learning algorithms or
blocks are presented and they did not explore the possibility of identifying errors in machine
learning models. In this section, we present a particular meta-model for DL programs and
our approach for meta-modeling of such programs to perform static analysis of DL programs.
We describe possible variabilities of the meta-model and how concrete DL programs can be
generated from it. We think that a generic meta-model for DL programs can significantly
facilitate the use of DL in various applications and would be helpful for understanding DL
programs written by developers using third-party DL libraries. In fact, model-driven engi-
neering is a perfect tool to make this idea come to life and ease the process of developing and
debugging DL programs.

4.1.1 A Meta-Model for Deep Learning Programs

A DL program has different components. The core of each DL program is a DNN. For the
sake of simplicity, we only consider the feedforward multilayer perceptron (MLP) architecture.
Like other computational models, DNN attempts to find a mathematical mapping from the
input into the output during a learning phase. Usually, a set of inputs and desired outputs
(or targets) is provided for learning, which is called Dataset. Therefore, our meta-model
includes three main parts: Architecture of DNN, Learner, and Data. Since we have used GTS
for modeling DL programs, our proposed meta-model is represented by a type graph. The
proposed type graph is illustrated in Figure 4.2. The node representing theDL program has
three edges to Architecture, Learner and Data nodes indicating its main components. In
the following, we describe the meta-model in detail. It should be noted that our aim of meta-
modeling is the detection of faults in DL programs; therefore the most relevant components
have been incorporated into the meta-model.

Architecture of deep neural network

An architecture starts with the input layer, continues with some hidden layers and ends with
the output layer. We have considered a distinctive node for the InputLayer because of its
importance but all other successive layers are modelled as Layer. Each layer has a size
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Figure 4.2 The proposed meta-model (type graph) for DL programs.

indicating the number of neurons in that layer. There are specific properties among nodes
that are modelled as edges. For example, Architecture starts by Input Layer, Input
Layer is followed by other Layers, each Layer may have next layers and each Layer has
a Type as an attribute. There are different types for a layer in DL, e.g., dense, 1D and 2D
convolution, pooling or data processing layers like flatten. There may be other attributes for
a layer like Bias, Weights. An architecture ends with Labels, the desired outputs of DNN
that are used to calculate the error of the network in Loss function. Actually, Labels is a
part of Data associated with the DL program.

Learning algorithm

A DL program normally employs a learning algorithm, Learner in our meta-model, to learn
the mapping from inputs to outputs. A Loss function is used to calculate the error of a
neural network in matching the target (desired) and output value during training. The goal
of learning is minimizing the loss by modification of the network’s parameters (weights) by
an Optimizer, e.g., Adam or stochastic gradient descent (SGD). The overall performance
of the network is measured using a Metric. Moreover, there are some Hyperparameters
like the number of epochs or batch size.
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Data

This node contains Labels, meta-data, features, and related information about the data set,
like shuffling and batching.

4.1.2 DL programs modeling

A model of a DL program includes components that form its source code. There are two
ways to build a model of DL programs: configure an arbitrary model directly or transform
a DL program to a model. One may design a model for a DL program that conforms
to the proposed meta-model by configuring each component of the meta-model. Starting
from an empty model, layers are added one by one to Architecture; making a chain of
layers that starts by InputLayer node, follows by other Layer and ends with output.
Each layer is configured separately to set Parameters, Weights, etc, and once a layer is
configured completely, the model will proceed to the next layer. Other components of DL
programs like Learner and Data are configured respectively. This process is similar to what
a developer does when developing a DL program using popular DL frameworks. Therefore,
the meta-model and resulting models would be realistic from a practitioner point-of-view and
sufficiently flexible in representing plenty of DL programs.

On the other hand, a model could be configured according to a DL program that has already
been developed by a programmer. The source code of a DL program is converted to a
model, which is an attributed graph. Dedicated convertors are programmed in NeuraLint to
convert a DL program written by different DL libraries to its model. The source code of a
program is parsed to extract relevant information that is necessary to configure the model.
The meta-model is generic enough to be independent of any specific DL library. Hence, we
can have a model of a DL program that conforms to the meta-model; making possible further
investigations on the model, such as verification. Apart from the work and analysis that are
presented in the rest of this paper, we believe that this meta-model can be very useful to
understand DL programs written by third parties. It will be helpful in understanding the
development activities of DL practitioners; the way they write DL programs and the type of
faults that they experience.

4.2 Model-based Verification Rules

In this section, we present the proposed rules for detecting faults in DL programs. First,
we report the adopted methodology for extracting rules. The rules are then described in
Subsection 4.2.2. Afterward, we present a discussion on the application scope of rules. Finally,
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we describe the approach adopted to implement the rules using graph transformations.

4.2.1 Methodology

Figure 4.3 illustrates the adopted methodology for extracting the rules. We have explored
three main sources: datasets of buggy DL programs (including bug repairs), relevant re-
search papers and official DL libraries’ tutorials. In the first step, we manually inspected
the labeled bugs in the public datasets of buggy DL programs released by former research
studies [1,11,138] collected from SO and GitHub with the objective of discovering finer root
causes of bugs. Zhang et al. [138] published the first empirical study on real-world DL bugs
occurring in Tensorflow-based software systems including their high-level root causes and
symptoms. Then, Islam et al. [11] extended the investigated cases to include DL software
systems written using other competitive DL libraries such as Pytorch and Caffe, and studied
the relationship and the evolution of different DL bug types. Last, Humbatova et al. [1]
refined the former bug investigation [11, 138] into a taxonomy of real faults that occur in
DL software systems. In the second step, we have inspected bug fixes suggested in accepted
answers of SO posts and fix patterns adopted in GitHub samples to identify patterns followed
to fix the reported bugs.
We reviewed research studies on DL bugs [1, 11, 138] and fundamental DL design princi-
ples [135, 136, 139, 140] in the third step. Regarding the former, the aim was finding rules
for validating the correctness of model structure and configuration choices through the DL
program’s model drawn from the code. We build on these previous works to specify rules
that can be used to detect occurrences of different types of issues in DL programs and vali-
date the conformity of the DNN design to common patterns through static code inspection.
However, most of the DNN design patterns and principles have been deduced from state-of-
the-art CNN architectures [141,142] that have shown their effectiveness on public computer
vision datasets and competitions such as ImageNet classification [143] or COCO object de-
tection [144]. Thus, we aim to report warnings to the user whenever a poor design choice
is spotted with respect to these empirical research studies on DNN design principles. This
would likely steer the user to redesign his model in order to avoid the performance degrada-
tion either at the training or at the inference mode. Finally, to support practitioners in their
DL program debugging, we also proceed with a dual analysis over the commonly reported
APIM (API Misuse) bugs and the official DL libraries’ tutorials.
In the end, we have come up with 23 rules for detecting bugs and issues in DL programs.
The rules are organized into different high-level root causes as initially introduced in [138],
namely Incorrect Model Parameter or Structure (IPS), Unaligned Tensor (UT), API Misuse
(APIM), and Structure Inefficiency (SI).
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Figure 4.3 The adopted methodology for extracting rules from different sources.

4.2.2 Rules

Incorrect Model Parameter or Structure (IPS)

IPS bugs are related to modeling faults that arise from either an inadequate model parameter
like learning rate or an incorrect model structure like missing or redundant layers [138]. The
major symptom of IPS bugs is anomalous training behaviors leading to low effectiveness such
as low precision and a huge loss.

Rule 1: Asymmetric Units Initialization. The initialization of weights should not be
constant to break the symmetry between neurons [139]. For instance, a common mistake is
to start with null weights, which eliminates asymmetry between the neurons (i.e., all the
neurons would output the same value, and then, would receive the same gradients).
Rule 2: Null Biases Initialization. The initialization of biases is preferred to be ze-
ros [139]. It is a common practice to expect that the outputs could be totally explained by
the input features. Indeed, no custom initial bias provided a consistent improvement, but it
may weaken the learning.
Rule 3: Non-Linear Activation Requirement. Activations for learning layers (i.e.,
convolution and fully-connected layer) should be a non-linear function. This key attribute is
needed to enhance the ability of DNN to model highly nonlinear mappings and draw complex
shape decision boundaries [140].
Rule 4: Unnecessary Activation Removal. Multiple and redundant connected activa-
tions are not allowed. Since all activation functions are designed to transform real values
into a restricted interval [140], successive activations applied to the same features can make
their last activation unable to produce its full output range.
Rule 5: Class Probability Conversion. A last layer activation is required to transform
the logits into probabilities for classification problems. In detail, sigmoid (σ(z) = 1

1+e−z ) and
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softmax (σ(z)i = e−zi∑L

j=1 e
−zj

, for i = 1, ..., L and z ∈ RL) are, respectively, needed to normalize

outputs with single unit (z ∈ R) and multiple units (z ∈ RL). A common mistake is to use
softmax instead of sigmoid for binary classification without one-hot encoding beforehand,
which totally obstructs the learning because the outcome is always equal to 1 = e−z1/e−z1 ,
z ∈ R1.

Indeed, the above-mentioned rules show that static DL code analysis can help detect earlier
structural bugs and misconfigurations, however, incorrect parameters like learning rate or
neural network size (width and depth) could be identified through empirical evaluation of
the model on the underlying data.

Unaligned Tensor (UT)

The computational units in a DNN graph are mostly tensor-based operations, where each
one receives and returns tensors (i.e., multi-dimensional arrays). Their connections can hide
issues related to the compatibility of tensors’ shapes. DL developers often fail to express
and manipulate the shapes of tensors properly [39] because DL libraries mask all the algebra
computations and dynamic shapes’ inference details. A bug triggered during the DNN graph
construction when the shapes of one operation’s tensors do not match is called an Unaligned
Tensor (UT) [138]. The major symptom of UT bugs is runtime errors because the underlying
tensor-based operation could not run on two incompatible tensors. However, the dynamic
shape inference included in most DL libraries often makes the exception of incompatible
shapes triggering far from its localization in the DL code; so the error message can be mis-
leading. In the following, we describe various DNN layers’ connectivity and configuration
rules that can be checked on the DL model to identify the UT bug type and localization.

Rule 6: Consecutive Layers Compatibility. A processing layer that operates on a
N-dimensional tensor, should receive a valid input tensor with exactly N-dimensional shape.
For instance, a Conv2D layer works on 4-D tensors, i.e., [samples, height, width, channels],
but a Dense layer works on 2-D, i.e., [samples, units], which means a reshape layer is needed
to flatten the convolutional feature space before starting the dense layers’ inference.
Rule 7: Spatial Size Agreement. A processing layer should receive sufficient-sized fea-
ture space to perform its spatial filtering or pooling. For instance, 2-D processing layers like
Conv2D and MaxPooling2D require a size of feature space greater or equal to their local
window size, i.e., (window_height ≤ input_height) and (window_width ≤ input_width).
Rule 8: Reshaped Data Retention. A reshape layer should preserve the total data ele-
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ments. More specifically, we verify that the product of original tensor dimensions equals the
product of reshaped tensor dimensions.
Rule 9: Separate Item Preservation. A reshape layer should never alter the size of
elements (i.e., first dimension). Otherwise, the reshape would provoke an overlap between
data items (i.e., points in the feature space), and as a consequence, invalidate the following
layers designed to process each data item, independently.

API Misuse (APIM)

APIM bugs are the ones introduced by practitioners who misunderstand some essential as-
sumptions made by the used DL APIs [138]. Indeed, most DL libraries encode the DNN
as an acyclic computational graph where the edges are tensors and the nodes correspond
to operations. The operations include all the supported computational units that form the
linear computations, activations, gradient estimations, etc. Programmatically, practitioners
describe their designed DL program by inserting and configuring built-in DL routines, and
connecting them by putting the outputs of one operation as inputs to another. When these
routines are added without fulfilling their usage conditions or without context alignment,
the DL program would not reflect the designed DL model or cannot be successfully executed
by the DL core framework, which leads, respectively, to low effectiveness or runtime excep-
tions. Below, we detail the verification rules that should be executed on the generated static
analysis-based graph model to confirm the existence of essential DL program’s components
and their consistency with API assumptions and recognized application context.

Rule 10: Valid Loss Linkage. The loss should be correctly defined and connected to
the last layer activation in accordance with its input conditions (i.e., shape and type). For
instance, the input type for cross-entropy based losses could be either logits or probabilities.
Indeed, numerically stable implementations regarding the cross-entropy based losses require
merging both loss and last activation functions together to rewrite the join formula carefully
without any risk of log(0) or exp(∞). However, ignoring this difference between theoretical
loss functions and their numerically-stable implementations gives rise to a common mistake
in the development of DNN programs, as passing activated output to this logit-based loss
would cause redundant activations.
Rule 11: Valid Optimizer Linkage. The optimizer should be correctly defined and con-
nected to the computational graph. Depending on the DL library, it could be either connected
to the loss (e.g., TensorFlow) or the learnable parameters (e.g., Pytorch).
Rule 12: Single Global Initialization. The learnable parameters should be totally ini-
tialized once at the beginning of the training. For some DL libraries (e.g., TensorFlow), this
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mandatory condition should be carried out by the developer.
Rule 13: Zero Gradients Reset. The gradients should be re-initialized after each training
iteration. This clears old gradients from the last step; otherwise accumulating the gradients
hinders the optimization process. Some DL libraries (e.g., Pytorch) delegate this necessary
reset step to their users.
Rule 14: Iterative Training Procedure. The loss minimization problem should be solved
iteratively with continuous update of parameters. Depending on the granularity level of the
API used, it could be a native loop of optimization routine calls or a single call of a config-
urable fit function.

Structure Inefficiency (SI)

SI issues reflect a misconfiguration in the DNN design and its structure that leads likely to per-
formance problems, contrary to IPS bugs that leads to functional incorrectness [138]. SI issues
may result in performance inefficiencies (like long time of model training/inference) or poor
predictions (like low classification accuracy). As an example, large feature-maps, especially
in the early layers, provide more valuable information for the CNN to utilize and improve
its discriminative power. Therefore, it is crucial to avoid prematurely down-sampling and
excessive appliances of pooling. Otherwise, the model will lose some information extracted
in early layers resulting in poor performance. Since the best trained model cannot guarantee
100% of accuracy, it is challenging to detect design issues by assessing the performance of the
obtained models. Indeed, some misconfigurations and poor design choices may definitely in-
troduce inefficiencies on the internal functioning of the DNN or one of its components, which
can hinder the expressiveness of mapping functions, memory and compute consumption. For
example, when increasing the depth of a DNN, it is important to control both the model size
and the computational cost (regarding the specific task); otherwise, stacking a high number
of layers can worsen the performance.

Rule 15: Effective Neurons Suspension. The dropout layer must be placed after the
maximum pooling layer to be more effective. Considering the case studies with max-pooling
layers [32], the dropout has been applied on the pooled feature maps, which becomes a heuris-
tic followed by the state-of-the-art CNN architectures [141, 142]. The intuitive explanation
is that dropping out the activation before the pooling could have no effect except in cases
where the masked units correspond to maximums within input pooling windows because the
max-pooling would keep only these maximums as inputs for next layers.
Rule 16: Useless Bias Removal. A learning layer should no longer include a bias when it
is followed by batchnorm. Batchnorm applies, after the normalization, a linear transforma-
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tion to scale and shift the normalized activations âi = αai + β, where α and β are learnable
parameters. This allows DNN to compensate for any loss of information by the value dis-
tortions in order to preserve its expressive power. Since, batchnorm already adds a β term
fulfilling the same role of bias, so “its effect will be canceled” [34] in the presence of a bias.
Rule 17: Representative Statistics Estimation. Batchnorm layer should be before the
dropout. Otherwise, batchnorm computes non-representative global statistics (i.e., moving
average and moving variance) on the dropped outputs of the layer. Li et al. [145] discussed
the reason behind this disharmony between dropout and batchnorm and showed experimen-
tal results reinforcing their explanation.
Rule 18: Pyramid-shaped Construction. The area of feature maps and the width of
fully-connected units should be progressively decreasing over the layers. It has been shown [146]
that the progressive size reduction of activations implicitly forces the neural network to find
and learn more robust features. Hence, it significantly improves its predictions, since the
network decisions are based on more discriminative and less noisy features.
Rule 19: Maximum Pooling Domination. Max-pooling is the preferred down-sampling
strategy. In fact, down-sampling [147] can be done by max- or average-pooling or strided con-
volution (strides greater than 1). Nevertheless, max-pooling operation has been shown [148]
to be extremely superior for capturing invariances in data with spatial information, compared
to other downsampling operations.
Rule 20: Gradual Feature Expansion. The number of feature maps should be gradually
expanded while the feature map area is retracted. The growth of feature maps count is rec-
ommended [149] to compensate for the loss of representational expressiveness caused by the
continuous decreasing of the spatial resolution of the learned feature maps. Throughout the
layers, the feature space becomes synchronously narrower and deeper until it gets ready to
be flatten and fed as input vector to the dense layers.
Rule 21: Local Correlation Preservation. The local window size for spatial filtering
should generally increase or stay the same throughout the convolutional layers. It makes
sense that by using CNNs, the locality of information is crucial for performing the task.
Thus, it is important to preserve locality throughout CNN to guarantee its success in de-
tecting various features and relations between them [150]. Furthermore, early convolutional
layers learn lower level features while deeper ones learn more high-level and domain specific
concepts. It is recommended [151, 152] to start with small spatial filtering to collect much
local information and then gradually increase it to represent more compound information.
Rule 22: Maximum Information Utilization. Deep CNN should not apply pooling after
every convolution. For instance, we use, as approximations, the minimum of 10 layers to
consider a CNN deep and 1/3 as threshold for the proportion of pooling layers with respect
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to the total of convolutional layers (convolution + pooling) to pinpoint a high amount of
pooling. In fact, it has been shown [152–154] that larger feature-maps, especially in the early
layers, provide more valuable information for the CNN to utilize and improve its discrim-
inative power. Therefore, it is crucial to avoid prematurely down-sampling and excessive
appliance of pooling.
Rule 23: Strive for Symmetry and Homogeneity. Deep CNN should favor blocks of
2, 3 or even 4 homogeneous convolutional layers with similar characteristics. Indeed, going
deeper does not refer to simply maintaining stacking a series of convolution and pooling
layers. Advanced CNN architectures [155–157] have shown the benefit of having several
homogeneous groups of layers, where each one is specialized to achieve a particular goal.
Indeed, building blocks of convolutional layers with similar characteristics (i.e., the same
number of feature maps and feature map sizes) increases the homogeneity and the structure
symmetry within the CNN. Hence, larger kernels can be replaced into a cascade of smaller
ones, which enhances the nonlinearity and yields better accuracy [151]. For instance, one
5 × 5 can be replaced by two 3 × 3 or four 2 × 2 kernels. Moreover, spatial filtering with
reduced size decreases massively the computation power requirement because recent NVIDIA
cuDNN library (version 5.x or higher) is not optimized for larger kernels such as 5 × 5 and
7× 7, whereas CNN [151] with entirely 3× 3 filters achieved a substantial boost in cuDNN
performance.

4.2.3 Application scope

The rules are defined to support the debugging of DL programs through static analysis-
based graph models. On the first hand, we have been limited to the information that could be
parsed from the source code of a DL program. For instance, there are some model parameters
that should be experimentally tested to assess their adequacy for the underlying problem,
particularly for IPS bugs. Thus, the bugs related to data (type, format, and preprocessing
steps) and hardware issues (GPU configuration and required memory) are excluded from the
rules and debugging scope because the information needed to diagnose the issue and identify
those bugs are mostly out of the static DL code scope. In fact, these types of bugs could be
better detected using Python and GPU firmware native debugging tools that help inspect
step by step the executed statements at runtime. On the other hand, we have defined a
high-level meta-model that could be instantiated to represent any DL program; so, bugs and
intricacies that are related to specific DL libraries or APIs are discarded from the verification
routines. Referring to the identified high-level root causes of DL bugs [138], we did not
consider API Change (APIC), which reflects anomalies by a DL program upon a new release
of the used library and Confusion with Computation Model (CCM), which includes bugs
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arising from misunderstanding the DL library computation model such as DAG and deferred
execution of Tensorflow, and bugs which are related to regular programming mistakes like
for any traditional software.
According to the categories in the most recent taxonomy of DL faults [1], we mention the type
of faults that could be covered by the proposed rules: Wrong Tensor Shape, Wrong Shape of
Input Data, Model Properties, Layers, and Loss Function. Based on the count of manually-
analyzed real-world buggy programs in [1], we found that the covered DL bugs/issues in
NeuraLint represents 51.7%, of all reported DL buggy samples in the taxonomy. In the
following, we report a prevalence ratio for each type of bugs, i.e., the number of buggy DL
programs assigned to the underlying category divided by the total number of buggy DL
programs in [1]:

• Wrong Tensor Shape (14.1%). It refers to errors leading to unexpected tensor shape
and mismatch between operations’ shapes of tensors.

• Wrong Shape of Input Data (14.8%). It assembles the bugs caused by invalid shapes of
input data for a computational layer including input layer, hidden layers, and output
layer, as well as the shape of math function’s inputs.

• Model Properties (2.7%). It comprises improper modeling choices that can dramatically
degrade the DNN’s performance such as missing, wrong model initialization, or sub-
optimal model structure.

• Layers (15.4%). It contains the bugs related to layers including missing, redundant,
misconfigured and wrong neural network layers.

• Loss Function (4.7%). It covers different issues in relation with the loss component
such as missing, inadequate and wrong loss function.

4.2.4 Representing Rules as Graph Transformations

In this chapter, the meta-model is presented as a type graph and each model is a graph,
instantiating the type graph. Each DL program is converted to a graph, as well. As a
straightforward approach, graph transformations are chosen to implement the verification
rules. Each verification rule is implemented as one or some graph transformations or graph
processing operators. In fact, graph transformations are used to detect possible faults in a
model, faults that are caused by violating the verification rules. Consequently, a transforma-
tion is applicable where the conditions of the corresponding rule are violated. In other words,
if conditions of a verification rule are violated representing a fault in a model then the graph
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operation(s) of that rule will be applicable. Graph transformations are very flexible to find
violation of some conditions in a graph. Recalling that a graph transformation r is defined by
a triplet of (LHSr, RHSr, NACr), a specific condition would be checked by finding a match
of LHSr in the graph and/or the absence of NACr. Once a graph operation is applied, i.e.,
detecting a fault in a part of the graph, a specific fault code is added to the node or edge in
which the violation occurred. This action is represented by the right hand-side of the rule
RHSr.

Figure 4.4 illustrates one of verification rules implemented as a graph transformation, showing
LHS, RHS, and NAC. The transformation is an implementation of Rule 4 which asserts
that: Multiple and redundant connected activations are not allowed. Developers usually add
activations after learning layers (like convolution and dense layers) to produce proper output
signals. LHS shows a learning layer with the type of ‘dense’, ‘conv1d’, ‘conv2d’ or ‘conv3d’ in
its Parameters node, followed by two consecutive layers containing the type of ‘activator’
and the nonLinear as True in their parameters. A positive closure is used on the label
of incoming edges to activation layers (next+). This states that activations may appear in
any Layer node on the path beginning from the learning layer and including multiple next
edges (≥ 1). To be sure that another learning layer would not appear on this path, e.g., false
detection of the next learning layer followed by its only activation, NAC forbids the existence
of any learning Layer node on the subpath leading to activation nodes. If such a match is
found in a model (graph of DL program), Rule 8 is violated. Therefore, RHS just adds a
Faults node with relevant fault code to the faulty component, i.e., learning layer. Because of
space limitation, we cannot present in the paper all the graph transformations implemented
for our model verification. We refer interested readers to the source code of NeuraLint which
is available online [158].

4.3 A Model-based Verification Approach for DL programs

In this section, we describe our approach, NeuraLint for detecting faults in DL programs.
NeuraLint is a model-based automated approach that performs a static analysis of a DL
program to detect faults and design inefficiencies. Algorithm 1 shows the pseudocode of
NeuraLint. The inputs are a DL program and a graph grammar, i.e., a set of graph trans-
formations rules. As presented in Algorithm 1, NeuraLint has three main steps: extract a
graph from the DL program, perform graph checking and generate a report from the resul-
tant graph. At first, the DL program is modeled as a graph that conforms to the proposed
meta-model, i.e., type graph. Then, a checking process runs to find bugs/issues in the model.
This process attempts to apply rules to the graph and stops when further rule application
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Figure 4.4 An Example of Graph Transformation Rules: Implementation of Rule 4.

becomes impossible. Then, NeuraLint traverses this graph to generate a report for the user,
containing a description of the faults and design issues found for each component. Except
graph checking and graph transformations, all other parts of NeuraLint are implemented
in Python. We discuss details of each step in the rest of this section. The source code,
developer’s guide and some examples are available online [158].

4.3.1 Modeling DL Program as Graph

In our graph-based approach, a DL program is modeled by a graph instance conformed
to the type graph, i.e., meta-model. To fulfill this primary step, we implement the graph
generation relying on static code analysis that examines the source code and extracts the
valuable code units and segments the information needed to instantiate the type graph’s
components. This analysis is performed without executing programs to extract the structure
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of the DL model from the code. Based on the OMG (Object Management Group) taxonomy
of software analysis types [159], our graph generation process belongs to the category of
technology-level software analysis because the code inspection routines are further customized
to consider the interactions between identified units and connect them to the internals of
the used technology (DL library). This provides a more holistic and semantic view of the
analyzed DL program, that allows detecting faults related to either DL library’s API misuse
or DL algorithm implementation requirements. Hence, a specific graph generator should
be implemented for each supported DL library. Without loss of its generality, NeuraLint
currently supports DL programs written using TensorFlow and Keras as two well-known and
popular libraries. It should be noted that NeuraLint can be extended to detect bugs/issues
in DL programs developed by other DL libraries (like PyTorch), as well. The only necessary
step is extending the parser to cover specific APIs of each DL framework. Moreover, by
employing static analysis we are limited to the information available prior to the runtime,
in contrast to dynamic analysis performed on programs while they are executing. Hence, we
cannot detect bugs/issues depending on information introduced in the runtime environment,
like dynamic types or dynamic constructions. However, we believe that the current approach
can detect a significant amount of bugs/issues since DL programming is usually simple, and
much useful information on DL models can be extracted by static analysis. In the following,
we describe steps of modeling of DL programs as attributed graphs.
Our approach consists in parsing the DL routines called in the DL program line by line to
extract the components related to both the DNN model and the DL training algorithm, as
well as their configurations. The identified components are independent of the context of the
parsed program. We used Abstract Syntax Tree (AST) to parse the DNN program script.
AST represents the abstract synthetic structure of the scripts as a tree. This tree represents
the abstract syntactic structure of the source code of the DL program. Each node of the tree
denotes a construct or statement in the source code of a DL program. Arguments of function
calls or assignment statements are extracted and stored in subtrees of the node. As we process
the code line by line according to AST, the graph is constructed gradually by appending nodes
and edges. In each DL library, there are specific built-in routines for defining various layers,
configuring them (e.g., adding dropout and activations), connecting layers to each other,
feeding input, calculating output, and training the network. In this way, the most important
parts in the DL program for constructing its model like layers, dimensions, loss and optimizer
functions could be identified by the parser. Algorithm 2 illustrates this process. Based on
the information extracted by AST, for any line in the code of a DL program that indicates
an assignment statement, we build a dictionary to store its value for further usage. For API
calls that add or configure a layer, we firstly extract the related properties like type and
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number of units (neurons) from AST or dictionary of variables. Since the current version of
NeuraLint is designed to handle DL programs developed using TensorFlow or Keras libraries,
we have covered the API of these frameworks. Sometimes, a computation phase is required
for each layer to process its attributes and attach it to other layers in the graph correctly.
For instance, the dynamic shapes of the layer’s tensors (i.e., input and output data layer)
should be computed. In such cases, the required properties are computed before adding the
node to the graph. If an API call relates to compiling or training the model (building the
DNN, adding loss and optimizer functions), the optimizer and loss nodes are added to the
graph. At the end, we will check all the interconnected layers to verify the coherence of
the datashapes flowing throughout the DNN’s computational layers and apply the required
corrections. Afterward, the generated graph, including all relevant components (nodes/edges
and their properties) based on the extracted and computed information is returned.

4.3.2 Model-based Verification using Graph Transformations

The verification rules are implemented as graph transformations to process and verify the
graph. Each graph transformation applies to the graph if conditions of the rule are violated.
Once the DL source code is modeled as a graph, the violations of rules can be detected
with a graph transformation tool that executes the sequence of rules over the model of
the DL program. In this chapter, we have used the GROOVE toolset [160] to perform
graph operations. GROOVE is a tool for implementing, simulating, and analysis of graph
transformation systems. It is capable of exploring recursively and collecting all possible
rule applications over a host (start) graph. This is referred to as the exploration of the state
space of a graph grammar. GROOVE explores the state space by applying a slightly modified
version of standard graph traversal algorithms, like depth-first search (DFS) or breadth-first
search (BFS). Furthermore, it has a graphical interface for editing graphs and rules, and for
exploring and visualising the GTS which could be called via command line, as well. The
output of GROOVE is called the final graph on which no further rule application is possible.
For more information about GROOVE’s internal mechanism and its capabilities for modeling
and simulating GTS, the interested reader may refer to [161].
In order to find which rules are violated, the graph transformation system must be simulated.
The simulation performed by GROOVE automatically applies the matching transformation
rules over the graph of the DL program. Actually, this process generates a state space, in
which the model of the DL source code (graph) is the start state and the transitions are
the applied transformation rules. It explores the state space of all graphs that are reachable
from graph. In certain states, no more transformation rules can be applied; these states are
called final states. A path starting from the start state and leading to a final state, consists
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Algorithm 1: NeuraLint
Input: A DL program, program, and rules as a graph grammar
Output: List of bugs or warnings to improve the program
graph← extractGraphFromProgram(program) (Algorithm 2)
final← graphChecker(graph, rules) :

1. starting by graph, apply enabled rules.

2. apply enabled rules recursively.

3. terminate when further application of rules becomes impossible.

4. return final.

report← extractReportFromGraph(final)
return report

of applied transformations indicating the detected faults or violation of verification rules.
Moreover, this path indicates the type and location of detected faults. A specific code for
each type of fault has been associated with the faulty component when the rule has rewritten
the graph.
The rules are implemented in such a way that starts from the first layer and proceeds to the
next layers one by one. At first, the general structure and connectivity of deep neural networks
is tested assuring that input, hidden and output layers are well-formed and connected. These
transformation rules mark the graph components (nodes and edges) with relevant flags to
indicate the performed tests. Then, each graph operation checks specific conditions that are
asserted in its rule using the information provided in the graph. A transformation should
be fired if a rule violation is observed in the model of a DL program. If there are multiple
rule violations or various instances of a violation in the considered model, all of them will
be detected by applying multiple enabled rules. At last, a parser is developed to process the
final graph and extract information about detected issues/bugs to generate a report for the
user.

4.4 Evaluation

In this section, we report an empirical evaluation that aimed to assess the effectiveness of
NeuraLint.



59

Algorithm 2: Extracting graph from DL program
Input: A DL program in Python developed by TensorFlow or Keras
Output: A graph indicating program’s DL model with respect to the meta-model
graph← empty
dictionary ← empty
for each line of DL program do

if line encodes an assignment statement then
extract left-hand (variable) and right-hand side (value) of the statement
add the statement to the dictionary

end
if line encodes a layer then

extract properties of layer (type, size, kernel, padding, ...)
look up values of variables in dictionary
add the corresponding node(s) and edge(s) to the graph

end
if line encodes compilation of the model then

extract properties of compilation (loss and optimizer function)
look up values of variables in dictionary
add the corresponding node(s) and edge(s) to the graph

end
end
return graph

4.4.1 Studied Programs

We have evaluated the effectiveness and efficiency of NeuraLint in detecting bugs/issues on
a set of synthetic and real-world faulty DL programs. To create realistic synthetic examples,
we also need some real-world DL programs to imitate the faults occurring in them. To find
a proper set of real-world faulty DL programs, we have used two main sources: 1) samples
found by directly searching over SO with keywords related to the categories of bugs covered
by NeuraLint, and 2) public datasets of buggy DL programs (from SO and GitHub) released
by previous research studies. For the former, we chose SO because it is the most popular
Q&A forum for software development. As of May 2020, it has collected more than 19 mil-
lion questions and 29 million answers. It has been also leveraged by previous studies on
DL software systems [11, 12, 138]. Since NeuraLint currently supports both TensorFlow and
Keras, we searched SO posts tagged by one of these libraries with the objective of collecting
buggy DL code including multi-granularity levels such as a single function call, a snippet
(few lines) of code or a whole DL program. In fact, we found that SO assembles 57,104
and 27,008 questions, tagged respectively with TensorFlow and Keras, that comprise diverse
issues encountered by DL practitioners when dealing with these libraries. Hence, we refined
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our search queries with keywords related to the categories of bugs covered by NeuraLint that
are described in Section 4.2.2 resulting in 255 posts. We manually inspected, for each type of
bug, the top-10 relevant SO posts (i.e., according to built-in SO relevance criterion) mention-
ing one or more of its associated keywords. We consider SO posts, containing full code script
or code snippets that are related to one or multiple bugs belonging to the above-mentioned
categories. This process left us with 18 faulty DL programs.
Regarding public datasets of buggy DL programs (from SO and GitHub), we consider three
publicly available datasets/replication packages [1,11,138]. Also we consider another dataset
from a recent research on bug fix patterns in DL programs developed by five popular DL li-
braries including Tensorflow and Keras [162]. They have studied several repair patterns in DL
programs. All these studies investigated various faulty DL programs from SO and GitHub.
We have manually inspected all artifacts they have used in their study to find relevant faulty
examples to evaluate NeuraLint. Actually, finding proper samples for evaluating our tool is
not an easy task. We explain the methodology followed and encountered difficulties in the
rest of this section. Some DL programs were developed by libraries other than Tensorflow/K-
eras which are out of scope of the current version of NeuraLint. In total, we had 733 SO posts
and 682 samples from GitHub from all these sources where 622 programs were developed by
TensorFlow and 793 by Keras. Among DL programs developed by Tensorflow/Keras, we
have excluded programs containing types of faults that are not covered by the current ver-
sion of NeuraLint, for example those related to recurrent neural networks. So, we were left
with 566 faulty DL programs. In the next round, programs developed with older versions of
Tensorflow/Keras were discarded if the API related to the fault was not supported in later
versions. Many of the remaining samples (89 from SO and 126 from GitHub), especially
those from GitHub, were actually libraries (not DL programs) that have been developed on
the top of DL libraries for particular problems or domains, e.g. image/speech processing,
reinforcement learning, or natural language processing. We also discarded these libraries
which were 86. Although their implementation contained bugs that led to buggy DL models,
when the libraries were used to build DL models, we discarded them because they do not
build a model explicitly using Tensorflow/Keras APIs. For example, they get a specific con-
figuration file or a code written by their own high-level APIs as input, and use it to construct
a DL model. Therefore, it is impossible to use those examples since the scope of NeuraLint
is defined to cover DL programs developed directly by employing Tensorflow/Keras built-in
APIs. It should be noted that customized parsers can be developed to extract DL models
from any configuration file or high-level code that is not currently covered by NeuraLint and
then use our tool to find bugs/issues in them. After processing all these artifacts, we ended
up with 26 buggy DL programs shared on SO (18 from our direct search and 8 from public
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datasets) and 8 from GitHub.
Since NeuraLint requires a full DL program to construct a graph on which the model verifi-
cation is performed, we decided to prepare synthetic examples by a mix of synthetic code and
reproduced real DL programs for the evaluation of NeuraLint. The reproduction of buggy DL
programs from the SO posts is quite difficult when a major part of the code is not provided
in the post. Anyway, to reproduce real buggy DL programs, we proceed as follows: (1) we
first implement two well-known CNN applications, LeNet [163] on MNIST data [164] and
VGG-16 [151] on Imagenet data [143], as base programs. To enhance diversity at technology
level as well, we use both of our supported DL libraries, Tensorflow for LeNet and Keras
for VGG-16 following, respectively, the official implementations [165] and [166] published on
GitHub; (2) regarding implementation-related bugs, we inject each fault found, to one of the
base DL programs; (3) regarding design-related issues, we poorly re-designed the structure
of the base program’s model to include inefficiencies violating the common patterns and best
practices mentioned in Section 4.2.2. Finally, we constructed a total of 28 buggy synthetic
programs which corresponds to one or two examples per detection rule. We constructed two
faulty examples for a rule when there are two contexts in which the rule can be triggered, one
example for each of these contexts. For instance, Rule 10, which validates the loss linkage, has
been evaluated against both contexts of binary cross-entropy (used for binary class problem)
and categorical cross-entropy (used for multi-class problem). For injecting bugs, we followed
fault patterns observed in real buggy samples during our rule extraction process (illustrated
on Figure 4.3). Hence, the injected bugs are realistic reproductions of faults. Our goal for
evaluating NeuraLint using synthetic examples is debugging, i.e., making sure of its accuracy
and effectiveness prior to evaluating it on real-world examples. For more details, please see
our replication package containing all samples and implemented synthetic code [158].
Based on DL bug symptoms defined in [11], we found three bug symptoms in our studied DL
programs: i) Bad performance. Bad or low performance is a common effect of conceptual
issues related to design structure inefficiency or poor choices, misconfiguration of DL compo-
nents; ii) Incorrect Functionality. This symptom refers to situations where the DL program
behaves in an unexpected way without any runtime or compilation error. For instance, the
DNN outputs only one label among class labels; iii) Program Crash: This bug effect is
common for all software programs, it means that the program stopped running and raised an
exception. Regarding the recommended fixes, we examined the accepted or endorsed answers
of SO users to determine the bug-fixing repair (i.e., accepted) or recommendations provided
to guide the user who asked the question towards finding the root cause of the error (i.e.,
open question).
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4.4.2 Results

First, we have evaluated NeuraLint using 28 synthesized examples to investigate the cor-
rectness and preliminary effectiveness of the proposed approach. NeuraLint has successfully
detected the bugs and issues in all synthetic examples. It should be noted that NeuraLint
extracts the DL model from a DL program and employs graph transformations to apply the
proposed rules on the model, not the code, to detect possible bugs/issues. For extracting the
model from the code, NeuraLint relies on TensorFlow/Keras APIs and not on any particu-
lar patterns in the code. Moreover, we have not limited our experiments to these synthetic
samples and have tested NeuraLint on real-world faulty DL programs. In other words, the
tool is evaluated on faulty DL programs with bug patterns that were not considered when
creating the tool or synthetic examples.
To evaluate practical effectiveness and accuracy of NeuraLint, 34 real-world DL programs
from SO posts and GitHub repositories are used. Results are presented in Table 4.1 and
Table 4.2. Table 4.1 reports results over DL programs extracted from SO posts. For each DL
program, we report the ID of the post over SO, reported symptoms of buggy programs by the
developer, fixes recommended by other users, output of NeuraLint (violated rules), number
of true positive cases and false negative cases respectively. True positives are reported as a+b
where a is the number of bugs/issues reported by SO users that are detected by NeuraLint,
and b is the number of bugs/issues detected by NeuraLint that are not mentioned by SO
users. For b, two of the authors independently have checked each program and the output of
NeuraLint manually to ensure that the output is correct. The total number of false positive
cases is zero, so we do not report them. It is well-known that the best practice is analyzing
SO posts with accepted answers (No. 1 to 20 in Table 4.1) ensuring the proposed solution is
a real fix and addresses the mentioned problem. In our searching process for faulty samples,
however, we have encountered 6 posts in SO without accepted answers (No. 21 to 26 in
Table 4.1) containing relevant DL buggy programs or code snippets. Although none of the
provided answers in these posts were accepted by the user who asked the question, we found
at least one helpful and correct answer in the posts after a careful analysis. Specifically,
one of the authors has manually inspected answers to make sure that SO users pointed out
a right solution to the problem according to our verification rules. This process has been
verified by another author assuring that we have a correct assessment and that the output
of NeuraLint is accurate. Regarding samples from GitHub, the results are reported in Table
4.2. True positives are again reported as a+b where a is the number of bugs/issues that are
successfully detected by NeuraLint according to reported problems in GitHub or a previous
research study as mentioned in Subsection 4.4.1. On the other hand, b is the number of
bugs/issues detected by NeuraLint but not reported in GitHub or a previous study. Similar
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to what we have done for SO posts, we have checked each program and the output of Neu-
raLint manually to ensure that the output is correct. In all tables, the rules which detect
the bug/issue as reported by the developer are highlighted in bold letters. Detailed informa-
tion of each sample including the link to GitHub repositories are available in our replication
package [158].
In total, 31 out of 44 bugs/issues are detected correctly by NeuraLint, so the recall is eval-
uated as 70.5 %. All of these bugs/issues were identified by users/developers or previous
research studies. The recall for SO posts with accepted answers is 76.9 % (20 out of 26), for
SO posts without accepted answers is 75 % (6 out of 8), and for GitHub samples is 50 % (5
out of 10). The precision is 100 % meaning that we do not observe any false positive case in
our evaluation. Moreover, NeuraLint correctly detected 33 additional bugs/issues that were
not reported by users/developers who commented on the SO posts or GitHub repositories.
Most of them, 29 out of 33, are design issues. NeuraLint has successfully detected 64 bugs/is-
sues in 34 real DL programs in overall.
While fewer bugs are detected by NeuraLint in GitHub samples compared to SO posts, more
design inefficiencies are detected by NeuraLint in GitHub samples (14 in 8 samples). Also,
since NeuraLint is based on a static analysis, being able to detect half of the faults contained
in the studied Github projects is already an interesting feat, since it allows developers to
catch them early on, before they have to run their programs. Based on these results, we
can report that the performance of NeuraLint is noteworthy; about three-quarters of known
bugs are successfully detected (recall) and a significant number of hidden bugs and design
inefficiencies of DL programs. Moreover, its precision is 100 % meaning that while the tool
may miss some faults in the evaluated DL programs (overall recall is 70.5 %), it never detects
bugs/issues wrongly. The reason is that our detection process is based on proposed verifica-
tion rules and we report their violations in DL models extracted from DL programs.
We have performed the experiments using a machine with Intel i7-9750H CPU and 16GB of
main memory running Windows 10. The average execution time of NeuraLint for the studied
TensorFlow and Keras samples are 1.800 and 2.049 seconds, respectively. It should be noted
that graph checking (performed by GROOVE) consumes the main portion of the execution
time, about 99.7 %. Our preliminary analysis revealed that the running time mainly depends
on the number of layers of the DL model. Details of the execution time of NeuraLint for five
real DL programs with different sizes are reported in Table 4.3. According to these results,
the execution time of extracting and checking the graph increases as the number of layers
grows. Extracting the graph is accomplished by single or multiple passes through the code.
Hence, the execution time grows linearly by the number of layers as adding/configuring each
layer needs a few API calls in TensorFlow/Keras. On the other hand, GROOVE supports
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Table 4.1 Results of validating NeuraLint using real DL programs selected from StackOver-
flow.

No. SO # Symptom Recommended Fix Violated
Rules

TP FN

1 44399299 Program Crash Change the shape of the input layer 7 1+0 0
2 43464835 Program Crash Change the shape of the input layer - 0+0 1
3 42913869 Program Crash Change the number of units for the

output layer
3 0+1 1

4 48518434 Program Crash Reduce spatial size of both Conv.
filtering and pooling widows

7 1+0 0

5 40857445 Program Crash Adding a flatten layer 6 1+0 0
6 50555434 Bad Performance Use softmax activation in-

stead of sigmoid and categor-
ical_crossentropy loss instead
MAE

10 1+0 0

7 46177505 Program Crash Change spatial size of Conv. filter-
ing and pooling widows

5, 10 0+2 1

8 50426349 Program Crash Change the shape of the input layer 19, 20 0+2 1
9 38584268 Program Crash Adding a flatten layer 6, 21 1+1 0
10 45120429 Program crash Change the number of units for the

output layer, Adding a flatten layer
6, 19, 10 2+1 0

11 45378493 Incorrect Function-
ality

Use a sigmoid for last layer activa-
tion

5, 10, 16,
19, 20

2+3 0

12 45711636 Program Crash Use channels_last format for input
data

7 1+0 0

13 34311586 Bad Performance Remove the last layer activation 5, 10, 19 2+1 0
14 50079585_1 Bad Performance Use softmax activation in-

stead of sigmoid and categor-
ical_crossentropy loss instead
binary_crossentropy

- 0+0 1

15 50079585_2 Incorrect Function-
ality

Change the number of units for the
output layer

10 1+0 1

16 51749207 Bad Performance Use of sigmoid activation instead of
softmax

5, 10, 19 2+1 0

17 53119432 Program Crash Adding a flatten layer 6, 19 1+1 0
18 55731589 Program Crash Use of ’same’ instead of ’valid’ for

layer padding type
7 1+0 0

19 58844149 Bad Performance Use of sigmoid as last layer activa-
tion

5, 10, 21 2+1 0

20 61030068 Program Crash Adding a flatten layer 6 1+0 0
21 33969059 Bad Performance Change the number of units for the

output layer
10 1+0 0

22 44184091 Program Crash Fix the limit size for input se-
quence data

15 0+1 1

23 44322611 Bad Performance Prune the DNN, use RMSprop in-
stead SGD

10, 20, 21 0+2 1

24 49117607 Program Crash Reduce spatial size of both Conv.
filtering and pooling widows

16 0+1 0

25 55776436 Bad Performance Try Data augmentation, Regular-
ization, filtering spatial size reduc-
tion, and DNN Depth Increase

7, 16, 17,
20

4+0 0

26 60566498 Bad Performance Try Data augmentation and Hy-
perparameters Tuning

15, 16 1+1 0
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priority-based rule application as well as various search strategies to explore the full state
space, i.e., checking and applying all applicable rules in each state [161]. We have used BFS
and priority-based rule application to improve the efficiency. However, the execution time
of graph checking grows faster than extracting the graph as the number of layers of the DL
model increases. The running time of NeuraLint can be improved which is left for future
work.

4.4.3 Discussion

GitHub samples were developed by advanced developers and are more complex than SO
posts. While the scope of NeuraLint is defined to cover convolutional architecture as a par-
ticular type of FNN designed mainly for classification of 2D images, audio spectrograms, or
3D videos, some of studied GitHub samples have used convolutional architecture for data
generation (e.g., extraction of structural lines of images2) or text classification3. In another
sample4, developers concatenated outputs of multiple convolutional architecture, each layer
taking all preceding feature-maps as input, which is not frequent in popular CNNs. Us-
ing popular convolutional architectures such as VGG, ResNet, or MobileNet as a part of a
DL model or modifying them for particular tasks is also observed in studied samples from
GitHub5. Although the proposed meta-model is capable of representing these models as
FNNs, particular rules must be proposed to find faults and improve the accuracy of Neu-
raLint on these samples. The developer added a dropout layer after dense layers to fix the
problem in one of GitHub samples6. Although, as mentioned in Subsection 2.2, regularization
methods are required to improve the convergence and generalizability of DL models, we need
more investigations for proposing a rule to detect lack of enough or proper regularizations.
The focus of the design and implementation of NeuraLint, is on faults that relate to structural
(architectural) properties of DL programs rather than their dynamic properties that need the
programs to be executed. In other words, there are some frequent types of bugs/issues in DL
programs that could be detected without dynamic analysis of the DL program [1]. However,
the lack of dynamic analysis of DL programs is a limitation of our approach. Such analysis
would allow for the detection of runtime bugs and bugs/issues in training/inference of DL
models. For example, in program No. 22 in Table 4.1, the mismatch shapes is caused by the
size of loaded input size during the execution, it is a runtime bug and could not be detected
by the current version of NeuraLint. Some other bugs in DL programs need in-depth runtime
2 https://github.com/hepesu/LineDistiller 3 https:
//github.com/bwallace/rationale-CNN 4 https://github.com/cmasch/densenet 5 https:
//github.com/mateusz93/Car-recognition/commit/94b36ea 6 https:
//github.com/dishen12/keras_frcnn/commit/38413c6

https://github.com/hepesu/LineDistiller
https://github.com/bwallace/rationale-CNN
https://github.com/bwallace/rationale-CNN
https://github.com/cmasch/densenet
https://github.com/mateusz93/Car-recognition/commit/94b36ea
https://github.com/mateusz93/Car-recognition/commit/94b36ea
https://github.com/dishen12/keras_frcnn/commit/38413c6
https://github.com/dishen12/keras_frcnn/commit/38413c6
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Table 4.2 Results of validating NeuraLint using real DL programs selected from GitHub.
No. Symptom Recommended Fix Violated

Rules
TP FN

1 Bad Performance [167] Changing the last layer activation 19, 20, 21 0+3 1
2 Bad Performance [168] Changing layer dimensions 19, 20, 21 0+3 1
3 Bad Performance [169] Changing layer dimensions

(padding)
4, 19, 21 1+1 1

4 Bad Performance [170] Adding a pooling layer 5, 16, 20,
21

1+3 1

5 Bad Performance [171] Changing layer dimensions 19, 16, 20,
21

1+3 0

6 Bad Performance [172] Adding ReLU activation to the
last layer

3 1+0 0

7 Bad Performance [173] Adding ReLU activation to the
last layer

3 1+0 0

8 Program Crash [174] Changing layer dimensions 19 0+1 1

analysis. For example, using dropout before batchnorm makes the behavior of DNN different
during training and evaluation phases. This is the case for program No. 15 in Table 4.1.
In another sample7, batch size has been modified to improve the performance of the learn-
ing phase which cannot be investigated without analyzing the learning performance during
runtime. Detecting these faults is currently out of scope of NeuraLint and to cover them,
DL programs must be experimentally tested to assess their performance for the underlying
problem and then detect it.
Another challenge that we faced is related to the multiple releases of TensorFlow library that
significantly changed the API functions; which makes the graph generator mainly designed
and implemented in regards to the 1.15 version, incapable of detecting some of the required
components for versions other than 1.15.
Lack or limited access to real DL programs annotated with possible bugs, design inefficiencies
and recommended fixes to evaluate DL testing approaches accurately and effectively could
be regarded as a barrier in this line of research. Finally, the current version of NeuraLint
could find problems in FNNs, particularly CNNs. Other neural network architectures, like
recurrent neural networks are out of the scope of this version. NeuraLint could be applied
to detect bugs/issues in such neural networks by extending the meta-model to capture their
properties, i.e., possibility of connections between the nodes that form a cycle. Also, new
rules could be defined to detect specific problems in each architecture according to frequent
observed bugs/issues or best practices.
7 https://github.com/taashi-s/UNet_Keras/commit/b1b6d93

https://github.com/taashi-s/UNet_Keras/commit/b1b6d93
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Table 4.3 Execution time of NeuraLint for five real DL programs with different sizes (times
are in seconds).

No. Number of layers Running time of Running time of
Graph extraction Graph checking

1 6 0.003 1.757
2 8 0.003 1.787
3 12 0.002 1.836
4 13 0.003 1.906
5 38 0.004 3.111

4.5 Chapter Summary

In this chapter, we have introduced NeuraLint, a model-based verification approach for DL
programs. As a model-driven approach, a meta-model has been proposed for DL programs
at first. We have defined a set of verification rules for DL programs based on the meta-
model. A model of each DL program is configured by parsing its code to extract relevant
information. Afterward, a graph checking process is performed to verify the model and detect
potential bugs or design inefficiencies. Graph transformation systems are used to implement
the verification rules and modeling approach. The meta-model is represented by a type graph,
DL programs are modeled as host graphs, and graph transformations execute the verification
rules. NeuraLint has been evaluated using synthetic and real DL programs. The results show
that NeuraLint effectively detects faults and design issues in both synthetic and real-world
DL programs with a recall of 70.5 % and a precision of 100 %. Refining (or even redesigning)
the meta-model and graph transformations are required to improve the accuracy and detect
false negative cases.
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CHAPTER 5 THE DEEPCHECKER: A DYNAMIC PROPERTY-BASED
DL PROGRAM DEBUGGER

Recent research works [11] [1] [138] on DL program bugs show that the faults, leading to
program crashes, represent only a fraction of real bugs found in DNN training programs.
The vast majority of bugs are due to hidden logic errors and configuration inconsistencies,
leading to silent failures that are difficult to detect (since they do not prevent the program
from running and producing a model). Indeed, a DNN is trained using the back-propagation
algorithm that relies on a loss function to estimate the distance between actual predictions
and the ground truth, and then, the estimated error is back propagated through the DNN’s
learnable parameters to adjust their values in the opposite direction of the loss gradient.
In practice, components of the training algorithm are provided as ready-to-use configurable
routines by DL libraries, however, reusing these routines to implement a training program
for a designed DNN is not straightforward and it can be error-prone. From a fundamental
point of view, the backpropagation algorithm can be considered as a leaky abstraction since
the details of its implementation are not trivial. To illustrate this point let’s consider the
basic rule of weights initialization which states that values should be small random numbers.
Setting weights’ values is not simple and straightforward because the use of dummy random
initialization could prevent the DNN from training. In reality, depending on developers’ de-
sign choices, there is a set of custom weight initializations that have been formally proven to
be optimal choices, and hence should be adopted by the developers. Actually, the established
debugging practices for the training programs of DNNs reposes on diagnose-via-visualization,
which is not sufficient to systematically ensure that a training program is bug-free, and con-
sequently that the trained DNN can be trusted. In fact, researchers [175] have proposed
advanced visual analytics systems to complement the loss- and accuracy evolution curves,
and help DL developers debug and refine the design of their DNNs. Oftentimes, this re-
quires monitoring individual computational units of the model during the training, such as
activation maps or error gradients produced at each layer, and after training, an instance-
based analysis is performed to identify misclassified instances from a handful of chosen data
instances. However, such visualization based diagnosis techniques require significant human
intervention and good expertise on deep learning concepts. Given the internal complexity of
a DNN, it is always challenging to select a handful of drawing representations (i.e., suitable
for screen display) that should be watched and analyzed, interactively. Additionally, these vi-
sualizations can hardly be used automatically to track for regressions after a program update.
We believe that full-fledged software debuggers are needed to support DL developers.
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In this chapter, we propose TheDeepChecker, the first end-to-end automated debugging ap-
proach for DNN training programs. To develop TheDeepChecker, we gathered a catalog of
fundamental algorithmic and development issues in relation with the DNN training programs.
Then, we inferred the properties that are violated by these identified training program is-
sues, in order to develop the verification routines that can be used to detect their occurrences
during the training process. Next, we developed a property-based testing method that acti-
vates the derived verification routines, in order to drive an end-to-end automated debugging
process for DNN training programs. To assess the effectiveness of TheDeepChecker, we im-
plemented it as a TensorFlow-based testing framework that enables the automatic detection
of the identified issues in DNN training programs developed with Tensorflow (TF) library.
We rely on the taxonomy of real DL faults elaborated in [1] and further searching on Stack-
overflow, to identify the structure of faults occuring in DNN training programs. Then, we
inject these faults in clean DNN training programs to create a set of synthetic buggy pro-
grams, each one containing a particular fault, aiming at challenging the TheDeepChecker
in identifying the faults or steering the users to them by detecting precise fault-indicative
symptoms. Moreover, we assess the performance of TheDeepChecker on a mixed selection of
20 real-world TF buggy programs [138] splitted equally between snippets of code shared on
StackOverflow (SO) and bug-fixing commits from DL projects hosted on GitHub (GH). As
a DL debugging baseline, we manage to run all the studied buggy DL programs on Amazon
SageMaker Cloud ML service while activating its internal Debugger’s built-in rules. Results
show that TheDeepChecker can successfully support DL practitioners in detecting earlier a
wide range of coding bugs and system misconfigurations through reported violations of es-
sential DL program’s properties. Additionally, the comparison with SageMaker Debugger
(SMD) highlights the ascendancy of TheDeepChecker’s on-execution validation of DL prop-
erties over SMD’s rules verification on training logs in terms of detection accuracy and DL
bugs’ coverage.

Chapter Overview. Section 5.1 presents common training program pitfalls discovered
by DL researchers and experienced by DL developers. Section 5.2 introduces our proposed
property-based debugging approach for DNN training programs alongside their derived veri-
fication mechanisms and its TF-based implementation. Section 5.3 reports about the empiri-
cal evaluation of our proposed debugging approach and Section 5.4 comments on the results.
Section 5.5 discusses the threats to validity. Finally, Section 5.6 summerizes the chapter.
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5.1 DNN Training Program: Pitfalls

Many issues can prevent the fitting process of a DNN from performing properly, i.e., find-
ing the best-fitted model. In this section, we elaborate on some of the common pitfalls in
designing and implementing DNNs, while pointing out and discussing concrete examples of
their derived non-crashing bugs.

5.1.1 DL Faults Investigation

Figure 5.1 Overview of DL Pitfalls Investigation Process

Since deep learning has been increasingly leveraged in diverse real-world applications, re-
searchers have been interested in studying the software development challenges for this next
generation of software, including the faults’ taxonomy and bugs characteristics. Zhang et
al. [138] manually inspected the real-world SO and GH’s Tensorflow programs and identified
some of the DL bugs, their root causes and symptoms at high level. Then, Islam et al. [11]
extended the investigation by including DL programs written with other competitive libraries
such as Pytorch and Caffe, and studied furthermore the categories of bugs and their rela-
tionships. More recently, Humbatova et al. [1] refined the former bug investigation [11, 138]
into a taxonomy of real faults that occur in DL software systems. The taxonomy was de-
duced from 375 labeled buggy DL code examples built using three popular DL libraries:
Tensorflow, Keras and Pytorch. Moreover, the construction of the taxonomy was built in
collaboration with 20 DL developers and validated by a different set of 21 DL developers
who confirmed the relevance and completeness of the identified categories. Indeed, a bunch
of the reported bugs were caused by either coding mistakes, model design issues, or wrong
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configurations, that share a common high-level symptom of inefficient training. The latter
manifests through convergence difficulties, preventing partially or even totally the training
program from fitting the data. Hence, these non-crashing bugs are unique to the deep learning
software systems that do not raise exceptions but adversely affect the training dynamics and
results. Thus, we aim to identify and understand the development pitfalls and root causes
behind the non-crashing DL bugs. First, we started by filtering them from the DL faults col-
lected and reported in the former studies’ datasets. Mainly, we discarded the two categories
of Tensors&Inputs [1] and GPU usage [1] that represent, respectively, crash-inducing bugs
and GPU-related bugs. We focus on detecting the non-crashing bugs among the remaining
three categories of Model [1], Training [1] and API [1] that contain, respectively, different
misconceptions of the model, multiple poor coding/configuration bugs in the training algo-
rithm implementation, and misuses of the DL libraries’ API. Then, we extend the selected
subset of bugs with more Q&A posts from Stackoverflow that are related to this family of
bugs. We conduct a keyword-based search on StackOverflow (SO) with queries in the form of
’bug_type-related keywords+Tensorflow’ and we select, for each bug type/query, the top-100
SO posts (sorted by SO internal relevance criterion). Next, we inspect manually the SO post
content including the shared code snippets and users’ comments, with the aim of identifying
more instances of the studied faults in Tensorflow. Therefore, we found 155 bug reports in
relation to occurrences of our targeted DL faults in Tensorflow DNN programs. Overall, only
8% of the bugs in the three above-mentioned categories from [1] are included directly into
our dataset, but as we searched using their keywords on SO, 38% of them represent same bug
types/root causes in our datasets. In fact, these buggy DL programs could not be included
because they are either related to another DL framework (Pytorch, Keras, etc.) or missing
necessary information for reproduction such as training examples or hyperparameters’ values.

Figure 5.2 Distribution of the collected Tensorflow Bugs over the Taxonomy of DL Faults [1]
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Figure 5.2 shows the categories and subcategories of the bugs we collected in our datasets
with respect to the taxonomy of DL faults [1]. During the manual inspection of these bugs’
instances, we abstract their main root causes and their typical symptoms (i.e., the nega-
tive effects observed on the training dynamics and the produced DL model), relying on the
practitioners’ shared content on troubleshooting and debugging the DL training algorithms
including blog posts [176–180] and popular forum discussions [181, 182]. Indeed, the decon-
textualization of DL bugs from the leveraged API version, the used data and the targeted
application, allows recognizing firstly the design or implementation pitfalls that can be the
origin of these training issues. Lately, the concrete occurrences of DL pitfalls would serve
us in the creation of the synthetic buggy examples (section 5.3.1), which have been used to
evaluate the effectiveness of our debugging approach on detecting the targeted DL-specific
bugs. Figure 5.1 illustrates the schema of the above-mentioned steps to systematically en-
rich the datasets of non-crashing bug reports, as well as, identify their main root causes and
symptoms. In the following, we present a comprehensive review of the DNN training pitfalls,
organized in groups based on the main problematic component of the DNN training program.

5.1.2 Input Data-related Issues

A DNN training program implements a data-sensitive algorithm whose inner logic is learned
from the training data and generalized to future unseen data. Poor training data quality
often translates into an unstable and inefficient training process. Below, we detail the training
issues in relation to the input data and DNN components making use of them.

Unscaled Data

The scale of DNN inputs and outputs [149] is an important factor that affects the quality
of the training. In fact, larger scale input features produce larger intermediate activations,
and consequently, larger gradients regarding the weights connected to these over-scaled in-
put features compared to others. Similarly, over-scaled predicted quantities would generate
larger errors and gradients. Inversely, an abuse of data re-scaling penalizes the quantities
with initially a small range of values. Both situations will induce a pathological loss curvature
and an ill-conditioned loss minimization problem. As a result, the risk of gradient unsta-
ble phenomenon [183] increases. Modern deep neural networks deploy inner normalization
techniques [29,34] to overcome unstable distributions of the computed activations and gradi-
ents, however, their optimization routines should cope with high update oscillations during
the early stage of training because of the unscaled data, and as a result, the DNN is firstly
trained on how to scale and shift intermediate calculations into an appropriate range. This
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overhead complexity slows down the training procedure and might prevent the convergence
towards the best-fitted model.

Distribution-Shifting Augmentation

Given their high learning capacity, DNNs require relatively large and sufficient training data
to avoid simply overfitting the data. Since many application domains lack the access to big
data and because gathering data is expensive, DL developers often resort to data augmenta-
tion techniques [184] to increase the quantity and diversity of their training data. Examples
of data augmentation techniques for images include geometric transformations, color space
augmentations, kernel filters, random erasing, and cropping. Nonetheless, the use of inappro-
priate augmentation rules, as shown in the SO posts #57275278, #48845354 and #55786384,
can induce a shift in the training data distribution that prevents the DNN from learning ef-
fectively. A DNN trained on noisy, shifted data is often hard to converge to a stable state
and also incapable of predicting correctly on unseen data (i.e., validation or testing datasets).

Corrupted Labels

The data used for training supervised machine learning problems are composed of features X
(predictor inputs) and labels y (supervised outputs to predict). The DNN’s loss minimization
problem is non-convex with several possible local minima; so standard gradient descent often
falls into those minima because of the unchanged input dataX over all the training iterations.
To overcome this problem, a mini-batch gradient descent with shuffling has been used to
train DNNs, as introduced in 2.1.1. Indeed, shuffling the data instances and performing
the gradient estimation on only a subset of them, makes the batch inputs Xb change with
every iteration. This helps the optimizer to avoid sub-optimal local minima with relatively
noisy and frequent updates to the DNN’s parameters. In the implementation, we handle the
features X and labels y in separate data structures because the labels should be used only for
estimating the loss and performance metrics in supervised learning problems. A common bug
in the data shuffler or mini-batch loader, as reported by SO users in #47866803, #46136553
and #41864333, consists of inducing mistakenly a mismatch between features and labels.
This represents a particular case of a more general DL issue of corrupted labeled data, which
has been extensively studied in the machine learning community (e.g., [185]).
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Unbalanced Data

Very often in classification problems, there is an unequal number of instances for different
labels. An unbalanced dataset biases the predictions towards the majority class or group
of labels. Various mitigation techniques have been proposed to address this issue, e.g.,
over-sampling, under-sampling, or weighted loss function [184]. DL developers should be
aware of this situation, whenever it exists, in order to use earlier a mitigation technique
for class imbalance or improve the performance measure to capture fairly mispredictions for
underrepresented classes. Otherwise, a biased model could be selected based on the overall
accuracy among all classes, resulting in erroneous or unfair behavior when dealing with
instances that belong to ones that are underrepresented.

5.1.3 Connectivity and Custom Operation Issues

To implement a DNN training program, DL developers use DL libraries that allow construct-
ing the computational graph, where nodes and edges represent, respectively, operations and
data paths. The operations represent the computational units that form the linear compu-
tations, activations, and gradient estimations. Data paths interconnect the operations and
allow data to flow from one operation to the next, in order to successfully train and use the
model. Through program code, DL developers use library’s built-in and newly-implemented
components for operations and connect them by either feeding one’s outputs as inputs to
another or by performing a math operation joining them. Configurable routines enable rapid
development and expansion of reliable DNN programs, however they may lead to spaghetti
code that becomes too large with scatter variables and glue code (build bindings between
components), increasing the risk of coding errors.

Network Disconnections

The most basic dependency is between the inputs and the outputs of the DNN. The DNN
should predict the outputs based on the information distilled from the inputs. Thus, a DNN
training program that does not consider the inputs when performing its internal computations
is definitely erroneous. Moreover, disconnections can occur between the intermediate layers.
Indeed, DL engineers can forget to connect some branches of the DNN or to pass the right
inputs to the layers. When such omissions occur, one or more DNN layers are accidentally
removed. A DNN with fewer layers than necessary can still be trained. A DNN can converge
to an acceptable performance with only partial layers. If this occurs, however, the program
will no longer comply with its specifications and its performance may be severely impacted.



75

An illustrative example [186] of a connectivity bug occurs when cloning multiple times the
code block for constructing a layer, the DL developer may forget to change the input and
output for one of these constructed layers which makes it disconnected from the neural
network.

Incorrect Custom Operation

The common abstractions used by computational units to encode numerical data are tensors,
which are multidimensional arrays with supported algebraic operations. These tensors make
it easy to manage high dimensional parameters and perform operations on them efficiently.
However, the translation of math formulas from scientific pseudo-code to tensor-based oper-
ations can be error-prone. As an illustration, let’s consider the cross-entropy loss which is
a matrix-matrix operation that accepts the probabilities matrix and the matrix of one-hot
encoding labels in order to estimate a particular distance. A buggy loss function may not
correctly broadcast the operation if the reduction is done over the wrong axis (e.g., sum
over rows instead of columns) and mix information between independent data instances of
the batch. This introduces an incorrect dependency to the loss function. This issue can be
difficult to detect since the DNN can still train and converge poorly and in the best case,
can learn to ignore data coming from other batch elements. Besides, DL libraries include an
automatic differentiation module that generates the analytical formula and computes the gra-
dient automatically. However, DL developers can include non-differentiable or problematic
operations in their custom function as shown in the SO posts #41780344 and #54346263,
which negatively affect the gradients flowing over the newly-designed DNN. In similar way,
DL developers can also hand-crafted the gradient calculation for their custom operations,
but these gradients implemented from scratch should be tested carefully to avoid wrong
computations as motivated by the SO posts #46876063 and #64172765.

5.1.4 Parameters-related Issues

DNN parameters represent the weights and biases of a DNN’s layers. These parameters are
randomly initialized, then, they are optimized during the training process. In the following,
we discuss pitfalls in the initialization of parameters that can affect their learning dynamics.

Poor Weight Initialization

An improper initialization of the weights for a DNN hampers the stability of the learning
optimization problem, leading to unstable activation during the forward pass and unstable
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loss gradients of the backward flow. First, the constant weights induces a symmetry between
hidden neurons of the same layer. Thus, the hidden units of the same layer share the same
input and output weights, which makes them compute the same output and receive the
same gradient. Hence, each layer’s neurons perform the same update and remain identical;
i.e., wasting capacity. Second, random sampling of initial weights breaks the symmetry
between the neurons, however, the quality of training is strongly affected by the choice of
initialization [25]. Indeed, the derivative equations 2.8 and 2.9 show that the estimated
gradients include multiplication by weights, which makes their initial magnitude scale affects
their growth or decay over iterations and might induce exploding or dead weights [187].

Ineffective Bias Initialization

A bias is like the intercept added to a linear equation. Its main purpose is to allow degrees of
freedom close to the origin, which improves the representation capacity of a neural network;
so it can fit better to the given data. Generally, the initial biases are always set to zeros.
Despite this, null bias for particularly-skewed data distributions (e.g., unbalanced datasets)
slows down DNN training, which would do the bias calibration during its first few iterations.
It means that non-zero bias could contribute significantly to fit the model if it is delicately
set up to approximate the bias of data. For example, learning a classification problem with
a rare label is a kind of bias already known; so the final layer’s bias should be carefully
initialized to accelerate the learning task.

5.1.5 Activation-related issues

Activation represents the intermediate computation that introduces non-linearity to filter
the information computed by the previous layer. In the following, we discuss some problems
related to activations.

Activations out of Range

Activation functions are nonlinear functions that determine the output of a neural network.
The function is attached to each neuron and determines whether it should be activated
(“fired”) or not, based on the relevance of neuron output for the model’s prediction. Acti-
vation functions also help normalize the output of each neuron by transforming inputs into
outputs that are within a predefined range of values. When DL developers implement an
activation function from scratch, there is a risk of bugs that leads to a wrong or unbounded
mathematical function yielding outputs within a range inconsistent with what is expected
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by the developer (e.g., sigmoid’s outputs are between [0, 1] and tanh’s outputs are between
[−1, 1]).

Inadequate Hidden Layer Activation

Although the choice of hidden activation function is a design engineering problem, it is
not an empirical and performance-driven selection because there are activations that are
more suitable and even specialized for particular use cases rather than others. In fact, a
non-linear activation is an essential design component; so a bottom-line inadequate choice
would be keeping identity function for activation as evidenced by SO posts #53138899 and
#46181692. Nevertheless, softmax is a special non-linear activation designed specially to
transform the logits into probabilities; so mistakenly choosing it, as an activation for hidden
layers, would likely hinder the parameters learning and often discourage a smooth flowing of
gradient, as shown in the SO post #52575271. Below, we detail training issues in relation
with well-known hidden activations that could happen in certain design circumstances, where
selecting an alternative activation function should be considered.

Saturation of Bounded Function Activation functions with a bounded sigmoidal curve,
such as sigmoid or tanh, exhibit smooth linear behavior for inputs within the active range and
become very close to either the lower or the upper asymptotes for relatively large positive and
negative inputs. The phenomenon of neuron saturation occurs when a neuron returns only
values close to the asymptotic limits of the activation functions. In this case, any adjustment
of the weights will not affect the output of the activation function. As a result, the training
process may stagnate with stable parameters, preventing the training algorithm from refining
them. In fact, we can write the equation index-free to illustrate the gradient computation
flow in general:

lossW = ain × δout (5.1)

where ain is the activation of the neuron input to the weight W and δout is the error of the
neuron output from the weight W .
When the activation function Φ is saturated, its outputs are in the flat region where Φ′ ≈ 0;
so δout ≈ 0 and W freezes or learns slowly.

Dead ReLU Function ReLU stands for rectified linear unit, and is currently the most
used activation function in deep learning models, especially CNNs. In short, ReLU is linear
(identity) for all positive values, and zero for all negative values. Contrary to other bounded
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activation functions like sigmoid or tanh, ReLU does not suffer from the saturation problem
because the slope does not saturate when x gets large and the problem of vanishing gradient
is less observed when using ReLU as activation function. Nevertheless, ReLU risks “dead
ReLU” phenomenon [187] because it nullifies equally all the negative values. A ReLU neuron
is considered “dead” when it always outputs zero. Such neurons do not have any contribution
in identifying patterns in the data nor in class discrimination. Hence, those neurons are
useless and if there are many of them, one may end up with completely frozen hidden layers
doing nothing. In fact, given the index-free Equation 5.1, we can see that when the activation
is zero ain = 0, the loss gradient w.r.t weights becomes zero too (lossW = 0); therefore W
freezes and no longer receives updates. This problem is often caused by a high learning rate
or a large negative bias. However, recent ReLU variants such as Leaky ReLU and ELU are
recommended as good alternatives when lower learning rates do not prevent this issue.

Inadequate Output Layer Activation

Concerning the output layer, the activation function should map the internal calculated re-
sults into valid predictions. In case of mismatch between the ranges of last activation layer’s
outputs and ground truth labels, the model could not learn a correct mapping function since
it is not able to produce the full range of possible outcomes.

Classification Outputs The model is learning to predict probabilities, so sigmoid and soft-
max are the best candidates for, respectively, binary and multinomial classification. For in-
stance, a missing softmax layer prior to the cross-entropy calculation can lead to performance
degradation and numerical instability issues as evidenced by the SO post #53254870. How-
ever, the use of softmax for a classifier model with 1-dim output leads to the incapacity of out-
putting the full range of class labels, as evidenced by the SO posts #59129802 and #53971451
where sigmoid should be used to output the negative class 0, or #51993989 where tanh should
be used to output both of labels: 0 and −1. Other common pitfalls are stacking consecutive
output activations, which add useless computation levels that may erase relevant learned
information, obstruct the natural gradient flow, and adversely affect DNN performance. In-
deed, the redundancy activations were often result from: (1)API misuse, where recently-
provided stable API loss functions with the logits activation, softmax or sigmoid, included
(i.e., tf.nn.softmax_cross_entropy_with_logits and tf.sigmoid_cross_entropy_with_logits),
mislead several DL practitioners that passed the result of last layer activation to these loss
functions, which resulted in a double application of softmax or sigmoid on the outputs (e.g.,
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we refer to SO posts #36078411, #46895949, and #42521400); (2)misconception of abstrac-
tions, the definition of a function that abstracts the creation layers with some parameters
to facilitate stacking the neural network’s layers, however, useless non-linear activation can
be applied to the last layer before probabilities transformation by mistake, which restricts
the range of outputs. For instance, a ReLU activation before applying softmax, as happened
in the SO post #44450841, would nullify negative values and make all their corresponding
labels share the same probability after applying the softmax.

Regression Outputs The last activation should map the internal computations into a
range of values that equals (or is the closest) to the actual interval of target outputs, in order
to ease the optimization process. For instance, SO posts #60801900 and #64998875 show
how the use of Relu, having an output range of [0,+∞], prevents the estimation of negative
targets and the SO user in the post #62313327 should switch from sigmoid (i.e., outputs
values within [0, 1]) to tanh (i.e., outputs values within [−1, 1]) to meet the real range of
ground truth labels.

Unstable Activation Distribution

The activations encode the representation of features detected at that processing layer during
the training process. Thus, the fired activations indicate that the DNN already detects low-
level features, which could be relevant for following layers. That is why the stagnation of
activations caused by saturation or dead phenomenon hinders the capacity of the DNN to
learn useful patterns from the data. Similarly, over-activated layers that are active for all
inputs and unstable activation layers that have high variability in their values can lead to
numerical instability and–or divergence problems. In fact, activations represent the input
features of the next layer. The internal computation of this layer adjusts the parameters
in order to infer patterns from features (i.e., activations).The internal computation of this
layer adjusts the parameters in order to infer patterns from features (i.e., activations). By
analogy to the input normalization, the distribution of the intermediary detected features
(inside the DNN) is important to ensure an effective optimization using backpropagation
of loss gradient through layers’ parameters. More formally, the index-free partial derivative
formula 5.1 shows well how the magnitude of activations affects directly the magnitude of
weight updates. Researchers [29] [34] have proposed different techniques to normalize the
outputs of hidden layers and obtain activations with zero mean and unit standard deviation.
Concretely, these additional internal scaling transformations are important to control the
magnitude of the gradients and improve, formally, the β-smoothness and the Lipschitzness
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of the estimated loss.

5.1.6 Optimization-related issues

The optimization of DNN’s learnable parameters consists in minimizing, iteratively, the loss,
i.e., empirical error of DNN’s predictions regarding supervised training data. Actually,
gradient-based algorithms such as SGD, Momentum, and Adam, are the preferred way to
optimize the DNN’s internal parameters. Next, we discuss several issues that impede the op-
timization process, while describing our proposed verification routines to catch them earlier.

Wrong or Inappropriate Performance Measurements

The iterative optimization of parameters often converges to an equilibrium behavior of the
DNN. At this point of equilibrium, the optimal or near-to-optimal DNN status is reached.
To find this best-fitted DNN (i.e., highest accuracy or lowest absolute error), the DNN train-
ing algorithm acts indirectly by minimizing a loss function estimated on the training data
with hope of improving the performance of the on-training DNN. Hence, the loss is primar-
ily designed to measure the distance between predictions and real outputs, while it should
respect fundamental properties of an objective function for first-order gradient optimization.
Empirical loss minimization for DNN training works well when the minimized loss represents
the fitness of the DNN relative to the data. Thus, a wrong loss function with regards to true
model risk, misleads the training algorithm that, despite its success to reduce the loss, could
not improve the target performance measure (e.g., classification accuracy). For instance, in-
adequate choice of loss function like choosing mean squared error (MSE), which is a standard
loss for regression problems, to compute the deviation between predicted probabilities and
target class in a classification problem (e.g., SO posts #38319898 and #50641866). Another
common fault in relation with the loss is the use if ineffective loss reduction strategy like in
these SO posts where there are no reduction at all (#36127436) or a sum instead of mean
reduction (#43611745 and #41954308). Indeed, the reduction strategy allows to aggregate
the losses computed for all of the data instances into a scalar loss value. The aggregation
could be the average or the sum, however, mini-batch gradient descent variants are commonly
used for minimizing the DNN’s non-convex loss function. Hence, mean reduction is better
than sum reduction, because averaging losses over the mini-batch would keep the magnitude
of loss independent of the batch size and of other hyperparameters that are also sensitive
to the magnitude of loss gradients like the learning rate. Besides, a mistaken performance
metric also regresses the expected covariance between both training quality measures (e.g.,
loss and accuracy). For instance, bad choice of accuracy metric with respect to the problem
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would yield illogic performance measurements and it can be the use of classification accuracy
rate for a regression problem, the use of multiclass accuracy metric for a binary classifier,
or inversely, the use of binary classification accuracy metric for a multinomial classifier, as
evidenced by the SO posts respectively, #62566558, #62354952 and #42821125.

Inadequate Learning rate

As shown in the update equations 2.10 for weights and biases, the predefined learning rate
controls the magnitude of update at each step; so setting the learning rate too high or too low
can cause drastic changes to the optimization process and cause several erroneous behaviors.
A high learning rate would push the layer’s parameters changing rapidly in an unstable way;
preventing the model from learning relevant features. The intuition is that the parameters
are a part of the estimated mapping function, so we risk overfitting the current processed
batch of data when we try to strongly adapt the parameters in order to fit this batch.
An excessively-high learning rate may lead to convergent loss minimization and numerical
instability by having NaN loss or output values. Inversely, a low learning rate can slow
down the parameters changing; making it difficult to learn useful features from data, and
consequently, the minimization process may not converge to a steady state and may even
experience a non-decreasing loss value during training. Starting by ineffective learning rates
is very common when the DL developer is dealing at first time with a learning problem as
evidenced by these SO posts #42264716, #62381380, #55718408, #34743847, #47245866,
#40156629 and #59106542.

Unstable Gradient Problem

The loss gradient equations 2.8 and 2.9 show that the gradient of a layer is simply the product
of errors back-propagated from all its next layers (i.e., following the forward direction).
Intrinsically, the layers tend to learn at different speeds and deeper neural networks can
be subject to unstable situations if no advanced mechanism is applied to balance out the
magnitude of gradients. However, the unstable gradient problem could be more severe and
could manifest in the form of vanishing or exploding gradients, as described below, due to
poor design choices of initializations and hyperparameters.

Vanishing Gradient In this case, the gradient tends to have smaller values when it is back-
propagated through the hidden layers of the DNN. This causes the gradient to vanish in the
earlier layers, and consequently, it would be nullified or transformed to undefined values such
as Not-a-Number (NaN) caused by underflow rounding precision during discrete executions
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on hardware. The problem of vanishing gradient can lead to the stagnation of the training
process and eventually causing a numerical instability. As an illustration, we take the example
of a DNN configured to have sigmoid σ as activation function and a randomly initialized
weight using a Gaussian distribution with a zero mean and a unit standard deviation. The
sigmoid function returns a maximum derivative value of σ′(0) = 0.25 and the absolute value
of the weights product is less than 0.25 since they belong to a limited range between [−1, 1].
Hence, it is apparent that earlier hidden layers (i.e., closer to the input layer) would have
very less gradient resulting from the product of several terms that are less or equal to 0.25.
Therefore, earlier layers receiving vanishing gradients would be stagnant with low magnitude
of weights’ changes.

Exploding Gradient The exploding gradient phenomenon can be encountered when, in-
versely, the gradient with respect to the earlier layers diverges and its values become huge. As
a consequence, this could result in the appearance of −/+∞ values. Returning to the previ-
ous DNN example, the same DNN can suffer from exploding gradients in case the parameters
are large in a way that their products with the derivative of the sigmoid keep them on the
higher side until the gradient value explodes and eventually becomes numerically unstable.

Therefore, advanced mechanisms like batch [34], layer [29], weight [188] normalizations and
tuning of optimization hyperparameters such as learning rate or momentum coefficients, are
needed to provide adaptive gradient steps and to establish relatively similar learning speed
for all the neural network’s layers.

5.1.7 Regularization-related issues

The regularization strategy prevents the model from overfitting the data, while allowing the
DNN to acquire enough learning capacity to learn useful patterns and fit the data properly. In
the following, we introduce potential issues related to incorrect and ineffective regularization
techniques.

Lack of-or-incorrect Regularization

Regularization techniques [25], including penalty cost on the weights magnitude and special-
ized DL regularization like dropout, discourages the optimization from exploring complex
models and exploiting spurious correlations in favor of reducing further the loss. Thus, lack
of regularization leads to a noiseless training process with high capacity modeling that risks
capturing even residual variations in the given sample of data and tends to overfit it quickly.
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Concretely, as shown in Equation 2.12, a zero or very low λ makes the penalty cost use-
less with no effect on the objective loss function, which enables the free-growth of weights
and intensifies the threat of overfitting even coincidental noises in the sampled batches used
for training the parameters. Regarding dropout, a high retainment probability of neurons
(pkeep) for wide dense layers or large activation maps for convolutional layers decreases the
size of the dropped subset of neurons, which eliminates the randomness effect introduced
between the input features at each inference calculation. Concerning batchnorm, a com-
mon mistake (e.g., SO posts #43234667 and #52279892) consists in forgetting or misusing
the routine that ensures the continuous estimation of the moving average E[x] and vari-
ance V ar[x] during the training. Moreover, batchnorm makes the loss function dependent
on the batch size because an instance of the batch can affect the batch mean and variance
estimated, and consequently, affect both activations and loss values for other instances in
the batch. For example, the use of unit batches, as reported in the SO post #59648509,
should not be applied because the batch variance would be zero and relatively small batches
would increase randomness and make the statistics estimation noisy. Thus, the DNN fails
to perform any normalization on the intermediary calculation results at the inference time,
which means that the regularized version of DNN becomes incorrect and its inner calcu-
lations are non-representative. In case of mixing dropout and batchnorm, Li et al. [145]
reported a disharmony issue, named variance shift, between dropout and batchnorm when
applying dropout first. Indeed, the population statistical variance estimated by batchnorm
on the entire DNN training becomes inconsistent and non-representative because of the shift
variance of weights done by the dropout when the DNN is transferred from the training to
the testing mode. In other words, dropout proceeds by randomly removing the information
coming from a subset of neurons to prevent possible neurons’ co-adaptation. Thus, we have
to pass the cleaned information (i.e., after dropping out some neurons) through batchnorm
statistics estimator, otherwise, the statistics would be biased by considering all the neurons,
i.e., dropped ones included. A common symptom for all the above issues is that valida-
tion/testing error rates are higher than training error rates. However, this symptom is quite
connected to overfitting situations; so more fine-grained symptoms are necessary to guide the
users towards the occured issue.

Over-Regularization

Inversely, a too strong regularization (with high λ) can significantly reduce the magnitude of
weights, which may result in underfitting; leading to useless, dead weights, as discussed in
the SO posts #51028324 and #51028324. Regarding dropout, a low pkeep will be considered
as a strong regularization because it introduces too much randomness and may prevent the
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DNN from convergence to a stable state; so pkeep should be tuned carefully considering the
underlying DL problem and the depth of the designed neural network. For instance, many
SO posts #60591577, #44832497, #46515248, #44695141, and #64289118 reported poor
training convergence and model performance resulting from inappropriate configuration of
dropout layers. Indeed, it has been shown that pkeep cannot go below the minimum of 0.5,
which represents the maximum additive regularization [32]. In practice, the fixed pkeep for
hidden layers, and especially, layers close to the output layer, is recommended to be within
[0.5, 0.8]. However, pkeep for the input layer should be kept to about 0.8 or higher (i.e.,
closer to 1.0). In fact, during the test time, to compensate for disabling the dropout, the
learned parameters are scaled by the pkeep factor. However, Gal et al. [189] has shown that
this approximation at test time becomes noisier and less accurate as the underlying layer is
far from the output; which can explain the high risk of instability induced by low neurons’
retainment probability for the earlier layers, especially, convolutional layers in CNN and the
input layer. Therefore, the common effect of strong regularization is having low error rates for
training/validation/testing data, however, this indicates an underfitting situation in general.
In our debugging methodology, we propose verification routines to target accurately these
over-regularization issues.

5.2 DNN Training Program : Property-Based Debugging Approach

In the previous section, we have presented DNN training pitfalls related to misconfigurations
and coding bugs, organized by problematic components, to comprehend their symptoms and
their negative effects on the dynamics of training and the quality of optimization. In this
section, we introduce an adaptation of property-based software testing (PBT) that assembles
the verification routines that we propose for debugging DNN training programs.

5.2.1 Property-Based Model Testing

It has become mainstream research to focus on DL testing approaches that explicitly check for
model properties. Regarding security [190] and robustness [191], the learned function should
be Lipschitz, such that small perturbations to the input are guaranteed to spawn bounded
changes to the output. In a similar way, other important properties have been proposed
to satisfy the desired requirements in terms of privacy [190] and fairness [192]. Indeed, the
validation of a trained DL model’s properties is quite similar to traditional property-based
testing (PBT) because it consists of verifying that the implemented/trained deterministic
function, mapping the inputs to the outputs, satisfies the desired properties for all the valid
inputs. However, the straightforward application of PBT to the DNN training program, which
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is a stochastic data-driven optimization algorithm, appears to be quite challenging. In fact,
the DNN training consists of a data-driven, iterative process guided by the backpropagation
equations that starts from an initial DNN state and evolves the state following a trajectory
dictated by the dynamics of the update step equations until converging hopefully to an
equilibrium state. In this section, we introduce an adaptation of property-based software
testing (PBT) that assembles several properties of training programs that should be satisfied
by the initial state (i.e., pre-training conditions), maintained for the intermediate states of
the on-training DNN (i.e., proper fitting conditions), and validated for converged DNNs (i.e.,
post-training conditions). Besides, an adaptation of input shrinking, as detailed in 5.2.6,
can be applied to the DNN state to determine at which level and in which component the
property is violated.

5.2.2 Origins and Types of DNN Training Properties

Over the last decade, we have witnessed a wide adoption of DL technology in various in-
dustrial domains that represent the outgrowth of huge efforts and dedications from the DL
community into the knowledge transfer. Indeed, applied DL researchers and experts vul-
garize DL fundamentals and research advances in sort of principles, techniques and tricks in
order to get more practitioners involved into applying DL technology for solving learning task
problems. This gave birth to popular applied DL textbook [25], academic lectures [193,194],
articles [135,136,142,195], and industry courses [196,197], as well as experts’ blogs [176–180]
and DL practitioners’ forum discussions [181, 182] on DNN troubleshooting techniques and
strategies. Figure 5.3 summarizes the steps that we follow to construct automated verifi-

Figure 5.3 Main Steps of Development Process for Verification Routines
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cation routines for the identified DL training pitfalls. From the fundamental DL resources,
we distill the main properties and design principles for each neural network component for
which issues have been detected. For instance, we find the properties in relation to the ini-
tial random parameters, the hidden and output activation functions, or the gradient-based
optimization routines. Basically, DL training programs are sensitive to the DL bugs that vi-
olate some of the involved components’ properties. Nevertheless, the detection of properties’
violations in a suspicious DL training program is quite challenging. That’s why, we explore
the heuristics and troubleshooting strategies elaborated by DL experts, which rely mainly on
plotting histograms of model internals and curves of performance metrics, in order to spot
unexpected distributions and irregular curve shapes. For instance, Glorot and Bengio [24]
watched the activation distribution to detect any possible layer saturation when they studied
different random weight initializations. Then, we analyze how these heuristics are able to
characterize the violations of properties. Generally, the heuristics specify critical values for
metrics that shed light on a faulty DL program’s state, such as high ratio of null activations
or high magnitude updates of parameters. Besides, the heuristics can also describe erroneous
training behaviors that would manifest in the dynamics of the metrics, such as unanticipated
fluctuating or diverging loss. Even if these abnormal behaviors could be captured and illus-
trated by experts through visualizations (e.g., histograms of activations, curve of losses over
epochs, etc.), the codification of automated verification routines, that detect the violation
of statistical learning properties and not-recommended instability for an on-execution DL
training program, is challenging. Indeed, the inherent iterative nature and stochasticity of
DNN training algorithms makes the regular deterministic test assertions impractical because
a single property-violating state is not sufficient for asserting the occurrence of an issue. For
instance, the current state may trigger a dead layer (i.e., more than 50% of ReLUs in a layer
are null), but the next state following the updates can avoid the problematic situation by
reducing the inactive ReLUs. Hence, the persistence of the property-violating state, catched
by the heuristics, should be taken into consideration to avoid overwhelming warnings and
misleading false alarms during the debugging sessions. Below, we explain the developed
guidelines to codify the DL experts’ heuristics into robust and dynamic verification routines
that are designed to assess persistent behavioral issues.

Buffering and Statistical reductions

The parameters and internal computations in a deep neural network are volatile multi-
dimensional arrays. Thus, we define buffers to store the last intermediary states, including
the hidden activations, the predictions, the losses, etc., in order to validate the heuristics
on a set of recent states instead of a single one. Then, we calculate different statistics on
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their distributions over different axis of interest to reduce the dimensions and create the most
appropriate data views/metrics to handle in the codification of the rule. For instance, the
checks on the activation distribution would run periodically on all the activations stored on
the buffer, which are obtained from the last training iterations (i.e., anticipated to be using
different parameters and batches of data). By default, we set up a buffer size that equals
10. Therefore, given the same example of dead layers, we reduce the buffered activations,
from 10 values per neuron to a single one, using 95th percentile, which is a robust maximum
estimation (highest value under the top 5%). Then, our proposed check would flag the lay-
ers with more than a half of dead neurons, which have returned 95% of outputs below the
minimum threshold of 1e− 5 for the last 10 training iterations.

Pessimistic boundaries

As TheDeepChecker consists of a debugging method, we set up pessimistic thresholds to spot
critical values and erroneous behaviors that are probably caused by a DL bug. This con-
servative strategy can effectively reduce many possible false alarms in relation to ineffective
training traits that usually manifest in earlier iterations or on complex learning problems.
Nevertheless, we keep the thresholds as user-configurable settings in order to adjust the sen-
sitivity of the verification routines on specific DL architectures according to user interests.

Approximative and Behavioral assertions

The heuristic-guided DL program diagnostic requires the implementation of approximative
assertions including almost numerical equal assertions for floating numbers and statistical
significance tests to identify if the obtained program state is outside the anticipated set of
possible states by the experts. For instance, there are no best initial parameters, however, DL
experts have shown the importance of sampling the random parameters at the first iteration
from a carefully-designed distribution, depending on the neural network characteristics. Be-
sides, crafting verification rules for diverse abnormal DNN states such as stagnated loss, huge
weights or vanished gradients, etc., can be difficult because the involved metrics’ thresholds
would vary between models and problems. Thus, it is important to focus on characterizing
the erroneous behaviors: stagnation, diverging, or vanishing instead of the resulting faulty
state to which the buggy DNN training program would converge. Indeed, we enable the
detection of abnormal trends through the assessment of their evolution over consecutive it-
erations, i.e., by considering a window of steps, generally, window size would be in-between
3 and 5. In the following, we describe our proposed behavioral assertions for the common
erroneous behaviors resulting from the identified DL training pitfalls:



88

Stagnation It is the opposite of changing and moving quantity. Hence, we define a min-
imum percentage difference by which the quantity of interest should change at each step
within the window; otherwise, we flag it as stagnated. More specifically, the change direction
is already known to compute a relative percentage of increase or decrease, e.g., we expect
that the loss keeps decreasing until convergence to a minimum.

Diverging or vanishing They represent unexpected huge increases and decreases in a
quantity over time. They can be simulated as exponential growth and decay, qt = q0 × rt

where, respectively, r > 1 and r < 1. Thus, we can approximate the rate of change rt = qt

qt−1

for a window of recent steps, then, we consider that a quantity is diverging if the calculated
rt are higher than a low bound, or it is vanishing if all the rt are lower than a high bound.
In our constructed verifications, we used 2 as low_bound, meaning that the quantity should
constantly double its value at minimum to be considered a diverging quantity and inversely,
we used 1

2 as high_bound. The component is flagged when it maintains this unanticipated
non-linear evolution for a predefined window of steps.

Consistency assessments

Several experts’ heuristics, that are incorporated into TheDeepChecker’s verification routines,
help recognize the unstable distributions of parameters, activations and gradients, as well as
unexpected optimization updates and loss curves. However, the riskiness of these unstable
learning situations increases when the identified issue persists or becomes more severe over
the iterations. Hence, we smooth the verification logic by (1) computing the rule’s metrics on
the aggregation of previously-obtained states from the buffer; (2) considering a forbearance
period, which is a prefixed number of steps to wait, despite the persistent failure of the
verification rule, before flagging the occurrence of the issue.

Finally, we select the debugging phase during which the codified verification routine would
run depending on their input DNN states. Indeed, we mainly separate between the initial
state verification, the validation of the under-test DL program running on a batch of data, and
the need for longer training over larger datasets or comparison of multiple trained models. In
the following, we describe the chronological sequence of the debugging phases, as illustrated
in Figure 5.4 and we detail the heuristic and logic of all the verification routines included in
each phase of TheDeepChecker’s debugging session.
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Figure 5.4 Overview of TheDeepChecker Debugging Phases

5.2.3 Phase 1: Pre-training conditions

The first phase of our debugging process occurs before starting a training session. It enables
running static pre-checks of the input data and the starting initial state of the on-training
DNN. The benefit of these preliminary verifications is to validate, from the start with a
null training cost, the quality of feeding data (i.e., input features, labels), the correctness
of essential implemented components (i.e., gradient, custom operations), and the adequacy
of the starting state (i.e., initial parameters, first loss). In the following, we describe the
pre-checks and their related training pitfalls.

Data Distribution

DL practitioners often perform linear re-scaling of the input and output features, in or-
der to adjust their distribution into a common scale without distorting differences between
the ranges of original values. In fact, the two most common data scaling techniques are: (1)
standardization consists in transforming the inputs into z-scores, which means that the trans-
formed data should have a zero mean and a unit standard deviation; and (2) normalization
consists in re-scaling each input feature using its maximum and minimum elements, to have
values within a predefined small range such as [0, 1] or [−1, 1].

Scaled Data Verification We extract the data, inputs and outputs, that are fed to the
training program; i.e., the final data that have been going through the preprocessing pipeline,
and then, verify that the data is scaled properly. In our verification routine, we start by
detecting the constant features that have a zero variance. Then, we support checking whether
the features are zero-centered with unit standard deviation, or they belong to one of the two
well-known normalized range of values: [0, 1] or [−1, 1] [198]. Moreover, this helps detect if
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the data accidentally includes undefined or non-finite quantities (i.e., NaNs and Infs).

Unbalanced Labels Verification We compute the Shannon equitability index [199],
which summarizes the diversity of a population in which each member belongs to a unique
group, to estimate the balance between the frequencies of labels. On a data set ofN instances,
if we have K labels of size Nk, we can Shannon equitability index as follows, −

∑k

i=1
Nk
n

log( Nk
n

)
log(K) ,

and it will be zero when there is one single label. Thus, it tends to zero when the dataset
is very unbalanced. In our verification routine, we use by default the minimum threshold of
0.5 to flag the labels data as unbalanced. This will be reported to the user as warning and
will affect the verification of the initial bias.

Starting DNN state

Starting from different initial states, the optimization algorithm follows different trajectories
and can terminate at different equilibrium states. Thus, a poor initial state adversely affects
the optimization routines, and consequently, the optimality of the equilibrium state.

Initial Weights Verification First, we verify that there are substantial differences be-
tween the parameter’s values by computing the variance of each parameter’s values and
checking if it is not equal to 0. Next, one can make sure that, given the chosen activation
function, the distribution of initial random values are sampled from a uniform or normal
distribution with a careful tweak, i.e., by calibrating attentively the variance because the
distribution of the outputs from a randomly initialized neuron has a variance that grows
with the number of inputs. The equality between the actual variance of each weight and
its recommended variance given the input size is verified using f-test [200]. In the follow-
ing, we describe the recommended variances depending on the activation function of the
corresponding layer.

- LeCun [198] proposes a heuristic that initializes each neuron’s weight as eitherN (0,
√

1/fanin),
i.e., normal distribution with zero mean and 1/fanin of variance or U(−

√
3/fanin,+

√
3/fanin),

i.e., uniform distribution within [−limit, limit] and limit =
√

3/fanin, where fanin is
the number of inputs. This guarantees that all the initial neurons’ weights have ap-
proximately the same output distribution, and its empirical evaluation on sigmoid layer
activation shows a significant improvement on the rate of convergence.

- Glorot et al. [24] recommend the following initialization (especially when tanh is used
as activation function) which consists of neuron’s initialization following
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eitherN (0,
√

2/(fanin + fanout)) or U(−
√

6/(fanin + fanout),+
√

6/(fanin + fanout)),
where fanin, fanout are the number of inputs and outputs.

- He et al. [84] also proposed an initialization specifically for ReLU neurons. They sug-
gest that the variance of neurons in the network should be 2/fanin, which gives an ini-
tialization of either N (0,

√
2/fanin) or U(−

√
6/fanin,+

√
6/fanin). All of the above

initializations have been discovered empirically and proven to be optimal in classic
well-known CNNs like LeNet [163] and modern architectures such as VGG [151] and
GoogleNet [201].

Initial Biases Verification As a baseline, we verify that the bias exists, and initially is set
to 0 in case of well distributed labels. Nevertheless, we proceed by more advanced check on the
last bias initialization in case the pre-check on unbalanced labels for classification was fired.
Indeed, we make sure that the bias set for the output layer reflects the bias already found in
the distribution of outcomes in the given ground truth data. In our implemented verification
routine, we consider the unbalanced classification problem, where it is usually effective to
set each bias unit bi to log(pi/1 − pi), where pi is the proportion of training instances of
the label corresponding to the bias bi of unit i [202]. Concerning the regression problem,
if the coefficient of variation w.r.t each output j (i.e., the ratio of the standard deviation
to the mean) is low (e.g., our default threshold is 0.1%), we verify that its corresponding
bj is set to mj, the mean value of the supervised target j. This eases the optimization by
transforming the regression problem into predicting the deviation against the baseline (i.e.,
the mean value).

Cold Start Loss Verification An unexpected loss at the iteration 0 with an untrained
model (cold start), can indicate numerous issues including faulty loss function, ineffective loss
reduction strategy, as well as buggy parameters’ initializers [203]. Indeed, we compute the
loss at cold start with an increasing size of batches in order to verify that the obtained losses
are not proportionally increasing. This validates that the loss estimation is an average-based
expectation and it is not a sum-based reduction. In our verification routine, we duplicate
a random batch of data by doubling its size (×2), then, we check if their corresponding
losses at cold start are doubling (×2) as well. Next, we verify that the optimizer starts well
at the expected initial loss (i.e., the one estimated at the first run with random internal
parameters). It is always possible to derive approximately the correct initial loss for a given
DNN program configuration. For instance, the cross-entropy loss for a balanced classification
problem should start with uniformly distributed probabilities of p(label) = 1/L and initial
value of loss = − log(1/L), where L is the number of target labels.
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Tensor-Based Operation Verification A careless developer can introduce mistakes when
transforming math formulas or pseudo-code from white papers to tensor-based operations
using basic DL libraries calculation APIs. As the DNN tensor-based computations include
intensive broadcasting and reduction operations in order to perform individually calculation
over all the instances/neurons at each level, then, reduce the calculations to define aggregative
scores towards summarize all into a scalar cost that represent how well the DNN performs on
the data. We found that common implementation mistakes miss or add unnecessary depen-
dencies to network components (instances, neurons, scores,..etc). Thus, it is important to test
that a written operation depends only on its related components. For example, an activation
function should be applied separately on all the neurons, which means the activation output
i should depend only on the neuron input i, or a distance calculation between prediction and
actual values should contain independent components, where the distance value i depends on
only the prediction i and the ground truth label i as well. To validate the correctness of de-
pendencies of all the math operations for a computed quantity within the neural network, we
use the gradients flowing in the network to debug the dependencies between each operation’s
components given the fact that the gradient of a function w.r.t an independent component
is always zero [180]. For instance, let’s consider a newly-implemented loss function, we can
extract only the loss obtained for the outputs of a data point i, and then perform a full back-
ward pass to the input data in order to make sure that only the gradient w.r.t the i-th input
data is not null. A violation of this condition signals that overlapping dependencies exist,
which means that the on-watch average loss for DNN performance is wrong and misleading.

Computed Gradient Verification The backbone of backpropagation implementation
lies in the computation of gradients with respect to different DNN operations, including
linear weighted sum and non-linear activations. Whenever DL developers add hand-crafted
math operations and gradient estimators, we perform a numerical gradient checking that
consists of comparing between the analytic and numerical calculated gradients, respectively,
the gradient produced by the analytic formula and the centered finite difference approxima-
tion, f(x+h)−f(x−h)

2h . Both gradients should be equivalent, approximately equal, for the same
data points. The following steps are recommended by [25, 203] to improve the effectiveness
of this gradient checking process (and the detection of faulty gradients).

Relative error comparison: The difference between numerical gradient f ′n and analytic
gradient f ′a represents the absolute error that should not be above a predefined threshold.
However, it is hard to fix a common threshold of absolute error for DNN because its internal
computations are usually composed of multiple functions; so the errors build up through
backpropagation. Thus, it is preferred to use a relative error, |f ′a−f ′n|

max(|f ′a|,|f ′n|)
, that might be
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acceptable below 1e−2.

Sampled data instances: Sampling a few data instances for numerical gradient checking
reduces the risk of crossing kinks, which are non-differentiable areas of the loss landscape.
For instance, ReLU has zero gradient at the origin; but the numerical gradient can cross
over the kink and produce a value different from zero. Besides, DNN’s parameters are large
with thousands of dimensions; so the computation error could be on a random subset of each
gradient dimension. Therefore, a random sampling among both data points and dimensions
makes the finite-difference approximations less error-prone and faster in practice.

No regularization: The standard regularization can render large errors, misleading the
numerical gradient checking when the penalty term added overwhelms the original loss (i.e.,
the gradient is mostly related to penalty cost). Moreover, advanced regularization techniques
such as dropout induce non-determinism in the DNN internal computations, which enhances
the error-proneness of numerical gradient checks.

Prior burn-in training: A short burn-in training during which the parameters take better
and more representative values than randomly initialized ones is recommended. It is also
recommended to avoid the gradient checking at cold start since it could introduce pathological
edge cases, masking a buggy implemented gradient.

Fitness of a single batch of data

Given a tiny sample of data, the target problem becomes easy to solve and the training
algorithm should be able to converge to a DNN that fits the data without any issue, as every
well-designed DNN should be able to fit a small dataset. This is a main pre-check for DNN
training routines because it is a necessary condition, where its non-satisfaction indicates a
misconfiguration or a software bug.

Input Dependency Verification: We confirm that training programs on zeroed batches
of data perform worse than those on real samples of data. This check was initially proposed by
Karpathy [180], as a verification that the model outperforms an input-independent baseline.
For debugging, this improvement over the input-independent baseline shows that the training
program is successfully leveraging the input to optimize the DNN parameters.

Overfit Verification: We verify that the optimization mechanism is working well on a
controlled sample of data with reduced size (i.e., a few data points for each class) [25, 203].
The acceptance criteria is that the DNN achieves 100% accuracy or near-to-zero absolute
errors (AEs) on continuous outputs (by default, we consider AE in the order of 10−3). A
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failure to achieve this performance would signal the presence of issues regarding the DNN
optimization routines.

Regularization Verification: As above-mentioned, the controlled experiment of fitting a
single batch would lead to overfit the provided few data points in normal situations, however,
the loss should be greater than zero [25] when there is quite regularization. This check can
be improved by watching furthermore the smoothness of the loss curve to spot a lack of
noise in the optimization, and consequently, it reinforces doubts about the absence of active
regulation. In our verification routine, we set up 1e−5 and 0.95 as default thresholds for loss
and smoothness ratio 5.2.4 to recognize suspicious loss curves that are smoothly decreasing
towards a very low loss. This shows the model’s propensity to overfit quickly the training
data caused by a lack of regularization, which often implies high risks of capturing useless
residual variations in the given features.

Regarding pre-check of a single batch of data fitness, we concentrate on the functioning
of the training algorithm, and precisely, its ability to converge (i.e., reaching an optimal
equilibrium state) given a reduced size problem. However, the DNN training may still contain
inefficiencies that did not prevent it from solving a small problem size but would affect its
performance when it trains on larger problem size. Moreover, the failure at these batch fitness
prechecks do not provide indications about the possible root causes behind this incapacity to
successfully pass them. Therefore, the next phase in our debugging process aims to guarantee
the “proper functioning" of the training algorithm given a reduced size problem. What we
mean by “proper functioning" is the ability to converge with a valid accomplished trajectory
(i.e., passing through valid intermediary DNN states).

5.2.4 Phase 2: Proper fitting a single batch of data

At this phase, a monitored training is launched on a representative sample of data (i.e., a
single batch of data resulting from a stratified sampling). The monitoring routines serve
to detect early and precisely the potential issues with diverse automated verifications that
watch periodically for the DNN components’ misbehaviors to spot and report properties’
violations. In case of a DNN with major issues, i.e., already failed the precheck on single
batch fitness, this phase allows to steer the user towards problematic components and provide
meaningful messages on the violated properties that restrict further the potential root causes.
Otherwise, DL practitioners can still leverage this debugging phase for pre-examined DNNs to
spot inefficiencies of their design choices that cause training instability in regards to learning
updates or activation distributions, which might prevent the DNN from reaching optimal
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steady states and lead to a wastage of time and resources on unnecessary long training
sessions with the full datasets.

Figure 5.5 Illustration of loss minimization issues

Abnormal Loss Curvature

A loss curve is a plot of model loss value over time in terms of epochs or iterations. The
shape and dynamics of a loss curve are useful to diagnose the behavior of the optimizer
against the target learning problem. Figure 5.5 shows the abnormal loss curves, detailed-
below, which indicate different pathologies of statistical learning from data. The anomalous
loss evolution [203] can be detected using continuously updated metrics that are cheap to
compute and which can reveal anomalies effectively.

Non- or Slow-Decreasing loss A flat or low slope down curve shows that the loss is
either non-decreasing or decreasing very slowly which means that the model is not able to
learn at all or has a low learning capacity. This could be due to an inadequate loss function
or a low learning rate. As introduced in 5.2.2 for the stagnation test, we verify that the loss
is decreasing at an acceptable decay rate for a window of steps, e.g., we set up 5 steps by
default. For the loss decreasing verification, we proceed by watching that the percentage
difference between consecutive losses’ values, loss_decay_ratio = previous_loss−current_loss

previous_loss , is
greater or equal to a predefined minimum percentage difference (by default, we set up 5%)
by which the loss should decrease, loss_decay_ratio > prefixed_min_loss.

Diverging loss A curve with a high slope indicates that the loss is diverging with wildly in-
creasing values which means that the optimization problem is turned into a loss maximization
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instead of minimization. This could be the result of a high learning rate or a buggy gradient.
Therefore, we verify that the loss has no increasing tendency instead of decreasing one. This
verification can be done automatically by updating a reference minimum loss (lowest_loss),
and then, watching that the absolute ratio of loss, abs_loss_ratio = current_loss

lowest_loss (i.e., we call
it absolute ratio because it is computed w.r.t the lowest obtained loss) is not dramatically
diverging, as described in 5.2.2, during the training.

Highly-Fluctuating loss A noisy curve with random fluctuations demonstrates that the
loss is not converging to a line of stability, hence, the optimization is facing difficulties
preventing it from converging normally. Potential reasons behind this issue could be: strong
regularization that gives rise to noisy loss estimation, or high learning rate that produces
large updates keeping the optimizer jumping over the local minimum without converging.
Hence, we compute the smoothness ratio of the loss curve as follows:

smoothness_ratio = N_samples−N_direction_changes
N_samples

WhereN_samples, N_direction_changes denote, respectively, the sampled iterations count
and the number of alternations in the loss evolving direction. Then, we check periodically
that the smoothness ratio is not lower than a predefined threshold, otherwise, it indicates a
high amount of fluctuations (e.g., we fix 0.5 as a default threshold, which means that more
than 50% of consecutive sampled losses are having altered directions).

Performance Metrics Correlation

DL practitioners should select or implement the right loss measure (i.e., mean squared error,
cross-entropy, etc.) that will be set as objective function for parameters optimization, while
they keep watching a target performance metric (i.e., R-squared, Accuracy, etc.). For this
verification routine, we compute, continuously, the absolute value of correlation coefficient
between the optimized loss and the target performance measurements between training steps.
The latter describes the magnitude of the relationship between two variables within the
interval of [0, 1] and should not become lower than a predefined threshold (e.g., our verification
routine reports an absolute correlation coefficient of less than 0.5). This provides an indicative
metric of how representative the optimized loss is with respect to the target objective and
vice-versa. Thus, a poor choice of loss function would have high chances to be uncorrelated
with the performance metric, similarly, a buggy performance calculation would yield incorrect
values with low correlation with the loss evolution.
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Unstable Gradient

We propose to detect unstable gradient issues by examining, continuously, the evolution of
estimated gradient’s values with respect to each DNN’s layer. More specifically, we check the
growth and decay rate of the absolute average of the layer’s gradients, estimated for the last
iterations, to detect if the latter is following an unstable evolution trend, i.e., it is exploding
or diminishing, as described in 5.2.2.

Magnitude of Regularization Penalty Cost

In addition, there is an issue with the addition of a high amount of regularization to the com-
puted loss, whether by using a high lambda value or a poorly-designed penalty regularization
cost. Indeed, Park et al. [204] highlight that the learning suddenly fails when the magnitude
of gradients from loss(W, b,D) decreases faster than that from Ω(W ); so the penalty term
gradient overwhelm the loss data gradient. In such problematic situations, the weights’ up-
dates become mainly related to the regularization term, which causes the failure of the model
to learn.
One should ensure that the regularization is not too strong. The regularization term gradi-
ent should not dominate and suppress the loss gradients w.r.t the weights.To ensure this, we
recommend watching continuously, the proportion of the magnitude of the penalty terms’
gradients w.r.t the magnitude of loss data in order to validate that it is not diverging, as
described in 5.2.2.

Parameters States and Dynamics

The main DNN’s on-training parameters, weights and biases, should be optimized towards
better solving the learning problem over the training sessions. In the following, we propose
different verification routines on the parameters current states and update dynamics that
could indicate convergence issues and non-optimality of the on-going estimation.

On-Training Parameters Verification A preliminary sanity check for neural network
parameters would be verifying their changing estimations over the training iterations. We
make sure that all defined trainable layers have their parameters updated. Indeed, a non-
zero difference between the values of trainable parameters before and after the execution of a
few training passes (i.e., optimization updates) confirms that the dependencies between the
layers are correctly set up and that all the trainable parameters are getting optimized.
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Dead and Over-Negative Weights Verification A layer’s weights are considered dead
or over-negative, when respectively, the ratio of zeros or negative values in the tensor ele-
ments is very high [187]. These two states of weights are likely to be problematic for the
learning dynamics. Indeed, given a common DNN setup (e.g., normalized inputs within [0, 1]
and a variant of ReLU as hidden layers activations), null or negative learned weights within
hidden layers represent connections to intermediate features that do not contain any relevant
information for the target task. Thus, if a layer’s weights are mostly full of null or negative
weights, their corresponding activation layers are likely to stagnate on a non-optimal flat
region and consequently, the DNN would start facing dead layers (i.e., ReLUs mostly out-
putting the value zero) and frozen layers (i.e., no updates of the weights). In our verification
routine, we flag any tensor of layer’s weight (W ), having either the ratio of very low values
(i.e., lower than 1e− 5) or negative values is higher than a predefined threshold (i.e., 95% is
used by default), as respectively, dead or over-negative weights.

Stable Parameters Update Verification Deep neural networks introduce challenges re-
garding learning stability compared to shallow networks. In the training pitfalls section 5.1,
we discussed some practices such as tuning the learning rate and adding activation or weight
normalization to balance out the learning speeds for the hidden layers. Thus, it is impor-
tant to make sure that the parameters’ updates are stable. Hinton [202] and Bottou [205]
proposed the following heuristic, the magnitude of parameter updates over batches should
represent, respectively, 0.1% or 1%, of the magnitude of the parameter itself, not 50% or
0.001%. Therefore, we propose a verification routine to detect unstable learning parameters
by comparing the magnitude of parameters’ gradients to the magnitude of the parameters
themselves. More specifically, following the recommendation to keep the parameter update
ratio around 0.01 or 0.001 (i.e., −2 or −3 on base 10 logarithm), we compute the ratio
of absolute average magnitudes of these values and verify that this ratio doesn’t diverge
significantly from the following predefined thresholds:

−4 < log10

(
|W (i+1) −W (i)|/|W (i)|

)
< −1

The proposed verification mechanism reports irrelevant layers (i.e., where updates are unsta-
ble) and frozen layers (i.e., where updates are stalled) to the user.

Parameters Diverging Verification Worse than unstable learning, weights and biases
risk divergence, and may go towards +/−∞. For instance, high values of initial weights or
learning rate with a lack of–or–insufficient regularization provokes highly-increasing weights’
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updates, leading to bigger and bigger values, until reaching ∞ (this is caused by overflow
rounding precision). In addition to that, biases can also become huge in certain situations
where features could not explain enough the predicted outcome or might not be useful in dif-
ferentiating between the classes. Therefore, we automate a verification routine that watches
continuously the absolute averages of parameters are not diverging, as described in 5.2.2.

Activations Distribution

Out-of-Range Activation Verification Given a newly-implemented activation function,
we include a baseline verification routine to watch that the produced activations are within
the expected range of values. This would be useful to find computation mistakes or miscon-
ceptions causing out-of-range outputs.

Validation of Output Activation Domain The last layer’s activation represents the
outputs of the neural network, which should produce valid outcomes while covering the
whole distribution of the possible ground truth labels. We implement a verification routine
to check that the outputs of classifiers are probabilities, i.e., positive values within [0, 1] and
sum-to-one in case of multidimensional output. For regression, we empirically verify that the
predicted outputs over the iterations were able to satisfy necessary conditions derived from
ground truth boundaries, i.e., non-zero variance, can be negative, can exceed 1.0. Under
these conditions, the common identified faults of using the wrong activation function can be
detected.

Saturated Bounded Activation Detection To detect saturation issues in DNNs, we
compute single-valued saturation measure ρB proposed by Rakitianskaia and Engelbrecht [206]
if the hidden activations are bounded functions such as sigmoid or tanh. This measure is
computed using the outputs of an activation function and is applicable to all bounded ac-
tivation functions. It is independent of the activation function output range and allows a
direct statistical measuring of the degree of saturation between NNs. ρB is bounded and easy
to interpret: it tends to 1 as the degree of saturation increases and tends to zero otherwise.
It contains a single tunable parameter, the number of bins B that converges for B ≥ 10,
i.e., it means splitting the interval of activation outputs into B equal sub-intervals. Thus,
B = 10 can be used without any further tuning. Given a bounded activation function g, ρB
is computed as the weighted mean presented in Equation 5.2.

ρB =
∑B
b=1 |ḡ′b|NB∑B
b=1NB

(5.2)
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Where, B is the total number of bins, ḡ′b is the scaled average of output values in the bin
b within the range [−1, 1], Nb is the number of outputs in bin b. Indeed, this weighted
mean formula turns into a simple arithmetic mean when all weights are equal. Thus, if
ḡ′b is uniformly distributed in [−1, 1], the value of ρB will be close to 0.5, since absolute
activation values are considered, thus all ḡ′b values are squashed to the [0, 1] interval. For a
normal distribution of ḡ′b, the value of ρB will be smaller than 0.5. The higher the asymptotic
frequencies of ḡ′b, the closer ρB will be to 1.
This verification routine can be automated by storing for each neuron its last O outputs’
values in a buffer of a limited size. Then, it proceeds by computing its ρB metric based on
those recent outputs. If the neuron corresponding value tends to be 1 (e.g., a threshold of
0.95 is used in practice to spot this tendency), the neuron can be considered as saturated.
After checking all neurons for saturation, we compute the ratio of saturated neurons per
layer to alert the DL developers about layers with saturation ratios that surpass a predefined
threshold (e.g., we fix 50% by default).

Dead ReLU Activation Detection By definition, a given neuron is considered to be
dead if it always returns zero [207]. Hence, we detect practically dead ReLUs by reducing
the last outputs for each neuron stored in the limited size buffer into a single 95th percentile,
which is more robust than the maximum reduction against outliers (e.g., a non-zero stored
values from earlier training iterations). Thus, we mark all the neurons with a 95th percentile
less than a predefined threshold (i.e., by default, we set up 1e − 5). Next, we proceed by
calculating the ratio of the marked dead neurons per layer and we flag the layers with a
number of dead neurons higher than a predefined threshold (e.g., we fix a default threshold
of 50%).

Unstable Activation Detection Although this unstable activation issue is more generic
than dead or saturation phenomena, DL experts usually watch the histograms of sampled
activations from each layer while expecting to have normally-distributed values with unit
standard deviation, e.g., a value within [0.5, 2] has been shown to be an acceptable variance
of activations [30]. Thus, we base on this expert’s heuristic to statistically validate that the
sampled activations of each layer over the last iterations is having a well-calibrated variance
scale. Concretely, the test would pass the actual standard deviation (σact) belongs to the
range of [0.5, 2]; otherwise, we perform an f-test [200] to compare σact with either the low-
bound 0.5 if σact < 0.5 or 2.0 if σact > 2.0.

DL practitioners can perform a closed feedback loop using this inexpensive and rapid de-
bugging on a single batch of data until fixing all the covered coding bugs and improving the
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settings in a way that enhances the chances of converging to a more optimal model. Thus, a
successful pass at this phase increases the confidence that the training program is devoid of
common DNN pathologies such as: vanishing gradients, saturation of activation functions,
and inappropriate learning speed. Nevertheless, other components of the training program
have not been tested yet. For instance, a training program may pass all the single batch
debugging checks, while the data loader can inject too much noise or mismatch features and
labels, which yield corrupted batches of data, and consequently, the resulting DNN does not
solve the target problem.

5.2.5 Phase 3: Post-fitting conditions

Once the fitting of a single batch step is successfully passed, several post-fitting conditions
should be satisfied to guarantee the correctness of the data loader, the data augmentation
module, and the advanced regularization techniques that require additional computations
during the inference. The following debugging phase validates the behavior of the DNN
training program during regular training sessions, i.e., we use the available training and
validation data.

Distribution-Shifting Augmentation Verification

We propose a post-check that verifies the validity of the augmentation methods, applying
data transformations on the generated batches to enhance diversity and improve the gener-
alizability by smoothing the loss landscape and forcing the model to capture the invariants
useful for the target task. A valid augmenter should not introduce a shift in the data distribu-
tion that makes the model perform worse on the original dataset. For instance, overwhelming
noise injection leads to produce meaningless inputs; so both of ratio and scale of the injected
noise should be carefully picked to hold the augmented data distribution close to the original
one.
To detect this poor design of data transformations, we debug the data augmenter module
by comparing the performance and the activation patterns of the DNN trained with-and-
without augmentation on a sample of data from the validation set. Concerning the measure-
ment of dissimilarity between the activation patterns, we use Centered Kernel Alignment
(CKA) [208], which is an optimized and powerful representational similarity measure, allow-
ing the assessment of the differences and the correspondences between patterns learned by
different DNNs or same DNN with different data. Indeed, given two matrices X,Y , where
X ∈ Rm×n1 is a matrix of activations of n1 neurons for m examples and Y ∈ Rm×n2 is a ma-
trix of activations of n2 neurons for the same m examples, a DNN representational similarity
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index s(X, Y ) estimates the similarity between the representations learned in both matri-
ces of activations. Thus, the CKA’s empirical validation [208] shows its ability to compare
representations within and across DNNs, in order to assess the effect of changing variation
factors on the DNN training. This similarity metric is robust and it does not affect by the
stochasticity of the optimizer or the random initializations, which makes it suitable for our
verification on the resulting activation patterns instability when the augmented data is noisy
and shifted w.r.t the training data distribution.
Therefore, the DNN training program would fail the test if there is a degradation of the perfor-
mance and a substantial difference in the activation patterns between the two trained DNNs.
In our implementation, we check for an increase in the loss (lossaugm_data > lossorigdata) and
a decrease of activation pattern similarity (e.g., we set up a threshold of a minimum CKA
index equals to 0.8, which means a decrease of 20%). Indeed, any difference in the activation
pattern could be acceptable and might be considered as an improvement in the detected
patterns in case the performance is enhanced, however, having both of the activations pat-
tern divergence and the performance degradation indicate strongly that the augmented data
induce a distribution shift.

Corrupted Labels

Given a corrupted data shuffler, the paired data (features X, labels y) are mismatched, where
the row label yi does not correspond to the row features Xi. Since the shuffling is executed
after each epoch (i.e., full pass over the data), a corrupted data loader will generate a new
distribution of supervised training data every time it is called. Thus, the training loss curve
would be subject to intermittent spikes because the neural network starts learning on a new
distribution at the 1th-iteration of every epoch. Based on this observation, we propose to
collect all the 1th-iteration losses into a set and perform a statistical test to detect if there
is significative difference between them, which means the loss estimated on the first sampled
batch of data is improved over the epochs; otherwise, we flag the data loader as corrupted
because the DNN successfully passes all the previous verifications, but cannot improve its
performance over the epochs; so it is high probable that the data loader is falsifying the
batches of data in-between the elements’ shuffles.

Unstable Mode Transfer: From Train to Inference Mode

Advanced regularization techniques like dropout or batchnorm introduce, respectively, noise-
injection and normalization mechanisms in order to grant the DNN training access to sub-
model ensembling and well-conditioned loss minimization. They incorporate two functional
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modes: the training mode and the inference mode; so many bugs can remain silent and
hidden during the training mode, but the transfer to the inference mode can reveal them
through DNN misbehaviors and divergences induced by the mode transfer [177, 178]. Thus,
we construct a verification routine that detects the behavioral shift occurring when transfer-
ring the DNN from the training mode to the inference mode. Our implemented behavioral
difference assessment is based on the CKA metric for representational dissimilarity between
different modes’ activations (e.g., we fix a default threshold of 0.75 as minimum similarity
of activation patterns on the same data), and the relative change between the modes’ losses
(e.g., the threshold is by default set to 50%). Then, one can check the different regularizers’
internals, including pkeep, E[x] and V ar[x] to diagnose the root cause.

5.2.6 TensorFlow-based Implementation

To assess the effectiveness of our proposed debugging approach on real faults in DL-based
software systems, we implemented a TF-based library that performs the debugging phases
on a training program written using TF features. Indeed, we choose to focus on TF-based
training programs because of the popularity of TF in the ML community [209]. Nevertheless,
the property-based approach proposed in this paper can be adapted for other DL frameworks.
In the following, we describe the components of this TF library.

Setting Up the Testing Session

The testing of a DNN training program can be more complicated than for a traditional pro-
gram, because of its non-deterministic aspect. It is difficult to investigate the training issues
and identify the root causes when the program exhibits a substantially new behavior for each
execution. To reduce the stochasticity of a DNN training program, we fix all the random
seeds of all the computational libraries beforehand, which guarantees the reproduction of the
same random variables. Furthermore, we offer the option of deactivating the parallelism, if a
tester wants to obtain a perfectly reproducible result. As default settings, we allow leverag-
ing multi-cores CPUs and GPUs through multithreading execution. We allow this because
a single-thread execution slows down dramatically the training time. Also, TheDeepChecker
targets major training issues related to erroneous training behaviors caused by the intro-
duction of coding bugs or misconfigurations, which differ from minor training issues caused
by non-optimal choices of hyperparameters, leading to near-to-optimal DNNs instead of the
best-fitted one. Therefore, the resulting pathologies in the training dynamics would likely be
persistent to the possible low magnitude differences between multiple executions of parallel
floating-point computations.
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Fetching and Monitoring the Training Program Internals

TFDBG [210] is the official debugging tool specialized for TF programs that offers features
such as inspection of the computational graph, addition of conditional breakpoints and real-
time view on internal tensor values of running TF computational graphs. However, it is not
practical for our approach since it adds a huge overhead on computation time, as it handles
each execution step of the graph, to allow debugging the issues and pinpoint the exact graph
nodes where a problem first surfaced. In fact, the implemented verifications fetch the values
of tensors, representing parameters, activations, and gradients, by requesting through the
provided API the on-running DAG that encodes both the DNN design and the used training
method. The routines that continuously monitor the state of the neural network do not
need to break neither the feed-forward nor the backward passes since they can access the
internals of the intermediate neural networks to detect pathologies in the learning dynamics.
This allows the monitored training iteration to be executed in an atomic way and avoid the
overhead of using TFDBG. To manage our set of verification routines running simultaneously,
we use the monitored session and hooks mechanism; to handle the additional processing
injected between training iterations. To do that, we need to perform the following two steps:

1. Create one or more Hooks objects that implement methods such before_run and af-
ter_run to access the intermediate tensors’ values of activations, parameters, and gra-
dients, then, apply the verification logic.

2. Create a Monitored Session that handles the execution of hooks’ additional treatments
before and after running each training pass.

Buffering the DNN’s status data

The activations and gradients represent intermediary computations over, respectively, for-
ward and backward passes. The weights and biases represent learnable parameters that are
updated, continuously. As a result, the internal tensors do not survive between two consec-
utive training iterations. Thus, we implement buffer data storage to save incrementally the
values of watched tensors. By default, we set the size of the buffer to 10 elements but we
keep it a configurable option in the debugging tool.

Running the checks

Conceptually, each check performs the following two steps. First, the instantiation of the
property requires the computation of necessary metrics in relation to the targeted violations.
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Regarding the on-training verification routines, a data preparation using a reduction strategy
(i.e., average, norm, and quartiles, etc.) is necessary to aggregate the accumulated tensors
in the buffer data storage. Second, the issue detection consists of applying a heuristic-based
verification rule, involving the inferred metrics and predefined thresholds, that captures the
negative effects and anomalous training behaviors induced by the targeted issue. Indeed,
the choice of thresholds would affect the sensitivity and specificity of the issue detection.
Additionally, the training pathologies are correlated to each other and a particular bug can
be the root cause of multiple of them. Thus, our dynamic debugging strategy alleviates these
challenges by leveraging limited-size buffers, continuous verification routines, and informa-
tive raised errors. Therefore, TheDeepChecker implements a debugging feedback loop that
does not stop after finding violations, but it keeps watching the training execution while
dynamically producing error messages that steer the DL developer to further narrow down
the possible root causes and avoid errors conflicts relying on the persistence of the errors, the
chronological order of the raised issues, and the reported information.

Shrinking the suspicious state and raising errors

Once an issue is detected, TheDeepChecker shrinks the state of the on-training DNN to com-
municate the component where the property violation is found and its corresponding indica-
tors including the reference of the layer, the computed metric, and the predefined threshold.
In fact, the reported information should provide an explanation of why the underlying prop-
erty is considered to be in violation. First, reporting the shrinked neural networks’ states
helps the user avoid false positives. For instance, the learning speed can start by relatively
high updates that can be close or-even slightly larger than the prefixed update magnitude
threshold. Thus, a single warning message including the current update magnitude and the
surpassed threshold could help the user decide whether or not the unstable learning issue
occurs in the current situation. Second, the shrinking of the buggy DNN state is useful to
pinpoint the suspected computational units that developers should investigate, and therefore,
it helps them identify the occurred issue’s root cause. For example, the computational layers
send information throughout the DNN by using edges that connect layers to one another
during the forward pass and they receive updates from the gradients of the loss flowing re-
versely over the same edges during the backward. Thus, the level of the dead layer and its
amount of dead neurons, as well as, the level of vanishing gradient and its magnitude scale
can be used to identify the actual unstable layer, where the information is no longer flowing
during either forward or backward pass. Developers would first investigate the underlying
layer and then fix the bug within the program using this information.
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Figure 5.6 Illustration of our Property-based Debugging Approach for TF Programs

Figure 5.6 summarizes the above-mentioned implemented steps of our property-based debug-
ging approach for TF Programs.

5.3 Evaluation

The objective of this evaluation is to assess the effectiveness of our proposed property-based
debugging method in allowing for the early detection of real bugs that occur in DNN-based
software systems. We also conducted a usability study with two professional DL engineers to
assess the relevance of TheDeepChecker’s error messages at guiding developers in identifying
the root cause of bugs and fixing them.

5.3.1 Design of Case Studies

In this section, we describe the design of our case study that aimed to assess the perfor-
mance of TheDeepChecker. We explain how we selected and reproduced relevant bugs for
our evaluation.

Real Faults in DNN-based Training Programs

The reproduction of buggy DNN training programs is quite difficult because of the rapid
evolution of TF API functions and even infeasible when major code blocks, datasets, or
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environment settings are missing. In previous research works, program mutation [45] was
leveraged to evaluate the quality of DL program debugging approaches. The mutation relies
on well-defined rules to change slightly the syntactic structure of the code, or mimic systemat-
ically application-specific errors. Then, the debugger should detect and reject mutants, which
is called killing the mutant in such analysis. Thus, its effectiveness is measured by the ratio
of killed mutants w.r.t the total of generated mutants. Xie et al. [92] leverage MuJava [211],
which is an automatic java code mutator, to produce defective mutants of Weka’s imple-
mentations [212] of k-Nearest Neighbors (kNN) and Naive Bayesian (NB). Dwarakanath et
al. [93] use MutPy [213], an open-source tool for python code mutation, to inject typical pro-
gramming errors in a clean implementation of deep residual neural networks (ResNET). Both
mutation analyses rely on language-specific code mutators that alter randomly the arithmetic
operators, logical operators, variable’s scope and casting types, etc. However, even if these
random code alterations mimic a large variety of coding mistakes, they cannot be represen-
tative for the real-world buggy training programs, where the code is relatively short with
heavy dependency on tensor-based computational libraries. Besides, Ma et al. [94] proposed
DeepMutation that defines DL-specific mutation rules for DL programs, including a layer
addition, a layer removal, and an activation function removal. Based on our investigation on
DL faults, we found that these operators can actually mimic real faults in relation to missing
DNN components, such as missing batchnorms (i.e., removing the normalization layer) or
redundant softmax (i.e., adding another softmax on the output layer). However, many of the
generated mutants using these operators can be equivalent to the original network, or even
better for solving the underlying learning problem. This makes the evaluation based on the
ratio of killed mutants misleading. Therefore, it is necessary to assess the effectiveness of our
debugging approach on detecting the real DL bugs that have been experienced and reported
by the DL practitioners. As shown in Figure 5.1, we have collected concrete instances of real
DL bugs [1] that cause training issues without crashing the DL program. Thus, we rely on
their identified root causes and symptoms to inject each DL fault into clean DL programs to
force the creation of valuable synthetic buggy versions. In the following, we detail the two
high-level categories of common root causes for the non-crashing DL bugs.

Coding Bugs in DNN-based Training Programs

Like any software system, DNN training programs may contain the missing and wrong code
statements that cause a deviation between the designed DNN and its corresponding written
code (see Table 5.1). In fact, the DNN training program is implemented using conventional
programming languages, which may include coding faults. The lack of oracle for internal
variables and the stochastic nature of the DNN optimization process, make most of these
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coding mistakes hidden without disrupting the flow of the program’s execution. For instance,
the majority of these hidden bugs are incorrect math operations such as flipped sign result,
inverted order of calculations, wrong data transformations. We found another type of coding
bugs in TF programs that consist of a TF API misuse committed by developers who misun-
derstood the implicit assumptions regarding how to use these configurable routines. In fact,
modern DL libraries provide rich APIs covering more and more state-of-the-art techniques.
Consequently, the API routines integrate more and more configurable options and set up
default values to make them ready-to-use for quick prototyping. However, they assume that
their users are capable of configuring them properly, which is unfortunately not always the
case. Some of the built-in data loaders, for example, automatically perform standard pre-
processing of numerical data, such as normalization. This misleads some rookies to blindly
perform a double linear scaling afterward. Another common API misuse is related to the
recent versions of loss functions. Indeed, numerically stable implementations regarding some
of the loss functions require merging the loss and output activation formula together to re-
write them carefully without any potential log(0) or exp(∞). However, users may ignore this
gap between theoretical loss function and built-in numerical stable ones; which may result in
redundant activations.

Misconfigurations of DNN-based Training Programs

Modern DNN training programs are highly-configurable software built using routines from
DL libraries. Their correct settings, given the context, becomes a challenging task and if
an incident occurs due to misconfiguration, the on-training DNN may produce misleading
performance faults. These misconfigurations assemble all the wrong and poor choices for the
configuration of DNN-based software systems, including the DNN design and the training
method (see Table 5.1). The lack of understanding of DL fundamentals is the main reason
behind the occurrence of these configuration issues, especially, when dealing with a novel DL
technique or facing an unfamiliar target problem. For instance, numerous misconfigurations
in relation with random initializers, loss functions, normalization methods and optimization
hyperparameters, lead to training pathologies. Others are related to the DNN design and
structure that lead to performance degradation, whether the DNN is underfitting the data
(i.e., low training and validation errors) or overfitting it (i.e., low training error and high
validation error). The misconfiguration of a DNN training program impacts the effectiveness
of the training process, and consequently, the quality of the trained DNN. However, they
manifest themselves during the model learning process; so the debugging of the training
program should help catch these undercover failures that are hard to detect at inference
executions during the model testing.
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Table 5.1 Real Bugs in DNN-based Software System

Category Bug Common Root Cause(s)

Coding
Bug

missing preprocessing missing input normalization
missing output normalization

wrong preprocessing redundant data normalization
wrong optimisation function gradients with flipped sign

missing softmax missing softmax activation
redundant softmax softmax out-and in-the loss

wrong type of activation
softmax for hidden activations

softmax for 1-dim output
over-restricted output domain

wrong softmax implementation softmax over wrong axis

wrong loss function
CE over wrong axis

inverted CE’s mean and sum
MSE with wrong broadcasting

wrong data batching shuffle only the features
wrong data augmentation invalid data transformation

System
Misconfi-
guration

wrong initialization constant weights
dummy random weights

wrong loss selection use of MSE instead of CE

suboptimal learning rate a low learning rate
a high learning rate

epsilon for optimiser too low an Adam epsilon ε < 10−8

missing normalization layer missing batch-norms
no-update of batch-norm globals

missing regularisation

low λ for norm penalties
high λ for norm penalties
high keep_p for dropouts
low keep_p for dropouts

unbalanced dataset Labels are not equally distributed
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Synthetic Tensorflow Buggy Programs

Liu et al. [98] designed a base CNN that represents a typical CNN for image classification.
Then, they derived diverse ineffective variants by poorly re-designing some parts of the CNN
to evaluate the capacity of their visual diagnosis tool, CNNVis, in detecting the effects
of the added poor design choices. Indeed, TheDeepChecker gauges different statistics and
metrics on the DNN internals to detect fine-grained symptoms on the dysfunctioning or
instability of DNN’s components. The heuristic-based verification rules identify the occurred
bug based on its effects on the training routines and flag the defective component relying on
its current metrics’ status. Therefore, our first evaluation of TheDeepChecker consists of an
assessment on synthetic buggy DNN programs. Figure 5.7 shows our systematic approach,
following the same methodology of Liu et al. [98], to create synthetic mutant DL programs,
containing the above-mentioned DL faults. First, we select the Base DNN training programs
for which the identified DL fault is applicable. Indeed, we prepare a mixed set of Base NNs in
order to cover different architecture and activation functions that are related to a particular
learning problem (i.e., either classification or regression), as well as, advanced techniques
to regularize and stabilize the training of complex DL models (i.e., increasing the depth of
the neural network enhances its complexity). However, adding arbitrarily hidden layers to
have higher learning capacity would be unnecessary and may induce issues if it is applied
on simple learning problems. Thus, we set up two base CNNs, ShallowCNN and DeepCNN,
that have been proposed to solve two well-known classification problems with increasing
complexity. Next, the injection of the DL bug in the Base program consists in mutating
minimally the original source code based on its main root cause and the toolkit official
documentation (i.e., Tensorflow). Then, we validate the presence of the DL bug-related
symptoms; otherwise, further refinements should be performed. Generally, the symptoms
observed for non-crashing bugs are any unexpected low model performance (i.e., accuracy or
average error) or slow learning process. The bug reporters were able to perceive the symptoms
based on their past DNNs training experiences or their comparisons with the original source
(e.g., a research paper, or a tutorial). In a similar fashion, the reference performances of
model and learning speed for our Base DL programs is already known and can be leveraged
to check the success of the bug injection. Following the steps described in Figure 5.7, we
are able to create a buggy synthetic DNN program for each matched pair of a base neural
network and a single DL fault. This helps isolate the DL faults and assess the sensitivity
and specificity of TheDeepChecker regarding each injected fault separately. At this level of
controlled experiments, we could separate the valid fired checks that highlight the foreknown
negative effects of the injected fault, and the false positives that point out to other irrelevant
side effects (which could mislead the users during the debugging).
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Figure 5.7 Overview of Synthetic DL Programs’ Creation Steps

In the following, we describe the three Base NNs that we identified based on empirically-
evaluated architecture, officially-debugged TF implementations, and publicly-available datasets.

Figure 5.8 Schema of the two BaseCNNs Architecture

RegrFNN. The RegrFNN represents a basic feedforward neural network inspired from
Google official examples [214], which contains two hidden fully-connected layers of 64-neurons
with ReLU activation. It uses mean squared error (MSE) to compute the loss for regression
problems. For regularization, we add both ridge regression (L2-norm of weights). Regarding
the optimization, we use ADAM as a variant of gradient descent algorithm. It was trained on
the classic Auto MPG Dataset [215] with the aim of predicting the fuel efficiency of late-1970s
and early 1980s automobiles. The RegrNN reached less than 1.85 of mean absolute error on
unscaled outputs within the range of [10, 47].

ShallowCNN. The ShallowCNN is a LeNet [163] variant, containing two convolutional layers
and two fully connected layers (more details in Figure 5.8). A max-pooling layer is set next to
each convolutional layer. In addition, we select the widely used activation function, rectified
linear unit (ReLU). As we target to solve a multi-class classification problem, we employed
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softmax and cross-entropy to be respectively, the last output activation and the loss function.
For regularization, we add both ridge regression (L2-norm of weights) and lasso regression
(L1-norm of weights) as penalty terms to the loss function. Regarding the optimization, we
use stochastic gradient descent (SGD), which remains the standard optimizer for training
neural networks. It was trained on MNIST handwritten digits benchmark dataset [216],
which includes 60, 000 labeled gray-scale images of size 28× 28 in 10 labels. The dataset was
split into a training set containing 50, 000 images and a test set containing 10, 000 images.
The ShallowCNN achieved 99.35% accuracy rate on the test set.

DeepCNN. The DeepCNN is a VGG [151] variant, containing stacking three blocks of two
convolutional layers followed by a max pooling layer and two fully-connected layers (more
details in Figure 5.8). We also use ReLUs, softmax, and cross-entropy for activation, out-
put and loss functions. However, we employ advanced regularization techniques to enable
the training of this deep NN. We put a batchnorm layer next to each layer that stabilizes
and accelerates the optimization process. In addition, each block or dense layer ends with a
dropout layer using an increasing dropout rate (going from 20% to 50%) in order to offset the
learning acceleration. Our optimization method is based on Adam, an advanced variant of
gradient-based that can automatically adapt its learning rate within each optimized param-
eter. The DeepCNN was trained on CIFAR10 [217], which consists of 60, 000 labeled color
images of size 32×32 in 10 different classes (e.g., airplane, bird, and truck). The dataset was
split into a training set containing 50, 000 images and a test set containing 10, 000 images.
The DeepCNN achieved 89.15% accuracy rate on the test set.

Real TensorFlow Buggy Programs

Zhang et al. [138] reproduce several defective TF programs extracted from SO posts and
GH projects. Among the categories of studied DL bugs, we found the Incorrect Model
Parameter or Structure (IPS), which includes inappropriate modeling choices and algorithm
configurations, degrading the quality of the training. Indeed, the major symptom of IPS
bugs is low effectiveness, i.e., the performance of the on-training model does not improve
as expected. After filtering out redundant TF programs and other incomplete models from
their SO dataset, we ended up with 10 unique and full IPS buggy TF programs including
data, model and training algorithm implementation. Table 5.2 presents the selected programs
alongside the recommended fixes extracted from their related SO post discussions. Moreover,
we clone 10 buggy versions of GH projects that correspond to bug-fixing commits in relation
with IPS bugs. Table 5.3 shows the versions of GH projects with the implemented fixes
that have been identified from the bug-fixing commit. Indeed, we emphasize that the fixes
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with the buggy examples are added to mention the fault identified by the SO users or the
GH project contributors, but there is no guarantee that it is the only bug or inefficiency in
the project at that version. Technically, we follow the ‘how to’, libray’s version, and official
datasets, as described in the replication package of the empirical study [138] on Tensorflow
Bugs, to prepare our set of buggy DL training programs.

Table 5.2 SO buggy TF-based training programs

Program Recommended Fixes
IPS-1 switch to a numerical stable loss
IPS-4 add mean to the loss
IPS-5 change gradient descent by Adam
IPS-7 add an output activation and a numerical stable loss
IPS-11 remove the useless ReLU on the logits
IPS-12 fix a typo in the accuracy function
IPS-13 set lower learning rate(η) and norm penalty(λ)
IPS-14 set a low learning rate(η)
IPS-15 set a low learning rate(η)
IPS-17 set a low learning rate(η)

Table 5.3 Github buggy TF-based training programs

Program Recommended Fixes
DLT_0edb182 remove redundant softmax layers
DLT_20d1b59 add a softmax layer
DLT_437c9c2 improve the loss reduction
DLT_726b371 add ε for a numerical stable loss
DLT_ded6612 improve the parameters intialization

FCN-CTSCAN_b170a9b fix a mistake in the loss function
TFE_333 set an adequate weight initialization
TFE_368 set a low learning rate(η)

TFE_742675d improve the loss reduction
TFE_bc09f95 improve the loss reduction

Rule-based Debugger Baseline

As a baseline for automated training issue detection, we use SageMaker Debugger(SMD) [218],
which is a fully managed debugging and monitoring service within the Amazon SageMaker
platform for scalable machine learning in the cloud. SMD represents a framework-agnostic
system to collect, query, and analyze data from ML model training and to automatically
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capture issues using a set of built-in rules. Indeed, SageMaker automatically creates the
training instance, pulls the training image from the Container Registry, and downloads data
and training scripts into the container. Once the training is launched, SMD retrieves asyn-
chronously the model data at specific intervals and uploads them to S3 bucket. Then, SMD
runs the activated built-in or user custom rules in independant processing jobs on separate
containers in a way that they do not interfere with the training job. Finally, users can set
up alarms within Amazon Cloudwatch, which is a real time monitoring and observability
service, to indicate when a rule is triggered. Table 5.4 summarizes the SMD’s built-in rules
that are applicable for feedforward neural networks.

Table 5.4 SMD Built-in Rules Applicable to FNNs

Component Rules #id

Data Class Imbalance R0
Non-normalized image input R1

Loss

Not Decreasing R2
Unchanged R3
Overfitting R4
Underfitting R5
Overtraining R6

Weights

Poor Initialization R7
Abnormal Update Ratio R8

All Zeros R9
Abnormal Variance R10

Exploding R11

Activations Neurons Saturation R12
Dying Neurons R13

Gradients Vanishing R14
Exploding R15

Although SMD and TheDeepChecker target a common subset of training issues, the logic of
debuggers’ rules are quite different, as SMD relies exclusively on the model data collected
offline during the user-configured training session. However, TheDeepChecker is an online
debugger framework that takes control of the ML training program and the datasets to or-
chestrate the running of a sequential multi-phase debugging workflow, including preliminary
independent checks, a monitored single-batch training, and comparisons of multiple trained
models. Indeed, the TheDeepChecker’s debugging workflow involves verification rules that
validate necessary properties of the training program and assess the status of heuristic-based
detectors for common DL model training issues.
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5.3.2 Case Study Results

In the following, we present the results of debugging sessions using TheDeepChecker on both
synthetic and real-world buggy programs. First, we evaluate the capacity of TheDeepChecker
in detecting faults injected in the base NNs, whether the fault is a coding bug or a miscon-
figuration of the system. Then, we assess the effectiveness of TheDeepChecker in debugging
real-world buggy TF programs that may contain multiple hidden bugs.

Debugging DNN Software System that contains Coding Bugs.

Table 5.5 shows the results obtained on the synthetic buggy training programs. For each
injected bug, we report all the checks fired by TheDeepChecker, as well as the performance
of the trained model on test data and the SMD’s rules that detected issues.

Accuracy of TheDeepChecker on coding bug detection. Given the fault injected in the
synthetic example, we put in bold the fired check(s) that are considered to be conceptually
connected to the underlying issue. Indeed, these bolded checks could guide the user towards
recognizing the occurred issue and fixing the buggy training program. Moreover, we study
the other fired checks for a full assessment as we keep running the TheDeepChecker, but
we do not need to wait for all the fired checks to spot and fix alerted DL bugs. Thereby,
we also provide a user-defined boolean setting (failed_on=True/False) that would enable an
exception to be raised whenever TheDeepChecker encounters any of these verifications. In
practice, this helps save useless running time and computational resources. Thus, we calcu-
late the number of True Positive (TP) checks, False Positive (FP) checks and False Negative
(FN) checks. True positives are represented as a+b, where a and b are the number of checks,
respectively, defined to catch precisely the injected bug and to identify generic training diffi-
culties that can be correlated to various DNN issues. Although the proposed generic checks,
counted in b, spot fine-grained inefficient training traits, we do not consider the bug was
detected in case of a = 0. Therefore, TheDeepChecker has a precision of 90% and a recall of
96.4% in detecting the synthetized DL coding bugs.
Comparison with Baseline. As can be seen, missing code statements can result in the
dysfunction of a component in the DNN training program. In such cases, our verification
routines find some violations of properties associated with the expected output and normal
behavior of the buggy component. First, missing or redundant input normalization and over-
scaled outputs are detected by TheDeepChecker using the following prechecks on the loaded
data: unscaled inputs and unscaled outputs. Next, unapplying softmax over outputs and
unshuffling the labels would trigger the following verification routines, respectively, invalid
predictions (i.e., do not respect the probability laws) and corrupted labels (i.e., labels do not
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match with the features). Another studied data preprocessing bug is the inappropriate data
transformers that induce a shift between original and augmented datasets. TheDeepChecker
was able to detect such data shifts from the perspective of the trained model behavior by
comparing the activation patterns of the neural networks trained on augmented/original
datasets. In relation to the data, SMD supports only a rule (R1) for unnormalized images
detection. For the missing activation, SMD triggers vanishing gradients (R14), which is a
quite generic issue for DNN training.

Concerning wrong coding statements, TheDeepChecker is still accurate for mistaken axis in
tensor-based operations, thanks to the gradient-based dependency verification that point out
any overlapping between instances (i.e., rows) caused by an incorrect calculation. However,
the dependency verification fails on the reproduced wrong broadcasting of MSE because the
error does not induce an overlap between instances. In most of these wrong coding statements,
SMD triggers rules indicating the difficulty of training such as vanishing gradients (R14) and
non-decreasing loss (R14). Both TheDeepChecker and SMD succeed in revealing coding faults
that change the training algorithm’s behavior, like flipped signs in the gradient calculation
that turns the training process into a loss maximization. Nevertheless, TheDeepChecker is
capable of detecting a wrong cross-entropy function with switched mean and sum operations
based on the initial loss value which is larger than expected, and consequently, indicate the
presence of a wrong reduction function for the losses over data inputs. SMD reports vanishing
gradients (R14) for only the ShallowNN that could not train the model with a wrong loss
reduction (i.e., the accuracy of the trained model is equivalent to random guess).

Regarding the misuse of API functions, we reproduced the situation of redundant soft-
max in-and out-the cross-entropy loss for both studied Base CNNs. Despite the fact that
TheDeepChecker does not contain a specialized check to pinpoint accurately the issue, it
could successfully detect its presence in the training program for both buggy examples, con-
trary to SMD that remains silent. In fact, TheDeepChecker generated an error message
reporting learning issues in the last dense layer of both ShallowCNN and DeepCNN contain-
ing the softmax redundancy within the loss; more specifically, a slowness learning issue due
to either low updates’ ratio. These slowness learning issues, when spotted at the last layer
(i.e., softmax activation), strongly indicate a waste of information and an obstruction of the
back-propagation of the error through the two consecutive softmax activations. Hence, the
relation between the fired checks and the occurred bug is not straightforward (i.e., we do not
count it among the main fired checks (i.e., the number a in True Positives). Nevertheless,
it is worth mentioning that TheDeepChecker generated a warning for the user about the
slow weight update encountered exclusively in the last dense layer, which can lead him to
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review this ending part of the DNN design which contains the issue (i.e., redundant/useless
last activation function). Besides, TheDeepChecker reported symptoms in relation to diffi-
culties faced in the loss minimization: slow decreasing loss for both subjects and additionally
highly-fluctuating loss for DeepCNN.

Overall, TheDeepChecker reported misleading checks which are considered as false alarms.
First, it mistakenly reports non-representative loss (i.e., loss measure is not correlated with
performance metric) in some DeepCNN cases. Indeed, the obtained highly-fluctuating loss
caused by the activation redundancy significantly reduced the magnitude of the correlation
between the resulting noisy loss and the classification accuracy, and triggered the verification
routine related to non-representative loss. This highlights the difference between shallow
and deep CNNs and how the loss landscape is more complex for deeper NNs and can be
substantially affected by these relatively minor changes in the math calculations involved
in the DNN mapping function. Second, the traditional regularization check consistently
triggers an alert of overwhelming regularization gradient cost over the data gradient loss,
but our inspection leads us to the fact that actual issue was the vanishing gradient problem
reaching exactly 0; we consider as misleading because the check was designed to capture
over-regularization cost and it can mislead the user towards inspecting unnecessarily the
regularization. On the other hand, we unbolded the SMD’s rules that have been fired even
for the clean training program. Indeed, these rules, R8 and R10, were fired during the
early training iterations on the DeepNN that includes advanced regularizers to smooth the
loss landscape and be able to train several hidden layers. This can be explained by the
high sensitivity of these rules that alert quickly about abnormal weights’ update ratio and
variance starting from the warm-up period required by these regularizers to stabilize the
training. Besides, SMD reports a false alarm of poor weight initialization (R7) on a wrong
cross-entropy calculation. In fact, SMD relies on the application of rules’ functions on the
periodically-saved summary statistics. Hence, R7 checks the variance of activation inputs
across layers, the distribution of gradients, and the loss convergence for the initial steps to
determine if a neural network has been poorly initialized. These training inefficiencies can
be the result of many issues in the training program, which increases the risk of misleading
alerts.
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Table 5.5 Results of debugging coding bugs in DNN-based software systems
Faults Base NN Perf. SMD Rule(s) Fired Check(s) TP FP FN

missing input normalization
Regr 24.20 -

Uns-Inps1, PI-Loss2

Un-Fit-Batch3, Uns-Act-HS4 1+3 0 0

Shallow 11.35% R1,R8,R14

Uns-Inps, PI-Loss, Un-Fit-Batch
Div-Loss5, Div-W6, Div-B7, Div-Grad8 1+6 0 0

Deep 85% R1,R8,R10 Uns-Inps, PI-Loss, Uns-Act-HS, NR-Loss9 1+2 1 0
over-scaled outputs Regr 20.14 R2, R12 Uns-Outs10, SD-Loss11, Dead-ReLU12, Uns-Act-HS 1+3 0 0

redundant input normalization
Regr 2.86 - Uns-Inps, SD-Loss, Uns-Act-LS13, Un-Fit-Batch 1+3 0 0

Shallow 33.75% R8, R14 Uns-Inps, SD-Loss, W-Up-Slow14, Uns-Act-LS 1+3 0 0
Deep 77.5% -,R8,R10 Uns-Inps, Uns-Act-LS 1+1 0 0

gradients with flipped sign
Regr 1.72e7 - Un-Fit-Batch, Div-Loss, Uns-Act-HS 1+2 0 0

Shallow 9.8% R11,R14

Un-Fit-Batch, Div-Loss, Div-W,
Div-B, Uns-Act-HS, Van-Grad15 1+5 0 0

Deep 10% R11,R14 Un-Fit-Batch, Div-Loss, Uns-Act-HS, NR-Loss16 1+2 0 0

missing softmax activation Shallow 9.8% R14

PI-Loss, Inv-Outs17, SD-Loss W-Up-Slow,
Van-Grad, Un-Fit-Batch, Over-Reg-Loss18 1+5 1 0

Deep 11.48% R14,R8,R10 PI-Loss, Inv-Outs, Van-Grad 1+2 0 0

softmax out-and in-the loss Shallow 99.29% - SD-Loss, W-Up-Slow(Dense) 0+2 0 1
Deep 83.24% -,R8,R10 SD-Loss, HF-Loss19, W-Up-Slow(Dense), NR-Loss20 0+2 1 1

softmax over wrong axis Shallow 99.45% R14 PI-Loss, Inv-Outs, Inv-Out-Dep21, Inv-Loss-Dep22 2+2 0 0
Deep 85.86% R14,R8,R10 PI-Loss, Inv-Outs, Inv-Out-Dep, Inv-Loss-Dep 2+2 0 0

CE over wrong axis Shallow 8.92% R2,R7 PI-Loss, Inv-Loss-Dep 2+0 0 0
Deep 86.79% -,R8,R10 PI-Loss, Inv-Loss-Dep 2+0 0 0

MSE with wrong broadcasting Regr 7.02 R2 Un-Fit-Batch, SD-Loss, Van-Grad 0+3 0 1

inverted CE’s mean and sum Shallow 11.34% R14 PI-Loss 1+0 0 0
Deep 87.08% -,R8,R10 PI-Loss 1+0 0 0

shuffle only the features Regr 7.27 - Corrupted Labels 1+0 0 0
Shallow 11.35% - Corrupted Labels 1+0 0 0
Deep 10.09% -,R8,R10 Corrupted Labels 1+0 0 0

invalid data transformation Shallow 99.24% - Shifted-Augmented-Data 1+0 0 0
Deep 86.28% -,R8,R10 Shifted-Augmented-Data 1+0 0 0

Debugging Misconfigured DNN Software System.

Table 5.6 presents the debugging results of TheDeepChecker on misconfigured synthetic train-
ing programs, following a similar structure as Table 5.5.
1 Unscaled Inputs 2 Poor Initial Loss 3 Unable to fit Single Batch 4 Unstable Activation with High
STD 5 Diverging Loss 6 Diverging Weights 7 Diverging Biases 8 Diverging Gradient 9 Non-Representative
Loss 10 Unscaled Outputs 11 Slow-Decreasing Loss 12 Dead ReLU 13 Unstable Activation with Low
STD 14 Weight Update Slowly 15 Vanishing Gradients 16 Invalid Outputs 17 Overwhelming Regularization
Loss 18 High-Fluctuating Loss 19 Invalid Output Dependency 20 Invalid Loss Dependency
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Accuracy of TheDeepChecker on misconfigurations detection. We calculate true pos-
itive, fault positive, and fault negative rates alongside the list of fired checks. Overall,
TheDeepChecker achieved 77% precision and 83.3% recall, when detecting misconfigurations
in the studied DNN training programs.

Comparison with Baseline. As can be seen, inappropriate initial weights, i.e., constant
and inept randomness, correctly trigger the following TheDeepChecker’s checks, unbreaking
symmetry and poor weights initialization. SMD uses multiple indirect criteria to recognize a
bad initialization through activations’ variances, gradients’ distributions, and the loss curve.
It spots the unbreaking symmetry issue, but it was less effective in detecting the dummy
random weights with inappropriate variance.

Similarly, TheDeepChecker was able to detect missing stabilization components, including
missing the whole batchnorm layers and missing the update of their global statistics, through
respectively, high unstable activations and unstable transfer from train to inference mode.
Also, weak regularization triggers the checking rule of zero loss, which implies that the
optimizer likely overfits the given training batches and strong regularization can lead to
overwhelming weight norm penalty (in case of l2-norm) or unstable transfer from train to
test mode (dropout). Nonetheless, SMD was only capable of detecting the negative effects
of strong l2-norm regularization on the weights’ variances and dying ReLUs.

Moreover, architecture- or problem-dependant issues like using ineffective loss function are
challenging to detect for developers (e.g., we refer to SO posts #36515202, #49322197,
#56013688, and #62592858); their identification depends heavily on the knowledge of the
developer on Deep Learning and his experience in implementing DNN programs. Indeed,
these issues can have severe effects on the convergence and stability of the DNN training pro-
cess, especially on relatively high capacity DNNs and complex statistical learning problems.
When it comes to regression problems, the use of cross-entropy(CE) instead of mean squared
error(MSE) hinders the learning; so both approaches were able to detect that. In case of
classification problems, the use of MSE instead of CE had less effects on the training per-
formance, and consequently, harder to automatically detect. Thus, TheDeepChecker alerted
only inefficient training traits including vanishing gradients and slow updating parameters
for the deepCNN. Inversely, SMD alerted abnormal training curve, including non decreasing
and unchanged loss for the ShallowCNN, but the resulting test performance of the model is
high enough to just conclude that this steadiness was due to the optimization convergence.

With less implicit issue-verification connections, poor choices regarding the optimization
routines, including inadequate magnitude of the learning rate or the epsilon of null divider
prevention, influence negatively the speed of parameters learning. Only TheDeepChecker



120

successfully detected the substantial difference in the magnitude of parameters’ updates. It
detected slow updating parameters in case of low learning rate and fast updating parame-
ters in case of high learning rate and low Adam epsilon. Indeed, TheDeepChecker’s unstable
weight update detection strategy reposes on DL researchers’ recommendations and it is sen-
sitive enough to report precisely the low or high magnitudes of weight updates that can guide
DL users to adjust the optimizer’s configuration touching the extent of updates. Neverthe-
less, both compared debugging methods were able to the divergence of ShallowCNN caused
by the high learning rate that manifests through a training stagnation. Indeed, the high
learning rate quickly induces a large update step towards the gradient direction, which takes
the weights to nonoptimal regions, and consequently, provokes dead ReLUs and a highly-
fluctuating loss optimization without convergence (unable to overfit the batch). Since the
inadequate optimizer’s jump likely happens at the very first iterations, there would not be
fired checks in relation with the speed of learning; so the users cannot identify the root cause
easily based on all this checking report.

As above-discussed for DL coding bugs 5.3.2, SMD keeps consistently reporting both of
R8 and R10 rules, as well as, it reports a false alarm of poor weight initialization (R7) on
a inappropriate loss selection (CE instead of MSE). On the other hand, TheDeepChecker
reports false positives of non-representative loss, overwhelming regularization loss paired
with, respectively, high fluctuating loss and vanishing gradients. This reinforces the fact that
these false positives are caused by the non-consideration of potential dependencies between
DL training issues.

In the future, we plan to analyze in-depth the sequence of fired checks for the different DL bug
types and extend TheDeepChecker to consider recurrent patterns of negative verifications in
order to not only reduce the number of false positives that we discover during the assessment,
but also avoid overwhelming the users by several correlated training issues. Indeed, we
observe in both results (i.e., Tables 5.6 and 5.5) repetitive co-occurrences of multiple checks.
For instance, we see that various errors make the weight updates unstable, so the weights can
potentially have more and more negative values (i.e., over-negative tendency). In this case,
the layers’ weighted sum would produce mainly negative quantities, which will turn into zero
activations by the ReLUs (i.e., dead). Then, the back-propagated gradients, as described
in Equation 5.1, starts vanishing quickly and, as a result, the weights’ updates will tend to
have too low magnitude and could cause the DNN to freeze (i.e., triggering likely a slow- or
non-decreasing loss).
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Table 5.6 Results of debugging misconfigurations in DNN-based software systems
Faults Base NN Perf. SMD Rule(s) Fired Check(s) TP FP FN

constant weights Regr 2.53 R7,R10

Un-Sym-W23, SD-Loss, Uns-Act-LS
W-Up-Slow, Un-Fit-Batch 1+4 0 0

Shallow 11.35% R7,R10,R13,R14

Un-Sym-W, SD-Loss, Neg-W24,
Over-Reg-Loss, Uns-Act-LS, Dead-ReLU,
W-Up-Slow, Van-Grad, Un-Fit-Batch 1+8 0 0

Deep 75.92% R7,R14,R8,R10 Un-Sym-W, SD-Loss, Uns-Act-HS, W-Up-Slow 1+3 0 0

dummy random weights Regr 2.17 - PI-W25, Uns-Act-LS 1+1 0 0

Shallow 99.18% R2,R7

PI-W, PI-Loss, SD-Loss
Dead-ReLU, Uns-Act-LS 1+4 0 0

Deep 71.89% -,R8,R10 PI-W, Uns-Act-HS, NR-Loss 1+1 1 0

use of MSE instead of CE Shallow 99.17% R2,R3 - 0 0 1
Deep 69.52% -,R8,R10 SD-Loss, HF-Loss, W-Up-Slow 0+3 0 1

use of CE instead of MSE Regr 49.46 R3,R7,R14 Un-Fit-Batch, Van-Grad(dense), Over-Reg-Loss 0+3 1 1

low learning rate Regr 5.48 - Un-Fit-Batch, SD-Loss, W-Up-Slow 1+2 0 0
Shallow 98.96% - SD-Loss, W-Up-Slow 1+1 0 0
Deep 53.73% -,R8,R10 SD-Loss, W-Up-Slow, NR-Loss 1+1 1 0

high learning rate Regr 2.55 - W-Up-Fast26, SD-Loss 1+0 0 0

Shallow 11.34% R13,R14
Un-Fit-Batch, HF-Loss, Dead-ReLU,

Uns-Act-LS, NR-Loss 0+4 1 1
Deep 86.29% -,R8,R10 Uns-Act-HS, W-Up-Fast 1+1 0 0

Adam epsilon ε < 10−8 Deep 86.75% -,R8,R10 Uns-Act-HS, W-Up-Fast 1+1 0 0
missing batch-norms Deep 80.79% - SD-Loss, Uns-Act-LS, W-Up-Slow, NR-Loss 1+2 1 0

no-update of batch-norm globals Deep 84.35% -,R8,R10 Uns-Mode-Tr 1+0 0 0
low λ for norm penalties Regr 2.39 - Zero-Loss 1+0 0 0
low λ for norm penalties Shallow 99.27% - Zero-Loss 1+0 0 0
high λ for norm penalties Regr 7.05 R10,R13 Over-Reg-Loss, Uns-Act-LS, Un-Fit-Batch 1+2 0 0
high λ for norm penalties Shallow 64.88% R10,R13 Over-Reg-Loss 1+0 0 0
high keep_p for dropouts Deep 73.15% - Zero-Loss 1+0 0 0
low keep_p for dropouts Deep 78.74% -,R8,R10 HF-Loss, Uns-Mode-Tr,NR-Loss 1+1 1 0

unbalanced dataset Shallow 99.24% bmR0 Unbalanced Labels 1+0 0 0
Deep 86.28% bmR0,R8,R10 Unbalanced Labels 1+0 0 0

Debugging Runtime Evaluation

TheDeepChecker enables the debugging of DNN training programs through performing a
stack of checks prior, during, and after the program execution. Executing these checks can
be expensive.
In this section, we assess the execution cost of the checks on a DNN training program.
The execution was done using a single machine having a CPU Intel i7-8750H 6-cores and
a GPU NVIDIA GeForce RTX 2080. The evaluation was done using the above-described
base neural networks. To provide insights on the execution cost of TheDeepChecker during a
debugging session, Table 5.7 reports the average time spent using TheDeepChecker on each
phase. As can be seen, the pre- and post-training phases, (1) pre-training conditions check
and (3) post-fitting conditions check, varies according to the dimensionality of the input
data and the complexity of NN as they include normalization tests, tensor-based operations
dependency, and even regular training of DNN for several epochs (we set up 50 by default)
to compare metrics over epochs and make some activation patterns comparison. Next, the
1 Unbreaking Symmetry Weight 2 Poor Initial Weight 3 Weight Update Quickly 4 Unstable Transfer Mode
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phase of proper fitting on a single batch requires only few iterations (i.e., it remains a set-
ting option for running the test and by default, a maximum iterations equals to 200), but
with short periodicity of verification routines (i.e., it is also a setting option and by default,
we fixed a period equals to 10 iterations). These default setting options are derived from
our experimentation, however, the configuration choices should take into consideration the
complexity of the DNN under test and the default settings enable a sufficient amount of
monitored iterations to detect the issues given the complexity of the studied neural net-
works. For higher complexity NNs, an increase of these parameters’ values may enhance
the issue detection capability of TheDeepChecker as it will make more intensive verification
during the testing iterations. Given the average execution time of a regular training iteration
and a monitored training iteration, we find that the verification routines running in-between
the training iterations increased the training iteration runtime by averagely 10×. In con-
trast, SMD hooks multiple internal data recorders to the full training session in order to
fetch and save periodically tensors including activations, weights, and gradients. SMD in-
corporates several optimizations to improve I/O performance and sets up relatively long, by
default, save intervals (i.e., around 500 steps). In fact, our experimentation on AWS instance,
ml.p2.xlarge, which contains 1-GPU and 4 virtual processors, yields, averagely, an overhead
of no more than 13% for a training iteration monitored by 4 rules. Then, SMD verifies the
rules by offloading data inspection, shared into separate containers in a way that users can
run an arbitrary number of rules without impacting the training process itself. Nevertheless,
this multi-job processing and I/O data offloading adds an overhead, even for simple DNN
programs. During our debugging sessions on ml.p2.xlarge with 4 activated rules, we wait
for 3− 5 minutes to have the final rules check reports.

Table 5.7 Execution cost of TheDeepChecker during different debugging phases (average time
in seconds)

Pre-train Check Fitting Check Post-Fit Check
ShallowCNN 16.63 20.61 751.70
DeepCNN 20.81 82.74 1641.59
RegrCNN 6.75 0.996 5.70

Assessment of TheDeepChecker on Real Buggy DNN Software

Table 5.8 and Table 5.9 show the debugging results of both TheDeepChecker and SMD on real-
world buggy TF programs extracted, respectively, from Stackoverflow and GitHub. Indeed,
we add all the turned-on verification checks/rules on each tested DNN program, but we
highlight the ones that are considered to be related to the actual fixed bug. For SMD, we rely
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on its official built-in rules documentation [219] about their logic and targeted issues in order
to decide if the fired rules have This allows us to compute the success rate of TheDeepChecker
in detecting the bugs that have been fixed by the SO users or the GH project maintainers.
Indeed, TheDeepChecker succeeds in 70% of the SO buggy code and 80% of the buggy versions
of GH projects. However, SMD succeeds in 60% of both SO and GH buggy examples. SMD
generally alerts the user with high-level indicators of abnormal/suspicious on-training neural
network state, but TheDeepChecker often reports broken properties that are connected to a
narrower scope of DL faults and help users identify the main root cause. For instance, lines
of code 5.1 shows that the NN’s output layer, y_, has no activation function, which causes
an incorrect calculation of cross entropy using logits instead of probabilities. Moreover, the
cross entropy formula involves a risky use of log on possibly zero values.

y_ = tf.matmul(h1,W_out)

cross_entropy = tf.reduce_sum(-y*tf.log(y_)-(1-y)*tf.log(1-y_),1)

Pseudo-Code 5.1 Lines 18;21 of IPS-7

TheDeepChecker reports invalid output layer because the verification routine on the last layer
requires yielding probabilities when NN solves a classification problem. It also alerts about
the diverging loss caused by the NaNs of tf.log(0). Although abnormal variance of weights
reported by SMD reflects an unstable learning process, it cannot be connected to the missing
activation or the unstable loss issues.

Yhat = tf.matmul(l3, W5) + b5

Ypred = tf.nn.sigmoid(Yhat)

# ...

correct_prediction = tf.equal(tf.greater(Y, 0.5), tf.greater(Yhat, 0.5))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Pseudo-Code 5.2 Lines 37-38;45-46 of IPS-12

Code 5.2 shows another buggy code snippet, where SMD reports only abnormal variance
of weights, contrary to TheDeepChecker which spots the non-correlation anomaly between
the loss and the accuracy. Indeed, the user mistakenly used the logits Yhat instead of the
sigmoid outputs Ypred in the inference of predictions with a threshold of 0.5, which leads
to a wrong calculation of accuracy. Only TheDeepChecker cover the coding mistakes in the
performance functions through the validation of their correlation coefficient over the training
iterations. Thus, the use of the logits instead of probabilities would always yield the class
1 for predictions; which would break the property of performance metrics correlation as the
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progress of accuracy metric would be uncorrelated with the loss value.

def fc_layer(input, size_in, size_out, name="fc"):

with tf.name_scope(name):

w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1))

b = tf.Variable(tf.constant(0.1, shape=[size_out]))

activation = tf.nn.relu(tf.matmul(input, w) + b)

# ...

return activation

def mnist_model(learning_rate, path):

# ...

logits = fc_layer(fc1,1024,10,name="fc2")

probabilities = tf.nn.softmax(logits)

with tf.name_scope("xent"):

xent = tf.reduce_mean(

tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=y))

Pseudo-Code 5.3 Lines 20-28;46-51 of IPS-11

Even if it has no specific property that would be broken by the fault, TheDeepChecker
can trigger training difficulty symptoms equivalent to SMD’s rules, as shown in the lines
of Code 5.3. Indeed, the DL developer unified all the fully-connected layers by a custom
function, but he mistakenly applied it over the last fully-connected layer. This induces a
useless ReLU activation on the logits before computing softmax-based scores or losses. As
a result, the double activation obstructs the information from flowing smoothly and causes
a slowness of weight update and vanishing of gradients. Although the same fault-related
symptoms were reported by both debugging tools, TheDeepChecker reports the unable to
overfit the batch that strongly indicate a serious model fitting problem.

Nonetheless, TheDeepChecker was more verbose triggering several positive checks for each
buggy DL training program, and relying on the accepted answer on SO post or the changes
in the bug-fixing commit does not allow us to compute the false positives, which represent
fired checks without corresponding issue, and false negatives, which represent the existed
faults without corresponding fired checks, on these real-world DNN programs. Moreover,
finding fired verification routines that are, by definition, related to the actual fixed bug, does
not imply that users can fix the bug correctly using the TheDeepChecker diagnostic reports.
In the next evaluation of usability, we will ask two experienced DL engineers to perform
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a closed-feedback debugging and fixing loop using TheDeepChecker on each of the buggy
snippets of code found on StackOverflow.

5.3.3 Usability of TheDeepChecker

In this section, we report about a usability study performed with two professional DL en-
gineers, namely E1 and E2, with the aim to assess the relevance of TheDeepChecker’s error
messages at guiding developers in identifying the root cause of bugs and fixing them. The two
DL engineers involved in the study have 3 years of experience working with TensorFlow. They
are currently employed in AI software development teams in technology companies, building
DL-based software systems. To assess the relevance of TheDeepChecker’s error messages, we
provided the two engineers with 10 buggy DL training programs (i.e., the ones reproduced
from SO posts in Table 5.8) and asked them to use TheDeepChecker for debugging them and
fixing the identified bugs. We made it clear to them that we are not evaluating their ability to
detect the bugs based on their knowledge and asked them to only follow the clues contained
in the debugging logs generated by TheDeepChecker. We also asked them to explain how
they inferred the root cause of faults based on the information provided by TheDeepChecker
and to suggest fixes. We made the decision to ask participants to fix detected bugs because to
allow them to explore as many bugs as possible. The DL programs used in our study contain
more than one bug, and to progress in the debugging process participants have to fix detected
bugs. For instance, unnormalized inputs may cause the divergence of the training and turn
the loss quickly to NaN. Hence, it obstructs the training dynamics, and consequently, the
TheDeepChecker’s debugging session. Thus, the DL engineer should normalize the inputs to
fix the issue and restart the debugging session. In Table 5.8, we added (n) next to verifica-
tion routines to identify the debugging session during which the routine was triggered. For
example, Zero-Loss(2) means that during the second debugging session (2) after fixing some
of the issues, TheDeepChecker newly reports the Zero-Loss warning that indicates strongly
a lack of regularization in the DNN.
Although the bug fixes suggested by the two engineers are quite different, they have per-
formed similar sequence of debugging sessions where they focus on fixing the same training
issues at each session and have received mostly the same amount of notification messages
(from the fired verification routines) at the different debugging steps for each given buggy
program.

Table 5.10 shows the fixes suggested by the engineers based on the error messages generated
1 Poor initial bias 2 Missing bias 3 Saturated Sigmoid
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Table 5.8 Debugging Results of StacOverflow TF-based training programs

Program TheDeepChecker’s Fired Check(s) SMD Rule(s)
IPS-1 PI-W, PI-b, PI-Loss, Uns-Act-LS R7, R10

IPS-4
PI-W(1), PI-b(1), PI-Loss(1),
Uns-Act-HS(1), Zero-Loss(2) R2, R14

IPS-5
Uns-Inps, Un-Fit-Batch, Div-Loss,

W-Up-Fast, W-neg R9, R10

IPS-7
PI-W(1), Miss-b(1), PI-Loss(1), Inv-Outs(1),

Div-Loss(1), Un-Fit-Batch(1), Sat-Sigmoid(1-2) R10

IPS-11
PI-W(1), PI-b(1), PI-Loss(1), Van-Grad(1),

W-Up-Slow(1), Un-Fit-Batch(1), Zero-Loss(2) R8, R10, R14

IPS-12
Uns-Inps(1), PI-W(1), PI-Loss(1), NR-Loss(1),
HF-Loss(2), Dead-ReLU(2), Uns-Mode-Tr(2) R9, R10

IPS-13
Uns-Inps(1), PI-W(1), PI-Loss(1), W-Up-Fast(2),

Over-Reg-Loss(2), Un-Fit-Batch(1-2) -
IPS-14 PI-W, PI-Loss, Un-Fit-Batch R8, R9, R10

IPS-15
Uns-Inps, Miss-b, Div-Loss,

Div-W, Div-Grad, Un-Fit-Batch R9, R10

IPS-17
Uns-Inps(1), Div-Loss(1),

Un-Fit-Batch(1), W-Up-Slow(2) R9, R10

Table 5.9 Debugging Results of Github TF-based training programs

Program TheDeepChecker’s Fired Check(s) SMD’s Fired Rule(s)
DLT_0edb182 PI-W, PI-B, Uns-Act-LS, SD-Loss R14

DLT_20d1b59
PI-W, PI-B, PI-Loss, Uns-Act-LS,
SD-Loss, NR-Loss, Un-Fit-Batch R14

DLT_437c9c2 Un-Sym-W, PI-Loss(Huge Err) R8, R9, R10

DLT_726b371
PI-W, PI-B, PI-Loss,
Div-Loss, Uns-Act-LS R7, R10

DLT_ded6612
PI-W, PI-B, PI-Loss,
Uns-Act-LS, SD-Loss R2, R10, R14

FCN_b170a9b
PI-Loss, Uns-Act-LS, Dead-ReLU,
Van-Grad, Un-Fit-Batch, SD-Loss R8, R14

TFE_333
PI-W, PI-B, PI-Loss,

W-Up-Slow, SD-Loss, NR-Loss -

TFE_368
PI-W, PI-B, PI-Loss,
W-Up-Fast, Zero-Loss R10

TFE_742675d Un-Sym-W, PI-Loss(Huge Err) R8, R9, R10

TFE_bc09f95
PI-W, PI-B, PI-Loss(Huge Err), LR-Loss

Un-Fit-Batch, W-Up-Slow, Van-Grad R8, R10, R14
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by TheDeepChecker. As discussed in the paragraph 5.2.6, many training issues are corre-
lated and induced by the same bug. In Table 5.10, based on the explanations provided by
the engineers, we present the main issues reported by TheDeepChecker that lead them to
identify and localize the root cause of the faults, whether it being caused by a coding bug or
a misconfiguration.
As can be seen, most of the found faults are common (almost 96.5% of cases), which reinforces
the argument that our verification routines are quite precise, regarding the problematic com-
ponent and its occurring symptoms. However, given the recommended fixes from SO post’s
answers (see Table 5.10), we can see that the majority of fixes provided by the engineers are
different. In the following, we discuss these differences in detail.

First, we observe that there are emergent fixing patterns followed by the community, which
are not always efficient. Indeed, we can consider them as technical debts because they
enable the convergence of training and fitting the DNN, but the main root cause of the
issue is not solved, which provokes the same issue following any further changes on the
DNN program or the inputs data. For instance, the buggy TF programs, IPS-5, IPS-14,
IPS-15 and IPS-17 share the main issue of diverging loss problem, which turns its value to
NaN and obstructs the training process. The initial fixes recommended by the community
consists in improving the optimization routines, including the decrease of learning rate or the
substitution of regular gradient-descent by advanced variants with internal adaptive learning
rate like Momentum or Adam. When using TheDeepChecker, our two engineers were able to
find the main root cause of diverging loss in buggy TF programs, IPS-4, IPS-15 and IPS-17,
which is the unnormalized inputs. In the case of IPS-14 the problem was both the inefficient
initial random weights and the poorly designed loss (i.e., using sum over the instances’ errors
instead of average). Without a fine-grained analysis tool like TheDeepChecker it was difficult
for Stack Overflow users (who suggested solutions) to uncover this. The main lesson that can
be derived from this example is that multiple poor design choices and coding mistakes can
induce well-conditioning to the loss minimization problem, and as result, may be the origin
of its divergence. Therefore, tuning the learning rate blindly will only make the training
program run at its minimum capacity, and hence, the real bugs will remain hidden. By
decreasing the learning rate in IPS-15 TF program from 0.5 to 0.0005 to enable learning
under the condition of unnormalized inputs, SO users only introduced a technical debt in
their program. However, TheDeepChecker steers the engineers towards fixing permanently
the root cause problem, which is the inappropriate scale of features’ values. Concerning the
same bug of unnormalized inputs in the TF program IPS-17, TheDeepChecker reports in the
second debugging session following the normalization of the inputs that the weights is slowly
updating, which lead both our two engineers to fix it by increasing further the learning rate
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(i.e., both engineers ended up with taking actions that are totally the inverse of the initial
recommended fix).

Second, we found that TheDeepChecker spots the major bug preventing the training program
from fitting the model in regard to the buggy programs IPS-4, IPS-11, IPS-12, and IPS-
13. Indeed, our engineers, E1 and E2, confirmed that the poor initial loss check alerted
them to the fact that the loss is not a scalar, which led them to add the average as loss
reduction strategy in IPS-4 program. In IPS-11, they mentioned that the vanishing gradient
problem starting from the first training iterations at the last dense layer, guides them to
inspect the last layer (logits). They found that the program uses the same implemented
function fc_layer that performs ReLU as non-linear activation for all fully connected layers.
However, this useless non-linear activation erases relevant learned information and obstructs
the training, because the nullified negative values make all their corresponding labels share
the same probability after applying the softmax. In the case of IPS-12, the non-representative
loss check that remains active over the iterations displaying increasingly smaller correlation,
persuaded both DL engineers that either the accuracy or the loss function is mistaken, so
they check them out carefully and found a typo in the accuracy function (i.e., passing logits
instead of probabilities as predictions). Regarding the IPS-13 program, the engineers adjust
the learning rate and the norm penalty values to make the program satisfy the verification
routines related to standard regularization risks and unstable learning of parameters that
triggered, respectively, fast updated weights and overwhelming regularization loss verification
routines. However, the two DL engineers failed to correctly fix the major issues contained in
IPS-1 and IPS-7. They proposed to change the sum reduction strategy by the average and
to pass the probabilities instead of logits to the cross-entropy loss, to correct, respectively,
the poor initial loss in IPS-1 and diverging loss in IPS-7. However, the real bug reported by
the user was the loss turning into NaN values. Because this exception is raised infrequently,
the problem cannot be always detected easily. Also, TheDeepChecker considers the NaN
loss as diverging loss and cannot provide further indications about any potential root cause.
As a result of this limitation of TheDeepChecker, both engineers could not identify the root
cause of the issue by relying on the message generated by TheDeepChecker, which claims
that the cross-entropy loss function contains the expression t × log(y), which renders NaN
(0× log(0)) when t = 0 and y approaches to 0. In fact, the recommended fix was adding an
epsilon (ε > 0) to avoid the undefined expression, but a more appropriate repair for the loss
numerical instability is to use, instead of hand-crafted loss, the recent TF built-in logit-based
loss function, including both softmax and cross-entropy, which is numerically stable. By
definition, our property-based debugging process relies on the available data and tries to catch
properties’ violations through watching the execution of the training program. Therefore, it
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cannot detect numerical instabilities that occur in particular ranges of values. Odena and
Goodfellow [119] proposed a coverage-guided fuzzing testing tool that is able to find mutated
inputs triggering erroneous TF program’s behaviors including NaNs raised by unstable math
computation. Their evaluation shows that original and even randomly synthetic data have
low chances to trigger such corner-case behaviors and expose these numerically unstable
math functions. Therefore, to the best of our knowledge, fuzzy testing approaches are more
suitable for detecting numerical instabilities in DNN training programs.

Besides, the results show that TheDeepChecker guided the DL engineers towards detecting
other issues that do not prevent the program from training, but which should be addressed to
improve performance and avoid all the non-optimal local minima in the loss curve. As can be
seen in Table 5.10, most of these additional detected issues are related to poor initial param-
eters, lack of regularization, and unstable learning velocity between the layers. Nevertheless,
we observed that the DL engineers proposed some different repairs to fix the same issue
identified through the debugging sessions using TheDeepChecker. This means that there are
multiple possible fixes for the same issue identified by TheDeepChecker and that the choice
of a specific fix depends on the knowledge and experience of the engineer. Indeed, we found
that for some issues, our engineers, E1 and E2 were able to turn off the alert and improve the
performance of the training using different techniques. For instance, TheDeepChecker spots
unstable activations with low variance regarding the first convolutional layer in the trained
DNN of IPS-1 program. Engineer E1 understood that the first convolutional layer was not
optimally learning the features, which led him to carefully increase the learning rate and solve
the problem. In another example, Engineer E2 understood that the difference in magnitude
of updates between intermediate layers causes a problem of internal covariate shift, which
can be solved by adding batch normalization following each intermediate layer. He went on
and implemented this fix. In the future, we will examine further the fixes proposed by DL
practitioners to overcome the studied training issues and analyze their impact on the quality
of the code and the performance of the DNN training program.

5.4 Discussion

DL knowledge remains crucial in the debugging of DNN training programs. Many
of our verification routines are implemented using statistical metrics and heuristics that are
very related to inefficient training traits, so they are often connected to multiple possible
root causes. In the inverse direction, most of the training pitfalls would trigger multiple fired
checks because a faulty component often violates its related properties, and consequently,
leads to other training properties’ violations. For example, a bad initialization of weights vi-
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Table 5.10 The repairs suggested by DL Engineers (E1 and E2) for real-world buggy TF
programs

Program Fired Checks Suggested Fixes

IPS-1
PI-W, PI-b change W and b initializers
PI-Loss set average instead of sum for loss reduction

Uns-Act-LS E1: increase η | E2: add batch-norms

IPS-4

PI-W, PI-b change W and b initializers
PI-Loss set average as loss reduction strategy
Zero-Loss add dropout layers

Redundant-Layers remove a dense layer
IPS-5 Uns-Inps, Div-Loss normalize the data

IPS-7

PI-W, Miss-b change W initializers and add null b
Inv-Outs add output activation layer
Div-Loss passing the probas instead of logits to the loss

Sat-Sigmoid change hidden activations (Sigmoid to ReLU)

IPS-11
PI-W, PI-b change W and b initializers

Van-Grad (last layer) remove ReLU on the logits
Zero-Loss add dropout for the dense layer

IPS-12

Uns-Inps normalize the data
PI-W change W initializers

NR-Loss fix typo in the accuracy
HF-Loss, Uns-Inference increase the keep_p for dropout layers

IPS-13

Uns-Inps normalize the data
PI-W change W initializers

W-Up-Fast decrease the learning rate η
Over-Reg-Loss decrease the norm penalty λ

IPS-14 PI-W change W initializers
PI-Loss set average instead of sum for loss reduction

IPS-15 Uns-Inps normalize the data
Miss-B add null b

IPS-17 Uns-Inps normalize the data
W-Up-Slow increase the learning rate η
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olates the required asymmetry between neurons, however, the resulting unbreaking symmetry
would lead to other issues, like over-negative weights, Dead ReLUs, and vanishing gradients.
Indeed, all the neurons will receive identical gradients and evolve throughout training, effec-
tively preventing different neurons from learning different things. Thus, it is likely that a
non-optimal gradient update, from the starting iterations, would be applied symmetrically
to all the neurons, and consequently, would cause the stagnation of the neural network.
TheDeepChecker incorporates dynamic verifications with periodic inspection reports, nar-
rowing down the space of suspicious states, which help the user recognize fault patterns and
identify the root cause by analyzing the timeline of fired checks (i.e. their chronological
order) and the reported information (i.e., positions, metrics, thresholds, etc.). Nevertheless,
these mitigation strategies require sufficient DL knowledge and skills. Developers need to be
sensitive to such details in order to be able to efficiently interpret the debugging reports.

Scoping on Feedforward Neural Network Architecture. Many of the targeted training
pitfalls and the proposed properties are generalizable to other model architectures [220], but
in this paper, we focus on their application for the feedforward architecture, which is, first,
widely used in several regression and classification problems, as well as, reinforcement learning
tasks. Second, it is the basic neural network model that influences novel architectures,
and even represents one of their building blocks. Nonetheless, recurrent neural networks
(RNNs) have faced more severe gradient problems [221], including vanishing and exploding
phenomena. Generative adversarial networks (GANs), which particularly leverage two on-
training models in a min-max game, raise novel training issues in relation to the learning
stability and convergence, in addition to other GAN-specific problems [222–224] such as mode
collapse, where the generator outperforms quickly the discriminator, without fitting the data
distribution, but through simply rotating over few data types.

Usability Study Limited on the Mappings from Checks to Fixes. Given the real-
world DL programs published by SO users, we recruit two DL engineers from two different
teams and having different backgrounds for a usability evaluation, focusing on the mappings
from the fired checks to the DL program fixes. Nonetheless, other important dimensions such
as the time spent on debugging and the relevance of the proposed fixes, could be assessed in
comparison with the trial-and-error debugging process without TheDeepChecker.

5.5 Threats to Validity

Selection Bias. The selection of the subject DL training programs could be an internal
threat to validity. In this paper, we try to counter this issue by using two complementary
empirical evaluations on synthetic buggy programs and real buggy programs. We used diverse
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base DL training programs that solve regression and classification problems. They encode
DL models with different architectures, complexities, and techniques. Moreover, the base
synthetic DL programs have official implementation references and run on widely-studied
datasets (i.e., Auto-MPG, MNIST, CIFAR10). Then, the buggy versions of these synthetic
DL training programs were created to mimic the DL faults reported and studied in empirical
studies on DL programs’ defects. The discussion on the results of the evaluation on the
synthetic buggy programs provides insights on how the properties and heuristics deployed
in the verification routines were able to detect the behavioral training issues caused by the
injected bug. Indeed, we leveraged totally-disconnected workflows for the construction of the
synthetic buggy programs and the verification routines. Figure shows how the abstraction
of DL faults to synthetize buggy subjects was done essentially on former empirical studies’
datasets and our manual inspection of TF-related SO posts. On the other hand, Figure
shows how the design of verification routines was guided by applied DL research works and
technical DL expert reports about troubleshooting to codify fundamental properties of DL
programs and practical heuristics on proper DL training dynamics. It was crucial to keep
synthetic bugs and verification routines separate in order to avoid hard-coded verifications
that target the mainstream DL faults identified by the community. Although the injection
of DL faults was done on reference DL models with minimal code changes, it is still a
human-crafted process that may contain imperfections. Furthermore, each synthetic buggy
program represents a well-designed base program with only a single bug injected. Thus, we
complement the evaluation using 20 real-world buggy programs from the dataset provided
by Zhang et al., which are related to the scope of our targeted DL bugs, and represent more
realistic conditions of debugging since they may contain different issues simultaneously, and
even issues that are not uncovered by maintainers yet.

Settings’ Generalizability and Transferability. The setup of heuristic-based thresholds
could be an external threat to validity. In our design and implementation of property-based
verification routines, we relied on the original documentation sources [24, 177, 179, 202] that
described the issues, to set up the thresholds, when they are indicated. Nonetheless, some
properties were always presented and studied through visual plots comprehensible by hu-
mans. This makes the design of metrics and their thresholds challenging, but we focus on
the abstract violation traits of the properties rather than the concrete studied instances, in
order to be able to construct a verification routine based on the foreknown training misbe-
haviors, as discussed in the implementation strategies (section 5.2.2). Therefore, given the
dynamic and continuous aspects of TheDeepChecker, it was possible to set up intuitively
pessimistic thresholds, to be our default configuration, in order to ensure a high coverage
with less false alarms when enough monitored training iterations were executed. Indeed, we



133

avoided the empirical tuning of these thresholds because we did not have access to a large
benchmark of reproducible buggy programs. Besides, the shrinking of suspicious program
state includes the computed metrics and thresholds that were behind the fired checks, which
is a mitigation strategy to help the user ignore false positives. Given the variables’ instati-
ations in the violated rules, users can also assess the sensitivity of the thresholds on their
DL application domain, which allows them to set up a more precise custom configuration for
TheDeepChecker.

5.6 Chapter Summary

This chapter reports about the design and implementation of TheDeepChecker, an end-to-end
automated debugging approach for DNN training programs. To develop TheDeepChecker,
we systematically gather a catalog of pitfalls commonly occurring in the development of
DNN training programs. Then, we explore various resources on applied DL researches and
technical reports with aim of distilling fundamental properties and practical heuristics that
can be codified into verification routines to detect the DL pitfalls’ resulting faults and training
issues. Next, we develop a property-based debugging approach, named TheDeepChecker, that
orchestrates the different properties’ verification over multiple phases. On the one hand, we
evaluate TheDeepChecker on synthetic buggy programs that contain each an injected DL
fault. The results show its effectiveness at detecting DL coding bugs and misconfigurations
with (precision, recall), respectively, equal to (90%, 96.4%) and (77%, 83.3%). Moreover, we
compare TheDeepChecker with Amazaon Sagemaker Rule-based Debugger(SMD) on real-
world buggy programs extracted from SO and GH. The results show that TheDeepChecker
outperforms SMD by detecting 75% rather than 60% of the total of reported bugs in the SO
post accepted answer or the bug-fixing commit message. Indeed, TheDeepChecker effectively
captured the slightest violation of all mandatory training assumptions, even those having
only a minor negative effects on the training process, providing sufficient feedback on any
problematic issue in DNN program. Using TheDeepChecker, two DL engineers were able to
successfully locate and fix 93.33% of bugs contained in 10 buggy TF programs.
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CHAPTER 6 DEEPEVOLUTION: SEARCH-BASED DL TESTING

Although DL software has proven useful and effective in many fields, their growing adoption
in massive and critical systems accentuates the urgent need for advanced DL testing meth-
ods to address the blindspots of iid performance evaluations, and hence, mitigate the risks
of DNN behavioral shifts in production. Nowadays, developing these methods has become
a focal point in both academia and industry. Coverage-guided fuzzing [119] expands the
iid evaluations by injecting arbitrary noises in a corpus of test data, triggering uncovered
state of activations, in order to reveal the DNN weaknesses. However, modern DNNs are
sufficiently smooth and regularized to make correct predictions despite these random noisy in-
puts. Adversarial attacks [13] can alter maliciously the original inputs, leading to unavoidable
mispredictions, however, they are designed to test the security vulnerabilities of the DNNs
with intentionally crafted adversarial examples (AX) that are often weakly-correlated with
real-world corner case scenarios. Contrarily, the challenge of DL testing is to verify whether
a DNN can be trusted in practice, i.e., under normal and extreme conditions required by an
application. In that regard, metamorphic testing (MT) probes a trained DNN by observing
its outputs on specifically designed inputs that express the desired requirements, as explicit
statements of expected DNN behaviors under certain input transformations. In computer-
vision field, several MT-based approaches [16] have been proposed to systematically generate
synthetic inputs that test the robustness of a convolutional neural network(CNN) against
derived corner cases. However, their inherent data generators are already limited, either in
terms of the variability of the input mutations or the efficiency of the optimization process.
In fact, the first-order gradient methods [17,20] efficiently carry out pixel transformations by
varying their values based on prominent directions of the gradient, but cannot handle complex
image transformations such as rotation or random erasing. Even though greedy search-based
methods [18,19] can handle diverse input transformations, they use simple strategies to drive
input generation, such as mutating previously discovered high-potential inputs rather than
sampling new ones, which cannot guarantee optimal or near-optimal results.

In this vein, we propose DeepEvolution, a search-based approach for testing DL systems
across many domains. DeepEvolution evaluates that a DNN is robust and would achieve
stable and sustained high accuracy under different usage scenarios that are not directly
guaranteed by iid evaluations. First, we develop MRs relying on domain-specific data trans-
formations, iterative parameters tuning, as well as post-transformation validity checks. The
MRs enable the specification of the desired system requirements in terms of must-be-held
mappings between input distortions and their specific deviations on the outputs. DeepEvolu-
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tion encodes the metamorphic transformations into a data-independent constrained space of
their vectorized parameters and settings. Second, DeepEvolution relies on population-based
metaheuristics algorithms and behavioral drift fitness functions to steer the search over the
space of transformations towards the most fault-detecting regions relative to the test ob-
jective, as follows: (i) exposing misclassified inputs to probe for coincidental and spurious
associations, and assess whether the optimized DNN encodes appropriate inductive biases
that are robust to naturally-occurring noises and irrelevant property changes; (ii) detecting
difference-inducing inputs to probe for quantization defects and low-precision inefficiencies,
and test whether the compressed DNN preserves the learned patterns that are relevant to
generalize as expected in the deployment settings.

The effectiveness of DeepEvolution was assessed using a variety of case studies, including
visual, speech, and natural language text recognition DNNs applied to popular datasets
including CIFAR100 [225], IMAGENET [143], KWS [226], RAVDESS [227], and IMDB [228].
Results show that DeepEvolution succeeds in revealing DNN erroneous behaviors. Precisely,
it achieves, averagely, 41%, 24.5%, and 5% of misclassification detection rates for the studied
DL domains, respectively, image, audio, and text. DeepEvolution was also able to expose
hidden quantization inefficiencies. Specifically, it reaches, on average, 21.5%, 24%, and 2%
of divergence exposure rates when comparing genuine and quantized DNNs designed for
visual, speech, and natural language text recognition. Throughout all the studied cases,
DeepEvolution outperformed TensorFuzz which is Google Brain’s coverage-guided fuzzing
framework specialized for DNNs.

Chapter Overview. Section 6.1 describes DeepEvolution, its design process, and its main
components. Section 6.2 reports the study cases and their associated evaluation results,
while Section 6.3 discusses the threats to validity of our experiments. Finally, Section 6.4
summarizes the chapter.

6.1 Approach

6.1.1 Problem Formulation and Proposed Solution

Assuming we have an original test dataset Dtest = (x0, y0), (x1, y1), ..., (xn, yn) and f is the
classification neural network under assessment, we design a space of semantic-preserving
metamorphic transformations, T , where each included metamorphic transformation, tθ ∈ T ,
represents a composite input transformation containing multiple parametric distortions and
their parameters θ are within the tuned valid boundary space, θ ∈ Θ, which ensures the
preservation of the semantic input identity after applying the distortions. A population-
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based metaheuristic algorithm iteratively explores the space of transformations, returning
a set of high-potential valid candidates that are likely to transform the original test data
into new synthetic inputs exhibiting erroneous DNN behaviors. Indeed, the metaheuristic
searching algorithm maximizes the scores of the generated synthetic test inputs, x̂i = tθ(xi),
w.r.t the selected test adequacy criterion, C, while penalizing those that are close-to or
violate the validity constraint, ΦT (X̂) > thresh, which ensures that distorted input retains
the semantic identity of its source entry. The formulation of the maximization problem can
be as follows:

maximize
θ

tθ(X) subject to ΦT (X̂) > thresh, X̂ = tθ(X) (6.1)

As the search iterations progressed, the follow-up test asserts the predictions to detect the
target failures. For robustness assessment, the assertion consists of verifying the equation:
f(tθ(xi)) = f(xi). For quantization evaluation, the assertion requires verifying the equation
f(tθ(xi)) = foriginal(xi), where f is the quantized neural network under test and foriginal is its
full-precision counterpart. All the distorted inputs x̂i, leading to failed assertion, are tracked
and stored to compute overall assessment metrics and provide further insights.

6.1.2 Semantically-preserving Metamorphic Transformations

To define the semantically-preserving metamorphic transformations for different data types,
we require two acceptance criteria for each input transformation: (i) it should be parametric
to enhance the variability of the produced synthetic inputs and the level of induced distortions
can be controlled through pre-fixing the range of its parameters; (ii) it should be deterministic,
i.e., returns the same synthetic input x̂ given the same parameters θ. Due to this determinism,
the metaheuristic algorithm would get stable fitness values when evaluating candidates from
the transformation search space, which is crucial for the success of the searching process. In
the following, we list the used metamorphic transformations for each supported data type,
and we describe the process of tuning their valid range of parameters and their associated
validity checks.

Image Transformation

The image transformations can be organized in the following two groups:

Pixel-value Transformations: Firstly, we can adjust the contrast, brightness, blur, sharp-
ness, and color intensity of the image. Those image mutations are applied to all pixels
of an image, so their common parameter is a floating-point factor that controls the
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strength of the induced effect, for example, a lower value means less brightness, con-
trast, etc., and a higher value means more. Secondly, we have included random erasing,
which can be viewed as dropping out contiguous areas of a given image in order to sim-
ulate arbitrary occlusion, i.e., when parts of an object are unclear. The location of the
masked area and its associated pixel value are set up as parameters. Last, we model
two types of random pixel perturbations as follows: (i) constrained additive noise: the
parameters are the pixel locations to alter and their associated additive noises; (ii) salt
and pepper noise: the parameters are the location of salt pixels, i.e., turns into white
ones, and the location of pepper pixels, i.e., turns into black ones.

Affine Transformations: We implement image translation, scaling, and shearing that
accepts two parameters corresponding to the geometric perturbation level with respect
to the spatial coordinates (x and y). In addition, we also include the image rotation
that takes an angle θ as a parameter.

Audio Transformation

There are also two main categories of audio transformations, as follows:

Full-Signal Property Alterations: We include time stretching the signal up or down
without altering the pitch, pitch shifting the sound up or down without altering the
tempo, and changing the loudness of the sound. Each of these sound mutations operates
on the entire signal and takes a floating-point factor to determine the direction and the
level of the mutation.

Window-based Signal Perturbations: First, we introduce several injectors of colored
noises (white/pink/brown) that have different properties. A colored noise signal is
added based on three parameters: its length, its starting timestep, and a floating-
point factor that controls its amplitude relative to its original value. To simulate
indoor and outdoor background noises, we collected 11 samples of environmental sounds
including footsteps, mouse clicks, and rain, etc. Injecting environmental noise is done
with the same logic and parameters as injecting colored noise with the addition of the
selected noise index. Finally, we define a constrained signal perturbation, which can
be configured with the indices of timesteps to alter, as well as, the additive noise value
for each altered timestep.

Text Transformation

We separate the parametric text perturbations into the following two types:
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Character-level Perturbations: We use character insertion, swapping, and deletion,
which modify one or more words by deliberately creating misspelled variants of them.
Fine-grained text transformations are analogous to imperceptible noise in signal data
because the original sentence and its transformed counterpart appear visually or mor-
phologically similar to humans. The parameters they accept are the selected word
positions as well as the indices of the involved characters.

Word-level Transformations: We first consider word deletion and word swap, which
require, respectively, the index of the word to be eliminated and the indices of the two
words to be swapped. Secondly, we incorporate word insertion, synonym replacement,
and embedding replacement, all of which rely on a word dictionary and a distance
metric to find a synonym or a word that has a close embedding to a given word in the
sentence. An additional specific word index is required to select the replacement word
to choose from the returned list of nearest neighbors, based on embeddings or natural
language dictionaries.

Bounding Ranges of Transformations’ Parameters

For each transformation’s parameters, the range of possible values determines the degree of
distortion induced in the input. Indeed, a wide range may include extreme values that would
result in high loss of information, leading to meaningless inputs. Inversely, a narrow range
would be too conservative, leading to only the meaningful inputs that are very close to their
source data. Hence, we tune these parameter ranges beforehand to guarantee a good balance
between enhancing the diversity and preserving the semantic identity of the transformed
inputs. To do so, we use appropriate validity scores to determine how much information is
lost after the distortion, as described in the next Section 6.1.2. Thereby, we first start with
the full range of possible values, then narrow down the range if the validation scores of the
resulting synthetic inputs are statistically low and re-iterate again; otherwise, we stop. For
each candidate range, we apply the transformation with sampled parameters on arbitrary
original instances to infer the valid ratio of the resulting transformed versions.

Post-transformation Validity Check

In spite of tuning the ranges of each distortion’s parameters, there is no guarantee that the
synthetic inputs would preserve the semantic identity of their genuine parents, especially
when multiple distortions are applied as a composite one. In fact, it is probable that their
application at once to the input could lead to meaningless inputs, even if each distortion is
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separately verified to be semantic preserving under the condition of keeping the parameters
within the tuned set of valid ranges. Thus, we set up a post-distortion validity test where we
use a data type-dependent score and its associated threshold to discard meaningless inputs. In
the following, we detail the implemented scores, representing appropriate similarity measures
that determine if the transformed input is still semantically equivalent to the original parent
after applying all the active distortions.

Image validation: We compute the Structural Similarity Index (SSIM) [229] that returns
the similarity between the two images ranging from 0 to 1.0 based on the visual impact
of three characteristics: luminance, contrast, and structure. In order to ensure that
the transformed images remain semantically equivalent to their original sources, we
discard the transformed images for which the SSIM values of their comparison with
their sources fall below 0.8.

Audio validation: We calculate the signal-to-noise ratio (SNR), which is a measure of the
strength of the desired signal relative to background noise (undesired signal). The ratio
is expressed as a single numeric value in decibels (dB). An SNR over 0 dB indicates
that the signal level is greater than the noise level. Then, the higher the ratio, the
better the signal quality. In our distorted audio verification, we adopt the threshold of
20 dB as suggested in [230,231], in order to systematically separate the valid synthetic
sounds (SNR>20) and invalid ones (SNR<20).

Text validation: We keep track of all the edits applied to the original text over the com-
posite distortion. Then, we define the maximum percentage of allowed edits to the
sentence to be 25%, as suggested in Alzantot et al. [232]. Thus, all the generated trans-
formations that lead to a higher percentage of edits, will be considered as invalid, and
vice versa.

6.1.3 Search-based Test Generation Approach

Search Space: Transformation Vector Encoding

Due to the diversity and complexity of our codified input transformations, the space of
distorted neighbors of an original datapoint is challenging to �define, contrary to vanilla
constrained input perturbations that would set up the search space for an input x to be
[x − δ, x + δ], where δ is the maximum allowed value deviation. Hence, we chose to search
for transformations instead of data instances. To that end, we encode the parameters of
each single data transformation into a sub-vector. Then, the vector associated with the com-
posite metamorphic transformation is the result of the concatenation of all the sub-vectors
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obtained from the transformations included, along with binary variables to activate or deac-
tivate each one of them. Based on the tuned range of parameters for all the included input
distortions, we can create high and low boundary vectors, bounding the search space of
composite metamorphic transformations in a way that increases the chances of finding valid
candidates. Due to the high dimensionality of the input space, the transition from input
space to lower-dimensioned transformation space simplifies the search problem by narrowing
the search space as well.

Behavioral Drift Fitness Function

Considering the composite transformation space, T , to be searched, the optimization needs
a fitness/objective function, fT , that compare and contrast the fault-revealing capabilities of
transformations, t ∈ T , if applied to the original input, x. Nevertheless, our main goal is to
reveal the maximum of diverse failed test inputs; as a result, we design a fitness function, fX ,
that measures how much behavioral deviations the resulting transformed input, x̂, causes in
the DNN under test. Thus, the connection between both fitness functions, fX and fT , would
simply be fX(x̂) = fT (t), where x̂ = t(x). Furthermore, we are interested in classification
neural networks with different architctures that have been applied in computer vision, speech
recognition, and natural language processing. Given a c-classification problem, a neural
network should define a last dense layer with neurons equal to the labels count, called logits,
l = (l1, ..., lc) ∈ Rc. Then, an adjacent softmax activation layer normalizes the logit scores
into a probability distribution, s = (s1, ..., sc) ∈ Rc, whose component is the probability of a
class label membership and is computed as follows, si = σ(li) = e li∑c

j=1 e
lj

for i = 1, ..., c.
Hence, the predicted label for the input is the one with the highest probability, which can be
formulated as follows:ŷ = argmax(s).

While adversarial attacks minimze the correct label’s score or maximize another target’s
score, we seek to capture all the fine-grained divergences in the softmax score distributions
to uncover erroneous behaviors, while enhancing diversity and avoiding overuse of the dis-
covered areas of high potential. To that end, we find two common divergence measures
to compare different probability distributions, Kullback–Leibler divergence (KLD) [233] and
Jensen–Shannon divergence (JSD) [234], and we opt for Jensen–Shannon divergence, denoted
J in the defintion of our fitness functions. Let Q and R, be two probability distributions
defined on the same space χ, where (|χ| = c), we can compute J as follows:

J(Q||R) = 1
2(D(Q||M) +D(R||M)) (6.2)

where D(Q||R) = ∑c
i=1Q(i) ln(Q(i)

R(i)) and M = 1
2(Q + R). The main reason we chose JSD
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over KLD is that it is symmetric, J(Q||R) = J(R||Q), and bounded, 0 ≤ J(Q||R) ≤ 1.

Robustness Assessment. The objective is to estimate the divergence between the two
class membership probability distributions obtained by the DNN under test for the original
input, x, and its transformed descendent, x̂. Moreover, maximizing this divergence would
continually widen the discrepancy between the model responses for the two inputs in all
directions, which may lead to a mismatch in their assigned labels (i.e., the most probable one
given the probabilities of class memberships). Considering s(x) to be the softmax activation
layer for a given input x and Svalid is the normalized validation score of x̂ w.r.t x within [0, 1],
our behavioral drift fitness function for a synthetically-produced input can be formulated as
follows:

fD(x̂) = Svalid × J(s(x̂), s(x)) (6.3)

Quantization Assessment. The goal is to determine the difference between the two class
membership probability distributions obtained by the original and quantized DNNs. There-
fore, maximization of this divergence measurement would increase the likelihood of disagree-
ment between the two models’ responses, until eventually reaching a mismatch between their
two predicted labels, i.e., their individual most probable labels for the same input. Let mo

and mq be the original model and its quantized version, Svalid is the normalized validation
score of x̂ w.r.t x within [0, 1], as well as so and sq be their respective softmax activation
functions, our behavioral drift fitness function for a synthetically-produced input can be
formulated as follows:

fD(x̂) = Svalid × J(so(x̂), sq(x̂)) (6.4)

In our approach, we support two modes. The first is the single instance mode where only
one original input xi is fixed in the loop, so that all the generated transformations tj ∈ T
would be evaluated based on the fitness fT (tj) = fX(x̂i,j), where x̂i,j = tj(xi). The second
is the batch mode that fixes a subset of B original inputs, Xb, at once, so that any data
transformation tj ∈ T would be evaluated based on the average fitness f̄T (tj) =

∑B

i=0 fX(x̂i,j)
B

,
where x̂i,j = tj(xi), ∀i ∈ [0, B]. As explained above, we are exploring the search space for
better coverage of potential failures and avoiding mode collapse, where the input generation
exploits one weakness of the model to reveal slightly-different failures based on the same real
data. For the sake of simplicity, we have formulated the above-mentioned fitness functions
in the single instance mode.
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Metaheuristic searching algorithms

DeepEvolution is a search-based DL software testing approach that leverages metaheuristics
optimization techniques to produce test inputs with high fault-revealing ability. Specifically,
we use nature-inspired population-based metaheuristics that feature complex routines and
intrinsic non-determinism, making them suitable for identifying vulnerable regions in the
large, multi-dimensional input space of the DL models. Several researchers have employed
them in crafting adversarial examples under black-box settings and have shown their ef-
fectiveness in the areas of our interest, including computer-vision [49–52], natural language
processing [53–55], and speech assistance DNNs [56]. Concretely, we implement 1 evolution-
based algorithm and 8 swarm-based algorithms. In these implemented metaheuristics, all the
individuals of a generation are assessed before their updates are inferred. As a result, they
are effective when it comes to DL software testing because DNNs are designed to predict
for a batch of inputs simultaneously; so, all the required softmax probabilities are requested
at once, the fitness values are computed, and the updates are determined. In line with the
No Free Lunch Theorem (NFL) [235], we investigate various nature-inspired, population-
based metaheuristics because none of them outperforms all others for all possible classes of
optimization problems. In the following, we introduce our implementation of the selected al-
gorithms. On the first hand, genetic algorithm (GA) [58] is the most popular evolution-based
method that mimics the behavior of biological evolution, including the natural selection and
reproduction, i.e., the fittest survive and reproduce. To generate stronger individuals in every
generation, GA performs the following operations: (i) selection: we sort the individuals w.r.t
their fitness values, then, we select the top k of them to be the parents for the next generation;
(ii) crossover: several binary crossovers for breeding are supported such as one-point [59],
two-point [59], and uniform [59], which is our default option, and (iii) mutation: we use a
random walk with a small step size to move the offspring transformations arbitrarily from
their inferred positions, depending on a certain mutation probability. On the other hand,
swarm-based methods imitate the dynamics of natural swarms, (i.e., group of animals such
as flocks of birds or gray wolves), especially, how members of the swarm interact with one
another and with their environment. The following established swarm-based algorithms are
included: (1) Particle Swarm Optimization (PSO) [57], (2) Firefly Algorithm (FFA) [236], (3)
Gray Wolf Optimizer (GWO) [237], (4) Moth Flame Optimizer (MFO) [238], (5) Whale Op-
timization Algorithm (WOA) [239], (6) Multi-Verse Optimizer (MVO) [240], (7) Salp Swarm
Algorithm (SSA) [241]. These selected metaheuristic algorithms perform their �distinct sub-
tle steps, including stochastic, diversity and selection to trade-off between the intensification
(exploiting the results and concentrating the search on regions near effective solutions found)
and diversification (exploring non-visited regions to avoid missing interesting potential so-
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lutions) [242]. Their generic-purpose design enables them to be used for a wide range of
constrained optimization problems involving high-dimensional, bounded real-valued vectors
without prior discretization. Therefore, all these nature-inspired metaheuristics enhance the
fitness values of the evolving population of candidate transformations, over iterations, re-
sulting in synthetic test inputs that are more likely to cause deviations from the expected
behavior, and thus more likely to expose DNN’s weaknesses. Along with the increased fit-
ness, both diversification and intensification mechanisms that these metaheuristics employ
for searching the fittest candidates, produce new inputs sufficiently different from the old
ones to uncover regions of interest while also being similar enough to inputs that have high
fitness values to uncover more failures in the previously-discovered regions. In our test gen-
eration problem, we do not seek an optimal or suboptimal solution that would represent the
input transformation, leading to the test input with the highest fitness. Hence, we slightly
modify the standard design of population-based metaheuristics to continuously monitor the
fault-revealing transformations (i.e., yielding AXs) among evolving feasible solutions (i.e.,
meet all the validity constraints).

Narrow Down the Search Space

For all the supported data types, we include various switchable parametric data transforma-
tions to form our search space of composite distortions. This high-dimensional transformation
space enhances the diversity of the synthetic test data compared to approaches that concen-
trate on one type of distortion and refine searches over its parameters to find the optimal
settings. However, this dimensionality comes with challenges in regards to the test input
generation. A huge space of composite distortions can make it difficult for the optimization
to find valid combinations. The post validation is a data-dependent process, measuring the
distance of the distorted data from its source, hence, in some cases built-in transformations
can be aggressive, systematically leading to invalid synthetic inputs that are always rejected.
In fact, we aim to design a periodic narrow-down of the search space that eliminates the
least relevant transformation at every period of iterations. To infer the relevance score, we
build a Bayesian probabilistic scoring method that applies the bayes rule to update, over
the iterations, the likelihood of each transformation being part of a valid and ‘adequate’
composite transformation. First, we define a binary random variable that is true when the
composite distortion yields valid and adequate test input, i.e., its validity score is higher than
the predefined threshold and its fitness is higher than the median; otherwise, it is false. Then,
we consider the switch variable as a binary random variable to indicate if a transformation is
either active or inactive when a composite distortion is applied. Thus, the relevance score of
an included transformation is the probability of having a valid adequate distortion given that
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the underlying transformation is active. Using composite distortions tracked over iterations,
we estimate the joint probability of a valid adequate distortion and a given transformation
being active, then, we normalize it by the marginal probability of having a valid adequate
distortion in general to derive the relevance score. Furthermore, we may encounter the ‘Zero
conditional probability Problem’ if the underlying transformation was never active or no
composite distortion was valid and adequate by accident. To avoid returning zero probabil-
ities, we leverage laplacian correction to define a neutral probability in such cases with the
aim of preserving the score-based ranks of the evaluated transformations. Last, we sort the
transformations by their inferred relevance scores, then, we remove the one having the lowest
score, i.e., it was less-frequently active in the obtained valid and adequate candidates so far.

6.1.4 DeepEvolution: Workflow and Algorithm

Figure 6.1 Overview design of DeepEvolution

Figure 6.1 presents an overview of the design of DeepEvolution which is composed of the
following components.

Transformer: It contains the processing logic of the metamorphic transformations that can
be configured based on the metadata, including the data shapes, the data range, and
the tuned set of valid parameters. Moreover, it exposes an interface providing multiple
operations to create a random metamorphic transformation, to check transformation’s
element bounds and clip them within the valid range, and to apply the transformation
on a given input data. In addition, the transformer includes a validity score function,
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depending on the data type, which estimates the degree of distortion on the input
post-transformation compared to its original parent.

Evaluator: It is responsible for handling the one or more DNNs involved in the evalu-
ation process. When necessary, it gets the predicted labels, probabilities, and even
intermediate activations, then, it enables the assessment of different distance/diver-
gence measures to capture how much a given synthetic input is able to yield a DNN’s
response distant from its source data, or to cause a divergent behavior between the
original model and its quantized counterpart.

Searcher: It uses a population-based metaheuristic algorithm to explore the space of trans-
formations towards prominent directions where there are subtle and interesting trans-
formations that have high chances to expose erroneous behaviors. Below, we introduce
the main four sub-components that make up our searching method:

1. Population Initializer: It initializes randomly a set of valid candidate transfor-
mations.

2. Fitness Evaluator: It computes the fitness of a given candidate transformation
with respect to the established function according to the assessed quality attribute.

3. Population Updater: It encapsulates the selected metaheuristic strategy to infer
the next population in a way that all the individuals fall within the tuned ranges
and they are likely to be stronger and more fit than their predecessors.

4. Space Reducer: It periodically removes the least relevant transformations from
the search space in order to keep the searcher focused on high potential areas.

import Searcher, Evaluator, Transformer

# D: correctly classified input seed,

# m_o: original model and m_q: quantized model

D, m_o, m_q = load_ingredients(model_config)

N_seeds, seed_size = load_params(data_config)

narrow_down_period, max_iter, pop_size = load_params(search_config)

# if m_q is None, check for Robustness; else check for Divergence

Evaluator.set_up_models(m_o, m_q):

# initialize the set of failed transformation vectors

T_fails = set()

for X, y in data.loader(D).sample_seeds(N_seeds, seed_size):

# initialize random population T of transformation vectors
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T = Searcher.init_population(pop_size)

iteration = 0

while iteration < maxiter:

# apply every t in T on X

X_trf = Transformer.transform(T, X)

# compute the validity scores S for all the transformed inputs

# and return the set of valid inputs X_valid

X_valid, S = Transformer.validity_check(X_trf, X)

for x_d in X_valid:

# check if x_d breaks the MR

if Evaluator.is_failed(x_d, y, m_o, m_q):

# t_d is the transformation vector leading to x_d

T_fails.add(t_d)

# compute the probability divergences induced by each x_trf

J = Evaluator.compute_proba_divergences(X_trf)

# update the relevance score for each transformation

Searcher.update_relevance_score(T, J, S)

# reduce the search space in each narrow_down_period

if iteration % narrow_down_period == 0:

Searcher.narrow_down_search_space(T, J, S)

# update the population of transformations T

T = Searcher.improve(T, J, S)

iteration += 1

Pseudo-Code 6.1 DeepEvolution Test Driver Algorithm

The proposed DL software testing algorithm is presented in the pseudo code 7.1. First, the
original test data is loaded and filtered to keep only the test inputs that are correctly classified
by the DNN. Second, the searcher initializes an initial random set of valid metamorphic
transformations (the size of the population is the first common parameter). Taking a random
seed of filtered inputs, the transformer applies the sampled transformations on the inputs
to produce the synthetic test inputs, then, the latter passes the validation test to eliminate
the meaningless inputs caused by an accidental high loss of information. Next, the evaluator
runs the one or more DNNs under test to classify the valid synthetic inputs, and to compute
the induced distribution divergences based on their respective label probabilities. Then,
it runs the follow-up test assertions on the obtained synthetic test inputs’ predictions in
order to detect potential erroneous behaviors, including DNN weaknesses by checking if the
predictions differ from the original actual labels, or quantization inefficiencies by comparing



147

the predictions of the original DNN and its quantized counterpart. All the fault-revealing
transformations that were capable of producing failed test inputs, are stored for global insights
and further analyses. Afterwards, the searcher utilizes the validity scores and the distribution
divergences to compute the fitness values of each individual transformation and update their
relevance scores. Periodically, the search space is reduced by eliminating the least relevant
transformation in the remaining optimization iterations for the current seed of inputs. Based
on their obtained fitness values, the population of transformations is updated following its
inherent metaheuristic strategy, while keeping them within the valid boundaries. Finally,
the transformer applies the newly-generated transformations on the seed of inputs, then, the
process repeats the same following steps to produce the next generations, until reaching the
fixed maximum number of iterations (the second common parameter). Therefore, the next
seed of original test inputs is sampled, the search process restarts from the beginning with a
full transformation space and keeps tracking all the failed tests.

6.2 Evaluation

6.2.1 Experimental Setup

In this section, we detail the different elements of our experimental setup.

Datasets and Pretrained DNNs

Image. CIFAR-100 [225] is a labeled dataset of 60000 colored images of 32×32 pixels, which
can be grouped into 100 classes. We use the EfficientNet-B0, which contains a simple Effi-
cientNet architecture with 9 convolutional layers. EfficientNet is a new class of CNN’s built
by Google. These CNNs provide an effective compound scaling method to achieve maximum
accuracy gains with reduced number of parameters as compared to the other state-of-the-art
CNNs like ResNet. Imagenet [143] is the most popular dataset of object recognition, con-
taining 1 million images of 224x224 pixels, which can be classified into 1000 labels. We use
Vision Transformer (ViT) which is a transformer encoder-decoder model (BERT-like) that
transforms the images into a sequence of fixed-size patches (resolution 16x16), which are
linearly embedded as absolute position embeddings. As a result, the pre-trained transformer
can then be used to extract the useful features needed to train an accurate classification
network downstream.
Audio. KWS Speech Commands [226] is a popular dataset of speech recognition, assem-
bling 65,000 clips of one-second duration. Each recorded clip corresponds to one of 30 possible
keywords, where only ten of them are commands used in a robotics environment and others
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represent noise words. We tested the end-to-end model proposed by Google that consists of
a speech feature extraction based on MFCC and a neural network based classifier. Ryerson
Audio-Visual Database of Emotional Speech and Song (RAVDESS) [227], containing 7356
audio files. The classified emotions are neutral, calm, happy, sad, angry, fearful, surprise,
and disgust. Audio data are first preprocessed to extract fixed-length input features based on
MFCC [243]. Then, we use CNN proposed by depinto et al. that defines 1-D convolutional
layers with Relu activations, max-pooling layers with filters of size 2, and then, the dense
layer with a softmax activation.
Text. IMDB [228] is a well-known dataset for binary sentiment classification, containing
50k of highly-polarized movie reviews. The review sentences are first projected into a fixed
300-dimensional embedding space using GloVe [244]. Then, we evaluate two different DNNs
in solving the sentiment analysis classification task, including Convolution Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs). First, WordCNN defines 1-D convolutional
layers with 250 filters of 3 size, max-pooling layers, and a dense layer with a softmax acti-
vation at the end. Second, BiLSTM comprises bi-directional LSTM layers with 128 and 64
computational units in both forward and backward passes, and finally a dense layer with a
softmax activation.

Quantization

As a matter of credibility and reproducibility, we opt for Tensorflow Lite 1, Google’s open-
source DL library to assess the state-of-practice quantization for on-device deployment. We
quantize each original DNN with 32-bit arithmetic precision using the dynamic range post-
training quantization technique. The latter compresses the DNNs by reducing the precision
of their weights without any further retraining. In our study cases we use it to statistically
transform all the weights into integer data type of 8-bits precision, then, these weights are
reconverted to their original floating-point data type to compute the activations at inference.
This data type conversion is done once and cached to reduce latency at inference.

Baseline

We use TensorFuzz [119] as a competitive baseline, which is an open-source Tensorflow-
based framework that implements a coverage-guided fuzzing approach specialized for DNNs.
It consists of handling an input corpus that evolves through the execution of tests by applying
random mutation operations on its contained data and keeping only interesting instances that
allow triggering new activation traces. The novelty of activation traces is identified based
1 https://www.tensorflow.org/lite

https://www.tensorflow.org/lite
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on an approximate nearest neighbor that estimate how their distances to the previously-
acquired traces. Similar to our approach, it supports various DL domain inputs in its types
of mutation, including constrained white noise in signal data like image and audio, and
random character perturbations (addition, deletion, and substitution). It also allows finding
numerically-unstable responses of the optimized DNN, which can be adapted for erroneous
behaviors, and revealing divergences between the original model and its quantized version.

Evaluation Settings and Metrics

To reduce the adverse effects of both randomness in nature-inspired metaheuristics and selec-
tion bias, we experimented on 60 arbitrarily sampled seeds of 32 instances from each included
study case’s original test data, and all the included estimated metrics are computed as aver-
age values over 3 runs or more. For the sake of comparison fairness, we run all the generators
with the same number of produced inputs, including metaheuristic-based searcher, random
sampler, and TenosorFuzz. Indeed, we use the population/mutation size of 10 and the maxi-
mum of iterations of 24, that would yield a total of 10×24×60×32 generated test inputs. For
our approach, we use 6 iterations as a period to eliminate the least relevant transformations
and refine the search space regularly. Below, we introduce the different performance metrics
that have been used in the evaluations:
%MI. It represents the ratio of valid misclassified inputs with respect to the total of all gen-
erated synthetic inputs. This enables us to compute failure rates with respect to erroneous
DNN behaviors.
%DI. It represents the ratio of difference-inducing inputs with respect to the total of all
generated synthetic inputs. This allows us to compute failure rates with respect to quantized
DNN defects.
%S[MI/DI]. The percentage of original inputs where at least one misclassification/diver-
gence is successfully revealed among their descendant synthetic inputs. This indicates how
diverse the generated failures with respect to their source data
%Del. It represents the ratio of test seeds where a selected transformation is deleted during
the periodic search space reduction. This helps us identifying transformations that have been
recurrently discarded through the test generation.
RI. It consists of the ratio of the inertia of transformation vectors generated by a meta-
heuristic, I[meta] with respect to the inertia of randomly-sampled transformation vectors,
I[RS]. In general, the inertia of a cloud of datapoints is measured with respect to its center

of gravity, G, (i.e., a vector of the mean values), as follows, I = ∑N
i=1

d2(Ti, G)
N

, where d is
the Euclidean distance and N is the number of datapoints.
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The inertia measures the spread in a cloud of data points, and therefore, our RI measures
the dispersion of the transformations generated by our metaheuristics versus the dispersion
of a cloud of uniformly sampled transformations.

Environment

We developed DeepEvolution in Python, and all the numerical computations are vector-
ized with the NumPy library. The current version supports TensorFlow (TF) [245] for full-
precision DNNs and its TF Lite version for quantized DNNs. All tests were executed in
parallel on Google Cloud Platform N2 virtual machines equipped, each with 4 cores and 16
GiB of RAM, and running Ubuntu 18.04. For all preparation of DNNs and tuning of Deep-
Evolution functions, we use a local server running with Linux CentOS 7 system on Intel(R)
Xeon(R) 3104 Bronze with 64 GB of RAM equipped with a NVIDIA GeForce RTX 2080 Ti
GPU.

6.2.2 Effectiveness of DeepEvolution’s Metamorphic Transformations

To assess the utility of the designed semantic-preserving metamorphic relations, we leverage
them to conduct average-case analyses of DNN robustness and quantization inefficiency.
As an average-case estimation, we use the random sampling algorithm (RS) that draws
uniformly compound input distortions from the search space with no guidance based on
previous samples. Then, we assess how effective the resulting random metamorphic tests
are at revealing faults in DNNs, based on their quantity and diversity. A further analysis is
performed on the top-3 transformations by data domains that have been removed during the
reduction of the search space.

Table 6.1 reports the results of %MI, %S[MI], %DI, and %S[DI] obtained for DeepEvolution
with a random sampling strategy. According to the computed failure (i.e., MI or DI) rates
for all the study cases, synthetic distorted inputs can challenge optimized DNNs in robust-
ness against semantically-preserving data transformations, while their quantized versions are
also challenged to produce constantly the same predictions as their originals. In light of
this observation, even though our designed distortions were intentionally tuned to be within
reasonable conditions and the post-transformation validation filter out the too noisy ones,
random metamorphic tests uncover hidden weaknesses in the DNNs that the original tests
missed because they are biased towards typical and more similar conditions with training
samples.
Distinctions between DL domains and network architectures. We can also notice
from Table 6.1 that metamorphic transformations performed differently across different data
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Table 6.1 Performance Metrics of RS-enabled DeepEvolution

Domain Model %MI %S[MI] %DI %S[DI]

Image EffNET 23.64 99.95 11.53 99.95
ViT 2.54 20.52 2.33 17.97

Audio DepintoCNN 13.07 99.95 1.56 88.75
KWS 6.99 88.23 14.12 97.19

Text BiLSTM 3.69 62.66 1.79 38.65
WordCNN 3.5 57.08 0.22 23.44

domains and classification problems. The designed text distortions enhance the diversity of
sentences with different vocabulary, but their adverse effects are low since character-level per-
turbations may lead to insignificant words that the DNN ignores during inference. Indeed, a
character-level perturbation less frequently results in removing a crucial word, or producing
a new existing word that confuses the DNN. Second, both of our audio and image distortions
succeed in yielding high MI rates on DepintoCNN and EffNet. This can be attributed to the
relatively-low complexity of the DNNs that have reduced parameter size, which also favor
simpler inductive biases and have side effects on robustness. DepintoCNN [227] transforms
different-length audio signals into a 40-length feature data based on MFCC, using a single 1D
CNN layer to extract the patterns. Despite its effectiveness on the original test dataset, its
simple CNN architecture shows weaknesses when faced with naturally-occurring audio signal
perturbations. Nevertheless, low-capacity neural networks can be less adversely affected by
quantization because the latter will operate on fewer parameters. Accordingly, EffNet [246]
is a novel effective CNN architecture that uniformly scales every dimension with a fixed set
of scaling coefficients rather than arbitrarily varying width, depth and resolution. In spite
of EffNet’s high performance on the original CIFAR100 testing dataset, metamorphic tests
indicate that this gain in computation complexity and scalability can lead to a lack of ro-
bustness when inputs are altered. In contrast, we do not detect a high number of failures
for Vit despite Imagenet’s high dimensionality. It can be explained by the effectiveness of
complex transformers such as Vit, which have been trained with large-size augmented data
using different rules that anticipate many of the distortions we include.
Differences in relevance between domain transformations. We show in Table 6.2
the deletion ratio of the top-3 transformations that were removed during the search space
reduction. For image and audio datasets, the results indicate that the top-3 transformations
are responsible for most of the induced variation in the post-transformation validity mea-
surements. Indeed, blur effects, color changes, and brightness changes decrease substantially
the SSIM value between the original and transformed images. It is the same for different ad-
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ditive noises, including colored, environmental, and random noises, that considerably affect
the estimated PSNR of a perturbed audio signal. Meanwhile, the top-3 text transformations
have less adversarial effects on the final prediction. In fact, synonyms and embeddings re-
placement �pose less of a challenge in sentiment analysis. Depending on the total number of
data transformations included, the deletion ratios of recurrently-discarded transformations
vary between domains.

Table 6.2 Deletion Ratio of Metamorphic Transformations

Domain Transformation %Del

Image
Blur 33.8
Color 27.45

Brightness 26.48

Audio
Random Noise 85.69

Environmental Noise 81.30
Colored Noise 81.11

Text
Embedding Replacement 87.5
Synonym Replacement 87.45
Character Removal 87.08

6.2.3 Performance of DeepEvolution in DNN Robustness Testing

DeepEvolution is designed to perform worst-case robustness evaluations by leveraging opti-
mization metaheuristics. These latter algorithms drive the sampled distortions towards re-
gions with high fault-discovery capabilities, which likely increases both MI and success rates.
In the following, we examine the effectiveness of DeepEvolution in revealing the erroneous
behaviors of DNNs. The built-in metaheuristics are compared, as well as DeepEvolution
versus TensorFuzz.

Tables 6.3, 6.4, and 6.5 report the performance measures of robustness testing obtained for
DeepEvolution with different search strategies, as well as, TensorFuzz Method. In line with
expectations, most of metaheuristic algorithms reveal a higher number of MIs, which results
in a more substantial MI rates estimated for all classification problems, while preserving and
even accentuating the above-discussed differences between them.This is due to RS’s absence
of logic and to its uniform sampling strategy generating fewer MIs than metaheuristic-based
search algorithms, but it will serve us as baseline in the next comparison between the em-
ployed metaheuristics. Nevertheless, metaheuristics did not significantly improve the likeli-
hood of converting an original input to a misclassified one, according to the obtained success
rates. This illustrates the important role played by the source inputs in deriving synthetic
MIs, which is related to the sensitivity of their relevant features to our distortions and/or the
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Table 6.3 A comparison of robustness testing performance with different generation tech-
niques for image classification problems

EffNet ViT
Algo %AX %S RI Algo %AX %S RI

TensorFuzz - 7.5 14.51 - - 0.3 4.17 -
RS - 23.64 99.95 1.0 - 2.54 20.52 1.0

Meta#1 MFO 72.35 99.9 1.29 MFO 10.45 23.33 1.56
Meta#2 PSO 52.59 99.95 1.43 PSO 9.85 22.97 1.41
Meta#3 SSA 32.97 99.9 3.28 SSA 5.62 21.09 1.12
Meta#4 MVO 27.02 99.64 1.31 GA 5.03 23.12 1.53
Meta#5 GA 26.76 99.95 3.77 WOA 2.57 16.72 1.54
Meta#6 FFA 18.61 99.38 1.61 MVO 2.36 15.78 0.85
Meta#7 GWO 17.11 99.95 0.51 FFA 2.23 15.47 0.88
Meta#8 WOA 16.44 98.65 1.66 GWO 1.77 19.32 0.65

uncertainty of the DNN against them. The increased exposure of MIs by metaheuristics is of
course due to their optimization routines that can reveal a variety of transformations applied
to these important original inputs over generations, while RS might find some of them by
chance.
A comparison of the built-in metaheuristics. We observe that MFO, PSO, and SSA
are the top-3 metaheuristics for all the study cases except DepintoCNN, for which they per-
form well but not better than GWO and FFA. In fact, GWO and FFA often rank low in the
other study cases, which indicates a kind of inverse problem. Particularly, all GWO’s RI val-
ues, including for DepintoCNN, are low, especially for DepintoCNN, which indicates that it
favors intensification over diversification. This prevented it from achieving high performance
on the MI search problem, and most of the time it was not even able to surpass RS. However,
GWO ranks first in testing the robustness of DepintoCNN, meaning that the intensification
was effective for its associated MI generation. Further explaining, DepintoCNN is optimized
for RAVDESS classification dataset that has different-length audio signals, mostly longer
than 1s, while KWS has fixed-length audio signals of 1s. We should consider the maximum
length when designing our transformation search space, which increases its dimensionality. In
addition, MFCC-based feature engineering transforms varied-length input signals into fixed-
length feature data, but this preprocessing may cancel certain distortion effects applied.
As a result, the associated search problem is more challenging, and intensification-intensive
algorithms can be more effective in uncovering a large number of MIs within previously-
discovered faulty regions without wasting time on unnecessary exploration. In the remaining
study cases, the top-3 metaheuristics usually have an RI close to 1.0, which means the opti-
mization routines are updating the candidates while maintaining as high a diversity among
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Table 6.4 A comparison of robustness testing performance with different generation tech-
niques for audio classification problems

Depinto KWS
Algo %AX %S RI Algo %AX %S RI

TensorFuzz - 0.21 4.76 - - 0.1 4.17 -
RS - 13.07 99.95 1.0 - 6.99 88.23 1.0

Meta#1 GWO 28.2 100.0 0.29 MFO 20.96 92.76 1.04
Meta#2 FFA 25.59 100.0 1.41 PSO 17.13 84.27 0.94
Meta#3 MFO 25.58 99.84 1.04 SSA 13.37 85.68 0.9
Meta#4 PSO 22.34 99.17 0.93 GWO 12.27 94.11 0.2
Meta#5 SSA 21.66 100.0 0.9 GA 11.96 89.01 1.07
Meta#6 GA 21.23 100.0 1.17 MVO 11.65 82.24 0.7
Meta#7 MVO 19.02 100.0 0.78 WOA 11.01 90.83 1.48
Meta#8 WOA 4.11 100.0 2.01 FFA 9.87 85.05 1.08

them as sampling uniformly. Hence, the optimal metaheuristics for DeepEvolution must
balance well diversification-intensification in order to continuously improve the generation of
test inputs towards increasingly diverse and revealed failures from the defined space. Testing
costs can be reduced and the test sessions reflect worst-case robustness assessments, where
the derived test inputs stress the weaknesses of the DNN under test. We observe that some
metaheuristics fail to surpass the RS performance and most cases have low RI values, which
illustrates the importance of diversification to avoid staying too close to previously-obtained
successful candidates.
DeepEvolution vs TensorFuzz. For all the settings and classifiers, DeepEvolution outper-
forms TensorFuzz in both terms of MI rates and success rates. The rich data transformations
and the search-based approach account for this difference. On one hand, TensorFuzz includes
a white-noise mutation for each data type that is continuously applied on the inputs reveal-
ing quite distant activations. The resulting successive mutations often lead to invalid and
meaningless inputs, discarded by the post-transformation validity check. On the other hand,
TensorFuzz selects inputs from the corpus based on their coverage scores without requiring the
source data to be diversified, which explains the low success rates. In conclusion, TensorFuzz
is designed based on conventional software fuzzing, which makes it more suitable for proving
that a DNN can fail, whereas DeepEvolution adapts the search-based approach to reveal as
many unique and diverse MIs as possible to estimate the DNN robustness statistically.
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Table 6.5 A comparison of robustness testing performance with different generation tech-
niques for text classification problems

BILSTM WordCNN
Algo %AX %S RI Algo %AX %S RI

TensorFuzz - 1.23 4.4 - - 1.61 4.82 -
RS - 3.69 62.66 1.0 - 3.5 57.08 1.0

Meta#1 MFO 5.28 66.93 1.0 PSO 4.84 62.08 1.0
Meta#2 PSO 4.7 63.65 1.01 MFO 4.73 61.25 1.01
Meta#3 SSA 4.34 60.05 1.01 SSA 3.97 55.52 1.0
Meta#4 GA 3.43 50.26 1.0 GA 3.08 44.69 1.0
Meta#5 WOA 2.55 65.89 1.06 WOA 2.44 63.44 1.06
Meta#6 MVO 2.29 64.11 0.77 MVO 2.05 62.55 0.75
Meta#7 FFA 2.13 56.98 1.0 FFA 1.95 56.51 0.99
Meta#8 GWO 1.73 44.06 0.78 GWO 1.59 41.3 0.78

6.2.4 Performance of DeepEvolution in DNN Quantization Assessment

An additional test objective supported by DeepEvolution is the search for the divergences
between an original DNN and its quantized counterpart. The following analyzes the effec-
tiveness of the implementation of metaheuristics in producing relevant distortions that reveal
Difference-inducing inputs and, consequently, enhance DI and success rates. We also compare
DeepEvolution with TensorFuzz in terms of exposed DIs’ quantity and diversity.

Tables 6.6, 6.7, and 6.8 outline the performance measures of quantization assessment ob-
tained for DeepEvolution with different search strategies, as well as, TensorFuzz Method.
Similarly to the previous test objective, metaheuristics often reveal DIs higher than RS, and
accentuate the difference between two DNNs with different arithmetic precision, if such a gap
exists. However, metaheuristics did not help uncover more divergences between the original
WordCNN and its quantized version. This can be explained by the low DI rates obtained
for all settings indicate that the quantization was successful and there are only a few cases
where the two DNNs diverge despite the improved search.
A comparison of the built-in metaheuristics. Contrary to the MI search problem, there
are no common top-3 metaheuristics that outperform the others in most of the study cases.
It is because the DI search problem, involving two similar DNNs under test, challenges the
algorithms in discovering the characteristics of fault-revealing transformations. Nevertheless,
we noticed that MFO, PSO, and SSA remain constantly the top-3 metaheuristics for the
computer-vision classification problems. Additionally, we should emphasize that two meta-
heuristics, WOA and GA, which ranked previously low, are now competing for first places
in the DI generation performance. The correlation between low RI and low failure rates also
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Table 6.6 A comparison of quantization assessment performance with different generation
techniques for image classification problems

EffNet ViT
Algo %DI %S RI Algo %DI %S RI

TensorFuzz - 31.83 61.04 - - 0.46 7.5 -
RS - 11.53 99.95 1.0 - 2.33 17.97 1.0

Meta#1 MFO 32.46 99.95 1.43 MFO 10.74 19.9 1.28
Meta#2 PSO 20.17 99.9 1.4 PSO 8.07 19.38 2.22
Meta#3 SSA 15.08 99.9 2.7 SSA 4.99 19.48 2.69
Meta#4 GA 14.86 99.95 1.29 WOA 3.7 19.06 2.57
Meta#5 WOA 12.44 99.38 1.43 MVO 3.55 17.97 0.91
Meta#6 MVO 11.52 99.38 0.67 GA 3.45 19.84 2.94
Meta#7 FFA 11.2 99.9 0.87 FFA 2.41 18.02 1.48
Meta#8 GWO 9.51 100.0 0.83 GWO 2.38 19.22 0.41

applies to quantization inefficiency analyses, even though the latter require RIs higher than
1.0 according to the RIs associated with high-ranked metaheuristics. Hence, further explo-
ration capabilities are needed to expose the hidden divergences between two similar DNNs
with different arithmetic precision in order to uncover the hidden divergences between them.
DeepEvolution vs TensorFuzz. Similar to the previous test objective, DeepEvolution
once again outperforms TensorFuzz in both DI rates and success rates. Even when Tensor-
Fuzz was able to produce a number of DIs as high as DeepEvolution, its corresponding success
rate was low, showing that our approach produces more diverse inputs and is less dependent
on the original input. Indeed, TensorFuzz supports the same DL domains, test objectives,
and the gray-box nature (exclusive use of the DNN’s last layer), as DeepEvolution. Nonethe-
less, TensorFuzz’s white-noise mutations and its fuzzing aspects make it more appropriate for
proving the existence of divergences rather than exposing the maximum number of unique
and diverse different-inducing instances for further quantization inefficiency analyses.

6.3 Threats to Validity

In this section, we address the potential threats to the validity of our research works along
with our countermeasures.

Selection of subjects. The selection of our experimental subjects, can be a threat to
validity. As a mitigation strategy, we use two variants of each evaluation subject with different
architectures and all of the considered variants are: (i) established state-of-the-art models,
(ii) trained on classification problems widely-used by the community, (iii) pretrained DNNs
or training programs from official sources.
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Table 6.7 A comparison of quantization assessment performance with different generation
techniques for audio classification problems

Depinto KWS
Algo %DI %S RI Algo %DI %S RI

TensorFuzz - 0.3 4.17 - - 0.32 4.3 -
RS - 1.56 88.75 1.0 - 14.12 97.19 1.0

Meta#1 GA 17.75 100.0 0.97 FFA 31.28 93.49 1.08
Meta#2 FFA 11.36 99.69 1.17 MFO 22.46 92.08 1.04
Meta#3 SSA 10.64 98.54 0.86 WOA 21.31 97.66 1.54
Meta#4 MVO 5.17 92.08 0.61 PSO 20.78 87.86 0.97
Meta#5 MFO 2.36 86.3 1.05 SSA 19.96 92.34 0.89
Meta#6 PSO 1.88 81.77 0.95 GA 19.23 97.24 1.12
Meta#7 GWO 1.69 91.35 0.24 MVO 19.13 85.62 0.74
Meta#8 WOA 1.51 100.0 1.5 GWO 16.92 98.44 0.25

Design choices. The configuration choices that we made throughout the development pro-
cess can be a threat. To overcome this threat, we implement 8 competitive metaheuristics
for the searcher component. We also perform a preliminary assessment of hyperparameters
in terms of balance between diversification and intensification. We found that the recom-
mended hyperparameters tested on various benchmark optimization problems are effective
for our search problem as well. We observed that further tuning of these hyperparameters
compromises the genericity of our approach, increases the costs, and yields dispersed re-
sults because the results are not transferable across architectures, classification problems,
transformation spaces, and even across different seeds of original test data. Concerning pop-
ulation_size and generation_number that control the total number of generated samples,
we also tried multiple combinations and we ensured that they guarantee fair comparisons,
whether it is just the random sampler or TensorFuzz. To ensure the semantic integrity of
the generated test inputs, we systematically take random samples of transformed inputs and
their associated validity scores to restrict further the ranges of distortion parameters for a
higher ratio of valid synthetic data. In addition, we reinforce this validation process with
manual inspection (i.e., hearing, seeing, or reading a pair of synthetic input and its original
source) by two of the authors on a sample of the synthetic data w.r.t a confidence level of
95% and an error margin of 5%.

Dealing with randomness. For reliable conclusions, we conducted experiments that take
into account the stochasticity inherent in the nature-inspired metaheuristics. To mitigate
the effects of randomness, all of the empirical evaluations of our approach are an aggregative
results of independent seed data along with a restart of the process with fresh samples of
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Table 6.8 A comparison of quantization assessment performance with different generation
techniques for text classification problems

BILSTM WordCNN
Algo %DI %S RI Algo %DI %S RI

TensorFuzz - 1.04 10.42 - - 0.11 4.17 -
RS - 1.79 38.65 1.0 - 0.22 23.44 1.0

Meta#1 WOA 3.68 50.0 1.04 MFO 0.24 18.65 1.01
Meta#2 MFO 2.77 41.51 0.98 GA 0.23 16.04 0.97
Meta#3 PSO 2.72 42.6 0.99 PSO 0.23 21.15 1.01
Meta#4 SSA 2.58 35.89 1.0 SSA 0.21 19.58 0.95
Meta#5 MVO 2.19 45.89 0.78 GWO 0.16 13.44 0.9
Meta#6 GA 1.93 29.79 1.0 FFA 0.13 8.91 0.75
Meta#7 FFA 1.88 37.86 0.98 MVO 0.12 8.75 0.57
Meta#8 GWO 1.54 28.39 0.91 WOA 0.07 5.52 0.58

inner random variables.

Generalizability to other DL applications. Despite most of related research works on DL
testing have focused on CNNs and simple image classification problems such as MNIST mnist
and CIFAR10 cifar10, we opt for more complex learning problems across many DL domains
that are solved by state-of-the-art DNNs with different optimized neural network architecture.
In addition, we detail the common design workflow that we conclude from our experiences to
provide a step-by-step process in case there is a need to extend or redefine some components
in order to include application-specific transformations or to enlarge the scope of domains.
Furthermore, we chose to design and assess DeepEvolution for classification problems because
their DL models achieve impressive results and they are widely used by the DL community in
several real-world applications across domains and their associated semantically-preserving
transformations are relatively straighforward to define, implement and configure based on the
label-invariant augmentation rules that have identified and released by the domain experts.
Nonetheless, applying DeepEvolution to regression problems shouldn’t be difficult as long as
we can define the expected output changes respective to the designed input transformation,
and hence, a new behavioral drift fitness function should be also designed to capture the
deviations induced between the continuous outputs to drive the search in the direction of
revealing incorrect ones. Finally, we emphasize that DeepEvolution is implemented in a
modular way to support the independent replacement or extension of any functionality.
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6.4 Chapter Summary

In this chapter, we propose, DeepEvolution, a search-based approach for metamorphic trans-
formation generation as the foundation for a generic-purpose testing framework for DNNs
across domains. First, while a test oracle for DNNs are challenging to set up given the cost
and laborious tasking of large-scale collection or simulation of novel inputs from scratch,
a derived test oracle based on metamorphic relations that are well matched to applied re-
quirements, can provide a good coverage of potential DNN failures in common and edge
scenarios. Second, having metamorphic transformations encoded in a vector space that can
be systematically explored by metaheuristic searching algorithms, enables the control of test
costs and the generation of test inputs directed towards discovering various of target faults:
(i) unstable behaviors of optimized DNNs against naturally-occurring input distortions; (ii)
divergent behaviors of quantized DNNs compared to their original counterparts. The evalua-
tion is done by using case studies with various recognition models trained on popular image,
speech, and natural language datasets. Results show that DeepEvolution successfully exposes
the inductive biases’ weaknesses and quantization inefficiencies across domains and neural
network architectures, and outperforms TensorFuzz, its competitor’s coverage-driven fuzzing
alternative.
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CHAPTER 7 PHYSICAL: PHYSICS-BASED ADVERSARIAL MACHINE
LEARNING

Over the past few years, computational physics and system engineering researchers [247–250]
have been increasingly exploring the potential of using machine learning (ML) to alleviate the
cost of hand-crafting physical system models. Particularly, deep learning (DL) [251], brought
forward a wide array of modern neural network architectures and training techniques. The
latter are very effective at approximating any mapping function between variables based on
observations and measurements, without prior knowledge of the underlying governing pro-
cesses. Therefore, the aircraft systems performance models are no exception. Nevertheless,
the inexpensive implementation cost of DL-based systems comes with significant trustwor-
thiness concerns, as shown by the adversarial attacks [13]. These issues have become a huge
obstacle for DL to overcome in modelling safety-critical systems in civil aircraft product
development. First, the experimental data cannot be an appropriate substitute for specifica-
tions in the absence of evidence supporting that the data distribution matches the operational
conditions. Thus, there is no guarantee that a deep neural network (DNN) trained over a
finite set of experimented operational scenarios, could generalize to behave correctly for new
operational conditions that were not represented in the original training datasets. Second, the
black-box nature of modern learning models and their resulting performance-driven complex
architectures no longer allows a full understanding of the complete structural design. Hence,
there is no direct method to assess the relevance of the learned latent patterns, whether they
support generalizability, or they result from a coincidental optimality of relying on some
spurious associations and weak inductive biases.

This chapter presents a novel approach, physics-guided adversarial machine learning (ML),
that improves the confidence over the physics consistency of the model. The approach per-
forms, first, a physics-guided adversarial testing phase to search for test inputs revealing
behavioral system inconsistencies, while still falling within the range of foreseeable opera-
tional conditions. Then, it proceeds with a physics-informed adversarial training to teach
the model the system-related physics domain foreknowledge through iteratively reducing the
unwanted output deviations on the previously-uncovered counterexamples. Empirical evalu-
ation on two aircraft system performance models shows the effectiveness of our adversarial
ML approach in exposing physical inconsistencies of both models and in improving their
propensity to be consistent with physics domain knowledge.

Chapter Overview. Section 7.1 introduces the essential concepts related to the chapter
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content. Section 7.2 presents our novel physics-guided adversarial testing for ML models.
Section 7.3 describes a designed physics-informed loss to improve the physics consistency
of the on-training ML solution. Section 7.4 reports evaluation results, while Section 7.5
concludes the chapter.

7.1 Background

This section describes the essential concepts of adversarial machine learning for regression
DNNs, and advances in the physics-guided machine learning.

7.1.1 Adversarial Machine Learning for regression DNNs

Adversarial Testing for regression DNNs

In the following, we introduce the analytical formulation of the adversarial testing problem.
Indeed, the objective of adversarial testing is to design adversary that allows us to detect the
data variation (δ) and the natural input (x) yielding an adversarial example x̂ = x + δ, for
which the model does not satisfy a given property C. Then, the adversary can be leveraged
to improve the satisfiability of the studied property by the model over foreseen inputs. The
model robustness represents the first major property that has been relatively well-studied for
supervised learning problems using adversarial testing. For regression problems, an epsilon ε
is introduced to transform the equality between the resulting discrete outputs into the below-
mentioned inequality to support robust comparisons between continuous outputs: ∀x̂, ‖x−
x̂‖ ≤ δ −→ |f(x)− f(x̂)| ≤ ε.

Robustness against adversarial examples raises the importance of building adversarial attacks
and defense techniques aiming at detecting and immuning models against these vulnerabilities
early on. While most research studies have focused on local robustness adversarial testing in
the context of computer vision system, our present work study the extension of this concept
to support other interesting properties: (1) Model physics consistency refers to verifying
that the predictions are consistent with the physics domain knowledge, which combines first
principles and apriori system design knowledge; (2) Model relevance represents the adequacy
of the learning capacity to be less sensitive to overfitting and more robust to fit new samples
from the data distribution.
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Adversarial Training for regression DNNs

Adversarial training is one of the most notable countermeasure, which was first proposed
by Goodfellow et al. [71], to improve the robustness of DNNs against adversaries, by re-
training the model on the adversarial examples found. For regression problem, Nguyen and
Raff [252] add regularization term in the loss function to encourage the numerical stability
around delta-local neighborhood. Given ‖∆x‖p < ε to denote that we are sampling a point
∆x uniformly from the p-norm ball of radius ε, we define adversarial robust loss as follows:

l(y, f(x)) + λ× E
∆x:‖∆x‖p<ε

[l(f(x), f(x+ ∆x)] (7.1)

where λ ∈ R+ controls the strength of defense regularization penalty. In fact, the above-
mentioned adversarial loss is composed of two components: the original loss measures the
difference between the target output y and the predicted output ŷ = f(x), and the regular-
ization penalty imposes that the expectation of the output between a point x and all points
within an Lp ball with radius ε around x are the same. Regarding adversarial training, our
designed physics-informed adversarial training places more generic cost in the loss function
too discourage converging to undesirable input-output mappings, which might be totally
incoherent with underlying physics domain foreknowledge.

7.1.2 Physics-guided Machine Learning

The impressive efficiency of deep learning in solving industrial problems gave rise to several
researches that worked on increasing the performance of data-driven system models using
domain knowledge. In [248, 249], a custom loss was proposed based on the domain knowl-
edge, which eliminates entirely the need for supervision data. Karpatne et al. [253] propose to
integrate a domain knowledge regularizer in neural networks to influence the model optimiza-
tion towards better generalization performance. Apart from modifying the loss optimization
problem, Ioannou et al. [247] shows that apriori structural knowledge could be included into
the model architecture design. In a similar fashion, researchers leverage prior knowledge
about the problem to incorporate feature invariance [254], to enable representations consis-
tent with physics domain knowledge through either implicit physics rules [255] or explicit
physics-based constraints [256]. None of these former researches can be directly applicable
to encode the physical relationships required in modelling our target aircraft systems simu-
lators. Instead, our physics-guided adversarial ML approach enables more flexibility as it is
designed and implemented independently from both of the deployed DL technologies and the
simulated physics-intensive system’s details. Indeed, our physics-guided adversarial testing
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accepts system-related physics domain knowledge in the format of input-output sensitivity
relations with an expected tolerance. Then, it generates optimized test cases to validate, in
a black-box fashion, the consistency of the model’s input-output mappings that have been
statistically inferred from the data. This is also applicable for the proposed physics-informed
regularization that performs a data driven fine-tuning of the model relying on the adversarial
inputs revealed during the test, which have exposed the model’s violations in regards to the
specified physics-grounded sensitivity rules.

7.1.3 Performance Modeling for Aircraft Systems Simulation

Civil aircraft product development involves complex feedback loops of development and opti-
mization to meet certification and performance requirements. This highly-iterative, complex
development workflow requires a combination of extensive domain knowledge, advanced sim-
ulation technology, expanded engineering experience and flight test control in order to build
high confidence over the designed systems’ behaviors. Engineers heavily rely on computerized
design aid solutions to model the physical system and assess its conformance with desired
requirements regarding principal functionality, safety and reliability. Thus, the system model
must be qualified to appropriately reproduce the system’s behavior throughout the range of
foreseeable operational conditions. This is utterly important to avoid uncovering issues late
during production or in-flight testing. Traditionally, physics modelling is used to analyze the
system-related physics principles and apriori knowledge of system design, in order to develop
physics-based models with detailed representations of underlying physics processes and strong
priors stemming from first principles and governing equations. Despite the gain in trustwor-
thiness resulting from the structural understanding of physical models’ latent variables and
equations, they often require comprehensive information about the aircraft physics, and rely
on challenging implementation, calibration, verification and validation processes [257, 258].
In the context of aircraft system performance assessment, deep learning technologies allow to
quickly infer data-driven models from experimental measurements, with less detailed system
knowledge than usually required by physics-based modelling. In particular, we are inter-
ested in studying aircraft systems performance simulation models that map stable features
at steady-state flight to quantities reflecting the system behaviors, under all the foreseeable
conditions in the flight envelope. In fact, time series of aircraft sensor data are collected
during flight test campaigns. Then, steady-state flight points are derived and preprocessed
meticulously from the collected flight test time series. They represent various flight states
in which conditions must remain stable over time for our physical assumptions to hold (i.e.
steady-state conditions).Given the high cost of flight tests, aircraft engineers often require
such limited-size preprocessed steady-state flight to conduct aircraft subsystems engineering
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analysis. Therefore, it is challenging to design and fit a data-driven simulation model that
can predict the system behaviors under the operating conditions of interest.� �For that reason,
the data-driven process of DL model development raises trustworthiness concerns about the
accuracy of the model on distant data points �at� �test time.

7.2 Physics-guided Adversarial Testing

We have developed an approach to assess how well a model is consistent with the foreknown
system-related physics domain knowledge. In the following, we detail the three principles of
the proposed approach, its integrated components, and the resulting physics-guided adver-
sarial testing workflow.

Figure 7.1 Overview of Physics-Guided Adversarial Machine Learning Phases and Workflow

7.2.1 Specification of Physics Domain Knowledge

Aircraft product development heavily relies on modelling physical processes and phenomena
to enable the interpretation of the interactions between the input quantities, x, and depen-
dent variables, y that are observed during a flight. In contrast, data-driven modelling consists
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of inferring statistically the mapping between the input quantities and the observed variables
from the collected experimental data without prior knowledge of the underlying governing
physics phenomena. Both system modelling approaches would serve similar engineering use
cases that mainly require the assessment of system behavior at different operating conditions
(i.e., normal and extreme flight scenarios). Even if the model’s mapping function does not
include explicitly physics equations, the statistically-inferred mappings should respect the
system-related physics processes as well. Hence, we propose the specification of the sys-
tem’s desired properties in terms of must-hold relationships between the input sensors data
and the target quantity of interest. Mathematically, the system domain expert codify these
foreknown relationships in a format of sensitivity rules that map a subset of oriented input
features variations (i.e., signed value changes) to anticipated variation trend of the output.
For instance, we might foreknow that increase of x1 ↗ and/or decrease of x2 ↘ lead to the
increase of f(x1, x2) = y ↗. These sensitivity rules are designed to be applied locally over
the genuine data points when system engineering experts can confirm that combined input
features variations usually map to higher order effects that are not necessarily detectable
locally within predefined bounds. Furthermore, we highlight that our defintion of sensitiv-
ities include the input features variations leading to no trend conclusion (i.e., a constant
model output). These special mappings with invariant output are commonly used to cap-
ture physics invariance principles, where the dependent quantity remains unchanged under
certain circumstances. In the following step, we deep dive into how the local search space is
defined to keep the transformed test inputs in the neighbourhood of the original data point
and constantly meet the foreseeable data conditions.

7.2.2 Inference of Physics-Guided Adversarial Tests

In this DL adversarial testing, we broaden the scope of adversarial tests to cover not only
invariance properties such as imperceptible image perturbations (largely applied to computer-
vision models), but also to assert the model’s input-output sensitivities with physics-grounded
expectations. Given the specified sensitivity rules, we can infer two main types of adversarial
tests depending on the expected deviation of the predicted quantity under the conditions on
input features:

Invariance Test: It restricts the input generation to the datapoint-wise local neighbours
that should share equal predicted quantity, in order to verify the consistency of the model
with experts’ invariant-output mappings, reflecting physics invariance principles. The test
assertion consists of the equality test between the model’s predictions on the original and its
derived synthetic data points.
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Directional Expectation Test: It applies the constrained perturbation of input features,
as outlined in the premises of the specified sensitivity rules. The resulting synthetic neigh-
bours data should lead to the expected directional deviation on the model’s predictions, as
foreknown by the experts in the conclusion of the sensitivity rules. Thus, the test assertion
depends on inferring the outputs of the model for both original datapoint and its craftly-
perturbed neighbors, then, makes sure the directional expected deviations happen (i.e., the
synthetic datapoints’ predictions should be either higher or lower than the original data-
point’s prediction).
Although the defined adversarial tests rely on sensitivity rules grounded by theoretical physics
laws and processes, they would be applied on experimental sensors data that might encouter
different sources of noise. Hence, we decide to soften the equations and inequalities involved
in the above-mentioned tests assertions by including a tolerable deviation error, toli, on any
measured sensor input, xi, according to domain expert guidances.

7.2.3 Search-based Approach for Physics-Guided Adversarial Testing

The backbone of the proposed physics-guided adversarial testing is the metaheuristic-based
optimization that searches for the erroneous behaviors of the DNN against the specified
physics-grounded sensitivity rules. Below, we explain the development steps that we follow
to construct this search-based testing approach.

Definition of the data search space

A physics-guided adversarial test may be one of two types depending on the assertion. It is
either to assert if the output is invariant, or if the expected directional deviation occurs. The
physics-based sensitivity rules specify the assertion type in their conclusions. As a result,
the input search space can be defined similarly for both types of physics-guided adversarial
tests. From the premises of the underlying sensitivity rule, we derive the space boundaries,
which include the upper and lower bounds of each involved input feature. For instance,
a sensitivity rule, stating that x1 ↗ and x2 ↘ −→ y ↗, corresponds to the subspace of
all the inputs, x̂, where x̂1 > x1 and x̂2 < x2. For each inequality in the feature space,
however, we still do not have the other side boundary. We could complete the missing
boundaries in the above-mentioned inequalities of feature space by using the full range of
expectations, [mi,Mi] for each input feature xi. Hence, the search space of inputs in the
example above is x̂, where x1 < x̂1 < M1 and m2 < x̂2 < x2. Other input features not
mentioned in the rule’s premises are denoted, xc, and they are supposed to remain constant.
In order to account for the experimental noise, we set their values range to be between
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[min(mi, xi − tolc),max(Mi, xi + tolc)]. The search of the derived input space corresponds
to sampling the neighbors of the original datapoints, for which the specified sensitivity rule
should permanently apply. As a result, these sampled neighbors datapoints would serve as
physics-based adversarial test inputs.

Definition of the foreseeable data constraints

Any part of an aircraft must meet its intended performance requirements in all foreseeable op-
erating conditions in order to be certified. United States Code of Federal Regulations (CFR),
part 25, for Jet aircraft design states that: “the equipment, systems, and installations
must be designed and installed to ensure they perform their intended functions
under all foreseeable operating conditions.” To simulate aircraft components under
different operating conditions of interest, the designed performance models should include
input features that reflect flight conditions (e.g., altitude, speed, and outside temperature),
in addition to the system-related sensor data. As a result, our test cases should pertain to
aircraft flight envelopes and foreseeable ambient conditions in order to represent meaningful
and useful simulation scenarios. There are physics processes that govern the interactions
between ambient conditions measurements and aircraft operating envelopes, which specify,
as an example, the maximum airspeed the aircraft can reach at a given pressure altitude.
Therefore, we define data constraints limiting the input search space to the foreseeable am-
bient and flight conditions. In order to be considered as valid test cases, the sampled inputs
must satisfy the defined foreseeable data constraints. In our performance models of aircraft
systems, we derived the foreseeable pairs of input features (altitude, airspeed) and (altitude,
ambient temperature) from the flight envelopes. Additionally, the operating airspeed is fur-
ther delimited when high-lift devices are extended (e.g., slats and flaps), according to the
aircraft operating conditions. To increase the likelihood of generating inputs that satisfy all
of the foreseeable data constraints, the latter are also incorporated into the input generation
problem.

Design of the fitness function

The fitness function, fitness(x̂), should directly measure how much the model’s prediction
for the input x̂ is inconsistent with the specified physics sensitivity rule, rj. Thus, the
generated input data with higher fitness values would have high chances to fail the underlying
adversarial test. Given the model f under test, an original input x and its derived synthetic
x̂ resulting from applying the rule, rj, the deviation from the desired behavior would depend
on the type of the adversarial test. Regarding the invariance test, we verify constant-output
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rules rj ∈ Rcons where the absolute difference between original and synthetic predictions,
|f(x)−f(x̂)|, can be the behavioral deviation. Concerning the directional expectation test, we
validate either increasing-output rules rj ∈ Rincr or decreasing-output rules rj ∈ Rdecr, where
the behavioral deviation would be, respectively, f(x)−f(x̂) and f(x̂)−f(x). Hence, the fitness
function should be equal to the behavioral deviation measure, fitness(x̂) = devf,rj

(x, x̂) that
can be formulated as follows:

devf,rj
(x, x̂) =


f(x)− f(x̂), if rj ∈ Rincr

|f(x)− f(x̂)|, if rj ∈ Rcons

f(x̂)− f(x), if rj ∈ Rdecr

(7.2)

Using the behavioral deviation measure devf,rj
(x, x̂), we can generalize the assertion of both

adversarial test types to be the inequality, devf,rj
(x, x̂) > tolj, where tolj is the tolerance

predefined for the output quantity.

Implementation of metaheuristic-based optimizers

We apply SBST, using population-based metaheuristics to drive optimally the data gener-
ation towards diverse prominent regions in the input space of the underlying adversarial
test. In line with the No Free Lunch Theorem (NFL) [235], we implement two concurrent
population-based metaheuristics, PSO and GA, that are described in 2.2.1. Then, we tune
each metaheuristic algorithm’s hyperparameters to appropriately tune its level of nondeter-
minism and balance between the intensification (exploiting the results and concentrating the
search on regions near effective solutions found) and diversification (exploring non-visited
regions to avoid missing interesting potential solutions) [242]. In our test data search, we
aim for the optimal balance between new test inputs that are sufficiently different from the
old ones to uncover new regions of interest while at the same time similar enough to test
inputs that have high fitness values to uncover more adversarial examples, which belong to
the interesting regions that were previously found. Besides, the enhancement of the fitness
values, over iterations, produces new test inputs with higher deviations with respect to the
expected behavior, and hence, these test inputs would have likely better chances to expose
DNN’s physics inconsistencies. There is, however, no optimal or suboptimal solution that
would represent, in our case, the test input with the highest fitness. Consequently, we mod-
ify slightly the standard design of population-based metaheuristics to continuously monitor
adversarial examples among evolving feasible solutions. A feasible solution is any valid test
input that successfully meets all the sets of foreseeable constraints. A valid test input that
violates the underlying physics sensitivity rule constitutes an adversarial example.



169

By completing all the above construction phases, we arrive at the proposed physics-guided
adversarial testing workflow shown in Figure 7.1, which lays out the steps in the following
order: (1) For each original input, x(i), and sensitivity rule rj, the search space is instantiated
according to the premises of rj and the features’ values of x(i); (2)With the current sensitivity
rule rj and the model under test f , the deviation function, devf,rj

, would be as in Eq. 7.2; (3)
The population-based metaheuristic algorithm would search over the input space for the most-
fitted entries, i.e., the ones triggering high deviation values and satisfying all the foreseeable
constraints; (4) For all the generated synthetic inputs X̂i,j, a follow-up adversarial test would
assert if the computed deviation, devf,rj

(xi, x̂i,j), exceeded a prefixed threshold, which by
default equals the rule tolerance. tolj. Each revealed adversarial example, x̂adv, should also
be stored along with its metadata (parent index i, expected deviation d, permissible tolerance
tolj).
As the leveraged metaheuristic algorithms are iterative, our workflow encapsulates a nested
loop of the steps, (3) - (4), that would be repeated for a total of maximum iterations, K.
Indeed, the searcher starts at the first iteration, k = 0, with a population of candidate inputs,
X̂

(k)
i,j , randomly sampled from the neighbors of x(i) w.r.t the premises of rj. Then, it computes

their fitness scores, as follows, fitness(x̂) = devf,rj
(x(i), x̂) ∀x̂ ∈ X̂

(k)
i,j , and captures all the

x̂adv that meet the condition of fitness(x̂adv)> tolj. Afterwards, the metaheuristic update
routines evolve the population, X̂(k)

i,j , and derive new candidates, X̂(k+1)
i,j , that are probably

better than their predecessors in terms of fitness. Thus, the main loop of our workflow
consists of running all of the steps (1→ 4 ) for all the original inputs, X, as well as for all the
applicable sensitivity rules R. Thus, the semi-supervised adversarial examples, X̂adv, would
serve us later in fine-tuning the DNN’s mappings to capture the underlying physics processes
and system-related properties.

7.3 Physics-informed Adversarial Training

Regularization penalties are often developed by ML scientists that reflect model complex-
ity and encourage optimizers to find simpler mapping between features and outputs. Thus,
the loss function would be written as follows, l(y, ŷ) + λ.R(θ). The widely-used regular-
ization penalties are L1-norm and L2-norm on the parameters, which respectively impose
low-magnitude parameters and sparse parameters (i.e., with zeroed coefficients). In this sec-
tion, we propose a physics-informed regularization by devising a penalty that encourages
the training algorithm to maintain a reasonable level of physics consistency in the learned
mapping function.
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7.3.1 Physics-informed Regularization Cost

A follow-up fine-tuning procedure will leverage revealed adversarial examples to fix these
erroneous behaviors, similarly to conventional adversarial learning 7.1.1. Nevertheless, it is
natural to retrain using the semantically-preserving adversarial examples as we expect no
change in class label or slight deviation from continuous output. In contrast, we need to
be prepared for a deviation in the predicted outputs in response to our produced synthetic
inputs, x̂, but we are aware of the correct direction of the change in the model’s predictions,
based on the physics-based sensitivity rule, rj. As a result, we introduce a variable d equals to
1 or −1 if we expect the output to increase (rj ∈ Rincr) or decrease (rj ∈ Rdecr), respectively,
and d = 0 if we do not expect any significant change in the output (rj ∈ Rcons). Therefore,
we aim to design a physics-informed regularization that uses the semi-supervised, generated
test data assembling the transformed inputs x̂, the expected change direction d, and the
reference pointed to its parent input x. As a first step, we were inspired by the hinge_loss=
(0, 1−f(x).y), which is commonly used for maximum-margin classifiers [259], such as support
vector machines (SVMs). The hinge loss is a specific type of cost function that incorporates
a margin from the hyperplane, representing the classification decision boundary. Thus, it
penalizes even correctly-classified data points if they are very close to the hyperplane, i.e.,
their distances are less than the margin. In addition to placing the data points on the correct
side of the hyperplane, the hinge loss encourages the classifier to place them beyond the
margin as well. Indeed, the distance from the hyperplane can be regarded as a measure of
confidence. Therefore, we estimate the physics-consistency error to reflect how far the model
deviates from the expected change direction, using the deviation function (Eq. 7.2). Then, we
ignore any noise-induced deviations within the margin of error by using the domain-specific
tolerance, tol, defined by experts. Afterwards, we square the non-zero deviations to give a
stronger weighting to larger differences and to follow the same scale as the squared prediction
errors. The resulting regularization cost for the model f under test can be formulated in the
below Eq. 7.3.

Rphys(x, xadv) =


(max(tol, f(x)− f(x̂))− tol)2, if d = 1

max(tol2, (f(x)− f(x̂))2)− tol2, if d = 0

(max(tol, f(x̂)− f(x))− tol)2, if d = −1

(7.3)

where xadv = (x̂, d, tol), x, x̂ ∈ RD, d ∈ {−1, 0, 1}, tol ∈ R+.
Then, we generalize the regularization cost in a single generic function that includes all the
types of our physics-based adversarial test assertions, as below formulated in Eq. 7.4.

Rphys(x, xadv) = [max(tolp2 , ((−1)p3(f(x)− f(x̂)))p2)− tolp2 ]p1 (7.4)
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where p1 = 1 + d2, p2 = 2− d2, p3 = |d|(d+1
2 + 1).

Furthermore, we would emphasize the importance of including a regularization tolerance,
tol as a predefined hyperparameter, which can be equal, by default, to the tolerance used
in adversarial detection to overcome experimental noises. In the absence of this tolerance,
the physics-informed regularization would likely push the model towards having, empirically,
zero cost in terms of violating theoretical physics rules, but based on experimental data.
Hence, we run the risk of stagnation and perhaps even divergence as we attempt to strictly
apply the physics rules to noisy data.

7.3.2 Physics-informed Adversarial Training Algorithm

For the sake of simplicity, we have presented our physics-informed regularization cost estima-
tion on a pair of original, x, and adversarial inputs, x̂. To avoid sub-optimal local minima,
we usually use mini-batch stochastic optimization for training DNNs. So, we will also apply
a mean reduction strategy to the regularization costs of all inputs in a batch. The mean
over the sum reduction is chosen because it preserves the invariance of the loss scale to the
batch size, and it is aligned well with the mean squared error, commonly used as data loss
for regression models. Therefore, the physics-informed loss function that sums the original
loss and the cost of its integrated regularization for batches of data (Xb, yb) can be defined
as follows:

lphys(Xb, yb, Xb
adv) = l(f(Xb), yb) + λphysRphys(Xb, Xb

adv)

where Xb
adv = (X̂b, d, tol), x ∈ RB×d, X̂b ∈ RM×d, d ∈ RM , tol ∈ RM

+ , λphys ∈ R+ controls
the strength of the physics-informed regularization penalty.
In our preliminary experiments, we observed that the choice of lambda, λ, could be challeng-
ing and hinder the performance of physics-informed adversarial training. Below we describe
the two identified major challenges in lambda, λ, setup with respect to the substantial dif-
ferences in magnitude of both costs (namely, data loss and regularization).
Unfair cold start conditions between both costs: In fine-tuning, we start with pre-
trained DNN and its corresponding adversarial examples that highlight its revealed incon-
sistencies with the underlying physics sensitivity rules. As a consequence, it is natural to
have initially low data loss, l(f(X(b)), y(b)), and a high physics-informed regularization cost,
Rphys(X(b), X

(b)
adv). Thus, the fine-tuning process focuses primarily on minimizing physics-

informed regularization cost, while being excessively tolerant of substantial increases in data
loss, as long as the total sum-up loss, including the regularization penalty, continues to
decrease. As a solution to this starting bias, we set lambda, λ, in a way that aligns the
magnitudes of both costs from the beginning (i.e., the first iteration) in order to start from
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fair initial conditions.
Substantially different sizes of adversarial batches over iterations: Despite the
use of mean reduction in each cost to normalize over the batch data, we face cases where
the original batch has no corresponding adversarial examples or may have several of them.
This induces substantial differences between the batch data loss, l(f(Xb), yb), and its related
physics-informed penalty cost, Rphys(Xb, Xb

adv); so we dynamically update the lambda value,
λphys, in order to adapt the magnitude of the additional penalty cost depending on its initial
order of magnitude, whenever it exists (i.e., not null). As a reference loss value, we use
the average loss estimated over all the batches using the best fitted model before starting
the fine-tuning, because the batch losses could substantially differ too and destabilize the
convergence.
To illustrate how the physics-informed adversarial training algorithm works, we describe the
remaining steps of the workflow in Figure 7.1 and we refer to the lines of code from the
Algorithm’s Pseudo Code 7.1: (5) The algorithm guarantees non-divergence from the best-
fitted state as it iterates over batches of original data, X(b), (code lines 6-7) and watches
the model’s loss on them (code line 13), which means there is no substantial degradation in
regards to the fit of the original distribution; (6) It searches all AXs, X̂(b)

adv, and their meta-
data including expected change directions D(b) and deviation tolerance T (b), which have been
revealed relying on the original input, X(b) (code line 10), and computes their corresponding
physics-informed regularization cost, Rphys(Xb, Xb

adv) (code line 15); (7) It dynamically cal-
ibrates the magnitudes of both losses (code line 17), by inferring the lambda coefficient, λ,
(code lines 22-26) to keep the regularization cost aligned with the base loss (i.e., the model’s
average data loss at launch).

#prepare the base data loss as the model loss before fine-tuning

preds = DNN(X)

base_data_loss = MSE(y, preds)

for epoch in epochs:

indices, X, y = shuffle(X, y)

batches = data_loader(indices, X, y, batch_size)

for indices_b, X_b, y_b in batches.iterate():

preds_b = DNN(X_b)

#search all the adversarial examples connected to the current batch

entries

X_adv, d_adv, t_adv = adversarial_data.search(indices_b)

preds_adv = DNN(X_adv)

#compute the data loss

data_loss = MSE(y_b, preds_b)
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#compute the physics regularizatio cost

reg_cost = R_phys(preds_b, preds_adv, d_adv, t_adv)

#compute dynamically lamda to align the magnitudes of both losses

lamda = pow(10, magnitude_order(base_data_loss/reg_cost))

#aggregate both losses

loss = data_loss + lamda * data_loss

DNN = update_model(DNN, loss)

def magnitude_order(value):

’’’computes the magnitude order of a real value.

For example, (0.004) --> (-3), (105) --> (2)

’’’

return math.floor(math.log(value, 10))

Pseudo-Code 7.1 Physics-Based Adversarial Training Algorithm

7.4 Evaluation

In this section, we introduce two industrial case studies, as well as our evaluation setup,
metrics, and methodology. Next, we test the effectiveness of our physics-guided adversarial
machine learning approach for assessing and improving the trustworthiness of neural networks
used to simulate aircraft performance.

7.4.1 Experimental Setup

Case Studies

Two aircraft systems performance simulation models were used in our empirical evaluation.
The first case study consists of an aircraft performance (referred to as A/C Perf.) model
mapping steady-state angle of attack (α) to features related to flight conditions and wing
configurations. The second case study consists of an in-flight wing anti-icing performance
(known as WAI Perf.) model mapping wing leading-edge skin temperature sensors to fea-
tures related to flight conditions, wing configurations, and high-pressure pneumatic system
conditions at the wing root. Indeed, Jet aircraft often use hot-air ice protection systems that
prevent ice accumulation over the wings during flight. Thus, the performance of the In-flight
wing anti-icing system is determined by its ability to sustain, under all foreseeable conditions,
a wing leading-edge skin temperature sufficient to prevent ice formation. These case studies
were run on the regression data sets summarized in the Table 7.1 where N is the number of
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steady state flights and D is the number of dimensions. The problem-related data (features

Table 7.1 Size and dimensionality of data sets

Dataset N D
Aircraft Performance Data 1338 5
Wing Anti-Icing Performance Data 90 10

and targets) as illustrated in Table 7.2 and 7.3, were obtained from flight test campaigns
and were provided as a dataframe, with entries representing distinct steady-state flights, and
columns representing selected features. Indeed, these steady-state flight points are derived

Table 7.2 Aircraft performance Data Catalog

Name Type

Features

Calibrated Airspeed Real
Aircraft Weight Real
Slat Angle Dichotomous
Flap Angle Categorial

Target Angle of Attack Real

Table 7.3 WAI Performance Data Catalog

Name Type

Features

Angle of Attack Real
True Airspeed Real
Pressure Altitude Real
Pressure of Wing Root Real
Temperature of Wing Root Real
Total Air Temperature Real
Slat Angle Dichotomous
Flap Angle Categorical

Target A-Wing’s Skin Temperature Sensor Real
B-Wing’s Skin Temperature Sensor Real

and preprocessed meticulously from costly flight test time series. They represent various
flight states in which conditions must remain stable over time for our physical assumptions
to hold (i.e. steady-state conditions). As can be observed, the number of flight datapoints
may differ substantially due to the difficulty of relevant steady state extraction. In our study
cases, the A/C performance model lies on standard flight parameters (i.e., speed, altitude,
and weight), which are often found to be stable during flight. Hence, we were able to col-
lect numerous datapoints that correspond to conditions commonly encountered in flight test
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campaigns. On the other hand, the steady-state datapoints for WAIS performance modeling
are quite difficult to extract. They require the aircraft pilot to fly for quite a long time (i.e,
up to tens of minutes) during which the WAI system is precisely configured. Given the high
cost of flight tests, aircraft engineers often require such limited-size preprocessed steady-state
flight to conduct aircraft subsystems engineering analysis. They employ extensive advanced
analytics combined with their domain knowledge to provide the necessary demonstrations for
certification with the minimal data points. This is known as critical point analysis (CPA).
For example, certification of engine icing protection mechanisms [260] requires the analysis of
the most critical points that provide evidence of the systems’ effectiveness across the entire
ice envelope under all foreseeable operating conditions (hold, descent, approach, climb, and
cruise). With either a limited set of critical points or a high coverage of normal operating
conditions, it is challenging to design and fit a data-driven simulation model that can predict
system behaviors under all the foreseeable conditions in the flight envelope. To circumvent
the limited size of datasets, the engineering team defined system-centric transformations,
as outlined in Table IV. Given the limited range of variation t within [-10, 10], the one-to-
many augmentation rule, A1, mimics different equilibrium states of temperatures based on
the genuine flights to enhance the diversity among the training samples. The one-to-one
augmentation rules, A2, A3 and A4, serve as boundary conditions that help inject artificial
data points with the aim of improving the model’s data fitness. In the following, we de-
scribe the augmentation rules from Table 7.4 and their rationales. The expected variation of

Table 7.4 Augmentation Rules for WAIS Perf. Model

Status Rule Premises Conclusion

ON
A1

TAT + t , TWR + t ,
T a,bskin + t

∀t ∈ [−10, 10]

A2 PWR = 0 T a,bskin = TAT

A3 TAS = 0 T a,bskin = TWR

OFF A3 TWR = TAT T a,bskin = TAT

leading-edge skin temperatures, T iskin, i ∈ a, b, must be approximately equal to the variations
of temperature at wing (TWR) and the total air temperature (TAT) when the later is equal
and within a predefined range. In A1, aircraft engineers have fixed an absolute difference less
than 10. In A2, the rule sets the PWR to 0, eliminating the flow of WAI through the wing,
which consequently cancels the effect of TWR on the skin temperatures. Thus, they become
equal to TAT. In A3, the rule simulates synthetic data points at extreme conditions, by at-
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tributing 0 to the airspeed (TAS). Theoretically, this results in no forced convection and the
wing skin cannot transfer heat to the outside air. Thus, both T askin and T bskin should be equal
to TWR. In addition, the augmentation rule, A4 can be applied when WAI is deactivated.
It sets TWR to be equal to TAT; so TAT and TWR are set to the same value. Accord-
ingly, the two leading-edge skin temperatures must be approximately equal to this value. For
further details on the heating and cooling principles governing the WAI system, we refer to
our explanation of its physics-grounded sensitivity w.r.t each input quantity in Section 7.4.1.
Thereby, the training data loader incorporates an online augmentation step that randomly
transforms the mini-batches feeded to the on-training model. It helps prevent overfitting as
the model rarely encounters the exact same inputs multiple times and cannot simply memo-
rize them. Our online augmentation randomly applies one of the defined augmentations half
of the time, i.e., a genuine training input can be transformed with a probability of 0.5. As
certain simulation-driven risk analyses are conducted under extreme and rare conditions with
low coverage, our physics-based adversarial ML leverages both system-related and physics
domain knowledge to validate and improve the physics consistency of the statistically-learned
models; this makes them more viable alternatives to purely physics-based simulators. In ad-
dition, the flight envelopes for the studied Jet aircrafts, which included the parameters of
interest, were gathered from the internal specifications of Bombardier aircraft products.

Physics-based Sensitivity Rules

In the following, we briefly expose the physic-based high-level requirements for the above-
mentioned systems in terms of input-output sensitivity rules using expert know-how. The
specifications of the rules are inferred from a detailed knowledge of the aircraft performance
principles [261] and the local heat transfer characteristics [262] that arise from energy, mo-
mentum and mass balance over an aircraft wing.
A/C Performance Model. The performance model of the studied aircraft is associated
to the fundamental performance characteristics of an aircraft. It associates the aircraft ori-
entation to the amount of weight it can lift at a certain speed. The model uses calibrated
airspeed (CAS), a quantity that is by definition strongly correlated to the true airspeed. The
model also assumes non-accelerated flight at small flight path angles; hence the lift is approx-
imately equal to the aircraft weight (ACWT). From the laws of motion and basic knowledge
of air flow around thin bodies, one can infer several sensitivity relations between system’s
inputs and output. First, one can state from Newton’s third law that aircraft wings create
an upwards force by deflecting air flow downwards. When airspeed increases, less deflection
is necessary to produce the same force. This relation holds true for thin, smooth profiles at
low deflection angles, for which the airflow deflection is assumed to be strongly correlated to
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the angle of attack (α). Thus, α is inversely correlated to CAS at constant ACWT. Second,
Newton’s third law also justifies the assumption that greater air flow deflection generates
more lift, allowing to carry more weight. Therefore, α is positively correlated to ACWT
at constant CAS. Third, aircraft’s slats and flaps are devices designed to increase lift when
flying at low speed. Hence, it is expected to observe operationally a lower aircraft α as these
high-lift devices are deployed. Therefore, in normal operations, α is expected to be negatively
correlated to the slat deployment bit, and to the flap angle. These three a priori observations
are then encoded into physics-based sensitivity rules, as shown in Table 7.5.
WAI Performance Model. During flight, the anti-icing capability of jet aircraft wings

Table 7.5 Physics-grounded Sensitivity Rules for A/C Perf. Model

Rule Premises Conclusion
r0 ∈ Rincr CAS ↓ , ACWT ↑ , Flap ↓ , Slat ↓ α ↑
r1 ∈ Rdecr CAS ↑, ACWT ↓, Flap ↑, Slat↑ α ↓
r2 ∈ Rcons CAS ↔ , ACWT ↔ α ↔

is determined by the control of the leading-edge skin temperature, measured as T iskin, i ∈ a, b,
which prevents ice from forming on the wings. For hot-air anti-icing systems, adequate skin
temperatures are assured by the hot air flow stream entering the wing at temperature (TWR)
that compensate for the loss of temperature caused by the ambient air surrounding the wing
(at temperature TAT). As a matter of fact, an increase of TAT and TWR will result in
warmer skin temperatures. Based on energy conservation and convection heat transfer [263],
the efficiency of the energy exchange between the internal and external air streams can be
encoded with the following sensitivity rules with focus on some key variables. First, an in-
crease of WAI pressure at the wing root (PWR) induces increased internal air flow to raise
the skin temperatures, T askin and T bskin. Then, a higher aircraft air speed (TAS) eases the heat
exchange with the outside air, which pushes skin temperatures closer to those of the outside
air stream. Inversely, an elevated altitude (ALT) causes the air density to decrease along with
the heat exchange with the outside, which consequently raises both of T askin and T bskin. Also,
these skin temperatures are negatively correlated to the angle of attack (α) which affects the
pressure and airflow temperature distributions above the wings, causing fluid to accelerate
more rapidly in the upper side wing areas. When the WAIS is turned off, the effects of input
features, namely, TAS, ALT, and TWR become negligible, which results in more compact
sensitivity rules with less variables in the premises. A wing skin temperature, T iskin, i ∈ a, b,
reaches the total air temperature (TAT) at steady-state if WAIS is deactivated. Hence, vary-
ing the aircraft’s speed or altitude does not directly affect the skin temperatures, T askin and
T bskin, but they influence the atmospheric conditions outside the aircraft. We already account
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for these effects with the concept of total air temperature (TAT). Furthermore, they are not
affected by variations in TWR, since there is no flow of WAI passing through the wing. Last,
the slat extension (SLAT) and flap angle (FLAP) were discarded in the sensitivity rules for
the wing anti-icing system (WAIS) because their effects on skin temperatures are difficult to
characterize. SLAT and FLAP variations induce local changes in the flow behavior over the
wing surface, but the resulting sensitivity of T iskin, i ∈ a, b depends on the exact location of
the wing temperature sensor. Characterizing the sensitivity would require advanced model-
ing based on a precise analysis of the local flow patterns with computational fluid mechanics
modeling methods. Therefore, Table 7.6 summarizes all the physics-based sensitivity rules
that can be exploited by our approach on WAI performance model’s during a physics-guided
test session.
Both system models lack physics-grounded invariant rules, but we added a constant-output

Table 7.6 Physics-grounded Sensitivity Rules for WAIS Perf. Model

Status Rule Premises Conclusion

ON r3 ∈ Rincr

ALT ↑ , TWR ↑ , PWR ↑ ,
T a,bskin ↑

TAT ↑ , TAS ↓ , α ↓

r4 ∈ Rdecr

ALT ↓ , TWR ↓ , PWR ↓ ,
T a,bskin ↓

TAT ↓ , TAS ↑ , α ↑

OFF
r5 ∈ Rincr TAT ↑ , PWR ↑ , α ↓ T a,bskin ↑

r6 ∈ Rdecr TAT ↓ , PWR ↓ , α ↑ T a,bskin ↓

Both r7 ∈ Rcons

ALT ↔ , TWR ↔ , PWR ↔ ,
T a,bskin ↔

TAT ↔ , TAS ↔ , α ↔

sensitivity rule for each model, r2 and r7, that describes the degree to which the model’s
output can change as input features change. Following expert guidance, domain-specific
tolerances are used to define the radius of perturbations on the inputs and the maximum
unsigned deviations of the outputs. Indeed, the invariance tests are essential to ensure the
smoothness of the learned mapping function as well as its numerical stability to be a viable
simulation solution for one of these smooth or piecewise-smooth dynamical systems.

Models

Our base nonlinear regression model is a feedforward neural network(FNN) that is trained
using the Mean Squared Error (MSE) loss function with L2-norm regularization. Rectified
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linear units (ReLU) are used as hidden layer activation functions, and Adam is used as
the optimization algorithm. In regards to the architecture, we followed the design principle
of pyramidal neural structure [136], i.e., from low-dimensional to high-dimensional feature
spaces/layers, as well as these dimensions are powers of 2 to achieve better performance on
GPUs [264]. Regarding the preprocessing, both of data inputs and outputs are scaled to
have zero mean and unit standard deviation before getting used by the training algorithm in
order to standardize their units.
A/C Performance FNN. It assembles three layers with, respectively, 128, 64, and 32
neurons. The best-fitted parameters were obtained by a training of 250-epochs using a batch
size of 64, a learning rate of 1e− 4 and an L2-norm weight decay coefficient of 5e− 4.
Wing-anti Icing Performance FNN. It stacks the consecutive layers including 256, 128,
and 64 neurons. The best-fitted state was reached with 300 epochs of training using a batch
size of 16, a learning rate of 1e− 3 and an L2-norm weight decay coefficient of 1e− 4.
Next, we describe the hyperparameters tuning strategy we adopt to find the above FNNs for
our case studies.

Hyperparameters

For the FNNs hyperparameters tuning, we leverage the random search strategy to sample
several trials of the settings, and we use out-of-sample bootstrap validation that enables
stable estimations for relatively small datasets, in order to infer the expected predictive
performance of each configuration. A model is trained using a bootstrap sample (i.e., a
sample that is randomly drawn with replacement from a dataset) and tested using the rows
that do not appear in the bootstrap sample. Indeed, we use a 100-repeated out-of-sample
bootstrap process, where the resampling with replacement is repeated 100 times. To outline
the ranges of the different tuned hyperparameters, we denote linspace(a, b, n) to indicate the
range of n equi-spaced values within [a, b] and logspace(c, d, base) to indicate the interval of
basec, basec + 1, .., based, where c < d. Starting with the capacity-related hyperparameters,
the depth of the neural network is selected from linspace(1, 6, 1), and the size of layers
is sampled from the binary logarithmic space, formulated as logspace(5, 10, 2), which keep
the enabled learning capacity for the FNNs in accordance with the actual complexity of
our case studies. Then, the remaining hyperparameters were tuned as follows: learning
rate η ∈ s ∪ 3 × s, weight decay λ ∈ s ∪ 5 × s, where s = logspace(1, 5, 10). Batch size
was tuned in logspace(3, 7, 2), and epochs count in linspace(50, 500, 50). Concerning the
hyperparameters that control the exploration-exploitation trade-off of the involved nature-
inspired population-based metaheuristics, we opt for grid search strategy to assess their
performances under different alternative settings and find the best configuration in terms of
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the total count of the revealed unique valid inputs. For PSO, w, ϕp, and varphig were tuned
in linspace(0.1, 0.95, 0.05), which lead us to set up PSO-enabled test generator with w = 0.8,
ϕp = 0.65, and varphig = 0.75. For GA, pmutation and rparents were tuned, respectively, in
linspace(0.1, 0.95, 0.05) and linspace(0.1, 0.5, 0.05), which ends up with the configuration of
pmutation = 0.25 and rparents = 0.3. In addition, several binary crossovers for breeding were
tested such as one-point [59], two-point [59], or uniform [59], and the one-point crossover
operation outperforms the others for our test input generation problem. Last but not least,
we rely on system engineering experts’ judgment and the operating specifications of the
aircrafts used in the flight test data in order to fix the tolerances and the confidence intervals
in relation with the features and targets in our case studies.

Evaluation Strategy and Metrics

Due to the limited-size of flight test data for both studied system performance, we adopt a
10-fold cross-validation method for all experiments in order to have different splits for the
training and validation datasets and quantify the target metrics by averaging their values
over the 10 iterations. Besides, all the included estimated metrics are computed as average
values over 5 runs or more, in order to mitigate the effects of randomness inherent in meta-
heuristic search algorithms. Below, we introduce the different evaluation metrics that have
been used in the empirical evaluations.
%ValIn. It represents the ratio of valid inputs with respect to the total of all generated
inputs. Valid inputs are those that comply with all the foreseeable constraints that encode
nonlinear interactions between the input features, as determined by the aircraft operating
conditions and atmospheric conditions.
%DupIn. It represents the ratio of duplicate inputs with respect to the total of all adver-
sarial inputs. In our semi-supervised adversarial datasets, duplicate entries are defined by
a pairwise Euclidean distance, i.e., two real-valued input vectors with a distance of zero are
considered to be duplicates.
#AdvIn. It consists of the number of adversarial inputs, i.e., those that contradict our
physics-based sensitivity rules based on their corresponding deviation function, as formu-
lated in Eq. 7.2.
The following are two metrics based on Percentage Change, which represents the degree of
change relative to a base starting point. It can be the percentage of either increase or de-
crease, which are basically the amount of, respectively, increase or decrease, from the original
quantity to the final one in terms of 100 original parts.
%Improv_AdvIn. The improvement we achieve by regularizing can be estimated using
the percentage of decrease in the revealed adversarial test inputs from the original model to
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its regularized counterpart, as formulated in the below Eq. 7.5.

%Improv_AdvIn = pre-#AdvIn− post-#AdvIn
pre-#AdvIn × 100 (7.5)

Where pre-#AdvIn and post-#AdvIn refer to the actual number inconsistencies (#AdvIn)
revealed before, i.e., using the original version of FNN and after the physics-informed ad-
versarial learning, i.e., the regularized version of FNN. RMSE. It stands for Root Mean
Square Error, which averages all the quadratic deviations between the predicted values and
the true/observed ones, and then computes its square root to have an error measured on
the same scale as the output. Deviations are proxies for expected prediction errors, since
the estimations are based on an out-of-sample, unseen test dataset. In general, RMSE is
non-negative and lower values are better than higher ones.
%Change_RMSE. It consists of the percentage increase, as formulated in the Eq. 7.6,
because it is unknown in advance how physics-informed regularization will affect prediction
errors. Thereby, positive values (highlighted in red) indicate the on-watch metric, RMSE,
increase whereas negative values (shown in green) indicate RMSE decrease.

%Change_RMSE = post-RMSE− pre-RMSE
pre-RMSE × 100 (7.6)

To obtain domain experts’ feedback, we recruited two senior engineers from our industrial
partner, Bombardier Aerospace: The first engineer works in the aircraft performance team
and provides us with feedback regarding the first study case. The second engineer is a
specialist in the thermodynamics engineering team and has the expertise required for the
second study case. Afterwards, we interviewed them separately to gather their opinions
on the strengths/weaknesses of the proposed physics-guided adversarial machine learning,
and their experience on the usage of the web-based interface and its provided configurable
parameters.

Software

The physics-guided adversarial learning framework was developed in Python. It uses Py-
torch [265], an established DL framework for modelling and training neural networks. In
addition, our implemented search-based techniques were based on an adaptation of the open-
source python libraries, pyswarm1 and geneticalgorithm2, to meet the specifications of our
designed population-based metaheuristic search algorithms. As a user-friendly version for
1 https://pythonhosted.org/pyswarm/ 2 https://pypi.org/project/geneticalgorithm
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the collection of domain experts’ feedback, we develop a web-based interface for the physics-
guided adversarial ML approach in order to facilitate the live user tests.

7.4.2 Experimental Resuls

We assess the effectiveness of the proposed approach using the following research questions:

RQ1. How effective is the approach at detecting physics inconsistencies?

Motivation. The objective is to assess how effective our approach is at testing the physics
consistency of a DNN by exposing adversarial examples that highlight problematic regions
in the input space, where the model deviates from the foreknown domain knowledge.

Method. We experiment our testing approach using different sizes of data generations, i.e.,
total of generations G equals to the product of generations count, maximum of iterations,
the number of rules, and the number of original inputs, while counting and storing the found
adversarial examples. Then, we run the physics-guided adversarial testing on both perfor-
mance models at each iteration of the cross-validation process, using training and validation
dataset splits. Thus, all the estimated counts would be an average of the obtained adversarial
examples over the separate cross-validation splits. Besides, we turn off our metaheuristic-
based searching algorithm by switching to randomly sampling inputs from the search space
of the underlying sensitivity rule, and verifying their validity against the foreseeable data
constraints. This input random sampler (RS) represents our simple and inexpensive baseline
to assess the added value of the metaheuristic-based searching algorithms in improving the
fitness of test inputs over the course of generation. In order to ensure a fair comparison, we
sampled a total of random inputs equal to the previously-calculated size of data generations
for the studied nature-inspired metaheuristics, PSO and GA.

Results. Table 7.7 shows the occurrences counts of unique adversarial inputs (i.e., their
predictions are inconsistent with physics-based sensitivity rules) revealed by each search-
based method for each performance model, each dataset split, as well as increasing trial
sizes.

As can be seen, the average counts of unique adversarial examples (i.e., Column Avg. #AdvIn
in Table 7.7) are non-zeros. Actually, the foreseeable synthetic inputs that our approach
produces to stress the conformity of models with physics-grounded sensitivity rules, have
exposed physics inconsistencies regardless of the employed search algorithm.

Finding 1: The designed physics-based adversarial testing successfully reveals the neural
network’s inconsistencies against domain knowledge, assembling physics first principles
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Table 7.7 The number of unique exposed adversarial cases on train and test datasets per
search method and system

SYS Method G Dataset Avg. #AdvIn

A-C Perf.

RS

361K Dtrain 1302.3
40K Dtest 128.1
903K Dtrain 3186.4
100K Dtest 340.3

PSO

361K Dtrain 9340.3
40K Dtest 1127.4
903K Dtrain 25134.4
100K Dtest 2827.7

GA

361K Dtrain 919.7
40K Dtest 75.6
903K Dtrain 2161.0
100K Dtest 209.4

WAI Perf.

RS

361K Dtrain 29.5
40K Dtest 3.3
903K Dtrain 67.2
100K Dtest 9.4

PSO

361K Dtrain 1099.8
40K Dtest 113.2
903K Dtrain 3884.6
100K Dtest 400.4

GA

361K Dtrain 17.0
40K Dtest 1.2
903K Dtrain 56.1
100K Dtest 12.1

and apriori system design knowledge.

A comparison between the used search algorithms gives us the following ordered sequence:
PSO, RS, then GA. The PSO-enabled generator succeeds in revealing the highest number of
physics inconsistencies, and unexpectedly, the GA-enabled generator fails to even outperform
the baseline, RS. To further compare the behaviors of these algorithms, we compute the
average ratio of valid inputs generated by each algorithm, along with the average ratio of
duplicate inputs that are discarded during the generation process, as shown in Table 7.8.
Indeed, the complexity of the encoded conditions could cause the search algorithm to stagnate
in invalid regions without generating enough foreseeable inputs to test the model. In addition,
a non-optimal exploitation/exploration trade off configuration would also cause the search
algorithm to loop over the same regions of previously-triggered adversarial inputs, resulting
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in a high duplicate rate.

Table 7.8 Average ratio of valid test inputs and duplicated adversarial examples per SBST
algorithm and per system

SYS ALG Avg. %ValIn Avg. %DupIn

A-C Perf.
RS 31.40% 0%
PSO 44.35% 31.61%
GA 27.55% 10.47%

WAI Perf.
RS 90.16% 0%
PSO 99.12% 81.56%
GA 82.45% 34.84%

As can be seen in Table7.8, the average ratio of valid inputs per searching algorithm suggests
the same sequence order we had in the comparison with respect to the counts of adversarial
inputs. It is expected that the search approach that is able to remain in valid input regions
longer, is more likely to find more adversarial examples. Although PSO was the most success-
ful method in terms of valid and failed inputs, it also produced the highest ratio of duplicate
inputs. We find this to be a strong indicator of over-exploitation, as PSO might have been
heavily relying on the most-fitted previous solutions, which kept it rolling over the same
solutions indefinitely. These observed differences in the search behaviors of the evaluated
algorithms indicate that they produce inputs of varying diversity. Hence in the following
research questions, we consider all three search algorithms in assessing the regularization
based on physics domain knowledge, both in terms of fixing the physics inconsistencies and
improving the prediction errors. We intend to explore the effects of AXs source generators
on model improvements.

Finding 2: our PSO-enabled testing approach outperforms GA-enabled version and RS
baseline in regards to the number of successfully-exposed physics inconsistencies of the
trained neural networks.

Considering the smoothness of the simulated systems’ dynamics, a weight decay regulariza-
tion was applied to system performance models to promote the learning of smooth mapping
functions and penalize unnecessarily large response changes. Nevertheless, Figure 7.2 shows
the proportion of the adversarial inputs generated by our approach using each type of sensi-
tivity rule for (a) the A/C performance model, which is resilient to invariance tests, and (b)
the WAI performance model, which is highly sensitive to input perturbations with a large
proportion of failed invariance tests. This observed difference in proneness to injected input
noises can be attributed to the complexity of the system and the size of the datasets. The
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Figure 7.2 Proportion of AdvIn generated by each Type of Sensitivity Rule

limited number of steady-state flights with the underlying WAI system deployed prevents the
NN-based simulator from learning numerically stable states, leaving it susceptible to invari-
ant adversarial examples. Thereby, our physics-informed adversarial training relies on failed
invariance tests to increase the numerical stability of the neural network over subsequent
fine-tuning steps. Moreover, Figure 7.2 shows that the A/C performance model (a) produces
almost equally-distributed directional expectation tests, precisely the increasing and decreas-
ing output rules. Alternatively, the WAI performance model (b) generates a higher percentage
of AXs based on decreasing output rules as compared to the increasing output counterparts.
This observed difference can be explained by the proximity to normal behaviors. On the one
hand, the WAI system should maintain the skin at warm or hot temperatures as necessary,
depending on the ambient conditions. On the other hand, the decreasing-output sensitivity
rules define the input perturbations causing the outputs to decrease. Thereby, these sensitiv-
ity rules derive synthetic flight datapoints, having skin temperatures that are expected to be
lower than the original flight test inputs. Hence, the resulting decreased-output datapoints
are capable of simulating rare and extreme operating conditions to challenge the original
performance model trained on left-skewed data distribution (i.e., skin temperatures tend to
be relatively high compared to the foreseeable range).

Domain Experts Feedback. Aircraft development engineers perceive the potential value
of our proposed adversarial testing approach in the ML-based simulator development. They
affirm that the sensitivity analysis represents a main step in the system modelling to validate
their expectations through what-if scenarios on how the target variables should be affected
based on changes in the input variables. The what-if question would be like “what would
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happen to the quantity of interest q if the input variable var1 went up by 1%". Therefore, they
consider our proposed SBST approach as kind of a large-scale automation for searching over
all the possible what-if scenarios and reporting the ones triggering unanticipated behaviors.
Nonetheless, our system engineering stakeholders emphasize the challenges of defining the
application scope of such physics-grounded sensitivity rules in regards to more sophisticated
systems. Indeed, further restrictions on the local subspace of perturbed inputs would likely
take place when combined variations of system inputs as well as relatively high magnitude
changes provoke non-negligible higher order effects on the target output.

RQ2. How well does the physics-informed regularization fix the physics incon-
sistencies?

Motivation. The goal is to assess the usefulness of our proposed physics-informed regular-
ization in immuning the DNN against physics-based adversarial examples. In other words,
we want to assess how well the regularized model learns the underlying physics sensitivity
rules.

Method. The adversarial examples detected by each search algorithm during the second test
session, when a larger number of generations is involved, are loaded onto the training datasets.
Then, we perform physics-informed adversarial training that combines the conventional data
loss with our proposed regularization cost for the adversarial examples revealed in the training
datasets. Thus, we re-run the adversarial detection process on the adversarial examples
exposed for its corresponding validation dataset. We aim to check whether the detected
physics inconsistencies in the validation data stay or disappear. This allows us to assess
the effectiveness of our physics-informed adversarial training phase in fine-tuning the neural
network to the foreknown relationships between the input and output variables. As discussed
in the previous research question, we keep all three search algorithms in the analysis to
compare their resulting regularization improvements, separately.

Results. Table 7.9 compares the number of physics inconsistencies (#AdvIn) revealed before
and after the physics-informed adversarial learning, as well as the estimated improvement
ratios (%Improv_AdvIn) for each supported search algorithm.

As illustrated by the improvement ratios in Table 7.9, the regularized neural network has
triggered less physics inconsistencies in regards to the validation datasets for both of the
studied performance models and the three implemented search algorithms. Therefore, the
inclusion of physics-informed regularization costs improves the neural networks’ propensity
to be consistent with the underlying physics sensitivity rules.

Besides, search algorithms with higher counts of exposed AXs for the base neural network
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Table 7.9 comparison between #adversarials before and after fine-tuning fix

SYS G pre-#AdvIn post-#AdvIn %Improv_AdvIn

A-C Perf.
RS 5267 1012 80.78%
PSO 39551 5747 85.46%
GA 2850 636 77.68%

WAI Perf.
RS 509 0 100%
PSO 20545 18 99.91%
GA 459 4 99.12%

have achieved higher improvement ratios (%Improv_AdvIn) of the physics inconsistencies.
Indeed, sorting the search algorithms by the column of Table 7.9, #pre-AdvIn (numbers
of exposed AXs for base NNs), returns PSO, RS, followed by GA, which achieved on av-
erage, respectively, 92.69%, 90.4%, and 88.4%. The ranks of search algorithms obtained
by %Improv_AdvIn are in agreement with their ranks by #AdvIn (i.e., number of exposed
AXs) on both training and testing datasets, as shown in Table 7.7. Given the statistical
grounds and data-driven nature of the proposed physics-informed regularization cost, this
result is expected. In fact, our physics-guided adversarial training incorporates soft penalty
terms for violations of physics-based sensitivities to the loss function. Then, it proceeds with
data-driven repairs of the neural network using the semi-supervised AX datasets detected
on the training datasets. Thus, the search algorithms that yield larger AX datasets during
the adversarial testing, provide more physics inconsistencies to teach the model the speci-
fied physics-grounded sensitivities over fine-tuning steps with the proposed composite loss
function. Therefore, their corresponding regularized neural networks are unlikely to behave
inconsistently with the foreknown sensitivities, even on the synthetic inputs crafted from test
datasets that might differ from the ones built using the training examples.

In addition to the influence of the AX data size, we also noticed that the initial problem
size measured by the dimensions of the original data, affects the effectiveness of our physics-
informed adversarial training. In Table 7.9, we can observe that the improvement ratios
obtained for the WAI performance model are in-between 99%-100%, in comparison with the
achieved improvements on the A/C performance model, ranging from 77% to 85%. This
distance in the number of fixed physics inconsistencies between the two studied simulation
problems could be explained by the absolute number of revealed AXs and the size of the
original datasets, as demonstrated in Table 7.1. As can be seen, the WAI performance data
has less original datapoints (90) and more feature dimensions (10), which results in a low
input space coverage and less diversity in the revealed AXs, while the A/C performance data
has more datapoints (1334) and less feature dimensions (5), yielding a higher input space
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coverage and more diversity in the revealed AXs.

Finding 3: The physics-informed regularization improves the quality of the learned
model’s mappings towards more consistency with the physics domain knowledge, but the
achieved improvements depend on the source of physics-based AXs and the genuine input
space coverage.

Domain Experts Feedback. Regarding the data-driven corrections of the ML model’s
physics consistency, system engineering experts introduce us the possible noises in the test
flight sensors data that are leveraged to train and test the ML models. In fact, earlier ver-
sions of our approach did not include an expert-defined tolerable deviation (tolj) that has
been used for both of the follow-up adversarial input test and physics-informed regularization
cost. Formerly, our designed adversarial ML approach reports consistently a high number
of revealed adversarial inputs due to a slightly deviation of their outputs in the undesired
direction. Moreover, the rigid physics-informed regularization cost without tolerance param-
eter was kind of pushing the fine-tuned neural model towards over-respecting the designed
theory-grounded rules on the sensors data collected during monitored flight tests.

RQ3. Does the physics-informed loss improves or degrades the performance of
the DNN?

Motivation. The purpose of this research question is to determine whether physics-informed
loss affects the performance of the fine-tuned models indirectly.

Method. We took the fine-tuned models from the physics-informed adversarial training,
and we computed their predictive performance, i.e., the root mean squared error (RMSE),
on the original data.

Results. The RMSE and #Change_RMSE values, shown in Table 7.10, are obtained from
the evaluation of neural networks on the validation datasets after and before performing the
fine-tuning sessions on semi-supervised datasets that include the adversarial examples found
on the training examples.

Based on Table 7.10, we found that random sampler (RS) with no searching capabilities
caused the RMSE to either stall or increase in all the assessment experiences. In contrast,
GA-enabled input generation leads to only negative %Change_RMSEs, which means that
the post-fix RMSEs have been successfully decreased. PSO, which was the most effective
in exposing the physics-based AXs with higher #AdvIn, often degrades post-regularization
RMSEs (i.e., yielding positive #Change_RMSE) at the cost of reducing the inconsistencies
with respect to the physics-grounded sensitivity rules. As demonstrated by the study case
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Table 7.10 Comparison between RMSE after and before fine-tuning fix

SYS TRG pre-RMSE ALG post-RMSE
%Chg
RMSE

A-C Perf. α 0.498°
RS 0.497° -0.20
PSO 0.996° +100
GA 0.444° -10.84

WAI Perf.

T askin 4.088°C
RS 4.729°C +15.68
PSO 4.422°C +8.17
GA 3.979°C -2.67

T bskin 7.524°C
RS 7.921°C +5.28
PSO 6.826°C -9.28
GA 7.163°C -4.80

on A/C performance, PSO found much higher AXs than other competitors (see Table 7.7)
and achieved better physics consistency improvements (see Table 7.9). The post-fix RMSE,
however, was doubled, with %Change_RMSE equal to 100%.

In our experimentation, GA-enabled adversarial testing has identified few but useful adver-
sarial inputs that improve post-regularization RMSEs, contrary to PSO and RS, which were
less effective in identifying adversarial examples that could positively affect the predictive
performance of regularized neural networks after fine-tuning. While aircraft performance
studies often involve limited-size datasets of expensive flight tests, they are intended to train
simulation models of the system’s expected behavior under all foreseeable operating con-
ditions. Hence, an increase in the estimated errors on validation data will be acceptable
within a certain system-dependent range validated by domain experts to ensure that the
statistically-derived mappings of the model are reliable and fairly consistent with the physics
domain knowledge. Using the same A/C performance model as an example, our collabora-
tors contend that a regularized model with a 1° of average error and high consistency with
the specified physics sensitivities over the flight envelope can be more useful in different en-
gineering applications than an A/C performance model with low physics consistency and a
0.5° of average error.

Finding 4: A physics-informed adversarial training’s effect on the predictive performance
heavily depends on the size and quality of the revealed adversarial input data. According
to our experiments, these AX criteria can be controlled by selecting the appropriate search
algorithm. Specifically, the GA-enabled generator reveals a few physics-based AXs that
improve the prediction, while the PSO counterpart reveals many AXs, but at the risk of
degrading the original predictions.
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Domain Experts Feedback. Regarding the probable degradation induced by the physics-
informed adversarial training, aircraft system engineering experts highlight the importance
that data-driven models statistically infer input-output mappings, which are thoroughly con-
sistent with the physics-grounded sensitivity rules. Thus, they suggest that the physics-
guided adversarial approach should allow the user to manually balance out the tradeoff
between the data loss and the physics-informed loss during the physics-guided adversarial
training, depending on the system modelling use case. In response to that, we design a weight
parameter, β, to control the regularization cost similarly to the traditional norm penalties,
while keeping the dynamic calibration of λ that we added to overcome the differences in the
losses magnitudes. Thus, we will have λ = β × λdynamic, where the λdynamic is the actual
pre-computed lambda value and the β ≥ 1 is the weight of regularization cost, by default
equals to 1. For some use cases, system engineers can set up higher β values to prioritize the
model’s physics consistency within the input space over further improvements on the RMSE.

7.5 Chapter Summary

The present chapter proposes a physics-guided adversarial machine learning approach that
assembles: (i) a physics-guided adversarial testing method that successfully exposes physics
inconsistencies in ML-based A/C systems performance models; (ii) a physics-informed ad-
versarial training approach that promotes learning input-output mappings, satisfying the
desired level of consistency with physics domain knowledge. A physics inconsistency in the
input space could be expected owing to the complexity of the simulated system dynamics
and the rarity of the flight test data. Our physics-based adversarial testing applies search
algorithms to conduct worst-case analysis on the model’s inconsistencies and provide insights
on their prevalence in the input space. Our subsequent physics-informed regularization al-
ways improves the physics consistency of the model, but we observed that a high density of
exposed AXs might degrade its predictive performance.
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CHAPTER 8 SMOOD: SMOOTHNESS-BASED OUT-OF-DISTRIBUTION
DETECTOR

Aircraft industry is constantly striving for more efficient design optimization methods in
terms of human efforts, computation time, and resources consumption. Hybrid surrogate
optimization maintains high results quality while providing rapid design assessments when
both the surrogate model and the switch mechanism for eventually transitioning to the High-
Fidelity(HF) model are calibrated properly. Due to its accurate predictions and fast infer-
ences, feedforward learning networks(FNNs) can effectively address the imperfect surrogate
modeling issue faced by conventional machine learning models in the field of aircraft de-
sign optimization [266]. However, FNNs often fail to generalize over the out-of-distribution
(OOD) samples, which hinders their adoption in critical aircraft design optimization. The
resulting corner-case behaviors adversely affect the overall performance assessments for the
design configurations, which in turn increases the aircraft design lead time and development
budget. However, chasing complete training sets that cover all the facets of the distributions
in relation to the quantities of interest, restarts the onset limitation of compute-intensive
costs, since the data in aircraft design is typically generated from expensive numerical sim-
ulations. Furthermore, the construction of advanced surrogate models using state-of-the-art
deep learning techniques [266–268] requires model engineering efforts, draws on new exper-
tise, and often results in over-optimized models that target individually specific sub-problems.

In response to the aformentioned challenges, we propose SmOOD, a smoothness-based OOD
detection approach, that allows to codesign the surrogate neural network model for accurate
assessments and its OOD detector for selective prediction. Unlike common research on out-
of-distribution, SmOOD exploits the apriori smoothness property of the simulated system
to overcome the main challenges of OOD detection, including complex, high-dimensional
input spaces and degeneration of uncertainty estimates beyond the ID regions. By using
SmOOD, only high-risk OOD inputs are forwarded to the HF model for re-evaluation, leading
to more accurate results at a low overhead cost. Three aircraft performance models are
investigated. Results show that FNN-based surrogates outperform their Gaussian Process
counterparts in terms of predictive performance. Moreover, SmOOD does cover averagely
85% of actual OODs on all the study cases. When SmOOD plus FNN surrogates are deployed
in hybrid surrogate optimization settings, they result in a decrease error rate of 34.65% and
a computational speed up rate of 58.36×, respectively.
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Chapter Overview. Section 8.1 provides background information about surrogate mod-
eling for aircraft design. Section 8.2 presents our novel smoothness-based OOD detection
approach for NN-based surrogate models. Section 8.3 reports evaluation results, while Sec-
tion 8.4 summarizes the chapter.

8.1 Surrogate Modeling for Aircraft Design

Surrogate models are data-driven and low-cost substitutes for the exact evaluation of the
data points in design space, sometimes dominating the entire optimization process [269],
and sometimes serving just as a supplementary aid to speed up the computations [270,271].
Multiple techniques have been proposed in the literature to build data-fit surrogates that
are trained with regression of high-fidelity simulation data. They usually rely on methods
such as gaussian processes(GP) [272–274], proper orthogonal decomposition [275], eigenvalue
decomposition [276], artificial neural network [277,278], and more advanced techniques such
as combining GP and neural networks [279]. In the context of aircraft design optimization,
the selection of the suitable surrogate modeling technique depends on the complexity of the
underlying design problem, the ease of collecting high-fidelity simulation data, and the cost
of development and maintenance. Surrogate modeling solutions are usually presented in con-
junction with specific MDO problems from different industries. Hence, advanced techniques
pose challenges in regards to the engineering efforts required to adapt them. This chapter
examines established data-driven modeling methods such as GP and FNN that can be ap-
plied directly to a wide variety of MDO problems, including aircraft design optimization.
We developed a variety of surrogate models for different quantities of interest (QoI) using
mainstream DL frameworks and GP modeling tools. These QoIs capture certain performance
factors of an aircraft and are dependent on the operating flight conditions and the design vari-
ables. Our focus is on their deployments to accelerate the investigation of the design space
and to find optimum solutions in hybrid surrogate optimization settings [280–282], where
we are able to exploit information coming from both the original model and its surrogate.
Therefore, reliable surrogate models with selective predictions (i.e., they are provided only
under high-confidence conditions) are essential to ensure the high quality of these accelerated
aircraft design optimizations.

8.2 Approach

In this section, we describe the development steps required to codesign smoothness-based
OOD detectors with FNN surrogates. In Figure 8.1, the proposed systematic workflow of the
SmOOD approach is shown, including the OOD recognition, the training and testing of the
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inherent regression and classification models.

Figure 8.1 Schema of SmOOD: Co-Design of FNN Surrogate and Classification-based OOD
Detection Models.

8.2.1 Characterization of Out-of-Distribution

In supervised learning, statistical models are commonly estimated via empirical risk min-
imization (ERM) [25], a principle that considers minimizing the average loss on observed
samples of data, as an empirical estimate of the true risk, i.e., the expected true loss for
the entire input distribution. Unfortunately, ERM assumes that training and test data are
identically and independently distributed (a.k.a. i.i.d. assumption). Distributional shifts of-
ten occur in real scenarios for many reasons, such as domain transition, temporal evolution,
or selection bias, which degrades the model’s performance since certain captured correla-
tions may not hold on these shifted inputs. Even worse, several research works [74, 87, 88]
demonstrated that the optimized models can fail dramatically when involving strong distri-
butional shifts. In many surrogate modeling cases where the HF simulations are expensive,
selection bias is almost unavoidable, which ruins the i.i.d. assumption. The design of OOD
detection methods for selective prediction is of more critical significance than reducing em-
pirical risk further on the collected training samples. The first step consists of the OOD
inputs characterization. In the context of aircraft surrogate performance models, we aim
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to characterize the foreseeable design configurations that can be sampled during the design
optimization, however, they may deviate from the training distribution. As explained above,
ERM optimizes the model by minimizing the average loss, which leads to greedily absorbing
the correlations and patterns that hold on the majority of training instances. Hence, ERM
can produce biased models that are susceptible to outliers, unfair to minor subsets of data,
or prone to out-of-distribution samples [86]. Thus, it is common to use held-out validation
data as a proxy for unseen data points, aiming at more realistic estimates of the true risk. As
shown in Figure 8.1 (step 3), the validation error rate may reveal the model’s inefficiencies in
terms of remaining high-error test inputs on which the learned patterns could not generalize,
and they can be used for approximating the boundaries of the in-distribution. We rely on
thresholding over the prediction confidence interval, i.e., the margin of validation errors at a
certain level of confidence, and labeling the data point as OOD if its associated error exceeds
the estimated margin.

8.2.2 Computation of Local Sensitivity Profiles

HF mathematical models are typically based on conservation laws and solve a coupled non-
linear system of partial differential equations on a discretized spatio-temporal domain. This
allows numerically stable simulations of the aircraft via their approximations in smooth or
piecewise smooth dynamics. Hence, their NN-based surrogate counterpart must meet this
apriori of smoothness in regards to the predicted quantities of interest in order to be a viable
alternative to the HF model. In fact, the smoothness of the FNN’s mapping function affects
the model complexity as evidenced by the fact that smooth deep neural networks tend to
generalize better than their less smooth counterparts [283]. Nonetheless, rigid smoothness
techniques that constrain the learned function excessively by forcing it to be equally smooth
throughout the input space, may throw away useful information about the input distribu-
tion [284]. As alternatives to these rigid methods, DL practitioners can employ regularization
techniques, such as weight decay [285], dropout [286], and early stopping [155], to encour-
age smoothness of the model and improve generalization. Their hyperparameters should be
tuned to achieve the desired level of smoothness that allows the network to allocate capacity
as needed to maintain useful diversity, handle input modalities, and capture task-relevant
information. In our study of OOD detection for aircraft surrogate performance FNNs, the
smoothness is one of the fundamental properties of system design. Apart from regularizing
the FNNs to smooth mapping functions, we created pointwise sensitivity profiling to capture
the local function smoothness around the neighbor regions of each evaluated data point. On
unseen data points, the integrity of the surrogate network can then be ensured by comparing
their triggered pointwise sensitivity profiles to the degree of smoothness observed on the op-
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timized DL model on the in-distribution inputs. In the following, we introduce the proposed
pointwise sensitivity profiling for FNN that quantify different aspects of the network’s output
variations in relation with changes in input variables.

The expected deviations of the network’s output:

The straightforward way to estimate the sensitivity of the neural network at an individual
data point, is to assess the induced output deviations in response to random noise injected
into the input features. According to Mi et al. [131], network sensitivity to input pertur-
bations can be used as a surrogate for uncertainty. More precisely, they have proved that
sensitivity and uncertainty have a nonnegative correlation in a setting of dense regression
networks. Therefore, we include the following statistics on the output deviations under con-
strained input perturbations in the sensitivity profiling that will be used to separate between
OOD and ID inputs.
Let ∆x be the perturbation applied to the input of f , a neural network, δ be the maxi-
mum threshold of the absolute value of |∆x|, and ∆y be the responding output deviation,
|f(x + ∆x) − f(x)|. Then, the two deviation-based sensitivity profiling metrics are defined
respectively:

SA(x) = AVG(|∆y|) = E∆x∼U(−δ,δ)[|f(x+ ∆x)− f(x)|]

SV(x) = VAR(|∆y|) = E∆x∼U(−δ,δ)[(|∆y| − AVG(|∆y|))2]

The input-output jacobian norm:

As the feedforward neural networks are differentiable models, we also investigate its sensitivity
at a point through the computation of input-output jacobian norm. Novak et al. [283] have
presented extensive experimental evidence that the local geometry of the trained function
as captured by the input-output Jacobian can be informative of the prediction confidence at
the level of individual test points, and that it varies drastically depending on how close to
the training data manifold the function is evaluated. Thus, the computed jacobian norm is
likely to be higher at shifted inputs in comparison with the training inputs. Nevertheless,
the feedforward networks are typically based on ReLU activations, which makes them not
continuously differentiable. The derivative of the mapping function may therefore fluctuate
sharply at small scales, and hence, considering the Jacobian of a specific data point will have
less meaning than considering the Jacobians of a subset of nearby data points [287]. Thus,
we apply random perturbations on the data point to yield samples from its neighborhood.
Then, we compute statistics on the vanilla Jacobians estimated at these noisy samples to be
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included in our network’s sensitivity profiling, as follows.
Let J(x) = ∂f(x)/∂xT be the input-output jacobian of a neural network, f , at the input x,
and ||.||F is the Frobenius norm. Further, we assume that ∆x is the perturbation applied to
the input of f , a neural network, δ is the maximum threshold of the absolute value of |∆x|,
and x′ = x+ ∆x.

JA(x) = ||AVG(J(x + ∆x))||F = ||E∆x∼U(−δ,δ)[J(x+ ∆x)||F

JV(x) = ||VAR(J(x′))||F = ||E∆x∼U(−δ,δ)[(x′ − AVG(J(x′)))2||F

As demonstrated in the step 4 of our defined workflow (Figure 8.1), we define the pointwise
sensitivity profiles, denoted Sp, as a real-valued vector that concatenate the above senstivity-
related statistics within the neighborhood regions of individual data points, x, which can be
formulated as follows, Sp(x) = [SA(x) ‖ SV(x) ‖ JA(x) ‖ JV(x)].

8.2.3 Training of ID/OOD Classifier

After being estimated, the pointwise local sensitivity profiles are fed into a ML-based clas-
sifier, specifically, a binary classifier. The latter is trained on the sensitivity profiles of
validation data points, along with their derived labels, i.e., ID or OOD, on the basis of the
expected confidence interval for the validation errors. Nevertheless, the average and the mar-
gin of error are two metrics that will drive the development and the selection of surrogate
models. Hence, it is reasonable to expect that these measurements are well optimized and
only a small fraction of data points would remain with relatively high error over successive
validation steps, which results in an imbalanced dataset of sensitivity profiles that is pre-
dominantly composed of ID examples with only a low percentage of OOD examples. To deal
with class imbalance, we explore several commonly-used oversampling techniques [288] in
the literature that produce synthetic data points belonging to the minority class to emulate
a semblance of balance to the dataset. These techniques are necessary means of increasing
the sensitivity of a classifier to the minority class, allowing the detection of as many OODs
as possible from incoming inputs. This is shown in-between the step 4-5 of the SmOOD
co-design workflow in Figure 8.1. By interpreting OODs as positive and IDs as negative, we
should conduct an in-depth performance assessment of the ML-based classifier with aim of
converging to optimal balance (i.e, the evaluation step 5 in Figure 8.1) between OOD discov-
ery, referring to the ratio of the truly detected OODs among the actual OOD collection, and
OOD false alarms, defined as the ratio of false positive arising from the actual ID samples.
In the context of hybrid surrogate design optimization, a high OOD discovery rate ensures
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trustworthy selective surrogate predictions where only ID samples are submitted to the sur-
rogate model, and hence, the accelerated design optimization converges to high potential and
feasible aircraft design configurations. On the other hand, a low OOD false positive rate is
imperative to preserve the advantages of surrogate modeling and avoid useless, costly queries
to the HF model.

8.2.4 SmOOD: Integration and Evaluation

During the training phase of the SmOOD workflow (Figure 8.1), the surrogate model is
learned first, then its predictive errors are computed on the held-out validation datasets.
Next, we leverage the confidence intervals of the estimated errors during the validation to
identify the out-of-distribution (OOD) data (i.e., inputs on which the best-fitted model still
produces relatively high errors). In parallel, we calculate the local sensitivity profiles for all
the validation inputs. Since the best-fitted model was selected for its predictive performance,
OOD inputs would have very small sensitivity profiles compared with their counterparts
assigned to in-distribution (ID) inputs, and an oversampling procedure is required to am-
plify synthetically their occurrences in order to analyze the differences in smoothness-related
characteristics between both groups of profiles. As a next step, we feed the oversampled sen-
sitivity profiling data into a binary classifier that learns to distinguish between OOD and ID
profiles. For optimal classifier selection, we assess both the OOD discovery and false alarm
rates using k-fold cross-validation.
For the testing phase in the SmOOD workflow (Figure 8.1), test data assembles aircraft
design configurations for which an assessment has been requested. Since SmOOD is a model-
dependent OOD detection strategy, we first pass all the test inputs by the optimized FNN
to determine their predictions and their corresponding local sensitivity profiles. Then, the
optimized classifier serves as a calibrated OOD detector that generates a risk score for each
precomputed sensitivity profile, quantifying the likelihood that its source test is indeed an
out-of-distribution sample from the FNN surrogate’s perspective. The next step depends on
a criterion that evaluates whether the risk score falls below a predefined threshold (i.e., a
default of 0.5 out of [0, 1.0] score ranges), and two scenarios are then possible. If the criterion
is satisfied, the surrogate prediction is returned and no further action is taken. If not, the
test sample is sent to the High-fidelity model for simulation and its outcome is returned.
Quality of results is assessed using two evaluation criteria. First criterion is the decrease rate
achieved in respect to the prediction errors on testing samples, and especially, the further
error reduction by the hybrid mode. A reliable OOD detection method must route all high
risk samples to the HF model, reducing error rates significantly. Second, the computation
time of hybrid mode should be much shorter than the pure HF-driven optimization since
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this was the main purpose of setting up the surrogate model in the first place. Indeed, a
well-calibrated OOD detection method should spawn a low rate of false alarms because these
false positives would cause unnecessary HF simulations, slowing down the progress towards
design optimization.

8.3 Evaluation

In this section, we first introduce the three aircraft performance case studies, as well as our
evaluation setup, metrics, and methodology. Next, we evaluate SmOOD against standard
baseline in terms of predictive performance and computation runtime.

8.3.1 Experimental Setup

This section details the different elements that were set up for SmOOD performance assess-
ment, including aircraft design study cases, inherent models, baseline, as well as evaluation
environment, strategy, and metrics.

Case Studies

Below, we briefly describe the studied aircraft performance factors [289], the influencer design
variables [289], and the design of experiments used for dataset collection.
Maximum TakeOff Weight (MTOW). It represents the maximum weight at which the
pilot of the aircraft is allowed to attempt to take off given its structural design. MTOW is
an important factor in aircraft design. A higher MTOW means the aircraft can take off with
more fuel and has a longer range, which makes it more appealing to customers. However,
MTOW is subject to several structural constraints during the design optimization process.
Time To Climb (TTC). Climbing is the act of increasing the altitude of an aircraft. The
main climb phase is the increase of altitude following the takeoff to reach the cruise level.
As a way to measure an aircraft’s climb performance, it is common to set up a reference
cruise altitude level, then, estimate the time needed to climb to the predetermined altitude
at a constant airspeed. This climb performance measurement is called the Time To Climb
(TTC).
Balanced Field Length (BFL). It refers to the shortest runway length at which a balanced
field takeoff can be performed by an aircraft design while complying with safety regulations.
A balanced field takeoff occurs when the required accelerate-stop distance is equal to the
required takeoff distance. Accelerate-stop distance is the runway length required by an air-
craft to accelerate to a specific speed, and then, in the event an engine fails, to stop safely
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on the runway. Thus, aircraft designers are senstitive to BFL as any changes in this require
ensuring safety margins at takeoff are still respected.
Design Configuration. A set of 15 design variables are considered in the surrogate mod-
eling based on experts’ judgment on their influence on the above-mentioned quantities of
interest. The design variables capture the wing design (i.e., aspect ratio, taper ratio, thick-
ness ratio, and winglet span ratio), the fuselage geometrical structure, the engine thrust, and
the mass of aircraft parts.
Design of Experiment(DoE). Our engineering collaborators configure the appropriate de-
sign of experiments (DOE) to collect the labeled data points. DoE assembles a set of tests
that exercises the HF model across diverse design configurations to gather HF simulations.
Indeed, the Latin Hypercube Sampling technique [290] is leveraged to efficiently sample from
large, multivariable design spaces. LHS uniformly divides the range of each design variable
into the same number of levels. It then systematically combines independent samples of the
levels of each factor to specify a variety of random data points in the design space. Running
the HF model on these data points gives us HF simulations that map design factors to their
corresponding responses, i.e., the measurable quantities of interest. Therefore, we obtain
2259 of training data points and 1960 of testing data points for each one of the study cases.

Models

Surrogate. Our base nonlinear regression model is a three-layer feedforward neural net-
work(FNN) [291] that is trained using the Mean Squared Error (MSE) loss function with
L2-norm regularization. Rectified linear units (ReLU) are used as hidden layer activation
functions, and Adam is used as the optimization algorithm. In regards to the architecture, we
followed the design principle of pyramidal neural structure [136], i.e., from low-dimensional to
high-dimensional feature spaces/layers, as well as these dimensions are powers of 2 to achieve
better performance on GPUs [264]. Regarding the hyperparameters tuning, we leverage the
grid-search strategy and 5-fold cross validation to sample and try several possible settings.
To outline their ranges, we denote linspace(a, b, n) to indicate the range of n equi-spaced
values within [a, b] and logspace(c, d, base) to indicate the interval of basec, .., based, where
c < d. The FNN’s width of layers are selected from logspace(5, 10, 2), then, the optimizer’s
hyperparameters were tuned as follows: learning rate η ∈ s∪3×s, weight decay λ ∈ s∪5×s,
where s = logspace(−4,−1, 10). Batch size was tuned in logspace(3, 7, 2), and epochs count
in linspace(50, 500, 50).
OOD Detection. Several ML classifiers (Logistic Regression [292], SVM [293], Random
Forest [294], and Gradient Boosting [295]) and over-sampling techniques (SMOTE [296],
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BorderlineSMOTE [297], ADASYN [298], and SVMSMOTE [299]) have been evaluated on
our OOD detection problems using 5-fold cross validation process. We have found that
Gradient Boosting and SVMSMOTE are the best design choices. Then, we follow the same
hyperparameters tuning method used for FNN, i.e., grid-search strategy and 5-folds cross val-
idation. For the gradient boosting classifier, we examine the learning rate, η and the number
of estimators,n, selected from the following ranges, respectively, s∪ 5× s and [100, 250, 500],
where s = logspace(−3,−1, 10) and [100, 250, 500]. In regards to SVMSMOTE oversampler,
we consider k ∈ [5, 10, 15], where k represents the count of nearest neighbors to used to
construct synthetic samples, and r ∈ [0.25, 0.5, 0.75, 1.0], where r indicates the desired ratio
of the number of samples in the minority class over the number of samples in the majority
class after resampling.

Baseline

Surrogate. We compare our FNNs with Gaussian Process(GP) regression that is already
well researched for surrogate modeling [300], replacing expensive high-fidelity aircraft sim-
ulations. A GP [301] is a generalization of the Gaussian distribution to describe universal
functions f(x). The main ingredient of GP design is the selection of the covariance function
k(x, x′), also called kernel. For our comparison with FNN, we are interested in approximating
multiple quantities using the baseline. We chose the radial basis function (RBF) [302] that
has been implemented to interpolate several aircraft design data [274, 282]. RBF [302] is an
universal kernel function that can be used to fit any complex non-linear regression data. The
hyperparameters of the kernel are optimized during fitting by maximizing the log-marginal-
likelihood (LML) on the training data. As the LML may have multiple local optima, we
set up 10 to be the number of repetitive restarts of the optimizer in order to improve the
convergence towards optimal results.
OOD Detection. A basic approach of hybrid GP [282] for surrogate aircraft design opti-
mization mimics a rule of thumb in engineering analysis: if the new data is reasonably similar
to the existing one, it can be assumed to be reliable. Given a design configuration to assess,
one can compute the standard deviation, σ, of the differences between the output predicted
by RBF, ŷ, and the actual outputs, y1, y2, ..., yn, of a set of n neighboring configurations.
The standard deviation σ can be computed with differences ‖ŷ− yi‖ with i ∈ [1, n], as
follows,σ = std ([‖ŷ− y1‖ , ‖ŷ− y2‖ , ‖ŷ− yn‖ . . .]). Then, the obtained standard deviation
is compared to a threshold, σt. If it is lower, σ < σt, the prediction of RBF surrogate is
adopted; otherwise, the HF model must be requested instead. Regarding the threshold value
t, a priori statistical analysis can be performed on the validation data to derive the thresh-
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old value that includes 95% of configurations. Using a 5-fold cross validation, we tune the
number of neighbors considered in the computation of standard deviation within the range
of linspace(4, 20, 4), and we select the number that yields the highest correlation between
the estimated standard deviation and the actual error.

Evaluation Procedure

To evaluate SmOOD’s effectiveness, we conducted quantitative and qualitative analyses. In
the following, we detail the metrics and the procedure used.
Quantitative. Due to the high cost of running HF simulations, we adopt a 10-fold cross-
validation method for all experiments in order to have different splits for the training and
validation datasets and quantify the target metrics by averaging their values over the 10
iterations. Besides, all the included estimated metrics like error rates and runtime, are com-
puted as average values over 5 runs or more, in order to mitigate the effects of randomness
inherent in statisical learnign algorithms. To obtain domain experts’ feedback, we interview,
separately, two senior aircraft engineers from our industrial partner, Bombardier Aerospace.
Next, we summarize their opinions and comments in written paragraphs. We then sub-
mit them for approval to ensure they are in alignment with what their claims are. Final
paragraphs are added to each related research question. Below, we introduce the different
evaluation metrics that have been used in the empirical evaluations.
NRMSE. stands for normalized root mean square error, and it is scale-independent version
of RMSE that allows comparison between models at different scales. Indeed, RMSE is the
average deviation between predictions and actual outputs, measured on the same scale and
with the same output unit, and can be formulated as follows: RMSE =

√∑n
i=1 (yi − ŷ)2 /n,

where yi is the ith observation of y and ŷi its corresponding prediction by the model.
In NRMSE, the expected model deviations are reported relative to the overall range of output
values, and the formula becomes NRMSE = RMSE/(ymax − ymin).
Confidence Interval (CI). indicates the degree to which an estimate is expected to vary
from the average, within a certain level of confidence. For example, a 95%CI of a model’s
error represents the upper and lower bounds within which the estimate of error will fall for
95 percent of the time (i.e., 95 samples out of 100 were taken). We use the bootstrapping
method to produce accurate CIs because its non-parametric nature allows it to be used with-
out making any prior assumptions about the estimate distribution.
Precision. represents the proportion of the positive identifications that were actually correct
in a binary ML classification problem.
Recall. measures the proportion of actual positives that were correctly classified in a binary
ML classification problem.
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Macro-Averages of Precision/Recall. refer to the arithmetic averages of the precision
and recall scores of individual classes.
Precision-Recall (PR) curve. is a useful evaluation plot for binary classifiers that return
class membership probabilities, when there is moderate to large class imbalance [303]. It
simply plots the precision versus recall obtained by a classifier using different probability
thresholds.
Area Under Precision-Recall (AUPR). approximates the area under the PR curve,
ranging from 0.0 to 1.0.
%Decr_Err. The decrease ratio of error we achieve by a certain improvement, can be for-
mulated as follows:

%Improv_Err = pre-NRMSE− post-Err
pre-NRMSE × 100 (8.1)

Where pre-NRMSE and post-NRMSE refer to the actual NRMSE and the reduced NRMSE.
Speed up. is a popular measure for the relative performance of two systems processing
the same problem. In our case, we denote Ts be the surrogate compute time, and To the
High-fidelity compute time. Then, the speedup due to surrogate modeling can be computed
as follows, Spure = To/Ts. Given our OOD detection strategy used in hybrid surrogate
optimization, we obtain p, as a proportion of instances that can be predicted by the surrogate.
Then, the remaining 1− p proportion of instances that require requests to HF model. This
means that the speed up of the hybrid surrogate model can be formulated as follows, Shybrid =
To/(Td + ps + (1− p) ∗To), where Td is the total computation time needed to predict whether
each of the inputs is OOD or not.
Qualitative. In order to obtain the input of domain experts, we interviewed two senior
aircraft engineers with more than 10 years of experience, who work with our industrial
partner, Bombardier Aerospace. Both of them are proficient in the use of MDO in aircraft
design. Furthermore, they are part of the team that developed the high-fidelity physics
model; therefore, they are familiar with the QoIs associated with the case studies.
As a first step, we present the quantitative analysis to both aircraft engineers separately so
that they can get detailed performance metrics, as well as all execution costs for all model
development steps (training, tuning of hyperparameters, etc). Then, we ask them to provide
a critique of the significance of the obtained performance metrics from an aircraft design
standpoint. Specifically, we seek comparisons of FNN surrogates along with our co-designed
OOD detection method, as opposed to conventional surrogate modeling setups with GP and
uncertainty quantification. In addition, we request explanations on how SmOOD contributes
to quality assurance and acceleration of data-driven aircraft design optimization. Afterwards,
we compile and merge their opinions and comments into paragraphs. Next, we submit them
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for approval to ensure their claims are reflected in the written content, and that they both
agree with the conclusions made. Final consensus statements are added as feedback from
domain experts to each related research question.

Environment

We use Pytorch [265], an established DL framework for modeling and training feedforward
neural networks. We leverage GPy [304], a popular and maintained framework to design and
train Gaussian processes. In terms of the hardware environment, we use CPU machines for
all the experiments for fairness comparisons. The HF models were running on a machine
with Intel Xeon CPU E5-1630 v3 of 3.5Ghz and a 32 Gb of RAM. The FNNs and GPs were
running on Standard Virtual Machines using 4 cores on Intel Xeon Platinum 8168 CPU of
2.70GHz and 8 Gb of RAM.

8.3.2 Experimental Resuls

In conducting the evaluation of the proposed approach, we studied the following research
questions:

RQ1. Is FNN a viable general-purpose approximator to model complex surrogate
aircraft design performance models?

Motivation. The objective is to evaluate the effectiveness of FNN as a universal approxi-
mator for surrogate aircraft design performance models in comparison to GP, which is the
mainstream universal estimator for surrogate modeling. Method. We train and tune both

Table 8.1 Performance Metrics for different pairs of QoI and Surrogate Model.

QoI Model Valid_Err Test_Err Valid_CE@99%CL Test_CE@99%CL %Valid_OODs %Test_OODs

MTOW GP 0.0415 0.0363 [0.0212,0.0596] [0.014, 0.0547] 5.14% 4.39%
FNN 0.0353 0.0319 [0.0163, 0.0523] [0.0111, 0.0486] 1.59% 1.17%

TTC GP 0.1707 0.1698 [0.1646, 0.1769] [0.1632, 0.1762] 40.95% 41.33%
FNN 0.0764 0.0803 [0.0662, 0.0865] [0.0668, 0.0942] 5.0% 5.26%

BFL GP 0.0454 0.0439 [0.0241, 0.0637] [0.0168, 0.0664] 6.64% 5.97%
FNN 0.0435 0.0361 [0.0198, 0.0637] [0.0124, 0.0599] 1.42% 1.12%

FNN and GP surrogate models on all the three aircraft design performance factors. Then, we
test the optimized models on a held-outs test dataset to assess their predictive performance.
As performance metrics, we compute the NRMSE on validation datasets to gauge the fitness
quality of both models and the NRMSE on test dataset to compare their generalizability
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capabilities. Besides, we infer the CI of each estimate of error with 99% of confidence level,
as an accurate risk assessment of the possible range of the model’s prediction errors, and
especially, the upper bound that indicates how severe the error is expected to be. Last, we
calculate the ratio of OOD inputs observed on validation and testing datasets according to
our OOD labeling rule (Section 8.2.1), i.e., their actual prediction errors are higher than the
maximum expected margin.

Results. Table 8.1 summarizes the obtained performance metrics for each pair of regression
problem and surrogate model type. The results show that FNNs have reached lower validation
and test estimation errors with even tighter confidence intervals than GP in all the studied
surrogate modeling problems. Moreover, the ratio of model-dependent OOD inputs that
have been experienced by GP is substantially higher than FNN. This demonstrates that
GP’s high average error and wide confidence interval are due to the prevalence of complex
design configuration inputs on which GP fails and cannot provide a reliable assessment. It is
on the time-to-climb (TTC) design problem that the gap between the two types of surrogate
models is most pronounced. There are, indeed, high nonlinearities in TTC modeling, where
two numerically-close inputs can result in distant takeoff behaviors. Because GP kernels are
biased towards their predefined distributional priors and have a limited learning capacity in
comparison to FNN, they do not generalize well to aircraft performance design problems with
dispersed behaviors, such as the time to climb simulations, ranging from takeoff failures to
accelerated climbing scenarios.

Finding 1: Feedforward neural network is a viable universal approximator, outperforming
Gaussian Process, in building complex, highly-nonlinear surrogate aircraft performance
models.

Domain Expert Feedback. Aircraft engineers find the comparison results enlightening as
they demonstrate that data-driven surrogate modeling is still a viable solution even in cases
of high nonlinearity input-output mappings, such as TTC models. Moreover, GP’s results
on TTC are expected, since it is the origin of this initiative on reliable FNN surrogates. It
was previously necessary for aircraft engineers to re-run the design optimization with the
HF model in the objective function because the GP gives inaccurate TTC predictions and
hinders the convergence of the optimizer, which does not find a feasible design.

RQ2. Can local sensitivity profiles capture relevant information on FNN behav-
iors to accurately signal OODs across generated samples?
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Motivation. The aim is to determine how well pointwise local sensitivity profiles can dis-
criminate between ID and OOD inputs compared with exploiting the uncertainty estimation
of GP.

Method. For GP, the predictions, ŷ are made in a probabilistic way, i.e., described by mean,
µŷ, and standard deviation, σŷ, which is supposed to reflect the epistemic uncertainty, i.e.,
how certain the model is with respect to its prediction. We therefore statistically compare the
distribution of σŷ on ID versus OOD examples discovered during the validation. To do that,
we compare their box plots and perform Mann-Whitney U nonparametric hypothesis tests
to determine whether the σŷ(Did) and σŷ(Dood) were sampled from the same population.
Regarding FNN, we compute local sensitivity profiles triggered by FNN on the validation
data points, and then analyze the distribution of these profiles among the ID and OOD
groups. To do that, we use Principal Components Analysis (PCA) to visualize the computed
multivariate local sensitivity profiles into 2D graphs. Indeed, we reduce the dimensions
into two orthogonal principal components that preserve the maximum amount of variance
explained by the original multivariate points, as well as, we add the original variable vectors
to show their correlations and directions w.r.t the principal components. Moreover, we
colored the ID and OOD points with different colors to identify the differences between
the two groups. In addition, we perform Mann-Whitney U tests for each of the sensitivity
profile variables to statistically confirm if the ID and OOD groups are likely to yield values
originating from two different distributions.

Figure 8.2 Comparison of GP’s standard deviation distribution between ID and OOD samples
for each QoI

Results. Figure 8.2 shows the box plots of the GPs’ standard deviations for both ID and
OOD examples. As can be seen, the groups’ boxes have very close sizes and almost over-
lap completely for all the regression problems. Additionally, hypothesis testing suggests no
statistically significant differences between the uncertainty estimates predicted by GP on ID
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Figure 8.3 Graph of Pointwise Sensitivity Profiles for Did and Dood w.r.t the derived 2 Prin-
cipal Components

versus OOD. The median lines in the box plots indicate that the median of the standard out-
of-distribution sample is lower than the standard identification sample, demonstrating how
GP incorrectly produces a sense of overconfidence about out-of-distribution samples. Even
worse, the comparison of the median lines within the boxes highlights that the median of
σŷ(Dood) is lower than the median of σŷ(Did), which shows how GP incorrectly tends to pro-
duce overconfident epistemic uncertainty when confronted with out-of-distribution samples.
This is definitely an expected degradation in the reliability of uncertainty estimates, since
the posterior distributions of predictions were calibrated using available samples, mostly
ID, suggesting bias against distant examples. In contrast, Figure 8.3 present 2D plots of
PCA analyses based on the sensitivity profiles of the regression models for the studied QoIs,
MTOW, TTC, and BFL. As can be observed, the ID examples are grouped together and form
a sort of cluster, whereas the OOD examples are quite dispersed and far from the centroid of
the ID group. The hypothesis testing results confirm these observations, and there are statis-
tically significant differences (with p-value < 1e− 6) between the ID and OOD data groups
in regards to all of the sensitivity profile’s variables. Furthermore, the high dispersion and
rarity of the OOD data points highlight that the identified scenarios represent corner-case
and extreme behaviors with diffent patterns, rather than representing a novel distribution.

Finding 2: Pointwise local sensitivity profiles can accurately separate OOD and ID sam-
ples using FNN, whereas the reliability of GP’s epistemic uncertainty declines on OOD
samples.

Domain Expert Feedback. Aircraft engineering experts confirm they have experienced
overconfidence of GP uncertainties before, especially when using objective functions in MDO
that include the variance to better steer the search to high potential regions. In that case,
over-confident variance is misleading to the optimizer. They perceive the added value of
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the FNN sensitivity profiling, which is able to capitalize on the smoothness of input-output
mapping as it is an a priori system property and an implicit assumption in the HF model’s
differential equations.

RQ3. How effective is SmOOD in the coverage of OOD inputs across generated
samples?

Motivation. The goal is to assess the performance of SmOOD when co-designed with FNN
against the baseline strategy used with GP in terms of precision and coverage.

Method. We train and tune our gradient boosting classifier on the local sensitivity profiles
yielded by FNNs during the validation for each regression problem. Then, we test the opti-
mized classifier on the held-out testing dataset. Next, we draw PR curves along with their
associated AUPR scores for each studied problem. Concerning the OOD detection baseline
for GP introduced in Section 8.3.1, it provides only labels with no class scores, we compute
the precision and recall scores for each class, separately, and their macro average for each
pair of surrogate model and OOD detector.

Table 8.2 Performance Comparison of SmOOD and Base for OOD Detection.

Target Detector Model Class Precision Recall

MTOW

Base GP
ID 96% 96%

OOD 11% 10%
MA 53% 53%

SmOOD FNN
ID 100% 100%

OOD 72% 91%
MA 86% 95%

TTC

Base GP
ID 57% 91%

OOD 14% 2%
MA 36% 47%

SmOOD FNN
ID 100% 98%

OOD 70% 93%
MA 85% 95%

BFL

Base GP
ID 94% 96%

OOD 13% 10%
MA 54% 53%

SmOOD FNN
ID 100% 100%

OOD 76% 73%
MA 88% 86%
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Figure 8.4 Precision-Recall Curves obtained by the optimized binary classifier for each QoI

Results. Figure 8.4 shows the precision-recall curves obtained by FNN for each aircraft
performance problem and their associated AUPR scores. As can be seen, SmOOD was
effective in fitting the collected local sensitivity profiles as evidenced by the relatively high
AUPR scores. Although some levels of precision could be sacrificed to increase recall, we
believe it is better to leave the default threshold at 0.5 since it yields a good trade-off between
precision and recall, as shown by the marked points on the PR curves. Further pre-tuning
of thresholds on validation dataset can lead to overfit the validation dataset and inversely
causes a degradation of the classifier’s performance. Besides, Table 8.4 summarizes all the
classification scores: both of precision and recall for each class, as well as their macro-averages
for each pair of surrogate model type and aircraft design performance problem. Our method
outperforms by far the baseline approach. This demonstrates the lack of generalizability
expressed by the rigid smoothness apriori of the baseline OOD detection method, which could
not hold for complex, highly-nonlinear aircraft design performance models. Our method, in
contrast, retrieves pointwise local sensitivity profiles and fits a binary ML classifier to the
high-fidelity simulations to serve as a calibrator and detects erroneous smoothness behavior
triggered by the FNN during the inference on unseen test inputs.

Finding 3: SmOOD was effectively able to reveal at least 73% and up to 93% of the
out-of-distribution examples on the different aircraft design performance models.

Domain Expert Feedback. Aircraft engineers emphasize the importance of developing
such mitigation strategies against behavioral drifts of these black-box ML models to prevent
their use under suspicious conditions. They point out that design optimization studies are
actually driven by an end-to-end automated process, which results in one best configuration
communicated to managers and related engineering teams. Thus, such 3-5% of unreliable



209

predictions can enable the accelerated MDOs to reach feasible solutions at an early stage,
however, the inefficiency of these solutions might remain hidden for quite a while.

RQ4. What are the benefits of deploying SmOOD in hybrid surrogate optimiza-
tion settings?

Motivation. We aim to examine the effects of SmOOD on the prediction errors and com-
putation time when it is combined with the FNN for hybrid surrogate aircraft design opti-
mization.

Method. We compute the NRMSE and inference runtime values for all the surrogate vari-
ants: GP, FNN, HybridGP (GP + Baseline) and HybridFNN (FNN + SmOOD). Then, we
derive their SpeedUp relative to the HF model, as well as, the Decrease rate of NRMSE
achieved by the hybrid versions w.r.t. the pure surrogate counterparts. As a way to compare
the surrogate model types, we calculated, separately, the computation durations required for
all the design and evaluation steps (training, tuning, validation, and testing) for each type
of model. Furthermore, we compute the same computation times for the design of OOD
detection strategies to determine the overhead added when using an OOD detector to switch
between HF model and its surrogate counterpart in hybrid surrogate design optimization
settings.

Results. According to Table 8.3, the inclusion of SmOOD with FNN surrogates contributed
to significant decrease ratios in prediction error, from 12% to 47%, while the baseline leads to
a maximum of 1.25% decrease rate on the GP’s prediction errors. Hence, SmOOD was able to
cover many problematic OOD inputs with high errors that lead to considerable reduction in
FNN prediction errors. Besides, the speed up rates obtained by SmOOD plus FNN surrogates
are mostly higher than those obtained by Baseline plus GP counterparts. Indeed, SmOOD
was able to detect the underlying OODs more accurately with fewer false alarms than the
baseline, which turns almost three hours of runtime to a few minutes. FNN surrogates have
already better speed up in the inference time than their GP counterparts (see Table 8.3).
Table 8.4 also reports lower values of training time, validation time and test time obtained by
FNN surrogates compared to those yielded by GP counterparts. This can be explained by the
FNN’s deterministic mapping function that includes consecutive weighted sums and ReLU
activations, and by its learning algorithm that applies loss gradients w.r.t. the parameters
to iteratively update them. On the other hand, GP’s mapping function is stochastic includ-
ing multivariate posterior gaussian distributions, and its approximate Bayesian learning that
updates our prior belief in our gaussian parameters in line with marginal log-likelihood esti-
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Table 8.3 Improvement Evaluations for different pairs of QoI and Surrogate Model.

QoI Model Test_ERR %ERR_Decr Runtime SpeedUp

MTOW

HF - - 02h:57m:58s 1
GP 0.0363 - 299.26ms 3.57× 104

HybridGP 0.036 0.83% 07m:38s 2.33× 10
FNN 0.0319 - 0.81ms 1.32× 107

HybridFNN 0.0169 47.02% 02m:38s 6.76× 10

TTC

HF - - 02h:57m:58s 1
GP 0.1698 - 289.47ms 3.69× 104

HybridGP 0.1677 1.24% 10m:48s 1.65× 10
FNN 0.0803 - 15.51ms 6.88× 105

HybridFNN 0.0441 45.08% 12m:31s 1.42× 10

BFL

HF - - 02h:57m:58s 1
GP 0.0439 - 290.07ms 3.68× 104

HybridGP 0.0435 0.91% 08m:32s 2.08× 10
FNN 0.0361 - 4.58ms 2.33× 106

HybridFNN 0.0317 12.19% 01m:54s 1.42× 10

Table 8.4 Computation Times for different steps of Surrogate Model Design.

QoI Model Train_Time Tune_Time Eval_Time Test_Time

MTOW GP 02m:50s - 27m:28s 299.26ms
FNN 00m:17s 05h:41m:39s 02m:53s 0.81ms

TTC GP 04m:25s - 42m:07s 289.47ms
FNN 02m:10s 22h:49m:54s 21m:04s 15.51ms

BFL GP 03m:11s - 31m:12s 290.07ms
FNN 00m:54s 20h:43m:09s 08m:46s 4.58ms

mates on the observed data. Nonetheless, Table 8.4 shows that only FNN surrogates require
a time-consuming and hand-crafted hyperparameters tuning to select the structure of the
model (i.e., depth and width), configure the optimizer, adapt the regularizer strength, etc.
All these choices are guided by trial-and-error processes on validation set. In contrast, the GP
surrogate design is straightforward, and the kernel hyperparameters are determined system-
atically within the Bayesian posteriori optimization. The tuning of FNNs is common for any
DL solution; so GPU-enabled parallelism and multi-machine distribution is straightforward
when using modern DL frameworks.

Table 8.5 demonstrates that SmOOD outperforms the baseline in terms of low design and
evaluation workloads. The reason is the fast computation of predictions and derivatives
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Table 8.5 Computation Times for different steps of OOD Detection Method Design.

Method Train_Time Tune_Time Valid_Time Test_Time
Baseline 0.32s 178.99s 3.17s 271.08ms
SmOOD 0.43s 12.47s 4.22s 2.16ms

using FNN surrogates to construct the local sensitivity profiles, and the ease with which
the SmOOD inherent classifier and oversampler can be trained and tuned due to the low
dimensionality of the precomputing sensitivity profiles. This is contrary to the baseline
which requires repeated distance calculations between a requested design configuration and
all the validation set to identify the nearest neighbors.

Finding 4: SmOOD plus FNN surrogate enables accelerated and accurate hybrid opti-
mization, achieving, on average, 34.65% and 58.36× of decrease error rate and computation
speed up rate.

Domain Expert Feedback. According to domain experts, as long as the tuning process
is automated, the FNN is still viable given the achieved error rate regardless of the build
time. Furthermore, they emphasize that these FNN surrogates are mapping aircraft design
variables to a particular aircraft performance attribute. Hence, an optimized FNN surrogate
can be involved in many design optimization studies, which compensates for its relatively-
heavy creation procedure. Most changes applied to the HF simulations are adjustments to
the design variables in order to accommodate new requirements recommended by marketing
analysts. This may result in further training on FNN parameters rather than structural/hy-
perparameters tuning. Creating FNN surrogates from scratch can be only done in response to
less-frequent, major updates to HF model inner functions and capabilities. Nevertheless, ex-
perts suggest taking full advantage of the hybrid mode and storing the detected OOD inputs
to further fine-tune the FNN after every optimization cycle since the training is relatively
fast.

8.4 Chapter Summary

In this chapter, we demonstrate that feedforward neural networks outperforms Gaussian
processes across several surrogate models of aircraft design performance, especially when
the predicted quantity is highly nonlinear. These high-capacity black box models are prone
to out-of-distribution issues, which restricts their direct use in aircraft design optimization.
Due to the risk of overconfident uncertainties against these OOD samples, SmOOD effectively
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spots them by identifying their suspicious local sensitivity behaviors that are far from the level
of FNN smoothness observed across validation. Statistically, SmOOD reveals up to 93% of
OOD samples, and its use as router in hybrid surrogate aircraft design optimization leads to
34.65% and 58.36× of error reduction and runtime speed up rates. Our empirical evaluation
reinforces our prior belief in the a priori smoothness that exists over the HF simulations data.
Indeed, we expect similar priors to exist in many other applications, on which our findings
can be extrapolated, and our local sensitivity profiling can serve as a surrogate for model
uncertainty, and as a discriminatory criterion to separate ID from OOD.
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CHAPTER 9 CONCLUSION

In this chapter, we summarize our findings and conclude the thesis. In addition, we discuss
the limitations of our proposed approaches and outline some directions for future work.

9.1 Summary

It is becoming more and more common to find deep-learning applications across different
domains, including safety-critical ones. This growing attention is due to the impressive per-
formance of state-of-the-art DL models on handling high-dimensional data and performing
various complex tasks. However, their initial deployments in critical domains such as air-
craft system engineering shed light on the many challenges of these disruptive self-learning
capabilities to the software system reliability. Hence, their quality assurance is becoming a
preeminent priority in both SE and AI communities to gain the confidence of domain ex-
perts in the statistical learning and build trustworthy DL applications. Below, we present
a summary of the employed methodologies and elaborated solutions that we have discussed
throughout this thesis.

NeuraLint: A Static Rule-based DL Program Debugger. Based on empirical studies
on DL bugs, we extract the crash-inducing bugs that represent coding faults leading to raising
an exception and stopping the learning. Then, we filter them, where the acceptance criterion
is their footprints on code which can be statically detected by code synthesis and checking
rules. Additionally, we identify poor design choices belonging to non-crashing DL bugs, but
which satisfy the above criterion. Therefore, we build a meta-model for a typical DL program
that includes its base skeleton and fundamental components invariably at the dependencies
of coding libraries. This level-up abstraction paves the way for the application of model-
driven checking rules for the detection of coding errors and inappropriate model structures
in DL training programs. We build our debugging tool from scratch using static Python
code analysis, and support most of the API routines provided by DL libraries: Tensorflow
and Keras. The effectiveness of our debugging method is determined by its fault detection
capability on synthetic and real-world buggy DL programs. Synthetic buggy DL programs
represent the results of a base clean DL program plus an injection of a fault. However, the
real-world buggy DL programs are extracted for SO posts and bug fixing commits of Github
projects.
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TheDeepChecker: A Dynamic Property-based DL Program Debugger. To com-
plement our proposed static DL code debugger, we continue by extracting the silent bugs
that represent coding faults and misconceptions leading to unstable learning dynamics and
inefficient trained models. Then, we elaborate the common pitfalls in designing and imple-
menting DNNs, while pointing out their associated non-crashing bugs. This is important
to explain the connection between each considered coding bug or misconfiguration and its
induced negative effect on the neural network’s components. Next, we derive our property-
based verification routines to capture dynamically violations of fundamental design principles
and fine-grained training efficiency traits with the objective of revealing hidden bugs early on
and away from repetitive costly training trials. The effectiveness of our debugging method
is measured in terms of training pitfalls and issues detection capabilities for both types of
DL buggy software, synthetic and real-world programs. We also assess the dynamic checking
workload, and the usability of our approach and the ease of DL bug fixing with it through
live sessions with DL engineers.

DeepEvolution: A Search-based DL Testing Approach. As a generic-purpose DL
model testing method, we propose DeepEvolution, a search-based approach for metamor-
phic transformation generation to test modern DNNs across domains. Considering the
application-specific requirements, we define a development process to derive semantically-
preserving metamorphic relations that are capable of exposing the DNNs’ failures against
simulations of realistic conditions that can occur in practice regarding two possible types of
change factors: (i) system-level factors that refer to deprecation of hardware such as camera
lens distortions, microphone damages, and unknown words; (ii) context-level factors that
represent the transformations arising naturally within the external environment in which
the DNN is deployed such as changing lighting conditions, outdoor or outdoor environmen-
tal noises, and typing errors. Then, we codify these metamorphic transformations into a
data-independent constrained space of their vectorized parameters and settings, which can
be explored effectively by nature-inspired, population-based metaheuristics algorithms for a
maximum disclosure of unexpected behaviors. In regards to test objectives, we define two
behavioral drift fitness functions that capture fine-grained divergences in the scores yielded
by a single DNN or equivalent DNNs of varying arithmetic precision. Hence, our searching
metaheuristic algorithm finds the most fault-detecting test inputs that correspond: (i) un-
stable behaviors of optimized DNNs on synthetic inputs that expose inappropriate inductive
biases;(ii) divergent behaviors between quantized DNNs and their original counterparts that
reveal low-precision parameters inefficiency to preserve the relevant learned patterns. A rich
set of case studies using architecturally-different recognition models trained on popular im-
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age, speech, and natural language datasets are performed to evaluate the performance of our
approach and demonstrate its generality.

PhysicAL: Physics-based Adversarial Machine Learning. Our proposed search-based
DL testing method shows the potential of searching over designed metamorphic transforma-
tions to derive synthetic test inputs with high fault-revealing ability. The evaluation was
done on classification neural networks because we can implement semantically-preserving
transformations on their inputs that keep the associated label invariant. However, apply-
ing DeepEvolution to regression problems requires knowing the expected output changes
respective to the designed input transformation. Therefore, we rely on the high-level physics
specifications including first principles and apriori system design properties that can be ex-
pressed in the format of input-output sensitivity rules, in order to anticipate the directional
expected trend of output under the input variations outlined in the premises of the rule.
Our proposed testing method also applies search-based algorithms to explore effectively the
neighborhood local input space around each original data aiming at revealing hidden physics
inconsistencies of the DNN. Next, we design a physics-informed adversarial training technique
that leverages the revealed to guide the parameters optimization routines towards learning
better inductive biases with lowest amount of deviation errors and physics inconsistencies in
its outputs. The effectiveness evaluation of our proposed testing approach was conducted
on two industrial cases of aircraft system performance models for which the flight test data
are costly to collect, but the physics grounded input-sensitivity can be derived by aircraft
engineers.

SmOOD: Smoothness-based Out-Of-Distribution Detector. Even domain-aware DL
testing still cannot guarantee 100% reliability of a DNN, especially when the predicted quan-
tity is highly nonlinear and out-of-distribution data (OOD) can occur in production. There-
fore, we decide to work on bounding the regions of in-distribution (ID) data points on which
the optimized DNN is ensured to provide stable and trustworthy predictions. The trust
boundary delimitation allows selective operation when the DNN is used as an assistance sys-
tem or to replace more complex models such as surrogates. Due to the risk of overconfident
uncertainties against these OOD samples, we also rely on foreknown apriori properties of the
system to systematically separate ID and OOD samples. Specifically, we define pointwise
sensitivity profiles that estimate the local smoothness of the DNN at a given data point,
then, suspicious ones are identified by their unjustified divergent sensitivity behaviors w.r.t
the observed levels of DNN smoothness across the validation phase. Our detection strategy
is deployed as a surrogate/HF model switcher in hybrid optimization settings, where its main
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goal is to request the HF model only when a given input is labeled as OOD for the surrogate
model. This enables to decrease the surrogate prediction errors with a minimal overhead cost
of HF calls. The assessment of our proposed local sensitivity profiles and smoothness-based
OOD detection method, was conducted on three aircraft design variables study cases, along
with comparisons to common baselines, respectively, gaussian uncertainty estimation, and
relative deviations from top-k neighbors.

9.2 Limitations and Future work

• Our proposed static and dynamic debugging techniques are extensible by the design,
however, the current versions support mainly the feedforward neural network architec-
tures including dense networks and CNNs. In the future versions, we plan to enlarge
the scope of DNN architectures and show the applicability of our techniques on most
of the mainstream deep learning systems. Another direction of research for the future
is to extend our debuggers by automatic repair mechanisms [305] that include code
recipes (i.e., generic snippet of code, one or multiple lines of code, characterizing a
particular fix of a coding bug, an ineffective implementation or a misuse of APIs) for
common errors and inefficiencies in relation to, respectively, DL source code or training
anomalies. The goal is to develop an automatic generation of fix suggestions for these
prevalent bugs to the DL engineer.

• Despite our physics-based adversarial testing improving the iid evaluations by exposing
the maximum amount of network inconsistencies, it represents a separate phase prior
to the physics-guided adversarial training. Hence, we can think about another type of
adversarial search tightly connected to the model regularization (i.e., finds the most
effective AXs to improve the physics consistency of the model.); so the users can tune
our approach on their models to the best consistency-error trade-off for the underlying
engineering case studies. Moreover, our physics-guided adversarial ML approach can
have profound implications for statistical model engineering. Therefore, we propose
an autoML framework [306] that includes our physics-informed loss to steer the design
and tuning of the DNN towards more suitable settings for solving the consistency-error
trade-off.

• Although SmOOD is very efficient as a switcher in hybrid optimization settings, it
stops at detecting potential OODs and requests the HF model instead of the surrogate
FNN to make their assessments. However, these revealed OODs can be leveraged to
patch the current version of FNN through fine-tuning its parameters on them aiming
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at reducing further the HF requests in the future design assessments with the cost of a
relatively low active learning [307] overhead.
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APPENDIX A CO-AUTHORSHIP

Earlier studies in the thesis were published/submitted as follows:

• On Testing Machine Learning Programs, Houssem Ben Braiek and Foutse Khomh, in
Journal of Systems and Software (JSS), 2020, Elsevier.

• Automatic Fault Detection for Deep Learning Programs Using Graph Transformations,
Amin Nikanjam, Houssem Ben Braiek, Mohammad Mehdi Morovati, Foutse Khomh,
in Transactions on Software Engineering and Methodology (TOSEM), 2021, ACM.

• Testing Feedforward Neural Networks Training Programs, Houssem Ben Braiek and
Foutse Khomh, in Transactions on Software Engineering and Methodology (TOSEM),
2022, ACM.

• Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation, Houssem
Ben braiek, Thomas Reid, and Foutse Khomh, in Transactions on Reliability, 2022,
IEEE

• DeepEvolution: A Search-based Data Transformation for Deep Learning Model Testing,
Houssem Ben braiek, Ahmed Haj Yahmed, Rached Bouchoucha, Foutse Khomh, and
Sonia Bouzidi, under review in Transactions on Software Engineering and Methodology
(TOSEM).

• SmOOD: Smoothness-based Out-of-Distribution Detection Approach for Surrogate Neu-
ral Networks in Aircraft Design, Houssem Ben Braiek, Ali Tfaily, Foutse Khomh,
Thomas Reid, and Ciro Guida, in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022

The following publication was produced during my Ph.D’s degree studies but is not directly
related to the content of the thesis:

• DiverGet: A Search-Based Software Testing Approach for Deep Neural Network Quan-
tization Assessment, Ahmed Haj Yahmed, Houssem Ben Braiek, Foutse Khomh, Sonia
Bouzidi, Rania Zaatour, in Journal of Empirical Software Engineering (EMSE), 2022,
Springer
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• Faults in Deep Reinforcement Learning Programs: A Taxonomy and A Detection Ap-
proach, Amin Nikanjam, Mohammad Mehdi Morovati, Foutse Khomh, and Houssem
Ben Braiek, in Automated Software Engineering Journal (ASEJ), 2021, Springer

• The Scent of Deep Learning Code: An Empirical Study, Hadhemi Jebnoun, Houssem
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