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RÉSUMÉ 

La reconnaissance du comportement dynamique des glaces fluviales est d'une grande 

importance, en particulier dans les régions froides, où elles ont le potentiel de déclencher les 

phénomènes dits de blocage des glaces. Étant donné que ces phénomènes sont hautement 

dynamiques, leur dynamique ne peut être capturée que par des méthodes numériques appropriées. 

Les méthodes numériques qui traitent les problèmes de la dynamique de glaces sont soit basées sur 

une représentation discrète ou continue de blocs de glace. Alors que les approches discrètes, telles 

que la méthode des éléments discrets (DEM) sont très précis, elles demeurent néanmoins coûteuses 

en ressources informatiques pour des applications à grande échelle car elles traitent de banquises 

prises individuellement. D'autre part, la description continue offre une scalabilité et est moins 

couteuse car elle considère un amas de glace comme un seul corps continu et permet de résoudre 

sur cet ensemble les équations de conservation. En combinaison avec les méthodes numériques 

lagrangiennes (particules) lissées et sans maillage, telles que le Smoothed Particle Hydrodynamic 

(SPH) et le Moving Particle Semi implicite (MPS), la description continue peut également offrir 

un niveau de précision et de flexibilité comparable à la description discrète. 

Dans cette étude, nous proposons une méthode numérique lagrangienne MPS pour la 

simulation de la dynamique multiphasique glace-eau basée sur la description continue de la glace 

et de l'eau, considérés comme des fluides non-Newtoniens et Newtoniens respectivement. Pour 

traiter les interactions hautement dynamiques du couple glace-eau, les équations complètes de 

Navier-Stokes, sans l'hypothèse d'écoulement peu profond couramment utilisée, sont résolues. 

Pour prédire le comportement non-Newtonien de glace comme milieu continu, nous examinons 

deux lois de comportement viscoplastiques, à savoir la loi viscoplastique standard (SVP) et la loi 

de Herschel – Bulkley (HB). Le modèle développé est validé et évalué pour le cas du test de 

perforation et de l'initiation de l'embâcle. La comparaison avec les données expérimentales montre 

la précision et la fiabilité du modèle développé. 

De manière générale, la contribution de cette étude peut être classée en trois parties : 

1- L'application de la méthode MPS est montrée en simulant deux essais 

expérimentaux et en validant les résultats. 
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2- L'approche basée sur le continuum s'avère suffisamment précise malgré leurs 

hypothèses de simplicité. 

3- Les modèles rhéologiques visco-plastiques se sont avérés très compatibles avec les 

méthodes particulaires basées sur l’approche continue. 
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ABSTRACT 

Recognition of the behavior of the river ice dynamics is of great importance, especially in  cold 

regions, as they have the potential to trigger the so-called ice jamming phenomena. Since these 

phenomena are highly dynamic, its dynamics can only be captured by proper numerical methods. 

Numerical methods for ice dynamic problems are either based on the discrete or continuum 

descriptions of the ice floes. While the discrete-based approaches, such as the Discrete 

Element Method (DEM), are very accurate, they are computationally expensive for large-scale 

problems, as they deal with individual ice floes. On the other hand, the continuum description 

offers scalability and computational affordability, by considering the assembly of ice parcels as a 

body of continuum and solving the conservation equations. In combination with the mesh-free 

Lagrangian (particle) numerical methods, such as Smoothed Particle Hydrodynamic (SPH) and 

Moving Particle Semi implicit (MPS), the continuum description can also offer accuracy and 

flexibility comparable to the discrete description.  

In this study, we propose an MPS Lagrangian numerical method for simulation of multiphase, 

multiphasic ice-water dynamics, based on continuum description of both ice and water, considered 

as non-Newtonian and Newtonian fluids, respectively. To deal with the highly dynamic ice water 

interactions, the full Navier-Stokes equations, without the commonly used shallow flow 

assumption, are solved. To predict the non-Newtonian behavior of the ice continuum, we examine 

two visco-plastic constitutive laws, i.e., the Standard Visco-Plastic (SVP) and the Herschel–

Bulkley (HB). The developed model is validated and evaluated for the case of punch-through test, 

and ice jam initiation. Comparison with the experimental data shows the accuracy and reliability 

of the developed model.  

In general, the contribution of this study can be categorized into three parts: 

1- Application of the MPS method is shown by simulating two experimental tests and 

validating the results. 

2- The continuum-based approach is shown to be accurate enough in spite of their 

simplicity assumptions. 

3- The Visco-Plastic rheological models are shown to have great compatibility with 

continuum-based particle methods. 
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 INTRODUCTION 

Recognition of natural phenomena that occur in the system of creation has long attracted much 

attention. For this reason, many efforts have been made by scientists and researchers in the world 

to understand the laws governing these phenomena to control and use them in an optimal way for 

the development of human life. As one of the branches of science, fluid mechanics is no exception, 

what is considered in this field is modeling, and solving problems related to the flow and behavior 

of fluids. The complexity and unpredictability of fluid behavior in many engineering phenomena 

have made it impossible to analyze these occurrences except by increasing the knowledge and deep 

understanding of universal rules and sciences. One of the challenging issues in this context is 

having comprehensive knowledge regarding the river ice dynamics. It is most important in cold 

regions since in some cases, it can have harmful effects. The ice jamming phenomenon is one of 

those issues which every year, all of the cold regions like Canada are dealing with. Since in these 

regions the rivers are frozen in winter times, by increasing the temperature in spring, it starts 

melting and forming pieces of ice called ice floes which can run along the river bed. These ice 

chunks can stuck in their way when there are obstacles like bridges or when the river bed gets 

narrow. In this case, they can be accumulated for kilometers and act like a dam which increases the 

water level and causes a flood. One of the recent ice jam floods is on April 2020 which developed 

on the Athabasca River in Canada leading to the flooding of Fort McMurray. European Union’s 

Copernicus provided satellite data which lends a hand to monitoring river ice conditions. Figure 

1.1 shows the extent of flooding. This ice jam displaced 13000 people and damaged 1200 

properties. Another example of this phenomenon is on January 2018 along the Connecticut River 

in Haddam (USA) which causes kilometers of ice jam along the river. Figure 1.2 which is also 

provided by European Union’s Copernicus shows the extent of it. Only a few examples of recent 

ice jams in Canada include the Town of Peace River along the Peace River in Alberta 

(Lindenschmidt, Das, Rokaya, Chun, & Chu, 2015), Winnipeg, and Selkirk on the Red River in 

Manitoba (Lindenschmidt, Sydor, Carson, & Harrison, 2012) and Raymond on the St. Anne River 

in Quebec (Turcotte & Morse, 2015). 
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Figure 1.1 Ice jam flooding in Fort McMurray (Ref: European Union’s Copernicus) 

 

 

Figure 1.2 Ice jam flooding in Connecticut River (Ref: European Union’s Copernicus) 
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 In general, there are two different perspectives predicting the behavior of fluids in empirical ways, 

which are usually time-consuming and costly, and theoretical methods. The theoretical methods 

can in turn be divided into numerical and analytical methods. Each of these perspectives has its 

advantages and disadvantages, and in general, both are complementary. With the advancement of 

physics and mathematics, the theoretical method for the theoretical study of phenomena related to 

fluids has received more attention. In examining the theory, it is first necessary to identify the 

significant factors and their importance and provide a physical model for the phenomena. Based 

on this model, the governing mathematical relations are identified, and the problem is formulated. 

Due to the complex nature of fluid dynamics, the analytical methods can only be useful for 

simplified physics which is in most cases far from the real phenomena and many factors are 

neglected. On the other hand, the numerical methods are being improved significantly and are 

containing more and more aspects of the real phenomena to have much more precise simulations, 

especially with the advancement of computers. Numerical or analytical methods or a combination 

of both can be used to solve the governing equations. 

As mentioned earlier, complex problems cannot be handled by analytical solutions. As ice 

dynamics-related problems have a very complex nature, they need to be dealt with advanced 

numerical solutions. Particle-based methods are relatively modern approaches that are most 

suitable for highly dynamic problems. In the following sections, you may find detailed descriptions 

of these methods and their advantages over conventional methods in coping with such 

unpredictable phenomena. 

 

1.1 Numerical simulation 

The main idea of creating numerical simulations is related to the necessity of interpreting physical 

problems by numerical models. While performing the experiments is mostly expensive and time 

demanding, with the advancement of computers, Numerical simulations have quickly become 

critical methods for solving complex engineering problems. Figure 1.3 show the relationship 

between numerical, experimental, and theoretical solutions and the process of numerical simulation 

(G.-R. Liu & Liu, 2003).  
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As is shown in Figure 1.3, a numerical simulation contains an appropriate understanding of the 

problem physics and constraints, knowing the governing equations, discretizing the domain into 

infinitely small parts, utilizing proper algorithms, coding and implementing the algorithms, and 

finally having the results of the numerical simulation.  

 

Physical phenomena 

Mathematical model 

Domain discretization 

Numerical algorithms 

Coding & implementations 

Numerical simulation 

Simplification and extraction of important physics 

Governing equations (ODEs, PDEs, etc.) 

Mesh/grid, cell, node or particle generation 

Initial and/or boundary conditions; Numerical 

discretization, function approximation 

Computational accuracy; Speed and storage; Robustness & 

user friendliness 

Figure 1.3 Procedure of conducting a numerical simulation [1] 
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1.2 Main approaches in computational fluid dynamics 

Discretization can be nominated as one of the main processes in the numerical methods. By 

discretizing, the freedom degree of the governing differential equation reduces from infinity to a 

finite degree. Hence, there is only needed to determine the solution for specified locations and 

times which can be solved using computers.  

Generally, there are two different points of view to describe a physical governing equation: the 

Lagrangian and the Eulerian methods. The Lagrangian method is a material description that is 

typically represented by the finite element method (FEM) (Zienkiewicz, Taylor, & Zhu, 2005), 

while the Eulerian method is a spatial description and is typically represented by the finite 

difference method (FDM) (Forsythe & Wasow, 1960). Choosing either of these methods for the 

problems depends mostly on the problem's characteristics (Z. Zhang & Chen, 2007). To discretize 

the problem domain, we have two main approaches that are described in the following. 

 

1.2.1 Mesh-based methods 

The mesh-based or grid-based methods discretize the computational domain using mesh. These 

meshes can either be static or dynamic, which causes different types of grid-based methods, namely 

the Eulerian, the Lagrangian, and the Eulerian-Lagrangian (Spandan, Lohse, de Tullio, & Verzicco, 

2018) mesh-based methods. The Eulerian mesh-based methods, Which are known as 

conventional methods,  are well-developed methods that have been utilized vastly in solid and fluid 

mechanics (Dunne, 2006). Despite the widespread use and remarkable success of these methods, 

they face inherent difficulties and limitations in modeling flow with large deformation, such as 

wave breaks in seas and violent river flows (Shakibaeinia & Jin, 2010). These methods' main 

feature is dividing a continuous domain into small discrete parts during the meshing process. 

Meanwhile, the mesh is kept constant in space and does not change by changing the object's 

location.  

Unlike the Eulerian mesh, in the lagrangian mesh-based methods like the well-known FEM 

method, the grid is attached to the material and moves with the object movement (G. R. Liu & 

Jerry, 2003). It can be noted that the Lagrangian mesh has advantages over the Eulerian one. Since 
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there is no convective term in the Lagrangian framework, the code will become conceptually 

simpler, and also by attaching the nodes to the material, tracking the history of field variables 

becomes easier. (Figure 1.4). 

 

 

Combining the methods above leads to more computationally beneficial methods that use each 

method's advantages. The Coupled Eulerian-Lagrangian (CEL) (Mair, 1999) and the Arbitrary 

Lagrange Eulerian (ALE) (Benson, 1992) have resulted from this combination. 

 

1.2.2 Meshless methods 

Although there are many developments in Mesh-based methods in academic and industrial 

applications, a more recent generation of computational methods is attracting interest; Mesh-free 

or Meshless methods, which have many advantages over conventional Eulerian methods (Gotoh & 

Khayyer, 2016). For the Mesh-based Methods, due to the grid-based interpolations, low-quality 

meshes can lead to high errors which need re-meshing which is very common for complex 

problems. This process is highly time and labor-consuming, not even feasible for some three-

dimensional problems (Nguyen, Rabczuk, Bordas, & Duflot, 2008). Nowadays, scientists are 

a 

b 

Figure 1.4 (a) Lagrangian mesh (b) Eulerian mesh 



7 

 

paying attention to developing a generation of meshless methods that are expected to have an 

advantage over conventional grid-based methods such as finite element and finite difference 

methods. Meshless methods include some common tools with the former but differ in the meanings 

of the approximation and the method of application. 

The beginnings of Meshless methods may go back to a few decades ago, but the most significant 

advances in this field were in the 1990s. The Meshless method is a method that, unlike Eulerian 

methods, does not require grid definition or computational domain discretization. In this method, 

a number of nodes (particles) that are scattered both in the computational region and on the 

computational boundary are used. These nodes (particles) do not have a grid shape, i.e., no prior 

information about the relationship between nodes (particles) is needed to interpolate or 

approximate the functions of the variables. For a detailed review of mesh-free methods see (G.-R. 

Liu, 2009) 

 

1.3 Advantages of meshless methods over mesh-based methods 

Undoubtedly, the ability of meshless methods in modeling complex flows has attracted increasing 

attention from researchers to these new methods (Yan, Mohammadian, & Rennie, 2020). Some of 

the advantages of these new and practical methods can be expressed as follows:  

 Flow domain discretization is made by particles which do not have any connectivity to each 

other. 

 Complex geometries can be simulated by initial discretization, i.e. setting up particles in 

the initial condition.  

 Since each particle carries the properties of the fluid, it can be traced to the properties of 

the fluid at that point. Also, obtaining deformation boundaries and free surfaces will not be 

a complicated task.  

 Correcting and recreating particles is easier than correcting the entire computational domain 

of the mesh.  
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Moreover, numerical diffusion is unavoidable in mesh-based methods (Gotoh & Sakai, 2006). 

Unlike the Eulerian method, each particle is defined on the object, and its location changes as the 

object moves. When the body is highly deformed and the structure is not naturally shaped, the 

accuracy of the relationship and its resolution is greatly affected and it is difficult to apply the 

mesh-based Lagrangian method. 

 

1.4 Typical mesh-free methods 

Providing more accurate and stable numerical solutions for the PDE's and facilitating the analysis 

of complex geometries can be nominated as the main purposes of the relatively modern mesh-free 

methods. Here are some of the most popular meshless methods which all share some common 

features but are still different in the implementation process. 

One of the most famous methods that are used widely in fluid and solid mechanics is Smoothed 

Particle Hydrodynamics (SPH) developed by Gingold, Monaghan (Gingold & Monaghan, 1977), 

and Lucy (Lucy, 1977) in 1977. It was initially played out to deal with astrophysical problems, 

however, its applications are diverse nowadays in wave-structure interaction, geophysical flows 

due to landslides, nuclear sludge flows, welding, gearbox flows, and many others (Lind, Rogers, 

& Stansby, 2020).  One may find many recent reviews on this method (Violeau & Rogers, 2016; 

Z.-B. Wang et al., 2016; Ye, Pan, Huang, & Liu, 2019). 

The moving particle semi-implicit (MPS) method is also another mesh-free method. It was first 

developed by Koshizuka, et al (1995) and originally designed to model fluid flow problems by 

providing an approximation of flow PDE's based on integral interpolations. Rapidly, This method 

introduced a set of simple models for the derivatives in the flow equation according to a local 

weighted averaging algorithm (Xie & Jin, 2016). This method has also been applied to a vast range 

of both fluid flow (e.g. (Shakibaeinia & Jin, 2011)) and other engineering problems. The MPS 

method of spatial derivatives is only based on a local weighted averaging process that does not deal 

with the gradient of the kernel function, which in turn, resolves the instability issues originating 

from the kernel function derivatives in the original SPH formulation and that would be the basic 

difference between MPS and SPH (Shakibaeinia & Jin, 2012). Also, Thanks to the non-dimensional 
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particle number density instead of the real density, the density discontinuity at the phase interfaces 

of multiphase simulations are resolved (Hu & Adams, 2006). A bunch of recent hydro-

environmental been developed using MPS and SPH methods (Amaro, Cheng, & Buruchenko, 

2021; Khayyer, Tsuruta, Shimizu, & Gotoh, 2019; Snelling, Collins, Piggott, & Neethling, 2020) 

Unlike the SPH and their corrected adaptions that were strong form based, many other methods 

developed in the 1990s in a weak form which were mostly dealing with solid mechanics (Garg & 

Pant, 2018). The extended finite element method (XFEM) eliminates the need for re-meshing in 

the FE method (Belytschko & Black, 1999) and has many applications in the analysis of variations 

of fracture problems (Pathak, Burela, Singh, & VirSingh, 2015; Shedbale, Singh, & Mishra, 2013), 

Reproducing kernel particle method (RKPM) which is developed to remove the instabilities in SPH 

method (W. K. Liu, Jun, & Zhang, 1995) and Mesh-less local Petrov-Galerkin (MLPG) that has 

excel to other techniques since no Shadow elements and no special procedure for integration is 

needed (Atluri & Zhu, 1998) are only a few developed particle-based methods. Numerical manifold 

method (NMM) (Tsay, Chiou, & Chuang, 1999), cracking particle method (CPM) (Rabczuk & 

Belytschko, 2004) and Iso-geometric analysis (IGA) (Nguyen, Anitescu, Bordas, & Rabczuk, 

2015) can be nominated as other practical meshless methods. 

 

1.5 Past ice dynamic experiments 

Table 1.1 shows the experiments that have been done so far in the context of river ice dynamics. 

Since the experimental situation and dealing with ice is tricky and hard, the experiments done in 

this context are a bit scarce. 
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Table 1.1 Past experiments in the context of river ice 

 Channel geometry Ice floes properties 

Reference 
Length 

(𝒎) 
Width 

(𝒎) 
Height 

(𝒎) 
Ice control 

structure 
ice Material 

floe 

shape 

Density 

(
𝑲𝒈

𝒎𝟑
) 

Equivalent 

diameter 

(𝒄𝒎) 

(Hopkins & 

Tuthill, 2002) 
36 2.25 0.18 Ice boom Real ice Angular 920  13.5 

(Healy & 

Hicks, 2006) 
32 1.22 0.91 Mesh Polyethylene Cube 

952-

965  
3.1 

(Lucie, 

Nowroozpour, 

& Ettema, 

2017) 

14.63*0.254*0.203 

+ 

(25.9*0.254*0.203)  

Sinuous channel 

No 
Polyethylene 

& 

Polypropylene 

Bead 

& 

Block 

905-

952 

 

1.77 

(Morse, 

Francoeur, 

Delcourt, & 

Leclerc, 

2006) 

15 1.5 0.22 

Pier/Net 

and 

boom/net 

Polyethylene disks 917 1.27-5.7 

(J. Wang et 

al., 2019) 
26.68 0.4 0.2 No Polyprsopylene Cube 918 2-6 

 

1.6 Existing models 

In order to simulate a highly dynamic and large-scale phenomenon such as an ice jam, an 

appropriate model is needed. Some existing models in this context are as follows: 
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Table 1.2 Existing models in ice dynamics simulation 

Models 

Discrete/ 

Continuum? 
Framework 

Example 

model/reference 
Pros/cons. Water 

hydrodynamics 

Ice 

dynamics 

1D depth-

averaged 

FVM/FDM 

Advection-

diffusion 

Continuum Eulerian RIVICE 

(Lindenschmidt, 

2017) 

 Practical for large 

scales 

× Simplified and not 

detailed 

2D depth-

average FVM 

2D depth-

averaged SPH 

or MPS 

Continuum-

Continuum 

Eulerian-

Lagrangian 

SPH-FVM 

DynaRICE  (Shen, 

Su, & Liu, 2000) 

MPS-FVM (our 

ongoing work) 

 Practical for large 

scales 

× Depth-averaged 

not good for 

highly dynamic 

conditions 

1D,2D, 3D 

Eulerian or 

Lagrangian 

2D/3D DEM Continuum-

Discrete 

Eulerian-

Lagrangian 

Or Fully- 

Lagrngian 

CFD-DEM 

(Hopkins, 2002) 

MPS-DEM  (Junior, 

Mellado-Cusicahua, 

Shakibaeinia, & 

Cheng, 2021) 

SPH-DEM (Billy et 

al, 2022) 

 Detailed ice 

dynamic 

× Expensive 

2D/3D SPH or 

MPS 

2D/3D SPH 

or MPS 

Continuum-

Continuum 

Fully 

Lagrangian 

Fully Lagrangian 

MPS  (current 

study) 

 Detailed (full- 

dynamic) 

 A bit expensive, 

still practical 

 

As provided in Table 1.2, several models can handle the ice dynamics with their advantages and 

limitations. The first model uses the advection-diffusion for the ice dynamics in one dimension and 

a depth-averaged FVM or FDM for the water phase. Although it is computationally affordable and 

can mimic some river ice processes such as ice generation, ice transport, and ice cover progression,  
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these models are not able to capture some ice details such as viscosity (Lindenschmidt, 2017). 

Some other models simulate the ice phase with a two-dimensional depth-averaged SPH or MPS 

method and utilize the FVM method for the water phase. These models are Eulerian-Lagrangian 

ones with a continuum approach, which are a bit more expensive than the first group yet still 

affordable but they suffer from a lack of details and are not suitable for highly dynamic cases (Shen 

et al., 2000). The third group simulates the ice phase with the DEM method which is capable of 

handling the details of each ice floe individually and provides very accurate results. This method 

can be coupled with any Lagrangian or Eulerian model to simulate the ice-water dynamics. The 

issue with these models is their affordability. Since we are dealing with large scales, using the 

DEM method can not be considered as a good choice. The last group models both water and ice 

phases using Lagrangian particle-based methods like MPS or SPH with a continuum approach.  

Considering the pros and cons of each model, one can find that a continuum-based fully Lagrangian 

model would be the best fit for our purpose since it takes care of affordability and precision at the 

same time. 

 

1.7 Continuum-based approach 

The main concept behind the continuum theory is mostly appropriate for the large-scale sea ice 

evolutions but studies have shown that the continuum assumption is still useful. In this study, we 

assume the ice parcels and the water between the ice parcels as a body of continuum. This 

assumption offers scalability and computationally affordability while taking care of reasonable 

accuracy. 

A recent study by Hutter and Losch (Hutter & Losch, 2020) showed a great agreement between 

their model results and observations for many drift and deformation feature statistics at relatively 

low resolutions. Many other studies have also shown that continuum Visco-Plastic and Elastic 

Visco-Plastic models can accurately simulate key sea ice properties like large-scale distributions 

of sea ice thickness, concentration, and circulation (Kreyscher, Harder, Lemke, & Flato, 2000); 

relationships between sea ice concentration, thickness, and velocity (Docquier et al., 2017); and 

long-term trends in winter sea ice velocity  (Blockley et al., 2020; Tandon, Kushner, Docquier, 
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Wettstein, & Li, 2018). A continuum-based approach to ice-water interactions using a Lagrangian 

method is the idea behind this research. 

All of the simulations of this study are based on the continuum assumption of the ice particles.  

 

1.8 Numerical particle-based modeling of ice dynamics  

One of the natural phenomena’s that happens in cold regions and recently attracted researchers’ 

interests is the ice jamming phenomenon. As ice can be considered a non-Newtonian fluid, having 

a detailed study of this destructive issue is of high interest to this research.  

Ice-modeling problems can be solved analytically for a certain and limited number of cases like 

sea-ice growth (Leppäranta, 1993), but generally flow pattern, ice temperature, thickness, and 

rheology are limitations that ice-sheet models need to deal with and augment the necessity of ice 

numerical modeling (Rybak & Huybrechts, 2003). In computational fluid dynamics, many mesh-

based numerical methods have been developed to solve and study different fluid flows. Usually, 

the main purpose of using these methods is to solve the Navier-Stokes equations. Although these 

methods have shown their effectiveness in simulating many problems, they have encountered 

difficulties in dealing with relatively complex ones that have free surfaces, boundary deformation, 

large deformation, and so on. Generating an appropriate mesh in mesh-based methods for complex 

geometries is not a simple task and usually involves complicated and time-consuming processes. 

In addition, with mesh-based methods, finding accurate free surfaces and moving boundaries is 

challenging (A. J. C. Crespo, 2008). Thus, a relatively newer approach known as Lagrangian 

particle-based methods is taking care of these complex problems. Moving particle semi-implicit 

(MPS) is among the well-developed Lagrangian methods employed in continuum-based modeling 

of Newtonian and non-Newtonian fluids (Shakibaeinia & Jin, 2011) and is widely used in 

numerous hydrodynamic problems (Duan, Yamaji, & Koshizuka, 2019; Nodoushan, Shakibaeinia, 

& Hosseini, 2018). The weakly compressible MPS introduced by Shakibaeinia and Jin 

(Shakibaeinia & Jin, 2010) which employs an equation of states instead of solving Poisson’s 

Pressure Equation (PPE) is implemented in the current study. 
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The instability and accuracy issues especially in pressure fields are known to be associated with 

these particle-based methods and many efforts have been done to tackle these issues (Khayyer, 

Gotoh, & Shimizu, 2019; C. Zhang, Xiang, Wang, Hu, & Adams, 2019). Many enhancement 

algorithms like artificial diffusive terms (J. J. Monaghan, 1994), higher order approximations 

(Tsuruta, Khayyer, & Gotoh, 2013), and particle stabilizing and regularization techniques (Lind, 

Xu, Stansby, & Rogers, 2012) are also introduced and implemented to improve the stability of 

particle methods. Jandaghian and Shakibaeinia (M Jandaghian & Shakibaeinia, 2020) had a 

detailed study on the recent improvements in the accuracy and stability of particle methods namely 

MPS and SPH. 

Winter ice cover is an issue, which almost all of the Canadian waterways deal with. A natural 

phenomenon of these ice cover's melt can be seen each year in the spring, which leads to their break 

up into ice parcels. The resulting ice floes can sometimes have harmful impacts on the sediments 

of the riverbeds by eroding them and damaging the structures along their way which also leads to 

a complete change in the hydrodynamic regime of the river. The flow resistance increase results in 

the water's depth increase, which itself leads to severe flooding. Accumulation of the ice floes can 

result in kilometers-long ice jams and significant rises in water levels. The breakup of the ice jams 

and sudden release of these ice floes can create a flood wave comparable to that of a dam break 

which in turn can threaten the infrastructures like bridges, buildings, and roads (Beltaos, 2010). 

Considering its significant impacts, prediction, and understanding of river ice dynamics are very 

important. 

River ice is made up of moving, growing, or melting irregular pieces of ice that can range in size 

from a few meters to tens of kilometers in length (Hopkins, Frankenstein, & Thorndike, 2004). The 

importance of glacier and ice sheet dynamics is debatable since they have several significant 

impacts that cannot be neglected. Because of the considerable reduction in sea ice volume and 

increased maritime activity in the Arctic Ocean over the last few decades, a reliable sea ice forecast 

has become a critical component of the region's data assimilation systems (Panteleev, Yaremchuk, 

Stroh, Francis, & Allard, 2020). Their interaction with the global climate and their contribution to 

sea-level rise (Chiang & Bitz, 2005; Church et al., 2013), ice runs, and ice jams that can damage 

hydraulic structures and cause excessive shoreline erosions and also lead to severe flooding by 

reducing flow cross-section (Shen et al., 2000), and shaping landscapes (Ahlkrona & Shcherbakov, 
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2017) are only a few of their essential roles in our environment. Beltaos developed the ice jam 

theory based on the static equilibrium of floating accumulations of granular ice (Beltaos, 1995) and 

Flato and Gerard computed a static ice jam profile using a one-dimensional numerical model (Flato 

& Gerard, 1986). In these static ice jam models, the momentum effects of ice and water flows as 

well as the dynamics of the motions were not considered so they were not able to deal with any 

information on formation of the ice jams. 

The important aspect of ice modeling is the relationship between the sea ice stress, which can be 

caused by ice floe interactions, to the large-scale deformation of the ice cover, the state of ice cover, 

and the material properties of sea ice that are all known as the ice rheology (Feltham, 2008).  

Early studies show that sea and glacial ice can be considered as a granular material with bulk 

rheology which is determined by the geometry of ice floes as well as the local mechanics (Feltham, 

2005; Hopkins & Thorndike, 2006) and can be described as a non-Newtonian, incompressible and 

very viscous fluid (Ahlkrona & Shcherbakov, 2017). The very first models of ice rheology, like 

what Ruzin (Ruzin, 1959) and Reed&Campbell (REED & CAMPBELL, 1960) proposed, were 

based on parameterizing the stress using a Laplacian operator which effectively treats the ice cover 

as a viscous fluid. By observing the flow with weak horizontal divergence, Rothrock (Rothrock, 

1970) included a pressure term to prevent unrealistic convergence. Further investigations on ice 

rheology lead to considering the ice as an elastic-plastic (Coon, Maykut, & Pritchard, 1974) and 

viscous-plastic (Hibler III, 1979) material, and several well-known models like Standard Visco-

Plastic (SVP), Granular material approach (GRAM) (Tremblay, 1999). 

 

1.8.1 Sea Ice rheology 

In the previous section, the importance of rheology was discussed. Ice rheology is a crucial 

component of the momentum balance that regulates the dynamic characteristics of sea ice. It 

defines the link between ice internal stress, deformation, and mechanical strength. Most of the sea 

ice dynamic models that are currently being used are based on a viscous-plastic (VP) rheology (J.-

F. Lemieux et al., 2010) followed by its Elastic numerical approximation formulation (Hunke & 

Dukowicz, 1997). One reason for the popularity of these models is that sea ice behaves as a plastic 

material on large scales. Also, their numerical implementation ease of use, and relatively acceptable 
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results in simulating the ice thickness and motion can be nominated as another fact for their wide 

usage. These rheology models provide physically acceptable and numerically feasible solutions for 

modeling sea ice dynamics. Some examples of VP rheology based models are the researches 

conducted by Heimbach et al (Heimbach, Menemenlis, Losch, Campin, & Hill, 2010), 

Vancoppenolle et al (Vancoppenolle et al., 2009) and Massonnet et al (Massonnet, Fichefet, & 

Goosse, 2015). The main rheological model used in this study is the Visco-plastic model proposed 

by Hibler (Hibler III, 1979). This model is patterned after the Arctic ice dynamics joint experiment 

(AIDJEX) developed by Coon et al. (Coon et al., 1974) and is not as detailed as AIDJEX but due 

to its relatively simplicity is more practical which in turn allows to have larger time steps and makes 

it easier to handle the boundaries. In addition, in terms of comparison, the Herschel–Bulkley (HB) 

model, which is mostly used for the granular flows in the literature, is also investigated. 

Despite the efforts on the continuum-based approach of numerical models for simulation of river 

ice using Eulerian mesh-based methods (Bai, Zhang, & McGovern, 2017; Sayeed, Colbourne, & 

Molyneux, 2018), some recent efforts regarding the ice dynamics modeling using particle-based 

methods have been made. For instance, Nolin et al. simulated ice jamming formation and release 

using the SPH ice rubble model (Nolin, Roubtsova, Morse, & Quach, 2009), Junior et al. simulated 

the ice-wave dynamics in which all the motions of an ice floe are captured using the coupled DEM-

MPS method (Junior et al., 2021), Liu et al simulated the ice-water interaction by coupling the 

bond-based peridynamics model for ice and the updated lagrangian particle hydrodynamics 

(ULPH) for the water phase (R. Liu, Yan, & Li, 2020), Woo et al put their efforts on ice fracture 

modeling using the maximum normal stress theory for the criterion of fracture by utilizing MPS 

method (Ren, Sin, Kim, Park, & Jeong, 2020) but in general, due to the complexity of the river ice 

dynamics, the data obtained are limited, scarce and insufficient. Using the MPS method with a 

continuum-based approach by taking advantage of rheological models to simulate non-Newtonian 

fluids, namely ice, is a study that has not been conducted before and is the focus of this study. 

 

1.9 Research objective 

The global objective of this study is to develop a continuum-based mesh-free Lagrangian model, 

based on the MPS method, for the study of river ice dynamic problems.  
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The specific objectives of this research are: 

a) Developing an MPS numerical model for the continuum-based simulation of ice dynamics 

problems and its validation and calibration using a benchmark case. 

b) Investigating the role of different rheological models, such as the Standard Visco-Plastic 

(SVP) and the Herschel–Bulkley (HB), on the accuracy of ice dynamics predictions. 

c) Application and evaluation of a model for the case of ice jam formation, in comparison with 

the experimental results. 

d) Investigating the role of various numerical and physical parameters on the simulation 

results 

 

1.10  Thesis structure 

The present thesis contains five chapters. The first chapter is an introduction of the goal of this 

study and a literature review of what has been done so far in this context. The second chapter talks 

about the fundamentals and formulations of the main method which is utilized in the current thesis, 

namely the MPS method. The third chapter describes two different rheological models (SVP and 

HB) that are implemented and applied on two test cases, Punch through and ice jam, and the results 

are validated. The last chapter is the conclusion of this research in which the key findings, as well 

as the recommendations, are listed. 
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 FUNDAMENTALS OF THE MPS METHOD 

Navier-stokes equations are the well-known governing equations in fluid mechanics motion which 

relate pressure, velocity, density and other quantities. It consists of two coupled nonlinear partial 

differential equations, the conservation of mass and the conservation of momentum with Newton's 

viscosity. The derivative with respect to time in the Lagrangian framework can be expressed as: 

𝐷𝜌

𝐷𝑡
=
𝜕()  

𝜕𝑡
+ (𝐮. ∇)() (2.1) 

This is also called the material derivative which indicates that the amount of change of a variable 

in time can be described by a temporal and a spatial change. Hence, the Lagrangian form of the 

Navier-Stokes equation for an incompressible flow can be derived as follows: 

{
 
 

 
 
1

𝜌

D𝜌

D𝑡
 + ∇. 𝐮 = 0                

𝜌
D𝐮

D𝑡
= ∇.𝕋 + 𝐟                  

𝑃 = 𝑓(𝜌)                              

 (2.2) 

In the equation (2.2) 𝜌, 𝐮, 𝑃, 𝕋 and 𝐟 are density, velocity vector, pressure, total stress tensor and 

gravity acceleration respectively. It is notable that the convective acceleration, which is considered 

a source of error in the Eulerian system, is omitted in the Lagrangian framework. To solve these 

equations, a method should be used to approximate spatial derivatives.  

 

2.1 Interpolations and Kernel function in MPS 

The moving particle semi-implicit method, like many other particle-based methods, is based on a 

local averaging of quantities and vectors. As stated, each particle in MPS can be thought of as a 

real particle with volume, mass, and pressure. When Particles come closer to each other from a 

predetermined distance, affect each other and it is said that there is an interaction between them. 

This distance is called the smoothing length. For each particle, an impact range is defined, denoted 

by 𝑟𝑒. Smoothing length is one of the characteristics of each particle. In incompressible flows, the 
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impact range of the particles is normally constant and equal to each other and also equal to the 

smoothing length, but in compressible flows, it is better to have a different impact range of particles 

with the smoothing length equal to the average of their impact range. 

The arrangement of particles in the initial state is usually normally distributed and the initial 

particle distance is denoted by δ. The ratio of the smoothing distance to the initial particle distance 

𝑟𝑒/𝛿 is an important parameter. The higher its value, the more particles will be contained in the 

impact range of a particle. 

So far, The effect of two particles on each other is mentioned, but the extent of this effect is not 

discussed. This value depends on a function called the kernel function, which is actually a weight 

function, and determines how well two particles affect each other. This function is usually denoted 

by W. The magnitude of this function depends on two variables, the distance between the two 

particles and the smoothing length: 

𝑊 = 𝑊(𝑟, ℎ) (2.3) 

Unlike the SPH method, the MPS method can adopt non-differentiable kernel functions. Below, 

you may find some popular kernel functions used in the MPS method: 
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Table 2.1 Formulation of different kernel functions 

3rd order polynominal 

spiky function by 

Shakibaeinia & Jin, 

2010 (Shakibaeinia & 

Jin, 2010) 

𝑊(𝑟, ℎ) = {
(1 − (

𝑟

ℎ
)
3

       
𝑟

ℎ
≤ 1

0                      
𝑟

ℎ
> 1

 

Rational function by 

Koshizuka and Oka, 

1998 (Koshizuka, 

Nobe, & Oka, 1998) 

𝑊(𝑟, ℎ) = {
(
𝑟

ℎ
) − 1          

𝑟

ℎ
≤ 1

0                      
𝑟

ℎ
> 1

 

Second order 

polynomialfunction by 

Koshizuka and Oka, 

1996 (Koshizuka & 

Oka, 1996) 

𝑊(𝑟, ℎ) =

{
  
 

  
 2 − (

2𝑟

ℎ
)
2

              
𝑟

ℎ
< 1/2

(
2𝑟

ℎ
− 2)

2

            
1

2
≤
𝑟

ℎ
< 1

0                                   
𝑟

ℎ
≥ 1

 

Belytchko et al, 1996 

(Belytschko, 

Krongauz, Organ, 

Fleming, & Krysl, 

1996) 

𝑊(𝑟, ℎ) = {
(1 − (

𝑟

ℎ
)
3

       
𝑟

ℎ
≤ 1

0                      
𝑟

ℎ
> 1

 

Lee et al, 1982  

 
𝑊(𝑟, ℎ) =

{
 
 

 
 
40

7𝜋ℎ2
(1 − 6 (

𝑟

ℎ
)
2

+ 6(
𝑟

ℎ
)
3

)                
𝑟

ℎ
<
1

2
10

7𝜋ℎ2
(2 − 2

𝑟

ℎ
)
3

                              
1

2
≤
𝑟

ℎ
< 1

0                                                                
𝑟

ℎ
≥ 1
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As it is obvious in all of the above kernel functions, their value is zero out of the kernel radius. The 

stability is an issue, which relates to the type of kernel function, as some of them are highly 

sensitive.  

The definition of particle number density in MPS is as follows: 

⟨𝑛⟩𝑖 =∑𝑊𝑖𝑗

𝑖≠𝑗

 (2.4) 

The subscript i and j denote a specific particle and the particles in its support domain respectively. 

It shows that the particle number density is the summation of the kernel values of the adjacent 

particles of that specific particle. The MPS approximation of an arbitrary function is expressed as 

follows: 

⟨𝑓⟩𝑖 =
∑ 𝑓𝑗𝑊𝑖𝑗𝑖≠𝑗

∑ 𝑊𝑖𝑗𝑖≠𝑗
  (2.5) 

In order to satisfy the continuity equation, the particle number density for an incompressible fluid 

should remain invariant (Koshizuka et al., 1998). A reference particle number density value which 

is denoted as 𝑛0 can be used as a normalization factor which would reformulate the Eq. (2.5) as: 

⟨𝑓⟩𝑖 =
1

𝑛0
∑𝑓𝑗𝑊𝑖𝑗

𝑖≠𝑗

  (2.6) 

One can also obtain the number of particles in a unit volume using: 

⟨𝑁⟩𝑖 =
⟨𝑛⟩𝑖

∫ 𝑊(𝑟, ℎ)𝑑𝑣
𝑣

  (2.7) 

Then the fluid density can be expressed as: 

⟨𝜌⟩𝑖 = 𝑚⟨𝑁⟩𝑖 =
𝑚⟨𝑛⟩𝑖

∫ 𝑊(𝑟, ℎ)𝑑𝑣
𝑣

 (2.8) 



22 

 

Equation (2.8) is derived by the same mass assumption of all particles and demonstrates that the 

fluid density is proportional to the particle number density.  

 

2.2 Particles in MPS 

2.2.1 Fluid particles 

In order to simulate the flow in the MPS method, we need to use several different types of particles. 

Particles resulting from flow discretization are called Main particles or Fluid particles on which 

the Navier-Stokes equations are applied. As mentioned earlier, these particles carry various 

quantities such as pressure, density, temperature, mass, velocity, and so on. Since these particles 

are elements of the modeled fluid, wherever these particles are present, they indicate the presence 

of fluid in that area, and any property they carry with them indicates the property of the modeled 

fluid at that point. In specific cases, it is needed to identify the free-surface particles in order to 

assign the boundary values to them. In the standard MPS framework, the particle number density 

is being used for free-surface particle identification in which the criteria are met if the particle 

number density is less than a threshold: 

𝑛𝑖 < 𝛽𝑛𝑛0 (2.9) 

In which the threshold factor 𝛽𝑛 is between 0.8 and 0.99 (Shakibaeinia & Jin, 2010). Although this 

method is easy to implement, the more complex geometries need more accurate techniques 

(Marrone, Colagrossi, Le Touzé, & Graziani, 2010). 

 

2.2.2 Wall particles 

Wall particles (also called virtual particles) are among the first boundary particles and have been 

developed according to the initial applications of the MPS method. These particles are actually 

used to model the wall, and in some cases, they help to prevent the main particles from penetrating 

the wall by applying a strong impact force. This force is inversely proportional to the distance 

between the two particles, and when a fluid particle enters the area of influence of a virtual particle, 
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a force exerts in the direction of the center line of the particles and prevents them from approaching 

and penetrating into the boundary. One of the models to prevent particle penetration is as follows 

(G.-R. Liu & Liu, 2003): 

𝐹𝑖𝑗 =

{
 
 

 
 𝐷 [(

𝑟0
𝑟𝑖𝑗
)

𝑛1

− (
𝑟0
𝑟𝑖𝑗
)

𝑛2

]
𝑥𝑖𝑗

𝑟𝑖𝑗
2                  (

𝑟0
𝑟𝑖𝑗
) ≤ 1 

0                        (
𝑟0
𝑟𝑖𝑗
) > 1

 (2.10) 

In which the parameters 𝑛1 and 𝑛2 are considered 12 and 6, respectively. D is in the order of 

maximum speed in the problem, and r0 is the range of effect of the virtual particles. This distance 

is usually the order of the initial distance between the particles. It should be noted that this repulsive 

force is not utilized in this research. The difference between these particles and the flow particles 

is that the Navier-Stokes equations are not solved for them, and in fact, their speed, location, 

Density, and pressure are constant and will not change. It is noteworthy that the necessity for the 

presence of another type of particle is noticeable since near the solid boundary, there is a kernel 

defect (Figure 2.1). As the virtual particles are stacked in only one row at the boundary, no particles 

are present on the other side of the boundary, and the boundary particle kernel near the walls is 

defective, causing an underestimation in the density of the boundary adjacent particles. This issue 

can be addressed with another type of particles, which are introduced below. 

 

 

 

 

 

 

 

 

 

𝑟𝑒 

Figure 2.1 Wall particles and the deficiency of fluid particles' kernel near the boundary 
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2.2.3 Ghost Particles 

Another type of particle that plays a crucial role in simulating using the MPS method is called the 

ghost particle. These particles have many tasks, including satisfying the non-slip boundary 

condition, preventing the penetration of particles, as well as repairing kernel defects for particles 

near the wall. 

Since the velocity of the fluid must be zero at the stationary boundary (non-slip boundary 

condition), the behavior of the boundary particles must be such that the above condition satisfies. 

For this purpose, several rows of ghost particles are arranged symmetrically to the fluid particles 

with respect to the virtual (wall) particles (Figure 2.2). The velocities of these particles are 

symmetrical mirrors of the velocities of their respective fluid particles. This satisfies the condition 

of non-slip boundaries on virtual particles that actually act as solid boundaries. The non-penetration 

condition of the particles is also satisfied due to the position of the mirror particles in front of the 

fluid particle and the force exerted due to their presence. 

 

 

 

Figure 2.2 Ghost particles' impact on satisfaction of non-slippery boundary condition 
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As mentioned, the velocity components of the mirror particles are symmetrical to their 

corresponding fluid particles, but their density and pressure are the same as those of their 

corresponding fluid particles (Figure 2.3). 

 

Figure 2.3 Mirror ghost particle 

 

In addition, the number of rows of mirror particles is proportional to the radius of the fluid particle’s 

kernel so that the kernel’s deficiency will be solved. (Figure 2.4). 

 

 

Figure 2.4 Solving the boundary particles' kernel deficiency using the ghost particles 

𝑝𝑎 = 𝑝𝑏 

𝜌𝑎 = 𝜌𝑏 

𝑢𝑎 = −𝑢𝑏 

𝑣𝑎 = −𝑣𝑏 

𝑎 

𝑏 
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In Figure 2.5, the representation of a physical domain in a continuum-based approach is depicted. 

It is notable that the ice floes and the water between them are considered as a single medium. 

 

 

Figure 2.5 Particle-based representation of an ice-water system 

 

2.3 Integral expression and particle approximation of a function 

The MPS formulation is usually divided into two key steps. The first step is the integral expression 

or the kernel expression of functions and the second one is the particle approximation. 

In the first part, integrating the multiplication of an arbitrary function and a kernel-smoothing 

function gives the kernel approximation of the function in the integral form. Then, the integral 

expression of the function is approximated by the sum of the values of the nearest neighboring 

particles, which leads to the approximation of the function particles at discrete points (particles). 

The concept of integral expression of the function 𝑓(𝑥) used in MPS is derived from the following 

property: 

𝑓(𝑥) = ∫𝑓(𝑥′)𝛿(𝑥 − 𝑥′)𝑑𝑥′

Ω

 (2.11) 

In which 𝛿(𝑥 − 𝑥′)  is the Dirac delta function which defines as: 
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𝛿(𝑥 − 𝑥′) = {
1       𝑥′ = 𝑥
0       𝑥′ ≠ 𝑥

 (2.12) 

In Equation (2.11) Ω is the integral volume that contains x. Due to the utilization of the Dirac delta 

function, the integral expression in Equation (2.11) is accurately expressed as long as the function 

𝑓(𝑥′) is defined and continuous in the range Ω. 

By replacing the kernel function 𝑊(𝑥 − 𝑥′, ℎ) with the Dirac delta function 𝛿(𝑥 − 𝑥′), the integral 

form of the function 𝑓(𝑥) is expressed as follows: 

𝑓(𝑥) = ∫𝑓(𝑥′)𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′

Ω

 (2.13) 

It should be noted that as long as 𝑊 is not a Dirac function, the integral form expressed in Equation 

(2.13) can only be an approximation. Also in MPS, the kernel approximation operator is 

conventionally represented as follows: 

⟨𝑓(𝑥)⟩ = ∫𝑓(𝑥′)𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′

Ω

 (2.14) 

In the MPS method, the whole system is expressed by a limited number of particles, each of which 

has a specific mass and occupies a certain volume. This expression is obtained by particle 

approximation, which is another key operation in MPS and will be introduced later. 

Continuous integral expressions using the smoothing function can be transformed into a discrete 

form of aggregation on all particles in their support domain. This disintegration and aggregation 

operation on particles is known as particle approximation in the MPS and SPH literature. 

Substitute the very small volume 𝑑𝑥′ in the integral equation (2.14) at the particle 𝑗 with the finite 

volume of the particle ∆𝑉𝑗, which depends on the mass of the particle 𝑚𝑗 as follows: 

𝑚𝑗 = ∆𝑉𝑗𝜌𝑗  (2.15) 

Where 𝜌𝑗 is the density of the particle 𝑗, which 𝑗 = (1,2,3, … , 𝑁) and 𝑁 is the number of particles 

in the support area of the particle 𝑗. 
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With the given explanations, the continuous integral MPS form of the function 𝑓(𝑥) can be 

obtained in the discrete form of the following particle approximation. 

(𝑥) = ∫𝑓(𝑥′)𝑊(𝑥 − 𝑥′, ℎ)𝑑𝑥′

Ω

≅∑𝑓(𝑥𝑗)𝑊(𝑥 − 𝑥𝑗 , ℎ)∆𝑉𝑗

𝑁

𝑗=1

=∑𝑓(𝑥𝑗)𝑊(𝑥 − 𝑥𝑗 , ℎ)
1

𝜌𝑗
(𝜌𝑗∆𝑉𝑗) =∑𝑓(𝑥𝑗)𝑊(𝑥 − 𝑥𝑗 , ℎ)

1

𝜌𝑗
(𝑚𝑗)

𝑁

𝑗=1

𝑁

𝑗=1

 

(2.16) 

𝑓(𝑥) =∑
𝑚𝑗

𝜌𝑗
𝑓(𝑥𝑗)𝑊(𝑥 − 𝑥𝑗 , ℎ)

𝑁

𝑗=1

 (2.17) 

Equation (2.17) shows that the value of a function in particle 𝑗 is approximated using the mean 

value of this function in the particles in the support range of that particle as it is weighted by the 

smoothing function. 

 

2.4 Operators in the MPS framework 

The governing equations that describe a physical phenomenon include mathematical operators such 

as derivatives, gradients, divergences, and Laplacian. Like other computational methods, these 

operators can be computed for the MPS method in the Lagrangian framework. The gradient 

operator in MPS can be expressed as: 

⟨∇𝜙⟩𝑖 =
𝑑

𝑛0
∑

𝜙

|𝑟𝑗 − 𝑟𝑖|
2 (𝑟𝑗 − 𝑟𝑖)𝑊(

𝑖≠𝑗

𝑟𝑖𝑗 , ℎ) (2.18) 

In which the 𝑛0 is the particle number density far from the boundary and 𝜙 is an arbitrary scalar. 

The standard form of 𝜙 is: 

𝜙 = 𝜙𝑖 − 𝜙𝑗 (2.19) 
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Following, one can find the proposed values for the 𝜙 to calculate the pressure gradient:  

𝜙 = 𝜙𝑖 − 𝜙𝑚𝑖𝑛,𝑗                                    Koshizuka and Oka (1996) (2.20) 

𝜙 = 𝜙𝑖 + 𝜙𝑗                                          Toyota et al (2005) (2.21) 

𝜙 = 𝜙𝑖 + 𝜙𝑗 − 𝜙𝑚𝑖𝑛,𝑖 − 𝜙𝑚𝑖𝑛,𝑗            Khayyer & Gotoh (2009) (2.22) 

The divergence and Laplacian of a vector 𝐮 can also be expressed as follows respectively: 

⟨∇. 𝐮⟩𝑖 =
𝑑

𝑛0
∑

𝐮𝑗 − 𝐮𝑖

|𝑟𝑗 − 𝑟𝑖|
2 . (𝑟𝑗 − 𝑟𝑖)𝑊(

𝑖≠𝑗

𝑟𝑖𝑗 , ℎ)  (2.23) 

⟨∇2𝐮⟩𝑖 =
2𝑑

𝜆𝑛0
∑(𝐮𝑗 − 𝐮𝑖)𝑊(

𝑖≠𝑗

𝑟𝑖𝑗, ℎ) (2.24) 

The parameter 𝜆 in the Laplacian is a correction parameter that keeps the variance increasing 

(Koshizuka & Oka, 1996) and is defined as: 

𝜆 =
∫ 𝑊(𝑟𝑖𝑗, ℎ)𝑟

2𝑑𝑣
𝑉

∫ 𝑊(𝑟𝑖𝑗, ℎ)𝑑𝑣𝑉

 (2.25) 

 

2.5 Calculating pressure 

The pressure is calculated using the Poisson equation in the original form. In 2010, Shakibaeinia 

and Jin (Shakibaeinia & Jin, 2010) Proposed a modified form of weakly compressible treatment 

for the MPS pressure calculation which was developed for the SPH method by Monaghan (J. J. 

Monaghan, 1994). In this approach, the flow is considered nearly incompressible, so the pressure 

can be explicitly calculated for each particle. The Modified Tait's equation for the MPS is expressed 

is: 
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𝑃𝑖
𝑛+1 =

𝜌𝑖𝑐0
2

𝛾
((⟨n∗⟩𝑖/𝑛

0)𝛾 − 1)  (2.26) 

In which the 𝑐0 is the numerical sound speed and is usually set to be more than 10 times the 

maximum speed of the flow field to satisfy the compressibility ratio remaining under 1%. 

 

2.6 Simulation Enhancements 

Due to the nature of particle methods, using particle rearrangement techniques is inevitable. These 

regularization techniques are common methods to improve the particle distributions in order to 

avoid particle clustering and density fluctuations. The pair-wise particle collision (PC) method is 

one of the approaches which is widely used in the WC-MPS method (Shakibaeinia & Jin, 2012). 

In this method, the velocity vector of the particles whose distance is less than a threshold will be 

decomposed into normal and tangential parts. The assumption in this method is that the tangential 

part is negligible and only the normal part will be affected and corrected. The other method to 

enhance the models accuracy is the corrected particle shifting method developed by Jandaghian 

and Shakibaeinia (M Jandaghian & Shakibaeinia, 2020) which the idea is taken from “Fick’s law 

of diffusion” implemented by Linda et al. (Lind et al., 2012). In this method, the particles are shifted 

from higher particle concentration regions to lower ones. The XSPH method (J. Monaghan, 1989) 

can also be mentioned as another regularization technique to avoid the inter-penetration of 

particles. This method affects the velocity of particles based on the average velocity of the neighbor 

particles. 

 

2.7 Solution algorithm 

In this study, the governing equations are solved using a fractional step method which splits the 

time steps into prediction and correction pseudo steps. The velocity of a particular particle can be 

obtained by the summation of the velocity calculated in the prediction and correction steps 

(Shakibaeinia & Jin, 2012). 
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𝑢𝑖
𝑘+1 = 𝑢𝑖

∗ + 𝑢𝑖
′  (2.27) 

In which the * and ′ superscripts denote the prediction and correction steps respectively. The 

predicted velocity can be calculated as follows: 

𝑢𝑖
∗ = 𝑢𝑖

𝑘 + ∆u𝑖
∗ 

∆u𝑖
∗ =

∆𝑡

𝜌𝑖
(𝑓𝑖 + ∇𝜇𝑖(∇. 𝐮𝑖) + 𝜇𝑖𝑗∇

2𝐮𝑖 
(2.28) 

By calculating the predicted velocity we can simply move the particles accordingly in the 

prediction step: 

𝑟𝑖
∗ = 𝑟𝑖 + 𝑢𝑖

∗∆t  (2.29) 

After predicting the position of particles, the new particle number density will be calculated. The 

difference between initial and predicted particle number density can be utilized to calculate the 

pressure. The correction step of the velocity is as follows: 

𝑢′ = −
∆𝑡

𝜌𝑖
∇𝑝𝑖  (2.30) 

As it has already been mentioned, the velocity in the new time step can now be calculated by the 

summation of predicted and corrected steps.  

The algorithm of the MPS method can be represented by the following flowchart: 
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Start 

Input particles initial condition 

(position, pressure, velocity)  

Calculating viscous forces and predict the 

position and velocity of the particles  

Applying the enhancement techniques like 

particle shifting and particle collision  

Calculating particle number density 

and pressure  

Calculating pressure gradient and 

velocity correction  

Calculating the corrected position and 

velocity of particles  
Termination check 

Next time step  

End 

Figure 2.6 MPS algorithm flowchart 
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2.8 Time step calculation 

As the described time integration scheme solves the weakly compressible fluid flows explicitly, 

the CFL condition should be satisfied in computing the time step (A. J. Crespo et al., 2015). We 

implement this condition as follows: 

∆𝑡 ≤ 𝐶𝐶𝐹𝐿
𝑙0
𝑐0
  (2.31) 

In which 𝐶𝐶𝐹𝐿 is the courant number which is between 0 and 1 (Shakibaeinia & Jin, 2010). Since 

in this study the shear stress is dominant the time step will be calculated as follows (Violeau & 

Leroy, 2014): 

∆𝑡 = min {𝐶𝐶𝐹𝐿
𝑙0
𝑐0
, 0.125

𝜌𝑚𝑙0
2

𝜂𝑚𝑎𝑥
}  (2.32) 

In which the 𝜂𝑚𝑎𝑥 is the maximum viscosity of the system. 

 



 

 RHEOLOGICAL MODELS 

In the event of a dam break, simulating the rise in water level and discharge is important for 

public safety. For instance, in Canada, the owner is legally obliged to conduct hydrodynamic 

studies using numerical models to determine the increase of water and the speed of surge for 

different dam break scenarios (According to Centre d'Expertise Hydrique du Québec 2007). Since 

most of the North American rivers are frozen during the winter, and the fact that the resulting ice 

floes in spring can accumulate and act as a dam, understanding and simulating this so-called ice 

jam phenomenon is of high importance, especially for cold regions. For this reason, this study aims 

to investigate the ability of particle-based methods, namely MPS, with a continuum approach and 

its capabilities to couple with rheological models, Standard Visco-Plastic (SVP) and Herschel-

Bulkley-Papanastasiou (HBP), to simulate the ice dynamics and its interactions with fluids. Two 

experimental test cases namely ice jamming formation conducted at the university of Alberta 

(Healy & Hicks, 2006) and laboratory scale punch-through test (Polojärvi, Tuhkuri, & Korkalo, 

2012) are simulated and the results are compared and validated. 

 

3.1 Rheological models 

In the continuum-based simulations of ice-fluid models, the rheology of the non-Newtonian phase 

plays a crucial role. In fact, in non-Newtonian fluids, there is no linear relationship between shear 

stress and shear rate. Starch suspensions, many salt solutions, and toothpaste are all considered 

non-Newtonian fluids. The rheological model is a link between ice internal stress, deformation, 

and mechanical strength. The well-known Standard Visco-Plastic (SVP) rheological model is 

currently being used in most ice dynamic models thanks to its simplicity in numerical simulation 

implementations on large scales and relatively acceptable results. Also, as early studies show, river 

ice can be considered a granular material with bulk rheology. Hence, the Herschel-Bulkley (HB) 

model which is mostly used for granular materials is also investigated for the sake of comparison. 

For an arbitrary tensor 𝔸, the standard definitions in tensor calculus are such that the trace is given 

by 𝑡𝑟(𝔸), 𝔸𝑇 is the transpose of 𝔸, the first and second invariants are 𝐼𝐴 and 𝐼𝐼𝐴, the magnitude is 

defined by ‖𝐴‖ = √𝐼𝐼𝐴 = √0.5 𝔸 ∶  𝔸 and 𝔸′ =  𝔸 −
1

𝐷
𝑡𝑟( 𝔸)𝕀 is the deviator in which 𝐷 is the 
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number of spatial dimensions and 𝕀 is the unit tensor. For a general viscous compressible fluid, the 

total stress tensor can be defined as: 

 𝕋 = 𝜏 − 𝑃𝕀 (3.1) 

In which: 

𝜏 = 2𝜂𝔼 + 𝜁(∇. 𝒖)𝕀 (3.2) 

In the above equation, 𝜏 is the shear stress tensor,𝜂 is the effective viscosity, 𝔼 = 0.5(∇𝒖 + (∇𝒖)𝑇) 

is the strain rate tensor and 𝜁 is the second coefficient of viscosity representing a combination of 

all the viscous effects associated with the volumetric rate-of-strain (Nodoushan et al., 2018). 

For the ice phase, the effective viscosity is 𝜂 = 𝜂(‖𝔼′‖, 𝑃′) in which 𝔼′ is the deviator of the strain 

rate tensor and 𝑃′ is the mechanical pressure or normal stress. The rheological model defines the 

effective viscosity with some relations which are dependent on the non-Newtonian material which 

is ice in this study. 

 

3.1.1 HB model 

The Herschel-Bulkley (HB) generalized visco-plastic has been widely used for modeling granular 

flows (Huang & Garcia, 1998) and is being evaluated in this study for modeling ice dynamics. This 

model considers the material as a rigid body for stresses less than yield stress and as a viscous fluid 

for stresses more than this yield stress. The stress tensor in the Herschel-Bulkley (HB) model is 

defined as: 

𝕋 = 2𝜂𝔼′ − 𝑃𝕀 (3.3) 

 The effective viscosity of the HB model is as follows (Nodoushan et al., 2018): 

𝜂 = {

𝜏𝑦

2‖𝔼′‖
+ 𝜂0(‖𝔼

′‖)𝛽−1       ‖𝜏‖ > 𝜏𝑦
 

𝜂𝑚𝑎𝑥                                   ‖𝜏‖ ≤ 𝜏𝑦

 (3.4) 
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In which 𝜂0 and 𝛽 is the flow consistency and behavior indices which are typically determined 

through rheometry measurements and are dependent on the material properties. The HB model also 

accounts for the post-failure behavior of the stress tensor. Where the shear rate approaches zero 

(‖𝔼′‖  → 0 ;  ‖𝜏‖  →  ‖𝜏𝑦‖), equation (3.4) is discontinuous and singular for the un-yielded flow 

regions. To overcome this singularity, a popular exponential regularization continuous version of 

the equation proposed by Papanastasiou (Papanastasiou, 1987) is utilized as follows: 

𝜂 =
𝜏𝑦(1 − exp (−𝑚‖𝔼

′‖)

2‖𝔼′‖
+ 𝜂0(‖𝔼

′‖)𝛽−1 (3.5) 

In which parameter 𝑚 controls the exponential growth of stress such that by increasing the m, the 

shear stress will get closer to the ideal one (equation (3.4)) as shown in Figure 3.1. The regularized 

equation is valid for both yielded and un-yielded regions.  

 

Figure 3.1 Schematic of shear stress and viscosity variation for exponential regularized HB model 

(Nodoushan et al., 2018) 

For the un-yielded regions, the effective viscosity has a maximum of 𝜂𝑚𝑎𝑥 = 𝜂0 + 0.5𝑚𝜏𝑦 which 

is a function of yield stress and normal stress. 
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3.1.2 Standard viscous-plastic model (SVP) 

The standard Visco-Plastic rheological model proposed by Hibler (Hibler III, 1979) which is 

commonly used for large dimension ice dynamic-related problems in the literature is implemented 

in this study. This model is patterned after the AIDJEX model developed by Coon et al. (Coon et 

al., 1974). The SVP constitutive law is not as detailed as the AIDJEX model and it is much more 

practical which allows larger time steps.  

The studies associated with the AIDJEX program revealed that rate-independent plastic rheologies 

are most appropriate for sea ice dynamic interactions. The idea behind these plastic rheologies is 

to allow having the equivalent stresses in the ice pack for the small as well as the large deformation 

rates. However, in linear viscous rheologies, the stresses are proportional to the deformation rate 

(See Figure 3.2). Moreover, these rheologies are strongly resistance to compressive and shearing 

deformations whereas they allow dilation to happen with almost no stress. 

To model the plastic behavior, the ice was considered as an elastic-plastic continuum in which the 

ice behaves elastically in certain strain states. Though, the inclusion of the elasticity demands 

keeping track of the strain state of a given portion of ice indefinitely which introduces significant 

mathematical complexity both theoretically (Pritchard, 1975) and numerically (Colony, Pritchard, 

& Pritchard, 1975). 

To overcome the complexity problem and retain the plastic behavior at the same time, Hibler et al 

(Hibler III, 1979) considered the sea ice as a nonlinear viscous compressible fluid. In this approach, 

the nonlinear viscosities are treated differently for normal and very small deformation rates. For 

normal deformation rates, the ice interacts in a rigid-plastic manner and for very small deformation 

rates, it is treated as a linear viscous fluid with a pressure term. This viscous-plastic approach even 

helps the Eulerian formulations by modeling the essential features of a plastic fluid without time 

step limitations by using implicit numerical techniques. 
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Figure 3.2 illustrates a comparison between the present viscous-plastic approach, the elastic-plastic 

method, and linear viscosity in one dimension. Regarding the elastic-plastic case, one can perceive 

that the material resists compression with a fixed stress and has no resistance to diverging strains. 

The same trend can be found in the viscous-plastic case except that the stress is related to the 

magnitude of the strain rate instead of the strain itself. An important difference between these two 

plastic laws is in the treatment of relatively motionless situations. In the elastic-plastic model, by 

allowing the ice to behave elastically, high stress can be maintained without any relative ice motion. 

In the visco-plastic case, however, such “rigid” cases are approximated by a state of creeping flow. 

A significant difference between the linear viscosity and plastic approaches is that even for small 

strain rates, the stresses are large and independent of the rate of deformation. 

 

Figure 3.2 One-dimensinal comparison of elastic-plastic, viscous-plastic and linear 

viscous rheologies (Hibler III, 1979) 
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3.1.2.1 SVP constitutive law 

As already mentioned, for modeling the ice interaction in the visco-plastic approach, the ice is 

considered to be a nonlinear viscous compressible fluid that obeys the following stress tensor: 

𝕋 = 2𝜂𝔼′ − 𝑃𝕀 + (
𝑃

2
+ 𝜁𝐸𝐼) 𝕀 (3.6) 

In which 𝕀 is the identity tensor, 𝕋 is the stress tensor (two-dimensional), 𝔼′ is the deviatoric strain 

rate tensor, 𝑃 is a pressure term and 𝜁 and 𝜂 are nonlinear bulk and shear viscosities. The pressure 

term (yield strength in isotropic compression) is suggested to be parametrized by the following 

equation (J. F. Lemieux & Tremblay, 2009): 

𝑃 = 𝑃∗ℎ𝑒𝑥𝑝(−𝐶(1 − 𝐴)] (3.7) 

In which 𝑃∗ is the ice strength per meter, 𝐴 is sea ice concentration and 𝐶 is an empirical constant 

characterizing the dependence of the compressive strength on sea ice concentration.  However, in 

our weakly compressible model, the pressure is calculated using the equation of state. 

The bulk and shear viscosity define the rheology term which depends on the yield curve and the 

flow rule. As suggested by Hibler, the elliptical yield curve with a normal flow rule is used for the 

standard visco-plastic model. In this case, the bulk and shear viscosities are defined as follows: 

𝜁 =
𝑃

2∆
 (3.8) 

𝜂 = 𝜁𝑒−2 (3.9) 

In which: 

∆= √𝐸𝐼
2 + (

𝐸𝐼𝐼
2

𝑒
)

2

 (3.10) 

In the above equation, 𝑒 is the ratio of the long axis and the short axis of the elliptical curve (Figure 

3.3) 
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Figure 3.3 shows the relationship between the two-dimensional principal components of stress (𝜎1 

and 𝜎2) of a visco-plastic rheology that employs an elliptical yield curve. The elliptical curve 

boundary shows the plastic flow which the stress state lies on it and its location is specified by the 

strain rate principal components. 

When ∆ tends to zero, equations (3.8) and (3.9) tend to infinity and become singular. Hibler (Hibler 

III, 1979) proposed a maximum value of 𝜁𝑚𝑎𝑥 = (2.5 × 10
8)𝑃 and 𝜂𝑚𝑎𝑥 = 𝜁𝑚𝑎𝑥𝑒

−2 and also in 

order to avoid potential instabilities their minimums are also limited by 𝜁𝑚𝑖𝑛 = (4 × 108)𝑘𝑔𝑠−1 

and 𝜂𝑚𝑖𝑛 = 𝜁𝑚𝑖𝑛𝑒
−2. Hence the equations (3.8) and (3.9) will be like: 

𝜁 = max (𝑚𝑖𝑛 (
𝑃

2∆
, 𝜁𝑚𝑎𝑥) , 𝜁𝑚𝑖𝑛) (3.11) 

𝜂 = max (𝑚𝑖𝑛 (
𝑃

2𝑒2∆
, 𝜂𝑚𝑎𝑥) , 𝜂𝑚𝑖𝑛)  (3.12) 

This formulation of the viscous coefficients with capping leads to a rheology term that is not 

continuously differentiable with respect to the velocity. To obtain a smooth formulation of the 

𝑂 

−
𝑃

2
 

−
𝑃

2
 

𝜎1 

𝜎2 

𝑟1 

𝑟2 

Figure 3.3 Elliptical yield curve of standard viscos plastic rheology with 𝑒 =
𝑟1

𝑟2
= 2 
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viscous coefficients, Lemieux and Tremblay (J. F. Lemieux & Tremblay, 2009) have proposed the 

following: 

𝜁 = 𝜁𝑚𝑎𝑥 tanh (
𝑝

2∆𝜁𝑚𝑎𝑥
) (3.13) 

Lemieux and Tremblay (J. F. Lemieux & Tremblay, 2009) have shown that this smooth 

formulation reduces the number of OL iterations required to reach full convergence by a factor of 

~2 with the standard solver. 
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 RESULTS AND DISCUSIONS 

In this chapter, the simulation and the evaluation of two test cases, namely Punch through and ice 

jam, are done using the developed model. To do so, the ice floes and the water particles between 

them are considered as a single phase which their properties are reflected in their rheological 

models.  

4.1 Punch through simulation 

For the sake of validation, an experiment of punch through test (Polojärvi et al., 2012) is examined 

here with our developed continuum-based MPS method. In this experiment laboratory-scale punch-

through tests are done using the plastic blocks (rubbles) acting as ice. Their motivation for using 

plastic blocks instead of ice was to simplify the interpretation of results, as they won’t freeze like 

real ice while they are together. Comparisons are done to validate the authenticity of the results.  

 

4.1.1 Problem definition 

The punch-through test conducted by Poljärvi et al (Polojärvi et al., 2012) was in two types: 

uncovered and covered basins. These types differed by the boundary conditions on the top of the 

rubbles. Figure 4.1 shows the experimental setup in which 𝑦𝐼 is the direction of the indenter’s 

motion. The basin covers as well as the rubbles are not shown in Figure 4.1 for the sake of clarity.   

Table 4.1 shows some of the parameters used in this experiment.  
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Table 4.1 Parameters in the punch-through experiment 

PARAMETER VALUE 

NUMBER OF BLOCKS 1450 −  3800 

GRAVITATIONAL ACCELERATION 9.8 𝑚/𝑠2 

BLOCK LENGTH 0.09 𝑚 

BLOCK WIDTH 0.05 𝑚 

BLOCK THICKNESS 0.02 𝑚 

MASS DENSITY 949 𝑘𝑔/𝑚3 

INDENTER’S THICKNESS 0.01 𝑚 

 

 

Figure 4.1 Experimental setup (Polojärvi et al., 2012) 
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The 𝑊𝑏 is the instrumented wall width which is movable in their experiment but here we have 

fixed walls with 2.5 𝑚 widths. 

The position of the initial particles of punch through test with lid are as shown in Figure 4.2. The 

total number of particles is around 20k in these simulations including the fluid, boundary, and ghost 

particles. In Table 4.2, more detailed parameters used in this simulation can be found. For the 

indenter, only one layer of the solid particle is used which ensures the maximum pressure validity 

in the flow field. In the simulations conducted in this research, the indenter’s speed is 10 𝑚𝑚/𝑠. 

For the ice phase, both rheological models, namely SVP and HB are applied and examined.  

 

Table 4.2 Parameters used in the punch through simulation 

PARAMETER VALUE 

NUMBER OF FLUID PARTICLES 19200 

NUMBER OF BOUNDARY PARTICLES 600 

NUMBER OF GHOST PARTICLES 1800 

AVERAGE PARTICLE DISTANCE 0.01 𝑚 

SUPPORT AREA RADIUS 0.031 m 

KERNEL FUNCTION 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

SPEED OF SOUND  30 𝑚/𝑠 

WATER’S DENSITY 1000 𝑘𝑔/𝑚3 

ICE’S DENSITY  950 𝑘𝑔/𝑚3  
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Figure 4.2 initial condition of punch through test with lid 

 

 

4.1.2 Results and analysis 

By moving the indenter toward the tank, the ice medium will start to interact with it. Due to the 

viscosity of the ice phase, the border of their particles with the water phase will have a formation 

at each level of the indenter’s penetration. The particles’ formation are shown in two different 

levels in Figure 4.3 and the borders are compared in Figure 4.4 and Figure 4.5. It should be noted 

that there was no major difference in particle formation for the two examined rheological models. 
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Figure 4.3 Position of ice and water particles in 𝑦𝑖 = 80 𝑚𝑚 and 𝑦𝑖 = 240 𝑚𝑚 
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Figure 4.4 Ice medium border comparison with the experimental results in 𝑦𝑖 = 80 𝑚𝑚 



47 

 

 

Figure 4.5 Ice medium border comparison with the experimental results in 𝑦𝑖 = 240 𝑚𝑚 

 

The comparison of the borders of the ice medium between the experimental result and the 

developed model shows good agreement, which in turn can be an indicator of an authentic 

estimation of viscosity. Figure 4.6 shows the contour of the logarithm of viscosity in 𝑦𝑖 = 240 𝑚𝑚. 

The viscosity near the walls and under the indenter is higher due to the increment of normal stress. 
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Figure 4.6 The logarithm of viscosity in 𝑦𝑖 = 240 𝑚𝑚 

 

To examine more the validity of the developed model, the ratio of vertical displacement of particles 

to the indenter’s displacement is shown in a contour and is compared with the experimental results. 

The margins provided for the experimental results for different ratios are approximate since the 

contour is not provided. However, the depicted contour of the developed model shows the particles 

with different ratios of displacement with respect to the indenter’s displacement. 
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Figure 4.7 Deformation of particles based on the ratio to the indenter’s displacement. Left: 

experimental results, Right: numerical results. 

 

Finally, in order to examine the accuracy of rheological models in this test case, the volume of 

displaced particles with different vertical velocities is traced while the indenter penetrates the tank 

(Figure 4.8). It should be noted that the experimental results are approximate and are an average of 

repeated experiments. 
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Figure 4.8 Volume of displaced ice particles with three vertical velocities 𝑣𝑦=2,5 and 9 mm/s 

 

The results obtained in Figure 4.8 shows relatively good agreement with the experimental results. 

As the experimental results are not unique and can be lightly varied by changing the conditions of 

the experiment, the developed model results are valid as long as they follow the trend and 

magnitude. However, the Herschel-Bulkley model seems to follow the trend more accurately. It 

should be noted that the experimental results presented in Figure 4.8 are the average of many 

repeated experiments as shown in Figure 4.9. The reason for fluctuations in the results of the 

developed model can be related to the nature of particle-based methods. Since the volume of 

displaced particles are proportional to the number of them (The volume of particles is constant 
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during the simulation), the quantity of particles meeting the velocity criteria varies at each time 

step.  

 

 

Figure 4.9 Numerical results of volume of displaced ice particles (Polojärvi et al., 2012) 

 

In addition to the fluctuation of the results, there are some discrepancies between the actual 

experiment and the simulation that affect the accuracy of the results. Having a closer look at the 

beginning of the indenter’s movement, the reason for not perfectly matched results can origin from 

different thicknesses of the indenter in the simulation from the experiment. Also, the 3D effects are 

not taken into account which can definitely affect the results.  
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4.2 Ice jam simulation 

4.2.1 Problem definition 

A more dynamic and larger-scale case is simulated in this part. The developed model is applied 

and validated for a case of ice jam formation based on the experiments of (Healy & Hicks, 2006). 

The experiments were carried out in 32𝑚 long, 0.91𝑚 high sidewalls and 1.22𝑚 width 

recirculating flume. Some of the parameters used in this experiment are presented in Table 4.3.  

 

Table 4.3 Parameters used in Ice jam experiment 

PARAMETER VALUE 

MODEL ICE FLOW SIZE 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 1.27 𝑡𝑜 5.08 𝑐𝑚 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

GRAVITATIONAL ACCELERATION 9.8 𝑚/𝑠2 

ICE & WATER DISCHARGE RATE 35 𝐿/𝑠  −  65 𝐿/𝑠 

FLOATING POLYWOOD SIZE 1.9𝑐𝑚 × 1.22𝑚 × 1.22𝑚 

FLUME’S LENGTH  32 𝑚 

FLUME’S HEIGHT  0.91 𝑚 

FLUME’S WIDTH 1.22 m 

 

A sheet of plywood is positioned at 24𝑚 downstream of the flow to simulate an intact ice cover 

and initiate the ice jamming. For this test, discharges of 34 − 48 𝐿/𝑠 are supplied to the head tank 

(Figure 4.10). The experiments are done with and without a wire mesh to block the ice parcels and 

initiate the ice jamming. This test case is simulated using approximately 21k particles for the initial 

condition and this number goes up to 26k during the simulation. Some of the parameters used in 

this simulation can be found in Table 4.4.  
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Figure 4.10 Ice jam experimental setup schematic 

 

Table 4.4 Parameters used in ice jam's simulation 

PARAMETER VALUE 

NUMBER OF FLUID PARTICLES 14𝑘 − 19𝑘 

NUMBER OF BOUNDARY PARTICLES 1650 

NUMBER OF GHOST PARTICLES 4950 

AVERAGE PARTICLE DISTANCE 0.02 𝑚 

SUPPORT AREA RADIUS 0.062 m 

KERNEL FUNCTION 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

SPEED OF SOUND  25 𝑚/𝑠 

WATER’S DENSITY 1000 𝑘𝑔/𝑚3 

ICE’S DENSITY  950 𝑘𝑔/𝑚3  
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4.2.2 Boundary treatment 

One of the challenges in this test case was dealing with the inlet and outlet of the flume as the 

inflow and outflow are different which needs generation and elimination of the particles. If the 

particles suddenly appear in the inflow, the sudden increase of the particle number density will 

introduce an unphysical pressure to the flow domain which causes unphysical acceleration to the 

inflow particles. To tackle this issue, the approach introduced by (Shakibaeinia & Jin, 2011) is 

implemented in which layers of ghost particles are set in the inflow with the same velocity and 

pressure of the inflow particles (Figure 4.11). New generated particles appear in the last layer of 

ghost particles and move toward the flow field. By this trick, the unphysical pressure problem can 

be handled. 

 

 

Figure 4.11 Inflow particle generation treatment (Shakibaeinia & Jin, 2011) 

 

For the outflow, however, adding layers of ghost particles seems not to be enough to compensate 

for the lack of particle number density. As it is shown in Figure 4.12, when a particle is removed, 

the particles in its support domain will instantly be affected and their particle number density and 

in turn their pressure will drop significantly, which is not an ideal thing. The layers of ghost 

particles can gradually compensate for this insufficiency as the upfront layer of fluid particles 

approaches the removal threshold but this compensation does not seem promising. The result of 

this underestimation of pressure is the particle clustering at the outlet. Several ways have been 

examined to compensate for this insufficiency. 
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One of the practical and easily implementable trends to overcome this issue is to impose the 

pressure field to the last layers of the flow field. By doing so, there is no need to have the ghost 

layer in the outflow. However, this trend is not a physical one and does not vary during the 

simulation, and won’t have a high accuracy in capturing the pressure field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The other way which is relatively hard to implement is to add an auxiliary amount to the particle 

number density of the frontier particles. Ideally, we would like to compensate for the sudden 

Figure 4.12 Frontier particles’ particle number density drop after a particle elimination 
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removal of our frontier particle (particle B) with the ghost particle (Figure 4.13). The lack of 

particle number density that particle A senses due to particle B’s disappearance is 𝑤1 = 𝑤(𝑟1, 𝑟𝑒). 

We assume that the x-wise speed of all the particles in the support domain of our frontier particle 

is the same. In this case, if the particle A traverse 𝑥𝑙, then the amount of overestimation of particle 

number density due to the presence of motionless ghost particles will be as follows: 

𝑤2 =∑𝑤(

𝑛

𝑥=2

𝑟𝑥, 𝑟𝑒) −∑𝑤(

𝑛

𝑥=2

𝑟′𝑥, 𝑟𝑒) (4.1) 

In which 𝑟′𝑥 are the distances between the particle B with the ghost particles if they traverse 𝑥𝑙. 

So we can compensate for this shortage by adding an auxiliary term 𝑤′: 

𝑤1 = 𝑤2 + 𝑤
′    →     𝑤′ = 𝑤1 − 𝑤2 

𝑤′ = 𝑤(𝑟1, 𝑟𝑒)- ∑ 𝑤(𝑛
𝑥=2 𝑟𝑥 , 𝑟𝑒) + ∑ 𝑤(𝑛

𝑥=2 𝑟′𝑥, 𝑟𝑒) 
(4.2) 

It should be noted that 𝑟1 refers to the distance between particle B and particle A if it also traverses 

𝑥𝑙. 

 

Figure 4.13 Particle elimination treatment 
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By adding an auxiliary amount to the particle number density of the frontier particles the shortage 

of particle number density caused by particle removals can be compensated. 

Another trend to tackle this issue which is already implemented in this research is to use a weir at 

the end of the flume. The height of the weir should be enough to ensure the outflow does not face 

any altitude drop. This method is easily implementable by adding fixed wall particles at the end of 

the flume. 

4.2.3 Results and analysis 

Figure 4.14 shows the snapshots of the numerical simulations showing the evolution of ice mass. 

The first image shows the initial condition. It should be noted that the ice particles are distributed 

normally before the rigid floating ice sheet in order to save computational expenses. The increase 

in water level is noticeable. The discharge for the following snapshots was 48 𝑙/𝑠 and the SVP 

rheological model is implemented, however, there were no significant differences in the ice 

evolution by changing the rheological model. 

 

 

Figure 4.14 Experimental flume apparatus and the initial position of particles 
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By distributing the ice particles normally before the rigid floating ice sheet, the steady-state time 

turned out to be around 100 seconds which can be observed in Figure 4.15. This figure shows the 

non-dimensionalized ice thickness vs non-dimensionalized jam length for a discharge of 34 𝑙/𝑠. 

The non-dimensionalized position is the streamwise distance from the head of the flume divided 

by the length of the ice jam and the non-dimensionalized thickness of ice is the measured thickness 

at location 𝑥 divided by the average jam thickness. As it can be inferred from Figure 4.15, The ice 

thickness and in general the simulation is steady at around 100s. 

 

Figure 4.15 Non-dimensionalized thickness vs jam length evolution until steady state 

 

non-dimensionalized jam length

n
o

n
-d

im
e

n
s

io
n

a
li
z
e

d
ic

e
th

ic
k

n
e

s
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T = 0s

T = 10s

T = 20s

T = 30s

T = 40s

T = 50s

T = 60s

T = 70s

T = 80s

T = 90s



59 

 

To compare with the experimental results, the non-dimensional ice thickness versus the non-

dimensional jam length in the steady-state condition with different discharges is validated in Figure 

4.16. The results showed great agreement between the developed model and the experimental data 

for both rheological models proving the capability of the model. 

 

 

 

Figure 4.16 Comparison of the dimensionless plot of ice jam formation with different discharges 
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As indicated in Figure 4.16, the ice accumulation tended to be slightly thicker than the average 

near the head of the flume due to the entrainment and subsequent deposition of ice pieces and 

slightly thinner near the toe. In other words, we can see a more classical shape of ice jam in high 

discharges where the accumulation tends to be slightly thicker downstream. It is notable that the 

effect of turbulence is considerable in this simulation. Considering the average inlet speed of 0.25
𝑚

𝑠
 

and 0.3 𝑚 as the diameter of the flume, the Reynolds number would be greater than the critical 

Reynolds number in the pipes which is around 2300. So involving turbulence models like the eddy 

viscosity models such as 𝑘 − 𝜖 or 𝑘 − 𝜔 or the LES-type sub-particle scale (SPS) turbulent model 

can augment the accuracy of the results. Like the other test case, there is a discrepancy between the 

simulation and the experiment. The actual experiment is in three dimensions whereas the 

simulation is in two dimensions in which the effect of the third dimension is neglected.  

As a conclusion, both rheological models showed their capabilities in coupling with the Lagrangian 

particle-based method with the continuum assumption. 
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 CONCLUSION (AND RECOMMANDATIONS) 

In order to simulate highly dynamic, large-scale cases like ice jams, the available models were 

investigated. Among them, a model which was known to be appropriate to handle large scales with 

a reasonable accuracy was designated. A continuum-based fully-Lagrangian model, based on the 

MPS numerical method, was developed for the simulation of ice-water dynamics. The non-

Newtonian behavior of the ice continuum was described using two Visco-Plastic constitutive laws, 

i.e., the Standard Visco-Plastic (SVP) and the Herschel–Bulkley (HB). The developed model was 

validated and evaluated for the cases of punch-through test and ice jam formation, where the 

experimental and numerical results showed good compatibility. The results proved the capability 

of the developed model for the simulation of ice dynamic problems.  

Regarding the accuracy of the rheological models, although the HB model was a bit more 

stable in small cases like punch through, both of them were reasonable enough to be coupled with 

the particle-based methods and I would say the SVP would be a great choice due to its simplicity 

in implementation. Of course, there are some discrepancies between the actual experiments and the 

developed model’s simulation of the evaluated test cases. One of these gaps was the dimension of 

the simulation. As the simulations done in this research were in two dimensions, the effects of the 

third dimension were neglected.  

As a continuum-based model, the ice floes' size and their distribution are not explicitly used 

in the model, yet they are reflected in the rheological characteristics. However, one should note 

that the continuum assumption, requires the computational elements (here particles) to be larger 

than the physical discrete elements (here ice floes), which will negatively affect the numerical 

resolution (especially for the water phase).  

A solution to this challenge, which can be considered for future research, is using a multi-

resolution particle method, similar to the work of (Mojtaba Jandaghian & Shakibaeinia, 2022) on 

multiphase granular flows. Further investigation is recommended for more detailed parametrization 

of the rheological model and extending the application to three-dimensional cases. Also, since the 

developed code is based on CPU, it can be GPU accelerated which augments the run time. By 

doing so, more particles can be utilized and the effect of the resolution can also be investigated. 

Moreover, considering the effect of turbulence especially in the ice jamming test case can be done 

to augment the accuracy of the results.  
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In addition, to evaluate the continuum-based assumption and generally finding out the 

effectiveness of this assumption, the same test cases can be simulated by the DEM method and 

measure how much accuracy is being sacrificed to gain computational budget.   
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Numerical methods for ice dynamics problems are either based on the discrete or continuum 

descriptions of the ice floes. While the discrete-based approaches, such as the Discrete Element 

Method (DEM), are very accurate, they are computationally expensive for large-scale problems, 

as they deal with individual ice floes. On the other hand, the continuum description offers 

scalability and computational affordability, by considering the assembly of ice parcels as a body 

of continuum and solving the conservation equations. In combination with the mesh-free 

Lagrangian (particle) numerical methods, such as Smoothed Particle Hydrodynamic (SPH) and 

Moving Particle Semi implicit (MPS), the continuum description can also offer accuracy and 

flexibility comparable to the discrete description. In this study, we propose an MPS Lagrangian 

numerical method for simulation of multiphase ice-water dynamics, based on continuum 

description of both ice and water, considered as non-Newtonian and Newtonian fluids, 

respectively. To predict the non-Newtonian behaviour of the ice continuum, we examine two 

Visco-Plastic constitutive laws, i.e., the Standard Visco-Plastic (SVP) and the Herschel–Bulkley 

(HB). The developed model is validated and evaluated for the cases of punch-through test, and ice 

jamming. Comparison with the experimental data shows the accuracy and reliability of the 

developed model. 
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River ice dynamics is the common problem of cold-regions rivers during the ice formation 

and breakup periods. The movement of ice floes, their interaction with river boundaries and 

hydraulic structures, and the possibility of jamming can impact many fluvial, environmental, and 

engineering processes. Particularly, the ice jamming can damage the fluvial infrastructures and 

block the natural flow causing significant water level rises and floods. Therefore, the prediction of 

river dynamics is an essential element of fluvial studies and flood risk assessment during ice 

periods. Recent efforts on numerical simulation of ice dynamics have focused on discrete 

description or continuum description of ice parcels. Discrete description (e.g., in Discrete Element 

Method, DEM) deals with individual ice parcels subject to macroscopic and microscopic force 

(Junior et al., 2021). Although the discrete methods are useful for the accurate analysis of ice 

dynamics, they are relatively computationally expensive and restricted to small-scale problems. In 

contrast, continuum description treats the ice material as a body of continuum and solves the 

conservation laws to predict the state of the system. The continuum approaches are computationally 

affordable for larger-scale problems. 

While most of the past research on continuum-based modelling of ice dynamics has been 

using Eulerian mesh-based methods (Bai et al., 2017; Sayeed et al., 2018), Some recent efforts 

have been made toward the use of mesh-free Lagrangian (particle-based) methods. Mesh-free 

Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Moving particle-semi-

implicit (MPS) are very flexible for simulating continuums with large interfacial deformations, 

therefore, are ideal for handling the complex dynamics of ice-water systems. (Gutfraind & Savage, 

1998; Lindsay & Stern, 2004; Nolin et al., 2009; Oveisy, Dibike, Prowse, Beltaos, & de Goede, 

2015; Shen et al., 2000) made the earliest efforts to use depth-averaged SPH (insemination with an 

Eulerian hydrodynamic model) for ice dynamic simulation. Similarly, (Oveisy et al., 2015) used a 

depth-averaged MPS technique that was in combination with a finite-volume technique. These 

hybrid models were based on the shallow flow assumption hence not appropriate for reproducing 

the dynamics of fast-flowing ice parcels. Continuum-based modelling also relies on appropriate 

rheological models to describe the internal stresses of the ice material. Past investigations on ice 

rheology have led to elastic-plastic and viscous-plastic models (Coon et al., 1974; Hibler III, 1979). 

Standard Visco-Plastic (SVP), and Granular material approach (GRAM) are two of the widely used 

visco-plastic models (Tremblay, 1999). 



72 

This paper aims at developing a fully-Lagrangian mesh-free model, based on the MPS 

method for continuum-based modelling of ice-water dynamics. MPS is used to solve the full 

dynamic Navier–Stokes equations for both water and ice phases. Various rheological models are 

used to predict the ice mechanical behavior. The developed model is validated for punch-through 

benchmark test, as well as ice jam formation in an experimental channel. 

 

6.1 Methodology  

6.1.1 Governing equations 

Here we consider the ice-water computational domain as a multi-density multi-viscosity 

system and a single set of governing equations is solved for the entire flow field.  The governing 

equation includes the conservation of mass and momentum (in a Lagrangian framework) and the 

equation of motion as: 

{
 
 

 
 
1

𝜌

D𝜌

D𝑡
 + ∇. 𝐮 = 0                

𝜌
D𝐮

D𝑡
= ∇. 𝛔 + 𝐠                  

D𝐫

D𝑡
= 𝐮                              

 (5.1) 

 

where 𝜌, 𝐮, 𝛔 , 𝐠 , and r are density, velocity vector, total stress tensor, gravity acceleration, and 

position vector respectively. Using a mesh-free particle method, the solution domain is 

represented/discretized by the equal-size particles (i.e. computational nodes). The stress tensor is 

calculated using a rheological model.  

The ambient fluid (water) is represented by the fluid-type particles, and the mixture of ice material 

and interstitial fluid is treated as a monophasic isotropic continuum and is represented by ice-type 

particles (Figure 6.1).  
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Figure 6.1 Particle-based representation of ice-water system 

 

6.1.2 Rheological model 

Here we examine two visco-plastic rheological models, the standard Visco-Plastic (SVP) 

(Hibler III, 1979) and Herschel-Bulkley (HB) generalized visco-plastic (Huang & Garcia, 1998) 

models. The SVP considers ice as a nonlinear viscous compressible fluid, for which the total stress 

tensor is calculated from: 
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in which 𝑰 is the identity tensor, 𝐄 ˈ is the deviatoric strain rate tensor, 𝑝 is a pressure term, ζ and 𝜂 

are nonlinear bulk and shear viscosities, and EI and EII are the first and second invariants of the 

strain rate tensor. The bulk and shear viscosity define the rheology term which depends on the yield 

curve and the flow rule. As suggested by Hibler (1979), the elliptical yield curve (where e is the 

ellipse aspect ratio) is used in SVP model. The stress tensor in the Herschel-Bulkley (HB) model 

is defined as: 
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where τy is the yield stress given by Mohr-Coulomb, and µ0 and β are consistency and behaviour 

indexes. One can consider GRAM model an especial case of HB model with µ0=0. 

 

6.1.3 MPS discretization 

Here a weakly-compressible MPS (WC-MPS) method (Shakibaeinia & Jin, 2010) is 

employed. In MPS, the continuum is represented by a set of mobile particles. The technique is 

based on weighted averaging of quantities, vectors and derivatives. Each particle i with position 

vector ri, interacts with its neighboring particle j in using a weight function, W(rij, re), where rij=|rj-

ri| and re are distance between particles and effective radius, respectively. The pressure gradient 

term and the divergence-free viscous term are given by (Shakibaeinia & Jin, 2012). 
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where n0 is particle number density, and d, number of space dimensions, The MPS approximation 

of the strain rate tensor, E, can be written as: 
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A fractional-step time integration methods is employed to solve the equations. As in the WC-MPS 

(Shakibaeinia & Jin, 2010) the fluids are assumed to be weakly compressible, and the Tait’s 

equation of state is used for prediction of the pressure. 

 

6.1.4 Punch through simulation 

The developed model is applied and validated with an experimental punch through test case 

(Polojärvi et al., 2012). A water tank is filled with water and artificial ice rubbles and a flat indenter 

platen moves downward through the rubble mass (Figure 6.2). The 𝑊𝑏 is the instrumented wall 

width, which is movable in the experiment but here we have fixed walls with 2.5 𝑚 width. The 

initial particle representation of the domain is shown in Figure 6.2. To simulate this test case in 

two dimensions, total number of 20,000 particles are implemented. The indenter moves at the speed 

of  10 𝑚𝑚/𝑠. Figure 6.3 shows the snapshot of the simulated particle configuration for 𝑦𝑖 =

80 𝑚𝑚 and 𝑦𝑖 = 240 𝑚𝑚 (𝑦𝑖 being the indenter’s displacement from the origin).  The ratio of ice 

particles displacement to the indenter’s displacement (as an indication of rubble mass deformation) 

is compared with the experimental data in Figure 5.4, showing a good compatibility. Also, the 

volume of displaced ice particles simulated using SVP and HB rheological models are compared 

with the experimental values in Figure 6.5. Here the HB model shows a trend closer to that of 

experiment than the SVP model. 
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Figure 6.2 Experimental set up (Polojärvi et al., 2012) and initial position of particles in the 

numerical model 

 

 

Figure 6.3 Position of ice and water particles in 𝑦𝑖 = 80 𝑚𝑚 and 𝑦𝑖 = 240 𝑚𝑚 
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Figure 5.4 Deformation of particles based on the ratio to the indenter’s displacement. Left: 

experimental results, Right: numerical results. 
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Figure 6.5 Volume of displaced ice particles with three vertical velocities vy=2, 5 𝑎𝑛𝑑 9 𝑚𝑚/𝑠 

6.1.5 Ice jam simulation 

Next we apply and evaluate the developed model for a case of ice jam formation based on the 

experiments of (Healy & Hicks, 2006). The experiments were carried out in 32𝑚 long, 0.91𝑚 high 

sidewalls and 1.22𝑚 width recirculating flume. A sheet of plywood is positioned at 24𝑚 

downstream of the flow to simulate an intact ice cover and initiate the ice jamming. For this test, 

discharges of 35 − 65 𝐿/𝑠 are supplied to the head tank (Figure 5.6). The experiments are done 

with and without a wire mesh to block the ice parcels, however, here we only simulate the case 

without the wire mesh. Figure 5.7 shows the snapshots of the numerical simulations showing the 

evolution of ice mass. To compare with the experimental results, the non-dimensional ice thickness 

versus the non-dimensional jam length in steady-state condition is validated in Figure 5.8. The 

results showed great agreement between the developed model and the experimental data for both 

rheological models proving the capability of the model.  

 

Figure 5.6 Experimental configuration of the ice jam formation case 
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Figure 5.7 Experimental flume apparatus and the initial position of particles 

 

 

Figure 5.8 Comparison of dimensionless plot of ice jam formation with different discharges  
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6.2 Conclusion 

A continuum-based fully-Lagrangian model, based on the MPS numerical method, was 

developed for the simulation of ice-water dynamics. The non-Newtonian behaviour of the ice 

continuum were described using two Visco-Plastic constitutive laws, i.e., the Standard Visco-

Plastic (SVP) and the Herschel–Bulkley (HB). The developed model is validated and evaluated for 

the cases of punch-through test and ice jam formation, where the experimental and numerical 

results showed a good compatibility. The results proved the capability of the developed model for 

simulation of ice dynamic problems. As a continuum-based model, the ice floes size and its 

distribution are not explicitly used in the model, yet they are reflected in the rheological 

characteristics. However, one should note that the continuum assumption, requires the 

computational elements (here particles) to be larger than the physical discrete elements (here ice 

floes), which will negatively affect the numerical resolution (especially for the water phase). A 

solution to this challenge, which can be considered for the future research, is using a multi-

resolution particle method, similar to the work of (Mojtaba Jandaghian & Shakibaeinia, 2022) on 

multiphase granular flows. Further investigation is recommended for more detailed parametrization 

of the rheological model and extending the application to three-dimensional cases. 

 

 


