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RÉSUMÉ

Avec les progrès de l’informatique quantique ces dernières années, les logiciels quantiques
deviennent essentiels pour explorer le plein potentiel des systèmes informatiques quantiques.
Récemment, le génie logiciel quantique (QSE) est devenu un domaine émergent qui attire de
plus en plus l’attention. Cependant, on ne sait pas quels sont les défis et les opportunités
de l’informatique quantique auxquels est confrontée la communauté du génie logiciel. En
tant que nouvelle approche pour effectuer des calculs afin de résoudre plus rapidement des
problèmes spécifiques (par exemple, des problèmes d’optimisation combinatoire), la program-
mation quantique diffère de la programmation classique de plusieurs manières. Par exemple,
l’état d’un programme quantique est de nature probabiliste et un ordinateur quantique est
sujet aux erreurs en raison de l’instabilité des mécanismes quantiques. Par conséquent, les
caractéristiques des problèmes de programmation quantique peuvent être très différentes de
celles de la programmation classique.

Cette thèse rapporte deux études empiriques menées dans le but de comprendre les prob-
lèmes de programmation quantique auxquels sont confrontés les développeurs de logiciels
quantiques. Premièrement, nous effectuons une étude des défis perçus par les développeurs
de logiciels quantiques et identifions des opportunités pour la recherche et la pratique du
QSE. En particulier, nous examinons les forums de questions-réponses techniques où les
développeurs posent des questions liées au QSE, et les rapports de problèmes GitHub où les
développeurs soulèvent des problèmes liés au QSE. Deuxièmement, nous effectuons une étude
des caractéristiques des bogues dans l’écosystème logiciel quantique et de leur distribution
dans les composants du programme quantique.

Pour comprendre les enjeux QSE perçus par les développeurs. Nous réalisons une étude
empirique sur les forums Stack Exchange où les développeurs postent des questions et donnent
des réponses liées à QSE et des rapports de problèmes Github où les développeurs soulèvent
des problèmes liés au QSE dans des projets pratiques d’informatique quantique. Sur la base
d’une taxonomie existante des types de questions sur Stack Overflow, nous effectuons d’abord
une analyse qualitative des types de questions liées au QSE posées sur les forums Stack
Exchange. Nous utilisons ensuite la modélisation automatisée des sujets pour découvrir les
sujets dans les publications Stack Exchange liées au QSE et les rapports de problèmes GitHub.
Notre étude met en évidence certains domaines particulièrement difficiles du QSE qui sont
différents de ceux du génie logiciel traditionnel, tels que l’explication de la théorie derrière
le code informatique quantique, l’interprétation des résultats des programmes quantiques
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et la réduction du fossé des connaissances entre l’informatique quantique et l’informatique
classique, ainsi que leur opportunités associées.

Pour ce qui concerne les caractéristiques des bogues survenant dans les projets de logiciels
quantiques. Nous avons realisé une étude empirique des rapports de bogues (documentés sous
forme de pull requests et de rapports de problèmes) de 125 projets de logiciels quantiques
hébergés sur GitHub. Ceci afin de découvrir des informations qui peuvent aider à concevoir
des mécanismes de test et de débogage efficaces pour les projets de logiciels quantiques. Nous
observons que les projets de logiciels quantiques sont plus bogués que les projets de logiciels
classiques comparables et que les bogues des projets quantiques sont plus coûteux à corriger
(en termes de lignes de code modifiées) que les bogues des projets classiques. Nous identifions
également les types de ces bogues et les composants de programmation quantique (par ex-
emple, la préparation d’état) où ils se sont produits. Notre étude montre que les bogues sont
répartis sur différents composants, mais des bogues spécifiques au quantique apparaissent
particulièrement dans les composants du compilateur, d’opération de porte et de préparation
d’état. Les trois types de bogues les plus fréquents sont les bogues d’anomalie de programme,
les bogues de configuration, et les bogues de types et de structure de données. Notre étude
met en évidence certaines lacunes actuelles de l’écosystème de développement de logiciels
quantiques, tels que le manque de bibliothèques scientifiques de calcul quantique qui implé-
mentent des fonctions mathématiques complètes pour les algorithmes de calcul quantique
et les définitions d’opération de porte quantique. Les développeurs quantiques recherchent
également des bibliothèques spécialisées dans la manipulation de données (par exemple, la
manipulation de tableaux) dédiées à l’ingénierie logicielle quantique telles que Numpy pour
l’informatique quantique. Nos découvertes fournissent également des informations pour les
travaux futurs visant à faire progresser le développement, le test, et le débogage des pro-
grammes et logiciels quantiques. Nous espérons qu’elles permettront par exemple de fournir
un support d’outillage pour le débogage des circuits de bas niveau.
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ABSTRACT

With the advance of quantum computing in recent years, quantum software becomes critical
for exploring the full potential of quantum computing systems. Recently, quantum software
engineering (QSE) becomes an emerging area attracting more and more attention. However,
it is not clear what are the challenges and opportunities of quantum computing facing the
software engineering community. As a new approach of performing computation to solve
specific problems (e.g., combinatorial optimization problems) faster, quantum programming
is different from classical programming in several different ways. For example, the state
of a quantum program is probabilistic in nature, and a quantum computer is error-prone
due to the instability of quantum mechanisms. Therefore, the characteristics of quantum
programming issues may be very different from that of classical programming.

This thesis reports two empirical studies to understand quantum programming issues facing
quantum software developers. Firstly, we perform a study of the challenges perceived by
quantum software developers and seek opportunities for future QSE research and practice.
In particular, we examine technical Q&A forums where developers ask QSE-related questions,
and GitHub issue reports where developers raise QSE-related issues. Secondly, we perform
a study of the bug characteristics in the quantum software ecosystem and their distribution
throughout the quantum program components.

To understand the QSE-related challenges perceived by developers. We perform an empirical
study on Stack Exchange forums where developers post QSE-related questions & answers and
Github issue reports where developers raise QSE-related issues in practical quantum com-
puting projects. Based on an existing taxonomy of question types on Stack Overflow, we first
perform a qualitative analysis of the types of QSE-related questions asked on Stack Exchange
forums. We then use automated topic modeling to uncover the topics in QSE-related Stack
Exchange posts and GitHub issue reports. Our study highlights some particularly challeng-
ing areas of QSE that are different from that of traditional software engineering, such as
explaining the theory behind quantum computing code, interpreting quantum program out-
puts, and bridging the knowledge gap between quantum computing and classical computing,
as well as their associated opportunities.

Regarding the characteristics of bugs occurring in quantum software projects. We conduct
an empirical study on the bug reports (in the forms of pull requests and issue reports) of
125 quantum software projects hosted on GitHub, in order to provide insights that can help
devise effective testing and debugging mechanisms for quantum software projects. We observe
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that quantum software projects are more buggy than comparable classical software projects
and that quantum project bugs are more costly to fix (in terms of the code changed) than
classical project bugs. We also identify the types of these bugs and the quantum programming
components (e.g., state preparation) where they occurred. Our study shows that the bugs
are spread across different components, but quantum-specific bugs particularly appear in the
compiler, gate operation, and state preparation components. The three most occurring types
of bugs are Program anomaly bugs, Configuration bugs, and Data type and structure bugs.
Our study highlights some particularly challenging areas in quantum software development
that are different from traditional software development, such as the lack of scientific quantum
computation libraries that implement comprehensive mathematical functions for quantum
computing algorithms and quantum gate operation definitions. Quantum developers also
seek specialized data manipulation (e.g, array manipulation) libraries dedicated to quantum
software engineering such as Numpy for quantum computing. Our findings also provide insights
for future work to advance quantum software development, testing and debugging. We
hope that our findings will, for example, help deliver tooling support for debugging low-level
circuits.
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CHAPTER 1 INTRODUCTION

In recent years, the development of quantum software engineering (QSE) has shown sig-
nificant progress. This breakthrough is primarily driven by the achievement of a series of
important milestones in recent years. For example, D-Wave claimed the first commercial
quantum computer in 2011 [5]. Tech giants such as IBM, Amazon, Google, and Microsoft
are racing to build their quantum computers. Quantum computers are expected to make
revolutionary computation improvements over modern classical computers in certain areas,
such as optimization, simulation, and machine learning [6, 7]. The rapid development of
quantum computers has driven the development of quantum programming languages and
quantum software [3], with many of them released as open source [8]. A variety of quantum
programming frameworks and languages have been introduced, such as Qiskit [9], Cirq [10],
and Q# [11]. For example, IBM’s Qiskit is a Python-based software development toolkit for
developing quantum applications that can run on quantum simulators or real quantum com-
puters (e.g., IBM Quantum Cloud). Quantum software, by its nature, is drastically different
from classical software. For instance, the classical software system is executed sequentially
and the status of the system is typically deterministic. However, a quantum software system
is intrinsically parallel and can have multiple possible states at the same time [12]. In ad-
dition, quantum computers are error-prone due to the instability of quantum mechanisms,
hence the output of a quantum software system is often noisy [13]. Thus, the challenges and
issues of quantum programming may possess unique characteristics that are very different
from those in classical programming.

This thesis examines the technical Q&A forums and GitHub issue reports in depth. In fact,
we look to understand the intention behind developers’ questions on technical forums and the
types of information that they are seeking, and their faced challenges. We also examine the
quantum software ecosystem bugs to build a taxonomy for the quantum bugs and understand
the unique characteristics of bugs occurring in quantum programs.

1.1 Quantum Software Engineering Challenges

Quantum computing is expected to help solve the computational problems that are difficult
for today’s classical computers, including issues in cryptography, chemistry, financial ser-
vices, medicine, and national security [14]. In the classical computing world, a modern CPU
is nearly useless without an operating system and software tools for developing applications,
and we can assume that this will also be the case for quantum computers. Without powerful
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software, quantum computing will fail to deliver on its promise. Quantum programming
languages like Q# from Microsoft, Qiskit from IBM, or Cirq from Google primarily operate
at the gate or building-block level. If a required building block is not yet implemented, the
user needs to specify the exact sequence of interconnections between qubits and quantum
gates. The complexity in writing quantum software has another unfortunate side effect: be-
cause quantum programming is unlike classical programming, quantum software engineers
are a rare breed. They need a level of knowledge in quantum information theory and have
a working understanding of quantum physics as well as a mastery of linear algebra. Fur-
thermore, quantum software engineers need domain expertise in option pricing, molecular
biology, supply-chain optimization, or whatever problem the teams set out to solve. The
need to define new algorithms at the gate level makes it very difficult to integrate domain-
specific experts into quantum teams. It is therefore expected to observe an increase in the
prevalence of discussion about quantum software engineering in the technical Q&A forums.

In this chapter, we perform a large-scale empirical study of quantum computing posts on
technical Q&A forums and GitHub issue reported by leveraging topic modeling.

1.2 Quantum Software Ecosystem and Quantum Bugs

In modern software development, debugging and testing play a critical part to ensure good
quality and performance. A software bug is an abnormal behavior that deviates from the
specification of a program [15]. Software bugs impact massively the performance, security,
and quality of a program. Even though quantum programs, by their nature, are drastically
different from classical software programs, they do not escape the risks that bugs cause.
Quantum computing is fancy, and various efforts are currently competing to build the quan-
tum software ecosystem (e,g. Qiskit [9], Cirq [10], and Q# [11]). With the continuous growth
of this field, ensuring correctness is becoming more and more a high priority. Testing and
debugging, which are two approaches used to prevent and find bugs in classical software can
be applied to quantum software. However, an important pillar to preventing and detecting
bugs is understanding what bugs exist in the quantum software ecosystem. Quantum soft-
ware is probabilistic by nature which makes it drastically different from classical software.
For example, a classical software system is executed sequentially and the status of the system
is typically deterministic. However, a quantum software system is intrinsically parallel and
uses the qubits which can have multiple possible states at the same time [12]. Also, because
quantum computers are error-prone due to the instability of quantum mechanisms, the mea-
surement of the qubit state of a quantum software system is often noisy [13]. Therefore,
the bugs of quantum software can possess unique characteristics that are very different from
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those in classical software.

In this chapter, we perform an empirical study on 125 open-source quantum software projects
hosted on GitHub to understand the characteristics of bugs occurring in quantum software
projects.

1.3 Thesis Statement

Although software engineering challenges, as well as software bug characteristics, have been
widely investigated for classic software systems, no study to date has examined the tech-
nical Q&A forums and GitHub issue reports to identify the quantum programming issues
and challenges. Besides, there are very few empirical studies on quantum computing bugs
characteristics and no prior in-depth study of quantum software bugs. To fill this gap, in
this thesis we present two empirical study on technical Q&A forums and 125 open-source
quantum software projects hosted on GitHub. These quantum software projects cover a vari-
ety of categories, such as quantum programming frameworks, quantum circuit simulators, or
quantum algorithms, and present a taxonomy of bug characteristics in the quantum software
ecosystem. Our goal is to help researchers and practitioners better understand the challenges
and issues of quantum programming for which the demand is increasing rapidly. We hope
that our work will encourage software engineering researchers to tackle the most important
challenging tasks in quantum software engineering, such as quantum software debugging and
testing.

It is critical to understand the extent to which quantum software practitioners are struggling
and identify the bug characteristics in the quantum software ecosystem to ensure the cor-
rectness of the quantum programs. To the best of our knowledge, this thesis presents the
first in-depth empirical study on quantum computing programming.

1.4 Thesis Overview

In this thesis we report two empirical studies. First, we perform a large-scale empirical study
of quantum computing posts on technical Q&A forums and GitHub issue reports by applying
topic modeling to assimilate the discussed challenges and highlight the most relevant topics
that quantum software engineers are facing. Second, using the GitHub projects selected in
the first empirical study, we examine the bugs reports. For instance we study the distribution
of bugs based on the quantum software components and project types, the duration to fix
the bugs, and propose a taxonomy for bugs in quantum computing programs.
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In the following we elaborate on each of the studies.

1. Understanding quantum software engineering challenges: We introduce the first
empirical study that aims to understand the challenges perceived by quantum software
developers and seek opportunities for future QSE research and practice. In particular,
we examine technical Q&A forums where developers ask QSE-related questions, and
GitHub issue reports where developers raise QSE-related issues. We apply a series of
heuristics to search and filter Q&A posts that are related to QSE and to search and filter
GitHub projects that are related to quantum software. In total, we extract and analyze
3,117 Q&A posts and 43,979 Github issues that are related to QSE. We combine man-
ual analysis and automated topic modeling to examine these Q&A posts and Github
issues, to understand the QSE challenges developers are facing. Firstly, we manually
examined a statistically representative sample of questions. We extended a previous
taxonomy from prior work [16] and found nine categories of questions. Secondly. we
use topic models to extract the semantic topics in the technical Q&A forums posts.
We derived nine topics including traditional software engineering topics. Finally, we
analyze the topics in the GitHub issue reports to understand the challenges developers
are facing in practical quantum computing projects.

2. Bug Characteristics in Quantum Software Ecosystem: To understand the char-
acteristics of bugs occurring in quantum software projects, we conduct a empirical study
on 125 open-source quantum software projects hosted on GitHub. The quantum soft-
ware projects cover a variety of categories, such as quantum programming frameworks,
quantum circuit simulators, or quantum algorithms. An analysis of the development
activity of these selected projects show a level of development activities similar to that
of classical projects hosted on GitHub. First, we compare the distribution of bugs in
quantum software projects and classical software projects, as well as developers’ efforts
in addressing these bugs. Second, we qualitatively studied a statistically representa-
tive sample of quantum software bugs to understand their characteristics. In fact, we
analyzed the quantum software components (e.g., quantum measurement) where these
bugs occurred, examined the nature of these bugs (e.g., performance bugs) and re-
ported code examples of each bug type. We build a quantum software ecosystem bug
type taxonomy in which we identify each detected bug type and map it to the quantum
components.
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1.5 Thesis Contribution

In this thesis we conduct an empirical study on the quantum software ecosystem challenges,
with the focus to understand the difficulties that quantum software practitioner are facing.
Our study results in the following observations:

• We identified nine categories of QSE-related questions in technical Q&A forums. The
categories Theoretical, Errors, Learning, and Tooling are new or become more
frequent in QSE-related questions.

• From Q&A forums, we derived nine topics discussed in QSE-related posts, including tra-
ditional software engineering topics (e.g., environment management and dependency
management) and QSE-specific ones (e.g., quantum execution results and quantum
circuits).

• Our results identify some particularly challenging areas for QSE, such as interpreting
quantum program outputs and bridging the knowledge gap between quantum comput-
ing and classical computing.

• QSE-related challenges impact practical quantum program development in GitHub
projects. For instance we report that the challenges are generally among the quan-
tum computing projects like quantum programming frameworks, tools, algorithms, and
applications.

• Quantum software projects are more buggy than classical software projects. While de-
velopers of quantum software projects are actively addressing their bugs, fixing quan-
tum software bugs is more costly than fixing classical software bugs. For instance,
projects in the quantum machine learning, quantum programming framework, and
quantum-based simulation categories are the most buggy and have the most difficult
bugs to fix.

• We propose a taxonomy of quantum bugs containing 13 different types of bugs. Our
result shows that the quantum bugs are distributed across different quantum compo-
nent. For instance program anomaly bugs is the most spread bug type (it occurs in
all components). Data type and structure bugs are mostly located in the components
State preparation (10 occurrences) and Compiler (12 occurrences).

• Our study reports that researchers and tool builders should consider contributing
specialized data manipulation (e.g., array manipulation) libraries and provide
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mathematical algorithms for quantum computing and convenience functions tools
to support quantum software development, and reduce the occurrence of program
anomaly bugs and data type and structure bugs. Circuit visualization and analysis
tools are needed to help developers debug and fix bugs in quantum circuits.

1.6 Organization of the Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 introduces the fundamental concepts and requirements related to quantum
computing and quantum programming that help understand the research work.

• Chapter 3 presents a comprehensive review of quantum software engineering, quantum
programming, and quality assurance of quantum programs.

• Chapter 4 presents our first empirical study, in which we examine technical Q&A forums
and GitHub issue reports to identify the most important challenges.

• Chapter 5 presents our second empirical study on quantum software ecosystem bugs.

• Chapter 6 summarizes the thesis and discusses future works.
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CHAPTER 2 BACKGROUND

This theses aims to understand the quantum software engineering challenges by examining
technical forum posts and GitHub issue reports. In this chapter, we introduce the background
knowledge on quantum software engineering, quantum programming, and quality assurance
in quantum and classical software. This will be helpful to follow the rest of this thesis.

2.1 Quantum Computing

Quantum computers aim to leverage the principles of quantummechanics such as superposition
and entanglement to provide computing speed faster than today’s classical computers. While
classical computers use bits in the form of electrical pulses to represent 1s and 0s, quantum
computers use quantum bits or Qubits in the form of subatomic particles such as electrons
or photons to represent 1s and 0s. A Qubit, unlike a classical bit, can be 0 or 1 with a certain
probability, which is known as the superposition principle [17].

In other words, a quantum computer consisting of Qubits is in many different states at the
same time. When a Qubit is measured, it collapses into a deterministic classical state. The
status of two or more Qubits can be correlated (or entangled) in the sense that changing the
status of one Qubit will change the status of the others in a predictable way, which is known
as the entanglement phenomenon [17].

The superposition and entanglement phenomenons give quantum computers advantages
over classical computers in performing large-scale parallel computation [17].

Similar to classical logic gates (e.g., AND, OR, NOT), quantum logic gates (or quantum
gates) alter the states (the probability of being 0 or 1) of the input Qubits. Like classical
digit circuits, quantum circuits are collections of quantum logic gates interconnected by
quantum wires. Figure 2.1 illustrates the architecture of a quantum computer [2, 3]. The
architecture contains two layers: a quantum computing layer where the quantum physics and
circuits reside, and a classical computing layer where the quantum programming environment
and software applications reside.

• Physical building blocks: physical realization of Qubits and their coupling/interconnect
circuitry.

• Quantum logic gates: physical circuitry for quantum logic gates.
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• Quantum-classical computer interface: the hardware and software that provides the
boundary between classical computers and the quantum computing layer.

• Quantum programming environment: quantum programming languages and develop-
ment environment.

• Business applications: quantum software applications (based on quantum programming
languages) that meet specific business requirements.

Figure 2.1 The architecture of a quantum computer [2, 3]

Beside, Figure 2.2 illustrates an example quantum circuit with two qubits (q0 and q1 ).
Below, we describe the three parts of the circuit:

1. Reset and initialization: The states of the two qubits are initialized as 0s.

2. Quantum gate: A Hadamard (H ) gate denoted by a blue square is applied on the qubit
q0. The gate H generates a superposition state with equal probabilities for the states
of 1 and 0. Then, a controlled-NOT CX gate represented by a blue circle is applied
on qubits q0 and q1 : the state of qubit q1 is flipped if and only if the state of qubit
q0 is 1. Thus, the CX gate creates entanglement between the pair of qubits q0 and q1
(i.e., the state of one qubit is predictable from the state of the other).

3. Measurement: The measurement collapses the state of a qubit from a superposition
state into a deterministic single state. The output of this step is a qubit with the most
probable state.

2.2 Quantum Software Development

Quantum software development typically follows the quantum gate-model to accomplish a
certain task [4]. In this model, the problem is expressed in terms of quantum gates (described
in Section 2). In Figure 2.3, we illustrate an example of a quantum algorithm workflow using
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Figure 2.2 An example quantum circuit

the gate model. The first step is to define the problem. In this example, we define the
Travelling Salesman Problem (TSP). Secondly, based on the nature of the problem we need
to choose the most suitable algorithm to find a solution. In our example, we can consider
the quantum approximation algorithm [18]. This algorithm was proposed to find the optimal
solutions using the gate model. Next, the quantum algorithm has to be implemented in
quantum code which is then compiled into a quantum circuit consisting of quantum gates.
Finally, the quantum circuit will be executed on a quantum computer or a simulator running
on a classical computer.

1 import qiskit as q
2 # create register to store bits
3 qr = q. QuantumRegister (2)
4 cr = q. ClassicalRegister (2)
5 # create the circuit
6 circuit = q. QuantumCircuit (qr , cr)
7 #0th index on the quantum register
8 circuit .h(qr [0])
9 #apply CX gate ( control_bit , target_bit )

10 circuit .cx(qr[0], qr [1])
11 # measure quantum bit into cassical bit
12 circuit . measure (qr , cr)

Listing 2.1 Quantum code example based on Qiskit that produces the quantum circuit shown
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Figure 2.3 Quantum software workflow on a gate-model quantum computer [4]

in Figure 2.2

Listing 2.1 shows a code snippet based on the Qiskit python library that produces the quan-
tum circuit shown in Figure 2.2. First, we import the Qiskit library (line 1). Then, lines 3
and 4 create 2 qubits and 2 classical bits which form a quantum circuit in line 6. Line 8 ap-
plies the Hadamard (H ) gate on the first qubit, which generates a superposition of the qubit
with equal probabilities of being 1 and 0. Then, line 10 applies a controlled-NOT (CX) gate
on the output of the Hadamard gate and the second qubit, which generates entanglement
between the two qubits. Finally, line 12 measures the final states of the two qubits and maps
the measurement results to the two classical bits.

2.3 Quantum Computing Ecosystem

Quantum computing aims to solve problems that are challenging for a classical computer
using principles of quantum mechanics. The Quantum computing ecosystem is starting to
take shape, coalescing around hardware (quantum computers), software such as quantum
programming frameworks, quantum programming languages, utility tools, and libraries (i.e.,
testing, error mitigation). In Figure 2.4, we present an overview of the state of the quantum
ecosystem nowadays. This overview was inspired by Qiskit [9], IBM-Q [19], and an online
article [20]. From Figure 2.4, we can see that the quantum ecosystem has two different layers.
A physical layer that includes both quantum and classical hardware, as well as a logical layer
that covers the quantum computing software. The physical layer contains:

• Physical quantum processor: A quantum circuit on a chip with a size of hundreds
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Figure 2.4 Quantum computing ecosystem overview

of nanometers of quantum elements such as atoms and molecules known as qubit [21].

• Microwave pulse: Device used to generate pulses to control and measure qubits
fabricated on superconducting circuits [22].

• Quantum gates: Physical quantum gates and building blocks of quantum circuits [23]

• Quantum limited amplifier: Amplification of the quantum signals (pulse) while
adding the minimum amount of noise tolerated by quantum mechanics [24].

• Quantum error correction: Encode the logical qubits into multiple physical qubits
while protecting the quantum states and actively correcting the errors [25].

• Classical computer: Traditional computer stores information in classical bits that
are represented logically by either a 0 (off) or a 1 (on) [26].

The logical layer contains:

• Simulator: Libraries and software to simulate the quantum computer behavior on a
classical computer.

• Compiler: Tools and software used to compile and optimize the quantum circuits.

• Programming language: Quantum programming languages (e.g., Q# [11]) are im-
plemented in development kits to support the development of quantum algorithms.
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• Gate operation: A set of unitary operations that are used to control the state of
qubits.

• Error mitigation: Libraries and algorithms for software-based quantum error correc-
tion.

• Utility tools: Libraries that are used to support quantum software development ac-
tivities, such as testing and debugging.

• Quantum algorithms: A collection of quantum algorithms that runs on top of a
quantum computer or a simulator.
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CHAPTER 3 LITERATURE REVIEW

In this chapter, we review the related literature on quantum software engineering, software
quality assurance, and topic modeling in software engineering studies.

3.1 Quantum Software Engineering

Quantum software engineering (QSE) is still in its infancy. As the result of the first In-
ternational Workshop on Quantum Software Engineering & Programming (QANSWER),
researchers and practitioners proposed the “Talavera Manifesto” for quantum software engi-
neering and programming, which defines a set of principles about QSE [14], including:

(1) QSE is agnostic regarding quantum programming languages and technologies; (2) QSE
embraces the coexistence of classical and quantum computing; (3) QSE supports the manage-
ment of quantum software development projects; (4) QSE considers the evolution of quantum
software; (5) QSE aims at delivering quantum programs with desirable zero defects; (6) QSE
assures the quality of quantum software; (7) QSE promotes quantum software reuse; (8) QSE
addresses security and privacy by design; and (9) QSE covers the governance and manage-
ment of software.

Zhao [3] performed a comprehensive survey of the existing technology in various phases of
quantum software life cycle, including requirement analysis, design, implementation, testing,
and maintenance. Prior work [7,12,27,28] also discussed challenges and potential directions in
QSE research, such as modeling [28] and quantum software processes & methodologies [12],
and design of quantum hybrid systems [7]. In addition, prior work conducted extensive
exploration along the lines of quantum software programming [29] and quantum software
development environments [30]. The survey [3] provides an comprehensive overview of the
work along these lines. Different from prior work, firstly, this thesis makes the first attempt to
understand the challenges of QSE perceived by practitioners. Secondly, this thesis examines
the characteristics of bugs occurring in the quantum software ecosystem.

3.2 Quantum Programming

Quantum computing as a new general paradigm can massively influence how software is
developed [3,14,29]. Quantum programming is the process to design an executable quantum
program to accomplish a specific task [29]. Every block of code is composed of classical and
quantum operations [3]. Classical operations act on classical bits in order to register the states
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and measurements of qubits, while quantum operations operate on the quantum computers
using registers of qubits. Quantum programming uses syntax-based notations to represent
and operate quantum circuits and gates. Early efforts of quantum programming language
development focused on the quantum Turing machine [31] but did not produce practical
quantum programming languages. Later efforts have turned to the quantum circuits model
where the quantum system is controlled by a classical computer [32]. This concept has
given birth to many new quantum programming languages such as qGCL [33], LanQ [34],
Q# [35] and Qiskit [9]. Prior work conducted extensive exploration along the lines of quantum
programming [29] and quantum software development environments [30]. The survey [3] also
provides a comprehensive overview of research works along these lines.

Like classical computing, QSE is not limited to quantum programming and quantum software
development methods are thriving. To overcome the challenges in the software development
process and ensure the high quality of quantum software, a series of steps are followed in the
shape of a life cycle, known as Quantum Software Life Cycle (QSDLC) [36]: Software re-
quirement analysis, software design, software implementation, software testing, and software
maintenance. The model begins with the requirement analysis step were developers discuss
the requirement to be developed in order to achieve their goal. In fact, the scope of the
work is defined along with the requirements that are going to be satisfied. The models follow
with the design step, this is where the architectural and detailed design is made [36]. At
the implementation step, the developer starts coding following the requirement and design
agreed on in the previous steps. To detect defects in the software and verify the behavior
of the software, the testing step comes to action before releasing the system. Finally, as the
last step, maintenance represents the changes and the modifications after the release of the
quantum software [36], [3], [14].

3.3 Quality assurance in quantum and classical software

In this section, we briefly discuss the existing work related to quantum bugs. Next, we give
an overview of quantum testing and discuss its challenges and the proposed solutions.

3.3.1 Quantum Bugs Characteristics

In their 2021 position paper, Campos and Souto [37] argued for the creation of a benchmark
dataset of quantum bugs. In the same year, Zhao et al. [38] provided a data set of 36 bugs
identified in the quantum computing framework Qiskit. In 2022, Matteo and Michael [39]
examined 283 bugs from 18 open-source quantum computing platforms to identify bug pat-
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terns. In this thesis, we study a larger set of bugs from a larger number of quantum projects.
We perform quantitative and qualitative analysis on the characteristics and types of the
quantum bugs occurring in different quantum components and formulate recommendation
for researchers, tool builders, and practitioners.

3.3.2 Quantum Programs Testing

Identifying bugs in the programs that run on quantum computers (i.e, quantum programs)
can prove to be helpful for researcher to improve the quality and understand quantum soft-
ware challenges. Quantum programs are more difficult to test and debug than a classical pro-
gram because of the impossibility to copy the quantum information in the qubits [40], and the
probabilistic nature of the measurement. To face these challenges, Huang and Martonosi [41]
introduced statistical assertions that can be used to validate patterns and detect bugs in
quantum programs. Li et al. [42] proposed Proq, a project-based run-time analysis tool for
testing and debugging quantum programs. The evaluation of the tool shows that it can ef-
fectively help locate bugs in quantum programs. Yu and Palsberg [43] proposed an abstract
interpretation of quantum programs and use it to automatically verify assertions in polyno-
mial time. Similar to our work, these previous works on quantum program testing contribute
to improving our understanding of the nature of quantum bugs.

3.3.3 Studying bugs characteristic

Prior works studied different kinds of bugs related to our study. Most of the studies are widely
related to bugs in frameworks and platforms. Chou et al. [44] present bugs in operation
systems, Sun et al [45] recent work studied compiler bugs, and Islam et al. [46] discuss the
bugs in deep learning libraries. In our work, we cover domain-specific bugs which are similar
to prior works that studied bugs in various platform applications.

3.4 Topic Modeling in Software Engineering Studies

Topic modeling has been extensively used recently in software engineering studies. In the
following, we review some of the recent works.

3.4.1 Topic Analysis of Issue Reports

Issue reports have been widely explored in prior work. Here we focus on studies that apply
topic analysis on issue report data. Prior work leverages topic models to automatically assign
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issue reports to developers (a.k.a. bug triage) [47–50]. These studies first uses topic models
to categorize the textual information in the issue reports, then learn mappings between the
categorized textual information and developers. Prior work also leveraged topic models to
automatically detect duplicate issue reports based on the similarity of their topics [51–53].
Nguyen et al. [54] use topic models to associate issue reports and source code based on their
similarities, in order to help developers narrow down the searched source code space when
resolving an issue. Finally, prior work also studied the trends of topics in issue reports [55,56].
Latent Dirichlet Allocation (LDA) and its variants are the most popular topic modeling
approaches used in these studies. Therefore, we also leverage LDA to extract topics from
GitHub issue reports related to QSE.

3.4.2 Topic Analysis of Technical Q&As

Prior work performed rich studies on technical Q&A data, especially on Stack Exchange
data [57]. Here we focus on prior work that performs topic analysis on technical Q&A data.
Topic models are used extensively in prior work to understand the topics of general Stack
Overflow posts and the topic trends [28, 58–60]. Prior work also leveraged topic models
to understand the topics of Stack Overflow posts related to specific application development
domains, such as mobile application development [61,62], client application development [63],
machine learning application development [64], as well as concurrency [65], and security [66]
related development. In addition, prior work leveraged topic models to understand non-
functional requirements communicated in Stack Overflow posts [67, 68]. Zhang et al. [69]
use topic models to detect duplicate questions in Stack Overflow. Finally, Treude et al. [70]
proposes an automated approach to suggest configurations of topic models for Stack Overflow
data. Most of these studies use LDA or its variants to extract topics from the technical Q&A
data. In this work, we also leverage the widely used LDA algorithm to extract topics from
the technical Q&A data related to quantum software engineering.



17

CHAPTER 4 UNDERSTANDING QUANTUM SOFTWARE
ENGINEERING CHALLENGES: AN EMPIRICAL STUDY ON STACK

EXCHANGE FORUMS AND GITHUB ISSUES

4.1 Introduction

Over the past decades, quantum computing has made steady and remarkable progress [3,
71, 72]. For example, IBM Quantum [73] now supports developers to develop quantum ap-
plications using its programming framework and execute them on its cloud-based quantum
computers. Based on the quantum mechanics principles of superposition (quantum objects
can be in different states at the same time) [74] and entanglement (quantum objects can be
deeply connected without direct physical interaction) [75], quantum computers are expected
to make revolutionary computation improvement over today’s classical computers [6]. In
particular, quantum computing is expected to help solve the computational problems that
are difficult for today’s classical computers, including problems in cryptography, chemistry,
financial services, medicine, and national security [14]. The success of quantum computing
will not be accomplished without quantum software. Several quantum programming lan-
guages (e.g., QCL [76]) and development tools (e.g., Qiskit [9] have been developed since
the first quantum computers. Large software companies like Google [77], IBM [73], and
Microsoft [78] have developed their technologies for quantum software development. Quan-
tum software developers have also achieved some preliminary success in applying quantum
software to certain computational areas (e.g, machine learning [79], optimization [80], cryp-
tography [81], and chemistry [82]). However, there still lacks large-scale quantum software.
Much like Software Engineering is needed for developing large-scale traditional software, the
concept of Quantum Software Engineering (QSE) has been proposed to support and guide
the development of large-scale, industrial-level quantum software applications. This concept
has been gaining more and more attention recently [3, 14, 27]. QSE aims to apply or adapt
existing software engineering processes, methods, techniques, practices, and principles to the
development of quantum software applications, or create new ones [14]. Pioneering work
sheds light on new directions for QSE, such as quantum software processes & methodolo-
gies [12], quantum software modeling [28], and design of quantum hybrid systems [7]. In the
meanwhile, we observe an exponential increase of discussions related to quantum software
development on technical Q&A forums such as Stack Overflow(e.g. from 8 in 2010 to 1434 in
2020). We also notice an increasing number of quantum software projects hosted on GitHub,
where developers use issue reports to track their development and issue fixing processes.
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Such technical Q&As and issue reports may communicate developers’ faced challenges when
developing quantum software applications.

In this chapter, we aim to understand the challenges perceived by quantum software develop-
ers and seek opportunities for future QSE research and practice. In particular, we examine
technical Q&A forums where developers ask QSE-related questions, and GitHub issue reports
where developers raise QSE-related issues. We apply a series of heuristics to search and filter
Q&A posts that are related to QSE and to search and filter GitHub projects that are related
to quantum software. In total, we extract and analyze 3,117 Q&A posts and 43,979 Github
issues that are related to QSE. We combine manual analysis and automated topic modeling
to examine these Q&A posts and Github issues, to understand the QSE challenges developers
are facing.

In particular, this chapter aims to answer the three following research questions (RQs):

RQ1: What types of QSE questions are asked on technical forums?

To understand the intention behind developers’ questions on technical forums and the
types of information that they are seeking, we manually examined a statistically repre-
sentative sample of questions. We extended a previous taxonomy from prior work [16]
and found nine categories of questions. Our results highlight the need for future efforts
to support developers’ quantum program development, in particular, to develop learn-
ing resources, to help developers fix errors, and to explain the theory behind quantum
computing code.

RQ2: What QSE topics are raised in technical forums?

The QSE-related posts may reflect developers’ challenges when learning or develop-
ing quantum programs. To understand their faced challenges, we use topic models
to extract the semantic topics in their posts. We derived nine topics including tra-
ditional software engineering topics (e.g., environment management and dependency
management) and QSE-specific topics (e.g., quantum execution results and quantum
vs. classical computing). We highlighted some particularly challenging areas for
QSE, such as interpreting quantum program outputs, understanding quantum algo-
rithm complexity, and bridging the knowledge gap between quantum computing and
classical computing.

RQ3: What QSE topics are raised in the issue reports of quantum-computing projects?

Issue reports of quantum computing projects record developers’ concerns and discus-
sions when developing these projects. Thus, we analyze the topics in the issue reports
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to understand the challenges are developers facing in practical quantum computing
projects. We observe that the QSE-related challenges that we derived from forum posts
indeed impact practical quantum program development in these GitHub projects, while
GitHub issues bring new perspectives on developers’ faced challenges (e.g., on specific
quantum computing applications such as machine learning). We also observe that such
challenges are general among quantum computing projects.

Chapter organization. The rest of the chapter is organized as follows. In Section 4.2 we
describe the design of our study. In Section 4.3 we present our results. Section 4.4 we discuss
the implication of our findings. Section 4.5 review threats to the validity of our findings.
Finally, Section 4.6 summarize the chapter.

4.2 Experiment Setup

This section describes the design of our empirical study.

4.2.1 Overview

Figure 4.1 provides an overview of Chapter 4 empirical study. We study QSE-related posts on
Stack Exchange (SE) forums and the issue reports of quantum computing GitHub projects.
From Stack Exchange forums, we first use tags to filter QSE-related posts. In RQ1, we
manually analyze a statistically representative sample of these posts to understand the type
of information sought by developers. In RQ2, we use automated topic models to analyze the
topics of these posts and their characteristics. From GitHub repositories, we first apply a
set of heuristic rules to filter the quantum computing projects. Then we extract the issue
reports of these quantum computing projects. Finally, we perform topics modeling on these
issue reports to analyze the topics in the textual information of the issue reports (RQ3). We
describe the details of our data collection and analysis approaches in the rest of this section.

4.2.2 Stack Exchange forums data collection

We follow three steps to collect QSE related data from Stack Exchange forums. First, we
collect Q&A data from four Stack Exchange forums. Second, we identify a set of tags that
are related to QSE. Finally, we use the identified tags to select the posts that are related to
QSE. We explain the steps below.

Step 1: Collecting technical Q&A data. We extract technical Q&A data from four Stack
Exchange forums: Stack Overflow [83], Quantum Computing Stack Exchange [84], Computer



20

Filtering

Classical software 
issues & pull requests Analysis

Baseline

Processing &
filtering

Sampling

Manual analysis

RQ2

Analysis

RQ1

Preliminary
Study

Analysis

Analysis

Quantum 
software  
issues & 

pull requests

Quantum 
software 
projects

Classical
software 
projects

Extraction

Extraction

Quantum 
software bugs

Classical 
software bugs

Processing &
filtering

Sampling

Figure 4.1 Schematic diagram of chapter 4 empirical study

Science Stack Exchange [85], and Artificial Intelligence Stack Exchange [86]. We consider the
Stack Overflow forum as it contains posts related to quantum programming and it is widely
used for studying various software engineering topics (e.g., mobile app development [61, 62],
machine learning application development [64], etc.). We consider the other three forums
because they contain posts that discuss topics related to quantum computing and quantum
programming.

We extracted the post data from these forums with the help of the Stack Exchange Data
Explorer [87]. Stack Exchange data explorer holds an up to date data for these forum between
08-2008 and 03-2021.

Step 2: Identifying tags related to QSE.

The studied Stack Exchange forums use user-defined tags to categorize questions. We follow
two sub-steps to select the tags that are related to QSE. We started by searching for questions
with the tag “quantum-computing” in the entire Stack Exchange dataset D through the data
exchange explorer. We obtained 254 questions tagged with “quantum-computing” from the
studied forums. After manually inspecting the 30 most voted questions, we selected an initial
tag set Tinit consisting of ten tags including “quantum-computing”, “qiskit”, “qsharp”, “q#”,
“quantum-development”, “quantum-circuit”, “ibmq”, “quantum-ai”, “qubit” and “qutip”.
Then we extracted the questions related to Tinit from the initial dataset D and obtained a
new set of questions P . In order to expand the initial tag set, we extracted the frequently
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co-occurring tags with Tinit from P and build a new tag set T2.

Not all the tags in T2 are related to quantum computing. To determine the final tag set
Tfinal, following previous work [88] [89], we filter the tags in T2 based on their relationships
when the initial tag set Tinit. For each tag t in T2, we calculate:

(Significance)α(t) = # of questions with tag t in P
# of questions with tag t in D (4.1)

(Relevance) β(t) = # of questions with tag t in P
# of questions in P (4.2)

To select a tag t, the value of significance-relevance α(t), β(t) need to be higher than a
threshold we set. To select the optimal threshold values for α and β, we experimented with
a set of values respectively between 0.05, 0.35 and 0.001, 0.03. For each α and β and for each
tag above the threshold, we inspected the top 10 most voted posts and verified if the tag is
related to QSE, we ended up with the optimal threshold

respectively equal to 0.005 and 0.2 which are consistent with previous work [90] [89]. The
final tag set Tfinal is formed of 37 tags in total. Since quantum computing is a wide topic and
our focus is QSE, we further manually inspected the description of each tag t in Tfinal and
the top 10 questions of each tag in each studied forum to remove tags that are not related to
QSE. Finally our tag set Tfinal was reduced from 37 to 18 tags (14 unique tags as different
forums have tags with the same names). Table 4.1 lists our final set of tags.

Step 3: Selecting questions and answers. We extract the final sets of questions and
answers using the final tag sets shown in Table 4.1. We select all the posts that are tagged
with at least one of the tags. We ended up with a total of 3,117 questions and answers from
the four considered forums in our data set Dfinal. 35% of the final data are answers where
65% are questions. The number of posts (questions and answers) extracted from each forum
is shown in Table 4.1.

4.2.3 GitHub issues data collection

In this work, we study the issue reports of quantum computing projects on GitHub. We
downloaded the GitHub selected quantum computing projects issues in March 2021.

We follow three steps described below to extract the issue reports of quantum computing
projects from GitHub.

Step 1: Searching candidate projects.
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Table 4.1 Our selected tags and the number of questions and answers

Stack Ex. forum Tag set #Q #A

Stack overflow
post-quantum-cryptography, q#,
quantum-computing, qiskit, qcl,
qutip, qubit, tensorflow-quantum

250 183

Quantum computing
programming, classicalcomputing,
q#, qiskit, cirq, ibm-q-experience,
machine-learning, qutip

1534 778

Computer science quantum-computing 238 117
Artificial intelligence quantum-computing 13 4

We search for quantum computing related projects using three criteria: 1) The description of
the project must be in English (i.e., for us to better understand the content). 2) The project
name or description must contain the word “quantum” (the word quantum is case sensitive
in the project name or description). 3) The project is in a mainline repository (i.e., not a
fork of another repository). We end up with a total of 1,364 repositories.

Step 2: Filtering quantum computing projects. We filter the searching result and
identify quantum computing related projects with three criteria:

1) To avoid selecting student assignments, following previous work [91] [92], we select repos-
itories that were forked at least two times. 2) The projects must have a sufficient history of
development for us to analyze the issue reports. Therefore, we select the projects that were
created at least 10 months earlier than the data extraction date. Moreover, only the projects
that have at least 100 commits and 10 issues are selected.

3) To ensure the quality of the project selected, we manually inspect the projects’ descriptions
and remove projects that are not related to quantum computing, projects that are created
for hosting quantum computing related documentation, as well as lecture notes related to
quantum computing. Finally, we obtain a total of 122 projects directly related to quantum
computing applications.

Step 3: Extracting issue reports. We use the GitHub Rest API [93] to extract all the
issue reports of the final 122 projects on GitHub. In total, we obtain 43,979 issue reports.

4.2.4 Data pre-processing for topic modeling

We build one topic model on the Stack Exchange forum data and another topic model on
the GitHub issue data. Below we describe how we pre-process these two types of data before
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feeding them into topic models.

Pre-processing Q&A post data. We treat each post (i.e., a question or an answer) as
an individual document in the topic model. For each question, we join the title and the
body of the question to create a single document. As Q&A posts contain code snippets
between <code> and </code> which may bring noise to our topic models, we remove all
text between <code> and </code>. We also remove HTML tags (e.g., <p></p>), URLs
and images from each post. In addition, we remove stop words (e.g., “like”, “this”, “the”),
punctuation, and non-alphabetical characters using the Mallet and NLTK stop words set.
Finally, we apply the Porter stemming [94] to normalize the words into their base forms (e.g.,
“computing” is transformed to “comput”), which can reduce the dimensionality of the word
space and improve the performance of topic models [95]

Pre-processing issue report data. We treat each issue report as an individual document
in the topic model. We join the title and the body of each issue as a single document.
Similarly, we remove code snippets, URLs and images from the issue body. Since there are no
tags in GitHub issues that identify code snippets, we look for backquote ” ” or triple backticks
“‘ in the content of the issues and remove the code enclosed between this punctuation. We
also remove stop words, non-alphabetical characters, and punctuation. Finally, we apply
Porter stemming to normalize the words into their base forms.

4.2.5 Topic modeling

We use automated topic modeling to analyze the topics in the Q&A posts and issue reports.
Specifically, we use the Latent Dirichlet Allocation (LDA) algorithm [96] to extract the topics
from both of our datasets. LDA is a probabilistic topic modeling technique that derives the
probability distribution of frequently co-occurred word sets (i.e., topics) in a text corpus.
A topic is represented by a probability distribution of a set of words, while a document is
represented as a probability distribution of a set of topics. LDA is widely used for modeling
topics in software repositories [97], including technical Q&A posts (e.g, [98]) and issue reports
(e.g., [51]).

We use two separate topic models to extract the topics from the Q&A post data and the
issue report data. For a better performance of the topic modeling and a good classification
quality, following previous work [89] [99], we consider both uni-gram and bi-gram of words
in our topic models.

LDA Implementation. We use the Python implementation of the Mallet topic modeling
package [100] to perform our topic modeling. The Mallet package implements the Gibbs
sampling LDA algorithm and uses efficient hyper-parameter optimization to improve the
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quality of the derived topics [100].

Determining topic modeling parameters.

The number of topics (K) is usually manually set by the user as it controls the granularity of
the topics [89]. The α parameter controls the topic distribution in the documents (i.e., Q&A
posts or issue reports), while the β parameter controls the word distribution in the topics. In
this work, we use the topic coherence score [101] to evaluate the quality of the resulting topics
and determine the appropriate parameters (K, α, and β), similar to prior work [35,89]. The
coherence score measures the quality of a topic by measuring the semantic similarity between
the top words in the topic. Thus, this score distinguishes between topics that are semantically
interpretable and topics that are coincidences of statistical inference [101]. Specifically, we
use the Gensim Python package’s CoherenceModel [102] module to calculate the coherence
scores of the resulting topics. To capture a wide range of parameters and keep the topics
distinct from each other, we experiment with different combination of the parameters, by
varying the values of K from 5 to 30 incremented by 1 each time, the values of document-
topic distribution α from 0.01 to 1 incremented by 0.01 [103], and the values of word-topic
distribution β from 0.01 to 1 incremented by 0.01 [103]. We retain the resulting topics with
the highest average coherence score.

After getting the automatically derived topics, we manually analyze the resulting topics and
assign meaningful labels to the topics. We elaborate more on this process in RQ2 and RQ3
for the Q&A post topics and the issue report topics, respectively.

4.3 Experiment Results

In this section we report and discuss the results of our three research questions. For each
research question, we first present the motivation and approach, then discuss the results for
answering the research question.

RQ1: What types of QSE questions are asked on technical forums?

Motivation

In order to understand QSE challenges developers are facing, we first want to understand
what types of questions they are asking (e.g., whether they are asking questions about using
APIs or fixing errors). This is important to identify the areas in which QSE developers
should be supported and the type of resources that they need. Similar to prior work [1], we
focus on the intent behind the questions asked by QSE developers instead of the topics of
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the questions.

Approach

To identify the type of questions that users are asking in technical forums, we performed
a manual analysis of a statistically representative sample from our studied QSE questions.
We sampled 323 questions with a confidence level of 95% and a confidence interval of 5%.
For each question, we examined its title and body, to understand the intent of the user
who posted the question. We used a hybrid card sorting approach to perform the manual
analysis and assign labels (i.e., types of questions) to each sampled question. Specifically, we
based our manual analysis on an existing taxonomy of the types of questions asked on Stack
Overflow [1] and added new types when needed. For each question we assigned one label; in
case a question is associated with two or more labels, which we found only in a few cases, we
chose the most relevant one.

Hybrid card sorting process. Two researchers (i.e., coders) jointly performed the hybrid
card sorting. We split the sampled data into two equal subsets and performed the sorting in
two rounds, similar to prior work [104]. Our process guaranteed that each question is labelled
by both coders.

1. First-round labeling. Each coder labels a different half of the questions indepen-
dently.

2. First-round discussion. In order to have a consistent labeling strategy, we had a
meeting to discuss the labeling results in the first round and reached an agreed-upon
set of labels. A third researcher of is involved in the discussion.

3. Revising first-round labels. Each coder updated the first round labeling results
based on the discussion.

4. Second-round labeling. Each coder labeled the other half of the questions indepen-
dently based on the agreed-upon labels in the first round. New labels are allowed in
this round.

5. Second-round discussion. We had a meeting to discuss the second-round labeling
results, validate newly added labels and verify the consistency of our labels. A third
researcher is also involved in the discussion.

6. Revising second-round labels. Based on the second-round discussion, each coder
revised the labels and finalized its individual labeling of the questions. We calculate
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the inter-coder agreement after this step.

7. Resolving disagreement. We had a final meeting to resolve the disagreement in our
labeling results and reached the final label for each question. For each difference in
our labels, the two coders and a third researcher discussed the conflict and reached a
consensus.

Inter-coder agreement. We measured the inter-coder agreement between the coders
and obtained a Cohen’s kappa k value of 0.73 which indicates a substantial agreement [105].
Therefore our manual labeling results are reliable.

Results

Table 4.2 shows the result of our qualitative analysis for identifying the categories of questions
in technical forums. Among the 323 questions we analyzed, we could not assign a label to
only one question. In the table, we provide the description of each category and how frequent
it appears in our qualitative analysis.

All seven categories of Stack Overflow questions identified in prior work ap-
pear in QSE-related posts. Prior work [1] identified seven categories of questions on
Stack Overflow by studying Android-related questions, including API usage, Conceptual,
Discrepancy, Errors, Review, API change, and Learning, ordered by their occurrence
frequency. Although quantum computing is still a new area, people start to ask all these
different categories of questions, indicating that quantum computing face similar software
engineering challenges (e.g., API usage and API change) as other software engineering do-
mains. Similar to prior work, we find that API usage is the most frequent category with
26.3% instances. The questions of this category are usually identified by “how to”; e.g., “How
to return measurement probabilities from the QDK Full-state simulator?”

The categories of Errors and Learning are relatively more frequent in QSE-related
questions than in the prior taxonomy of question categories [1]. Compare to prior
work [1] on classifying Android-related questions, we find that Errors and Learning ques-
tions are relatively more frequent. As quantum computing is still an emerging domain, people
practicing it face many errors when developing quantum computing applications and they
find it challenging to find learning resource for quantum computing. An example of the
Errors category is “I have Qiskit installed via Anaconda and a virtual environment set up
in Python 3.8. ... I get an error. I’m not sure what the problem is. How do I fix it?”.
Another example for the Learning category is “How do I learn Q#? What languages should
I know prior to learning Q#? How do I get started with quantum computing?”. These find-
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Table 4.2 A taxonomy of Question Categories which bases on and extends [1]

Category Description Freq

API usage Questions of this category are usually identified by “how to”, i.e., how to use an API or how to implement a functionality. 85
Theoretical∗ This category of questioners ask about theoretical explanations of quantum programs, algorithms, and concepts. 54

Errors This category of questions search for explanations and solutions of errors and exceptions when developing
or executing quantum programs. 49

Conceptual Questions in this category are related to the limitation, background and the underlying concept of an API. 45

Discrepancy Question of this category usually ask for explanations or solutions for unexpected results
(e.g., “what is the problem”, “why not work”. 31

Learning Questions in this category are searching for learning resources such as documentation, research papers, tutorials, or websites. 22

Review This category describes questions like: “How/Why this is working?” or “Is there a better solution?”.
Generally, the questions in this category look for a better solution to a problem or for help reviewing the current solution. 17

Tooling∗ This category describes questions like “I am looking for ...”, “Is there a tool for ...”.
These questions search for tools to solve a specific problem or check the features of a tool. 16

API change This category of questions concern about changes of an API and the associated compatibility issues and other implications. 2
∗Categories newly identified in QSE-related questions.

ings suggest the need to develop tools or resources to help developers avoid or address such
errors, as well as developing tutorials, books, and other learning resources to help beginners
get acquainted with quantum computing.

Two new categories of questions (i.e., Theoretical and Tooling) emerge in QSE-
related posts. In fact, the category of Theoretical is the second most frequent among all
categories. This category is usually associated with keywords such as “can someone explain”,
“what is”, and “does quantum”. An example question of this category is “What is the analysis
of the Bell Inequality protocol in Cirq’s ‘examples’?” where Cirq [10] is a Python library
for developing quantum computing applications. This category of questions indicates that
people have challenges understanding the theoretical concepts behind quantum computing
code. Future efforts are needed to explain such theoretical concepts for developers. The
category of tooling represents questions that are looking for tools, frameworks, or libraries
that can help solve a QSE-related problem or verifying whether a tool, framework, or library
can help solve a problem. For example, “I want to use Blender and Blender Python Scripts
working with Qiskit. How can I do this? How to make communication between Blender and
Qiskit installed with Anaconda Python?”. This category indicates the lack of established tools
for supporting quantum program development.
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We identified nine categories of QSE-related questions in Stack Exchange forums. The
categories Theoretical, Errors, Learning, and Tooling are new or become more
frequent in QSE-related questions. Our results highlight the need for future efforts
to support developers’ quantum program development, in particular, to develop learn-
ing resources, to help developers fix errors, and to explain theory behind quantum
computing code.

RQ2: What QSE topics are raised in technical forums?

Motivation

Developers post QSE-related questions and answers on technical forums. Their posts may
reflect their faced challenges when learning or developing quantum programs. To understand
their faced challenges, we use topic models to extract the semantic topics in their posts and
analyze the characteristics of these topics.

Approach

Topic assignment and frequency.

The automated topic modeling generated nine topics and distribution of co-occurring words
in each topic. We then manually assigned a meaningful label to each topic. Following
prior work [89, 106, 107], to assign a meaningful label to a topic, the first researcher first
proposed labels using two pieces of information: (1) the topic’s top 20 keywords, and (2) the
top 10-15 most relevant questions associated with the topic. Then, three researchers of the
study reviewed the labels in meetings and reassigned the labels when needed. We obtained
a meaningful label for each of the nine topics at the end. For each topic, we measure the
percentage of the posts (i.e., frequency) that have it as the dominant topic (i.e., with the
highest probability).

Topic popularity. To understand developers’ attention towards each topic, following previ-
ous work [89,106,107], we measured three metrics for each topic: (1) the median number of
views of the associated posts, (2) the median number of associated posts marked as favorite,
and (3) the median score of the associated posts. For each topic, the associated posts refer
to the posts that have it as the dominant topic.

Topic difficulty. In order to better understand the most challenging aspects for developers,
we measure the difficulty of each topic in terms of how difficult it is for the associated posts
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to get accepted answers. Following prior work [89, 106, 107], for each topic, we measure
two metrics: (1) the percentage of the associated questions with no accepted answer, and
(2) the median time required by the associated questions to get an accepted answer (only
considering the ones with an accepted answer). For each topic, the associated questions refer
to the questions that have the topic as the dominant topic.

Results

Table 4.3 Topics extracted from QSE related posts on Stack Exchange forums

Topic (manual label) Keywords Description % Freq

Environment management quot, error, python, build, code Development environment and build problems 15.03
Dependency management qiskit, import, ibmq, operator, provider Library installation, use, and versioning issues 14.82
Algorithm complexity time, problem, algorithm, number, function Quantum algorithm complexity and optimization 14.06

Quantum execution results circuit, result, back-end, simulator, measure Quantum program execution results on quantum
backends (e.g., simulators) 13.22

Learning resources question, paper, work, understand, answer Searching for learning resources such as research
papers and tutorials 9.05

Data structures and operations matrix, return, array, datum, list Data structures (e.g., matrix, arrays and list) and
their operations in quantum programs 8.81

Quantum circuits qubit, gate, control, operation, cirq Elements of quantum circuits (e.g., Qubits, gates)
and their operations 8.66

Quantum vs. classical computing quantum, computer, classical, computing,
algorithm

Comparisons between quantum and classical computing
or migrating classic algorithms to quantum computing 8.30

Quantum algorithms understanding state, rangle, frac, theta, sqrt Quantum algorithm explanation and interpretation 7.51

We derived nine topics that are discussed in QSE-related posts, including tradi-
tional software engineering topics (e.g., environment management and dependency
management) and QSE-specific topics (e.g., quantum execution results and Quantum
circuits). Table 4.3 describes the nine topics and their frequency in the analyzed posts.
As one can observe in QSE there is no wide range of topics discussed with a total of 9. Since
the number of the detected topics in not big, We present a low level of granularity. Also for
each topics we illustrate the percentage of the question asked order by their occurrence.The
percentage indicate the dominance of a topic compared to others.

Table 4.4 shows the median views, scores, and favorites of the posts associated with these top-
ics. The three most dominant topics are environment management, dependency management,
and algorithm complexity.

Environment management is the most dominant topic representing 15.03% of posts. For
example, the most viewed question of this topic is “I downloaded the Quipper package but I
have not been able to get haskell to recognize where all of the modules and files are and how
to properly link everything” which gained 2772 views. Other examples include “How can I
run QCL (quantum programming language) on Windows?” and “Visualization of Quantum
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Circuits when using IBM QISKit”. We can observe that users are new to quantum computing
and facing problem while setting up their environment and installing their tools. This topic
is also linked to the question category tooling that we derived in RQ1.

Dependency management is the second most discussed topic representing 14.82% of the posts.
For example, the most viewed question (with 2,239 views) of this topic is “When trying the
above code, I am receiving the following error: ModuleNotFoundError: No module named
qiskit” where qiskit is an open source framework for quantum program development [9].
We noticed that a large number of questions are directly related to qiskit. This can be
explained by the lack of documentation or tutorials in using this framework.

Algorithm complexity is the third most dominant topic. This topic is about understanding
the complexity of quantum algorithms and how to optimize quantum algorithms. For exam-
ple, the most viewed question of this topic is “For the other algorithms, I was able to find
specific equations to calculate the number of instructions of the algorithm for a given input
size (from which I could calculate the time required to calculate on a machine with a given
speed). However, for Shor’s algorithm, the most I can find is its complexity: O( (log N)3 )”,
which receives 4,718 views. This topic is linked to the questions category theoretical de-
rived from RQ1. This topic indicates developers’ challenge in understanding the complexity
of quantum algorithms.

As quantum programming is oriented to searching solutions in a probabilistic
space, which is counter-intuitive from the classical computing perspective, un-
derstanding quantum execution results is particularly challenging for developers.
As a Qubit can be 0 or 1 with a certain probability, a quantum program that has Qubits as
its basic units can have many different states at the same time. The results of a quantum
program are certain only when the results are observed (or “measured”). Therefore, it is
more challenging for developers to understand the results of quantum programs than that
of classical programs. For example “How to plot histogram or Bloch sphere for multiple
circuits? I have tried to plot a histogram for the multiple circuits for the code given below.
I think I have done it correctly but don’t know why it’s not working. Please help me out. If
possible please solve it for the Bloch sphere” Future efforts are needed to interpret quantum
program outputs.

QSE has a distinct characteristic for each topic. For example, algorithm complexity is more
focused on studying adopting and optimizing classical algorithms to quantum computing.
The user’s challenges evolve along with the topics associated. Therefore, in order to under-
stand the topics evaluations, in figure 4.2 we show the trends of QSE topics between 2012 and
2020. For most topics, the trend starts gradually to increase. Quantum simulators started
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Table 4.4 Popularity of QSE-related topics on Stack Exchange forums

Topic name ˜V iew ˜Score ˜Favorite

Quantum vs. classical computing 147.5 3 1.5
Quantum circuits 107.0 2 1.0
Environment management 106.0 1 1.0
Learning resources 102.0 2 1.0
Quantum execution results 98.0 1 1.0
Quantum algorithms understanding 97.5 2 1.0
Dependency management 93.0 2 1.0
Algorithm compolexity 87.5 1 1.0
Data structures and operations 82.0 1 1.0

Figure 4.2 Q&A forums topics evolution overtime

to get interested in 2012 compared to the rest of the topic. In 2014 the all QSE topic’s the
number of question and answers increased while in 2016 we observe the exponential jump of
QSE posts in the Q&A forums. The massive increase in the number of posts related to QSE
indicates the growing interest in quantum computing by the software engineering community.
Moreover as shown in figure 4.2 the trend is not showing any signs of decreasing in the future.

We further study the popularity in QSE topics in the technical forum posts. The number
of QSE-related posts started to grow exponentially after 2017. In particular,
the topics of Quantum algorithm understanding, quantum execution results and
Quantum circuits which emerged in 2017 becomes the most frequent topic re-
cently.
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Figure 4.3 The difficulty aspect of QSE-related topics on Stack Exchange forums

Posts related to quantum vs. classical computing are gaining the most attention
from developers. Since quantum computing is based on a new philosophy different from
classical computing, developers often ask questions about the differences and look to under-
stand the new doors quantum computing is opening. According to Table 4.4, posts with this
topic receive the highest median number of views. This may show that software engineers
are eager to contribute to QSE by starting from the differences between the two paradigms.
However, as shown in Figure 4.3, posts on this topic are least likely to receive accepted an-
swers. Our results indicate the need for resources and tools for bridging the knowledge gap
between quantum computing and classical computing.

Questions of some topics (e.g., environment management) are much more diffi-
cult than others to receive accepted answers. According to Figure 4.3, the topic
environment management is the most difficult topic to answer, with 61% of posts not re-
ceiving an accepted answer and a median time of 12 hours to receive an accepted answer.
Learning resources, quantum vs. classical computing and data structures and
operations are also among the most difficult topics in terms of the ratio of posts getting ac-
cepted answers and the time to get one. The results indicate the lack of community support
in aspects such as setting up a development environment, searching for learning resources,
and understanding differences between quantum computing and classical computing, which
could impair the advancement of quantum software development practices.
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From Q&A forums, we derived nine topics discussed in QSE-related posts, includ-
ing traditional software engineering topics (e.g., environment management) and QSE-
specific ones (e.g., quantum execution results). We highlighted some particularly
challenging areas for QSE, such as interpreting quantum program outputs and bridging
the knowledge gap between quantum computing and classical computing.

RQ3: What QSE topics are raised in the issue reports of quantum-computing
projects?

Motivation

Issue reports of quantum computing projects record developers’ concerns and discussions
when adding features or resolving issues in these projects. The textual information in the
issue reports may communicate developers’ challenges when developing quantum computing
applications. Therefore, we analyze the topics in the issue reports to understand the chal-
lenges developers are facing as well as the prevalence of these challenges. While the questions
on technical forums can provide information about developers’ general challenges, the issue
reports may communicate developers’ challenges for specific problems (i.e., issues).

Approach

Topic assignment and frequency. Our topic model on the issue report data generated
17 topics. We follow the same process as described in RQ2 to manually assign meaningful
labels to the automated topics, based on the top words in the topics and the content of the
associated issue reports. During the manual assignment process, we found that some topics
are similar to each other even though such similarity is not detected by the probabilistic
topic model. Therefore, we follow prior work [62, 108] and merged similar topics. We also
discarded one topic as we could not derive a meaningful label from the top words and the
associated issue reports. In the end, we obtained 13 meaningful topics. For each topic, we
measure the percentage of the issue reports (i.e., frequency) that have it as the dominant
topic (i.e., with the highest probability). We also measure the number and percentage of the
studied projects that have at least one issue report of each topic.

Topic difficulty. To further understand developers’ challenges in developing quantum com-
puting applications, we measure the “difficulty” of the issue reports associated with each
topic. As we cannot directly measure the “difficulty” of issue reports, we measure three indi-
rect metrics for each topic: (1) the percentage of issue reports associated with the topic that
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Table 4.5 QSE-related topics derived from issue reports of quantum computing projects on
GitHub

Manual label Keywords Description % Freq # Projects

Learning resources summary, remove, tutorial, link, documentation Search for documentation, tutorials, websites, etc. 14.94 109 (90.08%)
Environment management build, include, library, release, variable Development environment and build problems 13.72 107 (88.43%)
API change version, qiskit, code, issue, update API update or deprecation issues 11.65 98 (80.99%)

Quantum circuits gate, circuit, qubit, operation, control Elements of quantum circuits (e.g., Qubits, gates)
and their operations 8.30 70 (57.85%)

Quantum chemistry input, calculation, basis, energy, pyscf Issues with quantum chemistry libraries (e.g., PySCF) 6.72 76 (62.80%)
Quantum execution errors error, artiq, follow, experiment, device Errors in the execution of quantum programs 6.38 80 (66.12%)
Unit testing test, check, fail, unit, script Unit testing failures 6.32 87 (71.90%)
API usage function, method, class, parameter, call How to use an API 5.81 80 (66.11%)
Quantum execution results state, number, result, time, measurement Quantum program execution results (i.e., measured state) 5.76 89 (73.55%)

Data structures and operations implement, operator, matrix, problem, array Data structures (e.g., matrix, arrays and list)
and their operations 5.73 88 (72.73%)

Machine learning model, datum, dataset, layer, benchmark Quantum computing application in machine learning 5.26 75 (61.9%)
Dependency management file, python, import, package, install Library installation, use and versioning issues 5.23 93 (76.86%)
Algorithm optimization case, time, optimization, long, performance Program performance and algorithm optimization 4.19 83 (68.6%)

Table 4.6 The difficulty aspect of QSE-related topics on GitHub issues

Topic name ˜Hr to close ˜# comments

Data structures and operations 151.40 1
Quantum circuits 114.98 1
Quantum execution results 98.02 1
Machine learning 94.68 2
API usage 80.70 1
Quantum chemistry 62.89 2
Quantum execution errors 59.44 2
API change 47.34 1
Algorithm optimization 39.83 1
Dependency management 32.40 2
Unit testing 28.26 1
Learning resources 27.02 1
Environment management 21.57 1
All the issues are closed at the time we analyzed their status.

is closed, (2) the median time required to close an issue (since its creation) associated with
the topic, and (3) the median number of comments in an associated topic (intuitively, an
issue report with more comments may be more difficult [109]). For each topic, the associated
issue reports refer to the issue reports that have it as the dominant topic.
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Results

We derived 13 topics from GitHub issue reports, bringing new perspectives to
the challenges faced by QSE developers. Table 4.5 shows the list of our derived
topics, their descriptions, their percentage frequency in the studied issue reports, and the
number of projects that have at least one issue report of the topic. Among the 13 topics,
6 of them (learning resources, environment management, quantum circuits, quantum
execution results, data structures and operations, and dependency management) are
overlapping with the topics derived from Stack Exchange posts (RQ2), and another 2 of them
(API change and API usage) are overlapping with the categories of Stack Exchange ques-
tions derived in RQ1. This result indicates that the QSE-related challenges that we derived
from forum posts indeed impact practical quantum program development in GitHub projects.

Among the other five topics, two of them (i.e., machine learning and quantum chemistry)
are related to the most popular and promising quantum computing application areas: ma-
chine learning and chemistry. For example, an issue report associated with quantum chemistry
raises an issue when using a molecular optimizer Python library: “it leads to PyBerny op-
timizing an unconverged ground state energy, which generally leads to the geometry opti-
mization never converging”. The other three topics (i.e., quantum execution errors, unit
testing, algorithm optimization) are related to applications of traditional software engi-
neering processes in quantum program development.

All derived topics are general among the quantum computing projects, as each
topic is present in the issue reports of 58% to 90% of the projects. We observe that
learning resources and environment management are the two most frequent topics and
appear in 90% and 88% of all the studied projects, respectively, which once again highlights
the need of efforts for developing learning resources and supporting developers in setting up
their quantum program development environment.

Some topics are particularly challenging for developers, such as data structures
and operations, quantum circuits, and quantum execution results. Table 4.6 shows
the median time it takes to close an issue report and the number of comments in an issue
report associated with each topic. All the issues are closed at the time when we analyzed
their status. The issues associated with each topic only have a median of one to two com-
ments, indicating that developers’ interactions on these issue reports are not intense. Data
structures and operations is also among the most difficult topics on forum posts (as dis-
cussed in RQ2). However, the Quantum circuits and quantum execution results topics
are not among the most difficult topics on forum posts, while they are two of the most difficult
ones on GitHub issues, which indicates that quantum circuit issues and the interpretation of
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quantum program execution results are more difficult in specific problem contexts.

QSE-related challenges that we derived from forum posts indeed impact practical quan-
tum program development in GitHub projects, while GitHub issues bring new perspec-
tives on developers’ faced challenges (e.g., on specific quantum computing applications
such as machine learning). In particular, we observe that the challenges are generally
among the quantum computing projects.

4.4 Discussion and implication

In this chapter, we have presented the diverse issues reported not only on stack exchange
forums (i.e., StackOverflow, Quantum Computing Stack Exchange) but also on GitHub,
calling for attention to the most difficult and discussed topics. Finally, we highlighted the
types of questions that quantum software engineers discuss in stack exchange forums. This
section discusses the identified challenges and their implications.

Impactful topics: All the topics identified in this work are fundamental in their spe-
cific context. Quantum computing is a new computation approach explored by software
engineers. This work summarizes the trendy and challenging quantum software engineer-
ing topics in GitHub and Stack exchange forums. We believe the pinpointed topics should
be given further awareness by researchers and practitioners to assist the development of
the quantum computing area. Figure 4.3 presents the relation between the percentage
of not accepted answers (X-axis) and the hours to get an accepted answer (Y-axis). As
can be observed, the topic Environment management appears to be the most difficult topic
to answer with the least accepted answers and the longest time to receive one. This is
an important path for the researcher to highlight the different aspects of the quantum
environment and the challenges practitioners are facing. Learning resources, quantum
vs. classical computing and data structures and operations need more attention
as shown in Figure 4.3. GitHub issue report identifies three forward quantum comput-
ing topics Data structure and operations, quantum circuits and quantum execution
results as the most difficult because of the long time they take to get a fix. This suggests
the need for a general effort from researchers to help practitioners to investigate further
the quantum computing challenges. We also pointed out that the categories Theoretical,
Errors, Learning, and Tooling are new or become more frequent in QSE-related questions.
This indicates the need for future efforts to support the community, in particular, to de-
velop learning resources, to help developers fix errors, and to explain theory behind
quantum computing code.
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4.5 Threats to Validity

External validity. In this chapter, we analyze four Stack Exchange forums and 122 GitHub
repositories to understand the challenges of QSE. Our studied forum posts and GitHub issues
may not cover all the ones that are related to QSE. Developers may also communicate their
discussions in other media (e.g., mailing lists). Future work considering other data sources
may complement our study. In addition, we identify and collect the posts from Q&A forums
using a selected set of tags. Our analysis may miss some QSE tags. However, to alleviate
this threat, we follow prior work [88,89] and use an iterative method to identify the relevant
tags.

Internal validity. In this chapter, we use topic models to cluster the forum posts and
GitHub issue reports, based on the intuition that the same clusters would have similar textual
information. However, different clusters of posts and issue reports may exist when a different
approach is used. To ensure the quality of the clusters, we manually reviewed the resulting
topics, merged similar topics when needed, and assigned meaningful labels to them.

Construct validity. In RQ1, we manually analyze the categories of QSE-related questions
on technical Q&A forums. Our results may be subjective and depend on the judgment of
the researchers who conducted the manual analysis. To mitigate the bias, two researchers
collectively conducted an manual analysis and reached a substantial agreement, indicating
the reliability of the analysis results. A third researcher also participated in the discussions
during the manual analysis, to ensure the quality of the results. In RQ2 and RQ3, the
parameters of the topic models (e.g., the number of topics K) may impact our findings. To
mitigate this threat, following previous work [88] [89], we did multiple experiments and use
the topic coherence score to select the most suitable parameters. The manual labeling of
topics can be subjective. To reduce this threat, the researchers read each topic’s top 20
keywords and the top 15 highest contributed posts to the topic. We followed a clear-cut
approach adapted in previous works [88] [89]. In addition, in our analysis of the QSE posts,
we did not filter posts using the number of comments, votes or answers (as done in prior
work [110]), which may lead to noise in the analyzed posts (e.g., low-quality posts). We
made this decision since QSE is a new topic and the number of posts in the Q&A forums is
relatively small.

4.6 Chapter summary

This chapter presented the results of a large-scale study performed using Stack exchange
forums and GitHub issues reports to understand what quantum software engineers ask about
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and highlighted the topics that are the most challenging. We identified the popular and com-
plex issues and inspected the correlations between the latter in GitHub and Stack exchange
independently. Besides we have identified the nature of questions that quantum software en-
gineers asked; grouping them into nine types (i.e., "API usage", "Conceptual", "Discrepancy",
"Errors", "Review", "API change", "Learning", "Theoretical" and "Tooling"). Finally, we dis-
cussed our findings and presented a set of recommendations for researchers, practitioners,
and tool providers.



39

CHAPTER 5 BUG CHARACTERISTICS IN QUANTUM SOFTWARE
ECOSYSTEM

5.1 Introduction

Quantum computing has achieved a series of important milestones in recent years. For
example, D-Wave claimed the first commercial quantum computer in 2011 [5]. Tech giants
such as IBM, Amazon, Google, and Microsoft are racing to build their quantum computers.
Quantum computers are expected to make revolutionary computation improvements over
modern classical computers in certain areas, such as optimization, simulation, and machine
learning [6, 7].

The rapid development of quantum computers has driven the development of quantum pro-
gramming languages and quantum software [3], with many of them released as open source [8].
A variety of quantum programming frameworks and languages have been introduced, such
as Qiskit [9], Cirq [10], and Q# [11]. IBM’s Qiskit is a Python-based software development
toolkit for developing quantum applications that can run on quantum simulators or real
quantum computers (e.g., IBM Quantum Cloud).

Quantum software, by its nature, is drastically different from classical software. For example,
a classical software system is executed sequentially and the status of the system is typically
deterministic. However, a quantum software system is intrinsically parallel and can have
multiple possible states at the same time [12]. In addition, as quantum computers are error-
prone due to the instability of quantum mechanisms, the output of a quantum software
system is often noisy [13]. Thus, the bugs of quantum software may possess characteristics
that are very different from those in classical software.

In this chapter, we perform an empirical study on 125 open-source quantum software projects
hosted on GitHub. These quantum software projects cover a variety of categories, such as
quantum programming frameworks, quantum circuit simulators, or quantum algorithms. An
analysis of the development activity of these selected projects show a level of development
activities similar to that of classical projects hosted on GitHub. To understand the char-
acteristics of bugs occurring in quantum software projects, we examined the following two
research questions.

RQ1: How buggy are quantum software projects and how do developers address them? In this
research question, we compare the distribution of bugs in quantum software projects
and classical software projects, as well as developers’ efforts in addressing these bugs.
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We observe that quantum software projects are more buggy than comparable classical
software projects. In addition, fixing quantum software bugs is more costly than fixing
their classical counterparts. Our results indicate the need for efforts to help developers
identify quantum bugs in the early development phase (e.g., through static analysis),
to reduce bug reports occurrence and bug fixing efforts.

RQ2: What are the characteristics of quantum software bugs? We qualitatively studied a
statistically representative sample of quantum software bugs to understand their char-
acteristics. In particular, we analyzed the quantum software components (e.g., quantum
measurement) where these bugs occurred and examined the nature of these bugs (e.g.,
performance bugs). We observed that both quantum computing-related bugs and clas-
sical bugs occur in quantum computing components. The gate operation component is
the most buggy. We identified a total of 13 different types of bugs occurring in quan-
tum components. The three most occurring types of bugs are Program anomaly bugs,
Configuration bugs, and Data type and structure bugs. These bugs are often
caused by the wrong logical organization of the quantum circuit, state preparation,
gate operation, measurement, and state probability expectation computation.

Our work is important to guide future works that aim to develop methodology and tooling
to support the identification and diagnosis of quantum software bugs. Some of our bug
results emphasize a quantum-specific approach to identifying bugs not detected by traditional
techniques. Our findings can be beneficial to quantum computing developers. They can learn
from the most occurring bug types and avoid them in future work. Our results on which
component is more buggy can help guide developers’ testing efforts. As quantum computing
frameworks are still in their early days and not yet widely used, our study of bug types can
have a beneficial impact on the future releases of the quantum frameworks.

Because quantum computing is still in its early stages, there have been very few empirical
studies on quantum computing bugs. In 2021, Campos and Souto [37] highlighted the need
to study quantum computing bugs. In the same year, Zhao et al [38] studied 36 bugs from a
single quantum computing framework (Qiskit). In 2022, Matteo and Michael [39] identified
the patterns of 223 real-world bugs in 18 quantum software projects. In this chapter, we
study a larger set of bugs from a larger number of projects and perform a deeper analysis of
the characteristics and types of quantum bugs.

In essence, this work makes the following contributions:

• A preliminary study of the status and a categorization of quantum software projects.
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• A quantitative study of the bugs of 125 quantum software projects with comparison to
bugs of classical software projects.

• An in-depth qualitative study of 333 real-world bugs in 125 quantum software projects.

• An investigation of the types of quantum bugs, and their distribution across the quan-
tum components.

• Insights about the challenges and the complexity to fix the bugs.

Chapter organization. The rest of the chapter is organized as follows. In Section 5.2, we
introduce the experimental setup of our study. A preliminary study on the characteristics of
quantum software projects is presented in Section 5.3. In Section 5.4, we present the answers
to our research questions. Section 5.5 discuss the finding of the study, while Section 5.6
review threats to the validity of our findings. Finally, Section 5.7 concludes and summarize
the chapter.

5.2 Study Definition and Data Extraction Methodology

The goal of this study is to understand the characteristics of bugs occurring in quantum soft-
ware projects. The perspective is that of researchers and tool builders interested in developing
methodologies and tools to support the identification and diagnosis of quantum software bugs.
The context of the study is 125 open-source quantum software projects hosted on GitHub.
To achieve the study’s goal, we proceed in three steps. First, in a preliminary study, we
examine the nature of quantum projects, comparing them to classical projects. This prelimi-
nary study is important to identify the specific characteristics of quantum projects that could
affect the bugs. Next, we conduct a quantitative study, comparing the distribution of bugs in
quantum software projects and classical software projects, as well as developers’ efforts in ad-
dressing these bugs. Finally, we qualitatively studied a statistically representative sample of
quantum software bugs and build a taxonomy of quantum software bugs. Figure 5.1 depicts
the methodology of our study. First, we collect quantum and classical projects from GitHub.
Then, we collect the pull requests and issues of these projects using GitHub issues API. Next,
we apply a set of heuristics to identify quantum software project bugs and classical project
bugs. Finally, we perform open coding and apply statistical analysis to answer our research
questions. The following sections elaborate in detail on each of these steps.

5.2.1 Quantum software projects collection

We followed two steps to collect quantum software projects.
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Figure 5.1 Schematic diagram of chapter 5 empirical study

Step 1: Searching candidate projects. To select representative projects from the quan-
tum ecosystem, we searched through the GitHub search API. We used two ways to search
for quantum software projects.

• First, we conduct a keyword search using the GitHub search API. To identify the
quantum software projects in GitHub, we reduce our search scope and select the projects
with a description or a topic that contains the word “quantum computing” (the word
quantum computing is case sensitive to not miss relevant projects).

• Next, we search for code that imported quantum programming libraries. Our code
search items Qcode contain import statements from popular quantum computing li-
braries such as Qiskit and Cirq developed by pioneers like Google and IBM. Using the
search code feature, we search for Qcode in the quantum projects source code to iden-
tify the quantum software projects. Our searched items Qcode include: import qiskit,
import cirq, from cirq import, from qiskit import, import tensor
flow_quantum, from tensorflow_quantum import, from braket.circuits
import, import braket.circuits.

In addition, we limit our search results based on the following criteria:
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• To allow us to better understand the issues and content of the projects, the description
of the project must be in English.

• Since we are looking to characterize the bugs in the quantum software projects, the
projects must have issues.

At the end of this step, we obtained QP −initial containing a total of 2,105 unique quantum
project.

Step 2: Filtering collected projects. We filter QP −initial, the collected set of quantum
software projects following guidelines proposed by Kalliamvakou et al [111]. Specifically,
we selected projects based on their number of commits in 2021, their total number of
commits, and their number of contributors. These 3 criteria ensure that we identify the
most active projects, remove the abandoned projects, and filter out the quantum computing
projects related to documentation, lecture notes, and student assignments [111].

1. We keep projects with at least 51 commits to ensure that they have sufficient develop-
ment activity and to avoid student assignment [91] [92]. Figure 5.3 show the distribution
of the total number of commits in QP −initial. Since the third quantile is 51, we used
it as our threshold to filter the set of projects QP −initial.

2. We select the projects with at least 17 commits in the past year (i.e., 2021) to remove
the abandoned and inactive projects. Figure 5.2 shows the distribution of the number
of commits in the past years in QP −initial. We observe that 75% of the projects have
less than 17 commits in the past year, therefore we use this value as a threshold to
filter the set of projects QP −initial.

Figure 5.2 Distribution of the number of
commits in quantum software projects in
the past year

Figure 5.3 Distribution of the number of
commits in quantum software projects
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3. We retain projects with more than one contributor to avoid selecting toy projects.

After applying these filtering criteria, we manually inspected the remaining projects’ de-
scriptions and removed non-quantum projects (e.g„ projects related to quantum physics,
documentation, or lecture notes).

Finally, we ended up with a total of 125 projects (QP −final) that are directly related to
quantum computing.

5.2.2 Classical projects collection

To understand the quantum software projects’ characteristics, we need a baseline for our
analysis. Hence, we collected a set of classical software projects comparable to the quantum
software projects. From GitHub, we selected classical projects that have the range of number
of stars, programming language, number of watcher, similar to our quantum reposito-
ries and the repository must have issues. As the number of projects in the extracted list
of classical software projects is very large, to have a representative baseline, we collected a
random sample of 324 projects using a 95% confidence interval level and a 5% margin of
error.

5.2.3 GitHub issues and pull requests collection

To identify the bugs and to uncover the cost to fix a bug in the quantum software projects,
we collected the pull requests and issue reports for each of the studied projects, using
GitHub issues API which considers every pull request as an issue. We collected the follow-
ing fields: issue number, state, title, repository url, issue url, pull request
url, body, creation date, close date, and merge date. Using GitHub issue API [93]
for each project, we extracted Binitial a total of 59,249 issues and pull requests from QP −final.
In the rest of the chapter, we refer to the issue reports and the pull requests as issue reports
or issues.

5.2.4 Identification of quantum software projects bugs

To identify the bugs in GitHub issue reports, we first map each issue with its corresponding
commit. For each project, we collect the related commits of each issue report using the
GitHub API. To identify the commit or list of commits of an issue report, we look into the
list of events of the issue report. If an issue is referenced in a commit, the commit url
will appear in the list of events with the tag referenced. Therefore we collect the list of
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commit url that appears in the issues event. We collect the commits of the issues report for
each project using the GitHub commit API and collect the following fields of each commit:
the commit message, the URL, the number of added, deleted or changed files, and the
contributor identification. The next step is to classify if an issue in Binitial describes a
bug or not. For this purpose, we proceed as follows:

1. In GitHub, developers tag the issues using the Label field. To identify bugs, we select
the issues that has the tag Label=bug or defect and flag the issues as a bug.

2. Following previous work [112], we define a set of keywords Kinitial fix, error, crash,
wrong, bug, issue, fail, correct to detect bugs.

3. For each issue report b ∈ Binitial, if b’s title or body or commit message contains at
least a word k ∈ Kinitial, b is flagged as a bug. We ended up with a set B1 of 18,084
bug reports at the end of this step .

4. To extend the set Kinitial and identify further potential bugs ∈ Binitial, we select a
random sample with 95% confidence interval level and 5% marge of error of the issues
not flagged as bugs, i.e., ∈ B1.

5. One researcher manually inspected the commits of the random sample of issue reports
and defined an extended set of Kinitial. Then, during a meeting, three researchers
discussed the validity of the new set of keywords. Finally, all researchers agreed on
the final set Kfinal fix, error, crash, wrong, bug, issue, fail, correct, exception,
log, inf, insufficientResource, broke, resolve, abort, leak.

6. For each issue reports b ∈ B1, if b’s title, body or commit message contains at least a
word k ∈ Kfinal, b is flagged as a bug. We obtained a set Bfinal containing 19,564 bug
reports.

As a result of the process, we ended up with a total of 19,564 bug reports Bfinal that are
related to quantum computing.

5.2.5 Classical projects bug extraction

We follow the same processes as described in Section 5.2.3 and Section 5.2.4 to extract the
bugs of the selected classical software projects. In the 324 classical projects, we had a total
of 60,779 issue reports in which we identified 13,165 bugs.
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5.3 Preliminary study: Characteristics of quantum software projects

In order the understand quantum programming challenges, we first want to understand the
nature of the quantum software projects. In particular, we want to understand the types
of the projects and compare their characteristics (e.g., developer activities) with classical
software projects.

5.3.1 Approach

Categorization of quantum software projects. To identify the categories of quantum
projects in GitHub, we manually analyzed the descriptions and the documentation of all the
projects. No prior taxonomy was used. For each project, we assigned one label. In case a
project is associated with more than one categories, which occurred in a few cases, we chose
the most representative one. Two researchers (i.e, coders) of our laboratory jointly performed
the manual labeling. Each project is labeled by both researchers. We describe our labeling
process below.

1. Initial labeling. Each coder labels all the projects independently.

2. Discussion. To have a consistent labeling strategy, we scheduled a meeting after the
initial labeling and reached a consensus on the set of labels. A third researcher of our
laboratory is involved in the meeting.

3. Revising labels. Each researcher updated their labeling results after the meeting.

4. Resolving disagreement. We had a final meeting to resolve the disagreement in
the labeling results and reached a consensus for the label of each project. For each
mismatched label, the three researchers discussed and resolved the conflict.

Analyzing the characteristics of quantum software projects. We study the charac-
teristics of the quantum software projects as follows:

1. In order to understand the maturity of quantum software projects, we look into the
duration (i.e., from the creation date of the project until the date of our data extrac-
tion), and to study the the activity in the quantum projects, we look into the number
of releases, number of commits, and number of contributors. We used GitHub
API [93] to collect these metrics for each studied project.

2. In order to understand the profile of the developers of quantum software projects, for
each project we retrieve the user name of the contributors, then for each contributor,
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with the help of the GitHub events API [93], we look into its created events since the
contributor joined GitHub. Following GitHub documentation [93], we select the events
that describe the activity of the developers. Specifically, we focus on the following
events: CommitCommentEvent, IssueEvent, IssueCommentEvent, PullRequestEvent,
and PushEvent.

Steps 1 and 2 are repeated on the sample of the classical software projects. The results of
the classical software projects are used as our baseline.

5.3.2 Results

Quantum software projects have been steadily increasing in recent years. Figure
5.4 shows the number of quantum software projects over time. We observe a significant
increase in the number of projects after 2016. The increase may be explained by the rapid
development of quantum computing technologies in recent years. In 2017, IBM announced
a working quantum computer with 50 qubits, that can maintain its quantum state for 60
microseconds [113]. Microsoft released its Q sharp programming language [11] in the same
year. In 2018, IonQ released its first commercial trapped-ion quantum computer [114]. In
2019, IBM released its first commercial quantum computer, the IBM Q System One [115].

We derived 9 categories of projects in the quantum computing software ecosystem
covering quantum programming frameworks, simulators, tools, implementations
of quantum algorithms, and applications such as machine learning. Table 5.1 shows
the characteristics of these quantum software projects by category. Below, we describe each
category of projects.

Quantum circuit simulator: Libraries that are used to simulate quantum computation
on a classical computer.

Quantum programming framework: A set of development kits, languages and libraries such
as Q# [11], Qiskit [9] and pyEPR 1 for quantum programming and quantum circuits design.

Quantum algorithms: Projects that provide one or more implemented quantum algorithms
(i.e., grove2).

Quantum machine learning: A set of libraries for implementing hybrid quantum-classical
machine learning models. For example, TensorFlow Quantum (TFQ)3 is a quantum machine

1https://pyepr\protect\discretionary{\char\hyphenchar\font}{}{}docs.readthedocs.io/en/
latest/

2https://github.com/Seeed\protect\discretionary{\char\hyphenchar\font}{}{}Studio/grove.
py

3https://www.tensorflow.org/quantum

https://pyepr\protect \discretionary {\char \hyphenchar \font }{}{}docs.readthedocs.io/en/latest/
https://pyepr\protect \discretionary {\char \hyphenchar \font }{}{}docs.readthedocs.io/en/latest/
https://github.com/Seeed\protect \discretionary {\char \hyphenchar \font }{}{}Studio/grove.py
https://github.com/Seeed\protect \discretionary {\char \hyphenchar \font }{}{}Studio/grove.py
https://www.tensorflow.org/quantum
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Figure 5.4 Cumulative distribution func-
tion of the quantum software ecosystem
projects over time (days) Figure 5.5 Comparison of the GitHub ac-

tivities of the developers of classical and
quantum projects

learning library for prototyping hybrid quantum-classical ML models.

Quantum compilers: Tools used for the synthesis, compilation, and optimization of quantum
circuits (i.e., QGL2 Compiler4).

Quantum utility tools: Libraries and tools used to support quantum program develop-
ment such as monitoring the load in quantum computers, API interface used to connect
with quantum devices, or libraries dedicated for specific task development in the quantum
programming workflow (i.e, state preparation, circuit visualization).

Experimental quantum computing: Libraries used for research and experimental calcula-
tion (i.e., artiq Compiler5).

Quantum games: Games developed using quantum programming that run on simulators or
quantum computers.

Quantum based-simulation: Libraries used for simulating quantum physics experiments
on a quantum computer.

Table 5.1 shows different metrics about the 125 studied projects and their distribution, along
with the defined quantum ecosystem categories; including the number of releases, number of
contributors, number of commits, number of lines of code (LOC), and number of programming
languages used in the last release of the project.

As shown in Table 5.1, the largest number of projects fall into the quantum circuit simulators
category with 26 projects. As quantum computers are still not conveniently accessible to

4https://github.com/BBN\protect\discretionary{\char\hyphenchar\font}{}{}Q/pyqgl2
5https://m-labs.hk/experiment-control/artiq/

https://github.com/BBN\protect \discretionary {\char \hyphenchar \font }{}{}Q/pyqgl2
https://m-labs.hk/experiment-control/artiq/
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Table 5.1 Characteristics of the studied quantum projects.

Program Category nbr of
projects

# of
releases

# of
commits

# of
contributors LOC # of

languages
Quantum circuit simulators 26 6.5 113.0 5.0 19,145 9.0
Quantum programming
framework 22 10.0 163.5 24.0 49,981 12.0

Quantum algorithms 19 7.0 129.0 9.0 26,530 9.0
Quantum utility tools 19 7.0 126.0 6.0 27,830 9.0
Quantum compilers 9 3.0 179.0 10.0 175,364 16.0
Quantum machine learning 8 2.0 217.0 9.0 33,705 10.0
Quantum circuit simulator 7 19.0 29.0 15.0 87,316 13.0
Experimental quantum
computing 7 10.0 147.0 15.0 66,088 13.0

Quantum-based simulation 2 16.5 459.0 84.5 92,819 14.5
Quantum fun 1 15.0 88.0 3.0 3,938 8.0
Quantum projects 125 8.0 131.0 8.0 34,188.0 10
Classical projects 324 12.0 268.0 2.0 15,357.0 7
# all values are median values in the projects in that category

the public, simulators are widely used to execute quantum programs. Moreover, quantum
programming frameworks is the second most frequent project category with 22 projects.
As quantum computing is getting more popular, programming frameworks are starting to
emerge. Quantum algorithms and quantum utility tools are the third most occurring
categories with 19 projects for each. Quantum programming frameworks and utility
tools are important to unlock the full potential of quantum computing systems. In Ta-
ble 5.1, we observe that quantum software projects have a lower level of maturity (in terms
of development activities) with a respective median number of commits and releases of 131
and 8, in comparison to classical projects which have a 268 median number of commits and
12 median number of releases.

Quantum software project developers show a similar level of activities as that of
classical software developers. In order to understand the activities of quantum project
developers, in Figure 5.5 we compare the activities of quantum software projects and classical
projects contributors by studying the developer’s activities on GitHub since their registra-
tion in GitHub. Note that the quantum software projects and classical software projects are
selected using the same criterion. We select five dimensions of activities from the GitHub
event API : commit on the commits, issues comments, created issues, created pull
requests, push event (i.e., commit and pull request). We chose these five dimensions be-
cause they describe how active a developer is in GitHub since joining. We observe some
similarities between classical program developers and quantum program developers across
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the five dimensions. For example, quantum software developers and classical software devel-
opers have the same number of issue event with a median value of 3. However, quantum
program developers are more active in other GitHub activities. From Figure 5.5, we observe
that quantum developers have a slightly higher number of issues comments event, pull
request event, and push event. These results show that developers of quantum software
projects put more effort and face more issues. This observation motivated our investigation of
the bug-proneness of quantum software projects. We also investigate how developers address
bugs in quantum programs, as well as the types and location of bugs in these programs.

Quantum software projects become increasingly popular on GitHub. We observe a
diverse range of quantum software projects, including quantum programming frame-
works, tools, algorithms, and applications. We also observe that developers of quantum
software projects are more active and face more issues in quantum programs.

5.4 Characteristics of Bugs in Quantum Programs

In this section, we report and discuss the results of our two research questions. For each
research question, we present the motivation, the analysis approach, and the obtained results.

5.4.1 How buggy are quantum software projects and how do developers address
them?

Motivation

In order to understand the characteristics of quantum software bugs, we first want to under-
stand the extent to which quantum software projects are buggy, as well as how effectively
developers address these bugs and their efforts in such activities.

Approach

Following the process described in Section 4.2, we identified the bugs in the selected quantum
software projects and classical software projects. To understand how developers address them,
we further identify the fixed bugs, as well as the fixing time and the associated efforts.

Identifying fixed bugs. A bug report is a GitHub issue report describing a bug. In GitHub,
not all closed bug reports are solved. In some cases, a bug report can be closed while the
problem persists. Thus, we had to identify the fixed and non-fixed bugs. We followed 3 steps
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to classify the bug reports.

1. Filtering the open issue reports. Using the state field in the issues reports, we
kept only the closed issues.

2. Identifying fixed bugs. Following previous work [116] [112], we looked for the set
of keywords Ffix in the GitHub issue report message and its corresponding commits:
closes, close, closed, resolve, resolves, resolved, fix, fixes, fixed. To
identify the fixed bugs, for each closed GitHub issue report, in the commit message, we
look if it contains f ∈ Ffix. If the commit message contains at least one of the keywords
we flag it as Fixed.

3. Manual verification. One researcher inspected a sample of 382 fixed bugs with a 95%
confidence level and 5% marge of error. We found that our identification of fixed/non-
fixed bugs has a precision of 1 and a recall equal to 0.97.

Bug fixing rate. For each quantum or classical project, we calculate the bug fixing rate by
dividing the number of fixed bugs by the total number of closed bugs (including fixed bugs
and bugs closed without a fix) in that project.

Bug fixing duration. For each fixed bug, we measure the bug fixing duration by calculating
the difference between the bug fixing time and the bug creation time.

Bug fixing effort. To measure the effort involved in a bug fix, we collected the code changes
of the commits that contributed to the bug fix. A change in a commit is an added or deleted
code line. We also collected information about the number of changed files in the commits,
which can be an added, modified, renamed or deleted file. For each bug fix, we measured
two metrics:

• Number of changed files: the added, modified, renamed, and deleted files in the
commits that contribute to a bug fix.

• Number of changed lines of code: The number of added and deleted code lines
in the commits that contribute to a bug fix.

Results

Quantum software projects show more bugs (with a median number of 28 bugs)
than classical software projects (with a median number of 13 bugs). Table 5.2
provides a summary of the bugs in quantum software projects and the distribution of the
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bugs along with the project categories. A median of 28.0 bugs per project was detected in
the studied quantum software projects, which is two times higher than the median number of
bugs in the classical software projects. In light of these values, quantum programs are more
buggy than classical programs. The higher number of bugs in a quantum project may be
explained by the fact that quantum computers are error-prone and the output of quantum
software is often noisy.

In particular, the quantum projects (e.g., projects in the categories of quantum-based simula-
tion, experimental quantum computing, and quantum machine learning) are the most buggy
projects. This observation may be explained by the fact that these quantum projects cat-
egories rely more on quantum computing theories. Since there are no prior collection of
mathematical algorithms for quantum theories and convenience functions that developers
can leverage, the developers of quantum programs may be prioritizing the correct implemen-
tation of these complex theories over the quality of their code.

The median value of the bug fix ratio in Table 5.2 shows that 27.5% of the quantum software
bugs are closed but not fixed, compared to 21.1% of classical software bugs which are closed
without a fix. One researcher manually inspected a statistically representative sample of 382
closed-but-not-fixed bugs, representing a 95% confidence level and 5% confidence interval,
to understand why these bugs are closed without a fix. We noticed that in some cases
developers don’t follow the best practices of GitHub and mention the issue number in the
commit message with the fixing keywords, which makes detecting the bug fixes from commit
messages difficult. As an example, we present issue number 5148 in Qiskit6. Besides, in some
issue reports, enhancements were labeled as bugs for future releases and closed by developers
without notice in commit messages. For example, the issue id 20 in the qutip7. Finally, we
detected bugs that were closed because developers could not provide a fix, or it is difficult to
reproduce the bug. For example the issue number 402 in Cirq8.

Developers of quantum software projects are actively addressing the bugs in their
projects. Figure 5.6 show a comparison of the empirical distribution function of the duration
to fix a bug in days. The figure shows that bugs in quantum software projects are fixed at a
similar speed as in classical software projects, with 50% of bugs fixed in less than 1 day and
90% of bugs fixed within 48 days, indicating that developers of quantum software projects
are actively maintaining their projects.

Quantum machine learning, Quantum based-simulation, and Experimental quantum

6https://github.com/Qiskit/qiskit-terra/issues/5148
7https://github.com/qutip/qutip/issues/20
8https://github.com/quantumlib/Cirq/issues/402

https://github.com/Qiskit/qiskit-terra/issues/5148
https://github.com/qutip/qutip/issues/20
https://github.com/quantumlib/Cirq/issues/402
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Table 5.2 Distributions of bugs and bug fix ratio in quantum software projects

Project category # of bugs # Bug fix
ratio

Hours
to fix a bug

# file changed
in a commit

# LOC changed
in a commit

Quantum-based
simulation 406.0 0.500 33.94 2.00 63.00

Experimental quantum
computing 168.5 0.628 27.98 2.00 12.00

Quantum Machine
learning 104.0 0.736 66.05 2.00 38.0

Quantum programming
framework 88.0 0.513 34.60 2.00 30.00

Quantum algorithms 72.0 0.657 25.01 1.50 15.00
Quantum compilers 36.0 0.572 20.72 2.00 28.00
Quantum circuit
simulators 26.0 0.523 20.61 2.00 20.00

Quantum utility tools 21.0 0.689 15.40 2.00 11.00
Quantum projects 28.0 0.725 23.5 2.00 19.00
Classical projects 13.0 0.789 21.1 2.00 14.00
# all values are median values in the projects in that category

computing are more buggy than other categories. Table 5.2 shows the median num-
ber of bugs across quantum software projects categories and the cost to fix them. We ob-
serve that quantum based-simulation projects have the highest median fixed bugs with the
value of 406.0, however, we also observe a low median bug fix ratio compared to other cat-
egories even though this category has a high median number of contributors as observed in
Section 5.3. Quantum machine learning, quantum algorithms and application, and
Experimental quantum computing categories have the highest bug fixing rate with respec-
tively a median bug fix proportion (ratio) of 0.736, 0.657, and 0.628, meaning that those
two categories are the least difficult for developers to fix. The highest number of bugs is for
quantum-based simulation projects. There are almost two times more bugs in this cate-
gory of quantum programs in comparison to the other projects, indicating that these projects
need more support from the community for testing and debugging. In the quantum-based
simulation category, programs are trying to simulate quantum mechanics and physics in a
quantum computer, for this purpose developers have to implement mathematical equations,
which may be complex for developers; inducing more bugs.

As quantum programming is still low-level, bug fixing is costly in terms of code
changes compared to classical programming. Fixing a bug in a quantum program
requires larger code changes than fixing bugs in classical programs. Table 5.2 shows that
quantum programs have a median code line change of 19, while classical programs have a
median code line change of 14.00. We attribute this situation to the low-level programming
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language used in quantum programming. Quantum software engineers write their code at
the gate level which is similar to the logic gate for classical software. This produces more
coupling between the elements in the code which can lead to more changes. Since quantum
programming is probabilistic in nature, classic assertions and testing techniques can’t be
used; resulting in a lack of support for testing and debugging.

Bugs in Quantum machine learning, Quantum programming framework, Quantum-based
simulation are the most challenging to fix. Duration is the time difference between
when an issue report was created and closed. In Table 5.2, we observe that the projects from
Quantum machine learning, Quantum programming frameworks, and Quantum-based
simulation categories appear to take the longest time to fix with the respective median
number of hours to fix the bug of 66.05, 34,90, and 33,94. Also, the category Quantum
based-simulation has the highest median number of lines of code changed in a commit
with 63.00 median code line changed. Moreover, Quantum machine learning and Quantum
programming frameworks show a high median number of lines of code changed to fix a bug.

The quantum software projects are more buggy than classical software projects. While
developers of quantum software projects are actively addressing their bugs, fixing quan-
tum software bugs is more costly than fixing classical software bugs. Our results
indicate the need for efforts to help developers identify quantum bugs in the early
development phase (e.g., through static analysis), to reduce bug reports and the cost
of bug fixing. Projects in the quantum machine learning, quantum programming
framework, and quantum-based simulation categories are the most buggy and have
the most difficult bugs to fix.

5.4.2 What are the characteristics of quantum software bugs?

Motivation

Quantum programs’ execution flow is different from that of classical programs. To understand
the challenges in the quantum computing ecosystem, it is important to understand how bugs
are distributed among the different components of the programs.

Approach

To identify the different types of bugs occurring in quantum programs and the principal
components of the quantum program execution flow where the bugs occurred, we performed
a manual analysis of a statistically representative sample of bugs detected in RQ1. We
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Figure 5.6 Cumulative distribution function of duration to fix a bug
through time (days).

performed a stratified sampling over the quantum program categories, to ensure covering a
wide range of bugs. Specifically, 1) we compute the sample size from the number of fixed
bugs with a 95% confidence level and 5% interval which result in a sample size of 376. 2) We
calculate the log number of issues per category. 3) We compute the project category weight:
the normalized log number of bugs of the category divided by the log of the total number
of fixed bugs. 4) Finally, we compute the sample size from each project category: the total
sample size (376) multiplied by the corresponding weight.

After creating the sample, for each bug report, we examine the title, body, and comments
to understand the bug reported by the user. We used the hybrid-card sorting approach
to perform the manual analysis and assign labels (i.e., type of bug and quantum program
component) to each sampled bug. To assign the bug type, we based our manual analysis on
an existing taxonomy of the type of bugs reported on GitHub [116] and added new types
when needed. For each bug report, we assigned one label, in case a bug is associated with
two or more labels, which we found only in a few cases, we choose the most relevant one.

Three researchers (i,e coders) of our laboratory performed the labeling through two rounds
as follows:

1. First-round labeling. One coder labels the bugs independently.

2. First-round discussion. In order to have a consistent labeling strategy, the first three
researchers had a meeting to discuss the labeling results in the first round and reached
an agreed-upon set of labels.
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3. Revising first-round labels. The coder updated the first round labeling results
based on the meeting.

4. Second-round discussion. The first three researchers had another meeting to discuss
the revised labels, validate the updated labels and verify the consistency of the labels.

5. Revising second-round labels. Based on the second-round discussion, the coder
revised the labels.

Results

We identified bugs in 12 quantum computing components. Figure 5.7 shows the 12
quantum computing computing components where bugs were identified which are mapped to
a quantum-classical hybrid computing structure. Prior work [117] identified five components
: pre-processing, post-pro-
cessing, gate operation, state preparation, and measurement. In Figure 5.7, we ex-
tended the component set to finally have 12 components. In Table 5.4, we show the distri-
bution of the bug type across the quantum components. In the following, we discuss each
quantum component in more details.

• Compiler (CP) translates the quantum program circuit into device-level language.
From Table 5.3, we observe that compiler component issues are present in all the
quantum ecosystem software categories with a total of 68 bugs. From table 5.4, we
observe that the four most occurring bug types are program anomaly (23 bugs), test-
code related (12 bugs), data type and structures (11 bugs), and configuration (11 bugs).

• Gate operation (GO) is a set of reversible operations that alter the state of the qubit
and generate superposition. These reversible gates can be represented as a matrix.
Gate operations are based on complex mathematical operations using imaginary num-
bers. Translating the maths into code is challenging for developers which increases
the chances of errors. Table 5.3 shows that gate operations component is the sec-
ond most buggy with 56 bugs detected in our sample. Table 5.4 illustrate that in
this component, we have the two occurring bug types which are program anomaly and
data-type and data structure. They respectively occur 27 and 7 times.

• Simulator (SM) simulates the execution of a circuit on a quantum computer. Since
quantum computers are still not conveniently accessible by the public, simulators are
widely used by quantum developers. We identify 10 bugs spread across the quantum
programming framework, experimental quantum computing, quantum circuit
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Figure 5.7 General components in a hybrid quantum program application

Table 5.3 Distribution of the quantum component bugs across the quantum software cate-
gories. (In the 376 analyzed bug reports, 43 reports were not identified as bugs.)

VIS SP GO Post-P Pre-P EM CP MS PC SM MN QCA O # bugs
Quantum programming
framework X X X X X X X X X X X 58

Experimental quantum
computing X X X X X X X X X 47

Quantum algorithms X X X X X X X X X X 34
Quantum circuit
simulators X X X X X X X X X X X X 43

Quantum compilers X X X X X 37
Quantum utility
tools X X X X X X X X X X 41

Quantum-based
simulation X X X X X X X X X X 38

Quantum Machine
learning X X X X X X X X X X 35

Total Bugs 15 40 56 17 9 15 68 19 17 10 2 25 40 333

simulators, and quantum utility tools. We observe that the bugs are characterized
mostly by missing Error handling and performance bugs with 2 bugs at each type
as shown in table 5.4.

• State preparation (SP) is an operation to generate an arbitrary state of the qubit.
As can be seen in Table 5.3, state preparation has the third-highest number of bugs
with 40 bugs. The bugs appear in all the project categories except quantum compilers
and quantum utility tools categories. During the state preparation phase, one tries
to give the qubit an arbitrary state of 0 or 1. For this purpose, one tries to rotate or
control the qubit into the desired state. As an example, one can use gate decomposition
as a technique for state preparation. In Table 5.4, we observe that program anomaly



58

is the most dominant bug type with 21 bugs, while data type and structure come
second with only 5 bugs. However, we detected a rare bug of missing error handling
type. Quantum states are mathematical entity that provide a probability distribution
for each outcome of a state measurement. Since a qubit can have multiple states,
mathematically they are represented as matrices. To initialize the state of a qubit,
one has to manipulate that matrix. The number of state preparation bugs indicates
the difficulty that developers are having with implementing the quantum algorithms.
These bugs can be addressed with the help of data refinement and verification tools.
Also, missing error handling bugs can be avoided by encouraging quantum developers
to test their code.

• Measurement (MS) measures the final state of a qubit after superposition. We identi-
fied 19 bugs present in six of the quantum software categories as presented in Table 5.3.
Six bug types were detected in our sample. From table 5.4 Program anomaly bugs are
the most occurring with 12 bugs. Also, we identified 3 configuration bugs and 2
data type and structure bugs.

• Post-processing (Post-P) translates the quantum information (i.e., measurement
probability) to classical computer bits. We detected 17 bugs related to post-processing
distributed among all the quantum software categories except experimental quantum
computing and quantum compilers as highlighted in the table 5.3. In table 5.4 we
observe 9 program anomaly bug and 3 gui related bugs.

• Pre-processing (Pre-P) generates the state preparation circuit and initializes the
register of the quantum computer. This component is executed on classical com-
puter. We detected 17 bugs related to post-processing distributed among all the
quantum software categories except experimental quantum computing and quantum
compilers as highlighted in Table 5.3. In Table 5.4, we observe 9 program anomaly
bugs and 3 GUI related bugs.

• Pulse control (PC) generates and controls signals to create custom gates and cali-
brate the qubits. From Table 5.3, the pulse control component registered 17 bugs during
the manual analysis. Pulse control bugs generally appear when a developer would like
to define a custom gate and manually calibrate the qubits. For this purpose, developers
need to generate a pulse (signal) and a scheduler to calibrate the qubit. From Table
5.4, it appears that the two most occurring bug types in pulse control components are
program anomaly and test-code related.
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• Error mitigation (EM) corrects the measurement error when computing the qubit
state probability. From Table 5.3 we identified 15 error mitigation bugs distributed
along 5 quantum software categories. Among the identified bugs we have detected 5
program anomaly bugs and 4 test-code related bugs as shown in Table 5.4.

• Quantum cloud access (QCA) is a client interface to connect to a quantum cloud
service provider. Cloud service providers like Amazon, Microsoft, and IBM provide
access to quantum computers. We have detected 25 bugs related to the access to these
quantum resources. Configuration bugs are the most occurring bug type with 8 bugs
and program anomaly bugs are the second most frequent bug type in this category,
with 5 bugs as shown in Table5.4.

• Visualisation (VIS) creates plots and visualisations. Quantum developers use vi-
sualization to represent qubit states graphically and examine quantum state vectors
and the transformation actions. Drawing the circuit is the last step when building a
quantum program. We identified 15 bugs in the visualization component, that appear
in all the quantum programs categories except the quantum compilers. Among the
detected bugs, 8 belong to the GUI related bugs category as shown in Table 5.4.

• Monitoring (MN) controls the good execution of the program and the performance of
the execution environment. Only 2 bugs were assigned to the monitoring component,
which appears in two quantum software categories (Quantum circuit simulation and
Quantum-based simulation).

• Other (O): Every bug that occurred elsewhere other than the defined components.

The result of our qualitative analysis for identifying the bugs in the quantum program soft-
ware component is presented in the Table 5.3. Among the 376 analyzed bug reports, 43
questions reported bugs were not real bugs.

We identify 147 bugs in 5 components that are directly related to quantum computing in-
cluding gate operation, state preparation, measurement,
pulse control, and error mitigation, ordered by their number of bugs. Moreover, the
simulator shows a slightly high number of bugs (classical and quantum bugs), this can be
explained by the complexity of the operation that has to be simulated since they are trying to
simulate quantum physic phenomena using very complex linear algebra calculation. Finally,
the compilers appear to be the most buggy with 63 bugs identified.
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We identified a variety of 12 quantum computing components in which bugs were dis-
covered, including both quantum computing-related bugs and classical-related bugs.
We identified quantum-related bugs in five components (gate operation, state
preparation, measurement, pulse control, and error mitigation.), among which
gate operation is the most buggy component.

We identified 13 bug types in the quantum software ecosystem. Table 5.4 shows the
distribution of these bugs across quantum components. In the following, we discuss each
type of bugs in more details. In our replication package [118], we provided more details and
examples of different types of bugs in different quantum computing components.

Program anomaly bugs are introduced when enhancing existing code or caused by prior bad
implementations. The manifestation of these bugs can be a bad return value or unexpected
crashes due to logical issues in the code. For example in the Pre-processing component,
to execute quantum programs efficiently, data is embedded into quantum bits. Specifically,
the classical data is mapped into n-qubit quantum states by transforming data into a new
space where it is linear. For example, AmplitudeEmbedding is a mapping technique in
PennyLaneAI in which a bug9 was reported and it took 6 days to fix. In the code from
Listing 5.2(a), the normalization in the embedding function is breaking the differentiability
for any data that is encoded as a TensorFlow or Pytorch tensor which triggers the error
shown in Listing 5.2(b). Developers have tried pre-implemented normalization techniques in
NumPy and TensorFlow but the bug persisted. The only solution left was to hand-code the
normalization as illustrated in the bug fix code from Listing 5.2(c). Providing the quantum
computing community with libraries dedicated to linear algebra computation in quantum
will support the progress of quantum programming.

Test-code related bugs are happening in the test code. Problem reported due to adding
9https://github.com/PennyLaneAI/pennylane/issues/365

Table 5.4 Distribution of bug types across the quantum component
VIS SP GO Post-P Pre-P EM CP MS PC SM MN QCA O # bugs

Configuration bugs 3 3 4 - - 2 11 3 1 2 - 8 10 47
Data types and structures bugs 3 5 10 1 3 - 12 2 2 1 - 2 5 46
Missing Error handling - 1 - - - 1 4 - 3 2 - 2 - 12
Performance bugs - - 3 1 1 3 3 1 1 2 - 1 3 19
Permission/deprecation bugs - - 2 1 - - 1 - - - - 1 2 7
Program anomaly bugs 2 20 30 9 4 5 26 12 6 1 - 5 2 123
Test code-related bugs - 2 4 - - 4 12 1 4 - 1 - 5 33
DataBase related bugs - - - - - - - - - - - - 1 1
Documentation - 1 3 - - - - - - 1 - 1 11 17
Gui related bugs 8 3 1 3 - - - - - - - - - 15
Misuse - 2 1 - - - - 1 - - - 1 - 2
Network bugs - - - - - - - - - - - 1 - 1
Monitoring 1 - - - - - - - - - - - - 1

https://github.com/PennyLaneAI/pennylane/issues/365
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1 import numpy as np
2 import pennylane as qml
3 from pennylane . templates . embeddings import AmplitudeEmbedding
4

5 dev = qml. device (’default .qubit ’, wires =3)
6 @qml.qnode(dev)
7 def circuit (data):
8 # Amplitude embedding normalization function not behaving as expected (Bug

trigger )
9 AmplitudeEmbedding (data , wires =[0, 1, 2])

10 return qml. expval . PauliZ (0)
11

12 data = np.ones(shape =(8 ,)) / np.sqrt (8)
13 circuit (data)

(a) Trigger of the bug "PennyLaneAI (issue id 365)"

1 TypeError : unsupported operand type(s) for +: ’Variable ’ and ’Variable ’

(b) Error message
1 # Repository : PennyLaneAI / pennylane
2 #Fix file: pennylane / templates / embeddings .py , method : AngleEmbedding , line

: 118
3 -if normalize and np. linalg .norm(features , 2) != 1:
4 - features = features * (1/ np. linalg .norm(features , 2))
5 +norm = 0
6 +for f in features :
7 +if type(f) is Variable :
8 +norm += np.conj(f.val)*f.val
9 +else:

10 +norm += np.conj(f)*f

(c) Proposed bug fix

Listing 5.2 The execution of the code snippet (shown in (a)) triggers a message error (shown
in (b)) because Amplitude embedding normalization in NumPy is too strict and does not
allow small tolerance. The bug fix was to redefine the normalization function (as shown in
(c))

or updating test cases and intermittently executed tests. For example, in the pulse control
component, Test code-related bug is the second most occurring bug type. In Qiskit bug
report number 252710, a unitest is failing because of a wrong parameter type. The expected
input variable type in this test should be int, float, or complex. Therefore to fix the bug, a
developer changed the parameter type from String to Integer as shown in Listing 5.3.

Data type and structure bugs are related to data type problems such as undefined or
mismatch type and data structure bugs like bad shape bugs or the use of wrong data struc-

10https://github.com/Qiskit/qiskit-terra/issues/2527

https://github.com/Qiskit/qiskit-terra/issues/2527


62

1 # Repository : Qiskit /qiskit -terra
2 #Fix File: qiskit -terra/test/ python /pulse/ test_cmd_def .py
3 #Class: TestCmdDef , method : test_parameterized_schedule , line: 86
4 #Bug triggered in line 4 and 8
5 -sched = cmd_def .get(’pv_test ’, 0, ’0’, P2=-1)
6 +sched = cmd_def .get(’pv_test ’, 0, 0, P2=-1)
7 self. assertEqual (sched. instructions [0][ -1]. command .value , -1)
8 with self. assertRaises ( PulseError ):
9 -cmd_def .get(’pv_test ’, 0, ’0’, P1=-1)

10 + cmd_def .get(’pv_test ’, 0, 0, P1=-1)
11

Listing 5.3 The execution of the test building parameterized schedule fails because of the
wrong parameter type (as shown in code snippet line 1 and 5). The bug fix was to change
the parameter type from string to integer “qiskit (issue id 2527)”

tures. For example, in qibo, we identified a bug that states : “Probabilities do not sum
to 111" when running a circuit with more than 25 qubits. Listing 5.5(a) presents the buggy
code along with the error message and the proposed bug fix. As can be seen, the problem has
occurred because the sum() function does not return a normalized set of probabilities distri-
bution. To fix the problem, a developer proposed to cast the tensor into type tf.complex128.
This bug was caused by a data type and structure bug in the measurement component. Quan-
tum software programs algorithms are based on probability and linear algebra which makes
the implementation of quantum algorithms complex for developers. Therefore, providing
libraries with array and data manipulation for quantum and data validation tools can help
the quantum software engineering community.

Missing error handling occur when exceptions are not handled by the program. Improper
error handling can lead to serious consequences for any system, and the quantum software
systems are not an exception. For example, in qutip, we detect the absence of error handling
in the simulator. An issue that led to the bug report id 396 12. The application crashed
during the creation of a device object if the methods or attributes of this object contained
an error. This issue was fixed by adding an exception block as shown in Listing 5.6. This
bug fix occurred quickly (1 day) and not much code change was required. Improper error
handling can be costly and lead to data leaks and many other exploits in the code. Therefore,
developers must be careful regarding when, where, and how to correctly handle errors in the
code. Code analysis tools for error handling and logging recommendation can support the
quantum program development and help avoid missing error handling bugs.

Configuration bugs are related to configuration files building. The bug can be caused by
11https://github.com/qiboteam/qibo/issues/517
12https://github.com/m-labs/artiq/issues/396

https://github.com/qiboteam/qibo/issues/517
https://github.com/m-labs/artiq/issues/396
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1 NQUBITS = 26
2 c = Circuit ( NQUBITS )
3 for i in range( NQUBITS ):
4 c.add(gates.H(i))
5 output = c.add(gates.M(TARGET , collapse =True))
6 for i in range( NQUBITS ):
7 c.add(gates.H(i))
8 # Running the circuit with more than 25 qubit return sum of qubit states

probabilities =! 1 (Bug triggered )
9 result = c()

(a) Trigger of the bug "qibo (issue id 517)"

1 File " mtrand .pyx", line 933, in numpy. random . mtrand . RandomState . choice
2 ValueError : probabilities do not sum to 1

(b) Error message

1 # Repository : qiboteam /qibo
2 #Fix file: qibo/src/qibo/core/ states .py
3 #Class: VectorState , method : probabilities (), line: 95
4 def probabilities (self , qubits =None , measurement_gate =None):
5 unmeasured_qubits = tuple(i for i in range(self. nqubits ) if i not in

qubits )
6 - state = K. reshape (K. square (K.abs(K.cast(self. tensor ))), self. nqubits

* (2 ,))
7 + state = K. reshape (K. square (K.abs(K.cast(self.tensor , dtype="

complex128 "))), self. nqubits * (2,))
8 return K.sum(state , axis= unmeasured_qubits )

(c) Bug fix

Listing 5.5 The execution of the code snippet (shown in (a)) triggers the message error (shown
in (b)) because the sum of final state probabilities is different from 1. The bug fix was to
cast the array value to complex type (as shown in (c))

the external library that must be updated or incorrect files paths or directories. For example,
in the Quantum cloud access component, The bug in the code from Listing 5.7 happened
in DWave cloud access service when trying to obtain the list of solvers. However, the list
of solvers is filtered by the client type. To locate and fix the bug, developers spent 14 days
13. Their proposed fix is s shown in Listing 5.7.

GUI related bugs are related to graphical elements such as layout, text box, and button
layout. Quantum circuits are the main focus when building a quantum program. It can be
challenging to debug and–or validate the structure of a quantum circuit by only reading the
code. Libraries like Cirq and Qiskit offer visualization features to draw the architecture

13https://github.com/dwavesystems/dwave-cloud-client/issues/457

https://github.com/dwavesystems/dwave-cloud-client/issues/457
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1 # Repository : m-labs/artiq
2 #Fix file: artiq/ master / worker_db .py
3 #Class: DeviceManager , method : get , line: 144
4 -dev = _create_device (self. get_desc (name), self)
5 +try:
6 + desc = self. get_desc (name)
7 + except Exception as e:
8 + raise DeviceError (" Failed to get description of device ’{}’". format (

name)) from e
9 +try:

10 + dev = _create_device (desc , self)
11 + except Exception as e:
12 + raise DeviceError (" Failed to create device ’{}’". format (name)) from e

Listing 5.6 Calling the device description causes the program to crash with inappropriate
error message hard to understand.The bug fix was adding exception block in the get method
with descriptive error message "artiq (issue id 396)".

1 # Repository : dwavesystems /dwave -cloud - client
2 #Fix file: dwave/cloud/cli.py , method : solvers , line :346
3 + @click . option (’--client ’, ’client_type ’, default =None ,
4 type= click. Choice ([’base ’, ’qpu ’, ’sw’, ’hybrid ’],

case_sensitive =False),
5 help=’Client type used ( default : from config )’)
6 -def solvers ( config_file , profile , solver_def , list_solvers , list_all ):
7 +def solvers ( config_file , profile , client_type , solver_def , list_solvers ,

list_all ):
8 if list_all :
9 + client_type = ’base ’

10 with Client . from_config (
11 - config_file = config_file , profile =profile , solver = solver_def )

as client :
12 + config_file = config_file , profile =profile ,
13 + client = client_type , solver = solver_def ) as client :

Listing 5.7 Dwave solver is sensitive to the client type and does not return all the solvers
with option -all because developers missed the client type argument in the solvers function.
The bug fix was passing the client type as argument "dwave-cloud-client( issue id 457)

of circuits. The drawing is meant to depict the physical arrangement of gates, wires, and
components. The visualization functions in Qiskit are basic support modules and can come
with bugs. For example, the bug report14 in Qiskit is stating misaligned barriers in the
circuit, which change the interpretation of the circuit. In the code presented in Listing 5.9,
we show a bug in Qiskit that occurred when a user wanted to draw a circuit, alongside with
its proposed fix. Libraries dedicated to quantum circuit visualization such us Matplotlib
and Seaborn in python help developers to analyze and debug the circuits.

14https://github.com/Qiskit/qiskit-terra/issues/3107

https://github.com/Qiskit/qiskit-terra/issues/3107
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1 qc = qk. QuantumCircuit (2)
2 #The circuit draw in latex places barrier in the wrong place
3 qc.draw( output =’latex ’)

(a) Trigger of the bug qiskit (issue id 3107)

1 # Repository : Qiskit /qiskit -terra
2 #Fix file: qiskit / visualization /latex.py
3 #Class: QCircuitImage , method : _build_latex_array , line :772
4 -self. _latex [start ][ column ] = "\\qw \\ barrier {" + str(span) + "}"
5 +self. _latex [start ][ column - 1] += " \\ barrier [0em]{" + str(span) + "}"
6 +self. _latex [start ][ column ] = "\\qw"

(b) Trigger of the bug

Listing 5.8 The execution of the code snippet (shown in (a)) plots a circuit with a barrier
not aligned correctly. The bug fix was to adjust the barrier column index (shown in (b))

Performance bugs are related to the stability, speed, or response time of software resources.
This category covers memory overuse, endless loops, and energy consumption. For exam-
ple, in the Qiskit simulator, we found a bug that caused a huge performance regression in
the simulation due to a large increase in serialization overhead when loading noise models
from Python into C++. Even though the bug fix consisted only in one line of code, de-
velopers spent 4 days to locate and fix this bug. Quantum developers make a high use of
quantum simulators, therefore, it is important to ensure that these simulators maintain a
good performance. Creating a performance benchmark for quantum simulators can help the
community to select the most appropriate simulators and encourage providers to improve the
performance of their simulators.

1 # qiskit /qiskit -aer
2 # Fix file: qiskit / providers /aer/noise/ errors / quantum_error .py , method :

to_dict , line: 462
3 -instructions = [exp. to_dict ()[’instructions ’] for exp in qobj. experiments

]
4 + instructions : [[op [0]. assemble (). to_dict () for op in circ.data]
5 for circ in self. _circs ]

Listing 5.9 Calling qiskit.assemble causes a huge performance regression in noisy simulator
"qiskit-aer (issue id 1398)"

Permission/deprecation bugs. This category covers two type of bugs: (1) bugs related
to the removal or modification of deprecated calls or APIs, and (2) bugs related to missing
or incorrect API permission.
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Database related bugs are related to the connection between the database and the main
application.

Documentation issues are related to documentation typos, not up to date documentations
and misleading function in documentation.

Monitoring bugs are related to bad logging practices such as wrong logging levels, too
much logging, or missing log statement. Only 2 bugs were assigned to the monitoring com-
ponent. For example, the bug report id 10015 in quisp describes a problem of overlogging
and misplaced log statements. The overloaded text has been making debugging difficult.
Even though, logging is a known practice in software engineering, its effectiveness requires
adequate logging statements at appropriate locations in the code. Tools for logging and log
level recommendations can help support quantum developers and improve the quality of their
applications.

A Misuse is a wrong usage of a function that leads to a bug in the code. Misuses appeared
in gate operation, state preparation components. For example, in the Listing 5.12, we
present a Misuse bug that occurred during the state preparation of the qubit. This bug
occurred because the developer wrote the program in the wrong order. The purpose of the
circuit presented in this example is to measure the state of qubit 0 and map the state into
a classical bit. However, the program of this circuit raised a CircuitError as shown in
Listing 5.12(b). This error is due to line QuantumCircuit() which is not doing anything
since it is immediately over-ridden by statepreparation(). Moreover, the measurement is
not mapped to the register (classical bit) because of the misuse of the measure() function.
A developer proposed the following fix to correct the issue (Listing 5.12(c)).

Network bugs are related to connection or server issues. Network bug type is the rarest bug
Where we identify one bug in the quantum cloud access component from table 5.4.

We identified 5 dominant bug type while doing the manual analysis: program anomaly, data
type and structure, configuration issues, test-code
related and enhancement and feature request. Program anomaly is the most dominant
bug type with 123 bugs. While inspecting the bug reports and their commit message, we
notice that most program anomaly bugs come from bad implementation in the quantum
algorithm or mathematical formulation of the problem. In fact, gate operation and state
preparation components are based on complex mathematics, and this may be challenging for
developers. Configuration issues is the second most frequent bug type with 45 bugs. Most
of the quantum concepts are based on linear algebra and use complex data type; this makes
the implementation challenging for developers. Data type and structure is the third most

15https://github.com/sfc-aqua/quisp/issues/100
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1 q = QuantumRegister (4)
2 c = ClassicalRegister (1)
3 circuit = QuantumCircuit (q,c)
4 ang = feature_train [3]
5 # Applying state preparation after quantum Circuit initialization triggers

the bug
6 circuit = statepreparation (ang , circuit , [0 ,1 ,2 ,3])
7 circuit . measure (0, c)

(a) Trigger of the bug "qiskit (issue Id 5837)"

1 CircuitError : ’register not in this circuit ’

(b) Error message

1 #Fix file: In the code snipped (shown in (a)), line 3 and 7
2 -circuit = QuantumCircuit (q,c)
3 -circuit . measure (0, c)
4 + circuit . measure (0, 0)

(c) Code to reproduce the bug

Listing 5.12 The execution of the code snipped (shown in (a)) triggers the message error
(shown in (b)) because the quantum circuit (line 3 in code snipped (a)) is immediately
overridden by the state preparation (line 6 in a code snipped (a)). The bug fix was to map
the 0th measured qubit into the 0th classical bit and remove the circuit initialization (as
shown in (c).

frequent category with 40 bugs. Again, this may be caused by the complexity of quantum
operations.

We identified 13 different types of quantum bugs. The most frequent types of bugs
occurring in quantum components are: program anomaly bugs with 123 bugs, con-
figuration bugs with 47 bugs, and data type and structure bugs with 46 occurrences.
Program anomaly bugs is the most spread bug type (it occurs in all components). Data
type and structure bugs are mostly located in the components State preparation (10
occurrences) and Compiler (12 occurrences).

5.5 Discussion and implication

We have seen in the analysis that most of the bugs in the quantum software ecosystem are
program anomalies, configuration bugs, and data type and structure bugs. These bugs can
have a serious impact, causing the program to crash and leading to poor software quality.
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We observe that quantum programmers have limited or no access to data, matrix, and array
manipulation libraries. It is often difficult for them to implement quantum algorithms, linear
algebra routines, error mitigation models, and unitary transformation with existing libraries
such as Numpy. This finding suggests that developing data manipulation (e.g., array
manipulation) libraries dedicated to quantum programming along with a collection of
mathematical algorithms for quantum computing and convenience fun-
ctions can help prevent some of the observed program anomalies and data type and structure
bugs. Our analysis also revealed the difficulty of designing quantum circuits.. Automatic
pattern recommendation tools could be developed to support this task. This can be done
for example by mining a large set of expert-written quantum code to extract common code
patterns that can be recommended to developers designing quantum circuits.

Because quantum programs are difficult to debug and quantum components are strongly
coupled, circuit visualization and analysis approaches are needed to help developers
examine the logical structure of their circuits and fix bugs early on.

Researchers and tool builders should consider contributing specialized data
manipulation (e.g., array manipulation) libraries and libraries provid-
ing mathematical algorithms for quantum computing and convenience
functions to support quantum software development, to help reduce the occurrence
of program anomaly bugs and data type and structure bugs. Circuit visualization
and analysis techniques and tools are also needed to help developers debug and fix
bugs in quantum circuits.

5.6 Threats to Validity

We now discuss threats to the validity of our study.

External validity. In this work, we analyze the bugs of 125 quantum software projects
on GitHub. Our studied projects may not represent the characteristics of other quantum
software projects that are not public on GitHub. In addition, our studied projects may
not represent all quantum software projects on GitHub. However, we followed a systematic
approach to search for quantum software projects and focus on projects with relatively rich
development activities.

Internal validity. In RQ1, we analyze the bug fixing efforts using the bug fix duration
and the code changes in the bug fixes as proxies. However, the duration and code changes
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may not accurately capture the effort of developers in fixing these bugs. Future works that
accurately monitor developers’ development activities in fixing quantum software bugs can
improve our analysis.

Construct validity. In our preliminary study and RQ2, we manually analyze the categories
of the quantum software projects and the characteristics of the quantum software bugs. Our
results may be subjective and depend on the judgment of the researchers who conducted the
manual analysis. To mitigate this threat, two researchers collectively conducted a manual
analysis and reached a substantial agreement, indicating the reliability of the analysis results.
To resolve disagreements, the third researcher joined them and each case was discussed until
reaching a consensus.

Conclusion validity. This threat concerns the extent to which the analyzed issues can
be considered exhaustive enough. We have followed a systematic approach to identify the
studied quantum projects. To identify the bug types and the components of the quantum
program execution flow in which they occurred, we have manually analyzed a statistical
representative sample of the detected bugs. Although it is possible that we may have missed
some types of bugs, we have mitigated this threat by following a stratified sampling strategy
that allowed us to cover projects from all quantum computing categories.

Reliability validity. This threat concerns the possibility to replicate this study. We have
attempted to provide all the necessary details needed to replicate our study. We share our
full replication package in [118].

5.7 Chapter summary

In this chapter, we perform an empirical study on 125 open-source quantum software projects
hosted on GitHub. These quantum software projects cover a variety of categories, such as
quantum programming frameworks, quantum circuit simulators, or quantum algorithms. An
analysis of the development activity of these selected projects show a level of development ac-
tivities similar to that of classical projects hosted on GitHub. We compared the distribution
of bugs in quantum software projects and classical software projects, as well as develop-
ers’ efforts in addressing these bugs and observed that quantum software projects are more
buggy than comparable classical software projects. Besides, quantum software project bugs
are more costly to fix (in terms of the code changed) than classical software project bugs.
We qualitatively studied a statistically representative sample of quantum software bugs to
understand their characteristics. We identified a total of 13 different types of bugs occurring
in 12 quantum components. The three most occurring types of bugs are Program anomaly
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bugs, Configuration bugs, and Data type and structure bugs. These bugs are often caused
by the wrong logical organization of the quantum circuit, state preparation, gate operation,
measurement, and state probability expectation computation. Our study also highlighted the
need for specialized data manipulation (e.g., array manipulation) libraries, libraries providing
mathematical algorithms for quantum computing and convenience functions, as well as circuit
visualization and analysis techniques and tools to support quantum software development.
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CHAPTER 6 CONCLUSION

In this chapter, we summarise our results and conclude the thesis. Besides, we highlight the
limitations of our approaches and outline some directions for future work.

6.1 Summary of Works

With the rapid increase of quantum computing popularity and it’s active development in
recent years, and with the unique advantages that this computation approach offers, it is
promised to become a game changer in various fields. Similarly to classical software, it is
critical for quantum software to ensure a good quality of service. In this thesis, we examined
the quantum software engineering challenges in technical Q&A forums and GitHub issue
reports that quantum computing practitioners discuss. We examined bugs in the quantum
software ecosystem repositories in GitHub, to identify any new type of bugs and proposed a
Taxonomy of bugs. We also formulated recommendations for researchers and tool builders.
In chapter 2 we present background knowledge of concepts and terminologies that are helpful
to better understand our empirical studies. In chapter 3 we reviewed the existing literature
on quantum software engineering, software quality assurance, and topic modeling in software
engineering studies. In chapter 4, we examined challenges that quantum program develop-
ers are facing by analyzing Stack Exchange forums posts related to QSE and the GitHub
issue reports of quantum computing projects. Results indicate that QSE developers face
traditional software engineering challenges (e.g., dependency management) as well as QSE-
specific challenges (e.g., interpreting quantum program execution results). In particular,
some QSE-related areas (e.g., bridging the knowledge gap between quantum and classical
computing) are gaining the highest attention from developers while being very challenging to
them. As the initial effort for understanding QSE-related challenges perceived by developers,
our study shed light on future opportunities in QSE (e.g., supporting explanations of the-
ory behind quantum program code and the interpretations of quantum program execution
results). In chapter 5 we perform an empirical study on 125 open-source quantum soft-
ware projects hosted on GitHub (same dataset used in Chapter 4). These quantum software
projects cover a variety of categories, such as quantum programming frameworks, quantum
circuit simulators, or quantum algorithms. An analysis of the development activity of these
selected projects show a level of development activities similar to that of classical projects
hosted on GitHub. We compared the distribution of bugs in quantum software projects and
classical software projects, as well as developers’ efforts in addressing these bugs and ob-
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served that quantum software projects are more buggy than comparable classical software
projects. Besides, quantum software project bugs are more costly to fix (in terms of the code
changed) than classical software project bugs. We qualitatively studied a statistically repre-
sentative sample of quantum software bugs to understand their characteristics. We identified
a total of 13 different types of bugs occurring in 12 quantum components. The three most
occurring types of bugs are Program anomaly bugs, Configuration bugs, and Data type
and structure bugs. These bugs are often caused by the wrong logical organization of
the quantum circuit, state preparation, gate operation, measurement, and state probability
expectation computation. Our study also highlighted the need for specialized data manip-
ulation (e.g., array manipulation) libraries, libraries providing mathematical algorithms for
quantum computing and convenience functions, as well as circuit visualization and analysis
techniques and tools to support quantum software development.

Our study is the first that extensively investigate the quantum software engineering challenges
of a large number of open-source projects and by mining the questions in Q&A forums. This
work can help researchers and practitioners better understand the challenges and issues of
quantum programming for which the demand is increasing rapidly. We hope that our work
will encourage software engineering researchers to tackle the most important challenging
tasks in quantum software engineering, such as quantum software debugging and testing.

6.2 Limitations

• We analyzed four Stack Exchange forums and 125 GitHub repositories to understand
the challenges of QSE. Our studied forum posts and GitHub issues may not cover all
the ones that are related to QSE. Developers may also communicate their discussions
in other media (e.g., mailing lists). Also we may not represent the characteristics of
other quantum software projects that are not public on GitHub

• In our thesis, we use LDA for topic modeling to cluster the forum posts and GitHub
issue reports, based on the intuition that the same clusters would have similar textual
information. However, different clusters of posts and issue reports may exist when a
different approach is used.

• We manually analyze the categories of QSE-related questions on technical Q&A forums
and classified the bug types. Our results may be subjective and depend on the judgment
of the researchers who conducted the manual analysis.
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6.3 Future Research

Quantum computing is starting to take giant strides but QSE is still in the beginning of
the journey. There are many potential future research directions that arise from the thesis
contributions. Bellow we outline some possible directions.

• We have highlighted new bugs in quantum software, and 13 quantum software engi-
neering topics. It is, therefore, a new path for researchers in the future to explore these
areas in depth.

• Evolution of the test practices in quantum program : In the future we hope to study how
the quantum software are tested, maintained and evolved through out their development
life-cycle. We still lack a taxonomy of test practices in the quantum software ecosystem.
The community is in still in the dark about when and how quantum engineers introduce
test cases, how their testing strategies may have changed overtime.

• The efficiency of the testing practices in quantum software : In the future work we
plan to examine and evaluate the existing testing practices and their efficiency in the
context of quantum programming. The results of such study could help quantum
software engineers to choose the most optimal testing strategies, and if needed define
new test practices for the quantum programming approach.

• Quantum computing proposes a different computation approach with much higher com-
putation capability. The test minimization problem have existed since the early days
of programming and it is known to be computationally expensive. In the future work,
we aim to harness the computation benefits of quantum programming for test mini-
mization.
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