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RÉSUMÉ

Malgré les promesses de la dernière décennie, les memristors ne sont pas encore des dispositifs

utilisables en pratique pour les applications récentes qui nécessitent une immense puissance

de calcul. Le dispositif, que Leon Chua a découvert en 1971 et que Hewlett Packard a

fabriqué pour la première fois en 2008, manque encore de robustesse et de fiabilité dans son

processus de fabrication. Chaque memristor peut être caractérisé par deux caractéristiques

principales: (a) la memristance qui est la fenêtre de résistance et (b) la durabilité qui est

souvent appelée temps de rétention. Pourtant, les memristors, qui sont également connus

comme des dispositifs de commutation résistifs, sont confrontés à de multiples défis qui

empêchent les chercheurs de les utiliser dans leurs applications finales.

Les défis les plus courants pour un memristor sont la contrôlabilité de la fenêtre de résistance,

le dopage des ions, les caractéristiques physiques des matériaux constitutifs, la nano-échelle

et quelques autres défis. Heureusement, les émulateurs de memristors peuvent remplacer le

dispositif réel dans plusieurs applications modernes. Ces émulateurs sont basés sur un pro-

cessus de fabrication CMOS éprouvé. Cependant, l’inconvénient commun de ces émulateurs

est leur incapacité à conserver leurs états internes pendant de longues périodes.

Dans ce travail, nous présentons une cellule memristive qui non seulement possède les carac-

téristiques du memristor comme la fameuse courbe d’hystérésis I-V pincée, mais qui possède

également un temps de rétention de 10 ans. Pour réaliser une telle cellule, nous avons utilisé

des transistors à grille flottante pour la rétention des charges et un émulateur de memristor

pour que le circuit présente un comportement similaire à celui des memristors.

Une puce de 1 mm2, que nous avons fabriquée en utilisant un processus CMOS standard de

65 nm avec une fine épaisseur de diélectrique de grille, a été utilisée pour caractériser les

mécanismes de charge et décharge des dispositifs à grille flottante. Nos expérimentations en

laboratoire ont permis de découvrir des faits intéressants sur les transistors à grille flottante

réalisés avec un procédé CMOS à 65 nm. Par exemple, nous avons découvert que l’effet

tunnel des charges commence à environ 350 mV , et qu’à environ 650 mV , le dispositif perd
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sa capacité à piéger les charges. Néanmoins, et malgré la sensibilité du processus, les charges

qui ont été délicatement tunnelisées dans les dispositifs à grille flottante ont été (et sont

toujours) piégées à l’intérieur de leurs circuits.

Dès lors, nous avons combiné en un seul circuit le modèle que nous avons découvert pour les

dispositifs à grille flottante et un circuit d’émulation de memristor que nous avons adapté

de la littérature pour correspondre aux conditions de fonctionnement des dispositifs à grille

flottante. Le circuit résultant est notre circuit memristif qui a montré sa robustesse et sa

fiabilité lors de la simulation du circuit.

Nous proposons ainsi une cellule memristive avec quelques architectures de circuit utiles pour

le calcul résistif. En particulier, nous présentons le circuit dans un petit réseau 4x4 adapté

à la multiplication vecteur-matrice. La simulation de ce réseau a montré l’autonomie de

chaque cellule et la possibilité de la programmer à un autre état simplement en contrôlant

les tensions de deux terminaux de la cellule memristive proposée.
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ABSTRACT

Despite being actively researched in the past decade, memristors still lack practical real-

izations that could be used to implement usable devices. The device, which Leon Chua

discovered in 1971 and Hewlett Packard fabricated for the first time in 2008, is still missing

robustness and reliability in its manufacturing process. Any memristor can be characterized

by two main features: (a) memristance, which is the device’s resistance range and (b) dura-

bility, which is often referred to as retention time. Nonetheless, the memristors, also known

as resistive switching devices, are facing multiple challenges that prevent researchers from

using them in their end applications.

The most common challenges for a memristor are memristance window controllability, ion

doping, physical characteristics of the composing material and nano-scalability. Luckily,

memristor emulators are good substitutes, for the time being, in most modern applications.

Many memristor (or resistive switching device) emulators are based on a mature CMOS

process. However, the common setback for these emulators lies in them lacking the ability

to retain their internal states for long periods.

In this dissertation we present a memristive cell that not only has the memristor’s charac-

teristics as the famous I-V pinched hysteresis curve but also has a 10-year retention time.

To bring forward such a cell, we used floating gate transistors for charge trapping and a

memristor emulator for a memristor-like behavior of the circuit.

We fabricated a 1 mm2 chip using a standard 65 nm CMOS process with thin-gate dielec-

tric thickness that was used to characterize both charging and discharging mechanisms of

the floating-gate devices. Our in-laboratory experiments uncovered interesting facts about

floating-gate transistors in the 65 nm process. For example, we found that charge tunneling

starts at around 350 mV gate-source potential. However, at around 650 mV , the device loses

its ability to trap charges. Nonetheless, and despite process sensitivity, the charges that were

delicately tunneled into floating-gate devices continue to be trapped inside their circuits.

Henceforth, we integrated into one complete circuit a model we discovered for floating-gate
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devices and a memristor emulating circuit which was adapted from literature to match the

operating conditions of floating-gate devices. The resulting memristive circuit showed ro-

bustness and reliability during circuit simulations.

We propose a cell with some circuit architectures that are useful for resistive computing.

Particularly, we present the circuit in a small 4× 4 crossbar array suitable for vector-matrix

multiplication. This simulated array showed the autonomy of every cell and the ability to

program it to a different state only by controlling the terminal voltages of the proposed

two-terminal memristive cell.
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CHAPTER 1 INTRODUCTION

1.1 From AI to Resistive Computing

The quest for improving Artificial Intelligence (AI) algorithms has been an active research

goal ever since Alan Turing proposed the Turing test in 1950 [13]. This test allows an

investigator to distinguish a computer from a human through their responses to a given

challenge [14].

Consequently, as the complexity of AI Algorithms increases, the corresponding computer and

hardware architectures must complement each other in order to fulfill the required intelli-

gence in their end applications. Unfortunately, improving hardware architectures is not a

straightforward task with the successive down-scaling of technologies over the past decades

[15]. Despite that technology down-scaling increases transistor density per unit area, the

number of transistors per application is still limited by Moore’s law [16, 17].

A brute force solution for some advanced and complex AI algorithms, like Equilibrium Prop-

agation [18] and AlphaGo which may lead to as many as 10700 theoretical possible outcomes,

is difficult using any recent computer in feasible time [19]. Such algorithms are usually solved

via heuristics and implemented in digital environments; either by using programming lan-

guages like Python [20], R [21] and MATLAB [22] or by using digital hardware architectures

such as Field Programmable Gate Arrays (FPGAs) [23].

Recently, some researchers shifted to implementing mixed analog and digital learning archi-

tectures in order to accelerate AI algorithms [24]. Resistive switching devices (RSDs) (such

as memristors [9], Resistive Random Access Memories (RRAMs) [25], Resistive Processing

Units (RPUs) [26], etc...) are fundamental for these analog architectures. Basically, these

devices are arranged in a crossbar structure to increase parallelism. Each resistive device

can be programmed to a certain resistance when placed in the crossbar structure, where this

resistance (conductance) affects the current traversing the circuit, and consequently, might

change the final outcome. It is important that every RSD be able to retain its conductance

value during the inference phase, or even during the learning process that could last for sev-
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eral hours. Every RSD should also be capable of holding to its value until (during and even

after) later prediction and deployment phases. The maximum reported memristor’s retention

time is around 10 years [27].

1.2 Resistive Switching Device Characteristics

The main features that characterize RSDs are:

(i) Retention time: Defined by the maximum time to which an RSD can hold to its

conductance value. This time can vary from a few milliseconds to a couple hours [27].

(ii) Conductance range: Defined by the resistance window that bounds the device’s range

of operation. It may vary from a couple ohms to mega ohms.

(iii) Voltage range: Every RSD has two phases of operation which are SET and READ.

During the SET phase, the RSD is in the programming mode, during which it is pro-

grammed to a certain resistance. Whereas during the READ phase, the RSD resistance

value is read indirectly through the current that traverses the RSD. Since most RSDs

are bipolar, the voltage across the device’s terminals determines its mode of operation.

As a result, this voltage range is important to characterize.

(iv) Dimensions: Defined by an RSD’s length and width. The smaller the device, the

more scalable the crossbar structure is.

(v) Robustness and Reliability: Depend on the technology used in RSD fabrication or,

in other words, on the physical structure of the device’s material. If the fabrication

process is reliable and robust, the resulting RSD can be used at a large scale.

Every manufacturing process has its own advantages and disadvantages. When considering

nano-scale devices, overcoming their disadvantages is a more challenging task due to the re-

quired nano-scale dimensions of devices, particularly for miniature devices with new physical

prototypes. Some RSDs, precisely memristors, are more challenging to fabricate than others

[28]. These challenges include (but are not limited to): accuracy in reading and program-

ming, low yield in crossbar arrays, doping level, device dimensions, large fan-in and fan-out
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in arrayed structures, etc. [28–30]. As a result of the mentioned fabrication challenges, the

RSD becomes less reliable, hence the need for RSD implementation in a robust and reli-

able technology is fundamental, particularly if dedicated for Vector Matrix Multiplication

(VMM). Moreover, since the retention time is a valuable characteristic for RSDs, the device

can be implemented in a reliable CMOS process using Floating Gate Transistors (FGTs) to

achieve retention times that could last for 10 years.

1.3 RSD Applications

Figure 1.1 Percentage approximation of RSD integration in different domains

The concept of resistive switching elements is not new, as will be emphasized in later chapters,

and so is the concept of non-volatile memories which started at a low scale in 1987 [31].

However, having both concepts merged into one single device was a novel step in 2008 [9].

Over the years, devices implementing both concepts were, and ought to remain, integrated

into several applications which can be categorized into 3 main categories:

(a) Computing: Includes all categories of Neural Networks (NNs), resistive computing, in-

memory computing, etc.

(b) Data storage: Includes storing the data passively or actively, such as in near-memory

computing, and for either long or short periods of time.

(c) Others: such as the realization of logic gates, radio-frequency switches, etc.
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Figure 1.1 shows an approximation of RSD percentage-usage in each of the three domains as

inferred from references [32, 33]. The percentages reported in the figure resemble the number

of RSD usages per domain of application with respect to the total number of RSD usages in

all domains.

1.4 The Need for RSD Emulating Circuits

RSD fabrication processes are numerous, and researchers are still progressing towards fabri-

cating the best possible robust RSD [34]. There are multiple challenges facing these fabri-

cation processes, such as: (a) electrode placement and material selection, (b) RSD medium

selection, (c) machine precision, and (d) cell size requirements per application. Until the ma-

jority of these challenges are overcome, other circuitry emulating the behavior of an RSD are

necessary. Such circuitry is usually implemented using existing conventional robust and reli-

able devices that are fabricated in a recent standard technology. Advanced CMOS processes

are the closest viable option, as they can fulfill most of the requirements for an RSD.

1.5 Research Objectives

In this research, we aimed at improving analog implementation of AI using a reliable RSD

that is fabricated in a robust CMOS technology. Our main focus was overcoming two main

challenges facing existing RSDs:

(i) Lack of an existing robust and reliable RSD defined by its I-V characteristic curve and

by its long retention time.

(ii) Lack of an accurate model for computer simulation that matches the behavior of the

physical devices.
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1.6 Research Contributions

The main contributions of this research are:

(I) Characterizing Current Tunneling in FGTs

The purpose of this phase was to find a reliable CMOS process to implement and char-

acterize current tunneling in FGT devices. Thus, we managed to characterize FGT’s

behavior in a standard 65 nm CMOS process with thin gate dielectric. In addition,

we discovered a behavioral model that was common among all tested transistors. We

also believe that the discovered model applies to more advanced technologies to which

securing access is difficult for researchers.

(II) Modeling and Simulating an Automated Memristive Cell

The purpose of this phase is to establish an FGT model based on the measurement

results from phase (I). Finding a simulation model for FGTs in CAD software is an

important step towards designing and simulating a memristive cell that deploys both

the aforementioned model and a memristor emulator adapted from the literature to

match FGT’s operating conditions. The resulting memristive cell ought to have the

famous pinched hysteresis I-V curve in addition to a long retention time. The cell also

includes additional circuitry responsible for: (a) connecting the FGT model to the

memristor emulator and (b) controlling FGT’s charging and discharging mechanisms.

(III) Putting the Resulting Memristive Cell in Action

In this phase, we aim at deploying the proposed memristive cell in the resistive com-

puting domain. We demonstrate that the proposed memristive cell can be organized

into crossbar arrays, which are essential structures for vector matrix multiplication.

We show how our proposed memristive cell can be used in a 4x4 array with variable

input voltages across each of the two-terminal cells. Each row of cells shares the same

input voltage on one terminal, whereas the second terminal of each cell shares another

voltage with other cells in the same column.
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Published Articles In the process, we published two articles that are embedded in this

dissertation and one journal paper that is submitted to IEEE Transactions on Electron

Devices, and that passed the first round of reviews. Our three articles are:

(i) Assaf, H., Savaria, Y., & Sawan, M. (2018, December). Vector Matrix Multiplication

Using Crossbar Arrays: A Comparative Analysis. In 2018 25th IEEE International

Conference on Electronics, Circuits and Systems (ICECS) (pp. 609-612). IEEE.

(ii) Assaf, H., Savaria, Y., & Sawan, M. (2019, March). Memristor emulators for an adaptive

dpe algorithm: Comparative study. In 2019 IEEE International Conference on Artificial

Intelligence Circuits and Systems (AICAS) (pp. 13-17). IEEE.

(iii) Assaf, H., Savaria, Y., Ali, M., Nabavi, M., & Sawan, M. (2022, May). Implementing

floating gate transistors with a thin gate dielectric 65 nm CMOS technology. Submitted

to IEEE Transactions on Electron Devices.

Articles in Development Additionally, an article titled: A memristive cell with high

endurance and long retention time for vector matrix multiplication: From hardware to simu-

lation will be submitted to Nature Electronics.

1.7 Outline of the Thesis

Chapter 1 presented a brief introduction to the ultimate goal of this research, and the rest

of this dissertation is organized as follows: In chapter 2, we introduce existing literature that

inspired our work, focusing on key concepts such as vector matrix multiplication and resistive

computing. Additionally, we present existing efforts towards achieving a memristor and a

brief review on floating-gate devices. Chapters 3 and 4 present two published articles to

enrich the reader’s knowledge about different topics covered in this dissertation. In chapter

5, we present an article that contributes to the characterization of floating-gate devices

implemented in a standard 65 nm CMOS process. Based on the lessons learned in this article,

we introduce our proposed memristive cell in chapter 6 highlighting its major components.

In chapter 7, we provide a proof of concept simulation for the memristive cell used in a 4× 4

crossbar array that can be used in resistive computing. In the following chapter, chapter 8,

we present a general discussion for the whole project before concluding the dissertation in

chapter 9.
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CHAPTER 2 LITERATURE REVIEW

It is clear, without a doubt, that researchers have paved the way for Resistive Switching

Devices (RSDs) towards competing in Artificial Intelligence (AI) applications [35]. The

concept of a programmable RSD was first introduced, in 1971, by Leon Chua as thememristor

[36]. In 1976, the same concept was explained to the finest details [37].

2.1 Resistive Switching Devices

2.1.1 Definition

An RSD is a programmable resistor capable of adjusting its internal resistance based on

the voltage applied across its terminals [15]. In theory, RSDs are either bipolar or unipolar

devices that possess a resistance switching property. In other words, every device that is able

to change its electric resistance is named an RSD [34].

RSDs are getting famous recently due to their capability of being deployed in multiple do-

mains such as: (a) representation of binary states in digital logic, (b) information storage,

(c) computation near memory, (d) computation in memory and (e) Deep neural networks

(DNNs) [15, 25, 33, 34]. The flexibility that RSDs can add to the end application is directly

related to their distinguishing features which are:

(a) Scalability: Related to RSD’s dimensions which may vary in size from microscopic scales

(in nano and micro meters) to macrosopic scales. For most applications, RSDs are

supposed to fit into dense layers of crosspoint arrays [38].

(b) Fast transition between states: As the name suggests, an RSD belongs to the resistor

family where the current-voltage relationship is linear, and should not be time consuming.

In this chapter, we present a literature review on different topics that are under study in
this thesis. For certain topics, we will point the reader to some sections in chapters 3, 4,
and 5. These chapters correspond to our three published/submitted articles mentioned in the
introduction. We preferred to keep the mentioned sections as parts of their respective chapters
and only point the reader to the relevant sections to avoid repetitions.
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(c) Endurance: Defined by the device’s lifetime. It can also be defined by the number

of possible programming cycles for the RSD. This depends mainly on RSD’s physical

composition.

(d) State retention: Defined by the amount of time during which an RSD can hold to its

value without losing its state.

(e) Switching mechanism: Although RSDs have fast transitions between states, yet, it is im-

portant to discover the switching mechanism for every RSD in order to obtain the fastest

response possible. This is important because the response time is a critical metric for

most applications, especially those that can exploit RSDs such as the DNNs where Vector

Matrix Multiplications (VMMs) are expensive [34]. The most common RSD switching

mechanisms are: (i) Thermal-Chemical Mechanism (TCM), (ii) Valance Change Mecha-

nism (VCM) and (iii) Electrochemical Metallization (ECM) [25].

2.1.2 Metrics

When assessing and comparing different RSDs, several metrics should be taken into consider-

ation. The significance of every metric varies from one RSD to another depending on RSD’s

physical formation and domain of interest. The main RSD assessment metrics are:

(a) State/Data Retention: As explained before.

(b) Endurance: As explained before.

(c) Disturbance/Noise: Several factors might affect the programming and reading processes

of an RSD. Usually, RSDs are organized in crossbar arrays to increase their output effi-

ciency. However, the cross-talk between neighboring devices is one of the most common

noise sources for RSDs. Some RSDs can have up to eight neighboring cells, in which

case the sum of currents due to cross-talk noise might be equivalent to the targeted

current traversing the RSD. In addition, other noise factors as instrumental and envi-

ronmental errors, circuit precision and parasitic capacitance are critical, and can cloud

the read/write process in an RSD, especially in cases where the targeted currents are in

nano-amperes [39].
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Figure 2.1 An example of the RSD cross-talk noise in crossbar arrays

(d) Precision: RSDs are multi-state devices, thus depending on RSD’s precision, the number

of states that an RSD can have for a certain application varies. For example, binary

RSDs cannot be considered for analog memory applications, yet they are fit for digital

applications. Not only does RSD precision depend on its resistance range (Ron and

Roff ) but also on other circuit components that will communicate with it. Thus, an

RSD should (or has the flexibility to) match the precision of other circuit components.

(e) Size: With the recent advances in technology, having a macroscopic RSD device does not

satisfy most applications requirements. Most crossbar structures demand nano-scaled

devices for their final architectures [40, 41]. Consequently, the smaller an RSD can be,

the more fitting it will be for modern applications.

(f) Power Consumption: The vast spread of RSDs along with their integration into dense

and complicated circuits requires low power consumption per device [42]. If the current-

behavior in end-applications is non-linear, it is more challenging to deploy RSDs in

1T1RSD (1-Transistor-1-RSD) cell configuration. In 1T1RSD cells, the transistors are

usually used as a cell enable/disable switch which reduces crossbar’s power consumption

[34].

On the other hand, although an RSD has a linear I-V relationship similar to resistors, it

cannot replace the latter yet. Usually, a conventional resistor dissipates more power than

an RSD. This is mainly due to the material composition of each device. In conventional
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resistors, the I-V curve is linear and non-cyclic since it has only one resistance state

which renders the device passive. However, an RSD has a cyclic I-V curve which defines

two modes of operation: active and passive. In the first mode (active), the RSD is

programmed phase whereas during the second mode (passive), the RSD conducts with the

programmed-resistance. In this respect, a conventional resistor is supposed to be made

of materials that are more conducting than those composing an RSD whose behavior

depends mostly on ion-doping in semi-conductors [43].

2.1.3 Comparing Existing RSDs

In the literature, RSDs can have different names based on either their end-application or on

material composition. The most famous name for an RSD is the memristor, which stands

for memory-resistor, as defined by Leon Chua in 1971 [36]. Later, after deploying RSDs

in multi-bit memory applications the name was generalized into Resistive Random Access

Memory (RRAM) [44]. RSDs can have other names such as: Conductive-Bridging Random

Access Memory (CBRAM) [45] and Phase-change Memory (PCM) [46]. Chapter 4 contains

a more elaborate explanation on memristors.

Table 2.1 compares some existing RSD devices based on the metrics mentioned before. For

most RSDs of Table 2.1 partially reported the characteristics of their devices, particularly

the size. Nonetheless, almost all these RSDs have nano-scale dimensions. In addition, Fig.

2.2 shows an example of the memristor kit developed by KNOWM.

2.1.4 RSD Emulating Circuits

Memristors are the most common existing RSDs. For an elaborate discussion on recent

memristor emulating circuits, please refer to section 4.3 of this document.
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(a) (b) (c)

(d) (e)

Figure 2.2 The memristor kit developed by KNOWM: (a) Three 8× 1 memristor chips with
dimensions 4.3 mm × 2.1 mm per die (b) The memristor board for AHAH computing with
dimensions 18.3 mm × 22.35 mm (c) PC connecting board (d and e) Two programming
boards

2.2 Resistive Computing

2.2.1 Definition

The simplest definition of resistive computing is the process of utilizing resistors or resistor-

like devices in hardware-structures for executing machine instructions [15]. Currently, RSDs

are the core devices for resistive computing which is divided into two main categories [32]:

(i) In-memory computing: In this type of computing, RSDs are usually organized on cross-
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Table 2.1 Comparison of some existing RSDs according to references [1, 2]

Model Retention T. Endurance Ron Roff Size Power Cons.
[9, 47] years 1012 cycles Roff

160 160Ron 4F 2 0.1–3 pJ/bit
[48, 49] ≥ 6.4 hours ≥ 106 cycles 2 kΩ 20 kΩ 1 µm2 1.67 µW
[50] 10 years 5000 cycles 20 kΩ 200 kΩ - 1 nJ/bit

[51, 52] - 103 cycles 200 Ω 550 Ω 0.25 µm2 ∼ pJ
[53] - 200 cycles 167 MΩ 10 GΩ - 200 nJ/bit
[54] - ≥ 106 cycles 20 kΩ 283 kΩ 0.1 µm2 -
[55] - 106 cycles 4 kΩ 100 kΩ - -
[56] - - 1 kΩ - - -
[57] 2.5 hours 103 cycles 4.5 kΩ 8.5 kΩ - 11.7 nJ/bit
[58] - ≥ 200 cycles 2 kΩ 15 kΩ - 25 pJ
[59] - 105 cycles - - - -
[60] - 103 cycles 25 kΩ 150 kΩ - 61.16 nJ
[61] - - 700 Ω 10 MΩ - -
[62] 104 s ≥ 500 cycles 5 kΩ 50 kΩ - -
[63] - 50 cycles 25 Ω - -
[64] 1.2× 106 s 4000 cycles 10 kΩ - - -
[65] 105 s 104 cycles 100 kΩ - - -
[66] - 104 cycles ≥ 100 MΩ ≥ 500 MΩ 1 µm2 7.35 pJ/bit
[67] - 1010 cycles ≥ 10 kΩ ≥ 1 MΩ - -

bar arrays as bottlenecks for the currents traversing every column in the array. RSD’s

conductance play a critical role by controlling the I-V relationship during this process

which is often referred to as Vector Matrix Multiplication (VMM) (see chapter 3).

(ii) Near-memory computing: In this type of computing, RSDs are used for data storage

and are placed near the computing devices to reduce latency.

2.2.2 In-Memory Computing

In this document, our main focus is on in-memory computing. Many systems were developed

based on this concept, we mention hereby two recent systems developed by IBM and HP

respectively:
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2.2.2.1 Computing with the Resistive Processing Unit

Please refer to section 3.2 for a complete explanation of resistive computing using the Resistive

Processing Unit.

2.2.2.2 The Dot Product Engine

Please refer to section 3.3 for a complete explanation of this system.

2.3 Data Retention in RSDs

In this document, we tackle two main setbacks for current RSDs which are device robust-

ness and data retention. As previously mentioned, RSD fabrication processes are facing

several challenges that makes the device unreliable. In order to address these challenges,

researchers have proposed CMOS circuits to emulate RSD’s behavior as discussed in section

2.1.4. Therefore, we believe that the best solution for overcoming RSD’s robustness and

reliability challenges, until further RSDs are fabricated, is to rely on emulating circuits that

can be manufactured using robust and mature CMOS processes.

On the hand, it is now clear from Table 2.1 that existing RSDs vary in retention times, and

in some cases, an RSD can preserve its state for years. Since most RSD emulating circuits

cannot passively uphold their internal states for long periods, using these emulators demands

the existence of a re-configurable CMOS charge trap which are implemented using Floating

Gate Transistors (FGTs).

2.3.1 Floating Gate Transistors

2.3.1.1 Definition

By definition, a floating gate transistor is a transistor whose gate is not connected to any

active terminal of other circuit components. In other words, the sneak current path from the

floating node to ground is blocked by devices with high impedance. For example, transistors

M1 and M2 in Fig. 2.3 are FGTs, and the connection attaching the gates of both transistors
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Figure 2.3 An example of a circuit containing floating gate transistors

to C, between nodes G1 and G2, is a charge trap whose maximum capacitance is C+ε Farads.

A brief historical overview on FGTs can be found in section 5.1.

2.3.1.2 FGT Charging and Discharging

Charging and discharging the FGT’s charge trap depend on the mechanism used to tunnel

electrons from the outer world to inside the trap or vice versa [68]. This process is often

referred to as current tunneling.

The potential difference across the MOSFET’s gate plays a key role in current tunneling.

For example, in Fig. 2.3, the voltages applied on nodes A1 and B along with VC are critical

to tunnel charges through M1’s gate to G1G2. On the other hand, to tunnel charges through

transistor M2’s gate, we need to know the voltage on node A2 with VC . It is important to

notice that the internal FGT’s voltage, VC in Fig. 2.3, cannot be directly controlled from the

external world.

The main charge tunneling mechanisms for FGT are:

(i) Channel Hot-Electron injection (CHE): CHE is the most used charge injection mech-

anism for forcing charges into (and out of) the trap. The lateral electric field created

due to source and drain voltages heats-up electrons in the channel, and consequently,

increases electron mobility until some electrons gain energy to jump into (or out of)

the trap. The main drawbacks of this mechanism are power consumption and large

currents [68].
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(ii) CHannel Initiated Secondary ELectron current (CHISEL): CHISEL was proposed as

an improvement for CHE energy consumption. In CHISEL, multiple electric fields are

created, one between MOSFET’s source and drain, and another between MOSFET’s

substrate and its floating gate. The latter is caused by the ionization impact on the

drain-substrate contact by applying negative substrate voltage. Therefore, the energy

required for an electron to travel across the floating gate in CHISEL is less than that

in CHE [68, 69].

(iii) Fowler-Nordheim Tunneling (FNT) current: In FNT, electrons are carefully tunneled

through the floating gate dielectric barrier using high voltages and low currents that

rises exponentially with the increase in the electric field. The delicacy of FNT makes it

more efficient to use than other charge injection mechanisms. However, it was reported

that FNT can only be applied to MOSFETs with a gate-dielectric insulator thicker than

5 nm [68, 70].

2.3.1.3 FGT Applications

FGTs are mainly used in the following applications:

• Electrically Erasable Programmable Read Only Memory (EEPROM): EEPROM is

one of the oldest architectures for Non-Volatile Memories (NVM). EEPROMs are pro-

grammed and erased using CHE and FNT mechanisms, respectively [71].

• Flash memories: These memories are based on EEPROMs and can be divided into

types: NOR and NAND. NAND flash arrays are slower, but easier to implement

and consume less power. Most data storage applications use the NAND-based ar-

rays whereas NOR arrays are used to store flash data that will be frequently accessed

but not updated [71].

• Field Programmable Analog Array (FPAA): FPAAs were first proposed to explore

the flexibility of analog circuits based on FGTs. Despite the advances in Field Pro-

grammable Gate Arrays (FPGAs) and their large scalability as compared to FPAAs,
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the latter arrays make interesting solutions for applications that require long processing-

times on FPGAs [72, 73]. However, FPAA manufacturing is not mature yet. In 2018,

we ordered some FPAAs from a tier 1 manufacturer at a time they claimed device

readiness. We waited for three years before giving up on the devices’ arrival.

• Memristive devices: Recently some researchers proposed a memristive cell based on a

Y-connected FGT flash cell [74].

2.4 Summary

The flexibility that RSDs add to any application has attracted researchers in both academia

and industry. The power of these nanodevices lies first and foremost in their ability to switch

resistance based on the applied terminal voltages, and secondly, in their long data retention

times. Nonetheless, the progress of RSD integration into recent applications is evolving

slowly due to the multiple challenges facing these devices’ manufacturing processes. These

challenges have led researchers to rely on circuits designed using robust CMOS processes in

order to emulate the RSDs. Such emulating circuits succeeded in substituting RSDs in several

domains, particularly in resistive computing systems such as in the Resistive Processing Unit

(RPU) computing system and in the Dot Product Engine (DPE). However, one common

setback remain in the inability to passively preserve states for extended periods of time.

Hence, in this chapter and with reference to material from chapters 3 and 4, we explained

the need for RSDs along with their evolution in recent applications. Furthermore, the main

concerns of this dissertation were elaborated justifying the need for a robust memristive cell

with a long retention time.
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CHAPTER 3 ARTICLE 1: VECTOR MATRIX MULTIPLICATION USING

CROSSBAR ARRAYS: A COMPARATIVE ANALYSIS

Hussein Assaf1, Yvon Savaria1 and Mohamad Sawan1

1Department of Electrical Engineering, Polytechnique Montreal,

Montreal, QC, Canada

Email: hussein.assaf@polymtl.ca

This article discusses some popular approaches to integrate resistive switching devices into

vector matrix multiplication focusing on the Resistive Processing Unit (developed by IBM)

and on the Dot Product Engine (developed by HP). The article includes a comparison of the

two designs highlighting the importance of resistive computing. It summarizes our point of

view on analog circuit solutions for vector matrix multiplication at the time of publishing. Al-

though the jury members (who evaluated this thesis) had comments on this article’s content,

we could not change any of the material presented since we are required to include it in its pub-

lished version. The article was published at the 2018 25th IEEE International Conference on

Electronics, Circuits and Systems (ICECS), pp. 609-612, doi: 10.1109/ICECS.2018.8617942.

Abstract

Vector Matrix Multiplication (VMM) is a demanding operation that exposes a weakness of

current digital hardware when applied to Artificial Intelligence (AI) algorithms. Crossbar

arrays were proposed as a means to get more effective analog implementations. These arrays

are often composed of circuits based on memristors or other custom designs. The Dot Product

Engine and the Resistive Processing Units are two proposed solutions. Either design can

reduce the training time to O(1) per VMM layer giving a boost to AI and making future

requirements more possible.
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3.1 Introduction

Recently, crossbar arrays have been proposed as a means to satisfy the needs of super comput-

ing blocks with analog domain implementations, since the digital domain shows its limitations

when the conventional Moore’s law; given by feature size scaling, is saturating [3].

In machine learning, algorithmic functions are often expressed in terms of weights that typi-

cally reflect the strength of interconnections among neurons in neural-networks’ (NNs) meth-

ods or in terms of features’ weights (relative significance) in other techniques. These weights

are usually represented by W for matrices and w for individual weights. They are indexed

with subscript; wij, corresponding to the weight of each link between neuron i and neuron j.

TrainingW is done by applying some algorithm; like back-propagation in NNs, to a data-set.

The data-set is typically divided into three non equal parts: training, testing and validation

sets. Each of these sets consists of several tuples; i.e. a vector of numbers or classes observed

simultaneously and constitute one example for the subject under study at a certain instance.

Training requires matrix multiplication after each iteration to update W according to the

following equation:

W = W + α∆W (3.1)

where ∆W is the weight update after the current iteration and α is the learning rate. The

most expensive step in digital NNs is Vector Matrix Multiplication (VMM).

Circuit simulations differ from digital processor calculations where every number must be

converted into voltage, current, resistance, capacitance or even inductance. Usually, designs

are based on different assumptions. Recent studies have tried to simplify VMM through

some analog designs that transform it from an operation of the order O(n2) to the order of

O(1), where in one single step VMM can be achieved. However different cross-point devices

have been suggested over the past decade: Resistive Processing Units (RPUs), memristors

or compound gates. Analog hardware implementation of VMM showed advantages over a

digital based design. First, it provides faster results, although digital circuits can run at

high clock rates (in the GHz range). Second, some analog circuit techniques consume less

power than their digital competitors based on both: CMOS technology used and operating

frequency [73].
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(a) (b)

Figure 3.1 Resistive Processing unit (a) RPU base circuit as designed in [3] (b) RPU System
in [6]

In this paper, we will compare two different approaches highlighting their respective ad-

vantages in simulating VMM. Sections 3.2 and 3.3 explain the RPU and DPE approaches

respectively and section 3.4 provides some preliminary results. Our discussion and compari-

son results are reported in section 3.5 before presenting the conclusion in section 3.6.

3.2 Resistive Processing Unit

A resistive processing unit (RPU) is a small circuit that fits at the intersection of wires in

a crossbar array. In [3], the weight update equation was simplified into a simple and gate

operation with addition. This transformation from multiplication into a linear and operation

leads to the circuit of Fig. 3.1(a) and is represented by equation (3.2)

wij = wij + ∆wmin
BL∑
n=1

Ani ∧Bn
j (3.2)

where A and B are the two input bits and BL is the bit stream length, {i, j} are row and

column indices and n is the matrix dimension [3]. This approach assumes that the input

tuples propagated to each layer are converted into voltages applied on both column and row
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Figure 3.2 The four circuit variables showing the memristor link [7]

wires of the cross bar array. The output is then collected as a current on the column bars, then

converted using peripheral circuitry into voltages applied to the next layer and so on. Every

machine learning approach basically consists of two main cycles: training and weight update

based on the error revealed. The former is a VMM operation and it requires the weights to

be stored somewhere in the circuit for later participation in the multiplication process. This

necessitates recognizing the difference between multiplication and update cycles. During

update, the error at the output layer is propagated towards weights that are subjected to

change based on the calculated error. In this case, the process consists of three cycles:

forward and backward propagations then weights’ update according to the back-propagation

algorithm. Each of the operations occur at a different clock cycle, where the weight update

is performed according to the relative amplitude of input signals with respect to a reference

voltage; Vs. The pulsing at bit-lines is done in a manner to prevent coincidence of pulses,

where voltage for each pulse varies between −Vs/2 and Vs/2, hence the and operation delivers

an output between −Vs to Vs. The output voltage must be above Vs/2 in absolute value for

the update to be considered [3].

3.3 The Dot Product Engine

A memristor; the fourth circuit component proposed by Leon Chua in [36], is a resistor ca-

pable of saving its current resistance state based on the voltage across its two terminals. The
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memristor correlates the charge q to the flux φ (Fig. 3.2). Figure 3.3 gives as an example a

circuit to demonstrate the concept of a memristor, where the CCVS is a current controlled

voltage source and the VCCS is a voltage controlled current source. A memristor has two

modes of operation: programming and operation. During programming, it is subjected to

a certain input voltage across its terminals, which drives it towards a corresponding resis-

tance according to its characteristic curve. The memristor operates on this resistance as

long as possible before changing it based on the next programming voltage potential across

the memristor’s terminals. Memristors are usually designed from semi conducting chemical

materials; like titanium dioxide [7]. Different models exist for memristors based on the con-

trolling window function and material used. The inner matter is divided into two portions:

doped part and un-doped one. The mobility of the doped atoms (holes) from one region to

another determines the resistance of the device. This mobility is highly influenced by the

Figure 3.3 A circuit that resembles the memristor in action [7]

position of the boundary separating both regions. As the doped region increases, resistance

increases and vice versa. In 2008, Hewlett Packard designed the first memristor after Chua’s

paper [4, 7]. Since then the company is trying to integrate memristor into different designs;

one is the Dot Product Engine (DPE). The DPE is one of the design approaches used to

implement a VMM using memristors. Similar to the RPU, input data is translated into volt-

ages and then collected as currents at the columns level (Fig. 3.4). Each layer is composed

of several interconnected memristors, with every device having its own resistance value. W

is proportionally related to the conductance G defined by G = 1
R
where R is the resistance.

On each node of the crossbar in Fig.4, there is a memristor cell made of one memristor
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Figure 3.4 A DPE grid as suggested by [4]. Different colors shows different memristance
values according to their conductances. Peripheral circuitry is responsible for controlling the
input voltages and output currents

attached in series to a transistor; 1T1M cell [4]. All crossbars of the DPE are connected

to a computer capable of tuning each memristor individually using the transistors and their

gate voltages; VG, which limits the current passing through the line. An update process

of the weights is done once and follows the following algorithm. First the computer has a

precomputed targeted set of conductances; Gtarget, that must be compared to a read matrix

from the array; Gread, while setting all voltages to minimum. Then for each memristor in the

array, the computer raises one out of two flags: SET or RESET. If Gread < Gtarget, it implies

the device requires SET; RESET otherwise, until the error margin is within a certain range.

During each cycle, the voltages are recorded, and increased with minimum step size (0.2V),

until the desired conductance is read. When the voltage reaches its maximum before the

conductance is set, VG is increased for more current to pass through. The process is repeated

every step until Gtarget is achieved within a maximum number of cycles allowed. It is to be

noted that if a device passes its biased state with more than the permitted error; i.e. its
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Figure 3.5 Simulated Memristor Characteristics using MATLAB Simulink (a) The input
sinusoidal voltage in V (b) The current response of the device in mA (c) The change in
resistance value according to the input voltage in kΩ (d) The time vector applied to the
experiment in s (e) Variation of doped area with input voltage in nm (f) Memristor R-V
characteristic curve (g) Memristor I-V hysteresis curve [8–10]

flag switches between SET and RESET, its input and gate voltages are set to their original

values for re-programming.

3.4 Results

The DPE represents a promising approach to solve VMM, yet it needs enhancements at the

level of device control to be integrated into computers. Memristors is a recent technology and

has been integrated into many applications like reconfigurable computing: memory storage,

analog implementations and digital designs. References [75, 76] are notable examples out of

many available.

Equilibrium Propagation (EP) is a novel approach for solving NNs [18]. It is based on a novel

back-propagation technique comprising three phases: forward and backward propagations in

addition to weight update. EP does not depend on the energy function of the network. It

rather applies to any network whilst having minimum knowledge about the energy function.

The Hebian energy function; mentioned in [18], is just one example used to simplify the

explanation of EP. EP can correct the neuron’s output based on the system’s states observed

during training, testing and validation cycles of the algorithm. These states represent the
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Table 3.1 Comparison of Analog Approaches versus Ideal Software [3–5]

Feature DPE RPU Ideal Software

Matrix Size 128× 64
hardware simulated 4096× 4096 System related

Training for
MNIST dataset 50 cycles overall

10 epochs for
stability without
the weight update

few hours
in worst case

Complexity of Design
for basic circuit 1T1M cell

1 AND Gate
1 Adder

and weight storage
circuitry

Software based

Accuracy with
MNIST dataset 89.9− 92.4% 88.3− 90% +2.5% over DPE

Computational Efficiency
(in TeraOps/s

Watt
) 115 20− 83 7

system dynamics which must be maintained as long as EP applies. Our aim is to implement

EP using a modified version of DPE. A memristor can be implemented using the circuit of

Fig. 3.3 [7]. When this circuit is modified to a nano scale, then it can fit into the cross bar

joints. Controlling this circuit to a certain memristance will help produce a good algorithm

that solves first the VMM then EP. Figure 3.5 shows our initial tests in MATLAB Simulink

for a single memristor. Initial VMM tests using this model revealed good timing values while

increasing the size of the network from orders of milliseconds for small arrays to 50s when

the array size reaches 60 M joints. These tests were performed on a core i7 Intel processor

with 8GB of RAM. Fig. 3.5 shows the used-memristor characteristics during a programming

phase. As the potential difference on the two terminals change (Fig. 3.5(a)), the device’s

resistance changes accordingly; (Fig. 3.5c), causing a deformation in the output current

wave (Fig. 3.5(b)). Figure 3.5(e) shows the change in the doped area of the memristor

which controls the resistance value of the device. Figures 3.5(f) and 3.5(g) present the R-

V characteristics and I-V hysteresis loop respectively for the simulated ideal memristor in

MATLAB Simulink based on the model in [8–10].
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3.5 Discussion

The RPU crossbar proposed in [3, 5, 6] seems to be a good approach. The authors state

that a VMM operation can be achieved in the order O(1), while having the possibility to

execute the three different cycles of a typical NN algorithm (forward/backward propagation

and weight update) over three different time intervals. This represents a good starting point

to implement NNs. Moreover, RPU provides 30,000X acceleration compared to other designs

[5]. In addition, the RPU design uses simple concept simplifying the complex multiplication

operations into linear and straightforward and operations, which simplifies the design consid-

erations as well. On the other hand, RPU design has few drawbacks. First of all, everything

presented is only design simulation with no real hardware implementation despite that board

considerations and design parameters have been provided. Second, the modeled circuitry is

not compact for a crossbar; (Fig. 3.1(a)), with multiple transistors for the and gate, the

adder and the weight storage which implies bigger scaled-sizes for the array.

The DPE is another advance in the analog domain. The hardware is rather small and simple,

thanks to the memristor functionality which helps saving space by storing its current value.

Another advantage for DPE is providing board simulation tests illustrated in the support

material of reference [4]. These boards can be tested for different algorithms. The DPE;

on the other hand, must have a precomputed Gtarget which might require extensive pre-

computing steps although it might be computed only once. Moreover, computing Gtarget

is not performed per application; i.e. Gtarget is assumed to be the same for relatively close

training datasets in order minimize pre-processing efforts. This may not be the most effective

realization as a memristor will probably not be programmed to the proper value depending

on the tolerance and process variations. Since DPE has precomputed weights, then it is

not capable of executing the three phases of the algorithm, in which case intervention of a

classical processor is essential for weights’ update. Therefore both DPE and RPU may require

controlling each unit separately, which is not efficient for large matrices and might add some

undesired control overhead to the execution, consequently delaying the overall process.

Table 3.1 shows a direct comparison between the DPE and RPU approaches. RPU can

accommodate larger matrices than DPE but the DPE can perform the VMM process faster.
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However the RPU requires less training time and is more flexible with respect to the dataset,

yet its design is more complex at the circuit level. As a main point of interest, analog

crossbar arrays show big improvement in computational efficiency over the traditional digital

solutions; however these numbers are not sufficient to beat the software approaches at the

moment.

3.6 Conclusion

In this paper, we analyzed two different approaches to solve Vector Matrix Multiplication

(VMM) highlighting their pros and cons. The first is the Dot-Product-Engine (DPE) based

on memristors, while the second is the Resistive-Processing-Unit (RPU) approach based on

a simplified version of the multiplication equation. We also concluded that both approaches

are good to solve NN algorithms, but since memristors appear very promising, we started

developing a modified version of DPE to implement Equilibrium-Propagation (EP); a novel

algorithm for solving NNs.
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Through writing article 1 (presented in chapter 3), we became more confident that CMOS-

based emulators for Resistive Switching Devices (RSDs) are needed due to the instability

in RSD fabrication. To confirm such a need, we visited a memristor foundry in Canada

where the people we met reassured our conclusion by explaining the challenges facing their

production line. Hence, we wrote this article presenting a simplified yet improved version of

the Dot Product Engine. The system, which we named the Adaptive Dot Product Engine,

was based on spice models for the KNOWM memristor. Although the jury members (who

evaluated this thesis) had comments on this article’s content, we could not change any of the

material presented since we are required to include it in its published version. This article is

published at the 2019 IEEE International Conference on Artificial Intelligence Circuits and

Systems (AICAS), pp. 13-17, doi: 10.1109/AICAS.2019.8771594.

Abstract

Vector Matrix Multiplication (VMM) is a complex operation requiring very large compu-

tational power to fulfill one iteration. Resistive computing; including memristors, is one

solution to speed up VMM by optimizing the multiplication process into few steps despite

the matrices’ sizes. In this paper, we propose an Adaptive Dot Product Engine (ADPE)

algorithm based on memristors for enhancing the process of resistive computing in VMM.

The algorithm showed +5% error on preliminary results with one training step for one lay-

ered crossbar array circuit of memristors. However memristors require new fabrication tech-

nologies where the design and validation processes of systems using these devices remains
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challenging. A comparison of various available circuits emulating a memristor suitable for

ADPE is presented and models were compared based on chip size, circuit elements used and

operating frequency.

4.1 Introduction

The concept of memory-devices was first proposed in 1971; [36], as a link to bridge the

gap between flux and charge. Such devices were proposed as the fourth circuit element.

Memristor; Fig. 4.1, became the most famous in the series that includes memory-capacitor

and memory-inductor.

Just like any other resistor, the current-voltage relationship in a memristor is linear with

V = M(r)I where M(r) is the memristance of the device. M(r) can change according to the

potential difference across the terminals of a memristor. This change can be either linear or

non-linear depending on the model deployed.

Memristors are designed to be in the scale of nanometers, and are made off two metalic

plates with some semi-conductor substrate between them, like Titanium-dioxide. The latter

is divided into two regions; one highly doped with electrons while the other is undoped. The

width; w, of the doped region represents the window of a memristor which determines its

resistance according to the mobility of holes from one region to another, Fig. 4.1(b) [9].

The non-linear behavior of holes causeM(r) to change non linearly depending on the window

function that is determined by the model [77]. This non-linearity in M(r) change causes a

hysteresis current-voltage characteristics; consequently, the measured area of the doped region

is proportional to the device resistance [9].

(a) Symbol (b) Model

Figure 4.1 The memristor
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Each memristor is capable of saving its current resistance state based on the voltage across

its two terminals. Figure 4.2 shows the variation of an ideal device memristance with an

input Piece Wise Linear (PWL) input voltage. When the device is at rest; i.e. zero input

voltage, it starts varying from its last resistance value reached (e.g t=0.01ms and t=0.02ms

in Fig. 4.2). This behavior continues until the resistance is set to its initial value (t=0.71 ms

in Fig. 4.2) caused by sufficient negative input signal to reset it.

Figure 4.2 Response of SPICE simulation with PWL input voltage shows how the internal
state of the memristor is preserved while voltage changes; with each new arriving signal the
memristance starts varying from its previous value

The memristor correlates the charge q to the flux φ [36, 78]. This change in the memristance

is one advantage of such device, where it enables the storage of non volatile data across

the circuit. Some algorithms make use of these changes to store weights during run time

when simulating neural networks. Another advantage is the size of these tiny components.

If scaled to nanometers, memristors could operate at high frequencies and relatively close to

current CMOS technology clock rates. While operating at such frequencies, those tiny circuit

elements produce less heat than other components like CMOS and even can boot-up faster

[79].

Some disadvantages of memristors, howevever, are delaying its commercialization. Still,

a real memristor may not be as promising as its corresponding computer simulation is.

Programming these hardware components requires a processor intervention like a computer,

a micro-processor or a Field Programmable Graphical Array (FPGA) [79].

The remaining parts of this paper are organized as follows: Section 4.2 describes an adaptive
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algorithm to modulate a memristor in crossbar arrays, section 4.3 will describe and compare

some memristor emulators available in the literature, section 4.4 will present preliminary

simulation results and section 4.5 will conclude the study.

4.2 The Adaptive Dot Product Engine

Nowadays, the concept of resistive computing is an active trend for analog computation as

a solution for Vector Matrix Multiplication (VMM). With the increase in data size and in

complexity of the Artificial Intelligence (AI) algorithms, VMM can grow in size up to the

gigabytes limit requiring; therefore, huge computational power. Even with the best computer

stations available, VMM operations can last for days before results appear. One option to

solve the problem is using crossbars of resistive devices like Dot product Engine (DPE).

Table 4.1 Different window functions used for memristor

Name Function Notes

Joglekar [80] f(w) = 1−
(
2W
D
− 1

)2p
w: doped region length
D: Channel length
p: Control parameter

Biolek [81] f(w) = 1−
(
W
D
− sgn(−i)

)2p

w: doped region length
D: Channel length
p: Control parameter
i: is the current

sgn(−i) = 1 if i ≥ 0
sgn(−i) = 0 if i < 0

Prodromakis
[82] f(w) = j(1− [(w − 0.5)2 + 0.75]p)

w: doped region length
D: Channel length

Benderli [83] f(w) = w(D−W )
D2

w: doped region length
D: Channel length

Strukov [9] f(w) = w(1−w)
D2

w: doped region length
D: Channel length

TEAM
[78, 84] fon,off = exp

[
−exp

( |x−xon,off |
wc

)] x = w
D

w: doped region length
on: memristor is active

off : Memristor not active

DPE proposed by Hu et al stands for a crossbar similar to the one in Fig. 4.3(a) [4]. It has

two main parameters: input signal vector and memristor conductance. The only difference

in architecture between Fig. 4.3(a) and DPE is that DPE uses the concept of 1M1T (i.e. 1
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memristor and 1 CMOS transistor) for each node in the crossbar. The output of each column

is a current defined by eq (4.1).

Icol =
m∑

row=1
Grow,col.Vrow (4.1)

where Icol is the current per column, Grow,col is the respective conductance at the intersection

of the corresponding row with the column and Vrow is the voltage per row.

Not only does the Adaptive DPE (ADPE) differs from DPE in architecture, but also it

does in concept. ADPE starts by estimating the influence of 1 unit change at the input

on the output voltage per column. Each layer might have different recordings and behavior

depending whether the layer is a peripheral layer; i.e. has direct communication with either

inputs or output, or middle layer sandwiched between two others crossbar layers.

After recording the influence, a first round of input signals is applied; to record the corre-

sponding output signal, followed by comparison of the recorded output to the targeted one.

It depends on the designer’s assumptions to figure out how to compare the real output to the

desired one, assuming that the cross-row effects between neighboring memristors are negligi-

ble which is not a healthy assumption for real circuits. The measured difference between real

and targeted outputs is converted; according to the influence relationship formulated before,

into voltage change at the input terminals.

Next, conductances have to be modified so that the output current matches the targeted

one. It is necessary to note that the deployed memristors are of unknown conductance

states yet they are assumed to have similar characteristics; e.g. same switching resistances

(Ron and Roff ). Assume that the measured effect of 1mV at input voltage is 2 µV change

per vector current and there is +100 µV error. It follows that the input voltage must be

modified by +50 mV on all input signals to match the desired +100µV change. One good

thing about this cross bar is that negative changes can easily be posted by simply applying

negative change across the input signals. If the error was −100 µV , then the input signals

must be altered by −50 mV . The algorithm keeps looping and measuring the error for a given

input vector until convincing results with the minimum error are obtained. Once completed



32

Table 4.2 Comparison of different memristor models

Name I-V relation Notes

Linear
ion drift

[85]
v(t) =

(
Ron

w(t)
D

+Roff

(
1− w(t)

D

))
i(t)

v(t): voltage
w(t): Window function

i(t): Current
Ron: Min. resistance
Roff : Max. resistance

Noninear
ion drift
[86, 87]

i(t) = w(t)nβsinh(αv(t)) + χ [exp (γv(t))− 1]

v(t): voltage
w(t): Window function

i(t): Current
α, γ, χ, β: fitting Pa-

rameters
n: Determines effect of

state on current

Simmons
tunneling
barrier
[88]

v(t) =
[
Ron + Roff−Ron

xoff−xon
(x− xon)

]
i(t)

v(t): voltage
w(t): Window function

i(t): Current
Ron: Min. resistance
Roff : Max. resistance

x = w
D

TEAM
[78, 84] v(t) = Rone

λ
xoff−xon

(x−xon)
i(t)

v(t): voltage
w(t): Window function

i(t): Current
Ron: Min. resistance
Roff : Max. resistance

x = w
D

for the first vector, it loops over all input vectors and so on.

Surprisingly, this algorithm has one main advantage which is its convergence speed due to

the linear current-voltage relationship in the resistor-like devices, thus the assumption is that

whatever the error is it could be corrected with one single step only. On the other hand, this

crossbar is not a stand alone system and needs a micro-controller to be placed alongside for

proper error correction. Algorithm 1 summarizes the complete algorithm presented here.
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Algorithm 1 ADPE Algorithm

1: Inputs:
2: - Voltages
3: - Conductances
4: Outputs:
5: - Current
6: Assumptions:
7: - Memristors are similar
8: - Memristor conductances unkown
9: - Circuit is ideal and no coupling effect between neighboring memristors

10: Start:
11: - Measure the influence of 1 unit input change on output
12: - Apply input vector
13: - Measure error at output
14: - Correct input vector in 12 according to 11
15: - Reapply corrected input
16: - Go to 13 until error is minimum
17: - Go to 12 until all vectors processed
18: End

4.3 Memristor Emulators

Although discovered 10 years ago, memristor fabrication is yet at its early stages and no

satisfying single nanometer device is fabricated to fulfill the high speed demands in recent

technology [89]. Different models have been proposed to achieve the best memristor device

that matches Chua’s desired fourth element.

Every memristor substrate material has its limitations suggesting that the memristor devices

are not stable enough to gain manufacturers’ trust. That is why emulating a memristor

circuit is an active research trend nowadays. Tables 4.1-4.2 summarize the different existing

memristor behavioral models and their corresponding window functions. These functions are

very important to understand the functional behavior of a memristor so that any emulating

circuit will probably implement one of these models and window functions.

This analysis of circuit emulators is biased towards finding a convenient memristor circuit

emulator that can fit smoothly in a crossbar array structure supporting the ADPE algo-

rithm. ADPE, DPE and similar approaches are supposed to beat currently available Central-

Processing-Unit (CPU) and Graphical-Processing-Unit (GPU) simulations of vector matrix
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Table 4.3 Selected memristor circuit emulators for the ADPE algorithm since 2014 and their
characteristics

Ref. Year Size Components Max.
Frequency Notes

[90] 2014
Depending on

CMOS technology
≈ 50 CMOS
Transistors

10−
100 KHz -

[91] 2015 Macromodel Resistors, Capacitors,
Current Conveyors 160 KHz -

[92] 2015 Macromodel Resistors, Capacitors,
Current Conveyors 5 KHz Flux

controlled

[93] 2015
Depending on

CMOS technology CMOS Transistors ≈ 2 KHz Includes
OPAMPs

[94] 2017

Depending on
CMOS technology,

in the paper
size in (µm)2

7 CMOS transistors 1 MHz

Very small
bias curent,
No ADC

[95] 2017
Depending on

CMOS technology
16 CMOS
transistors 30 Hz 1 OPAMP

multiplication, as well as FPGA implementations [3]. That is why emulators are classified

based on their synthesis size, and the maximum frequency they can support. Some basic

macro-models in the literature can explain the basic operation of memristors using simple

components like resistors, switches, current controlled voltage source and voltage controlled

current source. Authors in [85] describe a very useful example to understand the theory

of memory-devices. However these models will not be much beneficial when operating at

nanometers scales.

Macromodels shown in [91, 92] will not be helpful either since they operate at low frequencies

and they cannot fit into the tiny crossbar structures.

A model like the one itroduced in [95] is a useful choice, however it contains operational

amplifier that consumes significant power budget and as a consequence, generates too much

heat if embedded in a large arrays. Moreover the model is tested for low frequencies only; of

the order of 30 Hz, and is not a competitive frequency which analog computation techniques

hope for.
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The disadvantages of using a model like the one in [90] is obvious for memristive crossbar

array. Authors propose a structure requiring around 50 CMOS transistors to simulate one

memristive element. In addition, it operates at low frequencies 10−100 KHz. But the design

showed robustness and good results for a memristor circuit emulator.

An interesting circuit emulator is found in [94]. The circuit can have compact implementa-

tions as it requires only 7 transistors and it can operate at 1 MHz. This compact circuit is a

good basis to develop a competitive design. The 1 MHz frequency; however, is still far away

from the operating frequencies of digital simulators that can operate at GHz. The chip size

is yet another disadvantage, in [94] the transistors are designed in µm which implies that

a single element will size in (µm)2. This might not be bad if the transistor technology is

switched successfully to nm which in turn will increase device frequency response. Even if

the transistor technology could not be changed, starting simulation with micro-meters scaled

memristor remains promising.

Table 4.3 summarizes the comparison between the different aforementioned circuit emula-

tors. Values reported in this table show that the suggested circuit in [94] is promising as a

memristor emulator for crossbar array structures.

4.4 Preliminary Simulation Results

Figure 4.3 shows a simple ADPE crossbar array that is simulated using LTSPICE. This

version of ADPE is only tested for one layered circuit of memristive crossbar array.

The algorithm starts by estimating the influence of 1 unit change at the input on the output

voltage per column. Since we assume ideal simulation, then cross-row effects between neigh-

boring memristors are assumed to be negligible. Thus each column of memristors operate

independently to generate the output current measured at the peripheral circuit. The mea-

sured effect of 1 mV at input voltage induces 20 µV change per output voltage vector from

four memristors.

After applying the first input voltage vector, the output voltages are summed up to compare

it with the targeted voltage; Fig. 4.3(a), and the error difference is converted into a desired
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Figure 4.3 An adapted version of the Dot Product Engine (DPE) to solve the problem of
vector matrix multiplication (a) Sample Circuit: Voltages v1-v5 are the input voltages. The
output voltage is measured at the resistors R1-R5 (b) The targeted output voltage to achieve
by adding the voltages across R1-R5 (c) The response per column of the circuit

change at the input voltage. In this case, negative conductances are needed to lower the

total sum of column voltages. As aforementioned, it is enough to apply negative voltage

at the input terminals. Figures 4.3(b-c), show +856µV ((314 µV × 4 µV )− 400 µV ) which

leads to −42 mV (856 µV ÷ 20 µV ) change across the input voltages with the best choice

of the voltage source(s) to be modified. Thus through the next pulse, plots show only 5%

((105 µV × 4)− 400 µV = 20 µV ; 20
400 × 100 = 5%) more than the targeted output voltage,

Fig. 4.3.

4.5 Conclusion

We presented the main trends of a novel approach, an Adaptive Dot Product Engine (ADPE),

for deploying memristors in vector matrix multiplication using a crossbar array structure.

Preliminary results show that an ADPE can achieve 5% error in a single training step only

for one layer of memristive crossbar array. This work also compares different memristor

circuit emulators based on sizing and frequency response to select the best design suitable

for resistive computing. The best means for emulating memristors utilizes only 7 CMOS

transistors and one current source. It is capable of operating at a relatively high frequency
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(1 MHz) yet the circuit dimensions depends on the designer’s choice for a proper CMOS

technology to use.
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CHAPTER 5 ARTICLE 3: IMPLEMENTING FLOATING GATE

TRANSISTORS WITH A THIN GATE DIELECTRIC 65 nm CMOS

TECHNOLOGY

Hussein Assaf1, Yvon Savaria1, Mohamed Ali1,2, Morteza Nabavi1 and Mohamad Sawan1,3

The efforts we made to characterize charge tunneling in the CMOS 65 nm technology with

thin gate dielectric are summarized in this article. The characterization process was necessary

to develop a charge-trap CAD-model we needed to design a memristive cell with long data

retention time. This article was submitted in May 2022 for a second round of reviews to

IEEE Transactions on Electron Devices.

Abstract

Recent advances in analog-based circuits are calling for more reliance on Floating Gate Tran-

sistors (FGTs) as means for nonvolatile memories and resistive computing engines. However,

developing a reliable simulation model matching a real FGT implemented with sub 70 nm

technologies is difficult, as it demands proper characterization of the real device. This article

establishes a basis for modeling FGTs in a standard 65 nm CMOS process with thin gate

dielectrics. It focuses on FGTs’ main features such as retention time, magnitude of tunneled

current and effective voltage range. By analyzing the extracted measured characteristics, a

new unexpected behavior of thin-dielectric FGTs is discovered and verified with an effective

voltage range between 0 V and 550 mV whilst the tunneled current reaches a maximum of

8 nA. Moreover, the dielectric layer has proved to be very sensitive to the applied voltage

exhibiting characteristic changes that alter its behavior. Nonetheless, a fabricated FGT has

trapped charges corresponding to a 358 mV gate potential for over a year. This article also

presents an experimentally verified analytic model for the targeted FGT that can be easily

implemented using CAD tools.

1H. Assaf, Y. Savaria, M. Ali, M. Nabavi, and M. Sawan are with the department of Electrical Engineering,
Polytechnique Montreal, Montreal, QC, Canada. e-mail:hussein.assaf@polymtl.ca.

2M. Ali is also with the department of Microelectronics, Electronics Research Institute, Cairo, Egypt
3M. Sawan is also with the CenBrain Lab, School of Engineering, Westlake University, Hangzhou, Zhejiang,
China
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5.1 Introduction

Floating Gate Transistors (FGTs) have been demonstrated in 1971 [96]. They were utilized

in various applications that need non-volatile analog memories as in Electrically Erasable

Programmable Read Only Memories (EEPROMs) [97]. They have also become an integral

part in analog computing engines that depend on crossbar arrays, replacing the tiny resistive

devices in these structures [74]. Moreover, FGTs were used in programmable analog solvers

like Field Programmable Analog Arrays (FPAAs) which add flexibility to analog-based circuit

solutions [73, 98].

Floating gate transistors can trap charges for long periods of time, 10 years or more in

some cases. We refer to this characteristic as the retention time. The underlying CMOS

process has a direct effect on this FGT’s characteristic. Not only are FGTs characterized

by their retention times, but also by other features that contribute to giving each FGT a

unique identity. Some of these features are: (a) the transistor dimensions, length and width,

which affect the tunneled current and induce more parasitic capacitance in a cell; (b) the

dielectric thickness which has a direct effect on charge tunneling; (c) the charging capacity

and (d) the discharging capacity, the last two factors define the time required to fully charge

or discharge any capacitor attached to an FGT; (e) the junction breakdown voltage, where

every p-n junction has a certain voltage tolerance beyond which the cell is damaged; (f)

the maximum number of permitted write-operations through the dielectric including every

charging and discharging process; (g) the effective voltage range, which determines the safe

voltage limits for charge tunneling without breaking the p-n junction, and finally (h) the

transistor gate-to-bulk and gate-to-terminal resistances.

Characterizing an FGT is very critical to produce a simulation model that matches the actual

behavior of a real transistor. Researchers have always struggled to simulate any FGT-based

design before proceeding to chip tape-out, a process that is usually costly in cutting-edge

technologies. Some researchers used mathematical equations to estimate the gate leakage

current in sub 70 nm MOSFETs [11]. Even with the use of advanced simulation models

provided by recent computer aided systems, it is still difficult to simulate an FGT-based

design.
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Multiple works relate to the characterization of FGTs [99–108]. Some research led to the

fabrication of custom FGTs [99–104], while other validated the developed theoretical models

using Computer Aided Design (CAD) tools [68, 108]. On the other hand, some researchers

characterized FGTs in standard 0.5 µm and 0.8 µm CMOS processes [105, 106]. Meanwhile

other research started by a verified CAD model which was then utilized to fabricate an FGT

in a standard CMOS 180 nm process [74, 109].

The reported effective voltage range for charge tunneling in 20 nm and 7 nm dielectric

MOSFETs is between 1.2 V and 5 V for transistors fabricated under 0.25 µm and 0.18 µm

CMOS processes [68]. The thinner the dielectric layer is, the trickier it becomes to reliably

and controllably tunnel charges through it, because of the high sensitivity of the tunneling

mechanism to the applied voltage. As a result, many recent applications that deploy FGTs

are still not resorting to sub 70 nm transistors with sub 5 nm dielectric thicknesses [110, 111].

5.2 Methodology

The purpose of this chapter is to analyze the behaviour of an FGT cell fabricated in a 65 nm

process. Two different cell topologies are proposed to study and analyze the properties of this

FGT: (a) An Individual Transistor Cell (ITC) composed of 6 transistors is used to characterize

the effective voltage range and the tunneled-current magnitude (b) A Capacitive Cell (CC),

made of one ITC attached to a capacitor and other circuit components, is used to analyze

the retention time and both charging and discharging currents. Table 5.1 summarizes the

properties of the transistors used in these cells.

Table 5.1 Characteristics of the transistors used in the fabricated circuits

MOSFET Type W (m) L (m) Vth (V ) Lmin (m) Wmin (m) Tox (m)
NMOS 1 V 200 n 60 n 260 m 60 n 120 n ≥ 1.8 n
PMOS 1 V 200 n 60 n −198 m 60 n 120 n ≥ 2.0 n
NMOS 2.5 V 400 n 500 n 540 m 400 n 500 n ≥ 5.0 n
PMOS 2.5 V 400 n 400 n −547 m 400 n 400 n ≥ 5.0 n
NMOS 2.5 V 500 n 1.2 µ −18 m 1.2 µ 500 n ≥ 5.0 n
NMOS 2.5 V 1 µ 1.2 µ −51 m 1.2 µ 500 n ≥ 5.0 n
NMOS 2.5 V 2 µ 1.2 µ −65 m 1.2 µ 500 n ≥ 5.0 n
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5.2.1 Individual Transistor Cells

Based on Table 5.1, the circuits of Fig. 5.1(a) and 5.1(b) are designed to stress 1 V type

transistors (M1 and M3) with variable widths. PMOS transistors M2 and M4 of 2.5 V type

have a higher voltage tolerance than 1 V MOSFETs. Each of these two transistors is used

as a control transistor to activate and stress a desired target cell when a shared pulse-train

bus is applied.

Figure 5.1(a) presents the schematic of the basic cell in which nmos M1 is the device under

test having a minimum channel length of 60 nm and three possible width values: 2 µm, 4 µm

and 8 µm. Since its body is grounded and tunneling will occur on channel edges, the 14-finger

layout of M1 maximizes the contact area between the transistor’s source or drain terminals

and its gate. Devices T1 and T2 are transmission gates made of two 2.5 V MOSFETs placed

as protections between thin dielectric sensitive transistor gates and bonding pads.

An external variable resistor is attached to node E during every measurement of the volt-

age VE(t). The tunneled current through M1 (iM1(t)) can be calculated by dividing the

aforementioned voltage (VE(t)) by its corresponding resistance on node E according to the

relation:

iM1(t) = VE(t)
RE(t) (5.1)

When a pulse train is applied on node A1 with EN1 voltage held low, transistor M2 will

pass the applied train to node C, hence stressing M1 and forcing charges to tunnel from its

source|gate and drain|gate junctions to node D1.

Some theoretical models are often used in MOSFET circuit simulators when dealing with

cutting-edge technologies like the Berkeley Predictive Technology Models (BPTMs). The

curves plotted in Fig. 5.2 correspond to a 65 nm BPTM and are adapted from [11]. The

plots correspond to 1.3 nm and 1.7 nm dielectric thicknesses, which are close to MOSFETs’

dielectric thicknesses in our targeted technology. Based on Fig. 5.2, when Vgate = 1 V , the

leakage current is considered high until Vsource reaches 0.5 V that represents a turning point

after which the current decreases on a logarithmic scale to reach values in the order of 10−21A

at Vsource = 800 mV . This implies that the voltage difference between the source or drain
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(a) (b)

Figure 5.1 The schematics of: (a) The Individual Transistor Cell (ITC) used to characterize
the floating transistor nmos M1 with 3 different width values (b) ITC with a p-type MOSFET,
M3

nodes with the gate should be lower than 400 mV for the leakage to remain in the steep

slope regime. That is for a transistor with characteristics similar to those plotted in Fig. 5.2,

the region of operation where charges could be trapped on a floating gate transistor over a

long period of time is that when Vgate − Vsource(drain) ≤ 1 V − 600 mV = 400 mV .

It is expected that the gate leakage current decreases as the dielectric thickness increases.

For example under BPTM , the 1.3 nm dielectric-thick MOSFET has a tunneling current

much greater than a 1.7 nm MOSFET. Hence, it is safe to assume a leakage current to be

even smaller for a 65 nm process in which the dielectric is slightly thicker (≥ 1.8 nm).

To investigate the variation in tunneled current for 1 V transistors with respect to channel

width, the cell presented in Fig. 5.1(a) was laid out and fabricated with multiple widths as

explained before: 2 µm, 4 µm and 8 µm. Furthermore, to analyze the differences in behavior

between nmos and pmos transistors, the same cell configurations were repeated for a cell

comprising a p-type transistor M3, as shown in Fig 5.1(b).
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Figure 5.2 The predicted gate leakage current with respect to the source voltage for various
dielectric thicknesses according to [11]

5.2.2 Capacitive Cells

The circuit shown in Fig. 5.3 is designed for characterizing the cell’s retention time. This

circuit reflects the effect of capacitor sizing on charging and discharging delays. When a pulse

train is applied and transistor M8 is conducting by applying 0 V on node EN7, transistor

M7 will be forced to tunnel charges according to pulses amplitude and duration.

Figure 5.3 The schematic of a Capacitive Cell (CC) which is composed of one ITC connected
to capacitor C1 and to the gate of M2 to indirectly measure C1’s voltage through Vg
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In Fig. 5.3, capacitor C1 can have one of four different values: 10 fF , 50 fF , 80 fF

and 200 fF . Each of these values corresponds to different charging and discharging times.

Yet, the change in C1 value is not supposed to affect the aforementioned FGT voltage limit

(400 mV ), which defines the maximum charge that can be trapped on the node.

TransistorsM5 andM6 are 2.5 V nmos transistors matched in layout implementation based

on the common centroid method [112]. The design decision of using 2.5 V transistors was

taken for safety at a time when we had no knowledge of the tunneling characteristics of the

1 V transistors in the target technology. Devices A1 and A2 are two ammeters placed off-chip

to measure the currents traversing M6 and M5, respectively. The voltage source Va supplies

a DC voltage of 1 V whereas Vg is a variable DC voltage source. When the voltage across

capacitor C1 increases, the current measured by A1 increases with Va = 1 V . Sweeping Vg
can translate the hidden voltage across C1 when IA1 = IA2 ; thus if transistors were perfectly

matched IA1 = IA2 ⇐⇒ Vg = VC1.

Figure 5.4 The schematic of the CC cell connected to two VCOs for indirect measurement
C1’s voltage through Vg performed by comparing the VCOs’ output frequencies

The circuit of Fig. 5.4 is similar to that of Fig. 5.3, but it also includes two matched copies

of a Voltage Controlled Oscillator (VCO) whose internal structure is shown in Fig. 5.5.

The voltage applied on VCO Input terminal in Fig. 5.5 tunes the VCO’s output frequency.

Hence, any two voltages are indirectly comparable by comparing the output frequencies of

two matched copies of the VCO to which the two input voltages are connected. For example,

in Fig. 5.4, the voltages VC2 and Vg are assumed to be equal when the frequencies on nodes

P67 and P68 are equal.
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Figure 5.5 The schematic of the implemented nine-stage Voltage Controlled Oscillator (VCO)
used for voltage to frequency conversion

Adding the two VCOs to our experimental setup allows providing another evidence of the

voltage trapped on node VC2 in Fig. 5.4. This type of indirect measurement is mandatory for

observing trapped charges on a floating node. In addition, converting voltages to frequencies

provides signals rather insensitive to parasitics on the readout paths.

5.3 Results

In this section, the measurement results of the fabricated test chip whose micro-graph is

shown in Fig. 4 are reported in detail. These results were collected using: (a) A Keithley 2450

SMU source meter, (b) An Agilent 33220A waveform generator, (c) A Tektronix MDO4104-6

Oscilloscope, (d) A Keithley 4200 SCS parameter analyzer, (e) A Keysight N9010A spectrum

analyzer, and (f) The MATLAB software running on a Lenovo notebook (Intel i7 fourth

generation chipset and 8 gigabytes of RAM).

All the reported results in this section were gathered using MATLAB by direct communi-

cation with the equipment using the General Purpose Interface Bus (GPIB) protocol. The

Keithley 2450 was the bottleneck in collecting data with around 80 ms per read command.

This forced collecting the results in batches followed by estimating the correct timing in

MATLAB.
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Figure 5.6 An image showing a healthy sample of the fabricated chip under the microscope
with its dimensions

5.3.1 Individual Transistor Cells

5.3.1.1 Transistor Response

In order to properly characterize the voltage tolerance of the Capacitive Cell (CC) presented

in Fig. 5.3, the threshold voltage of the 2.5 V MOSFETs, like M5 and M6, should be

measured. Therefore, the gate voltage of M5 was swept while applying a 1 V on Va, and

the measured versus simulated drain-currents are plotted in Fig. 5.7. The curves in Fig. 5.7

show a threshold voltage of 350 mV for the fabricated devices versus a 550 mV threshold

voltage for the same devices under a computer simulation. Since transistors M5 and M6 are

matched in layout, the two transistors are assumed to have the same threshold voltage which

is considered to be the minimum voltage that can cause a change in the reading of ammeter

A1, should VC1 change as a result of the current tunneled through M7.

In addition, our chip was fabricated in a process where the maximum estimated voltage that

any 1 V transistor can hold is 1.2 V [113]. For this chip, the purpose is to induce tunneling

currents through the gates of the 1 V transistors, not the 2.5 V ones. Nominal supply

voltages for both transistor models are 1 V and 2.5 V , respectively. Our initial assumption
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Figure 5.7 The simulated and measured drain current plots of the 2.5 V MOSFET observed
when sweeping the gate voltage from 0 V to 1 V

while designing the test chip was that tunneling for 1 V devices would start at a voltage

higher than 1 V , somewhere in the range of [1 V — 2 V ]. Thus, to stress a 1 V MOSFET,

it was expected that another transistor that can hold steadily the anticipated voltage range

like the 2.5 V MOSFETs was needed. Computer simulations of the cells presented in Figs.

5.1(a) and 5.1(b) demonstrated their ability to reflect the DC components of every input

signal. However, existing models do not accurately reflect the charge tunneling phenomenon.

In light of a lack of openly reported information on the tunneling voltage for devices with

sub 5 nm gate dielectric, the circuits in Figs 5.1(a) and 5.1(b) were designed to flexibly stress

only M1 or M3. Moreover, ESD protection cells were also removed for more flexibility.

5.3.1.2 Tunneling Voltage for 1V model MOSFET

Figure 5.8 shows the measured tunneled currents in the proposed ITCs (see Fig. 5.1) when

applying a 1 MHz pulse train. The averaged leakage current of the ITC in Fig. 5.1(a) under

no stress is plotted in Fig. 5.8(a) for W = 8 µm and VDD = 0.8 V . This response indicates

the sensitivity of the devices under test and shows that the measured current is a low-

magnitude sinusoidal signal as long as the pulses’ amplitudes are below 400 mV . Therefore,

this low amplitude signal appears as a background interference component that adds to any
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(a) (b)

(c) (d)

Figure 5.8 Measured tunneled currents in the proposed ITCs when applying a 1 MHz pulse
train: (a) W = 8 µm and VDD = 0.8 V , (b) W = 8 µm and VDD = 0.8 V , (c) W = 2 µm
, VDD = 0.5 V for Trials 1 and 4, and VDD = 0.8 V for Trials 2 and 3, and (d) W = 4 µm
and VDD = 0.8 V

signal that we attempt measuring with our experimental setup. The collected measurement

data was interpolated as a sine wave with a period of 73 µs, an amplitude of 2.2 mV , a

vertical offset of 2.2 mV and a horizontal shift of 1.7 µs.

On the other hand, gradually increasing the pulse train amplitude on node A1 in Fig. 5.1(a)

from 400 mV to 500 mV increases the current on node E up to 6.5 nA, as shown in Fig.

5.8(b), Trial 1. This experiment was repeated under the same setup, and similar results were

obtained (see Fig. 5.8(b), Trial 2). As long as we respected the 500 mV limit, we were able

to reproduce these results even with similar cells in different copies of our chip.
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5.3.1.3 Substrate Break-Down Voltage

The on-chip pulse train bus is shared among all cells with an enable terminal specific to

each cell. To measure the breakdown voltage of the devices under test, a pulse train of

variable magnitude was applied to a circuit randomly selected from those in Fig. 5.1. While

enabling the target cell by holding its corresponding EN voltage low and disabling other cells

by holding their respective EN voltages high, some probes were connected to different chip

pads with variable distances to the transistor under stress in order to detect any changes in

the drawn currents. Applying any substrate voltage in the range between 0.8 V and 2.5 V

did not have any effect on the chip when either the applied pulse train amplitude was below

800 mV , or each of the gate-currents detected by the measuring probes was below 50 nA.

When the gate-current of any MOSFET exceeded the 50 nA limit, changes in other on-chip

currents were detected, with values varying according to pulse train amplitudes. Chips that

were subjected to this test could be easily distinguished from others under the microscope

by substrate burnouts or silicon bubbles. Figure 5.9 shows an example of one damaged test

chip before and after the stress test was applied.

5.3.1.4 Oxide BreakDown Voltage

We experimented the cell of Fig. 5.1(a) with the following configuration for M1: W = 2 µm

and L = 60 nm. The gate dielectric thicknesses in the used technology are reported in Table

5.1. These thicknesses vary based on the corner in which the device falls after fabrication.

The plot of Trial1 in Fig. 5.8(c) shows the results of our first experimental trial in which we

applied a maximum pulse train amplitude of 1.2 V and a VDD voltage of 500 mV to which

the bulks of p-type MOSFETs are connected. In this test, the pulse period was 1 µs and the

pulse width was 200 ns. We collected the current observed on terminal E of Fig. 5.1(a) by

attaching an external 1 MΩ resistor to this node, and dividing the measured voltage by its

corresponding resistance. The observed current started to increase at a pulse amplitude of

450 mV and reached its maximum (8 nA) when the amplitude became 1.2 V . This behavior

was symmetrical when sweeping the pulse amplitude downwards from 1.2 V to 0 V .

In another experimental trial performed on the same circuit of Fig. 5.1(a), when we raised
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VDD to 800 mV , a higher tunneling current was observed with a maximum of 15 nA at

pulses’ amplitude of 1.2 V . Yet, before the tunneled current reached 15 nA, where the pulse

amplitude exceeded 650 mV , the device started a resistive response equivalent to a 40 MΩ

resistor (see the curve of Trial 2 in Fig. 5.8(c)).

(a) (b)

Figure 5.9 An example of one the damaged test chips before and after the stress test: (a)
before (b) after

All our setups followed standard conditioning for MOSFETs under the used process with a

substrate voltage (VDD) close to 1 V and a maximum pulse amplitude less than or equals to

1.2 V . Nonetheless, repeating the last experimental trial, under similar conditions, revealed

different measurement results from those previously obtained in Trials 1 and 2. The FGT

transistor did not respond to the applied pulse train, even when increasing VDD from 500 mV

to 800 mV . Figure 5.8(c) presents the new behaviors in the curves of Trials 3 and 4, where

a maximum tunneling current of 2 nA is observed. The obtained current is 13 nA less than

that measured in Trial 1. This current is even lower than the normal recorded output induced

by pulse amplitudes lower than 400 mV , see Fig. 5.8(a). Interpreting these results leads to

the conclusion that the dielectric layer was damaged. More precisely, it is believed that this

happened when the tunneling current exceeded 8 nA.

To validate this assumption, another cell was placed under test. This cell was also a variant

of Fig. 5.1(a) with M1 dimensions: W = 4 µm and L = 60 nm.Under conditions similar

to the previous experimental trials, Fig. 5.8(d) shows the output response of the first trial

on this cell performed with VDD = 800 mV . Therefore, by comparing the plots from Figs.
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5.8(c) and 5.8(d), we can observe that:

• There exist a voltage threshold around 450 mV that is independent of MOSFET’s

dimensions. This threshold appears in multiple tests on different cells with different

transistor dimensions (W ∈ {2 µm, 4 µm, 8 µm} ). It can be considered as the maxi-

mum voltage that can be trapped by a gate.

• Another threshold appears around 650 mV after which the output changed to a resistor-

like behaviour. It starts when the value of the tunneled current is around 13 nA. The

resistive behavior is an indicator of a change in the physical characteristics of the gate

dielectric, and seems to be independent of transistor dimensions.

• The output response is symmetric on the up and down sweeps of the pulse train am-

plitude and is not reproducible once the tunneled current exceeds 13 nA.

• The measured gate leakage currents in the experimented circuits were in the range

between 2 nA and 3 nA when the amplitudes were below 450 mV . Such low range

results from normal Electro-Magnetic Interference (EMI) among on-chip components.

Figure 5.8(d) presents the results of a second experimental trial performed on the same

transistorM1 in the previous experimental trial, where WM1 = 4 µm. The measured current

limited by 2.5 nA, see the curve of Trial 2 in Fig. 5.8(d), assures the change in gate dielectric

properties of transistor M1.

5.3.1.5 Tunneling Independence on MOSFET Width

Another important characteristic of device’s dielectric was revealed by comparing different

measurements of all tests. The currents tunneled through FGTs’ dielectric layers do not

vary with the change in MOSFET dimensions. Figure 5.10 shows the variation in tunneled

current versus the pulse sweep amplitude for different ITC configurations. As the amplitude

increases, the tunneled current followed an exponential upwards trajectory independent of

MOSFET’s type and dimensions.
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Figure 5.10 Variation of the tunneled currents interpolated from real-time measurements on
all FGT variants vs the amplitude of the pulse train

5.3.2 Capacitive Cells

Additional FG features, like retention time, could be explored by experimenting the circuits

of Figs 5.3 and 5.4.

5.3.2.1 VCO-based Verification

(a) (b)

Figure 5.11 Curves of measured and simulated VCO frequency output signals for CC in
Fig. 5.4 with respect to voltage sweeps for (a) Vg , and (b) for amplitudes of the applied
pulse-train

To verify the proper functionality of the VCOs in Fig. 5.4, a voltage sweep was applied on

the gate of M9 (defined by Vg). The corresponding output frequency was measured on node
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P68. The measurement results are presented in Fig. 5.11(a) along with computer simulation

results for the same cell. The two curves are very close to each other, descending from 52 MHz

at Vg = 0 V to reach 12 MHz at Vg = 1.6 V which is M13’s threshold voltage.

Figure 5.11(b) shows two curves representing the measurement results collected for the

floating-node VCO in the Capacitive Cell (CC) of Fig. 5.4. When the circuit was dis-

abled by holding a high voltage on node EN12, no change in VCO2’s output frequency on

node P67 was noticed when sweeping the pulse-train amplitude. However after the circuit

was enabled by forcing 0 V on node EN12, the output frequency dropped from 50 MHz at

point A on the curve (see Fig. 5.11(b)) to 40.85 MHz at point A′. This frequency variation

occurred for pulses’ amplitudes increasing gradually from 550 mV at point A to 680 mV

at point A′. The frequency remained stable at 40.85 MHz between points A′ and B. At

point B, when the amplitude reached 800 mV , another significant change in behavior was

observed, and the VCO’s output frequency started following that of node P68.

Therefore, we can recognize different regions of operation in the curve of Fig. 5.11(b) which

are compatible with the findings previously reported in this article. In each of these regions,

both FGT’s current and frequency curves are affected around the same voltages (550 mV

and 800 mV ), indicating changes in tunneling path(s). Around 550 mV (at point A in Fig.

5.11(b)), the change in VCO2’s output frequency measured at node P67 is related to the

observed increase, around the same pulses’ amplitude, in transistor M1’s tunneling current

either in the curve of Trail 1 in Fig. 5.8(d) or that of Trial 2 in Fig. 5.8(c). In addition,

for the voltage range between 650 mV and 800 mV , the slight change (almost negligible) in

VCO2’s output frequency between points A′ and B in Fig. 5.11(b) can be, once again, related

to changes in slopes of the tunneled current curves of transistor M1 in the plots of Trails 2

and 1 in Fig. 5.8(c) and Fig. 5.8(d), respectively. Around 800 mV and beyond (after point

B in Fig. 5.11(b)), VCO2’s frequency started to decrease from 40 MHz to 12 MHz. When

compared to the measured frequency curve on P68 in Fig. 5.11(a), both VCOs’ frequencies

are very close to each other. Moreover, the curves ofM1’s tunneled currents in Trials 2 and 1,

respectively in Fig. 5.8(c) and Fig. 5.8(d), show important changes in curves’ slopes around

this voltage (800 mV ). We believe that around 800 mV one of the parallel leakage paths
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betweenM12’s drain and C2 broke making it possible for VCO2’s frequency to decrease with

a steep slope.

5.3.2.2 Retention Time

The threshold voltage for transistors M5 and M6 of Fig. 5.3 is between 350 mV and 565 mV

depending on the post fabrication process corner. Measuring the retention time in these

circuits was difficult with this high voltage threshold compared to the maximum possible

voltage on C1 that is around 450 mV . Nonetheless, one of the fabricated chips had a low

threshold voltage for transistor M6, probably due to process variations. This was the only

cell in which we were able to measure a trapped voltage on a floating-node. This voltage is

detected due to the current traversing transistor M6 when no other on-chip cell or transistor

was activated. The corresponding observed retention time for this device is 12 months at the

time of writing this article. Figure 5.12 shows that transistor M6 current is 271.25 nA as

recorded by ammeter A1 of Fig. 5.3 with a 1 MΩ in-series resistor. We were able to calculate

the internal voltage of the floating-node from the MOSFET drain-current equation in linear

region [114]:

ID = µ.COX .
W

L
.(VGS − VTH).VDS (5.2)

where ID is the drain current, µ is the transistor mobility, COX is the oxide capacitance, W

& L are the MOSFET width and length, respectively, VGS is the potential difference between

gate and source terminals of the MOSFET, VTH is the MOSFET threshold voltage and VDS
is the potential difference between drain and source terminals. Table 5.2 summarizes the

extracted parameters needed by eq. 5.2 which allows calculating that:

VG − VTH ' 8 mV (5.3)

In other words, VG is very close to VTH and can be estimated to be around 358 mV based on

the discussion in section 5.3.A.1.
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Figure 5.12 Picture of the test setup showing the drain current measured by ammeter A1
from Fig. 5.3

Figure 5.13 A general model representing the variation of the tunneled current vs the ampli-
tude of the pulse train interpolated from physical measurements on floating gate transistors

5.4 Model

The plots of Fig. 5.10 show the effects of sweeping the pulse amplitude on different MOSFETs

in the design with variable channel widths. Measured data proved that the current tunneled

through MOSFET’s dielectric is independent on channel width. All curves are exponential

and started from below 1 nA (between 0.5 nA and 0.8 nA) at an amplitude of 350 mV

and grew to reach their maximum (5 nA) at an amplitude of 500 mV . Using MATLAB

interpolation tools, the polynomial equation of the trend line was approximated to a fourth-

degree polynomial of the form
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i(t) = a4v
4(t)− a3v

3(t) + a2v
2(t)− a1v(t) + a0 (5.4)

Where the polynomial coefficients are positive real numbers and are process related, v(t)

is the amplitude of the pulse train and i(t) is the tunneled current. Using reverse Taylor

expansion of the exponential equation:

ev(t) =
∞∑
n=0

vn(t)
n! = 1 + v(t) + v2(t)

2! + · · ·+ +v
n(t)
n! (5.5)

the curves can be modeled by following equation:

i(t) = I0e
−Bv(t) + 0.01Bv(t) + C (5.6)

where I0 is the initial current at time, t = 0, and {B, C} are process related.

The plot of Fig. 5.13 summarizes the complete model inspired by the performed tests on

1 V MOSFETs in the chips. When the pulse amplitude is lower than 350 mV , the measured

current is dependent on the exact circuit physical structure, and in this case, it is less than

1 nA. When the bias across the dielectric exceeds 350 mV , the current enters an exponential

leakage region following eq. 5.6 until the curve enters a linear region when the pulse amplitude

is in the vicinity of 550 mV for which a tunneled current of the order of 6 nA is observed.

When entering this region, the device loses its ability to trap charges as the dielectric starts to

develop a resistor like behavior with an equivalent resistance around 40 MΩ. After crossing

the 1.2 V threshold, which is the estimated maximum tolerated voltage for a 1 V MOSFET

in a 65 nm process, the dielectric insulator starts to degrade. Therefore, at some point, when

the insulator is completely damaged, the MOSFET’s gate metal becomes connected to the

substrate, thus creating a short circuit. In this region, the tunneled current is MOSFET

specific, i.e. it changes according to the MOSFET’s dimensions.

Combining these four regions summarizes the dielectric behavior in a 65nm process technol-

ogy with 2 nm dielectric thickness. The first three regions are common among all transistors,

independent of their dimensions, whereas the fourth region varies according to the dimensions
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Table 5.2 The extracted parameters to apply
in eq. (5.2) for estimating the gate voltage of
MOSFET M2 in Fig. 5.4

Parameter Value Reference
ID 271.25nA Measured
µ 398.7× 10−3 cm2

V.S
[114]

Cox 12 fF
µm2 [114]

W 16µ Design
L 8µ Design
VDS 0.73V Calculated

of the device under test. The device remains in this region until reaching a pulse amplitude

high enough to cause substrate damage, hence the chip becomes unusable and unreliable.

5.5 Behavioural Hypotheses

Analyzing the gate insulator behavior based on the tunneled current in FGTs led to new

behavioral hypotheses which might apply to all sub 70 nm processes with thin insulator

films. The hypotheses formulated in this section, in relation to sub 70 nm processes with

thin gate insulation, have not been addressed in detail in previous literature.

Hypothesis 1 (H1): The physical characteristics of the gate dielectric change according

to the applied voltage, or; in others words, they vary with the electric field traversing the

dielectric.

Corollary 1.1 (C1.1): All transistors in sub 70 nm processes with thin gate dielectric lose

their ability to trap charges when operating under nominal voltage way before they stop work-

ing as transistors.

The observations supporting Hypothesis (H1) were detailed in section 5.4 and in the expla-

nations of Fig. 5.13. More specifically, when the potential difference across the dielectric

exceeds 600 mV , its physical characteristic transforms the material from a fully insulating

to a resistive behavior. This leads to the direct corollary; C1.1, explaining the complete loss

of charge trapping ability in FGTs caused by the high leakage current in the resistive gate

to drain-channel-source material.
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Hypothesis 2 (H2): Charge Tunneling through thin gate dielectric insulators appears to

take the shortest path from one terminal to another just like lightning sparks in the atmo-

sphere. As this occurs at the atomic scale, it can explain the independence of tunneling

current magnitude on MOSFET dimensions observed in numerous experiments.

Hypothesis H2 was formulated as an attempt to explain the observed independence between

the tunneled current and MOSFETs’ dimensions in Fig. 5.13. When there exist a long

contact area between both high and low voltage terminals, electrons will migrate from the

highly negative side to the positive one following the shortest possible path.

5.6 Conclusion

In this article, Floating Gate transistors (FGTs) with thin gate dielectric insulator films were

characterized using a 1 mm2 chip fabricated under a standard 65 nm process. Despite normal

challenges that accompany the process of characterizing FGTs, we were able to establish an

FGT behavioral model that considers both the magnitude of an applied-pulse-train and the

observed resulting tunneled-current.

Four regions of operation were discovered for a voltage range between 0 V and 1.2 V based

on data extrapolated from chips’ measurement results: (a) the no leakage region, (b) the

exponential leakage region, (c) the linear leakage region, and (d) the dielectric break-down

region. The first three regions were common among all tested transistors and the observed

electrical behavior was found to be independent on their dimensions.

This study also presented an evidence of a successful charge trap using a fabricated device

with over one year of retention time. Moreover, based on the obtained results, we proposed

a couple of hypotheses which requires further analyses and studies before being generalized

for other sub 70 nm processes.
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CHAPTER 6 THE PROPOSED MEMRISTIVE CELL

6.1 High-Level Architecture

Figure 6.1 The general architecture of the proposed memristive cell

The circuit of Fig. 6.1 shows the general architecture of the proposed memristive cell, in

which the SX component is a memristor emulator implemented in 65 nm CMOS process and

adapted from [12] and the FGT represents a floating-gate cell that is discussed in previous

chapters. The purpose of such memristive cell is copying VCSX to VCFGT since FGT has

longer retention time (around 10 years) as compared to SX (around 1 µs). The voltage

across the capacitor in SX, VCSX , controls the current traversing transistorM3. This current

is mirrored to R1 and passed to the control circuitry.

On the other side of Fig. 6.1, and similar to VCSX , VCFGT is mirrored to the control circuitry

which, in turn, controls the flow of the charging/discharging Pulse Trains (PTs) through

VCTRL.

In this topology, the use of current mirrors is required in order to avoid non-gate leakage

currents to the floating node in FGT . In addition, transistors M3 and M6 have zero-leakage

currents on their gates. As the ultimate goal of the proposed cell is to match iFGT with isx,
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transistors M1, M2, M4 and M5 must have the same W/L ratio, and so must M3 and M6. It

follows that R1 and R2 should have equal resistance values as well.

In the following sections, we will discuss the proposed memristive cell thoroughly.

6.2 The Memristor Emulator

Figure 6.2 The schematic of the used memristor emulator which is adapted from [12] into
65 nm CMOS process

In order to implement the cell of Fig. 6.1, the memristor emulator implemented in [12] was

adapted into 65 nm CMOS process. A detailed justification for choosing this emulator from

the list of available emulators in literature is conducted in section 4.3.

In the proposed memristor, transistors M1 to M4 form a simple differential amplifier with

M0 controlling the branches’ currents, i1 and i2, according to Vbias. The voltage across CSX
controls the conductance of M5 which, in turn, affects M5’s drain current, i5. As such, the

memristive behavior of the circuit in Fig. 6.2 is directly dependent on the relations between

VAB and both: i5 and VCSX . The voltage VCSX can be referred to as the memristor state

whereas the current, i5, is the memristor current.

Figure 6.3 shows the computer simulation results of the circuit in Fig. 6.2. The memristor

emulator response to a 1 MHz sinusoidal input on terminal A is a pinched hysteresis loop
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for the current, i5, and a cyclical hysteresis loop for the state, VCSX . The pinched loops are

presented by Figs. 6.3(a) and 6.3(c) when the amplitude of the applied sinusoidal signal

was 200 mV and 400 mV , respectively. Similarly, Figs. 6.3(b) and 6.3(d) correspond to the

cyclical loops for the same amplitudes. It is important to note that the maximum voltage

across CSX is 550 mV when the amplitude of the applied sinusoidal signal is 400 mV . This

voltage across CSX does not exceed the FGT voltage threshold, as described in previous

chapters. In other words, by copying VCSX to VCFGT , FGT will operate in its exponential

region, and it will not step into the linear leakage region where the device’s behavior becomes

incapable of trapping charges.

(a) (b)

(c) (d)

Figure 6.3 Simulation results of the memristor emulator in Fig. 6.2 showing both the pinched
and the cyclical hysteresis loops when 0 V was applied on terminal B and a 1 MHz sinusoidal
signal on A with: (a and b) 200 mV amplitude, (c and d) 400 mV amplitude
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6.3 FGT Model

(a) (b)

Figure 6.4 The basic FGT cell in our chips: (a) schematic (b) behavioral model

Figure 6.5 Computer simulation using VerilogAMS for the model in Fig. 6.4(b)

The circuit shown in Fig. 6.4(a) is the basic FGT cell that we chose to implement based on

our characterization discussion in previous chapters. Computer models for simulating this

circuit are rare, therefore we used VerilogAMS to simulate the device’s model presented in

Fig. 6.4(b).



63

Figure 6.6 Schematic of the FGT cell used in computer simulation where the dashed compo-
nents are replaced from the original circuit with VerilogAMS code

In order to implement the model presented in Fig. 6.4(b) using VerilogAMS, two assumptions

should be taken into consideration:

• The dielectric behavior is symmetrical with respect to the the voltage polarity. That is

when the gate voltage is higher than that of the source and drain connection, VCFGT
starts discharging according to the model in Fig. 6.4(b).

• The voltage difference across the transistor should not exceed 550 mV for both charging

and discharging processes.

The VerilogAMS simulation for the FGT model, based on the aforementioned assumptions,

is presented in Fig. 6.5. This model matches that predicted from device’s characterization

in previous chapters, and it will used in the rest of this chapter.

The circuit shown in Fig. 6.6 is used for simulating the FGT model presented in Fig. 6.4(b).

The dashed components in the figure are replaced by VerilogAMS code for simulation pur-

poses.
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6.4 The Control Circuitry

6.4.1 The Pulse Train Generator Circuit

Figure 6.7 The PT generation circuit where the signals Ctrl {1− 4} are generated by some
logic circuitry that will be explained later in this chapter

The circuit of Fig. 6.7 generates the PT signal in Fig. 6.1. The circuit contains two pulse

trains, Pulse Trian 1 and Pulse Trian 2, which differ in their rising and falling times.

Pulse Trian 1 has short rising time and long falling time whereas Pulse Trian 2 has long

rising time and short falling time.

Both pulse trains are fed to two differentiator circuits, as labeled on Fig. 6.7. When the

rising time is high, PT takes the shape of very short positive sparks. On the other hand,

when the falling time is high, PT takes the shape of very short negative sparks. Generating

such positive and negative sparks using the differentiator circuits is beneficial for three rea-

sons: (a) it gives the decision circuitry more time to generate the proper control signals for

transistorsM7−9,10−12, (b) it generates precise negative sparks for setups where no machinery

can generate negative pulse trains, and (c) it helps in generating nano-second sparks since

the laboratory equipment capable of generating similar pulses can be expensive.
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Figure 6.8 The PT output of the circuit presented in Fig. 6.7

Figure 6.8 shows the simulation results of the circuit presented in Fig. 6.7. When Pulse Trian 1

is applied with short rising time (20 ns) and long falling time (200 ns) for every pulse, the

corresponding differentiator generates a positive pulse train PT with an amplitude propor-

tional to the applied one and an offset voltage = V +
offset

2 = 0.4
2 = 0.2 V . On the contrary,

when the pulse train characteristics are reversed by reversing the rising and falling times

for Pulse Train 2 (200 ns and 20 ns, respectively) with offset voltage = V −
offset

2 = −0.3
2 =

−0.15 V , the corresponding signal generated on PT is a negative pulse train with very short

pulse widths. Deciding the values of the simulation parameters (as rising time, falling time,

V +
offset and V −offset) are design and model dependent.

6.4.2 The Comparator

Figure 6.9 presents the comparator used in the memrisive cell. This comparator has a little

hysteresis in it due to M6 and M7. The hysteresis range can be calculated given transistor

dimensions and their respective threshold voltages.

In order to calculate the upper and lower hysteresis limits (V +
TRP and V −TRP ), the comparator

should be analyzed at its switching, i.e. the points at which the output switches polarity. At
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Figure 6.9 The comparator with hysteresis used in our chips

V +
TRP , we assume that:

i3 = i1 (6.1)

and

i6 = i2 (6.2)

since M4 is off. The current i6 can also be calculated through the following equation:

i6 = β6

β3
i3 (6.3)

Consequently by assuming transistor M7 to be OFF, the current i5 can be written as:

i5 = i2 + i1 = i6 + i3 = β6

β3
i3 + i3 (6.4)
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Therefore, by rearranging the parameters, current i3 becomes:

i3 = i5
β6
β3

+ 1
(6.5)

For the comparator of Fig. 6.9, the design parameters are: W6 = W7 = 360 nm, L6 = L7 =

60 nm, β6
β3

= 5, i5 = 4.17 µA, µp = 61 cm2

V.S
and Vtp1 = Vtp2 = −270 mV . It follows that

i1 = i3 = 0.695 µA and i2 = i5 − i1 = 3.475 µA. Assuming that MOSFET M2 operates in

saturation region, the voltage (|Vgs2|) equals:

|Vgs2| =
√

2i2
β2

+ |Vtp2| = 453 mV (6.6)

Similarly, the voltage Vgs1 can be calculated to get:

|Vgs1 | = 352 mV → V +
TRP = |Vgs2| − |Vgs1| = 101.4 mV (6.7)

And by following the same procedure, V −TRP can be estimated to −101.4 mV [115]. Figure

6.10 shows the simulation results of the used comparator in Cadence Virtuoso where V +
TRP =

−V −TRP = 101.1 mV . The equivalent transient response is presented in Fig. 6.11. While

setting v11 to 500 mV , sweeping vi2 upwards from 0 V to 1 V and downwards from 1 V to 0 V

stimulated a change in vout with V +
TRP = 14mV and V −TRP = −13mV . The difference between

the transient and DC responses of the circuit is normal and can be tolerated. This difference

is due to the behavioral changes in devices’ responses between both types of simulations.

Table 6.1 Truth table for generating the control signals in Fig. 6.7

VCsx > VCfgt VCsx < VCfgt Comparator 1 Comparator 2 Status
True False 0 1 Charge
False True 1 0 Discharge
Z Z 0 0 Do Nothing
Z Z 1 1 Do Nothing
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Figure 6.10 DC Response of the comparator with hysteresis used in our chips

6.4.3 Generating the Control Signals

In order to generate the control signals for the circuit shown in Fig. 6.7, the corresponding

truth table is presented in Table6.1. Since the optimal goal is to level up VCsx and VCfgt

in Fig. 6.1 for both discharging and charging phases, two copies of the comparator in Fig.

6.9 are required. The input voltages to both comparators need to be swapped; that is

vi1,comp 1 = vi2,comp 2 and vi2,comp 1 = vi1,comp 2 . This helps in generating the two different

signals required to produce Ctrl 1, Ctrl 2, Ctrl 3, Ctrl 4 and an enable signal for the FGT

model (called ENfgt).

The voltages Ctrl 1, Ctrl 2 and ENFGT are supposed to control p-type MOSFETs, whereas

Ctrl 3 and Ctrl 4 control n-type MOSFETs. In this sense and based on Table6.1, the required

signals can be written as :

ENFGT = Comparator 1 + Comparator 2 (6.8)

Ctrl 1 = {Comparator 1 · Comparator 2} · Comparator 2 (6.9)

Ctrl 2 = {Comparator 1 + Comparator 2}+ Comparator 2 (6.10)

Ctrl 3 = Comparator 1 + Comparator 2 (6.11)
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Figure 6.11 Transient Response of the comparator with hysteresis used in our chips

Ctrl 4 = Comparator 2 + Comparator 1 (6.12)

Figure 6.12 Decision circuitry that is responsible for generating the control signals of the
pulse generator circuitry presented in Fig. 6.7

Figure 6.12 shows the decision circuitry that is responsible for generating the control signals

in Fig. 6.7 (Ctrl 1, Ctrl 2, Ctrl 3 and Ctrl 4) in addition to the ENFGT signal for the FGT

device. The circuit is designed based on analyzing Table6.1 and based on equations 6.8 -

6.12.
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Figure 6.13 The detailed architecture of the proposed memristive cell which includes all
sub-circuits explained in this chapter where each comparator is a copy of that in Fig. 6.9

6.5 Detailed Architecture of the Memristive Cell

This section presents the memristive cell overall architecture; detailed in Fig. 6.13, after

integrating all sub-circuits discussed in this chapter. As aforementioned, the ultimate goal

is to balance iFGT with iSX , VCFGT with VCSX or VR2 with VR1 . In the figure, each of the

comparators with hysteresis is a copy of the circuit in Fig. 6.9.

When either comparator detects a change in either VR1 or in VR2 , a change in the output

signals, Comparator 1 and Comparator 2, is induced and detected by the logic circuitry.
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The latter takes a decision based on the detected change(s), and accordingly, the signals

ENFGT , Ctrl 1, Ctrl 2, Ctrl 3 and Ctrl 4 control the pulse generator to one out of three

modes:

(i) Off mode: All branches of the pulse generator circuit are shut down and PT signal

has a 0 V dc. In addition, ENFGT is held high to 1 V . This happens when VR2 ≈

VR1 =⇒ VR2 = VR1 ± ε, where ε ≤ Hysteresis V oltage Range
2 .

(ii) Charging mode: Only the Pulse Train 1 branch is activated (that is Ctrl 1 = 1 V ,

Ctrl 2 = 0 V , Ctrl 3 = 1 V and Ctrl 4 = 0 V ) and ENFGT is held low to 0 V . As

a result, PT takes the shape of positive pulses with some positive dc offset voltage

(V
+
offset

2 ), see positive PT pulses in Fig. 6.8. This phase takes place when VR2 < VR1 .

(iii) Discharging mode: Only the Pulse Train 2 branch is activated (that is Ctrl 1 = 0 V ,

Ctrl 2 = 1 V , Ctrl 3 = 0 V and Ctrl 4 = 1 V ) and ENFGT is held low to 0 V . As

a result, PT takes the shape of negative pulses with some negative dc offset voltage

(V
−
offset

2 ), see negative PT pulses in Fig. 6.8. This phase takes place when VR2 > VR1 .

The behavior of this memristive cell is completely autonomous, and for simulation purposes,

the FGT circuit is replaced by its VerilogAMS code, that is discussed earlier in this chapter.

Figure 6.14 shows the transient response of this memristive cell and all its corresponding

control signals. The simulation consists of three phases, two of which are charging and one

is discharging.
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Figure 6.14 Transient response of the proposed memristive cell presented in Fig. 6.13
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In this setup, VCSX is considered as the reference voltage for VCFGT . However, we can only

control VCSX through VA according to the plots in Fig. 6.3. Changing VA (which is not shown

in Fig. 6.14) causes the changes in VCSX , and based on VCFGT ’s value, the comparators decide

the operating mode of the pulse generator whether charging, discharging or off. Based on

Fig. 6.14, it is clear that when VCSX is larger than VCFGT , the decision circuitry orders a

charge signal to the pulse generator, allowing PT to be positive. After around 12 µs, VCFGT
reaches VCSX − ε, a time instant at where FGT must retain its value with the help of other

circuit components. Hence, we can notice the short charging signals between 10 µs and

50 µs. At 50 µs, when VA changes, VCSX changes accordingly, and consequently, the circuit

re-enters the charging phase until time ≈ 62 µs. Later, at time = 100 µs, VCSX changes so

that VCSX < VCFGT . This change forces the circuit to enter a discharging phase. It should be

mentioned that, for design consideration, we configured the circuit such that the discharging

time is longer than the charging time.

6.6 Summary

In this chapter, we presented an autonomous memristive cell that we proposed as an RSD

substitute. Our proposed cell deploys the FGT behavioral model (presented in chapter 5) for

long data retention time, and integrates this behavioral model with a memristor emulator

(adapted from literature) for a memristor-like behavior of the cell. Such integration required

additional circuitry to control the FGT’s charging and discharging processes through charge

tunneling.

Therefore, this chapter discussed all the components of our memristive cell with their re-

spective simulation results using VerilogAMS. The simulation results were promising, and

proved that such memristive cell can be deployed in different RSD applications. The cell

has a 14 mV precision window between the two input voltages of the comparator, and a

maximum in-cell storage voltage of 550 mV . In terms, this provides a voltage window range

of 450 mV for the internal state of our proposed cell.
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CHAPTER 7 INTEGRATING THE PROPOSED MEMRISTIVE CELL IN

ANALOG COMPUTING FOR ARTIFICIAL INTELLIGENCE

In this chapter, we propose different useful architectures for the memristive cell shown in

Fig. 6.13. Two main applications can be considered: (a) Vector Matrix Multiplication and

(b) Non-Volatile Memory Arrays.

7.1 Vector Matrix Multiplication

Any application that belongs to the domain of analog artificial intelligence requires Vector

Matrix Multiplication (VMM) as an essential component. As aforementioned in chapter 2, the

main feature that characterizes VMM arrays is parallelism, which optimizes the computation

time for the following weight equation in Deep Neural Networks (DNNs):

−→
Y =

∑
W ·
−→
X (7.1)

where −→Y and −→X are the output and input vectors, respectively, and W is the weight matrix.

Using VMM, equation (7.1) can be computed by substituting −→X with input voltages, W

with the conductances in a VMM array and −→Y with the corresponding output currents. As

a result, equation (7.1) can be written as:

−−→
I(t) =

∑
G(t) ·

−−→
V (t) (7.2)

where
−−→
I(t) is the output current vector at a time instant t,

−−→
V (t) is the corresponding input

voltage vector and G(t) is the conductances of the VMM array used at the time instant t.

In a VMM array, every crossbar intersection represents a resistive device that should be able

to hold its weight long enough until the operation is executed. For the cell presented in Fig.

6.13, this weight is VCSX . After this voltage is set during the programming (learning) phase,

it must be copied to VCFGT . The voltage VCFGT is used to run DNNs during prediction phase,

not the learning phase.
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Figure 7.1 Schematic of one crossbar layer where at every crossbar intersection is the mem-
ristive cell of Fig. 6.13

7.1.1 VMM using Complete Memristive Cells

Figure 7.1 presents the schematic of one VMM layer configured to implement Deep Neural

Network (DNN) algorithms using Dot Product Engine (DPE) that is presented in [4]. Every

column is connected to a separate bias voltage Vbias which, in turn, is connected to the low

voltage terminals of both, the memristor emulator circuit and its FGT counterpart in the

same cell in Fig. 6.13, i.e. nodes B and Vb in Figs. 6.2 and 6.6, respectively. The difference

among these bias voltages guarantees that each memristive cell is programmed to a different

voltage level when the vector V (t) is applied. Otherwise, the crossbar will include some

redundant cells since all memristive cells in the same row will possess similar conductances

after being subjected to the same terminal voltages. The row and column decoders are

used to enable the targeted cell according to the 1T1M (1-Transistor-1-Memristor) structure

presented in the DPE algorithm. For DPE, it is a requirement that the all weights (G(t))

should be pre-computed prior to programming the VMM.



76

7.1.2 VMM using Shared Memristor Emulator

In order to increase the cell density per one VMM layer on the expense of adding latency due

to sequential processing, the memristive cell of Fig. 6.13 can be reconfigured to share one

memristor emulator per a row of FGT cells. The drawing presented in Fig. 7.2 illustrates this

configuration and the shared memristor emulator is a copy of the circuit shown in Fig. 6.2.

In addition to this shared emulator, every row of FGT cells shares the same control circuitry

that is presented in Fig. 6.1 and explained in details in Fig. 6.13. The mentioned control

circuitry is integrated into the row decoder. The crossbar array configuration presented in

Fig. 7.2 can also be efficient for data storage and memory applications.

Figure 7.2 Schematic of the VMM layer shown in Fig. 7.1 optimized for density
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7.2 Configuration

7.2.1 Weight Update

The process of weight update is significant for DNN learning phase since the main purpose

of this phase is to keep adjusting connection weights among different neural network nodes

until the targeted algorithm converges to a solution. In the memristive cell presented in Fig.

6.1, the FGT device will be the bottleneck of the weight update procedure; more specifically

VCFGT .

As learned from chapter 5, the voltage range for VCFGT is 430 mV before the FGT looses

its ability to trap charges, (see Fig. 5.13). This voltage range is the difference between

transistorM6 threshold voltage, which is 120 mV , and 550 mV , the voltage around which the

exponential leakage region for this particular FGT ends (see Fig. 5.13). The 430 mV voltage

range can be quantized into 14 levels of accuracy with around 30 mV per level. The number of

quantization levels is determined based on the comparator hysteresis range, which is around

27 mV . The 14-bit-accuracy weight might not be beneficial for analog implementation of

DNN algorithm, but it is very useful for non-volatile memory applications.

Analog implementation of DNN algorithms includes two types of weight computation: (a)

Precomputed weights and (b) learned weights. For algorithms like DPE, where weights are

precomputed, the conductance of each cell can be approximated to a quantization level based

on the final estimation of the currents per column according to the equation:

=∑
j=1

Ij(t) =
=∑
j=1

Ψ∑
i=1

M−1
ij (r, t) · Vi(t) (7.3)

where = and Ψ are the numbers of columns and rows, respectively, and M−1
ij (r, t) is the

conductance (weight) at node i and row j. In such process, the goal is to program M−1
ij (r, t)

to the targeted weight. On the other hand, for weight learning, the goal is to program the

conductances per column until the targeted Ij(t) is reached for a simple algorithm, where

Ij(t) = ∑Ψ
i=1M

−1
ij (r, t) · Vi(t).
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7.2.2 Programming Procedure for Precomputed Weights

When the weights are precomputed, each node on the crossbar structure is programmed to

a certain conductance according to the following steps:

(i) Prepare input voltage vectors, Vi(t).

(ii) Compute output currents, Ij(t), according to the desired application.

(iii) Calculate M−1
ij (r, t) per node. The weight of each node should be determined based on

Vi(t), Ij(t) and column bias voltages Vbias,j(t).

(iv) Apply the bias voltages per column.

(v) Apply input voltage vector, and using the row and column decoders, iterate over the

crossbar array nodes.

(vi) For every column, iterate over its cells and, in steps of 20 mV , increase or decrease the

input voltage (Vi(t)) until the targeted cell conductance is reached. In other words, keep

looping until Îi,j(t) = Ii,j(t) + ε, where Îi,j(t) is the measured current due to the cell

at row i and column j, Ii,j(t) is the desired precomputed current and ε is the tolerated

error per cell.

(vii) Activate the copy phase to translate the programmed conductances in the memristor

emulator to the FGT counterpart based on the circuit architecture.

7.2.3 Programming Procedure for Weight Learning
The process of weight learning differs from that of weight precomputing. In weight learning,

only input and output vectors, V (t) and I(t), are known. Yet, the two vectors must not be

externally adjusted by the user. The column bias-voltages should be the only controllable

circuit elements by the user. In short, the steps to program a crossbar layer during a weight

learning process are the following:

(i) Prepare input voltage vectors, Vi(t).

(ii) Create an initial mapping function to map the output currents, Ij(t), to the desired

output vector. A simple example of such function is 1 nA for 1 unit of measurement.
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(iii) Identify ε value which is the error tolerance for the current per crossbar column, Ij(t).

(iv) Apply the bias voltages to all columns of the crossbar array.

(v) Apply input voltage vector.

(vi) Collect Îj(t) for all columns.

(vii) If Îj(t) is below the circuit measurable current threshold, adjust Vbias,j(t) so that every

Îj(t) is above the mentioned threshold and can be detected by other circuit components.

(viii) Compare Îj(t) to Ij(t), where Îj(t) and Ij(t) are respectively the measured and the

targeted currents. If Îi,j(t) > Ii,j(t) + ε, adjust Vbias,j(t) in steps of 20 mV , either

upwards or downwards until Îi,j(t) ≤ Ii,j(t) + ε holds for every j.

(ix) In cases where it becomes impossible to bring the value of Îi,j(t) near Ii,j(t) + ε, adjust

the mapping function in step (ii) and go back to step (iii).

7.2.4 Design Consideration for Vbias(t)

The column bias-voltages, Vbias(t), are critical for VMM training, especially in cases where

matrices are treated like black boxes, and the controllable external factors are few. In order to

learn VMM weights, the voltage range for Vbias(t) should be determined so that it is possible

to store any learned weight inside the proposed memristive cell without damaging the gate

dielectric.

As learned from chapter 5, the maximum voltage that a memristive cell can store is around

550 mV . This voltage is a safe limit we chose to assure the integrity of the gate-dielectric.

However, this voltage limit can be relaxed by a 100 mV in order to increase Vbias(t) voltage

range and provide more flexibility on the crossbar structure.

To study the effect of changing Vbias(t) on the memristive cell, two main characteristics should

be respected: the cell’s memristive behavior and its capability to retain charges for



80

Figure 7.3 Transient current responses of the proposed memristive cell presented in Fig. 6.13

for different column bias-voltages swept between 0 V and 400 mV

Figure 7.4 Transient state responses of the proposed memristive cell presented in Fig. 6.13

for different column bias-voltages swept between 0 V and 400 mV
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long periods of time. As for the latter, such characteristic holds as long as VCFGT is less than

650 mV beyond which FGT’s gate dielectric starts to deteriorate.

For the other characteristic, Figs. 7.3 and 7.4 shows how a sweep on Vbias(t) does not affect

the memristive behavior of the cell. Figure 7.3 presents different current responses for the

memristive cell when Vbias is swept between 0 V and 400 mV . The cell retains a pinched

hysteresis response as long as Vbias is less than 310 mV . On the other hand, Fig. 7.4 shows

cyclic state responses of the cell for all Vbias values. However, when Vbias exceeds 130 mV ,

the maximum state voltage surpasses 650 mV , a value which renders the FGT vulnerable.

In short, the best configuration for the proposed memristive cell is for a Vbias less than or

equal to 130 mV , and all the crossbar columns must be subjected to a Vbias ≤ 130 mV .

7.3 A Proof of Concept

This section presents preliminary simulation results for the circuit shown in Fig. 7.1. A 4x4

array is simulated in which every crossbar intersection is a copy of the circuit shown in Fig.

6.13. For simplicity, all the cells are activated at once instead of having row and column

decoders. In addition, every cell is autonomous in the sense that its VCFGT is automatically

following VCSX .

Figure 7.5 summarizes all input vectors, Vi(t), to the array for a period of 1.5 ms. Each Vi(t)

randomly changes its value every 50 ms over an input range between 20 mV and 250 mV .

On the other hand, the column bias-voltages, Vbias,j(t), are programmed to acquire a DC

voltage over the whole simulation period with Vbias = [0 V, 20 mV, 60 mV, 100 mV ].



82

Figure 7.5 Transient input voltages, Vi(t) and Vbias,j(t), to the 4x4 crossbar array

Figure 7.6 Transient input voltages, VR1 and VR2 (see Fig. 6.13), to the comparators of the

memristive cells located in the first column of the 4x4 array for a Vbias,1 of 0 V and different

values of Vi(t) as shown in Fig. 7.5
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Figure 7.7 Transient FGT capacitor voltage responses of the memristive cells located in the

first column of the 4x4 array for a Vbias,1 of 0 V and different Vi(t) as shown in Fig. 7.5

Figure 7.8 Transient input voltages, VR1 and VR2 (see Fig. 6.13), to the comparators of the

memristive cells located in the first row of the 4x4 array for the same V1(t) and different

values of Vbias,j as shown in Fig. 7.5
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For every Vi(t), the values of VR1,ij change, where VR1 is shown in Fig. 6.13 and the indices

i and j are cell’s row and column, respectively. The changes in VR1,ij are presented in Fig.

7.6. Since VR2 follows VR1 as explained in chapter 6, the changes in VR2,ij are also recorded

on the same figure. Similarly, the changes in VCFGT ,ij are recorded in Fig. 7.7 although VR2,ij

is an indirect indicator for VCFGT ,ij. Figures 7.6 and 7.7 summarize the effect of changing

Vi(t) on the memristive cells. On the other hand, to study the effect of Vbias(t) on the same

cells, Fig. 7.8 shows the simulation results for VR1,ij and VR2,ij when Vbias(t) changes.

A detailed analysis of Figs. 7.6-7.8 leads to the following remarks:

(i) The memristive cell is sensitive to the slightest change in its input voltages. For example,

a 10 mV change on V2(t) at time t = 50 ms provoked changes by proportional amounts

in the corresponding voltages: VCFGT ,21, VR1,21 and VR2,21.

(ii) The memristive-cell internal capacitor-voltage, VCSX ,ij is cyclic. In other words, an

increase or decrease in Vi(t) does not necessarily lead to the same effect on VCSX ,ij.

It rather depends on both: VCSX ,ij’s starting voltage before Vi(t) changes and on the

amount of that change.

(iii) In the proposed VerilogAms model, charging VCFGT ,ij is faster than discharging. For

example, an 80 mV change in VCFGT ,ij requires around 1 ms in charging time, and

around 12 ms in discharging time.

(iv) There still exist some instability in VCFGT ,ij. This the cause of VR2,ij turbulence around

VR1,ij in all cells.

(v) The values of VCFGT ,ij in all cells are less that 550 mV , which is good for the integrity

of FGTs gate-dielectric.

(vi) The changes in Vbias,j affect VCSX ,ij and, consequently, VR1,ij which is driving the whole

circuit. The change in Vbias,j also affects the charging and discharging times of VR2,ij.
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7.4 A Design Verification Chip

(a) (b)

Figure 7.9 An image of the second fabricated chip in 65 nm: (a) A microscopic photograph

after fabrication (b) CAD layout

Figure 7.9 presents a chip fabricated based on lessons learned from experimenting on the

chip presented in Fig. 5.6. We fabricated two 2 × 1 VMM crossbar rows in order to verify

the simulation results previously mentioned in this current chapter. This chip was fabricated

with the intention of verifying the unanticipated measurements captured from the previously

fabricated chip. Hence, it was designed comprising of many testing circuits each correspond-

ing to a sub-circuit in the crossbar. In short, we designed the chip of Fig. 7.9 to be able

to characterize the behavior of the following components: (a) isolated individual transistors,

(b) transistors matched based on the common centroid method, (c) the embedded voltage

comparator, (d) the embedded voltage control oscillator, (e) the memristor emulator, (f) one

memristive cell, (g) a 2× 1 memristive crossbar, and (h) a 2× 2 memristive crossbar.

Unfortunately, we encountered two major problems that prevented us from validating the

new designed chip. Due to the COVID-19 pandemic, the ordered chips took a longer delivery

time than usual, and most of the delivered dies are defective.
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7.5 Summary

In this chapter we presented two different possible configurations of the memristive cell (pro-

posed in chapter 6) for VMM, and we used one of these two configurations to simulate a 4×4

crossbar array. The simulated array proved that the potential difference across the terminals

of each cell led to a different resistive state for every cell in the array while maintaining

its memristor-like behavior. This was evident from the transient plots of cells within the

same row or the same column, where each memristive cell showed a different resistive state.

The obtained results were promising despite that neither the crossbar architecture nor the

memristive cell were optimal. The results also proved that our memristive cell represents a

possible RSD substitute that is fit for many recent RSD applications.



87

CHAPTER 8 GENERAL DISCUSSION

This dissertation contributes to improving the means of implementing AI algorithms using

analog integrated circuits. We believed that FGTs are necessary for these circuits since they

can provide long data retention, and we relied on existing literature in our preliminary circuit

design. During our time waiting for the fabricated chips to arrive, we tried to minimize

delay consequences on the project by ordering memristors from KNOWM and an FPAA

from a well-known foundry. The delays we faced to get hold of some of these products

(particularly the FPAA) were unexpected as all ordered devices arrived after our fabricated

chips. We hoped to compare the performance of our Adaptive DPE system on the three

devices: our fabricated memristive cells, KNOWM memristors, and the FPAA. However,

due to the previously discussed reasons, we went through tedious and lengthy experiments on

our fabricated chips for FGT characterization. Yet, our conducted experiments were fruitful

and led to the discovery of new characteristics for charge tunneling in FGTs with thin-gate

dielectric. Thus, the uncovering of FGT characteristics in a standard 65 nm CMOS process

with 2 nm thin gate-dielectric is novel to the literature, and it presents our first contribution.

For our next contribution, we focused on modeling our newly discovered FGT characteristics

in VerilogAMS and integrating the resulting model into one memristive cell with a CMOS

memristor emulator. The resulting memristive cell represents a novelty for its characterizing

properties. Firstly, it is a hardware-proved model based on extracted measurement results

from our chips. Secondly, it is fabricated using a robust and reliable CMOS process. Finally,

it possesses a robust memristive behavior with a long data retention time.

The final contribution of this dissertation is represented by integrating the obtained memris-

tive circuit into a 4× 4 crossbar array capable of implementing VMM. This is the first step

towards implementing a fully integrated memristive inference engine which we believe it to

be an interesting subject for another Ph.D research project. In the rest of this chapter, we

will discuss some challenges we faced during this research.
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A few words on our decision to adopt 65 nm CMOS process Our decision to

characterize FGTs in a standard 65 nm CMOS process might be challenged since CMOS

technologies have progressed a lot ever since 65 nm technology was launched. In sub 10 nm

processes, for example, dielectric thicknesses are less than or equal to 1 nm, whereas the

65 nm process has a dielectric thickness of around 2 nm. When we decided on 65 nm as

a target technology for our research, we tried to predict the behavior of its dielectric based

on existing literature, and we were confident that this 65 nm; that is and will remain an

industry workhorse for years to come, would suit our end-application.

Our initial prediction for the tunneling voltage thresholds, based on knowledge we had and on

literature available at the time, was quite far from our laboratory measurements, despite our

strong belief that gate tunneling could successfully be used with to 65 nm transistors. Our

characterization efforts for 65 nm yielded critical observations that changed our understand-

ing about how gate tunneling works in advanced CMOS technologies. Although we believe

that our conclusions theoretically apply to all CMOS processes with thin gate dielectric, the

voltage thresholds separating different behavioral regions of the tunneled current will vary

based on dielectric thicknesses, materials, and nanostructure. For example, we expected that

charge tunneling would start around 1.5 V , and that the dielectric breakdown voltage would

occur around 5 V . However, the numbers, extracted from laboratory measurements, were

350 mV and 1.2 V for the tunneling voltage threshold and the breakdown voltage threshold,

respectively. As these numbers relate to transistors rated at 1 V for long term operation, this

was a quite unpleasant surprise to us. On the other hand, with our observations concerning

65 nm, we believe that after our work is published, the perception about gate tunneling and

the feasibility of exploiting the floating gate structure will change. We believe that is very

risky to speculate about the exact numbers for onset of tunneling and dielectric breakage

with any more advanced technology without in-laboratory measurements, especially with the

lack of reported (or CAD-tools embedded) experimentally validated models for floating gate

devices.

In addition, it is important to not forget the challenges that academic researchers face to

secure access to state-of-the art processes notably those offering finfets. At the time of
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completing this thesis, there is no access to any technology below 12 nm for academia in

our country, and for us, such access can only be obtained as part of industry university

collaborations typically aimed at short term returns. Performing curiosity-driven academic

research with sub 10 nm technology may become possible in 3 years for us at Polytechnique

Montreal, but it was absolutely not possible when our technology selection was made for the

research reported in this dissertation.

Finally, it is to be stressed that it is the researcher’s duty to validate the use of a technology

before proceeding to circuit design. The verification can be either through experimenting on

fabricated chips or through foundry provided models built in CAD tools, if they exist.

A few words on the memristive cell The proposed memristive cell in chapter 6 is based

on our characterization efforts for floating gate devices using a standard 65 nm process. Yet,

in to order integrate the derived model into CAD tools without loss of generality, similar

efforts are needed on FGTs with variable dielectric thicknesses and from different processes.

Moreover, during circuit simulations, we discovered some shortcomings in existing CAD

models. This forced us to revisit those models and re-assess them. For example, it was

difficult to simulate an FGT charge trap with the existence of redundant gate resistors (inside

the model) which always drain circuit capacitors to 0 V . Due to these errors, we were forced

into unexpected delays in simulation while investigating modeling errors. One of the measures

we took was to dig into conventional VerilogAMS transistor models, and use them to replicate

the I-V characteristic of MOSFETs from our fabricated chip. The leakage in the developed

model was lower than that of the default internal model.

From another perspective, the proposed memristive cell is a proof of concept that a cell with

such characteristics can be fabricated using a standard 65 nm process. For us, the main

goal was to design, fabricate, model and simulate a memristor with a long retention time

using a reliable CMOS process. Thus, we did not optimize the circuit for scalability, power

consumption or precision.

Finally, a few words on vector matrix multiplication The 4x4 array, that was pre-

sented in chapter 8 as a proof of concept for VMM, is quite small for complex AI algorithms,
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such as Back-Propagation [18]. The 4x4 array is sufficient to solve simple functions as the

XOR function, but not to demonstrate a complex simulation such as the one reported in

[116] using our proposed cell. For the 4x4 VMM array, a simple simulation task for a period

of 1.5 ms required 5 hours on a computer with an i7 Intel processor. This is mainly caused

by the sequential simulation of the proposed VMM array. It is thus necessary to gain access

to CAD tools capable of deploying parallelism in their simulation, just similar to CAD tools

available in industry.

The proposed memristive cell, if used in its current configuration, limits the crossbar array

dimensions. As the number of rows depends on NN architecture, the number of columns

is limited by column bias-voltages. The bias-voltage window is between 0 V and 120 mV .

We recommend a 20 mV step in bias-voltage of neighboring columns. Thus, the maximum

recommended number of columns with circuits that we proposed is 6. Somehow, this is

quite smaller than our preliminary estimate for the crossbar array dimensions as a means to

integrate a DPE comprising millions of memristive crosspoints in a practical device.
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CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary of the Work Done

Many recent articles express concerns for transistor scalability and the end of Moore’s law,

since recent progresses of technology are demanding denser structures, especially in digital

domains. By this dissertation, we contribute to exploring a means to switch computing sys-

tems from digital architectures to more analog and continuous ones, particularly for artificial

intelligence and machine learning.

This led us to propose a memristive cell that gets over two main challenges facing resistive

switching devices: data retention and I-V characteristic curve, while being fabricated using a

robust, reliable and advanced CMOS process with thin gate-dielectrics. On the way towards

solving these challenges, we dove deep into the technology to discover transistors character-

istics, hoping to be able to use its MOSFETs as floating gate transistors and, later, use them

in re-configurable charge traps where data retention time is 10 or more years. We therefore

discovered an unreported behavior for charge tunneling in floating gate transistors in a 65 nm

CMOS process with thin gate-dielectric. The discovered behavior can be described as delicate

due to transistor fragility, sensitivity and vulnerability. In brief, charge tunneling kicked-in

at around 350 mV and continues until reaching 1.2 V , defining four behavioral regions of

operation for the gate-dielectric starting by a no-leakage region before 350 mV followed by

an exponential leakage region while below 550 mV then a linear and irreversible resistive

leakage region while below 1.2 V at which the device became prone to damage, and enters

the damage region. On the other hand, to maintain the cyclical pinched I-V hysteresis for

the cell, we leveraged a memristor emulator, adapted from literature, to match all operating

conditions of the experimented floating gate transistors.

Afterwards, we brought together using control circuitry the memristor emulator and the

floating gate transistor circuit. To simulate the resulting circuit in a well-known CAD soft-

ware, we modeled the floating gate charge trap in VerilogAMS. The resulting architecture

was our memristive cell that was proved to have a pinched I-V hysteresis curve and long data

retention.
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Finally, we placed the resulting memristive cell in a 4 × 4 crossbar structure suitable to

implement vector-matrix multiplication, an indispensable process for analog computing. All

memristive cells in the 4×4 array showed autonomy as well as variability in cell-conductance

programming.

9.2 Summary of Contributions

The main contributions of this dissertation are:

(i) Characterization of floating gate transistors in a standard 65 nm CMOS process with

thin gate-dielectric.

(ii) Implementing a hardware-proved memristive cell that possesses the characteristics of

conventional memristors, and that has long data retention time.

(iii) Integrating the designed memristive cell into a crossbar array as an initial step towards

implementing a complete memristive inference engine.

9.2.1 Publications

In the process of completing this dissertation, two articles have been published, one article

has been submitted, and another is still under development. These publications are presented

below:

(i) Assaf, H., Savaria, Y., & Sawan, M. (2018, December). Vector Matrix Multiplication

Using Crossbar Arrays: A Comparative Analysis. In 2018 25th IEEE International

Conference on Electronics, Circuits and Systems (ICECS) (pp. 609-612). IEEE. (See

chapter 3).

(ii) Assaf, H., Savaria, Y., & Sawan, M. (2019, March). Memristor emulators for an adaptive

dpe algorithm: Comparative study. In 2019 IEEE International Conference on Artificial

Intelligence Circuits and Systems (AICAS) (pp. 13-17). IEEE. (See chapter 4).
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(iii) (Under Revision) Assaf, H., Savaria, Y., Ali, M., Nabavi, M., & Sawan, M. (2022,

May). Implementing floating gate transistors with a thin gate dielectric 65 nm CMOS

technology. Submitted to IEEE Transactions on Electron Devices. (See chapter 5).

(iv) (Under Development) A memristive cell with high endurance and long retention time

for vector matrix multiplication: From hardware to simulation.

9.3 Limitations

Existing CAD tools were the main limitation in this project, and will continue to be for this

type of work in the near future. The lack a proved and validated simulation model for floating

gate transistors delayed us a significant amount of time (around two years). We were unable

to predict the behavior of our circuits prior to fabrication, and the measurement result were

an unpleasant surprise to us.

Another limitation in this project is the size of the crossbar array. Despite that the number of

rows in a crossbar array deploying our memristive cell is only bounded by the neural network

architecture, the number of columns is limited by the voltage range for column bias-voltage

which, in turn, is limited by the studied floating gate transistor sensitivity. In other words.

it is limited by the upper margin of the exponential leakage region in thin gate-dielectric

floating gate devices, which is 650 mV .

9.4 Future Research

On the short term, we plan to develop an error model for the complete crossbar array starting

by the memristive cell. This model ought to account for errors from all sources such as: model

approximation, measurement errors, circuit sensitivity and, above all, sneak path currents.

Moreover, we plan to optimize the memristive cell in terms of size, accuracy, response time

and power consumption.

As for the long term, we plan to design a feedback path from output currents to input

voltages. This step is missing to close the loop for a simple training task, such as the XOR

function. By completing this step, the system will be ready for a large-scale memristive

inference engine that can be fabricated on chip.
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APPENDIX A CHIP 1 DESCRIPTION: SUPPORT MATERIAL FOR

CHAPTER 5

(a) Complete Chip Layout (b) Core Design Layout

(c) Fabricated Chip

Figure A.1 Chip Overview

The main purpose of this chip is to characterize its different components as a preliminary step

to design another chip for analog computing based on memristors. The desired memristor

will contain a floating gate cell, a comparator and a memristor emulator.
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Chip Summary

The full chip layout is shown in FigureA.1(a). It is composed of two parts with 68 PADs.

Figure A.1(b) shows the memristor part of the chip, specifying the name and position of

every cell.

Single FG transistors

(a)

Schematic
(b) 2um

NMOS FG

(c) 4um

NMOS FG

(d) 8um

NMOS FG

Figure A.2 Single NMOS transistors
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(a)

Schematic
(b) 2um

PMOS FG

(c) 4um

PMOS FG

(d) 8um

PMOS FG

Figure A.3 Single PMOS transistors

Matched Transistors

In this chip, we matched some transistors in layout design to make sure that the current

traversing though the two transistors are identical

(a) Schematic (b) Layout

Figure A.4 Matched transistors using common centroid method
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FG Cells with Capacitors and Matched Transistors

(a) Schematic (b) FGN 10fF

(c) FGN 50fF (d) FGN 80fF

(e) FGN 200fF

Figure A.5 FG cells with an NMOS for the FG transistor and variable capacitance values
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(a) Schematic

(b) FGN 50fF with VCO

Figure A.6 FG cell with an NMOS for the FG transistor and a capacitance value of 50fF

attached to a VCO to match the cells based on frequency
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(a) Schematic (b) FGN PMOS 10fF

Figure A.7 FG cell with an NMOS for the FG transistor and a PMOS transistor to substitute

a capacitor of capacitance value 10fF

(a) Schematic (b) FGP 50 fF

Figure A.8 FG cell with a PMOS for the FG transistor and a capacitance value of 50 fF



113

Memristor Emulator Cells

(a) Schematic of SX Cell with Ca-

pacitor

(b) Schematic of SX Cell with a

PMOS as a Capacitor

(c) Layouts

Figure A.9 Different variants of the SX cells
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Memristive Cells

Comparator

(a) Schematic (b) Layout

Figure A.10 The used comparator in the chip

Memristive Cells

(a) Schematic (b) Layout

Figure A.11 The first memristive cell with a 50 fF capacitance
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(a) Schematic (b) FG50 - SX50 layout

(c) FG200 - SX50 layout

Figure A.12 The second memristive cell with a 50 fF capacitance for the SX emulator and

a capacitance of 50 fF or 200 fF for the FG cell
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