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Development of a bottom-up white-box building stock energy model 
for single-family dwellings 

A new bottom-up white-box building stock energy modeling approach is 

presented in this paper. The model is a physics simulation-based stock model that 

can be used to compare the base case building stock with technological variations 

for comparative assessments. The process of characterizing the key parameters, 

such as the number of dwellings in each region and the heating, cooling and hot 

water system distributions, is described in detail. The model accuracy is 

compared to known stock data for a variety of categories, including end-use, 

energy source and building type. The model predicts the energy use of a building 

stock in a Canadian region with good agreement across all categories, with the 

total energy consumption of the model within 1.5% of the real stock energy use. 

The impact of the sample size of the modeled stock is evaluated, which 

demonstrates the importance of a sufficiently large sample to reduce the expected 

deviation for lesser-represented portions of the stock. A case study illustrates how 

the building stock model can be applied for a comparative assessment of different 

heating system distributions for the purpose of greenhouse gas emissions 

calculations, with an emphasis on the impact of measures on the peak electricity 

load of the building stock. 

Keywords: residential; building stock energy model; bottom-up; white-box; 

greenhouse gas emissions 

1 Introduction 

Residential buildings account for approximately 17% of all energy use in Canada, 

compared to 9% for commercial buildings (NRCan 2014). Understanding the context of 

the energy use for residential buildings is essential for long term planning of energy 

efficiency measures and technology evaluation, which has become a priority for Canada 

(Ugursal 2017). There are a variety of applications for building stock modeling. For 

example, the provincial government of Québec has implemented a plan to reduce 

greenhouse gas emissions related to the heating of buildings by 50% by the year 2030 

(Government of Québec 2020). There are nearly 2 million single-family dwellings in 



the province of Québec and non-electric energy usage represents between 22% and 42% 

of energy use for detached and attached homes, respectively, which is primarily for 

space heating and water heating (Figure 1). Space heating represents between 60 and 

70% of the energy use of single-family homes in Québec, which has a predominantly 

cold climate. Reaching the Québec government’s goal of 50% reduced emissions from 

space heating will require shifting fossil fuel energy sources to electricity and has

significant implications on peak and overall electricity use.

Figure 1. Annual energy consumption (GJ/home) by end-use and energy source for detached and attached residential 
dwellings in the province of Québec, Canada (NRCan 2017)

Accurately evaluating the impact of efficiency measures and technology changes 

on the annual and peak energy usage of homes at the municipal, regional or provincial 

level requires the use of some form of building stock energy model (BSEM).

1.1 BSEM approaches

Building stock energy modeling is the process of predicting the energy consumption of 

a large group of buildings, whether at the municipal, regional or national level. 

Comprehensive reviews of BSEM techniques have been performed previously by others 

(Swan and Ugursal 2009; Kavgic et al. 2010; Reinhart and Cerezo Davila 2016; 

Langevin et al. 2020). Methods have been typically divided in three broad categories: 

top-down, bottom-up (engineering), and bottom-up (statistics) (Swan and Ugursal 

2009). More recently a new classification of BSEM has emerged that distinguishes 

stock modeling techniques among the following “quadrants” (Langevin et al. 2020):
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• Quadrant 1: Top-down black-box 

• Quadrant 2: Top-down white-box 

• Quadrant 3: Bottom-up black-box 

• Quadrant 4: Bottom-up white-box 

• Multiple quadrants (hybrid) 

The distinction top-down establishes a building stock’s characteristics, such as energy 

consumption, in aggregate form and subsequently divides the stock according to various 

metrics, essentially starting at the so-called top level and working down to subdivided 

portions of the stock. Bottom-up models establish characteristics at the building level 

and subsequently aggregate the values to the desired level of accuracy, such as at the 

regional level. The black-box designation typically refers to models based on data, i.e. 

statistics-based models, while white-box refers to engineering-based cases that represent 

buildings and systems with physical models. A multiple-quadrant stock model 

combines several quadrants into a single approach (Langevin et al. 2020).  

Langevin et al. (2020) also introduce a labelling system for building stock 

energy models, which categorizes models based on the general purpose of the model, 

the quadrant, the modeling technique used to produce the results, the availability of the 

model, and other factors. New stock models are encouraged to be expressed in terms of 

those descriptors, to facilitate the comparison with other works. 

Booth et al. (2012) identified the following factors as common limitations of 

building stock modeling: 

1) Accuracy: statistics-based models can more accurately represent energy 

consumption in homes because they are based on real energy use, whereas 

engineering-based models require many assumptions. 



2) Data collection: all building stock models require significant information on the 

stock, which is often difficult to obtain. High-resolution energy data requires 

significant data storage space, especially when multiple energy sources must be 

considered. 

3) Computational time: dynamic simulations require more time to perform than 

statistical models, and modeling an entire stock can be prohibitive in terms of total 

time and resources required. 

4) Decision-making: it is difficult to evaluate the propagation of uncertainty in 

engineering-based models, and therefore difficult to establish the impact on 

decisions made using the stock model. 

5) Flexibility: models based on statistical data are effective as long as the base 

assumptions of the stock do not significantly change over time. Statistics-based 

models are not able to easily adapt to leaps in technology or changes in occupancy 

behaviour, for example. 

The factors identified by Booth et al. (2012) are further supported by Langevin 

et al. (2020), who also describe in detail the advantages and limitations of stock 

modeling methods. Top-down methods either have difficulty representing technological 

changes due to the aggregate approach of the model, or require extensive data and an 

expert user to properly disaggregate the stock data into a refined model. Black-box 

bottom-up models require a statistical approach towards establishing building energy 

consumption, relying on energy use data to establish trends. As with the top-down 

models, relying on existing energy consumption data results in a model that is inflexible 

given technological advancements and relies heavily on the availability of data. A 

bottom-up white-box model therefore presents an interesting opportunity that can 



evaluate the impact of various technologies provided the computational requirements 

can be mitigated. 

1.2 Bottom-up white-box (BU/WB) building stock modeling 

While stock models can be used for various applications, energy use (and subsequently 

greenhouse gas emissions) is the focus of the authors. A BU/WB building stock energy 

model (BSEM) has a number of advantages, including but not limited to:  

1) Energy consumption at a high frequency can be determined for each household, 

allowing for more accurate stock peak energy use and greenhouse gas emissions 

based on time-of-use. 

2) New technologies can be implemented gradually by changing probability 

distributions for equipment and evaluating the impact on the stock energy use. 

3) Occupant behaviour can be modified, such as implementing more complex time-of-

use energy incentives. 

4) Regionally-targeted incentive measures can be evaluated and compared to the rest of 

the building stock. 

A number of BU/WB building stock energy models exist in the literature. Several 

residential stock modeling examples are summarized in Table 1 and subsequently 

described in more detail. 

  



Table 1. Examples of recent bottom-up white-box building stock energy models 

Model 
name Stock Stock size1 

Building 
sample 
count (%) 

Features Market Ref. 

CHREM 

National 
(Canada) 

~10 million 
households 

16,952 
(0.17%) 

Hybrid approach between 
engineering and statistical 
techniques, national and 
provincial stock 
representation. 

Residential (Swan et al. 
2012) Provincial 

(Québec) 
~2 million 
households 

3,670  
(0.185%) Residential 

UMI Urban, user-
defined ~30 30  

(100%) 

Flexibility, customized 
input of an urban building 
stock, multiple end-use 
applications 

Commercial, 
residential 

(Reinhart et 
al. 2013) 

CityBES Urban, user-
defined 10 000 10 000  

(100%) 

Flexibility, customized 
input of an urban building 
stock, multiple end-use 
applications 

Commercial, 
residential 

(Hong et al. 
2016) 

ResStock National 
(USA) 

123 million 
households 

350 000  
(0.28%) 

Visualization tools, national 
baseline. Energy sources 
and end-uses by state 

Residential (Wilson et 
al. 2017) 

AutoBEM Urban, user-
defined 130 000 130 000  

(100%) 

Flexibility, uses a number 
of imaging techniques to 
build 3D maps of urban 
settings 

Commercial, 
residential 

(New et al. 
2018) 

Synthetic 
building 
stock tool 

National 
(Switzer-
land) 

1.6 million 
households 

10 000 
(0.6%) 

Auto generation of stock 
characteristic distributions Residential (Nägeli et 

al. 2018) 

TREES National 
(Japan) 53 million 16 000  

(0.03%) 
Detailed occupancy and 
house characteristics Residential 

(Taniguchi-
Matsuoka et 
al. 2020) 

1 Stock size is based on the example use case provided by the authors of the tool. 

The Canadian Hybrid Residential End-Use Energy and GHG Emissions Model 

(CHREM) combines a bottom-up engineering approach with neural networks to 

represent the end-use energy of the Canadian housing stock (Swan et al. 2012). The 

model is based on a database of 16,952 archetypal homes across Canada, which is used 

to model the energy use of individual dwellings. Considering the scope of the model, 

which represents approximately 10 million homes in Canada, the CHREM model 

provides a good approximation of the energy use at the provincial levels. As an 

example, for the province of Québec, Canada, the total energy use of the modeled 

homes is 15% higher than reference data, while electricity use is 33% higher.  

The Urban Modeling Interface (UMI) allows a user to build up an urban 

building stock consisting of various buildings with commercial and/or residential end-

uses (Reinhart et al. 2013). UMI is intended to allow a user to model any collection of 

urban buildings, which requires a user to input the details of the stock manually. Every 



building in the stock is modeled individually and therefore there is no sampling of the 

stock, which limits the model to smaller (urban) building stocks. It is unclear how 

accurate the energy prediction of UMI is, though it is based on EnergyPlus (US DOE 

2013), which is a reliable energy simulation tool.  

Similarly to UMI, the CityBES urban modeling software uses EnergyPlus as an 

engine to model a series of buildings in an urban setting (Hong et al. 2016). The user 

must input the details of the building stock to the model and specify the building 

parameters, which results in a flexible urban model requiring significant user 

manipulation. CityBES has a number of energy conservation measures already 

implemented in the tool, which allows a user to rapidly evaluate the impact of energy 

conservation measures on the stock energy consumption. Much like with UMI it is 

unclear how accurate the energy prediction of CityBES is on a building level, though it 

does include an auto-calibration feature if monthly building energy consumption is 

available. As stated by the creators of CityBES, the computational requirements for a 

large urban stock, such as one million buildings in New York City, become intractable 

and can require a more localized urban model. 

The National Renewable Energy Laboratory (NREL) has developed a national 

residential building stock energy model called ResStock for visualization and energy 

prediction of dwellings across the United States of America (Wilson et al. 2017). 

ResStock uses conditional probability distributions to develop residential archetypes to 

represent dwellings across the country. Much like UMI and CityBES, ResStock relies 

on EnergyPlus to perform energy simulations. The National Baseline data viewer 

developed with ResStock (NREL 2021) is based on a subset of 350 000 buildings that 

represent approximately 123 million dwellings across the USA. The accuracy of the 

energy prediction across a number of housing types falls within ±20% in most cases, 



though some significant discrepancies are identified by the creators of the tool for 

certain housing combinations. Overall, the ResStock tool is a very detailed example of 

what is possible with a BU/WB model with sufficient data on building characteristics. 

However, due to the size of the housing stock in the USA, NREL must rely on a 

relatively small sample size (0.28%) for the aggregated energy consumption at the state 

and national levels. 

The AutoBEM urban energy modeling tool developed by Oak Ridge National 

Laboratories (ORNL) again uses EnergyPlus as a basis for the prediction of urban 

energy consumption. The main differentiating factor for AutoBEM versus other urban 

tools, such as UMI and CityBES, is the use of multiple imaging techniques for the 

creation of 3D geometry of buildings for simulation purposes. It is difficult to evaluate 

the accuracy of AutoBEM as there is little detail provided by the authors on the 

validation of the model. An example of 130 000 mixed-use buildings in an urban setting 

is provided by ORNL in the form of a website (ORNL 2021).  

Nägeli et al. (2018) propose a methodology and a tool based on a so-called 

synthetic building stock model using building stock characterisation and energy 

modeling. The energy consumption is calculated based on the monthly energy demand 

of each building. The tool is limited to a sample size of 10 000 buildings due to 

computational considerations. For the example given of the Swiss residential building 

stock, this results in a 0.6% sample of buildings simulated. The tool uses a detailed set 

of dwelling characteristics to represent each building, with a means to synthetically 

construct a set of dwellings and buildings based on input stock parameter distributions.  

While the tool has generally good agreement with building stock energy use, the tool 

authors acknowledge additional calibration could improve the results. In addition, given 

the monthly energy demand calculations it would be difficult to evaluate the impact of 



energy conservation measures on peak loads and other factors requiring high frequency 

energy consumption data. 

The Total Residential End-use Energy Simulation (TREES) tool is a residential 

building stock energy model developed for Japan (Taniguchi-Matsuoka et al. 2020). 

Detailed occupancy and appliance characteristics are modeled to predict the space 

heating, space cooling, water heating and appliance energy consumption for randomly 

sampled dwellings. A simplistic thermal circuit network method is used to predict the 

heating and cooling loads. The sample size of the modeled stock compared to the total 

building stock is 0.03%, which results in significant discrepancies between reported 

stock energy consumption and the model prediction. Nevertheless, the structure of the 

TREES model illustrates how detailed dwelling characteristics can be implemented in a 

BU/WB stock tool. 

The illustrated BU/WB stock models provide some relevant examples of energy 

prediction tools for dwellings at the urban and national scales. Accuracy of the models 

is a recurring issue, as the sample size is limited by the scope of the stock – urban cases 

can be modeled entirely, while national stocks require a very small sample due to 

computational resource limitations. It is difficult to achieve a high degree of accuracy 

when less than 0.1% of homes are simulated. Few details, if any, are provided on the 

impact of the sample size of BU/WB tools on overall accuracy. In addition, stock 

energy models appear to be mainly focused on energy consumption when peak loads are 

often an important consideration for stakeholders. Most tools are used for comparative 

studies, such as evaluating the impact of an energy conservation measure, in which case 

the absolute accuracy of the tool seems to be secondary to the tool authors.  

2 Objectives 

This paper describes a new bottom-up white-box building stock energy modeling 



(BSEM) approach for single-family home building stocks. The proposed approach is a 

new method of modeling a large number of statistically-representative single-family 

dwellings, which are combined to construct an accurate residential stock model. While 

the general methodology presented in this paper is applicable to other building stocks, 

the authors have applied it to the single-family dwelling market in the province of 

Québec, Canada, a building stock representing 1.9 million detached, semi-detached, row 

and other single-attached homes. Multi-family buildings, such as apartment complexes, 

are not included in the proposed modeling approach. The resulting stock model is called 

the Québec Single-Family Building Stock Energy Model (QSFBSEM). The objective of 

the QSFBSEM is to provide a validated stock model that can evaluate different 

technology and building stock scenarios and study the impact on energy usage and peak 

loads for a variety of energy sources and end-uses. More specifically, this paper aims to: 

1) Present a general methodology to develop a building stock model from a series 

of building energy simulations of individual houses. 

2) Describe the characterisation process of the studied building stock, including a 

description of typical dwellings, population distribution, climate zones and 

common building systems. 

3) Describe the characterization and implementation of the stock model in detail. 

4) Validate the aggregate results of the proposed model with building stock energy 

consumption data. 

5) Present an example application of the stock model. 

6) Discuss how the proposed model improves upon previous works. 

This work builds on a previous study by Neale et al. (2020) that presented a 

methodology to develop a virtual smart meter data set. Some of the building stock 

characterisation was presented previously, though the work by Neale et al. was for 



electricity use profiles only and did not consider other energy sources. In order to 

reduce repetition some details are summarised here and readers can refer to the paper by 

Neale et al. for further details. In many cases, data and probability distributions for 

characteristics have been updated, or additional details were added, and therefore are 

presented in this paper for clarity. 

The main components of the modeling methodology are first described. The 

building stock characterisation process is then presented, with an emphasis on the 

distribution of houses across the studied region, the heating, cooling and domestic hot 

water systems, and other specific parameters of the stock. Some results are provided to 

illustrate the accuracy of the model based on energy source, building type and energy 

end-use. A case study is provided, followed by some discussion and conclusions.  

3 Model description 

The proposed building stock energy model uses a new approach that generates 

individual dwellings according to a detailed stock characterisation process described in 

Section 4 of the paper. Parameters are generated according to interdependent probability 

distributions combined using Bayes’ Theorem, a process described in additional detail 

in Appendix 3. In brief, where applicable, conditional probability distributions are used 

to model houses consistent with the studied building stock.  

Houses are generated independently according to the aforementioned probability 

distributions. The energy consumption for the subset of generated homes is scaled up to 

match the overall building stock size. As an example, typically 200 000 homes are 

generated for a building stock of approximately 1.9 million houses. The impact of the 

size of the building subset is addressed briefly in Section 5 of the present paper and in 

more detail in Appendix 4. The process of combining individually-modeled dwellings 



and aggregating them to the regional- and provincial-level classifies the model as a 

bottom-up white-box building stock energy model, as defined by Langevin et al. (2020). 

The TRNSYS simulation program is used to model the energy use of each 

dwelling in the studied building stock (Klein et al. 2017). TRNSYS was selected as the 

building simulation tool because it had all of the required features to generate and 

simulate the individual houses and interface with another external program, which 

controls the batch simulation process. A user can execute a simulation for a variety of 

stock sample sizes and expect that the correct distribution of house parameters will be 

applied by the model, with some statistical variation. A parallel processing approach is 

adopted to distribute the task to multiple workers due to the number of houses required 

for a building stock simulation. A worker is defined here as a computational thread that 

a task can be assigned to for processing. Typically 20 workers are assigned to the task 

of modeling the building stock. As a point of reference, each set of 1000 houses 

modeled using the stock model requires approximately 30 minutes on a server with an 

Intel Core i9-7920X processor @2.9 GHz, 128 GB of RAM @2133 MHz and a SATA 

III solid-state hard drive. The modeling process is divided into a number of steps 

(Figure 2): 

1) Model initialization: a new house simulation is initialized. Conditions for the stock 

simulation are registered at this stage. For example, limiting the stock simulation to 

a single region instead of all seven regions of the province. 

2) Input generation: the building parameters (Figure 3) for each building are 

generated according to the probability distributions from the stock characterisation 

process and based on the scope of the simulation specified in 1). 

3) TRNSYS file preparation: required TRNSYS simulation files are automatically 

prepared for the current building energy simulation according to the generated 



building characteristics from step 2). The text file inputs have the building 

parameters, such as the dimensions of the house or the thermal properties of the wall 

materials, substituted for each house generated by the model. For the complete 

building stock model this represents 200 000 different sets of inputs. 

4) TRNSYS simulation: an annual building energy simulation for each house is 

performed and energy consumption values are output at 15-minute intervals. Input 

characteristics for each house are also retained and matched with the energy 

consumption. 

5) Worker data: when the desired number of house simulations is reached, the worker 

data is saved. 

6) Postprocessing: worker data are compiled into a single data set. Data is categorized 

by end-use and energy source. Total stock electricity data is retained at 15-minute 

intervals while natural gas, heating oil and wood energy consumption is saved 

annually. 

The Matlab software is used as a platform to distribute the building energy 

simulations to individual workers, generate the building input files and launch the 

TRNSYS building energy simulations (Mathworks Inc. 2018). The building parameters 

and their interdependencies are illustrated in Figure 3. The result is a flexible building 

stock energy model that can generate virtually any number of homes according to the 

input parameters provided to the model. Due to the probabilistic combination of 

building parameters, the generated homes are representative of real buildings in the 

stock and collectively represent the overall energy use of the building stock. 
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Figure 2. General building stock energy modeling approach and model outputs 



 

 

Figure 3. Building parameters generated for each house. Dependencies are illustrated with dashed arrows.  

As mentioned previously, the modeling principles in TRNSYS and the approach 

for specific aspects of the building energy simulation, such as the internal loads, were 

described in another publication (Neale, Kummert, and Bernier 2020). Some features 

are described in brief detail in Table 2 for clarity, and interested readers can refer to the 

original publication for more detail. New or updated building characteristics are 

presented in Section 4 of the present paper. 

  

Region

Building 
type

Area Number of 
floors

Building 
adjacency

Window-to-
wall ratio

Building 
rotation Aspect ratio

Infiltration 
rate

Heating 
system type

Pool

Cooling 
system type

Domestic 
hot water 

type

Portable 
electric spa

Number of 
occupants

Occupant 
activity 
profile

Wall 
thermal 

resistance

Roof 
thermal 

resistance

Foundation 
thermal 

resistance

Window 
type



Table 2. Overview of modeling choices for the building energy simulation of each house. 

Model aspect Detail Reference  
(if applicable) 

Geometry Each house is modeled as a single-zone dwelling with a 
finished basement. Wall surfaces shared with adjacent 
dwellings, such as in row houses, are considered adiabatic. 
The window-to-wall ratio is applied on all aboveground wall 
surfaces not shared by another dwelling. House size is based 
on real house data. 

 

Building envelope 
characteristics 

Wall, roof and foundation thermal resistance are applied 
separately to their corresponding surfaces. Infiltration rate is 
calculated using the Sherman-Grimsrud method. Window 
type is selected from a list of 24 single-, double-, and triple-
glazed models.  

Sherman and 
Grimsrud (1980) 

Internal loads Internal loads due to occupancy are produced using the 
CREST stochastic occupancy model, which includes the 
lighting and appliance loads. Loads are applied as fractional 
convective and radiative heat gains to the indoor 
environment. 

McKenna and 
Thomson (2016) 

Systems Domestic hot water energy demand profiles are generated 
separately from the stock simulation using the TRNSYS 
software. Hot water use is determined using the CREST 
stochastic occupancy model as a function of the number of 
occupants currently active in the home. 

Heating systems are assumed to have infinite capacity unless 
otherwise specified in Table 7. Other characteristics of the 
heating systems are applied to address the building heating 
load as described in Table 7. 

Cooling systems are assumed to have infinite capacity. 

McKenna and 
Thomson (2016) 

4 Building stock characterisation 

The segmentation (sometimes called classification) and characterisation processes are 

often used for building archetype development (Sokol et al. 2016), which is a bottom-up 

white-box technique commonly used for building stock modeling (Swan and Ugursal 

2009; Langevin et al. 2020). Segmentation is the process of determining the parameters 

that differentiate different types of buildings, such as climate zones, house types, etc. 

Characterisation is used to identify the range of values of each parameter given the 

building stock composition, such as detached and semi-detached houses for the house 

type parameter.  

The characterisation process is applied to single-family dwellings in the 

province of Québec to generate accurate houses that fit the range of parameters found in 



the building stock. Characteristics of the housing stock, such as the types of dwellings, 

number of dwellings across the province, heating and cooling systems are described in 

detail. The data collected serves to establish probability distributions used to generate 

combinations of parameters that exist within the building stock. 

4.1 Dwelling types 

The province of Québec, Canada, is characterized by a residential building stock 

consisting of a mix of single-family dwellings (SFD) and multi-residential dwellings 

(MRD). From a modeling point of view there are distinct differences between SFD and 

MRD, such as the boundary conditions above and below a detached home are 

significantly different from an apartment in a multi-residential building. This study aims 

to develop a stock model for SFD only, and therefore targets the following types of 

homes: 

• Single-detached homes (Det) 

• Semi-detached homes (Semi) 

• Row houses (Row) 

• Other single-attached (OSA) 

The four building types in the list above, depicted in Figure 4, are commonly used by 

national statistics and energy data publications in Canada to present dwelling 

distributions and energy consumption data. Occasionally reference data is presented for 

“Detached” and “Attached” homes, in which case Semi, Row and OSA homes are 

combined for the latter category as they all share external boundaries with adjacent 

buildings. 

 



 
  Detached Semi-detached Row Other single-attached 

Figure 4. Single-family dwelling (SFD) types in the province of Québec, Canada. 

Houses in the studied building stock are most commonly one or two-storeys plus 

a heated basement. The number of storeys is dependent on the type of dwelling, with 

Semi, Row and OSA more commonly having two-storeys (NRCan 2018). The heated 

surface area of the dwelling also depends on the building type and number of storeys. 

4.2 Number of dwellings by region 

There is a variety of sources for data related to the number of residential dwellings in 

the Province of Québec, Canada. The Canadian Census of Population Program (CCPP) 

from Statistics Canada is a reliable source for Type of Dwelling data since 2016, where 

census responders indicate relevant characteristics of the home that they live in 

(Statistics Canada 2016). The CCPP divides Canada into a number of Census 

Metropolitan Areas (CMA), which are population hubs of more than 100 000 people of 

one or more neighbouring municipalities where at least 50 000 individuals live in the 

urban core, and Census Agglomerations (CA), which have a core population of at least 

10 000 (Statistics Canada 2016). The province of Québec has 6 CMA regions and 24 

CA regions, which are illustrated on the population density map in Figure 5 (Statistics 

Canada 2019).  

COMMERCIAL



Figure 5. Population distribution of the province of Québec, Canada, with CMA and CA regions superimposed. 
Adapted from Statistics Canada (2019). Approximate latitude lines are indicated for reference.

The six CMA regions represent significant concentrations of the population and, 

consequently, of dwellings. Energy use data for the province of Québec is often 

expressed in terms of these CMA regions, with a seventh region entitled “Québec non-

CMA”, which represents the remainder of the province (NRCan 2015). The distribution 

of single-family dwellings (SFD) across these seven regions is presented in Table 3

(Statistics Canada 2016).
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Table 3. Distribution of occupied dwellings for Québec CMA areas. DF: dwelling fraction, SFD: single-family 
dwelling, Det: single-detached house, Row: row house, Semi: semi-detached house, OSA: other single-attached 
house (Statistics Canada 2016). 

 Number of dwellings by region  Dwelling fraction (DF) by region 
Regions SFD Det Row Semi OSA DFSFD DFDet DFRow DFSemi DFOSA 

R1 Québec 
Non-CMA1 780,600 670,777 22,342 78,255 9,225 0.4108 0.8593 0.0286 0.1003 0.0118 

R2 Saguenay 44,195 36,900 5,455 1,580 260 0.0233 0.8349 0.0358 0.1234 0.0059 

R3 Québec 
City 180,380 148,965 21,135 8,935 1,345 0.0949 0.8258 0.0495 0.1172 0.0075 

R4 Sherbrooke 49,780 42,630 4,320 2,455 375 0.0262 0.8564 0.0493 0.0868 0.0075 

R5 Trois-
Rivières 40,710 33,720 4,785 1,845 360 0.0214 0.8283 0.0453 0.1175 0.0088 

R6 Montréal 713,710 564,230 86,460 56,770 6,250 0.3756 0.7906 0.0795 0.1211 0.0088 

R7 Gatineau 90,845 64,710 17,890 7,955 290 0.0478 0.7123 0.0876 0.1969 0.0032 

Total SFD 1,900,220 1,602,675 188,245 93,355 15,945      

1 The dwelling fraction values for Québec non-CMA are extrapolated from the number of houses for the 24 census 
agglomerations regions, i.e. 230 000 dwellings are extrapolated to represent 780,600. 

The seven identified regions represent 100% of the single-family dwellings in 

the province of Québec, Canada, which is approximately 1.9 million houses (2017 

data). The value of 𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 represents the fraction of all single-family dwellings in each 

region. The following columns, 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷 to 𝐷𝐷𝐷𝐷𝑂𝑂𝑆𝑆𝑂𝑂, respresent the corresponding fraction 

of dwellings of that type for that region. As an example, 9.49% of single-family 

dwellings are located in R3 Québec City, and of those 82.6% are detached houses.  

The 24 CA regions represent approximately 230 000 dwellings, which is 31% of 

the Québec non-CMA amount of 780 600 (Statistics Canada 2016). The remainder of 

the homes are located in less densely populated areas in relative proximity to the CA 

and CMA regions or in small settlements in the far north of the province. For the 

purpose of this study, the 24 CA regions identified in Figure 5 are considered to provide 

an accurate representation of the Québec non-CMA portion of the building stock, as 

they are the highest concentration of buildings outside of the metropolitan areas. The 

distribution of homes in the 24 CA regions is therefore extrapolated to be equal to the 

total number of homes in the remainder of the province. The description of the 24 sub-



regions of R1 is provided in Appendix 1 in Table A-1. The results of the 24 sub-regions 

are aggregated and referred to as Québec non-CMA for the remainder of this study.

4.3 Weather data

Building energy models often use typical weather files to standardize the heating and 

cooling loads and to remove the annual fluctuation in conditions found in real weather.  

The Canadian Weather year for Energy Calculation (CWEC) files serve that purpose for 

Canadian regions (Government of Canada 2021). CWEC files contain 12 distinct

typical meteorological months that are selected from a database of 30 years of weather 

data. Each combination of months is distinct for each region, which results in months 

selected from different years of data for each weather file. When modeling a building 

stock with multiple climate zones, non-coincidental peaks pose an issue as the peak 

energy use does not occur at the same moment for each region. As an example, the 

outdoor dry bulb temperature from CWEC files for the six CMA regions are illustrated 

in Figure 6 (left) for the month of December. Each region is identified with the 

corresponding year that the month of December is taken from, i.e. R2-2009 indicates 

the calendar year 2009 for region R2.

Figure 6. Outdoor dry bulb temperature for 6 CMA locations across the province of Québec for CWEC weather data
(left) and 2017 CWEEDs data (right)

The temperature curves in Figure 6 (left) appear to be independent, except for 

R2 and R3, which both use the 2009 data for the month of December. For the purpose 



of comparison, the Canadian Weather Energy and Engineering Datasets (CWEEDs) 

data for 2017 is depicted in Figure 6 (right) for the same six CMA regions of the 

province (Government of Canada 2021). While there are regional differences, the 

general temperature trend is the same across the six illustrated regions for the CWEEDs 

data. For the purposes of modelling a building stock’s energy consumption and peak 

load, a set of coincident weather data for the relevant regions is necessary for accurate 

prediction of the peak heating load. In addition, there is energy consumption data for 

validation purposes for specific years. After comparing multiple years of weather data, 

the calendar year 2017 is selected for the results presented in this paper, though the 

model can function with any year of weather data. For comparison purposes, the heating 

degree-days (HDD@18°C) for the 2017 CWEEDs data vary between approximately 

4000 and 5400 degree-days across the studied building stock. 

4.3.1 Weather for R1: Québec Non-CMA 

Aside from the six census metropolitan areas, which represent a significant portion of 

the building stock, a seventh region is required to represent the remainder of the homes 

in the province. The 24 census agglomeration regions are selected to divide the 

remaining buildings into populated regions spread across Québec, as illustrated in 

Figure 5.  The closest weather station to each CA region was identified geographically. 

A house in Québec non-CMA is therefore assigned to one of the 24 weather stations 

according to the probability distribution described in Table A-1 in Appendix 1.  

4.3.2 CWEEDs missing cloud cover data 

In the process of analysing the CWEEDs weather data for the 30 regions of this study it 

was discovered that Environment Canada no longer recorded Total Sky Cover or 

Opaque Sky Cover for most weather stations across the province of Québec from 2013 



onwards. In some cases, such as at certain airports, Total Sky Cover was recorded but 

only at 3-hour intervals. The TRNSYS building energy simulation software used in this 

study requires the Opaque Sky Cover in order to determine the sky temperature for 

longwave radiation calculation (Klein et al. 2017). In order to correct this issue a 

methodology is applied to fill the Total and Opaque Sky Cover values in the weather 

files used for the building stock model, which is presented in Appendix 2. 

4.4 Building envelope characteristics 

The construction year of a home is not a strong indicator of the building envelope 

characteristics for the studied building stock. The building envelope is therefore better 

characterized directly by wall, roof, foundation thermal resistance, window type and 

leakage area, as opposed to construction vintage. Probability distributions for house 

characteristics related to the building envelope are determined from the Energuide 

Housing Database containing over 27 000 homes in the studied building stock (NRCan 

2018). 

4.5 System characterization 

The single-family residential building stock studied in this paper relies on a variety of 

space heating, space cooling and water heating technologies. The characterization 

process for these systems is described in the following sections of the paper, which will 

be used for modeling purposes in the building energy simulation program.  

4.5.1 Space heating 

The data related to the prevalence of different heating technologies for attached and 

detached dwellings for the studied building stock is presented in Table 4, which 

originates from the Canadian Comprehensive Energy Use Database (CEUD) (NRCan 



2017). Systems representing less than 1% of the building stock are excluded, whether 

for attached or detached dwellings. Heating systems are labelled from H1 to H8. 

Table 4. Heating system distribution for the Province of Québec for single detached and single attached homes 
(NRCan 2017) 

Primary heating system description 
Detached Attached 

#units 
(thousands) Probability #units 

(thousands) Probability 

H1 Heating Oil – Medium Efficiency 134.5 0.078 28.0 0.085 
H2 Natural Gas – High Efficiency 52.1 0.030 10.8 0.033 
H3 Electric 741.3 0.432 227.4 0.689 
H4 Heat Pump 212.3 0.124 16.6 0.050 
H5 Wood/Electric 370.3 0.216 10.5 0.032 
H6 Wood/Heating Oil 94.9 0.055 4.1 0.012 
H7 Heating Oil/Electric 111.4 0.065 16.2 0.049 
H8 Wood 0.0 0.000 16.5 0.050 

The heating system data from (NRCan 2017) provides an average distribution 

across all regions for the studied building stock. There are significant differences 

between the detached and attached heating system distributions, most notably in the 

increased prevalence of electric baseboard heating (H3) in attached houses and the lack 

of wood-heated (H8) detached houses. In addition, the Survey of Household Energy 

Use of 2015 includes data on primary heating system energy type by region, illustrated 

in Table 5 (NRCan 2015).  

Table 5. Fraction of homes by region based on primary heating energy (NRCan 2015) 

 Electricity Natural gas Wood Unknown1 

R1 Québec Non-CMA 0.763 - 0.178 0.060 
R2 Saguenay 0.920 - - 0.080 
R3 Québec City 0.870 - - 0.130 
R4 Sherbrooke 0.830 - - 0.170 
R5 Trois-Rivières 0.897 - - 0.103 
R6 Montréal 0.882 - - 0.118 
R7 Gatineau 0.289 0.623 - 0.088 

 1 Data missing or unaccounted for 

While there are significant gaps in the SHEU data set in Table 5, there are 

several important details that can be used to complement the data presented in Table 4. 

For example, there is a prevalence of natural gas heating in R7 Gatineau that is 



uncharacteristic of the remainder of the province, and wood heating is more common in 

the outlying regions of R1 Québec Non-CMA. Electricity-based systems are considered 

to be distributed according to the electricity fraction in Table 5. The unknown column 

represents missing data and is presumed to belong to heating systems not represented in 

the included data. As an example, for R2 Saguenay the 0.08 fraction of missing data is 

distributed among systems without electric primary heating, i.e. H1, H2, H6 and H8. 

The combination of the probability distributions in Table 4 and Table 5 result in 

regional probability tables for the heating systems of detached and attached buildings in 

Table 6. 

In order to illustrate how the values in Table 6 are determined, consider the case 

for R1 (Québec Non-CMA) for single-detached homes. The fraction of electric-heated 

homes for R1 is 0.763 from Table 5. Heating systems using electricity (H3, H4, H5 and 

H7) are distributed based on the weighted distribution in Table 4. Wood systems 

represent a fraction of 0.178, though only hybrid wood systems are found in detached 

homes for the studied building stock. Therefore the wood/heating oil systems are 

assumed to represent 0.178 of systems in R1, since wood/electric heating is considered 

primarily an electric system and there are no wood-only systems (H8) in R1. The 

remaining heating systems (H1 and H2) are therefore distributed according to the 

unknown fraction 0.060 from Table 5 according to their respective probabilities. 

  



Table 6. Heating system probability by region. Highlighting by data source from Table 5: electric, natural gas, wood 
or unknown. 

 Heating system fraction by region 

Region 
H1 

Heating oil 
H2 

Natural 
gas 

H3 
Electric 

 

H4 
Heat pump 

H5 
Wood/ 
Electric 

H6 
Wood/ 

Heating oil 

H7 
Heating 

oil/ 
electric 

H8 
Wood 

 

Single detached        

R1 0.043 0.017 0.394 0.113 0.197 0.178 0.059 0.000 
R2 0.038 0.015 0.475 0.136 0.237 0.027 0.071 0.000 
R3 0.062 0.024 0.450 0.129 0.225 0.044 0.068 0.000 
R4 0.081 0.032 0.429 0.123 0.214 0.057 0.064 0.000 
R5 0.049 0.019 0.463 0.133 0.231 0.035 0.070 0.000 
R6 0.056 0.022 0.456 0.130 0.228 0.040 0.068 0.000 
R7 0.052 0.623 0.149 0.043 0.074 0.036 0.022 0.000 
Single attached        

R1 0.043 0.017 0.641 0.047 0.030 0.035 0.046 0.142 
R2 0.038 0.014 0.773 0.056 0.036 0.006 0.055 0.022 
R3 0.061 0.024 0.731 0.053 0.034 0.009 0.052 0.036 
R4 0.080 0.031 0.697 0.051 0.032 0.012 0.050 0.047 
R5 0.049 0.019 0.754 0.055 0.035 0.007 0.054 0.029 
R6 0.056 0.021 0.741 0.054 0.034 0.008 0.053 0.033 
R7 0.051 0.623 0.242 0.018 0.011 0.007 0.017 0.030 

The eight identified heating systems operate according to the descriptions 

provided in Table 7. Single energy source systems are assumed to cover the entire 

heating load of a dwelling. Hybrid systems are attributed specific fractional loads based 

on the prevalence of those types of systems in the studied province. For example, 

favourable electricity rates are provided to homeowners with hybrid electric and heating 

oil systems when the outdoor temperature is below -12°C (Hydro-Québec 2021), and 

therefore these types of systems are assumed to transition between systems at low 

temperatures.  

 



Table 7. Detailed heating system descriptions. O: heating oil, NG: natural gas, E: electric, W: wood. OAT: Outdoor air temperature. 

Heating system  Description System details Secondary 
electricity use 

System efficiency 

H1 Heating Oil – 
Medium Efficiency 

Heating oil boiler or 
furnace  

Heating load 100% covered by heating oil-fired system. 2.39%1 O: 0.782 

H2 Natural Gas – High 
Efficiency 

Natural gas boiler or 
furnace 

Heating load 100% covered by natural gas-fired system. 2.39%1  NG: 0.902 

H3 Electric Electric baseboard or 
electric furnace 

Heating load 100% covered by electric heating element system, i.e. 
baseboard heating or electric furnace. 

N/A E: 1.002 

H4 Heat Pump Air-source heat pump 
with auxiliary electric 
element  

OAT above -5 °C: Heating load 100% covered by heat pump. 
OAT below -12 °C: Heating load 100% covered by electric heating 
elements. 
OAT between -5 °C and -12 °C: linear fraction transitioning between 
the two systems as a function of temperature. 

 

N/A E: 1.002 
 
Heat pump3:  
COP = 0.0585 OAT + 3.115  

H5 Wood/Electric Electric baseboard or 
electric furnace with 
wood stove or fireplace 

OAT below 0 °C: wood-fired system (i.e. fireplace or stove) 
contributes up to 40,800 kJ/h for detached houses and 23,800 kJ/h for 
attached houses to the heating load, with the remainder covered by 
electric heating elements.1 

OAT above 0 °C: heating load 100% covered by electric heating 
elements. 

N/A W: 0.502 
E: 1.002 

F = 0.1429 OAT + 1.7143
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Heating system  Description System details Secondary 
electricity use 

System efficiency 

H6 Wood/Heating Oil Heating oil boiler or 
furnace with wood 
stove or fireplace 

OAT below 0 °C: wood-fired system (i.e. fireplace or stove) 
contributes up to 40,800 kJ/h for detached houses and 23,800 kJ/h for 
attached houses to the heating load, with the remainder covered by 
heating oil system. 
OAT above 0 °C: heating load 100% covered by heating oil system. 

2.39%1 W: 0.502 
O: 0.782 

H7 Heating Oil/Electric Heating oil boiler or 
furnace with electric 
baseboard or furnace 

Considered a hybrid system following hybrid electricity rate 
operation4, transitioning at low outdoor temperatures to non-electric 
systems. 
OAT below -12 °C: heating load 100% covered by heating oil 
system. 
OAT above -12 °C: heating load 100% covered by electric heating 
elements. 

2.39%1 O: 0.782 
E: 1.002 

H8 Wood Wood stove, fireplace 
or furnace 

Heating load 100% covered by wood-fired system. N/A W: 0.502 

1 Based on 7 kWh/MMBtu average (NYSERDA 2013) 
2 NRCan (2017) 
3 Johnson (2013) 
4 Hydro-Québec (2021) 
 
 
 



4.5.2 Space cooling 

The presence of an air conditioning (AC) system varies by region according to the 

Survey of Household Energy Use of 2015 (NRCan 2015). The SHEU data set has data 

indicating the presence of a central air conditioner, window air conditioner or no air 

conditioner. However, since the data for homes with central versus window AC is 

unreliable or missing, the probability is expressed simply as whether AC is present or 

not for each region.  

Table 8. Air conditioning prevalence in the studied building stock (NRCan 2015).  

Region AC No AC 
R1 Québec Non-CMA 0.376 0.624 
R2 Saguenay, Québec 0.539 0.461 
R3 Québec, Québec 0.366 0.634 
R4 Sherbrooke, Québec 0.596 0.404 
R5 Trois-Rivières, Québec 0.630 0.370 
R6 Montreal, Québec 0.680 0.320 
R7 Ottawa-Gatineau, Ontario/Québec 0.879 0.121 

In addition, if a home has a heat pump heating system (H4), the house is 

presumed to have air conditioning as most residential heat pumps are reversible. 

Finally, the average Energy Efficiency Rating (EER) of cooling systems in the province 

of Québec is EER=14 (NRCan 2017), which is applied as a constant coefficient of 

performance (COP=4.1).   

It should be noted that the data from SHEU for air conditioning is for all 

residential dwellings, including multi-residential apartment buildings. Other data 

sources related to air conditioning exist, but the SHEU data is retained because it 

differentiates the probability of a cooling system by region, which has a significant 

impact on the distribution of air conditioners in the province.  



4.5.3 Water heating 

Water heating for domestic purposes is predominantly electric for the studied building 

stock. The probability of a home’s domestic hot water (DHW) energy source is 

presented in Table 9 (NRCan 2017). Water heating systems using the Other category 

are negligible for the studied building stock and are not represented in the model. 

Table 9. Domestic hot water system distribution by energy source (NRCan 2017). 

Water heater type PDHW 

Electric 0.930 
Natural gas 0.042 
Oil 0.021 
Other 0.007 

The domestic hot water fuel type is dependent on the primary heating energy 

source. Homes with primary electric heating systems are 99.2% likely to have electric 

water heating (NRCan 2018). Dwellings with non-electric primary heating often have 

non-electric DHW systems, though this is not universally true. Homes with natural gas-

based heating systems have a 66.1% probability of having natural gas water heating, 

and houses with heating oil-based heating systems have 22.5% probability of having 

heating oil domestic hot water heating (NRCan 2018).  

4.6 Occupancy 

The number of occupants for the studied building stock is based on the type of building, 

which in turn depends on the region where the house is located.  Due to the limitations 

of the stochastic occupancy model used to represent the internal loads of each house, the 

maximum number of occupants is set to 5 (McKenna and Thomson 2016). Additional 

details on the modeling of internal loads are presented in Section 3 of this paper. 

5 Stock model results 

The energy consumption by end-use and energy source is available for detached and 



attached buildings in the studied building stock (NRCan 2017). The end-use values 

include space heating, water heating, appliances, lighting and space cooling, while 

energy sources include electricity, natural gas, heating oil and wood. The single-family 

dwelling building stock combines detached and attached dwellings to include 

approximately 1.9 million homes in total, which are represented by a sample of 200 000

simulated dwellings. The exact number of houses used to represent the stock has an 

impact on the total energy consumption, which is discussed in more detail in Appendix 

4. With a subset of 200 000 dwellings, the expected deviation on the total stock energy 

consumption due to the random generation of the building characteristics is under 1%.

Considering the three dwelling categories and ten energy consumption values, 

this provides a total of 30 points of comparison for the building stock energy model, 

which are illustrated in Figure 7.

Figure 7. Model versus stock energy consumption for detached (DET), attached (ATT) and all single-family 
dwellings (SFD)

The total stock energy consumption values are illustrated in petajoules in Figure 

7. There is good agreement for the end-use categories (space heating, water heating, 

appliances, lighting and space cooling). There are some differences in the natural gas, 

heating oil and wood categories, which predominantly contribute to space heating and 
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water heating. Overall, the model provides total stock energy consumption within 

1.58% of the stock data (NRCan value of 252.9 PJ compared to the model value of 

248.9 PJ). In order to visualize these differences further, the modeled per-house energy 

consumption for all single-family dwellings is illustrated as a box and whisker plot in 

Figure 8.

The box in Figure 8 illustrates the interquartile range for the energy 

consumption by category for the 200 000 homes of the building stock energy model 

sample. Outliers are indicated as red data points. Most houses with natural gas and 

heating oil are considered outliers due to the fact that only a small percentage of homes 

are heated with those systems, and therefore most houses in the studied stock have zero 

natural gas and heating oil energy consumption. As a further example, the Space 

heating box plot illustrates the mean space heating energy consumption of the SFD 

stock as a black X symbol, the mean space heating energy according to known stock 

data (NRCan 2017) as a semi-transparent blue circle.

Figure 8. Box and whisker plot of the modeled single-family dwelling (SFD) energy consumption by end-use and 
energy source



Overall, the proposed building stock energy model has good agreement across the 30 

studied end-use and source energy consumption categories. Further improvements could 

be made in the future to adjust the heating system distributions and/or refine the 

validation energy consumption values as additional information becomes available. The 

authors are satisfied that the proposed building stock energy model is a close 

representation of single-family dwellings in the province of Québec, Canada. 

6 Case study 

The government of Québec has the objective of reducing greenhouse gas emissions 

(GHG) related to space heating in buildings by 50% for 2030 (Government of Québec 

2020). While the proposed building stock model is not a long-term energy projection 

model, a comparative assessment between two or more stock configurations can be 

performed. In order to study the effect of energy consumption changes on GHG 

emissions, the emissions factors for the province of Québec are first presented. The 

proposed scenarios are then compared, illustrating the impact of changes to the single-

family dwelling space heating market on the energy consumption, GHG emissions and 

peak electricity use. 

6.1 Greenhouse gas emission factors 

As described previously, energy use in single-family dwellings in the province of 

Québec, Canada, consists primarily of electricity, natural gas, heating oil and wood. 

These energy sources each have distinct CO2 equivalent emission factors, which are 

provided in Table 10 for electricity, natural gas, heating oil and wood.  

  



Table 10. Greenhouse gas emission factors for energy sources in the province of Québec  

Energy source gCO2eq•kWh-1 Ref. 

Electricity 2.0 TÉQ (2019) 

Natural gas 178.3 TÉQ (2019) 

Heating oil 254.9 TÉQ (2019) 

Wood 84.5 NRCan (2017) 

The emissions factors in Table 10 are considered constant for the entire year, 

with the exception of electricity. Electricity production in the province of Québec is 

predominantly hydroelectric and is estimated to generate CO2 equivalent emissions at 

the rate of 2.0 gCO2eq•kWh-1 (Transition Énergétique Québec 2019). During peak 

electricity usage hours, a non-negligible portion of the electricity in the province is 

imported from neighbouring provinces and states, which is called short-term imported 

electricity and is illustrated in red in Figure 9 for December 2017 (Régie de l’énergie 

2017).  

 

Figure 9. Calculated CO2 equivalent emission rates in December 2017 for electricity in the province of Québec and 
electricity usage by source for all sectors. 

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

H
ou

rly
 e

le
ct

ric
ity

 (M
W

h)

Ca
rb

on
 e

m
is

si
on

s (
gC

O
2e

q/
kW

h)

December 2017

Hydroelectricity
Short-term imported electricity
Net emissions factor



According to the local electricity distributor, 97.5% of short term electricity 

purchases are from Ontario (Hydro-Québec 2017). To simplify the GHG case study 

analysis, the short term electricity imports for Québec are calculated using marginal 

seasonal emission factors for the province of Ontario, which vary hourly between 90 

and 150 gCO2eq•kWh-1 (The Atmospheric Fund 2019). Combining the base electricity 

emissions factor of 2.0 gCO2eq•kWh-1 for local hydroelectricity with the short term 

imported electricity from Ontario results in a net emissions factor that varies 

approximately between 2.0 and 26.0 gCO2eq•kWh-1, depending on the day and time of 

year (Figure 9).    

While a large increase to the peak electricity usage would theoretically result in 

more short-term imports, in reality sweeping changes to the building stock would not 

occur in a short time frame. It is likely that the local electricity distributor would adjust 

the hydroelectric production to account for any large increases to the stock electricity 

use. Therefore, emissions rates for additional electricity use are calculated at the rates as 

the current stock, as described above. 

6.2 Case study: 50% reduction in GHG emissions for space heating 

In order to study the impact of reducing GHG emissions due to space heating, three 

scenarios are compared: 

1) Base case: the status quo single-family building stock for the province of 

Québec, Canada. 

2) Scenario 1: 50% of heating systems with non-electric energy sources are 

converted to baseboard electric heating (heating system H3, Table 4), a common 

cheap alternative widely used in the province of Québec. 

3) Scenario 2: 50% of heating systems with non-electric energy sources are 

converted to cold climate heat pump heating systems. 



Cases are compared based on the annual space heating energy consumption, the GHG 

emissions for each energy source and the maximum peak load. Heating system 

distributions are updated by modifying the probabilities presented in Table 6, shifting 

heating systems with non-electric energy sources to electric systems as described in the 

scenario descriptions. This is accomplished by modeling different sets of 200 000 

houses, each generated with specific probability distributions. In the case of Scenario 2, 

the coefficient of performance (COP) is implemented as a function of outdoor air 

temperature based on measured data (Johnson 2013). The total building stock energy for 

each hour of the year is then compared for the studied cases.

The total stock emissions and space heating energy consumption are presented 

for the base case and two scenarios in Figure 10. Total emissions and energy 

consumption are similar to the reference data by NRCan (2017). Most of the emissions 

in the province originate from the non-electric energy sources, and therefore reducing 

the heating systems using those energy types by 50% has the desired effect of reducing 

overall emissions by 48%. In terms of the energy consumption for Scenarios 1 and 2, 

reductions in total space heating energy use for single-family dwellings reach 10% and 

21%, respectively. These decreases in space heating energy are largely due to the 

improvements in heating system performance when comparing electric systems to their 

nonelectric counterparts.

Figure 10. Annual CO2 equivalent emissions and total space heating energy consumption for the studied cases. Stock 
reference data from Natural Resources Canada is also provided for comparison (NRCan 2017).
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The difference in peak loads between the base case and Scenarios 1 and 2 are 

compared in Figure 11, which are illustrated for the month of December 2017. While 

emissions and annual space heating energy are reduced for both scenarios, the peak 

electricity use increases significantly. For Scenario 1, shifting nonelectric heating to 

baseboard heaters has the result of increasing the peak load over the normal SFD stock 

value by approximately 35%, or the equivalent of 4000 MW. For Scenario 2, the 

improved efficiency of the heat pumps mitigate the impact on the peak load, but still 

increase it by up to 20%, or approximately 2500 MW. During milder periods, the 

electricity load can occasionally decrease below the normal level of the base case 

scenario due to the higher efficiency of the heat pumps at milder temperatures. 

However, decreasing the load at other moments of the year does not aid the electricity 

distributor, as the maximum electricity production capacity of the stock is sized for the 

peak usage of the province, which would increase under both scenarios.  

 

Figure 11. Peak load percent difference for Scenarios 1 and 2 with respect to the base case scenario. 
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systems. The case study demonstrates that the studied building stock can achieve the 

desired greenhouse gas reductions by shifting heating systems to electric alternatives, 

but at the cost of a significant increase to the peak electricity load. If not addressed 

properly by the local electricity distributor, the marginal electricity use for such 

scenarios could result in additional short-term electricity purchases from neighbouring 

sources with much higher electricity emission rates.  

7 Discussion 

Building stock energy models are an essential tool required for accurate estimation of 

energy efficiency measure evaluation, peak load assessments, comparative assessments 

of technology upgrades, and many other possible applications. The proposed model is 

designed in a way that produces a set of dwellings representative of the studied building 

stock. As shown in the case study section, the probability distributions used to generate 

the building parameters can be modified to compare between different configurations of 

building stocks, including the evaluation of a subset of buildings by region, by building 

type, by heating technology or other characteristic. The flexibility of the proposed stock 

model allows for many possible applications, for example: 

• Evaluating the impact of a provincial energy efficiency upgrade measure 

targeting the replacement of double-glazed windows with triple-glazed 

windows, which could be accomplished by comparing the base case building 

stock with a new set of modeled homes with different window probability 

distributions. 

• Determining the impact of a new community of 2000 homes on the electrical 

grid, which could be accomplished by modeling 2000 homes with representative 



probability distributions and/or parameters fixed to correspond to the design of 

the new homes (i.e. wall thermal resistance values, etc.). 

• Evaluating different occupancy patterns on the peak electrical demand, by 

modeling a new set of homes with specific occupancy patterns and comparing to 

the existing building stock. 

• Etc. 

The case study presented in the paper illustrates how a provincial greenhouse 

gas reduction target can potentially be achieved, but at the cost of a significant increase 

in peak electricity load. The proposed building stock energy model allows for an hourly 

comparison of electricity usage of the building stock, which allows for additional time-

dependent analysis of greenhouse gas emissions and evaluation of the best measures 

based on marginal emission rates. Future studies can leverage the flexibility of the 

proposed model to evaluate a wide variety of building stock configurations. 

8 Conclusion 

The bottom-up white-box building stock energy model developed by the authors 

represents the single-family dwelling market for the province of Québec, Canada. The 

characterization process applied to the provincial stock data ensures that each region 

reflects the real distribution of systems and building characteristics according to the best 

available information. By implementing region-specific probability distributions, the 

stock model can then be applied to different areas of the province, such as the city of 

Montreal, rural areas, or to the entire province. The model is described using the stock 

energy model labelling system proposed by Langevin et al. (2020): 

Country: Canada (province of Québec) 
Model name: QSFBSEM 
Model use: A static bottom-up white-box stock model for comparative 
assessment of residential stock energy use. Energy can be categorized by end-



use and by source, and peak electricity demand can be assessed. Appropriate for 
technological evaluation and greenhouse gas emissions studies. 
Model classification quadrant: Q4 (physics simulation) 
Additional details: N/A. 

The QSFBSEM improves upon previous iterations of bottom-up white-box 

building stock energy models by accurately representing the sub-regional stock 

characteristics and by producing combinations of building parameters representative of 

the building stock. The compromise made in the development of the model is a high 

requirement in the number of buildings modeled to represent the stock, which demands 

a significant time investment to complete a simulation. The user can opt to model fewer 

houses however at the cost of some accuracy, as demonstrated in Appendix 4. Smaller 

portions of the stock, such as a community in one of the regions of the building stock, 

do not have this issue and can be modeled relatively rapidly with the proposed model. 

As a result, comparative studies for rural community building technologies can become 

an interesting application for the QSFBSEM. The capability to introduce technological 

changes to the building stock and evaluate them addresses one of the issues raised by 

Booth et al. (2012), described as the flexibility of building stock models. One of the key 

features of white-box models is the capability to evaluate technological changes 

immediately with simulation, rather than waiting for data to develop a statistics-based 

model. For the proposed model, the probability distributions can be altered to perform a 

direct comparison between different configurations of building stock characteristics, or 

a new technology can be introduced to a portion of the stock. 

The total stock energy consumption of the model is within 1.6% of the 

provincial single-family dwelling stock data for 2017.  As a point of comparison, the 

CHREM model (Swan et al. 2012) predicts total provincial energy consumption within 

15% of the reference data. Electricity consumption is over-predicted by the CHREM 

model by 33%, compared to 7% with the proposed model. However, it is important to 



note that CHREM is a national model that covers the entire country of Canada and uses 

a different validation approach than the QSFBSEM, and therefore some differences are 

to be expected. The proposed model and methodology nevertheless represents a 

significant improvement over other existing models for the studied building stock. 
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Appendix 1: Weather stations for each region of the studied building stock 
Table A-1. Weather stations for each region of the studied building stock. CMA: census metropolitan area, CA: 
census agglomeration. 

Number Region 
type Fraction Location name Nearest weather station 

R1-01 CA 0.0156 Alma CAN_QC_JONQUIERE_7063370 
R1-02 CA 0.0144 Baie-Comeau CAN_QC_BAIE-COMEAU_704S001 
R1-03 CA 0.0019 Campbellton CAN_NB_CHARLO-AUTO_8100885 
R1-04 CA 0.0053 Cowansville CAN_QC_FRELIGHSBURG_7022579 
R1-05 CA 0.0082 Dolbeau-Mistassini CAN_QC_NORMANDIN_7065639 
R1-06 CA 0.0440 Drummondville CAN_QC_NICOLET_7025442 
R1-07 CA 0.0362 Granby CAN_QC_FRELIGHSBURG_7022579 
R1-08 CA 0.0057 Hawkesbury CAN_QC_MONTREAL-MIRABEL-INTL-A_7034900 
R1-09 CA 0.0207 Joliette CAN_QC_L'ASSOMPTION_7014160 
R1-10 CA 0.0058 Lachute CAN_QC_MONTREAL-MIRABEL-INTL-A_7034900 
R1-11 CA 0.0104 Matane CAN_QC_AMQUI_7050145 
R1-12 CA 0.0288 Rimouski CAN_QC_POINTE-AUX-PERE-(INRS)_7056068 
R1-13 CA 0.0142 Rivière-du-Loup CAN_QC_RIVIERE-DU-LOUP_7056616 
R1-14 CA 0.0199 Rouyn-Noranda CAN_QC_ROUYN-NORANDA-A_7086719 
R1-15 CA 0.0175 Saint-Georges CAN_QC_BEAUCEVILLE_7028754 
R1-16 CA 0.0217 Saint-Hyacinthe CAN_QC_MONTREAL-ST-HUBERT_7027329 
R1-17 CA 0.0073 Sainte-Marie CAN_QC_BEAUCEVILLE_7028754 
R1-18 CA 0.0181 Salaberry-de-Valleyfield CAN_QC_ST-ANICET-1_702FQLF 
R1-19 CA 0.0125 Sept-Îles CAN_QC_SEPT-ILES-A_7047911 
R1-20 CA 0.0261 Shawinigan CAN_QC_SHAWINIGAN_7018001 
R1-21 CA 0.0220 Sorel-Tracy CAN_QC_LAC-SAINT-PIERRE_701LP0N 
R1-22 CA 0.0160 Thetford Mines CAN_QC_BEAUCEVILLE_7028754 
R1-23 CA 0.0151 Val-d'Or CAN_QC_VAL-D'OR_7098603 
R1-24 CA 0.0235 Victoriaville CAN_QC_LEMIEUX_701Q009 

R1 Québec 
non-CMA 0.4108   

R2 CMA 0.0233 Saguenay CAN_QC_JONQUIERE_7063370 
R3 CMA 0.0949 Québec CAN_QC_QUEBEC-INTL-A_7016293 
R4 CMA 0.0262 Sherbrooke CAN_QC_LENNOXVILLE_7024280 
R5 CMA 0.0214 Trois-Rivières CAN_QC_NICOLET_7025442 
R6 CMA 0.3756 Montréal CAN_QC_MONTREAL-INTL-A_7025251 
R7 CMA 0.0478 Ottawa - Gatineau CAN_ON_OTTAWA-INTL-A_6106001 

 

  



Appendix 2: Total and opaque cloud cover data correction 

The cloud fraction can be calculated with Equation (A-1) using the global and diffuse 

horizontal radiation values that are available in the CWEEDs weather data (Kasten and 

Czeplak 1980). 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 10 ∗ �1.4286 𝐸𝐸𝑐𝑐𝑑𝑑𝑑𝑑𝐸𝐸𝑔𝑔𝑐𝑐𝑐𝑐𝑔𝑔,ℎ − 0.3�0.5 (A-1) 

where 𝐸𝐸𝑐𝑐𝑑𝑑𝑑𝑑 and 𝐸𝐸𝑔𝑔𝑐𝑐𝑐𝑐𝑔𝑔,ℎ are the diffuse and global horizontal radiation (Wh/m2), 

respectively, and 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the cloud fraction in tenths. The Total and Opaque Sky Cover 

values in the CWEEDs files are assumed equal to the cloud fraction and are rounded to 

the neared whole integer, which is common practice (Government of Canada 2021). 

Since the global horizontal radiation in CWEEDs data is zero at night, the cloud cover 

data during night time is linearly interpolated between the last available value for cloud 

cover and the first available data point the next morning, as illustrated in Table A-2.  

Table A-2. Example cloud cover data generated and filled for a 24 hour period. Night time values highlighted in grey 
are filled using linear interpolation between the two data points in bold text. 

 

 
Hour of the day 

Global 
horizontal 
radiation 
(Wh/m2) 

Diffuse 
horizontal 
radiation 
(Wh/m2) 

Cloud cover 
without 

interpolation 
(tenths) 

Cloud cover 
with 

interpolation 
(tenths) 

13 827 276 4 4 
14 889 254 3 3 
15 249 220 10 10 
16 654 189 3 3 
17 468 93 0 0 
18 305 59 0 0 
19 135 43 4 4 
20 21 14 8 8 
21 0 0 0 8 
22 0 0 0 7 
23 0 0 0 7 
24 0 0 0 7 
1 0 0 0 6 
2 0 0 0 6 
3 0 0 0 6 
4 0 0 0 5 
5 0 0 0 5 
6 142 51 5 5 
7 310 67 1 1 
8 487 83 0 0 
9 647 90 0 0 

10 780 212 3 3 
11 225 216 10 10 
12 229 227 10 10 



 

In summary, the general approach for completing the cloud cover data is as follows:  

1) Verify whether any monitored data for Total Sky Cover was available, usually at 3 

hour intervals. If yes, set the values for Total Sky Cover for hours 2 and 3 equal to 

the first hour and repeat for the whole year. 

2) If no measured data is available, use Equation (A-1) to determine the cloud fraction 

for the hours where the global and diffuse horizontal radiation is available, and use 

linear interpolation to complete the night time values. 

In all cases, the Opaque Sky Cover is assumed equal to the Total Sky Cover. 

  



Appendix 3: Bayes’ Theorem 

The following section is an excerpt adapted from Neale et al. (2020) that describes how 

Bayes’ Theorem is applied to create conditional probability distributions for dependent 

building parameters. Interested readers can refer to the original publication for 

additional detail. 

Bayes’ theorem, described in Equation (1), is applied for each of the connections 

in the network in [Figure 3], which allows for the determination of the conditional 

probability of a parameter given prior evidence.   

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)  (1) 

where A and B are dependent parameters, P(A|B) is the conditional probability of A 

given B occurring, P(A) is the prior probability distribution of A, P(B) is the prior 

probability distribution of B, and P(B|A) is the prior conditional probability of B given A 

occurring. P(B|A) is typically based on prior knowledge, i.e. based on data obtained in 

the literature. Prior probability distributions such as P(A) can be established based on 

evidence found in the literature and expressed using Equation (2). 𝑃𝑃(𝐴𝐴) = 𝑛𝑛𝑂𝑂𝑑𝑑𝑛𝑛  (2) 

where nAi is the number of cases for class i of parameter A and n is the number of 

samples. 

 

 

 



Appendix 4: Building stock sample size 

Much like previous works, this study takes the approach of selecting a smaller subset of 

homes and scaling up the energy consumption of that subset. In such cases, an 

important aspect of building stock energy modeling is determining the size of the 

sample set of homes that accurately represents the overall stock. The impact of the 

sample size is expressed in terms of the normalized root mean square deviation 

(NRMSD) with respect to the mean of a sample. More precisely, the following 

procedure is followed: 

1) The stock sample size 𝑏𝑏 is selected, e.g. 5000 buildings, which will represent 

the building stock of size 𝑠𝑠, i.e. 1.9 million buildings for single-family 

dwellings. 

2) The stock fraction 𝑆𝑆𝐷𝐷 is determined, where 𝑆𝑆𝐷𝐷 = 𝑏𝑏 𝑠𝑠⁄ . 

3) A building stock sample of size 𝑏𝑏 is generated with the proposed model and 

the total energy consumption is determined for a variety of end-use and 

energy source categories. This process is repeated 𝑛𝑛 times. 

4) The size of the building stock sample is increased and steps (1) to (3) are 

repeated. 

5) The 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐷𝐷 for each tested stock sample size is determined, as described in 

Equation (3). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐷𝐷 =

�∑ (𝐸𝐸𝑑𝑑 − 𝐸𝐸�)2𝑛𝑛𝑑𝑑=1 𝑛𝑛𝐸𝐸�  (3) 

where: 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝐷𝐷 is the normalized root mean square deviation for a given sample 
size 𝐸𝐸𝑑𝑑 is the calculated stock energy for sample of buildings 𝑖𝑖 (PJ) 

  𝐸𝐸� is the mean stock energy across all samples of size 𝑏𝑏 (PJ) 
  𝑛𝑛 is the number of total sets of stock samples 



The NRMSD values are illustrated in Figure A-1 as a function of total energy 

consumption and building type (attached, detached and single-family dwellings) for a

variety of end-use and energy source categories. The NRMSD metric demonstrates the 

expected residual on the total energy consumption for a given stock fraction.

Figure A-1. NRMSD for energy consumption by end-use and energy source by fraction of the total building stock 
modeled.

The NRMSD of the energy consumption varies considerably depending on the 

stock fraction, building type and energy category. Categories strongly tied to electricity 

consumption have lower residuals than nonelectric categories, which is due to the 

prevalence of electricity in the studied building stock. Lesser-represented categories, 

such as natural gas, heating oil and wood, are more disposed to variations in the total 

energy use for smaller stock samples. Attached houses experience larger NRMSD 

values than detached houses for the same reason. As the fraction of the building stock 

approaches 10%, the NRMSD is well below 0.01 for all energy categories.



For a more specific comparison, the literature shows that stock model samples of 

0.03% (Taniguchi-Matsuoka et al. 2020) and 0.6% (Nägeli et al. 2018) have been 

applied in previous works. For the building stock studied here, the NRMSD is 

illustrated for the same stock sample sizes used by Taniguchi-Matsuoka et al. and 

Nägeli et al. in Figure A-2. The same 10 energy use categories presently previously are 

are depicted.  

Figure A-2. NRMSD for SFD energy consumption categories for cases representing 0.03% and 0.6% of the modeled 
building stock.

The NRMSD is generally under 0.03 for the 0.6% stock sample, but can reach 

0.18 for a sample of 0.03% of stock. In simpler terms, a deviation of 18% on the natural 

gas energy prediction is expected for a stock sample of 0.03% for the studied building 

stock. The Total energy use NRMSD is low in both cases, but if specific categories are 

required for a particular analysis then the resulting deviation can be quite large. For 

example, if the stock model is used to evaluate cooling energy savings due to a 

particular incentive measure, the NRMSD can be significantly improved with a large 

enough building stock sample. To apply this reasoning more generally, building stock 

energy modelers should be aware of the potential deviation due to stock size for lesser-

represented portions of the building stock, particularly if they are relevant to the 

analysis they are pursuing.
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