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RÉSUMÉ

La musique est un art d’expression auditive, beaucoup de musiciens écoutent et jouent de
la musique. Ces derniers partagent leurs musiques en forme écrite (notation) grâce à la
transcription. Plusieurs notations existent, comme la notation musicale standard (la portée)
et les tablatures de la guitare.

La transcription ou l’écriture d’une pièce musicale en cours de composition est faite générale-
ment à la main, toutefois le processus est long, fastidieux et prone aux erreurs. Pour cela,
plusieurs travaux ont porté sur l’automatisation de cette tâche. Les approches proposées
utilisent la vision par ordinateur, le traitement du signal audio ou bien une combinaison des
deux.

Dans ce travail, nous nous intéressons à un instrument en particulier, commun et utilisé
presque partout aujourd’hui, la guitare. Pour partager des pièces musicales destinées à être
jouées sur une guitare, les guitaristes peuvent utiliser la tablature ou bien la notation stan-
dard. Cette dernière est plus généraliste (c’est-à-dire peut être utilisée par des instruments
différents) et se concentre sur la note et la durée de cette dernière. Hors, dans le cas de la
guitare, une même note peut etre jouée sur différentes cordes et frettes de la guitare. Ainsi,
la tablature offre une notation plus directe puisqu’elle indique exactement la corde à gratter
et la frette à presser. Ces informations sont absentes dans la notation musicale standard.

Puisque le traitement par audio nécessite une connaissance a priori sur le réglage des cordes
ainsi que leurs timbres, en plus de ne pas pouvoir savoir la frette et la corde jouée sans
savoir les timbres des cordes, une approche basée sur le traitement du signal audio semble
complexe. Par conséquent, dans ce travail, nous proposons une méthode de transcription se
basant uniquement sur des vidéos.

Dans l’objectif de développer un système de transcription automatique basée sur la vision
par ordinateur, nous avons utilisé une camera RGBD de grade commercial, qui offre à la fois
des trames RGB ainsi que des cartes de profondeur. Les trames RGB sont utilisées pour la
segmentation de la guitare, l’estimation de la pose de la main, le calcul du flux optique et
le post-traitement; tandis que les cartes de profondeur sont utilisées pour l’estimation de la
pose de la main et le post-traitement.

Dans le but d’entrainer un modèle d’apprentissage profond pour la segmentation automatique
du manche de la guitare dans les trames RGB, nous commençons par construire notre propre
base de données. Après entrainement, ce modèle prédit un masque binaire indiquant la
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position du manche, notre région d’intérêt sur la guitare.

Ensuite, nous utilisons un modèle d’estimation de la pose de la main, MediaPipe Hands, pour
prédire 21 articulations de la main. Ce modèle nous donne en sortie les coordonnées 3D de
chaque articulation.

Le fait de presser simplement une corde sur une frette ne produit pas de la musique. Ainsi,
l’étape suivante consiste à calculer le flux optique entre deux trames successives dans le but
d’identifier si une corde a été grattée. Cette étape est importante parce que la transcription
ne doit se faire que lorsqu’une corde est grattée.

La dernière étape de notre approche consiste en le post-traitement des sorties de chacune des
étapes précédentes. On utilise le masque binaire de la segmentation pour isoler le manche,
pour ensuite détecter les cordes ainsi que les frettes. Le flux optique est utilisé pour savoir
quelle corde est jouée ; et finalement on utilise le résultat de l’estimation de la pose de la main
pour savoir quelles articulations pressent quelle corde et sur quelle frette avant de générer la
tablature correspondante.

Afin de valider notre approche, on a testé chaque étape séparement avant d’expérimenter avec
l’approche toute entière. Le modèle de segmentation a été évalué sur nos données de test, ce
dernier atteint un score de 0.9230 pour Dice. Pour l’estimation de la pose de la main, des
images RGBD capturées avec notre camera RGBD ont été utilisées pour mesurer les erreurs
de profondeur en millimètres. Des vidéos RGBD de deux guitaristes ont été enregistrées (en
ayant leur vérité terrain, c’est à dire la tablature de référence) pour évaluer la méthode de
détection de la gratte ainsi que le système complet.

Les résultats obtenus démontrent que la segmentation est la partie la plus satisfaisante du
système, elle est précise et robuste. Le jeu de données collectées pour cette tache semble très
prometteur puisqu’il offre des images fortement diversifiées ce qui augmente la capacité de
généralisation du modèle de segmentation. La détection de la gratte quant à elle nécessiterait
une meilleure résolution au niveau des images, puisque certaines cordes sont difficilement
visibles dans certaines vidéos. L’estimation de la pose de la main constitue le maillon faible de
notre système étant données les erreurs de profondeur rapportées par nos expérimentations.
Enfin, le post-traitement implique des méthodes de traitements d’images et de clustering qui
reposent fortement sur des seuils et des valeurs statistiques nécessitant un réglage adéquat.
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ABSTRACT

Music has been an artful way of expression, and since it is based on sounds, musicians
transcribed their music so it can be shared and used by others. Several notation systems
exist for music, such as the standard music notation and guitar tablature.

When musicians transcribe an existing musical piece or write down a song they are composing,
they notate the music manually. This makes the process long, tedious and error-prone mostly
for amateur guitarists. Thus, several studies were conducted on automating transcription in
many contexts and for different instruments. Some of these methods are based on audio
signal processing, while others are based on computer vision or a combination of both.

The instrument of interest in this work is the guitar. The guitar is a musical instrument that
has been existing for a long time and it is widely used across a wide spectrum of music styles
across the globe, and it is one of the instruments used for research towards developing more
robust automatic transcription of tablature. Unlike the standard music notation, which is not
specific to any instrument, guitar tablature is. The latter is a notation created specifically
for stringed instruments such as the guitar or the bass. Tablature displays which fret to
press and on which string, which is a piece of information that the standard music notation
lacks, and this is important since the same pitch exists in many different places on a guitar
fretboard. Thus, the aim of this work was to develop an automatic transcription system
producing a guitar tablature from the analysis of video images of a guitarist playing the
instrument.

Furthermore, our system relies only on visual information to perform the task of transcription
since we believe that a computer vision approach is more suited for the tablature transcription
problem. An approach based on audio processing would increase the complexity of the task,
especially when dealing with chords (multiple notes at the same time), frets and strings. In
the case of processing audio signal, the pitch can be recognized, however, a string timbre is a
must-know since the same pitch can exist on different string/fret combinations; in addition
to requiring to know the tuning of the guitar beforehand.

The system developed in this work, uses videos that encodes both color and depth information
through the use of a RGBD camera. The RGB frames are used in all stages of the project
while depth maps are only used during hand pose estimation and post-processing. Indeed,
the approach adopted in this work is comprised of many stages that include segmentation,
hand pose estimation, optical flow and post-processing.
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The first stage, segmentation, is made of a deep learning model that is trained on a custom
built dataset for fretboard segmentation. This model outputs a binary mask representing
the pixels pertaining to the fretboard since our region of interest and the main guitar part
from where our information are drawn, is the fretboard.

Next, hand pose estimation is performed using MediaPipe Hands which predicts the 3D
coordinates of 21 hand joints. The results of this step are used later during post-processing
to know which joints are pressing what frets and what strings.

Since pressing a string on a particular fret is not enough to transcribe, optical flow had to
be used. The optical flow is computed since we need to detect if a string was picked in order
to transcribe. Pressing strings while not picking them is equivalent to not playing anything
thus the need for optical flow. The result of this step is further processed later to detect
which string was picked.

The last step of our approach, is post-processing. Post-processing uses the segmentation
result to isolate the fretboard from the rest of the image, then uses that to detect strings
and frets, before using both the optical flow and the detected strings to recognize the picked
string. The last task of this step, is to decide which joint is pressing on which string and
on what fret, which is done by comparing a joint depth to that of the fretboard while also
finding the closest string and the fret on which it lies.

After developing our methodology, we validated it. The segmentation step was validated by
testing on the test set of our custom built dataset, presenting a score of 0.9230 for Dice.
The hand pose estimation was evaluated on captured images of the hand and the errors were
presented and measured in millimeters. Then, we recorded videos of people playing the guitar
and assessed our ability of picking detection and tablature extraction (entire approach) by
comparing our method output to the ground-truth tablature.

Our results show that our segmentation model is robust and results are satisfactory. The
data collected to train our model, helped achieving a better generalization due to a varied
dataset. Picking detection was unable to perform well with thin strings which may require
using a higher resolution in the future to address this. The hand pose estimation part proved
to require improvements the most, due to its errors in terms of depth and instability. Finally,
the post-processing part relies on traditional image processing and clustering algorithms
which is not ideal since they rely mostly on static parameters and thresholds.
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CHAPTER 1 INTRODUCTION

One of the most widely played instruments is the guitar. People often play the guitar by
ear, listening to the music and then trying to reproduce, or by reading a certain written
form. This written form is called a notation. Notations are common in the music community
and different instruments require different notations. Musicians transcribe existing musical
pieces or write down music under composition. When doing so, the process is usually long
and tedious; it can also be error-prone especially for amateur guitarists. In addition, being
able to extract tablature out of guitar playing videos would help amateur guitarists finding
transcriptions1, or transcribe easier. It can also benefit professional guitarists, easing their
lives by automating and making the task shorter. It can also be used for learning2 or as a
tutor for evaluating performances of guitarists.

Before proceeding, we need to present the guitar terminology to better understand the rest
of this work.

Figure 1.1 The different parts of a guitar. Blue arrow: points at the bridge of the guitar; in
orange: the fretboard; in green: a fret (in this case the second fret); in red: the nut; yellow
box: the head of the guitar.

1Many tablature databases exist such as Guitar Pro Tabs (https://guitarprotabs.org/) and Ultimate
Guitar (https://www.ultimate-guitar.com/).

2An example application is Yousician: https://yousician.com/guitar
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The guitar has different parts, each one with a different purpose. However, we are only
interested in few parts that will be listed and explained here (see figure 1.1).

• String: a string on a guitar can be either made of metal or nylon. Regardless of its
make, a string is what a guitarist hits to produce a certain note.

• Fretboard: the fretboard is the most essential part of the guitar and the one we are
most interested in for visual processing. The fretboard (or neck) highlighted in orange
in figure 1.1 is a rectangular wooden piece that holds some metallic bars over which
the strings are also positioned.

• Fret: a set of frets constitute the fretboard. A fret is a small piece of the fretboard that
ends with a metallic bar (fret bar). Each fret is a semitone, and thus each fret adds
one semitone to the note of the open strings on which it is pressed (see green region in
Figure 1.1).

• Nut: the nut is the small line highlighted in red in figure 1.1. The nut is the point from
which the fretboard starts.

• Bridge: the bridge (pointed at with a blue arrow in Figure 1.1) is a piece that holds
the strings from one end. The bridge is located on the body of the guitar.

• Head: the head of the guitar (within the yellow box in Figure 1.1) is a small piece that
comes before the nut. On the head we can find tuning keys (the number of tuning keys
is always equal to the number of strings); these keys hold the strings from the other
end. By doing so, each string is held by both the bridge and its corresponding tuning
key.

• Body: the body of the guitar serves as the part that holds everything together, it
connects the bridge with the fretboard and amplifies the sound in the case of acoustic
or classical guitars or has the volume and tone knob in the case of electric guitars. It
is the section of the guitar colored in black.

This project main goal is to transcribe videos of guitarists playing the guitar into tablature.
Tablature, is one of several notations that exist to represent music in a written format. Some
of those notations are instrument-specific while others are more general. The standard music
notation, as shown on the top row in Figure 1.2, is a notation that is widely adopted across
the music community and can work with nearly any instrument. Despite the fact that it
displays the pitch and octave of each note, this notation is not the first choice for many
guitarists.
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Figure 1.2 The same notes in both notations, standard music notation (top) and tablature
(bottom).

The standard music notation may be tricky for some guitarists as it does not display the
position as to where the fingers should press. In other words, it does not tell the guitarist
what string to pick and what fret to press. This information is important since the same
note can exist in multiple different places on the guitar. Figure 1.3 highlights the E4 (the E
note, fourth octave) note across the six different strings on a guitar. A guitar with standard
tuning is tuned with the following notes starting from string 6: E2 (82.41 Hz), A2 (110 Hz),
D3 (146.83 Hz), G3 (196 Hz), B3 (246.96 Hz) and E4 (329.63 Hz) [5].

Figure 1.3 The E4 note highlighted on all strings, showing that the same note can exist on
different strings and different frets thus the importance of the tablature notation.

The tablature notation (or "tabs" for short) is a fairly simple notation to read and understand;
it contains lines each representing a guitar string (in an upside down manner) on which
numbers can be found. Each number represents a fret’s index, indexing starts from the nut.
Figure 1.4 provides a visual explanation on how tabs can be read.
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Figure 1.4 The tablature and their corresponding positions on an inverted fretboard (the
lines represent the fretboard as if it was held upside down).

A single note at a certain point in time is represented by a single value on one line (guitar
string) in terms of tablature. However, sometimes guitar players play multiple notes at the
same time, these notes are referred to as chords. A chord is represented in with something
like what is shown in Figure 1.5.

Figure 1.5 Three different chords tabs.

As shown in Figure 1.5, a chord will have multiple fret numbers across different lines placed
at the same time position.

Automating the transcription process can be done in a computer vision-based, audio signal
processing-based or multimodal fashion. However, we hypothesize that computer vision is
enough for the transcription. To this day, despite all the technological advancements, no
automatic transcription exists yet. If such a system exists, it would be helpful for guitarists to
write down their music automatically instead of spending long hours of transcribing manually.
A study on how to develop a robust transcription system may lead to the ability of the
automatic transcription of songs and online videos that are often seen on YouTube. Also, a
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solid system would help make sure people are learning and playing correctly by comparing
the played tabs with respect to the original ones.

Many attempts in the literature addressed the problematic of automatic transcription; how-
ever, it is still an open research question. Some approaches relied on computer vision, while
others processed audio signals or a combination of both video and audio information for
the automatic transcription task. In this work, only visual information will be used for the
transcription task as it requires no other equipment than a camera.

Despite the equipment or setup simplicity for a computer vision-based transcription system,
several steps have to be followed to achieve such a task. Thus, a full transcription system
requires to:

• Locate the fretboard and detect the strings and frets in the image. We will address
this step using segmentation.

• Detect which fret is pressed by the fingers of the fretting hand. We will address this
step using hand pose estimation.

• Detect which strings are picked by the other hand (the picking hand). We will adress
this step using optical flow.

This thesis describes the approach developed and experimented on for the automatic tran-
scription of tablature. This thesis goes as follows, we first start by reviewing the literature
for the transcription, segmentation and hand pose estimation. Next, we explain the rationale
behind the project, before moving on to the materials and methods, a chapter that explains
in details the different steps of our approach. After that we detail the experiments performed
to validate our approach before finally concluding the work while stating its limitations and
possible future work.
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CHAPTER 2 LITERATURE REVIEW

Several attempts in the literature were made to build an automatic transcription system for
guitars. Some of them rely on computer vision, others on audio signal processing while a
third category rely on using both together. In this section, we present a literature review of
the different existing methods who attempt to transcribe/aid guitar learning or are guitar-
related. In addition, our method makes use of segmentation and hand pose estimation. Each
of those are also briefly reviewed.

2.1 Existing Methods

As mentioned earlier some of the existing methods rely on audio signal processing, computer
vision or both. Since in this work, we focus on computer vision, most of the works presented
here are computer vision-based approaches.

2.1.1 RGB-based Approaches

We will first start with RGB-based methods. The approaches mentioned here use only the
RGB modality in their methodologies.

In [6], the authors mounted a camera on the guitar head that looks down only on the first five
frets of the guitar. To isolate the fretboard, background subtraction was performed; then
they localize fingertips through the use of the Canny edge detector and a circular Hough
transform [6]. After both of these steps are done, the fingertips positions are known by
identifying their positions on a grid of strings and frets [6].

Another approach that can be found in [7] relies on using different markers for localization
of fingers and the guitar neck. The authors developed mainly as a guitar learning aid system
that helps people to learn the guitar, however, it focused on chords [7]. They use two
calibrated cameras to compute the position of the fingers in the guitar coordinate system
and an ARTag marker to locate the fretboard [7]. Colour segmentation is used for finger
tracking, then each channel in the HSV color space is thresholded to keep the coloured
fingers markers [7]. Then, by computing the projection matrix on a per-frame basis, the
authors were capable of retrieving the 3D positions of the fingers (through triangulation) in
the guitar coordinate system where the origin is the corner of the fretboard below the ARTag
marker placed near the head of the guitar [7]. Finally using these results the authors can
compare the obtained results to a database of chords and check whether the guitar player is
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playing a chord correctly [7]. This method, does not transcribe.

In 2010, the authors of [4], similarly to the previous approaches, relied on image processing
to implement a tablature transcription system. By using the initial-frame of a desk-mounted
camera, an initial frame (without the guitar) is selected for background subtraction [4]. Using
Canny edge detector and clustering for strings, they proceed to isolate the fretboard [4]. Next,
they use some image processing algorithms and operations like Sobel filter, thresholding,
median filter and morphological closure before detecting frets as vertical lines through the
Hough transform and finding the edges of the fretboard [4]. Since the fret detection can have
some missing frets, the authors use luthier’s formula to fill in the gaps, before normalizing
the fretboard view [4]. Finally, the authors proceed to detect fingers using RGB thresholds
and other conditions, before detecting fingertips and then computing their positions in terms
of strings and frets [4].

The authors in [8] also relied on some image processing algorithms like Canny edge detection
and a series of others to automatically transcribe a video of a guitarist playing. Using a
camera facing the guitar, an initial frame is chosen to initialize tracking of strings and frets [8].
Strings and frets are detected on a per frame basis, however, tracking helps filling the gaps
caused by the hand being on top of strings or frets [8]. Once the fretboard localization is
finished, the finger contours are found, then the fingertips are found through detecting the
local maxima in the upper part of the contours [8]. Finally, each fingertip string and fret are
computed and then transcribed [8].

Building upon their previous work in [9], the authors in [10] developed a method for tracking
fingertips as well as recognizing the pressed chord on a guitar fretboard. Relying on the guitar
neck detection in [9], the authors extended their work in [10] to include chord recognition
and fingertip tracking. For the former the approach relies on extracting key frames through
finding the biggest differences when using frames subtraction in the RGB color space, key
frames are frames where major fretting hand movements happen [10]. By doing so, the
authors ensure that they would not need to process all of the frames of a given video, they
would only focus on the frames where the chords change [10]. After performing edge detection
using the Canny algorithm and morphological dilation, fingers are extracted by checking the
pixels against a set of criteria including RGB thresholds [10]. The top left of each finger
is considered as the tip and so after computing strings and frets (frets are computed based
on the so-called rule of 18 [11]) it is possible to recognize the chord by comparing the tips
positions with those of the strings and frets [10]. To perform hand tracking, the authors use
a Bayesian pixel classifier that returns only skin related pixels before removing outliers in a
later noise removal step in an attempt to remove unwanted or incorrect points, keeping only
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the points with the highest probabilities [10].

Other approaches analyze visual cues that are different from fingers detection to extract the
played tabs. For example, in [12], the authors fixed a GoPro camera on the guitar running at
240 fps which captures the strings vibrations. By analyzing those vibrations the authors were
able to identify each string while also knowing the played note [12]. However, this method
requires a priori knowledge and it may be unable to detect thin strings [12], in addition to
the need to highly expensive cameras since the frequencies on some strings (especially the
thinner ones) can reach 1000+ Hz.

In [13] the authors trained a network to classify five chords. They created their own dataset,
used MobileNet v2 [14] for hand segmentation and cropping, before comparing GoogLeNet
and ResNet18 for the classification task [13]. GoogeLeNet achieved a 100% accuracy beating
ResNet18 [13]. This method only classifies the chord being played, and so it is not useful for
transcription especially of single notes. In [15], the authors also used a pre-trained GoogLeNet
to classify chords after cropping the hand region to finally generate a musical score.

2.1.2 RGB and Depth based Approaches

Despite the ability of some approaches on relying only on RGB, however, the depth was
introduced in other works for reasons such as easier fretboard localization and 3D hand pose
estimation.

The authors in [16] attempted developing a guitar teaching aid system that would assess the
performance of people learning the guitar. The method first proceed by extracting the hand
region from a depth map [16]. Then, a dataset is introduced that was specifically built for
hands on guitars, with 16 annotated joints, 4 on each finger except the thumb [16].

Unlike the previous methods, in [17], the authors used a Microsoft Kinect V2 that helps
capturing depth information. The authors detect the guitar by applying a depth filter,
retaining pixels whose depth values are greater than a certain threshold [17]. The leftmost
object is considered as the head area, from there a scan is performed rightwards until the
fretboard is reached; after that the head is removed by using a color filter [17]; then they
proceed to identify both hands [17]. The authors follow the right hand in order to recognize
pickings, however, only tracking the right hand in that manner would make it vulnerable to
detecting fake pickings (pretending to pick a string while actually not picking anything).

Similarly to [17], the authors in [18] used a Microsoft Kinect V2. They also applied a depth
filter taking into account everything that is closer than the right shoulder depth value, then
detecting the guitar using the HSV color space. Once the fretboard is horiztontal [18], the
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neck image is used to apply a skin color filter to detect the guitarist’s left hand [18]. Later
on, a dataset was created to train a CNN on recognizing the pressing finger [18]. This system
would not execute unless a pick was detected, this is done by installing a MIDI pickup beneath
the strings on the guitar [18]. This method takes into consideration picking and addresses
the inability of detecting fake pickings like in [17]. However, this method did not attempt to
transcribe, does not consider the pinky finger in the training data and nothing was mentioned
regarding chords or technique other than simply pressing using one fingertip [18].

2.1.3 Discussion

Table 2.1 compares the different computer vision-based transcription in terms of modalities
used, fretboard localization method, the joints detected and picking monitoring.

The modalities help knowing whether a method has a perception of depth which is important
to know whether a finger is pressing or just hovering over a fretboard.

As for the fretboard localization, many methods could be used, however we think deep
learning segmentation methods would be very suitable for our case.

Since many parts of a finger can press strings, it is also important to differentiate between
methods that detect only the fingertips and methods that considers a finer hand model.

While all the previous points are important, we cannot proceed without checking for picked
strings. Indeed, knowing whether a string was picked or no is essential since only pressing
a string is not sufficient. It has to be picked to produce a sound, thus it would be the only
case where a transcription should happen.

Table 2.1 Comparison table between different computer vision-based transcription methods.

Method Modality Fretboard Localization Finger Detection Picking
[6] RGB Background Subtraction Tips Not Monitored
[7] RGB ARTag Tips Not Monitored
[4] RGB Canny, clustering, etc. Tips Not Monitored
[8] RGB Canny + PPHT + Tracking Tips Not Monitored
[10] RGB Neck detection and tracking Tips Not Monitored
[12] RGB None None Monitored
[13] RGB None Whole hand Not Monitored
[16] RGBD None 16 joints Not Monitored
[17] RGBD Depth filter + color filter Whole hand Monitored
[18] RGBD Depth filter + color filter Whole hand Monitored
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Many approaches in the literature are unable to detect whether a finger is hovering over a
string or actually pressing it, such as [8], [4] and [6], etc.

Furthermore, Table 2.1 indicates that all previously mentioned methods have no way of
monitoring picking except for [18] and [12]. To achieve this goal, there are several options,
such as using a MIDI pickup like in [18], a camera mounted on the guitar, dedicated for string
vibrations detection and processing like in [12], or through audio processing. The use of a
MIDI pickup is not a practical way of monitoring for picking since it will have to be installed
on the guitar being played, and it may also not be comfortable for the player/guitarist. Using
a camera dedicated for vibrations, in addition to a camera that monitors the fretting hand
would be a bulky solution. Moreover, the two cameras would need to work synchronously, in
addition to the difficulty of matching the strings from one point of view to the other. Finally,
on a standard tuned guitar the lowest note is E2 with a frequency of 82.4 Hz [5], with the
highest note being E6 (1294.54 Hz [5]) for a 24 frets guitar, which requires having a high
speed camera running at very high frame rates. Processing audio signals for the sole purpose
of knowing when a string was played would add an audio module to the project which does
not seem like beneficial enough to do an entire audio setup for such a small task. Also,
timbers of each strings would need to be pre-recorded or known beforehand so a detected
frequency can be matched to a string.

Finally, most methods perform fretboard localization using image processing algorithms that
can be faulty and not robust, since relying on edge and line detections (like Canny edge
detector and the Hough line transform) may lead to unwanted results especially if the back-
ground has horizontal and vertical lines similar to strings and frets, and relying on predefined
thresholds that may not be suitable for all lighting conditions.

2.1.4 Computer Vision and Audio Signal Processing Based Approaches

While the previous methods rely on pure visual data to achieve their goals, others used a
combination of auditive and visual information.

The authors in [19] used a 2D representation of audio signals and two CRNNs to identify the
root note of each chord and its mode. While in [20], a 2D representation of the GuitarSet
dataset [21] was used alongside a CNN to predict the corresponding tablature.

In [22], the authors adopted a multimodal approach where they rely on both visual and au-
ditive information to extract tablature information. By detecting the fretboard first through
a series of image processing algorithms on the first frame (Hough transform, Canny edge
detector, etc.), tracking the fretboard and detecting the hand, the fret-string combination



11

can be found [22]. Using both audio signal processing (for extracting the pitch played) and
computer vision would reduce ambiguity as per [22].

2.2 Segmentation

Despite this project being about the automatic transcription of guitar videos, segmentation
is used to isolate the fretboard pixels from background pixels in a frame. The segmentation is
needed since when processing images, we are only interested in the fretboard and everything
else in that frame can be discarded. Several approaches exist that can be used for the
fretboard segmentation. Apart from the classical image processing methods used in previous
work on guitar tab transcription (see previous section), we will focus here on deep learning
based segmentation techniques. U-Net [23] is a CNN that performs per-pixel classification.
U-Net is a network composed of two paths, a downward and an upward path [23]. The
former is composed out of convolution layers, ReLU layers and max pooling while the latter
is identical, replacing max pooling with upsampling; these two paths are connected by skip
connections [23].

Another well-known segmentation network is Mask R-CNN [24]. Mask R-CNN is an instance
segmentation model that is built on top of a detection model called Faster R-CNN [24]. Faster
R-CNN is composed of a CNN that outputs a feature map of the input image, which is later
passed through a region-proposal network (RPN) that proposes objects to the rest of the
network [25]. A RPN is a binary classification network that classifies regions in an image
as objects or non-objects, in case of the former, these proposals are passed on to the rest of
the network where we have a classification and a regression head that classifies the proposed
object and determines the bounding box offsets respectively [25]. Mask R-CNN extends
Faster R-CNN by adding a mask head that predicts a mask for each detected class among
the classes it is trained on [24]. In addition to the classification and bounding box regression
losses used in training, to train for accurate mask prediction, Mask R-CNN adopts the binary
cross entropy to train the segmentation head [24].

Besides the two previously mentioned models, several other models exist for semantic segmen-
tation. One particular paper conducted a comparative study between three models for the
segmentation of guitars [26]. The authors in [26] created a dataset composed of 10400 images
of people holding a guitar alongside their masks as the groundtruth data. Between the models
compared in this study, HRNet [27] outperformed DeeplabV3+ [28] and DenseNet [29] [26].
They used the mean intersection over union (mIoU) metric, and HRNet had the highest
mIoU despite being slower in training time [26].
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2.3 Hand Pose Estimation

After isolating the fretboard, we need to know where is the fretting hand relatively to the
fretboard and which fret it is pressing. This can be achieved using hand pose estimation.

Before proceeding, we present some definitions relating to the task of "Hand Pose Estimation"
to promote a better understanding of the project.

Hand pose estimation aims at identifying and locating the different joints in a human hand.
The position of these joints can serve as reference points for multiple applications, like gesture
recognition. In this section we will explain the hand joints that we consider in this project
for a better understanding of later parts or sections.

In our project, we are interested in 21 joints of the hand, 1 joint representing the wrist and
4 joints for each finger. The following figure illustrates the different joints that we will be
using in our project.

Figure 2.1 The 21 joints on the hand. Based on [2], these joints are: CMC: Carpometacarpal
joint, MCP: Metacarpolphalangeal joint, PIP: Proximal Phalangeal joint, DIP: Distal Pha-
langeal joint, IP: Interphalangeal joint and the tip © Jake , Dan, Public domain, via Wiki-
media Commons. Image taken and modified from [3]

Based on [2] and as shown in the figure these joints are the following:

• CMC: Carpometacarpal joint. This joint will only be predicted for the thumb thus the
Figure above does not show this joint for other fingers.
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• MCP: Metacarpolphalangeal joint. This joint will be considered on all fingers.

• PIP: Proximal Phalangeal joint. This joint exists on all fingers except the thumb.

• DIP: Distal Phalangeal joint. Similar to the previous joint, it exists on all fingers except
the thumb and we will be looking for predicting its positions across all fingers on which
it exists.

• IP: Interphalangeal joint. This joint exists only on the thumb.

• Tip: this is the tip of the fingers.

Several methods exist in the literature that address the problem of hand pose estimation.
Some of those methods are presented below.

Being one of the top performers in the Hands In the Million Challenge (HIM2017), V2V-
PoseNet is a 3D detection-based hand pose estimation CNN [30] [31]. Before predicting the
coordinates of the joints, the the center-of-mass is computed and a crop is performed around
it [31]. However, since this method is not robust enough, the authors trained the hand center
estimation network from DeepPrior++ [32] to output correcting offsets from the previously
computed center-of-mass to the correct one [31]. After that, the 2D depth map is voxelized
and given as input to the network which is composed of several blocks [31]. Since V2V-
PoseNet is a detection-based hand pose estimation model, the model outputs for each joint
the per-voxel likelihood, and so the voxel with the highest likelihood is the voxel selected for
each joint [31].

A method was proposed in [33], where the authors combined the advantages of both detec-
tion and regression-based models. AWR (or Adaptive Weighting Regression) extracts dense
representations for the hand image given as input and then proceeds to weigh the different
regions in feature maps before predicting the coordinates of each joint [33]. This was par-
ticularly helpful in the case of occlusion, where in order to infer the positions of different
hand joints, the weight was more distributed (bigger standard deviation) helping the model
to predict the positions based on their neighbourhood. This approach helped AWR perform
among the state-of-the-art [33].

Another hand pose estimation network is MediaPipe Hands [34]. MediaPipe Hands is a hand
pose estimation and tracking model developed by Google that estimates 21 hand joints (the 21
hand joints mentioned in the introduction) [34]. Unlike the previously mentioned approaches,
MediaPipe Hands expects an RGB image as an input and outputs 2.5D landmarks of the
hand joints, where each joint has its own x, y and z coordinate [34]. These coordinates are
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relative to an origin defined in the image, and this origin could either be the wrist joint itself
or the centroid of the hand [34] [35].

MediaPipe Hands consists of two stages, the first being a palm detector and the second being
the hand landmark model [34]. The latter is the part that predicts the coordinates of the
joints, in addition to a confidence score that indicates the model confidence about a hand
presence and a flag entitled "Handedness" that tells us whether the detected hand is a left
or a right hand, the model predicts 21 joints 3D coordinates [34]. Google had to create their
own dataset to train this model using the focal loss [34].

MediaPipe Hands proceeds by detecting the hand in a certain frame and continues by tracking
it, the detector will not be used again until the tracking confidence of the model falls below a
predefined threshold [34]. MediaPipe Hands provides the ability to obtain the 3D coordinates
of the joints in two different ways; the first using the wrist as the origin [34] [35]. In this case,
the joints x and y are ratios r

h
and c

w
where r and c are the row and the column of the joint

in the image (w.r.t. to the image origin; top left pixel) while h and w are the image’s height
and width respectively [34] [35]. However, for the z coordinate, it is relative to the wrist,
with the latter being the origin in terms of depth [34] [35]. The small the number the closer
the joint is to the camera [35]. The second method consists in returning the 3D coordinates
in meters while considering the hand centroid as the origin [35].
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CHAPTER 3 PROJECT RATIONALE

In this chapter, the project rationale is presented. Before enumerating the different challenges
and objectives of this project, we discuss what can be used from the previous work.

3.1 Rationale

As shown in the literature review, several papers have addressed, at least partly, the au-
tomatic transcription from visual data. However, a good number of these methods do not
monitor picking, and for the ones who do, picking is either used as the main source of pre-
diction such as in [12] or for monitoring hand movement by using a MIDI pickup as in [18].
Thus, the need for a new way of detecting picking that will not add extra hardware on the
guitar in addition to not completely relying on it.

Furthermore, in addition to the many fretboard localization methods proposed in previous
work, we believe that a deep learning-based approach is the most suited to the problem
because of its well-demonstrated performance on similar segmentation tasks.

While others have considered only the detection of the fingertips for tabs transcription, we
will be using in this project hand pose estimation since other parts of the hand can be used
for pressing strings, a barre chord for example.

Existing hand pose estimation models estimate the depth of each joint and this is particularly
important to our case since a hand over the fretboard does not necessarily means that it is
pressing. Omitting the depth information and processing videos or images in 2D can lead to
errors, since 2D models can be tricked into thinking that a finger or joint is pressing while in
terms of depth the hand is considerably closer to the camera than the guitar and does not
even touch the fretboard.

A fretting hand on a guitar can have multiple self-occlusions resulting in some fingers or
joints not being visible to the camera. This point raises the need to have a model that would
predict joints depth instead of just relying on 2D coordinates of a joint and retrieving its
third coordinate from the depthmap.

3.2 Requirements and Challenges

The task of transcribing tablature from videos includes several requirements and challenges
that have to be addressed to have a good transcription system able to transcribe as accurately
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as possible. We first start by listing the requirements for our projects, then we list the
challenges that we need to address in order to fulfill those requirements.

3.2.1 Requirements

The first requirement is having a depth modality. Depth is needed since not having a per-
ception of depth could make a system fall in misinterpretation. This means that if a hand is
placed in front of the guitar while not actually touching it (hovering over the fretboard), in
a third person perspective it may be considered as pressing or touching the fretboard since
depth is not available.

A second requirement is to detect the frets and strings as accurately as possible. This is very
important so we can clearly predict the played strings as well as the frets. In addition, it
implies the importance of choosing the best model possible for the fretboard segmentation
to segment it as accurately as possible.

A third requirement is to correctly identify the vibrating string. Without monitoring the
string vibration, the idea of transcription would not be complete. Indeed, placing the fingers
on the fretboard is not sufficient to look at, since if no music is played, hence no strings were
picked then nothing should be transcribed.

3.2.2 Challenges

Based on the aforementioned requirements, several challenges can be highlighted. These
challenges are listed below.

The first challenge is to deal with the possible presence of visual occlusions. The occlusions
may include a hand not pressing on a guitar (in other words, just hovering) or a finger on
top of another, thus the importance of hand pose estimation and depth perception.

Second, the lack of data. Developing a deep learning based method for the fretboard segmen-
tation requires a considerable amount of labeled data. When we first started this project,
no public dataset existed for this task (before the dataset in [1] was released); thus we had
to build a new dataset from scratch. This involves data collection and data annotation.
However, the data collection has to be as diverse as possible; meaning that the data must
include as much different guitars as possible since they all differ in shapes, looks, dimensions
and some of them differ in type (classical, acoustic and electric).

Third, strings can be very thin especially when dealing with metal strings on electric guitars.
Higher strings are also thinner than others, hence proving their difficulty to be detected. For
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the frets, however, some of them may be hidden by the hand being on top of the fretboard,
hence the need to find a way of addressing that.

3.3 Objectives

The main goal of this project is to develop an automatic way of transcribing a video of a
guitarist into tablature. To do this, several steps need to be taken and several objectives
need to be satisfied; these objectives are the following:

1. To develop a model to localize strings and frets: as explained in Section 1, this notation
has lines representing strings and numbers indicating frets indices; and to have as much
accurate tablature as possible as an output, a correct and precise detection of the
fretboard, its strings and frets is required;

2. To estimate and to track the hand pose in 3D: locating fingertips in a hand is not
enough, as other parts of the finger may be used for pressing a string on a fret. Thus,
the need for an estimation of different joints of a hand. We also require 3D information
to know whether a finger is pressing on the fretboard or not. The position or the
placement of capture is important as it can greatly affect the results. Different views
can help us improve the accuracy as we maximize the number of visible joints. However,
for this project we used only one viewpoint by placing the camera in front of the guitarist
to assess how well it would perform;

3. To extract the corresponding tablature of an RGBD video using the fretboard, strings,
frets and hand data;

4. To evaluate the proposed approach: to know whether our approach performs well, an
evaluation must be conducted.

With the objectives listed above, our approach consists of several steps to satisfy those
objectives. These steps include:

• Recording videos in 3D so we can have a depth perception of the scene and be able to
use that information later.

• Collecting and annotating images of subjects playing the guitar to populate our own
dataset.

• Training and validating a CNN model for the fretboard segmentation.
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• Estimating the pose of the fretting hand in 3D. This part involves predicting the coor-
dinates in 3D (x, y and z) for the different joints of a hand, which we can use later to
identify where each joint is located on the fretboard.

• Detecting vibrating strings. Indeed, we need to check for picked/plucked strings before
transcribing; pressing a string on a particular fret without actually picking the string
does not imply that a transcription has to be made.

• Integrating the fretboard segmentation, the hand pose estimation as well as the picking
detection with some additional image processing techniques in order to compute the
tablature before writing it down in a simple ".txt" file.
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CHAPTER 4 MATERIAL AND METHODS

In this chapter, the different steps of the proposed solution are expanded and explained in
more details. First, we start by an overview, then we go over each step in details. A thorough
explanation of how they work and how they were implemented is given.

4.1 Overview

Figure 4.1 The different steps of the proposed method. A: RGBD video input. B: Fretboard
segmentation. C: Hand pose estimation. D: Optical Flow. E: Post-processing. F: tablature
output.

Figure 4.1 illustrates the entire methodology adopted for the project on a high level. The
methodology contains four main steps (B to E), an input (A) and an output (F). In this
section, we will explain the different parts separately and the reason or the need behind
every single step in the project and desired or expected outcome of each one of them.

4.1.1 Input A: RGBD Videos

For our approach to work, the need for depth information is inevitable as we seek to know
the position of the hand in 3D space with respect to the guitar fretboard. In addition, the
RGB modality is still needed to perform the segmentation task and some post-processing.

To capture RGBD videos, we need to use RGBD cameras or otherwise known as depth
cameras, these cameras can capture both modalities, RGB and depth.
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Intel offers a series of depth cameras known as Intel RealSense, these cameras adopt tech-
nologies such as time-of-flight or active stereo vision to compute the depth map of a scene.

Despite that these cameras are widely available for anyone to buy on the market, they are
very unlikely to be found with guitarists. However, they are relatively inexpensive, in the
range of 300 to 500$ 1.

Among the several RGBD consumer-grade cameras that exist today, we can find the Intel
RealSense D400 series. In this series, we took a look at two cameras for this project; these
two cameras are the Intel RealSense D435 and the Intel RealSense D455. They both use the
concept of active stereo vision [36].

These two cameras are similar in terms of components and the way they operate. They
both have two depth sensors, one infrared light projector and one RGB sensor. However,
these components are aligned differently between the two cameras. For the D4352, these
components are as follows from left to right: right image sensor, infrared light projector, left
image sensor and the RGB sensor. While for the D4553 the order is: right image sensor,
RGB sensor, infrared light project and left image sensor, as shown in figures 4.2 and 4.3.

Figure 4.2 The Intel RealSense D435
RGBD camera.

Figure 4.3 The Intel RealSense D455
RGBD camera.

In addition, the ideal range for operating for the D435 is between 0.2 to 3 meters while the
D455 operates best in a 0.4 to 6 meters range [37]. The D455 has a wider baseline of 95

1https://store.intelrealsense.com/
2https://www.intelrealsense.com/depth-camera-d435/
3https://www.intelrealsense.com/depth-camera-d455/
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millimeters, while the D435 has a baseline of 50 millimeters [37].

Although both cameras are highly similar, the D455 was chosen for this project for two
reasons: it has a wider baseline resulting in less noisy depth estimation and it also has higher
RGB image quality.

4.1.2 Step B: Fretboard Segmentation

A segmentation of the fretboard is essential for any automatic guitar transcription that is
based on computer vision, since the fretboard is the part of the guitar based on which we
can know the played strings and frets (in other words notes). More precisely, in this part
of the project we are looking for a segmentation model that can predict a mask for a given
input image, and as an output we would get a binary mask where white pixels would stand
for the pixels that pertain to the detected fretboard in the given image.

This step is inevitable since in the post-processing, the need for a clear fretboard localization is
crucial. Locating the fretboard accurately would boost the string detection and fret detection
and allows the used image processing algorithms in the post-processing step to work better.

4.1.3 Step C: Hand Pose Estimation

Most existing methods rely on just detecting the fingertips, however, that is not enough for
guitars. The fingertips is not the only part of a finger that can press or be used to press on
a guitar, thus the need for something that would get us different parts of the hand where we
can know if a part of the finger (other than the tip) is pressing.

Some techniques played on the guitar (like bar chords) involve pressing not just with the
fingertip but with the entire finger. In addition, other techniques such as the perfect fourth
interval, for example, an A perfect fourth can be the fifth fret on both the sixth and fifth
string both pressed with the same finger (we consider here that the tuning is E standard).

4.1.4 Step D: Optical Flow

The optical flow allows us to know whether something has moved between two consecutive
frames. In our case, we are interested in knowing whether a string has vibrated or no. This
is important, since if a guitar player presses some strings but never picks any string then no
transcription should happen. Thus, monitoring for vibrating strings before transcribing is
actually needed and important to transcribe the played frets only.
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4.1.5 Step E: Post-Processing

After finishing the three previous tasks, a post-processing step is needed to perform needed
operations on their outputs and find the corresponding tablature.

This step consists of performing a series of algorithms (clustering, image processing, linear
regression, etc.) to process the segmented fretboard, locate the strings and the frets, find
the pressing joints and their positions on the fretboard; while also checking if a string has
vibrated by using the optical flow output. Figure 4.4 illustrates a high-level outline of this
step.

Figure 4.4 Post-processing high-level outline.

4.1.6 Step F: Output

The output given by our approach will be stored in text format. Every two columns of
tablature will be separated by an empty column to ease up processing when computing the
metrics especially when dealing with two digits fret numbers.
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4.2 Fretboard Segmentation

One important part of the project is to segment the fretboard from the rest of the image.
This is important due to the fact that most important features that we are looking for are on
the fretboard (strings, frets and fingers). The segmentation part is also useful for the picking
detection as well, since picking happens right next to the fretboard, right where the picking
hand is placed.

4.2.1 Segmentation network

For the segmentation of the guitar fretboard in RGB images, we used a Mask R-CNN model.

To implement Mask R-CNN, we used the Python programming language and the PyTorch
and Torchvision libraries. Torchvision already has an implementation of Mask R-CNN4 with
a ResNet50-FPN (ResNet50 with Feature Pyramid Network) backbone. This model was
pre-trained on COCO2017 training set4.

4.2.2 Model training

The dataset used in [26] was never made public. In addition, the annotations include the
entire guitar instead of the fretboard only. Thus, we had to collect our own data to be able
to perform transfer learning.

Having a pre-trained network allows us to perform transfer learning instead of training the
model from scratch; this will lead to a better and faster convergence especially since our
dataset is relatively small. To train our model we developed our own dataset in PyTorch
which loads the images and preprocesses them before training Mask R-CNN. This dataset
class can accept PyTorch image transforms to apply data augmentation.

While loading data, our implementation loads the data from the location specified for the
dataset and resizes them. Both the images and their corresponding masks are resized to
512×512 pixels using a bicubic interpolation. The binary masks in the dataset are normalized
to the range of 0 and 1.

If the data is being loaded for training purposes, our dataset implementation will perform
data augmentation. We adopted an on-the-fly data augmentation in PyTorch, which performs
data augmentation once an image is loaded and so the dataset size does not change. Our
data augmentation involves horizontal and vertical flipping and rotation; we also input other
transforms such as Gaussian blurring and color jittering.

4https://pytorch.org/vision/0.8/models.html
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During preprocessing, it is necessary to provide the information required for each of the Mask
R-CNN heads to train the model. During training, the corresponding labels, masks and boxes
coordinates are computed during data preprocessing and returned by our loader.

4.3 Hand Pose Estimation

MediaPipe [34] is a hand pose estimation prediction model that can predict the joints coordi-
nates, predict their "handedness" (left or right hand) alongside a confidence score and track
the joints unless the confidence score of the model falls below a certain threshold, forcing the
detection to reinitialize.

MediaPipe was chosen over other hand pose estimation models due to its lightness, and
ability to work in real-time and little resources requirement. In addition, to our knowledge,
no datasets exist for the hand pose estimation on a guitar and no models were trained for
such a specific task before.

MediaPipe can output the coordinates of a hand joint on three axes (x, y and z). There are
two coordinates systems in MediaPipe that would help us retrieve 3D coordinates of a joint,
these are the following:

• The first system (CS1) is the one described in [34] and [35]. This coordinate system
considers the top left of the image as being the origin for the x and y axes. These
two coordinates are not returned in pixels but in ratios, where both x and y are the
pixels positions normalized by the image’s width and height respectively. As for the
z (or depth) coordinate, the origin (z=0) is the wrist. Indeed, the wrist joint is not a
static origin or point, it is dynamic and can differ from one image to the other. In this
case, the wrist has a z equal to 0 and for the other joints they have either positive or
negative values. The smaller the value the closer a joint is to the camera.

These values (the z values) do not have a particular interpretation, they do not represent
a distance in meters, centimetres or anything similar they are just values that tell how
close is a joint to the wrist and the camera.

• The second coordinate system (CS2) has for origin the centroid of the hand for all three
axes (x, y and z). Same as the previous system, the smaller the value, the closer the
joint associated with that value is to the camera [35]. However, this coordinate system
is in meters; the values obtained using this method gives the relative distance of a joint
across all axes in meters [35].

An example of hand pose estimation is visualized in Figure 4.5.
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(a) RGB image for a hand in the air on which we
perform hand pose estimation.

(b) The visualization of the hand pose estimation per-
formed on the image in Figure 4.5a.

Figure 4.5 Same image of a hand held in the air, Figure 4.5a shows the original image and
Figure 4.5b shows the same image with the hand pose estimation result displayed on top of
the hand

Since we use an Intel RealSense D455, we already have a depth map, however, a hand on a
guitar in a lot of scenarios will have self-occlusions (fingers occluding other fingers) and so
there is a need to predict the depth of each joint without completely relying on the depth
map provided by the camera. To experiment and identify the best method to predict depth,
10 RGBD images were recorded where all joints of the hand are completely visible. By
having all joints visible would ensure that we always have the ground-truth for all joints,
these ground-truths can be retrieved from the depth map.

Since we need to know the depth with respect to the camera for each joint, we developed
the following methods to learn a mapping from MediaPipe coordinate systems to the camera
coordinate system:
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• Method 1(LR): this method relies on using linear regression to learn a mapping from
the depth given by MediaPipe to the real depth (the depth contained in the depth
map, or the depth in the camera coordinate system). Using CS1, we attempt to learn
a function that gives as an output the true value of depth zreal by giving it as input
the depth value predicted by MediaPipe; thus, zreal = f(zmp). Only the closest 8 joints
based on this coordinate system are used for learning.

• Method 2 (LR2): this method is exactly the same method as the one described above,
however, there is only one difference; instead of using the CS1 coordinate system, we
will be using CS2 as input.

• Method 3 (Centroid): this last method is based on the CS2 coordinate system. This
system, returns in meters the relative distance of each joint to the centroid of the hand.
Thus, by using the 8 closest joints, we can compute the depth value of the centroid.
This depth is computed by applying the following formula:

Cd = 1
n

n∑
i=1

z
(i)
real − z(i)

mp (4.1)

Cd represents the centroid depth, n is the number of joints taken for the computation (8
in this case), z

(i)
real is the real depth of the ith joint, while z(i)

mp is the depth predicted by
MediaPipe relative to the centroid for that same joint. To compute the centroid depth,
we retrieve the real depth of the 8 joints from the depth map returned by the camera
using their x and y coordinates. Next, we subtract each of these joints MediaPipe
depth from the real depth and sum them before taking the mean. By doing so, the
centroid depth is calculated and then we can infer the depth of the remaining joints.
To do this, for each joint we add the centroid depth to its MediaPipe depth prediction,

z
(i)
pred = Cd + z(i)

mp, (4.2)

where z
(i)
pred is the predicted depth after adding the computed centroid depth with

MediaPipe relative depth prediction.

Before we can test, outliers have to be removed from the data. In other words, since the
real depth values are retrieved from the depth map, we may have some incorrect or missing
values, to remove those outliers, we check the depth of each joint after retrieval from the
depth map. A joint i is removed only when z

(i)
real − m > 0.3 (m stands for the median depth

of all joints (m = median({z
(1)
real, z

(2)
real, ..., z

(21)
real}), 0.3 is for 0.3 meters).
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Figure 4.6 illustrates a depth map obtained through the D455 camera.

Figure 4.6 Colorized depth map for Figure 4.5a.

4.4 Optical Flow

While playing the guitar, it is not enough to press a string to consider that it is being played,
it has to be picked/strummed. This is true due to the fact that holding a string without
plucking it would not produce any sounds, thus no pitch and no music. Hence, this highlights
the need for a picking detection method that would help us know what string was picked.

The solution adopted for this problem is using the optical flow. Indeed, the optical flow can
detect movements in a video or two different frames/images and can detect string picking.
On a guitar with an E standard tuning, the lowest frequency (6th string played openly) is
82.4 Hz [5](E2 note) while the highest could be 1318.51 Hz in the case of a 24 frets guitar
(1st string, 24th fret, E6 note) [5]. With such frequencies, the optical flow may not detect the
vibrations or the movement since they are subtle and very fast compared to a camera that
works around 30 fps. However, when a string is being picked, the latter is deformed at the
moment of picking and that is where the optical flow could come in handy.
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(a) Frame showing no picking of the 6th
string.

(b) Frame showing the slight deformation of
upper string while being picked.

(c) Frame showing bigger deformation of the
string from the same motion as Figure 4.7b.

(d) String form coming back to normal after
picking end.

Figure 4.7 Video images displaying the deformation of the 6th (thickest) string on a guitar
while being picked. All these figures are from the same motion. a) the last frame before the
actual picking begins. Figure b) the frame right after the one displayed in Figure 4.7a. c) the
frame right after Figure 4.7b, showing even more deformation during picking. d) the frame
right after 4.7c, showing the form of the string coming back to normal after the picking ends.
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Figure 4.7 illustrates how the shape of a string changes during picking and this is what
the optical flow could use for the detection of movement on a string. Indeed, it is not the
vibration itself that it is detected as a movement, but the action of deforming a string while
being picked since the latter moves during the picking action.

To compute the optical flow, we use OpenCV implementation of the Farneback5 dense optical
flow [38]. This computes the optical flow of two subsequent frames on the entire image and
give results like the one shown in Figure 4.8.

(a) RGB frame where the third string is being picked from one of the RGBD
videos recorded for the experiments.

(b) RGB frame during picking that comes after 4.8a.

5 https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
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(c) The computed optical flow between the two successive frame shown in Figures 4.8a and
4.8b

Figure 4.8 Three figures where a) shows the moment a string is being picked, b) is the frame
right after a) where the string is still being picked however the deformation is greater. c) is
the optical flow result computed for the aforementioned two images, clearly showing a line
representing the picked string.

As shown in Figure 4.8c, we can see a line that is a bit brighter than its neighborhood, that
goes in the same direction as the fretboard. This line indicates a string was picked, and based
on the position of that line we can in post-processing know which string it is.

4.5 Post-Processing

The need for all these different modules (fretboard segmentation, hand pose estimation and
optical flow) is to allow our post-processing to use them to extract tablatures based on the
outputs given by these three modules.

This step consists of different sub-steps and different image processing algorithms and tech-
niques (like Sobel filter, thresholding, line detection using the Hough transform), in addition
to other algorithms and methods like K-Means and Mean-Shift clustering, etc.

After outputting the fretboard segmentation mask using Mask R-CNN, the 3D coordinates of
all hand joints using MediaPipe Hands and the optical flow using OpenCV Farneback dense
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optical flow implementation, these three outputs are passed to the post-processing step of
the project to further process these information and extract the corresponding tablature.

The first step is to crop the fretboard and rotate it.

4.5.1 Fretboard Cropping and Rotation

The mask outputted by Mask R-CNN may not be a perfect rectangle thus it would not allow
us to define four points around with which we can crop the corresponding frame to only keep
the fretboard isolated from the rest of the image. Therefore, to normalize the appearance of
the fretboard, we rotate it to be horizontal and make it rectangular. To achieve this, we first
extract the contour and find the bounding rectangle around the fretboard contour.

To be more specific, if we have a mask like the one shown in Figure 4.9b for the frame
displayed in Figure 4.9a, the contours obtained would be the one in Figure 4.9c.

(a) The RGB image used for the segmentation of the
fretboard.

(b) The output of the segmentation model, a binary
mask representing the pixels pertaining to the fret-
board in white.
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(c) The detected contours for the binary mask shown
in Figure 4.9b.

Figure 4.9 Figures displaying the RGB frame used in a), the segmentation binary mask
predicted by Mask R-CNN in b) and the detected contours of the mask in c).

The bounding rectangle of this contour is shown in Figure 4.10.

Figure 4.10 The fretboard mask after fitting to it the smallest possible rectangle.

Next, we rotate the mask, RGB image, optical flow and the depth frame obtained through
the RGBD camera so that they are horizontal. The result is displayed in Figure 4.11.
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Figure 4.11 The rotated fretboard contours to make it horizontal to ease later processing.

The result shown in Figure 4.11, needs to be processed to remove some noise. To do so, we
find the four lines that define this rectangular area. This is simply done through defining
horizontal and vertical line equations and fill everything in between to avoid unwanted noise,
helping us obtain a mask like in Figure 4.12.

Figure 4.12 Final mask after shaping a perfect rectangle without any noise or unwanted
pixels.

Before cropping the fretboard, the latter has to be completely isolated. In other words, the
mask shown in Figure 4.12, has to be multiplied by the RGB image, pixel-wise product. By
doing so, we make sure that only the pixels that are in white in the final mask, are taken
into account in the RGB image, and everything else is removed due to irrelevance to the
fretboard. After this multiplication occurs, the result is as in Figure 4.13.
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Figure 4.13 The RGB image after the pixel-wise multiplication with the mask.

After obtaining the image shown in the Figure 4.13, the coordinates of the four corners of the
mask can be used to crop this image and remove all the pixels in black around the remaining
colored pixels. We can use the top left and the bottom left corners y coordinates in addition
to the bridge’s and nut’s ends x coordinates for cropping. The result is displayed in the figure
4.14.

Figure 4.14 The RGB image of the fretboard after cropping.

The depth image is cropped the same way the RGB image is; pixel-wise multiplication and
then using the four corners to crop the depth map. Both the depth and the cropped RGB
images are resized to 500x68 pixels.

4.5.2 Translation and Scaling

After cropping the fretboard in the RGB image, we need to find a translation vector and a
scaling vector. These vectors are important since after performing the hand pose estimation,
we rotate, crop and resize the fretboard, and so the same operations have to be applied on
the predicted hand joints coordinates to retrieve their coordinates in the coordinate system
of the image shown in Figure 4.14.

In this case, the rotation matrix is the same rotation matrix as the one mentioned in the
previous step. For the translation vector T⃗ this would simply be the coordinates of the top
left corner of the mask shown in Figure 4.12 since the latter will become the origin after
cropping. The translation vector T⃗ is given by:
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T⃗ =
xo

yo

 (4.3)

It is a column vector having two elements. xo and yo are the x and y coordinates of the top
left corner of the rectangle shown in Figure 4.12.

For the scaling vector S⃗, the need to find the ratio between the original size of the cropped
fretboard (before resizing) and after resizing. Before resizing the cropped fretboard image,
we can compute the size of the fretboard in terms of pixels. Hence, the S⃗ vector would
contain the ratio between the new width (500) and the old width; in addition to the ratio
between the new height (68) and the old height. S⃗ is given by:

S⃗ =
 new_width

old_width
new_height
old_height

 (4.4)

After obtaining those two vectors, we can now rotate, translate and scale the 2D coordinates
(x and y) of all the predicted hand joints by our hand pose estimation step. To do this, the
following equation should be applied:

(R ·


x

y

1

 − T⃗ ) ⊙ S⃗ =
x′

y′

 (4.5)

where the R matrix is the 2x3 rotation matrix from earlier. This matrix would be dotted with
a 3x1 column vector representing the hand joint homogeneous 2D coordinates. After that, a
2x1 vector is obtained (representing the same coordinates after rotation), this vector will be
subtracted from the T⃗ vector to translate it, before multiplying the result, element-wise, with
the scaling vector to scale the coordinates. Finally, we obtain a new vector with x’ and y’,
representing the new coordinates of the hand joint in the coordinate system of the cropped
fretboard image.

4.5.3 Cropping the Optical Flow Image

As the cropping performed on the RGB image for the fretboard, a similar task needs to be
performed on the image resulting from the optical flow step. This is needed since we are
only interested in any action that happens on the guitar strings, in other words, we are only
interested if there is a string that was picked. Furthermore, the optical flow is expected to
return something that resembles a line as output inside the fretboard in the image; something
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similar to the image shown in Figure 4.8c.

To begin, the y values used for the cropping are the y coordinates of the top corners and
bottom corners of the mask shown in Figure 4.12. However, for the x coordinates used the
procedure is slightly different. Instead of returning only the fretting hand from our hand pose
estimation step, we return both hands detected by MediaPipe. The rotation, translation and
scaling explained earlier, applies to both hands. However, sometimes no picking hand may
be detected, hence we will explain next how the cropping works in both settings.

• No picking hand detected: the width of the fretboard is calculated by subtracting the
x coordinate of the nut from the bridge. Then this value is multiplied by -0.15, added
to the bridge x, all while adding 10 pixels as well.

x1 = −0.15 × (xnut − xbridge) + xbridge + 10 (4.6)

• Picking hand detected: the only difference in regards to the previous case, is the first
part. Instead computing the width and extend by 15%, we select the highest x coordi-
nate from the picking hand joints.

x1 = max({x(1), x(2), ..., x(i)}) + xbridge + 10 (4.7)

The equation above represents the process for this case. Also, the ensemble x(1), x(2), ..., x(i)

represents all the x coordinates of the detected joints of the picking hand.

It is good to note that the 10 pixels added at the end in both cases, is a small value just to
avoid having any hand-related optical flow after cropping.

The x coordinate at which the cropping ends, is simply the xnut. Next, the width w and
height h are computed by simply subtracting the two x and y coordinates respectively. To
keep the cropped optical flow in the same scale as the cropped fretboard image, the image is
resized to a new size based on:

w′

h′

 = S⃗ ⊙

w

h

 (4.8)

The elements w’ and h’ are the new width and height of the cropped optical flow image
respectively. After obtaining them, the image is resized to have a shape of (w′, h′).
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4.5.4 Hand Pixels Detection

In the cropped fretboard image as the one shown in Figure 4.14, we need to remove the hand
pixels as they may affect the string and fret detection later. To do so we adopted the same
thresholds as the ones in [8], originally taken from [39]. These thresholds are the following:

R ≥ 95

G ≥ 40

B ≥ 20

R − G > 15

(4.9)

The R, G and B represent the three channels of a pixel in the RGB color space; red, green
and blue.

All pixels satisfying these conditions are considered as hand pixels, and all the rest are non-
hand pixels. By identifying hand pixels we can later remove them and keep only the other
pixels, so the hand does not interfere or affect the strings and frets detection steps.

4.5.5 Strings Detection

After finishing the last four steps, we can proceed to detect the guitar strings. Indeed, the
detection of the strings is an important and essential step for the transcription since its helps
in telling us the string being played or pressed. The results of this step can be used to
compare detected lines in the optical flow to recognize the picked string; or, it can be used
to be compared with any pressing joint in order to find the closest string to that joint, thus
the string the joint is pressing.

This step not only is important, but it should also be accurate, since wrong results can make
our model predict that a joint is pressing another string than the actual one due to poor
results in this step.

The approach adopted for the strings detection is inspired by the fretboard localization and
refining (Sections 3.2.1 and 3.2.2) in [4]. First, we transform the cropped fretboard image
(as the one shown in Figure 4.14) into a grayscale image. Then, we convolve the image with
two Sobel filters (horizontal and vertical) with a kernel size of 3. The two results obtained
from these two filters, are then added and equally weighted (weight of 0.5 each).

Next, we threshold the image, turning it into a binary image. The threshold is computed as
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the mean of a pixel neighborhood (size 5), minus 2. Figures 4.15a and 4.15b in 4.15 show
example results of the Sobel filter and adaptive thresholding respectively.

(a) The obtained image after applying both horizontal
and vertical Sobel filters and adding their results.

(b) The resulting image after using adaptive thresh-
olding.

Figure 4.15 Images displaying the obtained result of applying the Sobel filter on the cropped
fretboard image in Figure 4.15a; while the second image, Figure 4.15b displays the obtained
binary image after thresholding the previous image.

After thresholding, a lot of noise would be present in the image, hence the need for morpho-
logical operations. To remove the noise, first we perform an opening operation with a kernel
of shape 1x5 (1 row, 5 columns; in other words a line of length 5 pixels). After that, a closure
morphological operation is performed with a 1x7 kernel to remove holes if there are any.

The subfigures 4.16a and 4.16b in Figure 4.16 display an example results of the opening and
closure respectively.

(a) The resulting image after performing a morpho-
logical opening on the binary image.

(b) The resulting image after performing a morpho-
logical closure on the image shown in Figure 4.16a.

Figure 4.16 The results obtained after performing the morphological opening and closure
respectively. The result in Figure 4.16a is when applied on the binary image shown in Figure
4.15b. The image in Figure 4.16b is the result of the closure operation applied on the result
obtained after opening.
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Next, we use the Probabilistic Hough Lines transform [40] to detect horizontal lines that are
supposed to be the strings. With a ρ equal to 1 and angle intervals of π

180 , a vote threshold
and a minimum length of 0.2 × width (width of the cropped fretboard; in other words, the
width of Figure 4.14) while having a maximum line gap of 0.1 × width.

While going over each line returned by the Probabilistic Hough Transform [40], and as we
compute lines, if a line orientation is horizontal, we compute f(xc) where f is the line equation
and xc is the width of the cropped fretboard divided by 2 (central x). Once the value of f(xc)
is retrieved, it is appended to a data array that is later used for clustering.

After this array is filled, we use K-Means clustering algorithm to cluster lines detected and
come out with one single line for each cluster. The number of clusters used is 6, since we
have 6 strings. Next, for each cluster we need to find the line that minimizes the error to all
other lines within the cluster; this is done through linear regression.

After clustering, for each cluster we collect its corresponding lines and use each line detected
points to separate the x and y coordinates. The former are used as training data for the
linear regression while the latter serve as targets.

Once all linear regressions are found (in this case 6), we sort those lines by their biases in a
reverse order. The higher the bias, the higher the string; meaning, the line with the highest
bias will be the high E string, E4 string or the first string.

The figure 4.17 displays a result of strings detection, with detected strings being color-coded.

Figure 4.17 Image showing the detected fretboard strings with color-coding. The color codes
are as follows: red for the first string, green for the second string, blue for the third string,
cyan for the fourth string, magenta for the fifth string and yellow for the sixth string.

4.5.6 Frets Detection

After detecting the strings, we need to detect the frets so we can know on which fret a joint
is positioned, also inspired by the work in [4]. To do so, we first start by taking the gradient
image obtained in the previous step (Figure 4.15).

Next, we apply morphological opening with a kernel of size 11 × 1, before proceeding with
a Probabilistic Hough transform [40] for lines detection (ρ 1, angle π

180 , minimum votes
0.15 × height, minimum length 0.25 × height and maximum line gap 0.05 × height).
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After line detection, we only use the vertical lines (having an angle between 85 and 90 degrees)
for clustering. This time a line center x coordinate is used for clustering. The clustering
algorithm used is the Mean Shift algorithm with a bandwidth of 5. Once all clusters are
found, we find the line that minimizes the errors to all point of a certain cluster through
linear regression. These linear regressions are the detected frets (these linear regressions are
vertical, in the form of x = ay + b).

4.5.7 Frets Refinement

To refine the detected frets, we start from the bridge end, meaning that we start from the
last two frets, or the two closest frets within the detected frets.

Inspired by [4], first, we compute the x coordinate at y = height
2 for every detected fret and

then these values are used for the refinement. We start with an accepted error margin of
5 pixels (meaning if a fret is within 5 pixels of the expected position then we accept it,
otherwise it will be replaced). Since we are starting from the last fret, this means we can go
up until the width of the cropped fretboard image (Figure 4.14).

To start the refinement, we select the two previous frets, compute the expected x coordinates
(xi+1) using the following formula:

xi+1 = xi − xi−1

0.94387 + xi (4.10)

Equation 4.10 is a rearranged version of Equation 2 in [4]. Next, xi+1 is compared with the
corresponding detect fret (xdet), if the difference is greater than the accepted error margin,
then two scenarios exist:

• xi+1 > xdet: This means it was a wrong detection and it is too close to the previous
detected fret, thus the detected fret is removed.

• Else: This means that the difference is too big, thus there is a missed detection. It
means that xdet is far greater than what we expect thus a fret (or frets) is missing. In
this case, a fret is inserted with a slope equal to the mean of the previous two frets,
and a bias equal to xi+1.

It should also be noted that the accepted error margin is multiplied by 1
0.94387 at every

iteration, however, when xi+1 > xdet then it is multiplied by 0.94387 to take it one step back.



41

4.5.8 Picking Detection

After detecting the strings and frets, we need to process the output of the optical flow to
know which string was picked. This is important so only the transcription would happen on
the strings that were picked. To do this, a series of steps need to be done on the cropped
optical flow image, in summary we need to find a line in the optical flow and compare that
line to the detected strings to know which strings vibrated.

To check for played strings, from the fretting hand we select the x and y coordinates of the
joints pertaining to the index, middle, ring or pinky finger. Then from those joints whose
coordinates are within the image, we select the smallest x and subtract 10 from it to avoid
having optical flow of the hand later, we will call this x2. To select x1, we do the following:

x1 =

0 x2 ≤ 100

widthcropped_flow_image − widthcropped_fretboard_image else
(4.11)

After getting those two values, the cropped flow image is cropped again, to consider only the
parts included inside x1 and x2.

Considering the new width of the flow as w (w = x2 − x1), we first create a kernel for the
computation of the second derivative (Laplacian) of the image vertically. This kernel is shown
in Equation 4.12

K =


1

−2
1

 (4.12)

The image obtained from the previous step is padded with zeros and then convolved with
the kernel K. The reason for computing the horizontal laplacian of the image is for the fact
that if we take a horizontal cut of the fretboard, the intensities would form a gaussian where
the peak is located at the place as the string. A gaussian’s second derivative minimum is
located at the same location as its peak.

Since the picked string will have negative values in its position when computing the second
derivative, we change the pixel intensities of the image based on Equation 4.13.

f(pi,j) =

pi,j pi,j ≥ 0

256 − pi,j + min − 1 else
(4.13)
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In the equation above, pi,j is the intensity of the pixel at position (i, j) and min is the
minimum value within the image. Doing so would help us have two groups of value, some
values in the lower end of the 0 to 255 range, while the negative values obtained after the
second derivative would be higher in the higher of that range. The reason for this, is that
whenever a string is picked the pixels intensities in a column would look like a Gaussian
thus its second derivative would have a negative dip when the Gaussian is going up or down
around its peak. By separating the values like that, we would be transforming the image
into grayscale as well as helping the thresholding method Otsu to better select a threshold.

Thus, the next step is to binarize the image by using the Otsu method, then we perform a
morphological closure with a 3 × 3 kernel before opening the image with a 3 × w

3 kernel (w
stands for the cropped optical flow image width).

The next step consists of performing line detection using the Probabilistic Hough Transform
[40] (with ρ 1, angle π

180 , minimum votes width
3 , minimum length width

3 and maximum line gap
width

10 ). Only horizontal lines are kept, then we fit a linear regression to the ends of those
lines (the coordinates are expressed in the coordinate system of the cropped fretboard image,
Figure 4.14), and compare the linear regression’s bias to all the strings when x = 0. The
closest string in terms of the Euclidean distance is considered to be the picked string.

4.5.9 Tabs Computation

The last step consists of computing the tabs based on the information computed in the
previous steps. However, this step is executed only when there is at least one string that was
detected as vibrating or was picked.

In case of picking, we first start by removing unwanted joints of the fretting hand. The wrist
and all thumb joints are removed since the former cannot be used for pressing and the latter
will be behind the fretboard, hence no need to process them. For the remaining 16 joints,
a joint is removed only when its coordinates do not fall within the image. After rotating,
translating and scaling the joints coordinates, and express them in the cropped fretboard
image coordinate system, a joint is kept if it satisfies the following conditions 0 ≤ x < width,
0 ≤ y < height.

Next, all the vibrating strings will have their own tabs with the fret number being 06, then
using the criteria explained in Section 4.5.4, we remove the pixels pertaining to the hand
from the depth map, since they are not needed.

Following that, we have to check if a joint is pressing. To do so, we take a patch of height×50
6A vibrating string means there is a tab to transcribe.
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pixels around the joint under processing and multiply by Gaussian centered at the joint under
processing. This Gaussian is centered at the joint under processing to give more weight to
the depth values closer to that joint. After that all positive values of depth while the values
that are farther than 10 centimeters from the median in both directions.

Finally to decide whether that joint is pressing, we compare its depth with the mean of the
Gaussian weighted patch, is it is less or equal to 2 centimeters, then we consider it as pressing.
If a joint is pressing, then we find the two fret bars which it lies in between to know the fret
number and find the nearest string to it. The transcribed joints are only the ones who lie on
a vibrating string.

The former is done by comparing the x values of the fret bars and the joint’s; while the latter,
is done by using the following point to line distance formula.

d = |a × x + y + c|√
a2 + 1

(4.14)

x and y are the joint’s coordinates, a and c are the negative values of slope and bias of the
line (or detected string) respectively.

4.5.10 Tabs Grouping

Once a note is played on the guitar we may have multiple detections of it, some would have
a different string or fret sometimes. We cannot know for sure how many strings were picked
in reality, since in a series of frames many strings can be detected and a guitarist may play
a chord which involves many strings. However, what we know is that one fret can be played
per string; in the case pressing many frets, the highest fret is the fret considered as pressed.
While we know this as a fact, however, our approach may have incorrect detections hence we
adopt a voting strategy.

Since we play one note/chord per second in our recorded videos (as explained in Section
5.1.3), we group tabs every 1 second. Among the picked strings, the fret with the highest
votes is selected for that string, alongside the finger with the highest votes for that fret.

Once the previous is done, we go on to refine the tabs. This step is needed since for a barre
chord not all strings may be detected for example. After taking all the grouped tabs from
the previous step, all the tabs who have the same fret and finger while have different strings,
all strings in between would have the same fret except if there was already a detection on
one of those strings with a higher fret.

For example, if we had the tabs shown in Figure 4.18, if the tab on string 1 has the same
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finger as the one on string 6, then we consider them as a barre.

T
A
B 1

3
3

1

Figure 4.18 Example of tabs that may be detected by our approach with some values missing.

By considering this as a barre, this means that strings 2 and 3 should have a fret equal to 1.
Same applies if these strings had any fret number less than 1 (0 or open string for example).
The tabs become like shown in Figure 4.19 below.

T
A
B 1

3
3
1
1
1

Figure 4.19 Example of tabs after refinement.
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CHAPTER 5 EXPERIMENTS, RESULTS, DISCUSSION AND FUTURE
WORK

This section presents the experiments and their results; in addition to discussing the obtained
outcome.

5.1 Data Collection

It would not be possible to evaluate our different parts without data collection first. Data
had to be collected for the segmentation, hand pose estimation, optical flow and the entire
system evaluation.

5.1.1 Dataset for fretboard segmentation

To build our own dataset, we collected some data consisting of videos of people playing the
guitar. Our approach for data collection was to build an online Google Form where volunteers
can submit videos of themselves playing the guitar. For these videos, tablatures were not
required. Also, the level of playing was completely irrelevant to our needs since it has nothing
to do with the fretboard segmentation.

After approval of our research protocol by Polytechnique’s ethics review board, 40 videos
were collected through our online form, 34 of those videos were selected to construct the
training set while 6 videos were used to build the test set. From each video, 25 frames were
sampled and added to the corresponding set (training or test). Also, 61 images were chosen
from Pixabay to add to our dataset. This gives 1061 images in total for our dataset, 911 of
those images belong to the training set while 150 images are in the test set.

This dataset1 is very diverse as well, different types of guitars exist within our dataset;
classical, acoustic and electrical guitars. In addition to the different guitar types, different
shapes exist within the same type, especially with electric guitars. Also, the images used
were taken in different environments/places with different people making the dataset more
diverse as well.

After building the dataset, the images had to be annotated. The ground-truth would be a
binary mask where the white pixels represent the fretboard while the rest being black. This
was done manually. In addition, the faces of the people shown in the images were anonymized

1Our dataset can be found at: https://bit.ly/3zgpYY9
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through blurring to make sure they were unidentifiable.

Figure 5.1 shows three examples of images in our dataset alongside their respective masks.

(a) Image from the training set showing a per-
son playing a guitar.

(b) The corresponding mask for the Figure
5.1a

(c) Image from the training set showing two
guitars.

(d) The corresponding mask for Figure 5.1c
with two guitars present.

(e) Image showing a left-handed guitar player
from the test set.

(f) The corresponding mask for the left-
handed guitar in Figure 5.1e

Figure 5.1 Images from our dataset for fretboard segmentation (first column) alongside their
corresponding masks (second column).

Another dataset exists that could be used for fretboard segmentation, a guitar transcription
dataset on Kaggle [1]. Despite running our segmentation training on that dataset as well, we
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used the model trained on our dataset in the overall transcription approach since our dataset
has more variance and more images.

5.1.2 Dataset for the Evaluation of Hand Pose Estimation

To validate the depth coordinates provided by MediaPipe for the hand pose estimation, 10
pairs of RGB and depth images were recorded. The RGB can be used with MediaPipe to
predict the 3D coordinates of the different 21 joints; while the depth image can be used to
check whether the predicted z coordinates are accurate or not.

5.1.3 Dataset for Transcription

To evaluate our entire approach, videos of people playing the guitar had to be collected. The
musical pieces to be used for evaluation had to be defined first. We decided to use the same
3 musical pieces used in [4] alongside 6 others (see Appendix A). Using 3 different guitars
(1 classical and 2 electric) with two different players, these different pieces test different
scenarios for the system and thus would help us better assess our system in each different
case.

To record these videos, the Intel RealSense Viewer recording feature was used with RGB and
depth modalities having a resolution 1280×720 with 30 fps. Each note within any piece used
for the recording was played every second, in other words, only one note (or one chord) was
played every second. This was done due to the fact that in our approach we do not take
timing and notes duration into consideration, since our main focus is detecting the correct
tabs.

In addition, ground-truth text files for the tabs were created, since there is no need for a
specialized file type or software. The tablature written in those files were separated by spaces,
where each column with hyphens and numbers represents what should be detected. The first
column represents the tabs played during first second, the second column represents the tabs
played during the second second, and so on.
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Figure 5.2 A ground-truth example of the "5th 4th" piece. The equivalent is shown in Figure
A.3.

The spaces introduced in the ground-truth annotation (such as in Figure 5.2) helps us separate
seconds, and that can be useful in cases where we have a two-digits number like 10 for
example. This is illustrated in the figure 5.3.

Figure 5.3 A ground-truth example of the "A minor 3 per string" piece. The equivalent is
shown in Figure A.4.

5.2 Experiments

5.2.1 Segmentation

To assess how Mask R-CNN performs on our fretboard segmentation dataset, training had
to be completed, then the model had to be tested on our test set. To speed up the training of
Mask R-CNN, the training was run on Digital Research Alliance of Canada HPC. We used a
NVIDIA V100-SXM2 GPU2 with 32GB of memory2. We used 1 CPU core for the training,
with a 32 GB of memory and a maximum time of two days.

The model is first deployed on the GPU to achieve maximum performance. Then, the data
is loaded, split into five folds, four of those will be used for training and one for validation.
Although K-Fold was implemented, we only trained the model for one fold.

In addition, the code used for training tunes the model using SigOpt3 python library. By
2https://docs.alliancecan.ca/wiki/Using_GPUs_with_Slurm
3https://sigopt.com/
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using SigOpt we can find the best combination of hyperparameters we want to tune; these
hyperparameters are:

• Optimizer: three optimizers were tested, Adam, RMSprop and SGD.

• Learning rate: the learning rate could be any value, so instead of having a wide range
from 0.000001 to 0.001 for example we used the log learning rate. If the log learning
rate is -2 then the learning rate would be 10−2 (or 0.01). The range used for this
hyperparameter was from -6 to -3, with a step of 1.

• Epochs: The number of epochs is important when training a model to make sure
reaching the peak performance of a model. In our case, since Mask R-CNN is pre-
trained on COCO2017 train dataset4, and since we are applying transfer learning, our
range of epoch is relatively small. From 5 to 10 inclusively.

• Batch size: since the fretboard segmentaton training set consists of only 911 images,
it would be hurtful to use a huge number for the batch sizes since the weights of the
model will be rarely updated. So, our batch size range is from 1 to 8 inclusively.

The metrics used for the evaluation of our system are Dice and IoU. These metrics are also
known as F1 score and Jaccard score respectively. Suppose that we have a ground-truth
mask where the white area pertaining to the fretboard is called A and a predicted mask with
the white area called B. The dice score is computed as follows:

Dice = 2 × |A ∩ B|
|A| + |B|

(5.1)

As shown in equation 5.1, dice is simply twice the intersection of A and B divided by their
union. On the other hand, the IoU metric is as its name indicates (Intersection over Union),
the intersection of both regions divided by their union.

IoU = |A ∩ B|
|A ∪ B|

(5.2)

This evaluation and computation is done after each epoch on the validation set. When
predicting masks, detections with a confidence score equal to or higher than 0.9 are taken
into account and used to build the mask. Other detections and predictions are dismissed.
After finishing the training, the best hyperparameters determined were the following:

• Optimizer: RMSprop.
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• Learning rate: 10−5 or 0.00001.

• Epochs: 10.

• Batch size: 1.

Quantitative Results

These parameters yielded a Dice score of 0.9231 and an IoU of 0.8571 on the test set. The
metrics were computed for each image in the training set and then the average was taken for
both Dice and IoU.

Using the same procedure for training Mask R-CNN, we trained the latter on Kaggle’s Guitar
Transcription Dataset [1].

Since the dataset follows COCO and VGG annotations, a small script was written to generate
the ground-truth masks based on those annotations for each image in the training and test
set. After that the images were placed in same hierarchy as our dataset before actually
launching the training on this dataset.

After training, the best hyperparameters chosen by SigOpt were the following:

• Batch size: 4.

• Epochs: 7.

• Log learning rate: -4 (learning rate 10−4 or 0.0001).

• Optimizer: Adam.

The results obtained based on their test set were 0.9252 and 0.8609 for Dice and IoU respec-
tively.

To compare our dataset to the one found in [1], we ran the model trained on our dataset on
the Guitar Transcription Dataset and vice-versa.

Table 5.1 Dice and IoU scores reported on both dataset and the Guitar Transcription Dataset
[1] with Mask R-CNN trained on either datasets.

Dataset Tested On
Dataset Trained On Ours Guitar Transcription Dataset [1]

Ours Dice: 0.9231, IoU: 0.8571 Dice: 0.9634, IoU: 0.9294
Guitar Transcription Dataset [1] Dice: 0.6841, IoU: 0.5199 Dice: 0.9252, IoU: 0.8609
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Qualitative Results

Qualitative results will be presented, showing successful as well as failure cases or scenarios.
The images shown in this section are images taken from our fretboard segmentation test set
alongside their ground-truth masks, and the prediction made by Mask R-CNN after training.

Success Cases In this section, cases of correct and good predictions from Mask R-CNN
on the test set will be displayed. The images and ground-truth masks are from the test set,
they are presented in Figures 5.4, 5.5 and 5.6.

As shown, the model predictions are close to the ground-truth. Figure 5.5e displays an
overlay of the predicted mask shown in Figure 5.5c, and it clearly shows us that there are
some differences around the corners of the fretboard compared to the ground-truth (shown
in Figures 5.5b and 5.5d), as they are round in the prediction.

As for Figures 5.4 and 5.6 the differences are even less significant relative to Figure 5.5.
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(a) Image from the test set used
during Mask R-CNN evaluation.

(b) The corresponding ground-
truth mask for the Figure 5.4a

(c) The mask predicted by Mask
R-CNN for the image shown in
5.4a

(d) Overlay of the ground-truth
mask (Figure 5.4b) with the RGB
image.

(e) Overlay of the predicted
mask (Figure 5.4c) with the
RGB image.

Figure 5.4 Figure showing an image from our test, alongside their ground-truth mask, pre-
dicted mask , overlay with the ground-truth, and overlay with the corresponding prediction.
The image chosen demonstrates the ability of our model to predict even when the fretboard
is relatively small and at a distance from the camera (Dice: 0.8545, IoU: 0.7460).
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(a) Image from the test set used
during Mask R-CNN evaluation.

(b) The corresponding ground-
truth mask for the Figure 5.5a

(c) The mask predicted by Mask
R-CNN for the image shown in
Figure 5.5a

(d) Overlay of the ground-truth
mask (Figure 5.5b) with the RGB
image.

(e) Overlay of the predicted mask
(Figure 5.5c) with the RGB image.

Figure 5.5 Figure showing an image from our test, alongside their ground-truth mask, pre-
dicted mask , overlay with the ground-truth, and overlay with the corresponding prediction
(Dice: 0.9695, IoU: 0.9408).
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(a) Image from the test set used
during Mask R-CNN evaluation.

(b) The corresponding ground-
truth mask for the Figure 5.6a

(c) The mask predicted by Mask
R-CNN for the image shown in
Figure 5.6a

(d) Overlay of the ground-truth
mask (Figure 5.6b) with the RGB
image.

(e) Overlay of the predicted mask
(Figure 5.6c) with the RGB image.

Figure 5.6 Figure showing an image from our test, alongside their ground-truth mask, pre-
dicted mask , overlay with the ground-truth, and overlay with the corresponding prediction.
The image chosen demonstrates the ability of our model to work with classic guitar which
happens to be also left-handed (Dice: 0.9635, IoU: 0.9295).
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Failure Cases In this section, the scenarios where Mask R-CNN was unable to predict the
fretboard correctly will be displayed. In some cases, extra parts (around the fretboard) were
incorrectly classified as fretboard, sometimes it is the other case; only a part of the fretboard
is detected. Other cases contained both or just the inability to detect the fretboard at all.

For Figure 5.7 the overlay sub-figure 5.7e show that the model predicted the fretboard incor-
rectly. A shift or translation exists, the model was unable to delimit the fretboard correctly.

Another incorrect delimitation of the fretboard exists in Figure 5.8, however, this time the
model was able to stop at the bridge end of the fretboard unlike the results shown in Figure
5.7.

Additionally, Figure 5.9 illustrates the inability of the model to detect the fretboard despite
it being there. This is probably caused by the low lighting condition.
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(a) Image from the test set used
during Mask R-CNN evaluation.

(b) The corresponding ground-
truth mask for the Figure 5.7a

(c) The mask predicted by Mask
R-CNN for the image shown in
5.7a

(d) Overlay of the ground-truth
mask (Figure 5.7b) with the RGB
image.

(e) Overlay of the predicted mask
(Figure 5.7c) with the RGB image.

Figure 5.7 Figure showing an image from our test set, alongside its ground-truth mask, pre-
dicted mask , overlay with the ground-truth, and overlay with the corresponding prediction.
This figure shows that the model classified some incorrect pixels of the fretboard (Dice:
0.7621, IoU: 0.6157).
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(a) Image from the test set used
during Mask R-CNN evaluation.

(b) The corresponding ground-
truth mask for the Figure 5.8a

(c) The mask predicted by Mask
R-CNN for the image shown in
5.8a

(d) Overlay of the ground-truth
mask (Figure 5.8b) with the RGB
image.

(e) Overlay of the predicted mask
(Figure 5.8c) with the RGB image.

Figure 5.8 Figure showing an image from our test set, alongside its ground-truth mask, pre-
dicted mask , overlay with the ground-truth, and overlay with the corresponding prediction.
This figure highlight the inability of our model to detect the fretboard entirely (Dice: 0.6978,
IoU: 0.5359).
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(a) Image from the test set used
during Mask R-CNN evaluation.

(b) The corresponding ground-
truth mask for the Figure 5.9a

(c) The mask predicted by Mask
R-CNN for the image shown in
5.9a

(d) Overlay of the ground-truth
mask (Figure 5.9b) with the RGB
image.

(e) Overlay of the predicted mask
(Figure 5.9c) with the RGB image.

Figure 5.9 Figure showing an image from our test set, alongside its ground-truth mask, pre-
dicted mask , overlay with the ground-truth, and overlay with the corresponding prediction.
This figure highlight the inability of our model to detect the fretboard in low light conditions
(Dice: 0, IoU: 0).
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5.2.2 Discussion

As indicated by our quantitative results and qualitative results shown in Figures 5.4, 5.5 and
5.6, Mask R-CNN was capable to predict fretboard location and related pixels in a relatively
accurate manner. However, Figures 5.7, 5.8 and 5.9 show that the model can still make
mistakes, false predictions or no predictions as it is the case in Figure 5.9c.

Based on the shown results, there are several points that can be improved in the segmentation,
which are the following:

• Size of the dataset: to train a model well enough in a supervised manner (just like
it was done with Mask R-CNN in this project), large quantities of data are required.
Despite the fact that a pretrained model was used and then finetuned on our dataset,
the dataset may still be small even for transfer learning.

• Hyperparameters: the range of hyperparameters can also be a factor. Since not all
hyperparameter combinations were tested, new untested parameters could yield better
results than the already obtained ones. By using SigOpt we tested 40 combinations of
hyperparameters as suggested by SigOpt algorithm, however, it could deem useful to
expand the range of some parameters (going up to 50 epochs instead of 10, for example),
in addition to adding new ones (such as whether to add a learning rate scheduler or
no, for instance).

• Architecture: although Mask R-CNN works well, other architectures could also be more
useful to our use case. The different architectures could be variations of Mask R-CNN
(changing the backbone, or slight modifications elsewhere within the model).

Despite the aforementioned points, the model is precise enough to be used for fretboard
segmentation. Small errors can be tolerated, in addition, the testing videos for the end to
end testing will be mainly videos where the fretboard is almost parallel to the camera and
with good enough lighting conditions. The other cases were added to the dataset solely to
improve the model robustness, however, in our guitar playing videos we do not have such
cases. As shown in Figures 5.4, 5.5 and 5.6, the model is precise enough.

Finally, 5.1 proves the usefulness of our dataset. When training Mask R-CNN on our dataset,
the model performed decently when tested on either datasets, even performing the model
trained on the other dataset when tested on its test set. However, when training on the
Guitar Transcription Dataset [1], the model performed well on its test set; but that was not
the case when tested on our test set. This comparison proves that our dataset helps models
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generalize better and avoids overfitting such as what happened with the Guitar Transcription
Dataset [1].

5.3 Hand Pose Estimation

The hand pose estimation is an essential task in this project, and hence the need to evaluate
it, validate it and understand its behaviour. To do this, experiments were conducted where
we assess MediaPipe accuracy in terms of joints depth estimation.

Since both CS1 and CS2 are different from the D455 coordinate system, a mapping should
happen. We should be able to go from one coordinate system to another (either from CS1
or CS2, to the D455 depth map coordinate system in terms of depth).

Three different methods for retrieving, in the camera coordinate system, the depth coordinate
of all the joints predicted by MediaPipe, were tested and compared to the ground-truth
depth (retrieved from the depth map). For each method, we measured the errors in terms of
millimeters along the z-axis in the camera coordinate system.

To experiment, for LR and LR2 a training has to be done on an image basis, while for the
centroid it is just a simple computation. Hence, learning, outliers removal and predictions
are performed on a per-frame basis. Next, we compute the average mean error per joint and
per method. For the former, the mean error for each joint is simply the sum of errors across
all frames divided by the number of times that joint was not considered as an outlier. As
for the latter, it is the weighted mean of the errors; each joint is weighted by the number of
times it is used (that it is not an outlier) divided by the sum of the usage of all joints. Also,
this experiment was run twice, once with and once without the hole filling filter previously
mentioned.

5.3.1 Results

In this subsection, we present the results obtained for each method described above. Table
5.2 shows that the linear regression methods work better than the Centroid method, however
the differences are subtle.
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Table 5.2 Mean error for each tested method considering a number of scenarios, where the
hole filling filter is either included or excluded and when including or excluding the wrist and
thumb in the calculation.

Method Mean over all joints Mean excluding wrist and thumb
LR 18.62 mm 16.23 mm
LR2 18.99 mm 15.27 mm

Centroid 21.19 mm 17.96 mm

Figure 5.10 Mean error per joint in millimetres.

5.3.2 Discussion

As shown in Table 5.2, the difference between the three tested methods is less then 4 mil-
limeters. One pattern we can notice is that the mean error is reduced when we exclude the
wrist and the thumb from our error calculation. The reason for not taking the wrist and
thumb joints into account is that when playing the guitar, the player only uses his index,
middle, ring or pinky fingers in his/her fretting hand.

Figure 5.10 also clearly show that the mean error for the wrist and thumb joints (wrist,
thumb CMC, thumb MCP, thumb IP and thumb TIP) are generally higher than others.



62

Despite these error drops, the differences do not exceed 5 millimeters in the best case (from
Centroid with filter to Centroid without a filter while excluding the thumb and the wrist).
The calculated errors are caused by many reasons, these errors can be caused by MediaPipe
itself, the camera or even the methods used.

The source of errors could be that MediaPipe itself makes faulty predictions, causing either
the linear regression to learn those errors or returning incorrect values that are used in the
centroid computation. Also the depth map returns the depth value at the surface of the
hand, while MediaPipe could be returning the depth of a joint. Thus, there would be a half
a finger thickness error, which could be adding up to the error rate.

5.4 Optical Flow and Picking Detection

As explained earlier, our approach comprises an optical flow computing element whose result
is used later for picking detection and matching (in case of detection) the detected line of
flow with the corresponding string. Since the picking detection affects whether a transcrip-
tion would happen or not (no tabs will be transcribed without any detected picking), it is
important to evaluate this step and see how well it performs.

This evaluation helps us understand whether there are missing detections or incorrect string
associations whenever picking is detected. First, we selected some optical flow outputs from
the videos recorded, and set the expected results for these frames. Then, we ran our picking
detection method (preceded by fretboard segmentation and strings detection of course) and
compared the predicted output to our expectations. For each expected string we selected 9
frames, thus 63 frames were selected (9 for each string, and 9 for no picking represented by
"X").

In another way of assessment, we used the same RGBD videos that were recorded for tran-
scription. However, when evaluating we are not interested in providing the correct fret num-
ber, we only check whether it is the correct string and compute a "no picking" vs "picking"
confusion matrix.

Finally, evaluating picking this way means that we are not only evaluating the picking de-
tection method, by itself; this includes the tabs grouping and refinement steps as well.

5.4.1 Results

Three confusion matrices were computed for the results of this evaluation, the first one
being a multi-classes confusion matrix having 7 classes, string 1 to 6 alongside another class
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represented by ’X’ to signify the absence of picking (no strings played). The second confusion
matrix is similar to the previous one, however, this one is based on the output of the videos,
and as explained earlier we are not interested in the fret numbers. The third confusion
matrix, is a two-class matrix, with two classes: ’no picking’ and ’picking’.

Figure 5.11 Multi-strings confusion matrix for picking detection on selected frames.
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Figure 5.12 Multi-strings confusion matrix for picking detection for the predicted tabs on our
recorded videos. This confusion matrix evaluates our picking detection + tabs grouping +
tabs refinement.

Figure 5.13 Picking/No picking confusion matrix for picking detection.

We also present bar charts that show the picking detection on a musical piece (Figure 5.14)
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and guitar type (Figure 5.15) basis.

Figure 5.14 Bar chart representing the picking accuracy per musical piece.
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Figure 5.15 Bar chart representing the picking accuracy per guitar type used.

The difference between Figures 5.11 and 5.12 is that the former is an evaluation of the picking
detection method that recognizes the played string. The ground-truth was a string number
and thus we compare the prediction to the expected index. While the latter, is filled based
on the predicted tabs. If the ground-truth consists of string 6 fret 1 and we predicted string
5 fret 2 thus in the confusion matrix we will add that we expected "X" but found string 5 in
addition to expecting string 6 and finding "X". The reason we cannot place it in the cell of
string 6 (expected) string 5 (predicted) is that for chords we cannot know which string was
confused with which other string. Thus, our evaluation method for this part is not optimal.

Finally, we measured the accuracy per string (based on Figure 5.12) as well as the mean
accuracy across all of them, and we got the following:
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• No string played: 90.74%.

• String 1: 70%.

• String 2: 47.36%.

• String 3: 40.54%.

• String 4: 31.08%.

• String 5: 57.14%.

• String 6: 65.90%.

• Mean: 57.54%.

5.4.2 Discussion

As presented in the previous section, our method performs averagely.

For the confusion matrix shown in 5.11, we can see that the thicker the string, the less errors
our method makes. String 6 has the least number of misclassifications (3 out of 9) while that
number keeps on increasing with every thinner string (4 out of 9 for string 5, 7 out of 9 for
string 4 and so on). Our method also correctly classified all frames where we expect to have
no picking as a prediction. The worst result came for string 1; being the thinnest string, it is
hard for the optical flow to detect a vibrating line since it is not very visible in the resolution
used (1280×720). Another important point to notice is that the thinner the string the bigger
the probability for our method to classify it as no picking rather than another string. This
is again due to the strings thickness and some discontinuities in the optical flow.

Based on the confusion matrix shown in Figure 5.13 our model presents 80.52% accuracy for
picking detection meaning that our method is capable of detecting the presence or absence
of picking nearly 81% of the time.

In addition, both Figures 5.12 and 5.13 show that our method has a significant number of
false positives and false negatives. The first row in Figure 5.12 displays how false positives
were classified, while expecting an absence of picking, showing that the third string had the
most false positives. However, looking at false negatives (first column in Figure 5.12), it is
obvious that the fourth string is picked the most in our recorded videos, thus it is the one
with the most incorrect classifications.

On another note, Figures 5.14 and 5.15 compare the accuracy of picking detection on a musical
piece and guitar type level respectively. In the former, two pieces stand out, "hovering" and
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the "barre". The first one has a lot of open strings picking on the sixth string (the thickest)
on an electric guitar proving that unlike other existing approaches ( [8], [4], [6], etc.) , ours is
capable of detecting played open strings thus the importance of keeping the picking detection
part in future research. While the former mostly consisted of an open 6th string, the "barre"
piece consisted of barre chords. The chords used in this piece go through all the strings,
meaning that all strings are played per chord. Our method was able to correctly detect
pickings almost 87% of the time.

We can also see that the results were particularly bad for "Ode an die Freude" and "C major
chord singles". For the former, our picking detection method was unable to detect the picked
string despite the good optical flow images. This was mainly due to the fact that some lines
in the optical flow had discontinuities, in addition to string misclassifications as well. For
the latter, the optical flow failed to detect picking in some frames in addition to incorrect
string associations, the inability of correctly identifying pressing joints as well as picking even
though a line exists within the optical flow output.

Moreover, the results in Figure 5.14 show that our picking method works almost equally well
on both notes and chords-based pieces (see Appendix A). The picking detection on different
pieces is around the same values (close to 0.5), however, the two pieces standing out the most
are "hovering" and "barre" where the first is note-based and the second is chord-based.

As for guitar types, it is clear that the "Electric 22" which is an electric guitar with 22 frets
and the thinnest strings (gauge 8) was the hardest to be precise with. While the classical
guitar results were better due to thicker strings while also having nylon strings for the highest
3 strings (instead of metal strings). The other electric guitar (electric 24), was in the middle
since it has metal strings but with a thicker gauge (gauge 9) than the aforementioned electric
one. Thus, our method does not work equally on different types of guitars, it works better
on guitar with thicker strings and with less metal strings.

Finally, considering the accuracy per string; we can notice that our method correctly clas-
sifies optical flow images with no picking around 91% of the time. However, looking at the
strings, the best performing strings were strings 1 and 6 while the others fluctuated around
50%. Despite the relatively good numbers for strings 1 and 6, our picking detection is still
inconsistent for the most part and is a contributor to the incorrect tablature outputted by
our approach. We also hypothesize that for string 1 and 6 it could be that an optical flow
detecting the movement of the guitar (or fretboard) can confuse our method make it predict
vibrating strings close to the extremities, thus strings 1 or 6.
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5.5 Transcription System

After testing all the different parts of our approach (segmentation, hand pose estimation,
picking detection), the evaluation of the entire approach was conducted. As shown in Figure
4.1, the overall approach comprises the four different parts (segmentation, hand pose estima-
tion, optical flow and post-processing). By evaluating the whole approach, we are assessing
the system performance and how the different parts work together.

5.5.1 Results

In this section we present the results obtained for the predicted tabs by our approach when
compared to the ground-truth.

Our code was run on an Intel Core i7-10700 CPU, NVIDIA GeForce RTX 3080 GPU with
16 GB of RAM. The system ran for 1 hour 59 minutes and 15.2035 seconds for 4878 frames,
and the average time taken per frame was 1.4668 seconds. The segmentation had an average
time of 1.005 seconds per frame, while the hand pose estimation, optical flow computation
and the post-processing averaged 0.03277, 0.1675 and 0.0727 seconds respectively.

Figure 5.16 shows the confusion matrix for our transcription model. This confusion has 12
classes, 0 for an open string, 1 to 10 for frets and "X" for no tablature. Despite the fact that
the guitars used in our experiments have at least 20 frets (classical guitar), we limited our
confusion matrix to 12 classes only for visualization purposes and since the highest fret we
use in our evaluation is the 10th fret.
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Figure 5.16 Frets or tabs confusion matrix for all the tested videos.

5.5.2 Discussion

While the picking proved to be working quite well, the frets or tabs prediction of our system is
not as significant. As shown in Figure 5.16, our method predicts a good number of incorrect
fret numbers in the output tablature.

In the last row of the confusion matrix, where we expect to have no tabs, a lot of false
positives exist, this is due to the fact that whenever a picking is detected our system is forced
to make a tab prediction even if in reality no transcription should happen. Similarly, in
the last column, our model cannot predict tabs when our picking method does not detect
any picking, thus this confusion matrix last row and last column can be dismissed during
evaluation as these mistakes can be attributed to failure in picking detection, however, we
kept them in the confusion matrix for completeness.

While excluding the aforementioned row and column, the accuracy of our method is 23.36%.
These results are due to the accumulation of errors. Since our method is comprised of many
steps that can affect each others results, one error can the following steps to fail. A missed
picking detection, can impact the score for the entire system; thus the accuracy for the entire
system is expected to be lower than that of picking.

It is also clear based on Figure 5.16 that our model misclassified a good number of tabs
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since the values within the confusion matrix are very widely distributed and not very much
focused around the diagonal. These misclassifications can be the result of incorrect hand
pose estimation, especially in terms of depth or incorrect frets detection.

The hand pose estimation step of our project predicts the 3D coordinates of 21 joints of the
hand. The depth coordinate (z coordinate) of a joint is used to compare it with the depth
of the fretboard so we can assess whether that joint is pressing or no. Any incorrect depth
estimation can cause either for a joint to be incorrectly labelled as pressing or not pressing
thus lowering the accuracy of our approach and causing more misclassifications.

Another main reason that leads to such results is the incorrect detection of frets. Indeed,
sometimes our method incorrectly detects frets since it is based on image processing, meaning
that it is hard to find dynamic thresholds or thresholds that can work for different videos.
This hinders our accuracy as well.
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CHAPTER 6 CONCLUSION

In this last chapter, we conclude our work. We start with a summary of the works presented
in this thesis, in addition to the limitations of our approach including the different parts of
it before finally discussing the future work that can be done to improve our approach and
further increase the performance.

6.1 Summary of Works

In this work, multiple parts were developed to complete an automatic guitar tablature tran-
scription system. In the beginning, a RGBD camera had to be chosen which was later used
to collect videos of guitarists playing different guitars. Both modalities RGB and depth are
required since our approach uses the former for the segmentation, optical flow computation,
strings and frets detection; while the latter is used alongside the hand pose estimation step
to know whether a joint is pressing on a string or no.

Furthermore, we developed three main tasks which results will be used later, these different
tasks are the segmentation of the fretboard, the fretting hand pose estimation and opti-
cal flow computation. The first one, the segmentation was achieved through fine-tuning a
pre-trained Mask R-CNN with a ResNet50-FPN backbone on our own custom dataset for
fretboard segmentation. For the second task, we used MediaPipe Hands for the hand pose
estimation task. MediaPipe Hands is a lightweight model developed by Google who returns
3D coordinates for 21 joints of the hand [34]. Since the returned depth coordinates are not
absolute values, we tested our own method to retrieve absolute depth values using the output
of MediaPipe and the depthmap from the camera.

While for the previous two tasks deep learning was involved, for the optical flow computation
the solution was simply using the Farneback algorithm [38].

To use the results of all the previous tasks, a post-processing step was developed. This step
uses the segmentation result to isolate the fretboard from the rest of the image for strings and
frets detection, the hand pose estimation result alongside the depth map to detect pressing
joints after using the optical flow for detecting the picked or plucked string or strings.

After developing our approach, the different parts of our approach had to be tested to measure
the performance of every task on its own, in addition to the entire methodology from end
to end. For the segmentation, we built our own fretboard segmentation dataset on which
our model scored 0.9230 for Dice; while for the hand pose estimation we experimented with
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different ways of predicting depth, which proved that through linear regression we achieved
the lowest error rate. Furthermore, to test both picking detection and our transcription
method in general, videos of people playing different guitars had to be collected. For the
former the mean accuracy was at 57.05%, while for the latter the accuracy was 22.11%.

From our experiments we can draw several contributions and findings, in addition to identi-
fying multiple limitations that help us pinpointing future work.

6.2 Contributions and Findings

Despite the results obtained, several contributions and findings can be pointed out from this
work.

To our knowledge, this project is the first attempt for a complete automatic transcription
system that uses only a RGBD camera without any other special equipment. It is also the
first work, where depth maps, hand pose estimation and optical flow are used for transcription
reasons; and where picking detection is actually attempted for the same reason.

Moreover, a fretboard segmentation dataset was built to train our Mask R-CNN model for
the localization of the fretboard in RGB images which helped us score 0.9230 for Dice on
its test set. Compared to the Guitar Transcription Dataset found on Kaggle [1], our dataset
seems to be much more diverse and leading to better generalization of the Mask R-CNN
model.

Furthermore, the picking detection, despite the errors, seemed to work well with thicker
strings, such as string 5 and string 6. Our method relies heavily on picking detection, thus
making it able to detect hovering. For example, if a guitar player plays an open string on
a guitar our method is able to detect open strings through the use of picking detection and
hand pose estimation in 3D.

6.3 Limitations

As seen earlier, our results lack accuracy and our approach is significantly prone to errors
and mistakes. This can be attributed to many factors and limitations.

The first limitation we can identify is the camera. Indeed, despite being the most suitable
consumer-grade RGBD camera we could use, however, it is still not ideal. This is mainly
because of its resolution, a 1280×720 resolution is not perfect especially when trying to detect
the thin strings as they may not be clearly visible sometimes. This greatly affects our optical
flow computation as it will be unable to detect picking on those strings, in addition to being
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undetectable by the strings detection step. We also did not use multiple cameras or different
views to capture as much as possible the needed information. This would particularly help
the hand pose estimation where we can attempt to make sure the maximum number of joints
is visible.

Another limitation is the hand pose estimation used. Indeed MediaPipe Hands is not suited
for our case (a fretting hand on a guitar) and probably was never trained on similar data
for the prediction of hand joints. Even if a model exists for this task, predicting only joints
is arguably not ideal for such task, as sometimes guitarists press with parts even between
joints; for example, playing a perfect fourth on a standard tuned guitar. Also, the poor depth
estimation affected our results and depth estimation for such task has to be the most precise
possible since it can greatly impact the outcome.

Despite that the Farneback algorithm [38] works pretty well, however, it remains vulnerable
towards noise in addition to being an old method and not as precise as newer methods.

Finally, for the post-processing step using image processing algorithms may not be the ideal
solution since a lot of them rely on thresholds and non-dynamic values such as the Proba-
bilistic Hough Line transform and the different filters used (morphological, Sobel, etc.).

6.4 Future Work

In this section we present the future work that can be carried for our project. The future work
presented here includes all different parts of the project; segmentation, hand pose estimation,
optical flow and post-processing.

6.4.1 Camera Placement

The camera placement itself can be investigated and improved. For example, multiple cam-
eras could be used to cover as much as possible the biggest number of hand joints. In addition,
viewpoints like "The Magnet" cellphone holder 1 or something similar to the Novaxe plat-
form2.

6.4.2 Fretboard Segmentation

Several improvements can be made to further improve the fretboard segmentation. The
suggestions in this section or the future work that can be carried out to improve this task,

1https://troygrady.com/
2https://www.novaxe.com/
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are mainly based on the issues identified in Section 5.2.2.

Keeping the same dataset may mean the need for testing new hyperparameters or changing
the confidence threshold. To do the former, more combinations need to be tested since
576 combinations exist within the parameters we chose to test and their ranges (3 for the
optimizer, 4 for the learning rate, 6 for the epochs and 8 for the batch size, hence 3×4×6×8 =
576). Another avenue, could be adding new parameters within the parameters list, such as
whether using a learning scheduler or no, the backbone, etc. or extending the range of the
existing hyperparameters.

Changing the confidence threshold could also be another solution. To know the perfect
threshold is a matter of testing, and could be determined empirically. A good way of doing
it, can also be by considering a hyperparameter to be tested with the rest of hyperparameters.
However, adding too many hyperparameters can cause the training to run for a very long
time and hence a compromise or balance must be found.

Another improvement that can be introduced in the future, is adding more data. Many
datasets have thousands and millions of images that can be used to train a model to perform
a certain task, it would be highly beneficial to enlarge our dataset through adding many
more images. Another version of the dataset could be built, where new additions would be
introduced to the already existing data. This would be greatly profitable since adding more
data means more variety for the model if the images are not similar to each other. One
important note on this, is that the new images to add should be varied enough to help the
model better predict and improve its robustness instead of being homogeneous and making
the model fall into overfitting of a certain type of images or cases.

Finally, we think that many architectures can be tested. These architectures can be other
architectures in the literature or architectures that we can design. Either way, Mask R-CNN
works well, but other architectures may perform better. This would be a great improvement
especially if a model with fewer parameters (weights) can perform at the same level as Mask
R-CNN or better, resulting in a faster training, inference, less memory and GPU consumption
and lighter model.

6.4.3 Hand Pose Estimation

As explained earlier, the part of hand pose estimation in this work is essential in order to
know what strings are pressed. However, hand pose estimation can be much improved for
the task of predicting the joints of a fretting hand on a guitar. Also, other approaches than
hand pose estimation can be used for this task, all those options will be explained below.
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• Create a guitar-specific hand pose estimation dataset: To our knowledge, no dataset
exists for such use case. Hence, creating a new dataset specifically tailored for hand
pose estimation of a fretting hand would be highly beneficial and would help increase
the accuracy since this task can be very challenging for deep learning models because
a fretting hand can have many self-occlusions.

• Train a model for press detection: Instead of going through hand pose estimation, we
can directly try to train a deep learning model on the press detection using 3D data,
and if good enough, may be it could be done using 2D data only. In other words, a
model can be trained on learning how to know which strings are pressed, regardless of
the joint. By doing so, we would avoid performing the hand pose estimation task, and
we would need to use or create datasets such as the Guitar Transcription Dataset on
Kaggle (Released in December 2021) [1].

6.4.4 Optical Flow and Picking Detection

Detecting picked/plucked strings proved to be tricky task, however, future work can be carried
out to improve the outcomes of optical flow-based picking detection.

Despite this method being relatively able to detect picked strings, however it remains not
ideal. This is mainly due to the fact that the optical flow is unable to return flow images
containing lines representing picked thin strings. Thin strings are hard to detect, and hard to
be seen with low resolutions, despite the D455 camera used having a 1280 × 720 resolution it
still was not enough to visualize thin strings very well. This problem is particularly noticeable
on metal thing strings on electric guitars, especially on the electric guitar with 22 frets on
which the thinnest strings gauge was used.

In the future, it would be interesting to see how the optical flow and our picking detection
method would behave with a resolution sufficiently high for capturing thin strings (especially
the first, second and third strings). Another aspect that can be worked on in the future, is
the lighting. The lighting used in for the videos of this project is similar to the image shown
in 4.8a, regular room lighting. Different lighting conditions may prove helpful however that
remains to be investigated.

Furthermore, the optical flow is vulnerable to noise, meaning if noise is introduced between
two frames the optical flow computation method used would still show some flow. This point
can backfire on our results sometimes, thus it would also be beneficial to try to develop a
method for detecting strings optical flow or a way of detecting picked strings directly.

To do this, a CNN would have to be developed to achieve strings optical flow computation
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or string picking detection immediately without passing through optical flow. Either way, a
dataset has to be built through data collection and annotation in addition to experimenting
with the best architecture that suits such a problem all while testing on different types of
guitar and strings.

6.4.5 Post-Processing

Improving other components of our approach does not necessarily mean that our post-
processing does not require improvements as well. The post-processing adopted in this project
is highly dependent on predefined thresholds like in the Hough transform and morphological
operations, in addition to not being robust to noise.

Defining these thresholds or values statically and manually is not ideal, as well as not being
desirable. One way of addressing these shortcomings is to replace the post-processing by a
small CNN that takes mixed input data, meaning that it would take the binary segmentation
mask, optical flow image and the hand joint coordinates and predicts tabs as output.

This would also require data collection and annotation, however, it would probably be a
great improvement as a neural network can learn to identify strings, match them to picking
and learn how to recognize pressing joints.

6.4.6 Transcription System

All the previous future work will possibly improve the process of the automatic transcription,
however, the methodology or the approach itself can be redesigned as well. Instead of using
such a system where data and outputs are passed on from one module to the next, a deep
learning method can be designed for the visual transcription of tablature.

Such a model can be trained to learn the task of transcription, where different sub-networks of
the model would learn different tasks, for example, one would learn to detect pressed strings,
another for localizing the fretboard and a third detecting picked strings with a few layers at
the end to use the outputs of these sub-networks to finally output tablature. The training of
such model would require many steps, such as training each sub-network separately to make
sure they extract the features and predict what they are supposed to.

Another possibility could be Multi-Task Learning. A dataset such as the Guitar Transcription
Dataset on Kaggle [1] can be used for that, where the network learns for each finger to detect
whether it pressing or no, the tab index, as well as the string index.

In addition to the aforementioned, another suggestion would also be building a dataset where
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inputs would be videos of people playing the guitar while the ground-truth would be text
files of the corresponding tablature for each video. This dataset can later be used to train
an RNN to learn the task of transcription from end-to-end. An interesting comparison can
be conducted between this methodology and the one proposed previously as well.

Furthermore, since the field of computer vision-based automatic tablature transcription is
not widely studied, a lot of research and experiments can still be conducted. In other words,
a lot of uncertainties are still present, and a lot of improvement opportunities exist; thus, for
the future, multiple works can still be conducted to further understand and improve the task
of visual transcription of guitars.

Finally, the use of audio in our project can be a good addition that can be helpful especially
in detecting picking. Similarly to [22], pitch detection can be performed to disambiguate or
help correct tablature.
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APPENDIX A MUSICAL PIECES FOR TESTING

To record our testing videos several musical pieces were chosen in order to assess our system
performance in certain scenarios and in the best way possible.

In this appendix, we list the different musical pieces we chose to record and the reasons they
were chosen.

Figure A.1 Tabs used for this piece made of open strings (zeros) and hovering to test the
detection of open strings.
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Figure A.2 Tabs used for this piece that is made of the single notes of the C major chord
progressions used in [4].

Figure A.3 The tabs used for this piece that is composed of 5th and 4th intervals.



86

Figure A.4 The tabs used for this piece that represents the A minor scale played on a E
standard tuned guitar with 3 notes per string.
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Figure A.5 Tabs used for this piece that is made of barre chords.

Figure A.6 Tabs used for this piece that is made of 3 strings barre chords. This piece would
usually be played on a drop tuned guitar.

The "C major chord progression" (present in [41] and also [4] as "C major chords") would
help us determine whether this approach will work with chords. The "C major scale" and
"Ode an die Freude" also in [41] and used in [4] would test the ability of the approach to
detect single notes. Other 6 were added that serve different purposes. Unlike most methods
mentioned in the literature review section, we attempt to detect open strings, and to do so
we need a musical piece to help us evaluate that use case. The "Hovering" piece shown in
Figure A.1 helps us determine whether the model is able to work with open strings while
also introducing different pressings (non-open strings) in between.

The "C major chord progression-singles", is the same as "C major chord progression" in [41]
and used in [4], however, in this one the notes of every chord are played separately. This
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is used to show that even if a finger is pressing, no transcription should happen unless the
corresponding string was picked.

The "5th 4th" piece displayed in Figure A.3, consists of perfect 5th and perfect 4th intervals.
It is used for assessing our methods accuracy regarding intervals.

The "A minor 3 per string" piece in Figure A.4 adds another video with single notes in it,
however, this time 3 notes are played per string before moving on to the next one. Thus, if
we have multiple fingers on one string only the highest pressed fret should be taken.

One of the added pieces is what we call "Barre chords", shown in Figure A.5, adds barre
chords to our testing set and so our model can be tested with barre chords.

The last piece, "Drop power chords" (we also call it "Drop D" since it is played on a drop D
tuning) as in Figure A.6, adds some power chords to our videos. These chords are usually
played in a drop tuning, similar to barre chords but the finger does not press across all strings.


	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Existing Methods
	2.1.1 RGB-based Approaches
	2.1.2 RGB and Depth based Approaches
	2.1.3 Discussion
	2.1.4 Computer Vision and Audio Signal Processing Based Approaches

	2.2 Segmentation
	2.3 Hand Pose Estimation

	3 PROJECT RATIONALE
	3.1 Rationale
	3.2 Requirements and Challenges
	3.2.1 Requirements
	3.2.2 Challenges

	3.3 Objectives

	4 MATERIAL AND METHODS
	4.1 Overview
	4.1.1 Input A: RGBD Videos
	4.1.2 Step B: Fretboard Segmentation
	4.1.3 Step C: Hand Pose Estimation
	4.1.4 Step D: Optical Flow
	4.1.5 Step E: Post-Processing
	4.1.6 Step F: Output

	4.2 Fretboard Segmentation
	4.2.1 Segmentation network
	4.2.2 Model training

	4.3 Hand Pose Estimation
	4.4 Optical Flow
	4.5 Post-Processing
	4.5.1 Fretboard Cropping and Rotation
	4.5.2 Translation and Scaling
	4.5.3 Cropping the Optical Flow Image
	4.5.4 Hand Pixels Detection
	4.5.5 Strings Detection
	4.5.6 Frets Detection
	4.5.7 Frets Refinement
	4.5.8 Picking Detection
	4.5.9 Tabs Computation
	4.5.10 Tabs Grouping


	5 EXPERIMENTS, RESULTS, DISCUSSION AND FUTURE WORK
	5.1 Data Collection
	5.1.1 Dataset for fretboard segmentation
	5.1.2 Dataset for the Evaluation of Hand Pose Estimation
	5.1.3 Dataset for Transcription

	5.2 Experiments
	5.2.1 Segmentation
	5.2.2 Discussion

	5.3 Hand Pose Estimation
	5.3.1 Results
	5.3.2 Discussion

	5.4 Optical Flow and Picking Detection
	5.4.1 Results
	5.4.2 Discussion

	5.5 Transcription System
	5.5.1 Results
	5.5.2 Discussion


	6 CONCLUSION
	6.1 Summary of Works
	6.2 Contributions and Findings
	6.3 Limitations
	6.4 Future Work
	6.4.1 Camera Placement
	6.4.2 Fretboard Segmentation
	6.4.3 Hand Pose Estimation
	6.4.4 Optical Flow and Picking Detection
	6.4.5 Post-Processing
	6.4.6 Transcription System


	REFERENCES
	APPENDICES

