
Titre:
Title:

Machine Learning Algorithms for Combinatorial Optimization

Auteur:
Author:

Defeng Liu

Date: 2022

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Liu, D. (2022). Machine Learning Algorithms for Combinatorial Optimization [Ph.D.
thesis, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/10460/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10460/

Directeurs de
recherche:

Advisors:
Andrea Lodi

Programme:
Program:

Doctorat en mathématiques

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/10460/
https://publications.polymtl.ca/10460/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Machine Learning Algorithms for Combinatorial Optimization

DEFENG LIU
Département de mathématiques et de génie industriel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Mathématiques

Août 2022

c© Defeng Liu, 2022.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Machine Learning Algorithms for Combinatorial Optimization

présentée par Defeng LIU
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Louis-Martin ROUSSEAU, président
Andrea LODI, membre et directeur de recherche
Didier CHÉTELAT, membre
Pascal VAN HENTENRYCK, membre externe

iii

DEDICATION

To my parents

iv

ACKNOWLEDGEMENTS

“We are at the very beginning of time for the human race. It is not unreasonable that we
grapple with problems. There are tens of thousands of years in the future. Our responsibility
is to do what we can, learn what we can, improve the solutions and pass them on. It is
our responsibility to leave the men of the future a free hand. [...] It is our responsibility as
scientists, knowing the great progress which comes from a satisfactory philosophy of ignorance,
the great progress which is the fruit of freedom of thought, to proclaim the value of this freedom,
to teach how doubt is not to be feared but welcomed and discussed, and to demand this freedom
as our duty to all coming generations.”

Richard P. Feynman

This long journey of Ph.D. would not have been possible without the support of my advisor,
Andrea Lodi. Thank you for giving me a great freedom of research, while still providing me
with valuable advice. Thank you also for helping me get integrated into our incredible DS4DM
research chair and for providing opportunities to showcase my work in the community.

The daily struggles of administration and computer networks would have been much harder
without the amazing help that the CERC DS4DM team provided. Thank you Mehdi, Khalid,
Koladé, Mariia, Pierre for going out of your way to support me.

I am grateful to have found in the DS4DM chair, a considerate and stimulating work
environment. Thank you to the whole community, and in particular to Didier, Maxime, Elias,
Claudio, Antoine, Giulia, Jaime, Leandro, Federico, Gabriele, Jiaqi, Matteo, Can and Guanyi
for the countless and fruitful discussions.

Special thanks go to all the co-authors of the works presented in this thesis: Mathieu Tanneau,
Matteo Fischetti, Vincent Perreault, and Alain Hertz, thank you for your trust, patience and
commitment. Our collaborations allowed me to grow scientifically and personally, and I have
learned a lot from you all. It has been a pleasure to work together!

To my close friends in Montreal and to my family in China, thank you for supporting me
with your love and camaraderie.

v

RÉSUMÉ

Une variété de tâches de décision dans la science et l’industrie modernes sont des problèmes
d’optimisation combinatoire. Pour résoudre ces problèmes difficiles, des recherches étonnantes
ont été menées dans le domaine au cours des dernières décennies. Bien que les méthodes et les
techniques d’optimisation développées aient conduit à une multitude d’outils d’optimisation et
aient été appliquées avec succès pour résoudre régulièrement un grand nombre de problèmes,
il existe encore de nombreux cas pratiques où les techniques existantes ne sont pas adéquates
et il est toujours impératif de concevoir et de mettre en œuvre de nouveaux algorithmes et
stratégies d’optimisation combinatoire.

L’apprentissage automatique est un sous-domaine de l’intelligence artificielle. Ces dernières
années, l’application des techniques d’apprentissage automatique dans l’optimisation com-
binatoire est devenue un domaine de recherche émergent. Dans cette thèse, nous visons à
renforcer cette direction et nous soutenons que l’apprentissage automatique est un complé-
ment prometteur à l’optimisation combinatoire. Plus précisément, nous étudions différents
paradigmes pour appliquer l’apprentissage automatique en combinaison avec l’optimisation
combinatoire et présentons trois contributions ci-dessous.

Tout d’abord, nous considérons un problème d’optimisation combinatoire spécifique et pro-
posons un cadre pour l’apprentissage d’heuristiques constructives produisant des solutions
de haute qualité. Les résultats montrent que notre approche d’apprentissage atteint des
performances de généralisation remarquables sur des graphes de plus grande taille et d’une
distribution différente.

Deuxièmement, nous considérons l’application de l’apprentissage automatique pour les déci-
sions au sein d’algorithmes d’optimisation combinatoire et proposons un cadre d’apprentissage
pour prédire et pour adapter la taille du voisinage de l’heuristique, le branchement local, pour
la programmation en nombres entiers. Nous montrons informatiquement que les décisions
algorithmiques critiques au sein de l’heuristique peuvent en effet être apprises par apprentis-
sage automatique. L’algorithme résultant se généralise bien à la fois au niveau de la taille de
l’instance et, remarquablement, entre les instances.

Enfin, nous présentons une contribution méthodologique pour l’intégration de l’apprentissage
automatique dans les métaheuristiques pour la résolution de problèmes généraux d’optimisation
combinatoire. Plus précisément, nous proposons un cadre général d’apprentissage automatique
pour la génération de voisins dans la recherche de métaheuristiques. La clé de la méthodologie
proposée réside dans la définition et la génération de voisinages de solutions prometteuses.

vi

Nous proposons un cadre de classification qui exploite les propriétés structurelles du problème
et des solutions de haute qualité et qui sélectionne un sous-ensemble de variables pour définir
un voisinage de recherche prometteur pour la recherche métaheuristique. Nous démontrons
l’efficacité de notre cadre sur deux schémas métaheuristiques, et les résultats expérimentaux
indiquent que notre approche permet d’apprendre un compromis satisfaisant entre l’exploration
d’un espace de solutions plus large et l’exploitation de régions locales prometteuses.

vii

ABSTRACT

A variety of decision tasks in modern science and industry are Combinatorial Optimization
(CO) problems. To solve challenging CO problems, there has been stunning researches in the
field over the past decades. Although the optimization methods and techniques developed
have led to a vast library of optimization tools and have been successfully applied to routinely
solve a large number of CO problems, there are still many practical cases where existing
optimization techniques are not adequate and it is always compelling to design and implement
new CO algorithms and strategies.

In recent years, the application of Machine Learning (ML) techniques in CO became an
emerging research area. In this thesis, we aim to reinforce this direction and we argue that
ML is a promising complement to CO. Specifically, we study different paradigms for applying
ML in combination with CO and present three contributions.

First, we consider a specific CO problem, the chordal extension of a graph, and propose a
framework for learning heuristic strategies that yield high-quality solutions. In particular, we
propose an imitation learning scheme for learning constructive heuristics. The experimental
results demonstrate that our approach achieves remarkable generalization performance on
graphs of larger size and from a different distribution.

Second, we consider the application of ML for making decisions within CO algorithms and
propose a learning framework for adapting the crucial parameters of the Local Branching
(LB) heuristic for Mixed-Integer Linear Programming (MILP). The resulting ML strategies
are integrated into the LB algorithm and interact with the MILP solver. We computationally
show that the critical algorithmic decisions within a CO algorithm can indeed be learned by
ML, and the resulting algorithms generalize well both with respect to the instance size and,
remarkably, across instances.

Finally, we present a methodological contribution for integrating ML into metaheuristics
(MHs) for solving general CO problems. Specifically, we propose a general ML framework
for neighbor generation in MH search. The key of the proposed methodology lies in the
definition and generation of promising solution neighborhoods. We propose a framework that
exploits structural properties from the problem and from its high-quality solutions, and apply
the learned knowledge to define promising neighborhoods for MH search. We validate the
effectiveness of our framework on two MH schemes: Tabu Search and Large Neighborhood
Search. The experiments show that our approach is able to learn a good trade-off between
the exploration of a larger solution space and the exploitation of promising local regions.

viii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF SYMBOLS AND ACRONYMS . xiv

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Background . 3

1.2.1 Combinatorial Optimization . 3
1.2.2 Machine Learning . 4

CHAPTER 2 CRITICAL LITERATURE REVIEW 6
2.1 Paradigms of combining ML with CO . 6

2.1.1 End-to-end learning . 6
2.1.2 Learning algorithmic strategies . 7
2.1.3 Extraction of valuable information 7

2.2 Learning methods . 8
2.2.1 Representation . 8
2.2.2 Training . 9

CHAPTER 3 DISCUSSION OF THE RESEARCH PROJECT AS A WHOLE AND
GENERAL ORGANIZATION OF THE DISSERTATION 10
3.1 Contributions . 10
3.2 Outline of the thesis . 11

ix

CHAPTER 4 ARTICLE 1: LEARNING CHORDAL EXTENSIONS 12
4.1 Introduction . 12
4.2 Basic notations and concepts . 14

4.2.1 Graph-theoretic notations . 15
4.2.2 Markov Decision Processes . 15
4.2.3 Standard statistical learning . 17
4.2.4 Imitation learning for sequential decision problems 17

4.3 Methodology . 18
4.3.1 MDP formulation . 18
4.3.2 Learning mechanism . 19

4.4 Numerical experiments . 22
4.4.1 Data collection . 22
4.4.2 Experimental settings . 23
4.4.3 Results . 25

4.5 Further discussion . 30
4.5.1 Policy interpretation . 31
4.5.2 Relation to fill-in . 33

4.6 Conclusion . 34

CHAPTER 5 ARTICLE 2: REVISITING LOCAL BRANCHING WITH A MACHINE
LEARNING LENS . 36
5.1 Introduction . 36
5.2 Related work . 38
5.3 Preliminaries . 40

5.3.1 Local branching . 40
5.3.2 The neighborhood size optimization problem 41

5.4 Learning methods . 41
5.4.1 Scaled regression for local branching 42
5.4.2 Reinforced neighborhood search . 45
5.4.3 Further improvement by adapting LB node time limit 47

5.5 Experiments . 49
5.5.1 Data collection . 49
5.5.2 Experimental setup . 51
5.5.3 Results . 54

5.6 Local branching as a primal heuristic within a MILP solver 59
5.7 Discussion . 59

x

CHAPTER 6 LEARNING TO GENERATE NEIGHBORS IN METAHEURISTIC
SEARCH . 61
6.1 Machine Learning for metaheuristics . 61
6.2 Preliminaries . 63

6.2.1 Combinatorial Optimization and metaheuristics 63
6.2.2 Representation learning for CO . 64

6.3 Methodology . 65
6.3.1 Solution space and neighborhood structure 66
6.3.2 Variable selection for structural neighbor generation 67
6.3.3 Learning a variable selection policy for structural neighbor generation 68

6.4 Application 1: Tabu Search in Wireless Network Optimization 71
6.4.1 The tactical WNO problem . 71
6.4.2 Topology Tabu Search . 73
6.4.3 Learning to generate edge-swap neighbors for TS 74
6.4.4 Numerical experiments . 79

6.5 Application 2: Large Neighborhood Search in MIP 84
6.5.1 Large Neighborhood Search . 84
6.5.2 Learning to generate neighbors for LNS 84
6.5.3 Numerical experiments . 87

6.6 Discussion . 89

CHAPTER 7 GENERAL DISCUSSION . 91

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 94
8.1 Summary of works . 94
8.2 Limitations and future research . 95

8.2.1 Modeling . 95
8.2.2 Multi-task learning . 95

REFERENCES . 97

xi

LIST OF TABLES

Table 4.1 Average KL loss of different policies over various test sets. For each
test set, the average KL loss of policies is computed using the same
trajectories, generated by the policy πMD. 28

Table 4.2 Average fill-in of different policies over various test sets. For each test
set, the average fill-in of policies is computed using the trajectories
generated by the evaluated policy itself. 29

Table 4.3 Average KL loss of policies over test sets. For each test set, the average
KL loss of policies is computed using the same trajectories, generated
by the policy πMF . 29

Table 4.4 Average fill-in of policies over test sets. For each test set, the average
fill-in of policies is computed using the trajectories generated by the
evaluated policy itself. 30

Table 5.1 Description of the features in the bipartite graph s = (C,E,V). . . . 52
Table 5.2 Description of the input features of the RL policy. 52
Table 5.3 Primal integral (geomeric means) for SC, MIS, CA problems. 56
Table 5.4 Final primal gap (geometric means in percentage) for SC, MIS, CA

problems. 56
Table 5.5 Primal integral (geometric means) for LSC, LMIS, LCA problems. . . 57
Table 5.6 Final primal gap (geometric means in percentage) for LSC, LMIS, LCA

problems. 57
Table 5.7 Primal integral (geometric means) for GISP and MIPLIB problems. . 57
Table 5.8 Final primal gap (geometric means in percentage) for GISP and MIPLIB

problems. 57
Table 5.9 Primal integral (geometric means) for GISP and MIPLIB problems

with a time limit of 600s for each instance. 58
Table 5.10 Final primal gap (geometric means in percentage) for GISP and MIPLIB

problems with a time limit of 600s for each instance. 58
Table 6.1 Description of the features in the “droppable” graph (V,E). 77
Table 6.2 Description of the features in the “addable” graph (V,E). 78
Table 6.3 Description of the features in the bipartite graph s = (C,E,V). . . . 86

xii

LIST OF FIGURES

Figure 4.1 Validation results of imitation learning. We plot the average KL loss in
log scale (left) and the average fill-in per graph (right) on the validation
set of ERS. For fill-in, we compare GNN with minimum degree and
random policy. 25

Figure 4.2 Evaluation of πERS over different datasets. We plot the average KL
loss in log scale (left) and the average fill-in per graph (right) on the
training set and four test sets. For fill-in, we compare our GNN with
minimum degree and random policy. 26

Figure 4.3 Learning curve of GNN for imitating the minimum fill-in heuristic. We
plot the average KL loss in log scale (left) and the average fill-in per
graph (right) on the training set of ERS. For fill-in performance, we
compare GNN with minimum fill-in and random policy. 29

Figure 4.4 Landscape of the expected average KL loss (in log scale). For each
(w1, w2), we plot the expected average KL loss, estimated over the
training set. 32

Figure 4.5 Visualization of πw on four sample graphs, with w = (−1, 1). Nodes
that are assigned a higher (resp. lower) probability of elimination are
indicated in red (resp. blue). 32

Figure 4.6 Visualization of building chordal extensions of an Erdos-Renyi graph by
minimum degree heuristic and GNN. The first row plots the solution
built by the min degree policy, whereas the second row plots a solution
built by GNN. At each step, the selected node is colored in orange. New
added edges are in red. The eliminated nodes are in light blue and the
removed edges are dashed. 33

Figure 4.7 Landscape of the normalized total fill-in. For each (w1, w2), we plot the
average total fill-in of the corresponding GNN policy, divided by the
expected total fill-in of the minimum degree heuristic. Both expectations
are estimated over the training set. 34

Figure 5.1 Evaluation of the size of LB neighborhood on a set covering instance (sc-
0) and a maximum independent set instance (mis-1). The neighborhood
size k is computed as k = r × N , where N is the number of binary
variables, and r ∈ [0, 1]. A time limit is imposed for each neighborhood
exploration. 38

xiii

Figure 5.2 RL framework for adapting k . 46
Figure 5.3 RL framework for adapting the time limit for solving the LB subproblem. 48
Figure 5.5 Evolution of the primal integral (geometric means) over time on binary

MIPLIB dataset. Left / right: using the first / root solution to start LB. 58
Figure 5.6 Evolution of primal integral (geometric means) over time on binary

MIPLIB dataset (1200s). 60
Figure 6.1 A learning-based framework for neighbor generation. 69
Figure 6.2 Neighbor Topologies. 73
Figure 6.3 A learning-based framework for generating “edge-swap" neighbors. . . 75
Figure 6.5 Evolution of the average primal integral and the average number of

iterations over time on evaluation datasets for the instances of 10 nodes. 82
Figure 6.7 Evolution of the average primal integral and the average number of

iterations over time on evaluation datasets for the instances of 30 nodes. 83
Figure 6.8 Evaluation results on MIPLIB binary dataset. 89

xiv

LIST OF SYMBOLS AND ACRONYMS

AI Artificial Intelligence
ANN Artificial Neural Network
B&B Branch and Bound
B&C Branch and Cut
CE Chordal Extension
CG Chordal Graph
CA Combinatorial Auction
CO Combinatorial Optimization
CS Computer Science
CP Constraint Programming
CNN Convolutional Neural Network
DL Deep Learning
DRL Deep Reinforcement Learning
DP Dynamic Programming
GISP Generalized Independent Set Problem
GNN Graph Neural Network
GE Graph Elimination
IID Independent and Identically Distributed
IL Imitation Learning
LNS Large Neighborhood Search
LP Linear Programming
LB Local Branching
MIS Maximum Independent Set
MDP Markov Decision Process
MH Metaheuristic
MILP Mixed-Integer Linear Programming
MIP Mixed-Integer Programming
MIQP Mixed-Integer Quadratic Programming
MLP Multilayer Perceptron
NS Neighborhood Search
NN Neural Network
OR Operations Research
RL Reinforcement Learning

xv

SDP Semidefinite Optimization
SL Supervised Learning
RNN Recurrent Neural Networks
SSL Semi-Supervised Learning
SC Set Covering
TS Tabu Search
TSP Traveling Salesman Problem
USL Unsupervised Learning
WNO Wireless Network Optimization

1

CHAPTER 1 INTRODUCTION

1.1 Motivation

In modern science and industry, decision-making tasks arise in the planning and operations of
complex systems for a variety of applications, including but not limited to power systems,
transportation, logistics and healthcare. These tasks can be formulated as optimization
problems, where mathematical models are built and solved to provide operational solutions. In
particular, Combinatorial Optimization (CO) is a branch of optimization and generally applied
to tackle problems that involve discrete decisions. A CO problem is typically characterized
by a set of decision variables with a specified solution space and has the goal of finding an
optimal solution with respect to some cost or objective functions.

A large part of CO problems are NP-hard, i.e., no polynomial-time algorithm is known to
solve them. To solve challenging CO problems, there has been stunning researches in the
field over the past decades. Major developments of CO methods and techniques include exact
methods, heuristics and metaheuristics.

In the class of exact methods, Mixed-Integer Programming (MIP) is one of the main paradigms
for modeling and solving CO problems. The exact resolution of a MIP model is generally
attempted by a tree-search framework, where the solution space is split into subspaces and the
optimality of the solutions is implicitly checked in the expanded tree. To design efficient MIP
algorithms, practical MIP solvers incorporate a variety of complex and efficient algorithmic
techniques, such as Branch and Bound (B&B) [1] and cutting planes [2]. These techniques
have been effectively incorporated in sophisticated software tools [3].

Exact methods are guaranteed to find the optimal solutions as well as a proof of their
optimality. On the one hand, due to the NP-hardness nature of many CO problems, solving
them to optimality within an exact algorithm is still a very challenging task. On the other
hand, in many practical applications, one is more interested in finding a good solution within
a reasonable time rather than getting the optimal one. Those practical requirements have
motivated the development of specific heuristics and metaheuristics. Specific heuristics are
usually designed for solving a specific type of CO problem; whereas metaheuristics are more
general frameworks that provide guidelines and high-level strategies for designing an efficient
heuristic algorithm and can be applied to address different types of CO problems.

Those methods and techniques developed in the past have led to a vast library of optimization
tools and have been successfully applied to solve a large number of CO problems. This

2

progress has stimulated the community to tackle more difficult large-scale CO problems, and
some of them are still very difficult to solve. Nonetheless, there are still many practical cases
where existing optimization techniques are not adequate and it is always compelling to design
and implement new CO algorithms.

From a methodological point of view, all the CO algorithms can be viewed as conducting a
series of search processes in the solution space, either exact, where the entire solution space is
“conquered” (reminding the “divide-and-conquer” framework) by (implicit) enumeration, or
heuristic, where typically only some part of the solution space is explored. It is worth noting
that, a lot of information is produced from these processes, and therefore, a large volume of
data can be collected. These data might provide valuable information about the optimization
status of the process, the characteristics of the problem, the structures and properties of
high-quality solutions in the search regions being visited. However, such knowledge has not
been fully exploited by the traditional CO algorithms.

From an application point of view, instances in many real-world applications are solved
repeatedly. These instances are similar to each other in terms of the structure of the problem.
When classical CO algorithms are called, they usually solve each of these instances from
scratch. For some large-size applications, this can take a long computation time. In many
practical cases, high-quality solutions are often required within a very restricted time frame,
and there might not be adequate computation resources to do so. Hence, repeating complex
optimization processes to solve similar instances is an issue.

Conversely, in Artificial Intelligence (AI), the concept of Machine Learning (ML) is well rooted
as a principle underlying the development of intelligent systems for knowledge extraction and
decision-making by “learning from data”. In a nutshell, ML has the goal of extracting patterns
(or knowledge) from observed data in the past, and making predictions on new data. In recent
years, there has been stimulating progress in ML techniques including Supervised Learning
(SL), Semi-Supervised Learning (SSL), Unsupervised Learning (USL), Reinforcement Learning
(RL) and Artificial neural Networks (ANN). resulting in impressive achievements in natural
language processing, computer vision and recommendation systems. These achievements
have motivated emerging research interest in the application of ML for designing novel CO
algorithms.

As discussed before, with more and more similar instances solved and a huge volume of data
collected from the optimization processes, frequencies and patterns appear. This provides a
great opportunity for ML to extract useful knowledge from data and design “learning-based”
CO algorithms.

This thesis aims to reinforce this research direction, in which ML techniques can be leveraged

3

for CO. Specifically, we investigate different paradigms for applying ML in combination with
CO, and present three contributions. The remainder of this chapter introduces the necessary
background and notation on CO and ML.

1.2 Background

1.2.1 Combinatorial Optimization

CO is a branch of optimization and a CO problem is generally defined by a set of variables,
a constrained solution space and some objective function(s). The solution space can be
specified by constraints in any form. There are different mathematical paradigms for modeling
and solving CO problems, including MIP, Constraint Programming (CP), and Dynamic
Programming (DP). Without loss of generality, a CO problem can be formulated into a MIP
model as follows:

(P0) min c(x) (1.1)

s.t. g(x) ≤ b, (1.2)

xi ∈ Z+, ∀i ∈ I, xj ≥ 0, ∀j ∈ C, (1.3)

where the index set V := {1, . . . , n} of decision variables is partitioned into I, C, which are
the index sets of integer and continuous variables, respectively.

In particular, when the objective function and the constraints are all linear, the problem can
be formulated into a Mixed-Integer Linear Programming (MILP) model, namely

(P1) min cTx (1.4)

s.t. Ax ≤ b, (1.5)

xi ∈ Z+, ∀i ∈ I, xj ≥ 0, ∀j ∈ C. (1.6)

MILP has been the workhorse for solving MIP problems in modern MIP solvers. The solution
process of a MILP problem is generally attempted by a B&B scheme, where a B&B tree is
generated to split the solution space into subspaces, and each node in the tree represents a
subproblem. At each node in the tree, a Linear Programming (LP) problem – the continuous
relaxation of the subproblem – is solved to optimality and the feasibility of the LP solution is
checked in the original MILP problem. If the LP solution satisfies xj ∈ Z+, ∀j ∈ I, then the
node is a leaf node and the LP is also a feasible solution of the original MILP; otherwise, an
integer variable with fractional values is selected to generate two branching nodes from the

4

current one. In the cases where the LP solution of a node has a larger objective than the
best incumbent solution of the original MILP, the node will be pruned from the tree and no
branching will be processed from it. An efficient B&B algorithm can reduce the size of the
B&B tree – therefore avoiding the enumeration of the entire solution space – by pruning a
large number of nodes. Modern MILP solvers have been integrated with a variety of efficient
algorithmic components, including cutting planes, primal heuristics [4], pre-processing [5] and
auxiliary searching rules [6–8].

Although modern MIP solvers have achieved a stunning progress and have been applied to
solve CO problems in various applications, there are still many practical cases where the
CO problems are hard and complex, and the attention is focused on finding good-quality
solutions with a short computing time rather than solving the problem to proven optimality.
Therefore, efficient approximate methods such as heuristics or metaheuristics are developed to
compute fast solutions. This thesis presents several ML-based methods to improve heuristic
and metaheuristic algorithms.

1.2.2 Machine Learning

In ML, the goal is to detect patterns from a set of observed data and make predictions about
future data. We can formalize a standard ML prediction problem as follows. Given a variable
space Z and a set of examples DZ = {z1, z2, . . . , zm} from the unknown distribution P(Z),
the task is to find a function f over a family of functions F , such that f “fits” well on P(Z). It
is assumed that all the observed examples are drawn Independent and Identically Distributed
(IID) from the same distribution P(Z).

If a loss function L : F × Z → R is specified to measure the performance of f and a set of
examples DZ sampled from P(Z) is available, a ML task can be defined as finding f̂ ∈ F
that minimizes the empirical loss on DZ , i.e.,

f̂ = argmin
f∈F

1
m

m∑
i=1
L(f, zi). (1.7)

The differences in forms and contents of Z, F , L result in different learning tasks.

Supervised Learning In SL, the variable space Z consists of X ×Y , where X is the space
of input variables and Y is the space of output variables. The family of functions F is a
set of mappings f : X 7→ Y. For any sample (x, y) ∈ X × Y , the loss function L measures
the discrepancy between f(x) and y. Ideally, the output Y can be in any form. However,
most tasks assume that Y is categorical or numerical. The former characterizes the task as

5

classification, whereas the latter induces regression.

Reinforcement Learning When the decision process can be modeled by a Markov Decision
Process (MDP) and one is interested in extract knowledge from experience, RL can be employed
to learn how to make decisions with the environment in an interactive way. The goal of RL
is to retrieve the optimal decision policy that maximizes the expected return with respect
to the task based on the Bellman’s principle [9]. RL methods can be roughly divided into
value-based and policy-based methods. Value-based methods learn policies from the estimate
of action-value functions, whereas policy-based methods learn a parameterized policy directly
without the estimation of value functions. Policy-based methods are generally expected
to have good potential performances for CO problems, because, in many CO applications,
learning a policy to directly make decisions is more straightforward than estimating some
expected values of a policy [10].

6

CHAPTER 2 CRITICAL LITERATURE REVIEW

ML techniques were applied to solve CO problems for the first time in 1980’s. The survey [11]
introduced early works on using Hopfield networks and self-organizing networks to solve a
variety of problems, including assignment problems, clustering problems, packing, scheduling
and graph problems. However, due to restricted computational power and hardness of training,
advancements in this area were sparse at the beginning of this century.

The recent progress in ML, such as Deep Learning (DL) [12, 13] and RL [10], has led to
inspiring results in natural language processing, computer vision and chess playing [14]. These
successes have stimulated renewed research interest in learning algorithms for CO problems
and have generated a variety of works in the literature recently surveyed in [15–18]. The
remainder of the chapter first gives a short overview of the different paradigms that leverage
ML techniques to solve CO problems and then schematically reviews the ML methods related
to the present thesis.

2.1 Paradigms of combining ML with CO

There are three main paradigms that have been used to leverage ML for CO.

2.1.1 End-to-end learning

One of the first paradigms in the literature is end-to-end learning. This approach is to learn
heuristics by using ML to generate solutions to CO problems directly. The Traveling Salesman
Problem (TSP) is an example of a frequently studied problem and has received recurring
interest in the literature. TSP is a NP-hard CO problem, where given a graph, one needs to
search the space of permutations to find an optimal sequence of nodes to visit with minimal
total edge weights (tour length). Additionally, many heuristic algorithms have been developed
to build practical solvers for this problem. As a result, TSP is a good benchmark problem,
with vast baseline algorithms, to test any new CO algorithm.

Pointer networks [19] were introduced as a type of Recurrent Neural Networks (RNN), wherein
an encoder-decoder architecture embeds the node set and produces a permutation of nodes to
construct a solution. The pointer networks are used as policy approximators and are trained
via SL with labels provided by a TSP solver. A drawback of the method in [19] is that the
labels are not always accessible in practical applications. To address that issue, a RL approach
to learn policies from experience was proposed in [20]. The authors formulated the solution

7

procedure as a trivial MDP, in which the only non-terminal state is the input graph. The
policy networks are trained through policy gradient methods. The authors’ experiments on
TSP and knapsack problems showed positive results on instances of the same size. Later, the
work of [21] applied graph embeddings networks and RL to heuristically solve CO problems
on graphs. In [22], the use of an attention model based on graph attention networks [23] and
the transformer architecture [24] was proposed. One distinct feature of a graph embedded
model is that it is invariant to the ordering of input and it can naturally be applied to general
problems on graphs.

2.1.2 Learning algorithmic strategies

Unlike end-to-end learning, which generates solutions for a given problem directly using ML,
more recent works that integrate ML into existing CO algorithms have gained increasing
attention in the field. These approaches investigated the use of ML to learn strategies for
making algorithmic decisions taken inside CO algorithms. The motivation can be either to
learn a cheaper approximation of a computationally expensive algorithmic strategy or to
explore new strategies that make promising decisions for applications where expert knowledge
is inadequate.

For instance, although designed and implemented as an exact framework for solving MIP
problems, modern MIP solvers have incorporated a collection of algorithmic strategies and
many of these ideas are inherently heuristic. Therefore, it is not surprising that MIP
algorithms can potentially benefit from data and learning. Nonetheless, the application of
ML for improving MIP solvers have received emerging research interest. For Branch and
Cut (B&C) related decision strategies, the works of [25–27] proposed an imitation learning
framework to train ML policies to approximate existing branching heuristics for selecting
branching variables. The work of [28] also applied an imitation approach to learn a node
search strategy for node selection. For cutting plane selection, the authors of [29] proposed a
ML-based framework for selecting cutting planes adaptively through a RL formulation. ML
approaches for other auxiliary tasks within a MIP solver have also been investigated: learning
strategies for executing primal heuristics [30, 31]; learning scaling strategies for reducing
numerical errors and for improving the dual simplex algorithm [32]; learning to decide on the
linearization of MIQPs [33]; hyperparameter configuration [34].

2.1.3 Extraction of valuable information

The objective of these approaches is to learn valuable information from a particular problem
context or from an optimization process through ML. Although the extracted knowledge itself

8

does not directly improve the underlying CO algorithm, it offers analysis of the characteristics
of CO problem and the patterns of the optimization algorithm. These insights can be
potentially exploited for designing new optimization strategies by human experts or by
automated decision systems.

The target information can be an evaluation of a given problem or a CO algorithm, such
as the difficulty of the problem and the outcome of an optimization process. For instance,
the authors of [35] and [36] used RL methods to learn an evaluation function for a given
heuristic. The learned value function can be then applied in replacement of the original
objective to enhance heuristic search. The value function can also be used as a function
approximator to predict the objective of a CO model. In the context of cutting plane methods
in MIP, the work of [37] trained a neural network as a regression model to approximate the
objective of sub-problems generated by adding candidate cuts. The learned information can
be applied to design algorithms for selecting the most promising cuts based on the predicted
improvement of lower bound. Also, in [38] the authors leveraged deep learning to predict
tactical solutions to an operational planning problem. Morevoer, in [39], a classification
framework was proposed to evaluate the resolution outcome of a general MILP. The input
features of the MILP resolution progress are sequentially collected after a fraction of the
specified total time. As a result, a binary decision is made to predict whether the problem
can be solved before timing out.

2.2 Learning methods

The previous section highlighted some important use cases and algorithmic structures where
ML strategies can be combined with CO. In this section, we present a methodological review
on the practical learning methods for building and training those ML models.

2.2.1 Representation

In DL, Neural Networks (NN) have been developed and applied to tackle various problems in
ML. As anticipated, early research on applying Hopfield networks and self-organizing networks
to solve CO problems was first addressed in the 1980’s and 1990’s [11]. Recently, different
types of NN methods, based on feedforward neural networks, have been leveraged to build
predictive models and to process a variety of optimization data from CO problems.

The work of [38] applied a Multilayer Perceptron (MLP) to encode the context of a tactical
planning problem in intermodal railway transportation. An alternative type of feedforward
neural network, known as RNN, is suitable for processing sequence data. The pointer networks

9

introduced in [19] were used to sequentially encode the nodes of TSP and to predict solutions
in the output layer. The work [21] applied graph embeddings and NNs to process data from
network problems such as minimum vertex cover, maximum cut and TSP. Moreover, Graph
Neural Networks (GNN) are an expressive type of model to encode data with a graph format
by propagating information from the neighborhood [40]. Due to their appealing scalability
and flexibility, GNNs have become an emerging class of NNs for building ML models for
various CO tasks [18,27,41]. The Convolutional Neural Networks (CNN) are wildly used to
process image data in Computer Vision (CV). Although CNNs are still rarely used to tackle
data of CO problems, it is worth noting that CNN models have been successfully applied in a
ML-based framework to master chess games [14,42].

2.2.2 Training

In the literature, there are roughly two branches of learning methods applied to train ML
models for solving CO problems, SL and RL. For the applications where one has empirical
knowledge about the values or policies to be learned, i.e., labels of good decisions are
accessible, SL can be applied to learn from labels or demonstrations. In other applications,
where knowledge is not adequate to solve the problem, it is desirable to explore new knowledge
or decision strategies. In these cases, RL can be applied to learn from experience.

A detailed survey on the two types of learning mechanisms for CO has been compiled in [16].
Here, we just highlight the fact that in the context of learning ML models, SL and RL are
not mutually exclusive. In some applications, ML models can be trained by combining both
approaches. If the objective is to learn new decision strategies that improve the state of
the art, the ML model can be initially trained through a SL approach such as imitation
learning to achieve state-of-the-art performance. Then, the pretrained policy can be further
improved by using RL. For instance, in the context of branching strategies for B&B algorithms,
strong branching is an effective heuristic but computationally expensive. Then, the works
of [25, 27] proposed to use imitation learning to approximate expert branching strategies. We
believe that policies learned from strong branching have the potential to be improved by RL.
In another example [14], the authors trained ML models to play the game of Go within a
learning-based framework in the combination of SL and RL.

10

CHAPTER 3 DISCUSSION OF THE RESEARCH PROJECT AS A
WHOLE AND GENERAL ORGANIZATION OF THE DISSERTATION

This thesis aims to reinforce the research direction in which ML techniques can be leveraged
for CO. Specifically, we study different paradigms for applying ML in combination with
CO, and see ML as a lens for exploring valuable knowledge and patterns that classical CO
algorithms are not aware of. We aim to show that the use of ML can indeed produce efficient
algorithmic strategies for CO by exploiting a deeper understanding of the relation between
the critical characteristics of the problem and its solutions, and the actual behavior of CO
algorithms.

3.1 Contributions

Learning chordal extensions (Chapter 4)

In our first work, presented in Chapter 4, we consider the computation of chordal extensions,
a specific CO problem with a variety of applications in numerical optimization, and propose a
framework for learning heuristic strategies yielding high-quality solutions for the problem. As
a first building block of the learning framework, we propose an imitation learning scheme for
learning constructive heuristics. Our ML models are trained from the graph-structured data of
the problem, and the resulting ML strategy is sequentially called to construct a solution. The
results show that our learning-based approach achieves remarkable generalization performance
on graphs of larger size and from a different distribution. Another desirable behavior of our
approach is that it allows to speed up the learning process by training on smaller synthetic
problems with a marginal loss of performance.

Revisiting local branching with a machine learning lens (Chapter 5)

The initial work has led us to consider the application of ML for solving general CO problems.
Our second contribution, presented in Chapter 5, addresses the algorithmic decisions within
MILP. In particular, we focus on Local Branching (LB), a well-known primal heuristic and
derive a learning framework for predicting and adapting its neighborhood size. The developed
ML models learn from not only the properties of the problem and its solutions, but also
from the information collected during the optimization process. The resulting ML strategies
are integrated into the LB algorithm and interact with the solver at each iteration. We
computationally show that the critical algorithmic decisions within a CO algorithm can
indeed be learned by ML and the resulting algorithms generalize well both with respect to

11

the instance size and, remarkably, across instances.

Learning to generate neighbors in metaheuristic search (Chapter 6)

Finally, in Chapter 6, we present a methodological contribution for integrating ML into meta-
heuristics for solving general CO problems. Specifically, we propose a general ML framework
for neighbor generation in metaheuristic search. The key of the proposed methodology lies in
the definition and generation of promising solution neighborhoods. The developed classifica-
tion framework exploits structural properties both from the problem and from its high-quality
solutions, and selects a subset of variables to define a promising search neighborhood for
metaheuristic search. We demonstrate the effectiveness of our framework on two metaheuristic
schemes: Tabu Search and Large Neighborhood Search. The experimental results indicate
that our approach is able to learn a satisfactory trade-off between the exploration of a larger
solution space and the exploitation of promising local regions.

3.2 Outline of the thesis

The remainder of this document is organized as follows. Chapters 4, 5 and 6 form the main
body of this thesis, and contain the three contributions outlined above. Chapter 7 discusses
and highlights the connections among the three contributions. Finally, Chapter 8 presents a
summary of this thesis, comments on its limitations, and discusses future research directions.

12

CHAPTER 4 ARTICLE 1: LEARNING CHORDAL EXTENSIONS

Authors: Defeng Liu, Andrea Lodi, Mathieu Tanneau
Published Journal of Global Optimization [43]. Date: 04 January, 2021.

Abstract A highly influential ingredient of many techniques designed to exploit sparsity
in numerical optimization is the so-called chordal extension of a graph representation of the
optimization problem. The definitive relation between chordal extension and the performance
of the optimization algorithm that uses the extension is not a mathematically understood
task.

For this reason, we follow the current research trend of looking at Combinatorial Optimization
tasks by using a Machine Learning lens, and we devise a framework for learning elimination
rules yielding high-quality chordal extensions. As a first building block of the learning
framework, we propose an imitation learning scheme that mimics the elimination ordering
provided by an expert rule.

Results show that our imitation learning approach is effective in learning two classical
elimination rules: the minimum degree and minimum fill-in heuristics, using simple Graph
Neural Network models with only a handful of parameters. Moreover, the learned policies
display remarkable generalization performance, across both graphs of larger size, and graphs
from a different distribution.

4.1 Introduction

A simple undirected graph G = (V,E) is chordal if, for every cycle c of length at least four,
there exists an edge e ∈ E that connects two non-consecutive vertices of c. A chordal extension
of a graph G is a chordal graph H such that G is a sub-graph of H, i.e., one can obtain
H by adding edges to G. A practical way of constructing chordal extensions is via graph
elimination [44], which consists in sequentially eliminating the nodes of the graph. At each
step, a node v is selected, new edges are inserted so as to make the neighbors of v into a
clique, then v is removed (i.e., eliminated). This process is repeated until all nodes have been
eliminated, and one obtains a chordal extension by adding to the original graph all edges that
were inserted in the process. The order in which nodes were eliminated is thereby called an
elimination ordering.

This work focuses on the role of chordal extensions and graph elimination within optimization

13

frameworks. Indeed, there is a direct connection between chordal extensions, which are
typically computed via graph elimination, and a number of classical sparsity-exploiting
techniques [44,45]. In particular, we seek to devise a framework for learning elimination rules
that yield high-quality chordal extensions, as we illustrate below.

Our first motivating example is the computation of a fill-reducing ordering for sparse Cholesky
factorization, a process that reduces to computing an elimination ordering [44, 46]. Crucially,
Cholesky factorization underlies most implementations of interior-point algorithms for linear
programming [45,47], and the choice of ordering can have a major impact on the method’s
performance [48]. Similarly, chordal graphs form the basis of chordal decomposition techniques
to exploit sparsity in semi-definite programming (SDP) problems, see, e.g., [49–52]. Specifically,
a single, dense, semi-definite constraint, can be decomposed into several smaller, yet coupled,
semi-definite constraints. This reformulation also reduces to computing a chordal extension,
and can dramatically improve the performance of both interior-point and first-order methods
on large problems [52,53]. More generally, a similar approach can be leveraged in linear conic
optimization and convex optimization, see, e.g., [44] and [54].

Historically, efforts have focused on computing minimum chordal extensions, i.e., chordal
extensions with a minimum number of additional edges [48, 55], which has been proven to
be NP-complete [56]. This fostered the development of fast and efficient heuristics such as
minimum degree [57] and nested dissection [58] orderings. State-of-the-art implementations
of these methods are routinely used in most optimization and sparse linear algebra software,
where they tackle problems with up to millions of variables. Nevertheless, depending on
the application, lower fill-in may not necessarily translate into improved performance. For
instance, in the context of sparse matrix factorization, memory requirements and ability to
exploit parallelism are impacted not only by the number of non-zero entries in the factor,
i.e., fill-in, but also by the shape of the corresponding elimination tree, as shown in [59,60].
In addition, the ordering’s impact on numerical stability is studied in [61], wherein authors
consider a so-called priority minimum-degree ordering, which tends to produce more fill-in
but is numerically more stable. Furthermore, practical experience with chordal decomposition
for sparse SDP problems, as evidenced in [62,63], suggests that the number and size of the
cliques in a chordal extension are more relevant than the number of additional edges. In fact,
in [63], the authors state that “the number of added edges is not always the best criterion
to minimize, which proves that the computation of the chordal extension is a question that
deserves to be investigated.” This motivates investigating a broader paradigm for computing
chordal extensions.

Recently, the use of Machine Learning (ML) in Combinatorial Optimization (CO) became

14

a popular research area with quite a number of contributions investigating many angles of
such a connection. On the one hand, some research has been devoted to solve CO problems
by ML, i.e., to devise new heuristic algorithms that perform the end-to-end learning of the
solution of a CO problem. On the other hand, ML has been used to tackle some tasks
within CO algorithms and software for which modern statistical learning has chances to
improve the current performances, either because the known way of performing those tasks
is computationally heavy or because they are poorly understood from the mathematical
standpoint. The interested reader is referred to [16] for a methodological survey on this new
research area.

Our work does not follow the first direction outlined in the previous paragraph. Indeed,
the goal of this paper is not to compete with existing state-of-the-art heuristics for graph
elimination. First, these heuristics leverage decades of development and clever engineering,
and have been optimized for fast runtime and good solution quality. Second, and more
importantly, this work is a first step towards a deeper understanding of the relation between
the characteristics of a chordal extension and the behavior of optimization algorithms and
software, a topic of interest in its own right and whose mathematical knowledge is currently
insufficient. We seek to address this lack of mathematical clarity by leveraging ML-based
techniques to learn elimination rules from experience. As a byproduct, a better understanding
of what “good” chordal extensions look like (for a specific task) can lead to an easier and
more direct customization of elimination orderings to sets of similar graphs. On the one hand,
the definition of a “high-quality” chordal extension is application specific; in optimization
contexts, it may encompass a combination of memory requirements, computing time and
numerical accuracy. On the other hand, suitable model priors and learning algorithms are
more easily shared between applications. Thus, our present contributions are 1) to propose a
mathematical framework for the problem of learning elimination orderings, and 2) to provide
methodological and practical insights on the learning process itself. The proposed approach
is illustrated in the classical setting of minimum chordal extensions.

The rest of the paper is organized as follows. In Section 4.2, we introduce some relevant
definitions and concepts. In Section 4.3, we present our methodology for learning chordal
extensions. In Section 4.4, we report on numerical experiments. Section 4.5 gives further
discussion and Section 4.6 concludes the paper.

4.2 Basic notations and concepts

In this section, we review some notations and concepts used in the remainder of the paper.
Section 4.2.1 introduces basic notations and definitions of graphs and Section 4.2.2 introduces

15

a commonly used model for sequential decision problems. In Sections 4.2.3 and 4.2.4, we
briefly go through some Machine Learning concepts, in order to help the reader be familiar
with relevant ML methods and properly locate the methodology we propose in Section 4.3.

In all that follows, for an arbitrary set S, we use the notation P(S) to denote the set of all
probability distributions over S. In addition, we write EX∼D[·] to indicate that the expectation
is computed with respect to random variable X being sampled from distribution D.

4.2.1 Graph-theoretic notations

In this paper, all considered graphs are simple, undirected graphs. A graph is denoted by
G = (V,E), where V (resp. E) denotes the set of its nodes (resp. its edges). For an edge
e = (v, w), we say that e is incident to v and w, that v, w are the extremities of e, and that
v, w are adjacent. The neighborhood of v, denoted by NG(v), is defined as the set of nodes
that are adjacent to v.

The degree of node v in G is denoted by δG(v). We say that node v is of minimum degree if
δG(v) ≤ δG(w) holds for all nodes w ∈ V . Note that several nodes of minimum degree may
exist.

In what follows, we will drop the subscript G whenever context is sufficiently clear, and write
for example δ(v) rather than δG(v).

4.2.2 Markov Decision Processes

Markov Decision Processes (MDPs) [64] are wildly used to formulate sequential decision
problems. An MDP is characterized by a set of possible states S, a set of possible actions A,
the dynamics of the system, and a cost function.

Formally, an MDP is defined by a tuple (S,A, P, c), where P encodes the system’s dynamics,
and c encodes the cost function. For any state-action pair (s, a) ∈ S × A, P (s, a) is a
probability distribution over the state space S. That is, if one takes action a in state s, the
next observed state s′ will be sampled from the distribution P (s, a) ∈ P(S). Finally, the cost
of executing action a in state s is denoted by c(s, a).

Given an MDP (S,A, P, c), a policy is a decision rule for selecting an action a, given a current
state s. Specifically, a policy π is a function

π : S 7−→ P(A) (4.1)

s −→ π(s), (4.2)

16

and the next action a is sampled from π(s) ∈ P(A). If a policy π maps each state to a single
action, i.e., if π(s) is a degenerate distribution for every s ∈ S, then π is called a deterministic
policy; otherwise it is called a stochastic policy. For the remainder of this paper, we will only
consider stochastic policies, and we define the expected immediate cost for policy π in state
s ∈ S as

Cπ(s) = Ea∼π(s) [c(s, a)] . (4.3)

A trajectory is a sequence of state-action pairs
(
(s0, a0), (s1, a1), ...

)
where st+1 is sampled

from P (st, at). In this paper, all trajectories will always be finite, although they may be of
arbitrary length. We say that a trajectory is sampled from a policy π if each action at is
sampled from π(st). The total cost along a trajectory is then given by

∑
t≥0

c(st, at), (4.4)

which is always finite since we only consider finite trajectories.

Finally, for a distribution of initial states D0 ∈ P(S), we define the expected total cost of a
policy π as

Ctot
π = Es0∼D0

Eat∼π(st),st+1∼P (st,at)

∑
t≥0

c(st, at)
 . (4.5)

Furthermore, D0 and π induce a stationary distribution over states, which we denote by Dπ.
Thus, we define the expected average cost of policy π as

Cavg
π = Es∼Dπ

[
Ea∼π(s) (c(s, a))

]
(4.6)

= Es∼Dπ [Cπ(s)] . (4.7)

In this work, we assume that the expectations (4.5) and (4.6) are finite; this ensures that
the learning problems defined in Section 4.2.4 are well-defined. Note that this assumption is
trivially satisfied if (i) the cost function only takes finite values and (ii) the set of all possible
state-action pairs is finite. For ease of reading, we also drop the explicit dependency of Ctot

π

and Cavg
π on D0, since the latter will always be evident from the context.

17

4.2.3 Standard statistical learning

In statistical learning, the goal is to detect patterns from a set of observed data and make
predictions about future data. We can formalize the standard statistical learning problem
as follows. Given a variable space Z and a set of examples DZ = {z1, z2, . . . , zm} from the
unknown distribution P(Z), the task is to find a function f over a family of functions F ,
such that f “performs well” on P(Z). It is assumed that all the observed examples are drawn
independent and identically distributed (i.i.d.) from the same distribution P(Z).

If a loss function L : F × Z 7→ R is specified to measure the performance of f , then the goal
can be described as finding f̂ ∈ F that minimizes the expected loss with respect to P(Z), i.e.,

f̂ = argmin
f∈F

Ez∼P(Z)[L(f, z)]. (4.8)

The learned function f̂ is then used to predict future data.

However, the expected loss cannot be computed exactly due to the fact that P(Z) is unknown.
In practice, if a subset of examples DZ sampled from P(Z) is available, a number of learning
methods turn to minimize the empirical loss on DZ . Then, f̂ is obtained by solving

f̂ = argmin
f∈F

1
m

m∑
i=1
L(f, zi). (4.9)

The differences in forms and contents of Z, F , L result in different learning tasks. Here, we
only introduce supervised learning that is the relevant task for the current state of our work.

Supervised learning. In supervised learning, the variable space Z consists of X × Y,
where X is the space of input variables and Y is the space of output variables. The family
of functions F is a set of mappings f : X 7→ Y. For any sample (x, y) ∈ X × Y , the loss
function L measures the discrepancy between f(x) and y. Ideally, the output Y can be in
any form or intent. However, most tasks assume that Y is categorical or nominal. The former
characterizes the task as classification, whereas the latter induces regression.

4.2.4 Imitation learning for sequential decision problems

Imitation learning (IL) [65–68] is an extension of supervised learning from problems satisfying
i.i.d. assumption to sequential decision problems, see, e.g., [69–71].

In IL, the target policy learns its decision rule from an expert policy. More precisely, given the
class of candidate policies Π, we seek to find a target policy π ∈ Π that matches the expert

18

policy π∗. The target and expert policy are often referred as the learner and the expert. The
cost is defined by a loss function L(π, π∗), a measure of discrepancy between π and π∗. If a
behavior policy π′ is set to generate trajectories of states, the goal is to find a policy π̂ that
minimizes the expected loss with respect to the distribution of states induced by π′, namely

π̂ = argmin
π∈Π

Es∼Dπ′ [L (π(s), π∗(s))]. (4.10)

In the literature, various strategies have been employed in terms of the choice of behavior
policy. A classic family of IL methods is the supervised approach for imitation learning,
which fixes the behavior policy to be the expert. Other methods such as Data Aggregation
(DAGGER) [67] propose to use more interactive strategies by generating training data from
executing the learner itself.

Supervised imitation learning. The supervised approach for IL fixes the behavior policy
as the expert, i.e., π′ = π∗. Then the learner is trained under the distribution induced by the
expert, given by

π̂ = argmin
π∈Π

Es∼Dπ∗ [L (π(s), π∗(s))]. (4.11)

Data Aggregation. DAGGER is an iterative algorithm that improves the learner by
executing a mixed behavior policy combined with the learner and the expert. At each
iteration, the collected data will be aggregated into an accumulated dataset and the learner
will be trained by all the data collected from previous iterations.

4.3 Methodology

In this section, we present our methodology for learning chordal extensions. In this work, we
focus on how to learn elimination rules for graph elimination via imitation learning. More
precisely, we propose an imitation learning scheme that mimics the elimination orderings
provided by the ordering heuristics we choose.

4.3.1 MDP formulation

We begin by formulating graph elimination as a Markov decision process. First, the state
space S is the set of simple undirected graphs. Then, for a given graph G = (V,E), the
corresponding set of possible actions is identified by the nodes of the graph. Transitions are

19

deterministic: if an action a = v is performed in state G, i.e., if node v is eliminated from
graph G, then the new state is uniquely defined as the graph obtained from the elimination
of node v. Note that the number of nodes decreases by one at each step. Hence, even though
the initial graph may be of arbitrary size, trajectories are always finite.

Thus, a policy π maps a graph to a probability distribution over its set of nodes V . Therefore,
if V = {1, ..., n}, then π(G) is a n-dimensional non-negative vector, whose i-th coordinate
denotes the probability that node i be eliminated.

Finally, one may select a cost function according to the problem at hand, for example, the
number of additional edges, i.e., fill-in. In that case, finding a policy that minimizes the
expected total cost reduces to finding a policy that yields minimum chordal extensions. Rather
than trying to minimize fill-in, which is an NP-hard problem for which efficient heuristics
already exists, we adopt a more generic imitation learning scheme as discussed below.

4.3.2 Learning mechanism

Although the goal of imitation learning is to find a learner policy that best matches the
expert, any parameterized stochastic policy will inevitably have chances to make occasional
mistakes by choosing an action different from the expert. In the supervised imitation learning
approach, where the learner is only trained under the distribution of states induced by the
expert, the learner may not be able to correct its behavior from deviations induced by its bad
choice of action.

Moreover, any possible state is observable in our problem setting and the expert is always
accessible for querying any state. Therefore, we choose the learner as the behavior policy in
order to alleviate the deviation problem. As a result, the goal is to find a policy π̂ such that

π̂ = argmin
π∈Π

Es∼Dπ [L (π(s), π∗(s))]. (4.12)

Since, in general, the expected loss cannot be computed analytically, we estimate it by
sampling trajectories of states from finite dataset using π. Given a dataset G of M graphs,
we train the learner with our practical algorithm, namely one-step imitation learning, as

20

described in Algorithm 1.

Algorithm 1: One-step imitation learning
Input: Instance Dataset G = {gi}Mi=1

Initialize πθ to any policy in Π;
for i = 1 to N do

for each g ∈ G do
Initialize s;
for j = 1 to T do

θ ← θ − α∇θL (πθ(s), π∗(s));
a← πθ(s);
Take action a, observe next state s;

end
end

end
return πθ

The training proceeds as follows. At every epoch i (from 1 to N), each instance G = (V,E) ∈ G
is used to generate one complete trajectory (with length T = |V |), and each state (i.e., graph)
in this trajectory represents a training data point. The one-step updating is as follows. At
every transition, i.e., at every elimination step, the learner πθ is updated by taking a gradient
step with respect to the loss L (πθ(s), π∗(s)), where s is the current state. An action a is then
sampled from the updated learner πθ, which yields the next state s′. Note that, in this setting,
the loss is computed by comparing the two distributions πθ(s) and π∗(s) directly. We do so
because 1) we know analytically both the learner and the expert, and 2) it allows to exploit
information from the entire distributions rather than sampling and comparing individual
actions.

Expert. We first consider the minimum degree heuristic [57,72] as the expert policy. At
each step, the minimum degree selects a node of minimum degree to be eliminated. Ties are
broken arbitrarily, i.e., if several nodes have minimum degree, then one is selected uniformly
at random among them. Let us note that today’s implementations include several additional
features, such as smarter tie breaking or the simultaneous elimination of multiple nodes.

In all that follows, we denote πMD the minimum degree policy, i.e., for a given graph

21

G = (V,E), we have

πMD(G)[v] =

1
k

if v is of minimum degree
0 otherwise

,

where k is the number of nodes that have minimum degree.

When the expert is the minimum degree policy, we can compute the exact π∗(s) = πMD(s)
given a state s of a graph as shown before. Other heuristics can be used should one want to.

Learner parameterization. Given that states are represented as graphs, with arbitrary
size and topology, we propose to use graph neural networks (GNNs) [73,74] to parameterize
the learner. Indeed, GNNs are an expressive class of models to process graph-structured data,
and have been applied to a variety of representation learning tasks on graphs [27,75–78]. In
this work, we describe GNN as a function f that takes the adjacency matrix A of a given
graph G = (V,E) and the feature matrix X as input. Then, f maps the input (A,X) to a
probability distribution Y over V . In practice, a GNN model is commonly built by connecting
multiple layers in a chain, with layer k defined by a function gk. For example, given g0, g1, g2

as layer-wise functions, a 3-layer GNN model can be formulated by

f(A,X) = g2(A, g1(A, g0(A,X))). (4.13)

GNN models embed both the features of nodes and the topological structure of the graph,
which makes them an appropriate class of models for our problem. Another appealing property
of GNNs is that they are size-and-order invariant to input data, i.e., they can process graphs
of arbitrary size, and the ordering of the input elements is irrelevant.

Specifically, our GNN architecture applies the following layer-wise function g, in order to
compute the embedding in the (l + 1)-th layer from the previous layer, i.e.,

Hl+1 = gl(A,Hl) (4.14)

= σl
(
AHlWl + In×1Bl

)
, (4.15)

where A∈Rn×n is the adjacency matrix of the graph, In×1 is the matrix of ones with size
of n× 1, dl and dl+1 are the dimension of the features in layer l and (l + 1), Hl+1∈Rn×dl+1

and Hl∈Rn×dl are the embeddings of layer (l+ 1) and l, Wl∈Rdl×dl+1 and Bl∈R1×dl+1 are the
parameters in layer l, and σ(·) specifies the activation function. For σ(·), we apply Softmax
in the output layer and ReLU in the rest.

22

Given the input X ∈ Rn, the Softmax and ReLU functions are defined as

Softmax(X)i = exp(xi)∑n
j=1 exp(xj)

, (4.16)

ReLU(X)i = max(0, xi), (4.17)

where i = 1, ..., n.

Loss function. To measure the distance between two distributions given by the expert and
the learner, we compute the Kullback-Liebler (KL) divergence [79] between π∗(s) and πθ(s),
respectively,

LKL(π∗(s) ‖ πθ(s)) =
∑
a∈A

π∗(s, a) log π
∗(s, a)
πθ(s, a) . (4.18)

If π∗(s, a) is zero, the corresponding term in the summation is taken to be zero. Note that,
for the class of GNNs that we consider, πθ(s, a) is always positive by definition of Softmax.
Therefore, the KL loss is always finite, though it may be arbitrarily large.

4.4 Numerical experiments

In this section, we report the details of our computational investigation. More precisely,
Section 4.4.1 specifies the data generation and collection. In Section 4.4.2, we discuss the
experimental setting and, finally, Section 4.4.3 reports the computational results.

4.4.1 Data collection

We evaluate our approach on four different datasets, which comprise graphs that vary in size
and structural characteristics.

Erdos-Renyi graphs

We first build two datasets of Erdos-Renyi graphs, a simple and well-known class of random
graphs. We use the notation G(n, p) to denote a (random) Erdos-Renyi graph with n nodes,
and such that edges are selected with probability p ∈ [0, 1] independently of each other. Note
that, for given n and p, G(n, p) is a random variable whose realizations are graphs of size n.
While n controls the size of the graph, p controls its sparsity.

23

We form two datasets of Erdos-Renyi graphs: one of smaller graphs, denoted ERS, and the
other one of larger graphs, denoted ERL.

Each graph in ERS, is sampled from G(n, p), where n is drawn uniformly between 100 and
300, and p is sampled between 0.1 and 0.3 with uniform probability. This is done to introduce
some variability in size and density in the dataset. Overall, ERS contains 600 graphs. We
follow the same methodology for ERL, except that n is drawn uniformly between 300 and
500. Overall, ERL contains 200 graphs.

SuiteSparse matrix collection

The SuiteSparse matrix collection1 [80] is a dataset of (sparse) matrices collected from a
number of real-life applications, and is routinely used as benchmark for numerical linear
algebra software. Given a matrix M , we construct a non-oriented graph whose adjacency
matrix corresponds exactly to the sparsity structure of M . We only consider square matrices,
and any non-symmetric matrix is transferred into symmetric by adding its transpose to it.

First, we select square matrices of size between 50 and 500. This yields a dataset of 278
graphs, which we denote by SSS. Similarly, we select square matrices of size between 1000
and 2000, and obtain a second dataset, denoted by SSL, which contains 295 graphs.

4.4.2 Experimental settings

Our experiments were conducted on a dual Intel Xeon Gold 6126@2.60GHz, 768BG RAM
machine running Linux and equipped with Nvidia Tesla V100 GPUs. Our code2 is written in
Python 3.6, and we use Pytorch 0.4 for modeling and training GNNs.

Datasets. We split the ERS dataset into {training, validation, test}, each containing 200
graphs. Our GNN policy is trained and validated only with the training and validation set
of ERS, respectively. Then, we test the generalization performance of the trained model with
the test set of ERS, ERL, SSS and SSL.

GNN setting. We apply the GNN architecture described in Section 4.3.2 with 2 layers. As
initially the vertices of the graphs have no attribute, we initialize the feature of each vertex
with the same value. Specifically, we take h0

v = 1, ∀v ∈ V . As a result, the encoding of
each vertex only depends on the topological structure of its neighborhoods. The dimension

1SuiteSparse matrix collection was formerly known as the University of Florida sparse matrix collection.
2https://github.com/ds4dm/GraphRL

https://github.com/ds4dm/GraphRL

24

of features in all layers is the same. For each layer, the weights are initialized from Xavier
normal distribution [81] and we initialize the bias with zero.

Performance metrics. In our imitation learning scheme, the goal is to minimize the
divergence between the distributions produced by the learner and the heuristic expert. Since
the KL divergence is capable of identifying the distance between two probability distributions,
we use it as a measure of the dissimilarity of policies, in order to assess the performance of
our learning scheme. Therefore, for a finite dataset G and expert policy π∗, the first metric
computes the average KL loss, given by

L̂KL = 1∑
g∈G ng

∑
g∈G

ng∑
i=1
LKL(π∗(si) ‖ πθ(si)), (4.19)

where ng is the size of each graph g ∈ G and LKL(·) specifies the KL divergence between
π∗(si) and πθ(si) in state si of g.

To measure the fill-in of a policy, the second metric computes the average number of fill-in
per graph. For each graph g ∈ G, we denote the total number of fill-in by cgfillin. Then, the
average fill-in per graph is given by

Ĉfillin = 1
|G|

∑
g∈G

cgfillin. (4.20)

Training and validation settings. We train our GNN policy with Algorithm 1. At each
epoch, we randomly shift the training set and sample single-graph mini batches. For learning
rate tuning, we experiment different learning rates from 10−5 to 10−3. The validation result
is shown by plotting the average KL loss and the average fill-in per graph in Figure 4.1.
Observing that 10−4 yields fast and smooth convergence, we train the model with the learning
rate of 10−4 for 20 epochs. Moreover, we also observe a plateau effect for larger step size in
Figure 4.1, notably, sudden decrease with larger step size. This effect will be discussed in
Section 4.5.

Test. We first test the performance of GNNs trained on the training set of ERS with four
test sets as specified before. To evaluate the performance of GNN models at different stages
of training, we first save the trained model at the end of each epoch. Then, we test the
performance of each saved model on four test sets. Furthermore, we also train GNNs with
SSS and compare its performance with that of the policy trained from ERS on all the test
sets, in order to analyze the impact of the choice on training set.

25

Figure 4.1 Validation results of imitation learning. We plot the average KL loss in log scale
(left) and the average fill-in per graph (right) on the validation set of ERS. For fill-in, we
compare GNN with minimum degree and random policy.

Imitation of another heuristic. To analyze the performance of our framework on learning
other heuristics than minimum degree, we apply it to the so-called minimum fill-in heuristic [82].
Instead of eliminating the node of minimum degree, minimum fill-in chooses the node such
that the number of added edges at each step is minimized. For this experiment, we apply
a GNN architecture with three layers. We also implement the minimum fill-in heuristic as
the expert policy. The other settings are the same as the previous experiment of learning
minimum degree.

4.4.3 Results

Imitation of minimum degree heuristic

In this section, we compare the predictive performance of GNN with the two metrics introduced
in the previous section. Let πERS denote the policy obtained by training over the training set
of ERS. The results of πERS on the training set and four test sets are shown in Figure 4.2.
Specifically, we plot the curves of two metrics over the entire training period (20 epochs), in
order to compare the performance of GNN models at different stages of training.

From the results of the training set (shown in the first row of Figure 4.2), we observe that
the loss significantly decreases and stabilizes after about 15 epochs of training. Moreover, for
fill-in, the GNN also matches the minimum degree heuristic.

26

Figure 4.2 Evaluation of πERS over different datasets. We plot the average KL loss in log
scale (left) and the average fill-in per graph (right) on the training set and four test sets. For
fill-in, we compare our GNN with minimum degree and random policy.

27

Comparing the results of different test sets, we observe that our GNN generalizes well, both
to larger graphs and to different distributions. First of all, loss curves on all test sets show
same decreasing tendency over the entire training period, although the magnitude of values
can be different across datasets. In terms of fill-in, we have similar and consistent results.
Moreover, by comparing the curves in each row, we also observe a strong correlation between
KL loss (i.e., how good we replicate the minimum degree expert), and the actual fill-in (which
is only observed, we never learn anything from it).

It is worth noting that, although the initial graphs can be i.i.d., the other states in the trajectory
always depend on previous states and actions, which indicates the induced distribution of
states depends on the behavior policy itself.

Since we have chosen the learner as the behavior policy in our approach, the loss is measured
under the distribution of states induced by GNN policies. As the GNN model changes during
training, this metric is actually measured under different distributions. As a result, the
decrease of loss over the training period (shown on the left side of Figure 4.2) only shows
a tendency that the GNN replicates the minimum degree expert better on an evolutionary
distribution induced by itself. The predictive performance of the GNN still needs to be
validated by the actual fill-in, which is precisely done on the right side of Figure 4.2.

Next, we evaluate the impact of the choice of training set on the generalization performance
of learned policies. Let πSSS denote the policy obtained by training over SSS dataset, and πU
denote a uniform policy, i.e., one that selects each node with uniform probability. In Table 4.1,
we report the average KL loss of each policy, over each of the four test sets ERS, ERL, SSS

and SSL. Recall that, since the KL loss is computed along trajectories, its value depends on
the behavior policy. Therefore, to make the comparison of policies valid, the values reported
in each column of Table 4.1 are computed using the same set of trajectories, generated by the
expert policy πMD. Policies that are obtained via imitation learning should have lower KL
loss than πU and, by definition, the KL loss of the expert policy πMD is zero. Indeed, both
πERS and πSSS display better KL loss than πU , with πSSS performing better than πERS on all
four test sets.

To validate these findings, in Table 4.2, we report the average fill-in of each policy over the
same four test sets; the fill-in of learned policies should match that of the expert πMD. The
results of Table 4.2 corroborate those of Table 4.1: the fill-in of πSSS deviates from that of
πMD by no more than 1%, πERS by up to 2.5% on the SSL test set, while πU deviates by as
much as 650% on SSL. Importantly, this last example shows that relatively small variations
in KL loss may result in very large fluctuations of fill-in. One likely explanation is that, in
the earlier steps, a wrong decision may result in substantial fill-in, which then propagates as

28

more nodes are eliminated. Furthermore, results for the ERL test set show that, even though
the KL loss of πSSS is about one order of magnitude smaller than that of πERS , both policies
achieve very similar fill-in with a relative difference of only 0.3%. Overall, we conclude that
training on ER graphs generalizes well to both graphs of larger size and from a different
distribution, displaying only a marginal loss of performance. This last point is especially
important in contexts where realistic data is scarce, since ER graphs can be generated easily
and in a controlled way.

Imitation of minimum fill-in heuristic

In this section, we analyze the results of our approach on learning the minimum fill-in heuristic.
We first report the learning curve on the training set of ERS in Figure 4.3. We can observe
that the average KL loss decreases notably after a few epochs of training and the average
fill-in of GNN policy converges close to that of minimum fill-in policy.

Moreover, we analyze the generalization performance of trained GNN on different test sets.
Since running the minimum fill-in heuristic on SSL takes too much time, here we only report
results over ERS, ERL and SSS. Let πGNN denote the GNN policy obtained by training
over the training set of ERS, and πMF , πU denote the minimum fill-in and uniform policy,
respectively. In Table 4.3, we report the average KL loss of πGNN and two baseline policies.
Similar to Table 4.1, the values of KL loss reported in each column of Table 4.3 are computed
along the same set of trajectories generated by the expert policy πMF . The results show that
πGNN has lower KL loss than πU on all test sets.

To validate the fill-in performance of the trained GNN policy, we report the average fill-in of
πGNN and two baselines in Table 4.4. For each test set, the average fill-in of each policy is
computed along the trajectories generated by the evaluated policy itself. Results on all test
sets show that the fill-in of πGNN deviates from that of πMF by no more than 5%, while πU

Table 4.1 Average KL loss of different policies over various test sets. For each test set, the
average KL loss of policies is computed using the same trajectories, generated by the policy
πMD.

Test set
Policy ERS ERL SSS SSL

πU 5.67× 10−3 1.85× 10−3 2.07× 10−2 7.18× 10−3

πERS 5.46× 10−4 3.33× 10−4 8.97× 10−3 5.65× 10−3

πSSS 2.24× 10−5 9.36× 10−6 4.79× 10−4 2.89× 10−3

29

Table 4.2 Average fill-in of different policies over various test sets. For each test set, the
average fill-in of policies is computed using the trajectories generated by the evaluated policy
itself.

Test set
Policy ERS ERL SSS SSL

πMD 12, 165 51, 711 2, 719 61, 405
πU 15, 286 59, 753 13, 588 468, 306
πERS 12, 223 51, 915 2, 877 62, 957
πSSS 12, 189 51, 755 2, 809 62, 096

Figure 4.3 Learning curve of GNN for imitating the minimum fill-in heuristic. We plot the
average KL loss in log scale (left) and the average fill-in per graph (right) on the training set
of ERS. For fill-in performance, we compare GNN with minimum fill-in and random policy.

Table 4.3 Average KL loss of policies over test sets. For each test set, the average KL loss of
policies is computed using the same trajectories, generated by the policy πMF .

Test set
Policy ERS ERL SSS

πU 7.77× 10−3 2.67× 10−3 2.51× 10−2

πGNN 5.40× 10−3 1.64× 10−3 1.85× 10−2

30

deviates by as much as 443% on SSS. Therefore, we conclude that the GNN policy trained
on small Erdos-Renyi graphs is able to replicate the minimum fill-in heuristic on the same
class of graphs, and generalizes well to both lager sized graphs and graphs from a different
distribution.

4.5 Further discussion

We now seek to further explain the sharp drops in loss that were observed during training,
e.g., in Figure 4.1, and the stark correlation between imitation loss and fill-in.

To do so, we consider the following GNN with two layers:

x0
i = 1 ∀i ∈ V, (4.21)

h1
i =

∑
j∈N (i)

w1x
0
j ∀i ∈ V, (4.22)

x1
i = ReLU(1 + h1

i) ∀i ∈ V, (4.23)

h2
i =

∑
j∈N (i)

w2x
1
j ∀i ∈ V, (4.24)

x2 = Softmax(h2), (4.25)

where w1, w2 ∈ R are the only two scalar parameters of the GNN, and x0, h1, x1, h2, x2 are
vectors of size |V |. The input vector is x0 with all coordinates equal to one and recall that,
by definition of Softmax, the coordinates of the output vector x2 are all non-negative and
sum to one. Although this corresponds to a slightly simpler model than that of Section 4.4.3,
it gives several insights into the behavior during training. Finally, for given w1, w2, we denote
the corresponding policy by πw.

Table 4.4 Average fill-in of policies over test sets. For each test set, the average fill-in of
policies is computed using the trajectories generated by the evaluated policy itself.

Test set
Policy ERS ERL SSS

πMF 12, 109 51, 564 2, 503
πU 15, 286 59, 753 13, 588
πGNN 12, 136 52, 245 2, 625

31

4.5.1 Policy interpretation

We begin by plotting the landscape of the expected average KL loss, evaluated on the training
set. This landscape is represented in Figure 4.4.

First, for every node i, since x0
i = 1, we have h1

i = w1δ(i). It follows that, by setting w1 = 0,
we get x1

i = ReLU(1 + 0) = 1, and then h2
i = w2 × δ(i). Therefore, as w2 approaches −∞, x2

becomes arbitrarily close to a minimum degree distribution, and πw becomes arbitrarily close
to πMD. Indeed, the average loss is minimized when w1 = 0 and w2 goes to −∞.

Second, we observe that in the w1 ≤ −1 region, the average loss is flat. This region actually
corresponds to the ReLU of the first layer being inactive. Indeed, we have h1

i = w1δ(i),
therefore, when w1 ≤ −1, we automatically get 1 +h1

i ≤ 0, which yields x1
i = 0. Consequently,

the output of the GNN is a uniform distribution on the nodes of the graph, i.e., we obtain
x2
i = 1

n
for each node i ∈ {1, ..., n}.

Third, observe that the landscape of the loss function displays fairly flat regions, which tend to
be separated by sharp drops in the objective, e.g., around the w1 = 0 region. This landscape
most likely explains the shapes of the training curves in Figure 4.1, which displayed flat
progression followed by sharp drops in the loss. Whether such behavior would carry out in
larger dimensions remains an open question.

This manual inspection of a GNN policy becomes intractable when using, e.g., numerous layers,
or multiple features within each layer. Nevertheless, recent works such as [83] have developed
auxiliary tools for interpreting GNN models, namely by identifying a small sub-graph and
subset of node features that play an essential role in the GNN prediction. Further qualitative
insight can be gained by choosing a set of sample graphs, and directly visualizing the policy’s
decision for those graphs. Note that doing so does not require any assumption about the
policy’s parametrization. This approach is illustrated in Figure 4.5, where we display the
policy π−1,1 on four sample graphs. For the top-left graph, which is a tree, the policy assigns
an identical probability to all four leaves, and a lower probability to the other three nodes. In
Figure 4.6, we also visualize the chordal extensions of an Erdos-Renyi graph built by GNN
and minimum degree policy. In this example, both policies make identical decisions at the
first three steps, while the decisions become different from step 4. However, the graphs are
complete at this point, so the different orderings afterwards have no impact on the final
chordal extensions.

Finally, in addition to the elimination rule itself, one may study the characteristics of chordal
extensions that are produced by it, e.g., by comparing some features of interest such as number
of additional edges, number of cliques and their sizes, etc. Such an a posteriori analysis is

32

Figure 4.4 Landscape of the expected average KL loss (in log scale). For each (w1, w2), we
plot the expected average KL loss, estimated over the training set.

Figure 4.5 Visualization of πw on four sample graphs, with w = (−1, 1). Nodes that are
assigned a higher (resp. lower) probability of elimination are indicated in red (resp. blue).

33

Figure 4.6 Visualization of building chordal extensions of an Erdos-Renyi graph by minimum
degree heuristic and GNN. The first row plots the solution built by the min degree policy,
whereas the second row plots a solution built by GNN. At each step, the selected node is
colored in orange. New added edges are in red. The eliminated nodes are in light blue and
the removed edges are dashed.

most relevant in the context of RL-based approaches, where the learned policy – and the
corresponding chordal extensions – may differ substantially from known experts. This can
be performed with GNN models, or classical feature-based ML algorithms such as Random
Forests or Support Vector Machines. Note that, in the latter case, the set of features needs to
be engineered manually.

4.5.2 Relation to fill-in

We then plot the landscape of the expected total fill-in in Figure 4.7, also evaluated on the
training set. While this gives us an insight into how fill-in correlates with the KL loss, let
us formally restate that fill-in is never used during the training process. In particular, no
gradient information is ever inferred from fill-in.

First, unsurprisingly, similar to Figure 4.4, here we observe a flat landscape in the w1 ≤ −1
region. Recall indeed that setting w1 ≤ −1 means the GNN’s output reduces to a uniform
policy. Second, the region w1 ≥ 0, w2 ≥ 0 displays high fill-in. This is not surprising either
since this region essentially yields policies that select nodes with high degree, which is naturally
detrimental to fill-in.

A third and more remarkable observation is the flat valley in the region w1 ≥ 0, w2 ≤ 0. While

34

Figure 4.7 Landscape of the normalized total fill-in. For each (w1, w2), we plot the average
total fill-in of the corresponding GNN policy, divided by the expected total fill-in of the
minimum degree heuristic. Both expectations are estimated over the training set.

we know that the GNN policy converges to minimum degree when w1 = 0 and w2 takes large
negative values, the plots in Figure 4.7 show that, when it comes to fill-in, the magnitude of
w2 does not matter as much.

Fourth and last, among the set of policies ΠGNN = {πw|w ∈ R2}, the lowest fill-in is achieved
for w1 ≥ 0, w2 ≤ 0. Recall that, as mentioned in Section 4.5.1, the minimum degree policy
πMD corresponds to π0,w2 as w2 approaches −∞. Thus, according to Figure 4.7, πMD appears
to be a minimizer of the fill-in, among the set of policies ΠGNN . Consequently, for the
considered set of graphs and class of models, we observe that no policy πw can outperform
πMD in terms of fill-in. Let us emphasize that this holds independently of the learning
procedure. Thus, models with higher representation power, e.g., GNNs with additional layers,
would be required to achieve lower fill-in.

4.6 Conclusion

In this work, we have considered chordal extensions and graph elimination as major factors
for devising sparsity-exploiting techniques for optimization algorithms. We have argued that,
although effective heuristics to perform graph elimination (an NP-complete task) exist, there is
no definitive understanding of the effect of the obtained chordal extension on the optimization
algorithm using the final graph representation.

35

For this reason, we have followed the current research trend of looking at Combinatorial
Optimization tasks by using a Machine Learning lens and we have devised a framework for
learning elimination rules yielding high-quality chordal extensions. As a first building block
of the learning framework, we have proposed an imitation learning scheme, which we have
illustrated on two classical elimination rules: Minimum Degree and Minimum Fill-in.

The results have shown that our imitation learning approach is effective in learning both
experts, using simple GNN models with only a handful of parameters. We have observed
that learning elimination rules displays remarkable generalization performance: the learned
policies successfully extend to graphs of larger size, and to graphs from a different distribution.
Importantly, training on a synthetic dataset of small Erdos-Renyi graphs results in a marginal
loss of performance, a desirable behavior since it allows to speed-up the learning process by
training on smaller problems. Finally, we have discussed various ways to interpret the learned
elimination rules, whether by inspecting the learned policy itself, or by studying the features
of the obtained chordal extensions, the latter being more relevant to RL-based approaches.

We identify two main research avenues for subsequent developments. On one hand, while GNNs
are a good model prior for combinatorial problems over graphs, enlarging their representation
power, for instance to represent hypernodes or to model multiple eliminations, will likely be
key to handling practical tasks. On the other hand, the next logical step will be to learn
elimination rules that explicitly address the performance of practical optimization algorithms,
in conjunction with reinforcement learning-based approaches. We expect that a combination
of learned policies and a feature-based analysis of the resulting chordal extensions can lead to
an easier and more direct customization of elimination orderings to sets of similar graphs. In
that regard, our future work will investigate chordal decomposition specially tailored to SDP
optimization problems.

36

CHAPTER 5 ARTICLE 2: REVISITING LOCAL BRANCHING WITH A
MACHINE LEARNING LENS

Authors: Matteo Fischetti, Defeng Liu, Andrea Lodi
Submitted to Mathematical Programming Computation. Submission date: 28 July, 2022.

Abstract Finding high-quality solutions to mixed-integer linear programming problems
(MILPs) is of great importance for many practical applications. In this respect, the refinement
heuristic local branching (LB) has been proposed to produce improving solutions and has
been highly influential for the development of local search methods in MILP. The algorithm
iteratively explores a sequence of solution neighborhoods defined by the so-called local branching
constraint, namely, a linear inequality limiting the distance from a reference solution. For a
LB algorithm, the choice of the neighborhood size is critical to performance. In this work,
we study the relation between the size of the search neighborhood and the behavior of the
underlying LB algorithm, and we devise a learning based framework for predicting the best
size for the specific instance to be solved. Furthermore, we have also investigated the relation
between the time limit for exploring the LB neighborhood and the actual performance of LB
scheme, and devised a strategy for adapting the time limit. We computationally show that
the neighborhood size and time limit can indeed be learned, leading to improved performance
and that the overall algorithm generalizes well both with respect to the instance size and,
remarkably, across instances.

5.1 Introduction

Mixed-integer linear programming (MILP) is a main paradigm for modeling complex com-
binatorial problems. The exact solution of a MILP model is generally attempted by a
branch-and-bound (or branch-and-cut) [1] framework. Although state-of-the-art MILP solvers
experienced a dramatic performance improvement over the past decades, due to the NP-
hardness nature of the problem, the computation load of finding a provable optimal solution
for the resulting models can be heavy. In many practical cases, feasible solutions are often
required within a very restricted time frame. Hence, one is interested in finding solutions of
good quality at the early stage of the computation. In fact, it is also appealing to discover
early incumbent solutions in the exact enumerate scheme, which improves the primal bound
and reduces the size of the branch-and-bound tree by pruning more nodes [84].

In this respect, the concept of heuristic is well rooted as a principle underlying the search of high-

37

quality solutions. In the literature, a variety of heuristic methods have proven to be remarkably
effective, e.g., local branching [85], feasibility pump [86], RINS [87], RENS [88], proximity
search [89], large neighborhood search [90], etc. More details of these developments are reviewed
in [4,90,91]. In this paper, we focus on local branching, a refinement heuristic that iteratively
produces improved solutions by exploring suitably predefined solution neighborhoods.

Local branching (LB) was one of the first methods using a generic MILP solver as a black-box
tool inside a heuristic framework. Given an initial feasible solution, the method first defines
a solution neighborhood through the so-called local branching constraint, then explores the
resulting subproblem by calling a black-box MILP solver. For a LB algorithm, the choice
of neighborhood size is crucial to performance. In the original LB algorithm [85], the size
of neighborhood is mostly initialized by a small value, then adjusted in the subsequent
iterations. Although these conservative settings have the advantage of yielding a series of
easy-to-solve subproblems, each leading to a small progress of the objective, there is still a
lot of space for improvement. As discussed in [89], a significantly better performance can be
potentially achieved with an ad-hoc tuning of the size of the neighborhood. Our observation
also shows that the “best” size is strongly dependent on the particular MILP instance. To
illustrate this, the performance of different LB neighborhood size settings for two MILP
instances are compared in Figure 5.1. In principle, it is desirable to have neighborhoods to be
relatively small to allow for an efficient exploration, but still large enough to be effective for
finding improved solutions. Nonetheless, it is reasonable to believe that the size of an ideal
neighborhood is correlated with the characteristics of the particular problem instance.

Furthermore, it is worth noting that, in many applications, instances of the same problem
are solved repeatedly. Problems of real-world applications have a rich structure. While more
and more datasets are collected, patterns and regularities appear. Therefore, problem-specific
and task-specific knowledge can be learned from data and applied to the corresponding
optimization scenario. This motives a broader paradigm of learning to guide the neighborhood
search in refinement heuristics.

In this paper, we investigate a learning framework for sizing the search neighborhood of local
branching. In particular, given a MILP instance, we exploit patterns in both the structure
of the problem and the information collected from the solving process to predict the size
of the LB neighborhood and the time limit for exploring the neighborhood, with the aim
of maximizing the performance of the underlying LB algorithm. We computationally show
that the neighborhood size and the time limit can indeed be learned, leading to improved
performances, and that the overall algorithm generalizes well both with respect to the instance
size and, more surprisingly, across instances.

38

Figure 5.1 Evaluation of the size of LB neighborhood on a set covering instance (sc-0) and
a maximum independent set instance (mis-1). The neighborhood size k is computed as
k = r×N , where N is the number of binary variables, and r ∈ [0, 1]. A time limit is imposed
for each neighborhood exploration.

We note that a shorter conference version of this paper appeared in [92]. Our initial conference
paper did not investigate the effect of the time limit for solving the LB neighborhood on
the performance of the overall LB algorithm. This extended paper addresses this issue and
provides additional analysis on applying our refined LB algorithms as a primal heuristic
within the MILP sovler.

The paper is organized as follows. In Section 5.2, we give a review of the related works in the
literature. In Section 5.3, we introduce the basic local branching scheme and some relevant
concepts. In Section 5.4, we present our methodology for learning to search in the local
branching scheme. In Section 5.5 describes the setup of our experiments and reports the
results to validate our approach. In Section 5.6, we apply local branching as a primal heuristic
and provide two possible implementations of how our local branching scheme interacts with
the MILP solver. Section 5.7 concludes the paper and discusses future research.

5.2 Related work

Recently, the progress in machine learning (ML) has stimulated increasing research interest in
learning algorithms for solving MILP problems. These works can be broadly divided into two
categories: learning decision strategies within MILP solvers, and learning primal heuristics.

The first approach investigates the use of ML to learn to make decisions inside a MILP solver,
which is typically built upon a general branch-and-bound framework. The learned policies

39

can be either cheap approximations of existing expensive methods, or more sophisticated
strategies that are to be discovered. Related works include: learning to select branching
variables [27,93,94], learning to select branching nodes [28], learning to select cutting planes [29],
and learning to optimize the usage of primal heuristics [30,31,95].

The learning primal heuristics approach is to learn algorithms to produce primal solutions for
MILPs. Previous works in this area typically use ML methods to develop large neighborhood
search (LNS) heuristics. Within an LNS scheme, ML models are trained to predict “promising”
solution neighborhoods that are expected to contain high-quality solutions. In [96], the
authors trained neural networks to directly predict solution values of binary variables, and
then applied the LB heuristic to explore the solution neighborhoods around the predictions.
The work of [97] also uses neural networks to predict partial solutions. The subproblems
defined by fixing the predicted partial solutions are solved by a MILP solver. The work of [98]
proposes a LNS heuristic based on a “learn to destroy” strategy, which frees part of the current
solution. The variables to be freed are selected by trained neural networks using imitation
learning. Note that their methods rely on parallel computation, which makes the outcome of
the framework within a non-parallel environment less clear. In [99], the authors proposed a
decomposition-based LNS heuristic. They used imitation learning and reinforcement learning
to decompose the set of integer variables into subsets of fixed size. Each subset defines a
subproblem. The number of subsets is fixed as a hyperparameter.

Note that the learning-based LNS methods listed above directly operate on the integer variables,
i.e., the predictions of ML models are at a variable-wise level, which still encounters the
intrinsic combinatorial difficulty of the problem and limits their generalization performances
on generic MILPs. Moreover, the learning of these heuristics is mostly based on the extraction
of static features of the problem, the dynamic statistics of the heuristic behavior of the
solver being barely explored. In our work, we aim at avoiding directly making predictions
on variables. Instead, we propose to guide the (local) search by learning how to control the
neighborhood size at an instance-wise level. To identify promising solution neighborhoods,
our method exploits not only the static features of the problem, but also the dynamic features
collected during the solution process as a sequential approach.

In the literature, there has also been an effort to learn algorithms for solving specific combi-
natorial optimization problems [20,22,41,43,100,101]. For a detailed overview of “learn to
optimize”, see [16].

40

5.3 Preliminaries

5.3.1 Local branching

We consider a MILP problem with 0–1 variables of the form

min cTx (5.1)

s.t. Ax ≤ b, (5.2)

xj ∈ {0, 1}, ∀j ∈ B, (5.3)

xj ∈ Z+, ∀j ∈ G, xj ≥ 0, ∀j ∈ C, (5.4)

where the index set of decision variables N := {1, . . . , n} is partitioned into B,G, C, which
are the index sets of binary, general integer and continuous variables, respectively.

Note that we assume the existence of binary variables, as one of the basic building blocks of
our method—namely, the local branching heuristic—is based on this assumption. However,
this limitation can be relaxed and the local branching heuristic can be extended to deal with
general integer variables, as proposed in [102].

Let x̄ be a feasible incumbent solution for (P), and let S = {j ∈ B : x̄j = 1} denote the
binary support of x̄. For a given positive integer parameter k, we define the neighborhood
N(x̄, k) as the set of the feasible solutions of (P) satisfying the local branching constraint

∆(x, x̄) =
∑
j∈B\S

xj +
∑
j∈S

(1− xj) ≤ k. (5.5)

In the relevant case in which solutions with a small binary support are considered (for example,
in the famous traveling salesman problem only n or the O(n2) variables take value 1), the
asymmetric form of local branching constraint is suited, namely

∆(x, x̄) =
∑
j∈S

(1− xj) ≤ k. (5.6)

The local branching constraint can be used in an exact branching scheme for (P). Given the
incumbent solution x̄, the solution space with the current branching node can be partitioned
by creating two child nodes as follows:

Left: ∆(x, x̄) ≤ k, Right: ∆(x, x̄) ≥ k + 1.

41

5.3.2 The neighborhood size optimization problem

For a neighborhood size parameter k ∈ Z+, the LB algorithm obtained from choosing k can be
denoted as Ak. Given a MILP instance p, with its incumbent solution x̄, the neighborhood
size optimization problem over k for one iteration of Ak is defined as

min C(p, x̄;Ak) (5.7)

s.t. k ∈ Z+, (5.8)

where C(p, x̄;Ak) measures the “cost”of Ak on instance (p, x̄) as a trade-off between execution
speed and solution quality.

In practice, a run of the LB algorithm consists of a sequence of LB iterations. To maximize
the performance of the LB algorithm, a series of the above optimization problems need to be
solved. Since the cost function C is unknown, those problems cannot be solved analytically.
In general, the common strategy is to evaluate some trials of k and select the most performing
one with respect to the defined cost metric. This is often done by using black-box optimization
methods [103]. As the evaluation of each setting involves a run of Ak and the best k is
instance-specific, those methods are not computationally efficient enough for online use.
That is why the original LB algorithm initializes k with a fixed small value and adapts it
conservatively by a deterministic strategy.

Currently, learning from experiments and transferring the learned knowledge from solved
instances to new instances is of increasing interest and somehow accessible. In the next section,
we will introduce a new strategy for selecting the neighborhood size k by using data-driven
methods.

5.4 Learning methods

Next, we present our framework for learning the neighborhood size in the LB scheme. The
original LB algorithm chooses a conservative value for k as default, with the aim of generating
a easy-to-solve subproblem for general MILPs. However, as discussed in Section 5.1, our
observation shows that the “best”k is dependent on the particular MILP instance. Hence, in
order to optimize the performance of the LB heuristic, we aim at devising new strategies to
learn how to tailor the neighborhood size for a specific instance. In particular, we investigate
the dependencies between the state of the problem (defined by a set of both static and
dynamic features collected during the LB procedure, e.g., context of the problem, incumbent
solution, solving status, computation cost, etc.) and the size of the LB neighborhood.

42

Our framework consists of a two-phase strategy. In the first phase, we define a regression
task to learn the neighborhood size for the first LB iteration. Within our method, this size is
predicted by a pretrained regression model. For the second phase, we leverage reinforcement
learning (RL) [10] and train a policy to dynamically adapt the neighborhood size at the
subsequent LB iterations. The exploration of each LB neighborhood is the same as in the
original LB framework, and a generic black-box MILP solver is used to update the incumbent
solution. The overall scheme is exact in nature although turning it into a specialized heuristic
framework is trivial (and generally preferrable).

5.4.1 Scaled regression for local branching

For intermediate LB iterations, the statistics of previous iterations (e.g., value of the previous
k, solving statistics, etc.) are available. One can then take advantage of this information and
exploit the learning methods based on dynamic programming (e.g., reinforcement learning).
Section 5.4.2 will address this case. However, for the first LB iteration, there is no historical
information available as input. In this section, we will show how to define a regression task to
learn the first k from the context of the problem and the incumbent solution.

Let S denote the set of available features of the MILPs before the first LB iteration. We
aim to train a regression model f : S → R that maps the features of a MILP instance s to
k∗0, the label of best k0. However, the label k∗0 is unknown, and we do not have any existing
method to compute the exact k∗0. To generate labels, we first define a metric for assessing the
performance of a LB algorithm Ak, and then use black-box optimization methods to produce
approximations of k∗0 as labels.

Approximation of the best k0

To define a cost metric for Ak, we consider two factors. The first factor is the computational
effort (e.g., CPU time) to solve the sub-MILP defined by the LB neighborhood, while the
second factor is the solution quality (e.g., the objective value of the best solution). To quantify
the trade-off of speed and quality, the cost metric can be defined as

ck0 = αtk0
scaled + (1− α)ok0

scaled, (5.9)

where tk0
scaled ∈ [0, 1] is the scaled computing time for solving the sub-MILP, ok0

scaled ∈ [0, 1] is
the scaled objective of sub-MILP, and α is a constant.

43

Given ck0 , the label k∗0 can be defined as

k∗0 = argmin
k0∈Z+

ck0 , (5.10)

and is usually evaluated through black-box optimization methods: Given the time limit and
a collection of training instances of interest, one evaluates the LB algorithm introduced in
Section 5.3 with different values of k0, and k∗0 is estimated by choosing the value with the
best performance assessed by (5.9), which is typically the largest k0 such that the resulting
sub-MILP can still be solved to optimality within the time limit. Since the evaluation process
for each instance is quite expensive, we propose to approximate it through regression.

Regression for learning k0

With a collected dataset D = (si, k∗0i)Ni=1 with N instances, a regression task can be analyzed
to learn a mapping from the state of the problem to the estimated k∗0. The regression model
fθ(s) can be obtained by solving

θ∗ = argmin
θ∈Θ

1
N

N∑
i=1
L(fθ(si), k∗0i), (5.11)

where L(fθ(si), k∗0i) defines the loss function, a typical choice for regression task being the
mean squared error.

The scaled regression task

Let x′ be the optimal linear programming (LP) fractional solution without local branching
constraint, and let k′ be the value of the left-hand side of the local branching constraint
evaluated using x′. Specifically, k′ is computed by

k′ = ∆(x′, x̄). (5.12)

As discussed in [89], any k ≥ k′ is likely to be useless as the LP solution after adding the LB
constraint would be unchanged. Hence, k′ provides an upper bound for k.

We can therefore parametrize k as

k = φ k′, (5.13)

44

where φ ∈ (0, 1). Now, we define the regression task over a scaled space φ ∈ (0, 1) instead of
directly over k.

Given k∗0 and k′0, the label is easily computed by

φ∗0 = k∗0
k′0
. (5.14)

The regression problem reduces to

θ∗ = argmin
θ∈Θ

1
N

N∑
i=1
L(fθ(si), φ∗0i), (5.15)

where L(fθ(si), φ∗0i) defines the loss function.

MILP representation We represent the state s as a bipartite graph (C,E,V) [27]. Given
a MILP instance, let n be the number of variables with d features for each variable, m be the
number of constraints with q features for each constraint. The variables of the MILP, with
V ∈ Rn×d being their feature matrix, are represented on one side of the graph. On the other
side are nodes corresponding to the constraints with C ∈ Rm×q being their feature matrix. A
constraint node i and a variable node j are connected by an edge (i, j) if variable i appears
in constraint j in the MILP model. Finally, E ∈ Rm×n×e denotes the tensor of edge features,
with e being the number of features for each edge.

Regression model Given that states are represented as graphs, with arbitrary size and
topology, we propose to use graph neural networks (GNNs) [73, 74] to parameterize the
regression model. Indeed, GNNs are size-and-order invariant to input data, i.e., they can
process graphs of arbitrary size, and the ordering of the input elements is irrelevant. Another
appealing property of GNNs is that they exploit the sparsity of the graph, which makes GNNs
an efficient model for embedding MILP problems that are typically very sparse [27].

Our GNN architecture consists of three modules: the input module, the convolution module,
and the output module. In the input layer, the state s is fed into the GNN model. The input
module embeds the features of the state s. The convolution module propagates the embedded
features with graph convolution layers. In particular, our graph convolution layer applies the
message passing operator, defined as

45

Algorithm 2: LB with scaled regression
Input: instance dataset P = {pi}Mi=1
for instance pi ∈ P do

0. initialize the state s with an initial solution x̄;
1. solve the LP relaxation and get solution x′;
2. compute k′ = ∆(x′, x̄);
3. predict φ0 = fθ(s) by the regression model;
4. compute k0 = φ0 k

′;
5. apply k0 to execute the first LB iteration;
6. update the incumbent x̄ and continue LB algorithm with its default setting;
repeat

execute the next LB iteration;
until termination condition is reached;

end

v(h)
i = f

(h)
θ

v(h−1)
i ,

∑
j∈N (i)

g
(h)
λ

(
v(h−1)
i ,v(h−1)

j , ej,i
) , (5.16)

where v(h−1)
i ∈ Rd denotes the feature vector of node i from layer (h− 1), ej,i ∈ Rm denotes

the feature vector of edge (j, i) from node j to node i of layer (h− 1), and f (h)
θ and g(h)

λ denote
the embedding functions in layer h.

For a bipartite graph, a convolution layer is decomposed into two half-layers: one half-layer
propagates messages from variable nodes to constraint nodes through edges, and the other one
propagates messages from constraint nodes to variable nodes. The output module embeds the
features extracted from the convolution module and then applies a pooling layer, which maps
the graph representation into a single neuron. The output of this neuron is the prediction of
φ0.

LB with scaled regression

Our refined LB heuristic, LB with scaled regression, is obtained when k0 is predicted by the
regression model. The pseudocode of the algorithm is outlined in Algorithm 2.

5.4.2 Reinforced neighborhood search

In this section, we leverage reinforcement learning (RL) to adapt the neighborhood size
iteratively. We first formulate the problem as a Markov Decision Process (MDP) [64]. Then,

46

we propose to use policy gradient methods to train a policy model.

Markov Decision Process

Given a MILP instance with an initial feasible solution, the procedure can be formulated as a
MDP, wherein at each step, a neighborhood size is selected by a policy model and applied to
run a LB iteration. The framework is shown in Figure 5.2. In principle, the state space S is
the set of all the features of the MILP model and its solving statistics, which is combinatorial
and arbitrarily large. To design an efficient RL framework for this problem, we choose a
compact set of features from the solving statistics to construct the state. These features
characterize the progress of the optimization process and are instance-independent, allowing
broader generalization across instances.

For the action space State(A), instead of directly selecting a new k, we choose to adapt the
value of k of the last LB iteration. The set of possible actions consists of four options

{+kstep, 0,−kstep; reset}, (5.17)

where “+kstep”means increasing k by k = k + kstepk, “−kstep”means decreasing k by k =
k − kstepk, “0”denotes keeping k without any change, and “reset”means resetting k to a
default value. The policy πk maps a state to one of the four actions. The step size kstep is a
hyperparameter of the algorithm.

Figure 5.2 RL framework for adapting k

The compact description of states and actions offers several advantages. First of all, it
simplifies the MDP formulation and makes the learning task easier. In addition, it allows
for the use of simpler function approximators, which is critical for speeding up the learning
process. In Section 5.5, we will show—by training a simple linear policy model using the

47

off-the-shelf policy gradient method—that the resulting policy can significantly improve the
performance of the LB algorithm.

By applying the updated k, the next LB iteration is executed with time limit tlimit. Then,
the solving sub-MILP statistics are collected to create the next state. In principle, the reward
rk is formulated according to the outcome of the last LB iteration, e.g., the computing time
and the quality of the incumbent solution.

To maximize the objective improvement and minimize the solution time of the LB algorithm,
we define the combinatorial reward as

rk = oimp(tmax − telaps), (5.18)

where oimp denotes the objective improvement obtained from the last LB iteration, tmax is
the global time limit of the LB algorithm, and telaps is the cumulated running time.

The definition above is just one possibility to build a MDP for the LB heuristic. Actually,
defining a compact MDP formulation is critical for constructing efficient RL algorithms for
this problem.

Learning strategy

For training the policy model, we use the Reinforce policy gradient method [104], which allows
a policy to be learned without any estimate of the value functions.

The refined LB heuristic, reinforced neighborhood search for adapting k is obtained when
the neigborhood size k, is dynamically adapted by the RL policy. The pseudocode of the
algorithm is outlined in Algorithm 3.

5.4.3 Further improvement by adapting LB node time limit

In the previous section, we suppose that the time limit for solving each local branching
neighborhood is given. Indeed, the setting of time limit for each “LB node”decides how much
computational effort is spent on each LB node, and therefore customizes how the overall time
limit is split. E.g., a larger “LB node”time limit allows more computation for solving that LB
node, which potentially leads to a larger k. However, it should be noted that the relation
between the value of “LB node”time limit and the actual performance of LB scheme is not
known. Therefore, we seek to address this issue by leveraging reinforcement learning again to
learn policies for tailoring the time limit for each LB node. This new “RL-t”loop is built on
top of the inner “RL-k”loop for adapting the LB neighborhood size. The scheme is shown in

48

Algorithm 3: Reinforced neighborhood search for adapting k
Input: instance dataset P = {pi}Mi=1
for instance pi ∈ P do

0. initialize the state s with an initial solution x̄;
1. compute k0 by the procedure in Algorithm 1 or set k0 by a default value;
2. apply k0 to execute the first LB iteration;
3. collect the new state s and the incumbent x̄;
repeat

update k by policy πk(s);
apply k and execute the next LB iteration;
collect the new state s with the incumbent x̄;

until termination condition is reached;
end

Figure 5.3.

Figure 5.3 RL framework for adapting the time limit for solving the LB subproblem.

To design the action space for adapting the time limit of each LB node, we apply a similar
setting as used for adapting k. The set of possible actions consists of four options

{∗tstep, 0, /tstep; reset}, (5.19)

where “∗tstep”means increasing t by t = tstept, “/tstep”means decreasing t by t = t
tstep

,
“0”denotes keeping t without any change, and “reset" means resetting t to a default value.
The policy πt maps a state to one of the four actions.

For the reward design of the “RL-t" loop, the reward also takes into account both the cost

49

of computation spent on solving the LB subproblem and the solution quality. Specifically,
the reward rt for the outer RL-t loop consists of two components. The first component r1

maintains the same reward rk as used in the “RL-k" loop, which attempts to maximize the
improvement of the objective by the last LB iteration while minimizing the computing time.
In addition, the LB environment explicitly returns a reward signal as a second component
to penalize those LB iterations where the subproblem is too large to solve and there is no
objective improvement within the time limit. The penalty reward rp is a binary signal defined
as

rp =

1 if the LB subproblem is not solved and no improving

solution is returned,
0 otherwise.

Formally, the reward rt is a combination of two components, defined as

rt = β1r1 + β2r2,

where r1 = rk, r2 = rp, β1 > 0, β2 > 0.

For training the policy πt(s), we use the same RL method as used for training the policy
πk(s). Note that we fix the pretrained πk(s) policy while tuning πt(s) to make the learning
process more stable.

A new LB alogorithm, hybrid reinforced neighborhood search, is obtained when the neigborhood
size k and the time limit t for each LB node are dynamically adapted by the RL policies. The
pseudocode of the algorithm is outlined in Algorithm 4.

5.5 Experiments

In this section, we present the details of our experimental results over five MILP benchmarks.
We compare different settings of our approach against the original LB algorithm, using
SCIP [105] as the underlying MILP solver.

5.5.1 Data collection

MILP instances

We evaluate on five MILP benchmarks: set covering (SC) [106], maximum independent
set (MIS) [107], combinatorial auction (CA) [108], generalized independent set problem

50

Algorithm 4: Hybrid reinforced neighborhood search for adapting k and t
Input: instance dataset P = {pi}Mi=1
for instance pi ∈ P do

0. initialize the state s with an initial solution x̄;
1. compute k0 by the procedure in Algorithm 1 or set k0 by a default value;
2. apply k0 to execute the first LB iteration;
3. collect the new state s and the incumbent x̄;
repeat

update k by policy πk(s);
update t by policy πt(s);
apply k, t and execute the next LB iteration;
collect the new state s with the incumbent x̄;

until termination condition is reached;
end

(GISP) [109, 110], and MIPLIB 2017 [111]. The first three benchmarks are used for both
training and evaluation. For SC, we use instances with 5000 rows and 2000 columns. For
MIS, we use instances on Barabási–Albert random graphs with 1000 nodes. For CA, we
use instances with 4000 items and 2000 bids. In addition, to evaluate the generalization
performance on larger instances, we also use a larger dataset of instances with doubled size
for each benchmark, denoted by LCA, LMIS, LCA. The larger datasets are only used for
evaluation.

For GISP, we use the public dataset from [95]. For MIPLIB, we select binary integer linear
programming problems from MIPLIB 2017. Instances from GISP and MIPLIB are only used
for evaluation.

For each instance, an initial feasible solution is required to run the LB heuristic. We use two
initial incumbent solutions: (1) the first solution found by SCIP; (2) an intermediate solution
found by SCIP, typically the best solution obtained by SCIP at the end of the root node
computation, i.e., before branching.

Data Collection for regression

To collect data for the scaled regression task, one can use black-box optimization methods to
produce the label φ∗0. As the search space has only one dimension, we choose to use the grid
search method. In particular, given a MILP instance, an initial incumbent x̄, the LP solution
x′, and a time limit for a LB iteration, we evaluate φ0 from (0, 1) with a resolution limit 0.01.
For each φ0, we compute the actual neighborhood size by k0 = k′ φ0, where k′ = ∆(x′, x̄).
Then, k0 is applied to execute an iteration of LB. From all the evaluated φ0, the one with

51

best performance is chosen as a label φ∗0.

The state s consists of context features of the MILP model and the incumbent solution. The
state s together with the label k∗ construct a valid data point (s, k∗).

5.5.2 Experimental setup

Datasets

For each reference set of SC, MIS and CA problems, we generate a dataset of 200 instances,
and split each dataset into training (70%), validation (10%), and test (20%) sets. For larger
instances, we generate 40 instances of LSC, LMIS and LCA problems, separately. The GISP
dataset contains 35 instances. For MIPLIB, we select 29 binary MILPs that are also evaluated
by the original LB heuristic [85].

Model architecture and feature design

For the regression task, we apply the GNNs described in the paper with three modules.
For the input module, we apply 2-layer perceptron with the rectified linear unit (ReLU)
activation function to embed the features of nodes. For the convolution module, we use two
half-layers, one from nodes of variables to nodes of constraints, and the other one from nodes
of constraints to nodes of variables. For the output module, we also apply 2-layer perceptron
with the ReLU activation function. The pooling layer uses the sigmoid activation function.
All the hidden layers have 64 neurons.

Given the input x ∈ R, the Sigmoid and ReLU functions are defined as

Sigmoid(x) = exp(x)
exp(x) + 1 , (5.20)

ReLU(x) = max(0, x). (5.21)

For the bipartite graph representation, we reference the model used in [27]. The features in
the bipartite graph are listed in Table 5.1. In practice, if the instance is a pure binary MILP,
one can choose a more compact set of features to accelerate the training process. For example,
the features describing the type and bound of the variables can be removed.

For the two RL policies, we apply a linear model with seven inputs and four outputs. The set
of features used by the RL policies is listed in Table 5.2.

52

Table 5.1 Description of the features in the bipartite graph s = (C,E,V).

Tensor Feature Description
C bias Bias value, normalized with constraint coefficients.
E coef Constraint coefficient, normalized per constraint.

V

coef Objective coefficient, normalized.
binary Binary type binary indicator.
integer Integer type indicator.
imp_integer Implicit integer type indicator
continuous Continuous type indicator.
has_lb Lower bound indicator.
has_ub Upper bound indicator.
lb Lower bound.
ub Upper bound.
sol_val Solution value.

Table 5.2 Description of the input features of the RL policy.

Feature Description
optimal Sub-MILP is solved and the incumbent is updated, indicator.
infeasible Sub-MILP is proven infeasible, indicator.
improved Sub-MILP is not solved but the incumbent is updated, indicator.
not_improved Sub-MILP is not solved and no solution is found, indicator.
diverse No improved solution is found for two iterations, indicator.
t_available time available before the time limit of the sub-MILP is reached
obj_improve improvement of objective.

53

Training and evaluation

For the regression task, the model learns from the features of the MILP formulation and
the incumbent solution. We use the mean squared error as the loss function. We train the
regression model with two scenarios: the first one trains the model on the training set of SC,
MIS and CA separately, the other one trains a single model on a mixed dataset of the three
training sets. The models trained from the two scenarios are compared on the three test sets.

For the RL task, since we only use the instance-independent features selected from solving
statistics, the RL policy is only trained on the training set of SC, and evaluated on all the
test sets.

To further evaluate the generalization performance with respect to the instance size and the
instance type, the RL policies (trained on the SC dataset) and the regression model (trained
on the SC, MIS and LCS datasets) were evaluated on GISP and MIPLIB datasets.

Evaluation metrics

We use two measures to compare the performance of different heuristic algorithms. The first
indicator is the primal gap. Let x̃ be a feasible solution , and x̃opt be the optimal (or best
known) solution. The primal gap (in percentage) is defined as

γ(x̃) = |c
T x̃opt − cT x̃|
|cT x̃opt|

× 100,

where we assume the denominator is nonzero.

For the second measure, we use the primal integral [84], which takes into account both the
quality of solutions and the solving time required to find them. To define the primal integral,
we first consider a primal gap function p(t) as a function of time, defined as

p(t) =

 1, if no incumbent until time t,
γ̄(x̃(t)), otherwise,

where x̃(t) is the incumbent solution at time t, and γ̄(·) ∈ [0, 1] is the scaled primal gap
defined by

γ̄(x̃) =

0, if cT x̃opt = cT x̃ = 0,
1, if cT x̃opt · cT x̃ < 0,
|cT x̃opt−cT x̃|

max{|cT x̃opt|, |cT x̃|} , otherwise.

54

Let tmax > 0 be the time limit. The primal integral of a run is then defined as

P (tmax) =
∫ tmax

0
p(t) dt.

Details of experimental settings

To tune the learning rate for training the regression model, we have experimented different
learning rates from 10−5 to 10−1 and have chosen a learning rate of 10−4. We trained the
model with a limit of 300 epochs.

For training the RL policies, we used the same method to tune the learning rate and have
chosen a learning rate of 10−2 for πk, and 10−1 for πt . We trained the RL policies with a
limit of 300 epochs.

For the hyperparameters, we have chosen α = 0.5 as a trade-off between speed and quality for
the cost metric for k0. We used β1 = β2 = 1 for the two components of rt. We used kstep = 0.5
for the action design in Section 5.4.2 and tstep = 2 for the action design in Section 5.4.3. We
set a time limit of 10 seconds for each LB iteration for all the compared algorithms.

Our code is written in Python 3.7 and we use Pytorch 1.60 [112], Pytorch Geometric 1.7.0 [113],
PySCIPOpt 3.1.1 [114], SCIP 7.01 [105] for developing our models and sovling MILPs.

5.5.3 Results

In order to validate our approach, we first implement LB as a heuristic search strategy for
improving a certain incumbent solution using the MILP solver as a black-box.

Local branching search with adapting k

We perform the evaluations of our framework on the following four settings:

• lb-sr : Algorithm 2 with regression model trained by a homogenous dataset of SC, MIS,
CA, separately;

• lb-srm: Algorithm 2 with regression model trained by a mixed dataset of SC, MIS, CA;

• lb-rl: Algorithm 3 with setting k0 by a default value;

• lb-srmrl: combined algorithm using regression from Algorithm 2 (with regression model
trained by mixed dataset of SC, MIS, CA) and RL from Algorithm 3.

55

We use the original local branching algorithm as the baseline. All the algorithms use SCIP as
the underlying MILP solver and try to improve the initial incumbent with a time limit of 60s.
Our code and more details of the experiment environment are publicly available1.

The evaluation results for the basic SC, MIS, CA datasets are shown in Table 5.3 and Table
5.4. Our first observation is that the learning based algorithms of our framework significantly
outperform the original LB algorithm. Both the primal integral and the final primal gap of the
four LB variants are smaller than those of the baseline over most datasets, showing improved
heuristic behavior. Note that, although the regression model trained by using supervised
learning and the policy model trained by RL can be used independently, they benefit from
being used together. As a matter of fact, the hybrid algorithm lb-srmrl combining both
methods achieves a solid further improvement and outperforms the other algorithms for most
cases.

We also evaluate the impact of the choice of training set for the regression model. By comparing
lb-sr and lb-srm, we observe that the regression model trained on a mixed dataset of SC,
MIS, CA exhibit a performance very close to that of the model trained on a homogeneous
dataset. Indeed, the GNN networks we used embed the features of the MILP problem and its
incumbent solution. In particular, one significant difference between our method and those
of previous works is that, instead of training a separate model for each class of instances,
our method is able to train a single model yielding competitive generalization performances
across instances. This is because our models predict the neighborhood size at a instance-wise
level, rather than making predictions on variables.

Broader Generalization Next, we evaluate the generalization performance with respect to the
size and the type of instances. Recall that our regression model is trained on a randomly
mixed dataset of SC, MIS and CA problems, and the RL policy is only trained on the training
set of SC. We evaluate the trained models on larger instances (LSC, LMIS, LCA) and new
MILP problems (GISP, MIPLIB). The results of evaluation on larger instances are shown in
Table 5.5 and Table 5.6, whereas the results on GISP and MIPLIB datasets, are shown in
Table 5.7 and Table 5.8.

Overall, all of our learning-based LB algorithms outperform the baseline, and the hybrid
algorithm lb-srmrl achieves the best performance on most datasets. These results show that
our models, trained on smaller instances, generalize well both with respect to the instance
size and, remarkably, across instances.

1https://github.com/pandat8/ML4LB

https://github.com/pandat8/ML4LB

56

Table 5.3 Primal integral (geomeric means) for SC, MIS, CA problems.

SC MIS CA

Algo. first root first root first root

lb-base 57.013 5.697 5.713 4.893 9.296 3.308
lb-sr 3.643 1.751 1.537 3.499 6.358 2.025
lb-srm 4.338 1.818 1.419 3.654 6.556 2.120
lb-rl 17.304 4.513 2.616 2.616 4.450 2.042
lb-srmrl 2.991 1.567 1.244 2.452 3.202 1.454

Table 5.4 Final primal gap (geometric means in percentage) for SC, MIS, CA problems.

SC MIS CA

Algo. first root first root first root

lb-base 1411.624 1.390 0.326 0.193 3.307 1.218
lb-sr 1.425 1.102 0.220 0.210 2.460 0.877
lb-srm 1.645 1.118 0.247 0.232 2.466 0.971
lb-rl 6.876 1.621 0.449 0.263 0.558 0.229
lb-srmrl 1.335 0.550 0.275 0.242 0.465 0.311

Local branching search with adapting both k and t

In this section, we analyze the results of our approach on adapting both the neighborhood size
k and time limit t for each LB node. Again, local branching is implemented as an independent
heuristic search scheme for improving a certain incumbent solution using a black-box MILP
solver.

We compare the lb-base and our best algorithm lb-srmrl outlined in the previous section with
a new algorithm:

• lb-srmrl-adapt-t: Combined RL algorithm using regression from Algorithm 2 (with
regression model trained by mixed dataset of SC, MIS, CA) and Hybrid RL from
Algorithm 4.

In order to validate the effectiveness of our strategy for adapting t, we conducted the
experiments on the two difficult MIP datasets (GISP, MIPLIB) with a longer global time
limit, 600s.

The results are shown in Table 5.9 and Table 5.10. In order to demonstrate the outcome of
our LB algorithms on the solving progress of the instances over the running time, we plot the
evolution of the average primal integral on the MIPLIB dataset in Figure 5.5. The plot on
the left reports the results of the instances initialized by the first solution found by SCIP,

57

Table 5.5 Primal integral (geometric means) for LSC, LMIS, LCA problems.

LSC LMIS LCA

Algo. first root first root first root

lb-base 59.303 19.147 26.230 27.228 30.610 13.187
lb-srm 3.642 2.350 4.746 9.175 19.639 6.869
lb-rl 45.658 7.889 5.476 7.929 17.338 7.081
lb-srmrl 2.790 1.876 1.819 5.807 10.078 4.311

Table 5.6 Final primal gap (geometric means in percentage) for LSC, LMIS, LCA problems.

LSC LMIS LCA

Algo. first root first root first root

lb-base 8105.973 4.221 18.633 12.342 26.429 5.156
lb-srm 2.379 1.242 0.230 0.659 15.882 1.961
lb-rl 136.401 4.216 0.362 0.206 3.341 0.987
lb-srmrl 1.326 0.777 0.195 0.205 2.007 0.152

Table 5.7 Primal integral (geometric means) for GISP and MIPLIB problems.

GISP MIPLIB

Algo. first root first root

lb-base 19.833 16.692 12.318 9.003
lb-srm 13.359 10.173 11.319 6.863
lb-rl 18.949 15.429 12.676 8.318
lb-srmrl 13.739 9.865 10.172 7.151

Table 5.8 Final primal gap (geometric means in percentage) for GISP and MIPLIB problems.

GISP MIPLIB

Algo. first root first root

lb-base 22.244 17.171 44.794 11.893
lb-srm 10.307 7.704 32.061 8.730
lb-rl 20.030 14.402 42.676 11.869
lb-srmrl 11.641 5.929 20.575 9.696

whereas the plot on the right reports the results of the same instances initialized by the best
solution obtained at the end of the root node of the B&B tree.

58

Table 5.9 Primal integral (geometric means) for GISP and MIPLIB problems with a time
limit of 600s for each instance.

GISP MIPLIB

Algo. first root first root

lb-base 116.882 101.013 59.916 35.747
lb-srm-rl 108.345 91.600 54.116 33.038
lb-srm-rl-adapt-t 81.888 68.042 50.843 28.558

Table 5.10 Final primal gap (geometric means in percentage) for GISP and MIPLIB problems
with a time limit of 600s for each instance.

GISP MIPLIB

Algo. first root first root

lb-base 12.440 11.039 36.860 3.389
lb-srm-rl 12.230 11.991 20.532 5.273
lb-srm-rl-adapt-t 5.880 5.328 16.723 4.396

Figure 5.5 Evolution of the primal integral (geometric means) over time on binary MIPLIB
dataset. Left / right: using the first / root solution to start LB.

59

From these results, we observe that: 1) All our learning-based LB algorithms converge faster
than the LB baseline, showing improved heuristic behavior; 2) With our new strategy for
adapting the LB node time limit t, the hybrid RL algorithm further improves its baseline with
only a single RL policy for adapting k. The improvement becomes more and more significant
as the solving time increases.

5.6 Local branching as a primal heuristic within a MILP solver

Local branching can also be implemented as a refinement heuristic within a generic MILP
solver. In this section, we present two possible implementations of the LB algorithms outlined
in the previous section, to be used as a primal heuristic. One major difference between
these implementations and those of the previous section is how the global MILP search is
structured. Instead of applying LB as a metaheuristic strategy, we use LB within the MILP
solver to improve the incumbent at certain nodes of B&B tree. In particular, we considered
the following two possible implementations:

• executing LB primal heuristic only at the root node: the MILP solver calls local
branching only at the root node or at the node where the first incumbent solution is
found;

• executing LB primal heuristic at multiple nodes: the MILP solver checks if there is a
new incumbent or not for every f nodes in the B&B tree, and calls local branching if
that is the case.

To configure the frequency f of executing the LB primal heuristic for the second implementa-
tion, we have conducted a simple hyperparameter search for f from the set of {1, 10, 100, 1000},
and the results showed that 100 performed the best. Thus, we set f = 100.

We evaluate the two primal heuristic implementations on the MIPLIB binary dataset and
report the evolution of the average primal integral in Figure 5.6. Our observation is that the
SCIP solver is improved by adding our learning based LB into SCIP as a primal heuristic.
The results also suggest that the best strategy of executing LB is only to call it at the root
node of the B&B tree (or at the node where the first incumbent solution is found).

5.7 Discussion

In this work, we have looked at the local branching paradigm by using a machine learning lens.
We have considered the neighborhood size as a main factor for quantifying high-quality LB

60

Figure 5.6 Evolution of primal integral (geometric means) over time on binary MIPLIB dataset
(1200s).

neighborhoods. We have presented a learning based framework for predicting and adapting the
neighborhood size for the LB heuristic. The framework consists of a two-phase strategy. For
the first phase, a scaled regression model is trained to predict the size of the LB neighborhood
at the first iteration through a regression task. In the second phase, we leverage reinforcement
learning and devise a reinforced neighborhood search strategy to dynamically adapt the size
at the subsequent iterations. Furthermore, we have also investigated the relation between
“LB node” time limit t and the actual performance of LB scheme, and devised a strategy for
adapting t. We have computationally shown that the neighborhood size and LB node time
limit can indeed be learned, leading to improved performances and that the overall algorithm
generalizes well both with respect to the instance size and, remarkably, across instances.

Our framework relies on the availability of an initial solution, thus it can be integrated
with other refinement heuristics. For future research, it would be interesting to design more
sophisticated hybrid frameworks that learn to optimize multiple refinement heuristics in a
more collaborative way.

61

CHAPTER 6 LEARNING TO GENERATE NEIGHBORS IN
METAHEURISTIC SEARCH

In this chapter, we further extend the idea in the previous chapter and present a methodology
for integrating machine learning techniques into metaheuristics for solving combinatorial
optimization problems. Namely, we propose a general machine learning framework for neighbor
generation in metaheuristic search. In Section 6.3, we first define an efficient neighborhood
structure constructed by applying a transformation to a selected subset of variables from
the current solution. Then, the key of the proposed methodology is to generate promising
neighborhoods by selecting a proper subset of variables that contains a descent of the objective
in the solution space. To learn a good variable selection strategy, we formulate the problem
as a classification task that exploits structural information from the characteristics of the
problem and from high-quality solutions. In Section 6.4 and 6.5, we validate our methodology
on two metaheuristic applications: a Tabu Search scheme for solving a Wireless Network
Optimization problem and a Large Neighborhood Search heuristic for solving Mixed-Integer
Programs. The experimental results show that our approach is able to achieve a satisfactory
trade-off between the exploration of a larger solution space and the exploitation of high-quality
solution regions on both applications.

6.1 Machine Learning for metaheuristics

Combinatorial Optimization (CO) is an important class of optimization problems in Operations
Research (OR) and Computer Science (CS). In general, a CO problem is defined by a set of
decision variables, a constrained solution space and an objective function. The goal of CO is
to find optimal solutions with respect to the objective in the solution space.

Classical methods for solving CO problems can be roughly divided into three classes: exact
methods, heuristics and metaheuristics. Mixed-Integer Programming (MIP) is one of the main
paradigms of exact methods for modeling complex CO problems. Over the last decades, there
has been increasing interest in improving the ability to solve MIPs effectively. Modern MIP
solvers incorporate a variety of complex algorithmic techniques, such as primal heuristics [115],
Branch and Bound (B&B) [1], cutting planes [2] and pre-processing, which results in complex
and sophisticated software tools.

Exact methods are guaranteed to find optimal solutions as well as a proof of their optimality.
On the one hand, due to the NP-hardness nature of many CO problems, solving them to

62

optimality within an exact algorithm is still a very challenging task. On the other hand,
in many practical applications, one is more interested in getting a good solution within
a reasonable time rather than finding an optimal one. Those practical requirements have
motivated the development of specific heuristics and metaheuristics (MHs). Specific heuristics
are usually designed for solving a specific type of CO problem, whereas MHs are frameworks
for designing heuristics for solving general CO problems, and provide guidelines to integrate
basic heuristic concepts with high-level diversification strategies.

It is worth noting that a lot of information can be produced and observed from MH processes,
and therefore, a large volume of data can be collected. These data might provide valuable
information about the optimization status of the process, the characteristics of the problem,
the structures and properties of high-quality solutions in the solution regions being visited.
However, such knowledge has not been fully exploited by traditional MH algorithms.

That can be viewed as a disadvantage when compared to application-targeted CO algorithms,
in which exploiting the domain knowledge of the problem is generally preferable. Meanwhile,
real-world CO problems have a rich structure. With similar instances repeatedly solved
in many applications, statistical characteristics and patterns appear. This provides the
opportunity for Machine Learning (ML) to extract structural properties of the problem from
data and automatically produce learning-based MH strategies.

ML is a subfield of Artificial Intelligence (AI) that involves developing algorithms to learn
knowledge from data and make predictions on new problems. In recent years, the application of
ML techniques in CO became an emerging research area with quite a number of contributions
for different purposes. On the one hand, some research has been devoted to develop heuristics
for solving CO problems by ML, i.e., to perform “end-to-end learning” to directly generate
good solutions for a CO problem. On the other hand, ML has been applied in combination
with CO algorithms, where the learning based algorithms have the potential to achieve
better performances, either because the current strategy of performing some auxiliary tasks
is computationally expensive or because they are poorly understood from the mathematical
viewpoint. For a detailed review of “learn to optimize”, the interested reader is referred to
the survey [16].

Specifically for metaheuristics, ML techniques can be used to infer patterns from data
generated from MH processes. Integrating the extracted knowledge into the search strategies
can lead MHs to search the solution space more efficiently and significantly improve the
current performance. Recently, the application of ML techniques for MHs has attracted
increasing research interest and we refer the interested reader to the following surveys [17,116].

In this chapter, we focus on the integration of ML techniques into MHs and propose a

63

general learning-based framework for neighbor generation in MHs. We first define an efficient
neighborhood structure by applying a transformation to a selected subset of variables from the
current solution. Then, the problem is to determine how to select a subset of variables that
leads to a promising neighborhood of solutions containing a descent of the objective in the
solution space. By conducting a classification task, our method learns good variable selection
policies from both structural characteristics of the problem and high-quality solutions. We
will demonstrate the effectiveness of our approach on two applications: a Tabu Search scheme
for solving a Wireless Network Optimization problem and a Large Neighborhood Search
heuristic for solving MIPs.

The remainder of the chapter is organized as follows. Section 6.2 introduces some relevant
concepts. Section 6.3 delineates our proposed methodology. Section 6.4 and Section 6.5 present
two detailed and successful applications of the proposed approach. Section 6.6 summarizes
the paper and discusses future research.

6.2 Preliminaries

In this section, we introduce the necessary background and notation.

6.2.1 Combinatorial Optimization and metaheuristics

CO problems are a class of optimization problems with a set of decision variables and a
defined solution space. Without loss of generality, a CO problem can be formulated into a
constrained optimization problem as follows:

min c(x) (6.1)

s.t. g(x) ≤ b, (6.2)

xi ∈ {0, 1}, ∀i ∈ B, (6.3)

xj ∈ Z+, ∀j ∈ G, (6.4)

xk ≥ 0, ∀k ∈ C, (6.5)

where the index set V := {1, . . . , n} of decision variables is partitioned into B,G, C, which are
the index sets of binary, general integer and continuous variables, respectively.

Since many CO problems are NP-hard, determining optimal solutions by exact methods
requires in the worst case exponential time and might be intractable, especially for large-size

64

applications. In many practical applications where the CO problems are hard and complex,
practitioners are often interested in finding good-quality solutions in an “acceptable” amount of
computing time rather than solving the problem to optimality. Therefore, heuristic algorithms
are developed to compute high-quality solutions within a reasonable time.

Metaheuristics are general framework strategies for designing heuristics for solving CO
problems, and provide guidelines to integrate basic heuristic schemes such as local search
with high-level diversification strategies. A large part of metaheuristics are built on top of
a basic neighborhood search (NS) scheme, where NS is a local search procedure that starts
from an initial solution x and iteratively search for improving solutions by exploring a series
of solution neighborhoods. At each NS iteration, the solution neighborhood is defined by a
Generate(x) function. A basic template for NS-based metaheuristic is shown in Algorithm 5.

In general, the structure of the solution neighborhoods and how the neighborhoods are explored,
are designed according to the characteristics of the problem at hand. A neighborhood structure
is typically defined by a move or transformation operator that applies a local transformation
to the current solution and maps it to a subset of solutions. The resulting subset of solutions
defines the “neighborhood” of the original solution.

6.2.2 Representation learning for CO

In ML, there is a vast library of models for representing CO problems depending on the
format of input data of the CO task. For example, the model could be a linear function or
some non-linear Artificial Neural Networks (ANNs) with a set of parameters to be optimized.
In Deep Learning (DL), there are many types of neural networks and architectures available
for modeling CO problems. For instance, a Multilayer Perceptron (MLP) is the simplest
architecture of feedforward neural networks and can be used to model problems with fixed-size
input data; Graph Neural Networks (GNNs) are developed to process data that are naturally
representable with graphs; Recurrent Neural Networks (RNNs) can be applied to process CO
problems with sequential data.

In particular, due to the ubiquity of graph data, problems over graphs arise in numerous
application domains. Moreover, given the fact that the vast majority of CO problems have
a discrete nature, many of them are naturally described in graphs or can be modeled into
a graph structure. For instance, a network optimization problem can be naturally modeled
by a graph and a generic MIP instance can also be represented into a bipartite graph [27].
These graphs have inherent structural commonalities and patterns, and there is a potential to
exploit valuable graph features to learn patterns from data. Therefore, graph representation
learning with the application of various GNNs [18, 73, 74, 117] has recently emerged as a

65

Algorithm 5: NS-based metaheuristic
Input: x = x0
repeat

N(x)← Generate(x);
x′ ← argminx′∈N(x) f(x′)
if f(x′) < f(x)) then

x← x′;
end

until termination condition is reached;
return x

popular approach for studying CO with a machine learning perspective. Without loss of
generality, GNNs learn a graph embedding with vertex representations based on the input
features and the graph structure. In a nutshell, higher-level representations of a node are
obtained by kernel convolutions which leverage its local structure.

In the literature, there has been an effort to learn algorithms for solving specific CO problems
and many of them apply GNNs as the representation model. On the one hand, the first
attempted paradigm is “end-to-end” learning for generating a heuristic solution by a ML
model [20,41,43,101,118,119]. However, these methods are typically limited to specific CO
problems in which a heuristic solution can be easily constructed, and scaling to large-size
instances is an issue. On the other hand, since a wide range of constrained CO problems can
be formulated into a MIP model, there has also been increasing interest in learning decision
rules to improve MIP algorithms [27,28,30,92–94]. While it is shown that this direction has a
great potential to improve the state-of-the-art of MIP algorithms, convincing generalization
performances, and transfer learning across instances have not been fully tackled yet.

6.3 Methodology

In this section, we present our framework for learning to generate high-quality solution
neighbors. In Section 6.3.1 and 6.3.2, we will first define the solution neighborhood and an
efficient neighborhood structure by applying a transformation to a selected subset of variables
from the current solution. Then, in Section 6.3.3 the problem becomes to determine how to
select a subset of variables that leads to a promising solution neighborhood, i.e., one containing
a descent point of the objective in the solution space. By conducting a classification task, our
method learns promising variable selection policies from the structural characteristics of the
problem and high-quality solutions.

66

6.3.1 Solution space and neighborhood structure

We consider an instance p ∈ P of a CO problem, where X is the solution space, i.e., the set
of feasible solutions, and f : X → R is the objective function that maps a solution to its cost.

Definition 1. Let x be a solution of an instance p such that x ∈ X . The neighborhood N(x)
of solution x is a subset of the solution space X defined by applying some local transformations
to x, i.e., N(x) ⊆ X .

The definition of the neighborhood plays a critical role in the NS-based metaheuristics. It
specifies how the metaheuristic search moves from the current solution over the solution space
by an operator that applies a transformation of the current solution.

Definition 2. Neighbor generation is defined by the transformation operator ∆ : X → 2X ,
which is a function (or a set of functions) that maps a solution x to a set of solutions
N(x) ∈ X . If ∆ is defined with a set M of parameters, the operator can be defined by
∆ : X ×M → 2X . A neighborhood N(x) 7→ ∆(x,m) will be constructed by applying the
transformation operator with m ∈M to the current solution x.

The neighborhood structure is determined by the transformation operator, since the latter
specifies how the current solution is perturbed and transformed to other solutions in the
neighborhood. For instance, in a classical Traveling Salesman Problem (TSP) where a
set of n cities and the distances between each pair of cities are given, the task is to find
the shortest tour that visits each city exactly once. Given an arbitrary tour as the initial
solution, a simple transformation operator can be defined by firstly removing k edges from
the current tour and then adding k other edges to construct a new tour. This is known as the
“k-OPT” neighborhood. For a generic CO problem at hand, there are many ways of defining
a transformation operator. In general, two main aspects must be taken into consideration:
exploitation (or intensification) and exploration (or diversification) of the solution space.

On the one hand, the smaller the perturbation induced by the operator, the closer the
constructed neighborhood to the current solution. The metaheuristic search will thoroughly
exploit the local solution regions around the current solution. On the other hand, with more
perturbation or more randomness induced by the operator, the solution neighbors can be
defined far from the current solution. The heuristic search will have more chances to explore
more solution regions that have been less visited before. On the extreme case, when an
operator completely perturbs the solution or the solution is allowed to be fully changed, the
neighborhood could be expanded to the entire solution space, and the complexity of exploring
this neighborhood will be very high, as high as solving the original problem. Instead, the

67

heuristic search will become totally random when the operator perturbs a part of the solution
randomly. Moreover, the design of the transformation operator also strongly depends on the
type of problem and its representation. The effectiveness of an operator might not be the
same on different types of problems.

For neighbor generation, the main goal here is to design transformation operators with param-
eterizations that are able to construct high-quality solution neighborhoods (i.e., neighborhoods
containing high-quality solutions), and achieve a good trade-off between exploitation and
exploration of the solution space. As already mentioned, neither generating all possible
neighbors nor constructing neighbors randomly generally leads to satisfactory performance.
In order to guide the metaheuristic search to promising regions of the solution space, we will
present a general ML framework for neighbor generation.

6.3.2 Variable selection for structural neighbor generation

In this section, we will define a neighborhood structure in NS-based metaheuristics. As
mentioned before, we aim at generating promising solution neighbors by efficient transformation
operators.

In NS, improving solutions are typically found from solution neighbors defined by perturbing
only a part of the solution. In practice, in order to control the size of the neighborhood,
the ratio of perturbation is typically set to a relatively small value, resulting in improving
solutions that are only partially changed. Although this ratio can be increased by diversification
strategies when no improving solution is found from the last search, it is still very common
that the best solutions found by two consecutive local search iterations share a large part of
solution with same values. Nevertheless, this “partial evolution” of the local optima induces
a class of transformation operators for constructing structural neighborhoods, where the
transformation is defined on a subset of variables.

Definition 3. We define the “subset” transformation operator as ∆ : X × Y → 2X , where X
denotes the solution space, Vs is a set of variables of interest, and Y = {0, 1}|Vs| defines a
binary decision space for selecting a subset of variables from Vs. Consequently, N(x) 7→ ∆(x,y)
with y ∈ Y.

The definition of the subset transformation operator is highly dependent on the properties
of the problem. Let Vs = {j ∈ Vs : ȳj = 1} be the support of Vs. The variables in the
complement set Vs \ Vs will be fixed to the values in the current solution, i.e., only the values
of the variables in the binary support Vs are allowed to change.

When the elements of y are all set to 1, all the variables in Vs will be allowed to change. As

68

discussed before, generating solution neighbors over the entire variable set Vs might result
in a large local problem. On the other hand, the “partial evolution” of improving solutions
in local search also indicates that it is possible to define efficient transformation operators
only on a subset of variables. Moreover, common characteristics are often present in good
solutions in many applications. For instance, in a classical TSP problem, the two cites that
are far from each other are typically disconnected in good solutions, whereas the cites close
to each other have a higher probability of being connected in a good solution. Hence, ML
techniques can be employed to learn structural information from high-quality solutions and
select a subset of variables that has a high probability of defining a solution neighborhood
that contains a descent point of the objective in the solution space.

6.3.3 Learning a variable selection policy for structural neighbor generation

Given an instance of a generic CO problem with solution x ∈ X , we denote its current
representation as s ∈ S, where S is the space of representations of the problem and consists
of P × X and P denotes the parameter space of the CO problem. In order to generate a
structural solution neighborhood with the subset transformation operator introduced in the
previous section, an instantiation of Y is required to select a subset of variables from Vs.
Hence, a variable selection policy π for selecting y ∈ Y can be defined by

π : S −→ P(Y) (6.6)

s 7−→ π(s), (6.7)

where P(Y) denotes the set of all probability distributions over Y .

Now the question is:

How to design a variable selection policy with respect to the instances of interest
such that the resulting neighbor generation process is able to produce high-quality
solution neighbors?

As mentioned before, the high-quality solutions found during the metaheuristic search often
share common characteristics and patterns, and more importantly, many improved solutions in
the neighborhood often share a part of the variables with the same values. Hence, we propose
a general learning-based framework to extract these characteristics from data, and exploit
the learned knowledge to guide the metaheuristic search towards compact and high-quality
solution regions. Specifically, the framework learns a variable selection policy for neighbor

69

generation and the high-quality neighborhood structure will then be generated by selecting
promising variables, the values of which are allowed to be changed from the current solution.

The pipeline of the framework consists of three blocks: data generation, machine learning,
neighbor generation design. The framework is depicted in Figure 6.1.

Figure 6.1 A learning-based framework for neighbor generation.

In the following, we will instantiate the learning problem for variable selection as a classification
problem and train a variable selection policy through supervised learning. Within our method,
the solution neighbors in metaheuristic search are generated based on our trained model.

Data generation

We aim to learn a policy π that maps the features s of a problem instance, to the labels y∗,
the binary classification decisions on the variables, for selecting the best subset of variables
that leads to a successful change of the current solution. However, the label y∗ is unknown,
and we do not have any existing method to compute the exact y∗. To estimate labels, we
first apply a predefined expert algorithm for exploring improving subsets of variables in the
predefined neighborhood, and take the best subset to compute y∗.

Training the variable selection policy

Given a generated training data set Dtrain = {(s(j)
1:Tj ,y

∗(j)
1:Tj))}

M
j=1 of M instances (j = 1, . . . ,M)

of a CO problem and the corresponding metaheuristic search trajectories (composed of Tj
steps), the parameters θ∗ of model πθ∗ can be obtained by solving the following classification
problem:

θ∗ = argmin
θ∈Θ

M∑
j=1

Tj∑
i=1
L
(
πθ(s(j)

i),y∗(j)i

)
, (6.8)

where {s(j)
i }

Tj
i=1 are the states of the jth training CO instances, {y∗(j)i }

Tj
i=1 are the corresponding

labels in a trajectory of Tj steps, and L
(
πθ(s(j)

i),y∗(j)i

)
denotes the loss function and will be

70

defined according to the CO application (see more details in Section 6.4.3, 6.5.2).

Modeling Given the fact that CO problems generally have a discrete nature and many of
them can be represented by a graph structure, in the following, we will only introduce the
GNN architectures [73,74,117]. Indeed, GNNs will be used in the two CO applications for
validating our approach.

More precisely, if the solution state of a CO instance is modeled by a graph, a GNN can be
implemented as the representation model. First of all, GNNs are size-and-order invariant to
input data, i.e., they can process graphs of arbitrary size and topology, and the graph model
is invariant to the ordering of the input elements, which brings a critical advantage compared
to other neural networks such as RNNs. Another appealing property of GNNs is that they
can exploit the sparsity of the graph, which makes GNNs an efficient model for embedding
CO problems that are typically very sparse [27].

The basic architecture of GNNs consists of 3 modules: the input module, the convolution
module, and the output module. In the input module/layer, the state s of the problem is fed
into the GNN model. The input module embeds the features of s. The convolution module
propagates the features of the graph components by graph convolution layers. In particular,
the architecture of the graph convolution layers used in this paper applies the message passing
operator, defined as

v(h)
i = f

(h)
θ

v(h−1)
i ,

∑
j∈N (i)

g
(h)
φ

(
v(h−1)
i ,v(h−1)

j , ej,i
) , (6.9)

where v(h−1)
i ∈ Rd denotes the feature vector of node i from layer (h− 1), ej,i ∈ Rm denotes

the feature vector of edge (j, i) from node j to node i, and f (h)
θ and g(h)

φ denote the embedding
functions in layer h and are typically represented by neural networks, for example, MLP
architectures.

Neighbor generation design

After training the classification model for variable selection, the next step is to apply the
pretrained model for neighbor generation. It is important to note that, the trained classification
model itself is probabilistic, and it maps the current solution state of an instance into a
probability distribution in the binary decision space for each variable. One needs to select a
strategy to make binary decisions on the variables.

The most straightforward way is to apply a greedy strategy. The decision is made by always

71

picking the class with a higher probability and the resulting strategy is deterministic and
greedy. Another way is to sample decisions from the distribution, and hence the strategy is
probabilistic. In general, the greedy strategy only selects the deterministic subset of variables
and exploits the learned knowledge from training data. Instead, the probabilistic strategy
selects from all the possible neighborhoods with a probability preference defined by the
classification model, thus results in a better exploration of the less visited solution regions.
There is no guarantee that one strategy is always better than the other. In practice, they can
be combined. For each task, one should search for a good trade-off between exploitation of
the local solution regions and exploration of the whole solution space.

Finally, the template for a NS-based metaheuristic guided by the variable selection policy π is
given in Algorithm 6. The pretrained variable selection policy is integrated into the neighbor
generation function to lead the heuristic search to promising solution regions.

6.4 Application 1: Tabu Search in Wireless Network Optimization

In this section, we apply our framework to the first case study, a Wireless Network Optimization
(WNO) problem. We will demonstrate the effectiveness of our learning-based framework by
generating solution neighbors in a Tabu Search scheme.

6.4.1 The tactical WNO problem

When telecommunications are necessary but standard networks are unavailable, as in the
case of disaster relief operations, small temporary wireless networks, called tactical networks,
are set up. These typically connect between 10 and 50 nodes (the key locations that must
communicate) in a single network. The design of such networks can be optimized such that
the network’s weakest link is maximized. This, in turn, guarantees that all nodes can receive
important information in a timely manner.

Tactical wireless network design is a complex non-linear combinatorial optimization problem
that includes three sub-problems: the design of the topology (P0), the configuration of the
network (P1), and the configuration of the antennas (P2). These sub-problems are nested
such that P1 is defined given a topology, and P2 is defined given a topology and a network
configuration, namely

max
topology t∈T

︸ ︷︷ ︸
P0

max
network

configuration︸ ︷︷ ︸
P1

max
antenna

configurations
o.

︸ ︷︷ ︸
P2

where T is the space of valid topologies and o is the objective function of the problem. The

72

Algorithm 6: NS-based metaheuristic guided by the variable selection policy
Input: x = x0
repeat

N(x)← Generate(x ; π);
x′ ← argminx′∈N(x) f(x′);
if f(x′) < f(x)) then

x← x′;
end

until termination condition is reached;
return x

problem has been proposed by an industrial partner and the modeling of the full tactical
wireless network design optimization problem can be found in [120].

Given a set of nodes V , the topology t ∈ T can be any undirected tree (V,E) that describes
how information travels in the network between every pair of nodes. Each edge in the topology
represents a direct connection between two antennas in the network. A network configuration
selects a root node (also known as a master hub or gateway) and assigns waveforms and
channels/frequencies to the edges. The waveforms are the communication protocols that
depend on the local structure of the edges and the channels and frequencies characterize their
radio signals. Together with the antenna configurations, they determine which edges interfere
with each other. An antenna configuration requires to define an angular alignment with
respect to the azimuth as well as a set of activated beams, in the case of multi-beam antennas.
Given all these properties, the radio signals can be physically modeled by also taking into
account the path losses and fade margins of the terrain between every pair of nodes. The data
transmission speed (called direct throughput) TPuv for all the edges [u, v] ∈ E can then be
computed and, depending on the traffic scenario X and its distribution of congestion nXuv in
the edges, their effective throughputs TPuv/nXuv can also be computed. For the chosen traffic
scenarios, the congestion of any directed edge (u, v) can be computed as a function of the
number of descendants descv defined by the root node selected in the network configuration.

To evaluate a single topology t ∈ T , problem P1, which is itself a complex combinatorial
optimization problem, must be solved, and solving it requires solving P2 many times as well. In
turn, problem P2 can be efficiently solved by a simple geometrically-based heuristic. Solving P1

to optimality every time that a topology needs to be evaluated is too costly, especially in a NS
context. It can be approximated in such a way that it can be solved efficiently by exhaustive
enumeration. We denote the resulting approximated objective function by f(t). However,
this approximation does not provide a feasible network because it does not define a proper
frequency assignment. Alternatively, P1 can also be tackled directly by considering greedy

73

frequency assignments which do provide feasible networks, although this takes considerably
more time. We denote this final objective function by f(t).

Given such procedures for solving P1 and P2, P0, given by

max
t∈T

f(t),

can be solved with a NS-based MH in the space of topologies, where local directions of descent
are computed with f(t).

6.4.2 Topology Tabu Search

Neighborhoods The neighborhood structure dictates how the local search can move in
the space of solutions. Our neighborhood N is the edge-swap neighborhood. To construct the
neighbor topologies, for each tree edge e ∈ E in the current topology, we remove it, which
disconnects the topology into two connected components, and we consider every possible way
of reconnecting these two connected components with another edge.

An example of neighbor topologies is depicted in Figure 6.2, where the edges in blue were
“swapped”.

↔↔

Figure 6.2 Neighbor Topologies.

Tabu Search Tabu Search (TS) is a MH that explores the solution space by temporarily
not allowing to move in the direction from which it came. The only case in which this rule
does not apply is when moving in such a direction improves the incumbent solution. This is
done by using tabu lists that record the opposites of the last few moves, which then become
tabu for the next few moves.

For our edge-swap neighborhood, two tabu lists are necessary: one for the dropped edges
and one for the added edges. Therefore, a move, consisting of a dropped edge and an added
edge, is tabu if either edges are in the corresponding tabu list. When a move is actually made
to the current topology, the newly dropped edge is added to the tabu add list (it cannot be
added again for the next few moves) and the newly added edge is added to the tabu drop list

74

(it can not be dropped again for the next few moves).

The lengths of the tabu lists determine for how many moves the dropped/added edges have
tabu status. A reasonable length for the tabu drop list is

⌊1
2
√
|V | − 1

⌉
,

where bxe means x rounded to the nearest integer, and a reasonable length for the tabu add
list is √ |V | (|V | − 1)

2

 .
The pseudocode for the resulting topology Tabu Search metaheuristic is given in Algorithm 7.

6.4.3 Learning to generate edge-swap neighbors for TS

As a NS-based MH, TS can be roughly described as a NS scheme plus a “tabu” strategy for
preventing cycling by keeping a short-term memory of visited solutions stored in the tabu list.
As discussed above, the topology design for the wireless network optimization problem can be
solved by applying a topology TS algorithm (Algorithm 7). In this TS scheme, a solution
neighbor of the current solution is constructed by applying an edge-swap move operator.
Specifically, the move operator consists of two steps: an edge will be dropped from the current
topology (by enforcing the value of the dropped edge variable from 1 to 0) and another edge
will be added to complete a new topology (by enforcing the value of the added edge variable
from 0 to 1). As a result, the edge-swap neighborhood consists of all the edge-swap moves.

In Algorithm 7, the neighborhood search at each TS iteration explores the entire edge-swap
neighborhood by enumerating all the possible moves. Although the algorithm is guaranteed to
find a local optimal solution by exploiting the entire edge-swap neighborhood, it is generally
slow in terms of computing time since a complex subproblem (P1) has to be solved to evaluate
each “edge-swap” move, and another subproblem (P2) has to be solved to evaluate each
solution in P1.

A potential improvement of the enumeration strategy is to apply a random sampling strategy
to sample from droppable edge variables and addable edge variables, thus evaluating only
a subset of possible moves. The random strategy generally explores a larger solution space
than the enumeration strategy because, if the overall amount of time for the algorithm is
fixed, it is able to do more iterations. However, random sampling might not be efficient
enough for guiding the search towards high-quality solution neighbors. To achieve a better
trade-off between exploitation (looking inside a neighborhood) and exploration (exploring

75

Algorithm 7: P0 Topology Tabu Search
Input: t← t0, t∗ ← t0, t∗ ← t0, L← ([], [])
repeat

N(t)← Generate(t);
t′ ∈ arg max

t′∈N(t)
f(t′)

s.t. x′ /∈ L or f(t′) > f(t∗)
;

if f(t′) > f(t∗) then
t
∗ ← t′;

end
Make move t← t′ and add the opposite move to L;
if f(t) > f(t∗) then

t∗ ← t;
end

until termination condition is reached;
return t∗

more neighborhoods), we propose to exploit structural characteristics from improving moves,
and learn good variable selection policies for selecting “drop” edge variables and “add” edge
variables to generate size-reduced, but high-quality edge-swap neighborhoods. The scheme
for variable selection consists of two components: a classifier for selecting the “drop” edge
variable and another classifier for selecting the “add” edge classifier. The scheme is depicted
in Figure 6.3.

Figure 6.3 A learning-based framework for generating “edge-swap" neighbors.

Learning to drop edges

Let S denote the set of states of the current topology for an instance, and action Ad = {0, 1}|I|

denotes the set of possible binary decisions for the droppable edge variables, where I is the

76

set of edges in the current topology. We aim to learn a “drop-edge” classifier πd : S → Ad
that maps s, the state of the current topology, to the label a∗d, the binary classifications
for selecting a subset of droppable edge variables that leads to a promising edge-swap move
neighborhood. However, a∗d is unknown, and we have to call the enumeration strategy to
compute it. All the droppable edges that induce at least one improving edge-swap move will
be included into the subset a∗d.

Given a training set Dtrain = {(s(j)
1:Tj ,a

∗(j)
d1:Tj))}

M
j=1 of M instances, the classifier πdθ with

parameters θ, the best classifier on Dtrain can be obtained by solving the following problem:

θ∗ = argmin
θ∈Θ

M∑
j=1

Tj∑
i=1
L
(
πdθ(s

(j)
i),a∗(j)di

)
, (6.10)

where {s(j)
i }

Tj
i=1 are the states of the jth training WNO instance, {a∗(j)di }

Tj
i=1 are the correspond-

ing labels in a trajectory of Tj steps, and L
(
πdθ(s

(j)
i),a∗(j)di

)
defines the loss function.

Feature design Since the topology naturally has a graph structure, we represent the state
s of the current topology into a graph representation (V,E). Given a WNO instance, let
n be the number of nodes with d features for each node. The matrix for the node features
is denoted by V ∈ Rn×d. Let e be the number of features for each edge, the tensor of edge
features in the graph can be denoted by E ∈ Rn×n×e. The features used for learning to drop
edges in the topology graph are listed in Table 6.11.

GNN model Again, due to intrinsic graph structure, it is natural to apply GNNs to model
the drop-edge classifier. Our GNN architecture consists of 3 modules: the input module, the
convolution module and the output module. The output module embeds the hidden features
extracted from the convolution module and maps the embedding of each edge in the current
topology into a two-neuron output.

Loss function From the data generation process, we observed that class distribution is
unbalanced and only less than 50% of droppable edges from the current topology lead to an
improving move, the remaining part of the edges are non-improving. Since the objective of
the learning is to select as many “improving” edges to be dropped as possible, it is reasonable
to put more effort in improving the predictions on the minority class. Therefore, we apply a
weighted Cross Entropy (WCE) loss to train the model. Specifically, we add a penalty factor
to impose a larger cost for making classification mistakes on the “improving” class during

1More detailed definitions of the listed features can be found in [120].

77

Table 6.1 Description of the features in the “droppable” graph (V,E).

Tensor Feature Description
V coordinates X and Y coordinates in km

desc_v normalized descv = ((|descv| − 1)/(|V | − 1))
E pass_loss path loss in dB

fade_margin fade margin in dB
waveform binary (point-to-point or point-to-multipoint)
channel frequency channel
n_beams number of beams used by the antenna of the predecessor
tp_uv_a throughput scenario A
tp_uv_b throughput scenario B
tp_uv_c throughput scenario C
tp_uv_m throughput by mixed scenarios of A, B, C
edge indices edge indices in current topology

training. Formally, the WCE loss is defined as

Lwce (â,a∗) = 1
|I|

|I|∑
i=1

(λa∗i log âi + (1− λ)(1− a∗i) log(1− âi)) , (6.11)

where â denotes the prediction of probability given by the policy model, a∗ denote the labels,
I is the set of droppable edges in the current topology, λ ∈ [0.5, 1] is the penalty parameter.

Learning to add edges

After dropping an edge, the next step is to select an edge to be added from all addable edges.
Let S denote the set of states of the “addable” graph after dropping an edge. The “addable”
graph we consider consists of all the nodes, the partial topology after dropping an edge, and
plus the resulting add-able edges. Then, Aa = {0, 1}|I| denotes the set of binary decisions for
addable edges, where I is the set of addable edges. We aim to learn an “add-edge” classifier
πa : S → Aa that maps s, the state of the current topology, to a∗a, the binary decisions for
selecting a subset of addable edges that lead to an improving edge-swap move. In order to
compute a∗a, we call the enumeration strategy to evaluate all the addable edges and the edges
that lead to an improving edge-swap move will be included into the subset a∗a.

78

Given a training set Dtrain = {(s(j)
1:Tj ,a

∗(j)
a1:Tj))}

M
j=1 of M instances, the parameters θ∗ of the

best classifier πaθ∗ can be obtained by solving the following problem:

θ∗ = argmin
θ∈Θ

M∑
j=1

Tj∑
i=1
L
(
πaθ (s

(j)
i),a∗(j)ai

)
, (6.12)

where {s(j)
i }

Tj
i=1 are the states of the jth training WNO instance, {a∗(j)ai }

Tj
i=1 are the correspond-

ing labels in a trajectory of Tj steps, and L
(
πaθ (s

(j)
i),a∗(j)ai

)
defines the loss function.

Feature design As modeling the graph for dropping edges, we model the state s of the
state of the “addable” graph (V,E) into a graph representation. Given an instance, let n be
the number of nodes with d features for each node. The matrix for the node features can be
denoted by V ∈ Rn×d. Let e be the number of features for each edge in the graph (including
the edges in the current topology and all the addable edges), the tensor of edge features in
the graph can be denoted by E ∈ Rn×n×e.

The features used for learning to add edges in the topology graph are listed in Table 6.2.

Table 6.2 Description of the features in the “addable” graph (V,E).

Tensor Feature Description
V coordinates X and Y coordinates in km

desc_v normalized |desc_v| = ((|desc_v| − 1)/(|V | − 1))
E edge_type binary indicator of edges in current topology or addable edges

pass_loss path loss in dB
fade_margin fade margin in dB
edge indices edge indices in current topology

GNN model As for the drop-edge classifier, we also apply GNNs to model the add-edge
classifier for selecting the edge to be added. The architecture is the same as the drop-edge
classifier.

Loss function The class distribution for addable edges is even more unbalanced than for
the droppable case. Actually, only less than 10% of addable edges lead to an improving move.
Therefore, we applied the WCE loss to train the model with a larger weight factor assigned
to the minority class.

79

6.4.4 Numerical experiments

This section contains the experimental results for the WNO application. After presenting the
data collection, we discuss the experimental setting and the evaluation metrics, respectively.
Finally, the results are reported and discussed.

Data collection

Problem instance generation For the numerical experiments, as suggested by our indus-
trial partner, the instances were generated in the following way. First, independent coordinates
for the explicit nodes v ∈ V are iteratively generated using

(xv, yv) =
(√

U0 cos(2πU1),
√
U2 sin(2πU3)

)
(6.13)

where U0, U1, U2, U3 ∼ U(0, 1) are independent and identically distributed (IID). These
coordinates are then scaled to match the average distance ratio of 10 km. This coordinate
generation is repeated until the minimum distance is above 2 km and the maximum distance
is below 150 km. Once this is achieved, for each possible edge [u, v] with u, v ∈ V , a random
uniform variable is sampled for the path loss and another is sampled for the fade margin,
both according to empirical cumulative distribution functions derived from North-American
datasets.

We generated small instances of 10 nodes, as well as larger instances of 30 nodes. For these
instances, the TS MH is initialized with a minimum spanning tree with a specific distance
based on the path losses and fade margins of the terrain between every pair of nodes [120].

Training data generation To collect data for training the drop-edge and add-edge classi-
fiers, we call Algorithm 7 with the enumeration strategy to evaluate all possible moves in the
edge-swap neighborhood, and compute labels according to the learning task. In particular,
given a WNO instance, and an initialization of the topology, we execute Algorithm 7 as
follows: for each TS iteration, we first call the TS algorithm with enumeration strategy to
evaluate possible edge-swap moves. For each droppable edge, we evaluate all the addable
edges. If the best resulting edge-swap move within the neighborhood of the droppable edge
leads to a better approximated pseudo-objective, then the droppable edge is labeled as
“improving”; otherwise, it is labeled as “non-improving”. Given the dropped edge, the label
of each addable edge is also decided by the quality of the resulting edge-swap move. If the
move leads to a better approximated pseudo-objective, then the addable edge within the
neigborhood of the corresponding dropped edge is labeled as “improving”; otherwise, it is

80

labeled as “non-improving”. The features for each “droppable” graph and “addable” graph
are also collected accordingly.

TS guided by GNNs A new TS algorithm, topology TS with GNNs (TS-GNN), is obtained
when the GNN classifiers are applied to generate edge-swap neighborhoods in the topology
Tabu Search. The pseudocode of the algorithm is outlined in Algorithm 8.

Experimental setting

Training We train the drop-edge policy and add-edge policy on the collected training
dataset separately. The training dataset is generated from 30 small instances of 10 nodes.
The collected data is split into training (70%), validation (10%), and test (20%) sets.

Evaluation We evaluated the compared algorithms listed in Section 6.4.4 on two evaluation
sets. The first evaluation set contains 50 small instances of 10 nodes. In addition, to evaluate
the generalization performance of our approach on larger instances, we also evaluate the
model trained on small instances on a large evaluation set with 5 instances of 30 nodes.

Experimental environment Our code is written in Python 3.9 and we use Pytorch
1.60 [112], Pytorch Geometric 1.7.0 [113] for implementing and training the GNNs.

Evaluation metrics

We use the primal integral [84] to measure the performance of the compared algorithms. The
primal integral was originally proposed to measure the performance of primal heuristics for
solving mixed-integer programs. The metric takes into account both the quality of solutions
and the computing time spent to find those solutions during the solving process. To define the
primal integral, we first consider a primal gap function p(t) as a function of time, defined as

p(t) =

 1, if no incumbent until time t,
γ̄(x̃(t)), otherwise,

where x̃(t) is the incumbent solution at time t, and γ̄(·) ∈ [0, 1] is the scaled primal gap

γ̄(x̃) =

0, if f(x̃opt) = f(x̃) = 0,
1, if f(x̃opt) · f(x̃) < 0,
|f(x̃opt)−f(x̃)|

max{|f(x̃opt)|, |f(x̃)|} , otherwise,

81

Algorithm 8: P0 Topology TS with GNNs
Input: t← t0, t∗ ← t0, t∗ ← t0, L ← ([], [])
repeat

N(t)← Generate(t ; πd, πa);
t′ ∈ arg max

t′∈N(t)
f(t′)

s.t. x′ /∈ L or f(t′) > f(t∗)
;

if f(t′) > f(t∗) then
t
∗ ← t′;

end
Make move t← t′ and add the opposite move to L;
if f(t) > f(t∗) then

t∗ ← t;
end

until termination condition is reached;
return t∗

where f(x̃) denotes the objective value given solution x̃, and x̃opt is either the optimal solution
or the best one known for the instance.

Let tmax > 0 be the time limit for executing the heuristic. The primal integral measure is
then defined as

P (tmax) =
∫ tmax

0
p(t) dt.

Results

In order to validate our approach, we compared multiple versions of our TS-GNN algorithm
with the baselines. Specifically, we compare the following algorithms:

• TS with No-Classifier, the baseline TS algorithm of topology TS with an enumeration
strategy that evaluates all the possible edge-swap neighbors;

• TS with Random-Add-Classifier, the baseline TS algorithm with a sampling strategy
that randomly selects edges to be added for generating edge-swap neighbors;

• TS with Random-Add-Drop-Classifier, the baseline TS algorithm with a sampling
strategy that randomly selects both the edges to be dropped and the edges to be added
for generating edge-swap neighbors;

• TS with GNN-Add-Classifier, the TS algorithm plus the GNN classifier for selecting the
edges to be added for generating edge-swap neighbors;

82

• TS with GNN-Drop-Classifier, the TS algorithm plus the GNN classifier for selecting
the edges to be dropped for generating edge-swap neighbors;

• TS with GNN-Add-Drop-Classifier, the TS algorithm plus the GNN classifiers both for
selecting the edges to be dropped and for selecting the edges to be added.

We evaluated the performance of all the compared algorithms on both small instances with 10
nodes and larger instances with 30 nodes. For each test set, we computed the average primal
integral defined in Section 6.4.4 as well as the average number of iterations. The primal
integral is our main performance metric for evaluating metaheuristics and it measures the
speed of convergence of the objective over the entire search time (the smaller, the better). In
addition, the number of iterations counts the number of solution neighborhoods explored by
the algorithm. With the same running time, it reflects how much exploration is guaranteed by
modifications made to the basic TS scheme. Indeed, larger number of iterations for the same
amount of time indicates a faster moving between solution neighborhoods and is generally
preferable, although the outcome of the search still depends on the quality of the generated
neighborhoods. The results are shown in Figures 6.5 and 6.7 for instances with 10 and 30
nodes, respectively.

Figure 6.5 Evolution of the average primal integral and the average number of iterations over
time on evaluation datasets for the instances of 10 nodes.

From these results, we observe that all our ML-based TS algorithms with GNN classifiers
outperform the original TS baseline with no classifier. The No-Classifier baseline employs an
enumeration strategy that evaluates all the possible moves in the edge-swap neighborhood.
Although it is guaranteed to find the best move at each TS iteration, its more extensive
exploitation results in the lowest number of iterations over all the compared algorithms.

83

Figure 6.7 Evolution of the average primal integral and the average number of iterations over
time on evaluation datasets for the instances of 30 nodes.

For small instances of 10 nodes, the performance of No-Classifier is still decent, as the
solution space of these instances is small for exploration. However, it gives the worst results
compared to all other algorithms on larger instances because the low number of iterations
(slow exploitation) and the resulting lack of exploration becomes the main bottleneck of the
algorithm.

The algorithms with random classifiers, on the contrary, are more efficient in terms of number
of iterations. The Random-Add-Classifier algorithm explores a random subset of addable
edges in the edge-swap neighborhood and the Random Add-Drop Classifier generates an
even smaller neighborhood by sampling from both droppable and addable edges. On small
instances with 10 nodes, Random-Add-Classifier achieves a better performance with a lower
primal integral although the Random-Add-Drop-Classifier algorithm has a larger number of
iterations. This is because, for small instances, the quality of the solutions in the sampled
neighborhoods is more important than the number of iterations. Whereas for larger instances
of 30 nodes, Random-Add-Drop-Classifier performs better than Random-Add-Classifier since
the sampling efficiency becomes more important for exploring larger edge-swap neighborhoods.

On the one hand, the No-Classifier baseline can fully exploit each edge-swap neighborhood
(exploitation) but has a low efficiency in terms of number of iterations. The baselines with
random classifiers are more effective in increasing the number of iterations by reducing the
size of each generated neighborhood (exploration), however, the quality of the generated
neighborhood is restricted by its sampling efficiency. On the other hand, our complete
ML-based algorithm with GNN-Drop-Add-Classifier achieves a smaller primal integral than
all the baseline algorithms with a reasonably large number of iterations. Moreover, as the size

84

of instances increases, the GNN-Drop-Add-Classifier algorithm becomes more competitive
and significantly outperforms all the compared algorithms. These results demonstrate that
our approach offers a good trade-off in both exploration and exploitation of the solution space.
Since the GNN classifiers are only trained with data generated from small instances, the
results also show that our method generalizes well on larger instances.

6.5 Application 2: Large Neighborhood Search in MIP

In this section, we present how to apply our methodology to another application: a Large
Neighborhood Search (LNS) heuristic for solving MIPs.

6.5.1 Large Neighborhood Search

LNS is a refinement heuristic, i.e., given an initial solution, it is applied to improve the
solution by exploring a “large” solution neighborhood. There are several ways of describing a
LNS scheme. We adopt the following simple one based of 3 building blocks:

• destroy function d: breaks a part of the current solution x and produces a solution
neighborhood N(x);

• repair function r: rebuilds the destroyed solution, typically by solving a sub-MIP defined
by N(x);2

• accept function a: decides whether the new solution should be accepted or rejected.

Given as an input a feasible solution x̄, it searches the best feasible solution in the neighborhood
of x̄ (the size of the neighborhood is a parameter). Once the best feasible solution x̃ in the
neighborhood is found, the procedure updates x̄ = x̃. The method keeps searching for the
best feasible solution in the new neighborhood until a stopping criterion is reached. The
pseudocode of the scheme is given in Algorithm 9.

6.5.2 Learning to generate neighbors for LNS

In a LNS heuristic, the solution neighborhoods are generated by the destroy function that
selects a subset of integer variables to be “destroyed”, thus freed for neighbor generation. The
remaining integer variables will be fixed to their values in the current solution. The classic
LNS algorithm applies a randomized sampling strategy or hand-crafted rules for defining the

2In some cases, the repaired solution can be worse than the destroyed solution.

85

Algorithm 9: The LNS heuristic
Input: x = x0; xb = x0
repeat

x′ = r(d(x));
if a(x′, x) then

x = x′;
end
if f(x′) < f(x)) then

x = x′;
end

until termination condition is reached;
return xb

destroy function (see, e.g., [121]). However, our observation shows that only a small subset of
variables have the potential to improve the current solution by changing their values and such
a subset is strongly dependent to the structure of the problem. Hence, in order to optimize
the performance of LNS, we aim at learning new variable selection strategies to select a subset
of variables to be freed. In particular, we investigate the dependencies between the state of
the problem, defined by a set of both static and dynamic features collected from the LNS
procedure (e.g., context of the problem, incumbent solution) and the binary decisions about
integer variables to be either freed or fixed.

Next, we will employ GNNs as the destroy policy and train GNNs through a classification
task. Within our method, the LNS solution neighbors are generated based on our pretrained
GNNs.

Let S denote the set of states of LNS for MIPs, and A = {0, 1}|I| denote all candidate subsets
of integer variables to be destroyed, where I is the set of integer variables. We aim to learn
a destroy function π : S → A that maps s, the features of a MIP instance, to the label a∗,
the action of best subset of variables to be destroyed. To estimate a∗, we first apply a local
branching heuristic [85] to search for improving subsets of variables and take the best found
subset as the label.

Given a training set Dtrain = {(s(j)
1:Tj ,a

∗(j)
1:Tj))}

M
j=1 of M MIP instances and corresponding expert

trajectories, the parameters θ∗ of the best policy πθ∗ can be obtained by solving the following
classification problem:

θ∗ = argmin
θ∈Θ

M∑
j=1

Tj∑
i=1
L
(
πθ(s(j)

i),a∗(j)i

)
, (6.14)

where {s(j)
i }

Tj
i=1 are the states of the jth MIP instance, {a∗(j)i }

Tj
i=1 are the corresponding labels

in a trajectory of Tj steps, and L
(
πθ(s(j)

i),a∗(j)i

)
defines the loss function.

86

Feature design We represent the state s as a bipartite graph (C,E,V) [27]. The variables
of the MIP, with V ∈ Rn×d being their feature matrix, are represented on one side of the
graph. On the other side are nodes corresponding to the constraints with C ∈ Rm×q being
their feature matrix. A constraint node i and a variable node j are connected by an edge
(i, j) if variable i appears in constraint j in the MIP model. Finally, E ∈ Rm×n×e denotes the
tensor of edge features, with e being the number of features for each edge. The features in
the bipartite graph are listed in Table 6.3.

Table 6.3 Description of the features in the bipartite graph s = (C,E,V).

Tensor Feature Description
C bias Bias value, normalized with constraint coefficients.
E coef Constraint coefficient, normalized per constraint.
V sol_val Solution value.

GNN model Given that the state of an MIP can be represented as a bipartite graph, we
propose to use GNNs to parameterize the model for the destroy policy. Our GNN architecture
also consists of 3 modules: the input module, the convolution module, and the output module.
For a bipartite graph, a convolution layer is decomposed into two half-layers: one half-layer
propagates messages from variable nodes to constraint nodes through edges, and the other
one propagates messages from constraint nodes to variable nodes. We refer the reader to [27]
for more details. The output module embeds the features extracted from the convolution
module for the prediction of each variable, which maps the graph representation embedding
of each variable into a two-neuron output.

Loss function The class distribution is highly unbalanced, e.g., for the generated training
dataset, only less than 10% variables from the current solution are improving variables. In
order to address the imbalanced distribution, we applied the WCE loss and focal loss [122] to
train the model.

LNS guided by GNNs Our refined LNS heuristic, Large Neighborhood Search with GNNs
(LNS-GNN), is obtained when the GNN model is employed as the destroy policy in LNS. The
pseudocode of the algorithm is given by Algorithm 10.

87

Algorithm 10: The LNS-GNN heuristic
Input: x = x0; xb = x0
repeat

x′ = r(d(x ; π));
if (x′, x) then

x = x′;
end
if f(x′) < f(x)) then

x = x′;
end

until termination condition is reached;
return xb

6.5.3 Numerical experiments

In this section, we present the experimental results for the ML-based LNS. As for the WNO
application, we present the data collection, discuss the experimental setting and and the
results. The evaluation metrics remain the same as presented in Section 6.4.4.

Data collection

MIP benchmark We evaluate on 126 binary MIP instances from MIPLIB 2017 [111] for
training and evaluation. For each instance, an initial feasible solution is required to start
the LNS heuristic. We use an intermediate solution found by SCIP [105], typically the best
solution obtained by SCIP at the end of the root node computation, i.e., before branching.

Training data generation To collect data for the classification task, we use an expert
policy, Local Branching (LB) [85] to search over all the possible neighborhoods within the
LNS search space, and return the best found solution to compute the labels of subsets of
variables to be freed. In particular, given a MIP instance, an initial incumbent x̄, and a time
limit for the LNS, we execute the LNS search as follows: for each LNS iteration, we first call
the LB expert to explore all the LNS solution neighborhoods with a LB time limit. The best
solution x∗ found by LB is used to compare with x̄. As a result, the subset of variables with
changed values are labeled as improving variables and are used to define the LNS subproblem.
In order to collect multiple training data points on the same instance, a LNS trajectory is
generated by recursively producing the next LNS subproblem with the labels and solving the
LNS subproblem. The LNS subproblem is solved by calling the MIP solver and the incumbent
solution is updated for the next LNS iteration.

88

At each LNS iteration, the state s consists of context features of the MIP model and the
incumbent solution. The state s together with the label a∗ define a valid data point (s, a∗).

Experimental setting

Training In the classification task for producing a good destroy policy, the GNN model
learns from the features of the MIP formulation and its incumbent solution. We train the
GNNs on training data generated from 29 binary MIP instances from the MIPLIB dataset.

Evaluation We evaluated the compared algorithms on an evaluation set of the remaining
97 binary MIP instances from the MIPLIB dataset.

Experiment environment Our code is written in Python 3.7 and we use Pytorch 1.60 [112],
Pytorch Geometric 1.7.0 [113], PySCIPOpt 3.1.1 [114], SCIP 7.01 [105] for developing our
models and solving MIPs.

Results

We compare our LNS-GNN algorithm with the following baselines:

• LNS-Random, the LNS baseline algorithm;

• LB, the LB heuristic baseline that explores all the possible LNS neighborhoods within
the same distance.

For measuring the heuristic performance of the compared algorithms, we also compute the
average primal integral defined in Section 6.4.4. We ran the listed algorithms for 60 seconds
on each instance. The results are shown in Figure 6.8.

89

Figure 6.8 Evaluation results on MIPLIB binary dataset.

From the results in Figure 6.8, we can see that the primal integral of the LB baseline is the
largest over the entire solving time, which indicates that exploring all the possible LNS solution
neighborhoods within the same Hamming distance to the current solution is computationally
expensive. Moreover, the LNS-Random baseline performs better than LB baseline by applying
a random sampling strategy for selecting the subset of variables to be freed. Our LNS-GNN
algorithm presents the best heuristic behavior in terms of the primal integral, showing that the
pretrained GNN model is able to generate structural neighborhoods that contain improving
solutions. These results demonstrate that our approach achieves a better trade-off between
exploitation and exploration of the promising solution regions. Although, potentially, any of
the baseline algorithms could be tuned to obtain better results, this is true for LNS-GNN
too, and overall we believe that these results show clear promise.

6.6 Discussion

In this chapter, we presented a methodology for integrating ML techniques into metaheuristics
for solving combinatorial optimization problems. Namely, we proposed a general ML framework
for neighbor generation in metaheuristic search. We firstly defined a neighborhood structure
constructed by applying a transformation to a selected subset of variables from the current
solution. Then, the key of the proposed methodology is to generate promising neighborhoods
by selecting a subset of variables that has a high probability of defining a solution neighborhood
that contains a descent point of the objective in the solution space. We formulated the variable

90

selection problem as a classification problem that exploits structural information from the
characteristics of the problem and high-quality solutions.

We demonstrated our methodology on two applications. The first problem we addressed
occurs in the context of Wireless Network Optimization, where a TS metaheuristic is used
for the topology design sub-problem. In a predefined topology neighborhood structure, we
trained classification models to select sized-reduced, but high-quality solution neighborhoods.
This allowed the TS metaheuristic to execute more iterations within the same amount of time.
As each TS iteration requires to solve a series of complex combinatorial sub-problems, more
iterations entail a greater exploration of the solution space. In addition, to demonstrate the
broader applicability of our approach, we also applied our framework to the LNS framework
for solving MIPs. The experimental results have shown that our approach is able to learn a
satisfactory trade-off between the exploration of a larger solution space and the exploitation
of promising solution regions on both applications.

Although deep neural networks such as GNNs have been wildly applied to represent combina-
torial optimization problems, the current GNNs might not be expressive enough to capture
all the crucial patterns from data [18]. For future research, it would be interesting to develop
more expressive ML models that exhibit better transferability and scalability across broader
classes of problems.

91

CHAPTER 7 GENERAL DISCUSSION

The three works presented in Chapters 4, 5, and 6 explore various ways of exploiting a
problem’s structure to improve the performances of a CO algorithm. Although each strategy
operates at a different level of a different class of CO algorithm, from specific heuristics,
primal heuristics in MILP to general metaheuristics, they share a number of motivations.
This further discussion aims to highlight such connections and insights.

The most straightforward way to think of the application of ML for CO is to extract useful
patterns from data and directly produce solutions for the underlying problem by “end-to-
end” learning. In Chapter 4, we presented an imitation learning framework for producing
constructive heuristics for a specific CO task, namely, learning elimination rules yielding
high-quality chordal extensions. This work builds a complete pipeline for learning to generate
algorithmic strategies for CO, from generation of synthetic problem, design of the ML
task, features design, generation and labeling of training samples, training ML models and
algorithmic design for integrating ML models in CO. The pipeline provides valuable concepts
for exploring the research question and for designing the ML frameworks in Chapter 5 and
6. Moreover, while the current learning method is limited to an imitation setting, the MDP
formulation of the problem opens promising scenarios for learning more sophisticated decision
rules and addressing the performance of practical optimization algorithms, in conjunction
with RL approaches.

Inspired by the application of ML in designing heuristics for a specific application in Chapter 4,
we started to look deeper into more generic CO problems. In Chapter 5, we focused on MILP
problems, and devised a ML-based framework for Local Branching, a well-known refinement
primal heuristic. In this work, we studied how the size of the solution neighborhood can be
quantified by learning from not only the characteristics of the problem and solutions, but
also MILP solver’s status. We applied both supervised learning and RL to extract valuable
patterns from the solution neighborhoods as well as the optimization processes. This allows
the learned policy to customize the size of the LB neighborhood with respect to both the
MILP instance and the underlying MILP solver.

The ideas of exploiting critical properties of the solution neighborhoods from Chapter 5
stimulated further research in Chapter 6 towards designing a general ML methodological
framework for learning neighborhood structures for generic NS based metaheuristics. From
both the methodological and application point of view, each work builds on the insights
learned from the previous to construct and extend the frameworks for the integration of ML

92

into CO.

The algorithmic design of how the ML are integrated in CO algorithms has been studied
throughout the thesis. From an algorithmic standpoint, in all the three works, the ML strategy
is called repeatedly as a building block in the optimization process. Although the ML policy
in Chapter 4 acts as a heuristic to produce “end-to-end” solutions, the solutions are actually
constructed step-by-step by the learned elimination rule. At each step, the ML model only
needs to focus on the current partial solution and takes an action for the next step. This
step-wise decision procedure for constructing a solution naturally provides the opportunity for
ML to learn structural properties of the problem and solutions over the entire optimization
process. In Chapter 5 and 6, the learned ML strategies are also integrated as algorithmic
building block and called iteratively in the underlying optimization process. Here we highlight
that this algorithmic structure with a tight combination of ML inference and optimization is
the backbone of proposed CO algorithms in all the three contributions.

Feature design has played a critical role in the learning pipelines of all the three contributions.
The informativeness of the input data with respect to the underlying ML task is important
for the success of the following learning process. Indeed, the predictions of the ML model
are inferred from the input data, and the performances of the ML model will be limited by
the input data, regardless of learning method. Therefore, it is crucial to identify the useful
features from the data that are correlated with the preferred predictions, and include them
into the set of input features. Unlike other stand ML tasks with standard benchmarks of
data, we have to carefully select features with respect to the learning task. The feature design
is an important step in ML tasks for CO and it is generally engineered in conjunction with
the design of the representation model and the training method. In general, a good trade-off
between informativeness and conciseness is required for the learning process. On the one
hand, the feature set must be informative enough for knowledge extraction and ML inference.
On the other hand, the set needs to be concise and compact to control the size of the input
the space. This is extremely important for conducting an efficient and stable learning process.
In Chapter 5, we have designed a compact set of features for a RL task. Although training a
policy with RL in the context of a CO task is considered hard and unstable in many cases,
the design of the compact feature set enables us to implement an efficient policy model and
also makes the training process more stable.

Another important aspect is the generalization scope. The generalization scope of the ML
task for CO can be generally targeted into three classes. The first class aims to generalize to
new instances of same size and of same type of problem, the second aims to generalize to
larger instances of the same type, the last is the most ambitious, which aims to generalize to

93

instances from a different type of problem or from a heterogeneous data set. We also highlight
that the feature design step is correlated with the generalization scope of the ML task. The
common properties shared by the problems within the generalization scope should be carefully
considered for feature design. For instance, when we trained the RL policies in Chapter 5,
we have selected a set of features that only contain information collected from the solver’s
optimization process, hence, the features are independent from the class of problem. This
allows us to design an efficient learning pipeline, that trains the policies with a generated
synthetic homogeneous data set, and generalizes to a heterogeneous data set of real world
problems.

94

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In this thesis, we have investigated the application of ML techniques for designing CO
algorithms. We have demonstrated the value of tight combination of ML and CO by three
contributions. In this final chapter, we compile a brief summary of those contributions, and
conclude by highlighting some limitations and identifying several avenues for future research
on the topic.

8.1 Summary of works

Our first contribution, presented in Chapter 4, was motivated by the the early works using
ML for CO. The most straightforward way to think of the application of ML for CO is to
directly learn useful properties from data and produce solutions for the underlying problem
by “end-to-end” learning. In Chapter 4, we have considered the computation of chordal
extensions, a specific CO problem with a variety of applications in numerical optimization,
and devised a framework for learning heuristic strategies yielding high-quality solutions for the
problem. As a first building block of the learning framework, we have proposed an imitation
learning scheme. Our developed ML model learns from the structure of the problem and the
resulting ML strategy is sequentially called to construct a solution. The results have shown
that our approach achieves remarkable generalization performance on graphs of larger size
and from a different distribution. Another desirable behavior of our approach is that it allows
to speed up the learning process by training on smaller synthetic problems by only paying a
marginal loss of performance.

The initial work has led us to consider the integration of ML into a more general framework
for solving CO problems. Our second contribution, presented in Chapter 5, addressed
the algorithmic decisions within MILP algorithms. In particular, we focused on the Local
Branching (LB), a well-known primal heuristic, and devised a ML-based framework for LB.
In this work, we studied how the size of the solution neighborhood can be quantified by
learning from not only the characteristics of the problem and its solutions, but also from the
MILP solver’s status. We applied both SL and RL to extract valuable patterns from the
solution neighborhoods as well as the optimization processes. This allows the learned policy
to customize the size of the LB neighborhood with respect to both the MILP instance and the
underlying MILP solver. The resulting ML strategies are integrated into the LB algorithm and
interact with the MILP solver at each iteration. Overall, we have computationally shown that
the critical algorithmic decisions within a CO algorithm can indeed be learned by ML and the

95

resulting algorithm generalizes well both with respect to the instance size and, remarkably,
across instances.

Finally, we presented in Chapter 6 a methodological contribution for integrating ML into
metaheuristics for solving CO problems. Specifically, we proposed a general ML framework for
the neighbor generation process in metaheuristic search. The key of the proposed methodology
lies in the definition and generation of promising solution neighborhoods. The resulting
classification framework exploits structural properties of both the problem and its high-quality
solutions, and selects a subset of variables to define a promising neighborhood for metaheuristic
search. We demonstrated the effectiveness of our framework on two metaheuristic schemes:
Tabu Search and Large Neighborhood Search. The experimental results indicate that our
approach is able to learn a satisfactory trade-off between the exploration of a larger solution
space and the exploitation of promising local regions.

8.2 Limitations and future research

8.2.1 Modeling

Although deep neural networks such as GNNs have been wildly applied to represent CO
problems, the current GNNs might not be expressive enough to capture all the crucial patterns
from data [18]. For instance, we have tried to adapt the current architectures of GNNs to
model another class of MIP problems, Mixed-Integer Quadratic Programs (MIQPs), and
have trained the model to make algorithmic decisions for whether to solve the Semidefinite
Program (SDP) relaxation at a B&B node. The training results have indicated that the model
is not able to make predictions with enough accuracy. This might be because the current
GNN architectures do not have enough representation capacity to model complex structures
in the graphs, e.g., cliques.

For future research, it would be interesting to develop more expressive models that exhibit
better transferability and scalability across broader classes of problems. For instance, enlarging
the representation power of GNNs to represent hypernodes or to model multiple eliminations
for the problem addressed in Chapter 4 will likely be key to handling practical tasks.

8.2.2 Multi-task learning

In this thesis, we have investigated different paradigms of integrating ML into CO algorithms.
These methods show that various ML strategies can be learned from data and used to enhance
the underlying optimization scheme. For instance, in Chapter 5, we have trained separate

96

decision policies for adapting different algorithmic parameters of the LB heuristic for MILP.
Indeed, multiple algorithmic components within a MIP solver can be learned to improve the
solver’s performance, including but not limited to, primal heuristics, branching strategies,
node selection and scaling strategies. This induces the question of multi-task learning and
the performances of these ML tasks can be potentially improved by learning them jointly as
partially done in [123].

Although the work of [124] has made one of the first steps to create a general environment for
conducting ML tasks for MIP, for future research, it will be beneficial to develop a unified
framework or an interface to coordinate these ML tasks for general CO problems in a more
collaborative way.

97

REFERENCES

[1] A. H. Land and A. G. Doig, “An automatic method for solving discrete programming
problems,” in 50 Years of Integer Programming 1958-2008. Springer, 2010, pp. 105–132.

[2] R. Bixby and E. Rothberg, “Progress in computational mixed integer programming—a
look back from the other side of the tipping point,” Annals of Operations
Research, vol. 149, no. 1, pp. 37–41, Feb 2007. [Online]. Available: https:
//doi.org/10.1007/s10479-006-0091-y

[3] T. Achterberg, “Scip: solving constraint integer programs,” Mathematical Programming
Computation, vol. 1, no. 1, pp. 1–41, 2009.

[4] T. Berthold, “Primal heuristics for mixed integer programs,” Ph.D. dissertation, Zuse
Institute Berlin (ZIB), 2006.

[5] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger, “Progress in
presolving for mixed integer programming,” Mathematical Programming Computation,
vol. 7, no. 4, pp. 367–398, 2015.

[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, Finding cuts in the TSP (A
preliminary report). Citeseer, 1995, vol. 95.

[7] J. Patel and J. W. Chinneck, “Active-constraint variable ordering for faster feasibility
of mixed integer linear programs,” Mathematical Programming, vol. 110, no. 3, pp.
445–474, 2007.

[8] T. Achterberg and T. Berthold, “Hybrid branching,” in International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research.
Springer, 2009, pp. 309–311.

[9] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[10] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT Press,
Cambridge, 1998, vol. 135.

[11] K. A. Smith, “Neural networks for combinatorial optimization: a review of more than a
decade of research,” INFORMS Journal on Computing, vol. 11, no. 1, pp. 15–34, 1999.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.
436, 2015.

https://doi.org/10.1007/s10479-006-0091-y
https://doi.org/10.1007/s10479-006-0091-y

98

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[14] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of
go with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[15] A. Lodi and G. Zarpellon, “On learning and branching: a survey,” Top, vol. 25, no. 2,
pp. 207–236, 2017.

[16] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization:
a methodological tour d’horizon,” European Journal of Operational Research, vol. 290,
no. 2, pp. 405–421, 2021.

[17] M. Karimi-Mamaghan, M. Mohammadi, P. Meyer, A. M. Karimi-Mamaghan, and E.-G.
Talbi, “Machine learning at the service of meta-heuristics for solving combinatorial
optimization problems: A state-of-the-art,” European Journal of Operational Research,
vol. 296, no. 2, pp. 393–422, 2022.

[18] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković, “Com-
binatorial optimization and reasoning with graph neural networks,” arXiv preprint
arXiv:2102.09544, 2021.

[19] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 2692–2700.

[20] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial
optimization with reinforcement learning,” arXiv preprint arXiv:1611.09940, 2016.

[21] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning Combinatorial Optimiza-
tion Algorithms over Graphs,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 6348–6358.

[22] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing problems!”
arXiv preprint arXiv:1803.08475, 2018.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

99

[25] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to branch
in mixed integer programming,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[26] A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A machine learning-based approximation
of strong branching,” INFORMS Journal on Computing, vol. 29, no. 1, pp. 185–195,
2017.

[27] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combinatorial opti-
mization with graph convolutional neural networks,” in Advances in Neural Information
Processing Systems, 2019, pp. 15 554–15 566.

[28] H. He, H. Daume III, and J. M. Eisner, “Learning to search in branch and bound
algorithms,” Advances in neural information processing systems, vol. 27, pp. 3293–3301,
2014.

[29] Y. Tang, S. Agrawal, and Y. Faenza, “Reinforcement learning for integer programming:
Learning to cut,” in International Conference on Machine Learning. PMLR, 2020, pp.
9367–9376.

[30] E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao, “Learning to run
heuristics in tree search,” in IJCAI, 2017, pp. 659–666.

[31] G. Hendel, “Adaptive large neighborhood search for mixed integer programming,”
Mathematical Programming Computation, vol. 14, no. 2, pp. 185–221, 2022.

[32] T. Berthold and G. Hendel, “Learning to scale mixed-integer programs,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 3661–3668.

[33] P. Bonami, A. Lodi, and G. Zarpellon, “A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex,” Operations Research, 2022.

[34] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Automated configuration of mixed
integer programming solvers,” in International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming.
Springer, 2010, pp. 186–202.

[35] R. Moll, A. G. Barto, T. J. Perkins, and R. S. Sutton, “Learning instance-independent
value functions to enhance local search,” in Advances in Neural Information Processing
Systems, 1999, pp. 1017–1023.

100

[36] J. A. Boyan and A. W. Moore, “Using prediction to improve combinatorial optimization
search,” in Sixth International Workshop on Artificial Intelligence and Statistics, 1997.

[37] R. Baltean-Lugojan, R. Misener, P. Bonami, and A. Tramontani, “Strong sparse
cut selection via trained neural nets for quadratic semidefinite outer-approximations,”
Imperial College, London, Tech. Rep., 2018.

[38] E. Larsen, S. Lachapelle, Y. Bengio, E. Frejinger, S. Lacoste-Julien, and A. Lodi, “Pre-
dicting tactical solutions to operational planning problems under imperfect information,”
arXiv preprint arXiv:1901.07935, 2019.

[39] M. Fischetti, A. Lodi, and G. Zarpellon, “Learning milp resolution outcomes before reach-
ing time-limit,” in International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer, 2019, pp. 275–291.

[40] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 1263–1272.

[41] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement learning for solving
the vehicle routing problem,” arXiv preprint arXiv:1802.04240, 2018.

[42] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp.
1140–1144, 2018.

[43] D. Liu, A. Lodi, and M. Tanneau, “Learning chordal extensions,” Journal of Global
Optimization, vol. 81, no. 1, pp. 3–22, 2021.

[44] L. Vandenberghe, M. S. Andersen et al., “Chordal graphs and semidefinite optimization,”
Foundations and Trends R© in Optimization, vol. 1, no. 4, pp. 241–433, 2015.

[45] S. Wright, Primal-Dual Interior-Point Methods. Society for Industrial and Applied
Mathematics, 1997. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.
9781611971453

[46] F. V. Fomin, G. Philip, and Y. Villanger, “Minimum fill-in of sparse graphs: Kerneliza-
tion and approximation,” Algorithmica, vol. 71, no. 1, pp. 1–20, Jan 2015.

[47] R. E. Bixby, “Solving real-world linear programs: A decade and more of progress,”
Operations Research, vol. 50, no. 1, pp. 3–15, 2002.

http://epubs.siam.org/doi/abs/10.1137/1.9781611971453
http://epubs.siam.org/doi/abs/10.1137/1.9781611971453

101

[48] E. Rothberg and B. Hendrickson, “Sparse matrix ordering methods for interior point
linear programming,” INFORMS Journal on Computing, vol. 10, no. 1, pp. 107–113,
1998.

[49] J. Agler, W. Helton, S. McCullough, and L. Rodman, “Positive semidefinite matrices
with a given sparsity pattern,” Linear Algebra and its Applications, vol. 107, pp. 101 –
149, 1988.

[50] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity in semidef-
inite programming via matrix completion I: General framework,” SIAM Journal on
Optimization, vol. 11, no. 3, pp. 647–674, 2001.

[51] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota, “Exploiting sparsity
in semidefinite programming via matrix completion II: Implementation and numerical
results,” Mathematical Programming, vol. 95, no. 2, pp. 303–327, 2003.

[52] A. Majumdar, G. Hall, and A. A. Ahmadi, “A survey of recent scalability improvements
for semidefinite programming with applications in machine learning, control, and
robotics,” arXiv preprint arXiv:1908.05209, 2019.

[53] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn, “Chordal
decomposition in operator-splitting methods for sparse semidefinite programs,” Mathe-
matical Programming, Feb 2019.

[54] Y. Zheng and G. Fantuzzi, “Sum-of-squares chordal decomposition of polynomial
matrix inequalities,” arXiv:2007.11410 [cs, eess, math], Jul. 2020, arXiv: 2007.11410.
[Online]. Available: http://arxiv.org/abs/2007.11410

[55] D. Bergman, C. H. Cardonha, A. A. Cire, and A. U. Raghunathan, “On the minimum
chordal completion polytope,” Operations Research, vol. 67, no. 2, pp. 532–547, 2019.

[56] M. Yannakakis, “Computing the minimum fill-in is np-complete,” SIAM Journal
on Algebraic Discrete Methods, vol. 2, no. 1, pp. 77–79, 1981. [Online]. Available:
https://doi.org/10.1137/0602010

[57] A. George and J. W. Liu, “The evolution of the minimum degree ordering
algorithm,” SIAM Review, vol. 31, no. 1, pp. 1–19, 1989. [Online]. Available:
https://doi.org/10.1137/1031001

[58] A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal on
Numerical Analysis, vol. 10, no. 2, pp. 345–363, 1973.

http://arxiv.org/abs/2007.11410
https://doi.org/10.1137/0602010
https://doi.org/10.1137/1031001

102

[59] J. W. Liu, “The role of elimination trees in sparse factorization,” SIAM Journal on
Matrix Analysis and Applications, vol. 11, no. 1, pp. 134–172, 1990.

[60] A. Guermouche, J.-Y. L’Excellent, and G. Utard, “Impact of reordering on the memory
of a multifrontal solver,” Parallel Computing, vol. 29, no. 9, pp. 1191 – 1218, 2003,
parallel Matrix Algorithms and Applications.

[61] R. J. Vanderbei, “LOQO:an interior point code for quadratic programming,” Optimiza-
tion Methods and Software, vol. 11, no. 1-4, pp. 451–484, Jan. 1999.

[62] M. Garstka, M. Cannon, and P. Goulart, “A clique graph based merging strategy for
decomposable sdps,” 2019.

[63] J. Sliwak, M. Anjos, L. Létocart, J. Maeght, and E. Traversi, “Improving clique
decompositions of semidefinite relaxations for optimal power flow problems,” EasyChair
Preprint no. 2546, EasyChair, 2020.

[64] R. A. Howard, Dynamic programming and markov processes. MIT Press, Cambridge,
1960.

[65] J. Bagnell, J. Chestnutt, D. M. Bradley, and N. D. Ratliff, “Boosting structured
prediction for imitation learning,” in Advances in Neural Information Processing Systems,
2007, pp. 1153–1160.

[66] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Functional gradient
techniques for imitation learning,” Autonomous Robots, vol. 27, no. 1, pp. 25–53, 2009.

[67] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 2011, pp. 627–635.

[68] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in cognitive
sciences, vol. 3, no. 6, pp. 233–242, 1999.

[69] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots, “Agile
autonomous driving using end-to-end deep imitation learning,” in Robotics: science and
systems, 2018.

[70] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in Proceedings of
the thirteenth international conference on artificial intelligence and statistics, 2010, pp.
661–668.

103

[71] D. Silver, J. Bagnell, and A. Stentz, “High performance outdoor navigation from
overhead data using imitation learning,” Robotics: Science and Systems IV, Zurich,
Switzerland, 2008.

[72] H. M. Markowitz, “The elimination form of the inverse and its application to linear
programming,” Management Science, vol. 3, no. 3, pp. 255–269, 1957.

[73] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,”
in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.,
vol. 2. IEEE, 2005, pp. 729–734.

[74] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods
and applications,” arXiv preprint arXiv:1709.05584, 2017.

[75] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecular
fingerprints,” in Advances in neural information processing systems, 2015, pp. 2224–2232.

[76] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[77] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1024–1034.

[78] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional
networks and guided tree search,” in Advances in Neural Information Processing Systems,
2018, pp. 539–548.

[79] S. Kullback, Information theory and statistics. Courier Corporation, 1997.

[80] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM Trans.
Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec. 2011.

[81] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, 2010, pp. 249–256.

[82] D. J. Rose, “A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations,” in Graph theory and computing. Elsevier, 1972, pp.
183–217.

104

[83] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating
explanations for graph neural networks,” in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 9244–9255.

[84] T. Berthold, “Measuring the impact of primal heuristics,” Operations Research Letters,
vol. 41, no. 6, pp. 611–614, 2013.

[85] M. Fischetti and A. Lodi, “Local branching,” Mathematical programming, vol. 98, no.
1-3, pp. 23–47, 2003.

[86] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,” Mathematical Programming,
vol. 104, no. 1, pp. 91–104, 2005.

[87] E. Danna, E. Rothberg, and C. L. Pape, “Exploring relaxation induced neighborhoods
to improve mip solutions,” Mathematical Programming, vol. 102, no. 1, pp. 71–90, 2005.

[88] T. Berthold, “Rens,” Mathematical Programming Computation, vol. 6, no. 1, pp. 33–54,
2014.

[89] M. Fischetti and M. Monaci, “Proximity search for 0-1 mixed-integer convex program-
ming,” Journal of Heuristics, vol. 20, no. 6, pp. 709–731, 2014.

[90] M. Gendreau and J.-Y. Potvin, Handbook of metaheuristics. Springer, 2010, vol. 2.

[91] M. Fischetti and A. Lodi, “Heuristics in mixed integer programming,” Wiley Encyclope-
dia of Operations Research and Management Science, 2010.

[92] D. Liu, M. Fischetti, and A. Lodi, “Learning to search in local branching,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, pp. 3796–3803, Jun.
2022. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/20294

[93] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning
to branch in mixed integer programming,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 30, no. 1, Feb. 2016. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/10080

[94] M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning to branch,” in Interna-
tional conference on machine learning. PMLR, 2018, pp. 344–353.

[95] A. Chmiela, E. Khalil, A. Gleixner, A. Lodi, and S. Pokutta, “Learning to schedule
heuristics in branch-and-bound,” arXiv preprint arXiv:2103.10294, 2021.

https://ojs.aaai.org/index.php/AAAI/article/view/20294
https://ojs.aaai.org/index.php/AAAI/article/view/10080

105

[96] J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song, “Accelerating primal
solution findings for mixed integer programs based on solution prediction,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, pp. 1452–1459, 2020.

[97] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue,
N. Sonnerat, C. Tjandraatmadja, and P. Wang, “Solving mixed integer programs using
neural networks,” arXiv preprint arXiv:2012.13349, 2020.

[98] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair, “Learning a large neighbor-
hood search algorithm for mixed integer programs,” arXiv preprint arXiv:2107.10201,
2021.

[99] J. Song, Y. Yue, and B. Dilkina, “A general large neighborhood search framework for
solving integer linear programs,” arXiv preprint arXiv:2004.00422, 2020.

[100] A. Hottung and K. Tierney, “Neural large neighborhood search for the capacitated
vehicle routing problem,” arXiv preprint arXiv:1911.09539, 2019.

[101] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial opti-
mization algorithms over graphs,” arXiv preprint arXiv:1704.01665, 2017.

[102] L. Bertacco, M. Fischetti, and A. Lodi, “A feasibility pump heuristic for general
mixed-integer problems,” Discrete Optimization, vol. 4, no. 1, pp. 63–76, 2007.

[103] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization. Springer, 2017.

[104] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Advances in neural
information processing systems, 2000, pp. 1057–1063.

[105] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse,
P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch,
P. Le Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller,
M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske,
F. Wegscheider, D. Weninger, and J. Witzig, “The SCIP Optimization Suite
7.0,” Zuse Institute Berlin, ZIB-Report 20-10, March 2020. [Online]. Available:
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023

[106] E. Balas and A. Ho, “Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: a computational study,” in Combinatorial Optimization.
Springer, 1980, pp. 37–60.

http://nbn-resolving.de/urn:nbn:de:0297-zib-78023

106

[107] D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker, Decision diagrams for
optimization. Springer, 2016, vol. 1.

[108] K. Leyton-Brown, M. Pearson, and Y. Shoham, “Towards a universal test suite for
combinatorial auction algorithms,” in Proceedings of the 2nd ACM conference on
Electronic commerce, 2000, pp. 66–76.

[109] D. S. Hochbaum and A. Pathria, “Forest harvesting and minimum cuts: a new approach
to handling spatial constraints,” Forest Science, vol. 43, no. 4, pp. 544–554, 1997.

[110] M. Colombi, R. Mansini, and M. Savelsbergh, “The generalized independent set problem:
Polyhedral analysis and solution approaches,” European Journal of Operational Research,
vol. 260, no. 1, pp. 41–55, 2017.

[111] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold,
P. Christophel, K. Jarck, T. Koch, and J. Linderoth, “Miplib 2017: data-driven com-
pilation of the 6th mixed-integer programming library,” Mathematical Programming
Computation, pp. 1–48, 2021.

[112] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, and L. Antiga, “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, pp. 8026–
8037, 2019.

[113] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,”
arXiv preprint arXiv:1903.02428, 2019.

[114] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F. Serrano,
“PySCIPOpt: Mathematical programming in python with the SCIP optimization suite,”
in Mathematical Software – ICMS 2016. Springer International Publishing, 2016, pp.
301–307.

[115] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and
conceptual comparison,” ACM computing surveys (CSUR), vol. 35, no. 3, pp. 268–308,
2003.

[116] E.-G. Talbi, “Machine learning into metaheuristics: A survey and taxonomy,” ACM
Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–32, 2021.

[117] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80,
2008.

107

[118] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning to dispatch for
job shop scheduling via deep reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1621–1632, 2020.

[119] L. Gao, M. Chen, Q. Chen, G. Luo, N. Zhu, and Z. Liu, “Learn to design the heuristics
for vehicle routing problem,” arXiv preprint arXiv:2002.08539, 2020.

[120] V. Perreault, “Tactical wireless network design for challenging environments,” Master’s
thesis, Ecole Polytechnique, Montreal (Canada), 2022.

[121] E. Danna, E. Rothberg, and C. Le Pape, “Exploring relaxation induced neighborhoods
to improve mip solutions,” Mathematical Programming, vol. 102, pp. 71–90, 2005.

[122] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in Proceedings of the IEEE international conference on computer vision,
2017, pp. 2980–2988.

[123] E. Khalil, C. Morris, and A. Lodi, “MIP-GNN: A data-driven framework for guiding
combinatorial solvers,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 9, 2022, pp. 10 219–10 227.

[124] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi, “Ecole:
A gym-like library for machine learning in combinatorial optimization solvers,” arXiv
preprint arXiv:2011.06069, 2020.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Background
	1.2.1 Combinatorial Optimization
	1.2.2 Machine Learning

	2 CRITICAL LITERATURE REVIEW
	2.1 Paradigms of combining ML with CO
	2.1.1 End-to-end learning
	2.1.2 Learning algorithmic strategies
	2.1.3 Extraction of valuable information

	2.2 Learning methods
	2.2.1 Representation
	2.2.2 Training

	3 DISCUSSION OF THE RESEARCH PROJECT AS A WHOLE AND GENERAL ORGANIZATION OF THE DISSERTATION
	3.1 Contributions
	3.2 Outline of the thesis

	4 ARTICLE 1: LEARNING CHORDAL EXTENSIONS
	4.1 Introduction
	4.2 Basic notations and concepts
	4.2.1 Graph-theoretic notations
	4.2.2 Markov Decision Processes
	4.2.3 Standard statistical learning
	4.2.4 Imitation learning for sequential decision problems

	4.3 Methodology
	4.3.1 MDP formulation
	4.3.2 Learning mechanism

	4.4 Numerical experiments
	4.4.1 Data collection
	4.4.2 Experimental settings
	4.4.3 Results

	4.5 Further discussion
	4.5.1 Policy interpretation
	4.5.2 Relation to fill-in

	4.6 Conclusion

	5 ARTICLE 2: REVISITING LOCAL BRANCHING WITH A MACHINE LEARNING LENS
	5.1 Introduction
	5.2 Related work
	5.3 Preliminaries
	5.3.1 Local branching
	5.3.2 The neighborhood size optimization problem

	5.4 Learning methods
	5.4.1 Scaled regression for local branching
	5.4.2 Reinforced neighborhood search
	5.4.3 Further improvement by adapting LB node time limit

	5.5 Experiments
	5.5.1 Data collection
	5.5.2 Experimental setup
	5.5.3 Results

	5.6 Local branching as a primal heuristic within a MILP solver
	5.7 Discussion

	6 LEARNING TO GENERATE NEIGHBORS IN METAHEURISTIC SEARCH
	6.1 Machine Learning for metaheuristics
	6.2 Preliminaries
	6.2.1 Combinatorial Optimization and metaheuristics
	6.2.2 Representation learning for CO

	6.3 Methodology
	6.3.1 Solution space and neighborhood structure
	6.3.2 Variable selection for structural neighbor generation
	6.3.3 Learning a variable selection policy for structural neighbor generation

	6.4 Application 1: Tabu Search in Wireless Network Optimization
	6.4.1 The tactical WNO problem
	6.4.2 Topology Tabu Search
	6.4.3 Learning to generate edge-swap neighbors for TS
	6.4.4 Numerical experiments

	6.5 Application 2: Large Neighborhood Search in MIP
	6.5.1 Large Neighborhood Search
	6.5.2 Learning to generate neighbors for LNS
	6.5.3 Numerical experiments

	6.6 Discussion

	7 GENERAL DISCUSSION
	8 CONCLUSION AND RECOMMENDATIONS
	8.1 Summary of works
	8.2 Limitations and future research
	8.2.1 Modeling
	8.2.2 Multi-task learning

	REFERENCES

