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RÉSUMÉ

En 2015, les accords de Paris ont été adoptés par 196 pays s’engageant à limiter la hausse
des températures. Les énergies renouvelables non pilotables prennent une place de plus en
plus grande dans le mix électrique. L’énergie hydroélectrique prend alors un rôle central
pour lisser et adapter la production à la demande. Il est donc d’autant plus important de
surveiller les groupes turbines-alternateurs, notamment car les cycles de démarrage répétés
et les utilisations en sous régime augmentent le risque de ruptures et de dommages notam-
ment par fatigue. Dans ce projet, on se propose de travailler sur le développement d’un
jumeau numérique qui, à terme, permettrait d’améliorer la surveillance, la prédiction des
maintenances et d’optimiser l’opération des turbines hydrauliques.

On souhaite commencer notre travail sur les jumeaux numériques en travaillant sur une ex-
périence de tuyau de pompier. En effet, le tuyau de pompier est une expérience d’interaction
fluide-structure qui présente plusieurs similarités avec les phénomènes observés dans une tur-
bine hydraulique. L’amortissement du tuyau est influencé par la masse ajoutée de l’eau dans
le tuyau, sa vibration est également excitée par l’écoulement de l’eau et le tuyau subit des
phénomènes de flottement comme la turbine. De plus, il s’agit d’un système simple et peu
coûteux à reproduire et à observer en laboratoire. C’est toutefois un système riche qui dé-
montre une physique riche et variée avec des fortes non-linéarités mais aussi des phénomènes
très différents lorsqu’on modifie légèrement l’expérience. Enfin, c’est un système qui a été
étudié en profondeur dans les dernières décennies et on dispose donc de nombreux modèles
théoriques utilisables pour construire le jumeau numérique.

Durant ce projet, nous avons conçu, fabriqué et assemblé un montage expérimental de tuyau
encastré-libre. Le débit parcourant le tuyau peut être réglé avec le contrôleur d’une pompe
centrifuge et est mesuré par un débitmètre volumique. Le tuyau est filmé par deux caméras
hautes vitesses placées dans des plans orthogonaux. Le tuyau est isolé de l’image en utilisant
le contraste sur les images et sa position est ensuite approximée à l’aide d’un polynôme qui
permet de stocker les informations. Le montage expérimental permet d’utiliser divers tuyaux
de longueurs et diamètres intérieurs différents. Les tuyaux en caoutchouc siliconé sont moulés
dans un moule usiné en aluminium et leurs caractéristiques sont déterminées en observant la
vibration du mode fondamental du tuyau.

Nous avons mené une première campagne d’essais sur sept tuyaux différents avec trois di-
amètres différents. Nous avons étudié l’amortissement du tuyau avant la vitesse critique et
avons pu la comparer au modèle linéaire du tuyau. Nous avons également déterminé et mesuré
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les vitesses critiques auxquelles le tuyau devient instable. Au dessus de la vitesse critique nous
avons observé la relation entre l’amplitude de vibration ainsi que la fréquence de vibration
avec le débit d’eau. Enfin nous avons également observé les différents phénomènes et modes
vibratoires comme le mode chaotique à haut débit qui remplace les vibration planaires.

Dans une seconde partie du projet, nous avons expérimenté avec une nouvelle méthode pour
construire le jumeau numérique du tuyau: des réseaux de neurones artificiels combinés au
modèle physique. Cette technique utilise des réseaux de neurones pour approximer le mou-
vement du tuyau. Pour entraîner le jumeau numérique on utilise une fonction objectif à
minimiser qui est constituée des données mesurées sur le montage expérimental (ou générées
numériquement) mais aussi de l’équation linéaire du tuyau pénalisée à un certain nombre
de points. Cette méthode permet d’utiliser les données de capteurs tout en régularisant la
solution entre les données, en réduisant la quantité de données nécessaires et en permettant
l’extrapolation. Dans ce mémoire on se limite à l’équation linéaire du tuyau et donc au
comportement avant le débit critique. On utilise la formulation classique mais aussi une
formulation avec décomposition modale pour une meilleure efficacité. On teste également
l’implémention de la formulation faible des résidus de l’équation linéaire couplée avec une
décomposition en modes propres de poutre. Enfin on montre que cette méthode permet de
résoudre des problèmes inverses en définissant des paramètres du modèle linéaire comme des
variables qui doivent être optimisées pendant l’entraînement du réseau de neurones.

Nous avons démontré la capacité des réseaux de neurones à résoudre un problème inverse en
déterminant la valeur du débit coulant dans le tuyau à partir des données expérimentales et
du modèle linéaire. Nous avons également montré que l’ajout du modèle linéaire permet de
régulariser la solution entre les points de données mais aussi d’extrapoler.

Ce mémoire est la première étape du projet visant à développer un jumeau numérique d’un
système de tuyau de pompier. Le montage expérimental servira pour la suite du projet pour
entraîner, tester et valider les prochaines méthodes numériques et les prochains jumeaux
numériques. Le montage et notamment les conditions aux limites et le tuyau seront amenés
à évoluer pour étudier des phénomènes et des configurations différentes. Les modèles de
jumeaux numériques devront également être améliorés en prenant en compte le modèle non-
linéaire du tuyau, en utilisant une architecture de réseau de neurones différente ou encore
une formulation différente des résidus. Enfin, un travail sur la convergence de l’optimisation
du réseau de neurones devra être conduit.
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ABSTRACT

Wind energy and solar energy production increased by 240% and 1200% between 2010 and
2018 in Canada. While these energies release 99% less CO2 per gigawatt-hour than gas
plants, they are prone to strong production irregularities. Hydraulic infrastructures smooth
energy supply intermittency and serve as production reserves. For this new role, turbines
are used in off-design conditions and subjected to more start and stop cycles which cause
more risks of failures notably by fatigue while leaving less margin for maintenance. The
turbines vibration frequencies, influenced by the water added damping are key to model
fatigue evolution and are hard to compute numerically. Sensors measure the frequency, the
vibrations, the strain or the pressure during the exploitation of hydraulic turbines. However,
classic use of these data does not allow to predict maintenance accurately or to detect and
predict some phenomena such as fatigue evolution. Digital twins are being developed for
the monitoring, maintenance planning and operation optimization of all kinds of industrial
systems such as jet engines, airframes, pumps... We propose to exploit sensors data with
machine learning methods combining these data with physical prior knowledge to build a
Digital Twin of the hydraulic infrastructures. The proof of concept of Digital Twins is based
on the dynamic of a Pipe Conveying Fluid. Building a pipe conveying fluid experiment
is cheap and easy. Yet this system exhibits linear, non-linear and chaotic dynamics. We
designed and built a cantilevered pipe experimental setup and tested this setup by observing
the behaviour of the pipe in different conditions and by measuring interesting characteristics
of the pipe dynamics. A flowmeter measures the flow velocity while two orthogonal high
speed cameras film the pipe to obtain training and validation data for the digital twin. We
investigate Physics Informed Neural Networks (PINNs) to build the digital twin by combining
sensor data and physical models. The data from the setup are used during training along with
prior knowledge coming from a partial differential equation to optimize the weights and biases
of a deep neural network. Data from the experimental setup can modify and adapt the model
to fit the actual pipe and thus solve inverse problems. The formulation of the residuals from
the physical model is a key element for the PINNs convergence and we investigate different
methods such as the strong formulation, modal decomposition or the weak formulation. We
demonstrate that PINNs can determine the water added mass damping on a pipe conveying
fluid. This experimental setup and the framework we established will also serve as a testbench
for testing and validating reduced-order models and other digital twin techniques.
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CHAPTER 1 INTRODUCTION

In general aviation, planes are submitted to different types of maintenance every 50, 100 and
200 flight hours. Every 1000 flight hours an overhaul check is performed during which the
whole plane is stripped down and every components are examined thoroughly. However, this
rule is generic and does not take into consideration the plane history, the type of flights per-
formed, the average take off weight, the type of runaway used... The decision to perform the
maintenance is not based on observations, noise and vibrations measurements or calculations
and physics-based simulations. Imagine the Digital Twin of a plane in a computer simula-
tion that considers the physics that govern its behaviour and with sensors that feed it data
in real-time. Such a digital twin could provide better maintenance planning, could help to
optimize the operation of the plane and could also detect failures. All kinds of machines and
systems could one day benefit from a digital twin, most notably large industrial equipments
like airplanes, hydraulic turbines and nuclear power plants or large structures such as bridges
and oil rigs.

We start the development of a digital twin with a simple yet rich experiment: the pipe
conveying fluid. It is a flexible pipe fixed at one end with fluid flowing through it and is
similar to a garden hose. This experiment can be installed in our university lab and allows us
to have access to experimental data to develop and test different digital twin methods. The
interesting and rich physics of the pipe conveying fluid makes it the perfect model experiment
to work on different problems with the digital twins.

In the continuation of this introduction, we present the motivations to develop a Digital Twin
and to use the pipe conveying fluid experiment as a model experiment. Lastly, we expose
the organization of this master thesis.

1.1 Motivations

1.1.1 The hydraulic energy key role in the renewable energy development

In 2022, the Intergovernmental Panel on Climate Change (IPCC) published its last report,
and claimed that emissions of CO2 and other greenhouse effect gas must be reduced dramat-
ically by 2030 to respect the goals from the 2015 Paris agreements: restrain global warming
to a maximum of 2°C and take every actions to limit it to 1.5°C. The global warming has
already reached 1.1°C since the 1850-1900 era and is caused without doubts entirely by hu-
man activity. Since electricity and heat production are responsible for 25% of greenhouse gas
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emissions, actions should be taken to reduce their emissions.

Renewable energies such as wind and solar energies could take over the production of electric-
ity originally produced by fossil fuelled and coal power plants as they release 99% less CO2

per gigawatt. In Canada, wind and solar energy growth is already well underway with respec-
tive increase in production capacity of 240% and 1200% from 2010 to 2018. However, these
renewable energies are highly intermittent [2] and might endanger the grid stability [3]. The
seasonal variations, the diurnal variations and the variations coming from passing weather
systems of wind and solar energies have to be balanced with production reserves or with
larger interconnected networks. Hydroelectric infrastructures also play a key role in the
energy transformation as they represent 15.6% of the worldwide electricity production and
70% of the renewable electricity production. Not only producing electricity on a regular
basis, hydroelectric infrastructures also act as production reserves to smooth the electricity
production and balance renewable energies intermittence.

This new demand requires more performance from hydraulic turbines which are thinner
and more lightweight. Alternator-turbines groups go through more start-stop cycles and
load variations and are used in off-design conditions to compensate for renewable energy
intermittence when it is needed. During these transients periods, the turbines are subjected to
unsteady pressure loadings and asymmetric and cyclic forces that reduce the turbine lifespan
[4,5]. One of the main turbines failure mode is fatigue when a microscopic crack propagates
at each loading cycle which leads to a large failure of the blades [6, 7]. This phenomenon is
taken into account by evaluating the loading cycles and the response frequencies [8–10]. The
water added mass and the flow-added damping influence these response frequencies and are
difficult to compute numerically, thus causing the difficulties of the fatigue prediction [11,12].
Other damages on the turbine such as erosion or cavitation are hard to assess without visual
inspections.

1.1.2 The emergence of the big data and of machine learning

It is of paramount importance to monitor hydraulic turbines closely to avoid unforeseen acci-
dents. Most hydraulic turbines are equipped with many different sensors such as accelerome-
ters, pressure sensors, strain gauges or proximity probes to detect hydraulic phenomena [13].
These sensors data are currently used to monitor the condition of the infrastructures in real
time with classical methods [14]. However, it is hard to predict the evolution of the turbine
state, to access its hidden characteristics or to detect some anomalies such as microscopic
cracks on the blades.

For half a century, computational methods for solving physical problems have made consid-
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erable progress. Different methods such as finite elements, finite volumes, finite differences,
mesh-free methods or spectral methods have been used to solve most linear and non-linear
partial differential equations governing the physical phenomena. However, it is difficult to
solve inverse problems to infer hidden characteristics of the system such as the material
properties and the state of the turbines. Lastly, these methods fail to assimilate the data
measured on most current industrial applications. Machine learning methods have gener-
ated a lot of attention during the last decade with the increase of data availability and with
the presence of sensors on every physical systems. In the industrial field however, classical
machine learning techniques are not yet commonplace for two main reasons. Firstly, on the
contrary to big data applications, the data are not always available and are often expensive
and complicated to obtain. Moreover, available data are frequently noisy and scattered. An-
other problem with machine learning in industrial applications is that these methods cannot
infer the relations behind a physical phenomena.

To tackle these limitations, we work in this project, on the development of a digital twin.
This digital twin shall provide information on the evolution of the system in time but also be
able to infer its hidden characteristics and detect different phenomena. This new approach
to sensor data allows the operator to better predict maintenance, spot defaults and avoid any
detrimental operations. We decided to build the digital twin using a new machine learning
method: Physics Informed Neural Networks (PINNs) [15, 16]. This new method combines
sensor data with physical prior knowledge which regularize the solution between scatter data
and help the model to extrapolate while keeping physical consistency. The basic idea is to use
a Neural Network (NN) to approximate the physical phenomena of interest. Physical prior
knowledge is softly encoded by penalizing the residuals of the phenomena partial differential
equation (PDE) and the initial and boundary conditions in the loss function. The loss is also
composed of the experimental data and is minimized during training to best fit the data as
well as the physical model. The physical part of PINNs reduce the need for data, limit the
impact of over-fitting, allows for better prediction and generalization. This method can also
solve inverse problem by optimizing parameters in the PDE and works well with ill posed
problems with unknown boundary or initial conditions for example. This method is of great
interest for hydraulic infrastructures as it could work with in situ sensor data, would use
the well known turbines physical models, could predict the behaviour of the system and also
infer its properties and state by solving inverse problems.
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1.1.3 The pipe conveying fluid as a model experiment

To achieve our goal, we first experiment on a classical fluid structure interaction (FSI) prob-
lem: The pipe conveying fluid. The pipe conveying fluid is a "paradigm" of linear and non-
linear dynamics making it the perfect system to develop a new computational method [17].
The pipe conveying fluid is an experiment that can be easily reproduced in a university lab
at relatively low costs. However, it is a very rich system that exhibits a very diverse range
of behaviours, from linear planar movements to cyclic three dimensional movements and to
chaotic three dimensional behaviours. With modern computer vision algorithms, it is now
possible to reconstruct the pipe three dimensional shape by filming it with two cameras. This
system is therefore easy to observe and to fully characterize with only two cameras and a
flowmeter. This possibility to observe the pipe easily allows us to collect data to test digital
twins methods with sets of training data and of validation data. The pipe behaviour is heavily
influenced by boundary conditions and it is therefore possible to study dramatically different
phenomena with minor modifications to the experimental setup. The pipe dynamic presents
diverse interesting FSI phenomena such as water added mass, flutter, flow induced excitation
or hydrodynamic damping that are observed in many real life physical applications including
hydraulic turbines [18]. Moreover, this experiment has been thoroughly studied and many
physical models that can be used in the PINNs models have been developed by physicists.
This experiment also allows us to experiment with solving inverse problems to determine
hidden parameters of the system from the observation and the sensors data. For example, we
access the pipe added damping or the pipe parameters by solving the inverse problem with
PINNs

1.2 Thesis goals and organization

Here we present the work accomplished to design, build and operate a pipe conveying fluid
experimental setup. We explain the experimental process as well as the data treatment. We
reproduce some interesting figures characterizing the behaviour of the pipe and we compare
the experimental result below critical speed with the classical linear pipe model. Lastly,
we introduce the use of PINNs to model the pipe behaviour in the linear mode with both
numerical data and experimental data to access hidden parameters such as the flowrate. We
also compare the effectiveness of modal and weak-form PINNs against classic PINNs while
underlying the regularization effect of the PDE penalization.

Figure 1.1 presents an overview of the project philosophy. On the left side, the experimental
setup is used to acquire data through the two cameras and the flowmeter. A computer is
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used to format the data and treat the data before feeding them in the digital twin model. At
the bottom of the figure, the physical prior knowledge represented by the pipe linear PDE
is used in the PINN model alongside experimental data to train the model. Once the PINN
model is trained, it becomes the pipe digital twin on the left and can mimic its behaviour
and estimate its hidden characteristics.

This master thesis is organized as follows: after this introduction we conduct a literature
review in Chapter 2 on the PINNs and on the pipe conveying fluid experiment. Then, based
on the literature review, we construct and present the objectives of this master thesis in
Chapter 3. Afterwards, in Chapter 4, we present the methodology used to design, assemble
and use the experimental setup and to acquire data. We continue by presenting the results
obtained with the experimental setup in Chapter 5 and we explain the methodology used to
build the PINNs models in Chapter 6. Finally, we present and discuss the PINNs results in
Chapter 7 and we conclude in Chapter 8 by summarizing our work and discussing limitations
and future work possibilities.
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CHAPTER 2 LITERATURE REVIEW

2.1 Physics informed neural networks

Machine learning methods and notably neural networks have made tremendous progress in
diverse scientific fields such as image recognition [19], language processing [20] or autonomous
driving [21]. However, neural networks perform well in large data conditions, data which
might turn out to be expensive or complex to acquire in real world industrial applications.
Moreover, the amount of data needed to keep the same data density over the domain increases
exponentially with the problem dimension rendering impossible the use of neural networks
on high dimensional problems. On the other hand, decades of scientific research have allowed
physicists to develop models describing most physical phenomena through partial differential
equations, intregro-differential equations, boundary conditions or physical laws such as the
conservation principle. Using machine learning methods without considering these laws is a
waste of knowledge.

Physics informed neural networks combine data with the prior knowledge cited before [22].
The prior knowledge helps regularize the solution between sparse data points, reduces the
need for data and the over-fitting while allowing to solve inverse problem and to extrapolate
beyond the available data while respecting physical laws [15,16].

PINNs are already used with success in many different fields such as fluid mechanics to solve
the Navier Stokes equations [23], in thermal to solve diffusion and heat transfer problems [24]
or in structures to study fractures phenomena [25]. PINNs can also solve FSI problems such
as vortex induced vibrations (VIV) on cylinders [26,27].

2.1.1 Deep neural networks

A PINN based digital twin uses a neural network acting as a universal non-linear approxi-
mator that can approximate any function [28].

Figure 2.1 describes the architecture of a classic fully connected, feedforward, neural network.
The NN is composed of one input layer of dimensions L (two in the figure), D hidden
layers (depth)(two in the figure) composed of W neurons (width) and of one output layer of
dimension R (one in the figure). For an input zzz ∈ Ω ⊂ RD, where Ω is the physical or input
domain, we have the function representing the physical phenomenon to be approximated
f(zzz) = xxx : Ω → f(Ω) = RR and we note fNN(zzz) = xxxNN the approximation from the NN with
respect to the chosen ‖.‖ norm. As illustrated in Figure 2.1, each neuron of the hidden layers
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of a fully connected NN is connected with all neurons of the previous layer (as input) and
each layer of the following layer (as output). The output of each neuron is computed from
the input, the weight and the biases with a non-linear activation function such as ReLU,
sigmoid or tanh. Figure 2.2 illustrates how each neuron acts on the input with the following
relation between the output and the inputs of the neurons:

x = σ(W1z1 + W2z2 + W3z3 + b), (2.1)

where σ is the chosen activation function. Each neurons perform this operation to compute
the value of the output xxx from the input zzz.

We write the output of the neural network xxxNN as fNN(z,WWW,bbb), where WWW are the weights
matrices and bbb are the biases vectors. The optimal approximation f ∗

NN(zzz) is obtained with
the values of WWW ∗ and bbb∗ which are the solutions of the following optimization problem:

(WWW,bbb)∗ = argminWWW ,bbb(‖f(zzz) − fNN(zzz,WWW,bbb)‖). (2.2)

This optimization problem is solved during what is called the training phase of the neural
network. Once the NN is trained and the optimal weights and biases are known, the NN
computes the approximation of the function for any given input in the training range. To
train the NN we select a set of Ndata inputs zzzdata ∈ Ω and the set of corresponding known
output from the function to be approximated: xxxdata. The optimization problem can be
formulated:

(WWW,bbb)∗ = argminWWW ,bbb

Ndata∑
i=1

(‖xxxdata
i − fNN(zzzdata

i ,WWW,bbb)‖), (2.3)

where the sum is the term to be minimized and is called the loss function Ld. We use the
subscript d on this loss term as it is corresponding to the data and is a part of a larger loss
function as we will see later. With the L2 norm, this loss term has the following expression:

Ld = 1
Ndata

Ndata∑
i=1

(xxxdata
i − fNN(zzzdata

i ,WWW,bbb))2. (2.4)

To solve this problem, we traditionally use gradient descent optimization algorithms such
as Adam [29] or quasi Newton algorithms like L-BFGS-B [30]. These algorithms implement
automatic differentiation [31] and the chain rule to compute the loss derivatives with respect
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to the weights and biases parameters of the NN as follows:

∂Ld

∂θ
= 2

Ndata

Ndata∑
i=1

(xxxdata
i − fNN(zzzdata

i ,WWW,bbb)) × ∂fNN(zzzdata
i ,WWW,bbb)
∂θ

, (2.5)

where θ is the hyper parameter (weight or bias) with respect to which the loss function is
derived. The value of:

∂fNN(zzzdata
i ,WWW,bbb)
∂θ

, (2.6)

is computed with the activation function derivatives and with the chain rule by going through
the neural network backward until the first layer is reached which is commonly called the
back propagation step.

Some more advanced neural networks use adaptive activation functions to accelerate conver-
gence or adaptive learning rate in the optimization algorithms to avoid getting stuck in local
minima at the beginning and oscillations at the end of the training [32].

The "physics informed" part that we mentioned previously can be implemented by two dif-
ferent methods: soft implementation and hard implementation.
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2.1.2 Soft implementation of the physics prior knowledge

Most physical problems are governed or at least constrained by a set of partial differential
equations or integro-differential equations with boundary conditions. The following equation:

Opppf(zzz) = h(zzz), (2.7)

represents the partial differential equation where xxx = f(zzz) is the vector representing the
quantity of interest, zzz ∈ Ω is the vector representing the physical variable over the physical
domain, h(zzz) is a forcing term and O is an integro-differential operator with scalar parameters
ppp.

The boundary condition is equally represented as follows:

f(zzz) = g(zzz), (2.8)

where zzz ∈ ∂Ω is the physical variable over the physical boundary.

This physical prior knowledge can be enforced in the NN through a soft penalty constraint
during the optimization process. To do so we add two terms to the loss function L =
αdLd + αbLb + αsLs where:

Ls = 1
Ns

Ns∑
i=1

(OpppfNN(zzzi) − h(zzzi))2, (2.9)

is a loss based on the residuals of the partial differential equation and:

Lb = 1
Nb

Nb∑
i=1

(fNN(zzzi) − g(zzzi))2, (2.10)

is based on the boundary conditions and where αd, αs and αb are weights that can be applied
to the different terms of the loss function.

The boundary conditions and the partial differential equation can therefore be penalized on
large sets of points Nb and Ns. With this addition, the NN regularizes the solution between
data points while respecting physical rules thus reducing the risk of over-fitting and the need
for data during training. By including points outside the range of data in Nb and Ns, it is
also possible for PINNs to extrapolate outside of the measurements. We use the subscript s

for the loss term corresponding to the differential equation since we used a strong formulation
for this term. The loss function also allows to solve inverse problem as the parameters ppp from
the linear operator can be unknown and set as variables to be optimized during the training.
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Once the training is completed, these parameters have the value of the actual corresponding
physical parameters.

To improve the PINN performance it is possible to use the weak or variational formulation
of the loss associated to the PDE [33, 34]. To do so, we multiply Equation (2.7) by a test
function vk that is defined on the Ω domain for k = 1, 2, ..., Nk and we integrate on Ω thus
reaching the following formulation:

∫
Ω

Opppf(zzz)vk(zzz)dΩ =
∫

Ω
h(zzz)vk(zzz)dΩ. (2.11)

The part of the loss function associated to the PDE can therefore be rewritten as:

Lw = 1
Nk

Nk∑
i=1

(∫
Ω

OpppfNN(zzz)vk(zzz)dΩ −
∫

Ω
h(zzz)vk(zzz)dΩ

)2
. (2.12)

Because of the neural network structure it is impossible to express analytically the integrals
in this loss term if the NN is more than one layer deep. The integrals have to be computed
numerically by using, for example, the quadrature rule.

This formulation has many advantages over the strong formulation. The order of the deriva-
tives in the differential operator is reduced through integration by part, thus reducing the
computational complexity and computational errors coming from high order derivatives com-
bined with irregular solutions from the NN. Moreover, the quadrature rule used to estimate
the integrals requires less penalization points compared to the strong form that has to be
penalized evenly on the domain.

This approach can be combined with domain decomposition by dividing the domain Ω in
sub domains Ω1, Ω2, ..., ΩN and by using different test functions on all the domains [35]. This
performs better for cases where strong local irregularities are present in the solution.

The loss function is a high dimension non-convex function, so it is complicated to minimize
it during the training process to get the PINN hyper-parameters. In addition to adaptive
learning rate as mentioned before, it is also possible to use adaptive weights on the loss
function terms to improve the convergence of the minimization [36].

2.1.3 Hard implementation of the physics prior knowledge

Another possibility to incorporate prior knowledge into the NN is to work on the NN structure
itself to force the solution to respect the physical model. This approach can and should be
implemented in parallel with the precedent approach.
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One of the first solution is to encode hard boundary conditions with prior dictionaries [37].
The idea is to multiply the output of the NN by a function that always respects the boundary
conditions:

xxxNN = fNN(zzz,WWW,bbb) × fbc(zzz), (2.13)

where fbc is the function forcing the boundary condition. For example, for a cantilevered
beam, we use the fbc(zzz) = tanh (zzz)2 since this function and its first derivative are equal to
zero for zzz = 0 thus assuring that the deflection and the slope are equals to zero on the
clamped end of the beam. This approach may however prove more complex for boundary
condition on higher order derivatives.

Another approach is to work directly on the architecture of the NN to force it to respect
some of the characteristics of the approximated function. A NN can be forced to respect
reflection or rotation symmetries or translation and rotation invariances [15]. The most
common NN architecture adapted to fit the application is the convolution NN for computer
vision applications [38].

Finally, it is possible to use the prior knowledge on the shape of the solution. If a dynamic
phenomenon is known to be following a sinusoidal law, we use modal PINNs [39]. The idea
is to assume that the solution has the following form:

x =
Nmode∑

k=1
φk(z) exp (jωkt), (2.14)

where ωk are the system eigenfrequencies and φi are the unknown spatial mode shapes. In
this particular example, z is a scalar in the spatial domain and t is a scalar in the time
domain, while x is also a scalar which represents the physical phenomena.

With this formulation, the NN takes only the space dimension as input and not the time
dimension and has the N spatial modes as output:

fNN : x → (φNN
1 (z), φNN

2 (z), ..., φNN
N (z)). (2.15)

The penalization of the three terms of the loss function is still performed on the values of x

after multiplication with the time functions and the summation. We can therefore write the
three terms of the loss as:

Ld = 1
Ndata

Ndata∑
i=1

xdata
i −

Nmode∑
k=1

φNN
k (zdata

i ) exp (jωktdata
i )

2

, (2.16)
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for the data part and:

Ls = 1
Ns

Ns∑
i=1

Oppp
Nmode∑

k=1
φNN

k (zs
i ) exp (jωkts

i ) − h(zs
i )

2

, (2.17)

for the partial differential equation and:

Lb = 1
Nb

Nb∑
i=1

Nmode∑
k=1

φNN
k (zb

i ) exp (jωktb
i) − g(zb

i )
2

, (2.18)

for the boundary conditions.

2.2 The pipe conveying fluid

Flow induced vibrations in a pipe are observed in many physical and industrial applications
such as risers in oil rigs or pipelines which motivated the study of the pipe conveying fluid
dynamics over the years. The pipe conveying fluid is a system that has rapidly become
a "paradigm of dynamics" and has been studied extensively since the middle of the 20th
century. More than hundreds of articles presenting experimental or theoretical studies of the
pipe have been published.

2.2.1 Overview

Early studies are mainly focused on linear models of the pipe that are mostly valid before
the destabilization of the pipe movement and before the critical flow speed [40–42]. These
studies mainly focus on two dimensional problems and are meant to determine the critical
flowrate, to plot Argand diagrams presenting the eigenfrequencies along the flow velocity or
also to study the pipe behaviour just after the critical speed. Some interesting phenomena
are also observed such as the evolution of the pipe damping with the evolution of the flowrate
because of the water added damping or the evolution of the critical flowrate with respect to
the pipe dimensions [43].

More recent studies model the dynamics of the pipe beyond critical speed and dive into
non-linear behaviour. The earliest of these studies constrain the pipe to a bi-dimensional
movement [44–46] to facilitate measurements while more recent studies [47,48] are, for most
of them, studying the pipe dynamics in three dimensions.

The pipe was also studied in different configurations. The most studied case is the can-
tilevered pipe conveying fluid. In this case, the pipe is a non-conservative system that loses
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stability by flutter. At higher flowrate, the planar cyclic flutter becomes a three dimensions
orbital or rotary flutter and the movement becomes chaotic at even higher flowrate. Partic-
ular pipes have also been studied in the literature such as long hanging pipes [49]. Pipe with
an additional point mass were also studied and it was shown that this mass either desta-
bilizes [50] the pipe or stabilizes [51] the pipe depending on its position and mass. Pipes
with spring supports, either at the tip of the pipe or higher on the pipe were also consid-
ered [52, 53]. It was shown that depending on the springs stiffness and position, the pipe
exhibits very rich and different dynamics.

Pipe clamped at both ends were also thoroughly examined and have a similar behaviour to
pipes clamped at one end and supported at the other end [54, 55]. In these configurations,
the pipe loses stability by buckling which leads to a static instability. It should be noted
that the addition of supported boundary conditions has a tendency to destabilize the pipe.
Subjected to a flowrate slightly under the critical flow speed, a cantilevered pipe buckles upon
the addition of a support at its free end which is counter intuitive. With these boundary
conditions, the pipe is a conservative problem as opposed to the cantilevered case.

The experimental setup conceived in this study shall allow the operator to easily study all
the previous cases with only slight modifications. Many other interesting configurations are
not studied in this project. We can, for example cite the cases of pipes conveying two-
phase flows [56], horizontal pipes, pipes conveying pulsating flows [57] or pipes with external
flows [58].

From this literature review, it is clear that the pipe conveying fluid is a perfect model experi-
ment to develop a digital twin. Indeed, it is a simple system that is fairly easy to reproduce in
a lab. However, despite its simplicity, it is a rich experiment that exhibits various behaviour
on a large range of physical phenomena. On the first hand, the physics of the pipe can go
from a linear behaviour with planar motions to three dimensions chaotic motions with strong
non-linearities by just changing the flowrate in the pipe with no modifications to the setup.
Then, slight modifications on the setup can also dramatically influence the movements of the
pipe. For example, the non-linearities can be increased by adding an end mass on the pipe.
One can also evaluate the impact of using different boundary conditions on the pipe physics
as with springs for example. It is why, this experiment was chosen as it allows us to work
on a large variety of phenomena with the digital twin to assess its effectiveness in different
possibilities.

In addition, the pipe conveying fluid presents many different quantities of interest that are
measured to train the digital twin. It is possible to measure the bending of pipe, its position,
its acceleration as well as its elongation for example. This possibility to work with different
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types of data is of prime importance for our work as it enables us to assess which kind of
data is the most effective to train the digital twin. It would then be an advantage to know
which data to use on a real life system such as hydraulic turbines [13].

Finally, the pipe conveying fluid is an experiment with many hidden parameters that cannot
be determined easily with classical methods. The pipe material such as its Young modulus
and visco-elastic parameters, the fixation parameters that can be modelled with springs of a
certain stiffness or even the water flowrate. These hidden parameters offer a great opportunity
to test the ability of PINNs to evaluate these parameters by using the sensors data and the
physical model on top of simulating the pipe motion.

2.2.2 Linear model

We have decided to develop the pipe digital twin with PINNs. As explained before, PINNs
combine data from sensors and physical prior knowledge. As a first step toward the digital
twin, we use the classic two-dimensional linear model from the cantilevered pipe conveying
fluid. The associated PDE is derived and presented in reference [1]. This PDE was obtained
through a Newton derivation which is detailed alongside the different simplifications in the
book for interested readers. The material damping is modelled using the Kelvin-Voight
visco-elastic model and we neglect friction from the fluid on the exterior of the pipe since it
is air. Because the pipe is cantilevered and the pipe fixation is considered perfectly rigid, the
tension, pressure and fixation flexibility terms are not considered. The dimensional equation
can be written as follows:

E∗I
∂5x

∂t∂z4 + EI
∂4x

∂z4 +
{
MU2 − g (M + m) (L − z)

} ∂2x

∂z2

+ 2MU
∂2x

∂t∂z
+ g (M + m) ∂x

∂z
+ (M + m) ∂2x

∂t2 = 0,

(2.19)

where the parameters are explained in Table 2.1.

In the previous pipe equation, we distinguish the following terms:

• E∗I ∂5x
∂t∂z4 is the damping term that is modelled with a visco-elastic damping;

• EI ∂4x
∂z4 is the classic Euler-Bernoulli flexural rigidity term that we find in the cantilevered

beam equation;

• g(M + m)∂x
∂z

− g(M + m)(L − z)∂2x
∂z2 is the term from the influence of gravity;

• MU2 ∂2x
∂z2 is the centrifugal force term;
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Table 2.1 Dimensional parameters of the pipe equation of motion

Symbol Signification

z Vertical coordinate

t Time

x Pipe orthogonal deflection

I Pipe quadratic moment

E Pipe material Young modulus

E∗ Kelvin-Voight visco-elastic damping parameter

M Linear mass of the fluid through the pipe

m Linear mass of the pipe

L Length of the pipe

U Flow velocity

• 2MU ∂2x
∂t∂z

is the Coriolis force term;

• (M + m)∂2x
∂t2 is the classic inertial term that we find in the cantilevered beam equation.

This equation has the following non-dimensional form:

αη̇
′′′′ + η

′′′′ +
(
u2 − γ (1 − ξ)

)
η

′′ + 2β1/2uη̇
′ + γη

′ + η̈ = 0, (2.20)

where the dimensionless parameters are defined in Table 2.2.

As with the dimensionnal equation we can identify the different terms:

• αη̇
′′′′ is the visco-elastic damping term;

• η
′′′′ is the flexural rigidity term;

• u2η
′′ is the centrifugal force term;

• −γ (1 − ξ) η
′′ + γη

′ is the term from the influence of gravity;

• 2β1/2uη̇
′ is the Coriolis force term;

• η̈ is the inertial term.
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Table 2.2 Parameters of the pipe adimensional PDE

Formulation Signification

ξ = z
L

Adimensional vertical coordinates

η = x
L

Adimensional deflection of the pipe

τ = ( EI
M+m

) 1
2 t

L2 Adimensional time

u = ( M
EI

) 1
2 LU Adimensional flowrate

β = M
M+m

Mass parameter

γ = (M+m)L3

EI
g Gravity parameter

α = ( I
E(M+m))

1
2 E∗

L2 Damping parameter

˙ = ∂
∂t

Time derivative
′ = ∂

∂z
Space derivative

This PDE is used as our model in the PINN. We have to solve this PDE in order to generate
numerical data, to compare it with the experimental results and with the simulations from
the PINN. We expect this PDE to be a valid model of the pipe for a flowrate from 0 to the
critical speed. Above the critical speed, the behaviour of the pipe has to be described with
the non-linear model in particular to account for the large deflection of the pipe.

To solve this PDE, we used the Galerkin method as detailed in reference [1]. The idea is to
write an approximation of the solution as a summation of cantilevered beam eigenfunctions
(φi) with time functions (qi) as follows:

η(ξ, τ) =
N∑

i=1
φi(ξ)qi(τ). (2.21)

The φi functions are well known and take the following shape:

φi(ξ) = cosh(λiξ) − cos(λiξ) − σi(sinh(λiξ) − sin(λiξ)), (2.22)

with λi the cantilevered beam eigenfrequencies verifying the following:

cos(λi)cosh(λi) + 1 = 0, (2.23)
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and with:
σi = sinh(λi) − sin(λi)

cosh(λi) + cos(λi)
. (2.24)

We inject the solution (2.21) into the Equation (2.20), multiply it by φj for 1 ≤ j ≤ N

and integrate the resulting N equations between 0 and 1 on the ξ domain. We obtain the
following equations for every 1 ≤ j ≤ N :

N∑
i=1

{
α

∫ 1

0
φi(ξ)′′′′

φj(ξ)q̇i(τ)dξ +
∫ 1

0
φi(ξ)′′′′

φj(ξ)qi(τ)dξ

+
(
u2 − γ (1 − ξ)

) ∫ 1

0
φi(ξ)′′

φj(ξ)qi(τ)dξ + 2β1/2u
∫ 1

0
φi(ξ)′

φj(ξ)q̇i(τ)dξ

+γ
∫ 1

0
φi(ξ)′

φj(ξ)qi(τ)dξ +
∫ 1

0
φi(ξ)φj(ξ)q̈i(τ)dξ

}
= 0.

(2.25)

From the cantilevered beam equation, we obtain:

φi(ξ)′′′′ = λ4
i φi(ξ). (2.26)

We also use the fact that the cantilevered beam eigenfunctions φ are orthonormal meaning:

∫ 1

0
φi(ξ)φj(ξ)dξ =

0 if i 6= j

1 if i = j
. (2.27)

We therefore obtain the following equation:

N∑
i=1

{
δij q̈i +

[(
αλ4

i + σ
)

δij + 2β1/2u
∫ 1

0
φjφ

′
idξ

]
q̇i

+
[(

λ4
i + k

)
δij +

(
u2 − γ

) ∫ 1

0
φjφ

′′
i dξ

+γ
∫ 1

0
φjφ

′
idξ + γ

∫ 1

0
φjξφ′′

i dξ
]

qi

}
= 0, s = 1, 2, . . . N.

(2.28)

With the boundary conditions of the cantilevered pipe, one can obtain a formula for the
following terms which are presented in Table 2.3:

∫ 1

0
φi(ξ)φj(ξ)′

dξ = bij, (2.29)

∫ 1

0
φi(ξ)φj(ξ)′′

dξ = cij, (2.30)



19

∫ 1

0
φi(ξ)φj(ξ)′′

ξdξ = dij. (2.31)

We therefore obtain the N following equations for 1 ≤ j ≤ N :

N∑
i=1

{
δij q̈i +

[
αλ4

i δij + 2β1/2ubij

]
q̇i +

[
λ4

i δij + (u2 − γ)cij + γbij + γdij

]
qi

}
= 0. (2.32)

This equation can be written as a (N × N) matrix system:

q̈̈q̈q +
[
FFF + 2β1/2uBBB

]
q̇̇q̇q +

[
∆∆∆ + γBBB + (u2 − γ)CCC + γDDD

]
qqq = 000, (2.33)

where the BBB, CCC and DDD matrices are (N × N) matrices respectively containing the values of
bij, cij and dij. FFF and ∆∆∆ are diagonal matrices with their respective components being αλ4

i

and λ4
i .

We transform this matrix equation to a classic second order differential matricial equation
as follows:

Mq̈ + Sq̇ + Kq = 0Mq̈ + Sq̇ + Kq = 0Mq̈ + Sq̇ + Kq = 0. (2.34)

We then reduce this system to a first order system as follows:

QQQ =
q̇̇q̇q

qqq

 , UUU =
MMM SSS

000 111

 and VVV =
 000 KKK

−1−1−1 000

 . (2.35)

And the equation becomes:
UQ̇ + V Q = 0UQ̇ + V Q = 0UQ̇ + V Q = 0. (2.36)

Table 2.3 Formula for the integral terms of the PDE

Case i = j Case i 6= j

bij 2 4
( λi

λj
)2+(−1)i+j

cij λiσi(2 − λiσi) 4(λiσi−λjσj)
(−1)i+j−(

λj
λi

)2

dij
1
2cii

4(λiσi−λjσj+2)
1−(

λj
λi

)4
(−1)i+j −

3+(
λj
λi

)4

1−(
λj
λi

)4
bij
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We suppose QQQ = AAAeλτ , and inject this solution into Equation (2.36), to get:

(λUUU + VVV )AAA = 000 ↔ λAAA = (−UUU−1VVV )AAA, (2.37)

where λ is an eigenvalue of −UUU−1VVV and AAA is an eigenvector. This system is solved as an
eigenvalues problem with built in functions in Python for example.

It is then possible to compute the eigenfrequencies and eigenvectors of qqq for different values
of u, β or γ. However, if one wants to study the evolution of these eigenfrequencies with the
values of u for example, then it is necessary to track the modes when the input values change.
Indeed, the Python function used to compute the eigenvalues and the eigenvectors returns
them in random order. To plot the evolution of an eigenfrequencies, it is necessary to plot
them for the same modes. Therefore, we used the Maximum Assurance Criterion (MAC) to
order the output of the Python function according to the correct mode [59].

We applied the following method to sort the results with the correct modes for the evolution
of u:

• At u = 0, we sort the modes from smallest to biggest eigenvalue real parts;

• At each u+∆u, we compute the MAC matrix of every modes from u with every modes
from u + ∆u;

• We associate the modes from u + ∆u with the modes from u with which they have the
largest MAC;

• If the MAC is less than 0.9, we go back to the second step with ∆unew = ∆u/2;

For all the following computations we used N = 10 as the number of beam modes as it is
recognized to be enough in the literature. All the codes to solve the linear model and other
codes used in the next part of this master thesis are available at reference [60] with the data.

The plots in Figures 2.3 and 2.4 reproduce results presented in reference [1].

We ploted Argand diagrams in Figure 2.3 which represent the imaginary part of the ith non-
dimensional frequency ωi as a function of its real part for a range of non-dimensional u from 0
to 20. The non-dimensional frequency ω is defined as ω = −iλ. The real part represents the
frequency of the motion of the pipe while the imaginary part represents the damping of the
motion. The higher the imaginary part is, the more stable the system is. On the contrary,
when the imaginary part gets smaller, the system is getting less stable and unstable when
the imaginary part is negative. The points placed on the curves are placed for every integers
values of u starting at u = 0.
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Figure 2.3 Argand diagrams reproduced with the linear model detailed in reference [1]: (a)
for α = γ = 0 and β = 0.2 and (b) for α = 0, β = 0.65 and γ = 10. The points on the
curves are placed at every integer values of u starting at u = 0. The first four modes are
represented: ( ) for first mode, ( ) for second mode, ( ) for third mode and ( ) for
fourth mode.

Figure 2.3(a) shows that the pipe destabilizes firstly through its second mode and then
through its fourth mode. For the first and the third modes, we notice that the damping
increases when the flowrate increases. For the second and fourth modes, the damping also
increases before decreasing again and becoming negative with the flutter destabilization. We
will observe experimentally this augmentation of the water added damping with the increase
of the flowrate before the destabilization on the experimental setup.

Figure 2.3(b) presents the same phenomena: the pipe destabilizes first with the first mode
and the damping also starts by increasing with the flow velocity.

With the same approach, we constructed a stability map in Figure 2.4(a) which shows the
evolution of the critical flowrate at which the flutter appears on a range of mass parameters
β from 0 to 1 and for four different values of gravity parameters γ.

To build this plot, we compute the first ten eigenvalues λ for a range of flowrate starting at
u = 0. When at least one of the real part of the eigenvalues has a negative value, it means
that the damping has became negative and that the pipe is unstable through flutter. The
critical flowrate u is the lowest flowrate at which one of the eigenvalues real part becomes
negative. For the gravity parameter γ = −10 we had to find the flow velocity at which the
real part changes sign from positive to negative as some eigenvalues have a negative real value
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even at u = 0 which indicates a static instability and not flutter. Indeed, a negative gravity
parameter represents an upside down pipe which would be unstable even without flow.

A larger gravity parameter induces a better stability with a higher critical speed. It is logical
as a larger γ means that the gravity has a stronger effect on the pipe and acts to keep the pipe
in its rest position. We will observe this phenomenon experimentally with the experimental
setup with the pipes having different lengths. Furthermore, a larger mass parameter increases
the stability of the pipe because it increases the importance of the Coriolis force in comparison
to the centrifugal force. The Coriolis force absorbs energy and stabilizes the pipe while the
centrifugal force destabilizes the pipe. We also observe this phenomenon on the experimental
setup with the three pipes having different inner diameters. One last interesting thing to
notice on this graph is the restabilization: at certain values of β the pipes destabilize at a
first critical speed and then restabilize before destabilizing again at a second critical speed.

Lastly, as shown in Figure 2.4(b), we use the linear model to generate numerical data on
the deflection of the pipe. For this purpose, we proceed as follows: We compute the 2N

eigenvalues and eigenvectors for the needed u, β, γ and α parameters with the method
explained before. We rewrite the deflection as:

η(ξ, τ) =
N∑

i=1
φi(ξ)QQQN+i(τ), (2.38)

where the QQQ vector is of size 2N and defined as:

QQQi(τ) =
2N∑
j=1

cjAAAi,je
λjτ , (2.39)

with AAAj, λj, cj and i respectively the jth eigenvectors and eigenvalues determined before, a
constant depending on the initial conditions and the line of the QQQ and AAA vectors.

Then we chose the initial conditions: here we assumed that the pipe initial position corre-
sponds to the first beam mode shape and that the pipe initial speed is equal to zero, which
means:

η(ξ, 0) = φ1(ξ) =
N∑

i=1

φi(ξ)
2N∑
j=1

cjAAAN+i,j

 . (2.40)

With this initial condition equation, we determine the values of the cj constants. Once the
coefficients are known, we compute the deflection as follows:

η(ξ, τ) =
N∑

i=1

φi(ξ)
2N∑
j=1

cjAAAN+i,je
λjτ

 . (2.41)
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Figure 2.4 Graphics reproduced with the linear model detailed in reference [1]: (a) Flowrate
of apparition of flutter instability for different gravity parameters: ( ) γ = 0, ( ) γ = 10,
( ) γ = 100 and ( ) γ = −10 and (b) Data generated with the linear mode for the
deflection of the tip of the pipe for different flowrates ( ) u = 3, ( ) u = 6, ( ) u = 9
and ( ) u = 12.

Figure 2.4(b) represents the deflection of the tip of the pipe in time after being subjected
to a perturbation corresponding to the precedents initial conditions. The flowrate influences
the evolution of the damping which we will observe on the experimental results later.
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CHAPTER 3 SYNTHESIS OF THE LITERATURE REVIEW AND
RESEARCH OBJECTIVES

3.1 Synthesis of the literature review

Hydraulic power plants are under more stress than ever to adapt to the introduction of
intermittent renewable energy. This new usage of hydraulic infrastructures creates the need
for a closer monitoring of the turbines to follow their state, to predict maintenance and
to avoid accidents and unexpected shutdowns. This motivates the global objectives of this
project: develop methods and knowledge that could ultimately lead to the development of
a hydraulic turbine digital twin. Because of the availability of lots of sensor data and the
existence of many physical models describing the hydraulic turbines functioning, we use PINN
methods to build a digital twin by combining sensors data and theoretical prior knowledge.

To develop the digital twin, it is not advisable to work on a real hydraulic turbine as it is
a very complex system and it would be complicated to obtain the data needed to work on
the development of the PINN methods. We therefore decided to work on a pipe conveying
fluids for two main reasons. Firstly, it is a system that is fairly cheap and easy to install in a
university lab to obtain data. Additionally, it is a very rich system that presents interesting
physics phenomena on a wide range. It is also a system that can be modified easily to observe
other phenomena with different boundary conditions or different pipes. The second reason
we chose the pipe conveying fluid is that it is a system with fluid structure interactions
analogous to some of those in hydraulic turbines. For example, water added mass and added
damping play a fundamental role in the fatigue evolution for hydraulic turbines. This same
water added damping also influences the behaviour of the pipe conveying fluid.

3.2 Research objectives

From what we have summarized in the literature review, we propose four objectives for this
thesis that are also of interest for doctoral students working on the follow-up of the project.

• Design an experimental pipe conveying fluid setup that provides training data and
validation data for the digital twin. The first setup is a cantilevered pipe but is flexible
enough to install different other boundary conditions such as clamped tip or springs.
It shall also be possible to use pipes of different shapes or with embedded ring masses.
The pipe has to be observed both in linear conditions before the critical flowrate and
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also in non-linear instability conditions after the critical flowrate. The pump should
deliver a flowrate which is high enough to reach the chaotic oscillations from the pipe
conveying fluid.

• Set up the data acquisition and treatment system to provide the data to the digital
twin. A new method with cameras is used to track the pipe position in three dimensions
in all configurations and to measure the flow speed at the same time. This measurement
method can also provide live data while the experiment is running to train the digital
twin online in the future.

• Test the setup on the full range of the flowrate using pipes of different lengths and
different diameters. Identify the mode shapes of the pipe and the influence of the
flowrate on the motion, on the amplitude and on the vibration frequency of the pipe.
We identify the different motion types such as planar, circular and chaotic, and other
phenomena that could be studied in the future.

• Use PINNs with the pipe conveying fluid linear model before the critical speed. Use
classic, weak-form and modal PINNs methods to simulate the pipe behaviour in the
linear domain with numerically generated data to demonstrate that these methods are
effective to characterize the pipe motion. Prove that the modal and weak formulations
are more effective than the classic formulation and reduce the need for data and the
risk of over-fitting. Then use classic PINNs with generated data and experimental
data to simulate the pipe and to determine some hidden parameters of the system
demonstrating that the PINNs not only simulate the motion of the pipe but also solve
inverse problem.
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CHAPTER 4 METHODOLOGY: EXPERIMENTAL SETUP OF A PIPE
CONVEYING FLUID SYSTEM

4.1 Global architecture of the pipe conveying fluid setup

The architecture of the pipe conveying fluid setup is inspired by Paidoussis [50] and shown
in Figure 4.1 with the principal components listed in Table 4.1. A two Horse Power (HP)
centrifugal pump 2 generates the flow in the circuit. The pump is powered by a tri-phase
variator drive 4 to control the flowrate. The drive controls the current output frequency
from 0 to 60 Hz with a 0.1 Hz frequency step. A flow control valve after the pump controls
the flowrate more precisely if needed. The water then goes into a 15 USG steel tank 3
rated for a pressure up to 75 psi. In this tank, the free liquid surface between the water
and the air on the top mitigates the potential fluctuations in the flow induced by the pump.
The flexible plastic tubing in the circuit also adds damping to the system and makes the
assembly of the setup easier. A magnetic Rosemount 8711 flowmeter with a 3/4" flowtube
and a 8732 transmitter 5 measures the volumic flowrate in the circuit. The flow velocity is
read directly on the flowmeter or is stored in a text file with a National Instrument NI9203
current acquisition card. The flowmeter delivers a 4-20 mA current signal that is scaled to
the needed flowrate range. The section of the circuit then increases to a 2 inches diameter
from a 3/4 inches diameter. A flow straightener 6 built with plastic straws taped together is
fixed in the higher diameter section. This flow straightener with low diameters straws breaks
large movements in the flow and also helps to get a laminar flow. After the flow straightener,
the diameter of the circuit shrinks back to 3/4 inches to improve the flow quality. At the
end of the circuit, the "pipe conveying fluid" 7 is fixed with a clamp and a hose fitting on
which the pipe is embedded. The origin point of the pipe is considered to be the point where
the hose fitting in the pipe ends. The pipe is then contained in a 4 × 4 × 2 ft acrylic and
translucent tank 9 . A white plastic liner covers up the tank and contain the splashes. The
two sides of the tank opposite to the cameras are covered with white opaque plastic sheets
to have a white unified background for the cameras and to facilitate image treatment. The
water from the pipe flow goes to the main 35 USG plastic tank 1 through a drain in the
translucent tank before going back in the pump. Two relatively high speed FLIR BFS-U3-
20S4C-C cameras with two 8 mm FL-CC0814-2M lenses 8 and 8’ are fixed with T-slotted
rails. These fixations allow the operator to move the cameras in both directions. The lenses
are as close as possible to the plastic plates of the tank to avoid the water drops on the tank.
A water repellent spray applied on the tank walls increases the dripping of the water.
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Figure 4.1 The pipe conveying fluid experimental setup

Table 4.1 Description of the components highlighted in Figures 4.1

.

No. Name Characteristics
1 Main storage tank 35USG plastic water tank with 3/4" drain
2 Pump 2HP centrifugal pump
3 Pressurized tank 15USG steel pressure rated water tank
4 Pump drive Three phase pump drive from 0 to 60Hz
5 Flowmeter Rosemount volumic flowmeter
6 Flow straightener Large 2" pipe with straws
7 Pipe Rubber-silicone pipe

8 and 8’ Two cameras Flir USB3 cameras with 8 mm lenses
9 End container 4 × 4 × 2 ft transparent acrylic tank
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Figure 4.2 View of the pipe from the front camera position
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4.2 Manufacturing and characterization of the pipe

Commercial rubber-silicone pipes are widely available. However, we manufacture our own
pipes since commercial pipe quality is not perfect. For example, they often have an initial
curvature and their section is not perfectly circular because they are rolled during storage.
These defects could be corrected by heating the pipes and maintaining them straight for a
few hours, but we prefer to manufacture our own pipes shown in Figure 4.4 to have more
flexibility on the choice of the pipe dimensions, parameters and also to have the possibility
to embed metallic rings in the pipe. In the future, it might be interesting to use commercial
pipes with their defects to assess the ability of the digital twin to handle the unknown defects.

4.2.1 The pipe manufacturing

To build our own pipe, we used a similar method as the one described in reference [17]. We
built a mould described in Figure 4.3 composed of the following elements:

• Two aluminum parts that were machined with a three axes numerical milling machine
and a 5/8" ball end mill. The internal diameter corresponds to the external diameter
of the pipe and the length is the maximal length of the pipe. Four centring holes with
centring pins and ten threaded holes were drilled in both parts and are used to tighten
the two aluminum parts together and to avoid any leaks. It is possible to modify these
parts of the mould by machining them to make different pipes or to mould rings in the
pipe.

• A central aluminum rod to make the central hole in the pipe. Its diameter corresponds
to the internal diameter of the pipe. These rods were bought from a local metal supplier.

• Two 3D printed parts made from Polyactic Plastic (PLA) maintaining the rod centred
as well as the two aluminum parts. One of these parts is shaped so that we can inject
the rubber silicone with a syringe. These two PLA parts are maintained together using
four threaded rods longer than the mould.

Smooth On OOMOO30, a room temperature vulcanizing (RTV) rubber-silicon was selected
to manufacture the pipes. The choice of the rubber-silicon is important to obtain the desired
properties for the pipe. It is also important to make sure that the working time is long
enough for the moulding process. One of the tricky point is to obtain a pipe rigid enough
with a silicon that is fluid enough. Rubber silicon with low viscosity is easier to mould into a
pipe. In order to obtain more rigid pipe, rubber silicon with larger viscosity should be used.
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(a) (b)

Figure 4.3 (a): Different components of the mould with, from left to right: the threaded rods,
the centring rod, the aluminum and PLA parts and the pipe. (b): Assembled mould.

Figure 4.4 Pipe without the black pigments
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However, it will be hard to inject high viscosity rubber silicon in the mould and it could
produce bubbles or other defects in the pipe. The chosen rubber-silicon has lavanda colour
so we mix black pigments with the rubber-silicone to blacken the pipe to facilitate image
treatment.

The detailed procedure to cast a pipe is as follows:

• Perfectly clean all the parts of the mould and spray them with easy unmoulding chem-
ical to facilitate the removal of the pipe from the mould after cure.

• Close the two external parts of the mould together and adjust their positions by using
the centring pins. Then put the two PLA parts on each side of the mould and tighten
at the same time the two aluminum parts and the two PLA parts with the screws and
the threaded rods.

• Position the mould vertically on a pierced wood plank.

• Mix the two components of the rubber-silicon in a large cup according to the supplier
instructions. The black pigments are added at this step at a maximum of 3% of the
mass of the mix. After a thorough mixing of the two components, the cup is placed in
a vacuum chamber for a few minutes to remove air bubbles. Remove the cup from the
chamber when no more bubbles are visible.

• Suck the rubber-silicon with a syringe and pour it into the mould from the bottom hole
until the mix is spilling out from the top hole. Then, insert the centring rod and block
the bottom hole of the mould once the rod is in place.

• After the twelves hours cure time, unmould the pipe by removing the two PLA parts
and then the two aluminum parts. The easiest way to remove the centring rods is with
a high pressure air gun. Put the tip of the gun between the centring rod and the rubber
silicone, inject the air, and then pull the pipe from the rod while continuing to inject
the air.

• Cut the pipe to the desired length.

4.2.2 Characterization of the pipe by free vibration

To use the linear PDE of the pipe to properly train the digital twin, it is important to
determine the non-dimensional parameters of the pipe in Equation (2.19) or (2.20). We
cannot use the data given by the rubber-silicone manufacturer as they are not accurate and
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are subjected to changes in different lot numbers. Therefore, we tried two different methods
to characterize the pipe: free vibration and vibration by shaker.

The first method is inspired from the method of Paidoussis [61]. We record the pipe in
cantilevered configuration with a high speed camera in planar free motion after a planar
perturbation of 0.2 m without flow going through the pipe. To observe this movement, we
hold the pipe in a perpendicular plane to the camera plane and then release it. An image
processing program, presented later, retrieves the amplitude decay and the pipe free motion
frequency from the videos. We then use these data to determine the parameters as follows.

Figure 4.5 shows the evolution of the position of the tip of pipe No.1 as listed in Table 4.2
along time after perturbation. The grey solid curve shows the position of the tip at each
frame and the two black dashed lines follow the decay of the amplitude of the pipe with
time. To obtain the evolution of the amplitude, we used the function find_peaks from Scipy
in Python to find the peaks of the position of the tip. Figure 4.5 confirms that the position
follows a sinusoidal law multiplied by an exponential amplitude term.

We then fitted a linear function to the logarithm of the amplitude from the black dashed
lines and performed a FFT transform on the position of the tip of the pipe in Figure 4.6.
Figure 4.6(a) compares the linear regression results in dashed line and the actual measured
amplitude in solid line. The overall agreement is good but the logarithmic amplitude is not
fully linear which could be explained by the large amplitudes at the beginning of the video. It
would be possible to have a better agreement on a smaller range of amplitude at the expense
of having to use two coefficients for the full amplitude range. The amplitude logarithmic
coefficient is the first term of the linear regression. We performed the operation on three
videos and computed the coefficient as an average of the three videos: δ = −0.0167 where
δ is the logarithmic amplitude decrement corresponding to the first regression coefficient.
Figure 4.6(b) shows the result from the FFT of the position of the pipe. This FFT gives
us the natural frequency of the pipe without water. As for the logarithmic decay, we filmed
three videos and computed the average frequency f = 0.915 Hz.

Then we compute the evolution of the non-dimensional fundamental frequency with respect
to the γ parameter Re(ω1)(γ), using the same method used to plot the Argand diagram
in Figure 2.3 in the literature review for 501 values of γ in the [0, 500] interval and for
u = β = 0. We notice that Re(ω1) does not depend on α, so we can generate these points
with any values of α. We use α = 0.02. We fit Re(ω1)(γ) with a polynomial function of
order 20 to obtain a formulation for γ values in the range of the values used to generate
the data. Finally, the relation between the dimensional and the non-dimensional parameters
links the measured fundamental frequency of the pipe and the non-dimensional fundamental
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Figure 4.5 Position evolution of the tip of the pipe No.1 from Table 4.2 after a perturbation
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0 20 40 60 80 100

10−1.5

10−1

Time (s)

Lo
g

of
th

e
am

pl
itu

de
(m

) Linear regression
Amplitude of the tip

(a)
0 0.5 1 1.5

0

200

400

600

Frequency (Hz)

A
m

pl
itu

de
of

th
e

FF
T

(b)
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associated and (b) result of the FFT transform of the position of the tip.
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frequency as follows:

τ =
(

EI

M + m

) 1
2 t

L2 , (4.1)

and
γ = (M + m)L3

EI
g. (4.2)

We rewrite Equation (4.1) as:

1
Re(ω1)

=
(

EI

M + m

) 1
2 1

2πf1L2 , (4.3)

where f1 is the measured fundamental frequency of the pipe.

We then combine Equation (4.2) with (4.3) to get the following relation:

γ

Re(ω1)2 = g

4π2f 2
1 L

. (4.4)

With the polynomial fit giving Re(ω1)(γ) = P (γ), we can write the following equation:

γ

P (γ)2 − g

4π2f 2
1 L

= 0. (4.5)

A Newton solver finds the root of Equation (4.5) to obtain the correct value of γ. We then get
the value of E, the pipe Young modulus. Figure 4.7 shows how to determine the γ parameter
of the pipe from the measurement of the pipe natural frequency f1. Figure 4.7(a) corresponds
to the polynomial fitting the evolution of the real part of the eigenfrequency with respect to
gamma. Figure 4.7(b) shows the solution of the Newton solver to find the value of γ from
Equation (4.5).

We follow a similar method to find the damping parameter α. We use 501 values of α in
the [0, 0.05] interval to compute the evolution of the imaginary part of the non-dimensional
fundamental frequency with respect to the α parameter Im(ω1)(γ) and then we fit an order
20 polynomial to get a relation.

We then use the following relation:

δ1 = 2πIm(ω1)
Re(ω1)

, (4.6)

where δ1 is the logarithmic amplitude decrement of the pipe and with the value of Re(ω1)
from the previous step.
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Figure 4.7 Determination of the γ parameter: (a) Real part of the first eigenvalue as a
function of γ and (b) determination of the value of gamma by finding the root of the function
constructed with the measured frequency.

We have to find the root of the following equation to find the value of α:

δ − 2πP (α)
Re(ω1)

= 0, (4.7)

where δ is the measured amplitude decay and Re(ω1) is known from the step before. This
way we determine the value of α and then the value of the damping parameter E∗.

Figure 4.8 represents the imaginary part of the pipe first eigenvalue with respect to alpha on
the left. On the right the function to determine alpha with the Newton algorithm is shown.

For this project, seven different pipes were casted. They are all listed in Table 4.2. They were
made using the same rubber-silicone lot and thus have the same young modulus E = 225 kPa
and the same damping parameter E∗ = 5334. The pipe No.1 was used to determine the
parameters E and E∗ with the previous method. The seven pipes all have the same external
diameter D = 15.875 mm.

We try another characterization method with a shaker to find the pipe parameters for higher
modes. Unfortunately, this method did not lead to exploitable results because of two main
problems: The shaker did not offer enough flexibility to subject the pipe to the appropriate
forcing and the linear model is not appropriate to study forced vibrations of high amplitudes.
The study of the pipe subjected to the shaker vibrations and the constructed characterization
method is presented in Appendix A. This method could be of interest in the future with a
better shaker and by applying the non linear model.
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Figure 4.8 Determination of the damping parameter α: (a) Imaginary part of the first eigen-
value as a function of α and (b) determination of the value of α by finding the root of the
function constructed with the measured frequency.

Table 4.2 Different pipes used in this project

No. L(m) d(mm) α γ β m(kg/m) M(kg/m) I(10−9m4)
1 0.46 6.35 0.005806 355.04 0.1240 0.2228 0.03154 3.038
2 0.41 6.35 0.007308 251.39 0.1240 0.2228 0.03154 3.038
3 0.36 6.35 0.009479 170.18 0.1240 0.2228 0.03154 3.038
4 0.46 7.9375 0.005765 360.12 0.1986 0.1989 0.04929 2.923
5 0.39 7.9375 0.008020 219.47 0.1986 0.1989 0.04929 2.923
6 0.46 9.525 0.005640 376.18 0.2948 0.1697 0.07097 2.714
7 0.40 9.525 0.007459 247.34 0.2948 0.1697 0.07097 2.714

4.3 Data acquisition

The pipe is light and very flexible, therefore it is almost impossible to put traditional sensors
like strain gauges, pressure sensors or accelerometers on it. We therefore use contactless
measurements. In most work from the literature, laser distance measuring sensors or points
tracking system track the pipe [51,52,62]. In this project, we want to access data on the whole
length of the pipe without limiting ourselves to planar movements. In some configurations,
the pipe movement is three-dimensional and it does not make sense to constrain the pipe to
a two dimensional movement. We therefore use two high speed cameras to film the pipe from
two sides.
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4.3.1 The cameras

To synchronize the two cameras, we use a 0-10 V square signal generated with a National
Instrument NI9401 card to trigger the acquisition of the two cameras and of the flowmeter to
be sure that each camera records a frame simultaneously and that we record the corresponding
flowrate. It is important to verify with the cameras software that no images are lost during
acquisition to make sure that both cameras stay synchronized.

Image treatment

To extract the position of the pipe from the images, we use the contrast between the pipe
and the background since the pipe is a dark grey while the background and the liner are
plain white. We follow the subsequent procedure to treat the image:

• We convert the image in grey scale using the OpenCV library in Python.

• We convert the image to a binary image which is basically an array where each pixel is
either 1 or 0 depending if it is considered black or white. We use the threshold function
from OpenCV, depending on the situation and the lighting we use a hard threshold
value for the whole image or an adaptive threshold. The values of the thresholds are
determined by trial and errors.

• We remove islands of pixel in the image i.e. each detached group of pixel containing a
low number of pixels (white or black) is removed to have a better image. This function
removes black points corresponding to water splashes and white points on the pipe
corresponding to the light reflection.

Once the images are treated as explained above, we proceed to extract the position of the
pipe.

Camera calibration

The two cameras are fixed on the two sides of the translucent tank and the sensing planes are
perfectly parallel to the central plane of the tank. It is therefore not necessary to correct the
tangential error. Also, after looking thoroughly at the images, we discovered that the radial
distortion is very subtle and we decided to ignore it in the current study. We only have to
calibrate the camera to get the origin point of the pipe on the vertical axis, the origin point
on the horizontal axis and the scale linking the length in pixels on the image to the length
in millimetre on the physical system.
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Firstly, to determine the scale of the camera, we printed a black square on a rigid plate and
placed it on the planes parallel to each camera at the rest position of the pipe. Knowing the
actual size of the square, we find the size in mm of a pixel with the following formula: scale
(mm/pixel) = square width (mm)

square width (pixels) .

Then, to find the origin of the coordinate system, we take a picture of the pipe at rest with
no water. We compute the position of the middle line of the pipe which is the origin on
the horizontal axis. Then, we find the coordinates of the tip of the pipe on the photo and
knowing the length of the pipe, we find the coordinates of the top of the pipe which is the
vertical origin point.

For every image in the video, we then have to subtract the coordinates of the origin on the
vertical and horizontal axes and multiply by the scale to get the coordinates in mm in the
pipe coordinates system.

Extraction of the data from the video

Once the images are treated and calibrated, we determine the (x, y, z, t) coordinates of the
points on the pipe to train or validate the digital twin. Each image corresponds to a certain
time t that is computed with the cameras frame rate. From each image, we extract the
coordinates (x, z) from the front and (y, z) from the side of each pixel that is considered
black i.e. on the pipe. We fit a polynomial function on the (x, z) and (y, z) to find x = P (z)
and y = P (z). This polynomial functions goes through the centreline of the pipe with one
condition: the tip of the pipe must be its lowest point. If it is not, there would be two values
of y and x for one value of z and the polynomial would not work. We decided not to consider
this problem as this configuration rarely appears and only at the highest pump speeds. We
then store the coefficients values of the polynomial as well as the position of the tip of the
pipe on each camera in a text file.

We then correct one last error on these data: the parallax. The pipe, moving in the tank is
getting closer or further than the central plane in which the camera scale was computed. The
deflection is therefore overestimated when the pipe is closer to the camera or underestimated
when the pipe is further from the camera. We treat this problem by using trigonometry as
follows.

We start by creating two lists of N points evenly distributed between z = 0 and z = ztip

for both cameras. We then compute the lists of the associated deflection x and y with the
polynomial functions determined previously. The points with the same index in the lists do
not have the same z coordinates because ztip might be higher for one of the camera if the
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Figure 4.9 First step of parallax treatment: Creation of lists of points for both frontal and
side images.

pipe is closer as illustrated on Figure 4.9. However, since the points are evenly distributed
and since both lists have the same length, we assume that points with the same index in
both lists correspond to the same physical point on the pipe.

Then, we correct the y and x coordinate of each points in the lists. We use the Thales theorem
as shown in Figure 4.10 to compute the actual coordinates x and y from the coordinates
observed by the camera in the central plane. We get the following relationships:

ya

yc

= Dx

Dx − xc

, (4.8)

and:
xa

xc

= Dy

Dy + yc

. (4.9)

By combining the previous equations we obtain the following formula for the corrected de-
flections yc and xc:

xc = xaDx(Dy + ya)
DyDx + yaxa

, (4.10)

and:
yc = yaDy(Dx − xa)

DyDx + yaxa

. (4.11)

With the same Thales theorem, we correct the value of z for each points in the list as shown
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in Figure 4.11. We obtain the following formula for the correction of z for both cameras:

zxc = zxa

Dy + yc

Dy

, (4.12)

and,
zyc = zya

Dx − xc

Dx

. (4.13)

The corrected value of z on both coordinates should now coincide. The small difference
observed is caused by defaults in the image and we merge the two lists of z coordinates in
one by taking the average of both.

We then repeat the polynomial fitting step on the z, x and y list after correction to obtain
the coefficients of the polynomial valid with corrections.

During image acquisition, some frames are sometimes dropped. This is caused by speed limit
of the computer Solid State Drive (SSD), thus letting the computer Random Access Memory
(RAM) fill faster than it can be transferred in the SSD memory. This is a big problem when
only one camera drops frames, since the frames from both cameras are not synchronized
anymore. The software from the camera manufacturer does not allow us to detect reliably
when a frame is dropped, so we had to develop our own program to detect it. To do so, we
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used the fact that the pipe tip height after correction should be the same on both cameras.
If the error is too high it means one of two things. Either one of the image is of bad quality,
probably because of a splash of water on the glass in front of the camera and the entire pipe
cannot be detected or a few frames have been dropped on one camera and the images are
not synchronized anymore. We easily identify which case it is by plotting the height error
against time. If the error is only spiking for a few frames, then it corresponds to the first case
caused by a splash of water. However, when the error is significantly increasing for all the
frames, then frames have been dropped on one of the cameras. By looking at these graphics
we can easily decide which videos to reshoot.

4.3.2 Flowrate

A magnetic Rosemount 8711 flowmeter with a 3/4" tube and a 8732 transmitter measures
the volumic flowrate in the circuit. The 4-20 mA signal is scaled to correspond to a flowrate
range from 0 to 50 liters per minute, 50 lpm corresponding to the maximum flowrate that is
reached with pipe No.7. The flow speed is acquired five times per seconds with a National
Instrument current acquisition card. The flowrate is computed as the mean of the flow
velocity on the whole acquisition period to reduce noise influence. During long operations
of the setup, the temperature of the water increases by up to 10°C. From 20 to 30°C, the
density of water varies from 0.9982 kg/l to 0.9956 kg/l, which represents a 0.26% difference
considered negligible in our experiments.

4.4 Acquisition method

The flowrate is firstly set to the desired value by changing the pump drive frequency and if
needed, by adjusting the flow regulation valve. It is important to wait for up to one minute
after the adjustment to let the flow velocity stabilize because of the flow and pump inertia.
All the videos are filmed at 150 frames per second.

4.4.1 Below critical speed

In the case of measurements below critical speed, only one camera is needed. Indeed, the
pipe is stable and the movement of the pipe is filmed after perturbation. We perturbed the
pipe in a plane parallel to one of the camera to use only this camera. The movement usually
stays in the same plane, thus justifying the use of only one camera.

The perturbation of the pipe has an effect on the flowrate in the pipe, especially at low flow.
We therefore measure the flow velocity before the perturbation and consider this is the value
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of the flowrate in the pipe during the acquisition.

For our measurements, we started at the lowest drive frequency at which the water was
running in the circuit. We follow the following steps until the critical speed is reached:

• Set the flowrate and wait for it to stabilize.

• Measure the flowrate during a period of 30 seconds and take the mean value.

• Start the video acquisition.

• Manually perturb the pipe.

• Once the movement has stopped, stop the video and increase the drive frequency by
0.5 Hz and get back to the first step.

Using the cameras as explained previously, we extract the position of any point on the pipe
using a polynomial. We do not have to apply the correction steps for only one camera because
the pipe stays at the same distance of the camera.

4.4.2 Above critical speed

When measuring the pipe movements at flowrates higher than the critical speed, we need
the two cameras because the movement is three dimensional and even when the movement
is planar there is no way to control the movement plane to make it parallel to one of the
camera. We do not have to touch the pipe to induce any perturbation so we just have to set
the flowrate and wait for it to stabilize and then start the video and the flowrate acquisition
with the synchronizing signal.

We took 40 seconds videos every 0.5 Hz of the drive frequency between the critical speed and
the maximum frequency of the drive.
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CHAPTER 5 EXPERIMENTAL RESULTS ON THE PIPE BEHAVIOUR
AND DISCUSSION

In this chapter, we present the results from the first experimental campaign conducted with
the pipe conveying fluid setup on seven pipes of three different diameters and from low to
maximum flowrate.

5.1 Below critical speed

In this section, we study the behaviour of the pipe before the critical speed at which flutter
appears.

5.1.1 Response to initial perturbations

For low flowrates below the critical speed, we have to subject the pipe to a perturbation by
holding it before releasing it. Figure 5.1 shows the transient period before the pipe returns to
its rest position. We measure the position of the tip of the pipe during this transient period
for different values of the flowrate below the critical speed. This figure shows the amplitude
for the pipe No.1 from Table 4.2 of inner diameter d = 6.35 mm and of length L = 0.46 m.
The tip of the pipe follows a sinusoidal law for the four non-dimensional flowrates: u = 3.25,
u = 8.34, u = 12.12 and u = 15.49. The damping is higher for the Figure 5.1(b) and Figure
5.1(c) for intermediate flowrates. It can be seen that, the second mode appears in Figure
5.1(c) and Figure 5.1(d) for the highest flowrates. We observe the effect of added damping as
the damping increases in figures (b) and (c) before decreasing when the flowrate gets closer
to the critical speed in (d).

5.1.2 Evolution of the damping

To get a better understanding of the evolution of the damping with the flowrate, we computed
the logarithmic decrement of the amplitude in Figures 5.2 for all the tested flowrates and for
six different pipes with three different diameters and three different lengths. The dotted lines
represent the experimental logarithmic decrement as a function of the reduced flow velocity
u. The continuous lines represent the theoretical decrement obtained from the linear model
presented in the literature review. To extract the decrement value we detect the peaks from
Figure 5.1, we compute their logarithmic values and then fit them with a linear function. The
first coefficient of this value is the decrement coefficient. For the theoretical part we proceed
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Figure 5.1 Evolution of the position of tip of the pipe in meters after a perturbation for the
pipe No.1 and for four different non-dimensional flowrates: (a) u = 3.25, (b) u = 8.34, (c)
u = 12.12 and (d) u = 15.49.

with the same method after generating the amplitude plots with the method presented in
the literature review.

In all of the six cases, and for the theoretical and experimental cases, the decrement firstly
increases with the flowrate to a maximum and then decreases sharply until the critical speed is
reached. The maximum decrement is higher and is reached at higher flowrate for larger inner
diameters pipes. This maximum decrement is higher and reached at higher flow velocity for
longer pipes. For the pipe in Figure 5.2(c), the theoretical result shows a significant difference
since the maximum decrement is not sharp but more of a plateau. This can be explained by
the method used to compute the theoretical damping. Indeed, fitting a linear regression on
the peaks of the logarithmic amplitude can prove to be an unreliable way to determine the
logarithmic decrement when two modes are present as in Figure 5.1(c). This problem is also
responsible for the irregularities at the maximum damping for the other plots. Despite this
problem, the experimental results show the same tendency as the theoretical results even if



45

the maximum decrement is sharper in the theoretical model and the experimental results are
slightly shifted towards larger flowrates.

The water flow in the pipe is responsible for the added damping which explains why the
decrement increases with the flowrate at first. Indeed, the Coriolis force term increases
faster than the centrifugal term at low flowrates and therefore stabilizes the pipe. When
the flow speed increases further, the centrifugal term increases faster than the Coriolis term
and destabilize the pipe as the flowrate gets closer to the critical speed at which the motion
becomes fully unstable. This explains why the decrement decreases after reaching a maximum
at an intermediate flowrate.

For a higher inner diameter, the mass parameter β and the gravity parameter γ are higher as
we can see in Table 4.2. The water added damping is hence higher since the Coriolis force is
proportional to the β mass parameter and creates a stronger damping. It explains why the
decrement maximum is higher when the inner diameter is larger but also why it is reached
at higher flow velocity as the critical speed is also higher since the pipe is more stable with
larger β and γ parameters as seen in Figure 2.4(a).

When the pipe is longer, the maximum damping is more important and is reached at higher
flow velocity as we can see by comparing Figures 5.2(a), (c) and (e). Table 4.2 shows that
longer pipes have a higher gravity parameter γ and damping parameter α and are thus more
stable since the gravity restoring force is stronger. This explains why the damping is stronger
and also why the curves in Figure 5.2(a) are shifted toward higher flowrate for a longer pipe
compared to Figure 5.2(c) for a shorter pipe.

The experimental results in Figure 5.2 are shifted to higher flowrate compared to numerical
data which concurs with the higher experimental critical flowrate compared to the theory
as the next section demonstrates. This is explained by additional damping not taken into
account in the linear model that would delay the destabilization of the pipe. Indeed, we
did not consider air friction, damping from the structure and pipe fixation and non-linear
damping terms that can increase the stability of the pipe [63]. Moreover, it is to be noted that
the flowrate is not constant during the experiment. When the pipe is perturbed the flowrate
drops before increasing back to the pre-perturbation value when the pipe has regained its rest
position. The flow speed acquired is the flowrate measured before the perturbation and is
actually higher than the flowrate going through the pipe during the vibration which explains
why the experimental curves are shifted to the higher flowrates.
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Figure 5.2 Damping: evolution of the tip amplitude logarithmic decrement with the non-
dimensional flowrate below critical speed from experimental data ( • ) and from the linear
model ( ) for different pipes. (a), (c) and (e) represent the evolution with the same inner
diameter d = 6.35 mm and for three lengths L = 46 cm, L = 41 cm, and L = 36 cm
and (b), (d) and (f) represent the evolution with the same length L = 46 cm and three
inner diameter d = 6.35 mm, d = 7, 9375 mm and d = 9, 271 mm.



47

5.2 Determination of the critical speed

When the flowrate increases further, the pipe destabilizes through flutter instability. Figure
5.3 shows the experimental critical speed at which flutter instability appears for the seven
pipes of three different inner diameters. We compare the experimental critical flowrate with
theoretical results for the same three inner diameters and on a large range of pipe lengths.
These results are obtained by finding the lowest flow velocity at which the real part of one
of the eigenvalues obtained is negative as in the literature review. We ploted the critical
flowrates with respect to the gravity parameters γ and damping parameter α. Indeed, these
parameters are both increasing function of the pipe length.

The critical flowrate is higher when the inner diameter is larger and when the gravity and
damping parameters are larger (i.e. when the pipe is longer), which is coherent with the
results from Figure 5.2. A longer pipe with a larger inner diameter is more stable. The
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Figure 5.3 Critical flowrate of pipes with variable lengths and different inner diameters from
experimental results and the linear model: (J), (•) and (×) experimental for d = 6.35 mm,
d = 7.9375 mm and d = 9.525 mm and ( ), ( ) and ( ) theoretical for d = 6.35 mm,
d = 7.9375 mm and d = 9.525 mm
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theoretical critical speeds are always smaller than the experimental values by a relative
difference between 9 and 13% depending on the cases.

This difference is explained by the same reasons that were cited for the damping i.e. some
additional damping terms not taken into account in the linear model might delay the destabi-
lization of the pipe. Moreover, the operator has to decide when to consider the pipe unstable,
which represents in itself an uncertainty.

As for the damping, the critical speed is higher with a larger inner diameter because the β

mass number and the γ gravity parameter are larger which helps stabilize the pipe. Hence,
the flow velocity has to be higher to destabilize the pipe. Likewise, longer pipes are more
stable and have a higher critical speed since their β and α parameters are higher which is
coherent with previous studies [43].

5.3 After the critical speed

After reaching the critical speed, the pipe loses stability by flutter. Both cameras are then
needed to follow the pipe.

5.3.1 Qualitative considerations

When we increase the flowrate, we observe different phenomena and the pipe follows different
types of motion.

Trace of the tip of the pipe

Figure 5.4 represents the trace of the tip of the pipe in the horizontal (x, y) plane for different
pipes and flowrates with interesting phenomena. Figure 5.4(a) shows the trace for a low
flowrate above the critical speed. At this flowrate the movement of the pipe is planar and
stays in the same plane which is at 45° between the two cameras. It is the preferred vibration
plane of the pipe which is caused by the imperfections of the pipe itself and of the fixation.
This movement type is called the 2D limit cycle motion. When the flowrate increases further
as in Figure 5.4(b), the movement stays plannar but the plane of motion rotates with time.
Then, when the flowrate is increased almost to the maximum capability of the system, the
pipe motion becomes erratic and completely three dimensional as shown in Figure 5.4(c). For
other pipes, Figure 5.4(f) shows a circular three dimensional movement producing an ellipse
in a 45° plane. This movement is called the 3D limit cycle motion or the orbital motion.
Figure 5.4(d) and (e). also show this cycle motion in a rotating plane as in Figure 5.4(b).
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Figure 5.4 Trace of the tip of the pipe in the (x, y) plane for different pipes and reduced
flowrates: (a) d = 6.35 mm, L = 46 cm and u = 17.49, (b) d = 6.35 mm, L = 46 cm and
u = 22.70, (c) d = 6.35 mm, L = 46 cm and u = 30.21, (d) d = 6.35 mm, L = 41 cm and
u = 23.25, (e) d = 7.9375 mm, L = 46 cm, u = 28.70 and (f) d = 9.525 mm, L = 46 cm and
u = 63.95.
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Snapshots

Another interesting qualitative observation was the deformed shapes of the pipe experiencing
flutter. Figure 5.5 shows snapshots of the No.1 pipe in its flutter plane for different flowrates.
We used the minimum inner diameter because the other two pipes could not withstand the
strain from the highest flowrates for long enough and would break. These images are taken
every 0.02 seconds and are obtained after treating the images from one camera. We used the
front camera and treated the images to isolate the pipe by creating a binary image with a
grey-scale threshold.

Figures 5.5(a) and (b) show classic first mode flutter which is observed at relatively low
flowrate and corresponds to the 2D cycle motion. On the first figure we can observe the
first mode of the pipe and a combination of the two first modes on the second figure. The
amplitude of the flutter vibration is also higher in Figure 5.5(b) compared to the Figure (a).
Figures 5.5(c), (d), (e) and (f) show the shapes at the highest flowrate where the 3D cycle
motion is observed. The amplitude is higher than for the previous ones and we observe the
third pipe mode especially in Figure 5.5(e). Figures 5.5(c) and (d) show unconventional mode
shapes as the tip of the pipe goes over the bottom position of the pipe. This phenomena
cannot be captured with the polynomial fitting method described in the methodology as
there are two points with the same z coordinate.

5.3.2 Quantitative considerations

Amplitude evolution

To evaluate further the impact of the flowrate on the motion of the pipe, we studied the
evolution of the amplitude of the tip of the pipe. We firstly plot the peaks amplitude for two
different pipes in Figure 5.6. To obtain this figure we used a Python function to retrieve the
amplitude peaks of the tip of the pipe from the experimental amplitude data of a 30 seconds
long video.

Figure 5.6 represents the upper half part of a bifurcation diagram. Indeed, since the motion
is three-dimensional, we plot the peaks of the absolute value of the amplitude defined as√

(x2 + y2). We therefore only have access to the positive part of the amplitude.

At the lowest flowrate, we observe the first bifurcation when the pipe loses stability by flutter
and the amplitude of the pipe deflection increases. The peaks amplitude then stabilizes when
the flowrate increases before reaching the second bifurcation. At the second bifurcation, we
observe the period doubling phenomenon as the amplitude peaks have a range of different
values for the same flowrate. The pipe from Figure 5.6(a) is longer than the pipe from Figure
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Figure 5.5 Snapchots of the pipe No.1 taken every 0.02 seconds for different non-dimensional
flowrates (a): u = 21.98, (b): u = 26.07 and (c), (d), (e) and (f): u = 30.20.
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Figure 5.6 Peaks amplitude evolution with the non-dimensional flowrate for (a): pipe No.1
and (b) pipe No.3 from Table 4.2.

5.6(b) and the bifurcations appear later for this first pipe since it is more stable.

To compare the evolution of the amplitude for different pipes more easily we use the average
of the amplitude peaks represented in the previous figure. By doing so, we lose information
on the period doubling but we can compare the pipes more easily. Figure 5.7 shows the
different amplitudes for six different pipes.

In Figure 5.7(a), the three lines represent the amplitude of the pipe for three pipes of same
length and different inner diameters, while in Figure 5.7(b), the lines represent the amplitude
of three pipes of the same inner diameter and of three different lengths.

Figure 5.7(a) shows that the amplitude increases with the flowrate before stabilizing at higher
flowrate. There are two logical explanations for this phenomena. First, at some point, the
pipe movement becomes irregular and in this movement mode, the amplitude drops and
then does not increase anymore. Another explanation is that, at higher flowrate, the pipe
tip tends to be horizontal and sometimes even go above the bottom point of the pipe as in
Figure 5.5(c). This causes a problem with the method to extract the position of the pipe
with a polynomial function. Indeed, one z height position corresponds to two points on the
pipe and the polynomial fit goes in the middle of these two points to minimize the error. The
extracted amplitude is then smaller than the actual amplitude because of that error and it
explains the amplitude stabilization.

Pipes with smaller inner diameters have a larger amplitude of vibration and reach the am-
plitude plateau sooner. This can be explained by the fact that these pipes are more unstable
because of their smaller β and γ parameters and reach their 3D cyclic motions and then
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Figure 5.7 Evolution of the average amplitude of the tip of the pipe with the non-dimensional
flowrate for different pipes: (a) L = 46 cm with three different inner diameters ( )
d = 6.35 mm, ( ) d = 7.9375 mm and ( ) d = 9.525 mm and (b) d = 6.35 mm with three
different lengths ( ) L = 46 cm, ( ) L = 41 cm and ( ) L = 36 cm.

erratic motions sooner. The plot corresponding to the largest inner diameter stops before
reaching the maximum flowrate. This pipe is much thinner than the others because of its
diameter and it is therefore very fragile. During both tests the pipe shredded before reaching
the maximum flowrate from the pump.

In Figure 5.7(b), until approximately u = 22, the amplitude increases with the flowrate and
the longer pipes have a smaller amplitude since longer pipes are more stable because of their
larger gravity parameter γ. As in the previous figure, the amplitude reaches a plateau when
the movement becomes irregular. It is interesting to notice that shorter pipes have a larger
non-dimensional amplitude at the same flowrate. Longer pipes are under more tension which
prevents the amplitude from increasing. Indeed, because of the tension, the instability is
present at the tip of the pipe and even if the pipe is longer, only a certain portion of the pipe
is affected by the instability at the tip.

Frequency evolution

Figure 5.8 follows the evolution of the pipe motion frequency with the flowrate. Figure 5.8(a)
shows the frequency for three different inner diameters for pipes of the same length and Figure
5.8(b) represents the frequency for three different lengths and the same inner diameter.

To obtain the frequency, we performed a Fast Fourier Transform (FFT) on the x and y

positions of the tip of the pipe along time. We then take the peak of both FFT and its
corresponding frequencies to compute the average of both frequencies and to obtain the pipe
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Figure 5.8 Evolution of the frequency of the tip of the pipe with the flowrate for different pipes:
(a) L=46 cm with three different inner diameters ( ) d=6.35 mm, ( ) d=7.9375 mm and
( ) d=9.525 mm and (b) d=6.35 mm with three different lengths ( ) L=46 cm, ( )
L=41 cm and ( ) L=36 cm.

frequency. The peak frequencies of both axis are really close which confirms that this method
is appropriate. We then repeat this operation for the different flowrates to obtain the given
plots.

In Figure 5.8, the frequency increases linearly with the flowrate. The shorter pipes have a
higher vibration frequency and the frequency augmentation with the flowrate is also sharper
for these pipes. The inner diameter of the pipe, on the other hand, has limited a impact on
the pipe frequency.
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CHAPTER 6 METHODOLOGY: DEVELOPMENT OF A PINN MODEL
FOR THE PIPE CONVEYING FLUID SYSTEM

In this project, we explore and demonstrate the possibility to use PINN based methods to
develop a digital twin of the pipe conveying fluid. To start, we work on the classical linear
pipe Equation (2.19) with classic PINNs and modal PINNs. We also develop and use an
alternative formulation using a beam mode shapes decomposition and the weak-form of the
PDE. Other promising and more advanced PINN formulations will be studied in the follow-up
of this project.

6.1 General PINN architecture

All the codes are written in Python 3.6 with the TensorFlow 1.14.0 library which allows
us to construct the DNN with variable weights and biases [64]. TensorFlow uses automatic
differentiation to compute the terms of the PDE but also the gradients used for the training
of the DNN.

In all the following examples, deep feedforward and fully connected neural networks approx-
imate the function of interest. If no contrary information is given, all the NN are made of
3 hidden layers, each composed of 20 neurons. The output and input layers dimensions of
the NN depend on the type of PINN. Longer and wider NNs were used without improving
the precision and were found to significantly slow down the training process. To make sure
that this NN was of the appropriate size, we had to verify that it could approximate the
objective function (the deflection of the pipe along time) at a satisfactory level. This proce-
dure is detailed in Appendix C. The general idea of this size study is to use different NNs of
different sizes and to train these NNs with only data and no residuals points. We start with
small NNs and increase the size until the minimum training loss is not decreasing any more.
The activation functions in the NNs are always tanh function and this choice is explained in
Appendix B. We compared the results from sin, tanh and ReLU activation functions for all
the PINNs architecture and determined the most efficient one. The biases of the NNs are
always initialized to 0 while the weights are initialized with the Xavier method that was used
in the literature [22, 65]. It is not recommended to initialize the weights to zero to avoid a
null gradient value for optimization and this initialization associates random values to the
weights with a normal law centred on zero and truncated for values smaller or greater than
two standard deviations. The standard deviation of the normal law is equal to

√
2

Nin+Nout
for

each layer where Nin and Nout are the sizes of the input and output of the layer.
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The training is performed using the Adam optimizer which is widely used in the literature
for PINNs [29]. This gradient descent algorithm is implemented directly in the TensorFlow
library. It is well suited for large data sets and high dimensional problems which make it a
good algorithm to train a DNN. It uses moment estimates of the gradient to add inertia to the
optimization and to increase the convergence speed. The two parameters used for moments
estimation are set to their defaults values which were found to be the most effective. The
epsilon numerical stability parameter is also set to its default value. The last parameter of this
optimization algorithm is the learning rate which plays an important role in the convergence.
If the learning rate is too small, the optimization converge to a local minimum and does not
converge to the expected solution. On the contrary if it is too large, the optimization starts
to oscillate when close to the solution. To chose the best learning rate value, we started by
setting it at a high value of Lr = 10−3 and decreased it until no oscillations were observed
at the end of the optimization. For all the following cases, the optimal value was found to
be Lr = 10−5. This optimization algorithm performs one step of the minimization each time
it is called on the loss function. It is therefore possible to control the training loop and its
termination by setting a maximum number of iteration and an objective value of the training
loss at which to stop the training. These values differ according to the case and are specified
for each cases. This training algorithm is considered stochastic when randomly chosen mini
batch of data are used for training at each iterations. In our case, we used the whole batch of
data at each iteration and we checked for possible over-fitting by adding a separate test batch
of data which was not used for training and on which the loss function was computed at each
iteration of the training. This test loss is supposed to be slightly larger than the training
loss. However, if the test loss is significantly larger than the training loss and if this test loss
is increasing with the training iterations then it means that the training is over-fitting. It is
important to note that we did not use any validation data set during the training. Indeed,
PINNs are not prone to over-fitting because of the PDE regularization and a test data set
to verify that hypothesis was enough. Random mini batch and adaptive learning rate should
be considered during the future to improve the convergence and avoid local minima.

We also tested another minimizing algorithm which is a second order algorithm as opposed
to Adam. The L-BFGS algorithm is a quasi-Newton optimization algorithm implemented in
TensorFlow. However, this algorithm was keen to get stuck in local minima after only a few
iterations and was offering no control on the training loop. It was therefore decided not to
use it.

For all the following cases, the loss function is only composed of two terms: the residuals
from the linear partial differential equation of the pipe and the data points on the deflection
of the pipe. Indeed, since all the following cases use either experimental data or numerically
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generated data, it was not necessary to use a loss term for the initial and boundary conditions
thus demonstrating the capability of PINNs to solve ill posed problems without boundary
conditions. However, the boundary conditions at the origin of the pipe were properly enforced
with a function multiplying the output of the NNs [37]. The function used is fbc : z →
tanh (z)2 since this function and its first derivative are equals to zero for z = 0 hence verifying
the clamped boundary conditions of the cantilevered pipe. Moreover, this function is mostly
constant after 0 and is not influencing strongly the training of the NNs.

The global loss function is built using a coefficient giving more importance to the data in some
cases. Indeed, it was noted that the training sometimes get stuck in a local minima from the
trivial solution that verifies the partial differential equation since there is no forcing term.
This parameter is chosen empirically by following this procedure: Firstly, set the weight
at 0.5, hence giving equals weights to the data and the PDE and then reduce this weight
through an iterative process to give more importance to the data until the minimization does
not prefer the trivial solution. Depending on the case, the optimal value is different and is
specified for each case. The global loss has the following formulation:

L = αsLs + (1 − αs)Ld, (6.1)

where Ls and Ld are the loss terms respectively associated to the residuals of the PDE and
to the data.

6.2 Classic PINN

Here, Figure 6.1 presents in details the specific architecture used for the classic PINN. The
neural network has two inputs which are the z and t coordinates (or ξ and τ in the non-
dimensional formulation). The output of the neural network represents the planar deflection x

(or η in the non-dimensional formulation) of the pipe at a given set of coordinates (z, t). This
output is then multiplied by tanh(z)2 to force to zero the deflection and its first derivative
with respect to the z dimension at z = 0. We did not use a second function to force the
boundary conditions at the tip of the pipe since it means using complex function that might
have an impact on the PINN training and convergence. Figure 6.1 describes the construction
of the data loss at the bottom and of the residuals loss on the top which are used to train
the weights and biases of the NN. The dashed arrows correspond to the feedback loops used
only during training to optimize the weights and biases and to minimize the loss function.
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Figure 6.1 Classic PINN architecture to model the pipe conveying fluid

6.2.1 Classic PINN with numerical data

While waiting for the experimental setup to be ready, we worked with numerically generated
data. These data were generated using the Equation (2.41) derived in the literature review.
We use the non-dimensional parameters corresponding to the pipe No.1 from Table 4.2. The
flowrate is fixed at a certain value for the whole PINN model and cannot be changed later
without retraining the model. We first choose the number of data points Ndata that we want
to generate. For each point, we randomly select a ξdata non-dimensional vertical coordinate
between 0 and 1 and a τ data timestamp between 0 and τmax. We then compute the non-
dimensional deflection ηdata for each point using Equation (2.41), the selected flowrate and
the pipe parameters. This constitutes the data set that is used for the data part of the loss:

Ld = 1
Ndata

Ndata∑
i=1

(ηdata
i − ηNN(ξdata

i , τ data
i , W, b))2. (6.2)

For the penalization of the PDE, we proceed likewise: we start by choosing the number of
points Ns on which we penalize the PDE and then select the associated ξs and τ s coordinates
randomly. From the non-dimensional PDE Equation (2.20) and the strong form residuals
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loss function in Equation (2.9), we write the loss as follows:

Ls = 1
Ns

Ns∑
i=1

{
αη̇

′′′′

NN(ξs
i , τ s

i ) + η
′′′′

NN(ξs
i , τ s

i ) +
(
u2 − γ (1 − ξs

i )
)

η
′′

NN(ξs
i , τ s

i )

+2β1/2uη̇
′

NN(ξs
i , τ s

i ) + γη
′

NN(ξs
i , τ s

i ) + η̈NN(ξs
i , τ s

i )
}2

.

(6.3)

In this case, the ideal weight αs on the loss function parts was found to be αs = 0.01.

Finally, we build a test data set and a test loss function to check that the training is not
over-fitting on the data. To do so, we randomly picked N test

s and N test
data penalization points

and data points and then we construct the test loss function with these points and the same
αs coefficient.

6.2.2 Classic PINN with experimental data

Once the experimental setup was complete, we started to use data from this setup instead
of using numerical data. To acquire the data we proceeded as follows:

• Chose a flowrate below the critical flowrate. Indeed, with the linear model we can only
study the pipe behaviour before the destabilization.

• Start the acquisition of the videos and of the flowrate.

• Wait for 30 seconds to measure the flowrate before the perturbation.

• Induce a perturbation and wait until the pipe goes back to its rest position.

• Trim the video to store the part after the perturbation and we store the flowrate value.

• Analyze the video to extract the polynomial function fitting the pipe position on each
frame.

With the experimental data, we used the dimensional PDE of the pipe (2.19). We selected the
PDE penalization points as before by randomly choosing Ns coordinates z and t respectively
between 0 and L and between 0 and the end of the video.

For the data points, we chose a number of points Ndata and for each points, we select a
random frame (with its corresponding t values) and we select a random z value between 0
and L. We use the polynomial fitting the pipe position associated to the frame to compute
the x deflection value.
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We write the two parts of the loss function as before with the dimensional expressions:

Ld = 1
Ndata

Ndata∑
i=1

(xdata
i − xNN(zdata

i , tdata
i , W, b))2, (6.4)

for the data loss and:

Ls = 1
Ns

Ns∑
i=1

{
∂5xNN(zs

i , ts
i )

∂t∂z4 + EI
∂4xNN(zs

i , ts
i )

∂z4

+
{
MU2 − g (M + m) (L − zs

i )
} ∂2xNN(zs

i , ts
i )

∂z2

+2MU
∂2xNN(zs

i , ts
i )

∂t∂z
+ g (M + m) ∂xNN(zs

i , ts
i )

∂z
+ (M + m) ∂2xNN(zs

i , ts
i )

∂t2

}2

,

(6.5)

for the PDE loss. However since the PDE is dimensional, the scaling is not the same and we
had to find a new optimal value of the weight on the loss parts αs = 0.08.

We also construct the test data set as explained previously.

6.2.3 Inverse problems with a classic PINN

With both numerical and experimental data, it is possible to solve inverse problems by using
a classic PINN. Basically, we can determine the value of any parameters of the pipe PDE.
To do so, we define the parameter as a variable and initialize it at a certain value. Then,
during the training process, the optimizer optimizes the variable parameter to minimize the
residuals loss while fitting the data points to minimize the data loss. Once the training is
complete, we access the value of the variable which is the solution of the inverse problem.
However, defining too many parameters as variables can be deleterious to the convergence
of the training. Indeed, it creates more degrees of freedom and more possible local minima.
We also observed that we need more data when parameters are set as variables which was
expected as the prior knowledge, reducing the need for data, is not as complete.

In this study, we worked on the inverse problem by setting the flow velocity as a variable. It
is interesting since we can then verify the value of the obtained optimized flowrate with the
actual measured flowrate. In every cases, we initialized the flow velocity at U = 1 m/s and
constrained it to stay between 0 and 10 m/s.

Lastly, when working with more than one variable parameter on the PDE, it is important to
work with an adequate scaling. For example if the γ and α parameters are set as variables
it is suggested to define the αvariable as αvariable = 1000 × α to make sure that αvariable and
γvariable are of the same order of magnitude.
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6.3 Modal PINN

In this section, we use a modal PINN to model the pipe behaviour [39]. It is a very appropriate
formulation for the pipe as its deflection follows a sinusoidal function in time. We suppose
that the deflection of the pipe along time has the following shape:

x(z, t) =
N∑

k=1
φk(x)ejωkt, (6.6)

where (ωi)1≤i≤N are the system eigenfrequencies and (φi)1≤i≤N are the unknown spatial mode
shapes.

The architecture of the Modal PINN is shown in Figure 6.2. The neural network has only
one input, the space coordinate z (or ξ for the non-dimensional formulation). The neural
network has N outputs which are the space mode shapes with respects to the decomposition
presented in Equation (6.6). These N mode shapes are also multiplied by tanh(z)2 since
they each have to respect the boundary conditions at the origin of the pipe. On another
part of the PINN, the N time functions are computed with their analytical formula given
the time variable t (or τ for the non-dimensional formulation) and the N eigenfrequencies.
This function returns the N time functions. Both the outputs of the NN and of the time
function are then multiplied and added according to the Equation (6.6). The result from
this operation is then used to compute the two parts of the loss function as with classic
PINNs. As with the previous figure, the dashed arrows correspond to the feedback loops
used during training to optimize the weights and biases. The time functions are well known
and the time derivatives are thus computed manually which improves the training speed.
The eigenfrequencies have to be given to the PINN model to compute the time functions as
there is no formula to compute them analytically.

6.3.1 Modal PINNs with numerically generated data

We firstly worked with modal PINNs using numerical data as for the classic PINNs formula-
tion. The data generation and the construction of the training and test data sets follow the
same principle as for the classic PINNs. We used the first pipe characteristics from Table 4.2
and worked with the non-dimensional PDE. The loss function has also the same formulation
as in Equation (6.2) and (6.3), however the derivatives with respect to time are encoded
manually in the loss function instead of using automatic differentiation. The optimal weight
on the two loss parts was also found to be αs = 0.01. The main difference from the precedent
approach is that we need to know the eigenfrequencies of the pipe. In this case, these eigen-
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Figure 6.2 Modal PINN architecture to model the pipe conveying fluid

frequencies are numerically obtained with Equation (2.37) and are also used to generate the
numerical data.

6.3.2 Modal PINNs with experimental data

To use experimental data with modal PINNs, we needed to measure the complex eigenfre-
quencies of the system. Indeed, it makes no practical sense to compute numerically the
eigenfrequencies to use experimental data afterward. Therefore, we tried to measure the
eigenfrequencies by applying a Fast Fourier Transform on the experimental evolution of the
tip of the pipe with respect to time. However, this approach failed to capture more than one
mode and we could not apply modal PINNs with experimental data.
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6.4 Weak form approach

This approach shown in Figure 6.3 is inspired by a combination of the modal PINNs and the
weak-form. We suppose that the deflections of the pipe have the following shape:

x(z, t) =
N∑

i=1
φi(z)qi(t), (6.7)

where (φi)1≤i≤N are beam mode shapes and (qi)1≤i≤N are unknown functions to approximate
with the neural network. It follows the same idea as modal PINNs, but instead of assuming
the shape of the time function and using the NN to determine the space function, we assumed
that the space function is known and that the time functions have to be determined by the
NN. The part of the loss function associated to the data has the same formulation as for
the other methods. The main difference with modal PINNs is the weak formulation for the
residuals loss part. By introducing the solution from Equation (6.7) in the non-dimensional
Equation (2.20), we obtain the weak formulation by multiplying it by φj for 1 ≤ j ≤ N ,
by integrating the resulting N equations between 0 and 1 on the ξ domain and by following
the operations from the literature review to solve the linear model. After the operations, we
obtain the following weak formulation with the beam mode shapes decomposition:

Mq̈ + Sq̇ + Kq = 0Mq̈ + Sq̇ + Kq = 0Mq̈ + Sq̇ + Kq = 0, (6.8)

which is used as the residuals equation. We write the loss part associated to the residuals as:

Lw =
Ns∑
i=0

(Mq̈Mq̈Mq̈(tw
i ) + Sq̇Sq̇Sq̇(tw

i ) + KqKqKq(tw
i ))2 , (6.9)

where Nw is the number of data points penalizing the matrix equation and tw
i are the time

coordinates at which to penalize the equation. The part of the loss corresponding to the data
as the same form as shown in Equation (6.2). This method only uses second order derivatives
in the residuals formulation which limits numerical derivations errors. The main advantage
of this formulation compared to modal a PINN is that a weak-form PINN does not need the
eigenfrequencies of the system to work. Moreover, the residuals equation is only a function
of the time and no integrals are present, which means that on the contrary to most weak
form approaches, we do not have to estimate integrals with the quadrature rule. In fact, it
can still be considered as a strong formulation on the time domain as we have to penalize
this new equation on the time domain since we only integrated on the space domain.
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Figure 6.3 Weak-form PINN architecture to model the pipe conveying fluid

6.4.1 Weak-form PINN with numerical data

This method was firstly used with numerically generated data. The data and penalization
points are randomly selected and computed as for the previous method. The only difference is
that only time coordinates are picked for the residuals part of the loss since Equation (6.9) is
only dependant of time. However, the value of the loss part from the penalization of Equation
(6.9) is really high during the first iterations of the training after the initialization of the NN.
This high value compared to the data part of the loss strongly disrupts the convergence of
the optimization and forced us to use a very strong weight on the two loss parts. Indeed,
we decreased the weight on the residuals part down to αw = 10−7 to achieve convergence
and avoid the trivial solution local minima. However, this very small weight also reduces
the effectiveness of the PDE penalization later in the training. This formulation would be
greatly improved by the implementation of adaptive loss weights that would be low at the
beginning of the training and increase during the training once the optimization has passed
the trivial solution. Despite this issue, we believe this formulation to be interesting especially
for problems with forcing terms where the PDE does not admit a trivial solution.



65

6.4.2 Weak-form PINNs with experimental data

Because of the difficulties to achieve convergence and of the time constraint we did not use the
weak-form PINNs formulations with experimental data. Indeed, experimental data are noisy
and not in complete agreement with the linear model, thus making the convergence difficult
of an already sensitive optimization problem. However, this formulation is more adequate
than modal PINNs for the use of experimental data as it does not require the knowledge of
the eigenvalues of the problem.
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CHAPTER 7 PINN RESULTS AND DISCUSSION

This project serves as an introduction to the use of PINNs to construct a digital twin of
the pipe conveying fluid. In this section, we present results obtained with a classic PINN, a
modal PINN and a weak-form PINN applied with numerical and experimental data.

7.1 Classic PINN, modal PINN and weak-form PINN comparison

We firstly demonstrate the effectiveness of PINNs to represent the pipe behaviour and to
compare a classic PINN, a modal PINN and a weak-form PINN. Then, we show how the
addition of the physical model improves the accuracy, reduces the need for data and reduces
the over-fitting phenomenon. Finally, we demonstrate the advantage of modal PINNs and
weak-form PINNs against classic PINNs.

7.1.1 Impact of the penalization of the PDE

For these purposes, we first trained PINN models with deflection data numerically generated
for U = 2 m/s. The deflection data used for training are obtained as explained in the
methodology and are represented in Figure 7.1.
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Figure 7.1 Numerical deflection from the linear model used for PINN models trained with
numerical data.
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Figure 7.2 Deflection of the pipe from different PINN models with 50 data points: (a) and
(b) classic PINN with 5 and 200 residuals points, (c) and (d) modal PINN with 5 and 200
residuals points and (e) and (f) weak-form PINN with 5 and 200 residuals points.
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We used the three PINN formulations with 50 data points and changed the number of resid-
uals penalization points from 1 to 300 points. The test set is composed of 1000 points. The
models were trained to reach a training loss of 2 × 10−5. Figure 7.2 shows the deflection of
the pipe computed by the classic, modal and weak-form PINN models with small and large
sets of penalization points of the PDE. The deflection obtained with large penalization sets
is closer to the actual deflection from Figure 7.1 demonstrating the added value of the prior
knowledge from the PDE. We also see that the weak-form PINN and the modal PINN in
Figures 7.2(c), (d), (e) and (f) are more effective and precise than the classic PINN in Figure
7.2(a) and (b).

To compare these methods more accurately, Figure 7.3(a) represents the test loss reached
at the end of the training for each models with the different penalization sets and Figure
7.3(b) shows the number of iterations needed to train the models. The results are obtained
by computing the average of ten training for each case.

Figure 7.3(a) demonstrates that the test loss is reduced for weak, modal and classic PINNs
when the penalization set is larger. Furthermore, the test loss values and evolution are
similar for weak, modal and classic PINNs. Figure 7.3(b) indicates that when the size of the
penalization set is larger, the number of iterations needed to reach the termination criterion
of the training increase as well. However, the increase is much steeper for weak-form PINNs
than classic PINNs and the iterations required by the modal PINNs models are even lower.
The large number of iteration needed for weak-form PINNs to converge illustrate the difficult
convergence of this method. This disadvantage could be improved by implementing adaptive
weights on the loss parts.

From this trial, we demonstrate that the prior knowledge from the residuals helps improve
the PINNs precision in low data conditions. The error induced by the gap in the data is
countered by the regularization effect of the physical knowledge which reduces over-fitting.
The integration of the prior knowledge with weak-forms PINNs, modal PINNs and classic
PINNs has similar effects on the accuracy of the results. However, the addition of this
knowledge means a longer training as the PINNs models are more heavily constrained. In
this matter, modal PINNs are better than classic PINNs which are better than weak-form
PINNs as they need less iterations to converge and their training time is less affected by the
penalization set size. Finally, the reduction of the test loss with the increase of penalization
points is much slower when it reaches 200 points which means that it is not interesting to
increase further the penalization set as it would increase the training time for little benefit.

However, the time for each iteration is not studied here and is also an important factor.
Indeed, the number of iteration needed to reach the objective value of the loss cannot be the
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Figure 7.3 Influence of the PDE penalization for ( ) modal (with 50 data points), ( )
classic PINNs (with 50 data points) and ( ) weak-form PINNs (with 50 data points): (a)
Evolution of the test loss after training to a training loss of 2 × 10−5 and (b) evolution of the
number of iterations required to reach this training loss.

sole criterion to evaluate the speed of the training process. To estimate this difference for the
three methods we trained a PINN model with 100 data points, 100 penalization points and
100 test points for 500 000 iterations. The average time to complete these 500 000 iterations
on ten trainings is 129 seconds for weak-form PINNs, 405 seconds for classic PINNs and 709
seconds for modal PINNs. Weak-form PINNs is much faster which is expected since only
order two time derivatives are used with the weak formulation. On the other hand, modal
PINNs and classic PINNs are slower since derivatives up to the fourth order in space are
computed. Modal PINN is the slowest formulation because of the size of the output layer.
Therefore, even if weak-form PINNs need more iterations to converge than modal PINNs,
they are not significantly slower since each iteration is faster.

7.1.2 Use of data

To further compare weak, modal and classic PINN models, we compare how the three for-
mulations assimilate data set and how it affects their convergence and accuracy. To do so,
we trained ten PINNs models with numerical data generated for U = 2 m/s and for different
data set sizes from 10 to 500 data points. We used the same number of penalization points
for the PDE and stopped training when a 2×10−5 training loss is reached. As before, Figure
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Figure 7.4 Influence of the data points for ( ) modal PINNs, ( ) classic PINNs and ( )
weak-form PINNs: (a) Evolution of the test loss after training to a training loss of 2 × 10−5

and (b) evolution of the number of iterations required to reach this training loss.

7.4(a) shows the evolution of the test loss as a function of the number of data points and
Figure 7.4(b) represents the number of iterations needed to converge.

In Figure 7.4(a), the test loss decreases steeply as the number of data points increases. Then,
from around 100 points, the test loss decrease is much slower. Moreover, as for the residuals
penalization, the data set size has a similar impact on the weak-form, modal and classic
PINNs formulations. For the iterations needed to converge, Figure 7.4(b) demonstrates that
the training is longer for larger data sets and that modal PINNs need less iterations to
converge than classic and weak-form PINNs.

These results show that weak-form, modal PINNs and classic PINNs accuracy is influenced
analogously by the data set size. However, the modal PINNs are again faster to converge
as they need less iterations to converge even when the data set are largely increased. For
around 100 data points, the PINNs manage to capture the pipe behaviour and that it is not
effective to use more data as it increases the training time.

7.2 Extrapolation with PINNs

In this section, we demonstrate PINNs capacity to extrapolate outside the training data
range. We show that PINNs can extrapolate either in space domain or in the time domain.
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To do so, we trained two PINNs models with 200 data points on the whole time domain but
only from the top of the pipe to 75% of its length as shown in Figure 7.5(a). One of the
PINN is also trained with 200 penalization points of the PDE spread on the whole domain
while the other does not use any penalization points. We plot the test loss along the length of
the pipe for both cases. Figure 7.5(b) repeats the same method but with data points evenly
spread on the whole length of the pipe and only between t = 0 and 75% of the experiment
duration. We plot the test loss along the time of the experiment in this case.

Both Figures 7.5(a) and (b) show that the PINN trained without penalization of the PDE
fails to capture the pipe behaviour in the area where no data were used for the training since
the test loss dramatically increases after 75% of the axis. On the contrary, the PINN with
penalization of the PDE keeps a low test loss value even where no data were used for the
training. For the space extrapolation, the test loss increases slightly but to a reasonable
value. Moreover, the increase reaches a plateau and does not diverge, which means that even
if the PINN is less accurate, it still manages to follow the pipe movements.

This shows that the addition of the prior knowledge from the PDE helps to extrapolate
outside of the training data range. This could be usefull in industrial applications when it is
difficult to obtain data at certain positions and to extrapolate in time, meaning predict the
state of the system in the near future.
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Figure 7.5 Extrapolation capacities of classic PINNs: (a) Test loss value in space for ( ) a
PINN trained with only data between 0 and 0.75L and ( ) for a PINN trained with data
between 0 and 0.75L and 200 points of residuals penalization. (b) Same principle with data
only between 0 and 0.75Tmax.
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7.3 Determination of hidden parameters with PINNs

In this section, we demonstrate the capability from PINNs to solve inverse problems by
determining hidden parameters of the pipe conveying fluid from the data. We determine
the value of the flowrate that is going through the pipe at the moment when the data
were acquired. This is interesting since determining the flowrate in the pipe is equivalent
to determining the water added damping in the pipe since this damping is depending on
the flowrate. Determining the water added damping is important for hydraulic turbines
applications as the water added damping influences the vibration frequencies of the turbines
and therefore influences the fatigue evolution. However, water added damping is a quantity
that is difficult to compute or to measure, determining it from classic sensor data with PINNs
would be really usefull to predict and avoid turbines failures by fatigue.

7.3.1 Use of numerical data

Firstly, we work with 5000 numerically generated data and 500 penalization points where the
PDE residuals are evaluated. The data points were generated for two flowrates values. We
use classic PINNs for this application. Indeed, modal PINNs are more effective but needs to
be given the eigenfrequencies of the modes of the pipe. However, these eigenfrequencies are
hard to obtain experimentally for all the modes and there is no point in solving the PDE to
get the eigenfrequencies to then use PINNs. Since we want to test the same method with
numerical and experimental data we decided to use only classic PINNs in this case.

Figure 7.6 shows the result from this study for U = 3 m/s and U = 4 m/s. Figures 7.6(a)
and (b) show the evolution of the training and test losses during the training of the PINN.
There is no over-fitting as the test loss always decreases during the training of the PINN.
Moreover, the test loss is very close to the training loss, which proves the effectiveness of
PINNs.

The optimization of the flowrate value is shown in Figures 7.6(c) and (d) for both cases. The
flowrate is initialized at U = 1 m/s and converged to 3.1 m/s and 3.9 m/s which corresponds
to a relative error of 4.4% and 1.6%. The flowrate value stabilizes close to the actual value
and is then almost completely constant meaning that it converged to the finale value.

Lastly, Figures 7.6(e) and (f) show the deflection of the tip of the pipe obtained from the
linear model and from the PINNs output. The PINNs match the numerical data, which
means that determining the flowrate does not reduce the PINNs capacity to simulate the
pipe motion. Moreover, the oscillations are shorter for the plot with U = 4 m/s, which is
coherent with the fact that the damping increases with the increase of the flowrate.
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Figure 7.6 Classic PINN to determine the flowrate and simulate the pipe motion from nu-
merical data. In (a) and (b): ( ) and ( ) respectively represents the training and the
validation loss for U = 3 m/s and U = 4 m/s. In (c) and (d): ( ) and ( ) respectively
represents the optimized flowrate from the PINN and the actual value for U = 3 m/s and
U = 4 m/s. In (e) and (f): ( ) and ( ) respectively represents position of the tip simu-
lated by the PINN and the numerical data.
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7.3.2 Use of experimental data

In this last application of PINNs, we use actual experimental data from the setup for the
first time. We use the same classic PINNs structure as for the previous example with 5000
data points and 500 points for the penalization of the PDE. The data points correspond to
the movement of the pipe after a perturbation at a given flowrate below the critical speed.
Figure 7.7 shows the result of the PINNs trained on two sets of experimental data.

In Figures 7.7(a) and (b) the curves represent the evolution of the training and test losses
during the training of the PINNs with the experimental data obtained respectively with
U = 3.2 m/s and U = 4.6 m/s. As with numerical data, the test loss always decreases during
the training meaning that there is no over-fitting. However, both losses increase sharply
by approximately two orders of magnitude. This is caused by a method used to achieve
convergence. Indeed, the data are slightly noisy and some experimental phenomena are not
described perfectly by the linear model. This caused the PINNs to get stuck into a local
minima during training. The PINNs are converging to a trivial solution which minimize the
loss part from the PDE since the PDE admits a trivial solution. This problem was handled
in other cases by using a weight on the data part of the loss to avoid the trivial solution by
giving more importance to the data and forcing the solution to fit the data before fitting the
linear model. However, with experimental data this was not sufficient and we had to start
the training without the PDE part of the loss. Basically, we trained the PINN like a regular
neural network only on the data until a certain value of the training loss and then we added
the penalization of the PDE. This allows the solution to steer away from the trivial solution
by fitting the data first. The addition of the penalization of the PDE to the loss function
accounts for the spike in the loss curves.

Figures 7.7(c) and 7.7(d) show the evolution of the flowrate during the training. As with the
numerical data case the flowrates are initialized at U = 1 m/s. The flowrate value is stable
and equal to 1 m/s for the first part of the training which corresponds to the part of the
training without the PDE penalization. Indeed, without the PDE, the value of the flowrate
does not intervene in the loss value and is not optimized. As for the case with numerical data,
the flowrate stabilizes to a constant value close to the actual experimental flow speed. The
values obtained are 3.4 m/s and 5.0 m/s which represent a relative error of 6.6% and 8.0%.
These values are the flowrate values that minimize the PDE loss, however it also depends on
other parameters such as the length of the pipe and the Young modulus of the pipe rubber.
It is likely that these parameters are not exactly initialized at their actual values and that
would affect the optimal value of the flowrate explaining the error. An interesting approach
to solve this problem would be to define these other uncertain parameters as variables to be
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Figure 7.7 Classic PINN to determine the flowrate and simulate the pipe motion from ex-
perimental data. In (a) and (b): ( ) and ( ) respectively represents the training and the
validation loss for U = 3.1 m/s and U = 4.6 m/s. In (c) and (d): ( ) and ( ) respectively
represents the optimized flowrate from the PINN and the actual value for U = 3.2 m/s and
U = 4.6 m/s. In (e) and (f): ( ) and ( ) respectively represents position of the tip
simulated by the PINN and the experimental data.
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optimized during the PINNs training.

Lastly, Figures 7.7(e) and 7.7(f) show a comparison of the position of the tip of the pipe from
the experimental data and from the PINNs simulation. On the second figure the error between
the PINNs and the experimental data is quite significant. This comes from phenomena that
are not predicted by the PDE. To avoid this kind of problem it is important to use the most
complete model. We also notice that the initial condition seems quite different which can
be explained by the complexity to impose the proper initial condition to the pipe before
releasing it experimentally.

Ultimately, we want to define all the parameters of the PDE with a variable part initialized
at 0 to build a PINN model that can optimize the parameters of the system. For example,
we can define the Young modulus of the pipe as E = E0(1 + εE) where εE is variable and
initialized at 0 and E0 is initialized at the estimated value of the Young modulus. This
method allows us to build a PINN model that works with uncertain parameters in the PDE
and that can potentially re-optimize the value of the Young modulus to model the evolution
of the pipe Young modulus caused by wear and tear.
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CHAPTER 8 CONCLUSION

8.1 Summary of Works

In this thesis, we conducted technological research, designed and built a pipe conveying
fluid experimental setup with its instrumentation and data acquisition system. The current
experimental setup not only allows us to study the behaviour of the classic cantilevered pipe
but can also be easily modified to implement other boundary conditions or pipe features.
The measurement system is composed of two high speed cameras and one flowmeter that
allows to reconstruct the three dimensional behaviour of the pipe for any flowrate.

We then conducted experimental campaigns on pipes of different lengths and inner diameters
to observe interesting phenomena and compare them with the theoretical results. Namely, we
observed the behaviour before the critical speed, measured the critical speed and compared
these experimental results with the pipe linear model. We also measured the evolution of
the amplitude and of the vibrations frequency as a function of the flowrate in the non-linear
domain and observed interesting phenomena on the trace of the tip and the mode shapes. For
instance, we observed the transition from planar movement to circular planar movement to
chaotic movement. The measurements capabilities demonstrated here represent the physical
half of a digital twin test bench.

Alongside this experimental work, we applied classic PINNs, modal PINNs and weak PINNs
to model the pipe in the linear case. We demonstrate that these methods capture the pipe
behaviour below the critical speed, work with numerical or experimental data from the setup,
regularize the solution and help to extrapolate behind data. We also showed that these
methods solve inverse problems by determining the value of the flowrate. Lastly, we showed
the advantages from both classic and weak PINNs compared to the classic PINNs.

8.2 Limitations

The experimental setup was designed to be easily modified to allow the use of other boundary
conditions and pipe feature. However, its main current limitation is the data acquisition and
especially the cameras. Indeed, the current method fits the pipes position with a polynomial
function and does not work if the tip of the pipe goes over the bottom point of the pipe
since there would be two points for the same vertical coordinate. This situation has been
observed at high flowrates. Another limitation is the high level of noise in the signal from
the flowmeter which renders difficult any real time reading of the flowrate.
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Another limitation concerns the pipe characterization. The determination of the pipe char-
acteristics was achieved only by observing the free vibration of the pipe after a perturbation.
This vibration was only composed of the first mode and was used to get the characteristics
by using the linear model.

The last limitations concern the PINN methods that were used in this work. First, the PDE
used to enforce the prior knowledge is the linear equation of the pipe, thus allowing the
PINNs to work only for low flow velocity (before destabilization) and for a perturbed pipe.
Moreover, the convergence of the PINNs was sometimes complex to obtain and was often
stuck in local minima.

8.3 Future Research

This project is only the beginning of a large project aiming to develop digital twins. Therefore,
there are many possible improvements and new possibilities to explore.

8.3.1 Experimental setup improvements

The experimental setup could be improved to display a larger variety of phenomena and to
improve the quality of the experiments. We could implement the following new features:

• Simply supported or clamped boundary conditions at the tip of the pipe.

• Spring fixed on the pipe either at the tip of the pipe or in the middle.

• Modification of the mould and of the pipe to embed added masses on the pipe.

These new features would allow future students to experiment with other models and be-
haviour for the pipe digital twins.

It would also be interesting to add a plastic mesh at the bottom of the tank to limit the
splashes from the water flowing out of the pipe.

Finally, the characterization of the pipe should be improved by observing higher modes
vibrations and by using the pipe non linear models to access the values of the pipe parameters.

8.3.2 Data acquisition improvements

The acquisition of the data could be improved firstly by improving the image treatment
method. As we explained before, the current method does not work if the tip of the pipe
goes over the bottom point of the pipe which happens at high flowrates. Moreover, this
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method does not give any information on the Lagrangian coordinate s along the pipe which
is used in most non-linear models. To solve this problem, an intern has developed a new
method that uses numerically generated photos of the pipe to train a convoluted neural
network (CNN) that analyzes actual images from the setup after its training. To do so,
the images numerically generated show a pipe generated by using a polynomial function for
each of the three x, y and z coordinates. These three polynomials are a function of the
Largrangian coordinate s, thus it fits any shape of pipe and we have access to the position
x, y and z of the pipe depending on the s position along the pipe.

It could also be of interest to add a thermometer to have more precise results on the mass
flowrate since we use a volumic flowmeter. During long operation of the system, the temper-
ature of the water in the circuit increases by more than 10 degrees because of the pump.

The current signal from the flowmeter is relatively noisy and it would be important to reduce
the noise to have more accurate flowrate values and also to be able to measure the flowrate
on shorter period of time.

Finally, an accelerometer could be added on the pipe fixation. It would provide interesting
data to train the PINNs since it would be data that are more comparable to actual data
retrieved in a industrial application. Moreover, it would allow us to demonstrate that the
PINNs are capable to capture the pipe behaviour with data that are limited and not consisting
of videos of the entire pipe motion.

8.3.3 PINNs future

The first improvement of the PINNs model would be to implement a three dimensional
non-linear model as the PINNs PDE to have a PINN that works at a flowrate higher than
the critical speed. It would be best to set the parameters of this PDE with uncertainty as
variables so that the PINN optimizes them. It would also be important to model the pipe
fixation as a ball fixation with springs of a given stiffness that can be optimized by the PINNs
with the other PDE parameters.

Another step would be to implement dynamic learning rates and loss weights and also inves-
tigate other hyper parameters to improve the convergence.

Lastly, other PINNs formulations should be investigated, for example a weak-form formu-
lation of the pipe model with domain decomposition. These methods are investigated in
the literature and seem promising since they reduce the PDE orders and account for discon-
tinuities. The neural networks themselves shall also be improved with adaptive activation
functions or different architectures for example.
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APPENDIX A USE OF THE SHAKER TO CHARACTERIZE THE PIPE

In this appendix we present the work conducted to characterize the pipe higher modes of
vibration with a shaker.

We use a shaker to determine the PDE parameters for higher modes of the pipe. Indeed,
the free motion of the pipe as shown in the previous method mostly displays first mode
behaviour. With the shaker, we determine the parameters valid for higher modes, verify if
they differ and if we need for example to differentiate the PDE for the different modes of the
pipe.

We first built a setup to submit the pipe to the vibration of the shaker. The shaker controls
the acceleration of the vibration as well as the frequency and the amplitude. One high speed
camera, orthogonal to the shaker axis, measures the amplitude of the tip of the pipe.

The shaker setup is shown in Figure A.1. The setup is basically an aluminum structure with
a trolley on two rails. The pipe is fixed on the trolley the same way it is fixed in the actual
setup. The trolley is attached to the shaker rod that induces the vibration.

The idea is to use a deep neural network to determine the parameters of the pipe from the
experimental values. We first determine the form of the pipe PDE without the water flowing
in the pipe (i.e. u = β = 0) and obtain the following PDE:

αη̇
′′′′ + η

′′′′ − γ(1 − ξ)η′′ + γη
′ + η̈ = 0. (A.1)

The displacement η of the pipe is composed of the displacements of the pipe itself and of the
shaker as follows:

η(ξ, τ) = η0(ξ, τ) + ηsexp(iωsτ), (A.2)

where ηs is the amplitude of the shaker vibration and ωs is the vibration frequency of the
shaker.

We rewrite the matrix Equation (2.36) from literature review with the second member added
by the shaker by inserting the Equation (A.2) into Equation (A.1) and applying the same
manipulations shown in the literature review:

MMMq̈qq + SSSq̇qq + KqKqKq = EEEηsω
2
sexp(iωsτ), (A.3)
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Figure A.1 Photo of shaker experimental setup for the pipe characterization.



89

with

EEE =



∫ L
0 φ1(ξ)dξ∫ L
0 φ2(ξ)dξ

.

.

.∫ L
0 φN(ξ)dξ


(A.4)

We then suppose the solution with the following form:

qqq = qqqp(τ) + qqqh(τ), (A.5)

where qqqh is the solution of the homogeneous system without the second member. It is
therefore constant and equal to zero as it is a solution of the system without excitation and
without water flowing in it.

Then we write the particular solution as:

qqqp(τ) = QQQexp(i(ωsτ + θ)). (A.6)

If we apply this solution in the Equation (A.3), we obtain the following:

QQQexp(iθ) = ηsω
2
s(−ω2

sMMM + iωsSSS + KKK)−1EEE. (A.7)

After determining QQQ and θ, we compute the amplitude at the tip of the pipe given the
frequency of the shaker, the non-dimensional parameters and the amplitude of the shaker.

We generate data of amplitude at the tip of the pipe for a large range of parameters and
frequency. We then train a neural network with these data of amplitude at the tip and
frequency of the shaker as inputs and the non-dimensional parameters as outputs. Therefore,
after we measure the amplitude at the tip of the actual pipe for a certain shaker frequency,
we are able to determine the parameters using the neural network.

The shape of the NN is shown in Figure A.2. The inputs of the NN are N values of the
amplitude of the pipe from N different values of the shaker frequency. The outputs are the
damping parameter and the gravity parameter that corresponds to E and E∗.

The pipe No.1 from Table 4.2 was tested in the shaker setup. The shaker was set to keep a
constant displacement amplitude 0.01 m and to shake at a frequency from 3 to 20 Hz with
a 0.05 Hz/s increment. Figure A.3(a) presents the evolution of the amplitude of the tip of



90

Neural
network

α: damping
parameter

γ: gravity
parameter

(Amplitude(ωshaker
i ))0<i<N

Figure A.2 Shape of the NN used to determine the parameters of the pipe from the amplitude
of the tip of the pipe and the frequency of the shaker.
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Figure A.3 Amplitude of the tip after excitation: (a) Amplitude of the tip of the pipe number
1 from Table 4.2 as a function of the shaker frequency from the videos and the experimental
setup and (b) from the linear model on the right.

the pipe along the shaker frequency. Figure A.3(b) shows the evolution of the amplitude
computed with the linear model, the same shaker parameters and the parameters from pipe
No.1 obtained with the free vibration method. The two methods give dramatically different
results. Figure A.3(a) displays regular spikes of similar amplitude while Figure A.3(b) has
only two spikes corresponding to the first and second modes of the pipe where the first mode
amplitude is three time larger. This difference is caused by two factors:

• The linear model fails to represent correctly the behaviour of the pipe subjected to this
kind of solicitations. The amplitude at the eigenfrequencies is aberrantly high. This
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comes from the fact that, at higher amplitude around the eigenfrequencies, the damping
phenomena are mainly non-linear and are not accounted for in the linear model.

• In the experimental shaker setup, different disruptive non-linear phenomena are ob-
served at certain frequency and are not considered by the theoretical model. Three
dimensional movements appear at certain frequencies despite the shaker solicitation
being planar [66]. At some points these three dimensions movements become circu-
lar [62]. Moreover, at the highest frequency the structure with the trolley was vibrating,
inducing a parasite oscillation of the pipe.

Due to the limitation of the shaker at these low frequencies, the difficulties to build a stiff
enough structure and the limitation of the linear model, we decided to drop this technique
in our current study.
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APPENDIX B ACTIVATION FUNCTION CHOICE

In this section, we aim to select the best activation function for the neural networks of the
PINNs. Firstly, we tested the ReLU activation function, the sinus function and the tanh
function. It appears that the ReLU function was not effective at the first tests. We then
compare thoroughly the tanh function and the sinus function for both classic and modal
PINNs as shown in Figure B.1.

We generated numerical data from the linear model with N = 4. For the training, we used
100 data points and 100 points for the penalization of the PDE. We trained the PINN during
500 000 iterations with a constant learning rate Lr = 10−5. The entire training set (100
data points and 100 penalization points) was used during the training. A test set was also
constructed with 100 data points to compute the loss function on this set at each 100th

iteration and verify that the PINN is not over-fitting. The neural networks are composed of
3 layers of 20 neurons as defined before. We trained 10 PINNs for the 6 cases (classic PINNs
with tanh, modal PINNs with tanh, weak PINNs with tanh, classic PINNs with sin, modal
PINNs with sin and weak PINNs with sin) and used the average values of these 10 training.

Figure B.1 follows the evolution of the average of the training loss and of the test loss during
the training for both activation functions and for classic, modal and weak PINNs.

Figure B.1(a) shows the loss for the classic PINNs. The test loss follows the training loss and
does not increase with the epochs which means that there is no over-fitting. As expected the
test loss is larger than the training loss. The tanh activation function is more effective for
a low iteration number as both the training and test losses decrease faster at the beginning.
However, at higher iterations, the training and test losses from the sinus activation function
becomes smaller as the tanh PINN reaches a plateau.

Figure B.1(b), on the other hand, represents the loss for the modal PINNs. As with the
classics PINNs, the test loss keeps decreasing which means that the PINN does not over
fit. The tanh activation function is also more effective at the beginning and converge faster.
However, the sinus activation function PINN does not catch up its delay on the contrary to
the classics PINNs.

Finally, Figure B.1(c), shows the loss for the weak PINNs. Here again, the test loss always de-
creases which means that the model is not over-fitting on the data. Both activation functions
have a very similar effectiveness for this formulation and the loss reaches the same values for
the training and the testing part. The loss first reaches a plateau until approximately 150 000
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Figure B.1 Comparison of activation functions: evolution of the loss values during the training
for (a) classic PINN, (b) modal PINN and (c) weak PINN. ( ) Training loss evolution with
the sinus activation function, ( ) training loss evolution with the tanh activation function,
( ) test loss evolution with the sinus activation function and ( ) test loss evolution with
the tanh activation function.

iterations before decreasing again, reflecting the difficult convergence of this formulation.

When we compare Figure B.1(a) and (b), we see that for both activation functions, the modal
PINNs are more efficient than classic PINNs since both the training and test loss decrease
faster and reach a smaller minimum. On the other hand, the weak PINN formulation is more
effective that classic PINNs but less effective than modal PINNs. However, this formulation
might actually be the best compromise as it is more effective than classic PINNs and does
not require the use of the problem eigenvalues.

In the rest of this study we use the tanh activation function. Indeed, the sinus function only
presents a slight advantage for the classics PINNs and since we compare the three methods,
we keep the same activation functions to keep the comparison relevant.
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APPENDIX C NN SIZE CHOICE

To chose the size of the neural networks, we had to find the smallest NN that approximates
correctly the function of interest which is the function describing the pipe movement. For
that purpose, we trained the NN with only the data points and without the PDE residuals
and checked what training loss value could be reached. We then reduced the size of the NN
until the minimal training loss started increasing which means that the NN was getting too
small to approximate the function correctly. We used 500 data points to train the NNs in all
the cases below.

We first performed this size study on the classic PINNs formulation in Figure C.1. We trained
6 different NNs with 2 layers and 6 different numbers of neurons per layer and ploted the
training loss evolution in 1.5 × 106 iterations in Figure C.1(b). The training loss reaches a
plateau around 600 000 iterations meaning that the NN has reached its best approximation
of the function. The plateau is reached around the same training loss values for NNs larger
than 20 neurons meaning that this size is sufficient. With smaller NNs, the minimum training
loss is slightly larger. We then repeated this operation with 5 different NNs which are all
20 neurons wide but have 5 different depths. Figure C.1(a) represents the training loss for
these 5 NNs and shows a plateau as before. The optimal depth seems to be 3 layers as the
minimum loss does not decrease anymore with a larger NN. The optimal size of the NN for
the classic PINNs is therefore a 3 layers NN made of 20 neurons per layers.
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Figure C.1 Training loss evolution with classic PINNs for (a) a 20 neurons wide NN with 5
different number of layers and (b) a 2 layers deep NN for 6 different widths.
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Figure C.2 shows the results of the same study with the modal PINNs formulation. We firstly
trained 6 NNs composed of 2 layers and of 6 different widths in Figure C.2(b). We observed
the same plateau as for classic PINNs but this plateau is attained at the same moment for the
6 different widths and is approximately 100 times smaller. We deduce that the modal PINNs
formulation is way more effective than the classic PINNs formulation since the minimum loss
is much smaller even with a small NN. A width of only 4 neurons is enough to approximate
the pipe governing equation. Figure C.2(a) shows the results from the depth analysis with 5
different depths and 6 neurons per layers. Here again, the loss reached a plateau at the same
level by the 5 different depths. We conclude that, with the modal PINN formulation a NN
as small as 1 layer with 6 neurons could be enough to approximate the function of interest.
However, since we want to compare modal PINNs and classics PINNs reliably we chose the
same size of NNs as for classic PINNs, hence 3 layers deep and 20 layers wide NNs. This
choice slightly increases the computation time but should no affect the overall results.

Finally, we conducted this study with the weak architecture as shown in Figure C.3. We
trained 6 NNs composed of 2 layers and with 6 different widths. Figure C.3(b) shows the
training loss evolution over 500 000 iterations for these 6 NNs. The minimum value of the
plateau is reached for a 20 neurons wide NN which is the optimal size for this formulation.
We then conducted the depth analysis with 5 different NNs composed of 20 neurons per
layer and of 5 different lengths. The result are shown in Figure C.3(a) and the minimum of
the plateau is reached for 3 layers deep NNs. The optimal size for this formulation is a 3
layers and 20 neurons per layer size. The minimum of the training loss has a similar value
to the one from classic PINNs and is reached for the same NN size which means that the
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Figure C.2 Training loss evolution with modal PINNs for (a) a 6 neurons wide NN with 5
different number of layers and (b) a 2 layers deep NN for 6 different widths.
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beam mode shape decomposition is as effective as the classic formulation to approximate the
function of interest. However, this formulation is less effective than the modal decomposition
to approximate the pipe movement. However, the goal here is to use PINNs and not just
classic NN and therefore the weak form might still have the upper hand when using the PDE.

All the NNs in the following studies are 3 layers deep and 20 neurons wide.
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Figure C.3 Training loss evolution with weak PINNs for (a) a 20 neurons wide NN with 5
different number of layers and (b) a 2 layers deep NN for 6 different number of neurons per
layer.
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APPENDIX D PARAMETERS USED IN THE DIFFERENT PINNS
MODELS

In this appendix we give the characteristics of the different PINNs models that are used in
this thesis.

Table D.1 PINNs models used to find the activation function in Figure B.1.

Characteristics 1 2 3 4 5 6
Input Dimension 2 1 1 2 1 1

Output Dimension 1 8 4 1 8 4
NN Depth 3 3 3 3 3 3
NN Width 20 20 20 20 20 20

Training data points 100 100 100 100 100 100
Test data points 100 100 100 100 100 100

Penalization points 100 100 100 100 100 100
Penalization weight 0.01 0.01 10−7 0.01 0.01 10−7

Activation function Tanh Tanh Tanh Sin Sin Sin
Type Classic Modal Weak Classic Modal Weak

Table D.2 Classic PINNs models used to find the optimal classic PINNs NNs size in Figure
C.1.

Characteristics 1 2 3 4 5 6 7 8 9 10
Input Dimension 2 2 2 2 2 2 2 2 2 2

Output Dimension 1 1 1 1 1 1 1 1 1 1
NN Depth 1 2 2 2 2 2 2 3 4 5
NN Width 20 8 12 16 20 26 34 20 20 20

Training data points 500 500 500 500 500 500 500 500 500 500
Test data points 0 0 0 0 0 0 0 0 0 0

Penalization points 0 0 0 0 0 0 0 0 0 0
Penalization weight 0 0 0 0 0 0 0 0 0 0

Activation Th Th Th Th Th Th Th Th Th Th
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Table D.3 Modal PINNs models used to find the optimal modal PINNs NNs size in Figure
C.1.

Characteristics 1 2 3 4 5 6 7 8 9 10
Input Dimension 2 2 2 2 2 2 2 2 2 2

Output Dimension 1 1 1 1 1 1 1 1 1 1
NN Depth 1 2 2 2 2 2 2 3 4 5
NN Width 20 8 12 16 20 26 34 20 20 20

Training data points 500 500 500 500 500 500 500 500 500 500
Test data points 0 0 0 0 0 0 0 0 0 0

Penalization points 0 0 0 0 0 0 0 0 0 0
Penalization weight 0 0 0 0 0 0 0 0 0 0

Activation Th Th Th Th Th Th Th Th Th Th

Table D.4 Weak PINNs models used to find the optimal weak PINNs NNs size in Figure C.2.

Characteristics 1 2 3 4 5 6 7 8 9 10
Input Dimension 1 1 1 1 1 1 1 1 1 1

Output Dimension 4 4 4 4 4 4 4 4 4 4
NN Depth 1 2 2 2 2 2 2 3 4 5
NN Width 20 8 12 16 20 26 34 20 20 20

Training data points 500 500 500 500 500 500 500 500 500 500
Test data points 0 0 0 0 0 0 0 0 0 0

Penalization points 0 0 0 0 0 0 0 0 0 0
Penalization weight 0 0 0 0 0 0 0 0 0 0

Activation Th Th Th Th Th Th Th Th Th Th

Table D.5 Classic PINNs models used to study the impact of the residuals in Figure 7.3.

Characteristics 1 2 3 4 5 6 7 8
Input Dimension 2 2 2 2 2 2 2 2

Output Dimension 1 1 1 1 1 1 1 1
NN Depth 3 3 3 3 3 3 3 3
NN Width 20 20 20 20 20 20 20 20

Training data points 50 50 50 50 50 50 50 50
Test data points 1000 1000 1000 1000 1000 1000 1000 1000

Penalization points 1 5 10 20 40 80 150 300
Penalization weight 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Activation Th Th Th Th Th Th Th Th
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Table D.6 Modal PINNs models used to study the impact of the residuals in Figure 7.3.

Characteristics 1 2 3 4 5 6 7 8
Input Dimension 1 1 1 1 1 1 1 1

Output Dimension 8 8 8 8 8 8 8 8
NN Depth 3 3 3 3 3 3 3 3
NN Width 20 20 20 20 20 20 20 20

Training data points 50 50 50 50 50 50 50 50
Test data points 1000 1000 1000 1000 1000 1000 1000 1000

Penalization points 1 5 10 20 40 80 150 300
Penalization weight 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Activation Th Th Th Th Th Th Th Th

Table D.7 Weak PINNs models used to study the impact of the residuals in Figure 7.3.

Characteristics 1 2 3 4 5 6 7 8
Input Dimension 1 1 1 1 1 1 1 1

Output Dimension 4 4 4 4 4 4 4 4
NN Depth 3 3 3 3 3 3 3 3
NN Width 20 20 20 20 20 20 20 20

Training data points 50 50 50 50 50 50 50 50
Test data points 1000 1000 1000 1000 1000 1000 1000 1000

Penalization points 0 5 10 20 40 80 150 300
Penalization weight 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7

Activation Th Th Th Th Th Th Th Th

Table D.8 Classic PINNs models used to study the impact of the data in Figure 7.4.

Characteristics 1 2 3 4 5 6 7 8 9 10
Input Dimension 2 2 2 2 2 2 2 2 2 2

Output Dimension 1 1 1 1 1 1 1 1 1 1
NN Depth 3 3 3 3 3 3 3 3 3 3
NN Width 20 20 20 20 20 20 20 20 20 20

Training data points 10 20 40 60 80 100 150 200 300 400
Test data points 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Penalization points 1 1 1 1 1 1 1 1 1 1
Penalization weight 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Activation Th Th Th Th Th Th Th Th Th Th
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Table D.9 Modal PINNs models used to study the impact of the data in Figure 7.4.

Characteristics 1 2 3 4 5 6 7 8 9 10
Input Dimension 1 1 1 1 1 1 1 1 1 1

Output Dimension 8 8 8 8 8 8 8 8 8 8
NN Depth 3 3 3 3 3 3 3 3 3 3
NN Width 20 20 20 20 20 20 20 20 20 20

Training data points 10 20 40 60 80 100 150 200 300 400
Test data points 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Penalization points 1 1 1 1 1 1 1 1 1 1
Penalization weight 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Activation Th Th Th Th Th Th Th Th Th Th

Table D.10 Weak PINNs models used to study the impact of the data in Figure 7.4.

Characteristics 1 2 3 4 5 6 7 8 9 10
Input Dimension 1 1 1 1 1 1 1 1 1 1

Output Dimension 4 4 4 4 4 4 4 4 4 4
NN Depth 3 3 3 3 3 3 3 3 3 3
NN Width 20 20 20 20 20 20 20 20 20 20

Training data points 10 20 40 60 80 100 150 200 300 400
Test data points 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Penalization points 1 1 1 1 1 1 1 1 1 1
Penalization weight 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−7

Activation Th Th Th Th Th Th Th Th Th Th
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Table D.11 PINNs models used to study extrapolation in Figure 7.5.

Characteristics 1 2 3 4
Input Dimension 2 2 2 2

Output Dimension 1 1 1 1
NN Depth 3 3 3 3
NN Width 20 20 20 20

Training data points 100 100 100 100
Test data points 200 200 200 200

Penalization points 200 0 200 0
Penalization weight 0.01 0.01 0.01 0.01
Activation function Tanh Tanh Tanh Tanh

Type Classic Classic Classic Classic

Table D.12 PINNs models used to solve inverse problems in Figure 7.6 and Figure 7.7.

Characteristics 1 2
Input Dimension 2 2

Output Dimension 1 1
NN Depth 3 3
NN Width 20 20

Training data points 5000 5000
Test data points 100 100

Penalization points 500 500
Penalization weight 0.01 0.08
Activation function Sin Sin

Type Classic Classic
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APPENDIX E LIBRARIES AND VERSIONS USED IN THE CODE

In this appendix we summarize the libraries used in the codes and the versions.

Table E.1 Used libraries

Name of the library Version
Python 3.6.13
Numpy 1.19.5

OpenCV 4.5.5.62
Spyder 5.0.5

TensorFlow 1.14.0
TensorFlow GPU 1.14.0

Tikzplotlib 0.9.12
Scipy 1.5.4

Scikit-Image 0.17.2
Matplotlib 3.3.4
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