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RÉSUMÉ 

De nouvelles approches basées sur les circuits équivalents sont proposées dans cette étude pour la 

modélisation électromagnétique de dispositifs magnétiques, tels que les inductances et les 

transformateurs, dans un logiciel de type EMT (transitoire électromagnétique), comme EMTP. Les 

méthodes proposées présentent les avantages des méthodes basées sur les circuits 

électromagnétiques, et peuvent également fournir une représentation détaillée des dispositifs 

magnétiques comparable à celle de la méthode par éléments finis (MEF). 

Les approches proposées dans cette thèse permettent une modélisation géométrique détaillée, ainsi 

que la visualisation de la distribution du flux magnétique et la prise en compte de la saturation du 

noyau de fer. Les méthodes proposées dans cette thèse peuvent être implémentées dans un logiciel 

de type EMT en utilisant des éléments standards. Ils peuvent servir dans un logiciel de type EMT 

pour voir l'effet des réseaux électriques sur les dispositifs magnétiques et inversement. Étant donné 

que la MEF 2D est préférée à la MEF 3D pour la plupart des applications de systèmes électriques, 

en raison de sa simplicité, les modèles de dispositifs magnétiques basés sur des circuits équivalents 

sont d’abord présentés en mode 2D. Ensuite, ils sont améliorés pour prendre en compte les effets 

tridimensionnels, notamment dans les cas où les flux de fuite dans la troisième dimension sont 

cruciaux pour la précision du modèle.  

Des modèles pour des inductances et des transformateurs avec des structures à plusieurs 

enroulements peuvent être générés à l'aide de la méthode proposée. En outre, la méthode proposée 

peut représenter les défauts internes des inductances et des transformateurs. Afin de vérifier 

l'approche proposée, les résultats des modèles obtenus sont comparés aux résultats des modèles 

MEF 2D et 3D. Une précision comparable est obtenue pour les modèles 2D et 3D.  

Les méthodes proposées dans cette thèse peuvent être utilisées pour intégrer la modélisation MEF 

dans des outils de type EMT, notamment la représentation précise de la géométrie, la prise en 

compte de la saturation du noyau de fer et la prise en compte de tous les chemins de flux 

magnétique, y compris les chemins de flux de fuite à travers l'air. 

 

 



vi 

 

 

ABSTRACT 

New circuit-based approaches are proposed in this study for the electromagnetic modelling of 

magnetic devices, such as inductors and transformers, in electromagnetic transient (EMT)-type 

software (EMTP, for example). The proposed methods have the advantages of circuit-based 

methods, and they can also provide a detailed representation of magnetic devices comparable to 

that of the finite element method (FEM).  

The proposed approaches enable detailed geometrical modelling, as well as visualisation of 

magnetic flux distribution and consideration of iron core saturation. The methods proposed in this 

thesis can be implemented in EMT-type software using standard elements. They can be 

implemented in EMT-type software to see the effect of power networks on magnetic devices and 

vice-versa. Given the difficulty of 3D FEM and the fact that 2D FEM is preferred over 3D FEM 

for most power system applications, due to its simplicity, circuit-based magnetic device models are 

first presented in 2D. Afterwards, they are improved to take into account three-dimensional effects, 

particularly in cases where the leakage fluxes in the third dimension are crucial to model's accuracy.   

Models for inductors and transformers with multi-winding structures can be generated using the 

proposed method. In addition, the proposed method can represent internal faults in inductors and 

transformers. In order to verify the proposed approach, the findings of the resulting 2D and 3D 

circuit-based models are compared to the results of the 2D and 3D FEM models, respectively. High 

accuracy is achieved for both 2D and 3D models. Finally, it can be stated that the methods proposed 

in this thesis can be used to integrate features of 2D and 3D FEM modelling into EMT-type 

software, including accurate geometry modelling, consideration of iron core saturation, and 

consideration of all magnetic flux paths, including leakage flux paths through air during saturated 

operation. 
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 INTRODUCTION 

Power system transients can be significantly influenced by the nonlinear and frequency-dependent 

behaviour of magnetic devices, such as inductors, transformers, electric machines, which are 

widely used in transmission and distribution grids. Accurate models of magnetic device are 

necessary to conduct an effective risk assessment and network optimization. Magnetic device 

manufacturers require realistic models that not only accurately describe magnetic devices but also 

allow them to observe the different effects of network on the internal behaviour of magnetic 

devices.  

The use of circuit-based models for the accurate modelling of transformers and inductors in EMT-

type software tools is the primary focus of this thesis. The first thing that will be covered in this 

chapter is an explanation of all of the methods that may be used to represent magnetic devices using 

equivalent electric circuit.   

1.1 Connection between magnetic and electric circuits 

The lumped circuit-based models used in this thesis derive equivalent circuits based on three 

different approaches: Hopkinson analogy [1, 2], Buntenbach analogy [3], and the duality principle 

[4-7] named hereinafter, HBD-circuits. The Hopkinson analogy, often known as the resistance-

reluctance analogy, is the oldest and most widely used approach. However, in some cases, this 

method has limitations, and the Buntenbach analogy and duality principle are favored. For 

example, the duality principle, which employs electric elements to implement magnetic devices, is 

the method of choice in topological transformer models [6], [7] used in EMT-type software. Also, 

the Buntenbach analogy, or permeance-capacitance analogy, has lately been utilized to model 

magnetic devices in power electronic circuits [8], [9]. In this part, their advantages and 

disadvantages, as well as their modelling applications for magnetic devices, are reviewed in great 

detail. 

1.1.1 Hopkinson Analogy 

Hopkinson’s analogy [1, 2] is the earliest method for establishing a link between magnetic and 

electric circuits. The magnetic scalar law, which is equivalent to Ohm's law in electric circuits, is 

the basis of this analogy.  
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ℱ = 𝑅 𝜙 (1.1) 

where ℱ, 𝑅, and 𝜙 are, respectively, the magnetomotive force MMF, the reluctance, and the 

magnetic flux. In this method, resistors are used to represent the reluctances. And voltage sources 

and current sources in equivalent circuit are used to represent magnetomotive forces sources and 

magnetic fluxes sources in magnetic circuit, respectively [1, 2]. To illustrate this analogy, Figure 

1.1 illustrates the Hopkinsons' analog circuit for the case of an inductor.  
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Figure 1.1 Hopkinsons' analog of the iron core inductor 

The reluctances of the side columns 𝑅2 and 𝑅3 are parallel, and the total of their magnetic fluxes 

equals the magnetic flux of the reluctance of the centre column 𝑅1. Each reluctance is determined 

by  

𝑅 =
𝑙

 𝜇 𝐴 
 (1.2) 

where 𝑙 and 𝐴 are the mean lengths and cross-sections of flux tubes associated with each reluctance, 

respectively. And 𝜇 is the magnetic permeability of the core. The magnetic fluxes are generated by 

the magnetomotive force of the winding which is calculated using Ampère's law as 

ℱ =  ∮ �⃗⃗� · d𝑙⃗⃗  ⃗
 

𝜕𝑆

= 𝑁𝑖 (1.3) 

where, ℱ  is the magnetomotive force of the winding, 𝑁 denotes the number of turns in the winding, 

𝑖 denotes the current flowing through the winding, and �⃗⃗�  denotes magnetic filed. As a result, it 

makes sense to represent the magnetomotive force in the analogue circuit using a voltage source. 

The winding's time-varying magnetic flux induces a voltage on the circuit's electric side, the value 

of which is governed by Faraday's law, as  
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𝑒 = ∮ �⃗� · d𝑙⃗⃗  ⃗
 

𝜕𝑆

= −𝑁
𝑑𝜙

𝑑𝑡
 (1.4) 

where 𝜙 is the magnetic flux and 𝑒 is the induced electromotive force. Thus, the electric side 

considers the winding as a controlled voltage source whose value is determined by the time 

derivative of the current, which in Hopkinsons' analogy represents the magnetic flux.  

In the Hopkinson analogy, a type of mutator called Type-2 L-R mutator is employed to link the 

magnetic and electric parts of the circuit. This type of mutator is illustrated in Figure 1.2, with the 

left side (blue circuit) representing the electrical part and the right side (black circuit) representing 

the magnetic part. The relationships employed to derive the values of the voltage sources in both 

the electric and magnetic of this mutator, which are functions of the currents in the magnetic and 

electric sides, are defined by  

𝑣1 = −𝑁
𝑑𝑖2 

𝑑𝑡
⟺ 𝑒 = −𝑁 

𝑑𝜙

𝑑𝑡
 (1.5) 

𝑣2 = 𝑁𝑖1⟺ℱ = 𝑁𝑖 (1.6) 

where 𝑣1 and 𝑖1 are the voltage and current related to the mutator's electric side, which reflect the 

electromotive force voltage induced in the electric circuit 𝑒 and the electric current flowing into 

the winding 𝑖, respectively. And 𝑣2 and 𝑖2 are the voltage and current related to the mutator's 

magnetic side, which represent the magnetomotive force in the magnetic circuit ℱ and the magnetic 

flux flowing into the core 𝜙, respectively. Thus, (1.5) and (1.6) are equivalent to (1.4) and (1.3), 

respectively.  
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Figure 1.2 Type-2 L-R mutator 

Despite its widespread use, the Hopkinson analogy has several limitations in representing the 

physical behaviours of magnetic devices. The limitations are primarily energy related. 
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The first energy-related disadvantage is that, although the product of electromotive force and 

current provides power, the product of their analogous equivalents, magnetomotive force and 

magnetic flux, yields energy [8, 10, 11]. The second disadvantage in terms of energy is that electric 

resistance is a component that dissipates energy and is not a real substitute for magnetic reluctance, 

which stores energy [5]. Another energy-related drawback is that magnetic inductors, which are 

energy-storing components, are employed to simulate the core's energy dissipation. In fact, from 

an energy viewpoint, using a magnetic inductor, also known as a magnetic loss element [5, 9] or 

transference [12, 13], as an energy dissipating element is meaningless.  

Hopkinson's analogy has a significant disadvantage when it comes to implementation in circuit 

simulators. Indeed, because initial current conditions for resistance cannot be defined, this 

approach does not allow for the implementation of initial current conditions for an inductor using 

resistance. However, based on (1.3), because the initial condition of the inductor current is reflected 

in the magnetomotive force, the initial condition of the inductor current can be considered by 

introducing DC voltage sources in series with the reluctances in the magnetic circuit. However, the 

added DC source must be connected only at time t=0 and disconnected at time t>0, which 

complicates simulations [10, 11]. 

1.1.2 Buntenbach Analogy 

The Buntenbach analogy [3, 12] was proposed to address the issues raised by the Hopkinson 

analogy. The resistors in the Hopkinson analogy are replaced by capacitances in the Buntenbach 

analogy. If, in (1.1), magnetic flux 𝜙 is stated in terms of magnetomotive force ℱ, the new equation 

is derived 

𝜙 = 𝛬 ℱ (1.7) 

where 𝛬 is the permeance, the reciprocal of reluctance 𝑅, and its unit is 𝐻. Also, looking to the 

capacitance 𝐶 definition which relates the electric flux stored 𝜓 with its voltage 𝑒, 

𝜓 = 𝐶 𝑒       (1.8) 
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As can be seen from the comparison of (1.7) and (1.8), it is evident that in the Buntenbach analogy, 

capacitance 𝐶 is analogous to permeance 𝛬, electromotive force 𝑒 is analogous to magnetomotive 

force ℱ, and electric flux 𝜓 is analogous to magnetic flux 𝜙.  

Figure 1.3 illustrates the analog circuit for an iron core inductor derived by this analogy.  
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Figure 1.3 Buntenbach's analog of the iron core inductor 
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Figure 1.4 Type 1 L-C mutator 

In contrast to the Hopkinson analogy, the Buntenbach analogy uses a different type of mutator, the 

Type 1 L-C mutator [14-16], to connect the magnetic and electric parts of the circuit. This type of 

mutator is represented in Figure 1.4 with the electrical part on the left (blue circuit) and the 

magnetic part on the right (black circuit). Here is a set of the relationships associated with this 

mutator 

𝑣1 = −𝑁𝑖2⟺ 𝑒 = −𝑁 
𝑑𝜙

𝑑𝑡
 (1.9) 

𝑣2 = 𝑁𝑖1⟺ℱ = 𝑁𝑖 (1.10) 

where 𝑣1 and 𝑖1 are the voltage and current related to the mutator's electric side, which reflect the 

electromotive force voltage induced in the electric circuit 𝑒 and the electric current flowing into 

the winding 𝑖, respectively. And 𝑣2 and 𝑖2 are the voltage and current related to the mutator's 
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magnetic side, which represent the magnetomotive force in the magnetic circuit ℱ and time-

derivative of magnetic flux flowing into the core 𝑑𝜑/𝑑𝑡, respectively. Similar to Hopkinson 

analogy, it can be observed that, (1.5) and (1.6) are equivalent to (1.4) and (1.3), respectively.  

The Buntenbach analogy overcomes all the Hopkinson analogy's energy-related drawbacks. First, 

just as the product of electromotive force and conduction current results in power, so does the 

product of their analogous equivalents, magnetomotive force and the time derivative of magnetic 

flux. In this analogy, as opposed to the Hopkinson analogy, the capacitor, which is energy storing 

element, is employed to represent permeance. In fact, by looking at the electric energy stored in 

the capacitor 𝐸𝑐  and the magnetic energy stored in the permeance 𝐸𝛬 which have been derived in 

(1.11) and (1.12), respectively, it can be concluded that they are analogous to each other.   

When the electric energy stored in the capacitor 𝐸𝐶 and the magnetic energy stored in permeance 

𝐸𝛬 as calculated in (1.11) and (1.12), respectively, are compared, it can be shown that the two 

parameters are analogous. 

𝐸𝐶 =
1

2
𝐶𝑒2 =

1

2
𝜓 𝑒 =

1

2
 
𝜓2

𝐶
 (1.11) 

𝐸𝛬 =
1

2
𝛬 ℱ2 =

1

2
 𝜙 ℱ =

1

2
 
𝜙2

𝛬
 

(1.12) 

Also, the Buntenbach analogy overcomes the Hopkinson analogy's difficulty in expressing the 

current initial condition, because initial voltage (or initial electric charge) for the capacitors can be 

defined. Because of the aforementioned reasons, the Buntenbach analogy is now occasionally 

favoured over Hopkinson in modelling transformers and inductors in some power system [17] or 

power electronic [18, 19] applications. In addition, the fact that both 𝑖(= 𝑑𝑞/𝑑𝑡) and 𝑑𝜑/𝑑𝑡 are 

time rate of change variables with units of Webers/second (Wb/s) and Coulombs/second (C/s), 

respectively, is further evidence that this analogy beats the Hopkinson analogy in terms of 

expressing physical behavior. 

1.1.3 Duality principle 

Another strategy for linking magnetic and electric circuits is the duality principle, which is used in 

electric circuit theory to try to find reciprocal circuits with identical behaviour patterns [4, 6, 7].   
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In electric circuit theory, the duality principle includes reciprocal circuit elements and the exchange 

of dual parameters. In electrical circuits, this principle results in the voltage becoming the current, 

the series elements becoming parallel, the resistance becoming conductance, the capacitance 

becoming inductance, the reactance becoming susceptance, the short-circuit becoming an open-

circuit, the star circuits becoming mesh circuits, Kirchhoff’s current law becoming Kirchhoff’s 

voltage law, and so on. 

Cherry [5] used the original principle of duality to identify a reciprocal electric circuit for the 

magnetic circuit equations, and Slemon [20] added nonlinear effects to incorporate the magnetic 

circuit's nonlinear equations. The duality principle is applied on the magnetic circuits based on the 

relationship between the inductance 𝐿 and reluctance 𝑅 

𝐿 =
𝑁2

𝑅
 (1.13) 

where 𝑁 is the number of winding turns. The reciprocal relationship between 𝑅 and 𝐿 provides 

more evidence for the existence of a reciprocal electric circuit for each given magnetic circuit. 

Additionally, by employing duality, the magnetomotive force ℱ is transformed into current 𝑖, the 

time derivative of magnetic flux (𝑑𝜙/𝑑𝑡) is transformed into voltage 𝑣, the magnetic circuit nodes 

are transformed into electric circuit loops, and the electric circuit loops are transformed into 

magnetic circuit nodes. Additionally, ideal transformers are employed to connect the section of the 

circuit that represents the external electric circuit with the section that represents the magnetic 

circuit's dual. This concept will be discussed in further detail in 2.1.3.  

To demonstrate how [5] used a topological technique to graphically build a dual circuit, see Figure 

1.5, which depicts dual transformation for an iron core inductor. First, the iron core inductor is 

discretized and represented as a magnetic circuit in Figure 1.5.  Then, in the center of each mesh 

of the magnetic circuit, a knot is defined and assigned a number; in this example, as seen in Figure 

1.5, the magnetic circuit consists of two meshes, each with its own defined and numbered knot. A 

knot is also considered and assigned the number 0 for the exterior mesh. The topology of the 

electric circuit is then established by drawing lines between the defined knots using a few simple 

criteria given in [20, 21]. The drawn lines are indicated in Figure 1.5 by purple dashed lines. 

Following the drawing of the electric circuit's topology, the dual circuit is produced by replacing 

the magnetic components with their electric analogues. 
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Figure 1.5 Derivation of a dual circuit for an iron core inductor using duality transformation 

This approach has the advantage of Buntenbach analogy for supporting a physically correct model. 

First, the reluctance is represented by an inductor, which is a storing element. Second, the power 

in the dual circuit is equivalent to the power in the magnetic circuit, as is the energy in the dual 

circuit to the energy in the magnetic circuit. Thirdly, since the inductor's initial condition is defined, 

there is no need to connect a voltage source in series with the inductors, as was done in the 

Hopkinson analogy. Apart from these reasons, this method was chosen for modelling transformers 

[5] because it links the magnetic circuit's electric dual with the external circuit via ideal 

transformers, that are seen more often in circuit simulation tools. 

1.1.4 Derivation duality circuit from Hopkinson and Buntenbach analogies  

There is an interesting relationship between the Hopkinson and Buntenbach analogies and the 

duality principle, which allows for a transition from Hopkinson or Buntenbach analogy to duality. 

This relationship and its related transition were mentioned briefly in [22], but they are elaborated 

on in this section. Actually, the transition from the Buntenbach or Hopkinson analogy to duality is 

accomplished by the fact that a mutator enables the transition from one element to its dual by 

passing it from the magnetic side to the electric side of the electromagnetic circuit.  

This section provides an explanation of the transition from the Buntenbach analogy to the duality 

principle; nevertheless, the transition from the Hopkinson analogy to the duality principle follows 

the same procedure. To do so, Figure 1.6 depicts a simple circuit with its magnetic portion 

represented using the Buntenbach analogy.  
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Figure 1.6 Simple circuit based on Buntenbach analogy 
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Figure 1.7 Equivalent circuits demonstrating the conversion of a permeance into an inductor by 

adding an L-C mutator 

Analytically, it can be shown that shifting the magnetic capacitor (permeance) to the electric side 

of an L-C mutator converts it to its dual (inductor). Figure 1.7 demonstrates these two equivalent 

circuits. The left circuit depicts the magnetic capacitor (permeance), while the right circuit 

represents its dual circuit consisting of an inductor and a type-LC mutator. The type-LC mutator 

used has a coupling factor of 1. To establish the relation between permeance and its dual inductor, 

we compare the ruling relations of both circuits depicted in Figure 1.7. For the magnetic permeance 

in the left circuit, 

𝑑𝜙

𝑑𝑡
= 𝛬

𝑑ℱ

𝑑𝑡

 
  𝑖 = 𝑐

𝑑𝑣

𝑑𝑡
 (1.14) 

where 
𝑑𝜙

𝑑𝑡
, ℱ, and 𝛬 represent the time durative of magnetic flux, magnetomotive force source and 

permeance in the magnetic circuit.  

And for the inductor in the right circuit,  

𝑒′ = 𝐿
𝑑𝑖′

𝑑𝑡

 
 
𝑑𝜙

𝑑𝑡
= 𝐿

𝑑ℱ

𝑑𝑡
 (1.15) 
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where 𝑒′, 𝑖′, and 𝐿 indicate the electromotive force, the electric current, and the inductor, which in 

the duality analogy represent the time derivative of the magnetic flux 
𝑑𝜙

𝑑𝑡
, the magnetomotive force 

ℱ, and the dual of the permeance 𝛬, respectively. 

 By comparing (1.14) and (1.15), we can see that 𝐿 = 𝛬. As a result, the permeance in Figure 1.6 

can be replaced by its equivalent circuit, the right circuit in Figure 1.7, which transitions the circuit 

in Figure 1.6 to the new circuit in Figure 1.8. It can be proved in the derived circuit that two 

mutators in series are equivalent to one ideal transformer, the relationships of which are illustrated 

in (1.16) and (1.17).  Figure 1.9 displays this equivalence based on these relations. Finally, it is 

concluded that the circuit derived from the Buntenbach analogy shown in Figure 1.6 can be turned 

into the duality derived circuit displayed in Figure 1.10. 

𝑒

𝑒′
=
−𝑁

𝑑𝜑
𝑑𝑡

−
𝑑𝜑
𝑑𝑡

= 𝑁 (1.16) 

𝑖

𝑖′
=

ℱ
𝑁
ℱ
=
1

𝑁
 

(1.17) 
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Figure 1.8 The circuit equivalent to Figure 1.6 resulted from replacing the permeance with its 

dual circuit  
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Figure 1.9 Conversion of two series-connected mutators into an ideal transformer 



11 

 

 

 

 
 

 

 

 
+

  

 

+

   

        

 

Figure 1.10 Duality-derived circuit equivalent to the circuit in Figure 1.6 

1.2 Literature review  

1.2.1 Coupled problems for modelling magnetic devices in power systems 

Magnetic devices, such as inductors, transformers, and rotating electrical machines, play a vital 

role in power systems. As a result, accurate simulation of many phenomena in power systems, such 

as electromagnetic transient events, requires accurate electromagnetic modelling of magnetic 

devices. Designers must also take into account how the external network affects the internal 

behavior of magnetic devices, including magnetic flux distribution, iron losses, and identification 

of hot spots. Circuit simulators and field solvers are two popular tools for performing these types 

of analysis.  

When it comes to magnetic devices, FEM [23] can represent them in great detail, taking into 

account nonlinear behavior as well as geometrical complexities. However, because FEMs lack 

power system components such as transmission lines and circuit breakers, they are unable to be 

utilized to analyze a magnetic device in a large power system network. To overcome this issue, the 

coupling of magnetic field equations and circuit equations is established. There are two typical 

methods for providing coupling: direct (or strong) coupling and indirect (or sequential, or weak) 

coupling [24].  In both, field domains are discretized spatially using a variety of techniques, 

including the Finite Element Method, the Finite Difference Method, the Finite Integration 

Technique, and the Boundary Element Method. Additionally, various discretization methods may 

be applied to the physical parts. A time-dependent system of ordinary differential equations (ODE) 

or differential algebraic equations (DAE) is generated as a result of spatial discretization. 

The direct technique simultaneously employs a single system of equations that contains all of the 

degrees of freedom required. To solve the magnetic equations, a formulation involving the 

magnetic potential vector is used. The conductor current is expressed in terms of current density, 
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and the flux linkage is determined from the potential vector to establish coupling. Step-by-step 

numerical integration is used to solve the time-dependent differential system that results from 

coupling. A Newton–Raphson iterative approach is utilized to account for the magnetic and electric 

nonlinearities. This method, however, is not appropriate for large power networks because it lacks 

sufficient power component models. 

The indirect method solves the field and circuit equations separately, but keeps them connected 

through coupling coefficients, like in [25]. Given the ability to use circuit simulators, indirect 

techniques may take into account the impact of huge networks with a diverse range of power 

components on the magnetic device, which is not achievable with direct methods. However, since 

indirect techniques need numerous iterations between the field and circuit equations, they are 

computationally expensive and result in major numerical delays.  

Despite the fact that both coupling-based systems are highly accurate, they have severe 

implementation limitations, including lengthy computation times and a number of numerical 

issues. Additionally, when examining magnetic devices in power systems, analysts favor lumped 

models that are compatible with circuit modelling software such as EMT-type tools over distributed 

field models. However, as stated in this thesis, existing lumped parameter models (or circuit-based 

models) are not as accurate as FEM, and although a few lumped models with appropriate accuracy 

exist, they cannot be easily implemented in EMT-type tools. 

1.2.2 Existing lumped circuit-based models for modeling magnetic devices  

Circuit simulation software currently uses lumped models, which have a limited number of circuit 

elements to account for the flux paths of magnetic devices. The magnetic equivalent circuit (MEC) 

approach is the most extensively used and earliest lumped method for modelling magnetic devices. 

[12, 13]. The ability of the MEC to convert a complicated magnetic circuit into a relatively simple, 

resistive electrical circuit makes it appealing for both the design and study of magnetic devices 

[26]. When detailed modelling of magnetic flux paths and internal behavior is not required, lumped 

parameter models, such as MEC, provide sufficient accuracy. In these models, the equivalent 

elements corresponding to the magnetic flux paths are estimated using analytical equations with 

the design data as input. Although these analytical equations are sufficiently accurate in estimating 

the reluctance of flux paths in the core, they are not good enough in estimating the reluctances of 

flux paths in the air. Consequently, they are incapable of adequately accounting for leakage fluxes 
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between winding turns or fluxes that flow beyond the core during saturation or fringing fluxes in 

cases where there are air gaps in the core.  

Two distinct approaches have been used to increase the accuracy of flux path representations in the 

literature. First, various studies have improved analytical formulas by estimating the overall image 

of flux paths and identifying extra elements that can be used to depict these additional estimated 

fluxes more accurately. MEC, for example, has been improved in [27] to account for fringing and 

leakage fluxes for a special case of an inductor. While these types of studies improve accuracy for 

certain cases, they are not generic and are based on assumptions that are valid only in those specific 

cases. In addition, they can accurately represent the external behavior of magnetic devices, but not 

their internal behavior. Second, in some magnetic device modelling approaches, test data is 

employed to estimate the equivalent elements associated with difficult-to-define flux paths. 

Topological transformer models [28-33] illustrate one sort of such model in which leakage 

inductances are computed using short-circuit test data. However, access to test data for devices 

with many windings is difficult and such data is not suitable for specific studies, such as internal 

winding faults. Additionally, similar to the first technique, this approach cannot represent an 

internal flux path view. These models, however, are in great demand since detailed design data for 

new magnetic devices is typically considered confidential by their manufacturing factories and is 

seldom available for older magnetic devices. To emphasize the limitations of existing lumped 

parameter models and partly since this thesis is primarily concerned with transformers, the next 

section reviews the existing transformer models used in EMT-type tools such as EMTP [34].  

1.2.2.1 Saturable Transformer Component (STC) model  

The Saturable Transformer Component (STC) is the most extensively used transformer model, 

which is still utilized in EMT-type software. STC [35], also known as the star equivalent circuit, is 

limited to modelling single-phase transformers or three-phase transformers composed of three 

similar single-phase transformers. Figure 1.11 illustrates the STC model for a single-phase two-

winding transformer. To adapt extra windings, the parallel branch is not modified; instead, 

additional windings in the form of series impedances to the star point are inserted [35], see Figure 

1.12. 
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Figure 1.11 STC representation of single-phase two-winding transformer [35] 
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Figure 1.12 STC representation of single-phase N-winding transformer [35] 

Although the STC model is simple to use, it has some important drawbacks: first, it is incapable of 

simulating phase coupling due to its inability to include limb interactions; second, despite attempts 

to represent the zero-sequence phase in this model, the positive- and zero-sequence phases are 

identical; and third, a negative inductance is observed in the STC-based three-winding transformer 

model. Not only is this negative inductance physically meaningless, it may contribute to numerical 

instability [36-38].  
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1.2.2.2 BCTRAN transformer model 

The BCTRAN transformer model [39], is an experimentally obtained model. Transformers are 

modelled using BCTRAN or matrix representation in the form of impedance or admittance 

matrices. In this method, the branch impedance matrix [𝑍] is used to present the steady-state 

equations of a multiphase multiwinding transformer  

[𝑉] = [𝑍][𝐼] (1.18) 

In order to use (1.18) for transient calculations, it needs to be rewritten as 

[𝑣] = [𝑅][𝑖] + [𝐿][𝑑𝑖/𝑑𝑡] (1.19) 

where [𝑅] and 𝑗𝜔[𝐿] represent, respectively, the real and imaginary parts of [𝑍] whose elements 

are derived using excitation tests (short- and open-circuit tests). This model is applicable to both 

single-phase and three-phase transformers, and there is no limitation on the number of windings. 

It can also consider all couplings between phases, but not differences in core topologies or winding 

configurations. 

When applying (1.18) or (1.19), there is a possibility that some accuracy issues will occur due to 

the fact that the branch impedance might be ill-conditioned for very small exciting currents. To 

address the accuracy issues caused by the impedance matrix representation, an admittance matrix 

representation is used 

[𝐼] = [𝑌][𝑉] (1.20) 

where [𝑌], the admittance matrix, can be derived directly from standard short circuit measurements. 

Alternate representation of the transformer using BCTRAN is as following formula 

[𝑑𝑖/𝑑𝑡] = [𝐿]−1[𝑣] − [𝐿]−1[𝑅][𝑖] (1.21) 

Since these equations are linear, they cannot account for core saturation and other nonlinearities 

related to the core, such as hysteresis. To consider the core nonlinearities using BCTRAN, two 

strategies are applied. First strategy attempts to linearize core nonlinearities and incorporate them 

into matrix representation; nevertheless, this approach can result in simulation errors during 

nonlinear transformer operating conditions. The second strategy is to omit all excitation equations 
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from the matrix formulation and model them as nonlinear elements externally attached to the 

transformer terminals, as shown in Figure 1.13. Despite the fact that it does not cause the simulation 

errors introduced by the first approach, the nonlinear branch was not attached in a topologically 

correct way to the model, preventing this method from being applicable to all operating conditions 

[35].  

Compared to the STC model, the BCTRAN model has a significant advantage in that it can 

differentiate between positive and zero-sequence transformer models, enabling it to represent 

unbalanced events. However, similar to the STC model, the BCTRAN has a critical limitation: it 

does not provide an accurate topological representation of the transformer [37].  

 

Figure 1.13 Representation of two-winding transformer with an externally attached core, based 

on the BCTRAN model 

1.2.2.3 Topological transformer models 

Topological models, which claim to be physically correct, were proposed to overcome the limits 

of BCTRAN and STC for transient studies. Topological transformer models represent transformers 

in the form of flux paths and can be used to simulate various types of cores and winding topologies, 

taking into account their differences. The topological models are UMEC, TOPMAG, and the 

Hybrid transformer [10, 37].  

1.2.2.3.1 Unified Magnetic Equivalent Circuit (UMEC) model 

The Unified Magnetic Equivalent Circuit (UMEC) model was proposed [40-42]  as a topological 

substitute for classic transformer models. UMEC was implemented in EMTDC. For a three-legged, 
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two-winding transformer, Figure 1.14 depicts all of the flux paths (𝜙1, 𝜙2, …, 𝜙14) that are treated 

as distinct flux tubes in the model that is derived by UMEC. This will allow us to demonstrate how 

UMEC defines the magnetic equivalent circuit. The UMEC model for the transformer depicted in 

Figure 1.14 is illustrated in Figure 1.15.  

In this circuit, reluctances 𝑅𝑌1 and 𝑅𝑌2 represent the left and right yokes through which fluxes 𝜙13 

and 𝜙14 pass, respectively. Reluctances 𝑅𝐴𝐿1 , 𝑅𝐵𝐿1 , and 𝑅𝐶𝐿1  represent the top half of each phase's 

wound leg, where fluxes 𝜙1, 𝜙3, and 𝜙5 pass through, respectively, and reluctances 𝑅𝐴𝐿2 , 𝑅𝐵𝐿2 , 

and 𝑅𝐶𝐿2  represent the down half of each phase's wound leg, through which fluxes 𝜙2, 𝜙4, and 𝜙6, 

respectively, pass. Reluctances 𝑅𝐴𝑙1 , 𝑅𝐵𝑙1 , and 𝑅𝐶𝑙1  represent leakages for phases a, b, and c of the 

top winding, respectively, through which fluxes 𝜙7, 𝜙9, and 𝜙11 flow. And reluctances 𝑅𝐴𝑙2 , 𝑅𝐵𝑙2 , 

and 𝑅𝐶𝑙2  represent leakages for phases a, b, and c of the down winding, respectively, through which 

fluxes 𝜙8, 𝜙10, and 𝜙12 flow. To represent the out-of-core fluxes, Figure 1.14 depicts three flux 

tubes, one for each phase, through which fluxes 𝜙15, 𝜙16, and 𝜙17 flow. In the magnetic equivalent 

circuit depicted in Figure 1.15, these three out-of-core flux tubes are represented by the reluctances 

𝑅𝐴0, 𝑅𝐵0, and 𝑅𝐶0. To show the difference between this model and others, Figure 1.15 shows the 

magnetic circuit derived by UMEC, but since EMTDC lacks mutators, magnetic circuit equations 

are directly inserted into the admittance matrix using a multi-port Norton equivalent circuit. 
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Figure 1.14 Magnetic flux paths assumed by UMEC for the three-legged two-winding 

transformer 
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Figure 1.15 Magnetic circuit of UMEC model for the two-winding three-legged transformer 

shown in Figure 1.14 

1.2.2.3.2 TOPMAG model 

In 1994, the TOPMAG model was improved and included into the DCG/EPRI EMTP version 3. 

The objective was to improve the core-type transformer model with concentric windings by 

incorporating core nonlinearities so that it can simulate the imbalance between the centre leg and 

the outer legs of three-phase transformers.  

This model is considered to be a duality-derived model, but to illustrate the distinction between 

this model and other topological transformer models, Figure 1.16 and Figure 1.17 show, for a three-

legged transformer, the magnetic flux paths defined by this model and the magnetic equivalent 

circuit, respectively. As shown in Figure 1.16, the definitions of magnetic flux paths include both 

leakage paths for each winding and leakage paths between windings. In Figure 1.16, the leakage 

flux paths of the primary winding for three phases are depicted by 𝜙4, 𝜙6, and  𝜙8, which are 

represented by reluctances 𝑅𝐴𝑙1 , 𝑅𝐵𝑙1 , and 𝑅𝐶𝑙1  in the magnetic equivalent circuit of Figure 1.17. 

Also, in Figure 1.16, 𝜙5, 𝜙7, and 𝜙9 depict the leakage flux paths of three phases of the secondary 

winding, which are represented in the magnetic equivalent circuit by the reluctances 𝑅𝐴𝑙2 , 𝑅𝐵𝑙2 , 

and 𝑅𝐶𝑙2respectively. In addition, one flux tube is assumed for each phase to represent the leakage 

between the primary and secondary windings of that phase, as shown in Figure 1.16, fluxes 𝜙10, 

𝜙11, and 𝜙12 pass through them. In the magnetic equivalent circuit, these three leakage flux tubes 

are represented by the reluctances 𝑅𝐴𝑙12 , 𝑅𝐵𝑙12 , and 𝑅𝐶𝑙12 . Since this model was developed for a 
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transformer with concentric windings, only one flux tube is considered for each column, as shown 

in Figure 1.16. Fluxes 𝜙1, 𝜙2, and 𝜙3 pass through these three flux tubes, and as shown in Figure 

1.17, these flux tubes are represented by three reluctances 𝑅𝐴𝐿 , 𝑅𝐵𝐿 , and 𝑅𝐶𝐿, respectively. Similar 

to the UMEC model for representing the yokes for both the up and down portions of yokes located 

on the left side of the middle column, only one flux tube through which 𝜙13 passes is taken into 

account. Similarly, for both the up and down portions of yokes located on the right side of the 

middle column, only one flux tube through which 𝜙14 passes is considered. In the magnetic 

equivalent circuit depicted in Figure 1.17, these two flux tubes of the yoke portions are represented 

by horizontally positioned reluctances 𝑅𝑌1 and 𝑅𝑌2. Like UMEC, three out-of-core flux tubes are 

defined in the TOPMAG model, as illustrated in Figure 1.16, through which fluxes 𝜙15, 𝜙16, and 

𝜙17 pass. These three out-of-core flux tubes are represented by the reluctances 𝑅𝐴0, 𝑅𝐵0, and 𝑅𝐶0 

in the magnetic equivalent circuit shown in Figure 1.17.  
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Figure 1.16 Magnetic flux paths assumed by TOPMAG for the three-legged two-winding 

transformer with concentric windings 
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Figure 1.17 Magnetic equivalent circuit of TOPMAG model for the two-winding three-legged 

transformer shown in Figure 1.16 

The TOPMAG transformer model was proposed based on the duality principle and is regarded one 

of the duality-derived topological models. Figure 1.18 demonstrates the duality-derived circuit 

representation of the TOPMAG model for the transformer depicted in Figure 1.16. In the duality 

circuit, the parameter definitions are identical to those in Figure 1.17, with the exception of the 

substitution of reluctances with symbol 𝑅 for inductors with symbol 𝐿. It is noteworthy that this 

module had serious problems in EMTP and it was not possible to use it. 
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Figure 1.18 Duality derived transformer model based on the TOPMAG model for the transformer 

shown in Figure 1.16 

1.2.2.3.3 Hybrid transformer model 

It was discovered that topological transformer models are less accurate in representing leakage 

inductances than BCTRAN models; as a consequence, a hybrid approach [43-45] was presented 
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that combines matrix representation with topologically based approaches. Leakage inductances are 

represented using an inductance matrix derived from the short-circuit test, whereas the core is 

represented using a topologically correct model. Figure 1.19 illustrates the definition of flux tubes 

according to the hybrid model. Figure 1.20 depicts the magnetic equivalent circuit generated from 

this definition of flux paths based on a hybrid approach. In the hybrid method, no flux path for self-

leakage of each winding is considered; only leakage flux paths between windings are considered. 

With the exception of the absence of a self-leakage flux specification, the parameters depicted in 

Figure 1.19 and Figure 1.20 are identical to those defined in Figure 1.16 and Figure 1.17 

respectively. Due to the fact that the duality principle enables topological transformer models to be 

implemented using standard elements in EMT-type programmes, duality has been utilised to 

represent topological transformer models. The derived models employing this principle are referred 

to as duality-derived transformer models  [5, 20]. There are a lot of duality-derived transformer 

models [28-31, 33, 37, 44, 46-57].  

The core of the transformer in the hybrid model are represented by a duality-derived circuit, whilst 

the leakage inductances are represented by a short-circuit matrix. Figure 1.21 illustrates the hybrid 

model schematic for a three-legged transformer. A fictitious winding is placed precisely on the 

core leg to connect the topologically correct core model with the matrix representation of leakage 

inductances. It is assumed that the fictitious winding is indefinitely thin. The leakage inductance 

between this fictitious winding and the innermost winding is computed by multiplying the leakage 

inductance between the high-voltage and low-voltage windings by a factor known as K. In several 

studies, this factor has been assigned a range of possible values. For example, it was given a value 

of 0.5 in [58], a value of 0.33 in [52], and a value of 0.7 in [43].  

Several topological transformer models have been developed during recent years. Among these 

models is de Leon's [47, 59-62], which, according to Martinez's research [37], is thought to be the 

most comprehensive transformer model accessible. However, a limitation of topological 

transformer modelling is a lack of sufficient data to define the model parameters. In the hybrid 

model, it is also possible to account for core losses by placing resistors in parallel with nonlinear 

inductors that represent different sections of the transformer core (columns and yokes). 
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Figure 1.19 Magnetic flux paths assumed by hybrid model for the three-legged two-winding 

transformer with concentric windings 
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Figure 1.20 Magnetic equivalent circuit of hybrid model for the two-winding three-legged 

transformer shown in Figure 1.19 

 

Figure 1.21 Hybrid transformer model for a three-legged transformer  
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1.2.2.3.4 Summary on the existing models 

All of these transformer modelling methods are divided into two categories: black-box and gray-

box modelling methods. The STC and BCTRAN transformer models are regarded as black-box 

models, in which there is no knowledge of the internal characteristics of the transformer. These 

two models attempt to match accurately the behaviour observed at the terminals of a transformer 

with measurements of the terminals, but are unable to explain the internal behaviour of the 

transformer. Even while they are capable of providing accurate terminal behaviour under normal 

operating conditions, they are not always capable of providing accurate terminal behaviour under 

unbalanced operating conditions. 

Topological transformer models have a advantage over both STC and BCTRAN in that they can 

determine the terminal behaviour of transformers under all balanced and unbalanced operating 

conditions. In terms of ability to represent the internal behaviour of transformers, topological 

transformer models are classified as gray-box models, which fall between white-box models like 

FEM and black-box models like STC and BCTRAN. Indeed, topological transformer models are 

created based on measurement data and limited design data and cannot provide a full representation 

of internal behaviour. Due to the fact that they are all lumped parameter models with a limited 

number of elements, they can only represent a small number of internal parameters, such as the 

magnetising current of the columns or yokes. Table 1.1 summarises the characteristics of the 

aforementioned transformer models. 

Considering the limits and uses of these models, it can be concluded that a white-box circuit-based 

model is required to accurately depict the internal behaviour of transformers. The needed white-

box circuit-based technique should be in a meshed form that not only offers an accurate 

representation of the magnetic device as seen from its terminals, but also provides an accurate 

representation of the device's internal behaviour.  

An approach termed ‘reluctance network model’ [63] has been used to represent a meshed form of 

the transformer model using circuit elements (see also [64-66]). The proposed solution [13] is 

primarily for design purposes, whereas the one presented in our paper is for electromagnetic 

transient studies. Due to the design objective of [63], the number of nodes and elements is 

minimized to allow for repeated iterations in optimization methods. The model has between 50 to 

100 nodes. Due to the limited number of elements in their model, not all transformer geometry 
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details can be demonstrated. In addition, [63] was originally presented for the purpose of 

calculating leakage inductances, and as such, aimed to distribute elements in the air that are crucial 

for leakage inductance calculations, but not the core, particularly the columns. Due to the lack of 

coupling between the transformer model and the external circuit in [63], such a model cannot be 

utilized to study the transformer's transient behavior in a network. In their method, only 

magnetomotive force sources have been distributed; electromotive force sources have not been 

taken into account, so there is no coupling between the magnetic equivalent circuit and the external 

electric circuit. Also, the authors of [63] used a 3D RNM for calculating leakage inductances, 

however it kept the limitations explained above for the 2D model.  

Recently, [67] proposed mesh modelling of transformers using MEC in EMTP by establishing 

virtual circuits to account for magnetic flux distribution, which adds complexity to EMT-type 

software. The method proposed in [67] cannot be implemented using standard elements in EMT-

type software; instead, it requires the definition and creation of new elements in these programmes, 

which is not desirable. Furthermore, this technique is incapable of accounting for three-dimensional 

effects associated with magnetic flux distributions. 
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Table 1.1 Summary of transformer models 

Model Type Characteristics 

Saturable 

Transformer 

Component (STC) 

Black-box 

• Limited to modelling single-phase transformers or 

three-phase transformers built from three single-phase 

transformers due to the inability to account for limb 

interactions. 

• It is limited to a maximum of three windings. 

• The magnetising inductance is connected to the star 

point, which is an incorrect topological representation. 

• Three-winding models can cause numerical 

instability. 

• Does not represent internal transformer characteristics 

and only provides terminal characteristics. 

Matrix 

Representation ( 

BCTRAN Model) 

Black-box 

• Phase-to-phase coupling and terminal features are 

included in these models. 

• It is only possible to represent linear models. 

• Nonlinear elements may be added externally to the 

terminals to provide excitation. 

• No internal transformer characteristics are 

represented; only terminal characteristics are 

presented. 

• It's based on experimental data and ignores topology. 

Topology-based 

models 
Gray-box 

• They contain saturation effects in each column and 

leg. 

• They consider phase coupling and leakage inductances 

between windings. 

• They are topologically correct in comparison to STC 

and BCTRAN. 

• There are distinct circuits for each transformer based 

on how flux tubes are defined.  

• In addition to terminal characteristics, limited internal 

transformer characteristics, such as magnetising 

currents for columns and yokes, are presented. 
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1.3 Dissertation statement 

1.3.1 Problem definition  

The purpose of this research is to improve electromagnetic modelling of magnetic devices in order 

to observe the effect of a power system network on the magnetic device's internal behaviour.  

Currently, lumped parameter models are highly preferred by power system analysts for studying 

electromagnetic transients including magnetic devices. However, it is not possible to observe the 

effect of the network on the internal behaviour of magnetic devices using the majority of existing 

lumped parameter models. When it was stated that these models are incapable of providing a 

detailed representation of magnetic flux distributions, it was stated that this was due to a limited 

number of lumped elements. It is worth noting that power system analysts prefer circuit-based 

methods for modelling magnetic devices because they are easily integrated in EMT-type software 

and interfaced with realistic power systems.  

1.3.2 Objectives 

The above observations motivated us to develop novel circuit-based approaches for 

electromagnetic modelling of magnetic devices that are capable of characterising the internal 

behaviour of magnetic devices, such as magnetic flux distributions. The proposed circuit-based 

solutions are intended to be easy enough to implement in EMT-type software, such as EMTP, 

without requiring the addition of new features not previously included in these software packages.  

A list of specific objectives is provided below: 

- Deriving new strategy for coupling field and circuit equations using exclusively circuit-

based methods.  

- Mesh functionality will be added to the proposed circuit-based technology in order to 

simulate magnetic devices in great detail and precision.  

- The proposed circuit-based solution will be built using only the components already 

included in EMT-type software. The proposed distributed circuit-based approach in this thesis will 

be derived using all three approaches: Hopkinson analogy, the Buntenbach analogy, and the duality 

principle. 
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- The proposed circuit-based technique will be enhanced to account for the three-dimensional 

effects of magnetic fields. 

- The models will be validated using the results of the FEM analysis. 

1.4 Dissertation outline 

Chapter 2 presents a distributed circuit-based technique and explains the underlying theory. Using 

the proposed strategy, the distributed circuits based on the Hopkinson analogy, the Buntenbach 

analogy, and the duality principle are derived. This chapter will model an inductor with and without 

an air gap as a simple demonstration. The proposed approach in this chapter is in two dimensions 

and is validated by comparison to two-dimensional FEM. 

The proposed distributed circuit-based approaches are further developed in Chapter 3 to model 

transformers. First, the process of creating distributed models for a single-phase two-winding 

transformer with a small number of elements is described. The procedure for developing distributed 

models for a three-phase transformer with an adjustable number of meshes is also discussed. Then 

it is explained how distributed models can be utilised to represent transformer internal faults as 

well as multi-winding transformers. Finally, the results of the models are then compared to those 

of 2D FEM to determine the accuracy of the distributed models in describing both internal 

transformer behaviour and the transformer characteristics observed at its terminals.  

 The purpose of Chapter 4 is to improve the proposed distributed circuit-based approaches for 

accounting for the three-dimensional effects of magnetic fields in transformers. First, the 

limitations of single-2D methods for simulating three-dimensional magnetic field effects are 

discussed, as well as the significance of shifting from two- to three-dimensional models. Following 

that, the history of Double-2D FEM is described, as is its efficiency in representing three-

dimensional magnetic field effects. After that, the proposed Double-2D circuit-based technique is 

provided, along with details on how it can be implemented for a two-winding single-phase 

transformer. It is also emphasised that the proposed Double-2D approach is capable of accurately 

computing leakage inductances. Leakage inductances are computed using the proposed method, 

which is then compared to existing analytical methods. The limits and assumptions of existing 

analytical approaches are discussed, and it is stated how the proposed method addresses these 

limitations. Finally, the proposed Double-2D circuit-based technique is applied to a three-phase 
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transformer, and its great accuracy in expressing 3D magnetic field effects is proved by comparison 

to 3D FEM results. 

Finally, in Chapter 5, the dissertation's conclusions are provided, along with research ideas that can 

be investigated further in future study. 
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 INDUCTOR MODEL BY DISTRIBUTED CIRCUIT-

BASED METHODS 

Currently, the flux paths of magnetic devices are represented by lumped models with a limited 

number of circuit components.  Their computing efficiency is a major advantage, and they are 

precise enough for some analyses in which full modelling of magnetic flux paths and internal 

behaviours is not required.  With the help of analytical formulas that are included with the design 

data, these models are able to determine the equivalent components that correspond to the magnetic 

flux paths. These analytical formulas are almost accurate when it comes to depicting flux paths in 

the core, but they are not accurate when it comes to representing flux paths in the air, which 

are difficult to characterise. Consequently, they are incapable of adequately accounting for leakage 

fluxes between winding turns or fluxes that flow outside the core during saturation or fringing 

fluxes in circumstances where there are air gaps in the magnetic device.  

Two essential techniques have been employed to improve the accuracy of flux path descriptions in 

the literature. The first method is to enhance analytical equations by estimating the total image of 

flow paths. The second approach is to define new elements that will aid in the description of fluxes. 

For example, [27] revised the MEC model for a specific type of inductor to take into consideration 

fringing and leakage fluxes, among other things. While this study improved accuracy, it is not 

widely applicable and is based on assumptions that are accurate only in this particular instance of 

the study. 

In contrast to the exiting lumped element models, which portray the magnetic field of an inductor 

using only a few flux paths, this research uses a vast number of flux paths to depict the magnetic 

field's behaviour. In contrast to previous lumped parameter models in which the flux tubes defined 

in them only consider the flux direction in one direction, the approach described in this chapter for 

defining flux tubes, considers two perpendicular directions of flux paths in defining flux tubes. The 

proposed method in this chapter is a distributed circuit-based methodology for accurately 

modelling an inductor. This approach can be used to correctly describe magnetic fluxes in the core 

as well as those leaking into the air. Essentially, the primary contribution of this method is that it 

allows circuit simulators to use distributed models that are as accurate as those generated by finite 

element modelling.  
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This chapter presents a distributed method for detailed modelling of magnetic devices based on 

circuit-based methods. Our method employs meshing to discretize space into electric/magnetic 

circuits. Indeed, like FEM, the proposed method can provide a detailed geometrical description of 

magnetic flux distributions as well as model non-homogeneous materials with magnetic saturation. 

Due to the fact that each of the three existing methods for linking magnetic circuits with electric 

circuits outlined in section 1.1 has unique advantages and disadvantages, the proposed distributed 

procedure creates equivalent circuits using each of the three approaches.  

The remainder of this chapter is organized as follows: in section 2.1, the principles of the proposed 

method are outlined for a simple case of an inductor. In this section, the model is divided into a 

limited number of cells to aid comprehension of the concept. The Hopkinosn analogy, the 

Buntenbach analogy, and the duality principle are used to derive equivalent circuits for the meshed 

model of the inductor. Section 2.2 contains a more extensive explanation of how to create models 

for an inductor, one with an air gap and one without, but with a customizable amount of meshes. 

Also, section 2.2 presents and discusses results for three phenomena: open-circuit and short-circuit 

as normal operating conditions, and ferroresonance as a transient phenomenon, and compares them 

to those obtained using a FEM solver.  

2.1 Methodology  

In this section, a single-phase shell-type inductor is investigated. It is supposed that the inductor is 

connected to a voltage source 𝑈𝑖𝑛 through a resistance 𝑅𝑖𝑛. The schematic of the studied inductor 

is presented in Figure 2.1. In order to have a meshed model, the inductor has been subdivided into 

18 identical cells where each cell is represented using an equivalent magnetic circuit. It can be 

observed that the flux paths have been only assumed in the horizontal and vertical directions. 

2.1.1 Electromagnetic modeling by Hopkinson Analogy 

Figure 2.2 shows the circuit of an elementary cell for Hopkinson analogy. In this circuit the 

reluctances 𝑅𝑢, 𝑅𝑑, 𝑅𝑙 and 𝑅𝑙 are given by 

𝑅𝑢 = 𝑅𝑑 =
(
𝑊𝑦
2
)

𝜇𝑊𝑥𝑊𝑧
 

(2.1) 
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𝑅𝑙 = 𝑅𝑟 =
(
𝑊𝑥
2 )

𝜇𝑊𝑦𝑊𝑧
 (2.2) 

where 𝑊𝑥, 𝑊𝑦, and 𝑊𝑧 denote the lengths of the flux tubes in the x, y, and z directions. Also 𝜇 is 

permeability of the flux tubes. To derive the values of magnetomotive force sources ℱ𝑢 and ℱ𝑑 in 

each cell, Ampere’s law and the boundary conditions are applied. The Neumann boundary 

condition [68], must be imposed at the external sides of the inductor. The Neumann boundary 

condition can be fulfilled by eliminating the reluctances perpendicular to the exterior sides of the 

inductor. In Figure 2.1(a), dashed blue reluctances are used to show eliminated reluctances. 

To apply Ampere’s law, the values of magnetomotive force sources are chosen in a way that the 

sum of them in a closed loop should be equal with the ampere-turn passing through it (the total 

enclosed current for the loop). For instance, for the green loop shown in Figure 2.1(a), which 

encloses three turns of the winding, the sum of the magnetomotive forces is three times the current, 

which is equal to the ampere-turns passing through it. 

To take the coupling between the electric circuit and the magnetic circuit into account, Faraday’s 

law should be applied in the distributed form. Figure 2.1(b)  demonstrates the schematic diagram 

for illustrating the total magnetic fluxes enclosed by each turn. From Figure 2.1, and based on 

Faraday’s law, the voltages induced in each turn are given by 

[

𝐸𝐴𝐵
𝐸𝐶𝐷
𝐸𝐸𝐹
𝐸𝐺𝐻

] = −
𝑑

𝑑𝑡

(

 
 
 
 
 

[

0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

]  

[
 
 
 
 
 
 
 
𝜑1
𝜑2
𝜑3
𝜑4
𝜑5
𝜑6
𝜑7
𝜑8]
 
 
 
 
 
 
 

)

 
 
 
 
 

 (2.3) 

where 𝐸𝐴𝐵, 𝐸𝐶𝐷, 𝐸𝐸𝐹 and 𝐸𝐺𝐻 are the induced voltages in the turns AB, CD, EF, and GH, 

respectively. Moreover 𝜑1, 𝜑2, 𝜑3,…, 𝜑8 are the magnetic fluxes for the magnetomotive forces 

displayed in Figure 2.1(a). The total induced voltage 𝐸𝑡𝑜𝑡 is found from the sum of loop voltages 

𝐸𝑡𝑜𝑡 = −
𝑑

𝑑𝑡
(𝜑1 + 2𝜑2 + 2𝜑3 + 𝜑4 + 𝜑5 + 2𝜑6 + 2𝜑7 + 𝜑8) (2.4) 
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Figure 2.1 (a) Distributed magnetic circuit with magnetomotive forces, (b) schematic of inductor 

winding turns and external circuit 
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Figure 2.2 Circuit of the elementary cell in Hopkinson analogy 

Finally, by considering the relations and laws mentioned above, the interface between the magnetic 

and electric circuits is derived as illustrated in Figure 2.3. The magnetic and electric circuits have 

been shown in black and blue, respectively. It is obvious that the sum of electromotive force sources 

distributed in the electric circuit is equal to 𝐸𝑡𝑜𝑡. The resistance 𝑅𝑡𝑜𝑡 is equal to the sum of winding 

resistance 𝑅𝑤 and external circuit resistance 𝑅𝑖𝑛. The current-controlled voltage sources have been 

applied to provide coupling between the magnetic and electric circuits. Each pair of current-

controlled voltage sources in the equivalent circuit of Figure 2.3, is a specific type of mutator 

element: Type-2 L-R mutator.  The schematic of the Type-2 L-R mutator was illustrated in Figure 

1.2. Two coupled series R-L branches can be used to implement this type of mutator in EMT-type 

programs [11]. The values of self and mutual resistances and inductances associated with the two 

branches, are specified as follows 

[
𝑣1
𝑣2
] = [

0 0
𝑁 0

] [
𝑖1
𝑖2
] + [

0 −𝑁
0 0

]
𝑑

𝑑𝑡
[
𝑖1
𝑖2
] (2.5) 

where 𝑁 is the coupling factor of the mutator. The left part of the circuit shown in Figure 1.2, 

denotes the electric circuit and the right part denotes the magnetic circuit. Equation (2.5) is actually 

given by 

[
𝐸
ℱ
] = [

0 0
𝑁 0

] [
𝑖
𝜑
] + [

0 −𝑁
0 0

]
𝑑

𝑑𝑡
[
𝑖
𝜑
] (2.6) 

where 𝐸 is electromotive force (EMF), ℱ is the magnetomotive force (MMF) and 𝜑 is the magnetic 

flux. This equivalent circuit is demonstrated in the cells of Figure 2.3, which 𝑖 is the current of the 

inductor. Furthermore, 𝑁 is the coupling factor of the mutators. 
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Figure 2.3 Distributed inductor model using Hopkinson analogy (including both magnetic and 

electric circuits and coupling between them) 

2.1.2 Electromagnetic modeling by Buntenbach Analogy 

To derive the equivalent circuit for the distributed Buntenbach analogy, the meshes and the nodes 

are the same as the meshes and the nodes for the equivalent circuit derived for Hopkinson analogy, 

but the resistances in Hopkinson analogy are replaced with capacitances. Additionally, for the 

coupling of the magnetic circuit with the electric circuit, another mutator termed Type-1 L-C is 

employed which was displayed in Figure 1.4. 

In the equations of Type-1 L-C mutator, the values for resistors and inductors are set differently 

from (2.5) as  

[
𝑣1
𝑣2
] = [

0 −𝑁
𝑁 0

] [
𝑖1
𝑖2
] + [

0 0
0 0

]
𝑑

𝑑𝑡
[
𝑖1
𝑖2
] (2.7) 

Similar to equation (2.6) for Type-2 L-R, Type-1 L-C mutator couples the magnetic part and the 

electric part in this way  

[
𝐸
ℱ
] = [

0 −𝑁
𝑁 0

] [
𝑖

𝑑𝜑/𝑑𝑡
] + [

0 0
0 0

]
𝑑

𝑑𝑡
[
𝑖

𝑑𝜑/𝑑𝑡
] (2.8) 

The complete Buntenbach circuit is now demonstrated in Figure 2.4. 
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Figure 2.4 Distributed inductor model using Buntenbach analogy (including both magnetic and 

electric circuits and coupling between them) 

2.1.3 Electromagnetic modeling by duality principle 

It can be observed that the graph of the magnetic circuit in Figure 2.3 is a planar graph, and a dual 

circuit can be obtained for it [69]. Therefore, by considering all the rules mentioned in section 

1.1.3, the dual circuits for various cells (sections) of the magnetic circuit are derived, as shown in 

Figure 2.5 and Figure 2.6.   

As illustrated in Figure 2.5 and Figure 2.6, the cells, comprised of resistors that have a common 

node, are converted to dual cells, comprised of inductances enclosed in a mesh. Besides, as 

demonstrated in Figure 2.6 the controlled voltage source of the magnetic side in the Type 2 L-R 

mutator, the circuit of Figure 2.6(a)  is converted to the controlled current source, the circuit of 

Figure 2.6(b). The relations between the two sides of the derived circuit, in Figure 2.6(b), are given 

by 

[
𝑖1
𝑣1
] = [

1
𝑁⁄ 0

0 𝑁
] [
𝑖2
𝑣2
] (2.9) 

It is apparent that (2.9) describes the equations of an ideal transformer with ratio N:1 (or power-

scalor). Accordingly, for deriving the duality circuit, the coupling element is modeled using an 

ideal transformer, as depicted in the circuit of Figure 2.6(c).  
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(c) 

Figure 2.5 Graphical derivation of the dual circuit of the magnetic circuit for three types of cells, 

excluding coupling elements 
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(c) 

Figure 2.6 Graphical derivation of the dual circuit of the magnetic circuit for one type of cell, 

including coupling elements 

Figure 2.7 presents the distributed duality-based circuit resulted from the distributed resistive 

circuit shown in Figure 2.3. To achieve the distributed duality-based model, the dual circuits for 

each cell of Figure 2.3, numbered from 1 to 18, are derived using the procedures previously 
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mentioned. The duality-based circuits regarding each cell are presented in Figure 2.7 with the same 

number as their dual cells in the circuit of Figure 2.3. The resulting duality-based circuits are 

connected to each other based on the rule that the nodes in the magnetic circuit are converted to 

the meshes in the electric circuit and vice versa.  

1
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Figure 2.7 Distributed duality-based inductor model, including both magnetic and electric circuits 

and coupling between them 

2.2 Validation 

In this section, the HBD-circuits introduced in the previous section are improved and studied for 

an inductor. Its winding includes 100 turns. Two different core designs are considered: without air 

gap (gapless core) and with an air gap (gapped core). The dimensions of the core and the winding 

are shown in Figure 2.8. The winding material is copper, and the core material is soft iron. 

The two main goals of this section are to compare the results of HBD-circuits against each other 

and against FEM results. In this section, the EMTP software is employed to implement HBD-

circuits and the COMSOL Multiphysics 5.4 is employed to solve FEM.  

Here, firstly, two examples of the inductor current waveforms for the gapless and the gapped core 

inductors are illustrated. Secondly, the magnetic field intensity curves regarding a sample point 

placed in the core are exhibited for both gapless and gapped core inductors. The results are obtained 
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for two different numbers of meshes: 72 and 1152. Thirdly, the voltage-current characteristics 

observed from the terminals of the gapless and gapped core inductors are presented for two 

mentioned number of meshes.  

To obtain the results, for both gapless and gapped core inductors, a 60 Hz sinusoidal voltage source 

is applied across the winding, and the steady-state voltage and current waveforms of the inductor 

are derived. For both inductors, the resistance 𝑅𝑡𝑜𝑡 is equal to 0.032 𝛺 (the DC resistance of the 

inductor winding) and the simulation time-step is 10 𝜇s. The limit in this case is due to the 

complexity of the extra-large nonlinear system and the underlying solution process to achieve 

convergence. It is worth mentioning that  this test setup is only employed to perform numerical 

comparisons for HBD-circuits.  

In the previous section, the number of elements was selected as a fixed small value to provide a 

simple explanation. But, in FEMs, the number of meshes can be varied and adjusted according to 

the frequency of the phenomena, and the dimensions of the device. Since the distributed circuit-

based approaches must have a strong resemblance to FEM, they must be flexible to mesh sizing 

and numbering. In the following, an adjustable meshing procedure is explained.  
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Figure 2.8 Cross-section of the gapped inductor 
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Figure 2.9 Cross-section of left half of the inductor 

In this case study, since there is a vertical symmetry, the size of the problem can be reduced to half, 

as illustrated in Figure 2.9.  In this figure, 𝑁𝑊𝑥 and 𝑁𝑊𝑦 are the numbers of meshes in the horizontal 

and vertical directions of part B (winding). Also, 𝑁𝐶𝑥 and 𝑁𝐶𝑦 are the numbers of meshes in the 

horizontal and vertical directions of part C (middle column of the core). Besides, HBD-circuits are 

constituted of three general different types of cells called type-A, type-B, and type-C, exposed in 

Figure 2.9. Type-A cells are only comprised of the nonlinear RLC elements. Type-B cells are 

comprised of the linear RLC elements and the coupling elements. For gapless inductor, Type-C 

cells are formed of the nonlinear RLC elements and the coupling elements. But, for the gapped 

core inductor, based on the meshing, Type-C cells can be formed of the linear or nonlinear RLC 

elements and the coupling elements. Figure 2.10 shows the  equivalent resistive, capacitive, and 

inductive circuits regarding the three mentioned types.  
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(a) Part A of Figure 2.9      (b) Part B of Figure 2.9   (c) Part C of Figure 2.9 

Figure 2.10 Distributed resistive, capacitive, and inductive circuits regarding three sample cells of 

the meshed inductor model shown in Figure 2.9 

First, the linear and nonlinear RLC elements are calculated. The values of the RLC linear elements 

are determined and correlated by  
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𝑅 =
1

𝐶
=
1

𝐿
 =  

𝑙

𝜇0𝑆 
 (2.10) 

where 𝑙 and 𝑆 are the mean length and cross-section regarding the flux path represented by the 

element, and 𝜇0 is the magnetic permeability of air.  

Table 2.1 Piecewise-linear curve (first quadrant) presenting soft iron 

number 𝑩[𝑻] 𝑯 [
𝒌𝑨

𝒎
] number 𝑩[𝑻] 𝑯 [

𝒌𝑨

𝒎
] number 𝑩[𝑻] 𝑯 [

𝒌𝑨

𝒎
] 

1 1.0 0.66 6 1.5 5.43 11 2.0 61.21 

2 1.1 1.07 7 1.6 7.96 12 2.1 111.40 

3 1.2 1.71 8 1.7 12.30 13 2.2 188.50 

4 1.3 2.46 9 1.8 20.46 14 2.3 267.93 

5 1.4 3.84 10 1.9 32.17 15 2.4 347.51 

 

To represent the nonlinear RLC elements of type-A and type-C cells, the magnetizing curve is 

represented by a piecewise linear function with 15 linear segments (Table 2.1)  which is the 

characteristic of the material (soft iron) defined in the materials library in COMSOL Multiphysics. 

The incremental magnetic relative permeability 𝜇𝑝 of each segment of the piecewise linear curve 

is characterized as the slope between changepoints 𝑝 and 𝑝 − 1 

𝜇𝑝 =
1

𝜇0

𝐵𝑝 − 𝐵𝑝−1

𝐻𝑝 − 𝐻𝑝−1
 (2.11) 

for 𝑝 = 1, 2,  , 1 . As a result, nonlinear resistance curves, nonlinear capacitance curves, and 

nonlinear inductance curves are modeled using piecewise linear representation with 15 segments. 

The incremental resistance 𝑅𝑝, capacitance 𝐶𝑝, and inductance 𝐿𝑝 of segment 𝑝 of the piecewise-

linear curve are specified as the slopes between changepoints 𝑝 and 𝑝 − 1 

𝑅𝑝 =
𝑣𝑝 − 𝑣𝑝−1

𝑖𝑝 − 𝑖𝑝−1
 (2.12) 

𝐶𝑝 =
𝑞𝑝 − 𝑞𝑝−1

𝑣𝑝 − 𝑣𝑝−1
 (2.13) 

𝐿𝑝 =
𝜑𝑝 − 𝜑𝑝−1

𝑖𝑝 − 𝑖𝑝−1
 (2.14) 
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where 𝑅𝑝, 𝐶𝑝 and 𝐿𝑝 are given by (2.10), except that the value of the permeability 𝜇, is set equal 

to 𝜇𝑝.  

So far, it has been assumed that each mesh has been constituted of one material. But based on the 

size and position of the mesh, it is possible that it is composed of different materials with different 

relative permeability values. An example of a nonuniform cell composing of two different 

materials with relative permeabilities of 𝜇1 and 𝜇2 has been demonstrated in Figure 2.11. The 

lengthwise averages of permeability regarding this type of cell in horizontal and vertical directions 

respectively named 𝜇ℎ̅̅ ̅ and 𝜇𝑣̅̅ ̅ are given by     

𝐻ℎ̅̅̅̅ = 𝐻ℎ1 = 𝐻ℎ2 (2.15) 

𝜑ℎ = 𝜑ℎ1 + 𝜑ℎ2 (2.16) 

𝐵ℎ̅̅̅̅ (𝑆ℎ1 + 𝑆ℎ2) = 𝐵ℎ1 𝑆ℎ1 + 𝐵ℎ2 𝑆ℎ2 (2.17) 

𝜇ℎ̅̅ ̅ =
𝐵ℎ̅̅̅̅

𝐻ℎ̅̅̅̅
  = 𝜇1 (

ℎ1
ℎ1 + ℎ2

) + 𝜇2 (
ℎ2

ℎ1 + ℎ2
) (2.18) 

𝐵𝑣̅̅ ̅ = 𝐵𝑣1 = 𝐵𝑣2 (2.19) 

𝐹𝑣 = 𝐹𝑣1 + 𝐹𝑣2  (2.20) 

𝐻𝑣̅̅̅̅ (ℎ1 + ℎ2) = 𝐻𝑣1ℎ1 + 𝐻𝑣2ℎ2 (2.21) 

𝜇𝑣̅̅ ̅ =
𝐵𝑣̅̅ ̅

𝐻𝑣̅̅̅̅
=

1

1
𝜇1
(
ℎ1

ℎ1 + ℎ2
) +

1
𝜇2
(
ℎ2

ℎ1 + ℎ2
)
 (2.22) 
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Figure 2.11 Nonuniform cell 
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The parameters 𝛽𝑘 and 𝛾 associated with the coupling elements (Type-2 L-R mutator, Type-1 L-C 

mutator, and ideal transformer), for the circuits presented Figure 2.10(b) and (c), are given by  

𝛽𝑘 =
 0𝑘 − 2 

𝑁𝑊𝑦𝑁𝑊𝑥
 (2.23) 

𝛾 =
 0

𝑁𝑊𝑦
   (2.24) 

After implementing the HBD-circuits with 72 and 1152 in EMTP, their performances are verified 

as follows.  

Firstly, for both gapless core and gapped core inductors, the currents resulting from HBD-circuits 

are compared with each other for the case that there are 1152 meshes. The results are also compared 

with the results from FEM with 3778 meshes. The voltage source is set to 130 volts for gapless 

core inductor and it set to 200 volts for gapped core inductor. Obtained results for both inductors 

are illustrated in Figure 2.12 and Figure 2.13, respectively.  

 

 

Figure 2.12 Gapless core inductor current 𝑖 for HBD-circuits (1152 meshes) and FEM (3778 

elements), during the nonlinear condition 
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Figure 2.13 Gapped core inductor current 𝑖 for HBD-circuits (1152 meshes) and FEM (3778 

meshes) during the nonlinear condition 

 

Secondly, as mentioned in the introduction, similar to FEM, HBD-circuits are able to represent the 

internal behavior of magnetic devices. For instance, as an advantage over topological transformer 

models and magnetic equivalent circuit-based models, the HBD-circuits can present local magnetic 

saturation. In this section, the magnetic field intensity regarding a local point are obtained for HBD-

circuits with 1152 meshes and FEM with 3778 meshes. These results are derived for a point in the 

middle of the left column which has coordinates (0.02m, 0.06m), as illustrated in Figure 2.9. To 

present local magnetic saturation for gapless core and gapped core inductors, input voltage sources 

are set to 130 and 200 volts, respectively. The simulation results illustrating local saturation 

regarding both gapless and gapped core inductors are demonstrated in Figure 2.14 and Figure 2.15, 

respectively.  
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Figure 2.14 Magnetic field intensity H regarding a point of the gapless core with coordinates 

(0.02𝑚, 0.06𝑚) during magnetic local saturation 

 

 

Figure 2.15 Magnetic field intensity H regarding a point of gapped core with coordinates 

(0.02𝑚, 0.06𝑚) during magnetic local saturation 

 

Finally, voltage-current characteristics, viewed from the terminals of the both inductors, obtained 

from HBD-circuits, are compared to those obtained from FEM in 2D. In the case of the gapless 

core inductor, the comparisons for two different numbers of meshes are shown in Figure 2.16 and 

Figure 2.17. Also, in the case of the gapped core inductor, the same comparisons have been 

illustrated in Figure 2.18 and Figure 2.19. In all results the number of meshes for FEM model 

equals 3778.  
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Figure 2.16 Voltage-current characteristics viewed from the terminals of the gapless core 

inductor (HBD-circuits with 72 meshes) 

 

 

Figure 2.17 Voltage-current characteristics viewed from the terminals of the gapless core 

inductor (HBD-circuits with 1152) 
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Figure 2.18 Voltage-current characteristics viewed from the terminals of the gapped core inductor 

(HBD-circuits with 72 meshes) 

 

Figure 2.19 Voltage-current characteristics viewed from the terminals of the gapped core inductor 

(HBD-circuits with 1152 meshes) 

 

It is observed that HBD-circuits are providing similar results. This is a significant achievement 

given the very large-scale nonlinear circuits solved in EMTP. The small differences are mainly due 

to numerical implementation details for nonlinear inductance and nonlinear capacitance in the 

Newton solution method employed in EMTP.  

To provide validation for the accuracy of HBD-circuits, the normalized root mean square error 

(nRMSE) is applied on the voltage-current characteristic derived by each method. The nRMSE 

results for both gapless and gapped core cases are presented in Table 2.2, it can be concluded that 
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HBD-circuits give accurate results in comparison with FEM. In addition, it is observed that the 

effect of increasing the meshes on reducing the error is greater in the gapped core inductor. It is 

due to the fact that for the gapped core case which magnetic flux fringing out into the air, a greater 

number of meshes is needed to accurately present magnetic flux paths along the air gap and the 

core area in the vicinity of air gap.   

Table 2.2  Accuracy analysis for HBD-circuits 

 Error (%) 

Core type Gapless Core Gapped Core 

Mesh size 72 1152 72 1152 

Hopkinson 6.18 1.13 9.22 1.52 

Duality 6.12 1.19 9.17 1.59 

Buntenbach 6.15 1.16 9.19 1.67 

 

The key advantage of HBD-circuits over FEM is their computing speed, which is attributable to 

the fact that they require fewer elements and solve equations that are fundamentally less 

complicated. In fact, they are faster even when the number of elements is the same, as demonstrated 

in Figure 2.20, where the number of elements in FEM is 1102 and 1150 for gapped core and gapless 

core cases, respectively, and HBD circuits have 1152 elements in both cases. Simulations were run 

for 32 ms with a 1 𝜇s time step for both linear and saturated operation conditions. For linear 

operation condition, HBD-circuits are around 30 times faster than FEMs, and for saturated 

condition with a high degree of nonlinearity, HBD circuits are around 15 times faster than FEM. 

However, for gapped core inductor in saturated condition, Hopkinson is about 10 times faster and 

Buntenbach and Duality are about 4 times faster than FEM.  

HBD-circuits outperform FEM in all circumstances, with Hopkinson being the fastest of the three. 

This is due to the fact that Buntenbach and Duality have more differential equations than 

Hopkinson. It is worth noting that the number of elements in FEM and HBD-circuits are considered 

to be the same in Figure 2.20, only to compare the methods. However, to achieve a certain degree 

of accuracy, the number of elements in FEM must typically be set larger than the number of HBD 

elements, causing FEM to run much slower. In addition, as noted in the introduction, to use FEM 

to model magnetic devices in the power system, the indirect coupling method is commonly used, 
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which slows them down even more. HBD-circuits, on the other hand, do not have these limits, and 

their speed advantages reveal themselves in these cases better. 

(*)     :  Linear operating condition 

(**)   :  Saturated operating condition 
 

Figure 2.20 HBD-circuits vs. FEM in terms of computation time 

 

As it was mentioned in introduction, HBD-circuits can be used to study the effect of the external 

electrical network on the internal behavior of electromagnetic devices. As the final validation 

example, ferroresonance as a nonlinear phenomenon in the power system, is modeled using HBD-

circuits. A ferroresonance circuit consisting of the gapped core inductor connected in series with  

a capacitance (𝐶 = 9. 2 𝜇𝐹 ) and a voltage source (𝑈𝑖𝑛 = 100 cos(𝜔𝑡)), is used to study 

ferroresonance by HBD-circuits and FEM. Figure 2.21 shows that the results of HBD-circuits with 

1152 meshes and FEM with 3778 elements are remarkably similar. Studying different 

electromagnetic transient phenomena using HBD-circuits is desirable for future work. 
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Figure 2.21 Inductor Current modeled by HBD-circuits and FEM during ferroresonance 

 

2.3 Conclusion 

In this study, three circuit-based methods named HBD-circuits were created in a distributed form 

for accurately modelling magnetic devices in EMTP. These methods are based on the Hopkinson 

analogy, the Buntenbach analogy, and the duality principle. The proposed HBD-circuits were 

utilised to model two inductors: one inductor with no air gap in its core (gapless core inductor) and 

one inductor with an air gap in its core (gapped core inductor). For both inductor cases, HBD-

circuits were compared to one another as well as to FEM in terms of accuracy and computation 

speeds.  

With the use of HBD-circuits, it was discovered that it was possible to achieve high levels of 

accuracy in showing both the external and internal behaviour of inductors. To represent the external 

behaviour of the inductors, HBD-circuits and FEM were used to determine the voltage-current 

characteristic observed at the inductors' terminals.  

Additionally, in order to better depict the internal behaviour, the flux distribution over the core 

calculated using HBD-circuits was compared to the flux distribution derived using FEM. 

Furthermore, even when the number of components is huge, these techniques outperform FEM in 

terms of computational speed.  
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Finally, ferroresonance phenomenon in a circuit with an inductor was studied in EMTP while the 

inductor was represented by HBD-circuits, and the same circuit was implemented in COMSOL 

while the inductor was modelled by FEM. The results are consistent with one another, revealing 

that HBD-circuits can exhibit inductor behaviour not only in steady state, but also in transient 

conditions. 
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 TRANSFORMER MODEL BY DISTRIBUTED CIRCUIT-

BASED METHODS 

The FEM is the first choice when it comes to modelling transformers with high accuracy and having 

details on internal behaviour. Additionally, FEM may enable multi-physics modelling of 

transformers, allowing analysts  to study, for example, the effect of internal faults on the 

temperature of various parts of a transformer [70]. However, as previously stated in Chapter 1, 

FEM cannot be used to study the transformer in a large network, and it is not possible to see the 

effect of the large network on the internal behaviour of the transformer and vice versa. Furthermore, 

Chapter 1 discussed how direct and indirect field-circuit coupling solutions can be used to generate 

a detailed model of magnetic devices in a network (see [25] as an example for modeling the 

transformer). However, it was emphasized that coupling solutions face several numerical issues, 

the majority of which are time demanding. In addition, it was said that power system analysts prefer 

circuit-based methods to simulate magnetic devices in the network, and that none of the coupling 

methods indicated above are preferred by them.  

Currently, topological transformer models known as physically meaningful models are commonly 

employed in EMT-type software. These models are derived based on the principle of duality, which 

yields an equivalent electric circuit analogous to the reluctance model. Leakage inductances 

between windings are represented in these models by mutually coupled inductors, whose self and 

mutual inductances are obtained from short-circuit test data. For transformers with more than two 

windings, a large number of short-circuit tests are necessary, which can be time-consuming and 

impracticable. Furthermore, utilizing this method to study internal faults in transformers 

necessitates inter-turn fault tests, which are extremely difficult to be carried out. To avoid the need 

for short-circuit tests, Lambert et al. [71] used the analytical method proposed in [72, 73], to 

calculate the short-circuit impedances between winding pairs directly from geometrical data. The 

proposed method could closely reproduce experimental measurements from single-phase and 

three-phase transformers. However, the air flux paths during saturated operating conditions or zero-

sequence flux paths have not been yet modeled accurately in topological transformer models. This 

is mainly due to the fact that these models represent magnetic devices by a limited number of flux 

tubes. To address this problem, some study has been conducted to see if FEM can be used to bring 

the values of electric elements in models closer to reality. For example, in [74], the authors used 
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FEM to improve the relations for determining air core inductance in topological transformer 

models and introduced a correction factor by comparing the findings to 2D-FEM results. In [75],the 

off-core inductances of topological transformer model were estimated using 2D-FEM. Even though 

topological transformer models are more accurate than other available transformer models in EMT-

type software, they do not appear to be good enough in studies that need accurate flux path 

representation. 

This chapter improves HBD-circuits proposed in Chapter 2 for more accurate transformer 

modelling. This proposed transformer model is like (follows the same approach) the inductor model 

presented in Chapter 2. It can provide a greater number of flux tubes to represent magnetic flux 

tubes than other mentioned circuit-based methods used in EMT-type software. As a result, both 

magnetic flux paths in the core and in the air can be accurately represented during various 

transformer operating conditions, such as normal operation, inrush currents, short-circuit, 

geomagnetically induced currents, ferroresonance, and harmonics. The proposed approach can 

produce a detailed representation of the transformer that is quite similar to FEM and can be used 

in EMT-type software and consequently to examine the transformer in a network that may contain 

a large number of power components. In addition, this method has the benefit of direct coupling 

methods, which simultaneously solves magnetic equivalent circuits and electric circuits of the 

network. As was mentioned in the previous chapter, recently, in [67], Naïdjate et al. proposed mesh 

modelling of transformers using MEC in EMTP by establishing intermediate circuits and defining 

new elements. Even though [67] has been able to provide both magnetic field distribution in the 

transformer and voltage distribution along each winding, they are complex, and modelers prefer 

methods that can be built utilizing the capabilities already accessible in EMTP-type tools. The 

models proposed in this chapter are similar to the inductor models proposed in Chapter 2 .The 

methodology does not necessitate the creation of new elements or complex intermediate circuits.  

In addition, these models are able to simulate internal faults in transformers. Existing circuit-based 

models use common analytical formula to calculate leakage inductances which are one of the main 

difficulties encountered in winding fault transformer circuit-based models [76, 77]. The existing 

methods [76, 77] have two drawbacks: first, the analytical formulas used to calculate leakage 

inductances are geometrically constrained and do not account for the core effect, and second, the 

transformer models employed are not very accurate and detailed. The proposed method not only 

represents leakage flux paths correctly, but it also considers the effect of the core, including 
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saturation behavior, and can consequently give more accurate leakage inductances. This approach 

subdivides the faulty winding into some sub sections, resulting in models that resemble multi-

winding transformer models. As a result, it can be useful in power electronic studies to simulate 

multi-winding transformers in dynamic power electronic systems, which as stated in [18, 19, 78, 

79], require methods that can accurately calculate leakage inductances between windings as well 

as be coupled with heavily nonlinear power electronic circuits.  

The transformer is modelled in 2D in this work and is validated with 2D FEM, which is still the 

method of choice in power system applications, especially when connection between the field and 

circuit equations is sought or when they are employed as validations or improvements of circuit-

based methods. In addition, in this studies, magnetic nonlinearity is represented by non-hysteretic 

models (piecewise linear models), which are sufficiently accurate for transient studies with 

negligible core losses. 

Specifically, it is explained in this chapter how the HBD-circuits proposed in Chapter 2 are 

improved so that they are capable of modelling transformers. Indeed, it is demonstrated how the 

HBD-circuits can be extended to include magnetic devices with more than one winding. 

The remainder of this chapter is organized as follows. In section 3.1, the principles of the proposed 

method are outlined for a two-winding single-phase transformer. The proposed method for a two-

winding three-phase transformer, which is a practical example, is discussed in greater detail in 

section 3.2. Section 3.3 explains how the proposed model can be used to model inter-turn faults. 

Section 3.4 presents and discusses results for three phenomena: normal operation, internal fault, 

and inrush current. The results are compared with those from a FEM solver.  

3.1 Methodology 

In this section, the proposed HBD-circuits are explained for a single-phase shell-type transformer 

which is shown in Figure 3.1. The primary winding is connected to the voltage source 𝑈𝑃 through 

resistance 𝑅𝑃 and the secondary winding is connected to the voltage source 𝑈𝑆 through resistance 

𝑅𝑆. Implementing an electromagnetic model for the defined transformer using circuit-based 

methods in a meshed form includes three main steps. Firstly, the space of the problem is meshed 

into suitable number of elements based on the required accuracy. Secondly, Maxwell’s equations 
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including Ampere’s and Faraday’s laws are employed. Finally, the boundary conditions are 

imposed. 
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Figure 3.1 (a) Distributed magnetic circuit with magnetomotive forces, (b) schematic of 

transformer winding turns and external circuit 
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Figure 3.2 DRNM for a transformer (magnetic and electric circuits, as well as their coupling) 

3.1.1 Hopkinson Analogy 

In this section, as shown in Figure 3.1(a), the problem space is meshed into 24 elements. The 

magnetic flux paths in each element are represented by two horizontal and two vertical reluctances. 

To impose the boundary conditions, the reluctances perpendicular to the outside sides of the 

problem space are also eliminated. In Figure 3.1(a), eliminated reluctances are represented by 

dashed blue reluctances. In this figure, a, b, c, d, e, f, g, and h determine the primary winding coils, 

while A, B, C, D, E, F, G, and H determine the secondary winding coils. 𝜑1, 𝜑2, 𝜑3,…, 𝜑12 

represent the magnetic fluxes that pass through the winding turns, while (ℱ1, ℱ2, ℱ3,  , ℱ12) are 

the magnetomotive force sources distributed through the transformer.  

The values of the magnetomotive force sources (ℱ1, ℱ2, ℱ3,  , ℱ12) are derived by applying 

Ampere’s law. Their values in each cell are derived based on this rule: in any closed loop of the 

problem space, the total magnetomotive force sources around the loop are equal to the sum of all 

ampere-turn passing through the same loop. For instance, the total magnetomotive force sources 

around the green loop shown in Figure 3.1(a), which encloses two turns of the primary winding 

with the current 𝑖𝑝 and three turns of the secondary winding with the current 𝑖𝑠, should be equal to 
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ℱ = 2𝑖𝑝 +  𝑖𝑠. According to this rule, the values of the magnetomotive force sources 

(ℱ1, ℱ2, ℱ3,  , ℱ12) are given by 

𝐅 = 𝐍𝑀𝑀𝐹𝐈 (3.1) 

where 𝐅 = [ℱ1 ℱ2 ℱ3   ℱ12]T with ℱ1, ℱ2, ℱ3,  , ℱ12 as the values of the magnetomotive 

force sources indicated in Figure 3.1(a). And 𝐈 = [𝑖𝑝 𝑖𝑠]𝑇 which  𝑖𝑃 and 𝑖𝑆 are the primary and 

secondary winding currents, respectively. The components of 𝐍𝑀𝑀𝐹  which has been introduced to 

relate 𝐅 and 𝐈 are derived using curves of the magnetomotive force distribution along the x axis for 

the primary and secondary windings (ℱp( ) and ℱs( )) presented below the transformer in Figure 

3.1(a). On each position in the x axis, the sum of the magnetomotive force sources displayed on 

the magnetic equivalent circuit must equal the sum of ℱp( ) and ℱs( ) at that point. For example, 

the sum of ℱ1 and ℱ7 in the circuit which are on the same position of   =  𝑋, equals the sum of 

ℱp( ) and ℱs( ) at that position, which are ℱp(X) = 2𝑖𝑝 and ℱs(X) = 0, and because the circuit 

has horizontal symmetry, the values of ℱ1 and ℱ7 are the same, and their values equal 𝑖𝑝. The other 

components of 𝐍𝑀𝑀𝐹  are derived using the same rule as follows. 

𝐍𝑀𝑀𝐹 = [
1 2 2 2 2 1 1 2 2 2 2 1
0 1 2 2 1 0 0 1 2 2 1 0

]
𝑇

 (3.2) 

Until now, only the magnetic circuit has been included. Faraday's law is used to include the electric 

circuit and the coupling of the electric and the magnetic circuits. Figure 3.1(b) presents the 

schematic diagram for winding configuration demonstrating the total magnetic fluxes within each 

winding turn.  The induced voltage in each turn is determined by the fluxes that flow through it. 

For instance, in the turn AB of the secondary winding which encloses the fluxes of the 𝜑9 and 𝜑10, 

the voltage 𝐸𝐴𝐵 is induced which is derived by 

𝐸𝐴𝐵 = −
𝑑

𝑑𝑡
(𝜑9 + 𝜑10) (3.3) 

The voltages induced in other turns and the fluxes passing through them have the same relationship. 

Then, by adding the voltages induced in the turns of each winding, the total induced voltages in the 

primary winding 𝐸𝑝 and secondary winding 𝐸𝑠 are given by 
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𝐄 = −
𝑑

𝑑𝑡
𝐍𝐸𝑀𝐹𝚽 (3.4) 

where  

𝐄 = [
𝐸𝑝
𝐸𝑠
] = [

𝐸𝑎𝑏 + 𝐸𝑐𝑑 + 𝐸𝑒𝑓 + 𝐸𝑔ℎ
𝐸𝐴𝐵 + 𝐸𝐶𝐷 + 𝐸𝐸𝐹 + 𝐸𝐺𝐻

] (3.5) 

𝚽 = [𝜑1  𝜑2  𝜑3  𝜑4  𝜑5  𝜑6 𝜑7 𝜑8 𝜑9 𝜑10 𝜑11 𝜑12]
𝑇 (3.6) 

𝐍𝐸𝑀𝐹 = 𝐍𝑀𝑀𝐹
𝑻  (3.7) 

In which 𝐸𝐴𝐵, 𝐸𝐶𝐷, 𝐸𝐸𝐹, 𝐸𝐺𝐻, 𝐸𝑎𝑏, 𝐸𝑐𝑑, 𝐸𝑒𝑓 and 𝐸𝑔ℎ are the electromotive forces induced in the 

turns AB, CD, EF, GH, ab, cd, ef, and gh respectively. Moreover 𝜑1, 𝜑2, 𝜑3,…, 𝜑12 are the 

magnetic fluxes that pass through the winding turns which have been displayed in Figure 3.1(a). 

And 𝐍𝐸𝑀𝐹  is the matrix introduced to relate 𝐄 and 𝚽.  

Finally, the interface between the magnetic and electric circuits is derived using the above-

mentioned relations and rules, as shown in Figure 3.2. The magnetic circuit is shown in black, 

while the primary and secondary winding electric circuits are shown in blue and green, 

respectively. The sum of electromotive force sources distributed in the primary and secondary 

winding electric circuits is obviously equal to 𝐸𝑝 and 𝐸𝑠, respectively, as shown in Figure 3.2. The 

primary and secondary side resistances are represented by 𝑅𝑝 and 𝑅𝑠. Coupling between the 

magnetic circuit with both the primary and secondary electric circuits has been achieved using 

current-controlled voltage sources. In the equivalent circuit of Figure 3.2, each pair of current-

controlled voltage sources is a specific type of mutator element, i.e., the Type-2 L-R mutator which 

was shown in Figure 1.2. As it was stated in the previous chapter, in EMT-type programs, two 

coupled series R-L branches can be deployed to implement this type of mutator with values 

determined by (2.5). 

3.1.2 Buntenbach Analogy 

As it was mentioned in section 2.1.2, the meshes and nodes used to calculate the equivalent circuit 

for the distributed Buntenbach analogy are the same as those used to derive the equivalent circuit 

for the Hopkinson analogy, but the resistances in the Hopkinson analogy are substituted with 

capacitances. Another mutator, the Type-1 L-C mutator [26] (see Figure 1.4), is used to connect 

the magnetic and electric parts of the circuit. In section 2.1.2, it was also indicated that this type of 
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mutator is implemented using two coupled series R-L branches, the values of which are determined 

by (2.7). Considering all these rules, the Buntenbach circuit represented in Figure 3.3 is derived. 

For each mutator in this circuit, the value of coupling factor 𝒩 has been determined.  
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Figure 3.3 Distributed transformer model using Buntenbach analogy, including both magnetic 

and electric circuits and coupling between them 

3.1.3 Duality principle 

First, it should be mentioned that the graph of the magnetic circuit in Figure 3.2 is a planar graph, 

and a dual circuit can be obtained for it. Second, the rules mentioned in section 2.1.3 are employed 

to derive the electric dual circuit of the magnetic circuit; a) the cells, comprised of resistors that 

have a common node, are converted to dual cells, comprised of inductances enclosed in a mesh, b) 

the Type 2 L-R mutator is converted to ideal transformers. As a result, the duality circuit shown in 

Figure 3.4 is derived for the meshed model of the transformer shown in Figure 3.1.  
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Figure 3.4 Distributed duality-based transformer model, including both magnetic and electric 

circuits and coupling between them 

3.2 Distributed reluctance network model for a three-phase 

transformer  

In this section, HBD-circuits, which were derived for a single-phase transformer in the previous 

section, are used for a three-phase transformer case. Here, it is implemented only for the three-

phase three-legged core-type transformer, but it can be also implemented for the three-phase five-

legged core-type and shell-type transformers. In addition, the problem space is meshed into a 

configurable number of elements, and the formulas required to calculate the properties of each 

element are presented in detail.  

The diagram of the transformer modeled in this section is shown in Figure 3.5. 𝑊𝑝 and 𝐻𝑝 symbols 

have been used to determine the width and height of the HV winding, while 𝑊𝑠 and 𝐻𝑠 symbols 

have been used to determine the width and height of the LV winding. The thickness of the tank is 

denoted by the 𝑇𝑛 symbol. The length of the air gap between the HV and LV windings for each 

phase is denoted by 𝑏𝑡𝑤, and the length of the air gap between the LV winding and the core is 

denoted by the 𝑙𝑖𝑓𝑡 symbol. Also, the air gaps between the HV winding in the central column and 

the HV windings in the side columns that are equal are represented by the notation 𝐵𝑇𝑊. In the 

three-legged core, all three columns have the same width, shown by the letter 𝐶 in this diagram. 
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The letters 𝐷 and 𝐸 represent the width and height of the two identical transformer windows. The 

letter 𝐴 indicates the mean length of each yoke of the core. 𝐺ℎ𝑝 denotes the vertical air gap between 

the HV winding and the up yoke, while 𝐺𝑏𝑝 denotes the vertical air gap between the HV winding 

and the low yoke. 𝐺ℎ𝑠 denotes the vertical air gap between the HV winding and the up yoke, while 

𝐺𝑏𝑠 denotes the vertical air gap between the HV winding and the low yoke. 

  

  

  

  

  

  

B=2A+C F
D=A-CA

HP

Ghp

  

Gbp
  Gbs

  

HS
  

E

  

Ghs

C

  
BTW   

  
WP

  
btw

  

lift   

  

WS
  

Magnetic core
HV winding
LV winding

  

Tank

Tn

 

Figure 3.5 Schematic of a three-phase three-legged core-type transformer 

 

The following steps are followed to implement HBD-circuits for the transformer in EMTP. First, 

the problem space is divided into elements based on the study's requirements and the required 

accuracy. Second, the model elements are drawn from a set of generic types of elements. Third, 

the elements are connected based on how the transformer has been meshed as well as the 

transformer winding connections. Finally, the values for the model elements are determined and 

given. In the following, these steps are described in more detail.  

3.2.1 Meshing and indexing 

Since all the three phases of the transformer are similar, the meshing, the indexing, and the value 

determination processes are the same for all of them. In the following, they are only explained for 

the phase in the middle column of the core. Furthermore, due to the vertical symmetry of the core, 

only the meshing for the left side of the core is explained, as illustrated in Figure 3.6. In this 

diagram, LV winding is represented by the purple colour and HV winding is represented by the 

yellow colour. In addition, the core is depicted in grey, the tank is represented by diagonal black 

lines, and the air parts are shown in white. 𝑊𝑝 and 𝐻𝑝 symbols have been used to determine the 

width and height of the HV winding, while 𝑊𝑠 and 𝐻𝑠 symbols have been used to determine the 
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width and height of the LV winding. The thickness of the tank is denoted by the 𝑇𝑛 symbol. In the 

mesh applied to this diagram, the number of elements along the   axis is 𝑀 and along the 𝑦 axis is 

𝑁. Based on the type and position of the elements used to model the transformer, the transformer 

has been subdivided into ten distinct areas labelled 1, 2, 3, 4, 5, 6, 7, 33, 44, and 66, with these 

numbers shown in the left-up position of each area. 

In addition, the HBD-circuits for this transformer are made up of four general types of cells: Type-

A, Type-B, Type-C, and Type-D which have been indicated in Figure 3.7 for Hopkinson Analogy, 

in Figure 3.8 for Buntenbach Analogy, and in Figure 3.9 for duality principle.  Each of the four 

types of Hopkinson elements contains four linear or nonlinear resistive elements called 𝑅𝑢, 𝑅𝑑, 𝑅𝑟 

and 𝑅𝑙 which have been shown in Figure 3.7. And as shown in Figure 3.8, each of the four types 

of Buntenbach elements has four linear or nonlinear capacitive elements: 𝐶𝑢, 𝐶𝑑, 𝐶𝑟, and 𝐶𝑙. Four 

linear or nonlinear inductive components found in each of the four types of duality elements, as 

depicted in Figure 3.9. These are 𝐿𝑢, 𝐿𝑑, 𝐿𝑟, and 𝐿𝑙. In Type-B cells, there is one pair of mutators 

which are for HV winding. In Type-C cells, there are two pairs of mutators, one pair for HV 

winding and the other for LV winding. In Type-D cells, there is a single pair of LV winding 

mutators. In Figure 3.7, Figure 3.8, and Figure 3.9, the coupling factors of the mutators associated 

to HV and LV windings are defined by 𝛽𝑖𝑗  and 𝛾𝑖𝑗, respectively. Parts 1 and 7 are made up of 

Type-A elements, parts 2 and 5 are made up of Type-B elements, parts 3, 4, and 6 are made up of 

Type-C elements, and parts 33, 44, and 66 are made up of Type-D components for the parts shown 

in Figure 3.6. 
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Figure 3.6 Cross-section of left half of the core  
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Figure 3.7 Circuits based on Hopkinson Analogy for four cell types (A, B, C, and D) 
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Figure 3.8 Circuits based on Hopkinson Analogy for four cell types (A, B, C, and D) 
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Figure 3.9 Circuits based on Duality principle for four cell types (A, B, C, and D) 
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3.2.2 Determination of circuit parameters 

The RLC parameters for elements are calculated in the same way that they were calculated in 

sections 2.1.1, 2.1.2, and 2.1.3, but the parameters of the mutators of the Type-B, Type-C, and 

Type-D elements depicted in Figure 3.7, Figure 3.8, and Figure 3.9 are found by applying Ampere's 

law and Faraday's law in a distributed form. The coupling factors 𝛽𝑖𝑗  and 𝛾𝑖𝑗, which are related to 

the mutators of the HV and LV windings of the element in 𝑖𝑡ℎ column and 𝑗𝑡ℎ row of the mesh 

presented in Figure 3.6, are given by (3.8) and (3.9) respectively. Where 𝑁𝑝 and 𝑁𝑠 represent the 

number of HV and LV winding turns, respectively. 𝑊𝑝 and 𝑊𝑠 are the widths of the HV and LV 

windings, respectively, and 𝐻𝑝 and 𝐻𝑠 are the heights of the HV and LV windings.  𝑖−1,  𝑖, 𝑦𝑗−1 

and 𝑦𝑗 are the horizontal and vertical coordinates of the cell placed in 𝑖𝑡ℎ column and 𝑗𝑡ℎ row. 𝑋0, 

𝑋1, 𝑌1 and 𝑌2 are the horizontal and vertical coordinates of the HV winding and 𝑋2, 𝑋3, 𝑌0 and 𝑌3 

are the horizontal and vertical coordinates of the LV winding. 𝑋4 is the horizontal coordinate of 

the center of the core. 

 

𝛽𝑖𝑗 =

{
 
 

 
 
𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑝𝐻𝑝
(
 𝑖−1 +  𝑖

2
− 𝑋0)  𝑖−1 ≥ 𝑋0,  𝑖 ≤ 𝑋1, 𝑦𝑗−1 ≥ 𝑌1, 𝑦𝑗 ≤ 𝑌2 

𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝐻𝑝
                               𝑖−1 ≥ 𝑋1,   𝑖 ≤ 𝑋4,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2

 (3.8) 

𝛾𝑖𝑗 =

{
 
 

 
 𝑁𝑠(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑠𝐻𝑠
(
 𝑖−1 +  𝑖

2
− 𝑋2)  𝑖−1 ≥ 𝑋2,   𝑖 ≤ 𝑋3,  𝑦𝑗−1 ≥ 𝑌0,  𝑦𝑗 ≤ 𝑌3 

𝑁𝑠(𝑦𝑗 − 𝑦𝑗−1)

2𝐻𝑠
                               𝑖−1 ≥ 𝑋3,   𝑖 ≤ 𝑋4,  𝑦𝑗−1 ≥ 𝑌0,  𝑦𝑗 ≤ 𝑌3

 (3.9) 

  

3.2.3 Connection of model elements  

After finding and assigning the parameters for each element, the elements must now be connected 

internally before being linked to the external circuit. As it can be observed in the Hopkinson and 

Buntenbach elements presented in Figure 3.7 and Figure 3.8, nodes 𝑛𝑖𝑗
(1)

, 𝑛𝑖𝑗
(2)

, 𝑛𝑖𝑗
(3)

, and 𝑛𝑖𝑗
(4)

 are 
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the nodes related to the magnetic part of the element placed in 𝑖𝑡ℎ column and 𝑗𝑡ℎ row of mesh 

shown in Figure 3.6. In Algorithm 3.1, it has been shown how magnetic parts of the elements are 

connected through these nodes for Hopkinson and Buntenbach Circuits. For duality elements 

shown in Figure 3.9, in which 𝑛𝑖𝑗
(1)

, 𝑛𝑖𝑗
(2)

, 𝑛𝑖𝑗
(3)

, 𝑛𝑖𝑗
(4)

, 𝑛′𝑖𝑗
(1)

, 𝑛′𝑖𝑗
(2)

, 𝑛′𝑖𝑗
(3)

, and 𝑛′𝑖𝑗
(4)

 are the nodes related 

to the magnetic part, Algorithm 3.2 is followed to connect magnetic parts of the elements.  

For all three HBD-circuits, Algorithm 3.3 and Algorithm 3.4 are used to establish the  internal 

electrical connections between elements. As it can be observed in the elements presented in Figures 

Figure 3.7, Figure 3.8 and Figure 3.9, nodes 𝑝𝑖𝑗
(1)

, 𝑝𝑖𝑗
(2)

, 𝑝𝑖𝑗
(3)

, and 𝑝𝑖𝑗
(4)

 are the nodes related to the 

HV winding of the element placed in 𝑖𝑡ℎ column and 𝑗𝑡ℎ row of Figure 3.6 and  they are connected 

using the procedure presented in Algorithm 3.3. Nodes 𝑠𝑖𝑗
(1)

, 𝑠𝑖𝑗
(2)

, 𝑠𝑖𝑗
(3)

, and 𝑠𝑖𝑗
(4)

 are the nodes related 

to the LV winding of those elements and they are connected using the procedure presented in 

Algorithm 3.3. In all three HBD-circuits, the internal electrical connections for two other 

transformer phases are established using the same algorithms. 
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Algorithm 3.1 Internal magnetic connections for Hopkinson and Buntenbach circuits 

 for 𝑗∗
 
←1 to 𝑁∗∗ do 

  for 𝑖∗∗∗
 
←1 to (2𝑀∗∗∗∗) do 

   if  𝑗 < 𝑁 & 𝑖 < 2𝑀  
    connect (𝑛𝑖𝑗

(2), 𝑛(𝑖+1)𝑗
(4)

) 

connect (𝑛𝑖𝑗
(3), 𝑛𝑖(𝑗+1)

(1)
) 

   elseif  𝑗 = 𝑁 & 𝑖 < 2𝑀  
    connect (𝑛𝑖𝑗

(2), 𝑛(𝑖+1)𝑗
(4)

) 

   elseif  𝑗 <  𝑁 & 𝑖 = 2𝑀  
    connect (𝑛𝑖𝑗

(3)
, 𝑛𝑖(𝑗+1)
(1)

) 

   end 

  end 

 end   

*:  𝑗 is the row number of the cell. 

**:  𝑁 is the total number of rows in Figure 3.6.  

***:  𝑖 is the column number of the cell. 

****: 𝑀 is total number of columns in 

Figure 3.6. 

Algorithm 3.2. Internal magnetic connections for Duality circuit 

 for 𝑗∗
 
←1 to 𝑁∗∗ do 

  for 𝑖∗∗∗
 
←1 to (2𝑀∗∗∗∗) do 

   if  𝑗 < 𝑁 & 𝑖 < 2𝑀  
    connect (𝑛𝑖𝑗

(2), 𝑛(𝑖+1)𝑗
(4)

) 

connect (𝑛′𝑖𝑗
(2)
, 𝑛′(𝑖+1)𝑗

(4)
) 

    connect (𝑛𝑖𝑗
(3), 𝑛𝑖(𝑗+1)

(1)
) 

    connect (𝑛′𝑖𝑗
(3)
, 𝑛′𝑖(𝑗+1)

(1)
) 

   elseif  𝑗 = 𝑁 & 𝑖 < 2𝑀  
    connect (𝑛𝑖𝑗

(2), 𝑛(𝑖+1)𝑗
(4)

) 

    connect (𝑛′𝑖𝑗
(2)
, 𝑛′(𝑖+1)𝑗

(4)
) 

   elseif  𝑗 <  𝑁 & 𝑖 = 2𝑀  
    connect (𝑛𝑖𝑗

(3)
, 𝑛𝑖(𝑗+1)
(1)

) 

    connect (𝑛′𝑖𝑗
(3)
, 𝑛′𝑖(𝑗+1)

(1)
) 

   end 

  end 

 end   

*:  𝑗 is the row number of the cell. 

**:  𝑁 is the total number of rows in Figure 3.6. 

***:  𝑖 is the column number of the cell. 

****: 𝑀 is total number of columns in Figure 

3.6. 
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Algorithm 3.3. Electric connections for HV windings in all HBD-circuits  

for 𝑗
 
←𝑗2

∗  to 𝑗3
∗∗ do 

 for 𝑖
 
←𝑖1

∗∗∗  to (2𝑀 − 𝑖1) do 

  connect (𝑝𝑖𝑗
(2), 𝑝(𝑖+1)𝑗

(1)
) 

connect (𝑝𝑖𝑗
(4), 𝑝(𝑖+1)𝑗

(3)
) 

 end  

 connect (𝑝(2𝑀−𝑖1+1)∗∗∗∗𝑗
(2) , 𝑝(𝑖1)𝑗

(3)
) 

 if  𝑗 > 𝑗2 then 

  connect (𝑝(2𝑀−𝑖1+1)𝑗
(4) , 𝑝(𝑖1)(𝑗−1)

(3)
) 

 end  

end   

*:  𝑗2 is the row number of the lowest cells related to HV winding in Figure 3.6. 

**:  𝑗3 is the row number of the highest cells related to HV winding in Figure 3.6. 

***: 𝑖1 is the column number of the leftmost cells related to HV winding in Figure 3.6. 

****:2𝑀 − 𝑖1 + 1 is the column number of the rightmost cells related to right part of HV winding 

which due to the symmetry has not been shown in Figure 3.6. 

Algorithm 3.4. Electric connections for LV winding in all HBD-circuits 

for 𝑗
 
←𝑗1

∗  to 𝑗4
∗∗ do 

for 𝑖
 
←𝑖2

∗∗∗  to (2𝑀 − 𝑖2) do 

 connect (𝑠𝑖𝑗
(2)
, 𝑠(𝑖+1)𝑗
(1)

) 

connect (𝑠𝑖𝑗
(4), 𝑠(𝑖+1)𝑗

(3)
) 

end  

connect (𝑠(2𝑀−𝑖2+1)∗∗∗∗𝑗
(2) , 𝑠(𝑖2)𝑗

(3)
) 

if  𝑗 > 𝑗1 then 

 connect (𝑠(2𝑀−𝑖2+1)𝑗
(4) , 𝑠(𝑖2)(𝑗−1)

(3)
) 

end  

*:  𝑗1 is the row number of the lowest cells related to LV winding in Figure 3.6. 

**:  𝑗4 is the row number of the highest cells related to LV winding in Figure 3.6. 

***: 𝑖2 is the column number of the leftmost cells related to LV winding in Figure 3.6. 

****:2𝑀 − 𝑖2 + 1 is the column number of the rightmost cells related to right part of LV winding 

which due to the symmetry has not been shown in Figure 3.6. 

3.3 Study of internal faults using HBD-circuits  

In this section, the proposed HBD-circuits are used to model internal faults in transformer using 

EMTP. To accomplish this, the faulty and healthy parts of the winding are treated as distinct 

windings. The fault between a coil and the ground, as well as the fault between two turns of a 
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winding, are both modelled using HBD-circuits. To model a turn-to-earth fault, the faulty winding 

is divided into two parts, as shown in Figure 3.10(a). As illustrated in Figure 3.10(b), the faulty 

winding is divided into three parts to model a turn-to-turn fault. In HBD-circuits, each new part is 

treated as a distinct winding, with Ampere's and Faraday's laws applied independently. The distinct 

parts are then connected to one another, with the faulty part is also being connected to the 

impedance of the fault. The steps in the prior section are followed to model internal faults. 

However, because additional parts have been introduced, new elements must be defined.  

2a 2b 2c

        

 

  
 

 

 

 

    

  
    

    
    

2a 2b

    

 

 

    

  
    

  

 3  

 2  

 1  

 0  

 3  

 2  

 1  

 0  

 4  

 3  

 2  

 1  

 4  

 3  

 2  

 1  

 0   0
 

  0
  

  1  

 1
 

  1
  

  1
   

 

     

 

 

 

 

 0   0
 

 

 1
 

  1
  

 

 0
  =  1  

 
 (a) (b)  

Figure 3.10 Meshes generated for a portion of a faulty transformer with a fault in the middle 

column's HV winding, (a) Turn to earth fault, (b) Turn to turn fault 

3.3.1 Element definition  

A pair of mutators are added to the model exclusively for each part of the faulty winding that was 

deemed as a separate winding. Figure 3.11 shows three new defined element types (Type-B1, Type-

B2, and Type-C1) for a case involving a coil-to-earth fault using Hopkinson method. For this type 

of fault, based on Buntenbach Analogy, Figure 3.12 displays three new element types (Type-B1, 
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Type-B2, and Type-C1). To represent this type of fault using duality principle, three new element 

types (Type-B1, Type-B2, and Type-C1) shown in are used Figure 3.13. The healthy section of the 

winding, which is labelled 2a in Figure 3.10(a), is represented by a pair of mutators with the 

coupling factor of 𝛽𝑖𝑗
′  in the Type-B1, Type-B2, and Type-C1 cells. And for the faulty section of the 

winding, which is labelled 2b in Figure 3.10(a), a pair of mutators with the coupling factor of 𝛽𝑖𝑗
′′ 

has been provided in Type-B2 and Type-C1 cells. 
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Figure 3.11 Circuits based on Hopkinson Analogy for three cell types (B1, B2 C1) related to the 

mesh generated in Figure 3.10(a) 
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Figure 3.12 Circuits based on Buntenbach Analogy for three cell types (B1, B2, and C1) related 

to the mesh generated in Figure 3.10(a) 
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Figure 3.13 Circuits based on Duality principle for three cell types (B1, B2 C1) related to the mesh 

generated in Figure 3.10(a) 

For the turn-to-turn fault case, which has been shown in Figure 3.10(b), four new element types 

(Type-B1, Type-B2, Type-B3, and Type-C2) are defined. Figure 3.14, Figure 3.15, and Figure 3.16 

show equivalent circuits for Hopkinson Analogy, Buntenbach Analogy, and the duality principle, 

respectively. The healthy section of the winding, which is labelled 2a in Figure 3.10(b) and is in 

the left side of the faulty section, is represented by a pair of mutators with the coupling factor of 

𝛽𝑖𝑗
′  in the Type-B1, Type-B2, Type-B3, and Type-C2 cells. A pair of mutators with the coupling 

factor of 𝛽𝑖𝑗
′′  has been used in Type-B2, Type-B3, and Type-C2 cells for the faulty section of the 
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winding, which is labelled 2b in Figure 3.10(b). The other healthy section of the winding, which is 

labelled 2c in Figure 3.10(b) and is on the right side of the faulty section, is indicated by a pair of 

mutators with the coupling factor of 𝛽𝑖𝑗
′′′ in the Type-B3 and Type-C2 cells. 
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Figure 3.14 Circuits based on Hopkinson Analogy for four cell types (B1, B2 B3, C2) related to the 

mesh generated in Figure 3.10(b) 
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Figure 3.15 Circuits based on Buntenbach Analogy for four cell types (B1, B2 B3, C2) related to 

the mesh generated in Figure 3.10(b) 
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Figure 3.16 Circuits based on Duality principle for four cell types (B1, B2 B3, C2) related to the 

mesh generated in Figure 3.10(b) 

3.3.2 Determination of circuit parameters 

The RLC parameters for elements are determined in the same manner as in 2.1.1, 2.1.2, and 2.1.3. 

And the coupling factor 𝛾𝑖𝑗, which is related to the mutator of the LV winding of the element in 

𝑖𝑡ℎ column and 𝑗𝑡ℎ row of the meshes presented in Figure 3.10(a) and (b), is given by (3.9). The 

coupling factor of the new mutators shown in Figure 3.11- Figure 3.16 are given by (3.10), (3.11), 
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and (3.12) where 𝑁𝑝 is the number of turns of HV winding, and for the turn to earth fault shown in 

Figure 3.10(a), 𝑊𝑝
′ and 𝑊𝑝

′′ are the width of the faulty and healthy parts of HV winding, 𝑋0, 𝑋0
′ , 𝑌1 

and 𝑌2 are the horizontal and vertical coordinates of the faulty part of HV winding and 𝑋0
′ , 𝑋0

′′, 𝑌1 

and 𝑌2 are the horizontal and vertical coordinates of the healthy part of HV winding. And for the 

turn-to-turn fault shown in Figure 3.10(b), 𝑊𝑝
′ and 𝑊𝑝

′′′ are the widths of the healthy parts of HV 

winding, and 𝑊𝑝
′′ is the width of the faulty part. 𝑋0, 𝑋0

′ , 𝑌1 and 𝑌2 are the horizontal and vertical 

coordinates of the healthy part of HV winding which is on the left side of the faulty part and 𝑋0
′ , 

𝑋0
′′, 𝑌1 and 𝑌2 are the horizontal and vertical coordinates of the faulty part of HV winding and 𝑋0

′′, 

𝑋0
′′′, 𝑌1 and 𝑌2 are the horizontal and vertical coordinates of the healthy part of HV winding which 

is located on the right side of the faulty part.  

𝛽𝑖𝑗
′ =

{
 
 

 
 𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑝 𝐻𝑝
(
 𝑖−1 +  𝑖

2
− 𝑋0)  𝑖−1 ≥ 𝑋0,   𝑖 ≤ 𝑋0

′ ,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2 

𝑁𝑝𝑊𝑝
′(𝑦𝑖 − 𝑦𝑖−1)

2𝑊𝑝2𝐻𝑝
                               𝑖−1 ≥ 𝑋0

′ ,   𝑖 ≤ 𝑋4,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2

 (3.10) 

𝛽𝑖𝑗
′′ =

{
 
 

 
 𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑝
 𝐻𝑝

(
 𝑖−1 +  𝑖

2
− 𝑋0

′)  𝑖−1 ≥ 𝑋0
′ ,   𝑖 ≤ 𝑋0

′′,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2 

𝑁𝑝𝑊𝑝
′′(𝑦𝑖 − 𝑦𝑖−1)

2𝑊𝑝 𝐻𝑝
                               𝑖−1 ≥ 𝑋0

′′,   𝑖 ≤ 𝑋4,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2

 (3.11) 

𝛽𝑖𝑗
′′′ =

{
 
 

 
 𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑝 𝐻𝑝
(
 𝑖−1 +  𝑖

2
− 𝑋0

′′ )  𝑖−1 ≥ 𝑋0
′′,  𝑖 ≤ 𝑋1, 𝑦𝑗−1 ≥ 𝑌0, 𝑦𝑗 ≤ 𝑌3 

𝑁𝑝𝑊𝑝
′′′(𝑦𝑖 − 𝑦𝑖−1)

2𝑊𝑝 𝐻𝑝
                               𝑖−1 ≥ 𝑋1,  𝑖 ≤ 𝑋4, 𝑦𝑗−1 ≥ 𝑌0, 𝑦𝑗 ≤ 𝑌3

 (3.12) 

3.3.3 Connection of model elements  

The rules for all magnetic and electric connections of the model are identical to the rules outlined 

in section 3.2.3. Except that the faulty winding is divided into distinct windings, and the 

connections between the mutators for each distinct winding are made by the procedure presented 

in Algorithm 3.5. 
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Algorithm 3.5 Electric connections for HV winding 

 for 𝑗
 
←𝑗2  to 𝑗3 do 

  for 𝑤
 
←(𝑖1

′ ∗, 𝑖1
′′∗∗, 𝑖1

′′′∗∗∗) 
   for 𝑖

 
←𝑤  to (2𝑀 − 𝑤) do 

    connect (𝑝𝑖𝑗
(2), 𝑝(𝑖+1)𝑗

(1)
) 

connect (𝑝𝑖𝑗
(4), 𝑝(𝑖+1)𝑗

(3)
) 

   end  
   connect (𝑝(2𝑀−𝑤+1)∗∗∗∗𝑗

(2) , 𝑝(𝑤)𝑗
(3)

) 

   if  𝑗 > 𝑗2 then 
    connect (𝑝(2𝑀−𝑤+1) 𝑗

(4)
, 𝑝(𝑤)(𝑗−1)
(3)

) 

   end  
  end 
 end   

*:  𝑖1
′  : for turn-to-earth fault in Figure 3.10(a) is the column number of the leftmost cells related 

to the faulty part of HV winding called part 2a, and for turn-to-turn fault shown in Figure 3.10(b) 

is the column number of the leftmost cells related to the healthy part of HV winding called part 

2a.  

**:  𝑖1
′′ : for turn to earth fault in Figure 3.10(a) is the column number of the leftmost cells related 

to the healthy part of HV winding and for turn to turn fault in Figure 3.10(b) is the column 

number of the leftmost cells related to the faulty part of HV winding called part 2b.  

***:  𝑖1
′′′ : for turn-to-turn fault in Figure 3.10(b) is the column number of the leftmost cells 

related to the healthy part of HV winding called part 2c.  

****:2𝑀 − 𝑤 + 1 is the column number of the rightmost cells related to right part of different 

sections of HV windings which due to the symmetry has not been shown in Figure 3.10.  

3.4 Results and validation  

In this section, the proposed HBD-circuits approaches are implemented for the three-phase 

transformer shown in Figure 3.5, whose characteristics are listed in Table 3.1 and dimensions are 

listed in Table 3.2. The DRNM approach is implemented using EMTP [34], and FEM is solved 

using ANSYS Electromagnetics. 

Initially, we must determine the suitable mesh size before we can obtain the results. In a similar 

way to FEM, the accuracy that can be obtained from HBD-circuits is directly related to the mesh 

that is used. As the elements are reduced in size and the mesh is refined, the computed solution 

will approach the true solution. However, as the number of elements increases, the computational 

burden increase, and as a result, a technique known as mesh refinement is used. Mesh refinement 

is a process in which the mesh size is successively reduced, and the results are compared. Two 
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mesh refinement metrics are investigated to determine whether the mesh refinement has resulted 

in a converged solution. One local metric and one global metric are used in this chapter. The local 

metric is the magnetic flux amplitude in a single spot on the core, while the global metric is the 

current of the HV winding. Figure 3.17 illustrates the convergence of both the global (red) and 

local (blue) metrics with 1% error bars in comparison to the most refined solution. After weighing 

all of these factors, the mesh size for HBD-circuits is set to 2848. In addition, the FEM mesh 

includes 3292 elements. 

Table 3.1  Specifications of transformer 

Nominal power (MVA) 15 Connection type YnD 

Primary voltage (kV) 25.663 Number of primary winding turns 317 

Secondary voltage (kV) 4.530 Number of secondary winding turns 56 

Table 3.2  Design and geometrical parameters of transformer  

Parameter Length [mm]  Parameter Length [mm] Parameter Length [mm] 

A 995 HS 1190 HP 1121 

B 2410 Ghs 158 Ghp 197 

C 420 Gbs 143 Gbp 182 

D 575 lift 21 WP 60 

E 1491 WS 45.5 btw 91 

 

After meshing and to have the results to validate the models, first, open-circuit results are acquired 

by unloading the secondary, exciting the primary winding at various voltage levels, and deriving 

the current in the primary winding (to see the circuit used in this case, see Figure 3.18). In Figure 

3.19, rms voltage-current characteristics derived from HBD-circuits are compared to those 

obtained from FEM in 2D. To provide validation for the accuracy of HBD-circuits in representing 

transformer behavior in open-circuit condition, the normalized root mean square error (nRMSE) is 

applied on the voltage-current characteristic derived by each method. The nRMSE results for both 

linear and saturated operating conditions are presented in Table 3.3. It can be concluded that HBD-

circuits give accurate results in comparison with FEM and they are around 1-2% range in linear 

operating conditions, and 3-4% in saturated operating conditions.  
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Figure 3.17 Convergence of a global metric (blue) and a local metric (red) 

 

 

Figure 3.18 Circuit for open-circuit test, transformer with Y-Delta connection 
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Figure 3.19 V-I characteristic for open-circuit test 
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Table 3.3 Accuracy Analysis for HBD-circuits for open-circuit condition in both linear and 

saturated operating points, FEM is the reference. 

 nRMSE (%)  

 Operating Condition 

Model Linear Saturated 

Hopkinson 1.25 3.31 

Buntenbach 1.32 3.62 

Duality 1.46 3.50 

 

In addition, as an example, the currents of primary windings for phases a, b, and c are shown in 

Figure 3.20, Figure 3.21, and Figure 3.22, when the voltage exciting the primary winding is set to 

20 kV and the secondary winding is an open-circuit.  The results are remarkably similar to those 

obtained using FEM and include the nonlinear behavior of transformer. 

 

 

Figure 3.20 Primary winding current of phase-a, open-circuit 
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Figure 3.21 Primary winding current of phase-b, open-circuit 

 

 

Figure 3.22 Primary winding current of phase-c, open-circuit 

 

Second, as shown in Figure 3.23, the secondary winding is short-circuited in order to obtain short-

circuit results. In Figure 3.24, voltage-current characteristics obtained by HBD-circuits are 

compared to those determined from FEM. By applying the normalised root mean square error 

(nRMSE) to the voltage-current characteristic generated by each method and comparing it to FEM 

results, Table 3.4 is derived to evaluate the accuracy of each method.  
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Figure 3.23 Circuit for short-circuit test, transformer with Y-Delta connection 

 

Y Δ

 

Figure 3.24 V-I characteristic while short-circuiting the secondary side 

 

Table 3.4 Accuracy analysis for HBD-circuits for short-circuit condition, FEM is the reference 

Model Hopkinson Buntenbach Duality 

nRMSE (%) 1.96 2.01 2.14 

 

Figure 3.25, Figure 3.26, and Figure 3.27 show the currents for the three phases of the primary 

winding when its excitation voltage is set to 1000 𝑉 and the secondary winding is short circuited. 

The HBD-circuit results are very similar to each other and to FEM.  
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Figure 3.25 Primary winding current in phase-a, during short-circuit 

 

Figure 3.26 Primary winding current in phase-b, during short-circuit 

 

Figure 3.27 Primary winding current in phase-c, during short-circuit 
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HBD-circuits, like FEM, can reflect the internal behavior of magnetic devices. As an example, as 

seen in Figure 3.26, the magnetic flux of a local spot which is located exactly in the middle of the 

left air gap between HV and LV windings of phase A is obtained by HBD-circuits and FEM. By 

applying the normalised root mean square error (nRMSE) to the current curves generated by each 

method and comparing it to FEM results, Table 3.5 is derived to evaluate the accuracy of each 

method in local representation of magnetic fluxes.  

Additionally, the HBD-circuits have an interesting feature that allows them to represent flux 

distributions in various places of the transformer and under various operating conditions. Figure 

3.27, Figure 3.28, and Figure 3.29 show flux distributions for short-circuit operating condition 

derived by Hopkinson, Buntenbach and duality, respectively. It is clear that HBD-circuits are able 

to provide a good resolution of flux paths in such a way that not only the general view of flux 

distributions, which in short-circuit conditions are confined more between two windings, but also 

various details, such as the flux distributions in the edges, have been successfully represented. 

 

 

Figure 3.28 Magnetic flux B regarding a point of gap between the windings of phase A 

 

Table 3.5  Accuracy analysis for HBD-circuits for local point representation, FEM is the 

reference 

Model Hopkinson Buntenbach Duality 

nRMSE (%) 2.08 2.16 2.21 



86 

 

 

B [T]

0.01

0.008

0.006

0.004

0.002

0

 

Figure 3.29 Flux distribution for short-circuit condition derived by Hopkinson Analogy 
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Figure 3.30 Flux distribution for short-circuit condition derived by Buntenbach Analogy 
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Figure 3.31 Flux distribution for short-circuit condition derived by Duality principle 

 

To demonstrate that the HBD-circuits can be used to study transformer electromagnetic transients, 

a simple example of energizing the transformer connected to an RL impedance (𝑅𝐿 = 10mΩ, 𝐿𝐿 =

10mΩ), and a voltage source with an amplitude of 14 kV (the circuit has been shown in Figure 

3.32) is investigated. The 3 phases are energized simultaneously. The inrush currents generated by 

HBD-circuits are compared to those from FEM. The phase-b inrush currents are shown in Figure 

3.33. The maximum relative error between HBD-circuits and FEM is shown in Table 3.6. 

 

 

Figure 3.32 Circuit for transformer energization, Y-Delta connection 
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Figure 3.33 Inrush currents, solved with HBD-circuits and FEM 

 

Table 3.6  Accuracy analysis for HBD-circuits in representing energization transients, FEM is the 

reference 

Model Hopkinson Buntenbach Duality 

Maximum relative error (%) 3.27 3.29 3.26 

 

Finally, the capacity of HBD-circuits to represent internal faults is demonstrated. To begin, only 

the phase in the middle column of the core is energized to validate the accuracy of HBD-circuits 

in representing the leakage flux paths during internal faults. Transformer windings are multi-

layered in this case, with ten layers in the high-voltage winding. Here, an internal fault with 

resistance 𝑅𝑓 between the second and third layers of the HV winding is investigated. The HV 

winding is connected at its nominal voltage in this case, whereas the LV winding is connected to a 

resistive load of 𝑅𝑙𝑜𝑎𝑑 = 1. 6 1 Ω which makes nominal current to flow through the transformer. 

The currents of the healthy and faulty sections of the HV winding, denoted by 𝐼𝑝 and 𝐼𝑓, as well as 

the current of the LV winding, denoted by 𝐼𝑠, are determined using HBD-circuits and FEM for 

various values of 𝑅𝑓. First for an example, where 𝑅𝑓 is set to   Ω, 𝐼𝑝, 𝐼𝑠, and 𝐼𝑓 are derived in Figure 

3.34, Figure 3.35, and Figure 3.36, respectively.  In addition, for various fault resistances, Figure 

3.37 illustrates the current of the faulty section of the HV winding derived using HBD-circuits and 
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FEM. Table 3.7 is used to evaluate the accuracy of each method in fault representation by deriving 

the root mean square (rms) value of the percent error between the fault currents derived by each 

HBD-circuits and the fault currents derived by FEM as the fault resistance is varied from 1 Ω to 

100 kΩ.  

 

 

Figure 3.34 Current of healthy part of HV winding during an inter-turn fault 

 

 

Figure 3.35 Current of faulty part of HV winding during an inter-turn fault 
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Figure 3.36 Current of secondary winding during an inter-turn fault 

 

 

Figure 3.37 Per unit current of the affected winding for different fault resistances 

The computational speed of HBD-circuits is a significant characteristic that should be compared to 

FEM. This was accomplished by running simulations for 32 ms with a 1 𝜇s time step and using a 

mesh size of 2848 for HBD-circuits and 3292 for FEM. As shown in Figure 3.38, HBD-circuits are 

about seven to eight times faster than FEM under linear operation conditions. Furthermore, it can 

be seen that HBD-circuits are approximately three times faster than FEM in saturated operation 

conditions with a significant degree of nonlinearity. HBD-circuits are computationally faster than 
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FEM because they solve equations that are simpler, as HBD-circuits consider the flux path in two 

directions instead of several directions as FEM does. Furthermore, unlike HBD-circuits, where the 

direction of the flux path is known prior to application, the direction of the flux path is one of the 

unknowns in FEM. Additionally, it can be observed that Hopkinson is the fastest HBD-circuit, 

which is primarily due to the fact that the number of ordinary differential equations (ODEs) in 

Hopkinson is significantly less than in Buntenbach and duality, owing to the use of resistors rather 

than capacitors and inductors. It is worth noting that the speed advantage of HBD-circuits over 

FEM is most noticeable when modelling transformers in large electric power systems. 

Table 3.7  Accuracy Analysis for HBD-circuits for representing faults, FEM is the reference 

Model Hopkinson Buntenbach Duality 

RMS (%) 1.87 1.94 2.08 

 

Figure 3.38 HBD-circuits vs. FEM in terms of computation time 

3.5 Conclusion 

In this chapter, HBD-circuits were improved to represent transformers. The creation of three HBD-

circuits for a simple single-phase transformer with two windings were first explained, and the 

number of meshes was set to a small, fixed number in this part. Then HBD-circuits for a three-

phase transformer and a customizable number of meshes were improved. It was described in detail 

how elements are defined, their values are determined, and how they are connected to each another. 

We have also shown how HBD-circuits can be used to simulate transformer internal faults. To 
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achieve this purpose, the faulty winding was split into distinct sections based on the type of fault, 

and each section was treated as a separate winding. In the case of the faulty transformer, it was also 

outlined how new element types are defined, their values are determined, and how they are 

connected to each another. Different cases were studied in order to verify the accuracy of HBD-

circuits in depicting both internal and external transformer behaviour. First, the models were tested 

for their ability to represent open-circuit and short-circuit transformer characteristics. They were 

then shown to be capable of accurately depicting magnetic flux distributions in transformers.  

HBD-circuits were used to replicate the energization of a transformer, demonstrating that they can 

present transformer behaviour not only in steady-state, but also in transient conditions. It was also 

shown that the proposed method can be utilized to represent internal faults in transformers in such 

a way that not only can leakage flux path be accurately represented, but also the effect of the core 

can be considered. The derived results were validated using FEM. The error of less than 4% in 

most situations. 
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 DOUBLE-2D DISTRIBUTED CIRCUIT-BASED 

METHODS  

4.1 Introduction to 3D methods 

4.1.1 Motivation 

In Chapter 2 and Chapter 3, distributed circuit-based methods were investigated in the 2D 

dimension, and they demonstrated good accuracy when compared to 2D FEM. However, when 

compared to 3D FEM, there are major differences in how they represent certain behaviours. Here, 

the results obtained using the Hopkinson technique, 2D FEM, and 3D FEM are compared for both 

the open-circuit and short-circuit for the transformer shown in Figure 3.5. For open-circuit, the 

circuit shown in Figure 3.18 is used and the curves shown in Figure 4.1 are derived. And for short-

circuit, the circuit shown in Figure 3.23 is used and the curves shown in Figure 4.2 are derived. 

Figure 4.1 shows that the open-circuit findings for Hopkinson 2D, FEM 2D, and FEM 3D are 

nearly identical, especially when the transformer does not go into deep saturation. This is mainly 

due to this fact that in open-circuit condition, the majority of the flux goes into the core, and due 

to the core-type structure of the transformer, the magnetic flux paths in the core can approximately 

been covered in 2D models (FEM 2D and Hopkinson 2D). The higher differences seen for deeply 

saturated operating conditions are due to 2D models' failure to represent fluxes straying into the air 

under these operating conditions. According to the short-circuit curves in Figure 4.2, Hopkinson 

2D results, which are substantially identical to FEM 2D results, are significantly different from 

FEM 3D results. Because the majority of the magnetic flux is restricted to the area between the HV 

and LV windings during the short-circuit, 2D models cannot account for this. It is observed that 

the 2D circuit-based methods proposed in Chapter 2 and Chapter 3  can consider only 2D effects 

of magnetic fields, even though the magnetic field in many magnetic components, such as 

transformers, is distributed in three dimensions (3D), and for some studies, it is vital to consider 

3D effects for these components, and as a result, 3D approaches should be applied. In this chapter, 

an approach is presented to improve proposed circuit-based methods in earlier chapters by taking 

into account 3D effects. Because all three HBD-circuits provide identical results and are equal, the 

proposed approach is only discussed for Hopkinson Analogy. 
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[mA]  

Figure 4.1 V-I characteristic for open-circuit achieved by Hopkinson 2D model, FEM 2D, and 

FEM 3D 

Y Δ

 

Figure 4.2 V-I characteristic while short-circuiting the secondary side achieved by Hopkinson 2D 

model, FEM 2D, and FEM 3D 

4.1.2 Double-2D concept  

In power system applications, 3D FEM has not been interested due to the following reasons: first, 

the geometry can be complex in some circumstances; second, they can be time demanding; and 

third, they require fast computer sources. [80] presented a method, dubbed "Double 2D," for 

calculating energy and losses in 3D structures using 2D FEM solvers while accounting for 3D 

effects. They planned to reduce simulation time while also simplifying problem definitions, which 

involve defining geometry, assigning boundary conditions, and the solving technique. They used 

2D FEM to solve two 2D problems (Double-2D) in order to account for field effects in 3D 
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structures. On EE cores, the "Double 2D" approach divides the magnetic component's windings 

into two parts. Because the magnetic field of each part is distributed in one different plane, 2D FEA 

solvers can be utilized to analyze it. Figure 4.3 shows how a 3D structure in (a) can be divided into 

two parts in (b), each of which can be implemented using double 2D simulations in (c). The 

assumption behind the Double-2D technique is that the field distribution in the part of the structure 

depicted on the left side of (b) is primarily stored in the core. However, the field distribution in the 

right side of (b) is mostly stored in the air. Because both planes illustrated in (c) are perpendicular, 

the dotted product of the fields distribution in each of them is zero, and therefore the interaction of 

both simulations is null. However, in this method, the influence of the conductor corners is ignored, 

which is a legitimate assumption in some instances. 

They showed that when the problem is only presented in a single 2D space and the axisymmetric 

condition is assumed, the accuracy is poor. The accuracy of the solution improved dramatically 

when they used a Double-2D technique to address the problem. They showed that the error caused 

by a single 2D axisymmetric simulation to compute the magnetic energy in an EE core is rather 

large (34 percent), but that the error produced by the "Double 2D" technique is little (1.6 percent). 

4.2 Explanation of the double 2D methodology 

In this study, circuit-based methods are applied for the first time to implement double 2D 

approaches. Single-phase and three-phase transformers are used as case studies for the proposed 

double-2D circuit-based approach. The main purpose of this method is to create a quasi-3D detailed 

model of the transformer in EMT-type software by utilizing existing elements in this software. 

Double 2D circuit-based approach divides the 3D structure into two 2D structures in two 2D 

perpendicular planes, each of which is modelled using circuit-based methods, similar to double-

2D FEM. Figure 4.4 shows two cross sections of these two 2D structures, one referred to as the 

inside transformer window (IW) and the other as the outside transformer window (OW). This 

method creates a circuit-based model for each of these main cross-sections. Creation of models is 

only explained for the right half of the cross-sections due to vertical symmetry. The two models 

are coupled after meshing, indexing, determining parameters, and establishing internal 

connections. 
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3D

 
(a) 

3D 3D

 
(b) 

2D 2D

 
(c) 

Figure 4.3 Study of transformer with 3D EE structure by means of double 2D. (a) 3D EE 

structure, (b) Division of the windings, (c) 2D simulations related to the divided parts 
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Figure 4.4 Cross sections of “Double-2D” model for a single-phase transformer (a) Inside 

window (IW). (b) Outside window (OW) 

 

4.2.1 Meshing 
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Figure 4.5 Cross-section of left half of the core on IW plane 
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Figure 4.6 Cross-section of left half of the core on OW plane (y-z) 

 

To begin, for each cross section, the space is subdivided into meshes based on the required 

accuracy. Figure 4.5 shows the mesh created for IW and Figure 4.6 shows the mesh created for 

OW. Then, the equivalent electric circuits are generated for each mesh. As noted in section 3.2.1, 

all elements of both IW and OW meshes are categorized into four general types (Type-A, Type-B, 

Type-C, and Type-D). The equivalent circuits of elements of IW cross section mesh are the circuits 

which have been shown in Figure 4.7. But for the elements of OW cross section mesh, the circuits 

shown in Figure 4.8 are derived. The meshed cross-sections in Figure 4.5 and Figure 4.6 have been 

divided into regions, each of which contains one of these element types. In Figure 4.5 and Figure 

4.6, parts 1 and 7 are made up of Type-A elements, parts 2 and 5 are made up of Type-B elements, 

parts 3, 4, and 6 are made up of Type-C elements, and parts 33, 44, and 66 are made up of Type-D 

elements.  
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Figure 4.7 Circuits based on Hopkinson Analogy for four cell types (A, B, C, and D) related to 

mesh of IW cross section shown in Figure 4.5 
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Figure 4.8 Circuits based on Hopkinson Analogy for four cell types (A, B, C, and D) related to 

mesh of OW cross section shown in Figure 4.6 

4.2.2 Determination of circuit parameters  

As it was mentioned in section 3.2.2, the circuit parameters for each element of both meshes are 

determined by applying distributed Ampere’s and Faraday's laws. The coupling factors 𝛽𝑖𝑗  and 

𝛾𝑖𝑗, which are related to the mutators of the HV and LV windings of the element in 𝑖𝑡ℎ column and 

𝑗𝑡ℎ row of the mesh presented in Figure 4.5, are given by (4.1) and (4.2) respectively. The coupling 

factors 𝛽𝑘𝑗  and 𝛾𝑘𝑗, which are related to the mutators of the HV and LV windings of the element 

in 𝑘𝑡ℎ column and 𝑗𝑡ℎ row of the mesh presented in Figure 4.6, are given by (4.3) and (4.4), 

respectively. Where 𝑁𝑝 and 𝑁𝑠 represent the number of turns in HV and LV winding, respectively. 

𝑊𝑝 and 𝑊𝑠 are the widths of the HV and LV windings, respectively, and 𝐻𝑝 and 𝐻𝑠 are the heights 
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of the HV and LV windings.  𝑖−1,  𝑖, 𝑦𝑗−1 and 𝑦𝑗 are the horizontal and vertical coordinates of the 

cell placed in 𝑖𝑡ℎ column and 𝑗𝑡ℎ row of the mesh presented in Figure 4.5. 𝑧𝑘−1, 𝑧𝑘, 𝑦𝑗−1, and 𝑦𝑗 

are the horizontal and vertical coordinates of the cell placed in 𝑘𝑡ℎ column and 𝑗𝑡ℎ row of the mesh 

presented in Figure 4.6.  𝑋2, 𝑋3, 𝑌1, and 𝑌2 are the horizontal and vertical coordinates of the HV 

winding in mesh of Figure 4.5 and 𝑋0, 𝑋1, 𝑌0 and 𝑌3 are the horizontal and vertical coordinates of 

the LV winding in mesh of Figure 4.5. 𝑍2, 𝑍3, 𝑌1 and 𝑌2 are the horizontal and vertical coordinates 

of the HV winding in mesh of Figure 4.6 and 𝑋0, 𝑋1, 𝑌0 and 𝑌3 are the horizontal and vertical 

coordinates of the LV winding in mesh of Figure 4.6. 

𝛽𝑖𝑗 =

{
 
 

 
 
𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑝𝐻𝑝
(
 𝑖−1 +  𝑖

2
− 𝑋0)  𝑖−1 ≥ 𝑋2,  𝑖 ≤ 𝑋3, 𝑦𝑗−1 ≥ 𝑌1, 𝑦𝑗 ≤ 𝑌2 

𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝐻𝑝
                               𝑖−1 ≥ 0,   𝑖 ≤ 𝑋2,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2

 (4.1) 

𝛾𝑖𝑗 =

{
 
 

 
 𝑁𝑠(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑠𝐻𝑠
(
 𝑖−1 +  𝑖

2
− 𝑋2)  𝑖−1 ≥ 𝑋0,   𝑖 ≤ 𝑋1,  𝑦𝑗−1 ≥ 𝑌0,  𝑦𝑗 ≤ 𝑌3 

𝑁𝑠(𝑦𝑗 − 𝑦𝑗−1)

2𝐻𝑠
                               𝑖−1 ≥ 0,   𝑖 ≤ 𝑋0,  𝑦𝑗−1 ≥ 𝑌0,  𝑦𝑗 ≤ 𝑌3

 (4.2) 

𝛽𝑘𝑗 =

{
 
 

 
 
𝑁𝑝(𝑧𝑘 − 𝑧𝑘−1)

2𝑊𝑝𝐻𝑝
(
𝑧𝑘−1 + 𝑧𝑘

2
− 𝑍0) 𝑧𝑘−1 ≥ 𝑍2, 𝑧𝑘 ≤ 𝑍3, 𝑦𝑗−1 ≥ 𝑌1, 𝑦𝑗 ≤ 𝑌2 

𝑁𝑝(𝑦𝑗 − 𝑦𝑗−1)

2𝐻𝑝
                              𝑧𝑘−1 ≥ 0,  𝑧𝑘 ≤ 𝑍2,  𝑦𝑗−1 ≥ 𝑌1,  𝑦𝑗 ≤ 𝑌2

 (4.3) 

𝛾𝑘𝑗 =

{
 
 

 
 𝑁𝑠(𝑦𝑗 − 𝑦𝑗−1)

2𝑊𝑠𝐻𝑠
(
𝑧𝑘−1 + 𝑧𝑘

2
− 𝑍2) 𝑧𝑘−1 ≥ 𝑍0,  𝑧𝑘 ≤ 𝑍1,  𝑦𝑗−1 ≥ 𝑌0,  𝑦𝑗 ≤ 𝑌3 

𝑁𝑠(𝑦𝑗 − 𝑦𝑗−1)

2𝐻𝑠
                              𝑧𝑘−1 ≥ 0,  𝑧𝑘 ≤ 𝑍0,  𝑦𝑗−1 ≥ 𝑌0,  𝑦𝑗 ≤ 𝑌3

 (4.4) 

The horizontal reluctances (𝑅𝑟𝑖𝑗
  and 𝑅𝑙𝑖𝑗

 ) and vertical reluctances (𝑅𝑢𝑖𝑗
  and 𝑅𝑑𝑖𝑗

 ) of elements 

forming mesh of Figure 4.5 are calculated by  

𝑅𝑟𝑖𝑗
 = 𝑅𝑙𝑖𝑗

  =  
𝑙

𝜇 𝑆
=

 𝑖 −  𝑖−1
2

𝜇0(𝑦𝑗 − 𝑦𝑗−1) ∗ 𝐷𝑖𝑗
 (𝐼𝑊)

   (4.5) 
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𝑅𝑢𝑖𝑗
 = 𝑅𝑑𝑖𝑗

  =  
𝑙

𝜇0𝑆
=

𝑦𝑗 − 𝑦𝑗−1
2

𝜇 ( 𝑖 −  𝑖−1) ∗ 𝐷𝑖𝑗
 (𝐼𝑊)

    (4.6) 

 

Core Windings 

        
( )        

( )

 

 

 

     

     

    

2
 

 

Figure 4.9 The depths of the magnetic flux paths for IW and OW models (𝑑𝑒𝑝𝑡ℎ𝑖𝑗
(𝐼𝑊)

 , 

𝑑𝑒𝑝𝑡ℎ𝑖𝑗
(𝑂𝑊)

) 

 

where 𝜇 is the magnetic permeability of the mesh material, and if the material is air or copper, it 

equals 𝜇0, but if the material is iron (core), it equals 𝜇𝑝, which is the slope of the 𝑝𝑡ℎ segment of 

the piecewise linear function describing the material's magnetising curve.  𝑖−1,  𝑖, 𝑦𝑗−1 and 𝑦𝑗 are 

the horizontal and vertical coordinates of the cell placed in 𝑖𝑡ℎ column and 𝑗𝑡ℎ row of the mesh 

presented in Figure 4.5 and 𝐷𝑖𝑗
 (𝐼𝑊)

 
denotes the depth of the flux path represented by that cell.  The 

depth of each mesh 𝐷𝑖𝑗
 (𝐼𝑊)

 
 is determined using the schematic presented in Figure 4.9, which shows 

the depth of each cross section. 

𝐷𝑖𝑗
(𝐼𝑊) =

𝑑𝑒𝑝𝑡ℎ 
(𝐼𝑊)

2
=
2 × 𝑎𝑙𝑒𝑔

2
= 𝑎𝑙𝑒𝑔 (4.7) 

where 𝑑𝑒𝑝𝑡ℎ(𝐼𝑊) is the length of the magnetic flux path for IW model which has been shown in 

Figure 4.9. 𝑑𝑒𝑝𝑡ℎ(𝐼𝑊) for all meshes equals 2 × 𝑎𝑙𝑒𝑔, where 𝑎𝑙𝑒𝑔 is the z-direction depth of the 
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core. The horizontal reluctances (𝑅𝑟𝑘𝑗
  and 𝑅𝑙𝑘𝑗

 ) and vertical reluctances (𝑅𝑢𝑘𝑗
  and 𝑅𝑑𝑘𝑗

 ) of 

elements forming mesh of Figure 4.6 are calculated by  

𝑅𝑟𝑘𝑗
 = 𝑅𝑙𝑘𝑗

  =  
𝑙

𝜇 𝑆
=

𝑧𝑘 − 𝑧𝑘−1
2

𝜇 (𝑦𝑗 − 𝑦𝑗−1) ∗ 𝐷𝑘𝑗
 (𝑂𝑊)

   (4.8) 

𝑅𝑢𝑘𝑗
 = 𝑅𝑑𝑘𝑗

  =  
𝑙

𝜇0𝑆
=

𝑦𝑗 − 𝑦𝑗−1
2

𝜇 (𝑧𝑘 − 𝑧𝑘−1) ∗ 𝐷𝑘𝑗
 (𝑂𝑊)

    (4.9) 

where 𝜇 is the magnetic permeability of the mesh material. 𝑧𝑘−1, 𝑧𝑘, 𝑦𝑗−1 and 𝑦𝑗 are the horizontal 

and vertical coordinates of the cell placed in 𝑘𝑡ℎ column and 𝑗𝑡ℎ row of the mesh presented in 

Figure 4.6 and 𝐷𝑘𝑗
 (𝑂𝑊)

 
denotes the depth of the flux path represented by that cell.  The depth of 

each mesh 𝐷𝑘𝑗
 (𝑂𝑊)

 
 is determined using the schematic presented in Figure 4.9. 

𝐷𝑘𝑗
(𝑂𝑊) =

𝑑𝑒𝑝𝑡ℎ𝑘𝑗
(𝑂𝑊)

2
=

{
 
 

 
 

2𝑏𝑙𝑒𝑔

2
= 𝑏𝑙𝑒𝑔  

2𝑏𝑙𝑒𝑔 +  (
𝑧𝑘 + 𝑧𝑘−1

2 −
𝑎𝑙𝑒𝑔
2 )

2
 

 

𝑧𝑘−1 ≥ 0, 𝑧𝑘 ≤ 𝑎𝑙𝑒𝑔/2 

(4.10) 

𝑧𝑘−1 ≥ 𝑎𝑙𝑒𝑔/2 

where 𝑑𝑒𝑝𝑡ℎ𝑘𝑗
(𝑂𝑊)

 is the length of the magnetic flux path for OW model and  𝑏𝑙𝑒𝑔 is the width of 

the middle column of the transformer which have been shown in Figure 4.9. 

4.2.3 Connection of model elements  

Following the derivation and assignment of parameters for each element of both the OW and 

IW models, the elements of each model must now be connected internally before being coupled 

to the other model and external circuit. Internal connections between IW mesh elements are 

explained first, then internal connections between elements of the OW mesh.  

4.2.3.1 Connection of IW model elements  

As it can be observed in the Hopkinson model of the IW element presented in Figure 4.7, nodes 

𝑛𝑖𝑗
(1)

, 𝑛𝑖𝑗
(2)

, 𝑛𝑖𝑗
(3)

, and 𝑛𝑖𝑗
(4)

 are associated to the magnetic part of the element placed in the 𝑖𝑡ℎ column 
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and 𝑗𝑡ℎ row of mesh depicted in Figure 4.5. In  Algorithm 4.1, it has been shown how magnetic 

parts of the IW elements are connected through these nodes.  

 

Algorithm 4.1 Internal Magnetic Connections for IW elements  

 for 𝑗∗
 
←1  to 𝑁∗∗ do 

  for 𝑖∗∗∗
 
←1 to (𝑀∗∗∗∗) do 

   if  𝑗 < 𝑁 & 𝑖 < 𝑀  
    connect (𝑛𝑖𝑗

(2), 𝑛(𝑖+1)𝑗
(4)

) 

connect (𝑛𝑖𝑗
(3)
, 𝑛𝑖(𝑗+1)
(1)

) 

   elseif  𝑗 = 𝑁 & 𝑖 < 𝑀  
    connect (𝑛𝑖𝑗

(2), 𝑛(𝑖+1)𝑗
(4)

) 

   elseif  𝑗 <  𝑁 & 𝑖 = 𝑀  
    connect (𝑛𝑖𝑗

(3), 𝑛𝑖(𝑗+1)
(1)

) 

   End 

  End 

 end   

*:  𝑗 is the row number of the cell. 

**:  𝑁 is the total number of rows in Figure 4.5. 

***:  𝑖 is the column number of the cell. 

****: 𝑀 is total number of columns in Figure 

4.5. 

 

To build internal electrical connections between the elements of the IW mesh shown in Figure 4.5, 

Algorithm 4.2 and Algorithm 4.3 are used. Nodes 𝑝𝑖𝑗
(1)

, 𝑝𝑖𝑗
(2)

, 𝑝𝑖𝑗
(3)

, and 𝑝𝑖𝑗
(4)

 are related to the HV 

winding of the element in the 𝑖𝑡ℎ column and 𝑗𝑡ℎ row of Figure 4.5, and they are connected using 

the approach provided in Algorithm 4.2. The approach given in Algorithm 4.3 is used to connect 

the nodes 𝑠𝑖𝑗
(1)

, 𝑠𝑖𝑗
(2)

, 𝑠𝑖𝑗
(3)

, and 𝑠𝑖𝑗
(4)

  that are related to the LV winding of those elements. 
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Algorithm 4.2 Electric connections for HV windings in IW model 

for 𝑗
 
←𝑗2

∗  to 𝑗3
∗∗ do 

 for 𝑖
 
←(−𝑖2

 )∗∗∗  to (𝑖2
∗∗∗∗ − 1) do 

  connect (𝑝𝑖𝑗
(2), 𝑝(𝑖+1)𝑗

(1)
) 

connect (𝑝𝑖𝑗
(4), 𝑝(𝑖+1)𝑗

(3)
) 

 end  

 connect (𝑝(𝑖2)∗∗∗∗𝑗
(2) , 𝑝(−𝑖2)𝑗

(3)
) 

 if  𝑗 > 𝑗2 then 

  connect (𝑝(𝑖2)𝑗
(4) , 𝑝(−𝑖2)(𝑗−1)

(1)
) 

 end  

end   

*:  𝑗2 is the row number of the lowest cells related to HV winding in Figure 4.5. 

**:  𝑗3 is the row number of the highest cells related to HV winding in Figure 4.5. 

***: −𝑖2 is the column number of the leftmost cells related to left part of HV winding which due 

to the symmetry has not been shown in Figure 4.5. 

****:𝑖2 is the column number of the rightmost cells related to HV winding in Figure 4.5. 
 

Algorithm 4.3. Electric connections for LV winding in IW model 

for 𝑗
 
←𝑗1

∗  to 𝑗4
∗∗ do 

for 𝑖
 
←(−𝑖1)

∗∗∗ to (𝑖1
∗∗∗∗ − 1) do 

 connect (𝑠𝑖𝑗
(2), 𝑠(𝑖+1)𝑗

(1)
) 

connect (𝑠𝑖𝑗
(4), 𝑠(𝑖+1)𝑗

(3)
) 

end  

connect (𝑠(𝑖1)∗∗∗∗𝑗
(2) , 𝑠(−𝑖1)𝑗

(3)
) 

if  𝑗 > 𝑗1 then 

 connect (𝑠(𝑖1)𝑗
(4) , 𝑠(−𝑖1)(𝑗−1)

(1)
) 

end  

*:  𝑗1 is the row number of the lowest cells related to LV winding in Figure 4.5. 

**:  𝑗4 is the row number of the highest cells related to LV winding in Figure 4.5. 

***: −𝑖1 is the column number of the leftmost cells related to left part of LV winding which due 

to the symmetry has not been shown in Figure 4.5. 

****:𝑖1 is the column number of the rightmost cells related to LV winding in Figure 4.5. 

4.2.3.2 Connection of IW model elements  

The magnetic parts of the OW elements are connected in Algorithm 4.4 through nodes 𝑛𝑘𝑗
(1)

, 𝑛𝑘𝑗
(2)

, 

𝑛𝑘𝑗
(3)

, and 𝑛𝑘𝑗
(4)

, which are associated with the magnetic component of the element in the 𝑘𝑡ℎ column 

and 𝑗𝑡ℎ row of the mesh illustrated in Figure 4.6. 
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Algorithm 4.4 Internal Magnetic Connections for OW elements  

 for 𝑗∗
 
←1  to 𝑁∗∗ do 

  for 𝑘∗∗∗
 
←1 to (𝑃∗∗∗∗) do 

   if  𝑗 < 𝑁 & 𝑘 < 𝑃  
    connect (𝑛𝑘𝑗

(2), 𝑛(𝑘+1)𝑗
(4)

) 

connect (𝑛𝑘𝑗
(3), 𝑛𝑘(𝑗+1)

(1)
) 

   elseif  𝑗 = 𝑁 & 𝑘 < 𝑃  
    connect (𝑛𝑘𝑗

(2), 𝑛(𝑘+1)𝑗
(4)

) 

   elseif  𝑗 <  𝑁 & 𝑘 = 𝑃  
    connect (𝑛𝑘𝑗

(3)
, 𝑛𝑘(𝑗+1)
(1)

) 

   end 

  End 

 end   

*:  𝑗 is the row number of the cell. 

**:  𝑁 is the total number of rows in Figure 4.6. 

***:  𝑘 is the column number of the cell. 

****: 𝑀 is total number of columns in 

Figure 4.6. 

 

Algorithm 4.5 and Algorithm 4.6 are used to establish internal electrical connections between the 

parts of the OW mesh depicted in Figure 4.6. The connections between parts related to HV winding 

of the elements in Figure 4.6 is connected using the approach described in Algorithm 4.5. Nodes 

𝑝𝑘𝑗
(1)

, 𝑝𝑘𝑗
(2)

, 𝑝𝑘𝑗
(3)

, and 𝑝𝑘𝑗
(4)

 shown in elements of Figure 4.8 are associated to the HV winding of the 

element in the 𝑘𝑡ℎ column and 𝑗𝑡ℎ row of Figure 4.6. The nodes 𝑠𝑘𝑗
(1)

, 𝑠𝑘𝑗
(2)

, 𝑠𝑘𝑗
(3)

, and 𝑠𝑘𝑗
(4)

 indicated 

in elements of Figure 4.8 that are related to the LV winding of those elements are connected using 

the approach described in Algorithm 4.6. 
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Algorithm 4.5 Electric connections for HV windings in OW model 

for 𝑗
 
←𝑗2

∗  to 𝑗3
∗∗ do 

 for 𝑘
 
←(−𝑘2

 )∗∗∗  to (𝑘2
∗∗∗∗ − 1) do 

  connect (𝑝𝑘𝑗
(2), 𝑝(𝑘+1)𝑗

(1)
) 

connect (𝑝𝑘𝑗
(4), 𝑝(𝑘+1)𝑗

(3)
) 

 end  

 connect (𝑝(𝑘2)∗∗∗∗𝑗
(2) , 𝑝(−𝑘2)𝑗

(3)
) 

 if  𝑗 > 𝑗2 then 

  connect (𝑝(𝑘2)𝑗
(4) , 𝑝(−𝑘2)(𝑗−1)

(1)
) 

 end  

end   

*:  𝑗2 is the row number of the lowest cells related to HV winding in Figure 4.6. 

**:  𝑗3 is the row number of the highest cells related to HV winding in Figure 4.6. 

***: −𝑘2 is the column number of the leftmost cells related to left part of HV winding which 

due to the symmetry has not been shown in Figure 4.6. 

****:𝑘2 is the column number of the rightmost cells related to HV winding in Figure 4.6. 

Algorithm 4.6 Electric connections for LV winding in OW model 

for 𝑗
 
←𝑗1

∗  to 𝑗4
∗∗ do 

for 𝑘
 
←(−𝑘1)

∗∗∗ to (𝑘1
∗∗∗∗ − 1) do 

 connect (𝑠𝑘𝑗
(2)
, 𝑠(𝑘+1)𝑗
(1)

) 

connect (𝑠𝑘𝑗
(4), 𝑠(𝑘+1)𝑗

(3)
) 

end  

connect (𝑠(𝑘1)∗∗∗∗𝑗
(2) , 𝑠(−𝑘1)𝑗

(3)
) 

if  𝑗 > 𝑗1 then 

 connect (𝑠(𝑘1)𝑗
(4) , 𝑠(−𝑘1)(𝑗−1)

(1)
) 

end  

*:  𝑗1 is the row number of the lowest cells related to LV winding in Figure 4.6. 

**:  𝑗4 is the row number of the highest cells related to LV winding in Figure 4.6. 

***: −𝑘1 is the column number of the leftmost cells related to left part of LV winding which 

due to the symmetry has not been shown in Figure 4.6. 

****:𝑘1 is the column number of the rightmost cells related to LV winding in Figure 4.6. 

4.2.3.3 Connection of IW model and OW model 

Both IW and OW models should be connected to each other after their internal connections have 

been established. In the Double-2D approach, linearity in the conductors is assumed to be 

applicable. Because the two portions of the conductors that are being studied in each simulation 

are perpendicular to one another, the dotted product of the fields that are being generated by these 
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portions is zero, and as a result, there is no interaction between the simulations. Thus, both portions 

of each winding are linearly connected. In fact, IW portion of HV winding and IW portion of LV 

winding have a linear relationship with OW portion of HV winding and OW portion of LV 

winding. Furthermore, the following relationships exist between the circuit parameters (voltages 

and currents) of the two portions of each winding. 

𝐼𝐻𝑉
 = IH𝑉

(IW) = IH𝑉
(OW)

 (4.11) 

𝐼𝐿𝑉
 = I𝐿V

(IW) = I𝐿V
(OW)

 (4.12) 

𝑉𝐻𝑉
 = 𝑉𝐻𝑉

(𝐼𝑊) + 𝑉𝐻𝑉
(𝑂𝑊)

 (4.13) 

𝑉𝐿𝑉
 = 𝑉𝐿𝑉

(𝐼𝑊) + 𝑉𝐿𝑉
(𝑂𝑊)

 (4.14) 

where 𝐼𝐻𝑉
 , 𝐼𝐻𝑉

(𝐼𝑊)
, and 𝐼𝐻𝑉

(𝑂𝑊)
denote currents passing through the HV winding and its IW and OW 

portions, respectively, while 𝐼𝐿𝑉
 , 𝐼𝐿𝑉

(𝐼𝑊)
, and 𝐼𝐿𝑉

(𝑂𝑊)
denote currents passing through the LV winding 

and its IW and OW portions, respectively. And 𝑉𝐻𝑉
 , 𝑉𝐻𝑉

(𝐼𝑊)
, and 𝑉𝐻𝑉

(𝑂𝑊)
 denote voltages across the 

HV winding and its IW and OW portions, respectively, whereas 𝑉𝐿𝑉
 , 𝑉𝐿𝑉

(𝐼𝑊)
, and 𝑉𝐿𝑉

(𝑂𝑊)
 denote 

voltages across the LV winding and its IW and OW portions, respectively.  

Based on the linear relationship between the simulations of two planes and the relations (4.11)-

(4.14), it can be concluded that IW and OW models are connected to one another in such a way 

that their primary sides are connected in series, as well as their secondary sides, as seen in Figure 

4.10. The HV winding parts of both models are connected by connecting nodes 𝑝𝑖2𝑗2
(4)

 and 𝑝(−𝑘2)𝑗3
(1)

 

which are related to the element placed in the 𝑖2
𝑡ℎ column and 𝑗2

𝑡ℎ row of the IW mesh illustrated in 

Figure 4.5, and the element placed in the −𝑘2
𝑡ℎ column and 𝑗3

𝑡ℎ row of the OW mesh, which due to 

symmetry only its symmetric element has been shown in Figure 4.6, respectively. The LV winding 

parts of both models are connected by connecting nodes 𝑠𝑖1𝑗1
(4)

 and 𝑠(−𝑘1)𝑗4
(1)

 which are associated to 

the element in the 𝑖1
𝑡ℎ column and 𝑗1

𝑡ℎ row of the IW mesh shown in Figure 4.5, and the element in 

the −𝑘1
𝑡ℎ column and 𝑗4

𝑡ℎ row of the OW mesh, which is not displayed in Figure 4.6 due to 

symmetry. In the circuit shown in Figure 4.10, the HV side of the transformer is connected to a 

voltage source 𝑈𝑖𝑛, while the LV side is connected to a resistive load 𝑅𝑙𝑜𝑎𝑑. To connect the HV 
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side of the modeled transformer to the voltage source 𝑈𝑖𝑛, the positive node of 𝑈𝑖𝑛 is connected to 

the node 𝑝−𝑖2𝑗3
(1)

, which is related to the element placed in the (−𝑖2)
𝑡ℎ column and 𝑗3

𝑡ℎ row of the 

IW mesh, and the negative node of 𝑈𝑖𝑛 in is connected to the node 𝑝𝑘2𝑗2
(4)

, which is related to the 

element placed in 𝑘2
𝑡ℎ column and 𝑗2

𝑡ℎ row of the OW mesh. To connect the LV side of the modeled 

transformer to 𝑅𝑙𝑜𝑎𝑑, the positive node of 𝑅𝑙𝑜𝑎𝑑 is connected to the node 𝑠−𝑖1𝑗4
(1)

, which is related to 

the element placed in the (−𝑖1)
𝑡ℎ column and 𝑗4

𝑡ℎ row of the IW mesh, and the negative node of 

𝑅𝑙𝑜𝑎𝑑 is connected to the node 𝑠𝑘1𝑗1
(4)

, which is related to the element placed in 𝑘1
𝑡ℎ column and 𝑗1

𝑡ℎ 

row of the OW mesh. 

 

IW Model

OW Model

HV1  

HV2  

LV1  

LV2  

HV1  

HV2  

LV1  

LV2  

          

  1 1

(4)  

   1 4

(1)  

  2  2

(4)  

   2 3

(1)  

  2  2

(4)  

 (  2 ) 3

(1)  

  1 1

(4)  

  (  1 ) 4

(1)  

+ +

 

Figure 4.10 Diagram of double 2D model, electrical connections 

 

4.3 Leakage inductance calculation by double-2D circuit-based 

method 

As it was observed in Figure 4.1 and Figure 4.2, Single-2D circuit-based approaches are nearly 

accurate for representing open-circuit characteristics, but they are not accurate when it comes to 

short-circuit characteristics. Leakage inductances play important role in the behaviour of 

transformers under short-circuit conditions, this part explains how to derive leakage inductances 

using proposed double-2D approach.   
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The circuit shown in Figure 4.11, in which the HV side of the transformer is energized, and the 

secondary side is short circuited, is used to compute leakage inductance seen from the HV side of 

the transformer.  

IW Model

OW Model

HV1  

HV2  

LV1  

LV2  

HV1  

HV2  

LV1  

LV2  

    

  1 1

(4)  

   1 4
(1)  

  2 2

(4)  

   2 3
(1)  

  2 2
(4)  

 (  2) 3

(1)  

  1 1
(4)  

  (  1) 4

(1)  

+

 

Figure 4.11 Diagram of double 2D model to calculate leakage inductance observed from HV side 

 

4.3.1 Comparison of analytical and double-2D circuit-based models of 

transformer leakage inductance  

4.3.1.1 General view 

Numerical methods and analytical approaches can all be used to compute the transformer leakage 

inductance. Despite the fact that numerical methods such as the finite element method (FEM) are 

the most accurate ways for estimating leakage inductances, analytical approaches are preferred for 

calculating leakage inductances since numerical methods are complex and computationally 

expensive. There are a variety of analytical approaches for calculating leakage inductances, the 

majority of which are constrained to specified geometries and rely on simplifying assumptions, 

making them neither adaptive nor accurate enough for particular applications as we are going to 

describe hereafter. 

Mostly, analytical approaches which are mostly considered as 2D methods have been utilised to 

compute leakage inductances, which are typically done in two steps: first, the leakage inductance 

per unit length is computed in a 2D transformer cross section, and then the result is scaled by the 
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mean length of the turn. Recently, various attempts have been made in the literature [81-85] to 

enhance analytical approaches for accounting for 3d effects when calculating leakage inductance. 

To accomplish this, a technique known as Double-2D [81-85] was employed, in which two cross 

sections, one inside the transformer window (IW) and the other outside the transformer window 

(OW), were used in the calculations.  

4.3.1.2 Definition of problem of calculating leakage inductances by analytical methods 

  ,  

 1  

  ,  

  ,   1     2    ,  

 2  

   

 

   

  

    

     

    

2
 

    

Axis of Symmetry 

 
  

z

 

Figure 4.12 Definition of geometrical parameters of single-phase transformer [78] 

To begin, the analytical methods for calculating leakage inductance for inside-window cross-

sections are described, as well as their assumptions and restrictions. Figure 4.12 shows a 

representation of a transformer for which leakage inductances will been estimated using various 

approaches. To measure the leakage inductance between two windings, magnetomotive forces of 

equal magnitude but opposing direction must be applied to each. There will be no flux linking the 

two windings in this case; instead, just leaking flux will exist. In practice, this is accomplished by 

energizing one transformer winding while short-circuiting the other. To compute leakage 

inductance from geometrical data, the resulting magnetic field �⃗�  during short-circuit must be 

computed. The magnetic field outside the core during short-circuit is given by 

▽⃗⃗⃗ × �⃗� = µ0𝐽  (4.15) 



112 

 

where 𝜇0 is the permeability of vacuum. Because �⃗�  is a solenoidal vector field, it can be represented 

as the curl of another vector field �⃗� =▽⃗⃗⃗ × 𝐴 , which 𝐴  is magnetic vector potential. Using Coulomb 

gauge, (4.15) is transformed into a new relationship known as Poisson's equation 

▽⃗⃗⃗ 𝟐 𝐴 = −µ0𝐽  (4.16) 

Because short-circuits are low-frequency transients, the current density 𝐽 can be considered to be 

uniform throughout each winding's cross-section. Furthermore, each winding is treated as if it were 

solid, with only one equivalent turn, and the current density 𝐽 is calculated by 

𝐼 = ∬ 𝐽 
 

𝑆
. 𝑑𝑠 = 𝐽𝑆, (4.17) 

where 𝑆 is the cross-sectional area of the conducting surface.  

The magnetomotive forces of two windings in a transformer short-circuit are almost equal in size 

and opposite in direction, meaning that the magnetomotive force required to magnetise the core is 

negligible. In other words, the permeability of the core may be assumed to be infinite. The 

tangential component of flux and the normal component of the magnetic vector potential are both 

zero when the permeability of the core is infinite. As a result, the homogeneous Neumann boundary 

condition is applied to solve the problem. 

𝜕𝐴𝑧
𝜕�⃗� 

= 0 on Λ (4.18) 

where �⃗�  is the normal vector of the boundary Λ. 
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Figure 4.13 Definition of geometrical parameters of single-phase transformer 

 

When all of the aforementioned considerations are taken into account, the problem becomes the 

one presented in Figure 4.13. The HV and LV coils carry positive and negative currents in the z 

direction, with densities of 𝐽𝑧
+ and 𝐽𝑧

−, respectively. Also, the magnetic vector potential will be in 

the z direction, due to the uniform permeability in the transformer window. The analytical 

approaches are aimed at determining the magnetic vector potential which is then used to determine 

the magnetic energy per length according to inductances. 

𝑊′
𝑚𝑎𝑔 =

1

2
∬𝐴𝑧 . 𝐽𝑧𝑑𝐴

 

𝐴

 (4.19) 

After that, using the computed magnetic energy, the leakage inductance per unit length is calculated 

according to 

𝐿′𝑖𝑛 =
2𝑊𝑚𝑎𝑔

′

𝐼2
 (4.20) 

4.3.1.3 One-dimensional methods 

The classical approaches are one-dimensional approaches, meaning they assume that leakage flux 

is only a function of one space coordinate and not a function of the second for example in Figure 
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4.12, it is only supposed that leakage flux is a function of x coordinate and does not depend on the 

𝑦 coordinate. The most well-known classical formula for calculating leakage inductance, derived 

from a one-dimensional assumption known as Kapp [86], is 

𝐿𝐾𝑎𝑝𝑝
 = 𝜇0𝑁

2 (𝑑 +
𝑎1 + 𝑎2
 

)
1

ℎ
 (4.21) 

where 𝐿𝐾𝑎𝑝𝑝
  is the leakage inductances per unit length. 𝑎1, 𝑎2, and 𝑑 represent the widths of the 

primary winding, secondary winding, and gap between them. ℎ represents the average height of 

the primary and secondary windings (ℎ = (ℎ1 + ℎ2)/2), and 𝑁 represents the number of excited 

windings.  One-dimensional approaches ignore fringing effects and are only used when the distance 

between the windings and the yokes is small, and the heights of both windings are equal.  

4.3.1.4 Two-dimensional methods 

Two-dimensional approaches, which consider the leakage flux functions of two space coordinates 

  and 𝑦, are the more accurate ways to calculate leakage inductances.  

The Rogowski approach [87] is the most widely used 2D method, and it yields an equation that is 

similar to Kapp's equation (4.21), but with an additional correction factor 𝐾 to account for fringing 

effects at the top and bottom of the windings.  

𝐿Rogowski 
 = 𝐾𝐿𝐾𝑎𝑝𝑝

  (4.22) 

𝐾 = 1 −
1 − 𝑒−𝑘ℎ

𝑘ℎ
[1

−
1

2
𝑒−2𝑘𝑑𝑦,𝑏(1−𝑒

−𝑘ℎ) × (1 + 𝑒−𝑘(𝑑𝑦,𝑡−𝑑𝑦,𝑏) − 𝑒−𝑘(2𝑑𝑦,𝑏+2𝑑𝑦,𝑡+ℎ))] 

𝑘 =
𝜋

𝑎1 + 𝑑 + 𝑎2
 

(4.23) 

where 𝑑𝑦,𝑏 and  𝑑𝑦,𝑡 are the heights of the gaps between the primary winding and the upper yoke 

and lower yoke, as depicted in Figure 4.12, and all other parameters are those defined in (4.21). 

Even though this method is more accurate than Kapp method, this method is only applicable in 

cases in which the windings are of equal height and there are no gaps between the windings and 

the legs, as well as cases in which the distance between the windings is constant and the windings 

are of constant width. 
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Roth [88, 89] proposed a 2D method for calculating leakage inductance, in which the current 

density of each single winding is expressed using a double Fourier series function. The method is 

known as double space harmonics because the double Fourier series is dependent on both the   

and 𝑦 coordinates. The magnetic vector potential for each winding 𝐴𝑧,𝑘( , 𝑦) is then determined 

using Poisson's equation as a double Fourier series function, which can then be summed for all 

windings (is the total number of windings has been denoted by 𝑁) to yield the total magnetic vector 

potential 𝐴𝑧( , 𝑦). 

𝐴𝑧( , 𝑦) = ∑𝐴𝑧,𝑘( , 𝑦)

𝑁

𝑘=1

 (4.24) 

Although this approach, unlike the Rogowski method, can be used for windings of different heights 

and has no spatial limits, it is assumed that the permeability of the core is infinite 𝜇𝑟,𝑐 = ∞. In 

fact, Roth's method can’t solve problems involving regions that are confined by materials having 

finite permeability. 

Margueron [72, 73] proposed and developed a more accurate approach that works by superposing 

magnetic potentials from single windings. To impose the boundary conditions, this method uses 

the method of images to mirror the windings one by one. This is the only analytical method that 

takes into account the finite permeability of the core. Figure 4.14 shows how the method of images 

is applied to the IW cross section of the window shown in Figure 4.13. Four image layers result in 

an infinite number of image windings; however, only a limited number of layers are considered, 

with their numbers set by the required accuracy and computation time constraints. To account for 

the permeability of the plane, the current carried by the image conductor in each layer is multiplied 

by 𝑘𝑛, where 𝑘 is the image coefficient, which is equal to 
𝜇𝑟,𝑐−1

𝜇𝑟,𝑐+1
, and 𝑛 denotes the image layer 

number. The effect of the core in estimating leakage inductance becomes crucial when the 

permeability of the core is low.  
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Figure 4.14 Transformer window with two winding layers: the original and an image one 

 

4.3.1.5 Single-2D and double-2D analytical models  

The leakage inductance per unit length of IW cross section 𝐿𝑖𝑛
′  obtained by analytical methods is 

multiplied by the mean turn length  𝑀𝑇𝐿 to obtain the total leakage inductance using the traditional 

Single-2D model according to  

𝐿𝑆𝑖𝑛𝑔𝑙𝑤−2𝐷 = 𝐿𝑖𝑛
′ . 𝑀𝑇𝐿 (4.25) 

However, the traditional Single-2D model for calculating leakage inductances is not accurate since 

it applies the axisymmetric assumption to the EE cores which is not correct for this type of cores. 

As a result, Double-2D approaches have been proven to be more accurate in the literature, in which 

the transformer is investigated in two cross-sections: IW and OW.  Until far, the weaknesses and 

strengths of analytical methods were only reviewed for IW cross sections. In the following, it will 
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be determined whether each analytical approach can determine leakage inductances of OW cross 

sections, and for those that do, the assumptions used will be addressed. To begin with, leakage 

inductances for OW sections cannot be calculated using Kapp's, Dowell's, or Rogowski's models. 

Roth's model and Margueron's model may all be used to compute the leakage inductance for OW 

cross sections. However, because of the various simplifying assumptions and geometrical 

restrictions, they are not applicable in all cases.  

Roth's method is fundamentally applied to an IW cross section. To apply Roth's approach to OW 

cross sections, an IW cross section is utilized, with the yokes and outer leg placed far enough away 

from the windings. To meet this condition, the distances 𝑑𝑦,𝑏, 𝑑𝑦,𝑡, and 𝑑𝑥,𝑜 in the IW cross section 

illustrated in Figure 4.12 can all be set to 10 ×
ℎ𝑤+𝑤𝑤

2
. However, for the OW cross section, like for 

the IW cross section, the magnetic permeability of the core is assumed to be infinite [78].  

Despite the fact that Margueron's model can account for the core's finite permeability, it makes 

simplifying assumptions in order to give ideal boundary conditions for mirroring. In fact, the OW 

cross section depicts two current carrying windings next to a ferromagnetic material having finite 

height and thickness, as illustrated in Figure 4.15(a). This constellation isn't well suited the method 

of images. To make the method of images work, the thickness and height of the ferromagnetic 

material be assumed to be infinite as shown in Figure 4.15(b). and Figure 4.15(c) shows a 

mathematical representation of this ideal mirror constellation. When the relative permeability value 

of the core is greater than 100, Margueron et al. determined that the thickness of the core can be 

neglected [78]. Also, in [78], for a restricted number of transformer cases, it has been proven that 

treating the height of the ferromagnetic material as infinite has small effect on the value of leakage 

inductance.  
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(a)                            (b)               (c) 

Figure 4.15 The method of image applied to the OW cross section. (a) Actual OW cross-section 

that isn't suited the method of images. (b) Assumed OW cross-section that is suited the method of 

images. (c) Mathematical equivalent of (b) using the method of images 

 

In the existing analytical approaches to calculate leakage inductance using Double-2D approach, 

first, for both cross sections, the leakage inductances are calculated per unit length, which are 

indicated by 𝐿𝑖𝑛
′  for IW cross sections and 𝐿𝑜𝑢𝑡

′  for OW cross sections. Then, the per-unit length 

values are multiplied by the corresponding partial winding lengths, which are represented as 𝑀𝑇𝐿𝑖𝑛
  

for IW cross sections and 𝑀𝑇𝐿𝑜𝑢𝑡
  for OW cross sections, and the total leakage inductance is 

obtained by 

𝐿𝐷𝑜𝑢𝑏𝑙𝑒−2𝐷 = 𝐿𝑖𝑛
′ . 𝑀𝑇𝐿𝑖𝑛 + 𝐿𝑜𝑢𝑡

′ . 𝑀𝑇𝐿𝑜𝑢𝑡 (4.26) 

𝑀𝑇𝐿𝑖𝑛 and 𝑀𝑇𝐿𝑜𝑢𝑡 are portions of the perimeter of a hypothetical rectangle with sides in the 

middle of the air gap between two windings, as shown in Figure 4.9, and are given by the following 

equation, which was proposed in [78] and is based on the parameters defined in Figure 4.12. 

𝑀𝑇𝐿𝑖𝑛 = 2𝑎𝑙𝑒𝑔 (4.27) 

𝑀𝑇𝐿𝑜𝑢𝑡 = 2𝑏𝑙𝑒𝑔 +  (𝑑𝑥,𝑖 + 𝑎1 + 𝑑 + 𝑎2) (4.28) 
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4.3.1.6 Double-2D circuit-based method vs Double-2D analytical methods  

Because the models must first be created in EMT-type software, the Double-2D circuit-based 

method proposed in this chapter is slower than analytical methods for calculating leakage 

inductance, and thus it cannot be used for design applications requiring a high number of 

computations. However, in some transient studies where accurate determination of leakage 

inductance of transformer is important it can be used. This part compares the accuracy of the 

Double-2D circuit-based approach proposed in this chapter to the accuracy of Double-2D analytic-

based approaches (Roth and Margueron) and 3D-FEM. The measurement results, as well as the 

Double-2D Roth and Double-2D Margueron results, and the 3D-FEM results, are taken from [78]. 

Table 4.1 shows the results of the comparisons for three transformers which their geometrical 

parameters are listed in Table 4.2.  

Table 4.1 Comparison of the accuracy of the proposed model to that of analytical and FEM 

models 

 𝑳𝝈 Relative Error 

Tr. Measurement  
Margueron 

Double-2D  

Roth Double-

2D 
3D-FEM 

Circuit-based 

Double-2D   

No. 1 2  𝜇𝐻 11.3% 10.4% 2.3% 2.2% 

No. 2 10.  𝜇𝐻 6.6% 5.53% -2.7% 3.5% 

No. 3 1 .  𝜇𝐻 15% 10.61% 3.3% 7.2% 

nRMSE Ref. 11.5% 9.1% 2.8% 4.8% 

Table 4.2 Parameters of considered transformers, see Figure 4.13 for parameter definitions [78] 

 Transformer geometry parameters (mm) Turns 

 𝑎1 𝑎2 𝑑  ℎ1 ℎ2 ℎ𝑏 𝑑𝑦,𝑏 𝑑𝑦,𝑡 𝑑𝑥,𝑖 𝑑𝑥,𝑜 𝑏𝑙𝑒𝑔 𝑎𝑙𝑒𝑔 𝑁1 𝑁2 

No. 1 4.9 4.9 17.5 90 80.0 5.0 3.0 0.0 0.0 7.0 56.0 30.0 20 20 

No. 2 4.2 4.6 4.0 52.0 44.0 4.0 1.9 0.0 0.0 8.5 26.0 28.1 23 26 

No. 3 4.2 4.6 4.0 52.0 44.0 4.0 1.9 0.0 0.0 8.5 26.0 28.1 23 26 

 

As it can be observed in Table 4.1, the Double-2D circuit-based method proposed in this chapter 

is more accurate than two Doubel-2D analytical methods (Roth and Margueron). In simulation 

applications, an inaccuracy of less than 5% derived by Double-2D method is considered acceptable.  
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The improved accuracy seen with Double-2D circuit-based approach compared to Double-2D 

analytical methods can be attributed to three key factors. First, although analytical methods are 

nearly as accurate as 2D FEM in calculating leakage inductances per length on IW or OW cross 

sections, they are less accurate in calculating total leakage inductances using Double-2D models 

than 3D FEM since their estimates for determining MTLs are rough. However, in the proposed 

Double-2D circuit-based method, determining the depth of the flux tube, which is comparable to 

the MTL for that mesh, is more accurate and dependent on the mesh's position. Second, it was 

previously said that the Margueron approach is the only analytical method that can account for the 

effect of core permeability; nevertheless, this method can also account for the effect of core 

permeability. Also, the Margueron method can only account for the core's effect with linear relative 

permeability, but our method can account for the core's effect with both linear and nonlinear 

relative permeability. As a result, this method is superior to all analytical methods in accounting 

the effect of the core. This ability is useful when the permeability of the core is low, as previously 

stated. In addition, various geometrical assumptions are made in analytical approaches to calculate 

the transformer's leakage inductance. For example, as illustrated in Figure 4.15, the Margueron 

approach makes an assumption about the OW cross-section to make it suitable for the method of 

images. The Double-2D circuit-based technique, on the other hand, requires no geometrical 

assumptions. For example, in contrast to the Margueron technique, Double-2D circuit-based 

models can accurately represent OW cross-section without any assumed change in the geometry. 

Also, for transformers with more than two windings (multi-winding or three-phase transformers) 

the proposed method has a significant advantage over analytical methods. Analytical approaches 

for these types of transformers can only offer an inductance matrix representation referred to each 

winding couple, which is not geometrically valid, especially when there are more than three 

windings. For these types of transformers, however, the Double-2D circuit-based models can 

simultaneously see the effects of all windings as well as the effect of the core, resulting in a more 

geometrically and physically meaningful representation. 
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4.4 Double-2D circuit-based model for three phase transformers  

4.4.1 Division of 3D structure into 2D sections 

In this section, proposed Double-2D circuit-based method is used to model three phase 

transformers. In order to account for 3D field effects of three-phase transformers, the circuit-based 

method derived from Hopkinson Analogy is utilised to solve four 2D problems (Double-2D). This 

method divides the 3D structure of the transformer into four 2D substructures, each with its own 

magnetic field distributed across a unique plane that can be studied using 2D circuit-based models. 

Figure 4.16 depicts four cross sections of these four 2D substructures: an inside transformer 

window (IW), an outside window (OW) of phase U, an outside window (OW) of phase V, and an 

outside window (OW) of phase W. The field distribution in the part of the structure depicted on 

Figure 4.16(a) is primarily stored in the core. However, the field distributions in the parts of the 

structure depicted on Figure 4.16(b)-(d) are mostly stored in the air. It's also worth noting that the 

models of planes shown in Figure 4.16(a)-(d) have no interactions with each other because, first, 

the magnetic field distributions in three planes related to the OW of three phases ((b)-(d)) don't 

cross each other, and second, even though the magnetic field distribution in plane related to IW 

((a)) crosses the magnetic field distributions related to the OW cross sections of three phases ((b)-

(d)), it's perpendicular to them, and thus the dotted product between their field distributions is zero. 

After that the 3D structure is divided into four 2D substructures, each of which is subdivided into 

meshes similar to the mesh model shown in Figure 4.5 for IW substructures and similar to the mesh 

model shown in Figure 4.6 for OW substructures. After that, for elements of the IW mesh, 

equivalent circuits similar to the circuit types shown in Figure 4.7 are built, and the equivalent 

circuits similar to the circuit types shown in Figure 4.8 are built for elements of the three OW 

meshes. The techniques for finding the parameters of equivalent circuits of elements are the same 

as those given in section 4.2.2.  
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IW Model  
(a) 

OW Model of Phase U OW Model of Phase V OW Model of Phase W  
(b) (c) (d) 

Figure 4.16 Division of a three-phase three-legged transformer into four 2D sections 

 

4.4.2 Connection of 2D models 

The procedures for internally connecting the elements of each cross-section model are similar to 

those detailed in section 3.2.3. Then to connect the IW model to the OW models, the HV sides of 

the IW and OW models are connected in series with each other, and their LV sides are likewise 

connected in series. In fact, as shown in Figure 4.17, the HV sides of phases U, V, and W from the 

IW model are connected in series to the HV sides of the OW models of phases U, V, and W, 

respectively, and the LV sides of phases U, V, and W from the IW model are connected in series 

to the LV sides of the OW models of phases U, V, and W, respectively. The external connections 

between the transformer nodes are then constructed depending on the transformer windings 

arrangement, which for the transformer depicted in Figure 4.17 is star delta. 
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Figure 4.17 Diagram of double 2D model for three phase transformer with star-delta connection 

4.4.3 Validation  

In this section, the open-circuit and short-circuit results that were acquired using the Single-2D 

circuit-based approach, 2D-FEM, and 3D-FEM in section 4.1.1 are derived using the Double-2D 

circuit-based technique. To accomplish this, the circuits illustrated in Figure 3.18 and Figure 3.23 

are implemented by double-2D circuit-based method in EMTP, resulting in the new open-circuit 

and short-circuit curves shown in Figure 4.18 and Figure 4.19, respectively. The open-circuit 

results for Single-2D circuit-based, FEM 2D, Double-2D circuit-based, and FEM 3D are 
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substantially similar, especially when the transformer does not go into deep saturation, as shown 

in Figure 4.18. Because the magnetic flux under open-circuit conditions largely passes through the 

core and can be substantially covered in 2D models, there is no need for a 3D representation of the 

transformer. However, in comparison to 2D FEM and Single-2D circuit-based methods, the 

Double-2D circuit-based method produces less error under highly saturated operating conditions. 

The reason for this is the ability of the Double-2D circuit-based technique to more accurately 

represent fluxes leaking into the air under these operating conditions. As previously stated, going 

from a single-2D model to a double-2D model was motivated by the fact that single-2D models 

were inaccurate in representing transformer behaviour under short-circuit conditions. Leakage 

inductances, it was also mentioned, have a significant impact on transformer behaviour under short-

circuit conditions. Table 4.1 showed that for estimating leakage inductances for a single-phase 

transformer, the Double-2D technique has an acceptable error of less than 5%. Here, Figure 4.19 

shows how the Double-2D circuit-based method accurately represents the 3D effects of magnetic 

fields for a three-phase transformer in short-circuit. Finally, accuracy values for Hopkinson Single-

2D, FEM 2D, and Hopkinson Double-2D methods are calculated by applying nRMSE to curves 

shown in Figure 4.18 and Figure 4.19, and using 3D FEM results as the reference values.  

[mA]
 

Figure 4.18 V-I characteristic for open-circuit achieved by Hopkinson Single-2D model, FEM 

2D, Hopkinson Double-2D model, and FEM 3D 
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Y Δ

 

Figure 4.19 V-I characteristic while short-circuiting the secondary side achieved by Hopkinson 

Single-2D model, FEM 2D, Hopkinson Double-2D model, and FEM 3D 

 

Table 4.3  Error derived by Hopkinson Single-2D, FEM 2D, and Hopkinson Double-2D for 

open-circuit and short-circuit conditions  

Model Operation-condition 
Hopkinson 

Single-2D 
FEM 2D 

Hopkinson 

Double-2D 

nRMSE (%) 
Open-circuit 7.40 6.39 4.50 

Short-circuit 301.69 292.31 4.06 

4.5 Conclusion 

This chapter improved the proposed distributed circuit-based methods to account for the 3D effects 

of magnetic fields in transformers. To begin, the limits of single-2D methods for modelling 3D 

effects of magnetic fields are discussed, as well as why moving from 2D to quasi-3D models is so 

important. Following that, the history of Double-2D FEM is explained. The concept of the 

proposed Double-2D circuit-based method is then discussed, as well as how to implement it for a 

simple single-phase transformer with two windings. The ability of the proposed Double-2D method 

to accurately compute leakage inductances is also highlighted. The proposed method is compared 

to existing analytical methods for computing leakage inductances. The limitations and assumptions 

of existing analytical approaches are reviewed, and it is explained how the suggested method 

resolves them. Finally, the proposed Double-2D circuit-based technique is implemented for a three-
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phase transformer, and its high accuracy in representing 3D effects of magnetic fields is 

demonstrated by comparing the findings to 3D FEM.  
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 CONCLUSION  

5.1 Summary  

The main focus of this research was the electromagnetic modeling of magnetic devices including 

inductors and transformers in EMT-type software by circuit-based methods. Indeed, this thesis 

provided a distributed model of magnetic devices using circuit-based methods. This approach made 

use of meshing in such a way that space was discretized into electric and magnetic circuits. This 

thesis attempted to bridge the gap between circuit-based approaches and finite element modelling. 

Proposed models in this thesis similar to FEM could provide a complete geometrical description 

of magnetic flux paths, including leakage and fringing flux paths, in addition to modelling non-

homogeneous materials and magnetic saturation. Additionally, the thesis intended to provide 

models that may be implemented in the EMT-type software using currently available components. 

To do this, distributed models were created using three rules that are commonly used to link 

magnetic and electric circuits: the Hopkinson analogy, the Buntenbach analogy, and the duality 

principle.  

In Chapter 2, three distributed circuit-based approaches (HBD-circuits) for accurately modelling 

inductors in EMT-type software were proposed. Many significant features of the FEM could be 

provided by the proposed models, including detailed geometrical representation and incorporation 

of magnetic saturation. Both in terms of accuracy and computation time, HBD-circuits were 

compared to one another as well as to the 2D FEM. High levels of accuracy were reached in 

depicting both the external and internal behaviours of inductors using HBD-circuits. HBD-circuits 

also demonstrated excellent computational performance in such a way that, even when the number 

of elements is enormous, HBD-circuits surpass FEM in terms of computational speed. 

Additionally, it was proved that HBD-circuits are just as accurate as FEM models in capturing the 

correct behaviour of inductors in a circuit during the occurrence of electromagnetic transient 

phenomena. Ferroresonance, a nonlinear phenomenon in power systems, was studied to 

demonstrate the HBD-circuits' ability to represent electromagnetic transient events. In this 

example, the inductor was modelled using HBD-circuits, and the results were compared to those 

obtained using FEM, with a good agreement found between the two.  
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Chapter 3 improved the HBD-circuits to model transformers, which are key components of the 

power system. This chapter presented each step of the process of creating HBD-circuits for 

transformers in EMTP, including meshing, deriving equivalent circuits for individual elements, 

connecting elements to establish the final model, and deriving and assigning values to the 

equivalent circuit parameters. Additionally, this chapter discussed how to model transformer 

internal faults using HBD-circuits. To do this, a faulty winding was divided into distinct sections 

according to the type of fault and each section was regarded as a distinct winding. Additionally, it 

was demonstrated how new element types are established, their values are determined, and how 

they are connected to one another. Finally, when compared to 2D FEM results, it was shown that 

HBD-circuits accurately describe the internal behaviour of transformers as well as the behaviour 

observed at their terminals. The behaviours of the transformer during open-circuit and short-circuit 

as steady state phenomena and energization as a transient phenomenon were accurately reproduced 

using HBD-circuits. Additionally, it was demonstrated that HBD-circuits can accurately model 

internal faults in transformers and, in comparison to other analytical methods and lumped 

parameter models, they could not only represent leakage inductances, which are necessary for 

modelling internal faults, but also the effect of the core on internal fault modelling. 

As illustrated in Chapter 4, the distributed circuit-based approaches established in the preceding 

chapters can be improved to account for the three-dimensional effects of magnetic fields in 

transformers through the use of a technique called Double-2D. It was demonstrated that Double-

2D circuit-based approaches are significantly accurate in modeling leakage inductances, even more 

so than analytical methods, and are very near to the 3D FEM. Additionally, it was proved that the 

Double-2D approach can reproduce the results of 3D FEM for a three-phase transformer under 

open- and short-circuit conditions. 

As a final summary, the methods proposed in this thesis can be used to equip EMT-type software 

tools with certain features of 2D and 3D FEM modelling, such as accurate geometry modelling, 

consideration of iron core saturation, and consideration of all magnetic flux paths, including 

leakage flux paths through the air during saturated operating conditions. 
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5.2 Future works  

On the few opportunities to continue and improve on this work, first, other features, such as iron 

losses and capacitive effects, can be incorporated to the proposed distributed models to enhance 

their application potential.  

Second, because the meshing approach used in this paper was not intelligent, the meshing 

procedure can be adjusted to ensure that the mesh sizes are selected intelligently. 

Third, these new methodologies are applied to real electromagnetic transient cases seen in power 

networks in order to gain a better understanding of their capabilities in power system analysis. 

Fourth, the ability of the Double-2D approach provided in Chapter 4 to accurately characterize 

leakage flux paths can be used to estimate air-core leakage inductances for the transformer while 

accounting for the tank effect. 

Fifth, while this thesis focuses on low and mid-frequency transients, it may be worthwhile to 

propose new distributed circuit-based models for high-frequency transients. 

Sixth, thermal equivalent circuits based on basic electrical-thermal analogous equations can be 

derived in distributed form and coupled with the magnetic-electric circuit-based models proposed 

in this thesis to predict temperature distribution and localise hot spot temperatures in magnetic 

devices. 
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