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RÉSUMÉ

L’analyse de structures cellulaires dans les images de microscopie est l’une des tâches les plus
importantes dans diverses études biologiques et diagnostic de maladies. En particulier, la
segmentation et la classification sont deux tâches essentielles qui sont effectuées régulièrement
dans la pratique. Cependant, l’hétérogénéité, le débit et la complexité croissants des données
générées par les microscopes modernes ont introduit divers défis pour les algorithmes informa-
tiques automatiques. Cela est d’autant plus vrai pour les approches basées sur l’apprentissage
profond. Premièrement, la création manuelle d’une vérité terrain suffisante pour entraîner les
données dans la classification automatique ou en particulier la segmentation est un défi car
elle nécessite une intervention importante de la part des experts du domaine. Ensuite, étant
donné le nombre limité d’échantillons de données étiquetées pour l’entrainement, les modèles
d’apprentissage profond ont souvent une faible capacité de généralisation. De plus, la com-
plexité élevée du modèle en termes de temps de calcul requis et de processus d’entrainement a
un impact sur l’adoption de solutions d’apprentissage profond. Les biologistes ou les pathol-
ogistes ont du mal à choisir un modèle d’apprentissage profond existant parmi les autres
qui serait plus approprié pour leur application qui nécessite des paramètres spécifiques de
préparation d’échantillons et d’acquisition d’images.

L’objectif principal de cette thèse est de développer de nouvelles architectures et techniques
d’apprentissage profond pour améliorer la généralisation et l’applicabilité de ces algorithmes
pour la segmentation et la classification des images de microscopie dans diverses conditions
expérimentales, telles que les types de microscopes, les conditions d’acquisition d’images, les
processus de préparation d’échantillons et les catégories de cellules. La première étude exam-
ine s’il est possible d’éliminer la dépendance du modèle d’apprentissage profond au processus
d’étiquetage manuel pour la segmentation des noyaux dans les images d’histopathologie.
Nous avons développé un modèle de segmentation DL non supervisé qui est adaptable au
domaine. Notre approche s’est concentrée sur l’exploitation des connaissances préalables des
paramètres physiques dans le processus d’acquisition d’images et sur la combinaison d’une
architecture d’apprentissage profond avec des algorithmes classiques de traitement d’images.
Nous concevons également un module de synthèse de données pour générer des ensembles de
données augmentés contenant des exemples similaires à chacune des images cibles tout en
identifiant leurs masques correspondants. Les résultats qui ont été obtenus sur trois bases
de données publiques d’images histopathologiques démontrent que notre méthode peut sur-
passer les autres approches de segmentation non supervisée et sa performance est comparable
à celle des modèles DL supervisés. Dans les études ultérieures, nous nous concentrons sur
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la question de savoir s’il est possible de développer des classifieurs basés sur l’apprentissage
profond qui ont une bonne généralisation à travers différentes applications étant donné un
nombre très limité de données d’entrainement. Nous avons d’abord développé un modèle
CNN léger pour classer simultanément les images de microscopie dans plusieurs domaines.
Les données cibles comprennent des images qui reperésentent différents niveaux de structures
cellulaires, des tissus aux cellules et aux organites cellulaires. De plus, nous élaborons une
procédure d’optimisation efficace permettant au réseau proposé de surpasser les méthodes
existantes sans nécessiter l’adaptation de paramètres qui sont spécifiques au domaine. Fait
intéressant, notre modèle proposé est robuste par rapport à la disponibilité d’un nombre lim-
ité de données d’entrainement. Avec une faible complexité et une grande flexibilité en terme
d’applicabilité à différents domaines, l’approche devient plus attrayante pour un déploiement
dans un contexte de ressources matérielles limitées en laboratoire.

Sur la base du modèle générique précédent, nous avons ensuite exploré la possibilité d’améliorer
encore plus la précision d’une application spécifique, en particulier la reconnaissance des or-
ganites subcellulaires. Nous avons initialement construit une nouvelle architecture d’apprent-
issage profond qui combine l’extraction de caractéristiques basée sur DL avec une analyse
multi-résolution. Les expériences montrent que le modèle développé peut améliorer con-
sidérablement les performances de classification par rapport aux modèles d’apprentissage
profond de l’état de l’art sur les mêmes ensembles de données d’images fluorescentes micro-
scopiques. Inspirés par ce modèle, nous avons proposé le développement d’un autre réseau
DL compact. Contrairement au modèle précédent dans lequel les couches d’extraction de
caractéristiques étaient pré-entrainées à l’aide de l’ensemble populaire de données ImageNet,
nous entraînons le nouveau modèle à partir de zéro, sans utiliser d’images externes. Nous
avons également formulé un nouveau terme de régularisation à intégrer dans la fonction
d’optimisation. Suite à des expériences, les performances du modèle proposé ont dépassé
celles des méthodes de l’état de l’art dans des conditions expérimentales similaires et, plus
important encore, il peut bien généraliser même avec des données étiquetées très limitées. En
particulier, le modèle nécessite environ quatre fois moins de données étiquetées que d’autres
approches pour atteindre un niveau de précision similaire. Nous sommes convaincus que les
méthodes développées durant ce projet contribueront à réduire considérablement le fardeau
de la génération d’annotations de vérité terrain pour les données d’entrainement et à aug-
menter l’efficacité des pathologistes et des scientifiques biomédicaux dans l’analyse d’images
microscopiques. Des travaux futurs devraient se concentrer sur la conception d’une architec-
ture de bout en bout qui peut à la fois effectuer la segmentation et la classification des objets
d’intérêt. Une méthode d’apprentissage continu devrait également être investiguée pour aider
l’agent d’apprentissage à être en mesure de s’adapter aux nouvelles tâches en fonction des
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connaissances acquises dans le passé.
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ABSTRACT

The analysis of cellular structures in microscopy images is one of the most important tasks
in various biological studies and disease diagnosis. In particular, segmentation and classifi-
cation are two essential tasks that are done regularly in practice. However, the increasing
heterogeneity, throughput and complexity of the data generated by modern microscopes have
introduced various challenges for automatic computer algorithms. This is undoubtedly true
for deep learning-based approaches. First, the manual creation of sufficient ground truth for
training data in automated classification or especially segmentation is challenging since it re-
quires a big commitment from domain experts. Then, given the limited labeled data samples
for training, deep learning models often have low generalization ability. Furthermore, the
high model complexity in terms of computing requirements and training process impacts the
adoption of deep learning solutions. Biologists or pathologists find it difficult to choose one
existing deep learning model over the others for their application having specific specimen
preparation and image acquisition settings.

The main objective of this thesis is to develop novel deep learning architectures and techniques
to improve the generalization and applicability of deep learning solutions for the segmenta-
tion and classification of microscopy images across various experimental conditions, such as
microscope types, imaging conditions, sample preparation processes and cell categories. The
first study investigates whether it is possible to eliminate the dependence of the deep learn-
ing model on the manual labeling process for the segmentation of nuclei in histopathology
images. We developed an unsupervised DL segmentation model that is domain-adaptable.
Our approach focused on exploiting prior knowledge of physical parameters in the image
acquisition process and combining deep learning architecture with classical algorithms. We
also design a data synthesis pipeline to generate augmented datasets containing examples
resembling each of the target images and having their corresponding masks. The results
which were recorded on three public datasets of histopathological images demonstrate that
our method can outperform other unsupervised segmentation approaches and be comparable
with supervised DL models.

In the subsequent studies, we focused on addressing the question of whether it is possible to
develop deep learning-based classifiers that have good generalization across different applica-
tions given very limited training data. We first developed a lightweight CNN model to classify
microscopy images in multiple domains simultaneously. The target data include images that
captured different levels of cellular structures, from tissue to cells and cellular organelles. In
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addition, we elaborate an effective optimization procedure allowing the proposed network
to outperform state-of-the-art methods without requiring the adaptation of domain-specific
parameters. Interestingly, our proposed model is robust against limited available training
data. With low complexity and wide applicability, the approach becomes more appealing for
deployment with limited hardware resources in laboratory settings.

On the foundation of the above generic model, we then explored the possibility to improve
further the accuracy of a specific application, particularly the recognition of subcellular or-
ganelles. We initially built a novel deep learning architecture that combines DL-based feature
extraction with multi-resolution analysis. Experiments show that it can significantly improve
the classification performance compared with state-of-the-art deep learning models on the
same datasets of microscopic fluorescent images. Following this model, we extended the
research with the development of another similar compact DL network. Unlike the previ-
ous model in which the feature extractor layers were pre-trained on the popular ImageNet
dataset, we train the new model from scratch, without using any external images. We also
formulated a regularizer to integrate into the optimization function. By experiments, our
proposed model has surpassed state-of-the-art methods in similar experimental conditions
and more importantly, it can generalize well even with very limited labeled data. In particu-
lar, the model requires about four times less than other approaches to achieve a similar level
of accuracy. We believe the developed methods in this project will contribute to significantly
decreasing the burden of generating ground-truth annotation for training data and increasing
the analysis efficiency of pathologists and biomedical scientists. Further research should work
on designing an end-to-end pipeline that can both perform segmentation and classification
of the objects of interest. A method of continual learning should also be studied to help the
learning agent be ready to scale to the new tasks based on the knowledge learned from the
past.
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CHAPTER 1 INTRODUCTION

Cells are the fundamental biological units of living organisms and one of the most important
targets of microscope image analysis in biological studies or disease diagnosis. Depending
on a particular application, pathologists may want to evaluate the variation in dimension
or shape of cells in a region of interest because these properties are highly indicative of the
cell’s physiological state [10]. In other applications, researchers may focus on investigating
the distribution of certain proteins or sub-cellular organelles within a cell.

Although analysis of cellular information is essential, the capability of human experts is
limited due to an increasingly large collection of microscopic imaging data, in which complex
patterns exhibit a complicated relationship with diseases [4]. Besides, there is an increasing
heterogeneity, throughput and complexity of the data generated by emerging modern devices
[10]. Manual evaluation of pathology samples is also affected by both subjective expectations
and experience from pathologists before obtaining experiment results. Thus, the development
of an automated analysis method that enables accurate and reproducible cell quantification
is indispensable [11].

Segmentation and classification of cell structures are two essential tasks in the practice of
pathology, including both histology and cytology, and biological studies. Segmentation is the
process of clustering pixels into salient image regions corresponding to objects of interest or
parts of objects. This is done by assigning a label to every pixel in an image such that pixels
within a region share similarities with respect to certain characteristics or features, such
as intensity, color or texture. After segmentation, the location and boundary of objects in
the image are determined whereas background regions containing irrelevant information are
discarded. In microscopy image analysis, segmentation can help researchers to focus on the
useful area with rich information from data [12]. For example, it is used to study the cellular
morphology which is an indicative phenotypic feature for the physiological state of a cell [10].
The cellular contours extracted from the image are also used to separate between cells, which
is required for analyzing intra-cellular processes or studying cell sociology. The output of the
segmentation could be semantic-level or instance-level segmentation map. While semantic
segmentation simply categorizes each image pixel as foreground or background, instance-level
segmentation distinguishes different objects in the foreground. Low-quality segmentation
certainly impacts the subsequent analysis and in practice, different segmentation algorithms
often produce different results [13].

On the other hand, classification is the process of assigning one of the predefined labels to an
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image of a separated object. The separation could be done by either segmentation or detection
algorithms. Unlike the aforementioned segmentation, the goal of detection algorithms is to
recognize the location of a target object in an image without specifying exactly its contour.
As the labels are context-dependent and user-defined, there exists a wide range of microscopy
image classification tasks. Some of the examples include distinguishing different subcellular
organelles or cells, grading cancer stages or identifying various diseases.

Microscopy image acquisition systems

As described in [14], there is a sequence of required preparation steps (Figure 1.1) so that
a tissue sample on the slide could maintain structural features similar to those of a natural
living state. In the fixation step, sample tissue is placed into chemical solutions to preserve
cell and tissue structure by cross-linking proteins and deactivating degradative enzymes.
As a large composition of tissue is water, it is passed through a series of alcohol solutions
with increasing concentration to remove water (dehydration) and then treated with organic
solvents which make tissue becomes transparent (clearing). In the next infiltration step,
the tissue is usually put into melted paraffin for a certain time to be completely infiltrated
with this substance. After that, the paraffin-infiltrated tissue is placed into a small mold
covered with melted paraffin to become hardened and form a paraffin block containing the
tissue (embedding). It is necessary for sectioning that block of tissue into thin sections by
a microtome, for imaging by trans-illumination in optical microscopy. Paraffin sections are
then mounted on glass slides (optical microscopy) or metal grids (electron-microscopy) for
staining and examination. As different tissue constituents may have similar optical densities,
they should be stained for easy discrimination, usually with water-soluble stains (optical mi-
croscopy) or metal precipitation (transmission electron microscopy). For optical microscopy,
this step requires removing the paraffin first, then rehydrating before staining. The most
commonly used stains are hematoxylin and eosin (H& E). They produce bluish color for
the acidic components of a cell (e.g, nucleus) and a pinkish tint for basic components (e.g,
cytoplasmic). Finally, the tissue slide could be imaged with different microscope devices to
generate microscope images. Unfortunately, there exists variation at different stages of the
sample preparation since each stage has a range of setup parameters, causing large variability
across different clinical laboratories and within the same lab over time [15,16]. This directly
results in a lack of consistency in microscope image quality and thus, analysis results.



3

Figure 1.1 Sample preparation steps for microscopy imaging

Common types of microscopy devices and their images

Light microscopy is the dominant technology for research and diagnosis worldwide. It is based
on the interaction of visible or ultraviolet light with tissue components to visualize images.
Different types of light microscopes can be used to complement each other in diagnosis and
research, including conventional bright-field microscopes and later developed specialized types
like dark-field, fluorescence, phase-contrast, confocal scanning laser, differential interference
contrast, and two-photon microscopes. The most important factors in microscopy imaging
are magnification, resolution, and contrast [2]. Magnification enlarges the appearance of the
specimen in the image. To make two objects distinguishable, magnification should be set to
a certain level given an appropriate resolution, otherwise, additional details cannot be seen
clearly. Light microscopes can magnify effectively up to 1,000 times the actual size of the
specimen. Resolution refers to the minimum distance between two points to be distinguished
as separate points. Typically, the light microscopes can not resolve detail finer than about
0.2µm. Lastly, contrast is the difference in brightness between the light and dark regions of an
image and could be enhanced by staining or labeling cell components. Table 1.1 summarizes
different light microscopes and their example images [1, 2].

1.1 General research objectives

In practice, microscopy image introduces various challenges for designing automated segmen-
tation and classification algorithms. Direct segmentation of cell or sub-cellular structures is
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very challenging when dealing with, for example, heterogeneous intensity, fading boundary,
overlapping cells and background clutter [4]. Compared with medical radiology images which
focus only on a few organs of easily predicted location, microscope images normally contain a
vast amount of objects (cells and organelles) randomly located and/or surrounded by complex
tissues [17]. Meanwhile, obtaining sufficient data ground truth for automated classification
(image-wise labels) or segmentation (pixel-wise labels) is not feasible since it requires a big
commitment from domain experts [18]. Moreover, large variability in different microscopy
imaging devices, staining processes and cell types make it difficult to achieve generally optimal
results. Besides, microscopic data become increasingly complicated and multi-dimensional
(multi/hyper-spectra, multimodal microscope images, and ultra-large whole slide images).
Considering these situations, applying any analysis approach alone could not produce sat-
isfactory results even when tailoring to a specific problem. It seems to be impossible to
converge to a robust, universal solution: there are almost as many methods as there exist
cell analysis problems [4]. This prevents pathologists from adopting applicable solutions for
their clinical setting with specific specimen preparation and image acquisition [18]. There
is an increasing demand for a generic model which is applicable for a wide range of images
generated with different pathology protocols [19, 20].

Deep learning models have achieved state-of-the-art performances in many medical image
analysis applications. Its astonishing success is often dependent on the amount of annotated
data examples and the complexity of deep learning models. For microscopy image analysis,
these two requirements are the big hurdles for the generalization and applicability of deep
learning-based methods when deployed in clinical settings. The overall goal of this research
project is to improve the generalization and applicability of deep learning algorithms for the
segmentation and classification of microscopy images across various experimental conditions
in terms of various microscopes, imaging conditions, sample preparation processes and cell
types. Firstly, the research will propose a segmentation algorithm that generalizes well
on multiple domains of acquired microscopy images without the need for reconfiguration
for every specific application. Secondly, the research will propose compact classification
algorithms that have strong generalization capability given the condition of limited annotated
training data. In general, we will focus on developing deep learning based methods that
generalize well with very limited data while still maintaining their computational efficiency.

1.2 Manuscript Overview

The remainder of this thesis is organized as follows:
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• Chapter 2 reviews related works on segmentation and classification algorithms of mi-
croscopy images. Next, basic concepts and well-established standard methods aiming
at improving the generalization of deep learning models will be summarized.

• Chapter 3 first describes the current trends and challenges that justify the motivations
of this research project. Then, the research objectives to achieve the overall goal are
established.

• Chapter 4 details our method for designing a domain-adaptable model for nuclei seg-
mentation in histopathological images using unsupervised learning. Its main goal is to
eliminate the dependence on the expensive data annotation process in training a nuclei
segmentation model.

• Chapter 5 presents the second contribution which proposes a multi-domain learning
CNN model for microscopy image classification. This work aims at designing a generic
model that can apply to multiple imaging domains, instead of having multiple per-
domain models.

• Unlike the generic model in the previous chapter, we next present our contribution
that focuses on a specific application of fluorescent microscopy image analysis, for
automatic recognition of sub-cellular organelles, in chapter 6. In this work, we design
a lightweight architecture that helps to improve the performance and generalization of
the deep learning model.

• In connection to the above study, chapter 7 provides additional research that demon-
strates the benefit of using compact deep learning design on the cellular organelles
classification with very limited annotation.

• In chapter 8, we discuss the advances and limitations of our works in relation to previous
studies.

• The final chapter 9 summarizes the major contributions and provides perspective on
some potential research directions in the future.
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Microscope type Example Image

Bright-field without staining: Bright-field microscope is
widely used as the standard type, in which light passes di-
rectly through the specimen. Without staining, the image
has little contrast if the cell is not naturally pigmented or
artificially stained.

Bright-field with staining: The contrast of an acquired
image is enhanced by staining the cell sample with specific
dyes, in which process cells are fixed (preserved) and thereby
are killed.

Dark-field: Instead of using directly transmitted light, only
light scattered off the specimen is used to produce the high
contrast image without the use of stains.

Confocal: Uses a laser to scan multiple z-planes succes-
sively to generate a sequence of high resolution images at
various depths that allows reconstructing a 3D image of the
thick specimens. Each image slice is sharp compared with a
blurry standard image because out-of-focus light is excluded.

Fluorescence: Fluorescent substances absorb ultraviolet
radiation and emit visible light. Some cells inherently have
molecules that fluoresce on their own, or molecules could be
labeled by fluorophores.

Table 1.1 Light microscopes use visible or ultraviolet light to produce an image [1,2]. Royalty-
free Images.
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CHAPTER 2 LITERATURE REVIEW

Microscopy is one of the most important technologies for research and diagnosis worldwide
as it appears in around 90% of publications in life sciences according to a recent survey [21].
We start this chapter by reviewing state-of-the-art segmentation and classification techniques
for microscopy images. For each task, we will first summarize the principles of conventional
non-learning-based methods and then focus on deep learning algorithms that have recently
attracted considerable attention in the literature. In the last section of this chapter, we
summarize the efficient techniques for improving the generalization of deep learning models
and then review the application of these techniques in different approaches for microscopy
image analysis.

2.1 Segmentation

Segmentation, which is also formulated as pixel-wise classification, is the process of separating
every cell or sub-cellular compartment to allow measurement of morphological characteristics
such as intensity, size, shape or distribution. Although segmentation of objects in microscopy
images is regular, it is not a simple task. Manual segmentation is expensive, as it is time-
consuming and requires the expertise of experienced image analysts [22, 23]. Therefore,
computer algorithms that can produce high-throughput analysis at the expert level are much-
needed [21].

General criteria for a complete segmentation are [24]:

1. No pixel is without a region assignment.

2. Each pixel has a unique region assignment.

3. Pixels in each region are connected.

4. Each region satisfies a given uniform predicate.

5. Any merged pair of different regions is non-uniform.

2.1.1 Conventional approaches

Although automated image segmentation for cell analysis is a generally challenging problem
and has been applied in microscope image analysis for many decades, there are essentially
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just a few principal methods. They are typically developed for other fields of computer vision
before being adopted for cell segmentation. Figure 2.2 summarizes the common conventional
cell segmentation approaches after screening literature published during period from 2000 to
2012 [10]. Other specific methods include dynamic programming, graph cuts, active masks,
support vector machines, tensor voting schemes, neural networks and Markov random fields.

Figure 2.1 Works of literature on conventional cell segmentation methods in 143 journal
papers from 2000 to 2012.

Intensity thresholding

This is one of the most popular approaches due to its simple computation and high success
rate against solid objects with closed, connected boundaries on a contrasting background [13].
The thresholding operation is described as:

G(x, y) =

B if I(x,y) < T

F otherwise
(2.1)

Where G(x, y) is the thresholded image which is divided into background B and foreground
F corresponding to objects, I(x, y) is the original image whose gray-level or another extracted
feature (that has been converted to gray-level) is compared against a specific threshold value
T . The boundary is then determined by checking the set of foreground points to have at least
one neighbor outside the object. Notice that the threshold value could be applied globally
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(fixed thresholding) or locally (adaptive thresholding) and for automated threshold selection,
statistical analysis of intensity histogram is usually used [10].

Feature detection

This kind of segmentation method is based on extracted features from images by linear image
filters instead of using intensity level directly [10]. For images with high cell densities and
intensity variation, this approach could be more effective than intensity thresholding. For
example, [25] presented a method for cell nuclei detection and segmentation, based on a multi-
scale Laplacian of Gaussian (LoG) filter which was considered as a generic blob detector. It
was demonstrated to offer advantages such as accuracy improvement, computational effi-
ciency and robustness to variations. Alternatively, first derivative operators (edge detection)
or second derivative operators (ridge detection) are used for locating directly the boundaries
by identifying the edge pixels [13]. The edge detection or gradient-based methods look for
edges by detecting the maximum in the first derivative of an image. On the other hand, ridge
detection or Laplacian-based methods search for zero-crossing in the second derivative of the
image. In practice, the edge points can not form completely closed connected boundaries
and therefore the subsequent step of edge linking is required to associate nearby edge points.

Figure 2.2 An edge and its first and second derivatives [3].

Morphological filtering

Morphological filtering uses non-linear operations related to geometrical and topological prop-
erties of objects in images, such as erosion, dilation, opening and closing. Its principle is to
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probe an image with a small structuring element and test whether the structure element fits
in each corresponding neighborhood of pixels. There are basically two categories of morpho-
logical techniques: binary morphology could be used as a post-processing step to improve
the initial segmentation results from thresholding by for instance separating touching ob-
jects and filling internal holes [13]; gray-scale morphology is usually used as pre-processing
image enhancement in order to eliminate certain image structures before segmentation [10].
Complicated compound filters could be constructed by successive application of different
morphological operations. For example, in [26], a multi-scale decomposition method for cell
segmentation was proposed, consisting of top-down erosion and bottom-up dilation proce-
dures. Morphological operators are generated by using scalable templates at multiple levels.
First, distinct markers for each cell are identified in a top-down procedure by applying erosion
iteratively on the noise filtered binary to erode regions down to markers until a steady-state
is reached. Then, the bottom-up dilation procedure reconstructs the original shapes from
markers while maintaining their separating status.

Region based segmentation

In contrast to the intensity thresholding method which groups pixels without considering
their spatial location in the image, the region accumulation starts from a set of predefined
seed pixels and iteratively adds connected pixels exclusively to each region [24]. The simplest
implementation of this method is the region growing, which employs a uniformity predicate
to control the adding of a pixel to a region, meaning that the addition of a pixel must
preserve the uniformity of the growing region. In general, it is very sensitive to choose
uniformity threshold and different selection of hyper-parameters such as seeds, types of pixel
connectivity or routes of scanning an image could result in different segmentation maps.
For example, the number of preselected seeds may not match with the required number of
regions or two seeds stay within a potentially uniform region still results in two distinct
regions [27]. An improved version is the hierarchical split-and-merge algorithm which either
(top-down) iteratively splits the initial entire image into sub-regions or (bottom-up) merges
adjacent regions until all regions become uniform or the desired number of regions is reached.
The most popular approach is watershed transform, which views any gray-scale image as a
topographic surface where high intensity or gradient magnitude represents hills and low
value denotes valleys. The philosophy behind can be intuitively described via the process
of gradually filling colored water (labels) to every isolated valley (local minima) [28]. The
segmentation edges correspond to barriers that prevent colored water of nearby valleys from
merging when its raising level is higher than local peaks. The most challenging problem with
watershed transform is the resulted over-segmentation due to noise or any irregularities in
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the image and thus further processing is usually required. A practical widely used solution
for cell segmentation is the marker-controlled watershed which provides criteria for merging
regions to solve the over-segmentation [29]. In this approach, before applying the watershed
algorithm, valley points to be merged are specified and no barriers will be created between
them if their flooded areas happen to merge [30]. As such, regional minimum produced by
noise or minor structure in an image will not become a marker or center of the growing
region, and thus significantly amend the over-segmentation. In order to label the markers,
automated cell detection methods are preferred over manual marker labeling, especially in
the case of large-scale images.

Deformable model fitting

This method represents the mechanism for conditioning deformable models such as a curve
(for 2D image) or a surface (for 3D image) to fit an object boundary. In order to constrain
the evolvement of these models over space and time, energy function must be formulated and
minimized. For example, in the active contour model (also referred to as snake), the energy
function is a linear combination of three terms:

Esnake(v) = Eint(v) + Eimg(v) + Econ(v) (2.2)

Here a simple elastic snake consists of a set of points vi. The internal elastic energy term
Eint(v) is composed of the continuity and the smoothness of the contour to control the
deformations made to the snake. Next, the image energy Eimg(v) is calculated as some
function of different image features like lines, edges, terminations. Finally, the constraint
energy Econ(v) allows the user to interactively guide the snakes near the desired features.
The combination of Eimg and Econ is regarded as the external edge-based energy which
controls the fitting of the contour onto the image object [31]. In general, there are two main
implementation approaches for deformable models depending on practical applications [29].
Firstly, the geodesic or level set model represents a contour implicitly as the zero level set of
a high-dimensional function with one dimension higher than the image to be segmented. As
there are many cell objects within a microscope image, energy functions of a multi-level set are
usually adopted. Secondly, the parametric model represents a contour or a surface explicitly
by a continuous parameter v(u) = (x(u), y(u)),with u ∈ R|0 ≤ u ≤ 1. By minimizing the
energy function, the initialized contour evolves toward desired features while still it is kept
smooth. In practice, the parametric models require lower computing and time complexity
than corresponding geodesic models. To cope with cell touching, an additional repulsive term
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is incorporated into the energy formula to prevent adjacent contours from merging and help
to separate touching cells. For an image with overlapping cells, using shape prior constraint is
widely applied [32,33]. In all cases, designing relevant energy terms is particularly necessary
to avoid erroneous segmentation.

2.1.2 Deep learning approaches

Deep neural network or deep learning is an advanced technology applied for image pattern
recognition. Especially since 2012 when AlexNet model [34] won ImageNet challenge [35],
Convolutional Neural Networks (CNNs) have become the most dominant trend for research
in image classification. The number of papers describing applications of deep learning to
medical image analysis, including microscope image analysis, increases rapidly starting from
2015 [21, 22]. Recently, even in the area of clinical diagnosis, where people have the con-
ventional belief that machines cannot deliver human competitiveness, pattern recognition
based on deep learning demonstrates outstanding performance [36]. Deep convolution neural
networks such as GoogleNet [37] and ResNet [38] have been applied to some applications in
medicine and achieve excellent recognition accuracy comparable to human performance. Un-
like methods based on hand-crafted feature extraction, deep learning algorithms can extract
optimal discriminant feature representations directly from raw image data by optimizing a
cost function defined for a specific task like classification or segmentation. However, training
a deep learning model generally suffer from serious overfitting problem or low generalization
capability due to commonly limited small datasets with just dozens to hundreds of images
per class. In this case, a practical method that has been reported in many publications is
transfer learning [39]. In particular, the feature extraction module of a network previously
trained on another large dataset is used to extract useful features of objects in microscope
images. In practice, previously trained networks can be fine-tuned to produce satisfactory
results on new datasets of similar complexity and of limited training data. So far, CNN and
its variants are the most popular architectures for a wide range of image analysis applica-
tions, including microscope image segmentation [4, 22]. Some other popular architectures
are Fully Convolution Neural Network (FCN), Recurrent Neural Network (RNN) and Stack
Autoencoder (SAE). Figures 2.3 and 2.4 show the distribution of 103 deep learning papers on
microscope image analysis (including detection, segmentation and classification) according
to network architectures and different types of microscope images [4].
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Figure 2.3 Distribution of 103 deep learning papers on microscope image analysis according
to network architectures in a recent survey [4].

Convolution Neural Network (CNN)

Similar to a traditional neural network, a convolution neural network comprises multiple
hidden layers between input and output layers. Each hidden layer is composed of neurons or
units, each one has a set of weight-bias parameters and an activation function. For a network
of L hidden layers, each layer kth where (1 ≤ k ≤ L) is associated with a set of connection
weights W (k) and biases b(k), the layer pre-activation is (Courville, 2019):

a(k)(x) = W (k) ∗ h(k−1)(x) + b(k)

Where activation h(k)(x) is calculated via a hidden layer activation function g:

h(k)(x) = g(a(k)(x))

The common functions g are sigmoid(), tanh() or ReLU(). Then, the network output is
computed via an output layer activation function o:

f(x) = h(L+1) = o(a(L+1)(x))

For binary classification, activation function could be the same as in hidden layers, i.e sig-
moid() or tanh(), whereas for multiclass classification, a softmax function is generally chosen:

o(a) = softmax(a) =
[

exp(a1)∑
c exp(ac)

, ...,
exp(ac)∑
c exp(ac)

]
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Figure 2.4 Distribution of 103 deep learning papers on microscope image analysis according
to different types of microscope images in a recent survey [4].

Compared with the traditional neural networks, a convolution neural network could deal
with very high-dimensional variable inputs and exploit the spatial topology of pixels based
on the mathematic operation of convolution [40]. Firstly, each hidden unit only covers a
small sub-region or a patch of the input image instead of being connected to all pixels as
in a fully connected hidden layer which has an unmanageable number of parameters for a
large input image. This avoids the computing of expensive activation functions for hidden
units. Secondly, a convolution neural network shares the matrix of parameters across units
of the same feature map. This not only reduces the number of parameters that need to
be stored but also helps to produce features that are equivariant to translation. In other
words, a translation of input data results in the same extracted features having an equivalent
translation. Finally, it could introduce invariance to small local translations and reduce the
number of hidden units in each layer by pooling or subsampling operations. Figure 2.5 shows
a simple CNN architecture where convolution and pooling layer alternates each other.

To segment an image into different components or classes, CNN is typically used to classify
each pixel individually by sliding a window on input images and generating probability maps.
Features in a patch around every pixel are extracted by non-linear filters of the network
and segmentation labels are produced separately. Authors in [41] introduced an end-to-
end framework based on the convolutional neural network which is proposed to segment
raw pixels of microscopic images into five different categories including cell wall, cytoplasm,
nucleus membrane, nucleus and outside medium. The label for each pixel in the input
image is produced by a convolution network composed of interleaving 3 convolution and 2
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Figure 2.5 A simple convolution neural network [5].

subsampling layers before a fully connected layer, applied on a 40× 40 pixel window. Thus,
the full network which produces the full segmentation map could be viewed as multiple
replicas of such network sliding on input image with a step of four pixels. As each label
is produced independently with the labels of neighboring pixels and thus introducing local
inconsistency, a set of energy-based constraints is implemented to clean up the output of
the convolutional network. In [42], a similar CNN architecture is proposed to be used as
a binary classifier for segmentation of biological neuron membranes in transmitted electron
microscopy (TEM) images. After training, the classifier segments a test image by using
the softmax function to compute the probability of each pixel being one of two possible
classes which are membrane and non-membrane. Indeed, the unbalanced testing set causes
a severe over-estimation of membrane probability in the output. Thus, a monotone cubic
polynomial is approximated to transform the network outputs and calibrate the final results.
Data augmentation and non-uniform sampling techniques are additionally applied to input
training images to extract invariant features and exploit data at multiple resolutions. Finally,
averaging calibrated outputs of multiple network architectures was demonstrated to improve
significantly the performance score against single networks. As an extension, [43] proposes
to use a multi-scale convolutional network that is composed of multiple parallel networks to
process input images at different scales for segmentation of cervical cytoplasm and nuclei.
However, this resulting coarse segmentation by the network alone is not visually satisfying and
thus a fine-tuning step by graph partitioning and problem-specific manual post-processing
by constraining the result under prior knowledge are necessary. Later, CNNs with problem-
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specific optimized hyperparameters are designed for different segmentation applications such
as breast cancer data [44], skeletal muscle images [45], brain electron microscopy [46].

Fully Convolutional Network (FCN)

A major drawback of using CNN classifiers for pixel-wise segmentation is its efficiency, as
input patches from neighboring pixels overlap and thus convolution operations are computed
redundantly [22]. Fully convolutional networks overcome this challenge by replacing the fully
connected layers with convolution layers and they produce an output map instead of a single
label for each pixel. However, due to subsampling layers, the output dimensions or resolution
are reduced. Thus [47] adds bilinear upsampling layers to obtain corresponding size output
and uses skip layer fusion that combines multiple layers of high resolution features with
upsampled output to refine spatial details. This strategy also helps to mitigate the trade-off
between localization accuracy and patch context information in conventional CNN approach
[6]: larger patches provide more context but decrease localization accuracy. Further, [48]
designs a deep contextual network to upsample and then sum up feature maps at multiple
levels of the downsampling path. Some auxiliary classifiers are injected into the network
to provide a regularization term for the loss function. This technique is considered to deal
with the vanishing gradient problem for deep networks, to reduce overfitting and improve the
discriminative capability of extracted features. Noticeably, [6] extends the concept of FCN
by proposing the well-known U-net architecture which consists of an expansion path that is
roughly symmetric to the contraction path. U-net upgrades the learnable upsampling part
in combination with skip-connection such that context information from contracting layers
could be concatenated with expanding layers of corresponding resolution level (Figure 2.6).
Besides, several techniques are also applied to enhance the performance and robustness of the
network for the segmentation of microscope images. Firstly, data augmentation of training
images including shift, rotation, gray variation and especially elastic deformations enable the
network to learn invariant features with very limited annotated images. The addition of drop-
out layers also provides an additional implicit data augmentation effect. Then, a weighted loss
function is proposed to deal with touching cells, where background labels separating touching
cells in the ground-truth are assigned more important weights. Until recently, U-net-based
architectures have been widely used to segment various cells and tissues in different types
of microscope images such as neural membranes in TEM images, HeLa cells in differential
interference contrast images, glioblastoma-astrocytoma cells in phase-contrast microscope
images [4].

The FCN structure could also be used to extend object detection networks, such as Faster R-
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CNN [49], to develop instance segmentation model Mask R-CNN [50]. This architecture adds
the FCN layers as a branch for object mask prediction in parallel with the existing branch
for bounding-box object detection of the Faster R-CNN. This design allows the separation
between different entities of the same segmentation class. The Mask R-CNN architecture has
been adopted recently for nuclei segmentation [51,52].

Figure 2.6 U-net architecture [6].

Recurrent Neural Network (RNN)

Figure 2.7 shows a simple RNN model which is a class of neural networks that generate
output depending on the persistent hidden state and previous outputs. As it forms a directed
graph between nodes along a temporal sequence, the RNN model is typically used for natural
language modeling or sequence processing. Formally, given a sequence x1, x2, ..., xT the model
produces the conditional probability p(y|x1, x2, ..., xT ) for classification purpose. The vanilla
architecture consists of a hidden layer that outputs a non-linear mapping ht at a time t from
input xt and previous state h(t−1):

h(t) = tanh(Ux(t) +Wh(t−1) + b)

Where U,W, b are shared weights (for input and hidden state) and biases over time. More-
over, to generate a prediction, fully connected layers are typically added and computed by a
softmax function:

o(t) = V h(t) + c

ŷ = softmax(o(t))

To train the RNN model, the loss gradient should be obtained by applying the chain rule on
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Figure 2.7 Vanilla Recurrent Neural Network architecture [7].

the unrolled graph which could lead to the problems of vanishing or exploding gradients for
very long sequences. Therefore, a more popular architecture named Long Short TermMemory
(LSTM) based on a specialized memory unit was proposed for learning long-term dependen-
cies [53]. Its architecture is composed of gates that can control the flow of information in and
out of a cell where information could be maintained over a long period, which is not the case
for traditional RNNs. An improved version named Gated Recurrent Units (GRU) network is
recently introduced with the same working principle but requires much fewer parameters and
computations [54]. Recently RNNs are increasingly applied for biomedical image segmenta-
tion problems and they produce promising results [22]. For example, two-dimensional LSTM
which connects hidden LSTM units in four directions is applicable for image segmentation.
Each LSTM unit processes a pixel at a time while receiving outputs from preceding units as
inputs such that information of other pixels in the image are recursively gathered. [8] modifies
the topology of conventional 2D-LSTM into PyraMiD LSTM (Figure 2.8(c))which is optimal
for GPU parallelization and computation, especially for 3D data. In particular, a 2D-LSTM
adds the pixel-wise outputs of 4 LSTMs, each scanning the image diagonally from top-left,
top-right, bottom-left, bottom-right. Figure 2.8(a) shows example for one direction from
top-left. In this topology, although pixels on a simplex (dashed-line) could be processed in
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parallel, the number of such pixels on each dashed-line is not uniform making it difficult for
parallelization in practice. Therefore, this topology is turned 45◦ (Figure 2.8(b)) and finally
added extra connection to fill generated gaps. Some hyper-parameters like larger input filters
are adjusted accordingly to the new computation fashion. As the experimental results show,
this model achieved comparative results for segmentation of neuronal membrane electron
microscopy images and the best result for brain magnetic resonance images.

Figure 2.8 Improvement of 2D-LSTM topology [8].

Another interesting approach proposed in [55] divided the input image into a grid of patches
and applied the structured regression to produce a prediction mask for each patch instead of
a single label for each pixel. In addition, the global context information is obtained for each
patch by the fact that activations from four entire-image-scanning following four diagonal
directions are concatenated at each patch processing. This model is much more efficient and
requires much lower parameters than LSTM based models while producing state-of-the-art
accuracy for muscle perimysium microscope image segmentation.

Stacked Autoencoder (SAE)

SAE is a type of unsupervised model that leverages the availability of unannotated data for
learning their meaningful features through adding a data-dependent regularizer to training,
such as minimizing reconstruction loss [56]. SAE consists of auto-encoders placed on top of
each other such that latent code (sparse features) of the lower autoencoder is fed as input to
the higher autoencoder (Figure 2.9). Each autoencoder is composed of an encoder layer and
a decoder layer, being trained to reproduce its input through a hidden layer. This hidden
layer outputs a latent code which is a compression of input if the hidden layer is smaller than
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the input layer:
h = σ(Wx+ b)

where h is the hidden layer activation or the latent code. W and b are the weight matrix and
the bias of the hidden layer, respectively, while x is the input vector.

Figure 2.9 An edge and its first and second derivatives [3].

One popular solution named Stacked Denoising Autoencoder [57] enhances the robustness
against noise by training the model such that it reconstructs the clean input from a noisy
version, such as an added salt-and-pepper noise. This concept is applied in a model proposed
in [58] for nucleus segmentation in histopathological images. It takes the noisy gradient
patch around each pre-detected nucleus as input and reconstructs toward the annotated
nuclear boundary of each cell. As a result, the experiments show that the trained model
could remove fake edges and correct broken edges. However, in general, the major drawback
of SAE networks is the fact that it usually requires individual layer-wise training or non-
end-to-end fashion and then a fine-tuning process to achieve reasonable results. Although
other recently introduced unsupervised architectures, such as Variational Autoencoder (VAE)
and Generative adversarial network (GAN), have improved significantly the performance
on natural images, there are few peer-reviewed papers for microscopy images [22]. One
interesting recent work proposes to use a GAN-based framework for segmenting nuclei in
different organs and produce better performance than conventional approaches [59]. However,
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a major challenge of the generative adversarial network is that it is notoriously difficult to
train and its performance is unstable.

2.2 Classification

In microscopy image analysis, the classification task commonly involves recognizing different
types of cells, subcellular organelles or identifying stages of a certain disease, for e.g cancer
[12]. Unlike segmentation which outputs pixel-wise labels, microscopy image classification is
the task of assigning a single label (for instance, disease or not) to an entire image. Since
the last decade, researchers have been increasingly using deep learning-based classifiers in
many applications as they usually offer higher accuracy and require less engineering time
than conventional algorithms.

2.2.1 Conventional methods

Essentially, conventional classification algorithms rely on the extraction and selection of
local characteristics in images such as points, edges or intensity distribution in neighbor-
hood regions. These features have been manually and specifically designed in conventional
hand-crafted methods for the last some decades. Well known handcrafted feature extraction
approaches for microscopy images including Local Binary Pattern (LBP) [60], Zernike mo-
ment [61], Haralick texture features [62]. Popular efficient classifiers to discriminate extracted
features are Support Vector Machine (SVM) [63] and Artificial Neural Network (ANN) [64].
In [65], to classify ten types of HeLa cells, a set of 174 features, including morphological
features, Haralick texture features and Zernike moments in combination with wavelet-based
filtering technique are selected as input for a majority-voting ensemble classifier made up of
either neural network or SVM. Authors in [62] also try to design optimal feature sets with
morphological, Haralick texture and Zernike moments features but instead of using wavelet-
based features, they compute features in each decomposed sub-space. The local decisions in
each sub-band are then combined into a global decision by a step of weighting fusion. They
end up using 26 Haralick texture features and a neural network classifier for each sub-band.
As usual, the most challenging problem is the transferability of such feature sets to their
related datasets. Engineering the optimal features is time-consuming, error-prone and es-
pecially, default parameter values are not necessarily relevant for new data other than the
domain for which they were crafted [66].
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2.2.2 Deep learning methods

Up to date, there is a dominant trend of using deep learning in microscope image classification
due to their obvious performance over traditional methods. Indeed, most methodologies
are still developed for natural image analysis and proposed works in the microscope image
domain attempt to adapt existing architectures to the specific problem at hand [22]. As
mentioned above, two common applications of deep learning-based classifiers include cellular
or subcellular classification and disease diagnosis [12]. Some studies have shown that deep
learning methods were highly accurate at distinguishing different types of cells [67] or stages
of cells differentiation [68, 69]. To assist pathologists in diagnosing blood-related diseases,
researchers have developed classifiers to identify white blood cells [70–72] or recognize sickle
cells from normal red blood cells [73]. Other works aim at detection of cancerous samples,
such as for lung [74], breast [75] or colon cancer [76].

Among deep learning approaches, the use of convolution neural networks is becoming more
and more popular for image classification. In practice, a CNN network could be used as
a direct classifier to output a prediction or its layers are used as feature extractors being
integrated into other classifiers. Normally, supervised learning-based networks outperform
unsupervised ones and have been demonstrated as a powerful tool for microscope image
classification [4]. For example, the authors in [77] utilize a simple LeNet-like CNN architec-
ture to design an automatic framework for the classification of segmented human epithelial-2
cell images. Various hyper-parameters related to training an effective network are discussed
and then the importance of data augmentation, such as rotation, is proved by analyzing its
impact separately. Moreover, as a common strategy, fine-tuning a model pre-trained on a
larger related dataset could significantly produce better results. Aiming at a more complex
model for HeLa cells recognition, authors of [78] develop a multi-scale convolution neural
network, consisting of 22 convolution layers and 2 fully connected layers. Each input image
is downscaled at seven levels via subsampling operations before being processed by a tailored
network. The pooled feature maps from all channels are concatenated before a pixel-wise
convolution layer. Then the feature maps from this last convolution layer are passed into
the fully connected classifier. Many deep learning-based pattern recognition systems for
biological-image classification tasks are based on transfer learning or reusing a pre-trained
model. This methodology is extremely effective both for reducing design time and perfor-
mance improvement, especially for the limited dataset. The possible ways of application
include: fine-tuning the DNN without major modification of its structure, combining DNN
with hand-crafted features or ensembling the feature outputs generated by multiple DNNs.
Each strategy has its advantages and disadvantages. Firstly, fine-tuning an available pre-
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trained CNN is the most feasible approach and could be quickly adapted to a wide range of
applications. However, the obtained results strongly depend on the similarity between the
target dataset and the dataset for pre-training the reused network. Secondly, integrating
hand-crafted features could exploit specific features of the target dataset and thus increases
the accuracy but with the burden of designing an invariant feature set which usually requires
expert knowledge of the domain. Finally, ensembling could be useful in most cases but the
computation complexity is heavily increased. For example, in [79], three different pre-trained
deep CNNs are jointly employed to perform feature extraction and the extracted feature
vectors are concatenated before being used to train the two fully connected layers for the
classification task. The size of the full network and the required number of calculations are
at least three times bigger than the individual one. Unsupervised feature learning is also
applicable for microscope image classification but with limited reports in the literature. The
strategy is based on an autoencoder architecture, to learn visual features from the raw mi-
croscope image. In [80], based on vanilla autoencoder, a sparsity constraint is additionally
introduced to the model during the training process to reconstruct the original image. This
help to better capture specific visual features like edges besides general color and texture
patterns as can be obtained in other feature extraction method (in particular, Discrete Co-
sine Transform). The sparse weights are then used as convolution filters on the input image
to build feature maps being condensed by an average pooling. Finally, a softmax classifier
is trained in a supervised manner to specify if the input image is cancerous. Another im-
proved variant of sparse coding to efficiently compute large-scale features is applied in the
classification of distinct components of tumor histology sections [81].

2.3 Generalization in deep learning

The performance of any learning model is evaluated by the ability to generalize from limited
training examples to new data which was not used to train the model [82,83]. This general-
ization concept resembles the learning process of humans, in which knowledge is transferred
from one problem to the other [84]. For example, pathologists learn the properties of cells
in representative tissue samples and apply the knowledge to give diagnosis to other sam-
ples. Supervised deep learning is currently still the most popular approach and has achieved
significant success in many applications of computer vision. In this method, the test error
on unseen data is a measure of how well the learned model generalizes [85, 86]. Figure 2.10
shows a general schematic of training a deep learning model and corresponding errors. As
shown in the figure, supervised learning algorithms rely on the assumption of independent
and identical distribution (I.I.D) between testing and training data, which requires the future
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data to be distributed identically like the data used for training the model. Note that the
true distributions for training and testing data are hidden and we can only obtain the data
samples. Thus, after a deep learning model is effectively trained in one training domain, the
I.I.D assumption may not hold and its validity in the testing domain is lost.

Figure 2.10 General schematic of training a deep learning model.

To measure the generalization performance of an algorithm, a simple way is to measure
its performance on a held-out testing set containing unseen examples. An algorithm that
works well on the training set but fails to generalize on the testing set is considered to be
overfitting. Figure 2.11 shows the typical training error and test error as a function of the
amount of training data [87]. The generalization gap is the difference between the two types
of error and reflects how much worse the performance would be on a new data set compared
to the training data. The goal of training deep learning algorithms is to reduce the test
error or generalization gap. As the number of available training data points is small, the
sampling noise is significant and the training data set becomes less representative of the true
distribution that the future data is drawn. On the other hand, in a large training set, it is
more likely there will be a related training sample for any particular test example while less
likely there will be false regularities consistently appearing across samples [88]. In addition, it
is harder for the network to memorize a large training set than a small dataset. Therefore, the
restricted data available at training time limits the generalization of deep learning methods.

Another aspect to reason qualitatively about generalization is the model capacity, which
roughly corresponds to the number of trainable parameters [88]. A network with little ca-
pacity is more likely to be underfitting, or less likely to fit all the regularities of the data in
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Figure 2.11 Relationship between generalization error and the training set size.

the feature space. However, if it has too much capacity, it can store or memorize the correct
prediction for every training example and fail to generalize on unseen testing examples. As
shown in Figure 2.12, it is necessary to design network architectures with a balanced capacity
to have good generalization.

2.3.1 Techniques for improving generalization

This section describes existing techniques for improving deep neural network generalization.
Most deep learning methods combine several of them in practice. It is worth highlighting
that not every technique has theoretical justification and the use of any single or multiple
techniques does not guarantee good generalization [88].

Data augmentation

This is one of the most common techniques used in deep learning methods due to its simplicity
and high effectiveness. Given a limited training set, we can artificially increase its effective
size by applying a set of random distortions or transformations to the inputs to the deep
neural network. The transformations are usually considered as a way of simulating the
domain shift and thus improve the generalization [89]. They could be simple conventional
image transformations or be modeled with deep learning-based networks. The conventional
transformations could be used alone or in combination, such as translating, rotating, zooming,
color jittering, adding noise or warping, but their effects depend on the types of application
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Figure 2.12 Relationship between generalization error and the number of trainable parame-
ters.

and images. For example, randomly distorting the colors of objects inside stained brightfield
images might decrease the performance as the objects in augmented image have inverted
colors with regards to their true stained colors. The data augmentation could be done in
an offline manner (augmented data are generated and stored before training the networks)
or online manner (random transformations are applied on every input at training time). On
the other hand, model-based augmentation usually relies on an image-to-image translation
model, for example, CycleGAN [90], which transforms images from one domain so that they
have the style or characteristics of images from another domain. So the diversity of training
images is increased as each image sample can have appearances in different environments.

Regarding the lack of training data, various transfer learning techniques are also considered,
such as training the DL model on large available image datasets before retraining it on the
target dataset( “transferring the knowledge”) [91].

Reducing capacity

As suggested by the typical relationship between generalization error and model capacity in
Figure 2.12, a direct strategy could be designing architecture without too high complexity.
This could be aided by using the relevant number of layers, the number of neural units per
layer [88], using compact structures like depth-wise convolution instead of standard convo-
lution [92] or the bottleneck layer [93]. To find a balanced architecture that has enough
capacity to learn distinguishing features but can avoid overfitting, we can rely on the val-
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idation set to tune the hyper-parameters. However, in practice, if we start by designing a
simple network, this network could be too simple with regard to potential approaches. Some
following techniques tend to maintain high capacity and prevent overfitting.

Regularization

Regularization is the technique that adds one or several regularization terms or regularizers
into the training cost function. The total cost function is then the sum of the average loss
and regularizers. Intuitively, regularizers penalize hypotheses that we think are unlikely to
generalize well or unstable. For example, a cost function with RL2 regularization to train a
linear regression model is represented by:

C(θ) = 1
N

N∑
i=1

L(y(x, θ), t) +RL2(θ)

where
RL2(θ) = λ

2

D∑
j=1

w2
j

In this case, RL2 penalizes the sum of squares of all the weights of the network and favors
hypotheses where the norms of the weights are smaller. If two hypotheses can fit the training
set, the hypothesis with smaller weights will produce a small loss while the other is producing
a bigger loss and is probably more sensible when data distribution changes [88].

There exists another type of regularization which injects some stochasticity into the network
computations to prevent overfitting, for instance, the dropout technique [94]. Instead of
adding a regularization term to the cost function, it turns off each neural unit with a proba-
bility ρ. This is equivalent to multiplying the activations φ(z(i)) in a layer li with a randomly
distributed binary mask mi:

li = mi.φ(z(i))

Note that at test time, all units will be turned on to avoid stochastic prediction and thus the
weights are scaled by 1− ρ to compensate for the latent signal level. The dropout technique
is more frequently applied to fully connected layers because they contain significantly more
trainable parameters than convolution layers and thus make the network more susceptible
to overfitting. Some other stochastic regularization effects could also be observed in the
optimization methods, such as batch normalization [95] or stochastic gradient descent [88].
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Early stopping

This technique is applied during the training process and can be represented by Figure 2.13.
In the training, a validation error is considered to represent a testing error or generalization
error. Thus, this technique aims at finding the training point where the validation error
starts to increase. In practice, due to the fluctuation of training and validation error during
training, it is not reliable to obtain this starting point. There is usually a heuristic alternative,
in which we define a “ threshold τ” and a “patient period δ”, and we will stop training if
after this period δ, the validation error can improve less than τ .

Figure 2.13 Relationship between generalization error and the training epochs.

Ensemble learning

This technique is based on the observation that the average prediction of multiple networks
trained independently on separate training sets has lower variance than individual networks
and an ensemble of networks often generalizes a bit better than single networks [88]. In
practice, there are some effective approaches to producing an ensemble of networks, such as:

• Train the same deep neural network on random subsets of the full training data set.

• Train different deep neural networks on the same training data set.

• Combine deep neural networks with other learning algorithms or transformations.
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This technique has been shown very effective in boosting the performance of DL model in
various computer vision applications.

2.3.2 Application of generalization techniques in microscopy image analysis

In this section, we review existing techniques that were developed in DL methods for mi-
croscopy image analysis.

Data manipulation

DL methods are categorized into three main groups: unsupervised, partially supervised and
supervised learning with many of them currently using supervised learning as they usu-
ally bring the highest performances [91]. However, the deep learning models have already
experienced difficulties in achieving good generalization when training with a limited la-
beled dataset of microscopy images. A direct method is to create a large and diverse public
database to be reusable in different applications. For example, the Cancer Genome Atlas
(TCGA) database provides pixel-wise annotations for nuclei from different organs [96]. Some
other specific datasets are also undisclosed to the public in competitions [97]. However, this
approach requires an enormous effort and is not always readily available in many practical
cases. Thus, in most of the published articles, data manipulation has been studied to deliver
a sizeable set of representative samples for training DL models, usually with millions of pa-
rameters. We can categorize existing works into two major types: data augmentation based
on conventional image transformations and data generation based on DL models. Authors
in [98] performed comprehensive experiments on the sampling and data augmentation meth-
ods together with their related parameters and analyzed their impact on the generalization
accuracy of microscopy image segmentation. They concluded that rotation, reflection, and
jitter are the best transformations to reduce the generalization error gap and are hypothesized
to closely mimic the visual variations. In practice, data augmentation is applied for training
most DL segmentation methods across a wide range of applications, including segmentation
of cells [11, 99], organelles [100, 101] or vessels [102]. In most deep learning-based classifiers,
the augmentation using image flipping, rotating, or intensity altering is a typical strategy
to achieve an accuracy of more than 90% [12], such as in cancer detection [103] or cell type
classification [68,73,104].

Other works propose to create a supported training dataset by data generation strategies.
For example, to segment nuclei in bright-field images, the authors in [105] design a workflow
to obtain both the bright-field and the corresponding fluorescent images of the samples
which enables generating ground-truth easily for training the DL network. To alleviate
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such laborious procedure, many works rely on some generative models such as Variational
Auto-encoder (VAE) or Generative Adversarial Network (GAN) to generate simulated data.
For example, CycleGAN is a popular style transfer model which is used to convert images
from one source domain to the target domain. With the source dataset that is easy to obtain
the ground truth (for e.g fluorescent images), a new dataset of images similar to target images
could be synthesized and used as annotated training data [106, 107]. The main drawbacks
of this method are that the adversarial network is difficult to train and usually has high
computational complexity. In addition, the synthetic images may have low quality and many
artifacts. Thus, further processing steps or techniques need to be applied, such as domain
adaptation methods. Recently, the self-supervised learning method has also been studied for
nuclei segmentation in histopathological images [108]. The self-supervised learning involves
generating free labels from the original data to pre-train the DL network, referred to as
a pretext task. It is supposed to improve generalization because solving the pretext task
enables a network to learn generic features independent of the target task and reduce the
overfitting to domain-specific regularities [89].

Domain adaptation

Due to many factors such as illumination, staining or image quality, there is a difference in
distribution between the images used for training the DL network (source domain) and the
images that need the prediction from the trained network (target domain). This domain
shift probably degrades the performance of any DL model as they are designed with the
assumption of Identical Independent Distribution (IID). Domain adaptation (DA) methods
focus on reducing the discrepancy between the source and target domains by leveraging
unlabeled target data and could be viewed as an extension of transfer learning.

Without the need for target data labeling, it would be beneficial for pathologists in real-
world scenarios. However, this method has been barely studied for microscopy image analysis
[107]. [109] is the first work that uses domain adaptation for epithelium-stroma classification
in histopathological images. Their basic idea is to search for a reconstruction coefficient
matrix to transform the source and target data into a common space where data in one
domain could be reconstructed linearly by using the data in the other domain and then
adjust the convolutional kernels for processing the images in target domains. In [110], for the
classification of prostate histopathology images, the adaptation relies on adversarial training
to minimize the distribution discrepancy in feature space between the two domains. In this
architecture, the two feature spaces are generated from the source and target network, where
the source network has already been trained using supervised learning. By jointly training
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the discriminator and target network using the GAN loss, the target network could extract
domain invariant features. The methods proposed in [111] and [107] are designed for domain
adaptation in nuclei segmentation. Both of the works are based on GAN architecture and use
synthetic histopathology images for data augmentation. While the first work only considers
pixel-level adaptation, the latter minimizes also the domain gap in the feature levels.

There are two major disadvantages of DA methods [89]: (1) the model adaptation or fine-
tuning has to be repeated whenever there is a domain change, and (2) the assumption that
target data are readily available may not be realistic in clinical settings as the image samples
of a future patient are not known before the deployment of the DL model.

Network design

In the domain of microscopy image analysis, designing a novel model architecture is chal-
lenging, and requires computational knowledge which is uncommon among biomedical sci-
entists. Most existing DL methods focus on training strategies, such as data manipulation
and transfer learning, to make the model more generalizable. In practice, some computer
vision-winning architectures such as ResNet [112] or Mask R-CNN [113] have been commonly
reused as the backbone in many works. The common perception is that these models should
also be able to produce high performances on almost any type of digital image. However,
there exists a few works that focus on designing novel network architectures for improving
the learning generalization [89]. They demonstrate that specially designed architecture with
an adapted optimization strategy could work better than pre-trained winning models. For
example, the model MicroNet, recently proposed in [114], extends U-Net [6] by designing a
supervised multi-resolution network architecture. The network processes the input at multi-
ple resolutions, maintains intermediate connections between layers, and generates the output
using multi-resolution deconvolution filters. The weighted loss function is calculated by com-
bining the losses of all the branches. The batch normalization technique is applied to all the
branches during training. The proposed network could be used to segment different objects
in fluorescence microscopy and histology images such as cells, nuclei and glands after specif-
ically modifying the network hyper-parameters. However, it relies on stain normalization to
reduce the effect of staining variation across laboratories and conditions. In addition, several
special data augmentation techniques were used, that require a visual examination to ensure
the distortions are realistic and not overshoot. Authors in [115] also proposed a multi-scale
network, SAMS-NET, that is robust to stain variations in H&E images. In this work, they
introduced a loss function that includes a pre-defined weighted map that is sensitive to the
Haematoxylin intensity and important areas in the image. In other methods, authors de-
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signed architectures that can exploit more supervised information from the labeled dataset.
For example, DCAN [116] is a dual architecture that outputs the nuclear cluster and the
nuclear contour as two separate prediction maps. [117] proposed a network with a custom
weighted cost function based on the relative position of pixels within the image to improve
and stabilize the prediction of the inner nuclei and contour. Recently, authors in [118] de-
signed a multi-head network to exploit the vertical and horizontal distances of nuclear pixels
to their centers of mass.

Ensemble learning

Ensemble learning was also studied extensively to improve the performance of DL classifiers or
segmentation models in microscopy image analysis. In these designs, the component networks
could be combined in different ways. For example, to take advantage of transfer learning, the
ensemble model could be composed of multiple pre-trained networks, each of which processes
the same input images or input images of different scales. This simple technique has been
shown very effective to boost performance across a wide range of applications. In [79], the
authors designed a model that concatenates the features extracted from three different pre-
trained networks before feeding them to the fully connected layers to perform the classification
of sub-cellular organelles fluorescent images and pap-smear bright-field images. To identify
phenotypes in cellular images, the M-CNN architecture developed in [78] processes multiple
scales of an input image over seven parallel convolutional pathways and then concatenates
the output feature maps to feed into a final convolutional layer. In a recent method aiming
at breast tumor nuclei segmentation, described in [119], the authors designed a two-stage
network to first concatenate feature maps from three U-Net like DCNNs (each has either
VGG-19 [120], DenseNet-121 [121], or ResNet-101 [122] encoder), then use the concatenated
images as input to an additional U-Net [6].
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CHAPTER 3 RESEARCH OBJECTIVES

3.1 Problem Statement

Recently, deep learning or deep convolution neural network is emerging as a powerful method
that can be applied to various tasks of biological-image analysis, including segmentation and
target classification [29, 123]. Compared with conventional machine-learning approaches,
deep learning could directly process raw image data to automatically learn optimal features
of objects’ representation in an image. Thus, it helps to avoid the burden of hand-crafted
feature engineering that requires much domain expertise and is inherently biased by design-
ers. Even though deep learning models could produce significant improvement in certain
applications, it still needs great effort to address the unique challenges for microscopy im-
age analysis. To achieve top performance, many deep learning methods are based on either
increasing the depth of neural network [38], integrated complex modules in parallel at each
layer [124] or even combining multiple deep networks as in multiscale architectures. This
strategy increases the number of learnable parameters or degrees of freedom. Thus, it in-
creases model complexity and the risk of over-fitting the training dataset. As microscopy
image datasets usually have limited annotated data, the deep learning-based methods are
more susceptible to over-fitting problem and lack the generalization ability to achieve sat-
isfactory results on unseen images. On the other hand, designing an efficient algorithm to
generate additional annotated data or assign the correct label to a non-annotated image for
enlarging training data to improve generalization capability is still a challenging problem. In
many cases, the limited data possibly make the deep learning model have lower performance
than conventional hand-crafted machine learning methods. For example, in the case of HeLa
cell organelles classification, the state-of-the-art top-performance deep neural networks can
not outperform conventional hand-crafted based feature extraction methods [125]. As a re-
sult, the application of deep learning models as common algorithms in supportive diagnostic
tools in a practical scenario is strongly impacted.

There are two principal challenges preventing the deep learning algorithms from reaching
a good generalization ability in microscopy image analysis: the scarcity of labeled data
and high data variability [126]. Firstly, there is usually a lack of labeled data because
manual annotation is a time-consuming and costly process that requires the expertise of the
field. Secondly, microscopy images obtained from different experimental conditions present
significant appearance variation because each sample preparation and scanning procedure
has a wide range of parameters within or across laboratory settings together with underlying
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biological variability [15]. Usually, a finite number of training images are acquired under
specific conditions that are likely different from those of target test images. This means that
the testing domain in feature space differs from the training domain, or there is a “domain
shift” (Figure 3.1).

Figure 3.1 Illustration of data domain shift due to high variation [9].

Improving the generalization for microscopy image analysis in practical conditions is a chal-
lenging problem. As any finite set of training images only represents specific aspects of images
that are possibly observable, any standard supervised deep learning is likely to not generalize
well on unseen images. An ideal solution should be able to extract domain invariant features
from finite labeled training samples in the source domain that can work well in the target
domain. A trivial strategy that exploits additional source domains or data augmentation
may not enhance or even degrade the generalization of a model [126]. There exist two groups
of machine learning methods to directly deal with the appearance variability of microscopy
images: pre-processing image data and modifying the learning model with a relevant train-
ing mechanism [15]. The first category focuses on staining normalization, data augmentation
through color transformations or a combination of the two techniques. Methods of the second
category are mostly based on domain adaptation in which a learning model learned firstly
from a source domain will be fine-tuned lately to adapt to a new target domain. The adap-
tation will be done by retraining entirely or partly the model on samples of target data.
So, this method requires collecting data from target domains and going through the process
of retraining the model. While the manual pre-processing image techniques are specific to
each application and produce limited performance gain, the domain adaptation approaches
require collecting future target samples, which are usually unavailable in clinical settings, to
adjust the trained model before the deployment.

Thus, more efficient deep learning algorithms, that can automatically extract the features
from raw images and exploit well available data to improve generalization, are still much
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needed in practice.

3.2 Specific Objectives

The overall goal of this research project is to improve the generalization and applicability of
deep learning in the segmentation and classification of microscopy images. To achieve our
goal, we establish the following objectives:

3.2.1 Objective 1

We develop an unsupervised segmentation model that is domain-adaptable. In particular,
we focus on the automatic segmentation of nuclei from the cytoplasm, where samples are
stained with hematoxylin and eosin agents, as this is a common task in many histopathology
procedures. Existing models typically offer high performance but are heavily dependent on
expensive manual annotation. The benefits of domain-adaptability make the design suitable
for deployment in a variety of histopathology settings.

3.2.2 Objective 2

We develop new classification models to deal with the problem of limited labeled microscopy
images acquired from different imaging domains. The algorithms are expected to have good
generalization given small training sets, requiring low complexity and achieving high perfor-
mance on unseen test images. This problem is regarded as weakly supervised training and is
currently still a challenging problem for any deep learning model.

3.3 General methodology

3.3.1 Segmentation

In order to develop unsupervised learning segmentation model in objective 3.2.1, we design a
solution based on two following strategies. Firstly, physical aspects of the sample preparation
and image acquisition process were investigated to extract prior knowledge which are useful
for the model design. Knowing the visual appearance of nuclei and cytoplasm after staining
helps to develop a pipeline to generate synthetic data for training the deep learning network.
Moreover, the optical density parameters enabled us to perform the color separation between
them. Secondly, we attempt to build modular design where parallel modules process different
subspaces of features and provide a user-adjustable controlling parameter to combine the
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output feature maps. We use a data-centric approach where the available information from
target data is extracted during the network training, which benefits the domain adaptability.
Unlike other domain-adaptable methods, we do not collect a set of realistic images in the
target domain to adapt the DL model before its deployment.

To evaluate the performance of the developed model and compare with existed works, we use
different datasets that are publicly available. The images from these datasets are collected
from multiple hospitals across several countries, ensuring the diverse appearances for testing
purpose. The performance metrics are recorded following the common formulas in recent
works. This first contribution was submitted to the Journal of “IEEE Transactions on Medical
Imaging” and is presented in chapter 4.

3.3.2 Classification

For objective 3.2.2, we first explore the combination of compact structures to design a model
for learning microscopy images acquired from different imaging devices and with various
objects of interest. This is the first work that elaborate a light weight model for multi-
domain learning of microscopy images and without requiring the adaptation of domain-
specific parameters. Microscopy datasets are usually small and have sparse non-identical
distributions. As the number of labeled samples per class is small, the distances between
feature spaces in different domains are large, especially when both the visual appearance and
object of interest differ. Therefore, it is difficult for the deep learning network to learn unified
representation, or converge to an efficient feature set, across various datasets.

In addition, we will develop new regularization techniques for the training of supervised
convolution neural networks. A standard approach to overcome the lack of labeled data is
data augmentation. However, it is sensitive to select the types and ranges of transformations
to be suitable for each application and it is unclear how to control the outlier caused by
mistaken augmented data. The regularization criteria will be integrated into the learning
objective such that the algorithm could be trained in an end-to-end fashion. This second
contribution was submitted to the journal “Computer Methods and Programs in Biomedicine
Update” and is described in chapter 5.

Then, instead of the above generic model, we focus on developing deep learning architec-
tures that can outperform state of the art models in a specific application, particularly the
fluorescent microscopy images. These models are expected to produce higher performance
than the previous generic model. As the first solution to achieve this goal, we design a model
combining lightweight convolution neural network structures with multi-resolution analysis.
In each decomposed spaces of an input image, convolution kernels will extract discriminative
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features and provide various pattern characteristics of the same organelle. This third contri-
bution was published in the conference proceedings of “International Conference on Image
Analysis and Recognition ICIAR 2019” [125] in August 2019 and the detail is provided in
chapter 6.

In our second approach, we develop an efficient model based on a compact convolution
neural network and deep embedded clustering. The operation of the model differs from other
works in that prediction is performed by unsupervised clustering in feature space instead of
producing class probability by the softmax function. We also formularize a regularization
method to support the clustering technique. This fourth contribution was published in
the conference proceedings of “42nd International Conference of The IEEE Engineering in
Medicine and Biology Society EMBC 2020” [127] and is presented in chapter 7. The adopt
of regularization technique for optimization was inspired by our another work published in
the conference proceedings of “Pattern Recognition - ICPR 2020 Workshop of Deep Learning
for Pattern Recognition” [128] and is described in Annex A.

Unlike common methods for microscopy image analysis, which exploited existing pretrained
heavy DL networks and extensive data augmentation to get better performance, we elabo-
rate new approaches to surpass their performances even without data augmentation or with
extremely less available training data.

For performance evaluation and comparison, we obtain data from multiple public datasets.
Especially, to assess the multi-domain classifiers, we use datasets generated by different
laboratories and the images represents samples at different cellular levels, including tissue,
cells and organelles. We quantify the performances by recording the popular classification
metrics.
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4.1 Abstract

Existing deep learning (DL) models for the segmentation of nuclei in histopathology images
typically offer high performance but are heavily dependent on expensive manual annotation.
Even when annotated public datasets are available, their generalization capability and op-
eration explainability are noticeably limited. In this work, we present an unsupervised DL
model for nuclei segmentation in histopathological images that is interpretable and domain-
adaptable. Our approach is composed of two strategies: (1) integrating relevant prior knowl-
edge of image acquisition conditions into the model’s design, and (2) flexibly combining a
classical algorithm with a DL-based encoder-decoder network. We also focus on exploiting
available information from each target image during training of the DL network. This is
achieved by generating a synthesized training dataset that is visually similar to the target
image, and by using a generated approximate mask for the target image to regularize the
network parameters. We evaluated the performance of our method on three public datasets
of histopathological images used in recent challenges for nuclei segmentation. The results
demonstrate that our method can outperform other unsupervised segmentation approaches
and produce results that are comparable with supervised DL models.

4.2 Introduction

Histopathology images provide helpful data that pathologists need to analyze before grading
the stage of various diseases, in particular cancer. There will be many difficulties if this as-
sessment is done manually, considering the high complexity and variation of sample images.
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Computational histopathology alleviates these limitations by adopting digital image process-
ing and computer vision techniques to analyze the images automatically. This approach has
been demonstrated to improve the performance and throughput of many analysis tasks, in-
cluding detection, segmentation, and classification of different objects of interest [129]. In this
study, we focus on the automatic segmentation of nuclei from the cytoplasm, where samples
are stained with the widely used hematoxylin and eosin (H&E) agents, as this is an essential
step in most histopathology procedures. Pathologists can obtain various morphological and
appearance metrics, such as size, pleomorphism, distribution, and nucleus/cytoplasm ratio,
that are important for disease diagnosis and prognosis [130].

Nuclei segmentation in H&E histopathology images is challenging for several reasons. The
first challenge is the sparse and unclear color separation between nuclei and cytoplasm regions.
Eosin is an acid that turns the basic constituents of the cytoplasm and collagen fibrils pinkish.
In contrast, Hematoxylin dyes the acidic components of the cell a bluish color. As the most
acidic components are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), not only
the nucleus but also the RNA-rich regions of the cytoplasm and the surrounding matrix of
cartilage produce dark blue or purple color [131]. The wide variation in cell morphology
is another difficulty for the segmentation task. Not only do cell nuclei in different organs
tend to have different sizes and textures, but nuclei of the same cell type can also vary in
appearance.

Image processing techniques for nuclei segmentation are based on a few popular algorithms,
such as thresholding, watershed, active contours and graph cuts, to exploit the distinct color
and morphology of the nucleus within a cell [108, 132]. These classical algorithms are theo-
retically interpretable because they comprise a fixed set of rules with certain preconditions
to ensure the desired outputs. However, they cannot generalize well in real-world situa-
tions since histopathology image data often do not conform to the preconditions, considering
diverse tissue types and appearances.

On the other hand, data-driven methods exploit characteristic features extracted from real
images to produce higher performance. Early machine learning approaches rely on manually
designing a diverse set of nuclei features such as color, texture variance, shape, and inten-
sity gradients [133]. This feature engineering process involves mapping from visual features
represented in a dataset to theoretical formulas. Thus they are time-consuming and highly
specific to a given target dataset. Modern Deep Learning (DL) approaches are more powerful
in practical scenarios as they are designed to learn distinguishing features directly from raw
image data. Unfortunately, DL algorithms work under the assumption that the training and
testing data are independent and identically distributed. In practice, they cannot generalize
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well beyond the data examples that were used to train the network. Moreover, most exist-
ing approaches use a supervised strategy, which requires manual pixel-wise annotations by
experienced pathologists. The annotation process to create a ground truth image dataset is
time-consuming and often marred by high variability between observers.

Motivated by the lack of segmentation methods that don’t depend on annotated training
sets, we propose an interpretable and adaptable model based on an unsupervised approach
to segment the nuclei in histopathology images. In our approach, rather than use a black-
box DL model (and attempt to explain its performance), we choose instead to design an
interpretable solution, by combining the following strategies:

• We leverage physical parameters in the imaging process that are known or can be
obtained experimentally, such as the transformation matrix for color deconvolution of
staining agents.

• We propose a modular design where two parallel modules process different subspaces
of features; output feature maps are then aggregated by a user-adjustable controlling
parameter. As users can evaluate which subspace of features is more important than
the other, this enhances model interpretability.

To address the challenge of generalization in deep learning-based models, we use a data-
centric approach where the available information from target data is extracted during the
network training. In particular, we present a simple but effective method to estimate the
background textures and the stained nuclei objects directly from the target image, and to use
this information to synthesize the training dataset. In contrast to other domain-adaptable
methods, we do not need to collect a set of realistic images in the target domain to optimize
the DL network before its deployment.

In summary, our main contributions in this study are:

• Designing an unsupervised deep learning framework for nuclei segmentation without
training data annotation.

• Proposing a novel strategy for interpretable model design by using physical parameters
and user-controllable hyper-parameters.

• Developing an integrated optimization function to improve network adaptability to the
target image.

This paper is organized as follows: we summarize related works in section 4.3, then describe
our methodology in section 4.4. In section 4.5, we present the three public datasets and
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evaluation metrics used in this study. We report the different experimental results in section
4.6. Finally, we discuss the impact and conclusion of this work in sections 4.7 and 4.8.

Figure 4.1 Inference mechanism to produce nuclei segmentation mask.

4.3 Related Work

Most published articles on automated nuclei segmentation use single image processing al-
gorithms, or a combination thereof, among intensity thresholding, morphological filtering,
region growing, watershed, clustering, deformable model fitting, and graph cuts [130] [134]
[135] [136]. These methods lack robustness to the appearance of nuclei in histopathologi-
cal images, such as inter-nuclei and intra-nucleus color variations or color diffusion between
nuclei and background regions.

Deep neural networks, i.e. deep learning, has become the dominant trend for research in
microscope image analysis since 2015 [22]. Unlike methods based on hand-crafted feature
extraction, DL algorithms can extract optimal discriminant feature representations directly
from raw image data by optimizing a cost function. A comprehensive review in [137] reveals
that Convolutional Neural Networks (CNNs) and Fully Convolution Neural Networks (FCNs)
are the most popular architectures for microscopy image segmentation. In some cases, other
architectures such as recurrent neural networks and stacked autoencoders have also been
used.

Most state-of-the-art nuclei segmentation methods apply supervised training when annotated
images are available to guide the optimization of the DL model [108]. However, due to
the limited size of these datasets, with just dozens to hundreds of images, training a DL
model generally suffer from serious overfitting or low generalizability. In this situation, a
practical solution reported in many publications is transfer learning. Specifically, the feature
extraction module of a network previously trained on a large natural photographic dataset,
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such as ImageNet [138], is fine-tuned to extract useful features from objects of interest in a
microscopy dataset with limited annotations.

Several strategies to deal with the training data requirement have been proposed. A straight-
forward method is to create a large and diverse public database to help produce DL models
that are reusable in different applications. For example, the Cancer Genome Atlas (TCGA)
represents a substantial effort to provide pixel-wise annotations for nuclei from different or-
gans [108]. The major disadvantage is that, before using the pre-trained models, the patholo-
gist needs to verify that their own data have identical representations to those of the database
used for training, which is very challenging to do [139]. This is because the representation
similarity depends on various factors including microscope type, optical settings, and exper-
imental preparation. Otherwise, the model will produce unexpected results that are difficult
to assess visually.

In unsupervised domain adaptation (DA) methods, it is assumed that a certain number of
unlabeled images in the target domain can be collected and that there exists a large set
of annotated images referred to as source domain images [107]. A domain refers to a set
of nuclei images that are visually similar and are captured in the same conditions. During
training, a DL network is first optimized with labeled images in the source domain, then
it is adjusted via an estimated relationship between unlabeled target images and source
images, such as the distance between the distributions of extracted feature maps. However,
in many cases, it is impossible to collect target data before designing and optimizing the
DL network [89, 140]. In clinical settings, the images and their acquisition parameters for a
new patient are not known in advance. Conversely, it is impractical to require future data to
conform to predefined sample preparation and image capturing conditions. Other works have
attempted to use generative DL models to directly translate images from a source domain
to a target domain before training the deep network [141]. Although demonstrating high
potential, these methods remain prone to uncontrollable artifact generation due to the high
complexity of the training process [139]. Another promising method is the self-supervised
approach proposed recently in [108]. To train a fully convolutional network that outputs a
segmentation map, the authors cascaded it with another CNN which learns to classify the
predefined magnification levels of input images. Although the classifier component provides
a self-supervision signal for training without image annotation, an annotated validation set
is still needed to determine the optimal model.

In summary, the existing methods cannot eliminate the dependence on labor-intensive and
time-consuming histopathology annotation. They also provide no guarantee of generalization
when deployed in the clinical setting because no information from the real target domain can
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be exploited when training the DL model. In this study, we propose a solution to these two
shortcomings by developing an unsupervised and domain-adaptable model.

4.4 Method

In this section, we describe the core principle of our nuclei segmentation framework. We
first summarize the general process of producing segmentation masks in section 4.4.1, then
explain in detail the two main structures in sections 4.4.2 and 4.4.3.

4.4.1 Inference mechanism

As represented in Figure 4.1, we introduce two pathways for the inference pipeline, a nuclei
attention module based on color deconvolution and a deep learning-based encoder-decoder
structure. These pathways will produce two latent representations za and zd, which are
fed into a decision block. Here, they will be aggregated by a control parameter α (where
α ∈ [0.0, 1.0]) to produce a unified representation z.

z = αza + (1− α)zd (4.1)

Our goal is to allow each pathway to produce a different perspective to contribute to the
prediction map. Then, the automatic thresholding Otsu method [142] is applied to z to create
the binary semantic segmentation. After that, we compute the distance to the background
map and select the minima of the opposite of the distance as the markers for the watershed
algorithm [143] to generate the final instance segmentation mask.
The controlling coefficient α has a default value, but the user can change it at inference
time to adjust the performance. This design helps to address two limitations: (1) α is not a
hyper-parameter to be defined before training the DL-based encoder-decoder model; (2) the
α value most adapted to the target data can be explored after deployment.

4.4.2 Nuclei attention

As the first pathway, we generate a feature map that highlights the probable nuclei locations
in the target image based on their true color. To do so, we perform color deconvolution
on the target RGB image using the method proposed in [144] to separate the Hematoxylin
channel, which provides better nucleus contrast. Considering a particular pixel location (i),
there are different amounts of staining dyes. The optical density (ODi) level in each channel
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of the RGB image is linearly proportional to the amounts of absorbing dyes, as follows:

ODi = − log(yi) = IHEDK (4.2)

Here, yi is the image pixel values in RGB format. The vector IHED contains the amounts of
dyes at a given pixel, and K is the normalized matrix representing the OD of pure stains (a
stain with a single dye). The authors of [144] provided K for the three most common dyes
(Hematoxylin (H), Eosin (E), and Diaminobenzidine (D)) as follows:

K =


0.65 0.70 0.29
0.07 0.99 0.11
0.27 0.57 0.78

 (4.3)

Each row of K represents the independent contribution of a stain H, E or D in each of
the R, G and B channels. These stain-specific values are determined by measuring relative
absorption for red, green, and blue on slides stained with each of the three dyes.

We can thus obtain the orthogonal representation of the dyes forming the original RGB
image:

IHED = − log(yi)K−1 (4.4)

Here we are interested in the Hematoxylin channel in IHED as it highlights the cell nuclei
and use it as the nuclei attention map za.

4.4.3 Deep learning encoder-decoder network

An encoder-decoder module is used as the second pathway, to produce a feature map to
segment the target image. To train the network, we want to exploit as much as possible the
available information from the target image by performing two main steps: (1) synthesize a set
of similar images with precise masks and (2) regularize the network parameters by the target
image with the approximate mask. In this work, we used U-Net [6] layers for the encoder-
decoder network, but other segmentation models could be employed in our framework. The
training process is summarized in Figure 4.2.
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Figure 4.2 Training process for the deep learning-based encoder-decoder module.

Synthesizing target-domain dataset

In this first stage, we aim at creating a synthetic dataset from every single target image.
Firstly, we randomly generate gray-scale images of nuclei objects and corresponding masks.
Each sample pair is created by Algorithm 1. Our algorithm is inspired by the CowMask
algorithm [145] which can generate random dropout regions for image augmentation when
training deep learning networks for the classification task.

In brief, we first create a two-dimensional noise sample from a normal (Gaussian) distribu-
tion. Then we apply the smooth filtering in which the scale σ is drawn from a log-uniform
distribution logU in a pre-defined range (σmin, σmax). To define the maximum proportion of
nuclei area in the sample image, we rely on a threshold τ which is defined via the inverse
error function erf−1 of the normalized distribution. As demonstrated in [145], this thresh-
old defines the intensity level below which the proportion of smooth noise pixels is p. The
value of p is drawn from a uniform distribution U within the pre-defined range (pmin, pmax)
Therefore, we can limit the maximum proportion of nuclei pixels within the generated image
us. To further control the scale of the nuclear blobs, we use another user-defined threshold
Tm. After dropping the low-intensity pixels and normalizing the resulting image to the full
dynamic range [0,255] as usn, a binary mask ys is created by comparing each pixel of usn with
Tm and used to extract the desired nuclei blobs xs by element-wise multiplication with the
normalized image. Note that the binary mask ys of the nuclei is used later as the supervision
signal for training our DL network.

Secondly, we transform the grayscale image xs into a color image in Hue-Saturation-Value
(HSV) space to simulate the color of Hematoxylin-stained nuclei. Compared to the Red-
Green-Blue (RGB) color space, HSV isolates the Hue channel, which we exploit for color
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Algorithm 1: Algorithm to generate each nuclei image and corresponding mask.
Input: size H ×W
Input: proportion range (pmin, pmax)
Input: scale (σmin, σmax)
Input: mask threshold Tm
Begin

# Draw noise sample from normal distribution:
x ∼ NH×W (0, 1);
# Smooth noise sample with a random sigma:
σ ∼ logU(σmin, σmax); xf = Filter(x, σ);
# Compute mean and standard deviation:
m = mean(xf ); s = std(xf );
# Set a random proportion:
p ∼ U(pmin, pmax);
# Inversely compute the threshold:
τ = m+

√
2. erf−1(2p− 1).s;

# Drop pixels in proportion p:
us = xf ≥ τ ;
# Do binary thresholding to get the nuclei mask:
usn = normalize(us); ys = usn ≥ Tm;
# Extract nuclei objects:
xs = usn.ys;

End
Return nuclei blobs image xs, nuclei mask ys
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processing. The converted nuclei image, referred to as foreground fs, will have a random
hue level within the blueish range while the saturation and value levels are left unchanged.
Next, we transform the target image into a color image in HSV space and modify the entire
hue channel to be pinkish while preserving its S and V channels. As a result, we obtain
a background bs that can be blended with the synthetic nuclei fs. Our goal here is to
exploit the background texture of the target image while camouflaging the real nuclei in the
foreground, while training the encoder-decoder network. Finally, we combine the foreground
and background using the following formula:

ss = η ∗ ys.fs + ȳs ∗ bs (4.5)

where ss is the resulting synthetic image. Each of the foreground (fs) and background (bs)
images is respectively pixel-wise multiplied with the segmentation mask ys and its inverse ȳs.
The random factor η is added to adjust the intensity of the nuclei in the synthetic image.
This acts as a data augmentation technique during training. We also randomly clear the
interior of the nuclei to model chromatin phenomena before using this equation and apply a
blurring filter to the synthetic image to soften the nuclei boundaries. Finally, the synthetic
image is transformed from the HSV space back to RGB.

Regularizing the encoder-decoder network

Besides the synthesized image-mask pairs, we generate additional pseudo-supervised training
data based on the target image. In particular, after producing the nuclei attention map
as described in section 4.4.2, we segment the nuclei by Otsu thresholding [142]. The Otsu
method may not precisely delineate nucleus boundaries and may include some non-nuclear
material. This is acceptable because the objective of this step is to guarantee that the model
will learn to minimize intra-class intensity variance, or equivalently, maximize the inter-class
variance of image pixels [3].

This target image-mask pair is beneficial for optimizing the DL model in two ways: (1) by
providing a supervision signal, thereby pushing the output performance to be better than
conventional unsupervised algorithms; (2) by familiarizing the network with the represen-
tation of the target image, thereby reducing the domain gap between training and testing
data.

The regularization is done by optimizing the weighted cost function in Equation 4.6, described
in the following subsection.
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Training procedure

Unlike most other methods, we train our DL network from scratch. In general, each training
iteration comprises two steps: (1) training on a batch of synthesized image-mask pairs (see
section 4.4.3) and (2) training on the target image with the approximate mask (section 4.4.3).
Thus, the cost function is a weighted sum of the loss terms:

C = LSD + λLTD (4.6)

where LSD denotes the average loss of each mini-batch of synthetic data in a training iteration,
LTD is the training loss on the target image with the generated mask, and λ is the weight
to balance the two loss terms. In this work, we use the same loss function for both LSD and
LTD. We followed the suggestion in [146] to define a hybrid loss function that combines soft
Dice coefficient loss and pixel-wise binary cross-entropy loss, as follows:

L = 1− 2
N

N∑
1

∑H×W
i=1 piqi∑H×W

i=1 pi +∑H×W
i=1 qi

+ 1
2

1
N

N∑
1

H×W∑
i=1

qi log pi (4.7)

In this formula, N is the input batch size, and pi is the predicted value for pixel qi ∈ {0, 1}
in the target mask of size H ×W . Whereas the Dice loss handles the imbalance between
nuclei and background areas within each image, the binary cross-entropy loss is an image-
level indicator of segmentation performance and helps to maintain a smooth gradient change
across training iterations.

We applied common data augmentation techniques on each input data during training, in-
cluding random rotation, flipping, and contrast variation. On the other hand, we observed
that random brightness and color jitter degraded the segmentation results. Note also that
when generating the synthetic dataset as in section 4.4.3, we obtained randomly varied nuclei
morphology and color values within the relevant range. This process is equivalent to offline
data augmentation, but our augmentation is well controlled at the nuclei level instead of the
whole image level as in standard augmentation techniques.

4.4.4 Implementation

We implemented our method in Python, using the PyTorch library [147] to build the U-Net
segmentation network, and the Scikit-image [148] and OpenCV [28] libraries to synthesize
histological images. To train the U-Net, we applied the SGD optimizer using Cosine Anneal-
ing schedule to set the learning rate [149], with initial learning rate lr = 0.01, weight decay
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γ = 0.001, and momentum β = 0.9. After resizing the input images to 256 × 256, we used
a batch size of 16 and applied data augmentation during each training iteration. We set the
number of maximum training epochs to 10 whereas the network still relied on early stopping
to determine the optimal model with the lowest validation error.

The overall model was trained in an end-to-end fashion, using a single NVIDIA V100 GPU.
The entire processing time for each histological image, including the generation of the corre-
sponding input data set and training the segmentation network, was less than 4 minutes.

4.5 Experiments

4.5.1 Datasets

Our proposed method was validated on three public histopathology datasets, namely MoNuSeg,
CoNSeP, and TNBC, summarized in Table A.1. The Multi-Organ Nucleus Segmentation
(MoNuSeg), in its original version, contains 30 annotated tissue images [130], each of which
was extracted from a whole slide image (WSI) of an individual patient in the Cancer Genome
Atlas (TCGA) database [96]. These images have size 1000×1000 at 40× magnification, cap-
turing cell nuclei in 7 different organs (breast, bladder, colon, kidney, liver, prostate, and
stomach) of patients in 18 hospitals in the USA. Subsequently, 14 images were added to
MoNuSeg, comprising two more tissue types (lung and brain). It is considered to be the
largest repository of manually annotated nuclei data [97].

The CoNSeP dataset consists of 41 stained images extracted from colorectal adenocarcinoma
whole slide images of 16 patients in University Hospitals Coventry and Warwickshire, UK
[118]. Unlike MoNuSeg, this dataset focuses on a single cancer type to better cover various
visual fields of different tissue components and nuclei types.

The Triple-Negative Breast Cancer (TNBC) dataset is a collection of 50 annotated image
patches, with 512× 512 dimension at 40× magnification [150]. These images were collected
from 11 different breast cancer patients at the Curie Institute in France.

In practice, it takes about 2 minutes to annotate each nucleus; it can thus take hundreds –
even thousands – of working hours for a pathologist to generate these datasets [141]. Thus,
unsupervised segmentation can offer great time and cost savings.

4.5.2 Parameters for nuclei image synthesis

In the nuclei generating algorithm for image synthesis, we set the scale parameter range
(σmin, σmax) = (5.0, 20.0) and mask threshold Tm = 127 for all datasets. As there were
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Table 4.1 Summary of the image datasets used in our experiments. TCGA, UHCW, CI
denote The Cancer Genome Atlas, University Hospitals Coventry and Warwickshire, and
the Curie Institute, respectively. Numbers for the updated MoNuSeg dataset are shown in
parentheses.

Dataset details MoNuSeg CoNSeP TNBC

Total nuclei 21,623 (28,846) 24,319 4,056
Cancer types 7 (9) 1 1
Images 30 (44) 41 50
Image size 1000× 1000 1000× 1000 512× 512
Source TCGA UHCW CI

significant difference in nuclei densities between the TNBC images and MoNuSeg or CoNSeP
images, we set the proportion range (pmin, pmax) = (0.5, 1.0) for TNBC and (pmin, pmax) =
(0.01, 0.1) for the other two datasets.

4.5.3 Evaluation metrics

In this work, we used two common metrics, namely Average Dice Coefficient (ADC) and
Aggregated Jaccard Index (AJI), to evaluate the segmentation performance. The ADC is
a pixel-level metric calculated by averaging the Dice coefficient between the segmentation
result P and its corresponding ground-truth Q, defined as:

Dice(P,Q) = 2 |P.Q|
|P |+ |Q| (4.8)

This means that the Dice coefficient is directly proportional to the number of correctly
predicted nuclei pixels divided by the total number of nuclei pixels in both predicted mask
and ground truth mask. Note that the Dice coefficient is also closely related to the widely
known Jaccard index [130].

The AJI index [130] is an instance-level measurement that has been used in several challenges
and recent works. This index is calculated by an iterative algorithm that takes into account
both the unmatched detected nuclei’s pixels (false positives) and unmatched annotated nu-
clei’s pixels (false negatives).
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4.6 Results

4.6.1 Comparison with state of the art methods

Figure 4.3 displays segmentation outputs of sample test images from each dataset. We com-
pared the performance of our unsupervised method with other state-of-the-art supervised
and unsupervised methods in nucleus segmentation on the selected public datasets in Table
A.3. Note that the supervised approaches all need to split the datasets into training, vali-
dation, and test subsets but they don’t necessarily provide details about which images were
chosen for testing. Therefore, we record our metrics on all the images in each dataset. Using
significantly more images over which to average the performance, we believe that it ensures
a reliable evaluation of segmentation quality.

As can be seen in Table A.3, standard image processing methods (Otsu thresholding [142],
Watershed [143], Fiji [108] and CellProfiler [108]), produce inferior results on all three dataset.
The self-supervised method presented in [108] provides the possibility of nuclei segmentation
without annotations during model training. However, that method still requires a labeled
validation set to determine the optimal hyper-parameters for the model. More importantly,
it relies on extra image data beyond the provided dataset to boost the performance (see the
"Self-supervised" and "Self-supervised + extra WSI" rows in Table A.3). Our method still
surpasses their results by a large margin on the two datasets CoNSeP and TNBC. On the
MoNuSeg dataset, we obtain superior results compared to the method in [108] when it is
limited to using the published dataset.

We also reported the results from recent supervised DL methods and observed that our
approach can achieve superior performance than CNN2 [130]. Moreover, the FCN8 and Seg-
Net [118] models perform worse at the object level (lower AJI score) than our model, though
they have excellent pixel-level segmentation. Although we record lower performance than
the other supervised methods (U-Net and Hover-Net [118]), our model offers two possibilities
to enhance the segmentation quality. First, it enables adjusting segmentation output at in-
ference time for each target image thanks to the controlling parameter α (see Section 4.6.3).
(The performance metrics recorded in Tables A.3 and 4.3 uses a default value of 0.8 for
the decision weight α.) Second, our model is quite modular and can integrate a pre-trained
encoder-decoder model using transfer learning or continual learning, whose effectiveness has
been demonstrated in many published works.
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Figure 4.3 Segmentation results on a sample image from each dataset: MoNuSeg (top row),
TNBC (middle row) and CoNSeP (bottom row). In each row, from left to right: input
image; segmentation map before applying watershed; final segmentation map after applying
watershed; ground-truth. In columns 3 and 4, the different colors of nuclei highlight individual
instances.

4.6.2 Results on breast cancer images

In the previous section, experiments on different images capturing multiple types of can-
cer show that our unsupervised method is a competitive approach for nuclei segmentation.
As one of our research team’s main interests is the analysis of breast tumor cell samples,
we examined our segmentation performance on breast cancer images in comparison with a
recent work [119] that used various U-Net-style architectures of different complexities. In
particular, the encoder portion of the original U-Net network was replaced by various deep
convolutional neural networks (DCNNs) of much greater size. The DCNNs employed were
the well known VGG-16 [151], ResNet-152 [112] and Inception-v3 [152], all pre-trained on
the ImageNet dataset [138]. In addition, an even more complex model, named U-Net Ensem-
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Table 4.2 Comparison of different methods on benchmark datasets based on ADC and AJI
metrics. Methods marked with ∗ are supervised. Results for the updated MoNuSeg are shown
in parentheses.

Methods
MoNuSeg (updated) CoNSeP TNBC

ADC AJI ADC AJI ADC AJI

Otsu [142] 0.0569 0.0032 0.0588 0.0038 0.0047 0.0018

Watershed [143] 0.0562 0.012 0.0582 0.0148 0.0045 0.0092

Fiji [108] 0.6493 0.2733 - - - -

CellProfiler [108] 0.5974 0.1232 0.434 0.202 0.416 0.208

Self-supervised [108] 0.6209 0.3025 - - - -

Self-supervised 0.7477 0.5354 0.587 0.1980 0.5139 0.2656

+ extra WSI [108]

CNN2∗ [130] 0.6928 0.3482 - - - -

FCN8∗ [118] 0.797 0.281 0.756 0.123 - -

SegNet∗ [118] 0.811 0.377 0.796 0.194 - -

UNet∗ [118] 0.758 0.556 0.585 0.363 0.681 0.514

HoVer-Net∗ [118] 0.826 0.618 0.664 0.404 0.749 0.590

Our method 0.7190 0.3791 0.5907 0.2392 0.6662 0.3432

( 0.7019) (0.3810)

ble, computed the pixel-wise average of three probability maps predicted by three modified
U-Nets using pre-trained VGG-19 [151], ResNet-101 [112] and DenseNet-121 [153] networks
as encoders. To train these supervised models, the authors of [119] used normalized color
images from all tissue types in the updated MoNuSeg dataset, excluding the breast. After
training, the models were evaluated on the excluded breast images of the MoNuSeg dataset
(8 images, which we refer to as MoNuSeg Breast), and on the TNBC dataset (50 images).
Table 4.3 shows the recorded results of these different approaches. Once again, the classi-
cal unsupervised algorithms perform poorly on the target breast cancer images from both
datasets. Meanwhile, the U-Net variants produce significantly better segmentations. Com-
pared with these methods, our model outperforms all of them at the pixel level (ADC), but
does not reach their instance-level scores (AJI). Another point worth mentioning is that with
these supervised U-Net models, there is a significant drop in segmentation performance from
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MoNuSeg to TNBC, especially the ADC score, although they capture the same type of breast
tissue. This demonstrates the limited generalization capability of supervised DL networks
compared to our method.

4.6.3 Ablation study

We investigated the contribution of different elements of our proposed framework by con-
figuring the two principal parameters. The first one is the hyper-parameter λ used in the
weighted cost function (Equation 4.6) to optimize the encoder-decoder network. The second
one is the controlling parameter α used in the decision block at the inference phase (Equation
4.1).

Impact of lambda value

During training, the encoder-decoder network learns from two data sources: the synthesized
dataset and the approximate ground-truth obtained by thresholding the nuclei attention map
of the target image. This learning process is controlled by the hyper-parameter λ in Equation
4.6. Note that when λ = 0, the network merely learns from the synthesized dataset. The
impact of different λ values is shown in Figure 4.4. Here, we averaged the output scores of all
the images across all three datasets. We also canceled the effect of the decision block at the
inference stage by setting α = 0. Compared with the case when λ = 0, both the ADC and
AJI scores increase slowly as λ increases within the range ∈ [0.002, 0.01]. Moreover, there
is no stochastic drop in performance when λ changes from zero to a positive value. This
demonstrates that λ’s effect on model performance is reliable.

Impact of decision weight

As in Equation 4.1, the output feature map of the encoder-decoder network is combined with
the nuclei attention map of the target image under controlling parameter α ∈ [0.0, 1.0] in
the decision block. Note that α = 0.0 and α = 1.0 correspond to the extreme cases where
only the encoder-decoder block or only the nuclei attention map is used, respectively. In
our experiments, we set the default value to α = 0.8, but it can be adjusted by the user
to adapt to each target image. Figure 4.5a demonstrates that in general (across all images
collected from all datasets), a hybrid approach (where α ∈ [0.2, 0.8]) is beneficial compared
to using only the encoder-decoder block or the nuclei attention pathway. This effect is also
observed in Figures 4.5c and d for the CoNSeP and TNBC datasets, respectively. However,
the trend is not identical for the MoNuSeg dataset as shown in Figure 4.5b. Although the
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Table 4.3 Comparison of different methods on Breast cancer type based on ADC and AJI
metrics. Methods marked with ∗ are supervised.

Methods
MoNuSeg Breast TNBC

ADC AJI ADC AJI

Otsu [119] 0.1619 0.0456 0.0047 0.0018

Watershed [119] 0.2743 0.0828 0.0045 0.0092

Fiji [119] 0.4411 0.3396 - -

U-Net(VGG-16)∗ [119] 0.6511 0.4925 0.5042 0.3538

U-Net(ResNet-152)∗ [119] 0.6706 0.4396 0.5874 0.4063

U-Net(Inception-v3)∗ [119] 0.6422 0.4440 0.4703 0.3817

U-Net Ensemble ∗ [119] 0.6957 0.4926 0.6068 0.4836

Our method 0.7081 0.3910 0.6662 0.3432

Figure 4.4 Impact of lambda value on segmentation performance.

hybrid option yields better results than using only the DL pathway, using only the nuclei
attention branch (α = 1) appears to be the best option. This demonstrates the usefulness
of making α available for the user to adjust. Note that Figure 4.5 plots the scores averaged
across all images in the datasets. This means that for an individual input image, there is
potentially an α value more relevant than the default.
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Figure 4.5 Impact of decision weight α on segmentation performance. (a) Average over all
datasets; (b-d) Results for MoNoSeg, CoNSeP and TNBC datasets.

4.7 Discussion

This work proposes several contributions toward interpretable and domain-adaptable model
design. Deep learning models learn features automatically from raw images and they are
assumed to be able to explore hidden image features that machine learning engineers were
unaware of [154]. Hence, DL models are often treated as black boxes. There is a grow-
ing body of work seeking to understand the predictions of these models using explainable
AI approaches, notably saliency maps. Unfortunately, these maps are not very transparent
because they are based on features that cannot be easily interpreted or have physical mean-
ing. Ensemble learning approaches make the task of interpreting saliency maps even more
challenging. This is because each sub-model works on its own hidden feature space derived
from the raw input image, and their saliency maps are often not matched with each other.
In contrast, we propose strategies to actively develop an interpretable model by imposing
certain parameter constraints related to histological image acquisition. Moreover, we provide
a user-adjustable mechanism in the decision block to separate the contributions of different
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components in our framework.

Most of the current works use supervised learning on a benchmark dataset. In reality, the
experimental conditions influencing the target data can change frequently, depending on
many factors. As a result, after such a DL model is designed and validated on a benchmark,
it is the responsibility of histopathologists to create their specific datasets and optimize
the designed model, a task that can prove difficult. The main disadvantage of domain
adaptation and self-supervised methods is that they both assume that target data, even
without annotations, are accessible during training. This assumption is often invalid in
histopathological settings because images in target domains are generally unknown before
training the model. Furthermore, as domain shift can occur between different patients, it
becomes necessary to collect future patient data in advance, but this is an impractical task [89,
140]. The objective of our work is to propose a method that can help pathologists to benefit
directly from the deployed architecture because: (1) it does not require collecting future
images and annotating them; (2) information from every target data sample is exploited for
adaptation purposes before producing the final segmentation map.

We have shown that our proposed model achieves top performance among unsupervised
algorithms and is a potential approach to compete with supervised methods. Its major
limitation is the low instance segmentation scores; this is dependent upon the watershed
algorithm used to produce the final segmentation map. A deeper encoder-decoder network
fed with higher resolution images could mitigate this problem, although this would impose
higher computational complexity and longer inference times. Note that we down-scaled the
original images several times and this worsens the touching nuclei phenomenon.

4.8 Conclusion

In this study, we presented a novel unsupervised learning model for the segmentation of nuclei
in H&E stained images. Its benefits of interpretability and domain-adaptability make the
design suitable for deployment in a variety of histopathology settings. Our future work will
investigate how reinforcement learning assisted by pathologists could be integrated effectively
into the model. We will also assess how the performance can be improved by continual
learning on the encoder-decoder network, i.e. by fine-tuning a network previously trained
on patients’ samples acquired in a given laboratory setting. These developments will allow
pathologists to have more confidence when using our automatic segmentation algorithm.
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5.1 Abstract

For any type of microscopy image, getting a deep learning model to work well requires
considerable effort to select a suitable architecture and time to train it. As there is a wide
range of microscopes and experimental setups, designing a single model that can apply to
multiple imaging domains, instead of having multiple per-domain models, becomes more
essential. This task is challenging and somehow overlooked in the literature. In this paper, we
present a multi-domain learning architecture for the classification of microscopy images that
differ significantly in types and contents. Unlike previous methods that are computationally
intensive, we have developed a compact model, called Mobincep, by combining the simple
but effective techniques of depth-wise separable convolution and the inception module. We
also introduce a new optimization technique to regulate the latent feature space during
training to improve the network’s performance. We evaluated our model on three different
public datasets and compared its performance in single-domain and multiple-domain learning
modes. The proposed classifier surpasses state-of-the-art results and is robust for limited
labeled data. Moreover, it helps to eliminate the effort for designing a new network when
switching to new experiments.

5.2 Introduction

There exists a wide range of microscopy assays to reveal complex properties of cellular
structures (tissues, cells, or subcellular components) and each set of images produced in
a laboratory typically forms a different visual domain. Although Deep Learning (DL) mod-
els could yield excellent classification performance, they are highly specialized to each do-
main [155, 156]. At the same time, designing and training an appropriate deep model are
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relatively complex operations to carry out successfully, even for experienced scientists [157].
Thus, there is growing interest in developing a single model that can be deployed for various
biomedical studies without adjusting its parameters. This is a challenging task as it requires
deep learning models to learn a unified feature representation across different domains.
To contribute to this research effort, we aimed at designing a deep convolution neural network
(CNN) to learn unified representations for the classification of microscopy image sets that
have significantly different characteristics. This problem belongs to Multi-Domain Learn-
ing (MDL) and can be distinguished from the related domain adaptation technique in two
ways: the domain shift and the learning sequence. First, the domain shift refers to the visual
difference between image domains, including image content (objects of interest) and image
appearance (style). While standard domain adaptation methods deal with the change in
style and not the objects of interest, our model handles both changes in image content and
style. Second, in terms of the learning sequence, typical domain adaptation approaches learn
multiple domains sequentially to maximize their performance in a target domain. However,
after adapting from a source domain to the target one, the model cannot maintain its initial
performance on the source domain or it cannot learn without forgetting [155]. In this sense,
domain adaptation is like transfer learning, where DL models are trained on a common large
dataset, before being fine-tuned on the domain of interest. By contrast, our proposed model
learns multiple domains simultaneously and aims at achieving high performance on all the
learned domains.
In this work, we design a deep CNN architecture that combines an inception module and
depth-wise separable convolution layers. These two techniques, introduced in GoogleNet [158]
and [92], are popular in the design of many deep neural networks. However, to the best of
our knowledge, this is the first work that explores their combination for multi-domain learn-
ing of microscopy images obtained from different imaging devices and with different objects
of interest. The proposed model is lightweight and scalable. In addition, we introduce an
optimization approach for feature regularization during training to enhance the network’s
performance, allowing it to beat the state-of-the-art models.
To sum up, the major contributions of this study are:

• We propose an MDL model for learning simultaneously different microscopy image
domains. It could work effectively in different applications without requiring the adap-
tation of domain-specific parameters.

• We formulate a simple yet effective optimization function to regulate feature space,
improving network performance.

• Our proposed model is remarkably compact and robust against limited available train-
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ing data and outperforms the best results published as yet on three public datasets.

5.3 Related Works

DL algorithms or deep neural networks have emerged as the dominant methods in every
application of biomedical image analysis, including microscopy [4], [159]. Instead of using
handcrafted feature extractors as in conventional machine learning methods, CNN models
learn by themselves to extract the optimal features from input images. However, it is still
challenging to design a model that can extract a unified feature representation from multiple
microscopy image domains because of the highly specialized experiments. In the literature,
most DL-based analyses have used transfer learning, as it can produce significantly better
results than when training from scratch. Comprehensive reviews of different applications
using transfer learning can be found in [4], [159]. In this approach, a DL model is pre-trained
on a large dataset of labeled natural images like ImageNet and then fine-tuned on a target
datasets that usually has a few labeled images.
DL-based domain adaptation approaches have also been investigated for digital pathology
[109, 160, 161]. In these approaches, the feature extractors of a DL model are first trained
on a source domain and then adapted to the target domain via a retraining process. The
two domains are supposed to be similar or undergo a minor domain shift, in the sense that
the image style or appearance changes but the image content or objects of interest are the
same. The domain adaptation methods conventionally tackle the problem by normalizing
the imaging parameters, such as staining normalization, or aligning the source representation
with the target one using feature space transforms [162, 163]. Like in transfer learning,
during fine-tuning of the DL network, the pre-trained parameters are specifically adjusted
for the target domain and thus, the fine-tuned model cannot be reused on the source dataset.
Many of the latest techniques use Generative Adversarial Networks (GAN) to learn domain-
invariant features [164]. For example, the authors of [165] propose to use adversarial training
to align the feature distributions of shifted domains in the classification of prostate cancer
images acquired from different scanners.
Recently, MDL has become a popular topic in computer vision, but there are still a few
published articles for biomedical image analysis, especially for microscopy images. The multi-
domain adversarial learning approach presented in [163] was the first work using MDL in
bio-image informatics. The authors experimented on cell-level fluorescence images obtained
from three different centers and used a pre-trained VGG-16 [166] network as the feature
extractor to feed the cells classifier. Nevertheless, that study only considered the variation
in image appearance, while the type of content (i.e cells) remained unchanged.
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5.4 Materials and Methods

5.4.1 Convolutional neural network architecture

In this section, we present a deep multi-domain CNN model, named Mobincep, which is
compact but offers powerful classification capability for various types of microscopy images.
To achieve efficient feature extraction, the network’s design is based on the combination of
the inception structure [158] and depth-wise separable convolution [92]. Also, we describe
a relevant training strategy, particularly the formulation of an integrated loss function for
network optimization. The following sections describe the construction of our model.

Depth-wise separable convolution layers

The depth-wise separable convolution effectively reduces the computation complexity of the
standard convolution by dividing the calculation into two separate and consecutive steps:
depth-wise and point-wise (or 1×1) convolution [167]. In the first step, each input channel is
convolved with kernels that have only a single channel. Then, point-wise convolution creates
a linear transformation of the corresponding output values across channels. We illustrate the
two convolution approaches in Figure 5.1. As depth-wise convolution reduces the number
of deep CNN network parameters significantly, it also helps to decrease the possibility of
over-fitting to a specific image dataset.

Compared with standard convolution, the use of depth-wise separable convolution produces
more discriminative features due to the decoupling of cross-channel and spatial correlations
as suggested in [168]. It can also help to promote the performance for learning natural images
from multiple visual domains when replacing standard convolutions in a pre-trained ResNet-
26 [167]. Based on this observation, we exploit depth-wise separable convolution layers as one
of the main strategies to design a compact model for microscopy images in multiple imaging
settings.

Inception module

We illustrate the layout of an inception module in Figure 5.2. It is a set of multiple convolution
branches having different kernel sizes, where the output feature maps from each branch are
concatenated and used as the input for the subsequent layer [158]. In this configuration, the
use of the point-wise (1 × 1) convolution and average pooling layer in each branch reduces
the dimensions of the feature maps, leading to a remarkable reduction of multiplication
operations. Meanwhile, the combination of various convolution kernel sizes helps to detect
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Figure 5.1 Example of depth-wise separable convolution compared with standard convolution
operations. In the standard convolution (on the left), the multi-channel input is convolved
with kernels having smaller spatial dimensions (3× 3) but the same number of channels (C).
The depth-wise separable convolution (on the right) divides the calculation into two separate
and consecutive steps: depth-wise (convolution with 3×3 kernel of 1 channel) and point-wise
(convolution with 1× 1 kernel of C channels).

features at different scales. This is advantageous for microscopy images that typically express
a wide variety of object morphologies and sizes.

Proposed network architecture

The overall structure of our proposed Mobincep network is shown in Fig. 5.3. Through a
buffer convolution layer, the raw input images are fetched to the inception module, comprising
four branches with different kernel sizes. In this work, we choose 1 × 1, 3 × 3, and 5 × 5
filters as they have proved to be effective feature extractors. The concatenated feature maps
are then delivered to a stack of multiple depth-wise separable convolution layers. Each of
these layers is followed with Batch Normalization (BN) [95] and in-place Rectified Linear
Unit (ReLU) [169] activation functions. The role of BN is to normalize each layer’s output

Figure 5.2 Design of the inception module. The feature maps of previous layer Li−1 are
processed by multiple branches with different reception fields. The outputs from each branch
are concatenated into a set of feature maps Li to be used as the input to the following layer.
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such that it has zero mean and unit standard deviation, leading to faster convergence and
bypassing local minima. For its part, the ReLU activation function has properties that
help feed-forward neural networks to optimize easily with gradient-based convergence and
generalize well on various data domains [7]. Lastly, the average pooling layer compresses
the extracted feature maps into a feature vector. At the output, a linear layer combines the
vector elements to produce the prediction probability for every image class. The class that
has the highest probability from the output layer will be selected as the predicted class for
the input image.

5.4.2 Network optimization

We propose a new model optimization approach to regularize the extracted feature space of
microscopy images during training. The conventional loss function used in the optimization of
deep CNN classifiers may not effectively regulate the latent space, leading to low performance
and applicability to different sets of data. Therefore, we formulate two additional loss terms
to encourage the feature representation of samples within each class to converge to a compact
corresponding cluster. Assuming there are K categories to be classified, the integrated cost
function for training the Mobincep network is expressed as:

L = LCE + γ1
1

ΣK
k=1(d2(µk, µ)) + γ2ΣK

k=1(s2
k) (5.1)

In equation (5.1), LCE is the conventional cross-entropy loss criterion for classification, which
is calculated as:

LCE = − 1
NB

ΣB
i=1ΣK

c=1Ii,c log exp(yi,c)
ΣK
c=1 exp(yi,c)

(5.2)

where NB is the training batchsize; Ii,c = 1 if label c is the correct classification for image
sample i and Ii,c = 0 otherwise; yi,c is the raw output probability of the network for the sample
i to have class label c. Also in equation 5.1, we add the two other loss terms to impose an
additional constraint for the training. In the first term, d(µk, µ) denotes the distance between
the centroid of each cluster in the feature space and the centroid of all latent points. In the
second term, variable sk represents the scattering of each cluster, calculated as the sum
of all distances between each latent point and the centroid µk of its cluster. Variables γ1

and γ2 are the weights to balance the three loss terms in the total cost function. At each
training iteration, the cluster centroids in the latent space are quickly determined by using
conventional K-Means clustering algorithm.
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Figure 5.3 Architecture of the proposed Mobincep model. Each of the convolution layers
(Conv2d) is followed by a Batch Normalization layer (BN) and in-place Rectified Linear Unit
(ReLU) activation function. The raw input images are passed through a buffer convolution
layer to the inception module, which comprises four branches with different kernel sizes.
Then, the concatenated feature maps are forwarded through a stack of multiple depth-wise
separable convolution layers. After that, the extracted features are reduced in spatial size by
average pooling operation and linearly combined to produce the output prediction.
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Intuitively, when minimizing this loss function, the addition of two new loss terms helps in
two ways: decrease the scattering (i.e. the embedded distances) of the input samples around
their centroids and increase the embedded distance between clusters. This helps to better
discriminate between clusters or classes.

5.4.3 Experimental setup

In this section, we describe our experiments with the Mobincep model on datasets from three
different imaging domains.

Datasets

To create a dataset (Mix) that represents different imaging domains, we use three public
microscopy datasets: Lymphoma (Lym), composed of tissue sample images [170]; Pap-smear
(Pap), with images of cells [171]; and HeLa, with images of sub-cellular organelles [170]. The
characteristics of these datasets are summarized in Table A.1. Example images from each
dataset are shown in Figures 5.4, 5.5 and 5.6.

Network training, validation and testing

As shown in Table A.1, the experimented datasets vary significantly in terms of image charac-
teristics. For the model to handle them properly, we pre-processed the raw images by resizing
them to 224×224×3 and normalizing them to have the same dynamic intensity range. Dur-
ing training, we applied online data augmentation, combining a wide range of common image
transformations, including rotation, flipping, cropping, and affine transformations (translate,
scale, shear). We process the input images in batches of four. The network layers were
initialized with the Kaiming uniform method [172]. We used the modified Adam optimizer,

Table 5.1 Microscopy image datasets used experimentally

Dataset # Images # Classes Dimensions

Lymphoma 375 3 1388× 1040× 3

Pap-smear 917 2 45× 43× 3
to 768× 284× 3

HeLa 862 10 382× 382× 1

Mix 2154 15 45× 43× 3
to 1388× 1040× 3
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Figure 5.4 Example of Lymphoma images in three different cases. The images were obtained
from Hematoxylin- and Eosin- (H&E) stained tissue samples using brightfield microscopy.
There are three types of malignant lymphoma, i.e. cancer affecting lymph nodes: chronic
lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL).

Figure 5.5 Example of Pap-smear images in two cases: Abnormal and Normal cells. In the
sample preparation, a specimen of human cells is smeared onto a glass slide and colored using
the Papanicolaou method. The abnormal cells are associated with the pre-cancerous stage.
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Figure 5.6 Example images of HeLa dataset. It comprises fluorescence microscopy images of
sub-cellular organelles in HeLa cells, which are stained with various organelle-specific fluo-
rescent dyes. There are ten categories: Actin, DNA(Nuclei), Endosomes, ER (Endoplasmic
reticulum), Golgia (Giantin), Golgpp (GPP130), Lysosome, Microtubules, Mitochondria and
Nucleolus.

referred to as AMSGrad [173], with a small learning rate of 10−4. We validated the per-
formance of the model using a 5-fold cross-validation strategy. In each fold, we randomly
split each dataset into training, validation, and testing subsets. Specifically, we used 60% of
the images for training, 20% for validation, and the remaining 20% to assess network per-
formance. To obtain the model with the lowest validation error, the early stopping strategy
was adopted, where the training stops when there is no better model after a certain number
of training epochs (or patience period). As the training process includes random processes
(for instance, the data augmentation), we ran the experiments five times and recorded the
average result.

5.4.4 Model complexity

Figure 5.7 shows the complexity of our proposed model compared to prominent CNN models
from the literature. The number of trainable parameters in our Mobincep network is remark-
ably small compared with most of the recently published networks. For example, it requires
about 13 times fewer parameters than Inception-ResNet-v2 [124], which has 56 million param-
eters. Although the MobileNetV2 [93] network has a slightly smaller number of parameters,
our model can outperform MobileNetV2 by a large margin in various experiments, as shown
in the following section.
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Figure 5.7 Complexity of state-of-the-art CNN models compared by number of trainable
parameters.

It took less than 2 hours to train the model with each fold of the dataset. We used a
GPU (model NVIDIA Tesla V100 SXM2 with 16 GB memory) to train the network in an
end-to-end fashion.

5.5 Results

We performed four main experiments to test the ability of the proposed model in dealing
with microscopy images from three different visual domains. In each experiment, we report
the results in both the MDL and Single-Domain Learning (SDL) modes.

5.5.1 Analysis of classification results

We compared the classification accuracy of our approach to recent deep CNN models pre-
trained on the ImageNet dataset: VGG19 [166], GoogleNet [158], ResNet-101 [122], In-
ception [174], and Inception-ResNet-v2 [124]. We also trained the lightweight CNN model
MobileNetV2 [93] from scratch using the same training conditions as in the original research.
This model has very low computation and model complexity and thus we could train it from
scratch with our limited training data.
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Table 5.2 Top-1 classification accuracy on the different datasets compared to recent deep
CNN models.

Model Mix Pap Lym HeLa
VGG19 83.92±2.1 84.32±1.9 83.52±1.7 84.73±2.1
GoogleNet 84.11±2.3 84.71±2.1 83.94±1.9 85.42±2.0
ResNet-101 88.14±2.1 89.02±1.8 88.43±1.6 90.63±1.5
Inception 89.33±2.5 89.73±2.2 88.91±2.1 90.89±2.1
Inc.-ResNet-v2 87.34±2.3 87.44±2.4 86.72±2.3 88.75±2.2
MobileNetV2 91.24±2.4 92.44±2.3 88.09±2.1 91.75±2.2
Mobincep 94.82±2.1 94.86±1.9 94.11±1.8 95.90±1.8

Table 5.3 Classification metrics per class for separate (at left) and mixed (at right) datasets.

Dataset: Class Precision Sensitivity F1 Dataset: Class Precision Sensitivity F1
Pap: Normal 0.888 0.882 0.885 Mix: Normal 0.906 0.874 0.890
Pap: Abnormal 0.956 0.960 0.958 Mix: Abnormal 0.954 0.966 0.960
Lym: MCL 0.952 0.886 0.918 Mix: MCL 0.966 0.888 0.925
Lym: FL 0.952 0.984 0.968 Mix: FL 0.940 0.962 0.951
Lym: CLL 0.926 0.946 0.936 Mix: CLL 0.908 0.956 0.931
Hela: Nucleolus 0.988 1.000 0.994 Mix: Nucleolus 0.976 0.988 0.982
Hela: Mitochondria 0.956 0.894 0.924 Mix: Mitochondria 0.904 0.948 0.925
Hela: Microtubules 0.952 0.988 0.970 Mix: Microtubules 0.966 0.954 0.960
Hela: Lysosome 0.944 0.928 0.936 Mix: Lysosome 0.928 0.940 0.934
Hela: Golgpp 0.946 0.904 0.925 Mix: Golgpp 0.974 0.846 0.905
Hela: Golgia 0.912 0.940 0.926 Mix: Golgia 0.876 0.966 0.919
Hela: ER 0.958 0.952 0.955 Mix: ER 0.932 0.964 0.948
Hela: Endosome 0.928 0.914 0.921 Mix: Endosome 0.926 0.838 0.880
Hela: DNA 0.978 1.000 0.989 Mix: DNA 0.978 1.000 0.989
Hela: Actin 1.000 1.000 1.000 Mix: Actin 0.990 1.000 0.995

As shown in Table 5.2, our approach achieves better top-1 accuracy than the pre-trained
deep CNN models either when learning images from three domains simultaneously in the
Mix dataset or when learning from each of the single domain datasets. Notably, it gains
over 10% accuracy compared to the VGG or GoogleNet network. Compared to the trained-
from-scratch MobileNetV2, our model also produces better top-1 accuracy across the four
datasets. More importantly, our performance results are more consistent on the Lymphoma
dataset.

We examined the classification metrics of the proposed model in the SDL and MDL modes,
as shown in Table 5.3. When learning on the mixed dataset, the precision and sensitivity
of detecting abnormal samples were 95.4% and 96.6%, respectively, while the F1 score was



71

96.0%. These scores are slightly better than when the network was trained on the Pap-smear
dataset alone. Figure 5.8a and 5.8d plots the true-positive rates (TPR) against the false-
positive rates (FPR), known as ROC curves, for classifying abnormal samples from normal
samples in the SDL and MDL modes, respectively. In the case of MDL, the AUC value is
0.996, which is also better than the single-domain value (0.978).
For the Lymphoma images, the F1 score values were higher than 92.2% for all three classes.
We can also notice a significant variation in the precision and sensitivity across the classes,
e.g. the low sensitivity for MCL compared with FL and CLL. This fluctuation is similar in
both MDL and SDL. In practice, we could improve the classification performance by using
a suitable decision threshold. This value could be selected based on the ROC curve for the
MCL class in Figure 5.8b, where the AUC of the MCL class is close to the CLL and FL
classes.
For the HeLa dataset, the MDL model yielded F1 scores of over 90.4%, except for the
Endosome class which has a score of 87.6%. Again, this lower performance resembles the
network’s output when learning from the single dataset. These results coincide with the
fact that experts find it challenging to distinguish between Endosomes and Lysosomes or
between Golgpp and Golgia proteins. The ROC curves in Figure 5.8d confirm that the
proposed classifier works well in recognizing subcellular organelles in fluorescent images as
the AUC values are at least 0.969.
As can also be seen from the figure 5.8, we obtained micro-average and macro-average AUC
scores close to 1.0 in all datasets.

5.5.2 Impact of available training data

Next, we investigated the impact of limiting the number of labeled images on the model’s
performance. For each dataset, we experimented with three different ratios for 5-fold cross-
validation by increasing the ratio of training data: 20/20/60, 40/20/40, and 60/20/20. We
illustrate the results in Figure 5.9.
For the Pap smear dataset, it needs to learn from around 90 training images per class to
distinguish between normal and abnormal classes with an accuracy of 90.74%. This accuracy
level increased to 94.86% when the number of images available for training was tripled. On
the other hand, the classifier required only about 50 and 20 images per class to reach an
accuracy of around 90% on the Lymphoma and HeLa datasets, respectively. By comparison,
existing machine learning methods require at least 70 labeled images per class to achieve
cross-validation accuracy close to 90% on fluorescence microscopy images like those in the
HeLa dataset [175]. In MDL mode on the Mix dataset, we can see that Mobincep reached the
90% accuracy level with 30 images per class. These results not only attest to the classifier’s
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generalization ability on unseen data but also reveal a very useful property of Mobincep,
which is to reduce the costly labeling effort needed from experts.

Figure 5.8 ROC curves for the classification task on the different datasets: a) Pap-smear,
b) Lymphoma, c) HeLa, d) Mix. The micro-average AUC score is calculated sample-wise,
computing average value across all classes weighted by the number of samples in each class,
whereas the macro-average score is class-wise, computing unweighted average value across
classes.
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Figure 5.9 Impact of training data volume on classification accuracy.
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5.5.3 Impact of the regularization technique

To validate the contribution of the proposed regularization technique, we compared the per-
formance of the network with the baseline case where only the conventional cross-entropy
loss function (the LCE term in equation (5.1)) was used during optimization.

As shown in Table 5.4, for all experimented datasets, regulating features during optimization
improved the classification accuracy. On the multi-domain Mix dataset, it allowed the model
to gain 1.56% in average accuracy.

5.5.4 Comparison with state of the art methods

In Table 5.5, we compare our proposed Mobincep network with recent methods that achieved
the highest published results on the three experimented datasets (Pap, Lym, and Hela).
Looking at the Pap smear dataset, all of the methods using a single deep CNN network give
no improvement over conventional hand-crafted feature-based methods, reaching accuracy
levels lower than 91%. The accuracy increases notably only when multiple deep networks are
combined, reaching around 93% as achieved in [79]. In contrast, our approach produces the
best performance by training only a lightweight CNN model with much lower complexity,
with 94.02% accuracy in MDL mode and 94.86% in SDL mode.
The Lymphoma dataset appears to be more challenging for designing suitable hand-crafted
feature descriptors. The best approach which was proposed in [176], with 93.87% accuracy,
merged 8 different deep CNN models. However, we show that while our Mobincep network
has only 4.3M parameters, it produces an accuracy of more than 94%.
For the HeLa dataset, the Capsule Neural Network is the best option among CNN models,
but even its accuracy of 93.08% is still well below the top performance (95.3%) produced by
the hand-crafted method described in [62]. Our Mobincep network could surpass this value,
reaching 95.9% accuracy whether training on the mixed dataset or the HeLa dataset alone.
This confirms yet again the effectiveness of our model and its ability to generalize across
different image domains.

Table 5.4 Impact of feature regularization on classification accuracy (%)

Model Mix Pap Lym HeLa
Baseline 93.26±2.6 93.08±2.4 91.23±2.2 93.15±2.1
Mobincep 94.82±2.1 94.86±1.9 94.11±1.8 95.90±1.8
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In the multi-domain learning setting, the proposed network achieves classification accuracy
roughly equivalent to its performance when it is optimized on each domain separately. Indeed,
while its accuracy decreased by 0.84% on the Pap-smear classes, the average accuracy was
maintained on the HeLa classes and slightly improved on the Lymphoma images.

5.6 Discussion

This study aimed to develop a multi-domain learning model for the classification of mi-
croscopy images from different domains. Our principal contribution is the design of a com-
pact CNN model that can be trained from scratch on target domains that have a very limited
number of image samples. The proposed multi-domain learning approach can facilitate the
choice of an analysis tool and the configuration of its parameters to account for different
microscopes, objects of interest, and imaging conditions. This can accelerate the pace of
investigation and reduce the required expertise in adapting computer algorithms. From a
design perspective, this limits the need to select domain-specific hyper-parameters and eases
the training process, as we can train only once the model and run on different experimental
domains.

Prior studies typically used very deep CNNs or ensembles of these architecture to achieve
high performance in clinical or biomedical applications. Nevertheless, this increases the
requirement for computer hardware that is not always readily available. More importantly,
their high complexity generally renders such networks selective for a certain image domain. As
described in section 5.5.1, the very good classification statistics and high AUC values (> 0.95)
on multiple domains demonstrate the benefit of using the Mobincep model as an automatic
classifier. Our experiments show that the model yields state-of-the-art performance when
learning from multiple microscopy image domains. This can be explained by the fact that
the model has very low complexity, thus we can train it from scratch directly on the target
data, instead of fine-tuning a pre-trained feature extractor using transfer learning.

5.7 Conclusion

In this work, we presented a lightweight CNN classifier for learning multiple domains of
microscopy images. Moreover, we formulated a new optimization function and devised a
suitable training strategy allowing our network to outperform state-of-the-art methods. The
proposed model performs well in multiple applications of microscopy image classification.
Because of its low complexity, the approach becomes more appealing for deployment in clinical
and biomedical studies. Further research will focus on developing a domain generalization
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Table 5.5 Comparison of Mobincep with competing methods on different datasets. All values
are accuracies (%). Those for other methods are as published in the literature, with standard
devs. when available.

Model Pap Lym HeLa
Spatial adjacent histogram based on 88.03± 1.7 90.06± 1.5
adaptive local binary patterns+SVM [177]
SVM cascaded with a reject option and 90.96± 0.5 92.96± 1.3
subspace analysis [178]
WND-CHARM based on 1025 85.00 87.00± 9.00
content descriptors [179,180]
CP-CHARM based on 953 66.00± 1.0 84.00± 0.4
content descriptors [179]
Fusion of multiple handcrafted and 90.67
deep learned features [181]
Multiresolution classification system [62] 95.30
Pretrained ResNet-101 [176] 86.40
Pretrained ResNet-152 [79] 90.87± 1.5
Pretrained Inception-ResNet-v2 [79] 89.25± 2.2 92.00
Pretrained Inception-v3 [79,176] 89.66± 1.9 87.47
Ensemble of pretrained Inception-v3
and ResNet-152 [79] 92.38± 1.3

Ensemble of pretrained Inception-v3,
ResNet-152, Inception-ResNet-v2 [79] 93.04 ± 1.5 92.57

Fusion of 8 different deep CNN models [176] 93.87
GoogleNet [78] 92.00
Capsule Neural Network (CapsNet) [182] 93.08
Multi-scale CNN [78] 91.00
Mobincep 94.86±1.9 94.11±1.8 95.90±1.8
Mobincep 94.02±1.9 94.20±1.8 95.90±1.8
(Multi-domain learning on Mix dataset)
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algorithm, such that the model can work well on new microscopy images that are captured
under imaging conditions different from those of training images.
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6.1 Abstract

This paper proposes a novel deep learning architecture WaveM-CNN for efficient recogni-
tion of sub-cellular organelles in microscopic images. Essentially, multi-resolution analysis
based on wavelet decomposition and convolution neural network (CNN) are combined in the
architecture. In each wavelet transformed sub-space, discriminative features are extracted
by convolution kernels to provide various pattern characteristics of the same organelle. The
generated feature maps are concatenated and passed directly to the fully connected layers of
the classifier. In order to reduce the computational time and improve performance on lim-
ited dataset, transfer learning method is adopted, with the utilization of compact MobileNet
model. Experiments on two benchmark datasets CHO and 2D HeLa are conducted to
evaluate the performance of the proposed model on fluorescence microscopic images of sub-
cellular organelles. The classification accuracies of 98.4% and 96.1% are achieved on these
two datasets respectively, which are significantly higher than both hand-crafted feature based
methods and recent deep learning based models.

Keywords: Deep Learning , Multi-resolution, Microscopic Image, Wavelet Trans-
form

6.2 Introduction

One important application of microscopic image analysis is to specify the sub-cellular struc-
tures inside a cell where there are proteins of interest. The localization where the proteins
are produced by given genes is an essential factor to determine the possible function of such
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genes. Proteins of similar sequence structures could function differently due to their different
compartment localization within the same cell [183].

Microscopic image interpretation is a challenging problem even for experimented pathologists.
The output images from typical acquisition systems may have a high resolution but actual
objects of interest may only have ten to twenty times smaller resolution [184]. Furthermore,
there is usually a strong variability in the organelles shape within the same class, while inter-
class variability is relatively small. Thanks to advances in statistical pattern recognition, the
acquired microscope images could be automatically and objectively analyzed based on sets
of annotated example data.

Algorithms for automatic object classification in microscopic images are essentially com-
posed of feature extraction and classification stages. In conventional hand-crafted fea-
ture extraction methods, the set of local characteristics in images such as points, edges
or intensity distribution in neighborhood regions are designed specifically for each target
dataset [62, 65, 177, 185–188]. Then popular efficient classifiers such as Support Vector Ma-
chine (SVM) or Artificial Neural Network (ANN) are applied to determine the class of object
based on its extracted features. The classification accuracy by these approaches could be
relatively high for microscopic images. However, the remarkable drawback of hand-crafted
based methods is time-consuming and difficult to obtain the relevant features for a wide range
of datasets: designed parameters are mostly not relevant for new target images other than
the specific images for which they were crafted [189]. Recent efforts tried to develop efficient
pattern recognition systems inspired by deep learning algorithms. Unlike methods based
on hand-crafted feature extraction, deep learning models automatically learn optimal fea-
ture representation from image pixel data to perform classification task directly. Noticeable
results are recently produced by using CapsNet network [190] or ensembling multiple Con-
volution Neural Networks [78,79]. Nevertheless, the reported performance can not overcome
the highest result achieved by the previous conventional methods.

This project aims to improve the accuracy compared to recent state of the art deep learning
methods and surpass the highest results achieved by conventional hand-crafted feature based
methods. Our main contribution in this study are summarized as below:

• Designing a novel multi-resolution architecture, combining 2D wavelet decomposition
and the Convolution Neural Network architecture.

• Exploiting compact convolution neural network MobileNet-v1 [191] for automatically
extracting features on microscopic image benchmarks.

• Achieving accurate classification of sub-cellular organelles using proposed model with-



80

out the need for data augmentation.

6.3 Method

This section describes our proposed WaveM-CNN architecture to improve classification ac-
curacy of sub-cellular organelles in microscopic images, as presented in Figure 6.1. First,
multi-resolution information is obtained by 2D discrete wavelet transformation. Then, a set
of pretrained CNNs is used to extract features in each band of transformed image. Finally,
an ensemble network is formed by concatenating generated feature maps to pass through
fully connected layers for classification.

Figure 6.1 The Wavelet based Multi-resolution Convolution Neural Network Architecture

6.3.1 Image decomposition

As the first step, each image is decomposed into a set of filtered images by wavelet transform
which is commonly used for representation of an image at multiple levels of resolution or
scale. One interesting advantage this wavelet-based multi-resolution analysis is that some
features which might not be detected at one resolution could be easily uncovered at another.
In this work simple Haar function are applied for the transformation to investigate the ef-
fectiveness of proposed approach. Experiments with more sophisticated functions would be
done in the future work. The discrete Haar filters are applied on both rows and columns
of the image to produce four component images: one approximation and three image de-
tails in corresponding horizontal, vertical and diagonal orientations. In general, given the
image of sizeM×N = 2m×2n, the decomposition outputs at ith level are calculated by [192]:
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In the above equations, y(i)
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hg , y

(i)
gh and y(i)

gg are for horizontal details, vertical details
and diagonal details coefficients, respectively. h = {1/
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represent well known Haar wavelet low-pass filter and high-pass filter. At the initial step:
y

(0)
hh = Original image and in this work, only one level of decomposition is performed, thus
i = 1.

6.3.2 Feature Extraction

After the original images are decomposed into sub-bands, the MobileNet-v1 CNN [191] is
used as the feature extractor due to its advantage of small number of parameters and hence,
less computation cost. It is a dedicated small architecture introduced by Google for imple-
mentation on systems with limited hardware resource, for e.g mobile devices, and thus, it
could be integrated on a microscope system. Its principal algorithm is based on depthwise
separable convolution concept, in which the convolution operation is replaced by depthwise
convolution followed by pointwise convolution [191]. As such, the convolution kernels do not
need to have corresponding number of channels to operate on all input channels altogether
but just have a single channel to operate on each of them. The generated features maps are
then merged by using 1x1 convolution kernels which number depends on the desired output
channels. To gain advantage of reduced training time, computation cost and enhanced ac-
curacy, this work utilizes the MobileNet-v1 CNN model which is pretrained on the popular
ImageNet dataset [138] of over one million natural images.
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6.3.3 Wavelet based multi-resolution CNN architecture

As illustrated in Figure 6.1, a set of four feature extraction modules in the previous section is
combined in parallel to carry out the analysis of each decomposed image simultaneously. The
feature maps generated independently from all pathways are concatenated to be processed
together by the next fully connected layers. This approach of feature combination is found
to be more efficient than ensemble methods which use voting scheme with weight averaging
or weight learning through training process. Finally, the softmax function is applied at
the output to determine the corresponding class of the object. This network model could
be trained normally as a single network without dividing the training into multiple steps.
Its parameters are initialized following truncated normal distribution with zero mean and
standard deviation of 0.001. A learning rate of 0.01 is applied and the optimal number of
training epochs is less than 20 epochs with a training batch size of 100 images.

6.3.4 Validation method

The performance of proposed model is evaluated using two benchmark datasets that are
publicly available, CHO and 2D HeLa dataset [185]. CHO is a dataset of fluorescence mi-
croscopic images of Chinese Hamster Ovary cells, which consists of more than three hundred
images produced by five different fluorescent markers. While 2D HeLa contains fluorescence
microscopic images of HeLa cells stained with various dyes for targeting specific organelles.
There are totally around nine hundreds cell images, with ten different labels. The two bench-
mark datasets are not suffered from imbalanced classes as there is no significant difference in
number of images in each class.

The model performance is validated through conventional five-fold cross-validation method.
In each dataset, the whole images are divided by five subsets, each contains 20% of total
number of images, collected from all classes. Each time, one subset is used as testing set to
measure the accuracy while the remaining subsets are used as training set. In order to avoid
serious bias-variance trade-off or over-fitting problem, we follow the early stopping retraining
policy. First, within the above training set, 75% of the images are used as training data
while other 25% of the images are used as validation data. The accuracy performance on
validation data is used to determine the optimal number of training epochs for early stopping
before over-fitting. Then, the whole training set, including the validation set, is used as the
training data to retrain the model, according to the number of training epochs recorded in
previous step. The average accuracy after thirty runs, in which image subsets are reshuffled
randomly, is the reported classification accuracy to compare with similar previous works.
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6.4 Results and Discussion

We first conduct extensive experiments on the CHO dataset according to the validation
method described in previous section. The obtained average confusion matrix is shown in
Figure 6.2 where the prediction accuracy for any single class is at least 96.0%. In addition,
the sensitivity and specificity of the model for each class of CHO dataset are presented in
Table 6.1. The lowest sensitivity and specificity among classes are respectively 96.0 % and
99.2%.

Figure 6.2 Confusion matrix for CHO classes

In comparison with previous work, as can be seen from Table 6.2, our model classification
accuracy is at least 3% higher than the conventional hand-crafted feature extraction based
methods. Moreover, its performance outweighs recent deep neural network based models,
including ensemble multi-scale CNN network.

A larger dataset of HeLa cell images is subsequently used to validate our model performance.
The average confusion matrix for HeLa dataset is shown in Figure 6.3. Obviously, some
types of cells are more difficult to distinguish exactly but our model ensures the classification
accuracy of more than 90% and most of the time it is over 95%. Table 6.3 represents the
sensitivity and specificity values of the model for each class. Noticeably, the specificity is at
least 98.9 % for any HeLa organelles.

Early works on classification of HeLa dataset based on hand-crafted feature extraction could
achieve relatively good result as indicated in Table 6.4. However, the large number of specific
and dedicated feature sets made it difficult to adapt to new set of images, even similar
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Table 6.1 Sensitivity and specificity for each CHO class

Class giantin hoechst lamp2 nop4 tubulin
Sensitivity 96.0 % 98.5 % 100.0 % 100.0 % 98.0 %
Specificity 99.6 % 99.2 % 99.6 % 99.7 % 100.0 %

Table 6.2 Performance of various classifiers for CHO images

Type Methods Acc.(%)

Hand-crafted
feature
extraction
based method

Neural network using Zernike moments
and Haralick texture features [185]

88.00

Weighted Neighbor Distances using a
Compound Hierarchy of Algorithms
Representing Morphology [188]

95.00

Deep learning
based method

Single network of AlexNet [78] 29.00
Single network of GoogleNet [78] 91.00
Multi-scale convolution neural network
with 22 CONV. + 2 FC. [78]

94.00

Our proposed WaveM-CNN 98.4

Table 6.3 Sensitivity and specificity for each HeLa class

Class Actin DNA Endosome Golgia Microtubules
Sensitivity 100.0 % 98.8 % 91.1 % 98.8 % 98.9 %
Specificity 99.9 % 100.0 % 98.9 % 99.1% 99.9 %

Golgpp Lysosome ER Nucleolus Mitochondria
Sensitivity 90.6 % 95.0 % 96.5 % 98.8 % 91.4 %
Specificity 99.9 % 99.4 % 99.0% 100.0 % 99.7 %

types of organelles. More recent works try to enhance the transfer-ability but they can not
avoid degraded performance. In fact, the deficit is very large with regards to the highest
benchmark. Table 6.4 also shows recent accuracy levels achieved by Deep learning based
methods, including single transfer learning convolution neural network and ensemble network
models. For single CNN networks, except for AlexNet, both GoogleNet and Inception-Resnet-
v2 could equally produce an accuracy as high as 92%. Although recent CapsNet model achieve
the highest accuracy rate of 93.08% but this value is about 3% lower than accuracy rate
provided by our WaveM-CNN. Some of recent works also try to apply well known ensemble
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Figure 6.3 Confusion matrix for HeLa classes

technique on classification task of 2D HeLa images. Two recent works were identified, one
uses seven-scale CNN model which is trained from scratch [78] and the other uses triple
heterogeneous pretrained CNNs [79]. Even though these methods provide good results, our
model achieves around 3.5% gain compared to the best method providing 92.57%.

6.5 Conclusions

We present a novel deep learning architecture that combines the power of multi-resolution
analysis by wavelet transform and feature extraction with convolution neural network. The
proposed model outperforms previous published works applied on the same datasets of mi-
croscopic fluorescent images. Further experiments on other datasets will be conducted to
consolidate the transferring ability and generalization of the classification results. This work
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Table 6.4 Performance of various classifiers for HeLa images

Type Methods Acc.(%)

Hand-crafted
feature
extraction
based method

Neural Network with a set of 174 fea-
tures(morphological, Haralick texture,
Zernike moments) [65]

91.50

Neural Network with a setof 26 Haralick tex-
ture features [62]

95.30

SAHLBP (BoW(VQ) + SPM + SVM) [177] 84.49
SIFT+SAHLBP (BoW(VQ) + SPM +
SVM) [177]

86.20

SIFT(BoW(LLC)+SPM+Softmax) [187] 89.37

Deep learning
based method

Single network of AlexNet [78] 11.00
Single network of GoogleNet [78] 91.00
Single network of Inception-Resnet-v2 [79] 92.00
Single network of CapsNet [190] 93.08
Multi-scale convolution neural network with
22 CONV. + 2 FC. [78]

91.00

Multiple heterogeneous network of
Inception-v3, Resnet152, Inception-Resnet-
v2 [79]

92.57

Our proposed WaveM-CNN 96.10

applied the compact network MobileNet-v1, which has much less parameters than well known
deep neural networks such as ResNet or Inception.
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Abstract Automatic identification of subcellular compartments of proteins in fluorescence
microscopy images is an important task to quantitatively evaluate cellular processes. A
common problem for the development of deep learning based classifiers is that there is only
a limited number of labeled images available for training. To address this challenge, we
propose a new approach for subcellular organelles classification combining an effective and
efficient architecture based on a compact Convolutional Neural Network and deep embedded
clustering algorithm. We validate our approach on a benchmark of HeLa cell microscopy
images. The network both yields high accuracy that outperforms state of the art methods
and has significantly small number of parameters. More interestingly, experimental results
show that our method is strongly robust against limited labeled data for training, requiring
four times less annotated data than usual while maintaining the high accuracy of 93.9%.

7.1 Introduction

Cells are complex biological structures internally partitioned into compartments which are
called organelles. Each organelle contains a specific set of proteins and creates an enclosed en-
vironment for their chemical reactions to perform a specific function [193]. Therefore, precise
subcellular localization of proteins could provide information about the organelles functions
and underlying chemical processes. One of the most suitable approaches for the identifica-
tion of subcellular organelles is by acquiring fluorescence microscopy images after fluorescent
tagging of proteins [65,193]. However, it is still very challenging in discriminating effectively
those organelle types due to their high similarity in image appearance [78]. An automatic
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and systematic determination of protein locations by a pattern recognition system should
enable the possibility of high throughput analysis and minimizes performance inconsistency
caused by manual inspection. In previous works, machine learning methods are applied for
organelles recognition in florescence microscopy images. In [65], a neural network is used to
classify ten major subcellular patterns in HeLa cells, based on the handcrafted extraction
of 174 features including morphological features, Haralick textures and Zernike moments.
An improved architecture is described in [62] which applied multi-resolution technique and
required extraction of 26 Haralick textures from each transformed image. Authors of [194]
propose to train a support vector machine (SVM) by using the scale invariant feature trans-
form (SIFT). The main challenge for these handcrafted feature extraction methods is that
the feature sets are subjectively designed and often lack of capability to represent complex
discriminative structures which results in low classification accuracy. On the other hand,
deep learning models based on convolutional neural network (CNN) architecture could au-
tomatically learn optimal feature representation directly from raw image data. They have
been applied in some recent works, either as a single network [78, 190] or an ensemble of
multiple networks [78, 79, 125]. However, they still have limited accuracy and high model
complexity in terms of huge number of trainable parameters. Considering the result pro-
duced by the conventional handcrafted feature extraction method on the HeLa cell image
benchmark [62,195], there is no published deep convolutional neural network that could out-
perform the benchmark value [78, 190]. The hybrid model proposed in [125] could achieve
better result but a preprocessing step of wavelet transformation is required and the network
could not be trained in an end-to-end fashion. In addition, as these deep convolution neu-
ral networks have a large number of learnable parameters, the computational cost, memory
consumption and the issue of overfitting on limited training data become more serious. As
demonstrated in previous works, the supervised deep convolution neural networks require at
least 700 labeled images to achieve cross-validation accuracy of around 93%. In this paper,
we propose a new efficient deep learning model based on the combination of a lightweight
feature extraction structure and deep embedded clustering technique [196] for subcellular
organelles recognition in fluorescence microscopy images, denoted as OrgaNet. In contrast
to other related works using deep convolution neural network, our design is based on the
feature extractor module of Mobilenet-v2 network, which is one of the most compact deep
CNN models dedicated for low computational mobile devices [93]. In addition, by using deep
embedded clustering, the operation of OrgaNet differs from other works in that output pre-
diction is performed by unsupervised clustering in feature space instead of producing class
probability by the softmax function. To better exploit this clustering technique, we formula-
rize an integrated cost function to regularize the feature space during optimization process.
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To verify the validity of the proposed method, we design experiments on the benchmark
of HeLa cells fluorescence microscopy images. Experimental results demonstrate that this
method has achieved high performance which outperforms other state of the art algorithms
and maintains stability even with few groundtruth labels.

7.2 Methodology

Fig. 7.1 shows the overall structure of the proposed network. The raw images are fed
to an adaptive layer before the feature extractor module to produce compressed feature
representation which is then used as input to a fully connected layer where deep embedded
clustering is applied for the organelles recognition.

Figure 7.1 The architecture of the proposed method. The numbers on each block represents
output dimensions of each layer.

7.2.1 Adaptation layer

The microscopy images are generally larger than spatial input sizes of feature extractor
module which is previously designed and trained for natural photos. In particular, each
image in 2D HeLa dataset has size of 382 × 382 × 1 whereas the input tensor of the pre-
trained feature extractor requires dimension of 224×224×3. To maintain the high resolution
of raw images, instead of down sampling, we add an adaptor layer combining 2D Convolution
and Batch Normalization (BN) to normalize activations of this adaptor layer to be zero-mean
and of unit standard deviation, which is typically used to help to converge faster and bypass
local minima.
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7.2.2 Feature extraction

In order to design an efficient deep learning model with low complexity, our network is
designed based on the MobileNet-v2 feature extractor architecture [93]. It is developed upon
the concept of Depth-wise Separable Convolution, which splits convolution into separate
layers: depth-wise convolution and pointwise convolution. Feature representation is captured
by using a sequence of bottleneck blocks. Suppose the input tensor to each block has (height×
width×channels) dimensions of (h×w× c). Each bottleneck block basically consists of three
convolutional layers with different characteristics. The first layer uses point-wise (1 × 1)
convolution to expand the number of channels to (h× w × ct) where expansion factor t = 6
which is chosen experimentally. The goal of expansion is to enable the network to represent
more complex functions. Then BN and in-place ReLU6 which eliminates all activation values
outside the range of [0, 6] to provide a source of non-linearity are used. Then, the second
layer performs a lightweight depth-wise convolution to transform lower-level representations,
such as pixels, to higher level feature descriptors by applying a single convolutional kernel
of size (3× 3 per input channel. The stride step parameter could be selected between s = 1
or s = 2, which respectively maintains or down-samples the input with spatial dimensions
(h× w) by half. Similar to the first layer, it also applies BN and ReLU6 function on top of
the convolution output. The third layer is again a pointwise (1× 1) linear convolution, but
without using any non-linear activation transformation, to project high-dimensional extracted
feature map back to a low-dimensional representation and is called linear bottleneck. Thus,
it embeds the extracted features into a significantly lower-dimensional space and by doing
so, the ReLU6 activation function in subsequent bottleneck block will not eliminate too
much information while still introducing the needed complexity for the network capability.
Whenever the bottleneck block uses down-sampling s = 2 in the second convolution layer,
a residual connection is used to add the input feature and the linear bottleneck as they are
now having the same dimensions. Note that the input feature here is actually the linear
bottleneck of the preceding bottleneck block. The motivation of using it is to increase the
gradient propagation ability across multiple layers.

7.2.3 Deep embedded clustering (DEC)

Unlike standard classifier networks which produce directly the probability of class label for
each input image, we apply method of unsupervised clustering in the latent space to assign
class labels. Considering a dataset of n image samples X = x1, x2, ..., xn where each image
has m = height × width pixels or features: xi ∈ Rm. For each input image xi, we extract
its corresponding latent code yi which is the output vector at the fully connected layer.
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This vector is also the output of the network and it is learnt during the process of network
optimization. Then unsupervised clustering is used to group all the xi ∈ X into K clusters
based on similarity distance calculated on yi. Compared with xi, the corresponding latent
code yi ∈ Rd has much smaller dimension d � m, and thus clustering on yi of reduced
dimension is more effective since it reduces “the curse of dimensionality”. For example, in
our experiment, the microscopy images of HeLa cells have dimension 382×382 but their latent
codes have size d = 10× 1 , which allows the K-means clustering algorithm to achieve higher
accuracy when working on the latent codes rather than working directly on input images. In
this work, after K-means method [197] is used to determine clusters in the latent space, the
Hungarian algorithm [198] is applied to map the assigned clusters labels to corresponding
groundtruth labels and then produces the classification label for each input image.

7.2.4 Data augmentation

Data augmentation is a common technique to deal with the limited number of available
labeled samples for training a deep neural network. To improve generalization ability for
target microscopy images of high variability, we attempt to augment our dataset artificially
by both geometric and photometric transformations. In particular, for each training image
we apply online a random combination of transformations, including rotation, flipping, trans-
lating, scaling, shearing, elastic distortion, contrast and brightness perturbation, with a wide
range of parameters for each individual transform. Normally, there is a challenge in selecting
relevant augmentation types and their parameter ranges to trade-off between capturing the
variability of the entire target images and avoiding generating outliers for training which
causes data bias problem [199]. However, the negative impact of generated outliers will be
significantly mitigated by several mechanisms in our design. Firstly, online augmentation is
applied randomly across training iterations instead of offline augmentation which repeatedly
stores and feeds the perturbed data at every training iteration. Secondly, momentum based
optimization during network training is done via Adaptive Moment Estimation (Adam) which
relies on decaying average of past gradients and past squared gradients to compute adaptive
learning rates for each network parameter. Finally, the latent space is regulated by normal
distribution with zero mean and of unit variance which allows latent variables to converge to
separated local clusters.

7.2.5 Network training

In standard training of convolution neural networks, the average cross entropy loss for each
training image batch is calculated as:
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CE = − 1
B

B∑
i=1

K∑
c=1

Ii,c log
(

exp(yi,c)∑K
c=1 exp(yi,c)

)
(7.1)

Where B is the size of training image mini-batch, K is number of image classes, Ii,c is the
binary indicator (0 or 1) if true class label c is the correct classification for image sample i,
and yi,c is the raw output score produced by the network for an image sample i to have a class
label c. In this work, we propose to add an additional constraint for the training which is to
match the embedding distribution q(y) of latent variables yi to a prior distribution p(y). In
particular, Gaussian distribution with zero mean and unit standard deviation p(y) ∼ N (0, 1)
is selected as the prior target distribution for optimization. This produces the effect of
separating clusters as they are constrained in local spaces along each dimension of the latent
variables. The training loss is computed by using embedding trick for Maximum Mean
Discrepancy (MMD) [200]:

MMD = Ep(yi),p(yj)[k(yi, yj)] + Eq(yi),q(yj)[k(yi, yj)]− 2Ep(yi),q(yj)[k(yi, yj)] (7.2)

where
k(yi, yj) = e

||yi−yj ||
2

2σ2

is a kernel to measure the similarity based on Euclidean distance between two samples yi, yj
which could be drawn from the same or different distributions p(y), q(y). Two distributions
are matched if and only if MMD = 0. Subsequently, the model is trained to optimize the ag-
gregate cost function by weighted sum of cross-entropy loss and maximum mean discrepancy
loss:

L = CE + γ ∗MMD (7.3)

Where γ is a hyper-parameter to adjust the weight of MMD loss. In our experiments, we set
γ = 1. To train the proposed network, we initially transfer the parameters of the MobileNet-
v2 feature extractor which are previously learnt from natural images, while initialize the
adaptor layer and final fully connected layer with uniform distribution. Then, Adaptive
Moment Estimation (Adam) optimizer is used, with small learning rate of lr = 10−4 which
helps stabilize the training loss and avoids destroying entirely the representation of pre-
trained feature extractor.
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7.3 Experiments and Results

7.3.1 Experiment design

To evaluate the performance of the proposed method, we design experiments with microscopy
fluorescence images in 2D HeLa dataset provided in benchmark suite IICBU [195]. There
is a total of 862 images of HeLa cells stained with various specific dyes to distinguish 10
different types of intracellular organelles and structures. We investigate the generalization
possibility by training our designed network with different amount of available labeled images.
In particular, alternatively 20%, 50% and 80% of the total images is used as training data
while the rest images are used as testing data in cross-validation measurement. The average
performance of 30 runs is reported, with data in each run is randomly reshuffled. For fair
comparison among experiments with different training ratios, we also increase the number of
training iteration for lower training ratio because the number of augmented data generated
online is proportional to the number of training iterations.

7.3.2 Results

Fig. 7.2 shows the performance of our designed network given different amount of training
data. Moreover, the impact of data augmentation and deep embedded clustering following
MMD regularization is also represented. Our proposed algorithm achieved average classifica-
tion accuracy of 96.7% when training with 80% of the whole dataset (about 690 images) and
93.9% when training with only 20% of the total images (about 172 images). As the figure
shows, data augmentation plays a vital role in training the network, laying the basis for the
MMD regularization to further improving performance.

Table 7.1 shows precision and recall values for each organelle class of HeLa cells, corresponding
to the case of using 80% dataset for training. Human experts are known to find it extremely
difficult to distinguish Endosomes and Lysosomes, and also have trouble to discriminate
between Golgpp and Golgi [195]. For these challenges, our proposed method is able to
achieve at least 90% precision. When compared to results from other studies, it performs
better.

Table 7.2 shows that our proposed model achieves highest classification accuracy when com-
pared with previous best deep learning models in terms of five-fold cross validation. Moreover,
it is worth noticing that our model has much less complexity as we did not combine multiple
networks together and also the most computation-demanding component is the MobileNet-
v2 feature extractor, which is well known for its compactness. The total model size is just
2.24M parameters.
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Figure 7.2 Classification performance when training with different amount of labeled data:
applying both data augmentatation and MMD regularization for deep embedded clustering
(MMD_Aug); applying only data augmentation (NoMMD_Aug); or not applying any of
these two techniques for the network (NoMMD_NoAug).

7.4 Conclusion

In this paper, we propose an effective convolution neural network OrgaNet for recognition
of subcellular organelles in fluorescent microscopy image. OrgaNet has remarkably small
number of parameters and fast computation compared with other published deep learning
methods. Our proposed model has surpassed state of the art methods in similar experiment
conditions, while it is demonstrated to be very robust when using only a very limited labeled
data.
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Table 7.1 Precision and recall for all ten classes (%)

Types Actin DNA Golgpp ER Golgia
Precision 100.0 99.7 96.4 96.0 90.9
Recall 99.9 99.9 89.6 97.5 96.7

Endosome Lysosome Microtubules Mitochondria Nucleolus
Precision 93.6 96.3 99.3 94.4 99.8
Recall 94.9 94.0 98.5 95.5 99.5

Table 7.2 Classification results of different methods

Methods Acc.(%)
Neural Network with 26 Haralick texture features [62] 95.3
GoogleNet [78] 91.0
Inception-Resnet-v2 [79] 92.0
Capsule Network [190] 93.1
Multi-scale CNN network [78] 91.0
Ensemble network of Resnet152, Inception-Resnet-v2,
Inception-v3 [79] 92.6

Ensemble of 4 MobileNet-v1 networks and Wavelet
Transform preprocessing [125] 96.1

Our proposed OrgaNet 96.7
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CHAPTER 8 GENERAL DISCUSSION

This thesis project has the general objective of improving the generalization and applicability
of deep learning-based models for the analysis of microscopy images. We focus on developing
the segmentation and classification algorithms for cells and structures which were captured
from various imaging domains and conditions. To overcome the generalization challenge, we
develop algorithms that are data-efficient or require the minimum number of labeled data.
To address the applicability issue, we propose methods that are computation-efficient and
domain-adaptable. The successful developments of these algorithms will assist pathologists
or biologists in the diagnostics and analysis of microscopy images in various scenarios. The
following sections discuss our findings and methods’ limitations.

8.1 Deep learning-based segmentation

Our main contribution is the development of an unsupervised deep learning model for seg-
mentation in histopathological images that is domain-adaptable. Existing models typically
offer high performance but are heavily dependent on expensive manual annotation.

In case of the segmentation of nuclei in H&E stained brightfield images, the annotation of
segmentation ground-truth for training deep learning models is not a trivial task. This pixel-
level annotation is typically harder than the image-level one in classification task because it
could be:

• insufficient: when not all of the objects in an image are labeled, it could provide false
negative training signals.

• inconsistent: when the objects within the same category appear differently, they could
be annotated differently by a single observer and obviously by different observers.

We have shown that our proposed model eliminates the need for an expensive annotation
process while outperforming common unsupervised algorithms and is competitive with some
recent supervised methods across diverse image datasets. By self-generating pseudo-data
during training process, it also avoids the systematic bias problem in the manual annotation
performed by certain observers.

To make the design applicable in a variety of histopathology settings, this work proposes the
design approach that is domain-adaptable after deployment. This is very important in prac-
tice because the experimental conditions influencing the target data can change frequently,
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depending on many factors. Meanwhile, the existing domain adaptation and self-supervised
methods both assume that target data, even without annotations, are accessible during train-
ing. This assumption is often invalid in histopathological settings because images in target
domains are generally unknown before training the model and domain shift can occur between
different patients [89,140].

Overall, our proposed segmentation model attained its stated requirements in terms of gen-
eralizing well on multiple domains of microscopy images and having the adaptability that
eliminates the need for reconfiguration after deployment.

8.1.1 Limitations

Although our proposed solution introduced several contributions to the segmentation topic,
the work is still far from complete. The most important shortcoming of our method is the
non-competitive instance segmentation scores. After the initial binary segmentation, we use
the simple distance transform to obtain the markers for the classical watershed algorithm to
produce the final segmentation map. Thus the limitations of the watershed algorithm will
hinder directly the overall instance-level segmentation of the framework. A naive approach
for mitigating the dependence upon the watershed algorithm and thus increasing instance-
level segmentation quality is to have higher resolution input images processed by a deeper
encoder-decoder network. In our research prototype, we down-scaled significantly original
images that made the touching nuclei phenomenon more challenging. Another potential
approach is to use a complementary deep learning network to predict the location of realistic
markers [97]. The integration of such an additional network, however, should increase the
overall model and timing complexity.

There is also a limitation regarding our modeling algorithm for nuclei morphology. In this
study, we considered a simple 2-D Gaussian noise map for the generation of nuclei objects.
We assume that the randomly generated shapes represent well the arbitrary variation of
nuclei morphology in the image. Although this helps to decrease the bias in the generation of
training data, more investigation is needed to better modeling of the distribution of realistic
nuclei morphology, such as shapes, area or densities. Accordingly, a more complex algorithm
with more parameters to control the quality of the modeling should be developed. One of
the alternatives is to reuse available public fluorescent datasets which contain images that
are easier for nuclei segmentation [106,107].

Another drawback is that our model implementation can not achieve real-time performance.
As the whole framework contains a deep learning-based training process for each target
image, it generally needs to balance the complexity of the network and the running time. If
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we use a more complex network than the basic U-Net network structure in the model, the
segmentation requires more than four minutes.

8.2 Deep learning-based classification

The complexity of a deep learning model is always a principal problem that affects the bal-
ance between its ability to learn and to generalize. Since the microscopy image database for
each specific application has a limited number of images and ground-truth labels, a com-
putationally complex model will lead to the over-fitting phenomenon. On the other hand,
we need to ensure that the model has enough capacity to extract distinguishing feature sets
or learn from the data effectively. In addition, we believe that the use of data alone is not
sufficient for the existing models to generalize, as also suggested in [84]. In this study, our
main contributions are the development of data and computing efficient solutions, based on
designing compact network architectures, combining conventional transformation algorithms
and regularizing feature space during training from scratch. All of our three proposed classi-
fiers have a significantly smaller number of training parameters but still yield higher accuracy
than state-of-the-art methods. Besides facilitating the computation and hardware require-
ments for training and deploying in real world, our proposed method improved the learning
generalization, in cases of weakly supervised learning and multi-domain learning. Thus, the
research attained the goal of proposing compact classification algorithms that have strong
generalization capability given limited labeled data.

8.2.1 Limitations

Despite several mentioned contributions of our proposed classifiers, there are still certain
limitations in our approach.

Firstly, the developed classifiers only work on images of segmented or detected objects. It
is often the case that the raw image contains a crowd of cells or organelles, especially in a
whole slide image. Thus, it is necessary to have a pre-processing step to separate each of the
objects into a single image patch.

Secondly, even though the classifiers can analyze images acquired from different domains
or imaging settings, the input images are constrained to fixed predefined dimensions, for
example, 224 × 224 × 3. For larger images that are being downscaled to this dimension,
their resolution is directly decreased and useful information of the objects may be lost. In
addition, it is also not possible to classify high-dimensional images, including multi-spectral
or hyperspectral microscopy images.
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CHAPTER 9 CONCLUSION

This thesis has addressed the generalization of deep learning models for the analysis, partic-
ularly segmentation and classification, of microscopy images. In the proposed approaches,
we focus on developing solutions that make the deep learning models generalize well across
multiple domains of application and imaging conditions. Firstly, we proposed a novel unsu-
pervised learning model for the segmentation of nuclei in H&E stained images. In addition
to the elimination of manual annotation, it provides the advantage of domain-adaptability.
Therefore, the framework is practically applicable for a wide range of histopathology settings.
Another contribution to this study is the development of an integrated optimization function
to improve network adaptability to the target image. We believe the developed method will
contribute to increasing analysis efficiency and application range, and trigger other projects
to remove the dependence on manual annotation. As a potential expansion, the use of direct
feedback by pathologists could be investigated to integrate into the model design. It is also
advisable to assess how the continual learning within a targeted laboratory could improve the
performance, i.e. by fine-tuning a network previously trained on patients’ samples acquired
in a laboratory setting. These developments will improve the reliability of the model and the
confidence of pathologists when using our automatic segmentation algorithm.

Secondly, we propose several methods for the classification of various types of objects in
microscopy images. We started with the development of a lightweight CNN classifier, entitled
Mobincep, for learning multiple domains of microscopy images. It could work effectively on
images that capture different levels of cellular structures, without requiring the adaptation of
domain-specific parameters. Moreover, we also formulate a simple yet effective optimization
function and devise a suitable training pipeline allowing our network to outperform state-of-
the-art methods either on each separate domain or on all domains at once. Our proposed
model is remarkably compact and robust against limited available training data. Because of
its low complexity and being widely applicable, the approach becomes more appealing for
deployment in clinical and biomedical studies.

Instead of the above generic model for multi-domain images, we then investigated the scenario
where we want to focus solely on improving further the accuracy for the recognition of
subcellular organelles. We first described a novel deep learning architecture WaveM-CNN
that combines the power of conventional multi-resolution analysis and automatic feature
extraction from a deep learning network. The proposed approach significantly improves
the classification performance compared with state-of-the-art deep learning models on the



100

same datasets of microscopic fluorescent images. Unlike existing methods, we developed our
method on top of a lightweight neural network, which has dramatically fewer parameters
than well-known deep neural networks.

Following this model, we extended the research with the development of an effective convo-
lution neural network OrgaNet which also has a remarkably small number of parameters and
fast computation compared with other published deep learning methods. Unlike the previous
WaveM-CNN model in which the feature extractor layers were pre-trained on the popular
ImageNet dataset of natural photos, we decided to train Organet from scratch, without the
use of any external images. This approach is particularly useful when there is no available
pre-trained model or when the pre-trained feature extractor is not effective for the target
microscopy images. In particular, we formulated a new optimization function to regulate
the feature space and devised a suitable optimization procedure. We demonstrate that our
proposed model has surpassed state-of-the-art methods in similar experimental conditions.
More importantly, the model can generalize well as it requires very limited labeled data,
about four times less than other approaches, to achieve a similar level of accuracy.

We believe the developed methods will contribute to significantly decreasing the burden of
generating ground-truth annotation for training data and increase the analysis efficiency
of pathologists and biomedical scientists. The limitations mentioned in chapter 8 create
opportunities for new developments. It would be very helpful to have a complete automatic
pipeline that can first perform segmentation or detection and then classify the objects of
interest. Some existing studies have proposed such an end-to-end framework. However,
their studies just focus on a specific application with limited transferability to others. A
multi-domain framework is practically needed to save the time and labor of pathologists and
biology scientists. An end-to-end framework also mitigates the requirement of normalizing
the size of input images for the classifiers. For example, the output dimensions of detected
objects images are constrained to fixed values, unlike the case where the detection bounding
box is done manually by experts.

Another interesting research topic could be the development of a continual learning method.
This helps a deep learning agent to leverage the knowledge accumulated from learning pre-
vious tasks and thus learn well a new task given little labeled data [201]. In principle,
continual learning aims at two properties: (1) avoiding forgetting or the degradation of per-
formance on a task learned in the past and (2) better learning over time. When developing
our multi-domain classifiers, we implied the static nature of the learning problem, assum-
ing that pathologists or biomedical scientists have only three certain imaging domains. In
practice, however, new tasks may arrive and the deployed agent can not be used. In another
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scenario, pathologists may want to use the agent for the classification of new types of cancer.
The transfer learning could be applied, but the agent may fail to classify previous types of
samples.
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Abstract
Deep image clustering approaches typically use autoencoder architectures to learn compressed
latent representations suitable for clustering tasks. However, they do not effectively regulate
the latent space during training, leading to low performance and diminished applicability to
different datasets. In this paper, we propose a deep clustering model combining maximum
mean discrepancy (MMD) regularization and self-learning clustering optimization to mitigate
this problem. Specifically, we first train the network to improve its image reconstruction abil-
ity by minimizing both reconstruction loss and MMD divergence from a target distribution.
Then, the model gradually learns from its own high-confidence predictions to further opti-
mize the latent distribution. We validate the network’s performance on different benchmark
image sets using standard clustering metrics, without changing network configuration or
adjusting hyper-parameters between datasets. The proposed model provides top clustering
performance across datasets while being more robust than state-of-the-art methods.

Introduction
Clustering is an unsupervised learning approach that is essential for image analysis tasks,
especially image categorization and segmentation [202], [203]. Conventional methods like
K-means [204] and spectral clustering [205], [206] have been applied to a wide range of
applications. However, as they measure the similarity distance between points in shallow,
high-dimensional feature spaces of raw pixels or gradient-based histograms, their clustering
ability is largely limited to simple image datasets [207].
For their part, deep learning-based clustering approaches use deep neural networks to rep-
resent data as lower-dimension, hierarchical features such that conventional clustering tech-
niques can be applied effectively [208]. For example, an encoder-decoder architecture can
be used to produce a rich latent encoding of the input image with dramatically reduced
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dimensionality. Thus, a data grouping applying on the latent codes is more feasible than
performing on the input images and can avoid the curse of dimensionality problem to which
clustering algorithms are prone.
Typically, there are two major challenges when applying existing deep clustering algorithms
to different image datasets: (1) maintaining high algorithm performance requires reconfigur-
ing the network architecture or adjusting a large number of training hyper-parameters [209];
(2) complicated algorithms such as spectral clustering can achieve very high performance
but dramatically increase model complexity and memory usage due to the need for extensive
computations, e.g. computing the full graph Laplacian matrix [207]. Therefore, our aim is
on designing an algorithm that has a limited number of hyper-parameters and computational
complexity but still reaches top-level performance on several different image sets without the
need for reconfiguring the network architecture.
In this paper, we present a deep clustering model based on a generative Variational Au-
toencoder (VAE) architecture, or MMD-VAE based Deep Embedded Clustering, denoted
as MMV-DEC, and devise training strategies to improve its clustering performance. Un-
like conventional clustering algorithms or dimension reduction techniques, which use linear
transformation, our method can perform complex non-linear transformations using a deep
convolutional neural network (CNN). Our work differs from previous related works, especially
another VAE-based approach in [210], in terms of architecture, optimization and performance.
Firstly, instead of linear layers, we use convolutional layers to improve the feature extraction
capability on image data. Secondly, inspired by a recent published work [211], we use the
MMD divergence optimization approach instead of maximizing the Evidence Lower Bound
Objective (ELBO) based on Kullback-Leibler (KL) divergence [212]. This helps to avoid the
problem of vanishing mutual information between the input image and the embedded latent
code. Finally, we integrate a self-learning optimization technique to improve the cluster-
ing quality. We demonstrate a significant improvement in performance and generalizability
compared with state-of-the-art models by experiments on four different benchmark datasets.

Related Works
Deep learning-based clustering has been widely studied in recent years. An early work pre-
sented in [207] proposed to use a fully connected stacked autoencoder architecture, with a
two-phase training strategy. In the first phase, the network learns a feature transformation
via an image reconstruction task. Then in the second phase, a clustering objective is defined
based on the network’s own predictions to further optimize its parameters and the cluster
centroids. Improvements to this architecture have been proposed, with the reconstruction
task is maintained during the second phase to preserve the structure of the data generating
distribution [213] and convolutional layers are used instead of fully connected layers [214]. A
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Figure A.1 Overview of our proposed model, which consists of encoder-decoder pathways and
a clustering layer stacked on top of the latent layer. The dimensions shown above the layers
are those of the feature maps generated at each layer.

more effective approach was introduced in [209], based on jointly and simultaneously optimiz-
ing a clustering objective and the autoencoder parameters, without layer-wise pretraining of
the autoencoder layers. To achieve noise-invariant predictions, the clustering loss objective is
applied on the latent code of a denoising convolutional auto-encoder, whereas the reconstruc-
tion loss function is calculated between all the decoder layers and the clean encoder layers.
Recently, the authors of [203] proposed to combine spectral clustering with a dual autoen-
coder, with one encoder pathway for clean input and the other for its noise-contaminated
version. To learn more discriminative information from the inputs, they maximize mutual
information calculated with a negative image sample randomly selected from the noisy batch.
After training this autoencoder for initial latent representation, the latent representations are
embedded into the eigenspace of their associated graph Laplacian matrix where clustering is
performed. As an alternative training strategy, Joint Unsupervised Learning (JULE) [215]
combines the feature representation of a CNN and agglomerative clustering in a recurrent
manner. The algorithm starts with an initial over-clustering and alternates between two
training steps: merging clusters based on the current network representation and updating
network parameters using the current clustering result.
Variational Autoencoders (VAE) [212] and Generative Adversarial Networks (GAN) [216]
also have an encoder-decoder network structure and are popular choices for modeling the
process of data generation and synthesizing new images. Although VAEs and GANs yield
better reconstruction performance in various applications, there is a limited number of pub-
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lished deep clustering algorithms based on VAE or GAN architectures. A clustering approach
based on a VAE was introduced in [210]. To be more pertinent for clustering tasks, it models
the data generation process by a Mixture of Gaussian prior instead of the original Gaussian
prior. The model is optimized using the conventional method of maximizing the ELBO of
the data log-likelihood as well as the re-parameterization trick. Another recent work exploits
a generative model that performs latent space clustering in a GAN [217]. As the cluster
structure is not held in the GAN latent space, they propose to use the mixture sampling of
discrete and continuous latent variables and a set of optimization algorithms specialized for
the discrete-continuous mixture.

Proposed Approach
Our deep clustering model, called MMV-DEC, is composed of two main parts: a VAE network
based on MMD regularization, which we name MVAE and a clustering layer which is stacked
on top of the latent layer of the MVAE to enable enhanced clustering (EC) optimization.
The overall architecture is shown in Fig. A.1.

MVAE
The proposed variational autoencoder network consists of two major components, an encoder
and a decoder, each comprising a set of convolutional layers. The encoder extracts the input
image features to produce the latent code, which has much lower dimension than the input
image. This latent code is fed into the decoder layers to reconstruct the original image. The
network functions as a generative model, with encoder gθ and decoder fφ being functions of
the network parameter sets θ and φ:

X
gθ−→ Z

fφ−→ X̂

We design the encoder network using three convolutional layers, with 32 kernels of size 3×3,
64 kernels of size 3× 3 and 256 kernels of size 5× 5, used in each layer, respectively. Each of
these convolutional layers is followed by an Exponential Linear Unit (ELU) activation func-
tion. In addition, average pooling with kernel size 2 × 2 and stride of 2 pixels is applied on
each of the activated feature maps, except for the third feature map. The pooling operation
functions as a down-sampling layer to reduce the spatial dimension. After the third feature
map, a fully connected layer is used to generate the latent vector of size 1×10 corresponding
to the original grey-level image of size 28× 28.
Conversely, the decoder component is designed to gradually increase the feature map dimen-
sions, starting from the latent vector and ending with the output reconstructed image. The
decoder pathway starts with one fully connected layer which is followed by four convolutional
layers integrated with ELU activation functions. Each of the four convolutional layers uses a
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set of 64 kernels of size 5× 5, 32 kernels of size 3× 3, 16 kernels of size 3× 3 and 1 kernel of
size 3×3, respectively. In addition, appropriate padding is used in combination with bilinear
up-sampling layers after each activated feature map such that the reconstructed images have
the same size as the original images. The last layer uses a conventional sigmoid function to
normalize the output values in the range of [0, 1] to produce the output image.
Typically, the cost function to train a VAE includes two terms: the reconstruction loss and
the regularization loss. The main difference between a standard VAE and our MVAE network
lies in the formulation of the regularization loss. Whereas conventional VAE optimization is
based on minimizing the Kullback-Leibler divergence between the generated latent distribu-
tion and a prior distribution, we apply Maximum Mean Discrepancy (MMD) divergence [211]
to optimize jointly with the reconstruction loss.
During training, each unlabeled image is fed into the network and the reconstruction loss,
known as the binary cross entropy (BCE) function, is calculated. Supposing that in each
training iteration, a batch of b images is processed, then the BCE loss between input images
xi of m pixels and their reconstructed counterparts x̂i is measured element-wise by:

BCE = − 1
b×m

b∑
i=1

m∑
j=1

[xij ln x̂ij + (1− xij)(1− ln(1− x̂ij))] (A.1)

Simultaneously, the MMD divergence between the distribution of generated latent variables
q(z) and a target distribution p(z′) is computed by using the kernel embedding formula [211],
[218]:

MMD = Ep(z′i),p(z′j)[k(z′i, z′j)] + Eq(zi),q(zj)[k(zi, zj)] − 2Ep(z′i),q(zj)[k(z′i, z′j)] (A.2)

where
k(zi, zj) = e−

||zi−zj ||
2σ2

is a kernel to measure the similarity between two samples zi, zj in terms of Euclidean distance.
Here, q(z) is the distribution of latent variables generated by the encoder, while p(z′) is the
prior distribution that we would like q(z) to match. Intuitively, the MMD loss measures
the difference between the average similarity of samples within each distribution and the
average similarity of mixed samples from both distributions. When MMD reaches 0, the
two distributions are matched. Finally, the model is trained to optimize the aggregate cost
function, which is equal to the sum of the reconstruction and MMD losses:

L1 = BCE +MMD (A.3)
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Enhanced clustering optimization (EC)
To further optimize the latent space for clustering purposes, we borrow the unsupervised self-
learning optimization technique proposed in [207]. To achieve this, we connect an additional
clustering layer to the latent variable layer, leaving the rest of the MVAE network intact.
It is a fully connected layer that uses a t-distribution kernel [219] to measure the similarity
between the latent code and the centroid of a target cluster. Specifically, the distance between
a sample zi and the centroid of a given cluster µj is calculated as:

qij = (1 + ||zi − µj||2)−1∑
j′(1 + ||zi − µj′ ||2)−1 (A.4)

This equation calculates the probability of a data point belonging to a cluster represented
by its mean µj and is translated into the assignment of a class label to the input image.
Note that standard K-means clustering is applied in the latent space to determine the initial
clusters. Then, during the optimization process, the cluster centroids are updated as learnable
parameters.
The self-learning optimization involves defining a target distribution pij and minimizing the
Kullback-Leibler (KL) divergence between pij and the embedding distribution calculated in
equation A.4. We use a simple and effective empirical target distribution [207], defined as:

pij =
q2
ij/
∑
i qij∑

j′(q2
ij′/

∑
i qij′)

(A.5)

The KL divergence used to evaluate the matching between the target distribution and the
clustering assignment of latent variables is computed by:

DKL(P ||Q) =
∑
i

∑
j

pij log pij
qij

(A.6)

This KL divergence is used as a regularization term and serves as a guidance criterion for
refining the clusters. As pij is also a function of qij, optimizing this divergence is considered a
self-training process. However, instead of using this single KL divergence as the cost function
for optimization, we combine it with a reconstruction loss as suggested in [213] to preserve
the local structure of the data distribution and avoid overfitting or getting stuck in local
minima [209] during network optimization. Supposing that in each training iteration, a
batch of b images is processed, then the element-wise mean squared error (MSE) between b
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input images xi and their reconstructed images x̂i is measured by:

MSE = 1
b×m

b∑
i=1
||xi − x̂i||22 (A.7)

So the final cost function for enhanced clustering optimization is formulated as the weighted
sum of the KL divergence and reconstruction loss:

L2 = MSE + βDKL (A.8)

where β is a hyper-parameter to adjust the weight of KL divergence and MSE is the recon-
struction loss.

Training
We use the training algorithm presented in Fig. A.2 for all datasets, with the same net-
work configuration and a fixed set of hyper-parameters. It is divided into two major stages:
(1) training the MVAE network as a generative model and (2) training the network for
enhanced clustering optimization. In the first stage, the training process uses standard back-
propagation to update parameters, together with ADAM optimization at a fixed learning rate
of 0.001. We select the Gaussian distribution p(z′) ∼ N (0, 0.5) as the target distribution for
embedding variables. The maximum number of training epochs is set to 200 in order for
the reconstructed images to achieve relatively good quality for all the tested datasets. Then,
we use simple K-means clustering on the latent variables to find the initial cluster centroids,
which are required for equation A.4 in the first iteration of the clustering optimization stage.
In the second stage, we again use the ADAM optimizer with a fixed learning rate of 0.001
to update the network parameters, including the cluster centroids, after every training itera-
tion. Similar to [213], we set β = 0.1 to balance the contributions of the loss terms in the L2

cost function. The stopping condition is triggered when the difference in cluster assignments
compared with the previous iteration is below a small threshold.

Experiments and discussion
Datasets and evaluation metrics
To compare our performance results with recently published methods, we evaluated our
proposed model on 4 reference image sets, namely MNIST [5], USPS [220], Fashion-MNIST
[221], and Cifar-10 [222] as summarized in Table A.1. For the Cifar-10 dataset which consists
of color images, we adjust the dimension of the input tensor accordingly. Two standard
unsupervised evaluation metrics for clustering performance were used: clustering Accuracy
(ACC) and Normalized Mutual Information (NMI) [203], [217]. The classification label for
each input image was produced by applying the well known Hungarian algorithm [223] which
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Figure A.2 Training algorithm for MMV-DEC.

maps the predicted clusters assignments to the groundtruth labels. To reduce measurement
uncertainty, the performance measurements were averaged from 10 random trials.

Image reconstruction
The MVAE embeds the input image into a low-dimensional latent code by the encoder layers
and then reconstructs the original image by the decoder layers. By minimizing the integrated
reconstruction loss and MMD regularization term, the network is supposed to learn the un-
derlying data representation more effectively than a conventional autoencoder or VAE and

Table A.1 Image datasets for clustering evaluation

Dataset # Images # Classes Dimension

MNIST 70,000 10 28× 28× 1
USPS 9,298 10 16× 16× 1

Fashion-MNIST 70,000 10 28× 28× 1
Cifar-10 60,000 10 32× 32× 3
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thus produce better reconstruction quality. Examples of original and reconstructed images
obtained by our model are illustrated in Fig. A.3.
Even though the latent representation is significantly compressed compared with input di-
mensions, in the three datasets MNIST, USPS and Fashion-MNIST, the reconstructed images
produced by the decoder (in the even rows) are visually very close to the original ones (in
the odd rows), with some minor blurring. Therefore, the useful information to discriminate
differing patterns is maintained in the latent code, which is a desired condition for clustering
to be directly performed on it. On the other hand, the reconstructed images for Cifar-10
dataset are very blurry which implies the necessity of the preprocessing step and scaling up
of the deep CNN architecture. For example, the authors of [224] used Sobel transformation
to convert the color images into grayscale images and employed AlexNet or VGG networks
for their feature extraction.

Analysis of training strategies
We validated the effectiveness of applying the MMD regularization and enhanced clustering
(EC) optimization strategies by comparing five variants of our model: (1) Convolutional
autoencoder using our encoder-decoder architecture but trained with only the reconstruc-
tion loss (ConvAE); (2) Convolutional autoencoder using enhanced clustering optimization
(ConvAE+EC); (3) Convolutional autoencoder trained with both reconstruction and con-
ventional KL divergence losses (ConvAE+KL div.); (4) Convolutional autoencoder trained
with both reconstruction and MMD losses (ConvAE+MMD), which is the MVAE network;
(5) MVAE network using enhanced clustering optimization (ConvAE +MMD+EC), which
is our proposed MMV-DEC model.

As shown in Table A.2, each training strategy of MMD loss and EC improves the cluster-
ing ACC and NMI results effectively on all four benchmarks, especially on the MNIST and
USPS datasets. The application of both techniques consistently produces the highest per-
formance, thus demonstrating the appropriateness of combining them in training. Although
the improvement is not significant in the case of the Fashion-MNIST dataset and Cifar-10,
the relatively high performance of the basic configuration (ConvAE) implies that the net-
work architecture is well designed, laying the foundation for other optimization strategies.
As can also be seen in the table, the application of conventional KL divergence loss during
the network training is inferior to MMD loss optimization and even deteriorate the clustering
performance of the autoencoder network in case of the Fashion-MNIST dataset.

Fig. A.4 provides a visual comparison of the latent space for the USPS dataset by applying
the t-SNE visualization method [219] on the embedded code space Z. This visualization
reveals that training with the combined reconstruction and MMD losses (MVAE network)



133

Figure A.3 Original and reconstructed images from the three different datasets: MNIST
(rows 1 & 2), USPS (rows 3 & 4), Fashion-MNIST (rows 5 & 6) and Cifar-10 (rows 7 & 8 ).

produces more compact clusters that are easier to discriminate, compared with using only
the reconstruction loss (ConvAE network).

Fig. A.5 displays the improvement in clustering accuracy and NMI during Stage 2 of training
(EC optimization) of our network for one trial example. We can see here that the clustering
optimization technique is generally very fast and effective. In addition, the output perfor-
mance of the Stage 1-trained MVAE plays a vital role in laying the basis for further clustering
optimization. Indeed, the clustering optimization increases performance significantly on the
MNIST (ACC: ∼ 7%, NMI: ∼ 12%) and USPS (ACC: ∼ 7%, NMI: ∼ 11%) datasets; in these
cases, the Stage 1-trained MVAE provides high clustering capability to initiate Stage 2. For
the Fashion-MNIST and Cifar-10 datasets, however, the improvement is more limited, as it
is impacted by the quality of the previously trained MVAE.

Comparison with state of the art methods
We compared our proposed approach with both conventional clustering baselines and state-of-
the-art deep clustering algorithms. Peformance results for these other methods were reported
either in their original papers or compiled in recently published papers [203], [217]. For the
Cifar-10 dataset, we obtain the results by running the released codes of corresponding works
and for those results that are not practical to obtain, we indicate by dash marks (−). As can
be seen in Table A.3, our proposed approach outperforms the conventional methods based on
K-means or Spectral clustering (SC-LS) on all four datasets by a large margin. Furthermore,
our model yields better performances than several other deep embedded clustering methods,
including DEC, IDEC, DCEC, as well as a generative model based on the variational au-



134

Table A.2 Analysis of different training strategies

Strategies
MNIST USPS Fashion Cifar-10

ACC NMI ACC NMI ACC NMI ACC NMI

ConvAE 86.6 77.7 72.3 70.9 61.5 64.0 21.9 8.9

ConvAE+EC 95.2 91.2 78.7 82.7 62.1 65.8 23.3.0 9.5

ConvAE+KL div. 86.9 79.7 78.2 72.5 50.4 48.2 22.8 9.1

ConvAE+MMD 90.0 81.0 85.9 78.6 61.7 64.9 23.0 9.8

Our MMV-DEC 96.8 93.3 96.4 91.2 62.9 66.2 24.1 10.4

Figure A.4 Comparison of latent representations of USPS dataset produced by our model
without (left) and with (right) MMD regularization. Colors represent true labels of the
samples, and class numbers are positioned at cluster centroids.

toencoder (VaDE). Compared with the methods achieving the highest performances in the
literature, namely JULE, DEPICT, Dual-AE and the GAN models (ClusterGAN, InfoGAN),
our proposed MMV-DEC achieves higher overall clustering performance. In particular, it out-
performs other methods on Cifar-10 dataset following both ACC and NMI criteria. It also
achieves the highest accuracy (96.4%) on the USPS and the highest NMI (66.2%) on the
Fashion-MNIST dataset. In general, our MMV-DEC secures at least 2nd best performance
according to the two metrics on all benchmarks.
More importantly, the experiment results demonstrate the better generalization ability across
datasets of our proposed framework. Note that none of the previous methods gain a top-
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Figure A.5 ACC and NMI metrics during EC optimization (Stage 2 of training) with MVAE
network.

two performance across all datasets and the latest state of the art methods could not provide
consistent results. For example, although the USPS and MNIST datasets are similar, the dif-
ference in clustering accuracy is more than 10% in most of recent works [203,207,213,214] and
it is even more than 35% for the similar approach based on conventional VAE network [210].
With our proposed method, this performance gap is non-remarkable and without the need
of adjusting the training hyper-parameters.

Conclusion
In this paper, we present a new unsupervised deep clustering method that is based on a vari-
ational autoencoder architecture. The application of self-learning mechanism and MMD loss
optimization consistently produces the highest effectiveness and generalization ability. The
model also has the advantages of low computational complexity and few hyper-parameters to
adjust. Experiments on four image benchmarks demonstrate that our proposed MMV-DEC
model can reach state-of-the-art performance without requiring to reconfigure the network
architecture or change the clustering hyper-parameters. Our further work will focus on more
realistic images, where it is necessary to scale up the deep network architecture and apply
preprocessing steps on the input images.
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Table A.3 Comparison of different clustering algorithms on benchmark datasets based on
NMI and ACC metrics. The top two performances are highlighted in each column.

Methods
MNIST USPS Fashion Cifar-10

ACC NMI ACC NMI ACC NMI ACC NMI

K-means [204] 53.2 50.0 66.8 60.1 47.4 51.2 19.8 7.6

SC-LS [206] 71.4 70.6 74.6 75.5 49.6 49.7 20.6 9.1

DEC [207] 86.3 83.4 76.2 76.7 51.8 54.6 21.6 8.4

JULE [215] 96.4 91.3 95.0 91.3 56.3 60.8 - -

VaDE [210] 94.5 87.6 56.6 51.2 57.8 63.0 20.1 8.1

IDEC [213] 88.1 86.7 76.1 78.5 52.9 55.7 19.6 8.3

DCEC [214] 89.0 88.5 79.0 82.57 - - 22.3 8.7

DEPICT [209] 96.5 91.7 89.9 90.6 39.2 39.2 22.8 9.6

InfoGAN [225] 89.0 86.0 - - 61.0 59.0 - -

ClusterGAN [217] 95.0 89.0 - - 63.0 64.0 - -

Dual-AE [203] 97.8 94.1 86.9 85.7 66.2 64.5 23.9 9.8

Our MMV-DEC 96.8 93.3 96.4 91.2 62.9 66.2 24.1 10.4
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