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Multi-scale modeling of distortion in the non-flat 3D woven composite

part manufactured using Resin Transfer Molding

Anton Trofimova, Jeremy Le-Pavicb, Christophe Raveyb, William Albouyb, Daniel Therriaulta,
Martin Lévesquea,

a Laboratory for Multiscale Mechanics, Polytechnique Montréal, Montréal, QC H3C3A7, Canada
bSafran Composites, a technology platform of Safran Tech, Itteville, 91760, France

Abstract

This paper presents a multi-scale thermo-chemo-mechanical simulation predicting the distortion
of a 3D woven composite part manufactured using the Resin Transfer Molding (RTM) process.
The multi-scale numerical procedure relied on an anisotropic temperature- and degree of cure-
dependent viscoelastic constitutive law whose parameters were obtained from experimental data
and a blackbox optimization algorithm. Analytical (at the micro-scale) and numerical (at the
meso-scale) homogenization procedures were used to compute the effective coefficients of thermal
expansion and chemical shrinkage. An actual 3D woven non-flat composite specimen exhibiting
variations in properties and thickness was designed and manufactured using the RTM process.
The contoured geometry of the manufactured part was digitized using an industrial optical 3D
scanner and compared against the developed multi-scale numerical predictions. It was found that
the presented approach was capable of qualitative and, in some cases, quantitative prediction with
the highest accuracy ∼ 2.8% of manufacturing induced geometrical distortions.

Keywords: viscoelasticity, multi-scale modeling, homogenization, 3D woven composite, resin
transfer molding

List of Symbols

εmech Viscoelastic second order strain
tensor

εnon−mech Stress free second order strain
tensor

εnon−mech
CCS Stress free second order strain

tensor associated to the chemical
shrinkage

εnon−mech
CTE Stress free second order strain

tensor associated to the thermal
expansion

α Degree of cure

t Time

m Material parameter (Kamal and
Sourour model)

k1 Chemical reaction rate constant
(Kamal and Sourour model)

k2 Chemical reaction rate constant
(Kamal and Sourour model)

T Temperature
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R Universal gas constant

Ai Arrhenius constant (Kamal and
Sourour model)

Ei Activation energy (Kamal and
Sourour model)

C(∞) Fully relaxed fourth order stiff-
ness tensor

τk Relaxation time

N Number of relaxation times

p(α) Adjustable fourth order tensor
for cure-dependency

aT Shift factors

K1 Adjustable fourth order tensor
(p(α))

K2 Adjustable fourth order tensor
(p(α))

B 6N × 6N identity matrix

C(k) Adjustable fourth order relax-
ation tensors

Tg Glass transition temperature

Ea1 Activation energy below Tg (Ar-
rhenius equation)

Ea2 Activation energy above Tg (Ar-
rhenius equation)

a1 Adjustable model parameter
(Arrhenius equation)

a2 Adjustable model parameter
(Arrhenius equation)

b1 Adjustable model parameter
(Arrhenius equation)

T 0
g Uncured resin’s glass transition

temperature

λ DiBenedetto material parameter

χ Hidden (internal) variables

T
(∞)
g Fully cured resin’s glass transi-

tion temperature

εT Chemical shrinkage second order
strain tensor

εC Thermal expansion second order
strain tensor

θ Coefficient of thermal expansion
second order tensor

β Coefficient of chemical shrinkage
second order tensor

ra Cost function

σ Second order stress tensor

s Measured or predicted second or-
der stress tensor (cost function
equation)

M Total number of discrete times

F Total number of elements

g Loadcase number

V Volume

V (l) Volume of the element

φ Inhomogeneities volume fraction

N Stiffness contribution fourth
order tensor (Mori-Tanaka
scheme)

G Shear modulus

λ Lamé’s first parameter

S Compliance fourth order tensor

ui Displacements
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1. Introduction

Resin Transfer Molding (RTM) comprises in injecting a viscous thermoset resin into a dry
fibrous preform and subsequently curing it until full consolidation. The process involves significant
temperature variations that trigger the development of residual stresses leading to matrix cracking,
delamination and/or part distortion [1, 2, 3]. Residual stresses and distortions result mainly from
the dissimilar fibers and matrix coefficients of thermal expansion, the polymer cure shrinkage and
tool-part interaction [4, 5, 6, 7]. Moreover, the polymer resin evolves from a purely viscous to a
viscoelastic and, ultimately, to an elastic mechanical behavior throughout the process [8, 9].

The structure of a 3D woven composite is hierarchical. At the meso-scale, the structure is made
of tows that are classified as warp (longitudinal) and weft (transverse), and of a polymer matrix.
At the micro-scale, the tows are assumed to be made of carbon fibers and the polymer matrix. All
of these features interact with each other and influence the overall part performance. Therefore, the
prediction of the macro-scale warpage during manufacturing requires a robust constitutive model
for the polymer matrix and an efficient multi-scale procedure [10, 11].

A number of constitutive models accounting for the different thermo-chemo-mechanical phe-
nomena active during manufacturing have been developed to predict composites part distortion.
Authors in [12] used temperature dependent elastic properties to predict the spring-in angle of a
U-shaped laminate. Johnston proposed the so-called Cure Hardening Instantaneous Linear Elastic
(CHILE) model to represent the resin’s stiffness evolution with the degree of cure and temperature
[13]. The CHILE model was used by several research groups to predict the geometrical distortion
built up during the process [3, 14]. Recently, Wang et.al [15] used a multi-scale approach based on
the CHILE model to predict the process-induced residual strains in the RTM composite. However,
the CHILE model neglects the viscoelastic nature of the polymer matrix and the stress relaxation
occurring during the process. A degree of cure- and temperature-dependent viscoelastic model has
been developed for epoxy resins below their glass transition temperature (Tg) [16]. This model
was extended to an orthotropic 3D woven composite and used to predict creep strains below the
resin’s Tg [17]. A detailed comparison of distortion predictions during post curing using different
elastic and viscoelastic models was performed in [18, 19, 20]. It was shown that the main source
of warpage in 3D interlock composite parts was related to creep strains. Therefore, a degree of
cure- and temperature-dependent viscoelastic model is needed to accurately predict the final part
distortion. Such a complex viscoelastic model requires extensive polymer matrix characterization.

Numerical multi-scale homogenization is usually used to compute macroscopic properties by
spatially averaging stresses and strains fields at the micro- and meso-scales. The technique is
computationally expensive as it requires explicit representations of the microstructure by relying
on the concept of Representative Volume Element (RVE) and computation of the local stress
and strain fields in the RVE when external loads are applied. The technique has been applied
to elastic [21, 22, 23], viscoelastic [24, 25, 26], thermoviscoelastic [27, 28, 29], temperature and
degree-of-cure dependent materials [30, 16]. RVEs can be an ‘artificial’ statistically representative
microstructures [31, 32, 33, 34] or ‘real’ representations generated from material images taken by
Computed Microtomography (μCT) [35, 36, 37].

This paper presents a novel multi-scale thermo-chemo-mechanical procedure to predict distortion
in a 3D woven composite part using a temperature- and degree-of-cure dependent viscoelastic
constitutive model. The procedure provides a unique versatile framework capable of simulating
the anisotropic behavior of 3D woven composites whose physical state evolves over the RTM
manufacturing process. Since the RTM allows the design and manufacturing of composites featuring
complex geometries and weaving architectures, we experimentally validated distortion predictions
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on a non-flat 3D woven carbon fiber reinforced epoxy composite part with a non-uniform fabric
orientation.

The paper is organized as follows: Section 2 recalls background information on temperature-
and degree-of-cure dependent constitutive models. This section provides the essential information
to follow this paper and to show the novelty of our work with respect to existing models. The
RTM of a non-flat composite part and the digitization of its geometrical contours are described
in Section 3. Section 4 details the multi-scale methodology to simulate the whole RTM process.
The components of stiffness, coefficients of thermal expansion and chemical shrinkage tensors at
each stage of the procedure are presented in Section 5. The distortion predictions are compared
to experimental data in Section 6. Discussion and final conclusions are given in Sections 7 and 8,
respectively.

The modified Voigt notation has been adopted throughout the paper. Symmetric second-order
tensors are expressed as six component vectors and symmetric fourth-order tensors are expressed as
6 × 6 matrices. Scalar quantities are denoted by light-faced letters (i.e., a, α and A), second order
tensors are represented by boldfaced lowercase Greek letters (i.e., σ), while fourth-order tensors
are represented by boldfaced capital Roman letters (i.e., C).

Note that all the values of the stiffness tensors and the expansion coefficients are normalized by
the stiffness tensor component C11 and by the expansion coefficients at room temperature of the
fully cured polymer, respectively.

2. Background information

Geometrical distortion in RTM composite parts is essentially triggered by the residual stresses
build-up during manufacturing Generally, the process can be divided into two main stages: before
and after demolding. Before demolding, the plate is in the mold and constrained (zero displacements),
as well as submitted to a specific temperature profile. As a result, internal stresses develop and
evolve with the degree of cure due to the matrix coefficient of chemical shrinkage (CCS) and evolve
with the temperature variation due to the coefficient of thermal expansion (CTE). After demolding,
the plate is released and cooled down to room temperature, which leads to a decrease of internal
stresses and mechanical strains that develop final geometrical instabilities.

Loos et al. [38] and Svanberg et al. [39] developed a sequentially modular approach to simulate
the thermo-chemo-mechanical phenomena involved in the RTM process. The degree of cure
distribution as a function of time was first predicted throughout a plate with the chemical model
recalled in Section 2.1. The obtained distribution, along with a known uniform temperature profile
as a function of time, were input as solution-independent conditions into a time-temperature-
and cure-dependent constitutive model to compute the total strain response εtot of a 3D woven
composite as [19, 20]:

εtot = εmech + εnon−mech, (1)

where εmech are viscoelastic strains and εnon−mech = εnon−mech
CCS + εnon−mech

CTE , where εnon−mech
CCS and

εnon−mech
CTE are the stress free strains associated to the chemical shrinkage and thermal expansion,

respectively. Courtois et al. [17] have developed a three-dimensional constitutive model and
proposed a multi-scale procedure to identify its parameters. The details on the work of Courtois et
al. are given in Section 2.2.1.

2.1. Resin cure kinetics

The resin cure kinetics was modeled with Kamal and Sourour phenomenological model as [40]
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dα

dt
= (k1 + k2α

m) (1− αn) , (2)

where t is the time, α is the degree of cure, m is a material constant and k1 and k2 are the chemical
reaction rate constants described by Arrhenius’, equation as

ki = Ai exp

(−Ei

RT

)
, (3)

where T is the temperature, R, Ai and Ei are the universal gas constant, the Arrhenius constant
and activation energy, respectively. Differential Scanning Calorimetry (DSC) tests were performed
on the polymer resin studied in this work at different heating rates and the model parameters were
adjusted until they best fitted the experimental data (see [16] for details).

2.2. Mechanical model

2.2.1. Mechanical strains

Courtois et al. [17] have developed a general and three-dimensional temperature- and degree of
cure viscoelastic constitutive model within the framework of the thermodynamics of irreversible
processes [41, 42, 43]. The model can be used for both the polymer matrix and the composite.
This model reads:

σ(t) = C(∞) : ε+

∫ t

0

N∑
k=1

p(α)�C(k) exp
[
− 1

τk

(∫ t

0

1

aT (T, α)
dρ

−
∫ τ

0

1

aT (T, α)
dρ

)]
:
dε

dτ
dt, (4)

where C(∞) is the fully relaxed tensor, N is the number of relaxation times, � is Hadamard product
[44], p(α) = K1α +K2 is a fourth order symmetric and positive definite tensor that introduces
anisotropic cure-dependency, where K1 and K2 are adjustable fourth order tensors. The C(k) are
fourth order positive semi-definite and symmetric adjustable relaxation tensors associated with
the relaxation times τk. The shift factors aT (T, α) in Equation (4) are expressed by an Arrhenius
relationship as:

log aT =

⎧⎨
⎩

Ea1(α)
ln 10R

(
1
T
− 1

Tg(α)

)
T < Tg(α)

Ea2(α)
ln 10R

(
1
T
− 1

Tg(α)

)
T ≥ Tg(α),

(5)

where Ea1 = a1+αb1 and Ea2 = a2+αb2 are activation energies below and above the glass transition
temperature Tg(α) and a1, b1, a2 and b2 are adjustable scalar parameters. Tg(α) was obtained from
the DiBenedetto equation as

Tg(α)− T
(0)
g

T
(∞)
g − T

(0)
g

=
λα

1− (1− λ)α
, (6)

where T 0
g and T

(∞)
g are the uncured (α = 0) and fully cured (α = 1) resin’s glass transition

temperatures, respectively, and λ is a material constant.
The constitutive relationship (4) is the solution to the differential equation [45]:
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σ(t) = L(1) : ε(t) + p(α)� L(2) : χ(t) (7a)

aTB : χ̇+ L(3) : χ+ p(α)� (
L(2)

)T
: ε = 0, (7b)

where χ are so-called hidden variables, χ̇ are their time derivatives, B is the 6N × 6N identity
matrix, where N is the number of relaxation times, L(1) and L(3) are symmetric positive definite
tensors that can be expressed as:

L1 = C(∞) + p(α)�
N∑
k=1

C(k) (8a)

L3 =
[ 1

τk
B
]
. (8b)

L2 is a tensor composed of triangular tensors L2 =
(
L

(1)
2 |L(2)

2 |...|L(N)
2

)
obtained by the Cholesky

decomposition of 1
τk
C(k) so that:

L
(k)
2 :

(
L

(k)
2

)T

=
1

τk
C(k). (9)

Equations (7)(a,b) were implemented for numerical analysis using the Backward – Euler Finite
Differences scheme as [46]:

χn+1 = χn +Δt ˙χn+1 = W1 : χ
n +W2 : ε

n+1, (10)

where W1 =
(
B +ΔtA : L3

)−1

,W2 = −ΔtW1 : A : p(α) �
(
L2

)T

, A = B
aT (T,α)

. The required

stress at the n+ 1 step becomes:

σn+1 = L1 : ε
n+1 + p(α)� L2 : χ

n+1. (11)

Implementing Equations (10) and (11) requires the following parameters: i) the T 0
g and T

(∞)
g , as

well as λ in DiBenedetto’s equation (6); ii) the adjustable scalars a1, b1, a2 and b2 of Arrhenius’
relationship (5); iii) the fourth order tensors C(∞), C(k), K1 and K2 of the temperature- and
cure-dependent viscoelastic constitutive model of Equation (4).

In the work of Courtois et al. [17], the multi-scale identification procedure of a constitutive
model parameters started with the prediction of a neat polymer model parameters from the DSC
and DMA (Dynamic Mechanical Analysis) experiments that were conducted by Courtois et al. in
[16].

Courtois et al. extracted the T 0
g and T

(∞)
g from the DSC test data and the material parameter

λ was obtained by fitting DSC measurements with DiBenedetto’s equation (6).
The DMA tests were performed by Courtois et al. with a three-point bending clamp in a TA

Instruments Q800 DMA apparatus for a strain level of ε0 = 0.1%, at temperatures ranging from
30◦C to 150◦C and for degrees of cure α = 1, 0.9, 0.85, 0.8. It should be noted that Courtois et al.
verified that the polymer behaved as a linearly viscoelastic material under these conditions and that
the maximum test temperature was adjusted to avoid degree of cure evolution in partially cured
specimens. Starting from 30◦C, the specimens were bent to 0.1% of strain and held at a constant
load for 90 minutes to measure relaxation behavior. Next, the load was removed to allow 10 minutes
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of recovery. The temperature was then ramped at 1.5◦ C/min in 10 minutes and stabilized at the
new level for an additional 5 minutes. This procedure was repeated up to a temperature below the
Tg (150◦ for the fully cured specimen for example).

The relaxed modulus C(∞) was taken as the stabilized response from the fully cured samples
at the highest temperature. The rest of the components were obtained by fitting experimental
data with Equation (4). Note that the tensor parameters were reduced to scalars for an isotropic
material, which is the assumption that was made for the polymeric matrix studied in [17]. Moreover,
the matrix’ Poisson’s ratio was assumed as a constant.

Courtois et al.[17] used the obtained neat resin behavior to compute the tows’ model parameters
by fitting numerical homogenization data with Equation (4). Another homogenization procedure
was carried out to obtain the mesoscopic structure homogenized behavior which was fitted again
with Equation (4) to compute the final parameters of the constitutive model. Note that T 0

g , T
(∞)
g ,

λ, a1 and b1 were set to the values obtained for the neat polymer and were not fitted during these
steps.

Courtois et al. [17] used the built-in Matlab function fminsearch to best-fit the necessary
components below the Tg minimizing the discrepancy between stress predictions and experimental
or homogenized values. One of the main limitations of the function fminsearch is that it can provide
local minima and requires fairly close initial guesses for optimization problems featuring more than
10 variables to converge [47].

The optimization procedure in the work of Courtois et al. was limited to orthotropic material
symmetry when dealing with the homogenized composite properties. The three shear components
of the stiffness tensors C(k) were treated independently as three 1D problems in a first stage. Then,
the remaining six independent components were simultaneously optimized to best fit the stress
response of a RVE submitted to three uni-axial deformation states as a response to a three uniaxial
deformations (along the global coordinates). Courtois et al.’ optimization procedure cannot be
directly applied to the case of general anisotropy.

Recall that, due to thermodynamics restrictions, all tensors in Equation (4) must be symmetric.
Moreover, tensors C(k) must be positive semi-definite, and tensors K1 and K2 must be positive
definite. To ensure these requirements, trials generated by fminsearch algorithm were checked
at each optimization step and disregarded if the principles were violated. As a result, the de-
veloped optimization procedure [17] promoted the local minima solution and required significant
computational resources as many steps were skipped.

2.2.2. Expansional strains

Bogetti et al. [48] and Svanberg et al. [39] computed the chemical shrinkage and thermal
expansion strains as:

εT (t+Δt) = εT (t) + θ(T )ΔT (12a)

εC(t+Δt) = εC(t) + β(T )Δα (12b)

where ΔT and Δα are the temperature and degree of cure increments within the time step, and
θ(T ) and β(T ) are the tensors of effective coefficients of thermal expansion and chemical shrinkage,
respectively. In the framework of multi-scale simulation, the effective coefficients need to be obtained
using a procedure similar to that recalled in Section 2.2.1.

Authors measured the CTE and CCS of a polymer matrix using thermomechanical analysis
(TMA) [49] and a Pressure, volume and Temperature -Heterogeneous Anisotropic Deformation and
Degree Of Cure monitoring (PvT-HADDOC) device in [50]. At the micro-scale, numerical and
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Ply 1 (90◦)

Ply 2 (45◦)

Ply 3 (0◦) 400 mm

400 mm

18.7 mm

Ply 3 (0◦)
h = 5.57 mm

Ply 2 (45◦)
h = 6.78 mm

Ply 1 (90◦)
h = 6.35 mm

x3

x1

x2

x3

x2

(a)

(b)

Inlet

Outlet
Spacer 1

Spacer 2

Spacer 3

x3

x1

x2

(c)

x3

x1 x2
x1

x2

Figure 1: Manufacturing of a non-flat composite plate consisting of a 3D woven carbon fiber reinforcement and
commercial DGEBF (DiGlycidyl Ether of Bisphenol F) epoxy matrix: (a) 3D CAD design of the plate and side
view; (b) in-mold layup with schematic representation of spacers placement as well as the injection direction; (c)
final RTM manufactured non-flat plate with a highlighted resin rich area.

analytical homogenization were used to compute CTE and CCS of the tows [51]. Khan and Muliana
[52] have shown that the Mori-Tanaka scheme provides satisfactory estimation of the effective CTE
of unidirectional composites with high volume fraction of fibers. At the meso-scale, analytical
homogenization schemes based on a one particle approximation provided unreliable results for 3D
woven composites, thus Finite Element Method (FEM) homogenization was used to predict the
composite’s effective properties [53, 54].

To the best of our knowledge, there is no published work combining all the required steps of a
multi-scale procedure to compute the overall CTE and CCS of a 3D woven composite for simulation
of the RTM process. This paper fills this gap.

3. Materials and methods

A 3D woven carbon fiber interlock preform injected by a commercial DGEBF (DiGlycidyl
Ether of Bisphenol F) epoxy matrix was studied (the full specifications cannot be disclosed for
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1

1

2

2

3 mm
reference markers

x3

x1 x2

(a) (b)

x3

x1 x2

Figure 2: Digitization process for the three-ply variable thickness plate studied in this work: (a) sample with applied
reference markers detailed in closeup views; (b) reconstructed surface with closeup views showing examples of poor
reconstruction.

confidentiality reasons). Figure 1 schematizes the chosen goemetry. A step-wise geometry (Figure
1(a)) made of three plies oriented at 0◦, 45◦ and 90◦ was chosen to test the predictive model on a
specimen exhibiting variations in weaving architecture and thickness. A longitudinal injection was
carried out in a rectangular RTM steel mold with an internal cavity of 400 mm × 400 mm × 32
mm and three spacers to fill gaps in the mold and ensure the designed thickness variation (Figure
1(b)).

Once the preform was draped, the mold was closed and preheated at 160◦C. The epoxy system
was heated above 100◦C to reduce its viscosity and degassed prior to the injection. The resin was
then injected with a constant flow rate. A cure cycle with two dwell phases of one hour at 160◦C
and two hours at 180◦C was adopted to ensure complete resin curing. The part was then cooled
inside the mold until its temperature reached 100◦C. Finally, the part was released from the mold,
led free standing and cooled by natural convection down to room temperature (23◦C). The final
dimensions of the plate were 400 mm × 400 mm with the thickness of plies being 6.35 mm (ply 1),
6.78 mm (ply 2) and 5.57 mm (ply 3). Figure 1(c) shows the manufactured plate with highlighted
resin rich areas. Q-2000 Modulated Differential Scanning Calorimeter (M-DSC) measurements
revealed that the plate was completely cured with a degree of cure of 99.7 %.

The contoured geometries of the manufactured part were digitized with the industrial optical
3D scanner ATOS Triple Scan III. The setup consisted of two 16M pixels cameras, a projector, a
3-axis motorization kit, a rotary table and a computer installed with the GOM ATOS Professional
software for post processing. According to the triple scan principle, precise fringe patterns are
projected onto the surface of the object and the data is recorded by two cameras using the stereo
camera principle, collecting information in the ray intersections (left camera/right camera; left
camera/projector and right camera/projector).

The measuring procedure began with system calibration by placing reference point markers
on the specimen surface to construct a 3D volume. Additional individual measurements were
transformed to create a high-precision Computer-Aided Design (CAD) model of the plate. The
markers had a diameter of 3 mm. Figure 2(a) shows the selected marker locations. Overall, 67
reference markers were placed on the plate. Since the Triple Scan technology requires a reflection
of the fringe projection back to the camera system, the plate was covered with talc powder to
ensure proper light reflection and contrast. Once all the preparation steps were made, an operator
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Modeling behavior of a 
neat polymer (S1)

Microscale 
modeling (S2)

Macroscale modeling on real 
part geometry (S4)

Mesoscale 
modeling (S3)

Experiment data input

Micro-scale RVE constructed
in ABAQUS

Meso-scale RVE imported
in ABAQUS

DMA, TMA, 
PvT-HADDOC

Import data to 
model tows 
behavior 

Import data to 
simulate RTM process

Distortion along of 3D woven specimen (FEM)

Import data to 
model ply 
behavior

Validation with 
experiment

Distortion along of 3D woven specimen (experiment)

Matrix
Warp tow

Weft tow

Matrix

Fiber

Thermo-chemical:

Viscoelastic: 

Mori-Tanaka

Figure 3: Multi-scale procedure to simulate the RTM process. The experimentally obtained data on the matrix’ CTE,
CCS and viscoelastic behavior utilizing TMA, PvT-HADDOC and DMA, respectively, is used to identify the matrix’
constitutive theory parameters (S1). The obtained model is used as an input to the micro-scale homogenization
procedure to identify the parameters of a constitutive model that predicts the tows effective behaviour (S2). The
computed tows behavior is input into the meso-scale model to identify the constitutive theory parameters for the
ply’s effective behaviour (S3). The obtained ply effective behavior is used to simulate the RTM process (S4).

placed the plate on a rotary table and took a set of images (each of which contained up to 16M
measurement points) in various positions and camera lenses orientations. Finally, a digital 3D
model of the plate was generated using the GOM ATOS Professional software by postprocessing
the images.

The reconstruction process poorly reproduced the contours of the lateral surfaces when changing
from one ply to another (the steps), which can be explained by the small thicknesses of the plies
containing only one marker. Figure 2(b) presents the final digitized model with highlighted areas
demonstrating reconstruction artefacts. It will serve as a reference to compare experimental data
against numerical predictions (Section 6).

4. Multi-scale simulation methodology

Figure 3 shows the multi-scale procedure followed to model the RTM process. The procedure
features four steps, namely: (S1) identification of the polymer resin constitutive model parameters;
(S2) identification of the effective tows behaviour at the micro-scale; (S3) identification of the ply’s
effective behaviour at the meso-scale; (S4) simulation of the whole RTM process with homogenized
properties.

We developed a new constitutive parameters identification procedure that addresses the lim-
itations described in Section 2.2.1. The procedure is of sufficient generality to deal with fully
anisotropic constitutive theories while meeting thermodynamics restrictions. We therefore applied
our procedure to identify the constitutive theory parameters for the matrix, the tows and the whole
composite ply.
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We begin with the identification the neat resin constitutive behavior by fitting the DMA, TMA
and PvT-HADDOC data to the model of Equations (4) and (12). The obtained matrix behaviour
during the curing cycle was programmed into ABAQUS’ UMAT subroutine and input into a
homogenization procedure to predict the tow’s behavior. The viscoelastic response was simulated
with FEM while the thermal and shrinkage properties were computed from an analytical model.
The numerically predicted tows viscoelastic response was best fitted with Equation (4) and both
the tows viscoelastic and expansional constitutive theories were programmed into ABAQUS’ UMAT
and UEXPAN subroutines. These subroutines were input into a meso-scale model where the tows
and matrix were explicitly represented. This model yielded anisotropic viscoelastic responses that
were best fitted again with Equations (4) and (12) and programmed into UMAT and UEXPAN
subroutines. These subroutines were input into a homogeneous model to simulate the RTM process
and hence predict stresses and strains during the curing and post-curing phases.

4.1. Optimization procedure to obtain the parameters of constitutive theory (4)

The developed procedure optimizes the model parameters minimizing the cost function ra,
according to:

arg min

a1, b1, a2, b2,C
(k),K1,K2

ra =
∑

rij

s.t. C(k) positive semi-definite,

K1,K2 positive definite,

Ea1, Ea2 > 0,

C(k),K1,K2 symmetric, with

(13a)

rij =

∑M
z=1

(
σij(tz)− sij(tz)

)2

∑M
z=1

(
sij(tz)

)2 , (i, j = 1, 2, 3, 4, 5, 6), (13b)

where M is the total number of discrete times, σij(t) are the stress tensor components predicted by
Equation (4) at times tz, and sij(t) are the stress tensor components to be fitted by Equation (4)
(either experimentally measured or numerically predicted).

Recall that all tensors in Equation (4) must be symmetric. Moreover, tensors C(k) must be
positive semi-definite, and tensors K1 and K2 must be positive definite. Let us introduce the
Cholesky decomposition of these matrices as:

1

τk
C(k) = L

(k)
2 :

(
L

(k)
2

)T

(14a)

K1 = LK1 :
(
LK1

)T

(14b)

K2 = LK2 :
(
LK2

)T

. (14c)

Then, optimizing a1, b1, a2 and b2, as well as the components of L(k), LK1 and LK2 meets the
essential thermodynamics restrictions by construction and constrained only by positive activation
energies Ea1, Ea2 > 0.

It is important to note that parameters a1, b1, a2 and b2 were assumed to be fixed to those
obtained for the neat polymer and therefore remained scalars when the composite was considered.
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Also, the number and values of τk were fixed a priori. The procedure begins by providing initial
guesses to the variables. Reasonably good initial guesses for variables a1, b1, a2 and b2 were obtained
using the Time-Temperature Superposition principle (TTS). According to the TTS principle, each
individual isothermal relaxation curve (taken from experiment) was automatically shifted with
respect to the reference temperature along the logarithmic time scale to construct a master curve.
The obtained shift factors and Arrhenius relationship (5) were used to find the initial guesses for a1,
b1, a2 and b2. We were unable to devise a strategy to define relevant initial guesses for the tensor
variables.

Once initial guesses were provided, the developed procedure optimized all components at once.
The number of independent components for each decomposition tensor (e.g. LK1 in Equation 14) is
similar to the decomposed tensor (e.g. K1 in Equation 14) for the cases of general anisotropy (21
components), orthotropy (9 components) and isotropy (2 components). However, in the case of
transverse isotropy, the decomposition and decomposed tensors do not have the same symmetry. The
decomposition tensor differs from the orthotropic case only by the equality of diagonal components
55 and 66, thus reducing the number of independent components to 8.

The optimization procedure selected the number of independent parameters based on the
optimized material symmetry determined by the user. For example, if one needs to find the
parameters of the analytical viscoelastic model for an orthotropic composite material with 14
relaxation times, the developed procedure optimizes 148 parameters: 9×14 for L(k), 2×9 for LK1

and LK2. The optimization procedure requires a robust algorithm that can deal with large amount
of parameters, that can ensure global minima and doesn’t require accurate initial guesses. The
Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD 3.9.1 released in 2018-07)
algorithm was used for that purpose [55].

4.2. Matrix behavior prediction (S1)

Mechanical strains

We used the multi-temperature relaxation data of Courtois et al. [16] and completed it with
the measurements above Tg using the procedure given in Section 2.2.1. The entire load history was
used to optimize constitutive model parameters given in Equation (4).

The DSC was performed to characterize the glass temperature with respect to the degree of
cure using DiBenedetto equation (6).

Expansional strains

The CTE and CCS of the polymer matrix were experimentally measured for the set of tempera-
tures T = 23, 53, 150, 160, 172, 180◦C using the TMA and the PvT-HADDOC device, respectively.
The CTE and CCS were assumed to vary linearly with respect to the temperature.

4.3. Tows behavior (S2)

Mechanical strains

The tows packing was assumed to be hexagonal in warp and weft directions and containing
70% and 75% of carbon fibers, respectively. Figure (4) shows examples of RVEs of warp and weft
tows generated in ABAQUS. The carbon fibers were assumed to be linearly elastic and transverly
isotropic (E1 = E2 = 10 300 MPa, E3 = 276 000 MPa; ν12 = 0.3, ν23 = ν31 = 0.0097; G12 = 3 960
MPa, G23 = G31 = 27 900 MPa) and the resin obeyed the temperature and cure-dependent linearly
viscoelastic behavior model of Equation (4) obtained from S1. Next, a set of six isothermal strain
load cases was applied (three uniaxial tension and three shear for each degree of cure) to compute the
homogenized response against which Equation (4) was best fitted using the developed optimization
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x2
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Figure 4: Example of micro-scale RVEs meshed with 19 698 6-node linear triangular prism elements exhibiting
carbon fibers volume fractions of: (a) 70% corresponding to the warp tow; (b) 75% corresponding to the weft tow

procedure (Section 4.1) to obtain the tows effective viscoelastic behavior. The homogenization
procedure is detailed in Appendix A.

We simulated 90-minute FE relaxation tests for each unit load case for α = 1, 0.9, 0.8 and for
the different temperatures ranging from 30◦C to 180◦C with a step size of 15◦C.

Expansional strains

The composite effective CTE and CCS were computed using the Mori-Tanaka micro-mechanical
scheme according to the formulas given in Appendix B.

4.4. Ply behaviour (S3)

Mechanical strains

Figure 5(a) shows the 3D interlock woven RVE architecture constructed with WiseTex [56]. Weft
tows, warp tows and the matrix accounted for 43.6%, 32.8%, 23.6% of the whole volume, respectively.
The neat polymer and tows were assumed to obey the temperature and cure-dependent linearly
viscoelastic behavior described by Equation (4) with the previously optimized model parameters
against experimental data (DMA for the polymer) and numerical homogenization data (FEM
homogenization for the tows), respectively.

The homogenization was carried out with Mixed Uniform Boundary Conditions (MUBC) [57].
We simulated 90-minutes FE relaxation tests for each unit load case (see Appendix C for the
boundary conditions) for α = 1 and 0.9 at an assumed temperature of 90◦C. The parameters of
constitutive Equation 4 were determined from the optimization procedure described in Section
4.1 to best fit the simulated relaxation curves. As was done for the tows, we assumed that the
temperature dependency was the same as that of the resin and, thus, only the simulations for a
single temperature were required.
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Weft tows (32.8%)

Warp tows (43.6%)

Matrix (23.6%)

x3

x2 (weft)
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Figure 5: Example of the numerical RVE for the whole composite featuring 982 800 linear 8-node brick elements

Expansional strains

The effective CTE was obtained by applying a uniform unit increase in temperature at T =
23, 53, 150, 160, 172, 180◦C for α = 1, 0.9. The surfaces of the RVE were assumed to be stress free.
The strain tensor was averaged using the same principle as in Equation A.1. The numerically
obtained effective CTE behavior was interpolated with a piecewise linear function as:

θ(T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ1
1T + θ1

2, T1 < T ≤ T2

θ2
1T + θ2

2, T2 < T ≤ T3

θ3
1T + θ3

2, T3 < T ≤ T4

θ4
1T + θ4

2, T4 < T ≤ T5

θ5
1T + θ5

2, T5 < T ≤ T6

(15)

where θs
t are adjustable parameters where s = 1, 2, 3, 4, 5 and t = 1, 2, Tf are the temperature

points at which simulations were performed where f = 1, 2, 3, 4, 5, 6.
The effective CCS was obtained similarly by imposing local CTEs that yielded the same

shrinkage as that associated with curing when a unit and uniform temperature profile is applied.
The numerically obtained effective CCS tensor behavior was fitted with a piecewise linear function
as:

β(T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β1
1T + β1

2, T1 < T ≤ T2

β2
1T + β2

2, T2 < T ≤ T3

β3
1T + β3

2, T3 < T ≤ T4

β4
1T + β4

2, T4 < T ≤ T5

β5
1T + β5

2, T5 < T ≤ T6

(16)

where βs
t are adjustable parameters where s = 1, 2, 3, 4, 5 and t = 1, 2.

The effective mechanical response of the composite was programmed into ABAQUS’ UMAT
subroutine while the expansional strains were programmed into the UEXPAN subroutine. Together,
subroutines describe the optimized time-temperature- and cure-dependent mechanical model
required to simulate the whole RTM process.

14
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= 0)

Ux1 = 0

Ux1,x2,x3
= 0

Ux1,x2
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Figure 6: Schematic boundaries conditions, temperature profile and degree of cure as a function of time for: (a) the
in-mold and (b) the out-of-mold stages for the RTM manufacturing simulation of a non-flat plate reinforced with a
3D interlock woven fabric

4.5. RTM process simulation (S4)

The RTM process was simulated by creating the FE representation of the part geometry and
by accounting explicitly for the plies orientations and thickness. The simulation procedure of the
manufacturing process described in Section 3 involved two phases that required different sets of
boundary conditions, namely: (1) in-mold and (2) out-of-mold.

During the in-mold phase, the part was submitted to:

• Fully clamped nodal displacements (Ux1 , Ux2 , Ux3 = 0) on the exterior surfaces;

• A uniform temperature at every node. The temperature followed the time variation shown in
Figure 6(a);

• A uniform degree of cure at every integration point in the form of a solution independent
variable. The time-variation of the degree of cure is shown in Figure 6(a). The degree of cure
was obtained by using Equation (2) with the temperature profile of Figure 6(a).

During the out-of-mold phase, the composite part was submitted to the following constraints:
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(a) (b)

Figure 7: Convergence study for simulating the RTM process: (a) the relative difference (%) of the maximum
displacement predictions with respect to those of the finest mesh are plotted against CPU time and the number of
degrees of freedom; (b) the relative difference (%) of the maximum displacement predictions with respect to those
with the smallest time step

• Free standing conditions as shown in Figure 6(b) that prevented rigid body motions;

• A uniform temperature at every node. The temperature followed the time variation shown in
Figure 6(b).

FEM model and convergence analysis

A convergence analysis, based on the computed maximum magnitude of displacement, was
performed to identify the optimal number and type of elements, as well as the time increment for
simulating the RTM manufacturing process.

We performed nine simulations of the RTM process where the number and type of elements
varied while the time step was fixed (Δt = 1 (min)). The relative difference of the maximum
displacement predictions with respect to those of the finest mesh (∼ 539 000 linear 8-node brick
elements C3D8R) against CPU time and the number of degrees of freedom are presented in Figure
7(a). We deemed that 24 000 quadratic 20-node brick elements (C3D20R) yielded sufficiently
accurate results for a reasonable computational time. For the selected number and type of elements,
a set of simulations with different time steps (Δt = 0.2, 0.5, 1, 5, 10 (min)) were performed. Figure
7(b) shows the relative difference of the maximum displacement predictions with respect to those
with the smallest time step. The results suggest that a time step of Δt = 1 (min) yielded sufficiently
accurate results.

5. Simulation results

5.1. Matrix behavior

Mechanical strains

Figure 8 shows the polymer response to the strain and temperature histories given in Section
4.2 computed from the constitutive theory (Equation (4)) with the parameters that best fitted the
experimental data reported in [16] and completed by the new data above Tg generated in our work.
In total, 14 relaxation times distributed uniformly on a logarithmic scale were used.
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(a) (b)

(c) (d)

Figure 8: Temperature- and degree of cure-dependent best fitted model predictions against DMA experimental
curves for the pure polymer matrix exhibiting a degree of cure of: (a) 100 %; (b) 90%; (c) 85%; (d) 80%

Expansional strains

The experimentally obtained CTE and CCS are presented in Figure 9 along with the piecewise
linear functions that were used to interpolate these coefficients.

5.2. Tows behavior

Mechanical strains

We assumed a transversely isotropic behavior for the tows to reduce the number of parameters
subjected to the optimization and save the computational time. The discrepancy between the
FE predictions of the effective stiffness components from an assumed symmetry was computed
as the relative error between the corresponding components of the instantaneous stiffness tensor(

Cinst
44 −0.5(Cinst

11 −Cinst
12 )

Cinst
44

)
× 100%. The maximum error was found to be 1.5% for α = 0.8 at 180◦C,

which is deemed acceptable to assume a transversely isotropic behavior of the tows.
Figure 10 shows the homogenized responses computed from the RVEs as well as the computations

from constitutive Equation 4 whose parameters best-fitted the homogenized response. Overall, 14
relaxation times evenly distributed on a logarithmic scale were used, which led to 128 parameters to
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(a) (b)

Figure 9: Experimentally measured properties of the neat polymer fitted with a linear piecewise function: (a) CTE;
(b) CCS

be identified. Recall that a1, b1, a2 and b2 were not optimized and their values were those obtained
for the neat resin. This choice was made to reduce the optimization cost and since it yielded an
accuracy deemed acceptable.

The accuracy of the best fitted model predictions was found to be satisfactory with the maximum
relative error being less than 5% for all times. This discrepancy could partially be explained by
the transversely isotropic behaviour assumption and the number of relaxation times that could be
increased for better accuracy. Optimizing the relaxation times could also further improve the best
fitting adequacy.

5.3. Ply behavior

Mechanical strains

The 3D composite was assumed to exhibit an anisotropic behavior with 10 independent non-zero
components of stiffness tensor. A component was deemed negligible when its ratio to the component
having the largest value was below 0.01.

Figure 11 presents the comparison between the normalized components of the stiffness tensors
computed numerically and those obtained from the constitutive model with the optimized parameters
(Equation 4). Overall, 14 relaxation times evenly distributed on a logarithmic scales were used,
which led to 160 parameters to be identified. Similarly to the simulation at the micro-scale, a1, b1,
a2 and b2 were not optimized and their values were set to those of the neat polymer.

For every component, and for all times, the relative difference between the RVE prediction and
the best fitted constitutive model was lower than 1%.

Expansional strains

Figure 12 depicts the homogenized components of the composite’s CTE and CCS computed at
the specified temperatures (Section 4.4) along with the linear piecewise functions that were used to
estimate coefficients (Equations (15) and (16)).

5.4. RTM process simulation

Figure 13(a) depicts the optimized FE mesh of the non-flat composite part and shows the local
orientations of plies 1 to 3. For example, x

′′
1 and x

′′
2 are the local warp and weft directions of
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(a) (b)

(c) (d)

(e)

Figure 10: Components of the normalized stiffness tensors obtained using the best-fitted temperature- and degree of
cure-dependent model against FEM homogenization at the micro-scale for α = 1 and volume fraction of fibers equal
to 70%: (a) C11, (b)C21, (c) C31, (d) C33 and (e) C55
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Figure 11: Relaxation curves obtained using the homogenized temperature- and degree of cure-dependent model
against FEM homogenization at the meso-scale for α = 1: (a) Cii, i = 1, 2, 3; (b) Cij , i = 1, 2, j = 2, 3, i �= j; (c)
Cii, i = 4, 5, 6

ply 2 that are rotated by 45◦ with respect to the global reference frame. Figures 13(b-d) present
the predicted displacement fields using the FEM model with the parameters identified from the
convergence study. Figure 13(d) shows that the through the thickness warpage u3 (along the x3

direction) is larger, when compared to the in-plane distortions u2 and u1 (along x2 - weft and
x1 - warp, respectively). The predicted distortion along x2 is higher than that along x1. These
observations can be explained by the fact that the effective stiffness tensor component C33 is lower
than C22, which is itself lower than the C11 component (see Figure 11). The highest levels of
distortion were obtained at the corners with the maximum absolute value being located at the
lower right corner of the thinnest section of the part. This observation results from the orientation
of ply 2 (45 ◦) having its local weft axis x

′′
2 aligned towards that corner and the fact that stiffness

tensor component C22 along this direction is lower than that along the warp direction C11 due to
the weaving pattern of 3D the fabric.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Components of the ply’s effective CTE and CCS computed using numerical homogenization and
approximated with piecewise linear functions: (a)θ11 ;(b)θ22; (c)θ33; (d)β11 ;(e)β22; (f)β33

6. Comparison between the distortion predicted with the proposed multi-scale simu-
lation and that experimentally measured

The nominal (ideal) CAD model of the part was generated with respect to the known specifica-
tions (size of the mold and spacers) and was used as a reference (zero distortion). The CAD model21
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Figure 13: Numerical prediction of distortion (mm) for the RTM manufactured specimen: (a) FE mesh consisting
of ∼ 24 000 quadratic 20-node brick elements C3D20R; (b) displacement in x1 direction; (c) displacement in x2

direction; (d) displacement in x3 direction

was imported to the GOM Inspection Software which generated the surface mesh containing the
so-called nominal elements. Next, the reconstructed surface containing the so-called actual elements
(Section 3) was also imported to the GOM Inspection Software. Since the reconstructed 3D object
had a different spatial orientation, we aligned the reference and the reconstructed surfaces. The
software linked nominal and actual elements to compute distortions. We then substituted the
reconstructed surface with that predicted by our simulation procedure and repeated the procedure
to compute distortions obtained from the RTM process modelling.

Figure 14(a) shows the numerically predicted distortion contour plot while Figure 14(b) presents
the experimentally observed distortion of the manufactured part. The maximum absolute distortion
was observed in the lower right corner of the thinnest part of the part and it was positive for both
the numerical analysis and the experimental data. The negative values of distortions were obtained
mainly at the thickest section of the step-wise plate with the lower values being located at the right
corner. In the middle of the part, the absolute displacement values are close to zero since it tends
to compensate for the negative and positive distortion values. The displacements are also plotted
along specific paths in Figure 14 to allow for a better comparison.

Figures 15(a)-(f) compare the numerically predicted distortion against that experimentally
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Figure 14: Distortion (mm) contour plots obtained from: (a) our simulation procedure and (b) the actual RTM
manufacturing and subsequent measurements. The lines 1-6 indicate the paths along which distortion are plotted for
comparison

measured. Along the longitudinal lines (1-3), the FE simulation was able to approximate the
experimental response qualitatively, reproducing the evolution of the distortion from one ply to
another. The proposed numerical approach quantitatively estimated maximum absolute distortion
along all these three lines with the relative error being lower than 2.8%. The maximum discrepancy
was in ply 2 where the lowest absolute values of distortion were observed for both the simulations
and the measurements. Along the transverse lines (4-6), the model qualitatively estimated the
distribution of the distortion within the plies. The worst discrepancy between the predictions and
measurements was, again, in ply 2. In the thinnest ply 1 and along the line 6, the multi-scale
simulation quantitatively predicted warpage with a mean relative error of 13%.

7. Discussion

The developed multi-scale FE simulation of the whole RTM process was able to qualitatively
estimate manufacturing induced distortion in a non-flat 3D woven composite capturing its evolution
with respect to the variations in properties and thickness. The simulation quantitatively predicted
the maximum absolute distortion in the whole part and the distribution of warpage in the thinnest
part of the specimen. However, in some cases, we were unable to quantitatively predict the
distortion. Indeed, the quantitative comparison was not reliable in poorly reconstructed contours of
the lateral surfaces when changing from one ply to another (examples of reconstruction artefacts are
given in Figure 2 (b)). The largest discrepancy between numerical estimations and measurements
was observed in ply 2. This observation could be explained by the fact that the distortion in this
area is close to the equipment sensitivity.

Overall, obtaining distortion from the reconstructed surface is sensitive to its alignment with
an “ideal” CAD model (zero warpage). Inducing larger distortion would have limited this effect.
The discrepancies could come from the difference between our idealized RVE and the actual
manufactured part that could exhibit local tows disorientation. Moreover, the fiber volume fraction
of warp and weft tows could be slightly different from the idealized RVE. Also, the effective CTE
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Figure 15: Comparison of the distortion distribution computed numerically against that experimentally measured
along the lines shown in Figure 14: (a) Line 1; (b) Line 2; (c) Line 3; (d) Line 4; (e) Line 5; (f) Line 6

and CCS were approximated with piecewise functions that neglect a non-linear behaviour. The
discrepancy could also come from the relaxation tests on the neat resin. Indeed, performing tests
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close to and, especially, above the glass transition temperature presents a serious challenge.

8. Conclusion

This study demonstrated the multi-scale identification procedure of a 3D woven composite
anisotropic thermo-chemo-mechanical constitutive model parameters below and above Tg. The
developed procedure overcomes the limitations of a previous study and presents a framework to best
fit behavior of materials having various symmetries with no special adjustments. The outcome of
the identification process yielded a satisfactory correspondence between best-fitted model response
and experimental or numerical data, at every scale.

The obtained behavior of the 3D woven composite was used to predict the distortion of a
non-flat RTM part by direct simulation of the process accounting for applied thermal cycle and
evolution of degree of cure during manufacturing. The contoured geometries of the manufactured
part were digitized with an optical scanner for subsequent distortion measurement. It was found
that the presented approach was capable of qualitative and, in some cases, quantitative prediction
with the highest accuracy ∼ 2.8% of manufacturing induced geometrical distortions.

The part distortion simulations presented in this work revealed that the presented approach
was capable to qualitatively and, in some cases, quantitatively, predict manufacturing induced
geometrical distortions. It was also observed that the numerical approach was able to capture
specific geometrical features as well as variations in thickness and properties of the part.

Further research should focus on a sensitivity analysis to measure the impacts of variation
in simulation parameters on the computed distortion. The multi-scale FE simulations were
conducted on idealized RVEs that may differ from the reality and, therefore, it would be of
interest to investigate the influence of RVEs parameters (volume fractions of fibers etc.) on the
final predictions. Also, it could be interesting to quantitatively interconnect the manufacturing
parameters such as temperature cycle etc. with the final distortion for the optimization of the
RTM procedure.
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Appendix A. Details of the homogenization procedure at the micro-scale

Table A1: Prescribed strains corresponding to the six load-cases used for computing the tows effective properties

Prescribed average strain,%
Load-case

Tensile 1 Tensile 2 Tensile 3 Shear 12 Shear 23 Shear 31
ε011 1 0 0 0 0 0
ε022 0 1 0 0 0 0
ε033 0 0 1 0 0 0
ε012 0 0 0 1 0 0
ε023 0 0 0 0 1 0
ε031 0 0 0 0 0 1

The unit loadings given in Table A1 were applied on a RVE and the resulting mechanical response
was computed. The homogenized stress components were obtained through spatial averaging as
per:

〈σij〉g = 1

V

P∑
l=1

(
σ
(l)
ij

)
g
, (i, j = 1, 2, 3;m = 1, 2, 3, 4, 5, 6), (A.1)

where 〈σij〉g is the volume average of the stress component ij resulting from the application

of the g-th loadcase, V is the total volume of the RVE,
(
σ
(l)
ij

)
g
is the ij stress component at

the centroid of the finite element l computed from the g-th loadcase, V (l) is the volume of
the element l and P is the total number of elements in the model. Given the average stress
components histories and applied strain, the effective stiffness tensor can be computed using a
linearly viscoelastic constitutive relation. For example, after the application of the first loadcase
ε = {ε11 = 1; ε22 = 0; ε33 = 0; ε12 = 0; ε23 = 0; ε13 = 0} and computing σ11 yields C11, C21, C31, C41,
C51 and C61. This operation is carried out six times to obtain all components of a stiffness tensor.

26



Appendix B. Mori-Tanaka micromechanical scheme

Following [58, 59, 60], the effective CTE of a composite with parallel and identical inhomo-
geneities according to the Mori-Tanaka scheme can be written as:

θeff = θ0 +
[1− φ

φ

(
S0 : N : S0

)−1

+
(
S1 − S0

)−1]−1

:
(
S1 − S0

)−1

: (θ1 − θ0) (B.1)

where φ is the inhomogeneities volume fraction, θ0 and θ1 are the matrix and inhomogeneity CTEs,
N is the fourth order stiffness contribution tensor of a single inclusion, S0 and S1 are the matrix
and inhomogeneity compliance tensors, respectively.

In our case, the inhomogeneity is an infinitely long fiber with an axis of transverse isotropy
along x3 for which all non-zero and independent components of N are given as [61]:

N11 =
c1(λ0 + 2G0)

c1 + λ0 + 2G0

+
2c2G0(λ0 + 2G0)

4G0(λ0 + 2G0) + c2(λ0 + 3G0)
(B.2a)

N12 =
c1(λ0 + 2G0)

c1 + λ0 + 2G0

− 2c2G0(λ0 + 2G0)

4G0(λ0 + 2G0) + c2(λ0 + 3G0)
(B.2b)

N33 =
2c6(λ0 + 2G0) + 2(c1c6 − c3c4)

2(λ0 + 2G0 + c1)
(B.2c)

N44 =
2c2G0(λ0 + 2G0)

4G0(λ0 + 2G0) + c2(λ0 + 3G0)
(B.2d)

N55 =
2c5G0

8G0 + c5
, (B.2e)

where λ0 and G0 are respectively the Lamé’s first parameter and shear modulus of the matrix
material, and ce, e = 1, 2, 3, 4, 5, 6 are defined as:

c1 =
C1

11 + C1
12

2
− (λ0 +G0) (B.3a)

c2 = 2(C1
44 −G0) (B.3b)

c3 = c4 = C1
13 − λ0 (B.3c)

c5 = 4(C1
55 −G0) (B.3d)

c6 = C1
33 − (λ0 + 2G0), (B.3e)

where C1
mn are components of the inhomogeneity stiffness tensor.

To compute the effective CCS one should substitute in (B.1) CTEs with CCSs.
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Appendix C. Details of the homogenization procedure at the meso-scale

x3

x2 (weft) x1 (warp)

(a)

x3

x2 (weft) x1 (warp)

(b)

Figure B1: Example of the RVE at the meso-scale: (a) FEM model with 982 800 linear 8-node brick elements; (b)
general geometry (Li the unit cell edges lengths) with adopted classifications that are used for implementation of
MUBC

Table B1: Mixed boundary conditions applied on the unit cell for the meso-scale homogenization. ui denote
displacements and Li the unit cell edges lengths. For more details on notation refer to Figure B1(b)

Load-case X−
1 X+

1 X−
2 X+

2 X−
3 X+

3

Tensile 1 u1 = 0 u1 = L1 u2 = 0 u2 = 0 u3 = 0 u3 = 0
Tensile 2 u1 = 0 u1 = 0 u2 = 0 u2 = L2 u3 = 0 u3 = 0
Tensile 3 u1 = 0 u1 = 0 u2 = 0 u2 = 0 u3 = 0 u3 = L3

Shear 12
u2 = −L1/4

u3 = 0
u2 = L1/4
u3 = 0

u1 = −L2/4
u3 = 0

u1 = L2/4
u3 = 0

u3 = 0 u3 = 0

Shear 23 u1 = 0 u1 = 0
u3 = −L2/4

u1 = 0
u3 = L2/4
u1 = 0

u2 = −L3/4
u1 = 0

u2 = L3/4
u1 = 0

Shear 31
u3 = −L1/4

u2 = 0
u3 = L1/4
u2 = 0

u2 = 0 u2 = 0
u1 = −L3/4

u2 = 0
u1 = L3/
u2 = 0
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[57] D. H. Pahr, H. J. Böhm, Assessment of mixed uniform boundary conditions for predict-
ing the mechanical behavior of elastic and inelastic discontinuously reinforced compos-
ites, CMES - Computer Modeling in Engineering and Sciences 34 (2) (2008) 117–136.
doi:10.3970/cmes.2008.034.117.

[58] Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory in composite
materials, Mechanics of Materials 6 (2) (1987) 147–157. doi:10.1016/0167-6636(87)90005-6.

[59] M. Kachanov, I. Tsukrov, B. Shafiro, Effective Moduli of Solids With Cavities of Various
Shapes, Applied Mechanics Reviews 47 (1S) (1994) S151. doi:10.1115/1.3122810.

[60] I. Sevostianov, On the thermal expansion of composite materials and cross-property connection
between thermal expansion and thermal conductivity, Mechanics of Materials 45 (2012) 20–33.
doi:10.1016/j.mechmat.2011.10.001.

[61] I. Sevostianov, M. Kachanov, Explicit elasticity–conductivity connections for composites with
anisotropic inhomogeneities, Journal of the Mechanics and Physics of Solids 55 (10) (2007)
2181–2205. doi:10.1016/j.jmps.2007.03.014.

33


