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An efficient multi-scale computation of the macroscopic coefficient of

thermal expansion: application to the Resin Transfer Molding

manufactured 3D woven composites

Anton Trofimova,, Jeremy Le-Pavicb, Daniel Therriaulta, Martin Lévesquea

a Laboratory for Multiscale Mechanics, Polytechnique Montréal, Montréal, QC H3C3A7, Canada
bSafran Composites, a technology platform of Safran Tech, Itteville, 91760, France

Abstract

This paper presents a simple and computationally efficient multi-scale procedure to predict

the macroscopic temperature dependent coefficient of thermal expansion (CTE) of any linearly

thermoelastic material from isothermal mechanical simulations only. The approach relies on Levin’s

demonstration that, in analytical homogenization, the effective coefficient of thermal expansion

is related to the local coefficient of thermal expansion and the stress concentration tensor. For

demonstration purposes, this procedure was applied to a 3D woven composite material. The

proposed approach was successfully validated with full thermal simulations.

Keywords: multi-scale modeling, homogenization, coefficient of thermal expansion, 3D woven

composite

1. Introduction

The Resin Transfer Molding (RTM) process consists in impregnating a dry fiber preform with

a thermoset resin and subsequently curing it until its full consolidation. The process involves

significant temperature variations that induce residual stresses buildup that may lead to matrix

cracking, delamination and/or part distortion Michaud et al. (1998); Corden et al. (1998); Ruiz and

Trochu (2005). Residual stresses mainly result from the dissimilar fibers and matrix coefficients of

thermal expansion, the polymer cure shrinkage and tool-part interaction Kim and Hahn (1989);

Radford and Diefendorf (1993); Radford and Rennick (2000); Wisnom et al. (2006).

The structure of a 3D woven composite is hierarchical with properties varying through the

hierarchy of scales. At the meso-scale, the structure is made of tows that are classified as warp
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(longitudinal) and weft (transverse), and of a polymer matrix. At the micro-scale, the tows are

assumed to be made of carbon fibers and the polymer matrix. Properties variation at any scale

impact the overall part performance.

The prediction of the macroscopic properties of 3D woven composites during manufacturing

requires accurate constitutive theories for the polymer matrix and an efficient multi-scale procedure

Boisse (2015); Vasiliev and Morozov (2007). The numerical multi-scale homogenization technique

is usually used to compute macroscopic properties by spatially averaging local stresses and strains

fields at the micro- and meso-scales Gusev (1997); Segurado and Llorca (2002); González and

LLorca (2007). The technique is computationally expensive and requires the generation of volume

elements (VEs) representing the micro- or meso-structure. VEs can be constructed artificially to

represent the microstructures Widom (1966); Finney (1976); He et al. (1999); Drach et al. (2016) or

generated from material images taken by Computed Microtomography (µCT) Stig and Hallström

(2012); Yang et al. (2017); Trofimov et al. (2018). External isothermal loads are usually applied to

compute the local stress and strain fields in the VE to obtain mechanical properties. Additional

sets of thermal loadings are applied to the VE and the homogenization procedure is repeated to

predict the coefficient of thermal expansion (CTE) Pierard et al. (2004); Khan and Muliana (2010).

To the best of our knowledge, there is no published work combining all the required steps of

a multi-scale procedure to compute the overall CTE of a 3D woven composite from isothermal

mechanical simulations alone. The existence of such a procedure would considerably reduce the

computational time required to predict composites behaviour throughout the RTM process.

This paper presents a relatively simple and computationally efficient multi-scale procedure to

predict the macroscopic temperature dependent CTE of a 3D woven composite from isothermal

mechanical simulations alone. Although the procedure is applied to a 3D woven composite, it is of

sufficient generality to be applied to any composite. The paper is organized as follows: Section 2

recalls background information on the concept of numerical homogenization for the computation

of the effective thermomehcanical properties and details the analytical approach to obtain the

CTE from isothermal stress simulations. Section 3 provides the analytical formula to extract the

macroscopic CTE from isothermal strain simulations. Section 4 presents the properties of the

materials used in this paper. Section 5 details the multi-scale procedure to compute the macroscopic

CTE from isothermal simulations. The components of the computed CTEs at each stage of the

procedure are presented in Section 6. Final conclusions are given in Section 7.
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The modified Voigt notation has been adopted throughout the paper. Symmetric second-order

tensors are expressed as six component vectors and symmetric fourth-order tensors are expressed as

6 × 6 matrices. Scalar quantities are denoted by light-faced letters (i.e., a, α and A), second order

tensors are represented by boldfaced lowercase Greek letters (i.e., σ), while fourth-order tensors

are represented by boldfaced capital Roman letters (i.e., C).

Note that all the values of the Young’s moduli and the CTEs are normalized by their values of

the pure polymer at room temperature, for confidentiality reasons.

2. Background

2.1. Numerical homogenization

The homogenization procedure relies on the concept of Representative Volume Element (RVE)

introduced by Hill (1963) who postulated that the VE is equivalent to the RVE when it (i) is a

volume large enough to be statistically representative of a heterogeneous material; (ii) possess a

constitutive response which is independent with respect to the applied boundary conditions.

The macroscopic constitutive behavior is called effective when the RVE is used and is written

as Hill (1963); Kröner (1971):

〈σ〉 = Ceff :
(

〈ε〉 −α
eff∆T

)

(1a)

〈ε〉 = Seff : 〈σ〉+α
eff∆T, (1b)

where 〈· · ·〉 represents volume averaging, Ceff and Seff are the effective stiffness and compliance

tensors, αeff is the effective CTE, ∆T is a temperature change, σ and ε are the stress and the

strain fields inside the RVE, respectively.

Authors in Gusev (1997); Terada et al. (2000) concluded that the periodic boundary conditions

(PBC) provide a computationally optimal choice among the other Boundary Conditions (BCs) when

the periodic structure is admissible since it requires the minimal volume element to be qualified as

RVE. Details on the boundary conditions are given in Appendix A.

Computation of the effective stiffness tensor

A set of six isothermal (∆T = 0) strain loadcases is usually applied (three uniaxial tension and

three shear) to compute the effective elastic stiffness tensor using PBC Segurado and Llorca (2002).

From the output of the mechanical simulations, the numerical homogenization procedure is used
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to compute the effective stiffness tensor where the homogenized stress components are obtained

through spatial averaging as per:

〈σi〉m =
1

V

M
∑

l=1

(

σ
(l)
i

)

m
, (i,m = 1, 2, 3, 4, 5, 6), (2)

where 〈σi〉m is the volume average of the stress component i resulting from the application of the

m-th loadcase, V is the total volume of the RVE,
(

σ
(l)
i

)

m
is the i stress component at the centroid

of the finite element l computed from the m-th loadcase, V (l) is the volume of the element l and M

is the total number of elements in the model. Given the average stress components and applied

strain, the effective stiffness tensor can be computed from Hooke’s law 〈σi〉m = C
eff
ij ε0j , (summation

over j = 1, 2, 3, 4, 5, 6), where ε0 is the applied load case.

Computation of the effective CTE tensor

Authors in Karch (2014) applied a uniform temperature change ∆T while the surfaces of the

RVE were assumed traction free and the nodes on the opposite faces of the RVE were coupled

ensuring periodicity to compute the effective CTE. The strain tensor was averaged as:

〈εi〉m =
1

V

M
∑

l=1

(

ε
(l)
i

)

m
, (i,m = 1, 2, 3, 4, 5, 6), (3)

where 〈εi〉 is the volume average of the strain component i resulting from the application of the

thermal loadcase, ε
(l)
i is the i strain component at the centroid of the finite element l computed from

the thermal loadcase. The average stress in the RVE was zero due to the traction free boundary

conditions and the effective CTE was straightforwardly obtained from Equation 1b.

The two previous section demonstrate that authors relied on two homogenization simulation

steps to compute the effective thermomechanical properties of composites.

2.2. Computation of the effective CTE from isothermal stress load

Levin (1967) showed that the effective CTE of a heterogeneous material having non-uniform

CTEs in the inhomogeneities can be directly computed from the mechanical (isothermal) problem

using the stress concentration tensor as:

α
eff =

1

V

∫

V

α(x) : B(x)dV, (4)
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where V is the volume of a RVE, x is the position vector, α(x) is the spatially dependent second

order CTE tensor, B(x) is the spatially dependent fourth order stress concentration tensor that

relates the applied stress σ0 to the spatially dependent stress σ(x) as:

σ(x) = B(x) : σ0. (5)

Equations (4) and (5) suggest that once σ
0, σ(x) and α(x) are known, so is αeff . Our procedure

relies on this key result.

Homogenization relying on the PBCs impose a strain loading and can be used to compute

the spatially dependent strain localization tensor A(x). The strain localization tensor relates an

applied strain ε
0 to the spatially dependent strain ε(x) inside V such that:

ε(x) = A(x) : ε0. (6)

The stress and strain localization tensors are interrelated trough Aboudi et al. (2013):

B(x) = C(x) : A(x) :
(

Ceff
)

−1

, (7)

where C(x) is the spatially dependent stiffness tensor of the material and Ceff is the effective

stiffness tensor of the heterogeneous material computed using isothermal simulation.

3. Computation of the effective CTE from isothermal strain load

From Equations (4) and (7), it follows that the effective CTE can be computed as:

α
eff =

1

V

∫

V

α(x) :
[

C(x) : A(x) :
(

Ceff
)

−1]

dV. (8)

In the case of multi-phase composites when the CTE in the k-th phase is uniform, Equation (8)

reduces to:

α
eff =

N
∑

k=1

φ(k)
α

(k) :
[

C(k) : A(k) :
(

Ceff
)

−1]

, (9)

where N is the number of phases, φ(k) is the volume fraction of k-th phase, C(k) is the stiffness

tensor of k-th phase, A(k) is the k-th phase volume averaged strain localization tensor and α
(k) is

the CTE of the k-th phase.
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Table 1: Normalized properties of the epoxy matrix at different temperatures.

Temperature ◦C Young’s modulus, E Poisson’s ratio, ν Coefficient of thermal expansion, α

30 1

0.39

1

45 0.997 1

60 0.978 1

75 0.924 1

90 0.864 1

105 0.791 1

120 0.682 1

135 0.543 1

150 0.357 1

165 0.075 2.986

180 0.009 2.986

(a) (b) (c) (d)

x3

x2

x1

Figure 1: The structure of considered 3D woven composite material: (a) composite RVE; (b) polymer matrix; (c)

tows; (d) a zoom view of the tows consisting of carbon fibers in a polymer matrix

Using Equation (9), one can obtain the effective CTE directly from the computation of the

effective elastic properties and disregard additional thermal simulations, thus, reducing the compu-

tational burdent.

4. Materials

Figure 1 illustrates the structure of the considered 3D woven composite. The 3D woven composite

consisted of a commercial DGEBF (DiGlycidyl Ether of Bisphenol F) epoxy matrix and tows. The

tows are composed of DGEBF epoxy matrix and the carbon fibers. The carbon fibers were assumed

to be linearly elastic and transversely isotropic (E1 = E2 = 10 300 MPa, E3 = 276 000 MPa;
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ν12 = 0.3, ν23 = ν31 = 0.0097; G12 = 3 960 MPa, G23 = G31 = 27 900 MPa, α1 = α2 = 3.8 · 10−6

1/◦C, α3 = −0.7 · 10−6 1/◦C). The epoxy matrix was assumed to be linearly thermoelastic and

isotropic, with properties taken from Courtois et al. (2018); Trofimov et al. (2020). Note that in

the works of Courtois et al. (2018); Trofimov et al. (2020), the Poisson’s ratio was fixed to 0.39 and

the authors measured the linearly viscoelastic response of the polymer with different degrees of

cure. In our work, we used the data for the fully cured polymer and considered its instantaneous

response. The normalized thermoelastic properties of the epoxy matrix are given in Table 1.

5. Multi-scale procedure to compute the macroscopic CTE of 3D woven composite

We followed a multi-scale procedure to predict the macroscopic CTE of the 3D woven composite

from the isothermal simulations. The isothermal loadings at each step were implemented using

PBC. The multi-scale procedure starts with the homogenization of the tow’s temperature dependent

CTEs at the micro-scale using the output from isothermal loadings and Equation (9). The obtained

temperature dependent mechanical and thermal properties of the tows were input into a meso-scale

RVE where the tows and matrix were explicitly represented. Another round of homogenization

procedure from the isothermal simulations and Equation (8) was performed to obtain macroscopic

temperature dependent CTEs of the 3D woven composite. The following subsections detail these

procedures.

5.1. Computation of the effective CTE of the tows

The tows packing was assumed to be hexagonal in warp and weft directions containing 70% and

75% of carbon fibers, respectively. Figure 2 shows the generated periodic RVE in ABAQUS 6.14.

The PBC consisting of a set of six isothermal unit strain load cases were applied to compute

the effective mechanical properties (Ceff ).

We first averaged the strain field inside the reinforcement phase “1” using Equation (3) to

compute the averaged strain localization tensors. Given the average strain components and known

applied strain, the averaged strain localization tensor inside the reinforcement phase was computed

as:

〈ε
(1)
i (x)〉m = A

(1)
ij ε

0
j , (summation over j = 1, 2, 3, 4, 5, 6). (10)

The averaged strain localization tensor inside the polymer matrix phase “0” was obtained as:
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Fibers (70%)

Matrix (30%)

(a)

x2

x1

x3

Fibers (75%)

Matrix (25%)

(b)

x2

x1

x3

Figure 2: Example of micro-scale RVEs meshed with 4 124 6-node linear triangular prism elements exhibiting carbon

fibers volume fractions of: (a) 70% corresponding to the warp tow; (b) 75% corresponding to the weft tow

Figure 3: Mesh convergence study for the micro-scale homogenization. Relative difference (%), between the C
eff
11

s

and the finest mesh response, and total CPU time are plotted as a function of the number of elements. The chosen

mesh is emphasized by a dashed line.

A(0) = I−A(1), (11)

where I is the fourth order identity tensor.

Given the effective stiffness and the averaged strain localization tensors, CTEs and volume

fractions of each phase, we computed the effective CTE using Equation (9).
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Warp tows (52.1%)

Weft tows (27.7%)

Matrix (20.2%)

x3

x2 (weft)

x1 (warp)

Figure 4: Example of the numerical RVE for the whole composite featuring 105 138 linear 8-node brick elements

A convergence analysis based on the computed effective stiffness tensor was performed to identify

the optimal number of elements. Figure 3 shows the total CPU time and the relative difference

between the Ceff
11 for different numbers of elements and the finest mesh response. The chosen mesh

is highlighted by a dashed line and convergence was assumed for all the other components of the

stiffness tensors and both types of tows. As a result, 4 124 6-node linear triangular prism elements

were used in the mesh.

We simulated the response at temperatures ranging from 30◦C to 180◦C. To verify our predictions,

we performed additional full thermal simulations following the procedure detailed in Section 2.1 at

the temperatures used for the isothermal analyses.

5.2. Computation of the macroscopic CTE of the ply

Figure 4 shows the 3D woven RVE architecture constructed with WiseTex Verpoest and Lomov

(2005). Weft tows, warp tows and the matrix accounted for 27.7%, 52.1%, 20.2% of the whole

volume, respectively. The polymer was assumed to obey linearly thermoelastic properties described

in Section 4 and tows’ constitutive behaviors were computed in Section 5.1.

The local coordinate system of the tows was defined using three vectors and depicted in Figure

5. The first vector was along the central line of the tow, the second vector was tangent to the tow’s

cross-section and the third vector was defined as the cross product of the first two.

Similar to the tow’s simulations, PBC consisting of a set of six isothermal unit strain load

cases were applied to compute the effective elastic properties. From the output of the mechanical
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x3 x2(weft)

x1(warp)

(a)

x3 x2(weft)

x1(warp)

(b)

x3 x2(weft)

x1(warp)

(c)

x3 x2(weft)

x1(warp)

(d)

Figure 5: Example of the local coordinate system of a warp tow: (a) all three vectors that described the local

coordinate system; (b) the first vector that was along the tow’s central line; (c) the second vector that was tangent

to the tow’s cross-section; (d) the third vector that was as a cross product of the first two.

simulations, the effective CTEs were computed using Equation (8) since the local orientation of the

tows produced the non-constant CTE fields with respect to the global coordinate system.

We first computed the effective stiffness tensor of the RVE using the numerical homogenization

technique presented in Section 2.1. Next, since we used the unit strain load ε
0, the product of the

spatially dependent stiffness obtained in Section 5.1 and strain localization tensors can be computed

using the FE output of the spatially dependent stress σ(x) in the global coordinate system as per:

Cmf (x) : Afi(x) =
(

σi(x)
)

m
, (i, f,m = 1, 2, 3, 4, 5, 6), (12)

where
(

σi(x)
)

m
is the stress component i resulting from the application of the m-th loadcase.

The global CTE
(

α(x)
)

used in Equation 8 was computed from the local CTE
(

α
local

)

as per:

α(x) = r(x) ·αlocal(x) · rT (x) (13)

10



PBC

THERMAL

(a)

PBC

THERMAL

(b)

PBC

THERMAL

(c)

PBC

THERMAL

(d)

Figure 6: Components of the tows effective CTE computed from isothermal (PBC) and thermal loadings (THERMAL):

(a) warp tow α1; (b) warp tow α3; (c) weft tow α1 and (d) weft tow α3.

where the spatially dependent rotation matrix r(x) was obtained from the local orientation systems

depicted in Figure 5.

We simulated the response at temperatures ranging from 30◦C to 180◦C. We performed additional

full thermal simulations following the procedure detailed in Section 2.1 at the temperatures used

for the isothermal analysis to verify predictions.
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6. Simulation results

6.1. Tows behavior

Figures 6 (a-d) show the independent non-zero components of warp and weft tows’ effective

CTEs computed from our procedure and full thermal simulations (THERMAL). Note that the

overall properties were transversely isotropic so that α1=α2 and therefore only two components

were plotted. The figure shows that our procedure predicts the same response (within round-off

error) as that of the full thermal simulation. The maximum absolute difference in CTEs predictions

of warp and weft tows was ∼ 16%, which was due to the 5% difference in the volume fraction of

the carbon fibers in tows.

In addition, Figures 6 (a-d) show significant variation of the computed effective CTEs with

respect to the temperature. This situation can be explained by the evolution of the polymer’s

thermal and mechanical properties with temperature. It can be seen that the change in the

polymer’s CTE after the glass transition temperature (Tg) has a more pronounced effect on α1 than

on α3. This observation results from the fact that the contribution from the fiber to the effective

mechanical properties of the composite along global direction x3 is much higher than in the other

directions and it compensates for the changes in the polymer’s CTE.

6.2. Ply behavior

Figures 7 (a-c) show the non-zero components of CTEs computed using the PBC and the

THERMAL loads. Note that the overall properties were orthotropic and therefore only three

components were plotted. The figure shows that our procedure predicts the same response (within

round-off error) as that of the full thermal simulation.

In addition, Figures 7 (a-c) show significant temperature dependence of the computed CTE.

This observation can be explained by the evolution of elastic and thermal properties of tows and

matrix with respect to the temperature. The CTE component along the warp direction α1 is the

smallest and mostly lower than zero. This behaviour results from the fact that the warp tows have

the highest volume fraction in the RVE (52.1%) and have negative values for the CTE component

along their path. The component of the effective CTE along the weft direction α2 is higher than α1

and lower than α3 values. This observation results from the fact that the weft tows have the second

largest volume fraction in the RVE (27.7%) and negative CTE components along their path. The

largest values were obtained for α3 along the global direction x3 for which tows have the highest

positive values of CTEs.
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PBC

THERMAL

(a)

PBC

THERMAL

(b)

PBC

THERMAL

(c)

Figure 7: Components of the ply’s effective CTE computed from isothermal (PBC) and thermal loadings (THERMAL):

(a)α1; (b)α2 and (c)α3.

The change of the polymer’s CTE due to the Tg has a stronger influence on the α3 than on α1

and α2 since the RVE is much stiffer along the warp and weft directions, which compensates for

this change.

7. Conclusions

This study provided a simple and efficient multi-scale numerical procedure for computing the

macroscopic temperature dependent CTE of any linearly thermoelastic material.

The developed procedure computes the effective properties from the isothermal simulations

only and therefore reduces the computational efforts related to the additional thermal loadings.
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Considering that multi-scale simulations are computationally expansive it gives a considerable

advantage.

The procedure was successfully validated against the full thermal simulations at all considered

temperatures and at each step of multiscale procedure. For demonstration purposes this procedure

was applied to the 3D woven composite material.
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Appendix A. Details on the periodic boundary conditions (PBC)

x3

x2 x1

Figure A1: General geometry of the RVE (Li the unit cell edges lengths)

Table A1: Prescribed strains corresponding to the six load-cases used for computing the tows effective properties

Prescribed average strain,%
Load-case

Tensile 1 Tensile 2 Tensile 3 Shear 12 Shear 23 Shear 31

ε011 1 0 0 0 0 0

ε022 0 1 0 0 0 0

ε033 0 0 1 0 0 0

ε012 0 0 0 1 0 0

ε023 0 0 0 0 1 0

ε031 0 0 0 0 0 1

The formulation of the PBC reads:

u(x)(i+) − u(x)(i+) = ε
0 ·∆x

i, (A.1)

where u(x)(i+) is the displacement of the point on the positive surface i+, u(x)(i−) is the dis-

placement of the point on the negative surface i+, ∆x
i is a constant distance vector between

corresponding positive and negative surfaces. Table A1 gives the set of six PBC load cases used for

homogenization.
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González, C., LLorca, J., 2007. Mechanical behavior of unidirectional fiber-reinforced polymers

under transverse compression: Microscopic mechanisms and modeling. Composites Science and

Technology 67, 2795–2806. doi:10.1016/j.compscitech.2007.02.001.

Gusev, A.A., 1997. Representative volume element size for elastic composites: A numerical study.

Journal of the Mechanics and Physics of Solids 45, 1449–1459. doi:10.1016/S0022-5096(97)00016-1.

He, D., Ekere, N., Cai, L., 1999. Computer simulation of random packing of unequal particles.

Physical Review E 60, 7098–7104. doi:10.1103/PhysRevE.60.7098.

Hill, R., 1963. Elastic Properties of Reinforced Solids: Some Theoritical Principles. doi:10.1016/0022-

5096(63)90036-X.

Karch, C., 2014. Micromechanical Analysis of Thermal Expansion Coefficients. Modeling and

Numerical Simulation of Material Science 04, 104–118. doi:10.4236/mnsms.2014.43012.

16



Khan, K.A., Muliana, A.H., 2010. Effective thermal properties of viscoelastic composites having

field-dependent constituent properties. Acta Mech 209, 153–178. doi:10.1007/s00707-009-0171-6.

Kim, K.S., Hahn, H.T., 1989. Residual stress development during processing of graphite/epoxy

composites. Composites Science and Technology 36, 121–132. doi:10.1016/0266-3538(89)90083-3.
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