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RÉSUMÉ 

Les produits à architecture ouverte (OAP), en tant que produits centrés sur le client, se développent 

en réponse à l'évolution des besoins des clients et aux variations du marché international. Étant 

donné que les OAP sont des produits individualisés avec une grande variété définie par les clients 

lors de la phase de conception, la mesure, l'évaluation et la visualisation de la performance de 

durabilité des variantes de produit sont d'un grand intérêt pour la prise de décision vers le produit 

le plus durable. Ce mémoire présente un outil d'aide à la décision pour évaluer la performance de 

durabilité des OAP pendant la phase de conception et visualiser les résultats à des fins de prise de 

décision. Une variété de produits est créée en définissant différents composants personnalisés grâce 

à la génération de scénarios de conception basés sur la modification des caractéristiques des 

composants du produit. La performance en matière de durabilité des composants personnalisés de 

chaque variante de produit est mesurée en effectuant des analyses d'évaluation du cycle de vie 

environnemental (ELCA) et des coûts du cycle de vie (LCC) pour calculer les indicateurs de 

durabilité. Une méthode est proposée pour la pondération et l'agrégation de divers indicateurs de 

durabilité afin de construire l'indice de durabilité (SI) pour chaque alternative de conception. Une 

technique de visualisation appropriée est utilisée pour présenter les valeurs de durabilité des 

alternatives de conception qui peuvent fournir aux clients un outil efficace pour visualiser et 

comparer facilement les performances de durabilité du produit parmi différents scénarios et 

sélectionner la meilleure option durable. De plus, l'analyse de sensibilité (SA) est effectuée pour 

valider la robustesse du cadre proposé. L'analyse de sensibilité locale et globale est appliquée à 

l'analyse d'analyse du cycle de vie (ACV) pour étudier la robustesse des sorties de l'ACV et leur 

sensibilité à l'incertitude des données d'inventaire d'entrée. En outre, l'analyse de sensibilité est 

effectuée sur la méthode de pondération et d'agrégation choisie pour étudier la robustesse des 
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résultats finaux de durabilité par comparaison avec d'autres approches de pondération et 

d'agrégation. Une étude de cas est menée avec un robot personnalisé à architecture ouverte pour 

démontrer l'utilité et l'efficacité de la méthodologie proposée. Trois scénarios de conception sont 

générés en changeant le matériau et la géométrie des composants personnalisés du robot. La 

performance de durabilité des alternatives de conception est mesurée en effectuant des analyses de 

durabilité environnementale et économique. En appliquant la méthode de pondération égale et une 

approche décisionnelle multi-attributs, c'est-à-dire GRA, l'indice de durabilité pour chaque 

scénario de conception est construit et présenté aux clients via la technique de visualisation, c'est-

à-dire le treemap. La réalisation de l'analyse de sensibilité sur la modélisation ACV démontre que 

le résultat de l'étude d'impact environnemental est insensible à l'incertitude des variables d'entrée. 

De plus, pour valider les résultats de durabilité, la méthode AHP est utilisée pour le processus de 

pondération, et les méthodes TOPSIS et SAW sont appliquées pour l'opération d'agrégation. Sur la 

base des résultats, le classement des performances de durabilité des alternatives de conception n'est 

pas sensible aux changements dans les méthodes de pondération et d'agrégation sélectionnées. 
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ABSTRACT 

The open-architecture products (OAPs), as customer-centric products, are developing in response 

to the changing customers’ needs and variations in the international market. Since the OAPs are 

individualized products with a high variety defined by customers during the design stage, 

measuring, evaluating and visualization of the sustainability performance of the product variants 

is of great interest for decision making towards the more sustainable product. This dissertation 

presents a decision support tool to assess the sustainability performance of OAPs during the design 

stage and visualize the results for decision-making purposes. A variety of products is created by 

defining different personalized components through design scenario generation based on changing 

the features of product components. The sustainability performance of personalized components 

of each product variant is measured by performing environmental life cycle assessment (ELCA) 

and life cycle costing (LCC) analyses to calculate the sustainability indicators. A method is 

proposed for the weighting and aggregation of various sustainability indicators in order to construct 

the sustainability index (SI) for each design alternative. An appropriate visualization technique is 

utilized to present the sustainability values of the design alternatives which can provide customers 

with an effective tool for easily visualizing and comparing the sustainability performance of the 

product among different scenarios and selecting the best sustainable option. Moreover, the 

sensitivity analysis (SA) is performed to validate the robustness of the proposed framework. The 

local and global sensitivity analysis is applied to the life cycle assessment (LCA) analysis to study 

the robustness of the LCA outputs and their sensitivity to the uncertainty of input inventory data. 

Also, the sensitivity analysis is carried out on the chosen weighting and aggregation method to 

investigate the robustness of the final sustainability results through comparison with alternative 

weighting and aggregating approaches. A case study is conducted with a personalized open-
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architecture robot to demonstrate the utility and effectiveness of the proposed methodology. Three 

design scenarios are generated by changing the material and geometry of personalized components 

of the robot. The sustainability performance of the design alternatives is measured by conducting 

environmental and economic sustainability analyses. By applying the equal weighting method and 

a multi-attribute decision-making approach, i.e. GRA, the sustainability index for each design 

scenario is constructed and presented to customers through the visualization technique i.e., 

treemap. Performing the sensitivity analysis on the LCA modelling demonstrates that the 

environmental impact assessment result is insensitive to the uncertainty of input variables. Also, to 

validate the sustainability results, the AHP method is used for the weighting process, and TOPSIS 

and SAW methods are applied for aggregation operation. Based on the results, the ranking of the 

sustainability performance of design alternatives is not sensitive to changes in the selected 

weighting and aggregation methods. 
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 INTRODUCTION 

 Background information and problem statement 

Due to the changing needs of customers, the changes in the international market, and the evolutions 

of enabling technologies, the manufacturing industry has evolved through three main paradigms, 

namely, mass production, mass customization, and mass individualization [1, 2]. With the 

invention of the moving assembly line and dedicated manufacturing system (DMS) in 1913, the 

‘‘Mass Production’’ paradigm emerged enabling the massive manufacturing of single products 

with large volumes at a low cost. The product architecture is unified; thus, the product variety is 

very limited, and products are built and pushed to customers to buy [1-3]. Since the late 1980s, 

with the introduction of computer numerical control (CNC) technology and flexible manufacturing 

system (FMS), the ‘‘Mass Customization’’ manufacturing paradigm has emerged in response to 

global market competition, market segmentation, and consumer demands for high product variety. 

The manufacturers produce and offer product options or variants with high volumes and low cost 

to customers allowing them to choose the product that almost fits their desires. To generate product 

variety at a low cost, the product needs to have a modular architecture [1-3]. Currently, a new 

manufacturing paradigm, namely ‘‘Mass Individualization’’ has been introduced to enable the 

production of a mass of personalized products with variable functions to satisfy the individual 

customer requirements and preferences and various market segments in a cost-effective manner. 

Open-architecture products (OAPs) make this goal attainable by providing the opportunity to 

design personalized products by involving individual customers and small companies in designing 

and manufacturing products [1-3].  
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Table 1.1 Comparison of product manufacturing paradigms (Adapted from [1-4]). 

Feature 
Manufacturing paradigm 

Mass production Mass customization Mass individualization 

Timeline 1913-1980 1980-2010 2010-Nowadays 

Production 

system 

Dedicated 

manufacturing system 

(DMS) 

Reconfigurable 

manufacturing system 

(RMS) 

On-demand manufacturing 

system (OMS) 

Technology 

enabler 

Mechanical and 

electrical power 

CNC technology, 

CAD/CAM 

Cyber-physical systems 

(CPSs) 

Paradigm 

goal 

Cost Variety  Efficacy  

Product 

architecture 

Integral structure Modular and closed 

architecture 

Modular and open 

architecture 

Product type Identical products, 

with a fixed functional 

configuration 

Product variants, with 

an adaptable functional 

configuration but fixed 

to customer needs 

Individualized products, 

with an adaptable and 

upgradable functional 

configuration adjusted to 

customer needs 

Involved 

actors in 

lifecycle 

stages 

Design and 

manufacturing phase: 

OEM 

Use phase: customer 

buys a single product 

Design and 

manufacturing phase: 

OEM 

Use phase: customer 

chooses a customized 

product from offered 

options 

Design and manufacturing 

phase: OEM, customer, 

vendors 

Use phase: customer 

acquires a personalized 

product, reconfigures, and 

upgrades the product 

The comparison of the three manufacturing paradigms is summarized in Table 1.1. The main 

difference between these paradigms originates from the product architecture. The products in the 

mass individualization paradigm are designed by manufacturers with an open architecture enabling 

customers to be involved in the design of their individual products based on their needs and desires. 
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The number of product options depends on the creativity of involved customers and companies 

that design and produce personalized modules. In contrast, in the mass customization paradigm, 

the manufacturers design and offer all product options and customers select an option among a 

limited number of product variants. The mass production and mass customization paradigms do 

not consider any participation of customers in the design and manufacturing stages, while the mass 

individualization paradigm takes customer participation into account during the design, 

manufacturing, and use/operation stages to reconfigure and upgrade the product functional 

configuration and achieve highly personalized products. The mass individualization paradigm 

provides products with high variety, adaptability, and upgrading abilities to meet the changing 

customer requirements. In comparison, single products have an integral architecture and fixed 

functional configuration as well as customized products have a limited variety and their 

configuration is fixed to changing customer requirements [1-4]. 

Open-architecture products (OAPs) are personalized products composed of common platform 

modules supplied by the original equipment manufacturer (OEM) and adaptable interfaces for the 

integration of different functional add-on modules to meet changing customers’ needs in the 

product lifetime. The specific customized add-on modules are designed and manufactured by OEM 

and connected to the product through closed and adaptable interfaces for customers’ choice in the 

purchasing process. The unknown personalized add-on modules can be designed by customers 

during the design stage and provided by small and medium-sized enterprises (SMEs) or customers 

(subject to safety and geometric constraints set by OEM) and added to the product using open and 

adaptable interfaces in the future during the design and operation stages to meet the dynamic 

changes of customer requirements (Figure 1.1) [5, 6]. 
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Common platform modules

• Designed and manufactured by OEM

Unknown personalized add-on modules

• Designed by customer and supplied by SME 

(approved by OEM)

• Changed and upgraded during operation stage

Specific customized add-on modules

• Provided by OEM and selected by customer

Closed and adaptable interfaces Open and adaptable interfaces

Open and adaptable interfaces

 

Figure 1.1 Key elements of an open-architecture product (OAP) (Adapted from [6-8]). 

Nowadays, manufacturing industries are pushed towards developing sustainable products driven 

by legislation, changing customer attitudes, and market competition. Hence, industrial companies 

aim to design and manufacture sustainable products through the use of tools and strategies for 

reducing environmental, economic, and social impacts throughout the product life cycle stages [9, 

10].  

The design of open-architecture products is still under research and development. Zhao et al. [7, 8] 

proposed a quality function deployment (QFD)-based method for the modular design of OAPs to 

determine the various types of functional modules including common, customized, and 

personalized modules. Zhang et al. [11, 12] studied the design, evaluation, and improvement of 

open interfaces of OAPs to facilitate the interactions between the personalized modules and product 

platform. Zhao et al. [6] and Zhang et al. [5] focused on evaluating and enhancing the adaptability 

of OAPs allowing the product to accommodate the various personalized add-on modules through 

adaptable open interfaces during the product lifetime. Some studies developed cyber-enabled 

design tools and virtual reality (VR)-based methods for the co-design process of OAPs to enable 

customers to participate in the design of personalized products based on their needs [13-15]. In 
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comparison with conventional products (i.e., single products and modular products), the design of 

open-architecture products (OAPs) with the attributes of modularity, upgrading, and 

reconfiguration offers more sustainability through higher product variety using fewer resources, 

extending the product lifetime in the operation stage, enhancing the end-of-life (EoL) operations 

and reducing waste because of easy disassembly tasks [3, 16]. However, the co-design of OAPs 

requires sustainability considerations regarding evaluation and enhancing the sustainability 

performance of the product. There are only a few studies aimed at considering the sustainability 

concept in developing OAPs. Mesa et al. [4] conducted a systematic literature review focusing on 

the attributes of OAPs and the strategies of the circular economy (CE) model. They identified 

research opportunities regarding the implementation of an integrated model of OAP and CE and 

formally integrating sustainability into the manufacturing paradigm and complex product 

development. In another study [16], they provided an analysis of modular architecture principles 

(MAPs) in the sustainable design and development of open-architecture products and discussed the 

advantages of the use of modularity in OAPs to improve the sustainability performance of OAPs 

through the product life cycle stages. Therefore, there is a need for sustainability studies regarding 

open-architecture products and analysis of modular and open architecture to enhance the 

sustainability performance of the product.   

 Research objectives 

The overall objective of this research is to propose a methodology for the sustainable design of 

open-architecture products (OAPs) concerning the evaluation and visualization of the sustainability 

performance of the product defined by customers during the design phase for decision-making 

purposes. In order to reach this goal, the following three sub-objectives need to be accomplished: 
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First sub-objective: evaluation of the sustainability performance of the open-architecture product 

(OAP) defined by customers during the design stage. 

Considering the features of OAPs which are individualized products with a high variety of 

unknown personalized modules defined by customers during the design phase, the sustainability 

performance of the product variants should be evaluated after defining personalized modules. As 

customers are allowed to participate in designing personalized modules based on their needs, 

different design alternatives can be created in which products have different sustainability values 

in comparison with each other, so that the sustainability performance of varieties of the 

personalized product should be measured. 

Second sub-objective: development of the sustainability index (SI) for the decision-making 

process and visualization purposes. 

After measuring the sustainability performance of the product varieties, a sustainability index (SI) 

needs to be developed for each product alternative. The sustainability index is a quantitative 

measure which is obtained through the integration of various sustainability indicators (i.e., 

environmental and economic indicators) with different measurement units and scopes. The value 

of the sustainability index shows the degree of sustainability for product variants. The sustainability 

index of design alternatives can be presented and communicated to customers and other involved 

decision-makers which facilitates decision-making towards the best sustainable design option.  

Third sub-objective: validation of the robustness of the proposed decision support framework 

(i.e., first and second sub-objectives). The robustness of the results of sustainability assessment 

(first sub-objective) and sustainability index development (second sub-objective) which build the 
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proposed decision support tool are studied. The robustness of the results of a model means how 

much the output variable of the model is affected by the variation or change in input parameters.    

Due to employing the secondary data obtained from existing literature and database for the life 

cycle assessment (LCA) analysis of the product (first sub-objective), sensitivity analysis (SA) 

needs to be performed to check the robustness of the results to the uncertainty of input parameters. 

Also, to validate the results of sustainability index construction (second sub-objective), sensitivity 

analysis is carried out on the applied method through the comparison of results calculated by the 

chosen method with those obtained by alternative approaches (i.e., the use of different weighting 

and aggregation schemes).  

It should be noted that a case study is conducted to demonstrate the utility and usefulness of the 

proposed methodology. 

 Dissertation structure 

The remainder of the dissertation is organized as follows: Chapter 2 reviews the related work in 

the literature on the OAPs and sustainability analysis. Then, in Chapter 3, the proposed 

methodology for sustainability performance evaluation of OAPs is explained in detail. In Chapter 

4, the application of the proposed method is described by providing a case study, and also the 

discussion of the results of sustainability analysis is presented. Finally, the conclusion of this 

dissertation and the proposed future work are presented in Chapter 5.  
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 LITERATURE REVIEW 

In this Chapter, a literature review is conducted concerning open-architecture products (OAPs), co-

design and interactive design, design for environment (DfE), visualization in DfE, and multi-

attribute decision making (MADM) methods. 

 Open-architecture products (OAPs) 

The design of open-architecture products is a new concept, and there are challenges including 

modular design [17, 18], adaptable design [5, 6], interface design [11, 12], cyber-enabled design 

tool [13], etc. for the development of OAPs, which are still under research and discussion. The 

adaptable design aims to design adaptable products that can be reconfigured and upgraded during 

the design and utilization stages through changing the modules and parameters for satisfying 

different customer requirements [5]. Modular design is a design approach for decomposing the 

product structure into discrete functional modules that can be changeable through well-defined 

interfaces to fulfill the specific function of the product [18]. Product interfaces are designed for 

connection, interaction, and transformation between modules and/or components in the modular 

product [12]. The open interfaces in the OAPs are designed for connecting the various personalized 

functional modules developed by third-party vendors or customers to the product platform to 

achieve desirable functions of the product [12]. The cyber-enabled design tool is a graphical-aided 

software package in a web-based environment which has the graphical user interface (GUI) and 

CAD system for the involvement of customers and designers in the design of open-architecture 

personalized products [13]. 

Koren et al. [3] explained the features of OAPs and the main challenges of OAPs that need to be 

addressed including developing new OAP design software (i.e., a web-based CAD system) for 
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involving customers in the design of OAPs, finding new manufacturing and assembly systems to 

facilitate economical assembly of a large number of product variants, and developing cyber-

physical manufacturing systems for interactions between consumers and platform and modules 

manufacturers. Zhao et al. [7] proposed a quantitative method for the modular design of OAPs 

using extended quality function deployment (QFD) to determine different functional modules 

including common modules, customized modules, and personalized modules. In addition to the use 

of basic function needs (BFN) and general technical requirements (GTR), OAP’s individual 

customer needs (ICN) and OAP’s technical requirements (OTR) were included in an extended 

QFD. The degree of variety (DV) was used as a quantitative measure for the variability of product 

components to divide components into three types of modules. The developed method was used 

for the modular design of open architecture household electrical appliances. Zhao et al. [8] 

integrated the extended quality function deployment (QFD) and expanded axiomatic design (AD) 

for module planning of OAPs to determine the various types of functional modules. They used the 

proposed approach for modular design of an OA paper-bag folding machine to develop three types 

of modules in order to satisfy changing requirements during the machine operation.  

Mesa et al. [19] presented a functional characterization of mechanical joining methods based on 

the design for assembly and disassembly principles for the evaluation and robust selection of 

different types of joining methods in the design of OAPs. They calculated the joint complexity by 

defining characterization criteria, i.e., task complexity, tool complexity, alignment complexity, and 

fixtures requirement, taking into account the requirements of repetitive tasks of assembly and 

disassembly during the entire life cycle of OAPs, which facilitates the proper selection of joining 

methods during the design of OAPs. Zhang et al. [11] investigated the characteristics of open 

interfaces of personalized OAPs and proposed a new approach using module function correlation 
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matrix, House of Quality (HoQ), and measures of the interface efficiency for design, evaluation, 

improvement, and operation of open interfaces of personalized products. This method was 

employed to design an open interface for connecting different battery packs (personalized modules) 

in a personalized electric vehicle. Zhang et al. [12] proposed a new method to enhance the 

adaptability of open interfaces of OAPs for facilitating the interactions between the product 

platform and add-on modules. This approach includes modelling an open interface by a platform 

interface, interface connectors, and assembling relations between the platform interface and 

interface connectors, quantifying the adaptability of the open interface considering functional, 

structural, manufacturing, and operational adaptabilities, and redesigning the interface to improve 

the adaptability of the open interface. The design of an open interface for an OA paper-bag folding 

machine was conducted using this method and the interface adaptability was evaluated and 

improved by redesigning and modifying the open interface. Hu et al. [20] proposed a systematic 

method for the adaptable open interface design of OAPs using the functional correlation matrix to 

generate interface plans, morphological matrix to form possible solutions for the interface, and 

fuzzy logic analysis to evaluate the plans and obtain the optimal design solution.  

Zhao et al. [6] developed a quantitative evaluation method to measure and improve the adaptability 

of OAPs in terms of the compatibility of product common platform to accommodate personalized 

modules, the usability of add-on modules in the product lifetime, and openness of interfaces for 

users to meet the changing requirements. They employed the proposed method to evaluate and 

enhance the adaptability of an OA industrial painting machine. Zhang et al. [5] proposed a new 

robust adaptable design approach to develop an adaptable OAP with robust performance whose 

functional performances are insensitive to uncertainties in parameters. The product operation 

configuration states (in which open interfaces are used to connect with different add-on modules 
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in the operation stage) and product design configuration candidates (design configurations of the 

platform and specific add-on modules) are modelled by parameters (design parameters and non-

design parameters). The interactions between the platform and add-on modules are modelled by 

the input and output parameters of open interfaces. Then, the robustness of an OAP is evaluated, 

and a multi-level optimization method is developed to identify the optimal design configuration 

and parameters of an adaptable OAP with the best robustness so that the overall performance of 

the product is insensitive to the parameter variations caused by uncertainties. Chen et al. [13] 

developed mathematical models to identify the optimal configuration of OAPs considering the cost, 

adaptability, and openness of the existing product configurations. The proposed optimization 

method was implemented in a web-based design tool for the optimal adaptable design of OAPs and 

enabling users and vendors to participate in the personalized product development process. They 

utilized the developed method and tool for the optimal adaptable design of an OA industrial coating 

machine. Zheng et al. [17] proposed a conceptual framework of the personalized adaptable product 

configuration system based on the adaptable open architecture product platform (OAPP) with the 

adaptable interface to enable the customer-centric product development process and integrate OEM 

with various SMEs into a co-creation process. The configuration system consists of (i) the technical 

configurator for the interaction process between OEM and SMEs which is enabled by modular 

design and scalable design of the product by OEM to ensure the adaptability and scalability of 

product variety and to connect the personalized modules provided by SMEs, and (ii) the sales 

configurator for the interaction process between customers and OEM which is established by 

considering customer’s preferences and conducting the product configuration process in an 

engineer-to-order (ETO) model in order to enable customers to create new individualized designs 

in a co-creation process. Table 2.1 summarizes the related works in the design of open-architecture 

products (OAPs). 
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Table 2.1 Related works on the design of open-architecture products (OAPs). 

Related works Description 

Koren et al. [3] Explain the features of OAPs and the main challenges in 

developing OAPs. 

Zhao et al. [7, 8], Peng et al. [18] Modular design of OAPs using a QFD-based method to determine 

different functional modules. 

Zhao et al. [6], Zhang et al. [5], 

Chen et al. [13], Zheng et al. [17] 

Adaptable design of OAPs to accommodate various personalized 

modules during the product lifetime. 

Zhang et al. [11, 12], Hu et al. [20] Open interface design of OAPs to connect personalized modules 

to the product platform. 

Chen et al. [13], Zheng et al. [17], 

Zhang et al. [14] 

Develop cyber-enabled design tools to enable customers to 

participate in the design of OAPs. 

 Co-design and interactive design 

Customers can perform the various roles as a co-innovator, co-designer, co-developer, co-producer, 

co-distributor, co-experience creator, etc. during the different life cycle stages of the product 

including conception, design, development, manufacturing, distribution, etc. in collaboration with 

other stakeholders and actors in order to co-create value for customers and achieve customer 

satisfaction [21, 22]. Co-design describes the participation of customers in the definition and design 

of products in collaboration and interaction with professional designers to satisfy customers’ needs 

[22, 23]. To integrate users into the design process, co-design toolkits, i.e. product configuration 

toolkit [24] and embedded open toolkit [25, 26] were developed. Franke and Piller [24] proposed 

product configuration toolkits for mass customization which is a knowledge-based system allowing 

users to interact with toolkits to develop a product according to the specific requirements of 

customers. In the configuration process, the configuration toolkit allows customers to select from 

existing pre-defined product attributes and design parameters in the design stage to provide the 

target product fulfilling customer requirements. Gross and Antons [25] and Piller et al. [26] 
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developed embedded open toolkits for user co-design/co-creation by shifting and postponing 

certain design decisions and some specifications of the product into the user domain to achieve 

customer satisfaction. The open toolkits embedded in the product architecture with build-in 

flexibility enable users to modify and adapt a physical product through adaptable interfaces during 

the use stage based on their own needs. Kumtepe et al. [27, 28] proposed a smart mass 

customization design tool for users’ interaction and involvement in the design process of 

customized products allowing them to modify design parameters based on their needs and 

expectations. To implement the methodology, they developed a parametric design tool for modular 

portable wheelchair ramps which enables customers to select design parameters and configure and 

customize their products.  

The rapid advancements in information, communication, and manufacturing technologies (e.g., 

cloud computing, cyber-physical systems, Internet of Things (IoT), and additive manufacturing) 

enable customers to collaborate with designers and manufacturers and become more actively 

involved in the design and development of products to co-create individualized products with 

higher efficiency and variety [29, 30]. Co-design of personalized products provides the opportunity 

for both customers and designers of the product to exchange ideas and information during the 

design stage in order to co-create personalized products satisfying customers’ individual 

requirements and co-create values for users [30, 31]. Zheng et al. [29] proposed a framework by 

integrating three main features of personalized products, i.e., user experience, co-creation (user 

participation), and modular design for the product development process for mass personalization. 

To describe the framework, a case study of personalized smart respiratory masks development was 

used in which users are involved in the co-design process through the online configuration system. 

To improve the user involvement in the design of personalized open-architecture products, Zhang 
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et al. [14] developed a web-based interactive system to facilitate users’ communication with 

designers of OEM and utilized virtual reality (VR) technologies for the interaction between users 

and the product allowing users to evaluate and operate the product in the design stage to meet their 

requirements. Song et al. [15] proposed a virtual reality (VR)-based interactive system to 

effectively enhance the user interaction and participation in the design process of OAPs. The 

system enables users to operate and experience the product model in the VR environment and 

provide their feedback to designers. Through recording and analyzing the users’ data, designers 

can improve the product design to meet the users’ needs. Zheng et al. [32] proposed a data-driven 

design approach by integrating co-development toolkits for active user involvement in the co-

design and co-creation process of personalized smart connected products, with embedded 

information and communication technology (ICT) components, in which the interaction process 

between users and designers are enabled by establishing a cyber-physical product model in the 

cloud-based environment to capture the design data generated by users in real time. Zheng et al. 

[30] proposed that the co-design process of smart connected OAP for the interaction between user 

and designer/manufacturer in the product development process can be conducted through two 

procedures: (i) online configuration in which product architecture is composed of three layers, i.e. 

physical product layer, embedded hardware layer, and embedded software layer, and (ii) cyber-

physical interaction in which users can change the physical design prototype based on their 

preferences and in-context data can be collected and transmitted in real time to drive the virtual 

twin model in the cyber space. Thus, both active (i.e., design data defined by the customer) and 

passive (i.e., design data predefined by the designer) involvement of customers enable value co-

creation for users. 
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 Design for environment (DfE) 

Design for sustainability (DfS) aims to integrate environmental, economic, and social aspects into 

the product development process throughout product life cycle stages including raw material 

extraction, production, transportation, use, and end-of-life (EoL). Therefore, product sustainable 

design is classified into three categories including design for environment (DfE) or eco-design 

(environmentally conscious design), design for economy, and design for society [10, 33]. 

Environmental sustainability focuses on eco-friendly practices to reduce the negative 

environmental impacts through minimizing energy, raw materials and natural resources 

consumption, emission and waste generation. Economic sustainability relies on reducing time, cost, 

and errors issues for improving competitiveness. Social sustainability refers to improving the 

quality of human life and health by minimization of human health and safety risks [10, 33, 34]. 

The eco-design methods and tools aiming to evaluate and improve the environmental sustainability 

performance of products can be classified into the following groups: life cycle assessment (LCA) 

based tools, computer-aided design (CAD) integrated tools, quality function deployment (QFD) 

based tools, design for X (DfX) approaches (e.g., design for disassembly, design for recycling, 

etc.), diagram tools, checklists and guidelines, etc. and the integration of different existing tools 

[10, 35]. These eco-design methods and tools are explained as follows [34, 35]:  

Design for material conservation: it is oriented to minimize material consumption in the product 

life cycle by robust design process to provide suitable geometries and manufacturing materials, 

optimized selection of materials, and utilizing renewable and recyclable materials.  

Design for energy conservation: it is to minimize energy consumption throughout the product’s 

useful life by using more efficient components and processes. 



16 

 

Design for chronic risk reduction: it is aimed at the use of low-impact materials including low 

carbon footprint and less-hazardous materials and reduction of hazardous waste and emission 

generation during the product life cycle. 

Design for recovery: it aims to reduce waste generation, increase the use of recyclable materials, 

and make waste recoverable (through recycling, energy creation, etc.). 

Design for disassembly: the purpose of design is to optimize the product disassembly process 

through ensuring easy access to fasteners and joints and minimizing tasks and tools required for 

the disassembly and separation process of components during the product operation and EoL stages 

in order to reduce disassembly time and cost and lower component destruction. Design for 

disassembly allows the realization of EoL options including reuse, remanufacturing, recycling, and 

incineration processes.  

Design for assembly: it aims to develop techniques in the design stage for efficient assembly 

operation of products in order to reduce assembly time, cost, and error.  

Design for reuse: the goal of design is to standardize components throughout the age of product 

models and increase the durability of components in order to reuse components for the same 

purpose without conducting any significant repair.  

Design for remanufacturing: the objective of design is to enable disassembly, cleaning, repair, 

replacing, and reassembly of a used product that has reached the end of useful life and return the 

product to working conditions. 

Design for recycling: the aim of design is to correct material selection, increase recyclable 

materials, and reduce material variety in the product for returning waste products to raw material 

format. 
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Life cycle assessment (LCA): the objective of the LCA method is to quantify and calculate the 

environmental impacts of products or services along the whole life cycle phases.  

CAD integrated method: integration of CAD and LCA tools aims to analyze the environmental 

impacts of the design choice during the design phase through directly retrieving the product data 

needed from the CAD model to feed the LCA system for environmental impact assessment. 

Quality function deployment (QFD): it is a design tool applied during the product design phase to 

translate customer requirements into the quality characteristics and technical requirements in order 

to meet the needs and improve the product quality. The quality function deployment for 

environment (QFDE) method is developed to support eco-design by incorporating the 

environmental issues into the extended QFD. 

TRIZ (theory of inventive problem solving): this tool supports designers by finding ways of solving 

problems in designing a product; also, it can be used in the eco-design of products. 

Diagram tools: it is used to estimate the environmental impacts of products through a qualitative 

or semi-quantitative evaluation when detailed information about the product life cycle is not 

available. 

Checklists and guidelines: this approach is used for a quick and simplified evaluation of the 

product’s environmental profile to guide designers, especially during the early design phases in 

choosing the best design solution.  

The existing research works have focused mainly on the evaluation and improvement of 

sustainability in single and modular products using current eco-design strategies. Masui et al. [36, 

37] extended QFD for incorporating environmental aspects into conventional design factors and 

product quality requirements to eco-design the product in the early stages of product development 
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(during the conceptual design stage). Sakao [38] integrated LCA, QFDE (QFD for environment), 

and TRIZ (theory of inventive problem solving) tools for the environmentally conscious design of 

products. For the green modular design of the product family considering the end-of-life 

performance, Yu et al. [39] developed a QFD-based methodology (QFDE) and Yang et al. [40] 

proposed a group genetic algorithm (GGA) method to improve the reusability and recyclability of 

the product family. Tseng et al. [41] focused on the design for recycling strategy for product 

modular design aiming to increase the recycling value and decrease the disassembly cost of the 

EoL modular product. Kim and Moon [42] performed the sustainability assessment in terms of 

environmental, economic, and social aspects for the product family and also utilized multi-attribute 

decision-making (MADM) methods and a fuzzy inference system to identify the sustainable 

platform for the product variants in the product family design. Go et al. [43] developed an 

optimization model using the genetic algorithm (GA) approach to obtain the optimal disassembly 

sequence for components of an EoL product aiming to minimize the disassembly time and increase 

the reusability of the product components. Tian et al. [44] and Bentaha et al. [45] addressed the 

disassembly process planning problem for the EoL product by considering the uncertainty of 

disassembled component quality and varying disassembly operational cost by using mathematical 

modelling and stochastic approaches. Mandolini et al. [46] and Favi et al. [47] proposed an 

innovative procedure regarding design for disassembly (DfD) to analytically estimate the 

disassembly time and cost for the product and developed the DfD software tool to evaluate the 

product disassemblability and recyclability performances at the EoL based on the CAD model of 

the product during the design phase. Some studies have worked on the integration of LCA tools 

and computer-aided product development systems to evaluate and improve the environmental 

sustainability performance of products at the design stage through extracting the required data 

directly from the CAD model of the product [48-50]. Gaha et al. [51] and Slama et al. [52] 
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developed an environmentally conscious manufacturing process using an LCA and 

CAD/CAM/CAPP/PLM integration system for environmental impact analysis, a feature 

interaction technology (FIT) to generate different possible manufacturing process plan scenarios, 

and a multi-criteria decision support method to choose the greenest manufacturing scenario.  

Sustainability is mostly applied to conventional products and there is limited research on the eco-

design of OAPs. Mesa et el. [19, 53] studied the selection of joining methods in the design of OAPs 

based on the design for assembly and disassembly principles to improve the product sustainability 

through reducing the complexity of assembly/disassembly tasks and reduction of operational time 

and costs during the use and EoL phases. Mesa et al. [4] performed a literature review concerning 

the attributes of OAPs (modularity, product family, reconfiguration) and the strategies of the 

circular economy (CE) model (EoL strategies, useful life extension, life cycle thinking). They 

identified research gaps including formally integrating sustainability into the development of 

complex products, the complete integration of the OAPs attributes and CE concepts and the 

implementation of an integrated model of OAP and CE, and the integration of social and economic 

issues with environmental aspects. In another work [16], they analyzed the modular architecture 

principles (MAPs) to modularize products and described strategies based on modularity principles 

for improving the sustainability of OAPs containing reuse of modules, open interface design for 

easy assembly/disassembly, robust selection and evaluation of MAPs, and actions for user 

responsibility and corporate responsibility. They discussed the lack of sustainability studies 

regarding open-architecture products and the need of developing sustainability enhancement 

approaches taking into account the product architecture. Also, they proposed research opportunities 

relating to the design of joints and product interfaces oriented to improving the sustainability of 

OAPs and the establishment of effective supply chains between the product life cycle stages to 
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improve sustainability regarding reuse, remanufacturing, and recycling. Hence, it is essential for 

further research about the eco-design of OAPs to evaluate and enhance the sustainability of the 

product. Table 2.2 summarizes the related works in the sustainable design of products. 

Table 2.2 Related works on the sustainable design of products. 

Related works Description 

Masui et al. [36, 37] Eco-design of the product using extended QFD for incorporating 

environmental aspects into conventional design factors. 

Sakao [38] Integration of LCA, QFD, and TRIZ tools for the eco-design of products. 

Tao et al. [48, 49], 

Chen et al. [50] 

Integration of LCA tools and computer-aided product development systems to 

eco-design products at the design stage. 

Go et al. [43], 

Mandolini et al. [46], 

Favi et al. [47] 

Sustainable design of the product by focusing on the design for disassembly 

strategy to reduce the disassembly time and cost and improve the EoL 

performance. 

Yu et al. [39] Eco-design of the product family using a QFD-based method to improve the 

EoL performance. 

Yang et al. [40] Eco-design of the product family using a group genetic algorithm (GGA) 

method to improve the reusability and recyclability. 

Tseng et al. [41] Eco-design of the modular product based on the design for recycling strategy. 

Kim and Moon [42] Sustainable design of the product family using the combination of life cycle 

sustainability assessment, multi-attribute decision-making methods, and a 

fuzzy inference system. 

Mesa et el. [19, 53] Design of joints in OAPs based on the design for assembly and disassembly 

principles to improve sustainability. 

Mesa et al. [4] Propose the integration of the OAPs attributes (modularity, product family, 

reconfiguration) and the strategies of the circular economy (CE) model to 

enhance the sustainability performance. 

Mesa et al. [16] Propose strategies based on modularity principles for improving the 

sustainability of OAPs containing reuse of modules, open interface design for 

easy assembly/disassembly, robust selections of modularization principles, and 

actions for user responsibility and corporate responsibility. 
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 Life cycle assessment (LCA) tools 

The life cycle assessment (LCA) is a systematic framework to quantify the potential environmental 

impacts of the product along the whole life cycle phases and identify the hot spots [54]. Based on 

this methodology, there are several tools to perform LCA and calculate the environmental impacts 

for the sustainable design of products. There are professional LCA software tools, such as SimaPro, 

GaBi, Umberto, and OpenLCA to conduct a full and detailed LCA analysis to obtain accurate and 

reliable results, which require the collection of a large amount of life cycle related data, training to 

use the tools, and experience to interpret the LCA results [35, 55, 56]. SimaPro is a popular and 

commonly used software with a high license price, through which the user can model and analyze 

the environmental impacts of product life cycles in a transparent and clear way to generate clear 

and precise results [55, 56]. GaBi is a well-recognized and common paid LCA software tool for 

modelling the life cycle of products with the feature of graphical construction of the product life 

cycle allowing users to input flows and processes in a graphical way  [57]. Umberto, a paid LCA 

software tool, is a powerful and efficient tool with a comprehensive graphical lifecycle modelling 

which is hard to use for ordinary users without professional knowledge of LCA due to the 

complicated diagram of the lifecycle [55, 57]. OpenLCA is a free and open-source LCA software 

tool developed by GreenDelta to perform LCA analysis. It is easy to handle and allows users to 

calculate all the stages of LCA. It is compatible with most of the life cycle inventory (LCI) 

databases and life cycle impact assessment (LCIA) methods existing in the market and users can 

import free or purchased methods and databases into software and perform an LCA [35, 55, 56]. 

One of the problems when performing an LCA analysis using different tools can be the variety of 

data formats, storage formats, system definitions, and software implementations. The selection of 

different LCA software tools may also lead to different assessment results and conclusions due to 
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differences in the software databases for both inventory and impact assessment, which could affect 

the decision-making process [58, 59].  

Conducting a complete LCA analysis using detailed LCA software tools is complex, costly, and 

time and resource-consuming due to the collection of a considerable amount of product data needed 

for life cycle inventory (LCI) analysis. Thus, the simplified LCA (SLCA) tools such as Quantis 

Suite 2.0, Sustainable Minds, EIME (Environmental Improvement Made Easy), ECO-it, etc. have 

been developed to calculate the simplified environmental impact of products without having 

complete data on the product, which reduce the complexity of a complete LCA. Using the SLCA 

software tools, simplification can happen at various stages including input data, computation 

methods, and graphic user interface, making them more user-friendly and useful for non-expert 

and ordinary software users. However, simplifications could cause incorrect interpretation of the 

results due to the incomplete data input [35, 55]. Quantis Suite is a web-based application that uses 

the ecoinvent 2.2 database. Modelling is performed by LCA phases and product stages with a drag-

and-drop method of process selections [57]. Sustainable Minds is a web-based LCA tool which is 

helpful for non-expert users. The results may be not detailed enough for further analysis and the 

database cannot be modified by users and Internet access is required [55].  EIME is a widely used 

web-based application for environmental sustainability analysis. The user interface is well 

designed and friendly, but the embedded indicators are different from other LCA tools which 

causes interoperability issues [35, 55]. ECO-it is an LCA tool for quick screening with a limited 

database and methods which is useful for designers who have no professional knowledge in LCA 

to consider environmental aspects during the design process [55]. 

The need to analyze the environmental impacts of products during the design and development 

phase as well as establish the relationships among design parameters and environmental impacts 
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of products has led to developing environmental impact assessment approaches and tools integrated 

and interfaced with computer-aided product design and development systems for eco-design of 

products, which can greatly reduce the environmental impacts [35, 48]. The CAD-integrated SLCA 

tools such as SolidWorks Sustainability [60] and ECO-fit [61] in which environmental impact 

assessment modules are embedded and integrated into CAD software can be utilized to estimate 

the environmental impacts of the product by extracting data directly from the product model at the 

design stage. These tools provide simplified LCA analysis and are useful to compare the 

environmental impacts of different product versions and identify and improve the environmental 

hotspots and criticalities of the product. However, compared to the professional dedicated LCA 

tools, they are not enough to acquire detailed and much accurate results due to the limitation of 

data in the databases, a limited number of environmental impact indicators, and simplification in 

the modelling of life cycle phases [35, 48, 55]. Marosky et al. [62] carried out the environmental 

impact assessment during the product development to design the environmentally friendly product 

by linking a CAD software tool (i.e., SolidEdge) and an LCA software tool (i.e., SimaPro) in which 

all relevant data is extracted from the CAD product model and manually transferred to the LCA 

software. Mathieux et al. [63] explored opportunities and challenges for connecting CAD software 

tools (e.g., CATIA) and product lifecycle management (PLM) systems (e.g., SmarTeam distributed 

by Dassault Systems) with LCA software tools (e.g., EIME) in order to automatically transfer 

needed data for assessing in real-time environmental performance of design alternatives in the early 

design process. Leibrecht [64] proposed a prototype tool, EcolgoiCAD, using a CAD-based 

environmental impact assessment method to retrieve CAD (i.e., Pro/Engineer) data for the LCA 

analysis. Morbidoni et al. [65, 66] developed a prototype eco-design tool, CAST (Computer-Aided 

Sustainable Tool) tool, based on the integration of sustainable life cycle methodologies (LCA and 

life cycle costing (LCC)) with CAD/PLM systems in order to design sustainable and green 
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products. The required relevant information is retrieved from PLM, LCA, and LCC databases for 

conducting the simplified environmental and economic analyses in the early stage of the product 

design and development process. Tao et al. [49] and Chen et al. [50] developed a feature-based 

LCA prototype tool for the integration of environmental assessment with computer-aided product 

development systems to evaluate and improve the environmental sustainability performance of the 

product. In this approach which is focused on efficient life cycle related data collection and more 

accurate impact assessment results, feature-based data, namely Product Features (PFs, product 

related data) and Operation Features (OFs, process related data) are retrieved from computer-aided 

engineering tools, CAX systems (i.e., CAD, CAM, CAPP, CAE), for LCA analysis. The proposed 

method enables assessment and comparing various design alternatives and selecting the greenest 

one. Tao et al. [48] presented an innovative eco-design approach based on integrating LCA, 

CAD\CAE, and optimization tools for optimal sustainable product design and development. 

Through data exchange between CAD (e.g., UGNX) and CAE (e.g., Abaqus) systems, functional 

performance analysis of the product is performed. Then, the eco-optimization process is conducted 

to find the optimal design solution with the lowest environmental impact, while fulfilling the 

technical and functional requirements of the product. 

Therefore, there are various LCA tools to evaluate the environmental impacts of products. Users 

can choose an appropriate LCA tool (professional, simplified, or prototype tools) to meet their 

requirements. The comparison of some current LCA tools is summarized in Table 2.3. The 

important criteria selected for comparison include the scope of the use of software, the cost of 

software, the accuracy of LCA modelling (i.e., how much the generated LCA model matches with 

the real model), and the expertise of users. In order to perform a complete LCA analysis with higher 

accurate results, it is recommended to use SimaPro, GaBi, Umberto, and also OpenLCA. Some 
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LCA tools are integrated with CAD software such as SolidWorks Sustainability which is useful for 

designers to assess the environmental impacts of the different design scenarios to select a greener 

solution. Moreover, to conduct simplified LCA when the accuracy of results is not much important, 

users can employ simplified LCA tools such as EIME. In some cases, CAD-integrated LCA 

prototype tools are developed to directly retrieve required data from CAD tools during the design 

stage for environmental impact assessment.   

Table 2.3 Comparison of some current LCA software tools (Adapted from [35, 55-57]). 

Name Type 
Accuracy of 

LCA model 
User Database Cost Other features 

SimaPro Complete 

LCA 

High Expert Various databases, 

modified by user 

Paid Suitable for LCA 

comparison 

GaBi Complete 

LCA 

High Expert GaBi LCA databases, 

Ecoinvent and US 

LCI, modified by 

user 

Paid Graphical lifecycle 

modelling 

Umberto Complete 

LCA 

High Expert Ecoinvent and GaBi 

databases, not 

modified by user 

Paid Graphical lifecycle 

modelling 

OpenLCA Complete 

LCA 

High Expert Various databases, 

modified by user 

Free Compatible with 

most databases and 

LCIA methods 

SolidWorks 

Sustainability 

Simplified 

LCA 

Low Expert GaBi LCA databases, 

not modified by user 

Paid Integration with 

CAD software 

ECO-fit Simplified 

LCA 

Low Expert Not modified by user Paid Integration with 

CAD software 

Quantis Suite Simplified 

LCA 

Low Expert 

and non-

expert 

Ecoinvent 2.2 Paid Web-based 

application 

Sustainable 

Minds 

Simplified 

LCA 

Low Expert 

and non-

expert 

US-Ecoinvent 

database, not 

modified by user 

Paid Web-based 

application 

EIME Simplified 

LCA 

Low Expert 

and non-

expert 

Modified by user Paid Web-based 

application 
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 Visualization in DfE 

Visualization is a valuable tool to transform and map data to a visual representation in order to 

effectively communicate and analyze the information [67]. In the eco-design process, visualization 

of the results of LCA and sustainability assessment is important to support LCA experts, designers, 

consumers, and other stakeholders involved in the design and decision process in the presentation, 

interpretation, and decision-making [68, 69]. Uchil and Chakrabarti [70, 71] highlighted the issues 

in the visual representation of the environmental impact assessment results in the current LCA tools 

such as accuracy of interpretation and perceived insight, user performance, usability, and 

interactivity. They discussed the application of information visualization techniques as an interface 

for LCA tools in order to make the LCA results interpretable and usable by designers which helps 

them to take robust decisions towards reducing the environmental impacts of products. Hollberg et 

al. [72] conducted a comprehensive review on the visualization of LCA results during the design 

process of buildings. They classified the different visualization approaches, such as color map, 

treemap, heat map, radar chart, etc. based on the LCA goals and the amount of information 

displayed in the visualization [72, 73]. Oyarzo and Peuportier [74] utilized the radar charts to 

visualize and interpret the results of LCA analysis in the building sector aiming to compare 

different design alternatives and environmental impact categories. To analyze the LCA results in 

detail, Kiss and Szalay [75, 76] applied the sunburst diagram as a visualization tool in which the 

total environmental impact is divided into the life cycle stages and then further divided into other 

subcategories such as building components and materials. Also, the results are mapped and 

visualized onto the geometrical 3D model of the building where the color of the building elements 

represents the contribution to the overall environmental impact. Cerdas et al. [77] introduced 

cluster heat maps to report and visualize the LCA results and improve the decision-making process. 
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This visualization method allows to hierarchically cluster the product elements (components, 

materials, processes, etc.) and present complex information in such a way that is understandable 

for a various range of stakeholders. Keivanpour and Ait Kadi [78] employed clustering and treemap 

approaches for mapping and analyzing the eco-efficiency profile of the complex products 

comprised of many modules, components, and parts to facilitate the decision-making process. 

Ostad-Ahmad-Ghorabi et al. [79] investigated the requirements for the integration of eco-design 

into the CAD system and discussed the possibility of visualization of environmental impact 

evaluation results on the CAD model during the early product design stage. Müller and Hiete [80] 

developed a novel a posteriori visualization method to support decision-makers in life cycle 

sustainability assessment (LCSA) of products for comparing and identifying the most sustainable 

product alternative. This approach takes the three sustainability pillars into account and allows 

decision-makers and analysts to explore the sustainability performance of products over different 

weightings of the three sustainability dimensions.  

The visualization technique can be useful for analyzing and communicating the sustainability 

assessment results in the co-design process of OAPs where customers and expert designers are 

involved in the design of the product. This facilitates interaction and cooperation between different 

stakeholders in the decision-making process for improving the sustainability performance of 

products. 
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 Multi-attribute decision making (MADM) methods 

Multi-criteria decision making (MCDM) is a supporting tool used for making decisions under 

multiple conflicting evaluation criteria [81]. Based on the different purposes and different data 

types, the MCDM methods can be classified into two main categories: (i) multi-attribute decision 

making (MADM) methods to evaluate discrete decision problems with a limited number of 

predetermined alternatives, and (ii) multi-objective decision making (MODM) methods to deal 

with continuous decision problems where the alternatives are not predefined [82, 83]. The MODM 

methods aim to achieve the optimal goals through optimizing the objective functions by 

considering a set of constraints [83]. The MADM methods aim to evaluate the performance of the 

alternatives with respect to a number of qualitative and/or quantitative criteria for the purpose of 

selection or ranking of alternatives [84]. There are several MADM methodologies with different 

features and calculation procedures to solve decision-making problems which can be selected and 

employed based on the structure and characteristics of the decision problem, the objectives of the 

analysis, the quality of the information available, and the preferences of decision-makers [85, 86]. 

The decision results and final ranking of the alternatives depend on the selected decision 

methodology and may be changed according to the applied method [85, 87, 88]. The most 

commonly used MADM methods include (i) pairwise comparison-based methods (e.g., AHP, 

ANP), (ii) scoring-based methods (e.g., TOPSIS, SAW, GRA), and (iii) outranking-based methods 

(e.g., ELECTRE, PROMETHEE) [89, 90].  

The AHP (Analytic Hierarchy Process) proposed by Saaty [91] is based on building a hierarchical 

structure for the decision problem and creating pairwise comparison matrices for all the levels of 

hierarchy to calculate the single priority score for each alternative. The complete ranking of 

alternatives is determined by comparing the performances of alternatives in pairs with respect to 
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several criteria through the subjective judgments and ratings of alternatives by decision-makers 

[92]. Saaty [93] further developed the ANP (Analytic Network Process) to cope with the problem 

of dependence and feedback among attributes [94]. The ANP is an extension of AHP with a 

network structure which enables interrelationships among the decision levels and attributes, while 

the AHP uses unidirectional relationships among elements in the hierarchy [95].  

The TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method presented 

by Hwang and Yoon [96] aims at the complete ranking of alternatives and determining the best 

alternative based on performance scores obtained using normalization of performance values of 

alternatives with respect to criteria and calculation of the distance of each alternative from the 

positive and negative ideal solutions. The optimal alternative has the minimum distance from the 

positive ideal solution (optimal solution) with the best performance and the maximum distance 

from the negative ideal solution (inferior solution) with the worst performance [97, 98]. The SAW 

(Simple Additive Weighting) approach is applied to select the best option based on the total score 

calculated for each alternative through summation of multiplying the normalized value of each 

alternative performance by the corresponding attribute weight [99, 100]. The GRA (Grey 

Relational Analysis) proposed by Deng [101] is used for global comparison between alternatives 

based on the grade computed for each option through aggregating the weighted normalized values 

of alternatives’ performances against each criterion.  

The ELECTRE (ELimination Et Choix Traduisant la REalité) method was introduced by Roy [102] 

and different types of this approach (e.g., ELECTRE I, II, III, IV, IS, A) are utilized to solve three 

main problems, i.e. choosing, ranking, and sorting. These outranking methods consist of two main 

phases including (i) making pairwise comparisons of alternatives’ performances on the different 

criteria based on the concordance and discordance concepts (for estimation of concordance and 
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discordance indexes) and constructing outranking relations between alternatives on these 

concordance and discordance indexes, and (ii) exploiting the outranking and preference relations 

to provide the results based on the given problematic [103]. The PROMETHEE (Preference 

Ranking Organization METHod for Enrichment Evaluations) methods developed by Brans and 

Vincke [104] are applied for partial ranking of the alternatives (e.g., PROMETHEE I) through the 

calculation of positive and negative outranking flows for each alternative, as well as for complete 

ranking of the alternatives (e.g., PROMETHEE II) by calculation of net outranking flow for each 

alternative. For this purpose, an overall preference index is computed for each pair of alternatives 

using the preference function in which the difference between the evaluations of alternatives on 

each criterion is translated into a preference degree ranging from zero to one. Then, the outranking 

flows for each alternative are obtained by averaging the values of preference indexes [105]. The 

main characteristics of the different MADM methods are summarized in Table 2.4.  
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Table 2.4 Features of the different MADM methods. 

Method Type Input Output Other features 

AHP Pairwise 

comparison-

based method 

- Pairwise comparisons of the criteria 

(with respect to the goal) and 

alternatives (with respect to criteria) 

on a ratio scale to measure their 

relative importance. 

- Assign a multicriteria score to 

each alternative. 

- Complete ranking of alternatives 

and selection of the best 

alternative. 

- Hierarchy structure. 

- Used for calculation of the 

weights of criteria. 

- Potential for inconsistencies 

between judgments. 

ANP Pairwise 

comparison-

based method 

- Pairwise comparisons between all 

elements (criteria, sub-criteria, and 

alternatives) on a ratio scale and 

considering interdependencies in a 

supermatrix. 

- Complete ranking of alternatives 

based on the scores to select the 

best alternative. 

  

 

- Network structure. 

- More accurate than AHP. 

- Dependence and feedback 

relationship between 

elements. 

- Potential for inconsistencies 

between judgments. 

TOPSIS Scoring-based 

method 

- Normalization of data. 

- Aggregation operation. 

- Criteria weights. 

- Assign a closeness score to each 

alternative. 

- Complete ranking of alternatives. 

- Distance principle.  

- Calculation of distance from 

positive and negative ideal 

solutions. 

- Handle objective and 

quantitative data. 

SAW Scoring-based 

method 

- Normalization of data. 

- Aggregation operation. 

- Criteria weights. 

- Assign an aggregated score to 

each alternative. 

- Complete ranking of alternatives. 

- Weighted average principle. 

- Simple computation 

procedure. 

- Handle objective and 

quantitative data. 
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Table 2.4 Features of the different MADM methods (cont’d). 

Method Type Input Output Other features 

GRA Scoring-based 

method 

- Normalization of data. 

- Aggregation operation. 

- Criteria weights. 

- Assign a grade to each 

alternative. 

- Complete ranking of alternatives. 

- Different normalization 

functions. 

- Relatively complex 

procedure. 

- Deal with objective and 

quantitative data. 

ELECTRE  Outranking-

based method 

- Pairwise comparisons of alternatives 

against each criterion (for estimation 

of concordance and discordance 

indexes). 

- Threshold values (concordance and 

discordance). 

- Criteria weights. 

- Classification with pairwise 

outranking degrees. 

- Find a kernel solution; partial 

ranking of the alternatives. 

 

- Only consider criteria and do 

not include the sub-criteria. 

- The ranking of alternatives 

depends on the size of 

thresholds; it is unknown how 

to determine the appropriate 

threshold. 

PROMETHEE Outranking-

based method 

- Pairwise comparisons of alternatives 

on each criterion. 

- The preference function for each 

criterion.  

- Preference and indifference 

thresholds for each criterion. 

- The weights of criteria. 

- Classification with pairwise 

outranking degrees and scores. 

- The PROMETHEE I for the 

partial ranking of the alternatives 

from the best to the worst; and the 

PROMETHEE II for the complete 

ranking of the alternatives. 

- Only consider criteria and do 

not include the sub-criteria. 

- Allows the use of different 

units, ordinal, and cardinal 

scales. 

- The selection of the 

preference function cannot be 

fully justified. 
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 Synthesis 

According to the literature review conducted in this Chapter, it is concluded that the design of 

OAPs is under development and integrating the sustainability aspects into the design process of 

OAPs is of importance. The existing studies have focused mainly on the modular design of OAPs 

to determine the different types of functional modules of the product, adaptable design of OAPs to 

accommodate various personalized modules during the product lifetime, design of open interfaces 

to connect personalized add-on modules to the product platform, and developing cyber-enabled 

design tools for co-design of OAPs to enable customers to participate in the co-creation of the 

product. However, there is limited research discussing the importance of considering the 

sustainability concept in the design and development of OAPs. Most of the existing research works 

have studied the sustainable design of traditional products using the current eco-design methods 

and tools (e.g., LCA, QFD, design for disassembly, etc.). Therefore, it is required to incorporate 

sustainable design strategies into the co-design process of OAPs. In the co-design process of OAPs 

where customers and other stakeholders (e.g., OEM and SMEs) are involved in the design and 

manufacturing of personalized products, not only the functional performance of the product 

variants defined by the customer need to be analyzed but also evaluating and presenting the 

sustainability performance of the design choices to customers is essential. To this end, the main 

objective of this dissertation is to propose a methodology to evaluate and communicate the 

sustainability performance of personalized products to customers during the design stage. As the 

first sub-objective, the sustainability performance of the product variants designed by customers is 

required to be measured. For this purpose, the environmental life cycle assessment (ELCA) and 

life cycle costing (LCC) methodologies are utilized to assess the sustainability performance of the 

personalized product in terms of environmental and economic aspects. Regarding the second sub-
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objective, it is essential to integrate the different calculated sustainability indicators (in the first 

step) to construct a single sustainability index (SI) for each product variant. Therefore, in this 

research, the sustainability assessment of personalized products is regarded as a multi-criteria 

decision problem. To address this challenge, the MADM approaches with the features of weighting 

and aggregation of sustainability indicators, i.e., scoring-based methods such as GRA are employed 

to calculate the sustainability scores and rank the design alternatives. Also, the visualization 

technique (e.g., treemap approach) is utilized to facilitate the decision-making process for 

customers and other involved stakeholders. Finally, as the third sub-objective, sensitivity analysis 

is conducted to validate the robustness of the proposed methodology through a design of 

experiments (DOE)-based method (for LCA modelling) and using different weighting and 

aggregation approaches (for sustainability index development). 
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 METHODOLOGY 

 Overview 

The research methodology of this study mainly consists of four steps (Figure 3.1). First, a 

comprehensive literature review is conducted to review the related works on open-architecture 

products, sustainability analysis, visualization, and multi-criteria decision-making methods 

(Chapter 2). Then, a decision support tool is developed to evaluate and visualize the sustainability 

performance of the OAP defined by customers at the design stage (Chapter 3). The proposed 

framework is also validated by performing sensitivity analysis on the life cycle assessment 

modelling and sustainability index development process (Chapter 3). A case study of a robot is 

conducted in Chapter 4 to extract the results of sustainability assessment and sensitivity analysis 

in order to demonstrate the utility and usefulness of the proposed methodology. 

Literature review 

(Chapter 2)

Develop a decision 

support tool (Chapter 3)

Validate the proposed 

framework (Chapter 3)

Case study 

(Chapter 4)

Proposed 

methodology

 

Figure 3.1 The research methodology. 
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 Proposed methodology 

This dissertation presents a methodology to evaluate, visualize, and validate the sustainability 

performance of the open-architecture product (OAP) developed by the participation of customers. 

The proposed methodology contains developing a decision support tool (first and second sub-

objectives) and validating the robustness of this framework using sensitivity analysis (third sub-

objective). Figure 3.2 depicts the framework of the proposed decision support tool which includes 

four main phases. In phase 1, different design scenarios (product variants) that can be defined by 

customers are generated. In phase 2, the sustainability performance of the product for each design 

scenario is measured by performing the environmental and economic sustainability analyses (i.e., 

ELCA and LCC). In phase 3, the sustainability index (SI) is developed for each product alternative 

by applying appropriate weighting and aggregation approaches. For this purpose, the equal 

weighting method and a multi-attribute decision-making (MADM) approach, namely GRA are 

utilized for weighting and aggregating the results from the two different sustainability assessments 

into the total sustainability value for each design alternative. Finally, in phase 4, a treemap approach 

is applied as a visualization tool to present and communicate the sustainability results of product 

alternatives with customers and other involved stakeholders to facilitate the decision-making 

process towards the selection of the best sustainable alternative. To validate the robustness of the 

proposed decision support tool, the sensitivity analysis is performed. The local and global 

sensitivity analyses are conducted in the second phase of the framework on the LCA modelling to 

check the robustness of the results to the input inventory data uncertainties. The one-at-a-time 

approach as well as a design of experiments (DOE)-based method are respectively used for local 

and global sensitivity analyses. Also, the sensitivity analysis is carried out in the third phase of the 

framework by employing different weighting and aggregation approaches in order to validate the 
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final sustainability results obtained by the applied methods and monitor the robustness of results 

to changes in the chosen methods. To this end, the AHP method is utilized for the weighting 

process, and TOPSIS and SAW methods are applied for aggregation operation. These steps are 

explained in detail in the following Sections. 

Phase 1

Design scenario generation

Phase 2

Sustainability analysis 

(ELCA and LCC)

Phase 3

Sustainability index development 

using GRA method

Phase 4

Visualization of sustainability 

performance

Input: open-architecture product 

(OAP) 

Customer approval?

Output: optimal sustainable 

alternative selection

No

Yes

 

Figure 3.2 The flowchart of the proposed decision support tool. 
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 Decision support tool 

3.3.1 Phase 1: Design scenario generation 

Considering the features of OAPs in which customers are involved in the design of personalized 

components based on their demands, different design scenarios can be created. The product has 

different sustainability performances for each design alternative defined by customers. Customers 

can participate in designing personalized products taking into account their needs and design 

constraints defined by the original equipment manufacturer (OEM). They are allowed to change 

the features of personalized components, such as geometry, material, etc. based on their preferences 

and design constraints. After defining personalized components, their functional and sustainability 

performances need to be evaluated and presented to consumers. Thus, customers are able to 

visualize the analysis results and select the optimal option satisfying their requirements. 

3.3.2 Phase 2: Sustainability analysis  

The life cycle sustainability assessment (LCSA) methodology aims to quantify and evaluate the 

sustainability performance of products over the entire life cycle taking environmental, economic, 

and social aspects into account [106]. In this study, we have focused on the environmental and 

economic aspects of the life cycle sustainability assessment methodology. The environmental and 

economic sustainability analyses are applied for assessing the sustainability performance of the 

personalized components of the product for different design scenarios defined by the customer. 

The values of environmental and economic sustainability indicators for personalized modules of 

the product for each design scenario are estimated by performing environmental life cycle 

assessment (ELCA) and life cycle costing (LCC) analyses. 
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3.3.2.1 Environmental life cycle assessment (ELCA) 

The environmental life cycle assessment (ELCA) is a tool to address the environmental dimension 

of the LCSA and obtain the environmental sustainability indicators. The ELCA methodology is 

used for assessing the potential environmental impacts of products taking the full life cycle into 

consideration [107]. According to ISO 14040/14044, the ELCA modelling consists of four phases 

as follows [54]: 

Step 1: Goal and scope 

The goal and scope definition stage describes the purpose of the ELCA study, functional unit (the 

function of product or system to be assessed), system boundaries (the processes included in the 

analysis of a system), assumptions and limitations of the assessment.  

Step 2: Life cycle inventory 

The life cycle inventory (LCI) analysis is to identify and quantify the input and output flows for 

each process in the system scaled to the functional unit. Inventory flows include inputs of materials, 

energy, and other resources consumption and environmental releases to air, water, and land in 

relation to each life cycle stage.  

Step 3: Life cycle impact assessment 

The life cycle impact assessment (LCIA) phase is the evaluation of the potential environmental 

impacts associated with input and output flows of each life cycle stage identified and calculated 

during the LCI phase.  

Step 4: ELCA results 

The last phase is to interpret and analyze the LCA results and identify critical areas for 

environmental improvement in a process or system.  
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By performing ELCA analysis for the product components, the environmental impact of the ith 

component (EIi) of the product along its life cycle, for each impact category is obtained using 

Equation (3.1): 

EIi = EIi (material) + EIi (production) + EIi (transportation) + EIi (use) + EIi (end-of-life) 1)3.( 

3.3.2.2 Life cycle costing (LCC) 

The life cycle costing (LCC) is a life cycle-based method to address the economic pillar of 

sustainability in the LCSA and obtain the economic sustainability indicators [108, 109]. The LCC 

analysis is a method to assess the overall costs supported by all actors throughout the whole life 

cycle of the product system [110]. For the economic sustainability indicator, the conventional LCC 

is conducted for the product to measure the costs directly incurred during the life cycle stages, 

namely material cost, production cost, transportation cost, use cost, and end-of-life cost [111]. The 

LCC for the ith component (LCCi) of the product is calculated as the following equation [42]:  

LCCi = Ci (material) + Ci (production) + Ci (transportation) + Ci (use) + Ci (end-of-life) 2)3.( 

For the calculation of raw material cost for producing the ith component, the unit price of the 

material is multiplied by the material weight of the ith component. The production cost is related 

to the manufacturing cost (energy consumption), capital cost, labour cost, etc. for producing the ith 

component. The transportation cost is calculated by a product of the unit cost of transportation and 

the weight of the ith component. The cost of the use stage supported by the user for the ith 

component is calculated through the multiplication of the unit cost of consumed energy by the 

weight of the component during the usage phase. The end-of-life (EoL) treatment cost depends on 

the scenario that the ith component experiences in its EoL, which includes reuse, remanufacturing, 

recycling, incineration, and disposal in landfill. Thus, the EoL cost supported by the user and/or 
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society for the ith component is obtained by multiplying the unit cost of the EoL treatment and the 

weight of the component. 

It should be noted that the life cycle costs of a product are produced over a period of time and the 

monetary aspects have a time-variant nature and vary on a yearly basis; thus, the discount rate is 

used to convert the future value of costs into present values [106, 112]. In general, the net present 

value (NPV) of future economic flows is determined using Equation (3.3): 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑡

(1 + 𝑟)𝑡

𝑛

𝑡=1

 (3.3) 

where 𝐶𝐹𝑡, t, and r are respectively the sum of all cash flows at time t, time of the cash flow, and 

discount rate. In this study, the life cycle cost of the ith component (LCCi) is converted into NPV 

and obtained as follows: 

LCC𝑖 = ∑
𝐶𝑖𝑡

(1 + 𝑟)𝑡

𝑛

𝑡=1

 (3.4) 

where 𝐶𝑖𝑡
, t, and r are respectively the sum of the costs of the ith component at year t, year of the 

cost flow, and discount rate. 

3.3.3 Phase 3: Sustainability index development 

The life cycle sustainability assessment (LCSA) consists of the integration of results from 

environmental life cycle assessment (ELCA), life cycle costing (LCC), and social life cycle 

assessment (SLCA) [113]. Klöpffer [114] formulated LCSA as the combination of the assessment 

of the different sustainability dimensions as follows: 

LCSA = ELCA + LCC + SLCA  )53.( 
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In this research, the sustainability analysis is performed by considering two pillars of sustainability, 

namely environmental and economic aspects (i.e., performing ELCA and LCC). Apart from 

measuring the sustainability performance of products, to efficiently interpret and communicate the 

sustainability assessment results and satisfy the expectations of various stakeholders involved in 

the decision-making process to make informed decisions, the sustainability indicators with 

different goals need to be integrated to construct the sustainability index (SI) [115, 116]. For this 

purpose, it is required to provide weights for the sustainability dimensions and their indicators and 

perform an aggregation process to integrate weighted indicators into a single sustainability value 

[116-118]. There are various approaches for the weighting and aggregation of sustainability 

indicators. The weighting methods can be classified into (i) equal weighting to assign the same 

weight to all the indicators, (ii) statistical-based weighting (e.g., regression analysis) to derive 

weights using statistical models, and (iii) participatory-based methods (e.g., AHP) to determine the 

weights of indicators based on various stakeholders’ opinions and judgments [117, 119, 120]. The 

aggregation methods can be categorized into (i) additive aggregation methods (e.g., arithmetic 

mean) which utilize additive functions to sum up the normalized values of indicators to form a 

sustainability index, (ii) geometric aggregation methods (e.g., geometric mean) that employ 

multiplicative instead of additive functions, and (iii) non-compensatory aggregation methods (e.g., 

multi-criteria analysis) which contain the properties of aggregation functions and the perspective 

of multi-criteria decision making (MCDM) [117, 119, 120]. Selecting an appropriate weighting 

and aggregation approach is dependent on decision makers’ needs and preferences, decision 

process objectives, and scope and purposes of sustainability assessment and development of SI 

[118, 121]. Kim and Moon [42] conducted the life cycle sustainability assessment for the product 

variants in the product family design and then applied the AHP method for weighting the three 

sustainability dimensions and their indicators and used a MADM approach, i.e. GRA to aggregate 
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the values of sustainability indicators and compute a single sustainability value for the components 

of product variants. Tan et al. [122] combined the AHP with GRA as the decision-making 

methodology and tool for weighting and aggregating the evaluation criteria including 

environmental impacts, as well as the market value factors, i.e. benefits, opportunities, costs, and 

risks in order to rank design alternatives and select the best green product when design and 

developing a new product. Chan and Tong [123] applied the GRA method to rank and select the 

proper material for the production process of products with respect to the environmental, economic, 

and technical criteria.  

3.3.3.1 Grey relational analysis (GRA) for calculation of sustainability value 

In this study, environmental and economic sustainability analyses are conducted to evaluate the 

sustainability indicators for the different design alternatives. To compare and rank the sustainability 

performance of product alternatives based on the sustainability assessment results obtained by 

ELCA and LCC analyses, the sustainability scores need to be developed for each design alternative. 

The sustainability index (SI) is formulated by including the two sustainability dimensions (as 

criteria) and their indicators (as sub-criteria) for different product alternatives, and thus the 

sustainability assessment can be regarded as a multi-criteria decision problem. In order to solve the 

problem and construct the single total sustainability value for each design alternative, weighting 

and aggregation processes need to be applied. Therefore, (i) for the weighting process, the equal 

weighting method is utilized for assigning the relative importance to the two sustainability aspects 

(criteria) and the indicators within each dimension (sub-criteria), and (ii) for the aggregation 

process, the grey relational analysis (GRA) as a multi-attribute decision making (MADM) 

approach is employed for aggregating the performance data of alternatives on each criterion. As 

explained in Section 2.6, there are different MADM approaches (i.e., comparison-based methods, 
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scoring-based methods, and outranking-based methods) which are subjectively selected by 

decision makers based on the structure and scope of the decision problem [85, 86]. Based on the 

features of MADM methods described in Table 2.4, the GRA method (as the scoring-based 

method) is chosen and employed for integrating the values of all sustainability indicators (i.e., 

environmental and economic indicators) with different goals and measurement units into a total 

sustainability value. Unlike the other MADM approaches such as AHP in which the computation 

process of sustainability index is through the experience-based judgments of alternatives’ 

performances against different indicators [92], the GRA allows the global comparison among the 

alternatives based on the quantitative data measured by sustainability analysis of the alternatives 

in terms of different sustainability criteria. The GRA method contains data normalizing operation 

(with different normalization formulas), identifying weightings, and aggregation process [101] in 

order to aggregate the indicators’ weighted normalized values and develop a single sustainability 

value for each product alternative. Calculation of the single sustainability index for each design 

alternative using the GRA, as a helpful decision supporting tool, assists customers and other 

decision makers in ranking and comparing the sustainability performance values of alternatives 

and identifying the design scenario with higher sustainability value.   

The GRA is applied to aggregate values of all sustainability indicators with different dimensions 

and scope into a total single sustainability value that is dimensionless and ranges from 0 to 1. Grey 

relational analysis (GRA) is performed according to the following steps: 

Step 1: data normalization 

To convert the performance values of alternatives against the various criteria into a total 

performance score for each alternative, the first step in GRA is normalizing the collected raw data 

of performance values (sustainability indicators values) between 0 and 1 to avoid the effect of 
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adopting different units and reduce the variability. In this step, which is also called grey relational 

generating, three types of quality characteristics can be used; the-larger-the-better, the-nominal-

the-better, and the-smaller-the-better (Equations 3.6-3.8). Depending on the structure of attributes 

(whether the sustainability indicator is to be minimized or maximized), the performance value of 

the alternatives is normalized by using one of the following formulas: 

𝑥𝑖𝑗 =  
𝑦𝑖𝑗 − min 𝑦𝑖𝑗

max 𝑦𝑖𝑗 − min 𝑦𝑖𝑗
   i = 1, 2, …, m; j = 1, 2, …, n; the-larger-the-better. (3.6) 

𝑥𝑖𝑗 = 1 −  
|𝑦𝑖𝑗 − 𝑦𝑖𝑗

∗ |

max[max 𝑦𝑖𝑗 − 𝑦𝑖𝑗
∗   ,   𝑦𝑖𝑗

∗  − min 𝑦𝑖𝑗 ]
   i = 1, 2, …, m; j = 1, 2, …, n; the-nominal-

the-better. 

(3.7) 

𝑥𝑖𝑗 =  
max 𝑦𝑖𝑗 − 𝑦𝑖𝑗 

max 𝑦𝑖𝑗 − min 𝑦𝑖𝑗
   i = 1, 2, …, m; j = 1, 2, …, n; the-smaller-the-better. (3.8) 

where 𝑥𝑖𝑗 is normalized value for 𝑦𝑖𝑗 which is the performance value of the ith alternative (i.e., 

component) over the jth attribute (i.e., sustainability indicator), 𝑦𝑖𝑗
∗  is the target optimum value, and 

max 𝑦𝑖𝑗 and min 𝑦𝑖𝑗 are the largest and smallest values of 𝑦𝑖𝑗 for the jth attribute, respectively. 

Basically, the higher value of normalized indicators data indicates better performance and the best 

one should be equal to 1. 

Step 2: calculation of grey relational coefficient (GRC) 

After normalizing the performance values of alternatives (i.e., sustainability indicators values), the 

grey relational coefficient (GRC) is calculated to measure the degree of absolute distance between 

comparability and reference values with the following formula:  

𝛾(𝑥0𝑗  , 𝑥𝑖𝑗) =
∆𝑚𝑖𝑛 + 𝜁. Δ𝑚𝑎𝑥

∆𝑖𝑗 + 𝜁. Δ𝑚𝑎𝑥
    (3.9) 
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where 𝛾(𝑥0𝑗 , 𝑥𝑖𝑗) is GRC, and ζ is the distinguishing coefficient varying in the range of [0, 1] 

which is generally taken as 0.5. ∆𝑖𝑗 is the absolute value of the difference between reference 

sequence, 𝑥0𝑗 = 1, and comparability sequence, 𝑥𝑖𝑗. ∆𝑚𝑖𝑛 and ∆𝑚𝑎𝑥 are the smallest and the largest 

values of the difference between 𝑥0𝑗 and 𝑥𝑖𝑗. The grey relational coefficient denotes the relationship 

between the ideal and the actual performance of alternatives. 

Step 3: calculation of grey relational grade (GRG)  

Grey relational grade (GRG) is calculated by averaging the grey relational coefficient values of 

each performance characteristic, and it is defined as 

𝛾
𝑖

=
1

𝑛
∑ 𝛾(𝑥0𝑗  , 𝑥𝑖𝑗)

𝑛

𝑗=1

  (3.10) 

where 𝛾𝑖 is GRG (sustainability value) of the ith alternative (component) and n is the number of 

attributes (indicators). The influence and importance of each criterion can be established by 

assigning the weight factor for each one. Weighted grey relational grade (WGRG) is computed as 

follows: 

where, 

∆𝑖𝑗 = |𝑥0𝑗 − 𝑥𝑖𝑗| 

∆𝑚𝑖𝑛 = 𝑚𝑖𝑛 (∆𝑖𝑗)  i = 1, 2, …, m; j = 1, 2, …, n. 

∆𝑚𝑎𝑥 = 𝑚𝑎𝑥 (∆𝑖𝑗)  i = 1, 2, …, m; j = 1, 2, …, n. 

𝜁 ∊ [0, 1]  

 

𝛾
𝑤𝑖

= ∑ 𝑤𝑗  𝛾(𝑥0𝑗 , 𝑥𝑖𝑗)

𝑛

𝑗=1

 (3.11) 
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where 𝛾𝑤𝑖 is WGRG and wj is the weight value of the jth attribute sum of which is equal to 1. The 

equal weight can be used to determine the WGRG or depending on the relative importance of each 

criterion (indicator), different weights can be assigned to attributes. The larger value of GRG means 

that the corresponding alternative (component) has higher sustainability performance among other 

alternatives. 

3.3.4 Phase 4: Visualization 

Visualization is an important step in the sustainability assessment process to present the results of 

building the sustainability index (SI) which helps to clearly, quickly, and accurately communicate 

the results to decision-makers [116, 119]. There are various ways to visualize the results of SI, such 

as tables, charts, diagrams, etc. that can convey the information effectively to customers, decision-

makers, and other important stakeholders [116, 119]. In this work, the result of sustainability values 

calculated by the GRA method for various design alternatives is mapped and visualized using the 

treemap technique. This approach aids customers to have a better understanding of the 

sustainability performance of products and easily make decisions towards the more sustainable 

choice. Using a treemap, we can provide branches of the tree (as rectangles) for modules of the 

product. Then, each branch or module is divided into its sub-branches (smaller rectangles within 

each module) namely components. In this study, both size and color of rectangles of treemap 

represent the sustainability value. The color and size (area) of each rectangle show the 

sustainability performance of modules and components of the product. The components and 

modules with the greater size and brighter color of rectangles show those that have higher 

sustainability value. Also, the color distribution of the treemap demonstrates the sustainability 

∑ 𝑤𝑗

𝑛

𝑗=1

= 1  
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performance of the product. The product with higher sustainability performance has lighter color 

distribution in comparison with other product variants.    

 Sensitivity analysis 

Sensitivity analysis (SA) investigates how the variation and uncertainty of input factors in a model 

affect the variability and performance of the model output [124]. A model is sensitive to a 

parameter if a small change in the parameter leads to a large change in the model result [125]. In 

this dissertation, SA is conducted for the life cycle assessment (LCA) modelling to assess the 

impact of uncertain input parameters on the results of LCA. Also, SA is performed on weighting 

and aggregation methods used in the development of sustainability index (SI) in order to study the 

robustness of the final results and their sensitivity to changes in chosen methods. 

3.4.1 Sensitivity analysis of LCA analysis 

During LCA analysis, uncertainty can result from a number of factors, such as quality and 

variability of inventory data, system boundaries, assumptions, functional units, choice of impact 

assessment methods, etc. so that the LCA results can be affected by uncertainties of input 

parameters [126, 127]. Hence, sensitivity analysis (SA) is carried out in the LCA to determine the 

effects of uncertainty and variation of input factors on the robustness of LCA output results [127, 

128]. There are two major types of SA methods, namely local sensitivity analysis (LSA) and global 

sensitivity analysis (GSA) [124, 128]. The LSA procedure aims at assessing the impact of a certain 

predefined change in the input factor on the output value while keeping the other factors constant 

[124, 125, 128]. The LSA can be conducted through the one-at-a-time approach, a commonly used 

method, in which the output variability is obtained by a small change around a reference value of 

one of the input factors at a time, while all others are kept fixed. The other approach for LSA is 

using scenario analysis which involves calculating different scenarios to analyze the influence of 
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discrete choices on possible changes to the output parameter value [124, 125]. Cellura et al. [127] 

employed the scenario analysis technique to study the robustness and sensitivity of LCA results to 

the uncertainty of input secondary inventory data as well as the uncertainty of the chosen impact 

assessment methods. The global sensitivity analysis (GSA) method aims to evaluate the variability 

and sensitivity of the output to the variation of the entire input space together with including joint 

effects and interactions among input factors on the output parameter [124, 125, 128]. Rivera and 

Sutherland [126] and Khang et al. [129] applied the design of experiments (DOE) approach and 

regression analysis for global sensitivity analysis and assessing the influence of input parameter 

(life cycle inventory data) uncertainties in the LCA.    

In this study, the global sensitivity analysis (GSA) procedure is conducted in the LCA to analyze 

the influence of inventory data uncertainties on the estimated environmental impact when the input 

factors (inventory variables) vary over a significant range of uncertainty. For this purpose, a design 

of experiments (DOE) approach and regression analysis is applied to establish a predictive model 

for environmental impact assessment and identify factors that have a major contribution to the 

variation of the overall environmental impact of the product. Furthermore, local sensitivity analysis 

(LSA) is performed using the one-at-a-time approach to measure the sensitivity of the LCA results 

to the small changes in input parameters.  

3.4.2 Sensitivity analysis of weighting process 

In the development of the sustainability index (SI) in the sustainability analysis, uncertainty can 

occur due to several factors, such as the selection of appropriate indicators, normalization technique 

used to bring the indicators into the same unit, selection of weighting method to assign weights to 

indicators, and choice of aggregation technique to integrate various indicators into a single 

sustainability index [119]. The sensitivity analysis (SA) is conducted to compute the impact of 
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parameter uncertainty on the robustness of the sustainability results through the use of different 

normalization, weighting, and aggregation schemes [114, 116, 119]. In this research, a MADM 

technique, i.e., the GRA method is employed to aggregate the sustainability indicators and 

construct a single sustainability value in which equal weighting is used to assign the same weight 

to all sustainability indicators and sub-indicators. Therefore, sensitivity analysis is applied to 

determine how the final sustainability scores and ranking of design alternatives change under 

different weighting and aggregation schemes.  

The only subjective and uncertain input in the GRA method is the criteria weighting phase. Hence, 

sensitivity analysis (SA) is employed in the weighting process to validate the results of GRA and 

study the effect of the weighting of indicators (criteria) and sub-indicators (sub-criteria) on the final 

results. For this purpose, the participatory approach (e.g., AHP) is utilized to assign unequal 

weights to the three sustainability pillars and their indicators (impact categories). The most 

common MADM method for determining the weights of criteria is the AHP method, in which the 

preferences are obtained from the judgments of participants [106]. The calculation of the weights 

of criteria by using the AHP method consists of the following steps [91]: 

Step 1: construct pairwise comparison matrices for criteria with respect to the overall goal as well 

as for sub-criteria within each criterion to compare all the elements in pairs in terms of which 

element dominates the other by using Saaty’s verbal ratio scale (1-9).  

Step 2: calculate the relative weight of the criteria and sub-criteria through normalizing the pairwise 

comparison matrices (performed by dividing each element of the matrix by its column total) and 

then finding the average of the rows. 

Step 3: consistency test to evaluate the consistency of pairwise comparison matrices and check 

whether the decision maker's judgments are consistent or not. The consistency is determined by 
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calculating the consistency ratio as CR = CI/RI, where CI is the consistency index, and RI is the 

random consistency index defined according to the matrix size (n) [91]. The CI is computed using 

CI = (λmax-n) / (n-1), where n is the size of the matrix and λmax is the maximum eigenvalue. The 

comparisons are consistent if the value of CR does not exceed 0.1 (10%), otherwise; judgments 

should be reviewed and improved. 

Thus, the results of sustainability scores and ranking of alternatives obtained by the GRA method 

are compared by using different weighting schemes, i.e. equal weighting approach and the AHP 

method. 

3.4.3 Sensitivity analysis of aggregation process 

In this work, the multi-criteria analysis (i.e., GRA) is applied to aggregate the various sustainability 

indicators into a total substantiality index (SI). The result of GRA is validated by performing a 

sensitivity analysis to determine how the final ranking of alternatives changes under using different 

MADM methods. The sensitivity analysis (SA) is conducted to investigate the influence of the 

aggregation method selected for integrating sustainability indicators on the final ranking of 

alternatives. Hence, to identify the impacts caused by changing aggregation methods, the GRA 

result is compared with those obtained via other scoring-based MADM methods, i.e. TOPSIS and 

SAW which can be used for aggregation of sustainability indicators into a single score. 

3.4.3.1 TOPSIS method 

The TOPSIS method is a distance-based method to rank the alternatives based on the scores 

obtained on performance data of alternatives against different criteria. This method contains 

normalizing, identifying weights for criteria, and calculating the geometric distance between each 

alternative and the ideal alternative in order to obtain a single performance score for each 

alternative. The TOPSIS method consists of the following steps: 
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Step 1: the normalized value (𝑥𝑖𝑗) of collected raw data (𝑦𝑖𝑗) is calculated as follows: 

𝑥𝑖𝑗 =  
𝑦𝑖𝑗

√∑ 𝑦𝑖𝑗
2𝑚

𝑖=1

   i = 1, 2, …, m; j = 1, 2, …, n. 
(3.12) 

where 𝑦𝑖𝑗 is performance value of the ith alternative (i.e., product component) over the jth attribute 

(i.e., sustainability indicator). 

Step 2: the weighted normalized value (𝑣𝑖𝑗) of performance data of alternatives is calculated as: 

𝑣𝑖𝑗 =  𝑤𝑗  ×  𝑥𝑖𝑗   i = 1, 2, …, m; j = 1, 2, …, n. 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1  

(3.13) 

where 𝑤𝑗  is the importance weight of the jth criterion. For the weighting of criteria, equal weights 

can be given to the criteria or weights can be determined by using other techniques such as the 

AHP method. 

Step 3: for each criterion (indicator), the ideal alternative with the best performance (𝑆+) and the 

worst performance (𝑆−) is determined. The positive ideal solutions (𝑆+) and negative ideal 

solutions (𝑆−) are specified as follows: 

𝑆+ =  {𝑣𝑗
+|𝑗 = 1, 2, … , 𝑛} =  {(max

𝑖
𝑣𝑖𝑗 |𝑗 ∈  𝐽+) , (min

𝑖
𝑣𝑖𝑗 |𝑗 ∈  𝐽−)}  (3.14) 

𝑆− =  {𝑣𝑗
−|𝑗 = 1, 2, … , 𝑛} =  {(min

𝑖
𝑣𝑖𝑗 |𝑗 ∈  𝐽+) , (max

𝑖
𝑣𝑖𝑗 |𝑗 ∈  𝐽−)}  (3.15) 

where 𝐽+ and 𝐽−are associated with benefit and cost criteria, respectively. 

Step 4: for all criteria, the Euclidean distance from the ith alternative to the best alternative (𝐷𝑖
+ ) 

and worst alternative (𝐷𝑖
− ) are computed as: 
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𝐷𝑖
+ =  √∑ (𝑣𝑖𝑗 −  𝑣𝑗

+ )2𝑛
𝑗=1   (3.16) 

𝐷𝑖
− =  √∑ (𝑣𝑖𝑗 −  𝑣𝑗

− )2𝑛
𝑗=1   (3.17) 

Step 5: the relative closeness and similarity of the ith alternative to the positive ideal solution is 

obtained by: 

𝐶𝑖 =  
𝐷𝑖

−

𝐷𝑖
++ 𝐷𝑖

− ; 0 ≤ 𝐶𝑖 ≤ 1 (3.18) 

The alternatives are ranked based on the obtained performance scores (𝐶𝑖). The best alternative has 

the biggest value of 𝐶𝑖 with the intention to minimize the distance from the positive ideal solution 

and maximize the distance from the negative ideal solution. 

3.4.3.2 SAW method 

The SAW method is utilized for ranking the alternatives through the sum of the weighted 

performance value of each alternative on all attributes. This method contains normalizing, 

specifying weights for criteria, and aggregation operations to calculate the total score for 

alternatives. This method consists of the following steps: 

Step 1: normalization of the performance data of alternatives (i.e., components) using the following 

equations: 

𝑥𝑖𝑗 =  
𝑦𝑖𝑗

max (𝑦𝑖𝑗)
   i = 1, 2, …, m; j = 1, 2, …, n; the-larger-the-better. (3.19) 

𝑥𝑖𝑗 =  
min (𝑦𝑖𝑗)

𝑦𝑖𝑗
   i = 1, 2, …, m; j = 1, 2, …, n; the-smaller-the-better. (3.20) 

where 𝑥𝑖𝑗 is normalized value for 𝑦𝑖𝑗 which is the value of the jth attribute (indicator) for the ith 

alternative (component), and max 𝑦𝑖𝑗 and min 𝑦𝑖𝑗 are the largest and smallest values of 𝑦𝑖𝑗 for the 
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jth criterion, respectively. When the attribute j is a positive criterion, Equation (3.19) is used for 

normalizing, while for a negative attribute j, Equation (3.20) is used for the normalization of data. 

In this study, since lower amounts of sustainability indicators are desirable, Equation (3.20) is 

employed to normalize the indicators data. 

Step 2: aggregation of weighted normalized values as follows: 

𝐴𝑖 = ∑ 𝑤𝑗  ×  𝑥𝑖𝑗
𝑛
𝑗=1   i = 1, 2, …, m; j = 1, 2, …, n. 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1   

(3.21) 

where 𝐴𝑖 is the aggregated score of the ith alternative and 𝑤𝑗  is the weight of the jth criterion. The 

best alternative is the one with the highest aggregated score. 
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 RESULTS AND DISCUSSION 

 Overview 

A case study has been conducted with the open-architecture robot DARwIn-OP (Figure 4.1) in 

order to demonstrate the utility and usefulness of the proposed methodology for the sustainability 

assessment of the open-architecture products (OAPs). That is, based on the proposed decision 

support tool in Section 3.3, the sustainability analysis is performed on the personalized modules of 

the robot for different design alternatives and the sustainability index results are visualized using 

the treemap visualization approach. Then, the obtained sustainability results are validated through 

the sensitivity analysis technique proposed in Section 3.4.  

The humanoid robot DARwIn-OP (Dynamic Anthropomorphic Robot with Intelligence-Open 

Platform) is the latest humanoid robot with advanced features, such as advanced computational 

power, sophisticated sensors, high payload capacity, and dynamic motion ability to enable many 

exciting research, education, and outreach activities. DARwIn-OP is an open platform robot 

allowing users to modify both the hardware and software. The modular design of DARwIn-OP 

enables users to fabricate all the hardware with relatively inexpensive tools. The robot DARwIn-

OP is an open-architecture product composed of common and personalized modules to meet 

various customer needs. The personalized modules of the robot which can be changed by customers 

during the design stage include the mechanical parts of the head, arms, and legs. The other 

components of the robot are considered common modules which are shared among all product 

variants and include the chest, pelvises, electronics, actuators, and fasteners. 
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Figure 4.1 Robot DARwIn-OP. 

 Phase 1: Design scenario generation for the case study 

Customers can define personalized modules of the robot (i.e., the mechanical parts of the head, 

arms, and legs) during the design stage based on their needs. Thus, different scenarios can be 

generated by changing personalized modules for which product has different sustainability 

performances. The characteristics of the mechanical parts of personalized modules (for the first 

design scenario) are presented in Table 4.1. 

Here, by considering the first design scenario as the base scenario, the other two design scenarios 

are proposed which can be defined by customers through changing the material and geometry of 

personalized components. The second design scenario is created by changing the material of 

personalized modules of the robot. It is assumed that customers are allowed to change the material 

of Aluminium (Al) components (frame components of personalized modules) into Steel material. 

The third design scenario is generated by changing both the material and geometry of the 

personalized modules. It is supposed that customers are able to change the material of Aluminium 

components to Steel and also reduce their thickness from 1.5 mm or 2 mm to 1 mm (Table 4.2). 
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Table 4.1 The features of the mechanical parts of the head, arms, and legs, as the personalized 

modules of robot DARwIn-OP (design scenario 1).  

Part 

Name 
Module CAD Model Quantity Material Weight (kg) 

Manufacturing 

process 

Hand Arm 

 

2 Aluminium 0.024 Machining 

Arm 

Actuator 

Mount 

Arm 

 

2 Aluminium 0.005 Machining 

Angled 

Actuator 

Bracket 

Arm 

 

4 Aluminium 0.013 Machining 

Arm 

Cover 

Upper 

Arm 

 

2 ABS 0.006 
Injection 

Molding 

Arm 

Cover 

Lower 

Arm 

 

2 ABS 0.012 
Injection 

Molding 

U-

Actuator 

Bracket 

Leg 

 

2 Aluminium 0.014 Machining 

Leg 

Actuator 

Mount 

Leg 

 

2 Aluminium 0.004 Machining 
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Table 4.1 The features of the mechanical parts of the head, arms, and legs, as the personalized 

modules of robot DARwIn-OP (design scenario 1) (cont’d).  

Part 

Name 
Module CAD Model Quantity Material Weight (kg) 

Manufacturing 

process 

Actuator 

Connector 
Leg 

 

4 Aluminium 0.001 Machining 

Knee 

Bracket 
Leg 

 

2 Aluminium 0.034 Machining 

Foot Leg 

 

2 Aluminium 0.040 Machining 

Leg 

Cover 
Leg 

 

2 ABS 0.022 
Injection 

Molding 

Left Foot 

Cover 
Leg 

 

1 ABS 0.010 
Injection 

Molding 

Right 

Foot 

Cover 

Leg 

 

1 ABS 0.010 
Injection 

Molding 

Head 

Bracket 
Head 

 

1 Aluminium 0.010 Machining 
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Table 4.1 The features of the mechanical parts of the head, arms, and legs, as the personalized 

modules of robot DARwIn-OP (design scenario 1) (cont’d).  

Part 

Name 
Module CAD Model Quantity Material Weight (kg) 

Manufacturing 

process 

Neck 

Bracket 
Head 

 

1 Aluminium 0.012 Machining 

Back 

Head 

Cover 

Head 

 

1 ABS 0.028 
Injection 

Molding 

Front 

Head 

Cover 

Head 

 

1 ABS 0.017 
Injection 

Molding 

Head 

LED 

Cover 

Head 

 

1 ABS 0.0005 
Injection 

Molding 

Left Eye 

Cover 
Head 

 

1 ABS 0.001 
Injection 

Molding 

Right Eye 

Cover 
Head 

 

1 ABS 0.001 
Injection 

Molding 

Left Pupil Head 

 
1 ABS 0.0003 

Injection 

Molding 

Right 

Pupil  
Head 

 
1 ABS 0.0003 

Injection 

Molding 

Table 4.2 Design scenario generation by changing the features of the personalized components of 

the robot. 

Design scenario No. 
Feature 

Material Geometry (thickness) 

Scenario 1 Aluminium 1.5 mm or 2 mm 

Scenario 2 Steel 1.5 mm or 2 mm 

Scenario 3 Steel 1 mm 
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 Phase 2: Sustainability analysis of robot DARwIn-OP 

The sustainability performance of personalized components of open-architecture robot DARwIn-

OP for the three design scenarios is evaluated in terms of environmental and economic 

sustainability aspects. The values of environmental and economic sustainability indicators for the 

personalized modules of the robot for each scenario are estimated by performing environmental 

life cycle assessment (ELCA) and life cycle costing (LCC) analyses.  

4.3.1 Environmental sustainability and indicators 

For environmental sustainability indicators, the environmental impacts of personalized 

components of the robot DARwIn-OP along the life cycle stages are measured for different design 

scenarios by performing the environmental life cycle assessment (ELCA) analysis. The ELCA 

modelling consists of four phases as follows: 

Step 1: Goal and scope 

The goal is to analyze the environmental impacts of personalized components of the robot 

DARwIn-OP for the three design scenarios (Table 4.2). After measuring the environmental 

indicators for personalized components of the robot for three design options, the related data are 

used as inputs for the third phase of the proposed decision support tool in order to compute the 

sustainability index of each scenario using the MADM method for the comparison of sustainability 

performances of different design scenarios. For environmental sustainability analysis, the 

mechanical parts of the personalized modules of the robot (Table 4.1) are considered for the 

analysis, and common modules of the robot are excluded from the environmental impact analysis 

because these components are common among different design scenarios and their impacts are not 

changed. The functional unit (FU) and system boundary are defined as follows: 
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- Function and functional unit (FU): the function of the robot DARwIn-OP is to perform research 

and education activities. The functional unit is defined as one year of use of one robot in a 

European country (i.e., France). It is assumed that the robot works 4 hours per day. 

- System boundary: the cradle-to-grave analysis is conducted on personalized components of the 

robot throughout the life cycle stages. Figure 4.2 shows the flow diagram of the system 

boundary for the LCA analysis of personalized components of the robot for the three design 

scenarios. The system boundary takes into account the raw material extraction process, 

manufacturing process, transportation process, use process, and end-of-life (EoL) process. In 

each scenario, personalized components (i.e., mechanical parts of arms, legs, and head) are 

composed of metal material and polymer material. This boundary includes the production of 

Aluminium (the first scenario), Steel (the second and third scenarios), and ABS (all scenarios) 

materials, manufacturing of personalized components by the same manufacturer through 

machining (Aluminium and Steel) and injection molding (Acrylonitrile-Butadiene-Styrene 

(ABS)) processes, transportation of the product to users by ocean freight, consumption, and 

disposal to landfill (metal components) as well as disposal to incineration (plastic components) 

operations. It should be noted that this system boundary is associated with only personalized 

components of the robot and related processes for the three design scenarios. The common 

modules of the robot containing mechanical parts of chest and pelvises modules, electronic 

components (i.e., battery, camera, fan, antenna, speaker, power switch, wires, etc.), actuators, 

and fasteners as well as their related processes are excluded from the LCA analysis of the three 

scenarios. Since these common components are shared among all design scenarios and their 

impacts are not changed for three scenarios, they are not considered for the LCA analysis for 
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comparison purposes. Regarding the battery, it is assumed that the lifetime of the battery is the 

same in the three scenarios and can be excluded from the LCA analysis.  

Polymer material of 

personalized components

Molding of polymer material

(Energy consumption) 

Transportation by     

sea freight 

Usage in a robot 

(Energy consumption) 

Landfill of metal 

components

Incineration of 

polymer components 

Material extraction process

Manufacturing process

Transportation process

Use process

End of life process

Resources 

(material, energy, water)

Emissions 

(to air, water, land)

System boundary

Metal material of 

personalized components

Machining of metal material

(Energy consumption) 

 

Figure 4.2 Flow diagram of system boundary for personalized components of the robot in the 

three design scenarios. 
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Table 4.3 The required parameters for the ELCA of personalized components of the robot in the 

three design scenarios. 

Material Manufacturing Transportation Use End of life 

Aluminium 

(1st scenario) 

Machining,  

0.42 kWh/kg 

Sea freight, 

1.60E+04 km 

Electricity consumption, 

11.18 kWh/kg 

Disposal to 

landfill 

Steel (2nd and 

3rd scenarios) 

Machining,  

0.63 kWh/kg 

Sea freight, 

1.60E+04 km 

Electricity consumption, 

11.18 kWh/kg 

Disposal to 

landfill 

ABS (all 

scenarios) 

Injection molding, 

1.86 kWh/kg 

Sea freight, 

1.60E+04 km 

Electricity consumption, 

11.18 kWh/kg 

Disposal to 

incineration 

Step 2: Life cycle inventory 

The required parameters for the ELCA of personalized components of the robot in the three design 

scenarios are shown in Table 4.3. In this study, it is assumed that all materials are produced in Asia 

(i.e., China) and all personalized components are made by the same manufacturer in China and 

then transported to Europe (i.e., France) to be utilized and disposed. In the raw material production 

process, the environmental impact of the material used for producing each personalized component 

is calculated through multiplying raw material weight (kg) by the related impact factor value. The 

impact factors per unit of inventory flows extracted from the ecoinvent 3.3 database are described 

in Appendix A. The material weight retrieved from the CAD model is provided in Appendix B. In 

the manufacturing process, the environmental impact is computed through the multiplication of 

material weight (kg), manufacturing electricity consumption (kWh/kg), and impact factor value. In 

this study, the electricity consumption for machining Aluminium and Steel parts is considered 

approximately 0.42 (kWh/kg) and 0.63 (kWh/kg), respectively [130, 131]. Also, the energy 

consumption of the polymer material injection molding manufacturing process is estimated as 1.86 

(kWh/kg) [130, 132]. It is supposed that the required electricity for the manufacturing stage is 

generated using non-renewable energy resources (i.e., coal) in China. The transportation of 
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components from China to France is carried out by ship and the distance between countries for 

ocean transportation is estimated to be 1.60E+04 (km) [133]. The environmental impact of the 

transportation phase for the selected mode (sea freight) is calculated by multiplication of the 

transported component weight (ton), transportation distance (km), and related impact factor value. 

The weight of each component retrieved from the CAD model is given in Appendix B. In the use 

phase, the environmental impact of usage of each component is obtained through multiplying the 

component weight (kg), electrical energy consumption (kWh/kg), and impact factor value. The 

battery used for the operation of the robot is a Li-Po battery (11.1 V and 1000 mAh) which can 

provide the required energy for 30 minutes. The whole weight of the robot (base scenario) is 2.9 

(kg). It is assumed that the useful life of the product is 1 year operating four hours per day. Thus, 

the required electricity in the use phase is estimated 11.18 (kWh/kg). It is supposed that the required 

electricity for the use stage is generated using non-renewable energy resources (i.e., nuclear) in 

France. Finally, at the EoL stage of the product, it is assumed that Aluminum and Steel components 

are directly sent to landfill. Also, the EoL treatment of plastic parts is selected as incineration. The 

environmental impact of the EoL for each component is obtained through multiplying the 

component weight (kg) by its related impact factor value. Main flows scaled to the functional unit 

for each of the three design scenarios are provided in Appendix D. 

Step 3: Life cycle impact assessment 

To measure the potential environmental impacts of the product components, the Impact 2002+ 

(endpoint) impact assessment method is applied in the life cycle impact assessment (LCIA). This 

method computes life cycle impacts in 14 midpoint categories and 4 damage categories namely, 

climate change (kg CO2 eq), ecosystem quality (PDF-m2-year), human health (DALY), and 

resources (MJ) [134]. The ELCA calculations are performed using MS Excel. 
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Step 4: ELCA results 

For the three design scenarios, the environmental indicators and their corresponding values for 

personalized components of the robot are presented in Tables 4.4-4.6. It is observed that for all 

impact categories, the third design scenario has obtained the lowest values in comparison with 

other alternatives. The data of Tables 4.4-4.6 are used (as inputs) for the MADM analysis (the third 

step of the proposed decision support tool) to compare and visualize the sustainability performance 

of the three design scenarios for selecting the optimal option. 

Here, we also provide a contribution analysis using stacked diagrams to compare the three design 

scenarios for different environmental indicators per life cycle stage (Figure 4.3). In the first design 

scenario, the material stage contributes to the highest value for all environmental indicators. In the 

second and third design options, for all indicators except for the resource category, the material 

stage contributes to the highest value. For the resource impact category, the use stage has the 

highest value. Moreover, the manufacturing stage has a higher impact in the second and third 

scenarios (Steel material) than in the first scenario (Aluminium material). It should be noted that 

the result of Figure 4.3 is not useful for ordinary customers in the decision-making process. Thus, 

the data in Tables 4.4-4.6 are used in the next step of the proposed methodology to facilitate 

decision making for customers through the MADM approach. 
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Table 4.4 The environmental and economic sustainability indicators and their corresponding 

values for the personalized components of the robot (design scenario 1). 

Component name Environmental indicator 
Economic 

indicator 
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Hand 4.81E-04 2.19E-04 6.84E-04 3.44E-04 3.40E+00 

Arm Actuator Mount 3.72E-05 1.74E-05 5.44E-05 3.38E-05 5.28E-01 

Angled Actuator Bracket 2.18E-04 1.01E-04 3.16E-04 1.89E-04 2.58E+00 

Arm Cover Upper 1.05E-05 2.18E-06 9.30E-06 2.25E-05 4.01E-01 

Arm Cover Lower 2.03E-05 4.19E-06 1.79E-05 4.33E-05 4.71E-01 

U-Actuator Bracket 8.80E-05 4.13E-05 1.29E-04 8.38E-05 1.46E+00 

Leg Actuator Mount 2.40E-05 1.13E-05 3.52E-05 2.29E-05 6.35E-01 

Actuator Connector 4.39E-05 2.01E-05 6.28E-05 3.30E-05 8.00E-01 

Knee Bracket 3.18E-04 1.47E-04 4.59E-04 2.64E-04 2.50E+00 

Foot 2.01E-04 9.50E-05 2.98E-04 2.06E-04 1.60E+00 

Leg Cover 3.82E-05 7.90E-06 3.37E-05 8.16E-05 5.66E-01 

Foot Cover 1.81E-05 3.75E-06 1.60E-05 3.87E-05 4.05E-01 

Head Bracket 3.92E-05 1.82E-05 5.70E-05 3.44E-05 4.53E-01 

Neck Bracket 3.50E-05 1.65E-05 5.16E-05 3.43E-05 5.68E-01 

Back Head Cover 2.43E-05 5.01E-06 2.14E-05 5.18E-05 3.01E-01 

Front Head Cover 1.48E-05 3.07E-06 1.31E-05 3.17E-05 2.15E-01 

Head LED Cover 4.64E-07 9.59E-08 4.10E-07 9.91E-07 7.52E-02 

Eye Cover 1.89E-06 3.92E-07 1.67E-06 4.05E-06 1.37E-01 

Pupil 5.91E-07 1.22E-07 5.22E-07 1.26E-06 1.12E-01 

Total 1.61E-03 7.13E-04 2.26E-03 1.52E-03 1.72E+01 
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Table 4.5 The environmental and economic sustainability indicators and their corresponding 

values for the personalized components of the robot (design scenario 2). 

Component name Environmental indicator 
Economic 

indicator 
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Hand 1.41E-04 7.40E-05 3.72E-04 2.53E-04 5.23E+00 

Arm Actuator Mount 1.16E-05 6.81E-06 3.36E-05 4.08E-05 4.79E-01 

Angled Actuator Bracket 6.66E-05 3.82E-05 1.89E-04 2.11E-04 2.87E+00 

Arm Cover Upper 1.05E-05 2.18E-06 9.30E-06 2.25E-05 4.01E-01 

Arm Cover Lower 2.03E-05 4.19E-06 1.79E-05 4.33E-05 4.71E-01 

U-Actuator Bracket 2.75E-05 1.65E-05 8.13E-05 1.08E-04 1.28E+00 

Leg Actuator Mount 7.50E-06 4.50E-06 2.21E-05 2.94E-05 5.44E-01 

Actuator Connector 1.30E-05 6.97E-06 3.49E-05 2.75E-05 5.12E-01 

Knee Bracket 9.60E-05 5.40E-05 2.68E-04 2.74E-04 3.23E+00 

Foot 6.40E-05 3.97E-05 1.94E-04 2.89E-04 1.71E+00 

Leg Cover 3.82E-05 7.90E-06 3.37E-05 8.16E-05 5.66E-01 

Foot Cover 1.81E-05 3.75E-06 1.60E-05 3.87E-05 4.05E-01 

Head Bracket 1.20E-05 6.94E-06 3.44E-05 3.94E-05 3.73E-01 

Neck Bracket 1.10E-05 6.71E-06 3.29E-05 4.58E-05 4.07E-01 

Back Head Cover 2.43E-05 5.01E-06 2.14E-05 5.18E-05 3.01E-01 

Front Head Cover 1.48E-05 3.07E-06 1.31E-05 3.17E-05 2.15E-01 

Head LED Cover 4.64E-07 9.59E-08 4.10E-07 9.91E-07 7.52E-02 

Eye Cover 1.89E-06 3.92E-07 1.67E-06 4.05E-06 1.37E-01 

Pupil 5.91E-07 1.22E-07 5.22E-07 1.26E-06 1.12E-01 

Total 5.79E-04 2.81E-04 1.38E-03 1.59E-03 1.93E+01 
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Table 4.6 The environmental and economic sustainability indicators and their corresponding 

values for the personalized components of the robot (design scenario 3). 

Component name Environmental indicator Economic 

indicator 
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Hand 9.38E-05 4.91E-05 2.47E-04 1.64E-04 3.52E+00 

Arm Actuator Mount 7.73E-06 4.51E-06 2.23E-05 2.66E-05 3.06E-01 

Angled Actuator Bracket 3.30E-05 1.87E-05 9.27E-05 9.68E-05 1.34E+00 

Arm Cover Upper 1.05E-05 2.18E-06 9.30E-06 2.25E-05 4.01E-01 

Arm Cover Lower 2.03E-05 4.19E-06 1.79E-05 4.33E-05 4.71E-01 

U-Actuator Bracket 1.36E-05 8.04E-06 3.96E-05 4.93E-05 5.96E-01 

Leg Actuator Mount 4.88E-06 2.80E-06 1.39E-05 1.56E-05 3.50E-01 

Actuator Connector 1.01E-05 5.26E-06 2.65E-05 1.65E-05 3.91E-01 

Knee Bracket 4.79E-05 2.68E-05 1.33E-04 1.33E-04 1.62E+00 

Foot 3.20E-05 1.99E-05 9.72E-05 1.44E-04 8.74E-01 

Leg Cover 3.82E-05 7.90E-06 3.37E-05 8.16E-05 5.66E-01 

Foot Cover 1.81E-05 3.75E-06 1.60E-05 3.87E-05 4.05E-01 

Head Bracket 7.98E-06 4.57E-06 2.27E-05 2.52E-05 2.44E-01 

Neck Bracket 5.47E-06 3.28E-06 1.61E-05 2.14E-05 2.15E-01 

Back Head Cover 2.43E-05 5.01E-06 2.14E-05 5.18E-05 3.01E-01 

Front Head Cover 1.48E-05 3.07E-06 1.31E-05 3.17E-05 2.15E-01 

Head LED Cover 4.64E-07 9.59E-08 4.10E-07 9.91E-07 7.52E-02 

Eye Cover 1.89E-06 3.92E-07 1.67E-06 4.05E-06 1.37E-01 

Pupil 5.91E-07 1.22E-07 5.22E-07 1.26E-06 1.12E-01 

Total 3.86E-04 1.70E-04 8.25E-04 9.69E-04 1.21E+01 
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Figure 4.3 Comparison of the three design scenarios for different environmental and economic 

indicators per life cycle stage. 

4.3.2 Economic sustainability and indicators 

In this study, the goal of the life cycle costing (LCC) analysis is to obtain the economic 

sustainability indicator for personalized components of the robot in the three design scenarios in 

order to integrate the cost indicator into the environmental indicators (4 impact categories) for 

comparing the sustainability of three design options. The life cycle costs of common modules of 

the robot (i.e., chest, pelvises, electronics, actuators, and fasteners) are excluded from the analysis 

because these components are shared among all product variants and their costs are considered 

fixed for comparing the sustainability of different scenarios.  

Here, the economic indicator for each personalized component of the robot is calculated using 

Equation (3.2) which is the total cost of the material, manufacturing (energy consumption), 

transportation, use (energy consumption), and EoL stages. Due to the fact that the objective is to 
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compare the sustainability of the three design scenarios, the other costs of production including 

capital cost, human resource cost, service cost, etc. are excluded from the LCC calculation of each 

personalized component of the robot since we assume that these costs are the same in the three 

design scenarios. Thus, in order to compute the total life cycle cost of the personalized components 

of the robot, the material, manufacturing (energy cost), transportation, use (energy cost), and EoL 

costs are obtained. For the material cost, the unit price for Aluminium, Steel, and ABS materials is 

considered 10.10 (USD /kg), 3.11 (USD/kg), and 2.54 (USD/kg), respectively. The manufacturing 

cost of components (machining of Aluminium and Steel parts and injection molding of polymer 

parts) is estimated using the SolidWorks Costing tool [135] which is depicted in Appendix C. The 

SolidWorks Costing is a CAD integrated analysis tool that calculates the cost of material and 

manufacturing process of parts by retrieving data directly from the CAD model. For the 

transportation cost, the unit cost of sea transportation is assumed to be 0.5 (USD/kg) to carry the 

product from the manufacturer (China) to the users (France). In this study, the required energy in 

the use phase (one year of use of the robot) is estimated 11.18 (kWh/kg) and the price of electrical 

energy is selected as 0.15 (USD/kWh). Thus, the unit cost of consumed electrical energy in the use 

process is computed 1.68 (USD/kg). In order to estimate the EoL cost, it is supposed that the unit 

cost of incineration of plastic parts and landfilling of metal components (Aluminium and Steel) 

supported by the municipality are 0.59 (USD/kg) and 0.045 (USD/kg), respectively. 

As mentioned earlier, for the calculation of LCC, the discount rate is used to convert the future 

value of costs into present values. Here, it is assumed that the whole life cycle of the product from 

material production through the EoL stage is about 3 years. The cost flows of the first year (t = 1) 

are related to the material, manufacturing, and transportation costs. The cost flow of the second 

year (t = 2) is associated with the use phase cost, and the cost flow of the third year (t = 3) is 
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associated with the EoL cost. Thus, by selecting the discount rate (r = 10%), the net present value 

of LCC for the ith personalized component of the robot is calculated using Equation (3.4) as 

follows: 

LCC𝑖 =
𝐶𝑖(material, manufacturing, transportation)

(1 + 𝑟)1
+

𝐶𝑖(use)

(1 + 𝑟)2
+

𝐶𝑖(EoL)

(1 + 𝑟)3
 (4.1) 

For the three design scenarios, the economic sustainability indicator (i.e., total cost) and the 

corresponding value for personalized components of the robot are shown in Tables 4.4-4.6. It is 

observed that among the three scenarios, design scenario 3 has obtained the lowest total life cycle 

cost, followed by design scenarios 1 and then design scenario 2. The data in Tables 4.4-4.6 is used 

for the MADM analysis (the third phase of the proposed decision support tool) to compute the 

sustainability index for each scenario for comparing the sustainability of design options. In 

addition, here the comparison of the total cost of the three design scenarios per life cycle stage is 

shown in Figure 4.3. It is found that in all scenarios, the manufacturing stage contributes to the 

highest cost. 

A sensitivity analysis is conducted to investigate the impact of the choice of discount rate on the 

LCC results. We make small changes of  5% around the selected value of the discount rate (r = 

10%) and calculate the variation of the LCC in each scenario. Based on the result in Table 4.7, the 

total life cycle cost is not sensitive to small changes in the discount rate value. 

Table 4.7 The variation of the LCC under the changes in the discount rate. 

Design scenario No. LCC (-5%) LCC LCC (+5%) Variation (%) 

Scenario 1 17.282 17.200 17.118 ±0.47 

Scenario 2 19.414 19.318 19.223 ±0.49 

Scenario 3 12.202 12.141 12.082 ±0.49 
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 Phase 3: Grey relational analysis (GRA) for calculation of sustainability 

value 

The GRA method is applied to rank and compare design alternatives based on the total 

sustainability value calculated for each product variant. Considering the personalized components 

of the robot for the three design scenarios (as alternatives) and their performance values over 

different sustainability indicators (as criteria) (Tables 4.4-4.6), three steps of the GRA approach 

are performed to aggregate the values of various indicators into a single sustainability value for 

each component of the product. Since lower amounts of sustainability indicators are desirable, 

Equation (3.8) (the-smaller-the-better quality characteristic) is employed to normalize the collected 

raw data of sustainability indicators calculated from environmental and economic sustainability 

analyses. After data normalization, the values of GRCs are calculated using Equation (3.9), as 

shown in Table 4.8. Then, by assigning equal weight to all sustainability dimensions and their 

indicators, the environmental and economic sustainability indicators are converted to a single 

sustainability value, i.e., GRG, for each personalized component. The calculated sustainability 

values (GRGs) of personalized components for each design scenario obtained using GRA are given 

in Table 4.9. The sustainability values can be used to determine which component is more 

sustainable, and the component with higher sustainability value has better performance. According 

to the results, for each design scenario, Head LED Cover has the highest sustainability value, while 

the Hand has the lowest sustainability value. 
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Table 4.8 The calculated values of GRCs from the grey relational analysis. 

Design 

scenario No. 
Component name Indicator Environmental Economic 
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  Weight 0.50    0.50 

  Sub-weight 0.25 0.25 0.25 0.25 1.00 

  Final weight 0.125 0.125 0.125 0.125 0.50 

1 Hand 0.33 0.33 0.33 0.33 0.44 

 Arm Actuator Mount 0.87 0.86 0.86 0.84 0.85 

 Angled Actuator Bracket 0.52 0.52 0.52 0.48 0.51 

 Arm Cover Upper 0.96 0.98 0.97 0.89 0.89 

 Arm Cover Lower 0.92 0.96 0.95 0.80 0.87 

 U-Actuator Bracket 0.73 0.73 0.73 0.67 0.65 

 Leg Actuator Mount 0.91 0.91 0.91 0.89 0.82 

 Actuator Connector 0.85 0.85 0.85 0.84 0.78 

 Knee Bracket 0.43 0.43 0.43 0.40 0.51 

 Foot 0.55 0.54 0.54 0.46 0.63 

 Leg Cover 0.86 0.93 0.91 0.68 0.84 

 Foot Cover 0.93 0.97 0.96 0.82 0.89 

 Head Bracket 0.86 0.86 0.86 0.84 0.87 

 Neck Bracket 0.87 0.87 0.87 0.84 0.84 

 Back Head Cover 0.91 0.96 0.94 0.77 0.92 

 Front Head Cover 0.94 0.97 0.96 0.85 0.95 

 Head LED Cover 1.00 1.00 1.00 1.00 1.00 

 Eye Cover 0.99 0.99 0.99 0.98 0.98 

 Pupil 0.99 0.99 0.99 0.99 0.99 

2 Hand 0.63 0.60 0.48 0.41 0.33 

 Arm Actuator Mount 0.96 0.94 0.91 0.81 0.86 

 Angled Actuator Bracket 0.78 0.74 0.64 0.45 0.48 

 Arm Cover Upper 0.96 0.98 0.97 0.89 0.89 

 Arm Cover Lower 0.92 0.96 0.95 0.80 0.87 

 U-Actuator Bracket 0.90 0.87 0.81 0.62 0.68 

 Leg Actuator Mount 0.97 0.96 0.94 0.86 0.85 

 Actuator Connector 0.95 0.94 0.91 0.87 0.86 

 Knee Bracket 0.72 0.67 0.56 0.39 0.45 

 Foot 0.79 0.73 0.64 0.37 0.61 
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Table 4.8 The calculated values of GRCs from the grey relational analysis (cont’d). 

Design 

scenario No. 
Component name Indicator Environmental Economic 
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  Weight 0.50    0.50 

  Sub-weight 0.25 0.25 0.25 0.25 1.00 

  Final weight 0.125 0.125 0.125 0.125 0.50 

 Leg Cover 0.86 0.93 0.91 0.68 0.84 

 Foot Cover 0.93 0.97 0.96 0.82 0.89 

 Head Bracket 0.95 0.94 0.91 0.82 0.90 

 Neck Bracket 0.96 0.94 0.91 0.79 0.89 

 Back Head Cover 0.91 0.96 0.94 0.77 0.92 

 Front Head Cover 0.94 0.97 0.96 0.85 0.95 

 Head LED Cover 1.00 1.00 1.00 1.00 1.00 

 Eye Cover 0.99 0.99 0.99 0.98 0.98 

 Pupil 0.99 0.99 0.99 0.99 0.99 

3 Hand 0.72 0.69 0.58 0.51 0.43 

 Arm Actuator Mount 0.97 0.96 0.94 0.87 0.92 

 Angled Actuator Bracket 0.88 0.85 0.79 0.64 0.67 

 Arm Cover Upper 0.96 0.98 0.97 0.89 0.89 

 Arm Cover Lower 0.92 0.96 0.95 0.80 0.87 

 U-Actuator Bracket 0.95 0.93 0.90 0.78 0.83 

 Leg Actuator Mount 0.98 0.98 0.96 0.92 0.90 

 Actuator Connector 0.96 0.95 0.93 0.92 0.89 

 Knee Bracket 0.83 0.80 0.72 0.57 0.63 

 Foot 0.88 0.85 0.78 0.54 0.76 

 Leg Cover 0.86 0.93 0.91 0.68 0.84 

 Foot Cover 0.93 0.97 0.96 0.82 0.89 

 Head Bracket 0.97 0.96 0.94 0.88 0.94 

 Neck Bracket 0.98 0.97 0.96 0.89 0.95 

 Back Head Cover 0.91 0.96 0.94 0.77 0.92 

 Front Head Cover 0.94 0.97 0.96 0.85 0.95 

 Head LED Cover 1.00 1.00 1.00 1.00 1.00 

 Eye Cover 0.99 0.99 0.99 0.98 0.98 

 Pupil 0.99 0.99 0.99 0.99 0.99 
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Table 4.9 The sustainability values (GRGs) of the personalized components for the three design 

scenarios from the GRA method. 

Module 

name 

Component 

No. 
Component name 

Sustainability value 

Design scenario 

1 

Design scenario 

2 

Design scenario 

3 

Arm (M1) 1 Hand 0.385 0.431 0.527 

 2 Arm Actuator Mount 0.855 0.885 0.927 

 3 Angled Actuator Bracket 0.509 0.567 0.731 

 4 Arm Cover Upper 0.919 0.919 0.919 

 5 Arm Cover Lower 0.889 0.889 0.889 

Leg (M2) 6 U-Actuator Bracket 0.683 0.740 0.861 

 7 Leg Actuator Mount 0.862 0.889 0.932 

 8 Actuator Connector 0.813 0.886 0.916 

 9 Knee Bracket 0.468 0.516 0.678 

 10 Foot 0.573 0.623 0.764 

 11 Leg Cover 0.844 0.844 0.844 

 12 Foot Cover 0.903 0.903 0.903 

Head (M3) 13 Head Bracket 0.863 0.901 0.938 

 14 Neck Bracket 0.851 0.894 0.950 

 15 Back Head Cover 0.907 0.907 0.907 

 16 Front Head Cover 0.940 0.940 0.940 

 17 Head LED Cover 1.000 1.000 1.000 

 18 Eye Cover 0.985 0.985 0.985 

 19 Pupil 0.993 0.993 0.993 

   Sp = 0.802 Sp = 0.827 Sp = 0.874 

  Rank 3 2 1 

In order to compare the sustainability performance value of the three design scenarios defined by 

customers, the sustainability value of the product for each scenario is calculated and presented to 

customers. The total sustainability value of each alternative (Sp) is computed as the mean of the 

sustainability values (GRG values) of the personalized components of the product for each 

scenario. The total sustainability value is a quantitative index that can be used to determine the 

degree of sustainability for design alternatives. Table 4.9 shows the sustainability values of the 

product for the three design scenarios. The sustainability scores of the product are obtained for the 

design scenario 1 (Sp = 0.802), design scenario 2 (Sp = 0.827), and design scenario 3 (Sp = 0.874). 

By comparing the three design alternatives, it can be seen that design scenario 3 has higher 

sustainability value and is more sustainable, while the product in design scenario 1 has lower 
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sustainability performance. Therefore, by presenting these values to customers, they will be able 

to compare the scenarios and choose the optimal design. 

In this study, it is assumed that customers are not allowed to be involved in the weighting process 

for the aggregation of sustainability indicators into a sustainability index for each design scenario. 

Here, by assigning equal weighting to indicators, the third scenario is selected as a more sustainable 

alternative. However, assigning unequal weighting values may lead to a different ranking of 

alternatives. 

 Phase 4: Visualization of sustainability results 

In this study, the treemap approach is employed for the visualization of the sustainability 

performance value of the design scenarios using MATLAB 2018b, based on the results of the 

sustainability analysis of the product components. The sustainability values estimated for the 

product components using the GRA method are mapped to visualize the sustainability performance 

of the design alternatives. Figure 4.4 illustrates the sustainability treemap of the personalized 

modules and components of the product for the three design scenarios, based on the results of Table 

4.9. In this 2D map, the sustainability performance of the product modules and components can be 

visualized using rectangles. Both the size and color of the rectangles present the same feature, 

namely sustainability performance value. The rectangles with a larger size represent the modules 

and components with higher sustainability value. In other words, the rectangles with bright yellow 

color show more sustainable modules and components, and less sustainable modules and 

components belong to the rectangles with dark green color. Also, the color distribution of the 

treemap represents the sustainability performance of the scenarios. The scenario with a higher 

sustainability value has brighter yellow color distribution and the scenario having lower 

performance shows a darker green color distribution. 



78 

 

(a) 

 
(b) 

 
(c) 

 

Figure 4.4 Sustainability treemap of the personalized product (a) design scenario 1 (Sp = 0.802), 

(b) design scenario 2 (Sp = 0.827), and (c) design scenario 3 (Sp = 0.874). 
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As it can be seen, for each design scenario of this study, module M3 (Head) has the larger size 

(area) of the rectangle as well as brighter yellow color distribution; thus, it has a higher 

sustainability performance than other modules in the product. Also, module M1 (Arm) with the 

smaller size of the rectangle (i.e., darker green color distribution) has lower sustainability 

performance in the product. In addition, for each design alternative, the component C17 (Head 

LED Cover) belonging to module M3 (Head) has a brighter yellow color with a larger size of the 

rectangle which means that it has higher sustainability performance than other components in each 

scenario. Also, component C1 (Hand) within module M1 (Arm) with the smaller size of the 

rectangle and darker green color has a lower sustainability performance value in each scenario. 

It should be noted that the visualization results can be employed for the comparison of the 

sustainability performance of different design scenarios and their modules and components. In this 

research, by increasing the sustainability value of the scenarios, modules, and components, the 

color distribution of the treemap goes from dark green color towards bright yellow color. Also, the 

size of rectangles of treemap in each design alternative increases with the enhancement of 

sustainability performance values of modules or components. For example, as can be seen in Figure 

4.4, the third design scenario (Sp = 0.874) is more sustainable than the other two alternatives and 

has a brighter yellow color distribution. Also, based on the color distribution in this figure, the first 

design scenario (Sp = 0.802) has the lowest sustainability performance with a less yellow color 

distribution. In the case of sustainability value comparison of modules of design alternatives, it is 

observed that modules M3 (Head), M2 (Leg), and M1 (Arm) of the third design scenario have 

higher sustainability value (with lighter yellow color distribution) than those modules of other two 

scenarios. Furthermore, regarding the sustainability performance of components of the design 

scenarios, the treemap can be effectively used for the comparison of the sustainability values of 
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components of the alternatives. For instance, component C7 (Leg Actuator Mount) of the third 

design scenario has a higher sustainability value (with brighter yellow color) followed by the C7 

of scenario 2 and then the C7 of scenario 1 (with darker green color). 

Therefore, employing the visualization technique eliminates the need to interpret the long list of 

sustainability values of scenarios for comparison and decision-making purposes. The ordinary 

users and other involved actors with limited knowledge can be easily benefited from visualization 

results for comparison of different alternatives and related modules and components in order to 

take decisions towards the selection of the optimal design choice. 

 Sensitivity analysis 

4.6.1 Sensitivity analysis of LCA analysis 

The sensitivity analysis is carried out for the ELCA of the base scenario (design scenario 1). The 

DOE and statistical analysis are performed in Minitab statistical software. 

The design of experiments (DOE) technique is used to design the conduct of experiments in order 

to establish the relationship between inputs and outputs of a process and statistically analyze the 

impacts of input variables on the process outcome. The LCA can be regarded as a computational 

experiment [129]. DOE is conducted to assess how the changes of input parameters in the LCA 

analysis affect the total environmental performance of the product. The input inventory data in the 

LCA are treated as the factors in DOE and the LCA results are used as the response of DOE. By 

considering the inventory data (Table 4.3) as a set point and making small changes around the set 

point (± 10%), the sensitivity of the LCA results to the variation and uncertainty in inventory 

variables is investigated. The computational experiments are designed according to the full 

factorial design approach in which the number of experiments with n factors each at k levels is 
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obtained as kn tests. Table 4.10 lists the input variables and their levels. With four factors (n = 4) 

each of which has two levels (k = 2), a two-level factorial design (24) is planned which generates 

16 experimental trials. The result of the experimental design containing the combinations of the 

levels of the factors and the response of experiments is provided in Table 4.11, where Xi is the 

input inventory variable and Y is the output variable (i.e., overall environmental impact (OEI)).  

It should be noted that the ELCA focuses on quantifying the different environmental impact 

categories (environmental indicators) which need to be combined to provide the total 

environmental impact of the product. For this aim, the impact categories are weighted and 

aggregated into an overall environmental impact (OEI) score calculated via Equation (4.1) [129]: 

𝑂𝐸𝐼 = ∑ 𝑤𝑗𝐸𝐼𝑗

𝑛

𝑗=1

 (4.1) 

where 𝑤𝑗 are the weight of each impact category obtained using the AHP method (Section 4.6.2) 

and 𝐸𝐼𝑗  is the environmental impact of the product for the jth indicator. The AHP is used to 

determine the relative contribution of each impact category to overall environmental impact. The 

weight of each environmental impact category is assigned based on their relative importance in 

comparison with the others, and then the weighted impacts are summed into an environmental 

single score. Thus, the response of experiments in DOE is the overall environmental impact (OEI) 

of the product, as given in Table 4.11. Computations are carried out to investigate the relationship 

between input factors of LCA and the environmental impact of the product, where the inputs vary 

in the range of ± 10% of the reference values. According to the design of computational 

experiments, a second-order polynomial regression model can be derived as shown in Equation 

(4.2) to perform global sensitivity analysis [129]: 
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Table 4.10 Variable settings for the design of experiments. 

Variable 
Coded 

variable 
Unit Low level (-1) Midpoint High level (+1) 

Electricity consumption 

(manufacturing, Al) 
X1 kWh/kg 0.378 0.42 0.462 

Electricity consumption 

(manufacturing, ABS) 
X2 kWh/kg 1.674 1.86 2.046 

Transportation distance X3 km 1.44E+04 1.60E+04 1.76E+04 

Electricity consumption (use) X4 kWh/kg 10.062 11.18 12.298 

Table 4.11 Full factorial design of experiments with values of input variables and response of 

experiments. 

Run 

No. 

Electricity 

consumption (Al) 

X1 

Electricity 

consumption (ABS) 

X2 

Transportation 

distance 

X3 

Electricity 

consumption (use) 

X4 

Response  

Y (OEI) 

1 0.378 1.674 1.44E+04 10.062 1.8281E-03 

2 0.462 1.674 1.44E+04 10.062 1.8337E-03 

3 0.378 2.046 1.44E+04 10.062 1.8340E-03 

4 0.462 2.046 1.44E+04 10.062 1.8396E-03 

5 0.378 1.674 1.76E+04 10.062 1.8319E-03 

6 0.462 1.674 1.76E+04 10.062 1.8375E-03 

7 0.378 2.046 1.76E+04 10.062 1.8378E-03 

8 0.462 2.046 1.76E+04 10.062 1.8434E-03 

9 0.378 1.674 1.44E+04 12.298 1.8645E-03 

10 0.462 1.674 1.44E+04 12.298 1.8701E-03 

11 0.378 2.046 1.44E+04 12.298 1.8704E-03 

12 0.462 2.046 1.44E+04 12.298 1.8761E-03 

13 0.378 1.674 1.76E+04 12.298 1.8683E-03 

14 0.462 1.674 1.76E+04 12.298 1.8739E-03 

15 0.378 2.046 1.76E+04 12.298 1.8742E-03 

16 0.462 2.046 1.76E+04 12.298 1.8798E-03 

 

𝑌 = 𝐶0 + ∑ 𝐶𝑖𝑋𝑖

𝑛

𝑖= 1

+ ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑋𝑗

𝑖<𝑗

 (4.2) 

where X𝑖 are the input variables in the LCA model provided in Table 4.10, 𝐶𝑖 are regression 

coefficients, and Y is the model output (i.e., OEI). This model allows assessing the singular and 
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interaction effects of the variables on the response. The fitted regression equation between OEI and 

input parameters is as follows: 

𝑂𝐸𝐼 = 1.596 × 10−3 + 6.690 × 10−5 𝑋1 + 1.587 × 10−5 𝑋2 + 1.169 × 10−9 𝑋3 +

1.628 × 10−5 𝑋4 − 3.465 × 10−18 𝑋1𝑋2 − 1.575 × 10−21 𝑋1𝑋3 − 2.276 ×

10−18 𝑋1𝑋4 − 1.806 × 10−22 𝑋2𝑋3 + 7.846 × 10−19 𝑋2𝑋4 − 7.447 × 10−23 𝑋3𝑋4  

(4.3) 

Using this relationship equation, the environmental impact estimated by ELCA can be predicted 

from the input factors. The regression model can be used to predict the change of the OEI when 

the input parameters are changed. Also, the model can provide insights into the effects of different 

variables and their interactions on the variability of the OEI when varying them all at the same 

time. The results of the global sensitivity analysis in Table 4.12 show that electricity consumption 

(manufacturing, Al), electricity consumption (manufacturing, ABS), transportation distance, and 

electricity consumption (use) have significant effects on the overall environmental impact (P-value 

≤ 0.05). The P-value is employed to determine the significance of the model coefficients. The 

influence of the input variable on the model output is significant if the P-value is less or equal to a 

certain significance level (α-level). Considering a 95% confidence level (α = 0.05) for regression, 

the P-value of the above parameters is less than 0.05 which means that these factors are significant 

to the model output. Moreover, the estimated coefficients indicate the relative magnitude of the 

effects of factors on the model outcome. The factors with negative coefficients will have positive 

environmental impacts and vice-versa. Therefore, to reduce the environmental impact, it is 

necessary to minimize electricity consumption (manufacturing, Al), electricity consumption 

(manufacturing, ABS), transportation distance, and electricity consumption (use) which have 

positive coefficients. By eliminating the insignificant parameters whose P-value is greater than the 

significance level (P-value > 0.05) and their effects are negligible, the estimated regressing model 

for the environmental impact is rewritten in terms of significant factors as below: 
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Table 4.12 The estimated coefficients of the regression model and P-value. 

Term Estimate P-value 

X1 6.69010-5 0.000 (< 0.05) 

X2 1.58710-5 0.000 (< 0.05) 

X3 1.16910-9 0.000 (< 0.05) 

X4 1.62810-5 0.000 (< 0.05) 

X1  X2 - 3.46510-18 0.785 (> 0.05) 

X1  X3 - 1.57510-21 0.312 (> 0.05) 

X1  X4 - 2.27610-18 0.307 (> 0.05) 

X2  X3 - 1.80610-22 0.593 (> 0.05) 

X2  X4 7.84610-19 0.143 (> 0.05) 

X3  X4 - 7.44710-23 0.216 (> 0.05) 

 

𝑂𝐸𝐼 = 1.596 × 10−3 + 6.690 × 10−5 𝑋1 + 1.587 × 10−5 𝑋2 + 1.169 × 10−9 𝑋3 +

1.628 × 10−5 𝑋4  

(4.4) 

To describe the behavior of the response (OEI) considering the range of variation of inventory 

variables near the midpoint (uncertainty in the inventory variables), the mean (expected value,  𝜇) 

and variance (𝜎2) of the response is calculated using the following formulas [136]: 

𝜇 = 𝐸[𝑓(𝑋)]  (4.5) 

𝜎2 = 𝑉𝑎𝑟[𝑓(𝑋)] = 𝐸[𝑓(𝑋)2] − (𝐸[𝑓(𝑋)])2    (4.6) 

The mean (𝜇) and standard deviation (𝜎) values for the inventory variables which are treated as 

random variables are provided in Table 4.13. It is supposed that the midpoints in Table 4.10 

represent the mean, and the standard deviation is determined by assuming that the distance between 

the low and high levels of the variables corresponds to ±2𝜎. By taking the response as OEI = 𝑓(X) 

and applying the relations displayed in Equations (4.5) and (4.6) to Equation (4.4), the following 

equations are obtained: 
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Table 4.13 The characteristics of random variables (inventory variables). 

Variable Mean (𝜇) Standard deviation (𝜎) 

X1 0.42 0.021 

X2 1.86 0.093 

X3 1.60E+04 0.08E+04 

X4 11.18 0.559 

 

𝜇 = 1.596 × 10−3 + 6.690 × 10−5 𝜇1 + 1.587 × 10−5 𝜇2 + 1.169 × 10−9 𝜇3 +

1.628 × 10−5 𝜇4  

(4.7) 

𝜎2 = 4.476 × 10−9 𝜎1
2 + 2.519 × 10−10 𝜎2

2 + 1.367 × 10−18 𝜎3
2 + 2.651 ×

10−10𝜎4
2  

(4.8) 

Using Equations (4.7) and (4.8), the mean and variance of the response (OEI) is obtained 1.8540E-

03 and 8.7861E-11, respectively. Therefore, the results demonstrate that the response variability 

associated with uncertainty in the inventory variables is ± 2𝜎 = ± 1.875E-05 which is very small 

indicating that the estimated environmental response (OEI) is not sensitive to the small changes in 

inventory data. 

The local sensitivity analysis (LSA) is also carried out to compute the response variability due to 

changes in the input variables. Table 4.14 represents the results of local sensitivity analysis for the 

LCA outcome with a variation range of ± 10% from the reference value of input variables. Using 

the one-at-a-time approach, the variation of the OEI is estimated by making small changes (± 10%) 

in each input factor (input inventory data) while keeping other factors constant. It is observed that 

for all variables, the variation of the OEI is small and thus the LCA results are insensitive to the 

variation and uncertainty of input parameters. 
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Table 4.14 The variation of the OEI under the changes in input factors. 

Variable OEI (-10%) OEI OEI (+10%) Variation (%) 

Electricity consumption (Al) 1.8511E-03 1.8540E-03 1.8568E-03 ±0.15 

Electricity consumption (ABS) 1.8510E-03 1.8540E-03 1.8569E-03 ±0.16 

Transportation distance 1.8521E-03 1.8540E-03 1.8558E-03 ±0.10 

Electricity consumption (use) 1.8358E-03 1.8540E-03 1.8722E-03 ±0.98 

4.6.2 Sensitivity analysis of weighting process 

The sensitivity analysis is carried out on the weighting process used in the GRA method in order 

to investigate the impact of the selection of the weighting method on the total sustainability value 

and the final ranking of design alternatives. By performing steps 1-3 of the AHP method for the 

two sustainability aspects (as criteria) and their sub-indicators (as sub-criteria), their relative 

weights can be computed as shown in Tables 4.15 and 4.16. The consistency test needs to be 

applied for the comparison matrix whose size (n) is greater than two (i.e., pairwise comparison 

matrix of environmental sub-indicators) and the comparison matrix with the size of two is always 

consistent. To measure the consistency of the results of the comparison matrix related to sub-

indicators of environmental dimension, the consistency test is carried out by constructing the 

weighted sum matrix (Aw) and calculating the eigenvalues using the relation of Aw = λmaxw, 

where Ann is the pairwise comparison matrix, w is the priority vector, and λmax is the maximum 

eigenvalue. By applying λmax = λmaxw/w (dividing the elements of the weighted sum matrix by 

respective priority vector element) and computing the average of the eigenvalues, the λmax is 

obtained 4.049 (λmax = (4.040+4.013+4.089+4.054)/4), as follows: 
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Table 4.15 Pairwise comparison matrix and relative weights for the two sustainability indicators. 

Indicator Environmental Economic Weight 

Environmental 1 3 0.750 

Economic 1/3 1 0.250 

    = 1.000 

Table 4.16 Pairwise comparison matrix and relative weights for the sub-indicators of the 

environmental indicator. 

Indicator Climate change Ecosystem quality Human health Resources Weight 

Climate change 1 3 1/4 1/2 0.150 

Ecosystem quality 1/3 1 1/6 1/5 0.063 

Human health 4 6 1 2 0.502 

Resources 2 5 1/2 1 0.284 

      = 1.000 

λmax = 4.049, CI = 0.016, RI = 0.90, CR = 0.018 < 0.100 OK. 

 

A 
Climate 

change 

Ecosystem 

quality 

Human 

health 

Resources 

 

w 

= 

λmaxw 

 

λmaxw/w 

Climate 

change 
1.000 3.000 0.250 0.500 0.150 0.608 4.040 

Ecosystem 

quality 
0.333 1.000 0.167 0.200 0.063 0.254 4.013 

Human 

health 
4.000 6.000 1.000 2.000 0.502 2.052 4.089 

Resources 2.000 5.000 0.500 1.000  0.284  1.153  4.054 

Then, the consistency index is found as CI = (4.049-4) / (4-1) = 0.016 and the random consistency 

index is selected for the matrix size of four as RI = 0.90. Therefore, the consistency ratio is 

calculated as CR = 0.016/0.90 = 0.018 which is lower than 0.1 indicating that the comparisons are 

consistent, and the inconsistency is very low and acceptable. The weights resulting from the AHP 

calculation are provided in Table 4.17. 
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Table 4.17 Relative and global weights of the sustainability indicators and sub-indicators 

obtained using the AHP method. 

Indicator Weight Sub-indicator Weight Global weight 

Environmental 0.750 Climate change 0.150 0.113 

  Ecosystem quality 0.063 0.047 

  Human health 0.502 0.376 

  Resources 0.284 0.213 

Economic 0.250 Cost 1.000 0.250 

By assigning the unequal weights obtained by AHP to the sustainability dimensions and their 

indicators in the GRA method, the total sustainability value (Sp) for design scenarios is calculated 

as shown in Table 4.18. Based on the sensitivity analysis results, it is found that the total 

sustainability value of design alternatives and the final ranking of scenarios is not sensitive to the 

weighting process of the sustainability indicators. In other words, by applying different weighting 

techniques, i.e., equal weighting method and participatory approach (e.g., AHP), the ranking of the 

design alternatives in terms of their sustainability performance remains the same. It should be noted 

that the sensitivity analysis results can be affected by assigning different weighting values to the 

sustainability indicators. 

Table 4.18 Comparison of sustainability index (Sp) and ranking of alternatives by using different 

weighting methods in the GRA. 

Design scenario No. Equal weighting method AHP method Rank 

Scenario 1 0.802 0.800 3 

Scenario 2 0.827 0.828 2 

Scenario 3 0.874 0.874 1 
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4.6.3 Sensitivity analysis of aggregation process 

The sensitivity analysis is performed to determine the influence of selecting the different 

aggregation methods on the final ranking of the sustainability performance of design alternatives. 

4.6.3.1 TOPSIS method 

By assigning equal weighting to the environmental and economic sustainability dimensions and 

the indicators within the dimensions as well as aggregating the data using the TOPSIS method, the 

single sustainability value (𝐶𝑖) is calculated for the personalized components of the product 

alternatives. The results are provided in Table 4.19. By averaging the sustainability values of 

components, the total sustainability value (Sp) for each product variant is obtained. It can be seen 

that among alternatives, design scenario 3 has obtained larger value (Sp = 0.921), followed by 

design scenario 2 (Sp = 0.874), and design scenario 1 (Sp = 0.825), respectively. 

Table 4.19 The sustainability values of the personalized components for the three design 

scenarios from the TOPSIS method. 

Module 

name 

Component 

No. 
Component name 

Sustainability value 

Design scenario 

1 

Design scenario 

2 

Design scenario 

3 

Arm (M1) 1 Hand 0.158 0.454 0.611 

 2 Arm Actuator Mount 0.918 0.941 0.964 

 3 Angled Actuator Bracket 0.527 0.663 0.837 

 4 Arm Cover Upper 0.962 0.962 0.962 

 5 Arm Cover Lower 0.942 0.942 0.942 

Leg (M2) 6 U-Actuator Bracket 0.787 0.841 0.928 

 7 Leg Actuator Mount 0.930 0.946 0.969 

 8 Actuator Connector 0.895 0.944 0.960 

 9 Knee Bracket 0.376 0.586 0.787 

 10 Foot 0.586 0.687 0.837 

 11 Leg Cover 0.905 0.905 0.905 

 12 Foot Cover 0.950 0.950 0.950 

Head (M3) 13 Head Bracket 0.918 0.948 0.967 

 14 Neck Bracket 0.918 0.943 0.974 

 15 Back Head Cover 0.943 0.943 0.943 

 16 Front Head Cover 0.965 0.965 0.965 

 17 Head LED Cover 1.000 1.000 1.000 

 18 Eye Cover 0.993 0.993 0.993 

 19 Pupil 0.996 0.996 0.996 

   Sp = 0.825 Sp = 0.874 Sp = 0.921 

  Rank 3 2 1 
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4.6.3.2 SAW method 

By applying the SAW method to the different sustainability indicators of personalized components 

in the three design scenarios considering the equal weights for all indicators, the single aggregated 

score (𝐴𝑖, sustainability value) for personalized components is computed. Then, the total 

sustainability score (Sp) for each product alternative is obtained by averaging the sustainability 

values of product components, as provided in Table 4.20. According to the results, design 

alternative 3 has obtained a higher score (Sp = 0.199) indicating that it has better sustainability 

performance compared to the other design scenarios. 

       Table 4.20 The sustainability values of the personalized components for the three design 

scenarios from the SAW method. 

Module 

name 

Component 

No. 
Component name 

Sustainability value 

Design scenario 

1 

Design scenario 

2 

Design scenario 

3 

Arm (M1) 1 Hand 0.012 0.008 0.013 

 2 Arm Actuator Mount 0.078 0.090 0.140 

 3 Angled Actuator Bracket 0.016 0.015 0.032 

 4 Arm Cover Upper 0.116 0.116 0.116 

 5 Arm Cover Lower 0.091 0.091 0.091 

Leg (M2) 6 U-Actuator Bracket 0.029 0.034 0.073 

 7 Leg Actuator Mount 0.070 0.086 0.135 

 8 Actuator Connector 0.053 0.086 0.113 

 9 Knee Bracket 0.016 0.013 0.026 

 10 Foot 0.025 0.024 0.047 

 11 Leg Cover 0.073 0.073 0.073 

 12 Foot Cover 0.106 0.106 0.106 

Head (M3) 13 Head Bracket 0.090 0.112 0.171 

 14 Neck Bracket 0.073 0.104 0.199 

 15 Back Head Cover 0.134 0.134 0.134 

 16 Front Head Cover 0.191 0.191 0.191 

 17 Head LED Cover 1.000 1.000 1.000 

 18 Eye Cover 0.396 0.396 0.396 

 19 Pupil 0.728 0.728 0.728 

   Sp = 0.173 Sp = 0.179 Sp = 0.199 

  Rank 3 2 1 

The results of the comparison of ranking of design alternatives obtained using the GRA method, 

TOPSIS, and SAW methods are given in Table 4.21. It can be seen that by employing these three 

approaches, design alternative 3 is selected as the best scenario and has better sustainability 



91 

 

performance, followed by alternative 2 and alternative 1, respectively. Thus, the final ranking of 

alternatives is not sensitive to the selection of MADM methods. 

Table 4.21 Comparison of alternatives rankings computed using different MADM methods. 

Design scenario No. 
GRA  TOPSIS  SAW 

Score Rank  Score Rank  Score Rank 

Scenario 1 0.802 3  0.825 3  0.173 3 

Scenario 2 0.827 2  0.874 2  0.179 2 

Scenario 3 0.874 1  0.921 1  0.199 1 

 

 

 

 

 

 

 

 

 



92 

 

 CONCLUSIONS AND RECOMMENDATIONS 

 Conclusions 

In response to increasing legal pressures and market competition as well as changing customers’ 

attitudes, developing sustainable products is considered an important and challenging topic for 

industrial companies. Thus, manufacturing industries tend to design and manufacture sustainable 

products through applying appropriate strategies with the intention of reducing environmental, 

economic, and social impacts from the product life cycle stages. The open-architecture products 

(OAPs), as a new manufacturing paradigm, are personalized products with variable functions 

developed by involving customers and different companies in order to satisfy the individual 

customer requirements and various market segments in a cost-effective manner. To improve the 

sustainability performance of OAPs, evaluation and visualization of the sustainability performance 

of this type of product are of importance in order to enable customers involved in the co-design 

process to select the optimal sustainable design option. The existing research has focused mainly 

on the design and development of OAPs to allow customers to participate in the co-design process 

of the product. However, there is limited research discussing the importance of considering the 

sustainability aspects in the design and development of OAPs. Therefore, it is required to 

incorporate sustainable design strategies into the co-design process of OAPs. This research aims 

to propose a decision support tool to assess and communicate the sustainability performance of 

personalized products to customers during the design stage.  

The main challenge in the sustainable design of OAPs is how to evaluate and visualize the 

sustainability performance of the product. The sustainability performance of the product is assessed 

in terms of environmental and economic aspects. Since these sustainability indicators have 

different dimensions and scopes, it is required to apply an effective methodology for weighting and 
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aggregating the indicators into a single meaningful sustainability index. To address this challenge, 

this dissertation presents a methodology to measure the sustainability performance of OAPs during 

the design stage. The robot DARwIn-OP, as an open-architecture product composed of common 

and personalized modules, is employed to implement the proposed decision support tool in order 

to demonstrate the utility of the framework. The material and geometry of the personalized 

components (i.e., head, arms, and legs) of the open-architecture robot are changed based on the 

customer preferences and design constraints to create product variants (three design scenarios). 

The environmental life cycle assessment (ELCA) and life cycle costing (LCC) analyses are 

performed to measure the sustainability performance of the personalized components for the three 

product variants. To integrate the sustainability results of environmental and economic 

sustainability assessments, the equal weighting method and the grey relational analysis (GRA) 

approach are applied to the three design scenarios (three personalized products) for weighting and 

aggregation of the values of the sustainability indicators of each component into a single 

sustainability value for the product components. By averaging the sustainability values of product 

components for each scenario, the total sustainability value of each product variant (Sp) is obtained 

and presented to customers through the treemap visualization technique. The visualization of the 

sustainability results facilitates decision-making for customers towards the optimal alternative 

selection. The treemap of each design scenario describes the sustainability performance of the 

product modules and components based on the size and color of the rectangles. Also, treemap 

visualization can be effectively used for the comparison of the sustainability performance of design 

scenarios based on the color distribution. Based on the results, the product in the third design 

scenario has a higher sustainability value (Sp = 0.874) and brighter yellow color distribution in the 

treemap, while the product in the first design scenario has a lower sustainability performance (Sp = 

0.802) with the darker green color distribution. 



94 

 

In addition to sustainability performance evaluation, in this study, we conduct the sensitivity 

analysis to validate the robustness of the proposed framework. A DOE-based scheme and one-at-

a-time approach are used for global and local sensitivity analysis of the LCA modelling. The local 

sensitivity analysis (LSA) reveals that the LCA results are not sensitive to the variation of input 

inventory data. Also, using the global sensitivity analysis (GSA), a regression model is derived to 

predict the overall environmental impact of the product and identify the inventory parameters 

significantly affecting the LCA results. Moreover, the sensitivity analysis is carried out to validate 

the sustainability results in which different weighting and aggregation schemes are utilized to 

compute the sustainability scores of product alternatives and compare the final results with those 

obtained by the chosen approaches. The results demonstrate that both the equal weighting method 

and the AHP method lead to the same ranking of product alternatives. Also, the ranking of the 

design alternatives is consistent with employing various multi-attribute decision-making 

approaches, namely GRA, TOPSIS, and SAW methods.  

The aim of this research is to develop a methodology for the sustainable design of open-architecture 

products (OAPs).  The main research contributions are summarized as follows: 

1- A sustainability analysis containing environmental life cycle assessment (ELCA) and life cycle 

costing (LCC) is conducted for the personalized product to measure the sustainability performance 

of the product variants in terms of environmental and economic indicators. 

2- A weighting and aggregation approach (i.e., using multi-attribute decision-making (MADM) 

methods) is employed to integrate the different sustainability indicators (i.e., environmental and 

economic indicators) into a single sustainability index (SI) for product variants. The total 

sustainability value of product varieties is presented and communicated to customers and other 
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involved decision-makers by applying an appropriate visualization technique (e.g., treemap 

approach) which facilitates decision making towards the best sustainable design option. 

3- A design of experiments (DOE)-based method is developed for performing sensitivity analysis 

in the life cycle assessment (LCA) modelling to check the robustness of the results to uncertainty 

in input parameters. Also, to validate the final ranking of product alternatives in terms of their 

sustainability performance, sensitivity analysis is carried out for the sustainability index 

construction through employing different weighting and aggregation processes (e.g., using GRA, 

TOPSIS, and SAW methods).  

The outcome of this framework can be implemented in a cyber-enabled design tool for sustainable 

design of OAPs in which customers are allowed to define, visualize, and select the sustainable 

design option.  

 Future work 

This dissertation provided a methodology for evaluation, visualization, and validation of the 

sustainability performance of open-architecture products (OAPs). The following subjects are 

suggested for future research topics: 

1- In this research, the steps of the proposed decision support tool, including modification in 

personalized components, sustainability analysis, and multi-criteria decision-making process 

are performed manually. To remove this limitation, it is desirable to develop a fully automated 

framework for integrating computer-aided design, manufacturing, and engineering 

(CAD/CAM/CAE) and LCA/LCC tools to evaluate the functional performance and 

sustainability impacts of personalized products designed by customers. It is also useful to 

visualize the sustainability results on the CAD model of the product. Thus, it is recommended 
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to develop a web-based prototype tool using programming languages to automatically 

implement the steps of the proposed framework and all specifications and data exchanges 

between different environments for evaluation and visualization processes. 

2- In this study, all calculations for sustainability analysis are performed manually. It is proposed 

to utilize software tools, such as OpenLCA, SimaPro, or GaBi for the life cycle assessment 

analysis. 

3- Due to the fact that open-architecture products (OAPs) are composed of known common and 

customized modules and unknown personalized modules which provide a high variety of 

products, it is essential to study the problem of disassembly modelling and planning under the 

uncertainty of personalized components and related variable disassembly parameters. A 

mathematical modelling and statistical analysis can be proposed to solve and optimize the 

disassembly process planning problem of open-architecture products (OAPs). 

4- In this study, we assumed that all personalized components of the product are provided by the 

same manufacturer as well as required manufacturing energy is obtained from non-renewable 

sources. These parameters have effects on the sustainability of products in terms of 

environmental and economic aspects. It is proposed to investigate the results of sustainability 

analysis when different manufacturers located in various countries are involved in producing 

the product parts and different types of energy resources are employed for manufacturing 

processes. These variants can be considered to create alternative design scenarios for which the 

sustainability performance of products can be calculated and presented to customers to select 

the optimal option.   
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5- Although the final result of the proposed decision support tool is mapped using the treemap 

visualization technique for quick and easy decision making, it is desirable to test and evaluate 

the usefulness and appropriateness of the visualization technique by real customers. 
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APPENDIX A: IMPACT FACTORS EXTRACTED FROM THE 

ECOINVENT 3.3 DATABASE. 

 

Process Location Unit 

Climate 

change 

(point) 

Ecosystem 

quality  

(point) 

Human 

health 

(point) 

Resources 

(point) 

Material       

Aluminium, primary, 

production 

China kg 2.30E-03 1.03E-03 3.24E-03 1.41E-03 

Steel, low alloyed, 

production 

Global kg 1.63E-04 7.72E-05 4.87E-04 1.33E-04 

Acrylonitrile-butadiene-

styrene (ABS) copolymer, 

production 

Global kg 4.01E-04 2.21E-05 2.63E-04 6.70E-04 

Electricity       

Electricity, high voltage, 

hard coal, production 

China kWh 1.07E-04 5.60E-05 1.35E-04 6.80E-05 

Electricity, high voltage, 

nuclear, production 

France kWh 1.23E-06 4.34E-06 1.51E-05 9.29E-05 

Transport of Goods       

Transport, freight, sea, 

transoceanic ship 

Global tkm 1.12E-06 2.20E-07 3.91E-06 1.14E-06 

Disposal       

Disposal, aluminum, to 

sanitary landfill 

RoW* kg 3.86E-06 2.44E-05 1.29E-05 4.07E-06 

Disposal, steel, to inert 

material landfill 

Europe kg 5.20E-07 1.98E-07 1.34E-06 1.07E-06 

Disposal, plastic, mixture, 

to municipal incineration 

Europe kg 2.37E-04 1.20E-06 2.14E-05 3.01E-06 

*RoW: Rest of World 
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APPENDIX B: THE WEIGHT OF MATERIALS AND COMPONENTS 

EXTRACTED FROM THE CAD MODEL. 

 

Design scenario 1: 

Component name Material Quantity  Material weight (kg) Component weight (kg) 

Hand Aluminium 2 0.1019 0.0242 

Arm Actuator Mount Aluminium 2 0.0078 0.0053 

Angled Actuator Bracket Aluminium 4 0.0230 0.0134 

Arm Cover Upper ABS 2 0.0061 0.0061 

Arm Cover Lower ABS 2 0.0117 0.0117 

U-Actuator Bracket Aluminium 2 0.0185 0.0144 

Leg Actuator Mount Aluminium 2 0.0050 0.0039 

Actuator Connector Aluminium 4 0.0047 0.0015 

Knee Bracket Aluminium 2 0.0671 0.0335 

Foot Aluminium 2 0.0421 0.0399 

Leg Cover ABS 2 0.0220 0.0220 

Foot Cover ABS 2 0.0104 0.0104 

Head Bracket Aluminium 1 0.0165 0.0101 

Neck Bracket Aluminium 1 0.0147 0.0125 

Back Head Cover ABS 1 0.0279 0.0279 

Front Head Cover ABS 1 0.0171 0.0171 

Head LED Cover ABS 1 0.0005 0.0005 

Eye Cover ABS 2 0.0011 0.0011 

Pupil ABS 2 0.0003 0.0003 
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Design scenario 2: 

Component name Material Quantity  Material weight (kg) Component weight (kg) 

Hand Steel 2 0.2961 0.0704 

Arm Actuator Mount Steel 2 0.0231 0.0155 

Angled Actuator Bracket Steel 4 0.0669 0.0389 

Arm Cover Upper ABS 2 0.0061 0.0061 

Arm Cover Lower ABS 2 0.0117 0.0117 

U-Actuator Bracket Steel 2 0.0539 0.0420 

Leg Actuator Mount Steel 2 0.0147 0.0114 

Actuator Connector Steel 4 0.0135 0.0043 

Knee Bracket Steel 2 0.1950 0.0973 

Foot Steel 2 0.1227 0.1161 

Leg Cover ABS 2 0.0220 0.0220 

Foot Cover ABS 2 0.0104 0.0104 

Head Bracket Steel 1 0.0481 0.0293 

Neck Bracket Steel 1 0.0428 0.0362 

Back Head Cover ABS 1 0.0279 0.0279 

Front Head Cover ABS 1 0.0171 0.0171 

Head LED Cover ABS 1 0.0005 0.0005 

Eye Cover ABS 2 0.0011 0.0011 

Pupil ABS 2 0.0003 0.0003 
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Design scenario 3: 

Component name Material Quantity Material weight (kg) Component weight (kg) 

Hand Steel 2 0.1974 0.0448 

Arm Actuator Mount Steel 2 0.0154 0.0100 

Angled Actuator Bracket Steel 4 0.0334 0.0173 

Arm Cover Upper ABS 2 0.0061 0.0061 

Arm Cover Lower ABS 2 0.0117 0.0117 

U-Actuator Bracket Steel 2 0.0270 0.0188 

Leg Actuator Mount Steel 2 0.0098 0.0057 

Actuator Connector Steel 4 0.0107 0.0021 

Knee Bracket Steel 2 0.0975 0.0467 

Foot Steel 2 0.0613 0.0581 

Leg Cover ABS 2 0.0220 0.0220 

Foot Cover ABS 2 0.0104 0.0104 

Head Bracket Steel 1 0.0321 0.0185 

Neck Bracket Steel 1 0.0214 0.0166 

Back Head Cover ABS 1 0.0279 0.0279 

Front Head Cover ABS 1 0.0171 0.0171 

Head LED Cover ABS 1 0.0005 0.0005 

Eye Cover ABS 2 0.0011 0.0011 

Pupil ABS 2 0.0003 0.0003 
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APPENDIX C: MANUFACTURING COSTS OF COMPONENTS OF THE 

ROBOT FOR THREE DESIGN SCENARIOS.  

 

Component name Quantity  
Manufacturing cost 

(design scenario 1) 

Manufacturing cost 

(design scenario 2) 

Manufacturing cost 

(design scenario 3) 

Hand 2 1.580 3.620 2.460 

Arm Actuator Mount 2 0.400 0.320 0.200 

Angled Actuator Bracket 4 1.800 2.000 0.920 

Arm Cover Upper 2 0.380 0.380 0.380 

Arm Cover Lower 2 0.400 0.400 0.400 

U-Actuator Bracket 2 1.170 0.900 0.410 

Leg Actuator Mount 2 0.580 0.460 0.300 

Actuator Connector 4 0.680 0.360 0.280 

Knee Bracket 2 1.260 1.940 0.980 

Foot 2 0.740 0.640 0.340 

Leg Cover 2 0.400 0.400 0.400 

Foot Cover 2 0.340 0.340 0.340 

Head Bracket 1 0.310 0.200 0.130 

Neck Bracket 1 0.450 0.240 0.135 

Back Head Cover 1 0.190 0.190 0.190 

Front Head Cover 1 0.150 0.150 0.150 

Head LED Cover 1 0.080 0.080 0.080 

Eye Cover 2 0.140 0.140 0.140 

Pupil 2 0.120 0.120 0.120 
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APPENDIX D: MAIN FLOWS PER FUNCTIONAL UNIT FOR PERSONALIZED COMPONENTS OF 

THE THREE DESIGN SCENARIOS.  

Design scenario 1: 

Compnent name Material Raw materials 

(Al, ABS, 

China) 

Manufacturing 

(Electricity, coal, 

China) 

Tranportation 

(Sea freight, 

China to France) 

Use 

(Electricity, nuclear, 

France) 

EoL 

(Landfill (Al), Incineration 

(ABS), France) 

(kg) (kWh) (tkm) (kWh) (kg) 

Hand Aluminium 0.20376 0.08558 0.77509 0.54160 0.04844 

Arm Actuator Mount Aluminium 0.01568 0.00659 0.17012 0.11887 0.01063 

Angled Actuator Bracket Aluminium 0.09185 0.03858 0.85571 0.59792 0.05348 

Arm Cover Upper ABS 0.01213 0.02256 0.19405 0.13559 0.01213 

Arm Cover Lower ABS 0.02334 0.04341 0.37344 0.26094 0.02334 

U-Actuator Bracket Aluminium 0.03701 0.01555 0.46215 0.32293 0.02888 

Leg Actuator Mount Aluminium 0.01009 0.00424 0.12597 0.08802 0.00787 

Actuator Connector Aluminium 0.01860 0.00781 0.09385 0.06558 0.00587 

Knee Bracket Aluminium 0.13411 0.05633 1.07050 0.74801 0.06691 

Foot Aluminium 0.08424 0.03538 1.27786 0.89290 0.07987 

Leg Cover ABS 0.04396 0.08177 0.70336 0.49147 0.04396 

Foot Cover ABS 0.02086 0.03880 0.33376 0.23321 0.02086 

Head Bracket Aluminium 0.01653 0.00694 0.16122 0.11265 0.01008 

Neck Bracket Aluminium 0.01471 0.00618 0.19924 0.13922 0.01245 

Back Head Cover ABS 0.02790 0.05189 0.44640 0.31192 0.02790 

Front Head Cover ABS 0.01708 0.03177 0.27328 0.19095 0.01708 

Head LED Cover ABS 0.00053 0.00099 0.00855 0.00597 0.00053 

Eye Cover ABS 0.00218 0.00405 0.03488 0.02437 0.00218 

Pupil ABS 0.00068 0.00126 0.01088 0.00760 0.00068 
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Design scenario 2: 

Compnent name Material Raw materials 

(Steel, ABS, 

China) 

Manufacturing 

(Electricity, coal, 

China) 

Tranportation 

(Sea freight, 

China to France) 

Use 

(Electricity, nuclear, 

France) 

EoL 

(Landfill (Steel), 

Incineration (ABS), France) 

(kg) (kWh) (tkm) (kWh) (kg) 

Hand Steel 0.59228 0.37314 2.25352 1.57464 0.14084 

Arm Actuator Mount Steel 0.04617 0.02909 0.49461 0.34561 0.03091 

Angled Actuator Bracket Steel 0.26741 0.16847 2.48788 1.73841 0.15549 

Arm Cover Upper ABS 0.01213 0.02256 0.19405 0.13559 0.01213 

Arm Cover Lower ABS 0.02334 0.04341 0.37344 0.26094 0.02334 

U-Actuator Bracket Steel 0.10789 0.06797 1.34367 0.93889 0.08398 

Leg Actuator Mount Steel 0.02936 0.01849 0.36625 0.25592 0.02289 

Actuator Connector Steel 0.05408 0.03407 0.27285 0.19066 0.01705 

Knee Bracket Steel 0.38990 0.24564 3.11237 2.17477 0.19452 

Foot Steel 0.24534 0.15457 3.71525 2.59603 0.23220 

Leg Cover ABS 0.04396 0.08177 0.70336 0.49147 0.04396 

Foot Cover ABS 0.02086 0.03880 0.33376 0.23321 0.02086 

Head Bracket Steel 0.04812 0.03031 0.46874 0.32753 0.02930 

Neck Bracket Steel 0.04283 0.02698 0.57927 0.40476 0.03620 

Back Head Cover ABS 0.02790 0.05189 0.44640 0.31192 0.02790 

Front Head Cover ABS 0.01708 0.03177 0.27328 0.19095 0.01708 

Head LED Cover ABS 0.00053 0.00099 0.00855 0.00597 0.00053 

Eye Cover ABS 0.00218 0.00405 0.03488 0.02437 0.00218 

Pupil ABS 0.00068 0.00126 0.01088 0.00760 0.00068 
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Design scenario 3: 

Compnent name Material Raw materials 

(Steel, ABS, 

China) 

Manufacturing 

(Electricity, coal, 

China) 

Tranportation 

(Sea freight, 

China to France) 

Use 

(Electricity, nuclear, 

France) 

EoL 

(Landfill (Steel), 

Incineration (ABS), France) 

(kg) (kWh) (tkm) (kWh) (kg) 

Hand Steel 0.39485 0.24876 1.43460 1.00243 0.08966 

Arm Actuator Mount Steel 0.03078 0.01939 0.32028 0.22380 0.02002 

Angled Actuator Bracket Steel 0.13370 0.08423 1.11030 0.77582 0.06939 

Arm Cover Upper ABS 0.01213 0.02256 0.19405 0.13559 0.01213 

Arm Cover Lower ABS 0.02334 0.04341 0.37344 0.26094 0.02334 

U-Actuator Bracket Steel 0.05394 0.03399 0.60288 0.42126 0.03768 

Leg Actuator Mount Steel 0.01957 0.01233 0.18338 0.12813 0.01146 

Actuator Connector Steel 0.04281 0.02697 0.13565 0.09478 0.00848 

Knee Bracket Steel 0.19495 0.12282 1.49464 1.04438 0.09342 

Foot Steel 0.12267 0.07728 1.85762 1.29801 0.11610 

Leg Cover ABS 0.04396 0.08177 0.70336 0.49147 0.04396 

Foot Cover ABS 0.02086 0.03880 0.33376 0.23321 0.02086 

Head Bracket Steel 0.03208 0.02021 0.29541 0.20642 0.01846 

Neck Bracket Steel 0.02141 0.01349 0.26627 0.18606 0.01664 

Back Head Cover ABS 0.02790 0.05189 0.44640 0.31192 0.02790 

Front Head Cover ABS 0.01708 0.03177 0.27328 0.19095 0.01708 

Head LED Cover ABS 0.00053 0.00099 0.00855 0.00597 0.00053 

Eye Cover ABS 0.00218 0.00405 0.03488 0.02437 0.00218 

Pupil ABS 0.00068 0.00126 0.01088 0.00760 0.00068 
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