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Abstract: Instability-assisted 3D printing is a method for producing microstructured fibers with 

sacrificial bonds and hidden lengths which mimic nature’s toughening mechanisms found in spider silk. 

This hierarchical structure increases the effective toughness of poly(lactic acid) (PLA) fibers by 240% 

 340% in some specimens. Nevertheless, many specimens show worse toughness as low as 25% of that 

of the benchmark straight fiber due to the incomplete release of hidden lengths caused by premature 

failures. Here, we report mechanical tests and simulations of microstructured fibers with coiling loops 

that identify the material plastic deformation as being crucial to fully release the hidden lengths. Without 

sufficient material yielding, high local tensile stress results from the bending-torsion-tension coupled 

deformation of the coiling loop and induces crack initiation at the fiber backbone during the loop 

unfolding process. On the other hand, the influence of bond-breaking defect is found to be negligible 

here. Moreover, for a number of broken bonds beyond a critical value, the accumulated elastic energy 

along the released loops induces a high strain rate (~ 1500 mm/mm/s) in quasi-static tensile test, which 

fractures the fiber backbone within 0.1 ms after the breaking of a new bond. We also show a size effect 

in fused deposition modeling (FDM) extruded PLA fibers, which results in higher effective toughness 

(~ 5 times the performance of the straight fiber benchmark) in small coiling fibers (dia. = 0.37 mm), due 

to the better ductility in bending and torsion than large fibers (dia. = 1.20 mm). The failure mechanisms 

of single microstructured fiber presented here lay the groundwork for further optimizations of fiber 

arrays in the next generation of high energy-absorption composites for impact protection and safety-

critical applications. 

Introduction 

Spider silk outperforms most synthetic materials in terms of specific toughness 1. This toughness has 

been attributed to the unique protein structure in spider silk: stiff nanocrystals embedded in a less orderly 

semi-amorphous matrix which is rich in hydrogen bonding 2. Upon stretching, these weak hydrogen 

bonds act as sacrificial bonds 3 whose early breakage releases the entangled protein chains in the semi-

amorphous domain. The breaking of hydrogen bonds and the unravelling of hidden protein chains 

contribute to the high extensibility and toughness of spider silk. Similar toughening mechanisms are 

also found in bone 4, nacre 5 and mussel byssus threads 6. 

Recently, the concept of sacrificial bonds and hidden length for toughness enhancement has inspired 

several experimental 7-10
 and numerical 11 studies of structured fibers at the microscale. This hierarchical 

structure consisting of sacrificial bonds and hidden length is successfully implemented by introducing 

slip knots 7-9 or weak self-adhesions 10, 11 into natural or synthetic fibers. However, premature failures 

which cause incomplete release of fiber hidden length are also found in these studies, resulting in an 

occasional overall toughness decrease. Pugno et al. 8 found that a too tight overhand loop knot in silk 

fiber can lead to early fiber failure at the knot entrance, leaving the hidden length unreleased. They 

further optimized the knot configuration and achieved the full release of the fiber hidden length, resulting 

in 300 400% toughness enhancement in silk fibers 8 and up to 3000% in carbon nanotube microfibers 



9 with one single noose knot. Passieux et al. 10 introduced weakly fused bonds as sacrificial bonds into 

poly(lactic acid) (PLA) fibers with coiling or alternating loops by instability-assisted 3D printing. They 

found that the fiber backbone sometimes fails early before all hidden lengths are released. These 

premature failures result in the large scatter in the toughness values of microstructured fibers. The 

toughness of the microstructured fiber is sometimes as low as 25% of that of the straight fiber. They 

attributed these premature failures to the cusp formed during the loop unfolding process and the surface 

defect left by bond breaking. Koebley et al. 11 found similar hierarchical structure with coiling loops in 

loxosceles silk. They supposed that the cusp and bond-breaking defect can be avoided by the slender 

ribbon structure and silk-to-silk adhesion in loxosceles silk, instead of the cylindrical fiber structure and 

physically fused bond in Passieux et al.’s work. However, premature failures are still found in loxosceles 

silk to inhibit the hidden length from being fully released, resulting in the structured fibers’ overall 

toughness being only 27% 64% of the straight fibers. Koebley et al. 11 attributes these premature 

failures to material imperfections and incorrect test conditions. Nevertheless, the mechanics behind these 

premature failures in microstructured fibers with sacrificial bonds is still unclear. 

In this article, we use the instability-assisted fused deposition modeling (IFDM) technique developed 

by Passieux et al. 10 to fabricate microstructured fibers with sacrificial bonds. As shown in Figure 1a, 

the molten PLA filament is deposited in ambient condition onto a moving belt. The filament swings and 

coils on itself due to a similar instability as found in the “elastic 12 / fluid mechanical 13 / molten glass 14 

sewing machine”. After the polymer is solidified in ambient air, weakly fused bonds are formed at the 

intersections along the fiber (Figure 1a). As described by Passieux et al. 10, these bonds, i.e., bonds  

and  in Figure 1b, act as sacrificial bonds in uniaxial tensile test. They are supposed to break one by 

one, leading to a saw-tooth tensile curve as shown in Figure 1c. The area under the tensile curve 

represents the energy absorption contributed by the breaking of bonds and the unfolding of 

corresponding loops. The premature failure, in which the fiber backbone fractures before bond  breaks, 

reduces fiber strength and toughness. Passieux et al. 10 found that the failure modes are different with 

respect to fracture time and location due to the interrelation between the varying slenderness with fiber 

patterns and the number and strength of sacrificial bonds. Among their specimens, those with a coiling 

pattern exhibit varieties of failure modes and the lowest toughness value. Therefore, we purposely select 

these underperforming coiling pattern fibers to understand their failure. We do so by fixing the ratio of 

the filament extruding speed VE to the belt moving speed VB (Figure 1a). The relative strength of the 

bonds to the fiber backbone is kept constant in two coiling fibers at different scales (large fiber: d = 1.20 

mm; small fiber: d = 0.37 mm) by fixing the ratio of the deposition height H to the fiber diameter d 
(Figure 1a). We systematically categorized the failure modes of coiling fibers by testing specimens with 

varying number of sacrificial bonds. Complementing this experimental study, we performed nonlinear 

finite element analysis (FEA) in order to find the root cause for each failure mode.  

Results and discussion 

According to the differences in fracture time and location among coiling fiber specimens in uniaxial 

tensile test, we categorize five failure modes: axial, bending, torsional, bond and dynamic failure. In 

axial failure, the coiling loop is unfolded and fully straightened until the fiber breaks in the middle of 

the loop (Figure 2a [i]). Apparent necking is observed at both fracture ends (Figure 2a [ii]). The fracture 

surface shows extended polymer tongues which indicates a large amount of plastic deformation (Figure 

2a [iii]). In bending failure, the fiber also breaks in the middle of the loop (Figure 2b [i]). Compared to 

axial failure, the crack in bending failure initiates much earlier from the cusp at the top of the loop. 

Typical butterfly pattern can be seen on the fracture surface with stress whitening at the two sides (Figure 

2b [ii]). Similar extended polymer tongues as in the axial failure are also found at the bottom half of the 

fracture surface (Figure 2b [iii]).  



In torsional and bond failure, the fiber does not break in the middle of the loop but near it (Figure 2c 

[i] & 2d [i]). In torsional failure, the fracture shows a spiral pattern (Figure 2c [ii]) which indicates that 

the fiber breaks due to the maximum tensile stress under torsion. Smooth crack initiation region with 

crazing and rough crack propagation region with hackles can be seen on the fracture surface (Figure 2c 

[iii]), which indicate the brittle nature of the fracture 15. In bond failure, a similar spiral fracture pattern 

is observed (Figure 2d [ii]). The fracture plane is found right across the surface defect left by the bond 

breaking, which would suggest that the defect might have played a bigger role in this fracture. However, 

the scanning electron microscopy (SEM) image shows that the crack initiates not from the defect, but 

from a pigment aggregate inside the fiber (Figure 2d [iii]). This indicates that in this case, the fracture 

is more likely caused by a combination of the flaw and the maximum tensile stress, but not the bond-

breaking defect. 

The dynamic failure is different from all the above failure modes in terms of the fracture timescale 

after the breaking of sacrificial bond. In the above failure cases, the fracture of the fiber backbone 

happens at least 930 ms after the breaking of a sacrificial bond during the unfolding process. While in 

dynamic failure, the fiber backbone breaks within only 0.099 ms after the breaking of a sacrificial bond 

(Figure 2e [i]). The fiber breaks at a similar location as in bending failure, but has a more brittle 

appearance. No material distortion is observed near the fracture surface and the two fracture pieces fit 

with each other perfectly (Figure 2e [ii]). On the fracture surface, the smooth crack initiation region 

suddenly translates to the rough crack propagation region (Figure 2e [iii]), which indicates a sharp 

increase of stress and crack propagation speed 16. 

In order to understand the failure mechanisms of the coiling fiber, we performed quasi-static FEA of 

two coiling loops under uniaxial tension. First, to explore the effect of material characteristics on 

structure behavior, we compared the bond breaking process of the coiling fiber with two different 

material models: linear elasticity and multilinear plasticity (Figure 3). In order to compensate the 

difference in gauge length between tensile test and simulation, we define an apparent strain as * l / 
l0 × 100% l is the axial displacement and l0 is the initial length of the coiling fiber between the 

grips.  in Figure 3) breaks, the coiling fiber is stiff as the hidden lengths is 

bypassed by the load path. Both the elastic and plastic FEA overestimate the stiffness of the overall 

structure (Figure 3 inset). This is probably due to the fiber slippage in the grips during the tensile test, 

or the imperfect modeling of sacrificial bond via rigid surface constraint in the simulation. After 

breaks, the pulling force drops due to the release of Then the force increases as 

is unfolded and straightened. The elastic FEA overestimates the pulling force and thus predicts 

the breaking of the next ) significantly earlier than the plastic FEA. 

the two loops in the elastic FEA share the same amount of deformation (Figure 3, contour plot at * = 

two loops behave similarly to a coiled elastic spring 17, 18 due to the absence of plastic deformation in 

the elastic FEA. However, in the tensile test, 

at * = 148%). This indicates a large amount of plastic deformation 

along , which cannot be recovered after the breaking  The plastic FEA’s 

experimental result. The two loops behave very differently from the coiled elastic spring 17, 18 due to the 

plastic strain accumulated along the loops each time after the bond breaks. Even though some loops, 

in Figure 3, experience cyclic loading, fatigue 19 is not considered here, because the fiber 

breaks within the last unfolded loop in 157 out of 160 failure cases observed in this work. 

The plastic FEA is in quantitative and qualitative agreement with the tensile test in respect of the bond 

breaking, the reaction force and unfolding geometry of the coiling loop (Figure 3). We hence calculate 



local curvature, as well as shear and axial strains (calculation details are illustrated in Figure S1) along 

the fiber to further analyze the variation of fracture time and location in test specimens. In order to 

simplify the analysis, we define an unfolding percentage of the hidden length in each coiling loop as p 

= 100 × s / lh, where s is the axial displacement after the breaking of corresponding sacrificial bond and 
lh is the hidden length. The hidden length of each coiling loop is considered constant in all test specimens. 

In Figure 4a, the fibers’ fracture force and unfolding percentage at break for all failure modes are 

superimposed on a schematic representation of the force-displacement curve of one coiling loop from 

axial failure specimen. In Figure 4b - d, the fracture location along the coiling loop and unfolding 

percentage at break are plotted for each failure mode against local curvature, shear and axial strains 

along the second releasing loop  in Figure 3. This superimposition of statistical test data of failure 

modes on simulation results enables us to analyze the influence of different deformation components on 

each failure mode. Since the large fiber provides more comprehensive experimental data on each failure 

mode than the small fiber, only simulation and test results of the large fiber are presented in Figure 4. 

Due to the geometric similarity, the small fiber is expected to have the same local strain as the large 

fiber at equivalent location along the fiber in the static simulation. 

After the breaking of a sacrificial bond, the pulling force rises rapidly mainly due to the increase of 

curvature in the middle of the loop. As the unfolding process proceeds, although the curvature continues 

to increase (Figure 4b), the pulling force reaches a short plateau after p exceeds 20% (Figure 4a). From 
* = 148%) in Figure 3, it can be seen 

that the middle of the loop has reached the tensile strength of the material (70.5 MPa, Figure S2). 

Material yielding in the middle of the loop slows down the rate of increase of the pulling force. At this 

stage, the bending-dominated deformation of the coiling loop leads to high tensile stresses. This induces 

crack initiation at the top of the middle loop (Figure 2b, at t = 930ms), giving rise to a sudden drop on 

the pulling force curve (Figure 4a,  and blue dashed lines). As the crack propagates, the remaining 

material in the middle of the loop continues to carry the load. Further stretching straightens the two 

broken loop pieces, causing the force to increase even after the crack initiation. In the end, the final 

fracture of the fiber in bending failure (Figure 4a, ) happens at p 

fracture force compared to the representative pulling force curve. 

After p exceeds 50%, shear strain increases rapidly in the middle of the loop (Figure 4c). However, 

the fiber in torsional failure (Figure 4c, ) never breaks in the middle of the loop. Large material 

distortion is observed in the middle of the loop in SEM images of the torsional failure specimen (Figure 

5a). This indicates a large amount of plastic deformation which may prevent the crack initiation as in 

bending failure. The fiber in torsional failure can break at either sides of the loop around 5 to 8 mm 

away from the middle (Figure 4c,  , La = 4 to 7 mm and 17 to 20 mm). The fiber in bond failure breaks 

at similar unfolding percentages (Figure 4c,  , p 

around the bond-breaking defect. In order to understand the fracture in torsional and bond failure (Figure 

5b, c), the distribution of the first principal stress across the fiber section is given at selected locations 

along the fiber at p = 80 % in Figure 5d. As La increases from 15.63 mm to 23.63 mm, the first principal 

stress reaches the maximum 70.5 MPa near the top surface of the fiber. It can be seen that this maximum 

stress region across the fiber section is relatively larger at La = 17 to 21 mm than other places along the 

fiber. This corresponds well with the distribution of the fracture locations along the fiber in torsional 

failure (Figure 5d, ) and bond failure (Figure 5d, ). Also, the location of the maximum stress region 

within the fiber cross section (Figure 5d, at La = 18.05, 19.27 and 20.47 mm) perfectly matches with the 

crack initiation region in SEM images of the torsional failure (Figure 5b [ii]) and bond failure specimen 

(Figure 5c [ii]). This indicates that the fiber fails due to the maximum tensile stress in torsional and bond 

failure. This also reinforces our previous speculation about the insignificance of bond-breaking defect 



in bond failure based on fractographic analysis. Therefore, if the fiber avoids the bending crack by 

sufficient material yielding in the middle of the loop, further stretching results in two growing maximum 

tensile stress regions along the fiber at La = 3 to 7 mm and 17 to 21 mm. These tensile stress regions are 

generated by the combination of bending, torsion and axial tension. The crack in torsional and bond 

failure initiates from the largest maximum stress region, then propagates through a spiral pattern due to 

the torsional strain along the fiber. This explains the spiral fracture morphology in torsional and bond 

failure. Since the size of the maximum stress region is similar from La = 3 to 7 mm and 17 to 21 mm 

along the fiber, the crack always initiates at the weakest point. This is sometimes contributed by a flaw, 

such as a color pigment shown in Figure 5c [ii]. This maximum stress region leads to the large variation 

of fracture location in torsional and bond failure. The hidden length is fully released when p reaches 

100%. The pulling force increases rapidly due to the tensioning of the fiber backbone. The final axial 

failure (Figure 4d, ) happens in the middle of the loop, where the maximum axial strain locates. 

The probabilities of different failure modes are also found to be related to the size of the fiber (Figure 

6a, b) and the number of sacrificial bonds nt in test fibers (Figure 6b - d). In large fibers, axial failure 

happens only when there is one bond in the test fiber (Figure 6c). As nt increases, the proportion of 

bending failure decreases, probably due to the less strict lateral constraints associated with the existence 

of more loops. The average number of actually broken bonds nb stays around two (Figure 6b, black solid 

line). However, different results are observed in a geometrically similar coiling fiber with a smaller 

diameter (0.37 mm, Figure 6a in red). All test bonds can be broken when nt  (Figure 6b, red dashed 

line). The fracture surface of axial failure (Figure 6e [i]) shows very similar necking characteristics to 

those of the large fiber (Figure 2a [iii]). Bending, torsional and bond failures are almost absent in the 

small fiber, except for one bending failure case at nt = 4 (Figure 6d), which is probably caused by the 

pigment aggregate in the crack initiation region on the fracture surface (Figure 6e [ii]). In order to 

investigate the difference of the failure behavior between the large and small fibers, bending failure at 

nt = 2 in the large fiber is chosen to compare with the small fiber in Figure 6f. The two fibers show very 

similar apparent stress-strain curves and bond strengths, which is attributed to the same VE / VB and H / 
d ratios kept in their fabrication. Due to the geometric similarity, we have L / S = dS / dL, where is 

the fiber curvature; d is the fiber diameter; the indices L and S stand for the large and small fiber, 

respectively. Therefore, the maximum bending stress at the top of the loop  =  / 2 is the same for 

the large and small fibers, assuming a constant Young's modulus E in both fibers. However, the crack 

initiates in the large fiber, but not in the small fiber (Figure 6f). This indicates a size effect concerning 

the fiber’s ductility, despite the fact that in uniaxial tensile tests, large and small straight fibers exhibit 

identical behavior (Figure S3). 

In order to further understand this size effect, we performed three-point bending tests on the large and 

small straight fibers under the strain rate (0.33 mm/mm/s, Figure S4a) which corresponds to what the 

middle of the loop experiences during the unfolding process. Whereas the large and small straight fibers 

behave identically in tensile test (Figure S3), they differ in ductility in three-point bending test (Figure 

6g). Six out of ten large fiber specimens show bending cracks at the bottom of the fiber around the 

engineering strain of 0.2, while all ten small fiber specimens survive until the engineering strain of 0.35 

without any visible cracks. The small difference in crystallinity (large fiber: 2.5%; small fiber: 1.1%. 

Figure S5) might account for this size effect. Compared with the large fiber, the relatively faster cooling 

rate in the small fiber after extrusion leads to two times lower crystallinity and thus more amorphous 

structure with higher ductility. Another possible explanation for this size effect is the strain gradient 

plasticity theory 20. In tension, the fiber has a uniform strain distribution within the cross sectional area, 

while in bending and torsion, the strain is maximum at the surface but zero along the neutral axis, 

resulting in a strain gradient. The strain gradient enhances material hardening, which has been also 



observed in polymers such as epoxy and polycarbonate 21. Hence, the greater strain gradient makes the 

small fiber more ductile than the large fiber in the three-point bending test. We are led to believe that 

the higher ductility prevents bending, torsional and bond failures in the small fiber, resulting in more 

broken bonds than that in the large fiber. 

After nt  5, the small fibers always fail in dynamic failure with nb around 4 (Figure 6b, d). This 

indicates that dynamic failure is somehow related to the number of already broken bonds in the test fiber. 

Recollecting from Figure 2e [i], in dynamic failure, the newly releasing loop is suddenly retracted due 

to the springback of previously unfolded loops after the breaking of a sacrificial bond. According to the 

simulation, this springback is also related to the material’s characteristic, as the loop retraction after the 

breaking of a sacrificial bond in the elastic FEA is much larger than that in the plastic FEA. Therefore, 

we think that dynamic failure is triggered once the accumulated elastic energy along previously unfolded 

loops reaches a critical value. The inducing retraction causes a local strain rate as high as 1492 mm/mm/s 

(Figure S4d) on the top surface in the middle of the newly releasing loop, which fractures the fiber 

backbone immediately. That is the reason why both the fracture surfaces of the small (Figure 6e [iii]) 

and large (Figure 2e [iii]) fibers in dynamic failure show a sharp transition from the smooth crack 

initiation region to the rough crack propagation region.  

Conclusions 

Simulation and experiment both indicate that material yielding is indispensable to fully release the 

hidden length of the coiling fiber. If material yielding is insufficient along the fiber throughout the loop 

unfolding process, the fiber backbone will fracture at or besides the middle of the loop due to high local 

tensile stress, resulting in bending, torsional or bond failures. After the breaking of a certain number of 

bonds, the accumulated elastic energy along the already unfolded loops will induce a high strain rate 

recoil that fractures the fiber backbone immediately in the middle of the loop. The influence of bond-

breaking defect is found to be negligible in the coiling fibers tested here. A size effect concerning the 

ductility in bending and torsion is also found in FDM-extruded PLA filament, which has profound 

implications for FDM 3D printing. The maximum number of sacrificial bonds which can be all broken 

in tensile test is three in the small PLA coiling fibers tested here (Figure S6), resulting in an effective 

toughness 33% times the performance of the straight fiber benchmark (Table S1). In order to 

further improve the toughness, material selection is as essential as the structure optimization, just as the 

damage tolerance property of spider web comes from the integration of structure and the nonlinear 

material behavior of spider silk 22. FDM with continuous-fiber reinforced polymer 23, 24 provides new 

opportunities to develop a good material candidate for microstructured fibers, utilizing ductile polymer 

matrix and strong continuous-fiber reinforcement. With the understanding of the failure mechanisms of 

a microstructured fiber in tension, we will be able to further optimize fiber arrays in composites or 

cellular structures 25 for high energy absorption and damage tolerance properties. 

Methods 

Instability-assisted fused deposition modeling. A PLA filament (MakerBot PLA Yellow) was 

extruded through the printing head of a MakerBot 3D printer onto a conveyor belt. The filament was 

was fused at 230 oC in the heater block, then extruded out of the nozzle. Two nozzles with different 

diameters (0.3 mm and 1 mm) were used in this paper. An open source 3D printing software ReplicatorG 

was used to control the speed of the stepper motor. In order to achieve stable deposition, the stepper 

motor was set at 2 rpm (revolutions per minute) and 8 rpm for the small and large nozzle, respectively. 

This led to the volume flow rate of 2.53 mm3/s and 10.5 mm3/s, respectively. Due to die swell, the 

extruded polymer threads had diameters of 0.37 mm and 1.20 mm, respectively. Geometrically similar 



coiling fibers were fabricated at VE / VB = 3.71 and H / d = 11. The straight fibers were fabricated at VE 

/ VB = 1 and H / d = 11. 

Uniaxial tensile test. Uniaxial tensile test of the coiling fiber was performed on an electromechanical 

machine (MTS Insight 50 kN) in ambient environment. The fiber was clamped with a constant force of 

100N at both ends by a pair of pneumatic grips (TestResources G94) with an air pressure of 100 psi. 

The crosshead speed was 500 mm/min. Forces were measured with 5 N and 100 N load cell for the small 

and large fiber respectively. Coiling fibers with 1 to 8 loops were tested, with 10 repetitions each for 

both small and large fibers. 

Three-point bending test. Custom-made acrylic fixtures were used for the three-point bending test of 

straight fiber on the MTS Insight machine. The diameters of the loading noses and supports are 0.8 mm 

and 2 mm for the small and large fiber respectively. The spans are 3 mm and 10 mm, respectively. The 

small and large straight fibers were cut into 5 mm and 16 mm long pieces. Reaction forces of the loading 

nose were measured with 5 N and 100 N load cell, respectively. The crosshead speed is 84.8 mm/min 

for the small fiber and 275 mm/min for the large fiber. 

Finite element analysis. The geometrical data of the coiling fiber was generated in MATLAB via digital 

image analysis and then imported into ANSYS to create the mesh. Nonlinear FEA was adopted to 

simulate the bond breaking and loop unfolding process of the coiling fiber under tension, with both 

elastic and plastic material model. In the elastic FEA, the fiber is assumed isotropic with Young’s 

modulus E = 3 GPa, and Possion’s ratio  = 0.36. In the plastic FEA, multilinear isotropic hardening 

plasticity and von Mises yield criterion were used to create the constitutive law, which was calibrated 

based on the uniaxial tensile test of straight PLA fiber (Figure S2). The elastic FEA modeled the fiber 

with 3D beam element (BEAM189), while the plastic FEA utilized a beam-solid assembly (Figure S1a). 

Solid elements (SOLID186) were used in the middle of the coiling loop in order to avoid the 

convergence difficulty caused by beam elements under large inelastic deformation due to torsional 

loading 26. The fiber segment modeled by solid elements shared the same diameter as the one modeled 

by beam elements. They were connected by rigid surface constraint 27. In both elastic and plastic FEA, 

the sacrificial bond was modeled by a 3D beam-to-beam contact 27 with the multipoint constraint (MPC) 

approach which constrained three translational degrees of freedom of crossing beam elements. The 

simulation was conducted in a displacement-controlled manner. A force threshold criterion 3 was used 

to break sacrificial bonds. The displacement was incrementally applied at the pulling end using a do-

loop in ANSYS Parametric Design Language (APDL). The reaction force at the pulling end was 

examined in each step. Once the reaction force reached the threshold, the MPC contact elements were 

deactivated by the program, simulating the breaking of the sacrificial bond. After the death of the MPC 

contact elements, the incremental displacement continued to be applied on the model and the simulation 

restarted based on the solution from the previous run. The breaking sequence and force thresholds of 

sacrificial bonds were set exactly as in the test. 
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Figure 1. a) Schematic of the IFDM. The ratio of the filament extruding speed VE to the belt moving 

speed VB dictates the fiber pattern on the belt. The ratio of the deposition height H to the fiber diameter 

d dictates the size of the loop. Sacrificial bonds are formed via fusion at the intersections in the coiling 

pattern after the polymer is solidified by cooling. b) The produced coiling fiber has a constant hidden 

length lh which can be released by the breaking of sacrificial bonds ( ) in uniaxial tensile test. c) 

Schematic comparison of the tensile test sequences and force-displacement curves between expected 

failure (blue solid line) and premature failure (red dashed line). In expected failure, sacrificial bonds 

and break one by one, resulting in a saw-tooth tensile curve. The ultimate axial tensioning after all 

hidden lengths are released breaks the fiber backbone, leading to high energy absorption indicated by 

the blue area under the tensile curve. In premature failure, the fiber backbone is broken during the 

unfolding process of loop , before bond breaks. The truncated tensile curve displays reduced fiber 

strength and energy absorption. 

 

Figure 2. Failure modes observed from uniaxial tensile tests of coiling fibers: axial ( ), bending ( ), 

torsional ( ), bond ( ) and dynamic ( ) failure. Each failure mode is characterized by: (i) sequential 

camera captures of the unfolding process after the breaking of sacrificial bond. Time zero is defined at 

the breaking of sacrificial bond; (ii) microscopy images of the fracture pieces; (iii) SEM images of the 

fracture surfaces. All specimens shown here are from the large fiber with a diameter of 1.20 mm, except 

the camera captures of dynamic failure, which are from the small fiber with a diameter of 0.37 mm for 



the sake of convenience in shooting with high speed camera. Scale bars are 5 mm in (i), and 0.5 mm in 

(ii), (iii). 

 

Figure 3. The breaking of sacrificial bonds in two coiling loops under uniaxial tension from linear elastic 

FEA (blue dotted line), multilinear plastic FEA (red dashed line) and tensile test (grey solid line). The 

breaking sequence of sacrificial bonds in the FEAs is set the same as that in the tensile test: first bond 

the tensile test: 23.4 N for bo

apparent strain values. The color gradient represents the magnitude of von Mises stress in the FEA 

contour plots. The FEAs and test results here are all for the large fiber with a diameter of 1.20 mm. 

 

Figure 4. a) Distribution of the five failure modes in coiling fibers illustrated by failure points overlaid 

on a representative force-displacement curve of a single coiling loop. Failure points are defined as the 

final break of fiber backbone from the following failure modes: axial ( ), bending ( ), torsional ( ), 



bond ( ) and dynamic ( ) failure. For bending failure, crack initiation ( ) and the following force curves 

(blue dashed lines) are also marked. Local b) curvature, c) shear strain, d) axial strain calculated from 

the multilinear plastic FEA are used to explain the fracture location of each failure mode along the fiber 

during the unfolding process. Arc length La 

from the fixed end. The bond-breaking defects locates at La = 3.12 and 20.31 mm. All failure points here 

are for the large fiber with a diameter of 1.20 mm. 

 
 

Figure 5. Illustration of the crack initiation in torsional and bond failure due to high local tensile stress: 

a) SEM images of torsional failure specimen showing large material distortion in the middle of the loop. 

Fractures of b) torsional failure and c) bond failure specimen are characterized by sequential camera 

captures and SEM images. The relative location of crack initiation region with reference to the bond-

breaking defect in both failure modes can be seen in the SEM images. d) Contour plot of one coiling 

loop at p = 80 % from the plastic FEA. The color gradient represents the magnitude of the first principal 

stress. Cross-sectional contour plots of the fiber are shown at La = 15.6 3, 18.05, 19.27, 20.47 and 23.6 3 

mm along the loop. The inner side of the beam element at La = 20.47 mm corresponds to the bond-

breaking defect. The fracture location along the fiber (at La = 12 mm to 24 mm) are shown by  for 

torsional failure and  for bond failure. Both torsional and bond failures can be attributed to a large 

region of tensile stress. Scale bars are 5 mm in camera captures and 0.5 mm in SEM images. 



 

Figure 6 . Comparison of the failure behavior in a) two geometrically similar coiling fibers with different 

diameters: 1.20 mm (in black) and 0.37 mm (in red). b) The number of actually broken bonds nb in both 

large and small fibers varying with different initial number of bonds nt in the uniaxial tensile tests. The 

error bar stands for the standard deviation based on a sample size of 10 for each data point. The 

proportion of axial (grey), bending (blue), torsional (yellow), bond (red) and dynamic (green) failures 

in c) large and d) small fibers varying with different nt. e) SEM images of the fracture surfaces in axial 

(i), bending (ii) and dynamic (iii) failures of the small fibers. Scale bars are 0.2 mm. f) Comparison of 

the unfolding geometries and apparent stress-strain curves of the large (black lines) and small (red lines) 

fibers with two coiling loops. The oscillations on the red curves are due to the vibration of the 5 N load 

cell induced by the bond breakage. Scale bars are 5 mm. g) Comparison of the engineering stress-strain 

curves, test sequences and post-test microscopy images of the large (black lines) and small (red lines) 

straight fibers in the three-point bending test. At the bottom of the fiber where the bending stress is 

maximum in tension, the large fiber specimens either show sharp crack or large plastic deformation 

(corresponding to the black solid and dashed lines respectively on the stress-strain diagram), while all 

the small fiber specimens show large plastic deformation. All stress-strain curves from ten specimens 

for each fiber are shown in the plot. Besides the three representative curves, other curves are shown in 

gray or pink for the large and small fibers respectively to show the measurement deviations. Scale bars 

are 5 mm in camera captures, and 1 mm in microscopy images. 



Supplementary Information 

Local strain calculation 

The plastic FEA utilized a beam-solid element assembly (Figure S1a). Solid elements were used in the 

middle of the coiling loop in order to avoid the convergence difficulty caused by beam elements under 

large inelastic deformation due to torsional loading 1. Since the solid element does not provide direct 

cross-sectional outputs for curvature, torsional strain and axial strain along the fiber like the beam 

element does, we extract nodes displacements from each load substep in the simulation and calculate 

local strains along the fiber during the unfolding process. Results at the unfolding percentage of 80% 

are shown here as an example. For the curvature, the trace of center nodes (Figure S1a) in solid elements 

is rebuilt in MATLAB. A circle is fitted to every three adjacent points along the trace 2. The apparent 

curvature a is calculated as the inverse of the radius of the circle. The bending curvature (Figure S1b, 

red markers) which correlates with the bending stress is calculated as = , where i is the 

corresponding initial curvature of the fiber center line. The as-calculated  is equivalent to +  

(Figure S1b, blue markers), where  and  are element outputs for the bending curvature about the Y 

and Z centroid axis of the beam element. The shear strain  is calculated based on the corner angle of 

the surface mesh (Figure S1a): = , where  is the angle on the deformed mesh, and  is the 

angle on the initial mesh. The shear strain at each La is averaged by 40 values around the circumference 

(Figure S1c). The as-calculated  is equivalent to  (Figure S1c, blue markers), where,  is the fiber 

radius,  is the element output of torsional strain from the beam element. The axial strain is calculated 

as = ( )/ , where  is the length between two adjacent center nodes after deformation,  is the 

initial length. The as-calculated  is equivalent to the beam element output of axial strain. 

Discontinuities exist in all three local strain results at the transition from beam element to solid element. 

This is caused by the rigid surface constraint which is necessary to assemble beam and solid element. 

 

Figure S1. Local strain results calculated from beam and solid elements at the unfolding percentage of 

80%: a) deformed meshes of beam and solid elements; b) curvature, c) shear strain, and d) axial strain 

calculated from beam (blue markers) and solid (red markers) elements. The shear strains in solid 

elements are averaged over 40 values (black markers) around the circumference at each La. 



Multilinear plastic FEA 

 

Figure S2 Piece-wise linear stress-strain curve for multilinear isotropic hardening in the plastic FEA. 

The first stress-strain point defines the yield stress (12 MPa). Subsequent points define the multilinear 

isotropic hardening behavior of the material. The last point corresponds to the fracture of the fiber in 

tensile test, while in the plastic FEA, the fiber behaves perfectly plastically after the material reaches 

the tensile strength (70.5 MPa). The data points are collected from one of the uniaxial tensile tests of 

straight PLA fiber with the diameter of 1.20 mm (gauge length = 250 mm, strain rate = 0.01 mm/mm/s). 

The tensile strength with a standard deviation for 7 specimens is 71.3  0.95 MPa. 



Tensile curves of straight fibers 

Figure S3 Stress-strain curves of straight fibers under uniaxial tension. Gauge length is 100 mm and 

crosshead rate is 500 mm/min for both fibers. 



Strain rate estimation 

Von Mises strain  (Figure S4a, blue solid line) at the top surface in the middle of the unfolding loop 

is extracted from the plastic FEA. In order to have the von Mises strain rate  (Figure S4a, red dashed 

line), we first calculate the equivalent elapsed time t after the breaking of sacrificial bond in the 

simulation, based on the pulling end displacement in the simulation and actual crosshead speed (8.33 

mm/s with an initial acceleration of 52 mm/s2) in the uniaxial tensile test. Then the local strain rate  

is obtained by differentiating  over the elapsed time t. The strain rate reaches the peak of 0.33 

mm/mm/s at p = 35%, around which the bending crack initiates at the top middle of the loop (Figure 

4a). This peak strain rate is used for both the large and small fibers in the three-point bending test. We 

approximate the strain rate in dynamic failure by the same method. In order to calculate the instantaneous 

speed after the breaking of sacrificial bond in dynamic failure, we track the adjacent bond in the traction 

direction from the high speed camera captures (Figure S4b) and calculate the average pulling speed of 

the unfolding loop between each frame. The acceleration (1.327 × 105 m/s2) was obtained by a linear fit 

(Figure S4c), based on which, we calculate the equivalent elapsed time td after the breaking of sacrificial 

bond in the simulation. The von Mises strain rate (Figure S4d, orange dashed line) in dynamic failure is 

obtained by differentiating the von Mises strain (Figure S4d, blue solid line) over the elapsed time td. 

(Figure S4b). The strain rate at the top middle of the loop is 274 mm/mm/s (Figure S4d) at td = 9  

With the acceleration unchanged, the strain rate at the top middle of the loop would reach the peak of 

1492 mm/mm/s at td if the fiber backbone did not break. 

 

Figure S4. Estimation of the local strain rate at the top surface in the middle of the unfolding loop: a) 

von Mises strain (blue solid line, left Y axis) and von Mises strain rate (red dashed line, right Y axis) at 

the top surface in the middle of the unfolding loop, during the normal unfolding process of the loop 

without dynamic failure. The bottom and top X axis represent the unfolding percentage and elapsed time, 

respectively. They correspond to each other and serve as different references for the unfolding process. 



b) High speed imaging of the loop retraction after the breaking of sacrificial bond in dynamic failure. 

The speed of the loop retraction at td 

distance of the tracking point in ii – iv relative to its initial position at td  in i. Scale bar is 5 mm. 

c) Linear fit of the loop retraction speed over elapsed time. d) von Mises strain (blue solid line, left Y 

axis) and von Mises strain rate (orange dashed line, right Y axis) at the top surface in the middle of the 

unfolding loop, during the rapid unfolding process of the loop in dynamic failure. Simulation results, 

such as the von Mises strain and strain rate, are extracted from 101 load substeps and plotted as 

continuous lines here for the sake of visual demonstration. 



DSC test of large and small fibers 

 

Figure S5. DSC results of FDM-extruded PLA fibers. The fibers were extruded at 230 oC on the 

conveyor belt in ambient air with two nozzles with different diameters (1 mm and 0.3 mm). The belt 

speed is equal to the extruding speed. The large and small fibers are 1.2 mm and 0.37 mm in diameter, 

respectively. 

Thermal analysis of PLA fibers was performed in a DSC instrument (DSC Q2000) with the heating 

program found in the literature 3. The temperature was first held at 25 oC for 3 min, and then increased 

to 200 oC with a rate of 2 oC/ min. The samples were cut from the same batch of straight fibers for the 

three-point bending test. The sample weight was 5.8 mg for the large fiber and 5.2 mg for the small fiber. 

The degree of crystallinity  of the specimen was calculated by the following equation: 

= × 100 

where,  is the enthalpy of fusion,  is the enthalpy of cold crystallization,  is fusion 

enthalpy of 100% crystalline PLA, which is 93 J/g 3.  

The calculated crystallinity is approximately 2.5% for the large fiber and 1.1% for the small fiber, 

which are around the crystallinity of as-received PLA filament (2.4%) reported in the literature 3. 



Toughness enhancement 

 

Figure S  Apparent stress-strain curves of small fiber with three coiling loops. All ten test specimens 

are plotted to show the deviation. The stress-strain curve of the straight small fiber is also plotted as a 

benchmark to show the toughness enhancement in coiling fibers. 

Table S1 Toughness values of the small fiber with three coiling loops. The benchmark toughness value 

of the straight fiber is 1.1 kJ/kg. 

 Toughness (kJ/kg)

Average Maximum Minimum 

3 coiling loops (small fiber) 5.51 5. 5.15

%Benchmark 500% 533% % 
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