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Abstract 

Accurate numerical homogenization necessitates the thorough determination of the 

Representative Volume Element (RVE). This paper demonstrates that common 

techniques, based on studying the convergence rate of the effective properties with 

respect to the volume element size, are invalid for a certain range of microstructures and 

yield erroneous estimates of their effective properties. Different RVE determination 

methods were tested for the case of composites reinforced by randomly oriented and high 

aspect ratio fibers. Following the failure of traditional RVE determination methods, we 

proposed a new RVE determination criterion that is not based on the average property 

stability, but its statistical variations. Our new proposed criterion has been shown to be 

more accurate than other criteria in computing the effective properties of composites for 

aspect ratios up to 60. Moreover, the proposed criterion does not necessitate a 

convergence study over the volume element size, hence reducing considerably the RVE 

determination cost. Finally, our work questions the validity of many published works 

dealing with composites including heterogeneities of high aspect ratios. 

Keywords: numerical homogenization, representative volume element, finite element, 

random orientation, fiber composites. 
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1 Introduction 

Three-dimensional (3D) numerical homogenization can deliver accurate effective 

properties for composites with arbitrary microstructures. Several authors have studied 

specific microstructures, such as randomly dispersed spheres [1] or aligned fibers [2], 

using 3D numerical homogenization methods based on the Finite Element (FE) and Fast 

Fourier Transforms (FFT). However, only a few works on Randomly Oriented Fiber 

Reinforced Composites (ROFRCs) are reported in the literature and are limited, due to 

computational challenges, to low volume fractions (e.g., Lusti and Gusev up to 1% [3], 

Mortazavi et al. at 1% and 3% [4]) and low fibers aspect ratios AR fiber fiberl d  where 

fiberl  is the fiber length and fiberd  is the fiber radius (e.g., AR 5  in Bohm et al. [5], 

AR 15  in Kari et al. [6]). Most importantly, most ROFRCs numerical studies were 

conducted without a rigorous determination of the Representative Volume Element 

(RVE). In the sequel, the “apparent properties” refer to the properties of an arbitrary 

volume element, whereas “effective properties” refer to that of the RVE. 

The RVE determination is of paramount importance to numerical homogenization 

methods since it ensures accurate estimations of the effective properties. The RVE is 

classically defined as a volume of the material large enough to represent the material 

macroscopic behavior, i.e. a volume that yields the same effective properties as the bulk 

composite. The volume of the material is hereby quantified by the number of 

heterogeneities/fibers that are represented within. Larger volume elements include larger 

number of heterogeneities. The process of establishing the RVE is traditionally based on 



3 

 

the criterion of apparent property stability, within a tolerance, when incrementing the 

number of heterogeneities in the composite volume [7, 8]. However, no studies have 

verified the validity of this method for the case of heterogeneities with high aspect ratios 

(AR>10). The RVE determination process generally requires the numerical 

homogenization of a large number of random microstructure realizations (i.e., 3D virtual 

images of ROFRC microstructures) for a series of volumes with an incrementing number 

of heterogeneities (e.g., number of fibers represented in the ROFRC virtual image) [8]. 

The high computational cost of the RVE determination process for ROFRCs has lead 

many authors to ignore the elementary RVE concept in their studies [3-6]. As a result, 

one could question the accuracy of the results in most of the published papers dealing 

with ROFRCs.  

The objective of this paper is to rigorously study the RVE determination process for 

the case of ROFRCs with different aspect ratios. Different methods of RVE 

determination were tested through a series of FE numerical simulations of a ROFRC with 

5% volume fraction of fibers and for different aspect ratios. The validity of the different 

RVE determination methods was assessed by comparing their corresponding effective 

properties to those of very large volumes. To the authors’ knowledge, the RVE 

determination has neither been rigorously analyzed nor even attempted, yet, for ROFRCs. 

The challenges for each step of a numerical homogenization process are first 

reviewed. In Section 3, several RVE determination criteria and methods are presented. 

Section 4 describes briefly the numerical simulations and the parameters used in this 

study. Section 5 contains a comparison between the results of different RVE 

determination methods. Finally, the main conclusions of this work are listed in Section 6. 
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2 Background 

Most numerical homogenization studies follow the methodology described below. 

First, a 3D image of a random microstructure is generated (Section 2.1). Then, the 3D 

image is discretized following the technique of FE or FFT (Section 2.2). Boundary 

conditions are then enforced on the model (Section 2.3), followed by the computation of 

the microstructure apparent properties (Section 2.4). Several techniques can help 

reducing the computational cost of the numerical homogenization process (Section 2.5). 

Finally, the RVE is determined by analyzing the numerical results of several random 

microstructures (Section 2.6).  

2.1 Random microstructure generation 

The first step in numerical homogenization of ROFRCs is to generate a 3D image of a 

microstructure where the fibers are randomly positioned and oriented. Different methods 

are commonly used for constructing random microstructure volumes, namely: random 

sequential adsorption (RSA) [9, 10], Monte-Carlo simulations [7], molecular dynamics 

simulations [1, 11], random-walk methods [12] and experimental image reconstruction 

techniques [13]. The RSA algorithm [9, 10], presented herein, has been the most 

commonly used method for random microstructures generation due to its simplicity. 

Among the other above-mentioned methods, only the random-walk method has been 

shown recently to generate more compact packings for ROFRCs [12]. However, the 

method is limited to bended fibers only, which are not desired in our case since this work 

aims at comparing the computed effective properties with that estimated from 

micromechanical analytical models (e.g., Mori-Tanaka [14]) that assume straight fibers. 
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The RSA method consists of sequentially adding fibers into a volume, while checking 

for contact interferences with all previously generated fibers, until the target volume 

fraction is reached. If a newly added fiber overlaps with another fiber, it is removed and 

then repositioned randomly in the same volume. This repositioning operation is repeated 

until the new fiber location is free from interferences. However, achievable 

microstructures by RSA are limited to low volume fractions, due to fiber interpenetration, 

also known as the jamming limit [9]. The RSA process becomes even more complicated 

for high aspect ratio fibers because they have more probability to interfere with each 

other. This can be observed in the percolation theory where it is predicted that longer and 

randomly oriented fibers have an increased probability of forming a connected network 

[15]. This explains partially why ROFRCs efforts have been limited to low aspect ratios. 

Kari et al. [6] proposed a modification to the original RSA scheme to overcome the 

jamming limit by adding smaller fibers to fill-up the volume after reaching the jamming 

limit at a given initial fiber size. However, discrepancies in aspect ratios and sizes of 

fibers in the same microstructure induce very refined discretizations of microstructures, 

increasing substantially the computational cost. Therefore, there is still a need to improve 

the RSA method for randomly oriented straight fibers in order to extend the range of 

achievable volume fractions and aspect ratios. An original modification to the RSA 

scheme is proposed in Appendix A where a displacement is imposed on added fibers that 

interfere with existing fibers. 



6 

 

2.2 Numerical solution methods and geometry discretization 

The FE and the FFT methods are among the most used numerical methods to estimate 

the effective properties of composite microstructures. The latter has been reported by 

Moulinec and Suquet [16, 17] and has been recently used in a study on the effective 

properties of sphere reinforced composites [1]. The FFT method requires uniform 

discretization of a three dimensional microstructure image into equal size cubic volumes 

(i.e., voxels) in order to enjoy the computational efficiency of FFT. The principal 

advantage of this method is that it avoids the meshing difficulties usually associated with 

FE and can be fully automated, by opposition to FE where user input is required in most 

cases. However, the number of voxels required to represent adequately the geometry of 

high aspect ratio fibers becomes very important and leads to very large computational 

costs. The FE allows for a non-uniform distribution of elements (i.e., free meshes) 

permitting different levels of mesh refinements in different parts of the microstructure. 

Moreover, different types and shapes of elements can be used to accurately represent the 

fiber circular cross-section. When the meshing is complete, boundary conditions are 

enforced on the meshing as described next. 

2.3 Boundary conditions 

For an infinitely large volume, the effective properties are independent of the applied 

boundary conditions [18, 19]. Therefore, regardless of the enforced boundary conditions, 

all apparent properties should converge to the effective properties when increasing the 

number of heterogeneities. The main criterion that should be driving the choice of 

boundary conditions is the convergence rate of the apparent properties towards the 
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effective properties. It has been demonstrated [8] that periodic boundary conditions 

converge towards the effective properties for smaller volumes than uniform tractions or 

displacements. By definition, periodic boundary conditions are implemented into FFT 

methods [17]. However, the implementation of periodic boundary conditions into FE 

models is more challenging. Periodic boundary conditions application in FE packages can 

be achieved through the elimination method using Multiple-Point Constraints (MPC). In 

order to exactly meet the periodicity of the displacement field, the microstructure must be 

periodic and the meshes on opposite faces of the volume element must be identical. 

Following the meshing, all matching nodes displacements are coupled through the 

periodic boundary conditions equation: 

 

       E
2 1

2 1x x
u - u   x x ,       (1) 

 

where u(xi) is the displacement vector of the node at location xi, x1 and x2 are the 

coordinates of two matching nodes on opposite faces of the cubic volume and E is the 

applied macroscopic strain (set by the user). The reader is referred to [20] for a more 

detailed discussion on periodic boundary conditions implementation in numerical 

homogenization problems. Following the boundary conditions enforcement, the 

numerical model is solved and the apparent elastic properties are consequently 

determined as described in the next section. 

2.4 Computation of the elastic properties 

The apparent elastic tensor C  of a volume element is computed through: 
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 :  Σ C Ε ,                           (2) 

 

where Σ  is the macroscopic stress tensor. Σ  and Ε  are defined as :  

 

 Σ
V

σ x ,        (3.a)  

 Ε
V

x ,        (3.b) 

 

where  σ x  and   x  are the local stress and strain fields, respectively. Angle brackets . 

indicate an averaging over the volume V as 

 

   1
V

dV
V

 V
σ x σ x .          (4) 

 

For discretized elements, angle brackets . indicate a volume averaging of the discrete 

field: 

 

1
i i iV

V
 V

σ  σ ,               (5) 

 

where iV   and iσ   are the volume and stress attributed to the ith finite element (or 

integration point). 
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In order to show explicitly how the effective elastic tensor C  is calculated, the 

modified Voigt (Mandel) notation is used by which Eq. (2) becomes: 

 

     

     

     

     

  

1111 1122 1133 1112 1113 112311

2211 2222 2233 2212 2213 222322

3311 3322 3333 3312 3313 332333

1211 1222 1233 1212 1213 122312

1311 1322 133313

23

C C C 2C 2C 2C

C C C 2C 2C 2C

C C C 2C 2C 2C
 = 

2 2C 2C 2C 2C 2C 2C

2 2C 2C 2C 2

2

 
 
 

 
 

  
 
 
  

  

     

11

22

33

12

1312 1313 1323 13

2311 2322 2333 2312 2313 2323 23

 
2

2C 2C 2C

22C 2C 2C 2C 2C 2C

   
  
  

  
  

     
   
  
      

.  (6) 

 

In order to obtain all the terms of the apparent elasticity tensor C , each FE model can 

be solved 6 times using 6 orthogonal deformation states, namely: 

 

1 2 3 4 5 6

0 0 0  0 0

0 0 00   0

0 0 00 0   
;  ;  ;  ;  ;  

0 00 0 0 2
00 0 0 0 2

0 0 0 0 0 2










          
          
          
          

               
          
          
          
                

Ε Ε Ε Ε Ε Ε .      (7) 

 

Each deformation state is applied separately on the non-deformed FE model. By 

implementing (7) in (6), each deformation state results in a single column of the apparent 

elastic tensor C  in its matrix notation. Consequently, all 6 columns of the apparent 

elasticity tensor can be calculated. Conversely, if tractions based boundary conditions 

were to be applied, six orthogonal states of applied tractions would be needed to 
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determine the 36 terms of the compliance tensor S in its matrix notation. It should be 

noted that for infinitely large volume elements, at most 21 constants need to be 

determined due to the symmetry of the stress and strain tensors. 

It is well established that a random orientation distribution of fibers should lead to 

isotropic effective properties [21]. Therefore, only two elastic parameters are sufficient to 

describe the effective behavior of the composite. Assuming the isotropy of the volume 

element, the apparent bulk modulus k  and shear modulus G  can be calculated from C  

using the isotropy projectors resulting in the following equations expressed using the 

Einstein summation convention: 

 

 C
9
iijjk  ,     (8.a) 

  3 C C

30
ijij iijjG 

 .         (8.b) 

 

It should be noted that only two loading cases are required to estimate k  and G . 

However, we performed the 6 load cases, stated in Eq.(7), required to obtain the full 

stiffness tensor in order to study its deviation from isotropy (see Section 3.1.1) 

2.5 FE computation techniques 

ROFRCs discretized microstructures usually require large FE models with a very high 

number of degrees of freedom (DOF). With 15 randomly oriented fibers of aspect ratio 5 

and a volume fraction of 15%, Bohm et al. [5] obtained a 130,000 nodes FE model 
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(390,000 DOF). The number of DOF substantially increases for higher aspect ratios of 

fibers. The computational memory required for the solution of the corresponding FE 

models cannot be handled by typical workstation computers and classical solving 

methods. However, specific techniques can reduce the memory requirements and 

computational time of the FE computations. One important technique to significantly 

reduce the computational cost is the use of iterative solvers. Iterative solvers such as the 

Krylov subspace methods (e.g. pre-conditioned conjugate gradient) can significantly 

reduce the memory required as well as the computational time when compared to the 

direct sparse solver. These types of solvers are most efficient when used for block-like 

structures with high number of DOF (i.e., over a million) [22], as for the case of ROFRC 

volume elements. Most commercial FE packages (e.g., Abaqus/Standard v6.10, ANSYS 

v13.0) have iterative solvers already implemented but must be specified by the user. 

However, certain element types, contact or non-linearity of material properties or 

geometries can lead to ill-conditioned models which will slowly or even fail to converge. 

Another important aspect of large model computation is parallelization. Thread-based-

parallelization can be utilized to parallelize independent tasks and loops. Moreover, 

Message Passing Interface (MPI) based parallelization in domain decomposition methods 

[23-25] can be utilized in parallelizing the model on a computer cluster. FE Tearing and 

Interconnecting method (FETI) [24, 25] is a domain decomposition method which breaks 

down the model into subdomains that share only interfaces. Forces and displacements at 

the interfaces of subdomains are determined iteratively in an automated process without 

any user intervention. The N subdomains are solved in N different processes that 

communicate through the MPI. The combination of iterative solvers and parallelization 
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schemes can help widen the range of achievable volume fractions and fibers aspect ratios 

for ROFRCs. However, not every combination of parallelization scheme and solver is 

possible. For more information about FE solvers and parallelization, the reader is referred 

to [26]. 

2.6 RVE determination 

2.6.1 RVE definitions 

The validity of the numerical homogenization relies on the notion of the RVE. As 

originally described by Hill [18] and later by others [19, 27, 28], the “theoretical RVE” 

refers to a sample that is large enough 1) to include a sampling of all microstructural 

heterogeneities that occur in the composite and 2) to deliver effective properties that are 

independent of boundary conditions. The theoretical RVE definition is simple in its 

physical meaning but remains challenging to determine in practice. A more practical 

RVE definition is found in the framework of homogenization in which a “numerical 

RVE” is defined as the smallest volume element that has the same target 

property/behavior as the full scale material [7, 8]. While the theoretical RVE is specific 

for the microstructure under study (e.g., volume fraction, contrast of properties, 

heterogeneities shapes, dispersion and orientation), the numerical RVE is in addition 

specific to the targeted property/behavior (e.g., bulk modulus, shear modulus, thermal 

properties) [8, 29-31]. The numerical RVE definition is more interesting than that of a 

theoretical RVE from a practical standpoint. Numerical RVE should result in smaller 

volumes while still satisfying the homogenization primary objective of having accurate 

effective properties. 
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2.6.2 Numerical RVE determination 

A numerical RVE is usually characterized by the number of represented 

heterogeneities in the volume. The number of heterogeneities that are required in a RVE 

is estimated through the verification of specific criteria. Those RVE determination 

criteria should, necessarily, be able to identify a RVE with accurate properties and, 

ideally, with the smallest volume element as possible. Selecting appropriate RVE criteria 

is not trivial. Inadequately selected criteria can lead either to a volume smaller than the 

RVE, hence yielding erroneous results, or to a very large RVE that induces prohibitively 

large computational costs. 

The first numerical RVE criteria reported in the literature relied on the stability of the 

apparent properties of volume elements over increments of the number of heterogeneities 

in the volume [7]. Gusev [7] used this determination criterion to determine the RVE of 

randomly dispersed spheres reinforced composites. Later on, Kanit et al. [8] have 

presented an algorithm to determine the RVE defined not only by its number of 

represented heterogeneities, but also by the number of random realizations of the volume 

element required to have confidence in the results. In [8], it is shown that by performing a 

certain number of realizations with fewer heterogeneities, it is possible to obtain the same 

property as that of a single and larger RVE and with the same accuracy. However, this 

was shown to be untrue for small volume sizes, as there is a bias caused by deterministic 

size effects (e.g., boundary effects) which cannot be eliminated through ensemble 

averaging [8]. Hence the numerical RVE is defined as the representative ensemble of 

RVEr  realizations, with the fewest number of heterogeneities RVEn , which yields by 

average the composite effective properties, within a given tolerance. 
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Several determination criteria have been used in the literature [1, 8, 30-34] to 

determine RVE parameters ( , )RVE RVEn r . To the author’s knowledge, only one criterion 

was used, under several forms, to determine the number realizations required RVEr  [1, 30-

32]. The criterion aims at the determination of the ensemble size r of realizations that will 

give satisfactory confidence in the average properties. Precisely, the criterion ensures that 

the ensemble of realizations average property should be representative, within a 

tolerance, of the average of the whole statistical population of possible microstructures at 

that number of heterogeneities. In contrast, several different criteria were used to 

determine the number of heterogeneities in the RVE RVEn . The first, and most commonly 

used, criterion is that of effective property stability over increments of number of 

heterogeneities in the volume [1, 6, 7, 20, 31, 33]. The only difference from the early 

definition of the criterion, used by Gusev [7], is that the stability criterion is applied to the 

ensemble average properties and not to a single volume element for each volume size. 

Another criterion was based on increasing the number of heterogeneities until the bounds 

of effective properties, issued from uniform displacement and uniform traction boundary 

conditions, are close within a tolerance [34]. Even though this criterion is the only one to 

provide exact bounds and errors for the effective properties, uniform displacement and 

traction boundary conditions are too distant apart for high contrasts of constituents’ 

properties. It was demonstrated in [34] that uniform displacement and traction boundary 

conditions converge faster for a free-form volume element, whose side does not intersect 

with heterogeneities, than for a cubic volume element which intersects heterogneities. 

Whether the refined bounds converge quicker than periodic boundary conditions or not is 
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left for future studies since the generation of free form VE for the microstructures studied 

herein would require significant amount of work. A third criterion to determine RVEn  is 

that of enforcing that the variation/deviation of the targeted property over all realizations 

is within a tolerance of their average [33, 34]. Indeed, very low scattering of the effective 

properties would be observed if an arbitrarily large number of heterogeneities were 

included in the volume. Other RVE size determination criteria were developed based on 

geometrical and statistical properties of the realizations [33], but are not directly related 

to the effective properties and, hence, are not included in this study. 

The process of determining the RVE parameters is therefore usually done using a two-

fold convergence. First the number of realizations is incremented until satisfying the first 

criterion and determining RVEr . Second, the volume size is incremented until satisfaction 

of the second criterion and determining RVEn . This process usually leads to a very large 

number of FE models to evaluate, among which only one set will be defined as the RVE. 

Furthermore, no studies have verified the validity of the different criteria results, 

especially for the case of heterogeneities with high aspect ratios. For example, the 

stability criterion verifies only the convergence rate of the targeted property over size 

increments without any indication on the effective properties accuracy. There might be 

cases where the property converges very slowly over size increments and the numerical 

stability criterion is not strict enough to ensure that the property of interest has effectively 

stabilized. As a result, premature convergence towards false results is possible. In this 

study, an attempt was made to evaluate the accuracy of the stability criterion, but also to 

suggest and assess the robustness of new methods of RVE determination. 
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3 RVE determination methods 

Several RVE determination methods were tested to determine both RVE parameters 

( , )RVE RVEn r . Each method consists of an algorithm involving two RVE determination 

criteria. In the following, the determination criteria are first presented, followed by the 

listing of the general algorithm for all determination methods. 

3.1 Determination criteria 

Two groups of determination criteria were tested to compute the RVE parameters 

( , )RVE RVEn r . The first group lists the number of realizations RVEr  determination criteria, 

while the second group lists number of fibers RVEn  determination criteria. While the bulk 

modulus is studied below for illustration purposes, the criteria can be applied to any 

elastic property. 

3.1.1 Ensemble size criteria 

An ensemble size criterion aims at ensuring that the ensemble of realizations is large 

enough to have confidence in the ensemble average apparent properties. Two criteria are 

used: the confidence interval criterion and the ensemble isotropy criterion. 

Confidence criterion: This criterion has been used under different forms in several 

RVE determination studies [1, 8, 32]. The criterion states that the ensemble size is 

satisfactory if the confidence interval relative error is within a certain tolerance, namely: 

  


95%

con

2
ζ    k

r
n

I
tol

k
        (9) 
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where 
95%

kI  is the 95% confidence interval of the apparent bulk moduli, tol is the fixed 

tolerance, and 
r
nk  represents the arithmetic averaging of the apparent bulk moduli over 

the r realizations with n fibers each. 

Ensemble isotropy criterion: This criterion imposes the condition that the ensemble 

average properties should have the same material symmetry as the full scale material, 

which is isotropy in our case. Using this criterion, individual realizations should not be 

necessarily isotropic, but the average stiffness tensor of the representative ensemble of 

realizations should be. The average stiffness tensor isotropy should always be true for an 

arbitrarily large ensemble of realizations since the theoretical orientation averaging of the 

stiffness or compliance tensor of even a single fiber composite over all orientations 

exhibits isotropic behavior. Several isotropy indices can be found [35, 36] in the literature 

but none of them provides a percentage error measurement. It is therefore not trivial to 

define a range in which the isotropy index provides an acceptable isotropy. Moreover, 

these indices collapse the whole elasticity matrix into one single index value. This 

operation can be practical in most cases, but may lead to inaccurate isotropy 

measurements.  

A new isotropy error is hereby proposed that computes an error for each non-zero term 

of the stiffness matrix. For a single random microstructure, the isotropy error matrix is 

given by: 
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and for an ensemble of r realizations, the isotropy error matrix is expressed by: 
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where 
 ( , )k G

C  is the isotropic stiffness matrix recalculated from the apparent elastic 

properties k  and G  and ( , )k G
C  is the isotropic stiffness matrix recalculated from the 

average apparent elastic properties k  and G . 

The criterion dictates that the maximum term of the isotropy error matrix should be 

lower than a fixed tolerance: 

 

 isoζ max   r tol   ,        (12) 

 

where  max r  indicates the maximum value of the matrix components. 
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3.1.2 Volume size criteria 

Stability criterion: The property stability criterion is the most commonly used RVE 

determination criterion. It aims at the determination of the point of convergence of the 

target property when the number of heterogeneities is increased. Thus, we propose a 

generalized form of the stability criterion for an arbitrary increment of the number of 

fibers represented. To reach stability, the criterion states that the convergence rate of the 

bulk modulus should be within a certain tolerance: 

 

2
1

2 1
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δ
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  
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,          (13) 

 

where 2n  is larger than 1n , and n

 

indicates the chosen reference step size. The ratio 

between n  and 2 1n n  is hereby proposed to generalize the stability criterion for an 

arbitrary choice of volumes n1 and n2. The criterion’s ability to determine accurately the 

RVE value depends on the choice of the tolerance value and of the reference volume step 

size n . Even though this criterion works well for microstructures with randomly 

dispersed spheres [1, 7], or grains [8], the microstructure of ROFRCs with high aspect 

ratios fibers were not tested and should provide more insight into the problems that can 

be faced. 

Deviation criterion: The standard deviation of the target property is an indicator of 

the scatter in the ensemble of realizations. When the number of fibers increases, lower 

property variations should be observed. Theoretically, no variations should be observed 



21 

 

when the RVE is reached since the latter is typical of the whole microstructure. In this 

perspective, the RVE can be identified by fixing a maximum deviation tolerance for an 

ensemble of realizations: 

 

devδ    
r
n
r
n

s tol
k

  ,          (14) 

 

where r
ns  is the standard deviation of the target property for an ensemble r with n fibers 

in each volume. 

 

Averaging variations criterion (new): All previous criteria were based on the 

arithmetic mean of the apparent target property for the ensemble. The arithmetic mean 

value 
r
nk  of the apparent properties of the realizations was considered as the overall 

ensemble property. Here we consider two averages of the ensemble properties, namely 

the arithmetic and harmonic means: 
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where 
i

k  is the apparent bulk modulus of the ith realization. 
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The estimation of the average properties of the ensemble is taken as the average of 

both means:  

 

      
2

rr
r k kk 
             (16) 

 

By construction, we have that: 

      r r r
k k k              (17) 

 

Equality in Eq. (17) can only be obtained when all realizations lead to identical 

properties. This new criterion states that the RVE is obtained when the difference 

between the ensemble average properties 
r

k  and any of 
r

k  or 
r

k  is within a certain 

tolerance of their mean: 
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               (18) 

 

 

Isotropy criterion (new): This last criterion investigates if a single isotropic 

microstructure can provide accurate estimations of the effective properties. For this 

purpose, particular isotropic microstructures, within a tolerance, were searched for among 

all generated volume elements. The criterion states: 
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 isoδ max   tol   ,             (19) 

 

where   is calculated using Eq. (10). The RVE consists of the smallest volume element 

which satisfies Eq. (19). 

 

3.2  Determination algorithm 

Each RVE determination Method (M) was formed by combining an ensemble size 

criterion with a volume size criterion. Table 1 lists all methods that were used in this 

study. For all methods involving two criteria, the main algorithm is: 

1- Set the microstructure parameters: volume fraction, aspect ratio, elastic properties 

of constituents, tolerance and initial number of fibers represented in the volume 

element. 

2- Generate and solve random realizations until Criterion A is satisfied. 

3- If Criterion B is satisfied, the RVE is found; 

Else, increase the number of fibers and repeat from step 2. 

It is important to note that only 
con stabζ δΜ  and 

iso stabζ δΜ , including the stability 

criterion based on the convergence rate of the effective properties, necessarily require 

sequential increments of the number of fibers. However, an incremental approach was 

conducted for all methods in order to determine the smallest RVE possible. The estimated 

smallest RVE, for all methods, would have the least accurate effective properties. Such 
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an approach will help conduct a more rigorous analysis of the validity of the different 

methods. 

As for 
isoδΜ , all generated volumes were individually tested to find isotropic 

microstructures, as per Eq. (19). The RVE size was considered as the volume element 

with the fewest fibers that satisfies the isotropy criterion isoδ . The objective of 
isoδΜ  is 

not to test another determination criterion, but rather to investigate if a single isotropic 

microstructure is equivalent to a RVE, within a tolerance. 

 

4 Numerical method 

4.1 Numerical simulation 

More than 1200 periodic microstructures were generated in MATLABR2009a using a 

new modified RSA scheme presented in Appendix A. Figure 1 presents a microstructure 

generated using the modified RSA scheme containing 50 randomly oriented fibers of 

aspect ratio 50 with a 5% volume fraction. The geometries were meshed in ANSYS v12.0 

using 10 nodes tetrahedron elements and solved in Abaqus/Standard v.6.10 under 6 

different cases of displacement based periodic boundary conditions as stated in Eq. (7), 

resulting in a total of more than 7200 FE analyses. FE models contained more than 12 

million nodes for volumes containing 40 fibers with an aspect ratio of 60. Computations 

were performed on an IBM X server 7145-AC1 with 1.5 TB RAM and parallelized over 

6 to 12 XEON X7550 cores. 
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4.2 Material properties 

A high contrast of elastic properties of ~300, for the bulk and shear moduli of the 

fibers over that of the matrix, was fixed in order to submit the RVE determination 

methods to a rigorous case typical of nanocomposite materials. The constituent 

properties, listed in Table 2, are similar to those of an epoxy matrix reinforced by single-

walled carbon nanotube bundles [37].  

 

5 Results and discussions 

5.1 Convergence of the RVE 

Figures 2 a) and b) show the evolution of the ensemble mean bulk and shear moduli, 

respectively, for two aspect ratios of 20 and 30 and several number of fibers as a function 

of the number of realizations in the ensemble. The apparent properties shown in Figures 2 

a) and b) were computed using Eq. (8) and (15.a). The properties in all figures are 

normalized with respect to that of the matrix, while the number of fibers represented in a 

volume is denoted by n and the fibers aspect ratio by AR. The bulk and shear moduli in 

Figures 2 a) and b) show similar trends. The confidence interval for all microstructures 

narrows as more realizations are included in the average properties. Volumes with fewer 

fibers are shown to have more scattering (i.e., larger confidence intervals) and usually 

required more realizations to satisfy the confidence criterion of Eq. (9). For very few 

fibers in the volume (e.g., AR20n1 or AR30n10), it can be observed that the mean 

apparent properties, even after several realizations, are still distant apart from that 
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observed for larger numbers of fibers (e.g., AR20n30 or AR30n30). This is a 

reproduction of the bias that Kanit et al. [8] have observed for small volumes, once again 

showing the importance of determining effectively the RVE. 

Figures 3 a) and b) show the evolution of the normalized mean bulk and shear moduli, 

respectively, for increasing number of fibers. Each point represents not a single 

realization but the ensemble of realizations that were computed. The solid lines with 

downward pointing triangles represent the arithmetic mean elastic properties obtained 

using Eq. (15.a) and the dashed lines with empty circles represent the harmonic mean 

elastic properties computed using Eq. (15.b). Both means get closer to each other as the 

number of fibers increases. For AR < 20, the means quickly stabilize; however for higher 

AR the curves show a lower convergence rate and required larger volumes to stabilize. 

The higher the aspect ratio, the more difficult it was to generate microstructures with a 

high number of fibers. Usually, the last point of each curve in Figure 3 was the largest 

number of fibers that was practically possible to generate/mesh/solve with the available 

methods and computational resources. 

5.2 Ensemble size criteria analysis 

This section analyzes and compares the ensemble isotropy criterion isoζ  and the 

confidence criterion isoζ . To test both criteria, we introduce the ensemble mean property 

error with respect to that of the whole population of possible microstructures that have 

the same number of fibers: 
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where totr  is very large. Therefore, ζ  provides a rigorous comparison basis for the 

ensemble size criteria, namely, the confidence criterion conζ  and the isotropy criterion 

isoζ . Figure 4 shows the evolution of ensemble number of realizations criteria errors conζ  

and isoζ  computed using Eq. (9) and (13), respectively, and the mean property error ζ  

using Eq. (20) as a function of the number of realizations for microstructures with 10 

fibers of aspect ratio 20 at 5% volume fraction and for totr =150 (i.e., 150 realizations 

were computed). The confidence criterion conζ  is close to the mean property error ζ , both 

around 1% even for a low number of realizations. The ensemble isotropy criterion yields 

larger error values. Most importantly, the isotropy error isoζ  does not vanish when 

increasing the ensemble’s number of realizations. Same trends were observed for other 

aspect ratios. This indicates that the ensemble isotropy criterion isoζ  is too strict and 

cannot always determine ensemble sizes. It is concluded that this criterion is not ideal for 

the smallest RVE ensemble size determination. 

5.3 Volume size criteria analysis 

To analyze the property stability criterion stabδ , the deviation criterion devδ  and the 

averaging variations criterion avδ , we introduce the effective property error with respect 

to the ‘exact’ effective properties of very large volumes: 
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where maxn  indicates the largest volume size that was computed for a given aspect ratio, 

with enough realizations to satisfy the confidence criterion conζ . For AR  30, volume 

elements containing max 80n   fibers were simulated and very low scattering of the 

effective properties was observed and both arithmetic and harmonic means were almost 

identical, as seen in Figure 3. We hereby assume that those largest volume sizes of 

max 80n   simulated for AR  30 provide an accurate estimation of the effective 

properties. The results of those largest volume sizes are referred to as ‘exact properties’ 

and are used to validate the estimated effective properties of all methods listed in Table 1. 

Figure 5 shows the volume size criteria stabδ , devδ  and avδ  computed with Eq. (13), (14) 

and (18) and the effective property error δ  computed with Eq. (21) where max 80n   at 

different volume sizes n for AR = 30. For each volume size, all errors have been 

computed using the same ensemble of realizations that satisfied the confidence criterion 

conζ . For the stability criterion in Eq. (13), the number of fibers step was taken as 

10n  . In Figure 5, the deviation criterion devδ  was lower than the 5% tolerance 

threshold even for the smallest volume size including only one single fiber. In contrast, 

the effective property error δ  is larger and is over the 5% tolerance threshold for the 

smallest volume size. This observation suggests that the deviation criterion devδ  
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determines biased RVEs. Herein, a biased RVE designates a RVE which has effective 

properties errors that exceed the prefixed tolerance. The stability criterion stabδ  shows 

good agreement with the effective property error δ  only for the smallest volume size. 

However, the stability criterion stabδ  decreases very quickly with increasing volume sizes. 

For volume sizes above one single fiber, effective property errors δ  are exceedingly 

larger suggesting that the stability criterion stabδ  determines biased RVEs. The only 

criterion that is shown to be able to generate non-biased RVEs is the proposed averaging 

variation criterion avδ . The averaging variation criterion shows very good agreement with 

the effective property error. A similar trend was observed for all aspect ratios AR30. 

5.4 RVE parameters 

Following the RVE determination methods listed in Table 1, the RVE parameters 

( , )RVE RVEn r  were determined, for 5%tol  , and are listed in Tables 3 and 4 for the bulk 

and shear moduli, respectively. Other tolerance values were tested and are presented in 

Section 5.6. The same microstructure realizations were used for all determination 

methods investigated. It is observed in Tables 3 and 4 that 
isoδΜ  based on microstructure 

isotropy criterion isoδ , as well as all methods that include the ensemble isotropy criterion 

isoζ , i.e. 
iso stabζ δΜ , 

iso devζ δΜ  and 
aviso ζ δΜ , have not been able to find RVEs for AR > 20. 

Moreover, the results in Figures 3 a) and b) suggest that for an aspect ratio of 30, for 

example, the RVE should be reached as the property is seen to have converged. This 

confirms that the ensemble isotropy criterion isoζ  and the single microstructure isotropy 
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criterion are too strict. The last column in Table 3 shows the number of isotropic 

realizations found over the total number of realizations computed at that particular 

volume size. It can be concluded that finding isotropic realizations using isoδ  is not a 

trivial process. In contrast, the methods including the confidence criterion conζ , i.e. 

con stabζ δΜ , 
con devζ δΜ  and 

con avζ δΜ , reach the RVE for all volume sizes. It is also 

observed that 
con avζ δΜ , including the averaging variation criterion delivers the largest 

RVE sizes, whereas 
con devζ δΜ  generally yielded smallest RVEs containing one single 

fiber. 

5.5 Effective properties 

Tables 5 and 6 present for all methods the estimated effective bulk and shear moduli, 

respectively. Also included in Tables 5 and 6 are the ‘exact properties’ determined using 

the larger number of fibers max 80n   for ARs up to 30. The errors of the estimated 

effective properties of the different methods with respect to the ‘exact properties’ are also 

presented in Tables 5 and 6. 

For all methods that include the ensemble isotropy criterion isoζ , i.e. 
iso stabζ δΜ , 

iso devζ δΜ  and 
aviso ζ δΜ , whenever the RVE was found, the corresponding effective 

properties are relatively accurate (error under 5%), with the lowest errors found when 

combined with the averaging criterion avδ  in 
aviso ζ δΜ  (1% error or lower). 
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As for methods that include the confidence criterion conζ , 
con stabζ δΜ  and 

con devζ δΜ  

based on the stability criterion stabδ  and the deviation criterion devδ , respectively, produce 

errors, with respect to ‘exact properties’, that increase with higher aspect ratio values. 

The errors reach 6% and 10% at AR= 30 for 
con stabζ δΜ  and 

con devζ δΜ , respectively. In 

contrast, RVE volume sizes determined as per 
con avζ δΜ  show very low errors (1% or 

lower) for aspect ratios up to 30.  

The realizations which were found to satisfy the isotropy criterion isoδ  provided 

exceedingly accurate effective properties with practically zero errors with respect to 

‘exact properties’, as seen in Tables 5 and 6 . This indicates that for the case of ROFRCs 

under study, whenever an isotropic realization is found, it can serve as an accurate RVE. 

To assess the estimated effective properties for AR≥30, they are compared with FE 

results for all the number of fibers simulated as in Figures 6.a) and b) for the bulk and 

shear moduli, respectively. It can be seen in Figures 6.a) and b) that, for 
con stabζ δΜ  and 

con devζ δΜ , the determined RVEs for all aspect ratios show a bias. The stability criterion 

stabδ  induced bias in 
con stabζ δΜ  can be explained by the fact that the effective properties 

of ROFRCs with high aspect ratios of fibers have a low converging rate, lower than the 

5% tolerance, with increasing number of fibers. However, the stability criterion is 

expected, in principle, to identify accurate RVEs if the tolerance was arbitrarily small. 

Therefore, to be able to identify the real RVE using the properties stability criterion, a 

convergence study has also to be performed on the choice of tolerance. The choice of 

tolerance values is discussed in the following section. Also seen in Figures 6.a) and b), 
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con avζ δΜ  is the only method to provide realistic estimations of effective properties for all 

aspect ratios.  

Another substantial benefit of 
con avζ δΜ  is that it does not necessarily require a series 

of computations on subsequent volumes sizes to determine the RVE. If the first guess 

volume size satisfies Eq. (13), there is no need for incrementing the volume size. In 

contrast, the methods based on the stability criterion require a series of computations for 

increasing volume sizes. Therefore, 
con avζ δΜ  helps reducing the computational time of 

the whole RVE determination process. 

5.6 Tolerance analysis 

The real errors of the estimated effective properties of all methods are that which are 

calculated with respect to the ‘exact properties’. Even though the different tolerance 

definitions have different meanings than that of the real error, it would be very useful that 

a method estimates effective properties yielding errors, with respect to the exact results, 

which are equal or lower than the initial tolerance value. Such a method would ensure 

that the real errors of effective properties estimations are lower than the chosen tolerance 

value. To analyze the effect of tolerance choice, 
con stabζ δΜ , 

con devζ δΜ  and 
con avζ δΜ  were 

performed for tolerances varying from 1% to 5%. Figure 7 presents the estimated 

effective properties errors, with respect to the ‘exact properties’, using the three RVE 

determination methods (
con stabζ δΜ , 

con devζ δΜ  and 
con avζ δΜ ) for fibers aspect ratio of 30. 

The dashed line represents the case of equality between the tolerance and the error value. 

An appropriate RVE determination method should yield errors lower or equal to the 
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tolerance value. 
con stabζ δΜ  and 

con devζ δΜ  show errors larger than the tolerance value. The 

con avζ δΜ , based on the confidence and averaging variation criteria, is the only method to 

show acceptable errors for all tolerance choices. 

5.7 RVE size correlation 

Here we attempt to investigate the existence of a correlation between any RVE related 

parameter (e.g. RVE edge length) and geometrical parameters of the microstructure (e.g. 

aspect ratio of fibers). Any correlation could provide a firsthand tool for a quick 

estimation of the RVE size without performing any FE computations. Harper et al. [29] 

determined the RVEs of randomly oriented carbon fiber composites simplified in 2D 

representations using an embedded cell FE approach. They observed that the results 

always converged at the same RVE edge length which is about 4 times larger than the 

fiber length (tested for three aspect ratios: 1.8, 3.6 and 7.1 and two volume fractions: 30% 

and 50%). Figure 8 shows the RVE edge length normalized with respect to the fiber edge 

length as a function of the aspect ratio. All results are those of the RVEs determined 

using 
con avζ δΜ  for both bulk and shear moduli for a tolerance of 5%. The RVE 

normalized edge length is shown to be constant for aspect ratios of 10 or larger. 

However, the RVE normalized edge length value (around 0.5) is strictly lower than the 

normalized RVE length value of 4 that was stated by Harper et al. [29]. This finding, 

based on 3D simulations and rigorous RVE determination, can provide guidelines to 

estimate the RVE size for a specified aspect ratio without any computation, reducing 

further the RVE determination computational costs. It should be noted, however, that this 
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value is restricted to the mechanical properties simulated. It is expected that lower 

contrasts between the constituents’ properties or lower volume fractions should lead to 

smaller RVE sizes. 

6 Conclusions 

Several RVE determination methods have been presented and tested for the 

determination of both RVE parameters ( , )RVE RVEn r . The RVE was determined using 

different criteria separated in two sub-categories: ensemble size criteria and volume size 

criteria. The most important conclusions of the study are summarized in the following: 

- The property stability criterion, which is the most commonly used criterion for 

RVE determination, as well as the standard deviation criterion are inappropriate 

for determining RVEs of ROFRCs with high aspect ratios of fibers. 

- Single microstructures that yield isotropic elasticity tensors, within a tolerance, 

yield accurate effective properties. However, it becomes very difficult to obtain 

isotropic microstructures for high aspect ratios. This criterion could be added as an 

exit condition into a RVE determination algorithm in order to reduce further the 

computational time if, by chance, a realization meeting this criterion was obtained. 

- The newly proposed averaging criterion computes accurate estimations of 

ROFRCs effective properties, within a given tolerance. Moreover, the averaging 

criterion does not necessitate the computation of the apparent properties at 

different volume sizes to study the convergence, as the stability criterion does. 

This reduces substantially the computational cost related to the RVE determination 

process. 
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- The RVE edge length was found to be around half the fiber length for aspect ratios 

larger than 10, allowing firsthand quick estimations of RVE sizes. 

The above-mentioned findings have two major impacts on existing and future works: 

-  The validity of all studies relying on the property stability criterion is under 

question. In fact, the criterion was also not assessed, to the author’s knowledge, for 

other types of microstructures. 

- ROFRCs RVE determination cost is reduced due to the new proposed criterion and 

to the RVE size firsthand estimation, hence guiding the way towards numerical 

homogenization of high cost microstructures such as nanocomposites with very 

high aspect ratio reinforcements.  

However, in order to achieve higher volume fractions, and especially larger aspect 

ratios, further advancements should be made in the microstructure generation method. In 

addition, cost-efficient mesh-free techniques should be sought for solving volume 

elements containing fibers of larger aspect ratios that are impossible to solve with the 

current computational resources. 
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Fig. 1. Generated microstructure using the modified RSA method with 50 randomly 
oriented fibers having an aspect ratio of 50 and 5% volume fraction. 
 

     (a)                                     (b) 

    

 
Fig. 2. Normalized average apparent properties with respect of that of the matrix as a function 
of the number of realizations for fiber Aspect Ratios (AR) 20 and 30 and different number of 
fibers (n) ranging from 1 to 50. a) Normalized bulk modulus; b) Normalized shear modulus. 
The error bars represent a 95% confidence interval on the mean value. 
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     (a)                                     (b) 

    

 
Fig. 3. Normalized average apparent properties with respect of that of the matrix as a function of 
the number of fibers for different Aspect Ratios (AR). a) Normalized bulk modulus; b) 
Normalized shear modulus. The error bars represent a 95% confidence interval on the mean 
value. 

    

Fig. 4. Evolution of the ensemble number of realizations criteria errors conζ , isoζ  and ζ  expressed 

in Eq. (9), (10) and (20), respectively, as a function of the number of realizations in the ensemble 
for 10 fibers of aspect ratio 20. The dashed line represents the tolerance threshold of 5%. 
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Fig. 5. Evolution of the volume size criteria errors stabδ , devδ , avδ  and δ  expressed in Eq. 

(13), (14), (18) and (21), respectively, as a function of the number of fibers represented for 
AR = 30. The dashed line represents the tolerance threshold of 5%. 

      (a)                                     (b) 

      

 
Fig. 6. Normalized properties with respect of that of the matrix as a function of the number of 
fibers and the RVE results using methods 

con stabζ δΜ , 
con devζ δΜ  and 

con avζ δΜ  at 5% tolerance. a) 

Normalized bulk modulus; b) Normalized shear modulus. The error bars represent a 95% 
confidence interval on the mean value. 
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Fig. 7. Relative errors of the effective bulk modulus of RVEs determined using methods 

con stabζ δΜ , 
con devζ δΜ  and 

con avζ δΜ  with respect to the ‘exact properties’, for different values of 

tolerance and for AR=30. The dashed line represents the desired tolerance. 

 

 

Fig. 8. Correlation between the RVE edge length LRVE with respect to the length of the 
fibers represented Lfiber as a function of the fibers aspect ratio. Represented RVEs data were 
determined using 

con avζ δΜ  at 5% tolerance for bulk and shear moduli.  
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Table 1 

The RVE determination methods. 
 

 Determination of r Determination of n RVE 

Methods Criterion A Name Criterion B Name 
Effective 
property 

con stabζ δΜ  
conζ tol  Confidence 

stabδ tol  Stability 1

1

r
nk  in Eq.(13)

iso stabζ δΜ  
isoζ tol  Ensemble isotropy

      

con devζ δΜ  
conζ tol  Confidence 

devδ tol  Deviation r
nk  

iso devζ δΜ  
isoζ tol  Ensemble isotropy

      

con avζ δΜ  
conζ tol  Confidence 

avδ tol  Averaging  r
nk  

aviso ζ δΜ  
isoζ tol  Ensemble isotropy

      

isoδΜ  NA NA isoδ tol  Isotropy k  
 

 

 

 

Table 2 

Materials properties in GPa. 
 

 Bulk modulus Shear modulus

Matrix 1.67 0.77 

   

Fibers 500 231 
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Table 3 

RVE volume sizes n and number of realizations r for the bulk modulus at different 
aspect ratios for various determination Methods (M) with 5% tolerance. The last column 
indicates how many isotropic realizations were found over the ensemble size. When no 
RVE parameters are given, the RVE was not found. 
 

 con stabζ δΜ  
iso stabζ δΜ  

con devζ δΜ
iso devζ δΜ

con avζ δΜ  
aviso ζ δΜ  

isoδΜ  

AR n r n r n r n r n r n r n r/rtot 
3 1 5 1 5 1 5 1 5 1 5 1 5 1 2/30 
5 5 5 5 5 1 5 1 6 1 5 1 6 5 2/20 
10 5 5 5 5 1 5 1 13 1 5 5 5 10 3/27 
20 5 5 -- -- 1 5 10 38 5 5 20 26 -- -- 
30 5 5 -- -- 1 6 -- -- 10 5 -- -- -- -- 
40 10 5 -- -- 1 9 -- -- 30 5 -- -- -- -- 
50 5 5 -- -- 5 5 -- -- 30 5 -- -- -- -- 
60 1 7 -- -- 1 7 -- -- 40 5 -- -- -- -- 
 

 

 

Table 4 

RVE volume sizes n and number of realizations r for the shear modulus at different 
aspect ratios for various determination Methods (M) with 5% tolerance. The last column 
indicates how many isotropic realizations were found over the ensemble size. When no 
RVE parameters are given, the RVE was not found. 
 

 con stabζ δΜ  
iso stabζ δΜ  

con devζ δΜ
iso devζ δΜ

con avζ δΜ  
aviso ζ δΜ  

isoδΜ  

AR n r n r n r n AR n r n r N R 
3 1 5 1 5 1 5 1 5 1 5 1 5 1 2/30
5 5 5 5 5 1 5 1 6 1 5 1 6 5 2/20
10 5 5 5 5 1 5 1 13 1 5 5 5 10 3/27
20 5 5 -- -- 1 5 10 38 5 5 20 26 -- -- 
30 5 5 -- -- 1 6 -- -- 10 5 -- -- -- -- 
40 10 5 -- -- 5 5 -- -- 30 5 -- -- -- -- 
50 5 5 -- -- 5 5 -- -- 30 5 -- -- -- -- 
60 -- -- -- -- 1 15 -- -- 40 5 -- -- -- -- 
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Table 5 

RVE effective normalized bulk modulus at different aspect ratios for various 
determination Methods (M) with 5% tolerance. When no properties are given, the RVE 
was not found. The errors are computed in respect to the ‘exact’ results (final column). 
 

 con stabζ δΜ  
iso stabζ δΜ  

con devζ δΜ
iso devζ δΜ

con avζ δΜ
aviso ζ δΜ  

isoδΜ  Exact

AR k/km er. k/km er. k/km er. k/km er. k/km er. k/km er. k/km er. k/km 
3 1.11 0% 1.11 0% 1.11 0% 1.11 0% 1.11 0% 1.11 0% 1.11 0% 1.11 
5 1.14 0% 1.14 0% 1.15 1% 1.15 2% 1.14 0% 1.14 0% 1.13 0% 1.13 
10 1.24 2% 1.24 2% 1.27 4% 1.27 4% 1.22 0% 1.22 0% 1.22 0% 1.23 
20 1.51 5% -- -- 1.56 7% 1.48 2% 1.46 1% 1.44 1% -- -- 1.45 
30 1.77 6% -- -- 1.82 9% -- -- 1.69 1% -- -- -- -- 1.68 
40 1.94 -- -- -- 2.03 -- -- -- 1.84 -- -- -- -- -- -- 
50 2. 12 -- -- -- 2. 12 -- -- -- 2.03 -- -- -- -- -- -- 
60 2.31 -- -- -- 2.31 -- -- -- 2.15 -- -- -- -- -- -- 

 

a 

 

Table 6 

RVE effective normalized shear modulus at different aspect ratios for various 
determination Methods (M) with 5% tolerance. When no properties are given, the RVE 
was not found. The errors are computed in respect to the ‘exact’ results (final column). 
 

 con stabζ δΜ  
iso stabζ δΜ  

con devζ δΜ
iso devζ δΜ

con avζ δΜ
aviso ζ δΜ  

isoδΜ  Exact

AR 
G 

/Gm er. G 
/Gm er. G 

/Gm
er. G 

/Gm
er. G 

/Gm
er. G 

/Gm
er. G 

/Gm er. G 
/Gm 

3 1.15 0% 1.15 0% 1.15 0% 1.15 0% 1.15 0% 1.15 0% 1.15 0% 1.15 
5 1.18 0% 1.18 0% 1.20 1% 1.20 2% 1.19 0% 1.19 0% 1.18 0% 1.18 
10 1.32 2% 1.32 2% 1.35 4% 1.36 4% 1.29 1% 1.29 0% 1.30 0% 1.30 
20 1.66 5% -- -- 1.72 8% 1.63 2% 1.59 0% 1.58 0% -- -- 1.59 
30 2.00 6% -- -- 2.06 10% -- -- 1.91 1% -- -- -- -- 1.88 
40 2.24 -- -- -- 2.29 -- -- -- 2.12 -- -- -- -- -- -- 
50 2.45 -- -- -- 2.45 -- -- -- 2.35 -- -- -- -- -- -- 
60 -- -- -- -- 2.73 -- -- -- 2.54 -- -- -- -- -- -- 
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APPENDIX A - Modified RSA 

We propose an extension for the RSA algorithm in order to facilitate the generation of 

higher volume fractions and aspect ratios in random packings of straight fibers. In this 

modified algorithm, fibers are considered as straight cylinders having the same aspect 

ratio and same dimensions. A single modification to the RSA classical scheme is 

implemented when overlapping occurs, i.e. when the distance between a newly generated 

fiber f2 and an existing fiber f1 is less than the fixed minimum distance e between two 

accepted fibers. 

Let the minimum distance vector from the first fiber f1 axis to the newly generated 

fiber f2 axis be noted 12v . The second fiber f2 is translated following the 12v  direction to 

satisfy the minimum distance requirement. The vector of translation d is expressed by: 

 

12

12

  e
v

d
v         (A.1) 

 

Following the translation, the distances between the translated fiber f2 and all other 

existing fibers axes are verified. If the minimum distance is not satisfied, the fiber f2 is 

removed, and a new random fiber position and orientation are generated. Using this 

algorithm with a zero inter-fiber minimum distance, volume fractions up to 38% and 29% 

were generated for ROFRCs with aspect ratios 10 and 30, respectively. Figure 1 shows an 

example of a ROFRC generated using the modified RSA method. The microstructure 

contains 50 randomly oriented fibers of aspect ratio 50 at 5% volume fraction. The 
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microstructure is periodic, meaning that a fiber that crosses one surface of the volume 

penetrates back from the opposite surface. This condition is imperative in order to obtain 

identical FE meshes on opposite sides and, consequently, to apply periodic boundary 

conditions as expressed in Eq. (1). 
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