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RÉSUMÉ

Les infrastructures de transport se dégradent progressivement tout au long de leur vie, et
avec leur vieillissement, il est essentiel de contrôler leur état de dégradation. Les inspections
visuelles sont couramment utilisées pour collecter des données sur l’état des infrastructures
au fil du temps. La qualité des données d’inspection visuelle dépend de l’expérience de la
personne qui effectue la tâche. Certains inspecteurs ont tendance à surestimer ou d’autre vont
plutôt sous-estimer l’état de dégradation, ce qui entraîne des difficultés lors de l’interprétation
des données. Cette subjectivité dans les évaluations a été partiellement prise en compte
dans une approche basée sur des modèles d’espace d’état (SSM), qui quantifie la variance
de chaque inspecteur. La principale limite de cette approche est de supposer que tous les
inspecteurs sont sans biais. De plus, l’estimation de l’ensemble des paramètres du modèle,
y compris l’incertitude des inspecteurs, repose sur une méthode de calcul exigeante basée
sur l’optimisation par gradient. Afin d’améliorer l’approche SSM, ce mémoire examine deux
points : 1) l’inclusion des biais des inspecteurs dans le modèle d’incertitude afin d’améliorer
la capacité de prédiction, et 2) le développement d’une méthode analytique pour réduire
le coût de calcul associé à la caractérisation de l’incertitude des inspecteurs. À cette fin,
la méthode existante basée sur le gradient est modifiée afin d’estimer et d’inclure les biais
des inspecteurs. Après l’estimation du biais, la performance du modèle de dégradation est
vérifiée à l’aide de données synthétiques, et validée à l’aide de données réelles. Les résultats
de la vérification et de la validation ont montré une amélioration globale de la capacité
de prédiction du modèle de dégradation SSM. La méthode analytique permet d’estimer les
biais et les variances des inspecteurs en utilisant une approche probabiliste qui s’appuie sur
des méthodes Bayésiennes. Les analyses effectuées sur les bases de données synthétiques et
réelles ont permis de conclure que la méthode analytique est adéquate pour l’estimation de
l’incertitude des inspecteurs, bien qu’elle soit moins precise que celle basée sur le gradient. De
plus, l’implantation de celle-ci a permis de réduire le temps de calcul nécessaire à l’estimation
de l’incertitude des inspecteurs pour les deux études de cas synthétiques et réelles, ce qui
représente une réduction de 33 heures a 20 minutes dans le cas réel. Globalement, nous
recommandons d’utiliser l’approche analytique pour estimer l’incertitude des inspecteurs.
Malgré une meilleure cohérence des predictions du model de dégradations en utilisant les
paramètres estimés par la méthode basée sur l’optimisation par gradient, les estimations
faites par la méthodes analytique restent satisfaisantes et le gain en temps de calcul compense
la précision réduite.
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ABSTRACT

Transportation infrastructure are gradually degrading throughout their life, and with aging,
keeping track of their degradation state is essential. Visual inspections are commonly used
for collecting data about the state of infrastructures over time. The quality of visual inspec-
tion data depends on the experience of the individual performing the task. Some inspectors
tend to either over- or underestimate the degradation condition, which leads to difficulties
when interpreting the data. This subjectivity in evaluations was partially taken into account
in an approach based on state-space models (SSM) that would quantify the variance of each
inspector. The main limitation of this existing approach is to assume that all inspectors are
unbiased. Moreover, the estimation of the entire set of model parameters, including the in-
spectors’ uncertainty, relies on a computationally demanding gradient-based framework. To
improve the SSM-based approach, this thesis examines two points: 1) including the inspec-
tors’ biases in the uncertainty model to improve the predictive capacity, and 2) developing an
analytical framework to reduce the computational cost associated with the characterization
of the inspectors’ uncertainty. To that end, the existing gradient-based framework is modified
to estimate and include the inspectors’ biases. Following the estimation of the bias, the per-
formance of the degradation model is verified using synthetic data, and validated using real
data. The verification and validation results have shown an overall improvement in the pre-
dictive capacity of the SSM-based degradation model. The analytical framework allows the
estimation of the inspectors’ biases and variances using a probabilistic approach that relies on
Bayesian methods. The analyses performed on the synthetic and real databases have led to
the conclusion that the analytical framework is adequate for the estimation of the inspectors’
uncertainty, even though it is not as accurate as the gradient-based framework. Furthermore,
the implementation of the analytical framework has enabled reducing the computational time
required for estimating the inspectors’ uncertainty for both the synthetic and real case stud-
ies, from 33 hours to 20 minutes in the real case study. Overall, we recommend using the
analytical approach for estimating the inspectors’ uncertainty. Even though the predictive
capabilities of the SSM-KR using the parameters estimated by the gradient-based framework
have shown a better consistency, the analytical framework estimations remains satisfactory
and the gain in the computational cost compensates for the reduction in accuracy.
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ẋz Vector of hidden states associated with covariates
x State of deterioration condition in the unconstrained space
x̃ State of deterioration condition in the constrained space
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1

CHAPTER 1 Introduction

1.1 Motivation

In the context of transportation infrastructures management, one of the main requirements
for effective decision-making is to have an accurate metric for the health states of structures
over time [3]. Structural health monitoring (SHM) encompass several techniques that enable
tracking the performance of bridges and collecting data [3–5]. Those techniques fall under
three categories, 1) visual inspection, 2) sensor-based systems and 3) a hybrid of visual
inspections and sensor-based systems [6].
Visual inspections is commonly used where inspectors go on-site to grade the condition of the
structural elements in a bridge [6]. The main advantage of this method is to provide a general
evaluation for the structural condition that is not limited to a specific type of damage [7].
However, visual inspections have major drawbacks that are related to the subjectivity of the
evaluation method, as well as the scarcity of inspection data. Visual inspections are carried
out by different inspectors with varying capacity at performing the evaluation task, where
some inspectors could have a tendency to overestimate the actual degradation state, while
others to underestimate it. In addition, the inspections for each bridge are performed by
different inspectors over time, with an interval from 2 to 5 years [8].
The aforementioned limitations introduce challenges in interpreting and using the data for
modelling the degradation of bridges over time. There are different frameworks for modelling
the degradation based on visual inspections [1, 9–13]. State-space models (SSM) have been
shown to have the capacity to model the degradation based on visual inspections, while taking
into account the uncertainty of inspectors [14]. Nonetheless, the estimation of the inspectors’
uncertainty in the SSM framework assumes that the inspectors are unbiased. In addition, the
SSM-based model relies on a gradient-based approach for estimating the entire set of model
parameters including the inspectors’ uncertainty, which is computationally demanding, given
the large number of inspections across a network. The aim of this work is to improve the
overall predictive capacity of the SSM-based degradation model by estimating the inspectors’
biases. Moreover, this thesis examines how to reduce the computational cost associated with
the parameter estimation, by providing an analytical framework to estimate the inspectors’
uncertainty.
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1.2 Network-Scale Monitoring and Visual Inspections

In the context of this research, we consider a SHM database encompassing information about
visual inspections data from a network of bridges. This section provides an overview for
the network-scale information and the visual inspection method, as well as the inherent
limitations of this monitoring method.

1.2.1 Hierarchy of Information within a Network of Bridges

Figure 1.1 shows the hierarchy of information for network-scale monitoring using visual in-
spections. From Figure 1.1, the network is composed of a set of B bridgesQ = {B1,B2, ...,BB},
where each bridges Bj is composed of a set of structural categories Bj = {Sj1 ,Sj2 , ...,SjSj}, and
each category is composed of structural elements Sjs = {ej1, ej2, ..., ejEj}. An example of struc-
tural category Sjs is the category containing all the beam elements within the bridge Bj, other
examples could be cables or deckings.

ejEj
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.

.
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T
im
e
(t
)

Sj
1

BB

Sj
2

Sj
Sj

ej1 ỹj
t,1

Inspections

.

.

.
.
.
.

.

.

.

B1

ElementsCategoriesBridges

Network-Scale Monitoring

Figure 1.1 Illustration of information hierarchy for network-scale database, where the visual
inspections ỹ are performed on the element level of each bridges.

At a given year t, for a given Bridge Bj, the inspections are performed on each bridge’s
elements by a team of inspectors [8]. During the inspection, the inspector prospects for
evidence of defect in the structural elements and assess the severity of their degradation
condition [8]. The inspector Ii ∈ {I1, I2, ..., II} responsable for evaluating element ejp, grades
the condition ỹjt,p on a scale from l to u, where l represents the worst possible condition of
the element and u the perfect condition [1].
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1.2.2 Visual Inspections Uncertainty

Visual inspections are carried out mainly through the visual observation of the elements, and
sometimes backed up by the use of measuring tools or non-destructive tests [8]. The frequency
of inspections for a bridge is defined within a range from two to four years depending on
structure’s age among other factors [8]. Several inspectors can carry out inspections on one
element over the years [8]. For example, Figure 1.2 shows an illustration of visual inspections
performed on different bridges for a given network.
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Figure 1.2 Illustration of the distribution of visual inspections performed on different bridges
across the network, where each bridge can be inspected by different inspectors I1:I and at
different time intervals.

From Figure 1.2, bridge Bj has been inspected every two years, while the bridge BB is only in-
spected once every 4 years. As a result, between 2007 and 2015, there are only two inspections
available for the elements of bridge BB. Moreover, as different inspectors are performing in-
spections on the same element, the uncertainty of each inspector can induce counter-intuitive
results. Figure 1.3 shows an Illustration of inconsistencies found within the inspections per-
formed by different inspectors on a single structural element.
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Figure 1.3 Illustration of visual inspections performed on the element ej4 of the bridge Bj. Each
blue point represents the value of the degradation condition ỹjt,4 reported by the inspector at
a given year.

The data shown in Figure 1.3 presents a typical case that is representative of the variability
in the inspection data for an element. From this example, inspector I5 reported a condition
yj2008,4 = 82, while the second inspection, performed by Inspector I14, gave a degradation
condition, yj2010,4 = 88, which is higher than the previous inspection. In the absence of
maintenance on the bridge, the element should always degrade from one year to the next.
The presence of variability in visual inspection data is common, and can be attributed to the
subjective nature of the evaluation, as well as the experience of the inspector in performing
the inspection task [15]. Quantifying the uncertainty associated with visual inspection is one
of the essential steps for interpreting the inspection data and understanding the degradation
of infrastructures over time.

1.3 Research Objectives

The objectives of this research is to improve the performance of the existing SSM-based
degradation model. Therefore, this thesis focuses on the following sub-objectives:

• Estimating the inspectors’ biases using visual inspection data while relying on the
existing gradient-based framework.

• Integrating the inspectors’ biases in the degradation model and examining the impact
on its overall predictive capacity.

• Reducing the computational time required to perform the estimation of the uncertainty
parameters (biases and variances) by developing an analytical inference framework as
an alternative for the gradient-based framework.
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• Verifying the methods with synthetic data, validating them using real data, and com-
paring the performance of both frameworks.

1.4 Thesis Outline

The organisation of the thesis is as follows: Chapter 2 presents a literature review, where
existing methods and their associated limitations are discussed. Furthermore, Chapters 2
describes the theory of the SSM-based degradation model and the approximate Gaussian
variance inference (AGVI) framework, which represents the foundations that this thesis builds
upon. Chapter 3 describes the formulation of the proposed frameworks for estimating the
inspectors’ uncertainty, which includes the estimation of the bias and variance, using two
methods; an existing gradient-based method, as well as a new analytical framework. Chapter
4 presents two case studies using synthetic data for verification and real data for validation.
The case studies also include a comparison between the gradient-based and the analytical
framework. Finally, Chapter 5 concludes the thesis and highlights existing limitations in the
proposed framework, as well as future research directions.
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CHAPTER 2 Literature Review

2.1 Introduction

This chapter describes the theoretical concepts of existing methods for modelling the degra-
dation condition of structural elements based on visual inspection, as well as their limitations.
These models are Discrete Markov Models (DMM), regression-based models, and methods
that rely on Bayesian updating. Thereafter, the SSM-based degradation model is presented
along with potential improvements on the model performance

2.1.1 Modelling Degradation Using Discrete Markov Models (DMM)

DMMs rely on a discrete set of system states and the probabilities of transitioning to a state
at time t + 1 knowing the state at time t [16]. In the context of visual inspections, a time
step represents a year, the states represent degradation conditions, and the probabilities are
function of the environmental exposure, traffic and unusual extreme events.. For instance,
Figure 2.1 shows four degradation states, Excellent (x1), Good (x2), Damaged (x3) and
Seriously Damaged (x4).

DamagedGoodExcellent
Seriously

Damaged

x1 x2 x3 x4

p11 p22 p33 p44

p12

p13

p14

p34

p24

p23

Figure 2.1 Discrete Markov model states with the arrows representing all the possible tran-
sitions in a degradation model. Reproduced from [1].

An element can transition from a state xi at time t, to another state xj at time t + 1 with
a probability pij = Pr(xt+1

j |xti). The possible transitions are represented with arrows in the
figure and all the corresponding probabilities are gathered in a transition matrix Z ∈ [0, 1]4×4
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that is represented by,

Z =

xt+1
1 xt+1

2 xt+1
3 xt+1

4


p11 p12 p13 p14 xt1

0 p22 p23 p24 xt2

0 0 p33 p34 xt3

0 0 0 p44 xt4

. (2.1)

This transition matrix does not include repairs or maintenance so the condition of an element
can only degrade over time such that, pij = 0, ∀i > j. Moreover, the transition matrix can
be simplified by considering that over the course of a year, an element cannot skip a state, so
from a state xi, the element can either stay in this state with a probability of pii or transition
to the next state xi+1 with a probability of 1− pii [10,17]. Accordingly, the transition matrix
becomes,

Z =

xt+1
1 xt+1

2 xt+1
3 xt+1

4


p11 1− p11 0 0 xt1

0 p22 1− p22 0 xt2

0 0 p33 1− p33 xt3

0 0 0 1 xt4

. (2.2)

The probabilities pii are typically estimated using Maximum Likelihood Estimation (MLE)
[18], where the log-likelihood L(.) is defined by,

L(p) =
X∑
i,j

Nijlog(pij),

where Nij is the number of observed transitions from state xti to state xt+1
j , and X is the

number states. Considering the constraint ∑X
j=1 pij = 1, maximizing L(.) can be done using

the Lagrange multiplier [18], and by estimating

p̂ij = Nij∑X
j=1 Nij

,

where the hat denotes an estimate. Different methods are described to improve the estima-
tion of pij and the predictive capacity of the model in the context of using visual inspection
data [10, 11, 17, 19, 20]. However, DMMs have major drawbacks related to the limited ca-
pacity at accounting for the subjectivity of the inspectors. Theoretically, the inspectors’
uncertainty could be modelled using an observation matrix for each inspector in a Hidden
Markov Model [21]. Nevertheless, this method requires considering additional parameters
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associated with each of the new observation matrices. In practice, the amount of data nec-
essary for estimating the additional parameters is larger than what is available in common
visual inspection databases. Other limitations in the DMMs framework are the presence of
approximation errors due to the discretization of the condition and the inability to model
the speed of the degradation [22].

2.1.2 Regression Methods

Regression-based methods have also been applied to model the degradation of infrastructures
using visual inspection data [12]. A regression approach consists in modelling the relation
between covariates z and system responses y, through a function y = g(z). Artificial neural
networks (ANN) is one of the common regression approaches for modelling degradation based
on inspection data [9,23–25]. ANNs relies on a multi-layer framework composed of an input
layer, hidden layers and an output layer [26]. Each layer is composed of a set of nodes or
hidden nodes linked together by weights. Activation functions can be added to add non-
linearities. The weights of ANN are learned by comparing the output from the last layer
with the target output to obtain the error, which is propagated back in the layers to update
the weights [26]. Choosing the number of layers, nodes and the nature of activation functions
is not straightforward, and depends on the context of the application. Moreover, there are
additional challenges when applying ANNs in the context of visual inspections, such as,
1) the limited number of observations available per structural element, 2) the unbalanced
representation of the degradation condition in the network, and 3) structural attributes
selection [1,23,27,28]. As described in Section 1.2, a single element can have few information
available concerning its degradation condition over the years, which results in a limited
amount of data for the ANN model to be trained efficiently. Moreover, training an ANN on
unevenly distributed structural condition may lead to biases in the ANN model estimates.
In practice, this is challenging because most bridges are maintained in good condition.
Furthermore, existing ANNs applications have for the most part overlooked the inspectors’
uncertainty. This is because ANN requires additional adjustments to include and estimate the
uncertainty associated with each inspector. Existing studies that considered the inspectors’
uncertainty have relied on external analyses on the inspectors’ performance to define a global
uncertainty model for the entire set of inspectors [23]. Finally, learning the regression model
parameters is usually an offline process, so the model needs to be retrained whenever new
data is acquired, making the analysis time consuming.
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2.1.3 Bayesian Methods

Another approach for modelling the degradation of infrastructure is by relying on Bayesian
methods [1, 13, 29–36]. These methods depend on Bayes rule to update the posterior proba-
bility density function (PDF) of a hidden state x, using a prior knowledge and the available
observations D = {y1, ..., yD} [18], such that,

p(x|D) = p(D|x)p(x)
p(D) , (2.3)

where p(x|D) is the posterior PDF of x knowing D, p(D|x) is the likelihood function of having
the observations D = (y1, ..., yD) when the value of x is known, p(x) is the prior density of x
and p(D) is the marginal density of D also known as the evidence.
There are different variations where Bayesian methods are applied to improve the inter-
pretability of the data, as well as the predictive capacity of the degradation models, espe-
cially by using different source of data and identifying the factors influencing the quality of
visual inspection data [32, 36]. One of the common approachs are Bayesian Networks (BN),
which have been applied in the context of health monitoring [32,37,38]. The purpose of the
BN framework is to model the probabilistic dependencies among different variables or covari-
ates [39]. An example of application is aircraft maintenance, where BNs have been employed
to improve the interpretability of visual inspections [32]. In the context of SHM, BNs have
been implemented to enable factoring information about structural covariates (e.g., traffic
load) to improve the predictive capacity of a DMM degradation model [13,30,33,38].
In the context of visual inspections, state-space models (SSM) has been applied effectively
to model the the degradation condition of bridges, while enabling the estimation for the
degradation speed and acceleration [1]. The SSM framework allows for the estimation of
the inspectors’ uncertainty as well as incorporating structural attributes in the degradation
analysis. Further details about the SSM framework are provided in the next section as this
thesis builds upon this framework to improve its predictive capacity.

2.2 Network-Scale Structural Degradation Modelling

This section provides an overview of the network-scale degradation model proposed by [1],
along with its strengths and limitations. This method serves as the foundation for the
frameworks proposed in this thesis.
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2.2.1 Modelling Structural Degradation with SSM-KR

The SSM-KR method is a hybrid framework based on state-space models (SSM) [1], and
Kernel regression (KR) [40]. The SSM framework relies on a transition model and an obser-
vation model. The transition model predicts the degradation state at time t, by knowing the
degradation state at time t− 1, such that,

transition model︷ ︸︸ ︷
xjt,p = Akixjt−1,p +wt, wt : W ∼ N (w; 0,Qki)︸ ︷︷ ︸

process error

, (2.4)

with xjt,p representing the hidden state vector of the p-th element ejp of the j-th bridge Bj,
Aki is the transition matrix, wt is the process-error, and Qki is the process error covariance
matrix. The hidden states that describe the degradation of the element ejp are defined by,

xjt,p = [xjt,p ẋjt,p ẍjt,p]ᵀ, (2.5)

where xjt,p is the degradation condition of the element ejp , ẋ
j
t,p is the speed of the degradation,

and ẍjt,p is the acceleration of the degradation. The transition matrix and process-error
covariance matrix are described by,

Aki =


1 ∆t ∆t2

2

0 1 ∆t
0 0 1

 , Qki = σ2
w


∆t4

4
∆t3

2
∆t2

2
∆t3

2 ∆t2 ∆t
∆t2

2 ∆t 1

 ,

where ∆t is the time step and σ2
w is the transition error variance. The relation between the

inspection data yjt,p and the hidden states xjt,p is defined by the observation model,

observation model︷ ︸︸ ︷
yjt,p = Ckixjt,p + vt, vt : V ∼ N (v; 0, σ2

V (Ii))︸ ︷︷ ︸
observation error

, (2.6)

where Cki = [1, 0, 0] is the observation matrix, vt the observation error associated with the
i-th inspector who has performed the inspection of the element ejp at time t. Equations 2.4
and 2.6 are used in the prediction and update step of the Kalman filter (KF) [41] to predict
the Gaussian state f(xjt,p | yj1:t−1,p) = N (xt;µt|t−1,Σt|t−1) at time t, such that,

µt|t−1 = Aµt−1|t−1,

Σt|t−1 = AΣt−1|t−1A
ᵀ +Q, (2.7)
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where µt|t = E[xt|y1, y2, ..., yt] and Σt|t = cov(xt|y1, y2, ..., yt) are the expected value and
covariance matrix of the hidden state xjt,p at time t, knowing all the observation from time
1 up to time t− 1. The update of the posterior knowledge f(xjt,p | yjt,p) = N (xt;µt|t,Σt|t) at
time t is done following,

µt|t = µt|t−1 +Ktrt,

Σt|t = (I −KtC)Σt|t−1,

rt = yt − ŷt,

ŷt = Cµt|t−1, (2.8)

Kt = Σt|t−1C
ᵀG−1

t ,

Gt = CΣt|t−1C
ᵀ +R.

Equations 2.7 and 2.8 are employed recursively to estimate the hidden states at each timestep.
Figure 2.2 illustrates the degradation estimation process using the Kalman Filter for the
example from Section 1.2.2.
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(b) Update step

Figure 2.2 Example of degradation estimation of the element ej4 using the transition and
update step of the Kalman Filter from year 2010 to 2012, where the previous degradation
states µ2007:2010 are already estimated. Figure 2.2a shows the estimates from the transition
model, where the expected value µt|t−1 is represented in a blue dashed line and the confidence
interval for σt|t−1 and 2σt|t−1 are represented by the shaded areas. Similarly, Figure 2.2b shows
the model estimates after the update step associated with the inspection performed in 2012,
where the expected value µt|t is represented in a red dashed line and the confidence interval
for σt|t−1 and 2σt|t−1 are represented by the shaded areas. The inspection data is shown by the
blue points, where the error bars represents the inspector’s uncertainty estimated beforhand.
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In this example, the degradation states xt from year 2007 to 2010 have already been estimated
from the inspection data available until 2010. From Figure 2.2a, by using the transition step
defined in Equation 2.7 between the years 2010 and 2011, then between 2011 and 2012, the
hidden states x2012 are forcasted. The new inspection data y2012 available in year 2012 is used
to update the hidden states using the update step defined in Equation 2.8. Figure 2.2b shows
the expected value µt represented by a red dashed line and the confidence interval for σt|t
and 2σt|t represented by the shaded areas. By comparing the estimates from 2.2a and 2.2b,
the estimates after the update step is closer to the inspection than before. Moreover, the
confidence interval after the transition steps is increasing, this is because the process noise Q
is added to the model at each timestep. On the contrary, after the update step, the confidence
interval narrows, as adding external information to the model through the inspection and its
associated uncertainty enables the model to make more accurate estimations. The standard
deviation of each inspector σV (I1:I), the process-error standard deviation σW , the initial
degradation condition standard deviation σ0, and the initial acceleration standard deviation
σ̈0 are estimated by relying on the methods described in the Section 2.2.3. Because the
number of inspections per element is typically between one and five, it is important to
properly define the prior for the hidden states [1]. In the SSM-based degradation model,
there are two steps for the initialization of the speed’s variance (σ̇j0,p)2. The first is to rely
on the condition of the structural element such that,

(σ̇j0,p)2 = p2
1(u− µ̂1) + p2

2,

where µ̂1 is the expected value of the condition at t = 1, and p1:2 are model parameters to be
estimated. This approximation provides a simple and fast estimation for the initial variance
for the speed. However, to improve the predictive capacity of the framework, a second step is
applied by using the KR framework, which account for the similarities between bridges. The
method relies on taking advantage of the structural similarities (i.e., location, age, material)
across the structures to infer the degradation rate. These characteristics are described by
different structural attributes Z = {zj1, zj2, ..., zjQ}, where each bridge is associated with a
vector zj of Q covariates. For that end, a grid of M reference points is employed to discretize
the covariates domain, such that, Zc = [z1

c ...z
Q
c ] ∈ RMQ×Q , where each reference point is

associated with an initial speed ẋz [42]. The initial degradation speed ẋj0,p of the element ejp
is then estimated in accordance with the vector zj associated with the bridge Bj following,

ẋj0,p = (ajp)ᵀẋz + w0, w0 : W0 ∼ N (0, σ2
w0),
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where ajp is a vector of weight defined by,

ajp = k(zj,Zc(m), `)
ΣM
m=1(k(zj,Zc(m), `))

, m = 1, ..., M,

and k is the multivariate kernel function k : RQ → R defined by,

k(zj,Zc(m), `) = k

(
z1
j − z1

c(m)

`1

)
· ... · k

zQ
j − zQ

c(m)

`Q

 , m = 1, ..., M,

where k(.) is the univariate kernel function and ` = [`1...`Q] are the kernel length parameters
for each covariate. The vector of hidden states ẋz is estimated recursively while relying on the
Kalman smoother estimates [43]. Moreover, to ensure the monotonicity of the degradation,
the speed is constrained in the negative domain using the Gaussian PDF truncation method
[44], each time the criterion µ̇ + 2σ̇ is violated, where µ̇ and σ̇ are the mean and standard
deviation of the speed ẋ.
Finally, the uncertainty associated with an inspector depends on the current degradation
condition of the inspected element. An inspector is unlikely to misjudge the condition when
an element is in a perfect or poor condition, while it becomes likely to misjudge a partially
damage element because of the subjectivity of the inspections method [45]. To account for the
aforementioned phenomena, a non-linear space transformation o is applied on the inspection
data [1]. A byproduct of space transformation is to also constrain the degradation condition
estimates such that,

o :[l, u]→ R,

(x̃, n)→ x,

where the parameter n ∈ Z+ characterizes the shape of the transformation function near
the bounds u and l. The notation x̃ represents the state in the constrained space so that
x̃ ∈ [l, u].
Figure 2.3 shows an example where two Normal PDFs are transformed using the space trans-
formation function o, where Figure 2.3a shows the PDFs in the original space x̃ ∈ [25, 100],
Figure 2.3b shows the transformation function o, and Figure 2.3c shows the PDFs after the
transformation in the unbounded space x ∈ [−∞,∞]. In Figure 2.3a, the PDF represented
by a full line is far from the bounds [l, u], as a result, the corresponding PDF in Figure 2.3c
is almost unchanged by the transformation. On the other hand, the expected value of the
PDF represented by a dashed line is close to the inferior bound l = 25 in the original space,
as a result, the PDF is affected during the transformation as shown in Figure 2.3c. More
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information about the transformation function is available in Appendix A.
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Figure 2.3 Examples of state transformation with the proposed transformation function.
Reproduced from [1].

Figure 2.4 outlines how the inspection data is processed from start to finish. The data
in the bounded space is transformed to the unbounded space, thereafter, the degradation
states are estimated using the SSM-KR framework. Finally, the degradation estimates are
transformed to the bounded space to have the final degradation estimates. The parameters
to be estimated in the SSM-KR are,

θ = {σV (I1:I), σW , n, σ0, σ̈0, p1, p2, σw0, `} .

The method used for estimating the set of parameter θ is described in Section 2.2.3.

ejp ỹj
t,p yj

t,p
SSM-KR

xj
t,p

o(.)

−∞ ∞ l u

x̃j
t,p

o(.)−1

Figure 2.4 Transformation process of the data to estimate the degradation condition of the
element ejp
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2.2.2 Effect of Interventions

In addition to estimating the degradation condition over time, it is possible to estimate the
effect of interventions on structural elements [1]. An intervention consists in maintenance
actions performed on a bridge, such as cleaning or repair activities. These interventions
are grouped in categories hi, i ∈ [0, 3], and each category induces a specific improvement in
the health state of the structural element. The effect of an intervention is described by the
variables δ, δ̇ and δ̈, which are respectively the improvement in the condition, speed and
acceleration of the degradation after the intervention. Figure 2.5 shows a synthetic example
of the degradation condition and speed over time for element e53

1 that underwent intervention.
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Figure 2.5 Deterioration state example for the condition and the speed of the synthetic
structural element e184

1 , where an intervention h2 at time τ = 2017 is represented by the blue
area [1].

In this example, the true condition and speed of the element is generated for the purpose of
illustration. An intervention from the category h2 is performed in the year 2017, as a result,
the condition of the element after the intervention is higher than before the intervention,
by δ = 6 on the condition scale. Similarly, the speed of the degradation is affected by the
intervention by δ̇ = 0.2 on the speed scale. By using an intervention database, the variables
δ, δ̇ and δ̈ are estimated as hidden states along with the other hidden states of the SSM-KR
framework [1].
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2.2.3 Parameter Estimation of the SSM-KR Model

The estimation method employed to learn the parameters θ from the inspection database
relies on the Maximum Likelihood Estimation (MLE) [46]. The MLE consists in maximizing
the joint prior probability of observations given parameters θ, while assuming that all the
observations are conditionally independent given the states. The log-likelihood for the entire
network of bridges is,

L(θ) =
B∑
j=1

Ej∑
p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θ), (2.9)

where B is the total number of bridges, Ej is the total number of structural elements for the
j-th bridge, Tp is the total number of observations for the p-th element and θ is the vector
of model parameters. The objective is to optimize all the parameters in θ, such that,

θ∗ = argmax
θ

L(θ),

subject to : σ2
V (Ii) > 0,∀Ii ∈ I,

n ∈ [1, 2, 3, 4, 5],

σW , n, σ0, σ̈0, p1, p2, σw0, ` > 0.

It is possible to solve the above mentioned problem using the Newton-Raphson algorithm
within an iterative gradient-based framework [47]. The gradient-based framework relies on
two steps for estimating the model parameters. The first step is to optimize the parameters
θs = {σW , n, σ0, σ̈0, p1, p2, σw0, σV }, which provides initial values for the variance of each
insector σ2

V , as well as the parameters associated with the initial speed and acceleration.
Once the first set of parameter is estimated, the set θv = {µV (I1:I) = 0, σV (I1:I)} which
includes the standard deviations of all the inspectors is estimated with an initial value of
σV for each inspector, while the parameters θs remain fixed. Finally, the set θk = {σw0, `}
which include the KR model parameters is optimized. These steps are repeated until the
improvement in the log-likelihood is less than 0.001.
The main limitation of the gradient-based approach is the computational cost, especially as
the number of inspectors increases. The visual inspections database is composed of thousands
of bridges, which amounts to days of computations when estimating the model parameters.
Moreover, as new inspections are performed every year, the parameters need to be estimated
again to take into account the new data. To resolve these limitations, we aim to estimate
the inspectors’ standard deviation along with the other hidden states using an analytical
approach. The next section presents the Approximate Gaussian Variance Inference method
which enables the inference of the noise variance parameter of the transition model in SSM.
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This framework is used in this thesis to replace the NR framework for the estimation of the
inspectors variance.

2.3 Approximate Gaussian Variance Inference

This section begins by describing the theoretical basis of the AGVI method for estimating
the error process noise. This is followed by a simple case study to illustrate the estimation
process using AGVI.

2.3.1 Theoretical Foundation of Univariate AGVI

The Approximate Gaussian Variance Inference (AGVI) method is an analytically tractable
online Bayesian inference method developed to estimate the error variance parameter σ2

W

defined in Equation 2.4 [2]. In this section, to simplify the notation, the vector of hidden
states xjp,t describing the degradation of the element ejp at a time t is denoted as xkit . In the
AGVI method, the process error w is considered as a hidden state modelled by the random
variable w : W ∼ N (0, σ2

W ), and learned along with the other hidden state variables in the
KF framework. The vector of random variables describing the kinematic model at time t
knowing all the observations y from 1 to t, xkit : Xki ∼ N (µki,Σki) is augmented to include
the new hidden state x = [x ẋ ẍ w]ᵀ. The inference of the new hidden state is made by
the prediction and update steps from the KF, by exploiting the link between the process
noise W , the square of process noise W 2 and σ2

W , while using the Gaussian multiplication
approximation (GMA) [48].
More precisely, by relying on the definition of the variance, σ2

W can be defined as σ2
W =

var[W ] = E[W 2] − E[W ]2; considering that the mean E[W ] is assumed to be zero for the
process error, the error variance becomes σ2

W = E[W 2]. Moreover, the GMA is used to
approximate W 2 as a Gaussian variable w2

t|t : W 2 ∼ N (µW 2
, (σW 2)2). Thereafter, at any t,

the variable W 2 can be derived from W by the following equation,

µW
2

t|t = (µWt|t)2 + (σWt|t )2,

(σW 2

t|t )2 = 2(σWt|t )4 + 4(σWt|t )2(µWt|t)2. (2.10)

The expected value of the square of the process error E[W 2] can then be modeled as a
hyper random variable w2

t|t : W 2 ∼ N (µW 2
, (σW 2)2), where it has been demonstrated that,

µW
2 = E[W 2] = σ2

W [2]. Consequently, the error of the process noise σW is estimated by
updating the hyper variable w2

t|t, and the variable W can be described using the latent
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variable, such that Wt|t ∼ N (0, µW 2
t|t ). From this model and by assuming that σ2

W is constant
from time t − 1 to t, the KF prediction step gives the predictive PDF of the hidden state
vector,

µXt|t−1 =
AkiµX

ki

t−1|t−1

0


t|t−1

,

ΣX
t|t−1 =

AkiΣXki

t−1|t−1(Aki)ᵀ +Qki ΣXkiW

(ΣXkiW )ᵀ µW
2


t|t−1

,

where the term ΣXkiW is the covariance matrix between Xki and W . This knowledge is also
used for the transition of W 2 from time t− 1 to time t using,

µW
2

t|t−1 = µW
2

t−1|t−1,

(σW 2

t|t−1)2 = 3(σW 2
t−1|t−1)2 + 2(µW 2

t−1|t−1)2. (2.11)

Thereafter, the inference of σ2
W is performed using two updates steps. The first step gives

the posterior PDF f(xt|y1:t) following,

µXt|t = µXt|t−1 + ΣXY

σ2
Y

(yt − µY ),

ΣX
t|t = ΣX

t|t−1
ΣXY Σᵀ

XY

σ2
Y

,

µY = Ckiµkit|t−1,

σ2
Y = CkiΣki

t|t−1C
ki,ᵀ + σ2

V ,

ΣXY = ΣX
t|t−1C

ᵀ
t ,

where Ct =
[
Cki 0

]
. The second step updates the knowledge ofW 2 by using the relationship

between Yt|t−1, Xt|t−1, Wt|t−1, W 2
t|t−1, and W 2

t|t−1, as shown in the directed acyclic graph
displayed in Figure 2.6. The knowledge of W is known from W 2, as represented in the graph
by the solid line, using the Equations 2.10 and the knowledge ofW 2 is derived fromW 2 using
Equations 2.11.
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X
t|t−1

W
t|t−1 W 2

t|t−1 W 2
t|t−1

µW 2

t|t−1

(
σW 2

t|t−1

)2
Y
t|t−1

Figure 2.6 Acyclic graph for the online inference of the variance parameter. Reproduced
from [2].

Finally the posterior PDF of W 2
t|t is obtained from W 2

t|t−1, W 2
t|t and W 2

t|t−1 using,

µW
2

t|t = µW
2

t|t−1 +Kt(µW
2

t|t − µW
2

t|t−1),

(σW 2
t|t )2 = (σW 2

t|t−1)2 + (Kt)2((σW 2

t|t )2 − (σW 2

t|t−1)2), (2.12)

where, Kt =
(σW

2)
t|t−1)2

(σW2
t−1|t−1)2

. These steps are repeated for each time step to infer σ2
W . This method

was shown to be computationally efficient, and to provide reliable estimates for the error
variance term. The AGVI approach has been only applied to either theoretical toy problems
or small-scale time series problems. The next section demonstrates the performance of the
AGVI on a simple example problem.

2.3.2 Example for Variance Estimation Using AGVI

The application of the AGVI framework is demonstrated by using a simple example where the
true variance is known. In this example, the objective is to estimate the variance of a distri-
bution based on samples from a Normal random variable defined by Wtrue ∼ N (0, (σW true)2),
where (σW true)2 = 0.5. To estimate (σW true)2, we define the variable W ∼ N (0, (σW )2). In
this case, the variance of the variable W can be represented by E[W 2] and is modelled by
a random variable w2 : W 2 ∼ N (µW 2

, (σW 2)2). The estimation of the variance (σW )2 is
performed by estimating the random variable W 2.
At the beginning of the estimation process, the initial values for the mean and variance of
W 2 are defined by the prior µW 2

0 = 2 and (σW 2
0 )2 = 1. Updating the prior of µW 2

0 , (σW 2
0 )2 is

done sequentially based on samples from the true distribution Wtrue. The sequential updates
starts by updating the expected value µW 2

t|t and variance σW 2

t|t of W 2 using Equations 2.10.
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Thereafter, the expected value µW 2

t|t−1 and variance σW 2

t|t−1 are estimated using the transition
defined in Equations 2.11. Using µW

2

t|t , µW
2

t|t−1, σW
2

t|t , and σW
2

t|t−1 estimates, it is possible to
update the prior PDF of W 2 by relying on Equations 2.12. The aforementioned operations
are repeated recursively for each sample until convergence. It should be noted that in the
context of this example the index t is employed as a reference for the sample index.
Figure 2.7 shows the updates on the PDF of W 2 as represented by the expected value µW 2

and the confidence interval for σW 2 , and 2σW 2 , while the true value (σW true)2 = 0.5 is
represented by a black dashed line.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Number of Samples

σ
2 W

µW 2 ± σW 2
µW 2± 2σW 2

(σW true)
2 µW 2

Figure 2.7 Estimation of a standard deviation using the AGVI updates and samples from
a Normal distribution Wtrue ∼ N (0, (σW true)2), where (σW true)2 = 0.5 is represented by the
dashed line. The mean of the estimated value is represented by the blue line, and the shaded
areas represents the confidence intervals for σW 2 , and 2σW 2 .

From Figure 2.7, the results show that the AGVI method is able to infer the variance online
as samples are being collected. The steps performed in this example can be applied in the
context of SSM to estimate the variance associated with the process error.

2.4 Conclusion

This literature review discusses three methodologies to model the degradation condition of
structural elements based on visual inspections. The DMM is one of the common approaches
for modelling the degradation; however, this framework suffers from disadvantages, such as,
the incapacity to take into account the uncertainty associated with each inspector. This
is because estimating the inspector’s uncertainty is associated with the requirements for
estimating additional set of parameters for each inspector; which is infeasible in practice
because it requires large amounts of data. In addition, DMM approaches do not allow
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quantifying the speed of the degradation.
Another approach for modelling the degradation are regression-based methods which have
a limited number of use-cases in the literature in comparison with the DMM models. This
is due to having few inspections for each structural element (three or four per element),
which introduces challenges in capturing the time dependencies among the observations.
Furthermore, as most of the structures are maintained in a good state, it is common to have
unbalanced representations for the conditions of the structural elements (i.e., few elements
are in a poor condition), which imposes additional challenges on the regression framework.
Moreover, the parameter estimation in regression methods is done offline, and requires to
train the model again as new data becomes available each year.
The last type of method covered in the literature review is Bayesian methods, specifically, the
SSM-based framework. SSM-KR has proven to be efficient in modelling the degradation using
visual inspections while taking into account the inspectors uncertainty. However, the SSM-
based framework currently relies on an offline procedure for estimating the model parameters,
which is computationally demanding. Furthermore, it does not account for the bias of each
inspector, which affects the predicting capacity of the model.
In the next chapter, the limitations identified in the SSM-based framework are addressed by
using the AGVI framework to estimate the inspectors’ standard deviations, in addition to
introducing a new framework for estimating the bias. The proposed methods enable reducing
the computational cost for estimating the inspectors’ uncertainty parameters while having
negligible impact on the model predictive capacity.
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CHAPTER 3 Methodology

3.1 Introduction

In the existing SSM-based framework, each inspector Ii is associated with a unique obser-
vation error, such that vjt,p : V (Ii) ∼ N (0, σ2

V (Ii)), where σ2
V (Ii) is the variance of the i-th

inspector. Moreover, the estimation of the inspectors’ parameters is performed using a com-
putationally demanding gradient-based framework as described in Section 2.2.
This chapter describes the proposed analytical inference method for estimating the inspec-
tors’ uncertainty, which include the biases and the variances, describing the errors made by
inspectors. The new observation error is defined by vjt,p : V (Ii) ∼ N (µV (Ii), σ2

V (Ii)), where
µV (Ii) is the relative bias associated with inspector Ii.
The chapter starts with a general presentation of the inspectors’ relative bias, along with
the challenges associated with estimating it. Thereafter, the theoretical foundations of the
proposed analytical framework are presented, which include modifications on the state-space
model (SSM) and AGVI frameworks. The analytical framework developed in this chapter
represents a computationally efficient alternative for the gradient-based framework in esti-
mating the inspectors’ uncertainty.

3.1.1 Estimating the Relative Bias of Inspectors

One of the main objectives in this thesis is to enable the estimation of the relative bias µV (Ii)
of each inspector performing inspections on bridges. The word relative implies that while
each inspector could have a tendency to overestimate or underestimate the true condition,
the average for the biases from all inspectors is zero. Figure 3.1 shows a generic case illus-
trating how the bias of an inspector affect the observation error distribution. The histogram
represents the distribution of the errors for the observations made by the inspector. For an
unbiased inspector, the distribution is centered at zero, however, in this case, there is a shift
due to the bias. If we try to model the uncertainty associated with this inspector without
taking into account the bias, as it is done in the existing framework (Section 2.2), the model
will compensate by increasing the standard deviation of the uncertainty (in black doted line
in Figure 3.1). Using such a distribution will affect the overall performance of the model. In
this thesis, we propose to add the bias of the inspector as a hidden state variable to model
the biased error distribution (the blue line Figure 3.1).
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Figure 3.1 Illustration of the observation errors distribution of a biased inspector (yellow
histogram) and two corresponding observation models, the first one takes into account the
bias µV (Ii) of the inspector (blue line), and the second one considers the bias µV (Ii) = 0,
(black dashed line).

The estimation of the relative bias for each inspector can be performed using the same MLE
method employed for the estimation of SSM-KR model parameters presented in Section 2.2.3.
In this context, the set of parameter is increased to include the biases, µV (I1:I). Figure 3.2
presents a flowchart for the estimation of the inspectors’ uncertainty using the gradient-
based framework. The estimation is performed for one inspector at a time, starting from the
initial values θv = {µV (Ii) = 0, σV (Ii) = σV }. The updates in the inspectors’ parameters
are performed sequentially by maximizing the log-likelihood L(θv) until convergence, where
θG = argmax

θv
L(θv).

Start

i = 1 θv = {µV (Ii), σV (Ii)} maxL(θv)

i = i+ 1

Figure 3.2 Flowchart for the estimation of the inspectors’ uncertainty using the gradient-based
framework, where the parameters associated with each inspector are estimated in succession.
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The pseudo-code which describe the estimation of the inspectors’ uncertainty using the
gradient-based framework is shown in Appendix B. The main limitation of such an approach
is the computational cost. Each parameter needs several epochs over the database to be op-
timized. Overcoming this limitation is possible by using an analytical inference framework,
which is proposed in the next section as an alternative to the gradient-based framework for
estimating the inspectors’ uncertainty efficiently.

3.2 Analytical Inference of Inspectors’ Uncertainty

To infer the bias and the standard deviation, each parameter is represented by a hidden state.
In this respect, the observation error term v is represented by two random variables as in,

v : V (Ii) = Vb(Ii) + Vs(Ii), (3.1)

where Vb(Ii) and Vs(Ii) are employed for modelling the bias and the standard deviation
respectively, for any inspector Ii such that,

vb(i) : Vb(Ii) ∼ N (vb(i);µb(i), σ2
b(i)),

vs(i) : Vs(Ii) ∼ N (vs(i); 0, σ2
s(i)). (3.2)

It should be noted from Equations 3.1 and 3.2, that taking the bias into consideration in-
troduces additional uncertainty, which can be accommodated by adjusting the estimated
variance of the inspector as in, σ2

V (Ii) = σ2
b(i) + σ2

s(i). The hyper-parameters µb(i), σ2
b(i) and

σ2
s(i) fully describe µV (Ii) and σ2

V (Ii), and will be estimated using first a gradient-based
framework, then using a new analytical framework.

3.2.1 Inspectors’s Uncertainty as Hidden States in Kalman Filter

To infer the hyper-parameters µb(i), σ2
b(i) and σ2

s(i), the variables vb(i),t and vs(i),t, are considered
as hidden states along with the degradation states of the kinematic model. The hidden state
vector is augmented to include the new hidden states,

xt = [xkit vb(1) vs(1) ... vb(I) vs(I)]ᵀ. (3.3)

where xkit = [xt ẋt ẍt]ᵀ is the hidden state vector corresponding to the degradation state at
time t.
The variables Vs(Ii) and Vb(Ii), are assumed to be independent from each other and from
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the degradation state. Furthermore, the biases and standard deviations are assumed to be
stationary over time. The observation made on an element is performed by one inspector
at a time, so that when an inspection data is available at time t, only the hidden states
associated with the inspector Ii are updated. Accordingly, the hidden state vector at time t
can be represented by a shorter form,

xt =

 [xkit 0 0]ᵀ if there is no inspection at time t,
[xkit vb(i) vs(i)]ᵀ if there is an inspection at time t,

where i ∈ [1, I] is the reference number associated with the inspector performing the obser-
vation of the element at time t. The mean vector and covariance matrix of the hidden state
vector are,

µXt =


µkit

µb(i)

0

 , ΣX
t =


Σki
t 0 0

0 σ2
b(i) 0

0 0 σ2
s(i)

 .

At any time t, when there is no observation, the SSM model presented in Section 2.2 is
used without changes. However, if there is an observation at time t, the equations of the
SSM model are adapted to account for the new hidden states. The transition model for this
framework is described by,

xt = Axt−1 +wt, wt : W ∼ N (w, 0,Q), (3.4)

where the transition matrix A is defined by,

A =
Aki 02×2

02×2 I2×2

 , Aki =


1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 ,

with I representing the identity matrix and Aki is the transition matrix of the kinetic model.
The transition error covariance matrix Q is defined by,

Q =
Qki 02×2

02×2 02×2

 , Qki = σ2
w



∆t4
4

∆t3
2

∆t2
2

∆t3
2 ∆t2 ∆t

∆t2
2 ∆t 1

 ,
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with Qki the error covariance matrix of the kinetic model [49]. Using the above-described
equation, the prediction step of the KF gives the following PDF for the hidden states, xt :
Xt|t−1 ∼ N (µXt|t−1; ΣX

t|t−1), where,

µXt|t−1 =


Akiµkit−1|t−1

µb(i)

0

 , ΣX
t|t−1 =


AkiΣki

t−1|t−1(Aki)ᵀ +Qki 0 0
0 σ2

b(i) 0
0 0 σ2

s(i)

 .

The observation model (in Equation 2.6) is also modified accordingly, with yt = Cxt, where
C = [Cki 1 1]. The update step of the KF defined in the Equation 2.8 is performed ac-
cording to the new observation model to update the posterior knowledge f(xjt,p | yjt,p) =
N (xt;µt|t,Σt|t) at time t− 1 following,

µt|t = µt|t−1 +Ktrt,

Σt|t = (I −KtC)Σt|t−1,

rt = yt − ŷt,

ŷt = Cµt|t−1, (3.5)

Kt = Σt|t−1C
ᵀG−1

t ,

Gt = CΣt|t−1C
ᵀ. (3.6)

The variance matrix R is not mentioned explicitly in the equations above, as the observation
variance is taken into account implicitely in the hidden state vector. The KF prediction step
and update step are used recursively to infer the degradation hidden states, as well as, the
inspector biases; however, the estimation of Vs(Ii) is done using the AGVI approach described
in Section 3.2.2.
The initialization of the hidden states associated with the inspectors’ uncertainty is made
using weakly-informative prior for Vb(Ii) and Vs(Ii). The estimation of the aforementioned
parameters and the predictive capacity of the framework are updated by using the data over
several epochs During each epoch the entire data set available for the training is used to up-
date the inspector’s uncertainty. To avoid overfitting on the training set; a cross-validation
procedure using an independent validation set is performed throughout the parameter estima-
tion. During the estimation process, the standard deviations σb(i:I) and σs(i:I) are reinitialized
using the prior between each epochs to avoid early convergence. During the estimation for
the relative bias µb(i:I), the expected value for the initial condition µj0,p of each element ejp is
estimated as a ratio of the maximum observation as, µj0,p =

(
1− E[µb(1:I)]

u−l

)
×max(yjt,p). The

aforementioned initialization reduces the possibility of activating the deterioration speed con-
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straints (Section 2.2), and is found empirically to yield overall good estimation results. The
hidden states associated with the degradation and the inspectors’ uncertainty are updated
recursively using the KF prediction step, the KF update step, and the AGVI additional up-
date steps, which are presented in Section 3.2.2. In the following section, the AGVI method
is modified to infer the standard deviation of the observation error.

3.2.2 Inspector’s Variance Estimation Using AGVI

In this section, the AGVI method is employed to infer the inspectors’ variance variable σ2
s(i:I).

Accordingly, the equations used for the inference of σ2
W presented in Section 2.3 are adapted

to the new hidden state v2
s(i). The variable V 2

s (Ii) is approximated as a Gaussian random
variable using the GMA and can be derived at any time t from Vs(Ii) using Equation 2.10. The
expected value E[V 2

s ] is also considered as a random variable vs2,t : V s2,t|t ∼ N (µs2,t|t, σ
2
s2,t|t),

allowing the inspector’s standard deviation to be parametrizied as,

σ2
s(i) = E[V 2

s ] = µs2 .

In accordance with the AGVI, the inference of the parameter σ2
s(i) is done in two steps. First,

the posterior PDF of f(vs2,t|y1:t) is obtained through the prediction step and update step
of the KF using the matrices presented in Section 3.2.1. This knowledge is used for the
transition of V 2

s from time t − 1 to time t following Equation 2.11. In a second step, the
PDF of V s2,t|t is derived from V s2,t|t−1, V 2

s,t|t and V 2
s,t|t−1 using Equation 2.12, as shown in

the directed acylic graph in Figure 2.6. The hidden states associated with the degradation
and the inspectors’ uncertainty are updated recursively using the KF prediction step, the KF
update step, and the AGVI additional update steps.

3.2.3 The Analytical Framework for Estimating the Inspectors’ Uncertainty

Figure 3.3 illustrates the steps for the estimation process using the proposed analytical frame-
work based on the inspection data from a single bridge Bj. The flowchart on the left side
shows the sequential updates for the variables v(I1:I) associated with each inspector. For
an element ejp ∈ Bj, if an inspection yt is available at year t, the variable v(Ii) associated
with the inspector Ii is updated. The steps for updating v(Ii) for a single inspector Ii at
year t, are outlined in the flowchart on the right hand side of Figure 3.3. The first step
corresponds to the update of the variables vs2(Ii) and vb(Ii) using the Kalman update step.
Thereafter, the variable vs2(Ii) is updated with the additional AGVI update step. Following
the aforementioned update steps, it is possible to obtain vs from vs2 , where σ2

s = µs2 and
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µs = 0. The resulting estimate for the inspector’s uncertainty v(Ii) at time t is computed
by the summation of vb and vs. These update steps are performed recursively over time for
each element in the bridge Bj. To apply the methodology over the entire set of bridges Q,
the same process is repeated sequentially for each bridge Bj ∈ Q. Further details about the
analytical framework are provided in the pseudo-code in Appendix C.
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Figure 3.3 Flowchart for the estimation of the inspectors’ uncertainty using the analytical
framework and the inspection data of a single bridge Bj. On the left, the flowchart presents
the iterations performed within the bridge inspection data for estimating the entire set of
inspectors’ variables v(Ii:I). On the right, the flowchart outlines the steps corresponding to
the estimation of a single inspector’s uncertainty v(Ii) at a given time t.

3.3 Conclusion

In this chapter, a framework is proposed for improving the estimation of the inspectors’
uncertainty, and overcoming the limitations identified in Chapter 2. The improvements in-
clude modifying the observation model to take into account the bias for each inspector, as
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well as the development of an analytical inference framework. In this context, the analytical
inference framework represents a computationally efficient alternative to the gradient-based
approach for estimating the inspectors’ uncertainty. The formulation of the proposed analyti-
cal method is based on a recursive procedure for estimating the bias, and the AGVI approach
for inferring the inspectors’ standard deviations. In the next chapter, the performance of the
proposed analytical framework is examined in comparaison to the gradient-based approach.
In addition, verification and validation analyses are performed on both of the aforementioned
frameworks using synthetic and real data.
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CHAPTER 4 Case Study

4.1 Introduction

This chapter presents the results and analyses using two databases; a synthetic one where
the true parameters and deterioration states are known, and a real database from the bridge
network in the province of Quebec, Canada. These case studies are intended to : 1) quantify
the gain of performance obtained by including the inspector’s biases into the degradation
analyses, and 2) to compare the predictive capacity of the SSM-based model while using the
parameters estimated from the analytical framework, as well as the gradient-based frame-
work. In this thesis, the gradient-based framework refers to the estimation of the inspectors
uncertainty θv using the MLE approach described in Section 2.2.3, while the analytical frame-
work refers to the methodology proposed in Chapter 3. In both cases, the remaining model
parameters θs and θk that are not associated with inspectors’ uncertainty are estimated us-
ing the MLE approach.
This chapter is divided into two sections, Section 4.2 presents the verification analyses on the
synthetic database, and Section 4.3 presents the validation analyses on the real database. In
each of the aforementioned sections, the results concerning the estimation and the inclusion
of the inspectors’ biases are presented first, followed by a comparaison between the analytical
framework and the gradient-based framework.

4.2 Model Verification Using Synthetic Data

The verification of both the analytical and gradient-based framework are performed using
synthetic data, where the true condition of the structural elements and true values of the
inspectors’ parameters are known. This section presents the synthetic database as well as
the analysis and results obtained from the gradient-based and the analytical framework.

4.2.1 Synthetic Visual Inspection Data

The synthetic data is tailored to resemble the real data, where the degradation states of E =
18000 synthetic elements are generated, over a lifespan of T = 60 years, using the transition
model defined in Equation 2.4. For each structural element, 3 to 5 synthetic inspections are
sampled using the observation model defined in Equation 2.6. Other characteristics relating
to the degradation condition of the synthetic elements and structural attributes are derived
from the work of [14]. For the synthetic database, I = 250 synthetic inspectors are generated,
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where each has an observation-error model described by vt : V ∼ N (µV (Ii), σ2
V (Ii)), where

µV (Ii) is the bias of inspector Ii, and σ2
V (Ii) is its variance. The biases and variances are

generated using a uniform distribution following, µV (Ii) ∼ U(−4, 4) and σV (Ii) ∼ U(1, 6).
Figure 4.1 shows an example of synthetic visual inspections yt for a single element e103

1 ,
represented by the cyan points, where the black dashed line represents the true degradation
condition over 14 years. The true bias µV (Ii)True associated with each inspector is represented
by the shift between the inspection and the observation, so that the correction yt−µV (Ii)True
for the unbiased observations are shown by asterisks. Finally, the error bars represent the
inspectors’ standard deviations. From Figure 4.1, it is noticeable that in the year 2013 the
observation without the bias is closer to the true state. It can happen that an inspector
having a negative bias under-estimate the condition due to the variability of his inspection
data.
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Figure 4.1 An example from the synthetic database of inspections generated using true degra-
dation condition x̃103

t,1 of a structural element e103
1 performed by biased inspectors.

The verification analysis performed with synthetic data allows assessing the capacity to es-
timate the inspectors’ biases, as well as, comparing the analytical and the gradient-based
framework.

4.2.2 Verification Analyses for the Inspectors’ Uncertainty Estimated Using the
Gradient-Based Framework

Verification analyses are performed to study the capacity of the gradient-based framework to
estimate the inspectors’ biases, as well as the effects of including the biases on the predictive
capacity of the SSM-KR model. In this context, the set of parameters θG = {µV (Ii), σV (Ii)}



32

represents the parameters estimated using the gradient-based framework, while considering
the inspectors’ biases as model parameters. On the other hand, the set of parameters θG− =
{σV (Ii)} represents the parameters estimated using the gradient-based framework, while
assuming the biases µV (Ii) = 0. In both cases, the estimation of the model parameters is
done using the MLE approach described in Section 3.1.1. The initial value for the biases
is considered µV = 0, and the inspectors are assumed to be globally unbiased, so that
E(µV (Ii)) = 0. The set of estimated parameters θG is shown in Figure 4.2, where the scatter
plots show a comparison between the estimated parameters versus the true values of both
the inspectors’ standard deviations and biases. The remaining of the SSM-based model
parameters are presented in Appendix D.
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Figure 4.2 Results for the estimation of all inspectors’ parameters, the biases µV (Ii) (a), and
the standard deviations σV (Ii) (b), compared to their true value using the gradient-based
framework.

The coefficient of determination for the estimated biases with the diagonal is R2 = 91%, and
the variance of the estimates is 0, 5. In view of these results, it is possible to conclude that
the gradient-based framework is effective in estimating the model parameters associated with
each inspector. Nonetheless, it is noticeable that there is a deviation in the positive domain for
the estimated biases, this can be attributed to the monotonicity of the degradation condition.
The predictive capacity of the SSM-KR framework at modelling the elements’ degradation,
is compared using either the set of parameters θG including the biases, or θG− without
including the biases. Figure 4.3 shows an example of the degradation analysis of the element
e103

1 , where the performance of the SSM-KR using both sets are juxtaposed and compared to
the true degradation condition. The cyan points correspond to the synthetic inspection data,
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and the blue asterisks represent the observations corrected with the bias estimated for each
inspector. The black dashed line is the true degradation condition of the elements, while the
red dashed line with circle markers is the condition estimated while relying on the set θG,
and the dashed line with squares corresponds to the condition estimates while using θG−.
In this synthetic example, the framework that considers biases is closer to the true state
compared with the framework without biases, indicating that the inclusion of the bias in the
degradation analyse has improved the predictive performance for this case.
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Figure 4.3 Degradation condition analysis from synthetic inspection data ỹ16
t,1 of a synthetic

structural element e103
1 . The degradation analysis performed by the SSM-KR using the set

θG is represented with circle markers, while the one that relies on θG− is represented by
square violet markers.

To measure the model’s overall predictive capacity, we consider the average error for the
forecasted conditions and speeds for E = 500 synthetic structural elements, computed follow-
ing ∑E

p=1(xjt,p − µjt|T,p)/E, and
∑E
p=1(ẋjt,p − µ̇jt|T,p)/E, respectively. The red lines in Figure 4.4

shows the average forecast error for 10 years while considering the inspectors’ biases, and the
black dashed lines, without biases, such that µV (Ii) = 0, Figure 4.4a presents the results for
the condtion and Figure 4.4b for the speed. The light shaded areas represent the confidence
interval for the estimation within ±2σ and the dark one within ±σ.
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Figure 4.4 Average error in forecast for the degradation condition (a) and speed (b), over 10
years, for the gradient-based framework, while including the bias in red, and without biases
in black, with the confidence interval for the estimation ±2σ.

The average forecast errors for both the condition and speed are smaller for the framework
that accounts for the inspector bias, compared with the one with µV (Ii) = 0. Therefore, we
can conclude that the inclusion of the biases is improving the overall predictive capacity of
the SSM-based framework.

4.2.3 Verification Analyses for the Inspectors’ Uncertainty Estimated Using the
Analytical Framework

To verify the capacity at estimating the inspectors’ uncertainty using the analytical frame-
work, the hidden states variables θv are estimated from the same synthetic data utilized in
Section 4.2.2. The set of inspectors’ hidden states θv is represented by θA = {µb(Ii), σs2(Ii)}
when estimated using the analytical framework. The configuration for the analytical frame-
work is identical to the gradient-based framework; however, the analytical framework includes
additional hidden states variables, i.e., vb and vs2 . The prior for the expected values of the
hidden states vb and vs2 are µb = 0 and µs2 = σ2

V . The initial values of the variances of
the hidden states are assigned large values with σb = 1 and σs2 = 12. These values are
determined empirically through multiple experiments using the synthetic databased to avoid
early convergence. An example of application of the analytical inference framework for a
single inspector I143 is shown in Figure 4.5.
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Figure 4.5 Estimation process of the uncertainty parameters of inspector I143, the bias µb(143)

in (a), and the standard deviation σs(143) in (b), using the analytical framework, with the
parameters’ true value represented by the dashed line, and the blue area representing the
uncertainty associated with the estimation.

Figure 4.5a shows the bias estimates from all the observations associated with the inspector
I143, where the initial state, defined by µb = −1, 17 and σb = 1, 57, is the result of the
last epoch of the analytical inference framework. As explained in Section 3.2, the analytical
framework relies on more than one epoch, where the expected values for the hidden state vb
and vs2 , at the end of one epoch serve as prior for the expected values µb and µs2 for the next
epoch, while the standard deviations are reinitialized using their prior σb = 1, and σs2 = 12.
Similarly, Figure 4.5b shows the estimation process of σV as updated by the inspection data
from inspector I143 using the analytical framework. The true values for the bias and standard
deviation, which are represented by red dashed lines, are within in the confidence interval of
the estimated values which confirms the quality of these estimates.
Figure 4.6 compares the expected values of the estimated hidden states for all inspectors
with the true values of the inspectors’ uncertainty. The alignment with the diagonal line
in Figures 4.6a and 4.6b confirm the capacity of the analytical framework to estimate the
inspectors’ uncertainty.
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Figure 4.6 Results for the estimation of all inspectors’ hidden states, the biases µb(Ii) in (a),
and the standard deviations µs(Ii) in (b), compared to their true value using the analytical
framework.

The coefficient of determination for the estimated biases with the diagonal is R2 = 76 %,
and the variance of the estimates is 0, 47. By comparing the scatter plots from Figure 4.6
and Figure 4.2, it is noticeable that the deviation of the estimates in the positive domain is
more importante for the analytical framework than for the gradient-based one. Moreover the
deviation for largest standard deviations is explained by the fact that the larger the standard
deviation is, the more data is required to estimate it
This is because the analytical bias estimates rely on the degradation condition estimates
which are associated with uncertainties, where the gradient-based estimates are obtained
through a optimization that is less affected by the knowledge of the degradation condition.
It possible to conclude that the estimation of the inspectors’ parameters is more accurate for
the gradient-based framework, with a reduction of 12% of the R2 factor; however, the results
from the analytical framework is still consistent with the true parameters’ value. Moreover,
the hidden states associated with the inspectors’ uncertainty are estimated using only 4
epochs compared with a total of 3 000 epochs for the parameters using the gradient-based
method (shown in Figure 4.2). This is mainly attributed to the fact that in a single epoch, the
analytical inference enables updating the value of all the inspectors’ hidden states at once.
On the other hand, the gradient-based framework requires multiple epochs for updating the
parameters associated with each inspector. Consequently, the computational time associated
with estimating the inspectors’ parameters is tc = 6 minutes using the analytical framework
compared with tc = 1140 minutes using the gradient-based framework, which corresponds to
a reduction of 99 % of the computational time.
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The estimated values for the other model parameters of the SSM-based framework are re-
ported in Appendix D. The estimation of these parameters is not taken into account in
the computational time tc, as both framework have an identical timing. To evaluate the
SSM-KR performance using the aforementioned parameters, Figure 4.7 presents the average
forecast errors on the degradation condition and speed over the span of 10 years for both the
gradient-based framework (Figure 4.7a) and the analytical framework (Figure 4.7b).
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Figure 4.7 Average error in forecast for the degradation condition and speed, (a) and (b)
respectively, over 10 years, for the analytical framework in red, and gradient-based framework
in black, with the confidence interval for the estimation ±2σ.

From Figure 4.7, we can see that the overall average forecast error is approximately the same
for the two frameworks, however, the gradient-based framework slightly outperformed the
analytical framework by a small margin on the condition’s scale. Figure 4.8 shows a scatter
plot comparing the true and predicted conditions for 500 synthetic structural elements after
1, 5 and 10 years. The parameters’ values θG estimated by the gradient-based framework
have led to the condition estimates represented by the blue points, while red points are
associated with the SSM-KR that relies on the parameters θA estimated by the analytical
framework. Both frameworks have a consistent predictive capacity over time with a slightly
higher spread for the estimates obtained from the analytical inference framework.
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Figure 4.8 Scatter plot of the condition predictions made by the SSM-KR for 500 generated
elements after 1, 5 and 10 years. The estimation with the gradient-based framework estimated
parameters is presented in blue and for the analytical framework in red.

Based on the verification results in Figure 4.7 and 4.8, it is possible to conclude that the
estimation of the inspectors’ uncertainty using the analytical framework is comparable to
those from the gradient-based framework. In addition the analytical framework significantly
reduce the computational cost, and with a negligible effect on the performance of the degra-
dation model (i.e. 99 % of gain in the computational time, and 12 % of loss in accuracy for
the bias estimates).

4.3 Model Validation Using Real Data

The validation is performed on a real database from the network of bridges of the province
of Quebec, Canada. The database encompasses the inspections performed on the different
bridges of the network from 2007 up to 2019. The case study in this thesis specifically
considers the visual inspections performed on E = 51955 beam structural elements belonging
to B = 5998 bridges. The structural attributes zj employed within the SSM-based framework
are: z1

j the elements material, z2
j the age of the structure, z3

j the bridge’s location represented
by the latitude and z4

j the structural element’s condition. The selection of the aforementioned
attributes is done by estimating the kernel length ` associated with each structural attribute
available in the database, using the MLE approach as described in Section 2.2.3. Thereafter,
only the structural attributes with the lowest kernel length relatively to the attribute range of
values are considered in the analyses [1]. To perform the parameter estimation, the database
is divided into three independent sets of bridges, 1) the training set containing Etr = 42 374
elements from Btr = 1915 bridges, 2) the validation set with Ev = 6 388 elements from
Bv = 142 bridges, and 3) a test set with Et = 3 193 structural elements from Bt = 76
bridges. In this section, the real data is first employed to validate the estimation capacity
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of the gradient-based framework for the biases and then, for the validation of the analytical
framework.

4.3.1 Quantifying the Inspector’s Uncertainty Using the Gradient-Based Frame-
work

The estimation for the model parameters is performed using the MLE approach described in
Section 2.2.3. Figure 4.9a and Figure 4.9b show the histograms of the estimated inspectors’
parameters θG, while Figure 4.9c shows the histogram of the estimated standard deviations
based on θG− for the framework considering unbiased inspectors. The remaining SSM-based
model parameters estimates are presented in Appendix D.
In Figure 4.9a, the average of the estimated biases from all inspectors is 0.12, and is repre-
sented by the dashed line. The maximum value of the absolute bias is max(|µV (Ii)|) = 3.47,
while the majority of the estimated bias values are between −1 and +1. By comparing Figure
4.9b with 4.9c, neglecting the bias enlarges the standard deviation estimates; this is due to
the additional variability in the inspection data from inspectors having large bias values.
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Figure 4.9 Histograms for the estimation of the inspectors’ parameters in the transformed
space for the gradient-based framework. Figure (a) and (b) show the histogram for the
estimated biases µV (Ii) and standard deviations σV (Ii) respectively while considering biased
inspectors, while Figure (c) shows the histogram for the estimated standard deviations σV (Ii),
when the inspectors are considered unbiased.

To validate the gradient-based framework, the estimated parameters θG are used to model
the degradation of structural elements from the real database. Figure 4.10 shows an example
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where the inspection data of element e56
128 in bridge b56 are employed to perform the degra-

dation analysis using the SSM-KR framework and the estimated parameters θG and θG−.
Moreover, the last inspection performed on this element in 2019 (represented by a red circle),
was removed from the training set to use as a test set and was never used in the estimation
of the model parameters nor in the degradation model.
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Figure 4.10 Deterioration state analysis for the condition of the structural element e3
1 based

on the inspections ỹ53
t,1 ∈ [25, 100]. The inspections ỹ53

t,1 are represented by blue points, where
the asterisks represent the correction associated with the estimated bias µV (Ii), and the error
bars represent the inspectors’ standard deviation. The red point shows the hidden inspection
data that was removed from the training data to test the predictive capacity of the SSM-
based model. The expected value for the model estimates for the condition µ̃56

t|T is shown in
red dashed line when µV (Ii) 6= 0, and in black when µV (Ii) = 0. The red areas represent the
confidence interval for σModel and 2σModel while µV (Ii) 6= 0.

In Figure 4.10, to distinguish the bias estimated for each inspector, the observations corrected
with inspectors’ biases are represented by an asterisk. By comparing the analysis consider-
ing biased inspectors (red circle markers) with the one relying on unbiased inspectors (black
square markers), the addition of the bias improves the consistency with the hidden obser-
vation. Moreover, when the hidden observation is corrected with the inspector’s bias, the
degradation condition forecast overlaps the hidden observation. The network-scale perfor-
mance of both analyses considering biased inspectors and unbiased inspectors are reported
in Table 4.1, where the log-likelihood associated with the validation and test set are shown.
In both cases, the framework showing the best (i.e., the highest) log-likelihood is the one
considering biased inspectors.
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Table 4.1 Performance comparison for the different frameworks in the log-likelihood associ-
ated with the validation and test set.

Model Log-likelihood
Test set Validation set

Biased inspectors, µV (Ii) 6= 0 −35 850 −67 916

Unbiased inspectors, µV (Ii) = 0 −37 100 −68 410

4.3.2 Quantifying the Inspector’s Uncertainty Using the Analytical Framework

The validation analysis of the analytical framework is performed, first, by comparing the
parameters θA estimated using the analytical framework with θG from the gradient-based
framework, then, by evaluating the performance of the SSM-based model at predicting the
degradation based on the estimated inspectors’ uncertainty from θA and θG. The inspec-
tors’ variables estimated by the analytical framework are reported in Figure 4.11, while the
remaining SSM-based model parameters are presented in Appendix D.
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Figure 4.11 Histograms for the estimation of the inspectors’ variables θA in the transformed
space for the analytical framework while considering the relative biases. Figure (a) show the
histogram for the estimated biases µV (Ii) and Figure (b), the estimated standard deviations
σV (Ii) respectively.

The average of the estimated biases is equal to 0.63 as represented by the dashed line in Figure
4.11, while the maximum bias value is max(|µb(Ii)|) = 5.31, and most of the estimated bias
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values are between −1 and 2. By comparing the results obtained with the gradient-based
framework in Figure 4.9, the histogram for the estimated biases is not exactly centered at
zero; however, this shift is acceptable considering the range of the estimated bias values.
The computational time for both frameworks is reported in Table 4.2. The time associated
with the inspectors’ variables corresponds to the time required for estimating the inspectors’
parameters for all epochs, while the total time is for the estimation of the entire set of model
parameters θ, which includes the SSM parameters θs, the inspectors’ variables θA or θG, and
the vector of kernel regression parameters θk. Replacing the gradient-based framework by
the analytical framework in the SSM-based model reduces the total computational time by
42 %. In the gradient-based framework, the estimation of the inspectors’ variables represents
44 % of the computational time where for the analytical frameworks it is less than 1 %.

Table 4.2 Comparison for the computational time required for estimating the sets of inspec-
tors’ uncertainty θv and model parameters θ while using the analytical and gradient-based
frameworks for estimating θv.

Method used for estimating Time required for estimating
θv Inspectors’ parameters θv All parameters θ

Gradient-based framework 33 hours 75 hours

Analytical framework 0.3 hours 43 hours

To assess the predictive capacity of the SSM-based method using the variables θA, the last
inspection ỹT of the elements where removed from the training set of the degradation model.
Figure 4.12a shows a scatter plot comparing the condition states µ̃t|T−1 estimated from the
data available until T − 1 with the corresponding hidden observations ỹT. Figures 4.12b
shows the same scatter plot for the SSM-based model using the parameters θG. The forecast
period can differ for each structural element, as the number of years between two consecutive
inspections is not the same for every bridges. Each type of marker corresponds to the number
of years for the forecast period, i.e., the number of years between the last observation used
in the training and the hidden observation.
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Figure 4.12 Forecast estimation of the degradation condition versus hidden observation with
different forecast period of the SSM-based model using the estimated parameters of the
analytical framework θA in Figure (a), and gradient-based frameworks θG in Figure (b).

From Figure 4.12a, the predictive capacity of the SSM-based model shows no difference
which respect to the forecast time. The predictions are not required to match the inspection
data given that the observations do not represent the true state of the element, which is
unobservable in practice. Moreover, by comparing Figure 4.12a with Figure 4.12b, the SSM-
based model predictive capacity is not altered by the use of the analytical framework instead
of the gradient-based one for estimating the inspectors’ uncertainty.
The network-scale performance of the analytical frameworks is evaluated by the log-likelihood
for the test set associated with the SSM-KR model while using θG or θA, which are reported
in Table 4.3. Even though the gradient-based framework shows a better log-likelihood for
the test set compared with the analytical framework, the analytical framework’s predictive
capacity is still acceptable considering the results from Figure 4.12, and the improvements
in the computational time shown in Table 4.2.

Table 4.3 Performance comparison for the SSM-based framework in the log-likelihood asso-
ciated with the test set, while using the estimates from the analytical and gradient-based
frameworks.

Parameters used in the Log-likelihood for the
SSM-based model test set

θG −35 850

θA −36 220
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4.4 Conclusion

This chapter has presented the verification and validation analyses for the inclusion of the
inspectors’ bias in the degradation model, and for the estimation of the inspectors’ param-
eters using the analytical framework. Concerning the inclusion of the biases, the analyses
carried out on the synthetic data have shown a good performance for the estimation of the
inspectors’ bias using the gradient-based framework, as well as the analytical framework.
Moreover, it has been shown that the consideration of the bias in the degradation model
improves the overall predictive capacity of the SSM-KR. The synthetic analyses have also
demonstrated the capacity of the analytical framework to estimate the inspectors’ param-
eters, without significantly impacting the SSM-KR performance. In addition, The use of
the analytical framework reduces the number of epochs necessary for the estimation com-
pared with the gradient-based framework. The analyses performed using the real database
have allowed validating the performance of the model while including the relative bias for
each inspector. Even though the estimation of the gradient-based framework is overall more
consistent, the analytical framework offers a significant reduction in the computational time
while maintaining a marginally inferior performance.



45

CHAPTER 5 Conclusion

5.1 Thesis Conclusions

This research project has examined the inspectors’ uncertainty in the context of visual in-
spections on transportation infrastructures. To that end, two frameworks were developed
for estimating the inspectors’ relative biases and standard deviations. The first framework
relies on the MLE approach that is already employed for estimating the SSM-based model
parameters, while the second framework is based on the AGVI estimation framework as well
as the Kalman update step. The verification and validation analyses performed on synthetic
and real databases have led to the following conclusions:

1. The inclusion of the inspectors’ relative bias in the degradation model improves the
predictive capacity of the framework. These improvements are demonstrated by an
overall reduction of 61 % on the average forecast errors for the synthetic case, and an
increase of 2 % in the log-likelihood for the test set for the real data.

2.a. Both the analytical and gradient-based frameworks proved to be effective in quantifying
the inspectors’ relative biases.

2.b. The analytical framework implementation provides a significant gain in the computa-
tional time required for the inspectors’ uncertainty estimation, going from 33 hours
to 20 minutes given the computational recourses available for the study, however, the
accuracy of the parameters estimation is less than with the gradient-based framework.
The total computational time is reduced by 40% for the real data when using the
analytical framework for estimating the inspectors’ uncertainty.

3. It is possible to infer the variance describing the inspectors’ errors analytically using
the approximate Gaussian variance inference (AGVI) approach.

Overall, we recommend using the analytical approach for estimating the inspectors’ uncer-
tainty. Even though the predictive capacity of the SSM-KR using the parameters estimated
by the gradient-based framework have shown a better consistency, the analytical framework
estimations remains satisfactory and the gain in the computational cost compensates for the
reduced accuracy.
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5.2 Limitations

This section highlights some of the limitations of the proposed approach for the estimation
of the inspectors’ uncertainty.

5.2.1 Initialization for the Relative Biases and Standard Deviations in the An-
alytical Framework

One of the requirements for estimating the inspectors’ uncertainty using the analytical frame-
work is to define the initialization for the hidden states associated with the biases and vari-
ances. This is a challenging task due to the limited number of inspections per structural
element (i.e., 1 to 6 inspections), as well as the high uncertainty associated with each inspec-
tion points. As described in Section 4.2.3, the initial values for each inspector’s parameters
are defined as, µb = 0 and σb = 1 for the bias, and µs2 = σV and σs2 = 12 for the standard
deviation. The aforementioned initial values are defined to have a reasonably large variance
to prevent restricting the estimation to the initial expected value, and at the same time to
avoid early convergence and suboptimal parameters. In general, the initialization for the
bias and variance may required performing empirical analyses using synthetic data to de-
termine the values for σb and σs2 given the range [l, u] of the inspection data, therefore the
values provided need to be reconsidered if the range of the inspection data is different (i.e.,
[l, u] 6= [25, 100]).

5.2.2 The Global Bias for all Inspectors

In this thesis, the focus is to estimate the relative bias of each inspectors, where the word
relative indicates that the bias of one inspector is estimated in comparaison with other
inspectors, while assuming that on average they are unbiased. This assumption excludes
the possibility that the entire set of inspectors could be globally biased, meaning that on
average all inspectors are under- or over-estimating the degradation condition. To estimate
the true inspectors’ bias, it would be required to include the global bias using an additional
hidden state. However, in using such an approach, there are some challenges that remain
to be solved related to the non-identifiability of the relative and the global bias [50]. For
instance, if the global bias is 2, then all the data available is shift of +2, but with no reference
point available to compare the entire database with, it is not possible to estimate the global
bias.
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5.3 Future Work

This sections suggests possible directions for future work, to improve the degradation frame-
work.

5.3.1 Stationarity of the Observation Model Parameters

In this thesis, all inspectors’ parameter µV (Ii) and σV (Ii) are considered to be stationary. This
hypothesis implies that over a long period of time, the inspectors are assumed to maintain the
same performance. However, in reality, an inspector can improve his knowledge with more
experience, and thus, having more accurate observations from year to year. To account for
this phenomenon in the model, the biases and standard deviations of each inspector would
need to be considered as non-stationary by formulating a transition model for inspectors’
parameters.

5.3.2 Reducing the Computational Cost Associated with Learning the Degra-
dation Model Parameters

The current SSM-KRmodel includes several parameters that are estimated using the gradient-
based framework. Those parameters θs relate to the initial values of the SSM model and
θk are associated with the kernel regression framework. The potential for reducing the com-
putational cost is especially high for the θk parameters. The kernel regression has been
integrated into the framework to account for the similarity between the structural attributes
of each element, and for determining the initial speed of the degradation. To that end, the
KR method relies on a state vector ẋz which is estimated using computationally demanding
operations [14]. For example, in the beam database, which contains E = 51955 elements, the
computational time for the estimation of the θk parameters is approximately of 17 hours,
out of the 43 hours required for estimating all the SSM-KR parameters (i.e., 40% of the total
computational time). To improve the usability of the framework, a future work could focus
on replacing the KR method with an analytically tractable regression approach, such as the
TAGI method [48].
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APPENDIX A TRANSFORMATION FUNCTION FOR SSM
DETERIORATION MODEL

The proposed transformation function o−1(.) is defined for the domain x ∈ (0,∞]; to have a
function defined for x ∈ [−∞,∞],

x̃ = o−1(x) =


1

Γ(α)
∫ x 1

α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x 1
α

0 tα−1e−tdt, x < u+l
2 ,

(A.1)

where x̃ represents the state in the constrained space x̃ ∈ [l, u].
The transformation function o(.) mapping the state x̃ ∈ [l, u] to x ∈ [−∞,∞] is defined by,

x = o(x̃) =



[
1

Γ(α)
∫ x̃

0 t
α−1e−tdt

]α
, u+l

2 < x̃ ≤ u,

x̃, x̃ = u+l
2 ,

−
[

1
Γ(α)

∫ x̃
0 t

α−1e−tdt
]α
, l ≤ x̃ < u+l

2 ,

(A.2)

where the parameter α is given by: α = 2−n, with n is a positive integer n ∈ Z+. The role
of the parameter n is to control the curvature at the transformation function ends.
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APPENDIX B GRADIENT-BASED PARAMETER ESTIMATION
FRAMEWORK FOR SSM-KR DETERIORATION MODEL

Algorithm 1 Gradient-based parameter estimation framework for SSM-KR

Require: θs0: Initial SSM parameters
Require: θk0 , ẋz: Initial KR parameters and state respectively

1: L1 ← −1012 (Initial log-likelihood), ε← 0.999 (Convergence tolerance)
2: ρ1 ← 10, ρ2 ← 10 (Stall limits)
3: ζ1 ← 1, ζ2 ← 1 (Initial stall),
4: ν1 ← 300, ν2 ← 1 (Iteration limit per parameter)
5: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
6: σV (I1:I) = σV , σV ∈ θs1
7: µV (I1:I) = 0
8: L2 ← L(θs1)
9: j ← 1

10: while (Lj+1/Lj) ≤ ε or ζ1 ≥ ρ1 do
11: while (Lj+1/Lj) ≤ ε or ζ2 ≥ ρ2 do
12: Lj ← Lj+1
13: for i := 1 to I do
14: if j = 1 then
15: µV (Ii), σV (Ii)← NewtonRaphson(L(µV (Ii), σV (Ii)),θsj , ν2)
16: else µV (Ii), σV (Ii)← NewtonRaphson(L(µV (Ii), σV (Ii), ẋz),θsj , ν2)
17: Lj+1 ← L(µV (Ii), σV (I1:I))
18: if (Lj+1/Lj) ≤ 0.05 then
19: ζ2 = ζ2 + 1
20: if j = 1 then
21: θsj+1 ← NewtonRaphson(L(θsj ),θj, ν1)
22: else θsj+1 ← NewtonRaphson(L(θsj , ẋz),θj, ν1)
23: [θkj+1, ẋz]← NewtonRaphson(L(θkj ,RecursiveEstimation(ẋz)),θj, ν1)
24: Lj ← L(θj+1)
25: ζ1 = ζ1 + 1, j = j + 1

return θj+1 and ẋz (Resulting parameters)
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APPENDIX C INCORPORATION OF THE ANALYTICAL METHOD
WITHIN THE ESTIMATION FRAMEWORK FOR THE SSM-KR MODEL

Algorithm 2 Incorporation of the Analytical Method within the estimation framework for the
SSM-KR model

Require: θs0: Initial SSM parameters
Require: θk0 , ẋz: Initial KR parameters and state respectively
Require: x0, ẍ0: Initial state for condition and acceleration

1: L1 ← −1012 (Initial log-likelihood), ε← 0.999 (Convergence tolerance)
2: θs1 ← NewtonRaphson(L(θs),θs0, ν1)
3: µVs(I1:I) = σV , σV ∈ θs1, σVb(I1:I) = 12
4: µVb(I1:I) = 0, σVb(I1:I) = 1
5: L2 ← L(θs1)
6: j ← 1
7: while (Lj+1/Lj) ≤ ε do
8: while (Lj+1/Lj) ≤ ε do
9: Lj ← Lj+1

10: for p := 1 to E do
11: for t := 1 to T do
12: if j = 1 then
13: µV (Ii), σV (Ii),xt+1,p ← AnalyticalFramework(yt,p,xt,p,θsj )
14: else
15: µV (Ii), σV (Ii),xt+1,p ← AnalyticalFramework(yt,p,xt,p,θsj ,θkj , ẋz)
16: Lj+1 ← L(µV (Ii), σV (I1:I))
17: if j = 1 then
18: θsj+1 ← NewtonRaphson(L(θsj ),θj, ν1)
19: else θsj+1 ← NewtonRaphson(L(θsj , ẋz),θj, ν1)
20: [θkj+1, ẋz]← NewtonRaphson(L(θkj ,RecursiveEstimation(ẋz)),θj, ν1)
21: Lj ← L(θj+1)
22: j ← j + 1

return θj+1 and ẋz (Resulting parameters)
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APPENDIX D SSM-KR ESTIMATED MODEL PARAMETERS

In this appendix, the estimated model parameters are presented for each framework based
on inspection data from the synthetic or real database.

Table D.1 Estimation of SSM-KR model parameters for synthetic inspection data using the
gradient-based framework.

σW σ0 σV σ̈0 p1 p2 n σw0 `RBF

5.3× 10−3 1.5834 3.001 0.0499 0.0252 0.14997 4 0.1322 0.1439

Table D.2 Estimation of SSM-KR model parameters for synthetic inspection data using the
analytical framework.

σW σ0 σV σ̈0 p1 p2 n σw0 `RBF

5.43× 10−3 1.477 3.001 0.0499 0.0252 0.14996 4 0.1776 0.1811

Table D.3 Estimation of SSM-KR model parameters for real data using the gradient-based
framework.

σw σx0 σV σẍ0 p1 p2 n

4.543× 10−3 1, 0212 2, 385 0.0499 0.02447 0.1499 4
σw0 `AAK `M12 `M12 `M52

0.1028 0.050 22.40 0.9918 7.0218

Table D.4 Estimation of SSM-KR model parameters for real data using the analytical frame-
work.

σw σx0 σV σẍ0 p1 p2 n

5.384× 10−3 1 2.385 0.0499 0.0254 0.1499 4
σw0 `AAK `M12 `M12 `M52

0.1390 0.05 23.289 1.0402 6.3541
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