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Relative Stability in the Sup-norm and
Input-to-state Stability in the Spatial Sup-norm

for Parabolic PDEs
Jun Zheng, Guchuan Zhu, Senior Member, IEEE , and Sergey Dashkovskiy

Abstract— In this paper, we introduce the notion of rela-
tive K-equi-stability (RKES) to characterize the uniformly
continuous dependence of (weak) solutions on external
disturbances for nonlinear parabolic PDE systems. Based
on the RKES, we prove the input-to-state stability (ISS)
in the spatial sup-norm for a class of nonlinear parabolic
PDEs with either Dirichlet or Robin boundary disturbances.
An example concerned with a super-linear parabolic PDE
with Robin boundary condition is provided to illustrate
the obtained ISS results. Besides, as an application of the
notion of RKES, we conduct stability analysis for a class
of parabolic PDEs in cascade coupled over the domain or
on the boundary of the domain, in the spatial and time
sup-norm, and in the spatial sup-norm, respectively. The
technique of De Giorgi iteration is extensively used in the
proof of the results presented in this paper.

Index Terms— Nonlinear PDEs, relative stability, input-to-
state stability, De Giorgi iteration, cascade of PDE systems.

I. INTRODUCTION

O
RIGINALLY introduced by Sontag in the late 1980s,

the notion of input-to-state stability (ISS) has been

proven to be a convenient tool for describing robust stability of

finite dimensional systems with external inputs. The pioneer-

ing work on extending the application of ISS to infinite dimen-

sional systems is owe to [3]–[5], [10], [18], [19], [23], [24],

etc., where different methods were proposed for constructing

ISS-Lyapunov functionals for parabolic PDEs, or hyperbolic

PDES, or abstract equations in Banach spaces. Since then, the

ISS of PDE systems has drawn much attention in the literature

of PDE control. It is worth noting that applying the classical

regularity theory of PDEs to ISS analysis of PDEs having only

in-domain disturbances seems to be straightforward, while it
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is a challenge to establish the ISS for PDEs that have external

disturbances distributed on the boundary of the domain.

In recent years, a great effort has been devoted to establish-

ing the ISS for PDEs with boundary disturbances; see [13],

[21] for comprehensive surveys on this topic, and [29], [30]

for a summary of different approaches for establishing the

ISS of PDEs with boundary disturbances. Among the existing

literature, the ISS in L1-norm and Lq-norm with q ∈ [2,+∞)
has been well studied for PDEs with boundary disturbances

via different methods; see, e.g., [8], [9], [11], [20], [22], [25],

[27]–[30]. For example, in a recent work on the characteriza-

tions of the ISS for abstract infinite dimensional systems [8],

explicit constructions of noncoercive Lyapunov functionals

were presented for linear systems with unbounded admissible

input operators. Consequences of the results obtained in [8]

include that the ISS in the norm of Banach spaces, comprising

the ISS in the spatial norm, can be characterized for a wide

class of PDEs with boundary disturbances, and a noncoercive

Lyapunov functional can be constructed for establishing the

ISS in the norm of a Hilbert space for 1-D parabolic PDEs

with Dirichlet boundary disturbances. However, few results

are concerned with presenting explicit ISS estimates in L∞-

norm. For example, (i) the ISS in various norms, including

weighted L∞-norm, was proved for linear 1-D PDEs governed

by Sturm-Liouville operators in [12] by exploiting the eigen-

function expansion and the finite difference scheme; (ii) the

ISS-style estimates in the spatial sup-norm were established

for classical solutions of nonlinear 1-D parabolic PDEs in

[14] by using a novel ISS-style maximum principle and an

ISS Lyapunov functional; (iii) characterizations of the ISS for

nonlinear parabolic PDEs governed by monotone operators

were provided in [20] by applying the monotonicity method,

and the ISS in the spatial sup-norm was indicated as well;

and (iv) an ISS estimate in L∞-norm was established for

a 1-D linear parabolic equation with a destabilizing term in

[28] under an appropriate boundary feedback law and some

compatibility conditions.

The aim of this paper is to provide a new method, which

is different from those developed in the existing literature

concerning classical solutions of 1-D PDEs, for establishing

the ISS in the spatial sup-norm for weak solutions of a

class of higher dimensional nonlinear parabolic PDEs with

boundary disturbances. More precisely, in order to establish

ISS estimates in the spatial sup-norm, we borrow first the

notion of relative stability (RS) from [15], which was used to
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characterize a kind of relationship of stabilities for two control

systems, to describe the uniformly continuous dependence on

the external disturbances for weak solutions of nonlinear PDE

systems. Then, based on the RS in the (spatial and time) sup-

norm, we establish the ISS in the spatial sup-norm for the

considered higher dimensional nonlinear PDEs with Dirichlet

and Robin boundary disturbances. Moreover, we show how to

apply the property of RS to characterize the stability in the

sup-norm and the spatial sup-norm, respectively, for a class of

PDE systems in cascade coupled via the boundary or over the

domain.

The main tool exploited in this paper for the proof of various

stability properties is the De Giorgi iteration, which has been

used for the first time to establish ISS estimates for classical

solutions of PDEs in [28]. It should be mentioned that in

[28] the De Giorgi iteration was used for addressing the ISS

of 1-D parabolic PDEs with Dirichlet boundary disturbances

by combining the technique of splitting, while in this paper,

the De Giorgi iteration is used not only for 1-D PDEs with

Dirichlet boundary conditions, but also for higher dimensional

PDEs with either Dirichlet or Robin boundary conditions. This

represents an improvement of the previous work.

In addition, unlike [12], [14], [20], [28], where the continu-

ity of the solutions along the boundary of the domain was used

while establishing the ISS estimates of classical solutions, in

this paper, we do not require any continuity of the solutions

on the boundary of the domain, and we consider solutions in

a weak sense. It is worth noting that for PDEs with Dirichlet

boundary conditions, compatibility conditions are sufficient

and necessary for the continuity of both classical (in any sense)

and weak (in any sense) solutions along the boundary of the

domain. As indicated in [29], if a compatibility condition

is imposed in a certain case, e.g., when the technique of

splitting is used for nonlinear PDEs, only ISS-like estimates

can be obtained. Consequently, some nice properties, such

as convergent input-convergent state property, may not hold

anymore. On the contrary, as this paper deals with solutions

that are not necessarily continuous on the boundary of the

domain, the ISS estimates in a strict sense can be established.

In summary, the main contribution of this paper includes:

(i) introducing RKES to describe the uniformly continuous

dependence of weak solutions on the external distur-

bances and establishing RKES estimates for a class of

higher dimensional nonlinear parabolic PDEs;

(ii) establishing the ISS in the spatial sup-norm for weak

solutions of higher dimensional PDEs with Dirichlet or

Robin boundary disturbances by using the property of

RKES;

(iii) establishing stability estimates in the spatial and time

sup-norm and the spatial sup-norm, respectively for a

class of parabolic systems in cascade, which are inter-

connected or coupled via the boundary of the domain;

(iv) extending the usage of De Giorgi iteration to ISS anal-

ysis of higher dimensional PDEs with Robin boundary

conditions.

In the rest of the paper, we introduce first some basic

notations. Section II presents the problem formulation, well-

posedness, notions on relative stability, and the main results on

RKES in the sup-norm and ISS in the spatial sup-norm for the

considered PDE systems. Section III-A provides an example to

illustrate the obtained ISS results. As an application of RKES

presented in Section II, we show in Section III-B how to apply

RKES to obtain stability estimates in the spatial and time sup-

norm and the spatial sup-norm, respectively, for a class of

parabolic systems in cascade connected over the domain or

on the boundary of the domain. Some concluding remarks are

given in Section IV.

Notations. R>0 denotes the set of positive real numbers

and R≥0 := {0} ∪ R>0. Ω denotes a bounded domain in

R
n(n ≥ 1) of class C2, that is, Ω is an n-dimensional C2-

submanifold of R
n with boundary ∂Ω. |Ω| denotes the n-

dimensional Lebesgue measure of Ω. For any T > 0, QT :=
Ω× (0, T ), ∂lQT := ∂Ω× (0, T ).
K := {γ : R≥0 → R≥0| γ(0) = 0, γ is continuous, strictly

increasing}, L := {γ : R≥0 → R≥0| γ is continuous, strictly

decreasing, lims→∞ γ(s) = 0}, KL := {β : R≥0 × R≥0 →
R≥0| β(·, t) ∈ K, ∀t ∈ R≥0, and β(s, ·) ∈ L, ∀s ∈ R>0}.

Throughout this paper, all notations on function spaces are

standard, which can be found in, e.g., [6], [26]. For functions

a ∈ C1(Ω;R>0), c ∈ C(Ω;R),m ∈ C(∂Ω;R>0), we always

denote

a := min
x∈Ω

a > 0, c := min
x∈Ω

c,m := min
x∈∂Ω

m > 0. (1)

Furthermore, we always let p be a constant satisfying p ≥ 2
and p > n. For a function v ∈ W 1,p(Ω), its “boundary value”

along ∂Ω should be understood in the sense of trace; see, e.g.,

[6, Chap. 5].

II. PROBLEM SETTING AND MAIN RESULTS

A. Problem formulation and well-posedness

For functions a ∈ C1(Ω;R>0), c ∈ C(Ω;R),
m ∈ C(∂Ω;R>0), h ∈ C0,1((Ω× R≥0)× R;R), f ∈
C(Ω× R≥0;R), d ∈ C(∂Ω× R≥0;R), and u0 ∈ W 1,p(Ω),
we consider the stability of the following higher dimensional

nonlinear parabolic system in a divergence form:

L [u] + h(x, t, u) =f in Ω× R>0, (2a)

B[u] =d on ∂Ω× R>0, (2b)

u(·, 0) =u0(·) in Ω, (2c)

where L [u] := ut − div (a∇u) + cu, and

B[u] := a
∂u

∂ν
+mu, (3)

or

B[u] := u, (4)

represents the Robin boundary condition, or the Dirichlet

boundary condition, respectively.

We always assume that for any T > 0, there exist a positive

constant c0, an increasing function H : R≥0 → R≥0, and a

function Ψ ∈ C(R≥0;R≥0) satisfying Ψ(0) = 0, such that

|h(x, t, ξ)| ≤ c0(1 + |ξ|λ), |∂ξh(x, t, ξ)| ≤ H(|ξ|), (5a)

|h(x, s, ξ)−h(x, t, ξ)−f(x, s)+f(x, t)| ≤ H(|ξ|)Ψ(|s− t|),
(5b)
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hold for all x ∈ Ω, s, t ∈ [0, T ], ξ ∈ R, where λ ∈ (1, 1 + 2
n
]

is a constant.

It should be mentioned that PDEs in divergence forms arise

in diffusion theory, such as the study of heat conduction in an

isotropic medium, fluid flow through porous media, chemical

reaction, etc., see, e.g., [2], [7]. It is also worth noting that for

nonlinear parabolic PDEs in divergence forms, the structural

condition (5), as well as its general forms, are often used for

establishing the existence of weak solutions, or generalized

solutions (and certain smooth solutions); see, e.g., [1] and

[16, Chap. VI], respectively. A typical form of h is given by

h(x, t, u) := k1(x, t)|u|σ1−1u+k2(x, t)|u|σ2+k3(x, t), where

σ1 ∈ [1, λ], σ2 ∈ (1, λ] are constants, and k1, k2, k3 are contin-

uous functions w.r.t. (x, t) and, particularly, Hölder continuous

in t with exponents α1, α2, α3 ∈ (0, 1], respectively.

We provide the definition of a (weak) solution of the

system (2).

Definition 2.1: (i) We say that u is a weak solution of the

system (2) with the Robin boundary condition (3), if for

any T > 0:

u ∈ C([0, T ];W 1,p(Ω)), u(·, 0) = u0(·) in Ω,

and the equality

−
∫ T

0

∫

Ω

uηt dx dt+

∫ T

0

∫

Ω

a∇u∇η dx dt

+

∫ T

0

∫

Ω

(cu+ h(x, t, u))η dx dt

=

∫ T

0

∫

Ω

fη dx dt+

∫ T

0

∫

∂Ω

(d−mu)η dx dt

+

∫

Ω

u0(x)η(x, 0) dx

holds true for any η ∈ C([0, T ]; (W 1,p(Ω))′) ∩
C1((0, T );Lp′

(Ω)) with η(·, T ) = 0 in Ω, where p′ =
p

p−1 , and (W 1,p(Ω))′ is the dual space of W 1,p(Ω).
(ii) We say that u is a weak solution of the system (2) with

the Dirichlet boundary condition (4), if for any T > 0:

u ∈ C([0, T ];W 1,p(Ω)),

u = d in ∂lQT , u(·, 0) = u0(·) in Ω,

and the equality

−
∫ T

0

∫

Ω

uηt dx dt+

∫ T

0

∫

Ω

a∇u∇η dx dt

+

∫ T

0

∫

Ω

(cu+ h(x, t, u))η dx dt

=

∫ T

0

∫

Ω

fη dx dt+

∫

Ω

u0(x)η(x, 0) dx

holds true for any η ∈ C([0, T ]; (W 1,p
0 (Ω))′) ∩

C1((0, T );Lp′

(Ω)) with η(·, T ) = 0 in Ω, where p′ =
p

p−1 , and (W 1,p
0 (Ω))′ is the dual space of W

1,p
0 (Ω).

For the well-posedness of the considered problem, we have

the following result.

Proposition 2.1: System (2) with either the Robin boundary

condition (3), or the Dirichlet boundary condition (4), admits

a unique weak solution belonging to C([0, T ];W 1,p(Ω)) ∩
C1((0, T );Lp′

(Ω)) for any T > 0, where p′ = p
p−1 .

Proof: For any T > 0, by [1, Theorem 14.5], the

system (2) with the Robin boundary condition (3), or the

Dirichlet boundary condition (4), admits a unique maximal

weak solution1 u ∈ C([0, T0];W
1,p(Ω))∩C1((0, T0);L

p′

(Ω))
with some T0 ∈ (0, T ]. Furthermore, according to [1, Theorem

15.2(i)], if there exists a positive constant C such that the

following a priori estimate holds true:

‖u[t]‖L1(Ω) ≤ C, ∀t ∈ (0, T0), (6)

then, such a maximal solution u must exist globally on

[0, T ]. Therefore, it suffices to prove that (6) holds true

for the maximal solution of the system (2) with the Robin

boundary condition (3), or the Dirichlet boundary condition

(4), respectively.

Indeed, for the system (2) with the Robin boundary condi-

tion (3), the estimate in (6) is guaranteed by [30, Theorem 3.1].

For system (2) with the Dirichlet boundary condition (4), the

estimate in (6) is guaranteed by applying the estimate given

in Theorem 2.4(ii) to (2) defined over QT0
.

Remark 2.1: The growth conditions on the nonlinear term

h appearing in (5) are only used for guaranteeing the existence

and uniqueness of a weak solution. In particular, as indicated in

[1], the exponent 1+ 2
n

in (5a) is optimal for the existence of a

global weak solution. However, regarding the well-posedness,

if a certain compatibility condition is imposed and a smooth

solution is considered, then the growth conditions on the

nonlinear term h in (5) can be relaxed; see [30, Proposition

2.1] and [16, Chap. VI].

B. Notion on relative stability

It is known that both the initial value and enforced terms

(external disturbances) have a deep effect on the stability

(and well-posedness) of PDE systems. In order to describe

the influence induced by these data, we define some stability

characteristics for PDE systems. More precisely, based on the

notion of relative stability (RS) given by [15], which is an

extension of the concept for finite dimensional systems, e.g.

[17], to general control systems, we define several properties

of relative stability for the considered PDE systems.

To emphasize the dependence of the solutions on the initial

value and external disturbances, we denote by Σ(U,F,D) the

system (2) with data (u0, f, d) ∈ W 1,p(Ω)×C(Ω× R≥0;R)×
C(∂Ω× R≥0;R). Note that if v ∈ W 1,p(Ω) with p >

n, then by the embedding W 1,p(Ω) →֒ C1−n
p (Ω), we

have v ∈ C1−n
p (Ω); see, e.g. [26, Theorem 1.3.2]. Thus,

supx∈Ω |v(x)| < +∞ and hence, supx∈Ω |v(x)| is well-

defined. Analogously, if v ∈ C([0, T ];W 1,p(Ω)), then

sup
(x,t)∈QT

|v(x, t)| ≤ max
t∈[0,T ]

sup
x∈Ω

|v(x, t)|

≤ max
t∈[0,T ]

‖v[t]‖
C

1−
n
p (Ω)

≤C(n, p,Ω) max
t∈[0,T ]

‖v[t]‖W 1,p(Ω)

=C(n, p,Ω)‖v‖C([0,T ];W 1,p(Ω)),

1A solution u is said to be maximal if there is no solution which is a proper
extension of u; see [1].



4 J. ZHENG et al.: PAPER SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2022

where C(n, p,Ω) is a constant depending only on n, p,Ω.

Therefore, sup(x,t)∈QT
|v(x, t)| is also well-defined. In addi-

tion, it should be noticed that, according to the definition of

Hölder spaces, a function v belonging to some Hölder space

Cα(Ω) with α ∈ (0, 1) is not necessarily continuous on ∂Ω;

see, e.g., [6], [26].

Definition 2.2: The system Σ(U,F,D) is said to be rela-

tively equi-stable (RES) in the sup-norm with respect to (w.r.t.)

in-domain and boundary disturbances in C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), if for every constant ε > 0, there exists

a positive constant δ depending only on ε, such that the

following implication

sup
(x,t)∈QT

|f1(x, t)− f2(x, t)|

+ sup
(x,t)∈∂lQT

|d1(x, t)− d2(x, t)| < δ

⇒ sup
(x,t)∈QT

|u1(x, t)− u2(x, t)| < ε

holds true for all (f1, d1), (f2, d2) ∈ C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R) and all T > 0, where ui is the solution of the

system Σ(U,F,D) corresponding to the data (u0, fi, di), i =
1, 2.

Definition 2.3: The system Σ(U,F,D) is said to be rel-

atively K-equi-stable (RKES) in the sup-norm w.r.t. in-

domain and boundary disturbances in C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), if there exist functions γd, γf ∈ K such

that

sup
(x,t)∈QT

|u1(x, t)− u2(x, t)|

≤γf

(
sup

(x,t)∈QT

|f1(x, t)− f2(x, t)|
)

+ γd

(
sup

(x,t)∈∂lQT

|d1(x, t)− d2(x, t)|
)
, ∀T > 0,

where ui is the solution of the system Σ(U,F,D) correspond-

ing to the data (u0, fi, di), i = 1, 2.

Particularly, the system Σ(U,F,D) is said to be rela-

tively Lipschitz-equi-stable (RLES) in the sup-norm w.r.t.

in-domain and boundary disturbances in C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), if γf (s) = Lfs, γd(s) = Lds for any s ≥ 0,

where Lf and Ld are certain positive constants.

Remark 2.2: We provide some comments on RES.

(i) It should be noticed that there is a slight difference for

RES between the definition given in [15] and the one

introduced in this paper. Indeed, RES defined in [15]

is mainly used to describe the relationship of stabilities

between two systems, namely it is in term of multiple

different systems, while RES defined in this paper is

mainly used to characterize the uniformly continuous

dependence of the solution on the external disturbances

for a certain PDE, namely it is in term of one system

(i.e., the nominal dynamics of the PDEs are governed

by the same differential operator) with different external

inputs.

(ii) Note that a system with external disturbances may be

RES w.r.t. external disturbances while not being asymp-

totically stable. For example, we consider the following

systems:

(uk)t − (uk)xx =fk(x, t), (x, t) ∈
(
0,

π

2

)
×R≥0,

uk(0, t) =0, t ∈ R>0,

uk

(π
2
, t
)
=dk(t), t ∈ R>0,

uk(x, 0) =u0(x), x ∈
(
0,

π

2

)
,

where u0(x) := 0, fk(x, t) :=
√
2k sinx cos

(
t− π

4

)
,

dk(t) := k sin t, and k ∈ R>0. It is clear that uk(x, t) =
k sin t sinx is the unique solution, which is bounded for

any fixed k. Since there exists a point (x0, t0) such that

uk(x0, t0) >
k
2 , uk is unbounded as k → +∞. However,

noting that

sup
(x,t)∈(0,π2 )×(0,T )

|fk(x, t)− fl(x, t)|

=
√
2|k − l| sup

(x,t)∈(0,π2 )×(0,T )

∣∣∣ sinx cos
(
t− π

4

)∣∣∣, ∀T > 0,

and

sup
t∈(0,T )

|dk(t)− dl(t)| = |k − l| sup
t∈(0,T )

| sin t|, ∀T > 0,

for all k, l ∈ R>0, then the system is RLES, having the

estimate for all k, l ∈ R>0:

sup
(x,t)∈(0,π2 )×(0,T )

|uk(x, t)− ul(x, t)|

=|k − l| sup
(x,t)∈(0,π2 )×(0,T )

| sin t sinx|

≤ sup
(x,t)∈(0,π2 )×(0,T )

|fk(x, t)− fl(x, t)|

+ sup
t∈(0,T )

|dk(t)− dl(t)|, ∀T > 0.

(iii) It is obvious that RLES ⇒ RKES ⇒ RES.

Definition 2.4 ( [22]): The system Σ(U,F,D) is said to

be globally asymptotically stable at zero uniformly w.r.t. the

state (0-UGAS w.r.t. the state) in the spatial sup-norm if the

in-domain and boundary disturbances in C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R) are set to 0, and there exists a function

β ∈ KL such that

sup
x∈Ω

|u(x, T )| ≤β

(
sup
x∈Ω

|u0(x)|, T
)
, ∀u0 ∈ W 1,p(Ω), ∀T > 0,

where u is the solution of the system Σ(U,F,D) corresponding

to the data (u0, 0, 0).
Definition 2.5: The system Σ(U,F,D) is said to be input-

to-state stable (ISS) in the spatial sup-norm w.r.t. in-

domain and boundary disturbances in C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), if there exist functions β ∈ KL and

γf , γd ∈ K such that for all (u0, f, d) ∈ W 1,p(Ω) ×
C(Ω× R≥0;R)× C(∂Ω× R≥0;R):

sup
x∈Ω

|u(x, T )| ≤β

(
sup
x∈Ω

|u0(x)|, T
)
+ γf

(
sup

(x,t)∈QT

|f(x, t)|
)

+ γd

(
sup

(x,t)∈∂lQT

|d(x, t)|
)
, ∀T > 0, (7)
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where u is the solution of the system Σ(U,F,D) correspond-

ing to the data (u0, f, d) ∈ W 1,p(Ω) × C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R).

Furthermore, the system Σ(U,F,D) is said to be exponen-

tially input-to-state stable (EISS) in the spatial sup-norm w.r.t.

in-domain and boundary disturbances in C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), if there exist constants M,σ > 0 such that

β(r, t) = Mr e−σt in (7) for all r ≥ 0.

Proposition 2.2: If the system Σ(U,F,D) is RKES in

the sup-norm w.r.t. in-domain and boundary disturbances in

C(Ω× R≥0;R) × C(∂Ω× R≥0;R) and 0-UGAS w.r.t. the

state in the spatial sup-norm, then it is ISS in the spa-

tial sup-norm w.r.t. in-domain and boundary disturbances in

C(Ω× R≥0;R)× C(∂Ω× R≥0;R).
Proof: For any (u0, f, d) ∈ W 1,p(Ω)×C(Ω× R≥0;R)×

C(∂Ω× R≥0;R), let u, v be the solutions of the system

Σ(U,F,D) with data (u0, f, d) and (u0, 0, 0), respectively. For

simplicity, we write |g|∞,ω := supy∈ω |g(y)| for a function g

defined on a domain ω of R
n or R

n+1. Since Σ(U,F,D) is

RKES in the sup-norm w.r.t. in-domain and boundary distur-

bances, and u and v are continuous in T (see Proposition 2.1),

there exist functions γd, γf ∈ K such that

|u[T ]− v[T ]|∞,Ω

≤|u− v|∞,QT

≤γf
(
|f − 0|∞,QT

)
+ γd

(
|d− 0|∞,∂lQT

)

=γf
(
|f |∞,QT

)
+ γd

(
|d|∞,∂lQT

)
, ∀T > 0.

Since Σ(U,F,D) is 0-UGAS w.r.t. the state in the spatial sup-

norm, there exists a function β ∈ KL such that

|v[T ]|∞,Ω ≤β(|u0|∞,Ω), T ), ∀T > 0.

It follows that

|u[T ]|∞,Ω ≤|u[T ]− v[T ]|∞,Ω + |v[T ]|∞,Ω

≤β(|u0|∞,Ω, T ) + γf
(
|f |∞,QT

)

+ γd
(
|d|∞,∂lQT

)
, ∀T > 0,

which implies that Σ(U,F,D) is ISS in the spatial

sup-norm w.r.t. in-domain and boundary disturbances in

C(Ω× R≥0;R)× C(∂Ω× R≥0;R).
Remark 2.3: In general, for a nonlinear system, it is not

an easy task to establish the ISS w.r.t. boundary disturbances

directly. Proposition 2.2 provides an alternative for ISS analy-

sis of 0-UGAS systems, which amounts to only assessing the

properties of RKES and may be more easily obtained.

C. Main stability results

Assume further that

h(x, t, ξ1)− h(x, t, ξ2) ≥ −L(ξ1 − ξ2) (8)

for all x ∈ Ω, t ∈ R≥0 and all ξ1, ξ2 ∈ R satisfying ξ1 ≥ ξ2,

where L is a constant.

The first main result is on the RKES in the sup-norm w.r.t.

in-domain and boundary disturbances, whose proof is provided

in Appendix.

Theorem 2.3: The following statements hold true.

(i) Assume that L < c in (8). System (2) with the Robin

boundary condition (3) is RLES in the sup-norm w.r.t. in-

domain and boundary disturbances in C(Ω× R≥0;R)×
C(∂Ω× R≥0;R), having the estimate:

sup
(x,t)∈QT

|u1(x, t)− u2(x, t)|

≤CR|Ω|
q−2

q 2
3q−4

2q−4 sup
(x,t)∈QT

|f1(x, t)− f2(x, t)|

+
1

m
sup

(x,t)∈∂lQT

|d1(x, t)− d2(x, t)|, ∀T > 0, (9)

for all (fi, di) ∈ C(Ω× R≥0;R)×C(∂Ω× R≥0;R), i =
1, 2, where ui is the solution of the system corresponding

to the data (u0, fi, di) ∈ W 1,p(Ω) × C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), i = 1, 2, CR :=

2C2

S

min{a,c−L} > 0, and

q and CS are constants specified in Lemma A.1(i).

(ii) Assume that L ≤ c in (8). System (2) with the Dirichlet

boundary condition (4) is RLES in the sup-norm w.r.t. in-

domain and boundary disturbances in C(Ω× R≥0;R)×
C(∂Ω× R≥0;R), having the estimate:

sup
(x,t)∈QT

|u1(x, t)− u2(x, t)|

≤CD|Ω|
q−2

q 2
3q−4

2q−4 sup
(x,t)∈QT

|f1(x, t)− f2(x, t)|

+ sup
(x,t)∈∂lQT

|d1(x, t)− d2(x, t)|, ∀T > 0, (10)

for all (fi, di) ∈ C(Ω× R≥0;R)×C(∂Ω× R≥0;R), i =
1, 2, where ui is the solution of the system corresponding

to the data (u0, fi, di) ∈ W 1,p(Ω) × C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), i = 1, 2, CD :=

C2

P

a
> 0, and q and

CP are constants specified in Lemma A.1(ii).

Furthermore, if L < c in (8), it holds that

sup
(x,t)∈QT

|u1(x, t)− u2(x, t)|

≤C0|Ω|
q−2

q 2
3q−4

2q−4 sup
(x,t)∈QT

|f1(x, t)− f2(x, t)|

+ sup
(x,t)∈∂lQT

|d1(x, t)− d2(x, t)|, ∀T > 0, (11)

for all (fi, di) ∈ C(Ω× R≥0;R)×C(∂Ω× R≥0;R), i =
1, 2, where ui is the solution of the system corresponding

to the data (u0, fi, di) ∈ W 1,p(Ω) × C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), i = 1, 2, C0 := min {CR, CD}, and

q, CS , CP are constants specified in Lemma A.1.

As an application of RKES, we have the second main result

on the ISS in the spatial sup-norm for the system (2) with

in-domain and boundary disturbances, whose proof is also

provided in Appendix.

Theorem 2.4: The following statements hold true.

(i) Assume that L < c in (8). System (2) with the

Robin boundary condition (3) is EISS in the spatial

sup-norm w.r.t. in-domain and boundary disturbances in
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C(Ω× R≥0;R)×C(∂Ω× R≥0;R), having the estimate:

sup
x∈Ω

|u(x, T )| ≤ sup
x∈Ω

|u0(x)| e−(c−L)T

+ CR|Ω|
q−2

q 2
3q−4

2q−4 sup
(x,t)∈QT

|f(x, t)|

+
1

m
sup

(x,t)∈∂lQT

|d(x, t)|, ∀T > 0, (12)

where the constants CR, q are the same as in Theo-

rem 2.3(i).

(ii) Assume that L < c in (8). System (2) with the

Dirichlet boundary condition (4) is EISS in the spatial

sup-norm w.r.t. in-domain and boundary disturbances in

C(Ω× R≥0;R)×C(∂Ω× R≥0;R), having the estimate:

sup
x∈Ω

|u(x, T )| ≤ sup
x∈Ω

|u0(x)|e−(c−L)T

+ C0|Ω|
q−2

q 2
3q−4

2q−4 sup
(x,t)∈QT

|f(x, t)|

+ sup
(x,t)∈∂lQT

|d(x, t)|, ∀T > 0, (13)

where the constants C0, q are the same as in Theo-

rem 2.3(ii).

Remark 2.4: For Theorem 2.4, it is possible to

weaken the condition (u0, f, d) ∈ W 1,p(Ω) ×
C(Ω× R≥0;R) × C(∂Ω× R≥0;R) to (u0, f, d) ∈
L∞(Ω) × L∞

loc(R≥0;L
∞(Ω)) × L∞

loc(R≥0;L
∞(Ω)), and

hence obtain

‖u[T ]‖L∞(Ω) ≤‖u0‖L∞(Ω) e
−(c−L)T

+ CR|Ω|
q−2

q 2
3q−4

2q−4 ‖f‖L∞(QT )

+
1

m
‖d‖L∞(QT ), ∀T > 0,

and

‖u[T ]‖L∞(Ω) ≤‖u0‖L∞(Ω)e
−

(

c−L+ a

C2

P

)

T

+ C0|Ω|
q−2

q 2
3q−4

2q−4 ‖f‖L∞(QT )

+ ‖d‖L∞(QT ), ∀T > 0,

for a weak solution (in a certain sense differing from Defini-

tion 2.1) of the system (2) with the Robin boundary condition

(3), and the Dirichlet boundary condition (4), respectively.

Indeed, letting {u0
n}, {fn}, {dn} be sequences of sufficiently

smooth functions, which satisfy (u0
n, fn, dn) → (u0, f, d) in

L∞(Ω) × L∞(QT ) × L∞(QT ) as n → +∞, we consider

the approximating equation (2) with data (u0
n, fn, dn), and

establish uniform a priori estimates of strong (or smooth)

solutions {un} as in [31]. For the existence of a weak solution

u, we may prove by using the uniform a priori estimates of

{un} and taking limits in appropriate functional spaces. For

the ISS in the spatial L∞-norm of un, we may prove as in the

proof of Theorem 2.4; see Appendix. Then, by taking limits

of (un, u
0
n, fn, dn) within the ISS estimates of {un}, we may

obtain the aforementioned ISS estimates of u.

III. AN ILLUSTRATIVE EXAMPLE OF ISS AND

APPLICATIONS OF RKES

In this section, we illustrate one of the ISS results stated

in Theorem 2.4 of Section II and present applications of the

introduced notion of RKES by establishing different stability

estimates for a class of parabolic systems in cascade coupled

over the domain or on the boundary of the domain.

A. The ISS in the spatial sup-norm for a super-linear

parabolic equation

Consider the following super-linear parabolic equation:

ut −∆u+ cu+ u ln(1 + u2) =f in Ω× R>0, (14a)

∂u

∂ν
+mu =d on ∂Ω× R>0, (14b)

u(·, 0) =u0(·) in Ω, (14c)

where Ω is an open bounded domain in R
n(n ≥ 3) with

a smooth boundary ∂Ω, ∆ is the Laplace operator, c,m

are positive constants with c ≥ 1, u0 ∈ W 1,p(Ω), d ∈
C(∂Ω× R≥0;R), and f ∈ C(Ω× R≥0;R). We have the

following result.

Proposition 3.1: Assume that there exists a point x0 ∈
∂Ω such that, near x0, ∂Ω lies in the plane {x :=
(x1, x2, . . . , xn) ∈ R

n| xi = 0} for some i ∈ {1, 2, . . . , n},

and f(x, t) is Lipschitz continuous in t ∈ R≥0 for all x ∈ Ω.

Then, the system (14) is EISS in the spatial sup-norm, having

the estimate:

sup
x∈Ω

|u(x, T )| ≤ sup
x∈Ω

|u0(x)| e−cT

+
9(n− 1)2

(n− 2)2
|Ω| 2

n 28 sup
(x,t)∈QT

|f(x, t)|

+
1

m
sup

(x,t)∈∂lQT

|d(x, t)|, ∀T > 0.

Proof: Setting h(x, t, u) := u ln(1 + u2), it is easy

to verify that h and f satisfy the conditions proposed in

Section II (with L = 0). Then, according to Theorem 2.4(i),

the system (14) is EISS in the spatial sup-norm, having the

estimate:

sup
x∈Ω

|u(x, T )| ≤ sup
x∈Ω

|u0(x)| e−cT

+ C2
S |Ω|

q−2

q 2
5q−8

2q−4 sup
(x,t)∈QT

|f(x, t)|

+
1

m
sup

(x,t)∈∂lQT

|d(x, t)|, ∀T > 0, (15)

where q and CS are constants specified in Lemma A.1(i).

Note that, near x0, ∂Ω lies in the plane {x ∈ R
n| xi = 0}.

Thus, in the following Sobolev inequality

‖v‖L2∗ (Ω) ≤ C1(‖v‖L2(Ω) + ‖∇v‖L2(Ω)), ∀v ∈ W 1,2(Ω),

(16)

the constant C1 can be chosen as C1 := 2(n−1)
n−2 × (1 + 3 +

4× 2) = 24(n−1)
n−2 ; see [6, Theorem 2, §5.6.1], whose proof is

based on Step 2 of the proof of [6, Theorem 1, §5.6.1], and

Steps 1-4 of the proof of [6, Theorem 1, §5.4].
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For any q ∈ (2, 2∗) with 2∗ := 2n
n−2 , it follows from the

Hölder’s inequality that

‖v‖q
Lq(Ω) ≤ ‖v‖q

L2∗ (Ω)
‖1‖

L
2∗

2∗−q (Ω)
= ‖v‖q

L2∗ (Ω)
|Ω| 2

∗
−q

2∗ ,

which along with (16) gives for v ∈ W 1,2(Ω):

‖v‖Lq(Ω) ≤
24(n− 1)

n− 2
|Ω|

2
∗
−q

2∗q (‖v‖L2(Ω) + ‖∇v‖L2(Ω)).

Thus, CS in Lemma A.1(i) can be chosen as CS :=
24(n−1)

n−2 |Ω|
2
∗
−q

2∗q . Finally, (15) becomes

sup
x∈Ω

|u(x, T )|

≤ sup
x∈Ω

|u0(x)| e−cT

+
242(n− 1)2

(n− 2)2
|Ω|

q−2

q
+2

(

2
∗
−q

2∗q

)

2
5q−8

2q−4 sup
(x,t)∈QT

|f(x, t)|

+
1

m
sup

(x,t)∈∂lQT

|d(x, t)|, ∀T > 0. (17)

Note that (17) holds true for an arbitrary constant q ∈ (2, 2∗),
and

lim
q→2∗

(
|Ω|

q−2

q
+2

(

2
∗
−q

2∗q

)

2
5q−8

2q−4

)
= |Ω| 2

∗
−2

2∗ 2
5×2

∗
−8

2×2∗−4 = 4|Ω| 2

n .

Then, letting q → 2∗ in (17), we obtain the desired result.

Remark 3.1: Note that
24(n−1)

n−2 |Ω|
2
∗
−q

2∗q is not the best

embedding constant in the Sobolev inequality given in

Lemma A.1(i).

B. Applications of RKES to cascades of nonlinear

parabolic systems

In this subsection, as an application of the main results

presented in Section II-C, we show how to apply the RKES

to establish stability estimates in the sup-norm, or the spatial

sup-norm, for a class of nonlinear parabolic systems in cascade

connected either on the boundary or in the domain. Specifi-

cally, for a fixed integer k ≥ 2 and j ∈ {1, 2, . . . , k}, given

functions aj , cj , mj , hj , φj , f , d, we consider the following

systems coupled on the boundary as shown in Fig. 1:

(Σj)





Lj [uj ] + hj(x, t, uj) =0 in Ω× R>0,

aj
∂uj

∂ν
+mjuj =dj on ∂Ω× R>0,

uj(·, 0) =φj(·) in Ω,

where Lj [u] := ut − div (aj∇u) + cju, and for (x, t) ∈
∂Ω× R>0:

d1(x, t) := d(x, t), dj(x, t) := uj−1(x, t), ∀j ∈ [2, k], (18)

or

d1(x, t) := uk(x, t), dj(x, t) := uj−1(x, t), ∀j ∈ [2, k]. (19)

We also consider the following systems coupled over the

domain as shown in Fig. 2:

(Σ′
j)





Lj [uj ] + hj(x, t, uj) =fj in Ω× R>0,

uj =dj on ∂Ω× R>0,

uj(·, 0) =φj(·) in Ω,

where for (x, t) ∈ Ω× R>0:

f1(x, t) := f(x, t), fj(x, t) := uj−1(x, t), ∀j ∈ [2, k], (20)

or

f1(x, t) := uk(x, t), fj(x, t) := uj−1(x, t), ∀j ∈ [2, k]. (21)

(a)

(b)

Fig. 1. Systems coupled on the boundary: (a) Systems coupled via
(18); (b) Systems coupled via (19).

(a)

(b)

Fig. 2. Systems coupled over the domain: (a) Systems coupled via (20);
(b) Systems coupled via (21).

In this subsection, for any T > 0, we intend to establish

respectively:

(i) the estimate in the sup-norm, i.e., sup(x,t)∈QT
|uj(x, t)|;

and
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(ii) the estimate in the spatial sup-norm, i.e.,

supx∈Ω |uj(x, T )|,
for the considered cascade of systems, where uj is the solution

of the j-th subsystem.

For j ∈ [1, k], we always assume that aj ∈
C1(Ω;R>0), cj ∈ C(Ω;R), mj ∈ C(∂Ω;R>0), hj ∈
C0,1((Ω× R≥0)× R;R), φj ∈ W 1,p(Ω). Let aj ,mj and cj
be defined in the same way as (1). Let

Φj :=max

{
sup
x∈Ω

|φ1(x)|, . . . , sup
x∈Ω

|φj(x)|
}
,

Mj :=min{m1, . . . ,mj},

Aj :=
1

|Ω|
q−2

q 2
3q−4

2q−4 min{τ1, . . . , τj}
,

where

τj :=





C2
P

aj
, if cj − Lj = 0

min

{
2C2

S

min{aj , cj − Lj}
,
C2

P

aj

}
, if cj − Lj > 0

,

and constants q, CS , and CP are specified in Lemma A.1. We

have the following two propositions.

Proposition 3.2: For the system (Σj), assume that d ∈
C(∂Ω× R≥0;R), and the structural conditions (5) and (8)

are satisfied with (h, f) = (hj , 0), and h = hj , L = Lj ,

respectively. In addition, assume that cj − Lj ≥ 0 for all

j ∈ [1, k]. Then the following statements hold true:

(i) For j ∈ [1, k], if uj is the solution of the system (Σj)
with the Robin boundary condition given by (18), then

sup
(x,t)∈QT

|uj(x, t)| ≤
Mk

Mk − 1

(
1− 1

Mj
k

)
Φj

+
1

Mj
k

sup
(x,t)∈∂lQT

|d(x, t)|, ∀T > 0.

(22)

Furthermore, if cj − Lj > 0, then

sup
x∈Ω

|uj(x, T )| ≤
Mk

Mk − 1

(
1− 1

Mj
k

)
Φj e

−(cj−Lj)T

+
1

Mj
k

sup
(x,t)∈∂lQT

|d(x, t)|, ∀T > 0.

(23)

(ii) Assume further that Mk > 1. For j ∈ [1, k], if uj is the

solution of the system (Σj) with the Robin boundary

condition given by (19), then

sup
(x,t)∈QT

|uj(x, t)| ≤
Mk

Mk − 1
Φk, ∀T > 0. (24)

Furthermore, if cj − Lj > 0, then

sup
x∈Ω

|uj(x, T )| ≤
Mk

Mk − 1
Φk e

−(cj−Lj)T , ∀T > 0.

(25)
Proposition 3.3: For the system (Σ′

j), assume that f ∈
C(Ω× R≥0;R), dj ∈ C(∂Ω× R≥0;R), and the structural

condition (5) is satisfied with (h, f) = (hj , f) for j = 1,

and (h, f) = (hj , 0) for j ∈ [2, k]. In addition, assume

that the structural condition (8) is satisfied with h = hj and

cj − Lj ≥ 0 for all j ∈ [1, k]. Then the following statements

hold true:

(i) For j ∈ [1, k], if uj is the solution of the system (Σ′
j)

with (20), then

sup
(x,t)∈QT

|uj(x, t)|

≤ Ak

Ak − 1

(
1− 1

Aj
k

)
Φj +

1

Aj
k

sup
(x,t)∈QT

|f(x, t)|

+

j∑

i=1

1

Aj−i
k

sup
(x,t)∈∂lQT

|di(x, t)|, ∀T > 0. (26)

Furthermore, if cj − Lj > 0, then

sup
x∈Ω

|uj(x, T )|

≤ Ak

Ak − 1

(
1− 1

Aj
k

)
Φje

−(cj−Lj)T

+
1

Aj
k

sup
(x,t)∈QT

|f(x, t)|

+

j∑

i=1

1

Aj−i
k

sup
(x,t)∈∂lQT

|di(x, t)|, ∀T > 0. (27)

(ii) Assume further that Ak > 1. For j ∈ [1, k], if uj is the

solution of the system (Σ′
j) with (21), then

sup
(x,t)∈QT

|uj(x, t)|

≤ Ak

Ak − 1
Φk

+
Ak

k

Ak
k − 1

k∑

i=1

1

Ak−i
k

sup
(x,t)∈∂lQT

|di(x, t)|, ∀T > 0,

(28)

Furthermore, if cj − Lj > 0, then

sup
x∈Ω

|uj(x, T )|

≤ Ak

Ak − 1
Φke

−(cj−Lj)T

+
Ak

k

Ak
k − 1

k∑

i=1

1

Ak−i
k

sup
(x,t)∈∂lQT

|di(x, t)|, ∀T > 0.

(29)
Remark 3.2: Note that the systems considered in this sub-

section are essentially networks of finite connections. Never-

theless, under suitable conditions, the stability of the systems

composed of (Σ1), . . . , (Σk) (or (Σ′
1), . . . , (Σ

′
k)) with differ-

ent boundary conditions may be independent of the number

of the subsystems, i.e., k. For example:

(i) If there exist some constants B > 0,M > 1 and N > 0
such that

mj ≥ M, |φj | ≤ N, ∀k, ∀j ∈ [1, k], (30)
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and
(
cj+1 − Lj+1

)
−
(
cj − Lj

)
≥ B, ∀k, ∀j ∈ [1, k − 1],

(31)

then (23) along with (30) implies the following estimate:

k∑

j=1

sup
x∈Ω

|uj(x, T )| ≤
MN

M − 1

k∑

j=1

e−(cj−Lj)T

+
1

M − 1
sup

(x,t)∈∂lQT

|d(x, t)|, ∀T > 0,

while (25) along with (30) implies that

k∑

j=1

sup
x∈Ω

|uj(x, T )| ≤
MN

M − 1

k∑

j=1

e−(cj−Lj)T , ∀T > 0.

Noting that the condition (31) and the d’Alembert’s test

guarantee the existace of limk→+∞

∑k
j=1 e

−(cj−Lj)T

for any fixed T > 0, we conclude that∑k
j=1 supx∈Ω |uj(x, T )| is independent of k for

any fixed T > 0.

(ii) Analogously, under appropriate assumptions on Aj , cj −
Lj ,Φj , we may also conclude that the stability of the

system composed of (Σ′
1), . . . , (Σ

′
k) is independent of k.

Remark 3.3: It should be mentioned that in [4], the ISS

and a small-gain theorem were established for a class of

interconnected systems, provided that ISS-Lyapunov functions

of the subsystems are known and a small-gain condition

holds. As an application of the obtained results, small-gain

conditions for guaranteeing the 0-UGAS in the spatial L2-

norm were proposed for a class of linear, and nonlinear,

interconnected parabolic PDEs with homogeneous Dirichlet

boundary conditions, respectively. For general interconnected

reaction-diffusion systems, it is reasonable to believe that such

small-gain conditions depend on the coefficients of the reaction

and diffusion terms; see [4] for two special cases. For the

interconnected system (Σ′
j) coupled via (19), the small-gain

condition is characterized by Ak > 1. While, for the system

(Σj) coupled on the boundary given in (21), the small-gain

condition is characterized solely by Mk > 1. Moreover, the

small-gain conditions proposed in this paper can be used for

guaranteeing not only the 0-UGAS, but also the ISS, in the

spatial sup-norm, for the considered systems with either Robin

or Dirichlet boundary conditions.

Proof of Proposition 3.2: The proof is based on using

RKES repeatedly and composed of 4 steps.

Step 1: proof of (22). Let vj be the solution of the following

system:

Lj [vj ] + hj(x, t, vj) =0 in Ω× R>0,

aj
∂v

∂ν
+mjvj =0 on ∂Ω× R>0,

vj(·, 0) =φj(·) in Ω.

The maximum estimate of vj is given by (see (49) in Ap-

pendix)

sup
(x,t)∈QT

|vj(x, t)| ≤ sup
x∈Ω

|φj(x)| ≤ Φj , ∀T > 0. (32)

For T > 0, we deduce from Theorem 2.3(i) and (32) that

sup
(x,t)∈QT

|uj(x, t)|

≤ sup
(x,t)∈QT

|vj(x, t)|+ sup
(x,t)∈QT

|uj(x, t)− vj(x, t)|

≤Φj +
1

mj

sup
(x,t)∈∂lQT

|dj(x, t)− 0|

=Φj +
1

mj

sup
(x,t)∈∂lQT

|uj−1(x, t)|

≤Φj +
1

mj

sup
(x,t)∈QT

|uj−1(x, t)|

≤Φj +
1

mj

(
sup

(x,t)∈QT

|vj−1(x, t)|

+ sup
(x,t)∈QT

|uj−1(x, t)− vj−1(x, t)|
)

≤Φj +
1

mj

(
Φj +

1

mj−1
sup

(x,t)∈∂lQT

|dj−1(x, t)|
)

=Φj

(
1 +

1

mj

)
+

1

mj ·mj−1
sup

(x,t)∈∂lQT

|uj−2(x, t)|

≤Φj

(
1 +

1

mj

)
+

1

mj ·mj−1
sup

(x,t)∈QT

|uj−2(x, t)|

≤ · · ·

≤Φj

(
1 +

1

mj

+
1

mj ·mj−1
+ · · ·+ 1

mj · · ·m3

)

+
1

mj · · ·m2
sup

(x,t)∈QT

|u1(x, t)| (33)

≤Φj

(
1 +

1

mj

+
1

mj ·mj−1
+ · · ·+ 1

mj · · ·m2

)

+
1

mj · · ·m1
sup

(x,t)∈∂lQT

|d(x, t)|

≤Φj

(
1 +

1

Mk

+
1

M2
k

+ · · ·+ 1

Mj−1
k

)

+
1

Mj
k

sup
(x,t)∈∂lQT

|d(x, t)|

=
Mk

Mk − 1

(
1− 1

Mj
k

)
Φj +

1

Mj
k

sup
(x,t)∈∂lQT

|d(x, t)|,

which gives (22).

Step 2: proof of (23). For any constant δ ∈ (0, cj − Lj),

let wj := uj e
δt, c̃j := cj − δ, h̃j(x, t, wj) :=

hj(x, t, wje
−δt) eδt, d̃j(x, t) := eδtdj(x, t), and L̂j [wj ] :=

(wj)t−div (aj∇wj)+ c̃jwj . By direct computations, we have

(Σ̃j)





L̂j [wj ] + h̃j(x, t, wj) =0 in Ω× R>0,

aj
∂wj

∂ν
+mjwj =d̃j on ∂Ω× R>0,

wj(·, 0) =φj(·) in Ω.

Note that minx∈Ω c̃j = cj−Lj − δ > 0. Then, applying (22)
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to the system (Σ̃j), we obtain

sup
(x,t)∈QT

|wj(x, t)| ≤
Mk

Mk − 1

(
1− 1

Mj
k

)
Φj

+
1

Mj
k

sup
(x,t)∈∂lQT

|d̃1(x, t)|, ∀T > 0,

which implies

sup
x∈Ω

|uj(x, T )| ≤
Mk

Mk − 1

(
1− 1

Mj
k

)
Φj e

−δT

+
1

Mj
k

sup
(x,t)∈∂lQT

|d(x, t)|, ∀T > 0.

Letting δ → cj−Lj , we obtain (23).

Step 3: proof of (24). Indeed, defining u0 := uk, we deduce

from (33), (19), and Theorem 2.3(i) that

sup
(x,t)∈QT

|uj(x, t)|

≤Φk

(
1 +

1

Mk

+ · · ·+ 1

Mk−2
k

)

+
1

Mk−1
k

sup
(x,t)∈QT

|uj−1(x, t)|

≤Φk

(
1 +

1

Mk

+ · · ·+ 1

Mk−2
k

)

+
1

Mk−1
k

(
Φk +

1

Mk

sup
(x,t)∈∂lQT

|uj(x, t)|
)

≤ Mk

Mk − 1

(
1− 1

Mk
k

)
Φk +

1

Mk
k

sup
(x,t)∈QT

|uj(x, t)|, (34)

which along with Mk > 1 implies (24).

Step 4: proof of (25). Using transformation as in Step 2,

considering (Σ̃j) with the boundary conditions given by (19),

and applying (24), we get (25). �

Proof of Proposition 3.3: Indeed, for j ∈ [1, k], let vj be

the solution of the following system:

Lj [vj ] + hj(x, t, vj) =0 in Ω× R>0,

vj =0 on ∂Ω× R>0,

vj(·, 0) =φj(·) in Ω,

Analogous to (32), the maximum estimate of vj is given by

sup
(x,t)∈QT

|vj(x, t)| ≤ sup
x∈Ω

|φj(x)|, ∀T > 0. (35)

First, we prove (22) For T > 0, we deduce from Theo-

rem 2.3(ii) and (35) that

sup
(x,t)∈QT

|uj(x, t)|

≤ sup
(x,t)∈QT

|vj(x, t)|+ sup
(x,t)∈QT

|uj(x, t)− vj(x, t)|

≤Φj +
1

Ak

sup
(x,t)∈QT

|fj(x, t)− 0|+ sup
(x,t)∈∂lQT

|dj(x, t)− 0|

≤Φj +
1

Ak

sup
(x,t)∈QT

|uj−1(x, t)|+ sup
(x,t)∈∂lQT

|dj(x, t)|

≤Φj +
1

Ak

(
sup

(x,t)∈QT

|vj−1(x, t)|

+ sup
(x,t)∈QT

|uj−1(x, t)− vj−1(x, t)|
)
+ sup
(x,t)∈∂lQT

|dj(x, t)|

≤Φj +
1

Ak

(
Φj +

1

Ak

sup
(x,t)∈QT

|fj−1(x, t)|

+ sup
(x,t)∈∂lQT

|dj−1(x, t)|
)
+ sup

(x,t)∈∂lQT

|dj(x, t)|

≤ · · ·

≤ Ak

Ak − 1

(
1− 1

Aj
k

)
Φj +

1

Aj
k

sup
(x,t)∈QT

|f(x, t)|

+

j∑

i=1

1

Aj−i
k

sup
(x,t)∈∂lQT

|di(x, t)|, (36)

which gives (26). Then, by (26) and using the technique of

transformation as in the proof of Proposition 3.2, we obtain

(27).

Now we prove (28). Without loss of generality, we consider

the case of j = k. Analogous to (36) (see also (34)), we have

sup
(x,t)∈QT

|uk(x, t)|

≤ Ak

Ak − 1

(
1− 1

Ak
k

)
Φk +

1

Ak
k

sup
(x,t)∈QT

|f1(x, t)|

+
k∑

i=1

1

Ak−i
k

sup
(x,t)∈∂lQT

|di(x, t)|,

=
Ak

Ak − 1

(
1− 1

Ak
k

)
Φk +

k∑

i=1

1

Ak−i
k

sup
(x,t)∈∂lQT

|di(x, t)|

+
1

Ak
k

sup
(x,t)∈QT

|uk(x, t)|,

which along with Ak > 1 gives (28).

Finally, by (28), and using the technique of transformation

as in the proof of Proposition 3.2, we obtain (29). �

IV. CONCLUDING REMARKS

This paper proposed a new method for establishing the

ISS in the spatial sup-norm for nonlinear parabolic PDEs

with boundary and in-domain disturbances. More precisely,

we introduced the notion of RKES to describe the uniform

dependence of solutions on the external disturbances. Based

on RKES in the (spatial and time) sup-norm, we proved the

ISS in the spatial sup-norm for a class of higher dimensional
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nonlinear PDEs with Dirichlet and Robin boundary distur-

bances, respectively. One example was provided to illustate

the obtained ISS results. In addition, as an application of

the introduced notion of RKES, we also established stability

estimates in the sup-norm and spatial sup-norm for a class of

parabolic systems in cascade coupled over the domain and on

the boundary of the domain, respectively.

It should be mentioned that the approach presented in this

paper is well suited for ISS analysis of weak solutions to

higher dimensional nonlinear PDEs with Dirichlet or Robin

boundary conditions. However, it seems to be difficult to apply

the proposed method to obtain the ISS in the spatial sup-

norm for PDEs with Neumann boundary disturbances due

to the usage of De Giorgi iteration. Therefore, there is a

need to overcome this obstacle and establish ISS estimates in

the spatial sup-norm for a wider class of PDEs with various

boundary disturbances by a unified approach, which will be

considered in our future work.
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APPENDIX A

PROOFS OF MAIN RESULTS

We present some basic Sobolev embedding inequalities that

are used in the proofs of stabilities.

Lemma A.1 (Theorem 1.3.2 and 1.3.4 of [26]): Let Ω be a

bounded, open subset of R
n(n ≥ 1), and suppose that ∂Ω is

C1. For n = 1, 2 and q ∈ (2,+∞), or n ≥ 3 and q ∈ (2, 2n
n−2 ),

the following inequalities hold true:

(i) ‖v‖Lq(Ω) ≤ CS(‖v‖L2(Ω) + ‖∇v‖L2(Ω)), ∀v ∈ W 1,2(Ω),

(ii) ‖v‖Lq(Ω) ≤ CP ‖∇v‖L2(Ω), ∀v ∈ W
1,2
0 (Ω),

where CS and CP are positive constants depending only on

q, n, and Ω.

Proof of Theorem 2.3: We prove first Theorem 2.3(i). Let

ui be the solution of the system Σ(U,F,D) corresponding

to the data (u0, fi, di) ∈ W 1,p(Ω) × C(Ω× R≥0;R) ×
C(∂Ω× R≥0;R), i = 1, 2.

Consider w = u1 − u2, which satisfies:

L [w] + h(x, t, u1)− h(x, t, u2) =f̃ in Ω× R>0, (37a)

a
∂w

∂ν
+mw =d̃ on ∂Ω× R>0, (37b)

w(·, 0) =0 in Ω, (37c)

with d̃ := d1 − d2 and f̃ := f1 − f2.

We proceed by De Giorgi iteration. Specifically, for any

T > 0, let k0 := max{0, 1
m
sup∂lQT

d̃}. For k ≥ k0 and

0 < t1 < t2 < T , let η(x, t) := (w(x, t) − k)+χ[t1,t2](t),
where s+ := max{s, 0} for s ∈ R, and χ[t1,t2](t) is the

character function on [t1, t2]. By virtue of Proposition 2.1,

and that W 1,p(Ω) →֒ W 1,2(Ω) →֒ L2(Ω) →֒ (W 1,2(Ω))′ →֒

(W 1,p(Ω))′ for p ≥ 2, we have η ∈ L∞((0, T ); (W 1,p(Ω))′)
with ηt ∈ L∞((0, T );Lp′

(Ω)). Then, η can be chosen as a

test function for (37).

By the Fubini’s theorem and integrating by parts, we have

−
∫ T

0

∫

Ω

wηtdxdt

=−
∫

Ω

w(x, T )η(x, T )dx+

∫

Ω

w(x, 0)η(x, 0)dx

+

∫ T

0

∫

Ω

wtηdxdt

=

∫ T

0

∫

Ω

wtηdxdt.

It follows that

∫ T

0

∫

Ω

(w − k)t(w − k)+χ[t1,t2](t)dxdt

−
∫ T

0

∫

∂Ω

(d̃−mw)(w − k)+χ[t1,t2](t)dSdt

+

∫ T

0

∫

Ω

a|∇(w − k)+|2χ[t1,t2](t)dxdt

+

∫ T

0

∫

Ω

cw(w − k)+χ[t1,t2](t)dxdt

+

∫ T

0

∫

Ω

(h(x, t, u1)− h(x, t, u2))(w − k)+χ[t1,t2](t)dxdt

=

∫ T

0

∫

Ω

f̃(w − k)+χ[t1,t2](t)dxdt. (38)

Note that for w ≥ k ≥ k0 ≥ 0, we have −mw ≤ −mk0 ≤
−mk0 ≤ − sup∂lQT

d̃, which implies that

∫ T

0

∫

∂Ω

(d̃−mw)(w − k)+χ[t1,t2](t)dSdt

≤
∫ T

0

∫

∂Ω

(d̃− sup
∂lQT

d̃)(w − k)+χ[t1,t2](t)dSdt

≤0. (39)

In addition, for w ≥ k ≥ k0 ≥ 0, it follows that u1 = u2+w ≥
u2, which and (8) give

∫ T

0

∫

Ω

(h(x, t, u1)− h(x, t, u2))(w − k)+χ[t1,t2](t)dxdt

≥−
∫ T

0

∫

Ω

Lw(w − k)+χ[t1,t2](t)dxdt. (40)

It is clear that

∫ T

0

∫

Ω

(c− L)w(w − k)+χ[t1,t2](t)dxdt

=

∫ T

0

∫

Ω

(c− L)((w − k)+)
2χ[t1,t2](t)dxdt

+

∫ T

0

∫

Ω

(c− L)k(w − k)+χ[t1,t2](t)dxds

≥(c− L)

∫ T

0

∫

Ω

((w − k)+)
2χ[t1,t2](t)dxdt. (41)
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Then, by (38), (39), (40), and (41), we obtain

∫ T

0

∫

Ω

(w − k)t(w − k)+χ[t1,t2](t)dxdt

+ a

∫ T

0

∫

Ω

|∇(w − k)+|2χ[t1,t2](t)dxdt

+ (c− L)

∫ T

0

∫

Ω

((w − k)+)
2χ[t1,t2](t)dxdt

≤
∫ T

0

∫

Ω

f̃(w − k)+χ[t1,t2](t)dxdt.

Hence

1

2

∫ t2

t1

d

dt

∫

Ω

((w − k)+)
2dxdt+ a

∫ t2

t1

∫

Ω

|∇(w − k)+|2dxdt

+ (c− L)

∫ t2

t1

∫

Ω

((w − k)+)
2dxdt

≤
∫ t2

t1

∫

Ω

f̃(w − k)+dxdt,

i.e.,

1

2
(Ik(t2)− Ik(t1)) + a

∫ t2

t1

∫

Ω

|∇(w − k)+|2dxdt

+ (c− L)

∫ t2

t1

∫

Ω

((w − k)+)
2dxdt

≤
∫ t2

t1

∫

Ω

f̃(w − k)+dxdt,

where Ik(t) :=
∫
Ω
((w(x, t)− k)+)

2dx.

Suppose that Ik(t0) = maxt∈[0,T ] Ik(t) with some t0 ∈
[0, T ]. Due to Ik(0) = 0 and Ik(t) ≥ 0, we can assume that

t0 ∈ (0, T ] without loss of generality.

If t0 = T , then I ′k(T ) ≥ 0. Thus I ′k(t) ≥ 0 on (T−δ, T ] for

some δ > 0. Then, there exists a sufficiently small constant

ε > 0 such that Ik(T−ε)−Ik(T−2ε) ≥ 0. Taking t2 = T−ε

and t1 = T − 2ε > 0, we obtain

a

ε

∫ T−ε

T−2ε

∫

Ω

|∇(w − k)+|2dxdt

+
c− L

ε

∫ T−ε

T−2ε

∫

Ω

((w − k)+)
2dxdt

≤1

ε

∫ T−ε

T−2ε

∫

Ω

|f̃ |(w − k)+dxdt.

Letting ε → 0+, we get for such t0 := T :

a

∫

Ω

|∇(w(x, t0)− k)+|2dx

+ (c− L)

∫

Ω

((w(x, t0)− k)+)
2dx

≤
∫

Ω

|f(x, t0)|(w(x, t0)− k)+dx. (42)

If t0 ∈ (0, T ), we can take t2 = t0 and t1 = t0 − ε > 0 for

a small ε > 0. Analogously, we can obtain (42). Thus, (42)

holds true whenever t0 ∈ (0, T ].

Using Lemma A.1(i), we have

‖(w(x, t0)− k)+‖2Lq(Ω)

≤2C2
S

(
‖(w(x, t0)− k)+‖2L2(Ω)

+ ‖∇(w(x, t0)− k)+‖2L2(Ω)

)
, (43)

where q and CS are the same as in Lemma A.1(i).

Let Ak(t) := {x ∈ Ω;w(x, t) > k}. By (42), (43), a > 0,

and c− L > 0, we have

min{a, c− L}
2C2

S

(∫

Ak(t0)

|w(x, t0)− k|qdx

) 2

q

=
min{a, c− L}

2C2
S

‖(w(x, t0)− k)+‖2Lq(Ω)

≤a‖∇(w(x, t0)− k)+‖2L2(Ω)

+ (c− L)‖(w(x, t0)− k)+‖2L2(Ω)

≤
∫

Ω

|f̃(x, t0)|(w(x, t0)− k)+dx. (44)

By the Hölder’s inequality, we have∫

Ω

|f̃(x, t0)|(w(x, t0)− k)+dx

≤
(∫

Ak(t0)

|f̃(x, t0)|q
′

dx

) 1

q′
(∫

Ak(t0)

|w(x, t0)− k|qdx

) 1

q

,

which along with (44) gives
(∫

Ak(t0)

|w(x, t0)− k|qdx

) 1

q

≤ 2C2
S

min{a, c− L}

(∫

Ak(t0)

|f̃(x, t0)|q
′

dx

) 1

q′

≤ 2C2
S

min{a, c− L}‖f̃‖L∞(QT )|Ak(t0)|
1

q′

≤ 2C2
S

min{a, c− L}‖f̃‖L∞(QT )µ
1

q′

k ,

where q′ := q
q−1 , µk := supt∈(0,T ) |Ak(t)|, and |Ak(t0)|

denotes the n-dimensional Lebesgue measure of Ak(t0). Then,

we may proceed exactly as in the proof of [26, Theorem 4.2.1]

to obtain

w ≤k0 +
2C2

S

min{a, c− L} |Ω|
q−2

q 2
3q−4

2q−4 ‖f̃‖L∞(QT ) a.e. in QT ,

which along with the continuity of w and f yields

w ≤max

{
0,

1

m
sup
∂lQT

d̃

}

+
2C2

S

min{a, c− L} |Ω|
q−2

q 2
3q−4

2q−4 sup
QT

|f̃ | in QT . (45)

We need to prove the lower boundedness of w. Indeed, it

suffices to set w := −w = u2−u1, and consider the equation

L [w] + h(x, t, u2)− h(x, t, u1) =− f̃ in Ω× R>0,

a
∂w

∂ν
+mw =− d̃ on ∂Ω× R>0,

w(·, 0) =0 in Ω.
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Let k0 = max{0, 1
m
sup∂lQT

(−d̃)}. Proceeding as above, we

obtain

−w =w

≤k0 +
2C2

S

min{a, c− L} |Ω|
q−2

q 2
3q−4

2q−4 sup
QT

|f̃ | in QT .

(46)

Finally, by (45) and (46), we have

sup
QT

|w| ≤ 1

m
sup
∂lQT

|d̃|+ 2C2
S

min{a, c− L} |Ω|
q−2

q 2
3q−4

2q−4 sup
QT

|f̃ |,

which gives the result stated in Theorem 2.3(i).

Now we prove Theorem 2.3(ii). Consider (37) by replacing

(37b) with

w = d̃ on ∂Ω× R>0.

For any T > 0, let k0 := max{0, sup∂lQT
d̃}. For k ≥ k0 and

0 < t1 < t2 < T , let η(x, t) := (w(x, t) − k)+χ[t1,t2](t).
It suffices to apply De Giorgi iteration as in the proof of

Theorem 2.3 (i).

Indeed, if L ≤ c, (42) can be reduced to

a

∫

Ω

|∇(w(x, t0)− k)+|2dx ≤
∫

Ω

|f(x, t0)|(w(x, t0)− k)+dx.

By Lemma A.1(ii), (43) can be reduced to

‖(w(x, t0)− k)+‖2Lq(Ω) ≤ C2
P ‖∇(w(x, t0)− k)+‖2L2(Ω),

where q and CP are the same as in Lemma A.1(ii). Hence,

(44) becomes

a

C2
P

(∫

Ak(t0)

|w(x, t0)− k|qdx

) 2

q

≤
∫

Ω

|f̃(x, t0)|(w(x, t0)− k)+dx. (47)

Then, analogous to (45), we obtain the following estimate:

w ≤ max

{
0, sup

∂lQT

d̃

}
+

C2
P

a
|Ω|

q−2

q 2
3q−4

2q−4 sup
QT

|f̃ | in QT .

The lower boundedness of w can be estimated in the similar

way, and the boundedness of w specified in (10) is guaranteed.

Now for c− L > 0, we shall determine an appropriate

coefficient of (
∫
Ak(t0)

|w(x, t0) − k|qdx)
2

q . Indeed, for v ∈
W

1,2
0 (Ω), we also have v ∈ W 1,2(Ω). Thus, (47) and (44)

hold true at the same time. Then, we obtain

(∫

Ak(t0)

|w(x, t0)− k|qdx

) 2

q

≤C0

∫

Ω

|f̃(x, t0)|(w(x, t0)− k)+dx,

where C0 := min
{

2C2

S

min{a,c−L} ,
C2

P

a

}
. Finally, (11) is guaran-

teed. �

Proof of Theorem 2.4: We only prove Theorem 2.4(i), since

the proof of Theorem 2.4(ii) can be proceeded in the same way.

We first prove that the system (2) with the Robin boundary

condition (3) is 0-UGAS w.r.t. the state in the spatial sup-

norm. Indeed, let v be the solution of the following equation:

L [v] + h(x, t, v) =0 in Ω× R>0, (48a)

a
∂v

∂ν
+mv =0 on ∂Ω× R>0, (48b)

v(·, 0) =u0(·) in Ω. (48c)

For any constant δ ∈ (0, c− L), let w := v eδt, c̃ := c −
δ, h̃(x, t, w) := h(x, t, we−δt) eδt, f̃(x, t) := d̃(x, t) := 0. By

direct computations, we have

wt − div (a∇w) + c̃w + h̃(x, t, w) =f̃ in Ω× R>0,

a
∂w

∂ν
+mw =d̃ on ∂Ω× R>0,

w(·, 0) =u0(·) in Ω.

Note that h̃(x, t, ξ1) − h̃(x, t, ξ2) ≥ −L(ξ1 − ξ2) for all x ∈
Ω, t ∈ R≥0, ξ1, ξ2 ∈ R, and minx∈Ω c̃ = c− δ > L. Thus, we

can apply De Giorgi iteration as in the proof of Theorem 2.3(i)

and obtain

sup
(x,t)∈QT

|w(x, t)|

≤max

{
sup
x∈Ω

|u0(x)|, 1

m
sup

(x,t)∈∂lQT

|d̃(x, t)|,

2C2
S

min{a, c− L} |Ω|
q−2

q 2
3q−4

2q−4 sup
(x,t)∈QT

|f̃(x, t)|
}

= sup
x∈Ω

|u0(x)|, ∀T > 0, (49)

which along with the continuity of w in t = T implies that

sup
x∈Ω

|w(x, T )| ≤ sup
(x,t)∈QT

|w(x, t)| ≤ sup
x∈Ω

|u0(x)|.

It follows that

sup
x∈Ω

|v(x, T )| ≤ e−δT sup
x∈Ω

|u0(x)|.

Letting δ → c− L, we have

sup
x∈Ω

|v(x, T )| ≤ e−(c−L)T sup
x∈Ω

|u0(x)|. (50)

Finally, by (9), (50), and Proposition 2.2, we conclude that

the system (2) with the Robin boundary condition (3) is EISS

in the spatial sup-norm w.r.t. in-domain and boundary distur-

bance (f, d) in C(Ω× R≥0;R)×C(∂Ω× R≥0;R), having the

estimate (12). �

REFERENCES

[1] H. Amann, “Parabolic evolution equations and nonlinear boundary
conditions,” J. Differential Equations, vol. 72, pp. 201–269, 1988.

[2] W. F. Ames, Nonlinear Partial Differential Equations in Engineering.
New York and London: Academic press, 1965.

[3] S. Dashkovskiy and A. Mironchenko, “On the uniform input-to-state
stability of reaction diffusion systems,” in IEEE Conference on Decision

and Control, Atlanta, Georgia, USA, Dec. 2010, pp. 6547–6552.
[4] ——, “Input-to-state stability of infinite-dimensional control systems,”

Math. Control Signals Systems, vol. 25, no. 1, pp. 1–35, 2013.



14 J. ZHENG et al.: PAPER SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2022

[5] ——, “Input-to-state stability of nonlinear impulsive systems,” SIAM J.

Control Optim., vol. 51, no. 3, pp. 1962–1987, 2013.

[6] L. C. Evans, Partial Differential Equations. American Mathematical
Society, Providence, Rhode Island, 2010.

[7] A. V. Hill, “The diffusion of oxygen and lactic acid through tissues,”
Proc. Royal Soc. London, vol. 104, pp. 39–114, 1928.

[8] B. Jacob, A. Mironchenko, J. R. Partington, and F. Wirth, “Non-coercive
Lyapunov functions for input-to-state stability of infinite-dimensional
systems,” SIAM J. Control Optim., vol. 58, no. 5, pp. 2952–2978, 2020.

[9] B. Jacob, R. Nabiullin, J. R. Partington, and F. L. Schwenninger,
“Infinite-dimensional input-to-state stability and Orlicz spaces,” SIAM

J. Control Optim., vol. 56, no. 2, pp. 868–889, 2018.

[10] B. Jayawardhana, H. Logemann, and E. P. Ryan, “Infinite-dimensional
feedback systems: the circle criterion and input-to-state stability,” Com-

munications in Information and Systems, vol. 8, no. 4, pp. 413–444,
2008.

[11] I. Karafyllis and M. Krstic, “ISS with respect to boundary disturbances
for 1-D parabolic PDEs,” IEEE Trans. Autom. Control, vol. 61, no. 12,
pp. 3712–3724, Dec. 2016.

[12] ——, “ISS in different norms for 1-D parabolic PDEs with boundary
disturbances,” SIAM J. Control Optim., vol. 55, no. 3, pp. 1716–1751,
2017.

[13] ——, Input-to-State Stability for PDEs. London: Springer-Verlag, 2018.

[14] ——, “ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic
PDEs,” ESAIM Control, Opt. & Cal. of Var., vol. 27, no. 57, pp. 1–23,
2021.

[15] P. E. Kloeden, “Some remarks on relative stability,” J. Austral. Math.

Soc. Ser. B, vol. 19, no. 1, pp. 112–115, 1975.
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