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RÉSUMÉ

De nos jours, les processus de fabrication évoluent pour intégrer les technologies de l’industrie
4.0, à savoir celles nécessaires à la connectivité, à l’analyse, à l’évolutivité et à la collecte de
données en temps réel. Les techniques classiques de surveillance de processus pour surveiller
la qualité du processus et/ou la qualité du produit sont confrontées à plusieurs défis. Des
quantités massives de données et d’informations sont échangées via de nombreux capteurs et
contrôleurs au sein du système. Ils doivent être structurés, gérés et stockés dans une structure
de base de données prédéfinie qui définit et caractérise les informations requises et les fournit à
chaque partie prenante. L’équipe qualité est l’un de ces acteurs à qui il incombe de contrôler la
qualité du processus/produit à l’aide de cartes de contrôle. Cependant, les cartes de contrôle
classiques présentent des limitations qui augmentent proportionnellement à la complexité du
processus de fabrication. La qualité 4.0 a été introduite en tant que nouveau paradigme
qui intègre les technologies de l’industrie 4.0 pour améliorer la surveillance et le contrôle
de la qualité, ainsi que la détection des anomalies à l’aide de techniques d’apprentissage
automatique. Néanmoins, certaines techniques d’apprentissage automatique ne permettent
toujours pas de remédier à l’augmentation des fausses alarmes et des phénomènes de détection
manquée. De plus, les techniques d’apprentissage automatique sont utilisées soit pour la
détection d’anomalies, soit pour l’identification d’anomalies. Ils ont besoin de suffisamment
de données pour pouvoir identifier et détecter les anomalies.

Dans cette thèse, nous développons un modèle de données conceptuel et logique à l’aide d’un
outil Entity-Relationship Modeling (ERM ). Le modèle ERM définit toutes les informations
requises par les parties prenantes. Il ingère, collecte, stocke, organise, nettoie, intègre, protège
et maintient les données générées au sein de la fabrication dans une base de données structurée
prédéfinie. Le modèle est facile à utiliser par les parties prenantes et garantit une qualité
élevée des données. Nous avons utilisé l’ERM dans un cas réel pour gérer les données et
informations pertinentes des processus d’inspection et de réparation dans le domaine de la
maintenance aérospatiale. Les données stockées dans la base de données représentent les
données historiques utilisées pour définir les indices de performance clés de la qualité d’un
processus.

Le modèle de régression d’analyse logique des données (LADR) a été développé sur la base
de modèles extraits à l’aide d’une approche LAD commune à appliquer aux problèmes de
régression. Le modèle LADR est construit à l’aide de modèles extraits des données d’origine
au lieu des variables indépendantes d’origine. Il a été intégré à la carte de contrôle pour
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obtenir une nouvelle carte de contrôle basée sur un modèle. Il améliore la sensibilité de
détection des anomalies. Contrairement à d’autres techniques d’apprentissage automatique,
il exploite ses modèles pour effectuer une analyse des causes profondes de l’anomalie détectée.

La carte de contrôle basée sur LADR a été adoptée pour développer un nouveau mécanisme
de surveillance et d’alerte en ligne. Ce mécanisme a été appliqué pour surveiller les conditions
de fonctionnement du système d’entraînement par courroie. Des expériences ont été menées
sur le système pour collecter ses signaux vibratoires uniquement en fonctionnement normal.
Le mécanisme utilise les caractéristiques statistiques extraites des signaux collectés pour
détecter et identifier toute anomalie rencontrée lors du fonctionnement du système.

La carte de contrôle basée sur LADR a produit de meilleures performances que d’autres
cartes de contrôle bien connues basées sur l’apprentissage automatique. Il a réduit le taux
de fausses alarmes et le taux de détections manquées par des pourcentages minimum de 95%
et 50%, respectivement, par rapport aux approches actuelles.
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ABSTRACT

Nowadays, manufacturing processes are changing to integrate industry 4.0 technologies,
namely those needed for connectivity, analytics, scalability, and gathering real time data.
The conventional process monitoring techniques for monitoring the process quality and/or
product quality are facing several challenges. Massive amounts of data and information is
exchanged through many sensors and controllers within the system. They are required to be
structured, managed, and stored in a pre-defined database structure that defines and char-
acterizes the required information and provides it to each stakeholder. The quality team is
one of these stakeholders, whose responsibility it is to monitor the quality of the process/
product by using control charts. However, the conventional control charts have limitations
that increase proportionally with the complexity of the manufacturing process. Quality 4.0
has been introduced as a new paradigm that integrates the industry 4.0 technologies to
improve quality monitoring and control, and anomaly detection by using machine learning
techniques. Nevertheless, some machine learning techniques still do not remedy the increase
in false alarms and missed detection phenomena. Moreover, machine learning techniques are
used either for anomaly detection or anomaly identification. They require sufficient data to
be able to identify and detect anomalies.

In this thesis, we develop a conceptual and logical data model using an Entity-Relationship
Modeling (ERM ) tool. The ERM model defines all information required by stakeholders. It
ingests, collects, stores, organizes, cleanses, integrates, protects, and maintains the generated
data within manufacturing in a pre-defined structured database. The model is easy to use by
stakeholders, and it ensures high quality of data. We used the ERM in a real case to manage
the relevant data and information of the inspection and repair processes in the aerospace
maintenance domain. The data stored in the database represents the historical data that is
used to define the key performance indices of the quality of a process.

The Logical Analysis of Data regression (LADR) model was developed based on extracted
patterns using a common LAD approach to be applied on regression problems. The LADR
model is constructed using patterns extracted from the original data instead of the original
independent variables. It has been integrated with the control chart to obtain a new model-
based control chart. It improves the sensitivity of anomaly detection. Unlike other machine
learning techniques, it exploits its patterns to perform a root cause analysis of the detected
anomaly.

The LADR-based control chart was adopted to develop a new online condition monitoring
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and warning mechanism. This mechanism was applied to monitor the operating conditions
of the belt drive system. Experiments were carried out on the system to collect its vibration
signals only during normal operation. The mechanism uses the extracted statistical features
from the collected signals to detect and identify any anomaly that is experienced during the
operation of the system.

The LADR-based control chart produced better performance than other well-known machine
learning-based control charts. It reduced the rate of false alarms and the rate of missed
detections by minimum percentages of 95% and 50%, respectively, regarding the current
approaches.
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CHAPTER 1 INTRODUCTION

A few years ago, a study was carried out comparing automobile transmissions that were man-
ufactured in the USA and Japan. This comparative study showed there was a big difference
between the two countries based on an analysis of performance and repair cost. Random
transmission samples were selected from the two sources and their quality characteristics
were measured as well. At that time, Japan outperformed the USA because they had higher
quality transmissions at a lower cost [1].

The quality of products is the main concern in industrial applications to achieve consumers’
requirements. It is one of the most significant factors that creates fierce competition between
products [2]. Accordingly, when the quality is improved, the performance of the business will
be enhanced. In addition, it increases not only the process productivity but also the safety
process and reliability of the system. Garvin [3] described the evaluation of the quality of
any product as follows:

1. An evaluation of the product’s performance according to required specifications.

2. Identification of the product’s reliability, durability and serviceability.

3. Determination of the product’s aesthetics and additive features.

4. The reputation of the company and the perceived quality of the product.

5. Conformance to regulations and standards.

Industries seek a level of quality, in which their processes or products can achieve a required
target level. However, some variations can appear during this process. High quality means a
reduction in variations so that they are within an acceptable range, closer to the target. In
other words, the higher quality the product, the greater the reduction in variability in both
the processes and products. This refers to the previously mentioned comparative study on
automobile transmissions, in which the products’ statistical quality distribution of the two
countries had the same target mean, but the width of the distribution variance (i.e. normal
distribution of a high variance) in the USA is greater than that in Japan. The results in the
USA had greater variability, which corresponds to lower quality. Accordingly, non-conforming
products were accepted by American companies with defective characteristics. Furthermore,
the transmissions from American automobiles needed too many repairs, more rework and
greater effort as well as wasted time and cost.
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There are two types of process variations: common cause variations and assignable cause
variations. Common cause variations are the natural variability in any process that has no
significant effect on the stability of the process. These variations are due to unavoidable
causes that can be eliminated only by better product or process design; nevertheless, the
process is statistically controlled. On the other hand, the assignable cause variations result
in abnormal variability, which affects the process performance. These can be caused by
the presence of machine faults, non-conforming raw material, or operator errors. Thus, the
process is statistically out of control [4, 5].

Thus, quality enhancement is achieved by monitoring, analyzing, and controlling process
variability. Process monitoring and control are constructed in three stages: (1) fault detection
of any abnormal patterns; (2) fault diagnosis to understand a pattern; (3) applying corrective
actions to bring the process back to normal conditions.

Statistical process control (SPC) is one of the methods that monitors the process to reduce
variability and improve quality [6]. Once SPC detects any assignable causes associated with
the process, it provides a notification of the presence of abnormal variations. Hence, a
corrective decision can be taken to avoid loss of quality. SPC contains seven major tools,
which are often called the “magnificent seven” [7]. The control chart is an SPC tool that
is used in many industrial applications [8, 9]. They are used in a statistical hypothesis to
monitor the variability of quality characteristics. Nevertheless, the control chart faces several
limitations due to an increase in the complexity of manufacturing processes.

Recently, the Quality 4.0 paradigm has been introduced under the title of Industry 4.0 which
digitalizes quality management using artificial learning techniques [10]. Several studies have
implemented machine learning techniques with control charts to overcome their drawbacks,
such as the sensitivity of the results to the chosen parameters and the need to determine
accurate control limits, autocorrelation in the dataset, and the difficulty of handling higher-
dimensional data. These drawbacks have led to false alarms, which are called false positives,
and/or missed fault detection, which are called false negatives. Hence, these misleading re-
sults affect process monitoring, and therefore the product or process quality declines. Various
machine learning techniques have been used for feature extraction and selection to maintain
the important variables that are required to be monitored by the chart. Consequently, the
performance of the control charts in the detection of assignable causes has shown some
improvement compared to before. Furthermore, machine-learning techniques have helped
control charts identify the type of anomaly that causes abnormal behavior. Moreover, they
have identified the variables that have contributed to that fault.

Machine learning enriched the control charts and increased their performance in fault detec-
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tion. However, the latest research shows that there is still some need to improve false alarms
and/or missed detection rates. This also applies to the accuracy of the model variables and
determines the parameters that are calculated from the data. In other words, a more accurate
model results in a better description of the process data.

Data management is considered an essential aspect of Quality 4.0 which is carried out before
the implementation of machine learning algorithm-based control charts. Data management
is used to establish, communicate, demonstrate, and invest in a unified data vision [11]. It
identifies the data type generated from the manufacturing processes, then applies cleaning
for invaluable resources to ensure the quality of the given data. Therefore, a data model is
developed to provide all of the necessary data to easily monitor the quality characteristics of
a manufacturing process.

1.1 Problem statement

Quality is considered to be a crucial aspect of both processes and products and is a com-
petitive advantage for various industrial organizations and companies in the global market.
Most industries have now realized that maintaining the quality of a process and/or product
is not an option. They strive towards improving quality by reducing the variability in both
the processes and products to meet customer requirements and to conform to standards, as
well as increase productivity performance. Control charts are used for process monitoring
and quality control to detect the anomalies experienced in the process and, accordingly, im-
prove the quality of the process and product. An increase in the volume and variety of data
that is automatically exchanged through the sensors and controllers in a system, increases
the complexity of the manufacturing processes. The conventional control chart has several
challenges that affect decision-making.

Recent advances in modern technologies in various industrial applications have led to con-
tinuous and large data streams that are collected via the data acquisition systems [12, 13].
The collected data is stored in complicated and varying structures with different formats,
which is difficult to be implemented directly to control charts or even use in other analyses.
Data preparation and management is a critical operation, which enables the efficient and
effective use of data in order to become easy to identify, understand and manage the storage
of historical data and current data, and to identify its location for traceability, accessibility,
and reusability. Therefore, a data model is compulsorily required to be designed to integrate
and define the necessary process variables in a unified data structure. Consequently, these
variables will be easily monitored by the control chart [14].
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Despite improvements in the performance of control charts, several limitations have become
more apparent as the manufacturing processes have become more complex. False alarms and
missed detections are two critical problems that are presented within control charts. The
control charts’ performance deteriorates with the presence of auto-correlated process data,
which affects the accuracy of the chart parameters [15]. Also, the charts’ performance declines
when they are subject to high-dimensional data [16]. However, machine learning techniques
contribute to solving the drawbacks of control charts. Different models are generated to
reduce the dimensionality of the dataset, which has a large number of variables. Thus,
a few dependent variables are monitored via the control charts. Also, regression models
manage the auto-correlated data, so the process can be accurately monitored. There are
existing techniques that still produce false alarms and/or missed faults. It is essential to
obtain an accurate technique structure that will lead to a better description of the process
data. Accordingly, this is reflected in the selection of the chart parameters that lead to high
performance of fault detection.

The identification of an anomaly experiences in the manufacturing process is important for
decision-making to bring the process back to its normal operation. The control charts do not
determine the root causes when an anomaly is detected. Several fault isolation techniques
are used to identify the faulty variables that contribute to an anomalous process. Although
these techniques overcome the drawbacks of existing methods, they still suffer from a lack
of handling higher dimensional process data that contain high correlations [17, 18]. Some
techniques work well when there is one faulty variable and others assume that a few variables
are responsible for that shift in the process [19]. Generally, these techniques acquire enough
historical fault data or randomly generate training data that describes the different types of
anomalies [20–23].

1.2 General objective

This thesis aims to provide quality leaders with versatile tools to deploy a Quality 4.0 trans-
formation in terms of data management and analytics to improve the conventional process
quality monitoring and control tools. This set of tools are are oriented towards two main
parts, data and information flow within the manufacturing system, and improving of the
quality of the process and product. A data model is proposed and built to support the dig-
ital transformation strategy of data management in manufacturing processes. It is used to
establish a structured plan that favours information exchange to improve traceability and to
allow the data flow to be mapped within the process. Subsequently, the thesis proposes a new
machine learning technique that is integrated with control chart to monitor process variabil-
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ity. It overcomes the drawbacks of existing approaches. The development of a compatible
technique increases the control chart’s performance in anomaly detection and performing
root cause analysis. The proposed tools ensure well structured and descriptive database that
easily define the key performance of indices for all disciplines. Moreover, the tools increases
the quality of the process and product that conform standard and specification, and improves
the productivity.

1.3 Specific objectives

In order to achieve the general objective, several tools were developed to overcome the diverse
and heterogeneous of the captured data from the manufacturing processes, and improve
process quality monitoring in terms of anomaly detection and identification. The objectives
are as follows:

Objective 1: Design an approach for data modeling

Design and build a data model that organizes and manages the diverse and heterogeneous
data exchange through the sensors and controllers within a process. The proposed data
model captures and stores the data in a pre-defined structure and ensures a high quality
of data. It favours accessibility, traceability, and reproducibility that will help for better
communication between stakeholders, specifically for the quality department and to track
relevant information. This structure of the data model can result in the conservation of
human expertise for further data analysis, exploration, and exploitation. More importantly,
the data model will provide the key performance of index for a process that represents the
stage of data preparation for the next objective.

Objective 2: Develop an accurate machine learning technique for monitoring process quality

Develop a machine learning technique that provides an accurate model structure with high
performance. This technique exploits the historical data captured from the manufacturing
and obtains an inferential model for the monitored process. The structure of the technique is
considered the extracted patterns that describe the original data. The independent variables
are the patterns with the same dependent variable(s). Therefore, the key feature is to obtain
better independent variables that are more interpretable to describe the key performance of
a quality index and understand process conditions. This technique will be integrated with
the control charts in the next objective. The integration is used for anomaly detection and
identification in a process to ensure a high quality of that process.

Objective 3: Reduce false alarms and missed detections

Develop a new model-based control chart that monitors the variability within a process, re-
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duces the false alarm and missed detection rates, and overcomes the limitations of the control
charts. High false alarms and missed detections are crucial problems that are inherent within
the control charts. Integrating a machine learning technique increases the sensitivity of the
control charts. They are implemented to obtain a regression model describing the relation-
ship between the independent variables and the dependent variable. The proposed approach
combines the proposed machine learning technique in objective 2 with the conventional con-
trol chart to improve the performance of detecting anomalies that can be presented in a
process. The proposed approach reduces false alarm and missed detection rates by minimum
percentages of 95% and 50%, respectively, regarding the current approaches. This reduces
the downtime and improves the productivity of the manufacturing.

Objective 4: Identify the root causes of the anomaly with pattern recognition

Use the same machine learning technique developed to identify the root cause of the anomaly
once it is detected. This technique can determine the anomaly’s reason via the patterns,
which are extracted from the process data.

1.4 Research approach

We established a research approach to meet the research objectives previously mentioned.
This approach is as follows:

1. Data Modeling: Data preparation and management is a critical operation, which
enables the efficient and effective use of data in order to become easy to identify and
understand, and to manage the storage of historical data and current data. We proposed
a data modeling approach using Entity-Relationship Modeling (ERM ) technique to
collect, store, organize, clean, integrate, and protect the diverse and heterogeneous
data exchange through sensors and controllers within a process. The ERM provides
well-structured database and improves the data quality. It provides the stakeholders’
information easily and rapidly, and standardizes the communications between them.
Furthermore,Provide the key performance indices for all stakeholders, especially quality
team.

2. Predictive Modeling: Machine learning technique is used to obtain the relationship
between the dependent and independent variables. It uses the historical data in the
database to create a regression model which is used to predict accurately the online
real-time data. Thus, we developed a Logical Analysis of Data Regression technique
(LADR) as a new regression technique to obtain an accurate model that describes
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the process data. The LADR is based on a standard LAD methodology [24]. It is
constructed based on extracted hidden patterns in the original process data. The
LADR handles the curse of dimensionality and auto-correlation phenomenon.

3. Anomaly Detection: Since the control charts have several limitations, we integrate
the proposed LADR with the control chart to monitor quality characteristic and in-
crease the sensitivity of the anomaly detection when presented in the process. Conse-
quently, providing accurate model reduces the false alarm rate (FAR) and/or missed
detection rates (MDR).

4. Anomaly Diagnosis: The control charts are not designed to identify the root cause
of the detected anomaly. Thus, we proposed the same LADR to determine the rea-
son for the detected anomaly in the process by using the interpretable patterns that
construct the LADR model. Accordingly, the variables that contribute to the anomaly
are identified without resorting to collecting or generating sufficient data for different
anomalies conditions.

1.5 Originality of Research

The originality and novelty of this research is as follows:

1. A data modeling technique is used to develop a conceptual and logical models in order
to characterize and manage the diverse and heterogeneous data exchange through a
manufacturing system. They are considered essential steps in the Quality 4.0 paradigm.
They achieve high levels automation including high quality of stored data and avoids
redundant, incomplete, inconsistent Data compared to the current data models that
were used in the manufacturing. Moreover, it remedies the absence of standardization
in terminology of communication between stakeholders and provides the required key
performance of indices for all stakeholder. Furthermore, It has been implemented for
the first time to be used for inspection and repair processes in Aerospace domain.

2. A new machine learning technique LADR is developed to obtain a regression model from
the historical data in manufacturing database. The LADR is based on the standard
LAD methodology where the independent variables represent the extracted patterns
from the historical data. The LADR addresses the research gaps and limitations of the
recent researches of LAD-based regression approaches. Moreover, it provides significant
results compared to the other well-known technique.
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3. New three discretization methods are introduced to LADR to improve not only the con-
cept of the LAD based regression approaches but also, improve its performance. These
methods are responsible for converting the problem from classification to regression to
obtain strong patterns that describe the data. The results demonstrate improvement in
the performance of the LADR compared to recent researches of LAD-based regression
approaches as well as the other well-known machine learning techniques.

4. A clear methodology is presented for implementation of the LADR technique to build a
regression model based on strong patterns that are extracted from the original data us-
ing cbmLAD. Unlike the recent researches of LAD-based regression approaches, LADR
has no limitation on the degree of the generated patterns, which affect the accuracy of
the regression model.

5. To the best of our knowledge, LAD has never been integrated with the control chart.
LADR has been adopted as a regression adjustment with the control chart has been
introduced to detect any anomaly present in the process. This integration shows a
reduction in the false alarms and missed detection rates compared to other approaches.

6. A new methodology to perform a root cause analysis to identify the reason for the
anomaly experienced in the process using the same regression model that was obtained
with the LADR technique. Unlike other machine learning- based control chart, the
LADR does not need to collect or generate sufficient data for different anomalous
conditions or to acquire any additional classifier.

7. A new condition monitoring and warning mechanism is introduced based on Logical
Analysis of Data Regression (LADR) and Residual control chart (RCC ). This mecha-
nism exploits the strength of the LADR to detect any faults in an industrial system and
identify the root cause of the detected fault to take the appropriate corrective action.

The research approach leans towards both developing the cutting edge of research and in-
dustrial applications. The research objectives are not only working on improving the perfor-
mance of the used methodologies but also performing concept improvement. In this work,
we present the LADR technique, a novel regression model by introducing three discretization
methods, which haven’t been used in such types of regression problems to the best of our
knowledge. Thus, our proposed regression model serves as a conceptual extension of the
standard LAD methodology to suit regression problems, thus expanding the field of using
LAD methodology in regression problems. We show in this thesis that our proposed method
compares favorably to the current state of the art of LAD-based regression approaches, as
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well as other well-known machine learning techniques. Moreover, we provide a clear and
detailed description of our method while addressing the gaps in the literature. That said,
we keep versatility and applicability in the industry in mind while developing our proposed
approach. We develop a novel LADR-based control chart methodology that facilitates the
root cause of detected anomalies presented in industrial processes. We show that our ap-
proach outperforms state-of-the-art methods in this regard. This boosts the ability to take
adequate corrective actions to eliminate such anomalies in industrial processes and sustain
the process in-control operation. Our approach can be used in many industrial applications,
such as production lines, machining processes, and quality improvement.
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CHAPTER 2 THESIS ORGANIZATION

The thesis is presented in eight chapters. The current chapter is Chapter 1, which provides
a brief introduction about the process quality monitoring techniques and the new trend of
digitalization of quality management. It also addresses the problem statement and challenges,
in addition to demonstrating the general objectives and originality of this research. Chapter 2
is divided into two parts. The first part reviews the data management architecture to control
and characterize the data, its traceability, and its adaptability for use by the stakeholders.
It provides the concept for designing a data model that organizes and manages the relevant
process data in a well-structured database to ensure high data quality. On the other hand,
the second part provides a background about the control charts and their limitations in
process monitoring. Then, it introduces the importance of integrating machine learning
techniques with conventional control charts to increase the sensitivity of anomaly detection
and diagnosis.

Chapter 3 presents the concept of data modeling to store, organize, and manage the data
generated from the sensors and controllers of a process. It describes the design of conceptual
and logical models using a technique called “Entity Relationship, ER”. The ER has been
applied in a real case study on inspection and repair processes in the Aerospace domain. It
is considered an essential step in data preparation for Quality 4.0.

Chapter 4 introduces a new regression technique, LADR, based on the standard LAD method-
ology. It explains the methodology for implementating the LADR, showing how it strengthens
the developed model. The performance of the new technique has been evaluated using differ-
ent datasets. Moreover, it has been compared with the performance of well-known regression
techniques.

Chapter 5 provides a LADR-based control chart as a new model-based control chart to
improve the performance of anomaly detection during process quality monitoring. Unlike
other integrations, a LADR-based control chart is not only used for anomaly detection but
also for performing root cause analysis to identify the reason for that anomaly. Therefore,
the methodology of the proposed integration is described in the terms of fault detection and
identifying the root cause of the anomalous process. To evaluate the performance, the results
of the proposed technique are compared with those of the other techniques.

Chapters 6 and 7 focus on monitoring the operation of the belt drive system under different
conditions. In Chapter 6, extensive experiments are carried out to collect vibration signals
during the operation of the system. It describes in detail the description and importance of
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collected signals and how the experiments are performed. This is considered an introduction
into proposing a new condition monitoring and warning mechanism based on the Logical
Analysis of Data Regression (LADR) and Residual control chart (RCC ) in Chapter 7. The
implementation of the proposed mechanism is elaborated upon for monitoring and fault
detection and diagnosis during the operation of the belt drive system.

Chapter 8 presents a summary of the contributions of this thesis, areas for further research,
and some concluding remarks.

2.1 Deliverables

The following is a list of the outcomes of this thesis:

1. Khalifa, R.M., Yacout, S. & Bassetto, S. (2021). Developing machine-learning regres-
sion model with Logical Analysis of Data (LAD). Computers and Industrial Engineer-
ing, 151, 16 pages. Retrieved from https://doi.org/10.1016/j.cie.2020.106947

2. Khalifa, R.M., Yacout, S. & Bassetto, S. (2021). Quality 4.0 : entity relationship
model for inspection and repair processes in aerospace domain. Paper presented at the
6th North American Conference on Industrial Engineering & Operations Management
(IEOM 2021), Monterrey, Mexico (11 pages).

3. “Root Cause Analysis of an Out-of-Control Process Using a Logical Analysis of Data
Regression Model and Exponential Weighted Moving Average”

• Authors: Ramy M. Khalifa, Soumaya Yacout, Samuel Bassetto

• Submitted to Journal of Intelligent Manufacturing (JIMS) on 4th of March 2022.
The paper is under review.

4. “Experimental vibration data collected for a belt drive system under different operating
conditions”

• Authors: Ramy M. Khalifa, Soumaya Yacout, Samuel Bassetto, Yasser Shaban

• Submitted to Data in Brief, ElSEVIER on 16th of May 2022.

5. “Condition monitoring and warning mechanism in the belt drive system based on Log-
ical Analysis of Data regression based residual control chart”

• Authors: Ramy M. Khalifa, Soumaya Yacout, Samuel Bassetto, Yasser Shaban
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• Submitted to Mechanical Systems and Signal Processing, ElSEVIER on 16th of
May 2022.
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CHAPTER 3 LITERATURE REVIEW

Quality 4.0 has been introduced as a new concept in the era of Industry 4.0 [25]. The
American Society of Quality (ASQ) states that Quality 4.0 is the organizational excellence
and the future of quality management [26]. Quality 4.0 represents the impact of the digital
transformation of quality management in terms of quality tools and technology, people, and
processes [10]. Quality 4.0 closely aligns quality management with the era of Industry 4.0 to
enhance the efficiency, performance, innovation, and business models of an organization [27].
The Quality 4.0 framework has 11 axes as depicted in Figure 3.1. This thesis addresses the
data management and process quality monitoring which are related to the two axes “Data”
and “Analytics”, respectively, in the framework.

Figure 3.1 Quality 4.0 framework [10]

3.1 Data management

Data-driven decisions have been considered the heart of quality management for decades [10].
With the rapid progress of, and complexity in manufacturing, there is a large amount of di-
verse and heterogeneous data exchange through sensors and controllers within a manufactur-
ing system. Since data is a valuable aspect of process quality monitoring, it must be handled
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and managed using a data management system. The data management system is used to
ingest, collect, store, organize, cleanse, govern, integrate, protect, and maintain the required
data for purposes of further analysis. In other words, it is an architecture that is used to
achieve the requirements of data for the life cycle in a manufacturing system [28, 29]. Con-
sequently, it characterizes, identifies, and controls the data or information generated by the
system. It establishes and standardizes communications between operations’ stakeholders,
and in this case, quality leaders and engineers.

3.1.1 Data Types

Data is usually characterized in terms of 5 V’s. These include 1) Volume, which refers to
the size and amount of the collected data, 2) Value, which indicates the importance and use
of the data, 3) Velocity, which is the rate of the data stream, 4) Veracity, which means the
accuracy of data , 5) Variety, which refers to the diversity of different types of data that can
be summarized into three types: structured, semi-structured, and unstructured data [10,30].

Structured data conforms a data model in which the collected data has been well organized
and stored in a pre-defined structure with a certain hierarchical format [31]. Generally,
it follows a tabular format with various rows and columns where their relationship is well
defined. It usually resides in a relational database management system (RDBMS) which
manages the relationships in the database. This type is eminently searchable for algorithms
or even for human-generated queries. It is easily used and understandable by users in an
organization. Conversely, unstructured data does not conform to a data model and the
collected data is heterogeneous, irregular, and has no pre-defined structure such as videos,
text, XML, ..etc. [32]. It constitutes 80-95% of the available data [30]. Unstructured data
can be human-generated (such as emails, text files, and digital photo) or machine-generated
(such as sensor data, weather data, and seismic imagery). It usually resides in a non-relational
database management system. The cons of the unstructured data include requiring a data
science expert to be able to understand and analyze the generated data so that it can be
used later, and specialized tools that are necessary to manipulate this type of data. On
the other hand, semi-structured data lies between the structured and unstructured data
types [31]. Although it is semi-organized and does not conform to a data model, it is easier
to be analyzed compared to unstructured data type.

3.1.2 Data Modeling

With the growth of data and information that is gathered from different sources and in
different formats, there is a need to formulate and store data in a structured format [33]. The



15

data modeling process is used to design a robust data model that characterizes the required
data of the database in an entire organization and describes the relationships between these
data. It organizes and defines the structure of the data stored in the database. The data
model ensures that the stored data meets business requirements by being a high quality of
data. High data quality means 1) accuracy, 2) validity, in that the stored data follows pre-
defined standards in the database in terms of type, size, and format, 3) integrity, in that
the validity of the relationships across the data stored can be traced, 4) completeness, 5)
consistency, in that the data is in sync across the database, and 6) timeliness, meaning that
the data is available when it is needed [34].

The data model has four stages in designing a database, as depicted in Figure 3.2 [35, 36].
The Business requirement is the first and the most important stage. It aims to understand
the manufacturing process and the interactions between the stakeholders and the life cycle
of the process. In this stage, the required data is identified and characterized based on
the process and the stakeholders’ requirements, whether for further analysis or to prepare
reports [37]. Then, the collected data and information is used to design a conceptual data
model. The conceptual data model represents a high level of abstraction which defines what
the manufacturing process contains in terms of concepts and rules [38]. This model is refined
and converted into a logical data model, which provides more detail about the structure of
the data. It maps all of the elements (attributes) of the data in the structure and defines the
relationships between them. Finally, a physical data model is developed, which is the actual
implementation of the database using Database Management System (DBMS) software [37].

Figure 3.2 The stages of Data modeling

Several types of data modeling approaches have evolved along with the growth of data storage
required by business organizations. There are five main types: 1) Hierarchical Data Modeling
(HDM ) [39], 2) Network data modeling (NDM ) [40], 3) Relational Data Modeling (RDM )
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[41], 4) Object-Oriented Data Modeling (OODM ) [42], 5) Entity-Relationship Data Modeling
(ERM ) [43], as depicted in figure 3.3. Hierarchical Modeling is considered the oldest data
model. It organizes the data in the form of a tree-like structure, which is represented by
the parent-child relationship. The root record is the peak of the structure, which has a set
of parents’ records. Each parent’s record has one or more children. This model manages
a large amount of data and improves data sharing. However, it is rarely used due to its
complexity of implementation. Network data modeling looks like HDM. Nevertheless, it
is easier than HDM in representing complex relationships, which include multiple parent
records. NDM organizes the data in a graph where the child can have one or more parent
records. However, the structure of the database becomes more complex than HDM. Moreover,
it is difficult to apply structural changes to the existed database. Relational data modeling
represents the collection of data and information, which is organized as related-based multiple
tables. RDM facilitates the design of the database and promotes the independence of the
structure. It supports multi-level relationships between the tables with large amounts of
data. Object-Oriented Data Modeling represents the data and information in the form of
objects. The objects with similar functionalities are gathered and linked to different other
objects. Although it can handle different types of data, it is still limited and mostly a
theoretical approach. In addition, the obtained model can be complicated to design or
understand. Entity-Relationship modeling is a graphical approach that represents the data
and information in the form of entities. Each entity has one or more attributes that describe
that entity. The ERM provides a better description of the stored data in the database and
reduces the data redundancy and inconsistency to ensure high data quality in the database.

Various data modeling languages are widely used in computer science and software engineer-
ing to implement different data modeling approaches. They aim to present the information
and data structures of reality as designed by the approach [44]. The following are the mod-
eling languages:

1. Unified Modeling Language (UML)
UML is a general-purpose modeling language, which is mainly used to design software.
It is a graphical modeling language that constructs, standardizes, and documents the
visualization of the designed software system. There are several UML methods which
can be divided into two types: structural and behavioral UML. It facilitates the design
of complex software and provides clear and real communication of the designed software.
It consumes much time to design and maintain the UML code [45].

2. Extensible Markup Language (XML)
XML is a modeling language that is used to store and share the data in self-descriptive
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(a) Hierarchical Model (b) Network Model

(c) Relational Model (d) Object-Oriented Model (e) Entity-Relationship Model

Figure 3.3 Data modeling approaches

structures. The relationship among the data is following the concept of the hierarchical
modeling approach. The XML describes these structures using tags (<text>) through
text formatting. These tags are determined by Document Type Definition (DTD) that
defines the data structure, including all attributes. The DTD is used to verify whether
the XML is valid or not [46]. Generally, the XML is characterized as it simplifies the
data sharing, transporting, and availability. Nevertheless, it uses excessive syntax in
terms of a large number of entities and tags. Thus, JavaScript Object Notation (JSON
is considered one of its alternatives.

3. Systems Modeling Language (SysML)
SysML is a modeling language that is developed from the Object Management Group
(OMG) [47]. It is considered an extension of UML to support the analysis, specification,
design, and validation of systems engineering applications. The SysML is more flexible
and expressive compared to UML. It allows modeling a wide variety of complex systems
from different views in terms of behavior, structure, or requirement [44]. This language
is easy to learn and implement because its notions are not ambiguous.

4. Entity-Relationship Diagram (ERD)
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ERD is an essential tool that is used for the data management system. It is based on
Entity-Relationship Modeling. It describes the data structure as entities and defines
the relationship between each entity. Each entity contains several attributes that define
that entity [48].

3.1.3 Entity Relationship Modeling (ERM )

ERM is one of the most common data modeling techniques. It was first developed by
Chen [49]. It represents the structure of the database of a specific domain in a set of entities
and defines their relationships [50, 51]. The database structure can have several entities.
Each entity can correspond to persons, objects, spaces, or concepts in the real world, and it
can include several attributes. An attribute is used to define the characteristics of an entity.
The attribute can be a simple attribute in which is an atomic attribute, and cannot be
further subdivided, and a composite attribute, which can be represented with a set of simple
attributes. Moreover, it is classified according to its value in a multi-valued attribute, as it
can have two or more values, and as a derived attribute, which derives its value from other
attribute(s) in the database [52]. Each entity can have two types of keys, a primary (unique)
key, and a foreign key. A primary key attribute is a unique identifier that identifies the entity
and cannot be repeated. On the other hand, the foreign key in an entity is considered a
primary key of another entity and it sets up a relationship with that entity. The relationship
between two entities in ERM is defined using connecting lines and cardinality (Kashmira
2018). Cardinality is determined by the maximum number of times that an instance within
an entity can relate to many instances within another entity. Consequently, cardinality can
describe the relationship in one-to-one (1:1), one to many (1:M), and many to many (M: M).
The notations of the ERM are summarized in Figure 3.4.

The ERM provides a visual representation of the designed database in terms of defining
entities, attributes, and relationships. Therefore, it allows the business users to easily observe
the data flow, along with the database, and understand the data stored in [36]. It improves
the data quality and ensures that there is no missing or redundant data. The conceptual
model is simple and easily converted into the logical model and physical model that needs to
be implemented using DBMS software.

Once the data model is designed and implemented in the manufacturing process, it will
easily collect the process data and define key performance indices for quality, traceability,
and reproducibility control. The stored data in the database will be considered historical
data. Therefore, we use the historical data to determine the parameters of the quality tool.
Subsequently, the quality tool will be able to monitor the process online to detect any anomaly
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Figure 3.4 The notations of the ERM

experienced in the process, and hence it identifies its root cause to take appropriate corrective
actions, as shown in Figure 3.5.

Figure 3.5 The bridge from data modeling to quality monitoring

3.2 Control charts

Control charts are statistical tools for monitoring process variations over time. They graph-
ically represent variations in the quality characteristics, so these charts can determine the
condition of the process and whether it is in-control or out-of-control. In 1924, Dr. Wal-
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ter Shewhart developed the first control chart and used it to monitor and detect potential
variations in the process [7, 53].

Control charts were developed for industrial applications, and they were also used in different
fields. They were used in the prediction of failures in business works [54], quality manage-
ment of education [55], medical applications [56], monitoring ecological systems [57], and
improvement of sports applications [58].

The control chart is introduced in Figure 3.6. It is used to monitor quality characteristics
following a normal distribution, N (µ0,σ2) where µ0 is the target mean and σ is the standard
deviation. It contains three horizontal lines to describe the quality characteristic of the prod-
uct versus the order/time of the sample. A centerline is the target value, which represents
the mean value of the monitored quality characteristic. The other two horizontal lines repre-
sent the control limits of the control chart, the upper control limit (UCL) and lower control
limits (LCL). When the observation at time, t, falls within the control limits, the process
is considered in-control. An out-of-control process occurs when the observation falls outside
these limits or shows abnormal variations. Although the process is within the control limits,
it may be out-of-control. Process observations can form a systematic or non-random pattern,
which indicates abnormal behaviors.

Figure 3.6 The characteristics of the Control chart

Therefore, a statistical hypothesis demonstrates the condition of the sample mean (µ0) with
respect to the target value of the process (µ0). The null hypothesis (H0) is when the process
state is in-control in contrast to the alternative hypothesis ( Ha) that states an out-of-control
sample as given in equation (1).
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H0 : µ1 = µ0

Ha : µ1 ̸= µ0
(3.1)

The hypothesis test evaluates the performance of the control chart based on two types of
errors, type I error (α) and type II error (β). Type I error is when the process is at an
in-control state, but the control chart rejects H0 and declares an out-of-control process. It is
an important statistical parameter to indicate the control chart limits, which are represented
by the acceptance region. This region is defined by the standardized z0-statistic such -zα/2

≤ Z0 ≤ zα/2. The designers usually determine the suitable α–value (common values 0.01 to
0.1) for control charts to avoid detecting the normal data as anomalous ones. In a type II
error, the process is originally out-of-control and the control chart accepts H0 showing an
in-control process. This β–value is calculated using the following equation:

β = ϕ(zα/2 −
δ

σ

√
m− ϕ(−zα/2 −

δ

σ

√
m) (3.2)

Where zα/2 is z-statistic at α/2 (two tailed test), δ is the difference between µ0 and µ1, m is
the sample size and ϕ(.) denotes the standard normal cumulative distribution function.

The parameters must be adequately adjusted to reduce these errors and be effective in mon-
itoring the process. Figure 3.7 illustrates two types of given data, normal and anomalous
data, and represents the type I error and type II error in grey and green colors, respectively.
Average run length (ARL) is a measure of performance of the control chart describing the
two previous error types. The ARL is the average number of samples that must be plotted
in the control chart after an assignable cause has happened and before a sample falls outside
the control limits, thus declaring the process to be out-of-control [1]. When the process is in-
control, large in-control ARL (ARL0) contributes to a reduction in false alarms. Conversely,
small out-of-control ARL (ARL1) is needed for out-of-control processes in order to rapidly
detect the change [59]. Hence, the ARL1 is much smaller than ARL0.

The control charts are implemented in two phases, phase I and phase II [60]. Phase I is a
retrospective analysis that uses the available process data to determine the control limits.
Thus, these data are data on the normal conditions and this is for two reasons. The first
reason is to construct reliable limits for the control charts and accordingly, to easily monitor
the process variations in the future. The second reason is to reduce the source of the error
of type I and II. On the other hand, phase II is applied for online monitoring of the process
variability.

Shewhart control charts [61] are used to detect a large mean shift in the process. They
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Figure 3.7 Type I & II errors

represent a memoryless control chart, as they only use the last (current) sample information
and ignore the rest. Thus, these charts are less sensitive to small or moderate mean shifts.
Consequently, alternative control charts were developed to detect the small deviations in
the process with reliable parameters, mean and variance. They took all of the previous
information into consideration when monitoring the process variations.

The control charts are classified into univariate and multivariate types. The univariate con-
trol chart is used to monitor a single quality characteristic in the process. The most pop-
ular control chart for detecting small mean shifts are exponential weighted moving average
(EWMA) [62] and Cumulative Sum (CUSUM ) [63]. Most industrial applications have more
than one variable that needs to be monitored in a process. One of the univariate control
charts can be applied for each variable separately, which is considered an incorrect choice for
many reasons. The univariate control chart may fail to detect the small deviations in the
process when several variables are correlated. Accordingly, the false alarms increase during
an operational process. Moreover, if there is a large number of variables, this will reflect
directly on the charts, in addition to certain challenges in monitoring the process. In order
to overcome these drawbacks, they have obtained Multivariate control charts [64–66].

3.2.1 Limitations of control charts

Although there have been improvements in control charts to monitor the quality of the
process, some limitations have been explored that affect their performance.

(A) Autocorrelation
The control charts were constructed based on the assumption of normal and indepen-
dent data distribution, N (µ0,σ2). However, many applications provided streams of
data that had high dependency; this phenomenon is called autocorrelation [67]. A
sample autocorrelation function is estimated to determine the correlation between the
observations that are L-time periods apart as the following:
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rl =
∑m−l
t=1 (xt − x̄)(xt−l − x̄)∑m

t=1(xt − x̄)2 , l = 0, 1, ..., L (3.3)

Where rl is the value of autocorrelation function at l, x t is the observation at time t,
x t−l is the observation that lags with l-time period where l ≤ m/4 [1]. Thus rl is plotted
at different values of l with limits that were identified by the two standard deviations
of rl. So, if the value exceeds the limits, the plot detects non-zero autocorrelations,
which are enough to disturb the performance of the control chart.

Accordingly, conventional control charts could not be used to avoid misleading conse-
quences [68]. This has led to signaling a large number of false alarms and time delay
to detect the mean shift if the data of the process has a positive autocorrelation [15].

(B) The Curse of Dimensionality
Modern technological progress in various industrial applications has led to a continuous
increase in the number of interest variables (n). This makes monitoring the performance
of process more cumbersome [16]. Increasing n increases the ARL1 performance at the
same parameters [69]. In other words, the conventional control charts cannot handle a
large number of variables because this increases the performance of ARL1. There is a
time delay for detecting the mean shift in the process [70].

(C) False alarm rate
High false alarm signals are crucial problems that are inherent within the control charts,
resulting from the determination of the control limits [71]. A false alarm is the detection
of incorrect out-of-control points in the process. Many factors affect the control chart
limits that cause these alarms. However, narrower control limits improve the detection
of small mean shifts, but they increase the false alarm rate as a result of ARL [1, 72].
Moreover, when the non-normality assumption is not valid, this leads to a distortion
in process monitoring, causing false alarms. Furthermore, estimated parameters may
maintain inaccurate control limits, which increase the false alarm rate in addition to
misleading results [60, 73, 74]. Refer to autocorrelation data, which is one of the main
reasons for false alarms.

(D) Anomaly identification
Most industrial processes experience different anomalies during the operation of a sys-
tem. Identification of an anomaly plays an important role in taking corrective action
to return the system to a normal state. Although the control charts can detect an
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anomaly presented in the process, they are not designed to identify the root cause of
that anomaly [70]. Additional techniques are required to determine the anomaly online
when the process is out-of-control.

3.3 Machine Learning Based Control Charts

The main goals of the Quality 4.0 paradigm in manufacturing are: (1) to monitor the process
and/or product accurately and overcome the drawbacks of the conventional control charts
to ensure anomaly free process, (2) to perform real-time root cause analysis if an anomaly is
detected, (3) to speed up decision-making to take corrective action [26, 75]. Companies are
striving towards the implementation of quality and integrating machine learning techniques
with conventional control charts.

Machine learning is a form of artificial intelligence that applies a variety of algorithms to
describe the system data [76]. Machine learning has a set of techniques that have the ability
to detect patterns in a given data and exploit these patterns for predictions and/or per-
forming decision making [77]. Machine learning techniques were implemented to extract
unknown knowledge and describe the relationships within the dataset. They have the ability
to have high-dimensional data and obtain relationships for complex and dynamic datasets,
even chaotic behaviors [76, 78]. They have been applied in different fields, such as fault di-
agnosis in industrial processes, climatic science, biology and genetics, business and finance,
etc.

Machine learning techniques play an important role in increasing the sensitivity of the control
charts. They are used for anomaly detection when any abnormal behavior is experienced in
a process. Several Machine learning methods were combined with control charts, not only
to describe the process variability but also to recognize the occurrence of any anomalies.
They are implemented to describe the relationship between the independent variables and
the dependent variable [79]. A univariate control chart is then used to monitor the variations
of the dependent variable instead of using a multivariate control chart. The control chart
monitors variations in the residuals obtained from the regression model. The residuals are the
difference between the true values and the predicted values of the model. The residual has no
evidence of the autocorrelation phenomenon. If the residual value at any time falls outside
the control chart limits, an anomaly is detected. Moreover, machine learning techniques are
implemented for anomaly diagnosis as well as anomaly detection in the process.

Some techniques are integrated with control charts to handle the curse of dimensionality with
highly correlated process variables such as Partial Least Square PLS -based EWMA [80],
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Principal Component Analysis PCA with an EWMA [81–86]. They obtain a number of
uncorrelated components or variables from the original correlated variables. The number
of these components or variables is less than the original. A Poisson Principal Component
Regression (PPCR)-based control chart was proposed for monitoring count data and Poisson
processes. PPCR combines the Poisson regression and PCA [87]. This strategy considered the
impact of collinear independent variables on the dependent variable in contrast to integrating
Poisson regression with a control chart [88]. Thus, it preserves the relevant information in the
multicollinearity data and reduces the false alarms rate. Many research studies extended the
use of PCA to develop two new schemes to monitor mixed (continuous and categorical) quality
characteristics simultaneously [89–93]. A support vector regression (SVR) was combined
with EWMA in which SVR handles non-linear relationships compared to multiple linear
regression (MLR) [72]. Hybrid approaches were proposed that combined two or more machine
learning techniques such as PCA-support vector machine (SVM ) [94]. Furthermore, other
approaches have been developed for time series forecasting such as Autoregressive moving
average (ARMA) [95, 96] and Autoregressive integrated moving average (AMIRA) [97]. The
quality characteristics of some industrial applications, such as tool wear, are drifting linearly
over time which the conventional approaches can not handle. Therefore, a regression spline
control chart was introduced to monitor the quality characteristics that exhibit with nonlinear
profile over time [98].

After detecting an anomaly, it is essential to identify the root cause of that anomaly. Several
machine learning techniques were used to diagnose an anomaly. The least absolute shrinkage
and variable selection (LASSO) is used as a variable selection method with a penalized
term [17]. It shrinks the coefficients of its regression model until they tend to a value of
zero. Each time, by solving LASSO’s objective function, it provides transition points. These
transition points are active variables that do not change with the value of the penalty term.
The order of the variables entered the active set was equivalent to the relevant variables that
contributed to the anomalous process fault. However, this has a major disadvantage when
the process data has highly correlated variables. Therefore, a hybrid technique was proposed
that combines LASSO and ridge regression, called Elastic Net (EN ) [18]. Furthermore,
several pattern recognition techniques are implemented to diagnose the anomalous process
such as Decision Tree (DT ) [99, 100], Support Vector Machine (SVM ) [8, 101,102], Random
Forest (RF) [103], K-Nearest Neighborhood (KNN ) [104,105], and Artificial Neural Network
(ANN ) [20, 106, 107]. Hybrid techniques were integrated with control charts, such as SVM-
ANN [108–110], PCA-SVM [94], and PCA-LASSO [17]. Practical speaking, it is essential
to have sufficient data or generate random data that describes various anomalies for training
these techniques.
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4.1 Abstract

For decades, data-driven decisions have become the core of quality improvements. A new
paradigm has been introduced for the digitalization of quality management with “Quality
4.0”. Automatic data and information exchange are the essential steps of the Quality 4.0
paradigm to achieve automation of the manufacturing systems. The goal of this paper is to
design and manage the database of the automated system as the first stage of data preparation
for quality management. For this stage, we use the Entity Relationship (ER) modeling
technique to develop conceptual and logical models. This technique is used in a real case
study to organize and manage the database of inspection and repair processes in the aerospace
manufacturing. The real merit of the developed models is to create a well-structured database
that describes the system’s data flow with high data quality.

Keyword: Quality 4.0, Database management, Data modeling, Entity Relationship (ER)
Modeling, automated inspection

4.2 Introduction

Quality 4.0 paradigm is a new concept introduced under the general approach of Industry
4.0. It represents the digitalization of quality management where it monitors and controls
the quality of the process and/or product [10, 111]. Data and information exchange are
the cornerstone of the Quality 4.0 paradigm to achieve high reliability in the automation
of the manufacturing systems [10]. In such systems, a large amount of information flow
between sensors and controllers independently of continuous interaction with humans, which
poses some challenges for existing traditional systems regarding their ability to handle and
manage the sheer amount of data and information due to the lack of the necessary tools
and infrastructures [112]. A clear example of such a challenge can be found in the aerospace
domain in which visual inspection is the main method for inspecting parts [113, 114]. Since
this process is carried out by talented and experienced human inspectors, it is still prone
to error which can range from 20% to 30% [115]. Moreover, there is a great possibility of
missing data and the presence of data redundancies and inconsistency. The stakeholders
take much time to prepare their necessary information to do the report and/or analysis.
Further, the data are entered manually, so there can be an absence of standardization of
communication between stakeholders. As such, numerous researches are trending to automate
the inspection and repair using the available data in the process [116, 117]. This current
trend is to replace the human element with more accurate automated inspection and repair
machines. In turn, suitable tools for handling and managing the generated data are required.
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Information modeling should be applied on the events engine parts; inspection, maintenance,
repair, and overhaul; to capture the relevant data attributes and describe the current and
historical event of the part. This model provides the accurate information required by the
stakeholders such as the operators, engineering, and scheduling team to prepare their reports,
or analysis or even to make decisions. Consequently, we need to define the necessary data to
be managed in the inspection and repair processes in terms of three axes as shown in figure
4.1. Therefore, the importance of efficient Database management tool grows.

Figure 4.1 Three axes of Database management

Database management plays an important role in organizing and storing data in an appro-
priate structure to maximize their value. Implementation of database management does not
only provide data structure with necessary information required by the process but also, gov-
erns the data entry in terms of the six-dimensional data quality; accuracy, validity, integrity,
completeness, consistency, and timeliness [34].

Data modeling is commonly used in database design. It creates an abstract model as a visual
representation in order to describe the structure of the stored data in addition to additional
consistent constraints [33]. The real merit of data modeling is not only to ensure that all
required data match the business needs but also, to avoid the presence of any redundant
or missing data by respecting its constraints. A data model was proposed as modeling
of the maintenance task knowledge of Boeing B737 aircraft [118]. The model is used to
capture all information related to the process and history of the aircraft. It supports the
stakeholders with the necessary information for maintenance execution to ensure compliance
with airworthiness. Okoh proposed a data model that represented the accurate visualization
of maintenance tasks applied on the aircraft engines [119]. It supplies the relevant engine
information over time which provide new insights and prediction about the lifespan of the
engine through-life engineering services. Rodger provided a preliminary data model that
was built based on the primary data flow of the aircraft maintenance, repair, and overhaul
(MRO) [120]. It focuses on the captured information of the repaired parts of Boeing 777 and
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Sikorsky’s UH-60 helicopter.

The data model follows four steps to design a database as depicted in figure 4.2. The
first stage is Business requirements. It is the most important stage which is dependent
on the identification and characterization of the data required in the system. Moreover,
understanding the process is the main step to define the necessary information to be collected.
The collected information in the first stage is translated into a formal and independent
model which is the "Conceptual model". It is a wide coverage picture that identifies the
business concepts and their rules. Then, a "Logical model" converts the previous model into
a data structure including more details. It defines the data elements in the structure and the
relationships between them. The final stage is the "Physical model" that provides the schema
which is implemented physically using Database Management System (DBMS) software [37].

Figure 4.2 Data modeling stages

Entity relationship (ER) model [49] is one of the known data modeling for a database design.
It is a graphical tool that is used to provide a conceptual form of the database structure
[121]. ER preserves the information of the system and diminishes the data redundancy in
storage [44]. In this paper, we use ER modeling technique to design database for inspection
and repair in the aerospace domain. We propose a conceptual and logical ER model of a real
case as the first step of data preparation for Quality 4.0. The paper is organized in sections
as follows. Section II describes the methodology of ER modeling in the design of a database.
Section III shows a description of the case study and discusses the first three stages in the
data model regarding figure 4.2. Section IV presents the conclusion and future works.

4.3 ER model Technique

ER is a data modeling technique that represents the database of the system in a set of en-
tities that are stored in a database and their relationships [50]. The entity can represent
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persons (such as inspectors), spaces (such as shop floor), objects (such as Order and in-
spection machine), or concepts (such as inspection and repair processes) about storing data
in the database. The real application consists of several entities. Each entity contains a
set of attributes that define the characteristics of that entity. The attribute can be simple,
composite, derived, or multi-valued. The simple attribute is an atomic attribute; e.g. Serial
number (S/N) of inspected or repaired part. While the composite one is composed of a set of
simple attributes; e.g. Defect dimension attribute is represented by depth (D), width (W),
and Length (L). The attribute can have more than one value, which is called a multi-valued
attribute. This means that each S/N can have more than one defective location. The values
of the derived attribute are derived from another attribute(s) that exists in the database;
for example, when determining the number of defects per inspected part. Each entity must
have a primary (unique) key(s) that uniquely identifies instances of that entity which can not
be repeated; each inspected part has its own S/N. The foreign key in an entity represents a
primary key of another entity, which establishes a relationship with that entity. ER modeling
defines the relationships between the entities using different types of connecting lines [122].
Each relationship indicates the number of instances of a certain entity relates to one instance
of another entity, which is called cardinality. Cardinality can be one to one (1:1), one to many
(1: M), and many to many (M: M). The relationship can be mandatory when every instance
of one entity must have a relationship with the other entity. The optional relationship does
not require the necessary participation of one entity in a relationship with the other entity.
Figure 4.3 summarizes the necessary notations for ER diagram.

Figure 4.3 The notations for ER model

ER diagram facilitates defining the terms entities, attributes, and relationships. In addition,
it provides a preview for connection between each table, which allows constructing databases
quickly. Finally, it provides a better understanding of the information stored in the database
[36].
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4.4 Case study: Application on inspection and repair in aerospace domain

4.4.1 Description of the case study

Rolls Royce is considered one of the leading companies in the aerospace domain. Rolls Royce
maintenance center is aspiring in cooperation with AV&R Vision & Robotics, Polytechnique
Montreal, Conseil national de recherches Canada (CNRC), and Laval university to develop
automated system called SARA which is “Système d’Analyse et de Réparation Automatisée”
(Automated inspection, Analysis and Repair System). In the current system, the inspectors
perform Visual inspection on the mechanical parts to find the surface defects based on work
instructions and the necessary measurement tools for inspection. They assess the defective
locations in the inspected parts approximately and compare them with the limits in the
engine manual. The new system aims to develop automated analysis, inspection, and repair
systems for mechanical parts of engines using the machine vision instead of human vision
as depicted in figure 4.4. In the inspection stage, the mechanical part is inspected by the
inspection machine to check for any surface defects such as nick, scratches, pitting, etc. If
any defect is detected, it is assessed and classified in the defect classification step based on
the measuring the defect geometry (depth, width, length, and type) in the engine manual.
Then, the decision in the sentencing step declares whether this part can be repaired or if it is
scrapped. In case of being repairable, the defect locations are defined, and the repair service
is carried out by the repair machine to meet standard specifications.

Figure 4.4 Inspection and Repair stages
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Database management (DBM) provides capabilities to access, integrate, cleanse, govern,
store, and prepare data for further analysis. Furthermore, it characterizes and controls the
information generated by the SARA system and proposes a data management structure for
operations. It establishes and standardizes communications between operations’ stakeholders
such as inspectors, engineers, Material Review Board (MRB), etc. In this paper, we propose
an ER model for database design and management. To create a model for SARA system, we
need to follow the steps of data modeling in figure 4.2 and those of ER model in figure 4.5.

Figure 4.5 ER Modeling design steps

4.4.2 Business requirement for SARA system

A strategy has been established to determine Rolls Royce’s requirements and the objectives.
First, we understand the operational processes in the current system; the inspection and
repair; and their characteristics and constraints. Three mechanical parts are recommended as
candidates for investigations: Fan blade, Curvic teeth of fan disc, and High pressure turbine
(HPT) shaft. Several meetings are organized with the stakeholders, such as inspectors,
operators, engineers, Material Review Board (MRB),etc.; to identify and characterize the
necessary required data for the SARA system. We conclude that since SARA will be an
automated system, the identification of the defect dimensions accurately in the model will
shorten the inspection. Some mechanical parts are sent to the laboratory to confirm that
the defects are beyond the limits. On the other hand, the data model will provide the
necessary information for each stakeholder to prepare their reports and analysis. One of
these stakeholders is the Quality engineer who is responsible for process monitoring and
maintaining the inspection and repair process within the quality specifications based on
Quality 4.0.

4.4.3 Conceptual ER model for SARA system

The conceptual ER model for the SARA system defines the system’s concept by identi-
fying the entities in addition to the relationships between them. The model has 4 main
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stages: Sensor and measurement, inspection, sentencing, and repair. SARA model consists
of nine entities as depicted in figure 4.6: (1) SENSOR, (2) P.C. DATA, (3) ORDER, (4)
EQUIPMENT, (5) INSPECTION, (6) DEFECTS, (7) SENTENCING, (8) REPAIR, and
(9) RE-INSPECT. The entities are described as the following:

1. SENSOR: This entity defines the sensors or measurement tools, which are responsible
for providing the measurements and scanning of the inspected parts.

2. P.C. DATA: It refers to the point clouds (P.C.) for the surfaces of the inspected parts.

3. ORDER: It includes the essential information related to the engine and define the
mechanical part(s) that is (are) required to be inspected.

4. EQUIPMENT: It means the mechanical parts that are required to be inspected. There-
fore, this entity characterizes the details on the inspected mechanical part.

5. INSPECTION: This entity encapsulates the system objectives. It defines information
related to the inspection of the part in terms of notifications and time duration taken
for inspection.

6. DEFECT: It defines all information related to the characterizations of the detected
defects if any.

7. SENTENCING: It provides information about the condition of the inspected mechan-
ical part by the automated inspection machine whether being serviceable, repairable,
or scrap.

8. REPAIR: If the decision for the inspection machine is that the inspected part is re-
pairable, so the repair scheme and procedures will be defined automatically by the
repair machine, then applied to the part.

9. RE-INSPECT: After repairing the inspected mechanical part, it is essential to check
the repair procedures. Therefore, the inspected part will be sent to the inspection
machine to be reinspected. Consequently, the RE-INSPECT entity defines the status
of repair operation of the repaired part whether it is confirmed or not.

Furthermore, the SARA model also includes 13 relationships which represent the interactions
between the entities (1) COMPOSE OF, (2) ASSIGN TO, (3) SEND TO, (4) CONTAIN, (5)
DETECT, (6) PROVIDE, (7) Has, (8) Has, (9) SENTENCED BY, (10) ORDER TO, (11)
REPAIRED BY, (12) RE-INSPECT, and (13) CONFIRMED BY to as depicted in figure
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Figure 4.6 Conceptual ER Modeling for SARA system

4.6. The relationships and cardinality are obtained based on the constraints (business) rules
required by the inspection and repair process. These constraints are as the following:

1. ORDER and EQUIPMENT: The inspection machine receives the orders; each order
must compose of information of the inspected part(s) and the required task. One or
many parts can be included in one order. Engine information is provided in the case
of an internal order, where parts from an engine that is located on the shop floor are
sent for inspection.

2. EQUIPMENT and INSPECTION: Each part is assigned to the inspection process.
However, one or many parts may be included in one inspection order, each part is
defined by its own inspection identifier. Therefore, each inspection identifier defines
the inspection information of one part even the parts are included in the same order.

3. SENSOR and P.C. DATA: Each sensor in the inspection machine sends many measure-
ments in terms of point clouds.

4. EQUIPMENT and P.C. DATA: Each inspected part contains many numbers of point
clouds that describe its surfaces.

5. INSPECTION and DEFECT: Each inspection order may detect one or many numbers
of defects per each inspected part.
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6. DEFECT and P.C. DATA: P.C. DATA provides one point cloud for each defect detected
on the inspected part.

7. EQUIPMENT and DEFECT: During the inspection, each inspected part may have
one or more defects. Thus, the information of these defects are determined for each
inspected part.

8. EQUIPMENT and SENTENCING: Each inspected part must have one and only one
sentencing notification to identify its condition. Therefore, each notification must be
assigned to one and only one inspected part.

9. INSPECTION and SENTENCING: Each inspection order has one and only one sen-
tencing notification. In other words, each sentencing notification includes one inspec-
tion order. When many parts are included in one inspection order, each inspected part;
defined by inspection identifier; must have one sentencing notification.

10. SENTENCING and REPAIR: When the sentencing notifies that the inspected part is
repairable, one sentencing notification may be ordered to one repair order. The repair
entity may include one sentencing notification, and none is in case of being scrapped
part.

11. EQUIPMENT and REPAIR: One inspected part may be repaired by the repair machine
in case of being repairable based on the sentencing notification in the sentencing entity.
So, one repair order may include one and only one inspected part for repair. However,
one or many parts may be included in one repair order, each part is defined by its own
repair identifier.

12. EQUIPMENT and RE-INSPECT: One part may be reinspected by the inspection
machine. One re-inspect notification may include one part. One or many parts may be
included in one re-inspect order, each part is defined by its own re-inspect identifier.

13. REPAIR and RE-INSPECT: After repairing the repairable parts, they are sent to the
inspection machine to confirm their repairs. Each re-inspect notification confirms each
repair order.

4.4.4 Logical ER model for SARA system

The logical ER model is converting the conceptual one to data structures. Consequently,
the attributes for each entity are identified to describe that entity based on the SARA’s
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requirements in term identification of the primary key(s) per each entity as shown in figure
4.7. The description of attributes per each entity are as follows:

1. SENSOR: A sensor ID acts as a primary key to identify the sensor name and its
description. The sensor is used to scan and measure the points on the surfaces of the
inspected part.

2. P.C. DATA: It includes an identifier the describes the zone that is represented by
point clouds and the stored location where can be referred to these point clouds for
understanding the characterizations of different types of defects if any.

3. ORDER: An order is carried out with an order number and at a defined date. The
order number is considered the primary key of this entity because it is unique. The type
of sales order may be internal or external. If it is an internal order, so the functional
location, engine description, number of inspected parts, the owner and owner descrip-
tion must be defined. On the other hand, the external order concerns the information
of the number of parts required to be inspected, and the required task whether, repair
or overhaul.

4. EQUIPMENT: Each inspected part is defined by a unique identifier. Each inspected
part has its own serial number(S/N). The reason for using an identifier instead of S/N
as a primary key is that one part can be assigned to inspection, repair, and re-inspect
several times, so the identifier differentiates between each time. Part and material
numbers are specified based on the type of the inspected part such as fan blade, HPT
shaft, or Curvic teeth of fan disc. The Part number can be modified after several
repairs, so it is necessary to mention the last part number (LP/N) if any. Generally,
these numbers are found in the engine manual. In addition to the inspected part
information related to total Time Since New (TSN), Cycle Since New (CSN), Time
Since Last Visit (TSLV), Cycle Since Last Visit (CSLV), and Time Since Overhaul
(TSO).

5. INSPECTION: An inspection ID acts as a primary key to describe the notification
number of the inspected part(s). In other words, if the inspection order includes many
parts, so each inspected part has its own inspection ID. Moreover, it determines the
time duration taken by the inspection machine. It includes the forecasting required
time to finish the inspection.

6. DEFECT: The entity is defined with the Equipment ID of the inspected part which is
considered a primary and foreign key at the same time. It is a foreign key because it
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belongs originally to the EQUIPMENT entity as a primary key. On the other hand, it
is a primary key, in addition to defect ID because defect ID can be repeated for different
inspected parts. for example, defect ID#1 can be found in two or more inspected parts
having different Equipment IDs. Thus, the Equipment ID and defect index describe
the entity because they are unique together.

7. SENTENCING: Each inspected part has its sentencing notification that determines
its condition. Plant and location attributes are used to mention that the process is
carried out using the inspection machine in the SARA system. The decision type can
be serviceable or repairable or scrap.

8. REPAIR: The entity is defined by repair ID because more than one inspected part may
be subjected to the same repair procedures when the original task is an overhaul; for
example, the 24 fan blades of the compressor. Therefore, these parts have the same
repair order. Moreover, it identifies the repair scheme and procedures in addition to
the duration time taken for repair and forecasting time.

9. RE-INSPECT: A re-inspect ID defines the entity. It provides a confirmation number
for the repaired part(s) to demonstrate that the repair procedures are carried out as
engine manual regulations. This is carried out by measuring the depth after repair.
Plant and location attributes are used to mention that the process is carried out using
the inspection machine in the SARA system. The duration times taken for re-inspect
and forecasting time are determined.

Therefore, all the required information and business requirements related to the SARA sys-
tem are captured by the proposed logical model. The model documents the inspection and
repair process through the previously mentioned entities. It defines the attributes and pri-
mary key for each entity and clearly describes the relationships between these entities. To
validate the SARA model, the relationships of the model should satisfy the business rules
of the application. Figure 8 shows a transaction sample of the EQUIPMENT entity. This
transaction presents the necessary information of the EQUIPMENT entity as in figure 4.7.
Additionally, it shows its relationship with the other entities. The inspected part identified by
“Equipment_ID =1” is ordered by the order number “Ordert_Order_No” = 14000” which is
linked to the primary key “Order_No” of ORDER entity as shown in figure 4.9. The essential
information of the engine and mechanical part are defined when exploring the “Order_No =
14000”, similarly for the INSPECTION, SENTENCING, REPAIR, REINSPECT entities as
depicted in figure 4.8.
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Figure 4.7 Logical ER Modeling for SARA system
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Figure 4.8 EQUIPMENT entity in the SARA Model
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Figure 4.9 ORDER entity in the SARA Model

4.5 Discussion

The SARA model captures all the information relevant to the aspects of the SARA system
based on the three axes. The model defines the criteria of the three candidate parts; fan blade,
HPT shaft, and Curvic teeth of fan disc; and traces their inspection and repair processes.
Moreover, it represents the data flow through the process. The ER modeling technique
assists in mapping out and managing the information flow in database management of the
SARA system by the representation of the conceptual and logical models. The relevant
entities are defined in addition to the identification of the relationships between them. Each
entity contains a set of attributes that clearly describe the characteristic of that entity.
Consequently, it provides a representation of a structured database with high data quality
in terms of completeness, consistency, accuracy, absence of data redundancy, and integrity.
The model meets the requisite information for the stakeholders, which were checked with
each stakeholder before. The constraints and business rules are implemented in the model
to ensure the completeness and accuracy of fulfilling the mandatory data and check even the
optional data (i.e., external order). Therefore, the model reduces data redundancy. Further,
the constraints ensure the data entry type, format, and size. The data are consistent as the
information is the same and synchronized across the model. The model ensures data integrity
where the relationships connect and trace all data in the database. Finally, the model
supports the automated system to store, organize and provide the necessary information
required by stakeholders.
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4.6 Conclusion

Quality 4.0 anticipates the digital transformation of quality management will improve the
process and/or product quality and will increase productivity. Data automation supports the
vision by monitoring the processes and collecting the necessary information. When the data
management process is improved, it will be possible to identify the process variables that
are required to be monitored by quality tools, for example, the control chart. ER modeling
technique is widely used to design a data model that represents the data of the system
in entity sets and describes their relationships. Moreover, it provides the key performance
indices for quality to detect any anomalies during system operation. In this paper, we
developed the conceptual and logical ER models for the SARA system which is an automated
inspection and repair in the aerospace maintenance and repair domain. These models aim to
organize the data in the system by identification of nine entities that represent the process,
and their relationships with each other and their attributes. They characterize and control
the information generated by the SARA system. Consequently, the data flow along the
SARA model is visually represented and easily understood. The models favor accessibility,
traceability, and reproducibility for better communication between inspectors and design
specialists and tracking relevant information.

For future works, we will convert the logical ER model for the SARA system to a physical
model that is implemented in the system. The physical data model represents the actual
database design according to what is carried out in the logical one. The physical model
defines the data types; numeric, string, date, or time, etc.; the foreign keys that link the
entities, and the necessary constraints. It is used to support the implementation of the
database using DBMS software. It provides a Data Definition Language (DDL) file, which
is generated by MySQL Workbench software that will be implemented in the SARA system.
Consequently, the automation of inspection and repair in the SARA system allows to enter
the data that are defined in the model automatically, and provides the information that each
stakeholder is interested in. After data preparation, we are targeting the implementation of
the Quality 4.0 aspects. By providing the key performance indices for quality of inspection
and repair actions, the information’s variability of inspection and repair processes will be
monitored by quality monitoring control tools based on machine learning and statistical
control chart. This tool assesses the quality of the repair process based on the confirmation
rate of the repaired parts to be within pre-specified limits. When the repair quality gets
beyond these limits, the tool does not only detect abnormal behavior in the process but also,
it determines the root cause of that out-of-control process. Then, corrective actions are taken
to avoid several reworks of repair and maintain the repair process within the quality limits.
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5.1 Abstract

This paper proposes a regression model based on Logical Analysis of Data (LAD). LAD is
known as a combinatorial Boolean supervised data mining technique for pattern generation.
It is used mainly for classification problems, and has demonstrated high accuracy compared
to other classification techniques. In this paper, we extend the use of LAD to deal with
supervised data with continuous responses. We derive a LAD regression model (LADR).
Three discretization methods that transform the values of the response into a set of thresholds
are tested. At each threshold, LAD analyzes the data as a two-class classification problem and
extracts the prescriptive patterns for each class. LADR regression uses the generated patterns
from the original data by using cbmLAD software to fit a numerical continuous dependent
response. Therefore, a normalized regression model with only binary independent variables is
obtained. LADR has been applied for six datasets and obtains better results compared with
the linear regression (LR), support vector regression (SVR), Decision Tree Regression (DTR),
Random Forest (RF), and Polynomial Regression (PolyR). The performance is evaluated by
the Mean Square Error (MSE), Coefficient of Determination (R2), and Mean Absolute Error
(MAE) based on a 10-fold cross validation.

Keyword: Regression techniques, Logical Analysis of Data (LAD), LADR regression, Dis-
cretization methods, Combinatorial Regression (CR)

5.2 Introduction

Recently, companies have started to examine and enable Industry 4.0 technologies to monitor
and control the manufacturing process [111, 123]. A new paradigm has been introduced
under the title of Industry 4.0 called “Quality 4.0”. Quality 4.0 serves manufacturers with
maintaining and improving quality management by using machine learning techniques, which
use online sensor data to monitor process performance [10]. Data analytic is one common
feature for both Industry 4.0 and Quality 4.0. Thus, companies are striving towards building
their own analytic strategy to analyze the available data and to extract useful knowledge.

As the volume of data increases, it becomes difficult to analyze it with traditional statistical
tools, such as ANOVA, control charts and statistical regression modeling. Data mining
becomes useful in this situation. This is the process of extracting useful information in
the form of patterns from the data [124, 125]. These patterns have physical meanings that
describe and interpret the hidden events and phenomena that are taking place. Hence, they
are called prescriptive patterns, as they identify interpretable knowledge [126]. Machine
learning provides the technical tools for data mining. It is a form of artificial intelligence
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that applies a variety of algorithms to analyze the data [76]. It has a set of techniques
that are implemented to describe the relationships within the dataset and to exploit these
relationships for diagnosis and prognosis.

In this paper, we construct a regression model to predict process performance based on
patterns that are extracted by the data mining of sensors’ readings. These patterns describe
the hidden phenomenon of natural and abnormal variation in process performance. The
patterns are generated by using Logical Analysis of Data (LAD), which is a non-statistical
supervised data mining technique for pattern generation [127]. The concept of LAD is based
on Boolean logic and combinatorial optimization, which is adapted to classification problems
[128]. LAD is used to extract patterns from the training set of the original data. These
patterns are hidden rules that differentiate between classes. These rules are also used for the
prediction of certain events such as failure, and for anomalies’ detection [129]. The generated
patterns are characterized by the following [130]: (1) degree (d) is the number of variables that
define the pattern, (2) prevalence of the pattern is the proportion of the positive (negative)
observations that are covered by the pattern to the total positive (negative) observations, (3)
homogeneity of a pattern is the proportion of the positive (negative) observations to total
observations (positive and negative) that are covered by the pattern. It has been proven
that the most explanatory pattern has a low degree, high prevalence and high homogeneity.
A strong pattern is one that has the highest prevalence amongst all patterns in its class.
This characteristic is needed to provide a robust pattern, which is capable of explaining a
phenomenon, particularly in the case of noisy data [131]. LAD was employed for various
classification problems in two classes [127] and a multi-class [132]. It was implemented
in condition based maintenance (CBM) applications [24], in financial applications [133], in
industrial chemical processes [134], in the airline industry [135], and in medical applications
[136]. LAD has the advantage of (1) generating prescriptive patterns that have physical
meaning, and (2) it is not based on any statistical assumptions, as is usually the case with
statistical techniques.

The LAD classification technique has demonstrated high accuracy compared to other classifi-
cation techniques. Two approaches were proposed in the literature to create LAD regression
models. The first approach is a Pseudo Boolean Regression model (PBR) [137], which uses
the generated patterns to build the regression model based on a minimization of the Least
Absolute Residual (LAR). LAR is the sum of the absolute residual value between the actual
values and the model responses. In this approach, the number of the generated patterns is
very large even for a small size of datasets. In order to reduce computational efforts, a Column
generation algorithm is used to select the optimal set of generated patterns. These patterns
are used in the regression algorithm. This algorithm represents an optimization problem that
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is solved by using linear programming based on LAR criterion. The second approach is a
Combinatorial Regression (CR) that was proposed as a new extension of the standard LAD
classification technique [138]. The original classification problem is transformed into several
classification sub-problems based on a continuous numerical response. In other words, CR
chooses the number of thresholds on that response to define these sub-problems. For each
sub-problem, LAD is used to generate the patterns. Consequently, all of the generated pat-
terns are gathered. CR finds the coefficients of the independent variables of the regression
model by minimizing the sum of the square residual (MSE) criterion.

The two approaches have performance that is comparable to other regression techniques, PBR
[137] and CR [138]. In fact, CR and PBR are closely related, as they are constructed based
on data transformation by mapping non-binary data into Q-dimensional {0, 1}Q. Although
both techniques are similar in process and have the same form of results, the CR differs
in the techniques of pattern generation and the calculation of the coefficients or weights of
the regression model, which are called the loss function. Both methods have limitations
and ambiguities. The PBR is limited to the degree of the generated patterns of, at most 3,
and the CR relies on selecting the number of thresholds used for obtaining the classification
sub-problems. Nevertheless the rule for selecting these thresholds is not provided in [138].

This paper presents a LAD Regression (LADR) technique for building regression models.
LADR overcomes the limitations of the previous two techniques as shown in table 5.1 by
providing its four novelties: (1) the discretization process that represents the cornerstone
of the technique. It is implemented to maintain a pre-specified number of thresholds to
obtain several classification sub-problems based on the response. This paper introduces
three discretization methods; Equal width (EW), K-means (KM), and Percentage of standard
deviation (%STD); that present the selection rule of the thresholds. (2) The generation of
strong patterns that cover all observations in the dataset, without restriction on the degree of
these patterns by using cbmLAD software [24]. (3) The data preparation and pre-processing
of the generated patterns. (4) The development of the regression model and the evaluation
of its performance. The LADR approach determines the best discretization method and the
appropriate number of intervals (or thresholds) that provide a high accuracy of the regression
model.

This paper is organized as follows. Section 2 presents the LADR technique and discusses how
it strengthens the regression model. Section 3 evaluates the performance of the LADR by
using different datasets. Section 4 provides a comparison with the results of other regression
techniques, in addition to the combinatorial regression method. Finally, section 5 concludes
the paper.
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Table 5.1 Addressing the research gaps

Research gaps Addressing the gaps
Limitation on the degree of the generated
patterns that provide less accurate
regression model.

Generation of strong patterns with
different degrees that describe the
data.

The rule for selecting the thresholds for
obtaining the classification sub-problems
is not mentioned.

Three discretization methods EW,
KM, and %STD are proposed to
obtain these thresholds

5.3 LADR regression

LAD is one of the knowledge discovery approaches that extracts the hidden patterns in the
dataset and constructs a theory formulation for the prediction of future events. LAD is
considered a supervised learning technique because it relies on historical data with labeled
classes [139]. It is mainly used for classification problems. The three main steps of LAD are
the binarization of the dataset’s variables, generation or extraction of patterns, and theory
formulation by defining a discriminant function as shown in figure 5.1. Further details are
found in [140], in addition to illustrative example in [141].

Binarization of

dataset variables

Given Raw

Data

Interpretable

Knowledge

Data

Generation of

Pattern

Theory Formation

(Classification)

Figure 5.1 Steps of a LAD approach

The objective of this paper is to transform the standard LAD to a regression modeling
technique to solve various regression problems. It aims to exploit the strength of LAD to
extract patterns that cover all of the observations in the given dataset. Accordingly, the
independent variables of the original data are transformed into patterns Pj , j=1,. . . ,J , and
the dependent response ,Y, is regressed on the patterns that cover the observations instead
of the observations themselves. It has been shown in PBR [137] and CR [138] that the
regression model, which is based on patterns, is more accurate than those that are based on
the observations themselves. While observations may be noisy or inaccurate, patterns, and in
particular, strong patterns, are more robust because they characterize a group of observations.
The XPj

is a binary variable that indicates whether pattern j covers an observation or not.
These patterns are used as the independent variables of the regression model that minimize
the MSE, as shown in figure 5.2.
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Figure 5.2 Difference between LAD and linear regression form

Although the dependent response is in a numerical and continuous form, discretization meth-
ods are used to allow the generation of patterns that characterize the variability of the re-
sponse. Discretization methods are used to select several thresholds based on the response
and transform the dataset Ω to several sub-problems. For each threshold, the dataset is di-
vided into two classes. The observations (ω) that have response values below that threshold
constitute the first class, while the others are in the second class. Therefore, the independent
variables are binarized at each threshold, and consequently, LAD methodology is applied
to generate patterns as two-class classification. The key point is to obtain the appropriate
number of thresholds that provides the most accurate model. Since the selection of threshold
criterion is not defined in the CR method, in this paper, we propose EW, KM, and %STD
based on the response. Therefore, we propose a LADR regression technique that selects
the best discretization method and provides better results compared to the other regression
techniques, including CR.

5.3.1 LADR methodology

The LADR technique consists of four main steps: (1) threshold selection, by dividing the
data into N -intervals to maintain the thresholds. (2) Pattern generation, by using the LAD
methodology and “cbmLAD software” [24] to generate patterns at each threshold. (3) Data
preparation by gathering the patterns in a single patterns’ set to obtain the independent
variables XPj

, j=1,. . . ,J , instead of Xj, then the application of data processing on this
data. (4) Modeling and validation, by obtaining the regression model and by evaluating its
performance and accuracy
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Figure 5.3 A diagram of the LADR methodology

Step 1: Discretization of the response

The discretization process partitions the values of the response Y by using thresholds. These
thresholds gather the values of the response into a set of intervals. We consider a dataset
Ωof n independent variables with m observations. We sort the data in ascending order based
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on the values of the response Y. We search for I -thresholds τ1, τ2,. . . , τI on the response.
The following process was performed to maintain the appropriate number of thresholds that
could provide a regression model that has a good fit [142,143]:

1. Equal width (EW ):

Creating the same interval width by dividing the range of original ordered response’s
values into N -intervals. The first threshold is determined by the first value of the second
interval, and so on. The value of N is obtained by iteration.

2. K-means Clustering (KM ):

Creating N -intervals based on the construction of N -clusters that minimize the sum of
the distances of each response’s value to the gravity center of its cluster [144,145]. The
kth threshold is the first value of the (k+1)th cluster.

3. Percentage of standard deviation of the response (%STD):

Selecting a pre-specified percentage of the standard deviation (STD) of the response,
by sorting the values of the response variable. For each consecutive values u and v,
where u <v if the v-u >τ , a new threshold, which is the average of the consecutive
values, is introduced [137].

In this paper, we compare the proposed discretization methods with a natural one, which
is called Quantile method (QT ). It considers the data distribution and creates N -intervals
based on quantiles. The range of the quantiles is ]0,1[. The QT is used to divide the values of
response using different steps: 0.01, 0.02, 0.05, 0.1, 0.2, 0.25, and 0.5, which obtain number
of thresholds: 99, 49, 19, 9, 4, 3, and 1 respectively.

Table 5.2 presents a dataset as an example to illustrate the three methods. The dataset
contains only one independent variable X and one dependent response Y. The values of the
response are sorted ascendingly. Let us assume splitting the response values into five intervals
(N = 5) for both EW and KM. In this case, four thresholds are obtained for both methods.
For the third method, we assume 15% standard deviation of the response. The thresholds
are created when the condition that u-v is greater than that percentage is satisfied. The
15%STD criterion creates 12 thresholds. Refer to QT, assume the step is 0.2 that constructs
four thresholds.

Each discretization method creates a set of thresholds on the response of the dataset. It
prepares the data for cbmLAD software [24] to generate the patterns in the second step. The
selection of the best discretization method and the appropriate number of thresholds for the
dataset will be mentioned later.
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Table 5.2 The thresholds that are identified using EW, KM, 15%STD, and QT with step 0.2
method

X Y EW KM %STD QT
N Threshold N Threshold u-v Threshold N Threshold

0.95 87.33 1 1 1
0.87 87.59 1 1 0.26 1
1.02 89.05 1 1 1.46 τ1 ⩾ 88.32 1
1.01 89.54 1 1 0.49 τ2 ⩾ 89.30 1
1.11 89.85 2 τ1 ⩾ 89.75 1 0.31 τ3 ⩾ 89.70 2 τ1 ⩾ 89.79
0.99 90.01 2 1 0.16 2
1.2 90.39 2 1 0.38 τ4 ⩾ 90.20 2
0.98 90.56 2 1 0.17 2
1.15 91.43 2 2 τ1 >90.56 0.87 τ5 ⩾ 91.00 3 τ2 ⩾ 91.08
1.23 91.77 2 2 0.34 τ6 ⩾ 91.60 3
1.15 92.52 3 τ2 ⩾ 92.17 2 0.75 τ7 ⩾ 92.15 3
1.26 93.25 3 3 τ2 >92.52 0.73 τ8 ⩾ 92.89 3
1.32 93.41 3 3 0.16 4 τ3 ⩾ 93.31
1.19 93.54 3 3 0.13 4
1.4 93.65 3 3 0.11 4
1.29 93.74 3 3 0.09 4
1.36 94.45 3 3 0.71 τ9 ⩾ 94.10 5 τ4 ⩾ 93.88
1.43 94.98 4 τ3 ⩾ 94.59 3 0.53 τ10 ⩾ 94.72 5
1.46 96.73 4 4 τ13 >94.98 1.75 τ11 ⩾ 95.86 5
1.55 99.42 5 τ4 ⩾ 97.01 5 τ4 ⩾ 96.73 2.69 τ12 ⩾ 98.08 5

Step 2: Classify the data at each threshold

After the selection of the discretization method, the data is classified for each threshold, τi,
into two sets: Set Ω+

i of positive observations, which have responses that are greater or equal
to the value of that threshold, and set Ω−

i of negative observations. Y (ω) is the response at
the observation ω, and i=1,. . . ,I are the thresholds.

Ω+
i = {ω ∈ Ω|Y (ω) ⩾ τi}, i = 1, ..., I

Ω−
i = {ω ∈ Ω|Y (ω) < τi}, i = 1, ..., I

(5.1)

In table 5.2, the (%STD) method obtains 12 thresholds at 15%. For the first threshold
(τ1), the response is classified in Ω+

1 if its value is greater or equal to 88.32, otherwise it
is classified in Ω−

1 . Thus, the positive class starts from Y= 89.05 to the last observation
99.42, while the negative class consists of the first two observations (Y =87.33 and 87.59).
This procedure is repeated for all thresholds. Therefore, a table is created for each threshold
to identify the positive and negative observations. Twelve tables, containing positive and
negative observations, are created. For instance, table 5.3 shows only three of the tables.

Step 3: Generate patterns at each threshold

Based on the previous step, and for the three datasets that are shown in table 5.3, “cbm-
LAD software” [24] acts as a two-class classifier. The patterns are generated by solving the
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following optimization problem:

maximize
∑
ϕ∈Ω+

n∏
j=1

ϕj ̸=ψj

(1− yj) (5.2)

subject to
∑
j=1
γj ̸=ψj

yj ⩾ 1 , ∀γ ∈ Ω− (5.3)

yj ∈ 0, 1 ,∀j = 1, ..., n (5.4)

Where n: number of attributes,
yj = 1 if attribute j is included in the pattern with a value equals ψj, 0 otherwise,
ψj : the value of the j th attribute in the ψ observation, where j = 1,...,n ,

Table 5.3 Three tables defining the positive and negative classes that are obtained by the
first three thresholds of the dataset from table 5.2, when using the 15%STD method.
(Class=0 :Positive observations , Class=1: Negative observations)

Threshold 1 (τ1)
Class X Y

1 0.95 87.33
1 0.87 87.59
0 1.02 89.05
0 1.01 89.54
0 1.11 89.85
0 0.99 90.01
0 1.2 90.39
0 0.98 90.56
0 1.15 91.43
0 1.23 91.77
0 1.15 92.52
0 1.26 93.25
0 1.32 93.41
0 1.19 93.54
0 1.4 93.65
0 1.29 93.74
0 1.36 94.45
0 1.43 94.98
0 1.46 96.73
0 1.55 99.42

Threshold 2 (τ2)
Class X Y

1 0.95 87.33
1 0.87 87.59
1 1.02 89.05
0 1.01 89.54
0 1.11 89.85
0 0.99 90.01
0 1.2 90.39
0 0.98 90.56
0 1.15 91.43
0 1.23 91.77
0 1.15 92.52
0 1.26 93.25
0 1.32 93.41
0 1.19 93.54
0 1.4 93.65
0 1.29 93.74
0 1.36 94.45
0 1.43 94.98
0 1.46 96.73
0 1.55 99.42

Threshold 3 (τ3)
Class X Y

1 0.95 87.33
1 0.87 87.59
1 1.02 89.05
1 1.01 89.54
0 1.11 89.85
0 0.99 90.01
0 1.2 90.39
0 0.98 90.56
0 1.15 91.43
0 1.23 91.77
0 1.15 92.52
0 1.26 93.25
0 1.32 93.41
0 1.19 93.54
0 1.4 93.65
0 1.29 93.74
0 1.36 94.45
0 1.43 94.98
0 1.46 96.73
0 1.55 99.42
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ϕj : the value of the j th attribute in the ϕ observation, where ϕ ∈ Ω+ and
j = 1,...,n ,
γj : the value of the j th attribute in the γ observation, where γ ∈ Ω− and
j = 1,...,n.

It generates patterns that characterize the observations in the dataset, and distinguishes
between two classes. Positive and negative patterns for each dataset are generated at the
threshold “i”. A Positive (negative) pattern is a conjunction of binary attributes which covers
at least one positive (negative) observation, while it is not valid for all negative (positive)
observations in the dataset. Thus, a pattern set (Pi) is formed of positive and negative
patterns that are generated at each threshold “i”, where i=1,. . . ,I, as given in equation
(5.5).

Pi = {Pi+} ∪ {Pi−}, i = 1, ..., I (5.5)

Refer to our example at the first threshold τ1 in table 2, the cbmLAD obtains a pattern set
P1={Y ≥ 88.32} ∪{Y < 88.32}.

Step 4: Gather all generated patterns

In this step, all of the generated patterns at all thresholds are gathered in a single dataset
P=∪Pi, i=1,. . . ,I by dropping the notion of positivity and negativity of these patterns. Sub-
sequently, each pattern in P is represented by an independent variable XPj

where j=1,. . . ,J
is the pattern index.

Table 5.4 presents the generated patterns for the first three thresholds of the 15%STD that is
applied on the illustrative dataset. When an observation is covered by a pattern j ,XPj

takes
the value of 1, otherwise its value is 0. As in the example, the first observation is covered by
patterns 2, 5, and 9, while it is not covered by patterns 1, 3, 4, 6, 7, and 8.

Step 5: Data pre-processing

Data pre-processing is implemented on the independent variables of the LADR regression
model, which correspond to the generated patterns. Data pre-processing is carried in five
stages to detect the duplicated patterns, the correlated patterns, the dependencies between
patterns, the multi-collinearity phenomena, and insignificant patterns in the regression model
as shown in figure 5.4.

(A) Removal of the duplicated patterns
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Figure 5.4 Data processing steps

Table 5.4 The generated patterns at the first three thresholds of the 15%STD method
for the illustrative dataset and the binary values of the patterns’ independent variables
XPj

,j=1,. . . ,10

Threshold 1 (τ1) Threshold 2 (τ2) Threshold 3 (τ3)

X>0.965 X<0.965 X>0.965
X<1.015 X>1.065 X<0.965 X>1.015

X<1.065 X>1.065 X>0.965
X<1 X<0.965 X>1

X<1.065
XP1 XP2 XP3 XP4 XP5 XP6 XP7 XP8 XP9 XP10

0 1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 0 0 1
1 0 1 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 0

The same pattern can be generated in more than one dataset. For example, in table
5.4, pattern 2 (XP2) is the same as pattern 5 and 9 (XP5&9), and patterns 4 and 7
(XP4&7) are duplicated. In this case, one of them is kept in the pattern set P , and the
other patterns are removed.

(B) Correlated patterns

Gathering a large number of patterns in the previous steps allows for the presence
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of correlated patterns. The correlation coefficient (R) is a statistical measure that
determines the strength of the linear relationship between the variables [146]. The R
ranges between -1 to 1 and is formulated as follows:

RXPj
XPh

=
m

∑m
i=0 XPj

XPj
−∑m

i=0 XPj

∑m
i=0 XPh√

(m∑m
i=0 X

2
Pj
− (∑m

i=0 XPj
)2)(m∑m

i=0 X
2
Ph
− (∑m

i=0 XPh
)2)

∀j&h = 1, · · ·, J where j ̸= h

RXPj
XPh

=


1 Prefect positive correlation

0 No correlation

−1 Prefect negative correlation

(5.6)

Where XPj
and XPh

are any pair of patterns and RXPj
XPh

is the measure of correlation
between patterns XPj

and XPh
.

When the patterns are correlated, the accuracy of the coefficients in the regression
model decreases, causing a large discrepancy. In this stage, a correlation matrix of the
patterns is constructed to trace the correlated patterns that have R-values of 1 and -1.
R equals 1 means two patterns cover the same observations. On the other hand, if R
is equal to -1, this means that one pattern is the complement of the other one. In both
cases, one of the two patterns is removed. In table 5.4, patterns 1 and 2 (XP1&2) are
perfectly correlated patterns, which may affect the model. Since pattern 2 (XP2) is the
complement of pattern 1 (XP1), XP2 can be removed.

(C) Dependent patterns

Dependencies may occur among patterns where the values of a pattern may depend on
another pattern(s). We use equation (5.7) to calculate the coefficient of determination
(R2), which is a statistical measure that represents the proportion of the variance for
a dependent variable that is explained by an independent variable or variables. In
practice, a pattern is considered dependent on another if its R2 is greater to or equal
to 90%. These procedures are repeated for all patterns.

R2 = 1−
∑
i(Yi − Ŷi)2∑
i(Yi − Ȳi)2

(5.7)

Where Y i and Ŷi is the actual value and predicted value of the response at the i th

observation and Ȳi is the mean value of the responses’ values.
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(D) Multi-collinearity

A correlation coefficient R that is higher than 90% may cause a multi-collinearity
problem [147]. Multi-collinearity exists when two or more patterns have strong linear
correlations to one another [148]. A variance inflation factor (VIF) [147,149] is used to
verify the multi-collinearity phenomenon. It is used to measure how the coefficients of a
regression model are inflated as a result of one or more collinear independent variables.

VIFj = 1
1−R2

j

(5.8)

Where R2
j is the coefficient of determination obtained by regressing the j th pattern on

the other patterns, while ignoring the response Y. If the pattern has VIF >10 [150]
which is equivalent to R2

j=0.9, this implies a multi-collinearity, and this pattern is re-
moved. This procedure is performed sequentially, and after each pattern’s removal, a
new regression model is obtained.

(E) Insignificant patterns

By calculating the p-value using a F-test, patterns with insignificant contribution to
the regression model are those with p-value>0.05.

Step 6: Compute the patterns’ coefficients in the regression model

In this step, the patterns that remain after the pre-processing step form the regression model.
The independent variables of that model are the binary variables, (XPj

), j=1,. . . ,J of the
remaining patterns, while the original response Y, is the dependent variable. The weights
or coefficients of these patterns are calculated by minimizing the value of mean square error
(MSE) as depicted in figure 5.2. The MSE is the average of square difference between the
true and the model responses. In this paper, we use the linear regression algorithm to build
the model. The MSE, R2 and MAE are calculated for the obtained model, where MAE is
calculated using equation (5.11).

β̂ = arg max
β

(MSE) (5.9)

MSE =
∑m
i (Yi − Ŷi)2

m
(5.10)



56

MAE = |
∑m
i (Yi − Ŷi) |

m
(5.11)

Where β̂ is the vector of coefficients of the regression model.

Step 7: Evaluation of the model’s performance

k-fold cross-validation is used to estimate the coefficient of determination (R2), the mean
square test error (MSE), and mean absolute error (MAE). The k-fold cross-validation splits
the given data into the required k-folds, where each fold is a good representation of the whole
data. In practice, 5 to 10 folds are the typical values that are performed in a k-folds cross
validation. In a k- fold cross validation, the model is constructed by using (k-1) fold, and it
is tested by using the remaining fold. This procedure is repeated k times and the average of
R2, MSE, and MAE calculated for assessment. After consecutive iterations using different
number of thresholds with each discretization method, we obtain the best model that has
the lowest MSE. Therefore, we determine the appropriate number of thresholds that explain
the given dataset.

5.4 Performance of the LADR

To validate and evaluate the performance of the LADR, we implement it to six different
known datasets. These datasets are Boston housing, Computer Hardware, Auto-mpg , Servo,
Airfoil Self-Noise, and Concrete Strength, which are found in the UCI Machine Learning
Repository [151]. Researchers use these datasets to compare their techniques and algorithms.
All of the datasets contain one dependent variable. The characteristics of these datasets are
presented in table 5.5. In addition, all the features for each dataset are identified in appendix
A.

Table 5.5 Characteristics of the four datasets

Dataset No. of
observations

No. of independent
variables Range of response

Boston housing 506 13 [5 – 50]
Computer Hardware 209 6 [6 – 1150]
Auto-mpg 398 6 [9 - 46.5]
Servo 167 4 [0.13 – 7.1]
Airfoil Self-Noise 1503 5 [103.38 – 140.98]
Concrete Strength 1030 8 [2.33 – 82.60]
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A pre-processing step is applied for these datasets. The aim of this step is to detect any
missing values, outliers, duplicated instances or noise, and to apply any necessary data trans-
formation, whether for response or independent variables, or for both [152,153].

We seek a performance assessment of each of the three discretization methods, and its effect
on the accuracy of a regression model. The LADR technique is an integration of the R-script
using R-studio software [154] and cbmLAD software [24]. The best results are based on
finding an appropriate number of thresholds and the discretization method that captures the
variability in the given data.

The performance results of all models are represented in terms of MSE, R2, and MAE. These
are calculated based on the average of 10-fold cross validation. In cross validation, MSE is
used as an appropriate metric of the true test error. It evaluates the predictive performance
of the model when new observations are assessed. Consequently, it detects the presence of
overfitting in that model, if any. Therefore, the lower MSE, the higher prediction of the model.
In the following figures, we describe these metrics of the LADR model per each threshold for
both the KM and EW methods. The results are explored for 1 to maximum 14 thresholds,
which are equivalent to 15-intervals and clusters for KM and EW methods, respectively. For
the STD method, we evaluate the model performance per each percentage of the standard
deviation of the data’s response. The maximum percentage of the standard deviation is 15%.
On the other hand, the QT is carried out based on the step values as previously mentioned
in step 1 in section 2. The selection of the best model for each discretization method is based
on the MSE, which has a minimum value.

Figures 5.5, 5.6, 5.7 and 5.8 present the results of LADR models based on KM, EW, %STD,
and QT, respectively for Boston Housing dataset. These figures demonstrate a variation in
results using different methods at different thresholds. According to the statistical results
of LADR-KM models in figure 5.5, the K-means with 5 clusters (KM=5) provides the most
accurate predictive model. The KM=5 clusters of the data are based on its response in
4 thresholds. Figure 5.6 depicts that the best LADR-EW occurs when dividing the data
into 11 equal width intervals (EW =11), which is equivalent to 10 thresholds. In figure
5.7, clustering the data based on 2% of the standard deviation of the response leads to the
appropriate number of thresholds. At step 0.1, the best LADR-QT is obtained as shown in
figure 5.8.

Table 5.6 shows the values of the performance measures, MSE, MAE and R2 when using
the best LADR-KM, LADR-EW and LADR-STD. The three proposed methods have better
performance than the best LADR-QT model using step 0.1 as shown in figure 5.8. For further
validation of the results, we implement five other different regression techniques. These
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Figure 5.5 Boston Housing : the LADR measures of performance using the KM method
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Figure 5.6 Boston Housing : the LADR measures of performance using the EW method
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Figure 5.7 Boston Housing : the LADR measures of performance using the %STD method
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Figure 5.8 Boston Housing : the LADR measures of performance using the QT method
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Table 5.6 The performance of the regression models for Boston Housing

Method Threshold MSE(*10−3) R2 MAE(*10−2)
LADR-KM τ = 4 3.08 88.98 4.15
LADR-EW τ = 10 3.31 88.35 4.29
LADR-STD τ = 2%STD 3.47 87.72 4.42
LADR-QT τ = 9 4.46 84.33 4.97
LR - 5.92 79.27 5.58
SVR - 6.29 77.85 5.38
DTR - 6.48 77.35 5.76
RF - 3.72 86.86 4.37
PolyR - 5.18 - 4.51

are Linear Regression (LR), Support Vector Regression (SVR), Decision Tree for regression
(DTR), Random Forest (RF), and Polynomial Regression (PolyR). We apply these techniques
using R-studio software [154]. Tables 5.6 to 5.11 show that LADR models that use the
discretization methods KM and EW result in better values of the measures of performance
compared with LR, SVR, DTR and PolyR. Their models score a higher value of R2 and
lower values for both MSE and MAE. Furthermore, both methods perform better than QT
models. On the other hand, the %STD method is still competitive to the other methods. It
outperforms LR, SVR and DTR in four out of six datasets as well as three datasets against
QT models and there are slight differences in the results of the other datasets. The LADR
technique obtains a predictive model that has a measure of performance values, which are
competitive to the best model, RF. By comparing the results of these models, we conclude
that the LADR-KM model at KM=5 has the best performance. In appendix B, the equation
B.1 presents the detailed structure of this regression model. Similarly, the results of Computer
Hardware, Auto-mpg , Servo, Airfoil Self-Noise, and Concrete Strength datasets are depicted
in figures (5.9-5.12), (5.13-5.16), (5.17-5.20), (5.21-5.24), and (5.25-5.28) respectively. Tables
5.7 to 5.11 provide a comparison between the LAD models to obtain the best performance.In
addition, the best model for each of these five datasets is depicted in equations (B.2-B.6).
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Figure 5.9 Computer Hardware: the LADR measures of performance using the KM method
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Figure 5.10 Computer Hardware: the LADR measures of performance using the EW method
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Figure 5.11 Computer Hardware: the LADR measures of performance using the %STD
method
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Figure 5.12 Computer Hardware: the LADR measures of performance using the QT method
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Figure 5.13 Auto-mpg: the LADR measures of performance using the KM method
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Figure 5.14 Auto-mpg: the LADR measures of performance using the EW method
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Figure 5.15 Auto-mpg: the LADR measures of performance using %STD method
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Figure 5.16 Auto-mpg: the LADR measures of performance using the QT method
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Figure 5.17 Servo: the LADR measures of performance using the KM method
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Figure 5.18 Servo: the LADR measures of performance using the EW method
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Figure 5.19 Servo: the LADR measures of performance using the %STD method
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Figure 5.20 Servo: the LADR measures of performance using the QT method
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Figure 5.21 Airfoil self-noise: the LADR measures of performance using the KM method
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Figure 5.22 Airfoil self-noise: the LADR measures of performance using the EW method
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Figure 5.23 Airfoil self-noise: the LADR measures of performance using the %STD method
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Figure 5.24 Airfoil self-noise: the LADR measures of performance using the QT method
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Figure 5.25 Concrete strength: the LADR measures of performance using the KM method
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Figure 5.26 Concrete strength: the LADR measures of performance using the EW method
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Figure 5.27 Concrete strength: the LADR measures of performance using the %STD method
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Figure 5.28 Concrete strength: the LADR measures of performance using the QT method
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Table 5.7 The performance of the regression models for Computer Hardware

Method Threshold MSE R2 MAE
LADR-KM τ = 11 2.061 93.17 1.04
LADR-EW τ = 9 2.063 93.09 1.11
LADR-STD τ = 11:15%STD 3.19 89.19 1.41
LADR-QT τ = 19 3.474 88.45 1.29
LR - 2.63 89.36 1.28
SVR - 2.70 89.64 1.28
DTR - 5.46 81.95 1.61
RF - 2.50 91.53 1.15
PolyR - 2.62 - 1.14

Table 5.8 The performance of the regression models for Auto-mpg

Method Threshold MSE(*10−3) R2 MAE(*10−2)
LADR-KM τ = 3 2.14 90.21 3.58
LADR-EW τ = 3 1.74 92.00 3.26
LADR-STD τ = 6%STD 2.76 87.56 4.02
LADR-QT τ = 3 2.28 89.57 3.62
LR - 2.40 89.14 3.76
SVR - 2.42 89.12 3.75
DTR - 2.88 87.07 4.16
RF - 2.01 90.90 3.38
PolyR - 2.15 - 3.31

Table 5.9 The performance of the regression models for Servo

Method Threshold MSE(*10−3) R2 MAE(*10−2)
LADR-KM τ = 2 1.53 91.83 2.73
LADR-EW τ = 1 2.07 89.00 3.17
LADR-STD τ = 6%STD 2.50 87.12 3.61
LADR-QT τ = 1 2.18 88.42 3.31
LR - 7.26 63.81 6.94
SVR - 7.48 64.50 7.11
DTR - 3.10 83.53 4.13
RF - 1.78 90.86 2.84
PolyR - 3.29 - 3.84

5.5 Validation of the LADR

To test whether the differences between the values of the MSE, the MAE and the R2 obtained
with the best LADR models and those obtained by using the LR, SVR, DTR, LADR-QT,
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Table 5.10 The performance of the regression models for Airfoil Self-Noise

Method Threshold MSE R2 MAE
LADR-KM τ = 4 3.65 92.41 1.42
LADR-EW τ = 5 3.62 92.47 1.38
LADR-STD τ = 1%STD 5.00 89.78 1.68
LADR-QT τ = 4 3.66 92.40 1.45
LR - 23.17 51.43 3.74
SVR - 23.89 51.28 3.68
DTR - 11.08 76.64 2.55
RF - 3.21 93.57 1.30
PolyR - 21.80 - 3.54

Table 5.11 The performance of the regression models for Concrete Strength

Method Threshold MSE R2 MAE
LADR-KM τ = 4 26.70 90.50 3.77
LADR-EW τ = 9 25.88 90.80 3.68
LADR-STD τ = 2%STD 27.33 90.28 3.87
LADR-QT τ = 9 28.10 90.13 3.81
LR - 109.37 61.19 8.30
SVR - 117.21 60.14 8.20
DTR - 56.57 80.38 5.54
RF - 22.35 92.19 3.31
PolyR - 38.20 - 4.61

RF, and PolyR are statistically significant, the Friedman–Nemenyi is used [155, 156]. The
test is formulated as follows in equation (5.12):

Fr = 12
bM(M + 1)

∑
j

Ra2
j − 3b(M + 1) (5.12)

Where b is the number of datasets, M is the number of competing models and Ra2
j is the

square of the sum of the rank for the j th model. The null hypothesis (H0) states that all of
the models used have the same mean of MSE, while the alternative hypothesis (Ha) states
that all of the models have a different mean of MSE. The χ2

(M-1,a) is calculated with a degree
of freedom M -1, at a significance level α=0.05. If Fr >χ2

(M-1,a), the H0 is rejected and the test
is considered significant, and accordingly, some of the regression models lead to significantly
different values of MSE. If the H0 is rejected, we perform a post-hoc test by applying multiple
pairwise comparisons between the models to identify the models that lead to significantly
different values of MSE. We select the model that has the lowest mean rank. It is compared
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with the mean ranks of the others using equation (5.13).

|Raj −Ra∗
j |

> D (Significant difference)

< D (Insignificant difference)

D = 2.2414
√
bM(M + 1)

6
∀j&h = 1, . . . , |M |&j ̸= j∗ (5.13)

Where j∗ is the j th model that has the highest mean rank, D is the critical difference that
is used to determine the significance of the differences. In this paper, D is estimated at a
significance level of αn =0.0125 of the standard normal distribution. If the difference between
the rank sum of j th model and j∗ model is greater than D, the performance of j th model is
significantly different, otherwise it is not.

We apply the Friedman test to compare the values of MSE for the LADR using the three
proposed discretization methods; KM, EW, and STD ; with the LADR-QT [157]. The
performance of both LADR-KM and LADR-EW have significant difference from the LADR-
STD and LADR-QT as in table 5.12. This emphasizes the same conclusion that both LADR-
STD and LADR-QT models approximately have the same performance. On the other hand,
We select the best LADR model for each dataset to represent the LADR technique. Table
5.13 shows that the SVR has the highest mean rank of MSE, so we compare its performance
with the other techniques. It demonstrates that the performance of LADR and RF differ
significantly from the performance of the other techniques. Moreover, the LR, SVR , DTR
and PolyR techniques are not significantly different and have the same mean of MSE. The
results show that the performance of LADR has better results and comparable to the most
accurate regression models, RF.

Furthermore, in order to demonstrate the differences in the discretization methods, we hold a
comparison with the combinatorial regression (CR) [138] for Boston Housing and Computer
Hardware datasets. The differences are noticed by comparing the CR’s results in table 5.14
with the previous tables. Thus, we apply the LADR for the raw data directly to be the
worst case. Generally, the LADR outperforms the CR by a large margin, as is evident from
the obtained results in table 5.14. For Boston Housing, the LADR model increases in R2

by minimum 12.6% and decreases in MAE by minimum 20.5% as well as 41.7% and 51.1%,
respectively, for Computer Hardware. We notice that using the three-discretization methods
provide superior results in terms of MSE, R2 and MAE that are to other regression methods.

The proposed technique shows better results with small values of MSE, and Friedman’s
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Table 5.12 Friedman test for the best LADR model using the four discretization methods for
all datasets

Model Raj R̄aj |Raj − RaLADR−QT/STD|
Is there significant

difference?
LADR-KM 9 1.5 12 Yes
LADR-EW 9 1.5 12 Yes
LADR-STD 21 3.5
LADR-QT 21 3.5

Fr 14.4
χ

2
(3,0.05) 7.81

D 10.024

Table 5.13 Friedman test for the best LADR model and other regression models for all
datasets

Model Raj R̄aj |Raj − RaSV R|
Is there significant

difference?
LADR 8 1.33 25 Yes
RF 10 1.67 23 Yes
PolyR 19 3.17 14 No
LR 27 4.50 6 No
DTR 29 4.83 4 No
SVR 33 5.50

Fr 25.62
χ

2
(5,0.05) 11.07

D 14.53

test is carried out confirming that the accuracy is improved significantly. This affects the
performance of the model in predicting accurately.

5.6 Numerical application

Process monitoring is essential for fault detection in industrial applications. Control charts
are considered to maintain both process and product qualities [8, 9]. They monitor the pro-
cess variations and determine whether they are in control or out of control, so corrective
actions can be taken to reduce the variability and to improve the quality. In most indus-
trial applications, the process has more than one variable. The streams of data may have
high dependency and correlated variables, which affect the performance of the charts [67].
Moreover, when the number of variables in the process increases, there is a time delay in
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Table 5.14 A comparison between the performance of LADR and CR

Method Boston Housing
Threshold R2 MAE

LADR-KM τ = 6 89.74 2.18
LADR-EW τ = 4 89.32 2.26
LADR-STD τ = 3%STD 87.20 2.36
CR - 77.44 2.97

Method Computer Hardware
Threshold R2 MAE

LADR-KM τ = 9 95.29 22.86
LADR-EW τ = 12 95.52 23.00
LADR-STD τ = 15%STD 95.49 24.85
CR - 67.24 45.04

detecting the mean shift in the process [68]. Subsequently, a large amount of missed detec-
tion occurs, in addition to false alarms. A regression adjustment was developed in [158] to
regress a variable on the rest of the other variables. Then, a residual control chart monitors
the variations of the regression model’s residuals. As such, the regression model solved the
problem of dimensionality, since it reduces the number variables to be monitored by a con-
trol chart. Furthermore, it monitors the residuals that do not suffer from the autocorrelation
phenomenon. An important factor is to ensure the high accuracy of the regression model to
improve the performance of the charts in fault detection. Therefore, the LADR technique is
adopted as a regression adjustment since it has proven its efficiency in building a regression
model. LADR obtains a relationship between the independent patterns with the dependent
variable(s) of the process. For example, LADR is applied to the cascade process data given
in [1]. The dataset contains 40 observations, where each observation has nine independent
variables and two dependent variables. LADR is used to obtain a regression model for the
first dependent variable to compare its performance with the least squares regression model
obtained in [1]. In table 5.15, we present the results of both the LADR and LR models using
10-folds cross validation for 10 times. Again, MSE, MAE and R2 are calculated to evaluate
the performance of each technique. Although LADR-STD does not perform as well as the
others in this dataset, the results show that LADR-KM and LADR-EW outperform the LR.
The LADR-KM has the best performance, which is shown by the lowest value of both MSE
and MAE, in addition to being higher than LR in terms of R2. It can be concluded that both
EW and KM are the best discretization methods for this example. The models’ structures
are depicted in equation (14).



76

Table 5.15 A comparison between the performance of LADR and LR

Method Threshold MSE R2 MAE
LADR-KM τ = 2 0.72 0.76 0.68
LADR-EW τ = 3 0.75 0.75 0.71
LADR-STD τ = 12: 15%STD 1.21 0.66 0.90
LR - 0.96 0.67 0.77

Our future research will implement the residuals of the best model (LADR-KM ) on the
residual control chart. Therefore, the model can check the process stability by the detection
of fault, if any. When a fault is detected, the developed model indicates the reason of the
process abnormality through the used patterns. Accordingly, we will be able to take the
corrective action(s) to retain the process in-control.

Y[EW ] =949.8136 + 1.7668XP2 + 0.4513XP3 + 0.6435XP4 − 0.8506

XP5 − 1.3392XP7 + 0.8603XP9 + 1.487XP11 + 1.7805XP17+

1.2748XP20 (5.14.1)

Y[KM ] =952.3113− 1.5841XP1 + 0.8017XP4 − 0.8226XP7 + 0.8413XP12

+ 1.2594XP15 (5.14.2)

Y[%STD] =951.787 + 1.2729XP3 − 1.0707XP5 − 0.5346XP6 + 0.5323XP7

− 1.1123XP11 − 1.5754XP13 + 0.7708XP21 + 0.3641XP22+

0.53XP25 + 0.9851XP29 − 0.3541XP35 + 0.5777XP37 − 0.491

XP38 + 1.1585XP41 + 0.7438XP49 − 0.7382XP50 + 1.26XP51−

0.7803XP52 (5.14.3)

Y[LR] =825.8853 + 0.4741X1 + 1.4134X2 − 0.1168X3 − 0.0824X4−

2.3918X5 − 1.2978X6 + 2.1764X7 + 2.9805X8 + 113.217X9 (5.14.4)

5.7 Conclusion

In this paper, we have constructed regression models to predict process performance based on
patterns that are extracted by the data mining of sensor readings. We extended the existing
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LAD data mining classification technique by developing a LAD regression model (LADR)
to predict the response variable based on patterns found in the dataset. These patterns
preserve the significant information and knowledge found in the data, and aggregate them
into fewer patterns, instead of the entire set of observations. Binary variables that indicate
the presence or the absence of these patterns in new unseen observations are used to predict
the dependent continuous numerical response variable by using the regression model. This
paper presents three main methods, the EW, KM and %STD, to create the independent
variables. The best method provides the best performance metrics (MSE, R2, and MAE).
To ensure the accuracy of the regression model, we apply 10-fold cross validation 10 times to
obtain the average of each performance metric. It is shown that LADR models, which use
the EW, KM and %STD, have better results compared with the other well-known machine
learning regression techniques. Moreover, LADR demonstrates significant improvement in
the performance of the regression models.

For further research, the LADR model will be used in multivariate control charts to monitor
and detect anomalies. Our hypothesis is that by using the LADR we will be able to decrease
the false positive and false negative errors, which are inherent to any control chart. Moreover,
it is expected that the extracted patterns will provide indications of the root causes for any
out of control observations. Quality 4.0 will therefore be implemented, and manufacturers
will be able to maintain and improve their quality management by using machine-learning
techniques that use online and real-time sensor data to monitor the process performance.



78

CHAPTER 6 ARTICLE 3: ROOT CAUSE ANALYSIS OF AN
OUT-OF-CONTROL PROCESS USING A LOGICAL ANALYSIS OF DATA

REGRESSION MODEL AND EXPONENTIAL WEIGHTED MOVING
AVERAGE

Ramy M. Khalifa, Soumaya Yacout, Samuel Bassetto
Submitted to:

Journal of Intelligent Manufacturing, 2022



79

6.1 Abstract

Control charts are widely used as a tool in process quality monitoring to detect anomalies
and to improve the quality of a process and product. Nevertheless, their limitations have
increased in the face of increasingly complex manufacturing processes. They do not have ca-
pability of handling large streams of non-normal and autocorrelated multivariate data, which
is in most real applications. This may lead to an increase in false alarm signals and/or missed
detection of anomalies. They are not designed to automatically identify the root causes of
an anomaly when the process is out-of-control. Several machine-learning techniques were in-
tegrated with control charts to improve the sensitivity and specificity of anomaly detection.
Nevertheless, some existing techniques still produce a high false alarm rate and/or missed
detection. The root cause analysis is seldom performed. In this paper, we propose a new
integration that combines the logical analysis of data regression technique (LADR) and the
exponential weighted moving average (EWMA) as a new model-based control chart. LADR
is based on the traditional LAD methodology, which is a supervised data mining technique
for pattern generation. LADR transforms the original independent variables into pattern
variables by using cbmLAD software to develop a regression model. The LADR-EWMA in-
creases the sensitivity of anomaly detection in the process and uses the patterns to perform
root cause analysis of that anomaly. We applied LADR-EWMA to a real application: a
concrete manufacturing process. We compared its performance with Linear regression, Sup-
port vector regression, Partial Least Square regression, and Multivariate adaptive regression
Spline. The results demonstrate that the LADR-EWMA, which is based on pattern recogni-
tion, performs better compared to the other techniques in terms of a reduction of false alarms
and missed detection. In addition, LADR-EWMA facilitates interpretation and identification
of the root cause of the detected anomaly.

Keyword: Process monitoring, Logical Analysis of Data Regression (LADR), anomaly de-
tection, root cause analysis, LADR based EWMA control chart (LADR-EWMA), Quality
4.0

6.2 Introduction

Process quality monitoring and control are two important challenges that many manufac-
turers are interested in. Process monitoring plays a significant role in guaranteeing better
performance of a process by detecting anomalies, abnormal variations, or degradation in per-
formance, in addition to preparing for root cause analysis and corrective actions to be taken
to return a process to normal condition. As such, process monitoring ensures that both the
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quality of the process and the product are within the pre-specified statistical control limits.

The main concept of process monitoring techniques is to exploit the available data and
develop an inferential model for the monitored process. It is of crucial concern not only to
improve the sensitivity for anomaly detection, but also the identification and interpretation
of the root cause of that anomaly.

This paper introduces a new model-based control chart, called Logical Analysis of Data Re-
gression (LADR) based control chart to detect the anomalies and to perform root cause
analysis for corrective actions. The approach combines LADR, which is a machine learning
technique for pattern generation and regression based on combining the logical analysis of
data (LAD) [159] with a control chart. The generated patterns identify the multidimensional
zones that characterize different groups of observations in the original data. The patterns
identify the root causes of the subgroups of anomalous observations. LADR uses these
patterns as independent variables instead of the original independent variables to obtain a
regression model describing the dependent variable(s). LADR is integrated with the control
chart to monitor process quality. Once, an anomaly is detected, the LADR model uses the
generated patterns to identify the possible causes, automatically and without human inter-
ference. Therefore, the main contribution is to use machine learning to obtain interpretable
patterns, which describe the root causes of any anomaly. Once the process’s anomaly has
been detected, the developed technique analyzes the root causes via pattern recognition. The
variables that form the patterns are those that contribute to the presence of the anomaly.

The remainder of the paper is organized as follows: The “Literature review” section provides
a literature review of the model-based control charts and the previous machine learning
techniques that are used for anomaly identification. The “Methodology” section elaborates
the proposed LADR regression-based control chart and its role in identifying the root-cause
of the anomalous observation. The “Numerical example” section evaluates the performance
of the proposed approach using a numerical example indicating the accuracy of LADR, and
compares the results with other approaches. Finally, the “Conclusion” section presents a
summary of the contributions of this paper, areas for further research, and some concluding
remarks.

6.3 Literature review

Statistical process control (SPC) is a data-driven process monitoring approach [160] that
monitors a process to reduce its variability and improve its quality [6]. The process is
considered statistically in-control when the variations are due to unavoidable or natural
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causes which are called common causes. Conversely, assignable causes result in abnormal
variability during manufacturing due to machine faults, non-conforming raw material, lack
of calibration, or operator’s errors. The process is statistically out-of-control [161]. Once
SPC detects abnormal variability associated with the process, it provides a notification of
the presence of abnormal variations. Hence, an investigation is launched and corrective
action is taken to avoid loss of quality. In many industrial applications, control charts are
one of the SPC tools that are used to monitor the variability of quality characteristics over
time [8, 9]. They graphically represent the variations of the quality characteristics. Control
charts determine the process condition, whether it is in-control or out-of-control. They are
classified as univariate and multivariate control charts, depending on the number of observed
variables [1].

The limitations of conventional control charts increase in the face of increasing complexity of
manufacturing processes. Modern technological progress in various industrial applications has
led to a continuous increase in the number of monitored variables, which makes monitoring
the process’s performance more cumbersome [16]. This is in addition to the presence of
autocorrelated variables [162]. This leads to an increase in the time delay for detecting the
mean shift in a process [69]. False alarm signals and missed detections are crucial problems
that are inherent within the control charts [1]. Industrial processes may experience different
types of anomalies during the operation of a system. Identification and interpretation of
the root causes of these anomalies play an important role in taking the corrective actions
to bring a process to an in-control state. The conventional control charts are not designed
to automatically identify the root causes of an out-of-control signal [70]. For this reason,
additional graphical techniques have been used, such as line graphs [163], boxplot charts [164],
polyplots [165], and multivariate profile charts [166]. A statistical procedure was proposed
in [167], based on a discriminant analysis that classified the observations as in-control or out-
of-control in different groups [168]. Mason, Young, and Tracy (MYT) decomposition [169] is
one of the more common statistical approaches that has been used for root cause detection.
This approach is used when the number of the process variables are small, but it can not be
used when the number of variables is large, because it suffers from extensive computational
time problems. This is because it needs to carry out n! decompositions, where n is the
number of the process variables. An adaptive step-down approach (ASD) [170] was suggested
to overcome the drawback of MYT decomposition. The performance of root cause detection
still has uncertainties when a large number of variables are responsible for the out-of-control
state.

Recently, Quality 4.0 has been introduced as part of the new paradigm of Industry 4.0 [171].
It refers to the future of quality engineering within the context of Industry 4.0, the rapid
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growth of technological advancement in internet applications, and the unprecedented rate of
change that those advancements are bringing [172]. Quality 4.0 represents the impact of the
digitalization of quality management functions on quality processes, tools, and people [10].

The Quality 4.0 framework consists of 11 axes; data analytic is one of them. It considers
the improvement of performance in traditional quality tools by adding new capabilities [173].
Machine learning techniques are integrated with traditional quality tools to develop a model-
based control chart. They are used to detect any abnormal variations in the process. This
integration helps manufacturers that are striving to implement their own data analytic strat-
egy to improve product quality and process performance. It also enables the automation of
online monitoring to diagnose anomalies, as well as to predict quality characteristics. The
implementation of machine learning not only monitors real-time processes, but it is also used
to predict the process quality before the occurrence of an anomaly. The automatic iden-
tification and interpretation of abnormal variations allows the anomaly to be eliminated,
and consequently the scrap and rework to be reduced, thereby improving the quality of the
process.

The model-based control chart was originated by Mandel. It is a combination of a con-
ventional control chart and linear regression [174]. Hawkins [158] developed a regression
adjustment to monitor the residuals of the process variable of interest that is regressed on
the others. The residuals represent the difference between the actual values of the dependent
variable, which represents the monitored quality characteristic, and the predicted value of
that variable. Support vector regression (SVR) was employed to obtain an SVR-chart [175].
A comparison was carried out when integrating Artificial Neural Networks (ANN ), Support
vector regression (SVR), and Multivariate adaptive regression splines (MARS) with control
charts to monitor the mean process of the quality characteristic [162, 176]. A new statis-
tical method combined with SVR and exponential weighted moving average (EWMA) was
used to detect different types of anomalies at low levels of severity of the centrifugal chillers
system [72]. A Partial Least Square (PLS) based on T2 statistic and Q-statistic were not
suitable in the detection of small variations because both statistics were memoryless, which
means that no previous information was taken into consideration. The number of false alarms
and missed detections increased as a result of their fixed control limits. Thus, PLS -based
EWMA was developed [80]. The PLS is used in process monitoring because it successively
handles the multi-collinearity between the process variables. The EWMA is a univariate
control chart, which is very sensitive to small shifts.

Once an out-of-control observation is detected in the process, it is important to identify the
root causes of anomalies. Several multivariate techniques are used to identify the behaviors
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of the variables that contribute to an out-of-control process. Reconstruction-based methods
were developed to obtain the anomaly detection index along the directions of the variables
“Anomaly directions" based on an anomalous database [177]. The variable that contributes
to the anomaly has the largest index in the reconstruction. They identify the variables that
contribute to the detection of an anomaly. Practically speaking, the anomaly directions
were unknown, and most often, the available data was not sufficient, which creates prob-
lems involving combinatorial optimization. Least absolute shrinkage and variable selection
(LASSO) were used to overcome the shortage of the conventional reconstruction methods.
It is used as a variable selection method using a penalized term. It tracks the propagation of
the anomaly by shrinking the regression coefficients until these entire coefficient values are
zero [17]. Elastic net (EN ) based anomaly detection was developed to deal with strongly
correlated variables [18]. Furthermore, a hybrid method was proposed that combined ridge
and LASSO regression.

Different pattern recognition techniques have been integrated with a control chart. They
are implemented to recognize patterns from the original data and diagnose the anomalous
observation [178], for example, with Support Vector Machine (SVM ) [8, 101], K-Nearest
Neighborhood (KNN ) [104], Decision Tree (DT ) [99, 100], Random Forest (RF) [103] and
Artificial Neural Network (ANN ) [20, 106, 107]. Furthermore, hybrid techniques have been
proposed when combining two or more classifiers such as SVM-ANN [108,109] and Principal
Component Analysis (PCA)-SVM [94]. Generally, it is necessary to randomly generate ap-
propriate training data to determine the different types of anomalies and develop an efficient
classifier.

The aim of integrating of machine learning with a control chart is either developing a re-
gression model to overcome the drawbacks of the conventional control chart, or identifying
the root cause of the detected out-of-control observation. This is the motivation behind the
present paper. It is to develop a high-performance regression model based on extracted pat-
terns from the original data. These patterns are exploited to conduct a root cause analysis
of out-of-control observations, without generating any additional data for the training stage.

6.4 Methodology

We consider the historical data of a process of n, measured independent variables, X1,. . . ,Xn,
that indicate features that affect the process performance, and the output response Y rep-
resents the quality characteristics that measure this performance. LAD regression technique
(LADR) extends the standard LAD classification methodology [132, 141] to obtain a data-
driven regression model. It generates J patterns from the original dataset of independent
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variables, such that all the observations are covered by at least one pattern. A regression
model of J binary variables (0,1), XPj

, j= 1, . . . , J , is found, such that each observation
is covered by pattern j (XPj

=1), or not (XPj
=0). The corresponding values of the quality

characteristics are obtained by the regression model. The best regression model may be
linear or non-linear. It has been shown in [179] that by using the generated patterns Pj

and their corresponding binary variables XPj
as the independent variables, instead of the

original variables, X1,. . . ,Xn, the accuracy of the predicted values of the dependent variable
increases. In the following sections, the patterns are used to perform a root cause analysis,
and to find the possible causes of each out-of-control state.

Table 6.1 presents a simple dataset as an example to illustrate the methodology’s steps.
The dataset is generated based on a multivariate normal distribution of certain mean (µ)
and covariance-variance matrix (Σ) using RStudio software [154]. It contains 30 observa-
tions, where each observation has two independent variables; X1 and X2; and one dependent
variable; Y . The simulation is elaborated by considering:

µX1 = µX2 = µY = 0

Σ =


1 0.5 0.9

0.5 1 0.4
0.9 0.4 1



6.4.1 Overview of the LADR technique

For the sake of completeness, we provide a brief description of the LADR technique. The
details are given in [179]. In sections 6.4.2 and 6.4.3, the LADR generated patterns are
used to interpret the causes of the out-of-control state. LADR uses the LAD approach to
generate patterns that differentiate and characterize different process states. It uses the cbm-
LAD software [24] to obtain strong patterns, which have high coverage [159]. The following
subsections show the steps to implement LADR technique as depicted in figure 6.1.

Classification of the response

The classification of a process’s response Y is the cornerstone of LADR. It divides the data
into N -classes to obtain the thresholds. Subsequently, LAD is implemented to generate
the patterns that characterize each class. We consider a regression dataset Ω(n, Y , m) of
m observations and n independent variables that indicate the process performance, and Y
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Table 6.1 Illustrative example for the steps in the methodology

No. X1 X2 Y No. X1 X2 Y
1 -0.63 1.33 0.53 16 -0.04 -0.71 -0.22
2 0.18 -0.09 0.12 17 -0.02 0.36 0.00
3 -0.84 0.35 -0.44 18 0.94 0.81 1.12
4 1.60 0.03 1.42 19 0.82 -0.07 0.72
5 0.33 -1.36 -0.38 20 0.59 0.91 0.70
6 -0.82 -0.46 -0.84 21 0.92 0.44 0.83
7 0.49 -0.37 -0.16 22 0.78 -0.57 0.45
8 0.74 -0.02 1.01 23 0.07 0.34 0.49
9 0.58 1.13 0.95 24 -1.99 -1.23 -2.58
10 -0.31 0.75 0.54 25 0.62 1.46 1.22
11 1.51 -0.09 1.42 26 -0.06 1.98 0.74
12 0.39 -0.23 0.08 27 -0.16 -0.37 0.00
13 -0.62 0.67 -0.16 28 -1.47 -1.12 -1.77
14 -2.21 0.45 -2.03 29 -0.48 0.55 -0.13
15 1.12 -0.63 0.45 30 0.42 -0.11 0.40

is the dependent variables, which are the quality characteristics of interest in the process.
Three classification methods for the values of the dependent variable Y are used to create
the best N -classes based on one of the following criteria: Equal width intervals (EW ), K-
means clustering (KM), percentage of standard deviation (%STD) between the observations
in each class. The EW classifies the values of the dependent variable in equal width space.
The KM creates N -classes using the K-means technique [144]. While the %STD obtains the
N -classes based on the percentage of the standard deviation of the Y values [144]. For more
detail, see [24,179].

For example in table 6.1 where m=30 and n=2, let us assume 8 classes (N=8) for observations
that are created by using the KM method. The reason is given later in section 6.4.1. The
8-classes are equivalent to 7 thresholds, as depicted in table 6.2.

Classification of the data at each threshold

Each threshold τi classifies the dataset Ω into two classes. We call them positive class Ω+
i

and negative class Ω−
i , as is the convention in the traditional LAD. The Ω+

i (Ω−
i ) contains

positive (negative) observations that have Y values equal to or greater (less) than the value
of τi.
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Figure 6.1 The LADR methodology flow chart

Ω+
i = {ω ∈ Ω | Y (ω) ⩾ τi}, i = 1, ..., I

Ω−
i = {ω ∈ Ω | Y (ω) < τi}, i = 1, ..., I

(6.1)

Where Y (ω) is the dependent variable at the observation ω and i=1,. . . ,I is the thresholds
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Table 6.2 The classes and thresholds using the KM method for the illustrative example

C0 C1 C2 C3
τ < τ1 τ1 ≤ τ < τ2 τ2 ≤ τ < τ3 τ3 ≤ τ < τ4

C4 C5 C6 C7
τ4 ≤ τ < τ5 τ5 ≤ τ < τ6 τ6 ≤ τ < τ7 τ ≥ τ7

τ1 = -2.03 , τ2 = -0.84 , τ3 = -0.44, τ4 = 0 ,
τ5 = 0.4 , τ6 = 0.7 , τ7 = 1.12

index. For the first threshold (τ1) in table 6.2, the observations are in the Ω+
i when the value

of the dependent variable Y , is greater or equal to -2.03, otherwise they are set in the Ω−
i as

shown in table 6.3. In this table, the positive and negative classes are denoted by (+) and
(-), respectively. This procedure is repeated for all seven thresholds that are obtained by the
KM method and that are shown in table 6.2.

Table 6.3 Defining the positive and negative classes for the first threshold (τ1) using the
KM method.

Class X1 X2 Y Class X1 X2 Y
+ -0.63 1.33 0.53 + -0.04 -0.71 -0.22
+ 0.18 -0.09 0.12 + -0.02 0.36 0.00
+ -0.84 0.35 -0.44 + 0.94 0.81 1.12
+ 1.60 0.03 1.42 + 0.82 -0.07 0.72
+ 0.33 -1.36 -0.38 + 0.59 0.91 0.70
+ -0.82 -0.46 -0.84 + 0.92 0.44 0.83
+ 0.49 -0.37 -0.16 + 0.78 -0.57 0.45
+ 0.74 -0.02 1.01 + 0.07 0.34 0.49
+ 0.58 1.13 0.95 - -1.99 -1.23 -2.58
+ -0.31 0.75 0.54 + 0.62 1.46 1.22
+ 1.51 -0.09 1.42 + -0.06 1.98 0.74
+ 0.39 -0.23 0.08 + -0.16 -0.37 0.00
+ -0.62 0.67 -0.16 + -1.47 -1.12 -1.77
+ -2.21 0.45 -2.03 + -0.48 0.55 -0.13
+ 1.12 -0.63 0.45 + 0.42 -0.11 0.40



88

Generation of patterns at each threshold

Based on the previous step, the I–thresholds; τ1, τ2,. . . τI; creates I-datasets, Ωi where i=
1,. . . ,I and I=N -1 where N is the number of classes, for example I=7 and N=8 in table
6.2. For each threshold τi, the cbmLAD software [24] performs as a two-class classification.
It generates patterns that differentiate between the two classes. The cbmLAD software uses
ant colony optimization technique to generate strong patterns within the original data by
solving the following optimization problem:

max.
∑
ϕ∈Ω+

d∏
k=1

ϕk ̸=ψk

(1− yk) (6.2)

s.t.
∑
k=1
γk ̸=ψk

yk ⩾ 1 ,∀ γ ∈ Ω− (6.3)

yk ∈ 0, 1 ,∀ k = 1, ..., d (6.4)

Where d is the number of attributes in a pattern,
yk = 1 if the k th attribute of the pattern equals ψk, 0 otherwise,
ψk : the value of the k th attribute in the ψ observation,
ϕk : the value of the k th attribute in the ϕ observation, where ϕ ∈ Ω+

γk : the value of the k th attribute in the γ observation, where γ ∈ Ω−.

Consequently, we generate two sets of patterns at each threshold i, i=1,. . . , I. We call the
class of the set observations in the class i ‘Positive’, while the class of the set of observations
outside the class i is ‘Negative’. A pattern identifies multidimensional zones that characterizes
different groups of observations in the original data. It covers at least one observation in the
I-class, while this pattern does not cover the observations of all other classes. Therefore, by
gathering the two sets of patterns, Pi, i=1,. . . , I, is obtained including both positive and
negative patterns at each threshold τi as depicted in equation (6.5).

Pi = {Pi+} ∪ {Pi−}, i = 1, ..., I (6.5)

Referring to our illustrative example in tables 6.1 and 6.3, the cbmLAD software [24] obtains
a pattern set P1={P1+@(Y ≥ −2.03)} ∪{P1−@(Y < −2.03)} at the first threshold τ1 as
shown in table 6.4.
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Table 6.4 The generated patterns at the first two thresholds of the KM method for the illus-
trative dataset and the binary values of the patterns’ independent variables XPj

, j=1,. . . ,5

No.
Threshold 1 (τ1) Threshold 2 (τ2)

X1<-1.73
X2<-1.175 X2>-1.175 X1>-1.73 X1<-1.155 X1>-1.155

XP1 XP2 XP3 XP4 XP5
1 0 1 1 0 1
2 0 1 1 0 1
3 0 1 1 0 1
4 0 1 1 0 1
5 0 0 1 0 1
6 0 1 1 0 1
7 0 1 1 0 1
8 0 1 1 0 1
9 0 1 1 0 1
10 0 1 1 0 1
11 0 1 1 0 1
12 0 1 1 0 1
13 0 1 1 0 1
14 0 1 0 1 0
15 0 1 1 0 1
16 0 1 1 0 1
17 0 1 1 0 1
18 0 1 1 0 1
19 0 1 1 0 1
20 0 1 1 0 1
21 0 1 1 0 1
22 0 1 1 0 1
23 0 1 1 0 1
24 1 0 0 1 0
25 0 1 1 0 1
26 0 1 1 0 1
27 0 1 1 0 1
28 0 1 1 1 0
29 0 1 1 0 1
30 0 1 1 0 1

Gathering all generated patterns

All of the positive and negative patterns generated at every threshold are gathered in one
pattern set P=∪Pi, i=1,. . . ,I. Each pattern in this dataset P is represented by binary inde-
pendent variable XPj

where j= 1,...,J which is an indication of the existence of the pattern
j. When the pattern j covers an observation in the original dataset Ω, XPj

takes the value
1, and 0 otherwise. As in the illustrative example, the total number of generated patterns
for the 7-thresholds is 31. For illustration, table 6.4 shows the generated patterns for the
first two thresholds only. The XP1=1 covers the 24th observation only at threshold τ1 be-
cause it is covered by pattern 1, and the XP2 =1 for all observations except the 5th and 24th

observations, which are not covered by pattern 2.

Data pre-processing is applied on the independent variables XPj
j=1,. . . ,J in the dataset P to

remove the irrelevant or redundant information that is present in the structure of the dataset.
It is carried out in four steps to remedy the problems due to the presence of duplicated and
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correlated XPj
, the dependencies between XPj

, and the multi-collinearity. For more details,
see [179]. As in table 4, the correlation between the XP4and XP5 is -1 where both patterns are
complementary to each other. In this case, one of each pair is removed. Table 6.4 shows the
resulting binary independent variables XPj

, j=1,2,3,4 after removing the repeated patterns.

Computing the coefficients of the patterns in the regression model

The regression model represents the relationship, linear or non-linear between the remaining
independent variables XPj

, j=1,. . . ,J and the dependent variable Y . Without loss of general-
ity, in this paper, the linear regression algorithm is used to build the model. The coefficients
of the regression model are obtained based on the minimization of the Mean Square Error
(MSE). Moreover, The F-test is carried out to detect the insignificant variables whose p-value
> 0.05. For more detail, see [179].

The LADR model replaces the original independent variables with the patterns variables as
shown in equation (6.6).

Ŷ = β0 +
J∑
j=1

(βjXPj
) (6.6)

Where Ŷ is the predicted value of the LADR model, β0 is the intercept, and βj is the
coefficient of the pattern j, and XPj

is a binary (0, 1) variable for all j= 1, . . . ,J , indicates
whether the estimated value of an observation ,Ŷ , is correlated to XPj

=1 or not when XPj
=0,

for pattern j. The LADR−KM regression equation and the patterns that have XPj
=1 are

presented in equation (6.7). For this equation, all of the 7-thresholds τi, i=1,. . . ,7 that are
given in table 6.2 are taken into consideration. The details of the patterns, the covered zones,
and the classes that they belong to, are depicted in table 6.5.

Ŷ =− 0.1671 + 0.1957XP2 + 0.6257XP3 − 0.9414XP6 − 0.3772XP7 + 0.2785

XP9 + 0.2585XP13 + 0.3944XP15 + 0.3278XP19 + 0.2586XP21 − 0.4719

XP23 − 0.796XP26 − 0.2655XP27 − 0.3684XP28

(6.7)

Evaluation of the model’s performance

10-fold cross-validation for 10 replications is used to assess the performance of the model.
Consecutive iterations are done by creating a different number of classes in order to find the
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Table 6.5 The pattern’s covered zones and classes
Pj Covered zone Class Pj Covered zone Class

P2 X2>-1.175
C1,C2,C3,C4,

C5,C6,C7
P19

X1>0.405
X2>-0.17 C4,C5,C6,C7

P3 X1>-1.73
C1,C2,C3,C4,

C5,C6,C7
P21

X1>0.025
X2>-0.08 C5,C6,C7

P6 X1<-1.155 C0,C1 P23
X1<0.535
X2<1.395

C0,C1,C2,C3,
C4,C5

P7
X1<-0.725
X2<-0.415 C0,C1,C2 P26

X1>-0.11
X2>-0.1
X2>0.78

C6

P9 X1>-0.725
C3,C4,C5,

C6,C7
P27

X1<0.93
X2<1.395

C0,C1,C2,C3,
C4,C5,C6

P13

X1>-0.395
X1<0.455
X2>-0.67

C3,C4,C5,
C6,C7

P28
X1<1.315
X2<0.78

C0,C1,C2,C3,
C4,C5,C6

P15 X2>0.71 C5,C6

best model based on MSE. Consequently, the appropriate number of thresholds is determined
for the data given in table 6.2. We divide the original dataset in the illustrative example into
8 classes (KM=8).

6.4.2 LADR regression-based control chart

In this section, we describe the process monitoring strategy, which is called the LADR-
control chart. The LADR model is integrated with the control chart and acts as a modeling
framework to monitor the dependent variable in that process. This combination of LADR
and the control chart develops a new anomaly detection scheme. We consider the histor-
ical data of a process of n variables X1,. . . , Xn , which indicate the process performance
as inputs. The output response that indicates the quality characteristic of interest in the
process is the Y variable. The LADR technique creates a model that describes this data
and predicts the output Ŷ . The independent variables of the LADR model represent the
generated patterns’ variables using the appropriate classification method at the best number
of thresholds, as shown in section 6.4.1. The residuals of the LADR model are used to con-
struct the control chart. The residual (Et) is the difference between the measured value of
the dependent variable and its corresponding predicted value based on the regression model
given in equation (6.7) at time t; Et= Yt-Ŷt. The residual term is independent and normally
distributed with N(0,σ2

E). Consequently, the control chart monitors the model’s residuals
to determine whether the process is in-control or out-of-control. In this paper, we use Ex-
ponential Weighted Moving Average (EWMA) control chart to monitor the process quality,
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because it is considered an alternative approach to the Shewhart control chart in the case
of small shifts in the process mean. It keeps a memory of the process’ history through the
recursive equation (6.8). The EWMA is computed recursively for the available samples by:

zt = λĒt + (1− λ)zt−1 (6.8)

Where zt , the value of EWMA at the tth sample data, which is equivalent to time t, and the Ēt
is the mean value model’s residuals at the tth sample or subgroup. λ represents a smoothing
parameter ranging between 0 and 1 (i.e. 0≤λ≤1). If the value of λ gets smaller, the smaller
shifts will be quickly detected but false alarms may increase. Thus, an appropriate value
should be selected to obtain accurate process monitoring. It is assumed that z0=0, which
is the target value. When the σE is unknown, the SE is estimated by taking the standard
deviation of the model’s residuals in normal conditions. The EWMA control chart graphically
represents the EWMA values zt, t=1,. . . .m, with the m samples used to construct the control
limits (UCL and LCL) and the centerline (CL) as the following:

UCL = LσE

√
λ

2− λ [1− (1− λ)2t] (6.9)

LCL = −LσE

√
λ

2− λ [1− (1− λ)2t] (6.10)

CL = 0 (6.11)

Where, L is the width of control chart limits, UCL and LCL, the choice of design parameters
of EWMA, L and λ are based on the desired Average Run Length (ARL) performance as
described by Lucas and Saccucci [180] and Steiner [181]. ARL is the average number of
samples that must be plotted in the control chart after an assignable cause has happened
and before a sample mean falls outside the control limits, thus declaring the process to be
out-of-control [1]. When the process is in-control, large in-control ARL (ARL0) contributes
to a reduction in false alarms. Conversely, small out-of-control ARL (ARL1) is needed for
out-of-control processes in order to rapidly detect the change [59]. Hence, the ARL1 is much
smaller than the ARL0.

Referring to the illustrative example, the dataset represents an in-control process where the
LADR model’s residuals follow N(0,S2

E). The estimated standard deviation of the model’s
residual for the in-control process operation is SE=0.086. We select the in-control average
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run length (ARL) of the chart at 370 based on error type (α= 0.0027). We determine the
optimal design parameters at one standard deviation in the process mean using libraries of
“SPC” and “qcc” in R-4.0.5 software [154]; λ = 0.14 and L = 2.79; to construct the control
limits using equations (6.9-6.11). As an illustration, we generated the observation of table
6.6, where the means of X1 and X2 are shifted with magnitude δ equal to 1.

Table 6.6 Generation of special cause

No. X1 X2 Y
31 0.46 0.47 0.45
32 2.21 2.40 2.56
33 2.16 0.84 1.89
34 1.70 0.86 1.33
35 2.59 0.98 2.02
36 1.56 1.74 1.48
37 -0.28 0.86 0.08
38 0.43 0.93 0.31

This shift is reflected in the dependent variable (Yt), and accordingly the LADR model’s
residuals. The process is operating in the presence of abnormal variations which affect the
process quality. The EWMA chart detects anomalies in the process, and the observations
appear beyond the UCL from the 32nd residual point as depicted in figure 6.2.

Figure 6.2 Anomaly detection using LADR− EWMA chart
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Once a residual goes beyond the control limits of EWMA at the 32nd observation, the patterns
covering this observation describe the causes of the out-of-control situation in terms of the
independent variables X1 and X2. These causes determine the corrective actions that should
be taken to return the process to in-control. The details of this procedure are shown along
with an example in the next section.

6.4.3 Root cause identification of the out-of-control process

When the model’s residual goes beyond the control limits of an EWMA chart, the control
chart detects an anomaly and provides an alarm signal. The LADR model itself in equation
(6.6) is used to determine the reason for that out-of-control situation using the covering
patterns.

The LADR model in equations (6.6) and (6.7) contains all of the patterns’ variables for the
generated patterns that are extracted from the original data as described in section 6.4.1. For
each sample observation, some of these patterns cover it, which means XPj

= 1, and others
do not. The XPj

=1 (XPj
=0) in the model when the original independent variables are

in (out) of the zone that is formed by the pattern j as explained in section 6.4.1. For the
illustrative example, the EWMA chart detects an anomaly at the 32nd observation in figure
6.2. Therefore, the model of the predicted dependent variable Ŷ32 is as follows:

Ŷ32 =− 0.1671 + 0.1957XP2 + 0.6257XP3 + 0.2785XP9 + 0.3944XP15

+ 0.3278XP19 + 0.2586XP21 − 0.796XP26

(6.12)

When an observation is out-of-control, we analyze the model at that out-of-control obser-
vation in terms of the covered patterns, the patterns’ prevalence, and the location of the
anomaly value in the control chart whether beyond the UCL or the LCL. The prevalence
of the pattern is the proportion of observations that were covered by each pattern in the
training phase of pattern generation as in equation (6.13). It represents the robustness of
this pattern. High prevalence is an indication of a robust pattern.

Prevalence(Pj, C) =
| Cov(ωPj ,C) |
| Cov(ΩPj

) | , C = 0 : N (6.13)

Where Cov(ωPj ,C) is the coverage of the j th pattern for the set of observation in class “C”,
Cov(ΩPj

) is the coverage of the j th pattern for all the dataset Ω, and the N is the number of
classes.
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The model consists of patterns’ binary variables, XPj
, that have negative and/or positive

coefficients. In equation (6.12), the original independent variables of the 32nd observation is
covered by the zones formed by the patterns XP2 , XP3 , XP9 , XP15 , XP19 , XP21 , and XP26 . All
the XPj

in the LADR model have positive coefficients except the XP26 .

The LADR technique uses the classification process to partition the values of the dependent
variable, Y , into classes as shown in section 6.4.1. Each class represents a range of Y -values.
The covered patterns are arranged in descending order based on their prevalence (coverage)
in each class. When these robust patterns are presented in a class, the LADR model predicts
the value of the dependent variable within the interval of that class. Conversely, when the
patterns with lower prevalence in a certain class exists, the LADR model predicts the value
of the dependent variable beyond the interval of that class. A lower prevalence indicates a
robust indication of the anomaly and its causes deduced from the patterns. For our illustrative
example, there are 8-classes in table 6.2; C0 to C7; and 13 significant patterns as determined
in section 6.4. The prevalence of each pattern per class is presented in figure 6.3.

Figure 6.3 The prevalence for each pattern per each class

When the zt < LCL, the residual point at time t which is the difference between the measured
dependent variable and the predicted value obtained by the LADR model is negative. In
other words, the actual dependent variable is lower than the predicted value. Thus, the
actual dependent variable belongs to class h and the predicted value belongs to class h′,
where h ≤ h′. Consequently, the reason for this is the covering patterns that have positive
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coefficients of lower prevalence in the LADR model. Conversely, when the zt > UCL, the
residual point at time t is positive. Therefore, the actual dependent variable is greater than
the predicted value. Subsequently, the actual dependent variable belongs to class h and the
predicted value belongs to class h′, where h ≥ h′. Consequently, the reason is the covering
patterns that have negative coefficients of lower prevalence in the LADR model as depicted
in algorithm 1.

As for the illustrative example, the actual value of the 32nd original dependent variable in
table 6.6 is 2.56, and belongs to C7 (table 6.2). The predicted value is 1.1176 obtained
by equation(6.12), which is also in C7. Moreover, the LADR mode in equation (6.12) has
binary independent variables XP15 and XP26 that have positive and negative coefficients,
respectively, which are not in C7 at all; see figure 6.3. Furthermore, the coefficient of the
XP26 is the highest negative. It can therefore be concluded that the patterns XP26 is the
root cause of the anomaly for two reasons. The first reason is the z32 > UCL which means
the actual dependent variable (Y32) is greater than the predicted one from the LADR model
(Ŷ32). Therefore, the residual point has a positive value. The XP26 is the only covered pattern
that has a high negative coefficient in the LADR model. The second reason is that the P26

does not cover C7 as shown in figure 6.3. The description and covered zone of the pattern
P26 is shown in table 6.5. Consequently, the corrective actions would violate this zone to
eliminate the anomaly and to keep the process in-control. Thus, the variables X1 and/or
X2 have to be changed in order to leave the zone (X1>-0.11, X2>0.78) by decreasing X1 to
<-0.11 and/or X2 to <0.78; in this way XP26 would be eliminated.

Therefore, when an anomaly is detected in the EWMA control chart, we determine the class
of the actual dependent and predicted variable at time t, and the covered patterns in the
model for that instance. We identify the covered patterns, which do not cover the actual
class or have very low prevalence in that class. Accordingly, the corresponding values of X1,..,
Xn are considered for root cause analysis of the out-of-control signal. This allows for the
corrective actions that should be taken to retain the process to in-control to be determined.
The details of this procedure are demonstrated through an example in the following section.

6.5 Numerical example

6.5.1 Dataset description

Concrete manufacturing process is a highly complex and sensitive process responsible for
producing high-performance concrete. The process is based on mixing cement with various
ingredients to satisfy the construction materials standards. There are common types of con-
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Algorithm 1 LADR Technique - Root cause
1: Read τ ▷ The I -thresholds
2: PV = Prevalence (Pj,C ) ▷ Refer to equation 6.13
3: Read Et, Yt, and Ŷt ▷ The out-of-control observation at time t
4: XP =[ ] ▷ The pattern set covered by the observation at time t
5: Co =[ ] ▷ The corresponding coefficients of the pattern set at time t
6: if Cover(Pj,ωt) then ▷ If the Pj covers the observation ω at time t
7: XPj

=Pj ∀ j=1,...,J
8: Coj = coefficient (LADR(XPj

)) ∀ j=1,...,J
9: else

10: XPj
=0 , Coj=0

11: end if
12: for i← 1 to I do
13: if Yt<τi then C=i-1
14: else
15: C=I
16: end if
17: end for
18: if zt > UCL then
19: A=find (XPj

, PV (XPj
,C ), Coj(XPj

)<0) ▷ Stored the patterns which have
negative coefficients, their prevalence, and their coefficients’ values at the out-of-control
observation ω at time t in table "A"

20: A= Sort A (PV (XPj
,C )) ▷ Sort table A based on the prevalence of patterns in

ascending order
21: Υ = Min Ai2 ▷ Obtain the indices of the patterns of minimum prevalence of

patterns in the 2nd column (i2 ) of A
22: ξ=Minυ∈Υ Ai3 ▷ Obtain the index of the pattern of minimum coefficient

corresponding to the minimum prevalence index (υ) in the 3rd column (i3 ) A
23: RC= Ai1(ξ) ▷ Root cause of the out-of control observation ω at time t
24: end if
25: if zt < LCL then
26: A=find(XPj

, PV (XPj
,C ), Coj(PV (XPj

))>0)
27: A= Sort A
28: Υ = Min Ai2
29: ξ=Maxυ∈Υ Ai3
30: RC= Ai1(ξ)
31: end if
32: Print A
33: Print RC

crete such as plain, precast, reinforced, etc. High-performance concrete is characterized by
high workability, which ensures high strength, high stability, and high durability [182]. Con-
sequently, quality monitoring of the concrete manufacturing process is necessary to ensure the
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concrete production is systematically controlled and complies with pre-specified characteris-
tics of the construction materials standards. It involves data collection for the measurements
of the variables affecting this process that lead to the presence of anomalies. So, a dataset
of a concrete production process is taken from the “UCI Machine Learning Repository”,
which describes a variety of concrete designed mix [151]. The training set consists of 78
measurements, which are considered as the in-control process.

Each measurement in the dataset has seven ingredients that represent the independent vari-
ables and three dependent variables. In this paper, we focus on only one dependent variable
which is the compressive strength of concrete in MPa. On the other hand, the independent
variables are: cement content in the mixture (X1), blast furnace slag (X2), fly ash (X3), water
content in the mixture (X4), Superplasticizer or high range water reducers in the mixture
(X5), fine sand aggregate (X6), and coarser sand aggregate (X7). All of these variables are
measured in Kg per cubic meter of concrete.

The concrete strength is specified by a designer, while the concrete producer determines the
proportions in the mixture. It is influenced by the proportion of these ingredients in the
mixture. When the water content (X4) increases too much in the mixture, voids occur in
the concrete, which decrease its strength. Therefore, the ratio between the water (X4) and
cement (X1) behaves inversely with strength. However, too high of a proportion of cement
(X1) in the mixture may lead to the occurrence of cracks. Sometimes superplasticizers
(X5) are added to the mixture to reduce the high water content (X4) and to increase its
strength. Supplementary cementitious materials such as blast furnace slag (X2) and fly ash
(X3) enhance the concrete’s cohesiveness. The fine sand aggregate (X6) and coarser sand
aggregate (X7) reduce the strength of the concrete when they represent a high proportion of
the mixture [183]. Therefore, the proportion within the mixture must be accurately designed
to obtain the desired strength and the characteristics of the concrete.

Generally, the testing procedures of the concrete strength inevitably contain experimental
errors. In this paper, the proposed LADR−EWMA is implemented to monitor the variation
of the concrete strength based on the desired strength to ensure the process quality. So, a
LADR model is developed to model the concrete strength using patterns generated from
the original ingredients. Then, the EWMA chart monitors the residuals, obtained by the
LADR model, to detect any anomaly experience in the process. The variations in the values
of one or more inputs may lead to a shift in the process resulting out-of-control conditions.
This is associated with the predicted dependent variable of the model Ŷ leading to a mean
shift beyond the pre-specified limits of the concrete strength. To assess the performance
of the LADR based control chart in the detection of the process mean shift of residuals, a
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simulated environment has been carried out to generate an additional set of 40 measurements
in which the first 30 represent the in-control process. The last ten create a variation in the
ingredients, which affects the concrete strength, which leads to an out-of-control process.
Furthermore, we compare the results of our proposed LADR-EWMA with the integration of
four other different regression techniques based EWMA. These use Linear Regression (LR-
EWMA), Support Vector Regression (SVR-EWMA), Partial least square regression (PLS-
EWMA), and Multivariate adapative spline regression [184] (MARS-EWMA). We implement
the techniques using “e1071”, “pls”, “earth”packages in R-4.0.5 software [154].

6.5.2 Development of the LADR regression models

Based on the simulated data, we develop LADR models using KM and EW classification
methods to obtain a regression model that describes the relationship between the X1 to X7

and Y variables. In this example, we obtain a regression model for concrete strength (Y )
as a function of generated patterns from all concrete ingredients in the dataset. In other
words, Y is the dependent variable, and generated patterns are the independent variables.
After consecutive iterations, the best model, which has the lowest value of MSE using 10-fold
cross-validation for 10 replications, is determined for each method using “caret” package in
R-4.0.5 software [154]. We select the best model, which in this case is LADR − EW as
depicted in table 6.7. In addition, Table 6.7 demonstrates the results of the other regression
models. The LADR−EW has better performance than the other regression models in terms
of MSE, R2, and MAE. Nevertheless, the MARS model is still competitive. The structure
of the LADR− EW regression model is shown in equation (6.14).

Table 6.7 The performance of the LADR models for the Concrete manufacturing process

Method Threshold MSE R2 MAE
LADR−KM 5 4.26 93.63 1.72
LADR− EW 12 3.08 95.75 1.37
LR - 7.21 88.42 2.05
SV R - 6.91 88.74 2.03
PLS - 8.18 86.36 2.10
MARS - 3.15 94.90 1.42
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Ŷ =37.273− 3.271XP7 − 3.447XP8 − 2.646XP15 − 1.110XP27 − 1.974XP29−

1.891XP30 + 1.317XP32 + 1.634XP34 − 0.953XP36 − 1.957XP38 − 1.289

XP39 − 3.659XP40 − 1.935XP41 + 1.934XP45 − 1.537XP50 − 2.470XP54−

1.455XP61 + 0.967XP62 − 1.214XP64 + 2.865XP65 + 1.616XP67 + 3.942XP71

+ 6.503XP72 + 3.912XP82

(6.14)

6.5.3 Construction of the control charts

In order to construct the EWMA chart, we define two key values: 1) the mean Ē and standard
deviation (SE) or standardized residual (SEMODEL

) for the regression model’s residuals, E,
in the in-control operation, 2) the parameters (λ, L) of EWMA chart. In this example, we
use the 78 historical data to estimate mean and standardized residuals for the LADR−EW
model, which are Ē=0, SELADR−EW

=1 respectively. We select the in-control average run
length (ARL) of the chart at 370 based on error type (α =0.0027). We are targeting a shift
of one standard deviation (δ=1) in the Ē. Therefore, the optimal design parameters of the
EWMA chart are determined; λ = 0.14 and L = 2.79; to construct the control limits.

6.5.4 Results of the EWMA charts

A residual based EWMA chart is developed to monitor the process quality and detect any
anomalies that affect the process or the measuring equipment. Therefore, in this process
the residuals obtained by the LADR − EW based on the patterns are implemented on the
EWMA chart. When the value of EWMA at tth sample lies within the UCL and LCL,
the concrete manufacturing process is in-control, otherwise, it implies a mean shift in the
process. Figure 6.4 shows the 78 measurements that are used in the EWMA chart for phase
I. In phase II, we used the LADR model to predict the concrete strength of the 40 simulated
measurements. When we implement the predicted values using LADR−EW on the EWMA,
minimum variations in the residual are shown within the control limits in figure 6.5. In other
words, the strength of the produced concrete is within the limits that are satisfactory to
the desired strength for the first 30 measurements. After the 31st residual point of concrete
manufacturing process no. 31, it deviates beyond the LCL, which shows a negative trend.
In this section, the results demonstrate that the proposed integrated approach satisfactorily
detects anomalies in the process without/reducing any false alarms.

Figures (6.6 - 6.9) present the integration of other regression models with the EWMA. In
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Figure 6.4 Concrete manufacturing: LADR-EW based EWMA chart for Phase I

order to compare the detection performance using the LADR model or other models, we use
two metrics to evaluate the performance of monitoring the process quality, the false alarm
rate (FAR) and missed detection rate (MDR) [185]. The FAR represents the ratio between
the number of the false signals to the total number of normal samples. On the other hand,
the MDR is the ratio of the missed detection samples to the total number of anomalous
samples. Both FAR and MDR are formulated as follows:

FAR = FP

FP + TN
(6.15)

MDR = FN

TP + FN
(6.16)

Where FP (FN) is false positive (negative) when a normal (an anomalous) observation is
detected as anomalous (normal) one, TP is true positive when an anomalous observation
is detected correctly, TN is true negative when the observation is correctly normal. In
addition, (FP +TN) represents the normal observations while (TP +FN) is the anomalous
observations.

The comparison in table 6.8 reveals that the LADR-EW -EWMA has the ability to correctly
detect the mean shift in the process without any false alarms, as well as LR-EWMA, SVR-
EWMA, and PLS-EWMA in figures 6.6, 6.7, and 6.8, respectively. However, the proposed
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Figure 6.5 Concrete manufacturing: LADR-EW based EWMA chart for Phase II

Figure 6.6 Concrete manufacturing: LR based EWMA chart

method has a slightly lower missed detection rate compared to the others. Conversely, the
MARS-EWMA in figure 6.8 contributes to high false alarms, which affect the manufacturing
process and increase downtime and economic losses, although the method is free of missed
detection instances. Consequently, the LADR-EW-EWMA performs better than the other
methods. The satisfactory mean shift detection ability of the LADR-EW-EWMA is due to
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Figure 6.7 Concrete manufacturing: SV R based EWMA chart

Figure 6.8 Concrete manufacturing: PLS based EWMA chart

the high performance of the developed model based on the LADR, and the merits of the
EWMA to detect small shifts occur in the process.
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Figure 6.9 Concrete manufacturing: MARS based EWMA chart

Table 6.8 The FAR% and MDR% for the regression based EWMA methods

Method FAR MDR
FP FAR % FN MDR%

LADR-EW-EWMA 0 0 1 10
LR-EWMA 0 0 2 20
SVR-EWMA 0 0 2 20
PLS-EWMA 0 0 2 20
MARS-EWMA 5 17 0 0
FP + TN=30 and TP + FN=10

6.5.5 Diagnosis of the root cause of the out-of-control signals

The regression-based EWMA chart monitors the final output process (Y ) under different
conditions, taking into account the independent variables that affect the (Y ) and reduce
the FAR% and MDR%. When the EWMA chart provides an alarm, it means that the
data has changed. Thus, it is important to interpret the root cause of the anomaly. All of
the previously mentioned integrations require additional tools to analyze the reason for the
alarm. Hence the importance of the proposed LADR-EW-EWMA is to interpret the root
cause of the anomaly without resorting to the use of any additional tools.

Once the anomaly is detected, we investigate the causes of this alarm signal in the EWMA



105

chart. The strength of the LADR model is derived from using the generated patterns as
independent variables XPj

instead of the original variables. These patterns are used to
determine the root causes of the out-of-control observations. The mix proportion of the 32nd

measurement sample are (X1 = 286, X2 = 17, X3 = 151, X4 = 169, X5 = 12, X6 = 990, X7

= 713) and the desired concrete strength is (Y32=29.96). In equation (6.14), the patterns’
variables XPj

that do not cover the 32nd measurement sample and their values are eliminated.
Equation (6.17) gives the resulting regression model for the 32nd measurement sample after
eliminating the patterns’ variables with zero values. The patterns’ variables that have a value
equal to 1 are XP34 and XP65 . For the 32nd measurement sample, table 6.9 defines the full
description of these patterns and summarizes the zone that is covered by each pattern.

Ŷ32 = 37.273 + 1.634XP34 + 2.865XP65 (6.17)

Table 6.9 The pattern’s covered zone and class for the 32nd measurement sample

Pj Pattern description Covered zone

P34

X1>155
X3>48.5
X7<779

C5,C6,C7,
C8,C9,C11

P65

X1>274.5
X3>115.5
X4<191.5
X7<809.5

C7,C8,C9,
C10,C11,C12

The classification process is the key building block of the LADR-EW model as described
in section 6.4.1. The original dataset is divided into 13 classes, which are defined by 12
thresholds as depicted in table 6.10. The prevalence of each pattern in each class is based
on these thresholds. We arrange all of the patterns for each class in descending order based
on their prevalence in that class, as in section 6.4.3. At the 32nd measurement sample, the
value of the concrete strength is 29.96, which belongs to class (C4), as in table 6.10. On
the other hand, the predicted value obtained by the LADR model is 41.77, which belongs to
class (C7).

It is observed in equation (6.17) that two patterns’ variables; XP34 , and XP65 ; have only
positive coefficients. Moreover, z32 < LCL, which means that the strength predicted by
the LADR model is greater than the measured strength. Consequently, the lower prevalence
pattern with positive coefficient in the measured strength’s class that covers the 32nd measure-
ment sample in equation (6.17) is the reason for that anomaly. Both patterns have positive
coefficients and lower prevalence in the class (C4) which should not exist in the model, as in
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Table 6.10 Concrete manufacturing: The classes, zones, and thresholds using the EW method

C0 C1 C2 C3 C4 C5 C6
τ < τ1 τ1 ≤τ < τ2 τ2 ≤τ< τ3 τ3 ≤ τ< τ4 τ4 ≤ τ < τ5 τ5 ≤ τ < τ6 τ6 ≤ τ < τ7

C7 C8 C9 C10 C11 C12
τ7 ≤ τ < τ8 τ8 ≤ τ < τ9 τ9 ≤ τ < τ10 τ10 ≤ τ < τ11 τ11 ≤ τ < τ12 τ ≥ τ12
τ1 = 20.37 , τ2 = 23.55 , τ3 = 26.73, τ4 = 29.91 , τ5 = 33.09 , τ6 = 36.09 , τ7 = 39.45,

τ8 = 42.63 , τ9 = 45.81 , τ10 = 48.99 , τ11 = 52.17 , τ12 = 55.35

Figure 6.10 Concrete manufacturing: The prevalence for each pattern in class C4

the figure 6.10. Any pattern that is not shown in the figure 6.10 does not exist in the class
(C4). Nevertheless, the XP65 has a higher coefficient than that of the XP34 in equation (6.17).
Consequently, the XP65 causes the out-of-control alarm in the process. It provides an inter-
pretation of the reason for that alarm. The conjunction of process ingredients X1to7 in the
mixture satisfies the pattern P65. The P65 states that the mixture has cement content>274.5,
fly ash>115.5, water content<191.5, and fine aggregate<809.5. This demonstrates that the
mixture has higher cementitious materials - cement and fly ash - compared to water content.
Accordingly, the water/cementitious ratio in the 32nd measurement sample is about 0.37,
which is an indication of lower water content in the mixture, which should produce higher
strength. In order to treat this mixture, it should be adjusted to violate the pattern P65 to
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produce the desired concrete strength. Therefore, the residuals will be within the control
limits in the EWMA chart, and the process will be in-control.

6.6 Conclusion

In this paper, we have constructed LADR−EWMA to monitor quality and detect anomalies
in the process. The LADR technique is an extension of the standard LAD methodology that
obtains a regression model based on generated patterns from the original dataset. These pat-
terns have a physical meaning that maintain significant knowledge and information in that
dataset. Therefore, the key feature is to obtain better independent variables that are more in-
terpretable to understand process conditions. LADR is based on three different classification
methods: Equal Width intervals (EW ), K-Means clustering (KM), percentage of standard
deviation (%STD). They transform the process response Y into N -classes to generate the
patterns that characterize each interval. Consequently, LADR obtains a regression model
that describes the relationship between these patterns and the process response Y . Then,
we implement the output of the process, which is the predicted dependent variable of the
regression model, on the control chart. The LADR increases the performance of the control
chart to detect the process anomalies by reducing both the false alarm rate and missed de-
tection rate. Once the control chart detects out-of-control observation, the LADR analyzes
the root causes of the process abnormality through generated patterns included in the model.
Accordingly, appropriate corrective action can be taken to maintain the stability of the pro-
cess. Generally, the proposed technique is used for anomaly detection and diagnosis of the
root cause for the anomaly. Integrating the LADR technique with control charts represents
a reliable and robust approach for online applications.

For further research, the LADR model will be adapted for decision-making to remedy the
anomalous process and to maintain stability in the process. We hypothesize that when the
LADR−EWMA determines the pattern(s) responsible for the detected anomaly, it will be
capable of specifying the values of the independent variables that violate these patterns and
an action can be taken to attain an in-control process .
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7.1 Abstract

The belt drive system is commonly used to transmit power in different industrial systems
to maintain high performance and safety. Online condition monitoring techniques (CMTs)
are used to monitor the operational conditions of such systems. Vibration-based monitoring
techniques (VMT) are among the CMTs that are used in the analysis and diagnosis of state
of a belt drive system. Machine learning techniques are integrated with the VMT based on
Industry 4.0 aspects for vibration analysis and fault diagnosis. Most of these techniques are
based on the collection of vibration data from the belt drive system under known normal
and different known faulty operations. This enables a fault to be diagnosed when it is
detected during the operation of a system. In this paper, a new condition monitoring and
warning mechanism is proposed to monitor operational conditions of a belt drive system.
The mechanism is based on an integration of a Logical Analysis of Data Regression (LADR)
with a residual Control Chart (RCC ). It uses vibration data from the belt drive system
under normal operation only. This mechanism exhibits better performance in fault detection
and also in interpreting the root cause of the faults in a belt drive system. Experimental
investigations on a belt drive test rig have been carried out to collect vibration data based
on a design of experiment for operational factors during normal operation. The LADR-RCC
is implemented to monitor the operation of the belt drive system and to detect the faulty
state. The accuracy of LADR is compared with Multiple Linear Regression (MLR) based
RCC, Support Vector Regression (SVR) based RCC and Random Forest (RF) based RCC.
The LADR-RCC demonstrates significant enhancements in fault detection. The advantage
of LADR-RCC over other model-based RCC is that it finds the root cause of a fault that is
experienced in the system.

Keyword: Belt drive system, fault detection, Condition monitoring, Logical Analysis of
data regression (LADR), Residual Control Chart (RCC )

7.2 Introduction

The belt drive system is extensively used as power transmission in various industrial appli-
cations, such as machine tools, conveyors, fans, and motors [186]. This system consists of
a belt,bearings, driver and driven pulleys, which are connected to rotating equipment as a
motor through shafts. The system is lubrication-free, has low noise operation, and has easy
maintenance in addition to high-efficiency [187]. The belt is the machine element that trans-
mits the power based on its friction with pulleys. Different types of belts, such as V-belts,
timing, flat, and round belts, can be used in this system. They are classified according to the
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section shape, the relative position of the shafts, the number of shafts simultaneously driven
and the transmission ratio [193].

Several sources of vibration may develop different types of faults in the belt drive system,
such as cut or damage in the belt, the presence of misalignment or unbalance problems, the
occurrence of defects or cracks in the shafts or bearings [188–190]. When several belt drive
systems are used in an industrial process, economic loss due to a loss in power transmis-
sion may be significant. Consequently, maintaining high reliability of a belt system and a
mechanism for detecting of abnormal conditions during operation are necessary [194].

Online condition monitoring techniques (CMT) are implemented to measure various param-
eters of a system such as vibration, temperature, pressure, etc. [195]. They are used to
determine the mechanical conditions of the belt drive system during operation. When a
fault is developed, the CMT allows proper system analysis and diagnosis actions to take
place [196]. Vibration-based monitoring techniques (VMT) are the most used techniques
that continuously measure vibration signals of a belt drive system. These signals are col-
lected from sensors attached to the system during operation. Statistical features are extracted
from these signals, where their values are used as valuable diagnostic information. Gener-
ally, the values of these features represent the vibration signature of the system when the
system operates under normal conditions. The vibration signature of a system is considered
the characteristics of its generated vibration signals during normal operation of the system.
Therefore, the values of the statistical features extracted from the current operation of the
system are compared to those of the vibration signature in the system in order to analyze
and diagnose the system’s condition [197]. When the difference exceeds a pre-specified limit,
a fault is detected [198]. Consequently, the VMT decreases the downtime of the system,
facilitates its maintenance, avoids/reduces consequential failure, and reduces economic loss.

Conventional VMT has three approaches for the fault detection and diagnosis of a belt drive
system: (1) Time domain approach, (2) Frequency domain approach, and (3) Time-Frequency
approach. The belt drive system was experimentally investigated to analyze the system
behavior under healthy and faulty conditions using the time and frequency domains [199].
Three different faulty conditions have been created on the belt which are side-cut-out, side-
cut-in, and both side-cut-out and loose in the belt. A comparison was conducted to describe
the belt behavior in various conditions and its influence on the system response. Different
faults can be experienced in a belt drive system during operation. Therefore, a model was
established for a belt drive system using ABAQUS software that simulated and studied the
effect of three belt-drive defects, worms or cogs missing in the belt, and misalignment in
the system [200]. The simulation model analyzes the vibration signals of the system in time
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and frequency domains. The model was validated with experimental results, and both have
approximately the same dynamic response. Moreover, the Root Mean Square (RMS) is a
significant feature for fault detection in the system. Furthermore, another simulated model
using ABAQUS was carried out to analyze the vibration response of the belt drive system
under unsteady operation due to a misalignment problem [201]. Additional faults in the belt
drive system were explored, such as unbalance and resonance in the system [202].

Recently, Industry 4.0 aspects have strongly insisted on the implementation of vibration anal-
ysis for a belt drive system-based condition monitoring using machine learning techniques.
A Principal Component Analysis (PCA) model was developed to detect and diagnose five
different types of faults experienced in a two-stage reciprocating compressor [203]. The PCA
model was used to select the statistical features that were extracted from the vibration sig-
nal in the time domain. A combination between Wavelet packet decomposition (WPD) and
support vector machine (SVM ) was proposed as a diagnostic approach and a condition mon-
itoring for the belt conveyor system [204]. The vibration signals transmitted from the belt
conveyor system were decomposed using WPD into energy at each frequency band. Further-
more, the energy and the statistical features extracted in the time domain were trained by
SVM to obtain a model that detected and diagnosed the faults in the system. An intelligent
diagnosis system was established for fault detection of the timing belts based on the vibration
signals in the three domains [205]. The extracted features for each domain were considered to
be the input of an artificial neural network (ANN ). In other words, there were three ANN s
and the classification accuracy of each ANN was combined using the Dempster–Shafer the-
ory of evidence. This led to the final fault detection and classification of the belt’s defect.
Furthermore, an ANN model-based time-domain vibration signal was developed to diagnose
five different types of faults in the pulley belt system [206].

Most of the current VMTs used to detect the faults in the belt drive system are based on
the collection of the vibration data from the system under normal and abnormal operations.
Practically speaking, many experiments need to be carried out to offer appropriate training
data to determine different types of faults that can be experienced in the system. In this
paper, we propose an online condition monitoring and warning mechanism for fault detection
and root cause identification in the belt drive system. This mechanism does not require any
faulty data to monitor, analyze, and indicate the current operating condition of the system.
The mechanism implements a Logical Analysis of Data Regression (LADR) [179] based con-
trol chart to develop a regression model based on the extracted statistical features (vibration
signature) in the time and frequency domains only during the normal operation of the system.
The LADR model is a machine learning technique that constructs a regression model based
on patterns generated by the standard Logical Analysis of Data (LAD) methodology. These
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patterns define multidimensional zones that distinguish between various groups of observa-
tions in the original training data. The residuals of the regression model are implemented in
a Residual Control Chart (RCC ). Once the residuals go beyond pre-specified limits of the
RCC, the mechanism detects a fault in the system and sounds a warning alarm to indicate
that the appropriate decisions needed to be made. Since LADR model is developed using
patterns, these patterns are used to analyze the reason for that fault.

The paper is organized in the following sections. Section 7.3 presents a description and
setup of the test rig experiment, in addition to data acquisition and feature extraction of
the vibration signal. Section 7.4 describes in detail the proposed condition monitoring and
warning mechanism based on the concept of the LADR regression-based Residual control
chart and its implementation for to monitor and diagnose faults in the operation of a belt drive
system. It discusses its strength for detecting faults and performing root cause analysis. Next,
section 7.5 provides a scenario to evaluate the performance of the LADR-RCC compared with
different integrations of regression techniques; Multiple Linear regression (MLR), Support
Vector Regression (SVR), and Random Forest (RF), with RCC. Then, Section 7.6 discusses
the results of the LADR-RCC compared to the other regression technique-based control
chart. Finally, conclusions and future research are made about the proposed mechanism in
Section 7.7.

7.3 Experimental Study

7.3.1 Experiment test-rig Description

In this paper, an experiment is performed on a belt drive system to monitor the belt con-
dition by collecting and analyzing the vibration signals generated during normal operation.
The experiments are conducted using the belt drive kit (PT 500.14) [191] of the G.U.N.T.
machinery diagnostic system (PT 500) [192] as depicted in figure 7.1. G.U.N.T. (PT 500)
is the base unit of the experiment. Its key components are an electric motor, two bearing
blocks, and a shaft. The belt drive kit consists of a small driver pulley and a large driven
pulley connected with a pre-tensioned belt using tensioning rollers. The electric motor is
the drive motor with a variable speed “N” that is controlled by a speed controller. It is
connected to the shaft through an elastic coupling to increase shaft flexibility and avoid its
misalignment. The shaft is supported by two ball bearing blocks and connected to the small
driver pulley with a 63 mm diameter. The power is transmitted by a V-belt of SPZ type
with 10 mm width and 912 mm length to the large driven pulley of 125 mm diameter. The
tensioning roller adjusts the pretension of the V-belt “T” by moving the roller screw with
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(tensioning) or against (looseness) the belt. The “T” is measured by a pretension gauge by
slowly pressing the middle of the belt until the lever of the gauge clicks at the “T” value, as
shown in figure 7.2. The “T” values in the experiments are 70, 110, and 150 N.
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Figure 7.1 Test-rig Description

The Data acquisition system contains two piezoelectric accelerometers (IMI 603C01 ). They
are attached to the ball-bearing blocks in horizontal direction using studs to measure the
vibration signals generated by the system during the experiment. Accelerometers #1 and
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Figure 7.2 The pretension gauge

#2 are attached to the bearing block of the driver and driven pulley, respectively. Then, these
signals are converted to electrical signals that are amplified by an amplifier. Subsequently, a
USB data acquisition card (bmcm) digitalizes the collected signals and transfers them to a
laptop through LabVIEW software [207] to analyze these signals.

7.3.2 Measurements and Data Description

The Design of Experiment (DOE) for collected vibration signals in the time domain from
the GUNT test rig is based on the full factorial design with three controllable factors. These
factors are the motor speed “N” in revolutions per minute, the unbalanced weight “W ”
in grams, and the pretension of the belt “T” in Newtons. Since the original experiments
were carried out for different objectives, we used the “W ” equals zero (absence of unbalance
weight) in this paper, as experiments concerned the generated vibration signals during normal
operation. The values of “N” vary from 400 to 2000 revolutions per minute by step 100, thus
it has 17 levels. “T” has three levels: 70, 110, and 150 Newtons. Each experimental run is
repeated three times; the total number of experimental runs is 153.

The sample value of vibration signal at time t is defined by “xt”. In this paper, we record the
vibration signal in time domain using a sample size of 10000 per 100 seconds as depicted in
figure 7.3a. Generally, each vibration signal at each speed “N” and pretension “T”, which are
measured by the accelerometers, holds information or features about the belt drive system
during normal operation. These features are extracted from the signal that is measured
to represent the vibration signature of normal operation. When variation of the extracted
features from the signal changes significantly under the same operational conditions, “N” and
“T”, a fault is detected. Thus, statistical features are extracted from the vibration signals
to map them from the time and frequency domains into another space in order to reveal the
signal information [208]. There are ten extracted features in the time domain, as follows:

(A) Peak (Pe): The maximum absolute value of the signal.

Pe = max.(| xt |) (7.1)
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(B) Range (R): Defined as the difference between the maximum and minimum values over
all samples in the signal.

R = max.(xt)−min.(xt) (7.2)

(C) Mean (M ): The average value or the central tendency of all samples in the signal.

M = 1
k

k∑
t=1

xt (7.3)

(D) Median (Me): The parameter that determines the center value of all samples in the
signal at which half of the values have a larger value than the median and the other
half have a lower value than the median.

Me =


x k

2
if k is even

x k−1
2

+ x k+1
2

2 if k is odd
(7.4)

(E) Standard Deviation (SD): The measure of the energy content of all samples in the
signal.

SD =

√√√√ 1
k − 1

k∑
t=1

(xt −M)2 (7.5)

(F) Variance (V ): The square of the “SD” and it is defined as the spread of the values over
all samples in the signal.

V = SD2 (7.6)

(G) Root Mean Square (RMS): This feature represents the energy level of all samples in
the signal and is the square root of the mean of the squared values in that signal.

RMS =

√√√√1
k

k∑
t=1

x2
t (7.7)

(H) Skewness (Sk): The third centered moment of all samples in the signal that determines
the asymmetry of the signal distribution. It has a positive (negative) value when the
signal distribution is right (left)-skewed.
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Sk =
∑kn
t=1(xt −M)3

(k − 1)SD3 (7.8)

(I) Kurtosis (Ku): Known as the normalized fourth-order moment. It measures the steep-
ness of all samples in the signal distribution. When the Kurtosis value is negative, the
signal distribution is flat, relative to normal distribution.

Ku =
∑k
t=1(xt −M)4

(k − 1)SD4 (7.9)

(J) Crest Factor (CF): The Pe to RMS ratio of the signal.

CF = Pe

RMS
(7.10)

Frequency analysis relies on converting a vibration signal into the frequency domain. There-
fore, the vibration signal collected in the time domain during normal operations and at each
“N” and “T” are transformed into the frequency domain or spectrum using Fast Fourier
transform (FFT). Figure 7.3b shows the implementation of the FFT using MATLAB soft-
ware. In this paper, four features are determined. The magnitude of acceleration amplitude
corresponding to fundamental driver frequency of belt (at driver pulley) “fd” at a certain
drive speed “N” is obtained as a statistical feature. For example, when N = 1000 rpm,
which is equivalent to fd=16.67 HZ, and T=70 N in the system, the magnitude of acceler-
ation amplitude is 0.00232m/s2 as illustrated in Figure 7.3b. Similarly, the magnitude of
acceleration amplitudes are obtained at belt frequencies, fb and fb′ ( equivalent to 2fb) as
depicted in figure 7.3b. The last feature is the magnitude of acceleration amplitude at the
fundamental driven frequency of belt (at Driven pulley), fdn.

Ten statistical features are extracted from the total number of experimental runs: peak,
range, mean, median, standard deviation, variance, root mean square, skewness, kurtosis,
and crest factor. For each condition N and T, we take the average values of each feature.
Consequently, a dataset is constructed that contains 51 observations and 10 extracted features
in addition to the fundamental belt frequencies for normal operation of the belt drive system,
as depicted in table 7.1.

7.4 Methodology

In this section, the methodology of the new condition monitoring and warning mechanism
is introduced as an enhancement in system monitoring and fault detection and diagnosis.
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(a) Time domain (b) Frequency domain

Figure 7.3 Time and Frequency domains for the normal operation of belt drive system at
N=1000 RPM and T=70 N

The mechanism is based on the integration of LADR-RCC to monitor the condition of the
belt drive system through the vibration signals generated to state the condition of the belt.
The LADR-RCC is a model-based control chart [209]. It is a combination of the LADR
technique [179] and residual control chart [1] that is used to monitor the operation of a
system. The LADR develops a regression model based on the generated patterns from the
original data as independent variables. The LADR develops a regression model based on the
generated patterns from the original data as independent variables. Each pattern defines a
multidimensional zone of the features’ values that distinguishes between various groups of
observations in the original training data. These features provide indications of the system’s
state. The LADR model describes the relationship between these patterns and the response
variable. The LADR model acts as a regression adjustment, in which the residuals ,E, are
monitored by the RCC to detect any fault in the system during operation. The residual term
is defined as the difference between the actual value of a system’s response and the value
that is predicted by the model. Once the value of the “E” goes beyond the RCC limits, a
fault is detected in the system.

7.4.1 LADR regression technique

The cornerstone of the LADR technique is the standard Logical Analysis of Data (LAD)
methodology. LAD is non-statistical data mining technique to generate patterns that is
based on Boolean logic and combinatorial optimization [210,211]. It is a supervised learning
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Table 7.1 Samples of the data used
N T Pe1 Pe2 R1 R2 M1 M2 Me1 Me2 RMS1 RMS2

400 70 0.1806 0.1944 0.3144 0.3133 0.0173 0.0045 0.0175 0.0047 0.0352 0.0286
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2000 70 1.4097 4.8131 2.7369 6.9883 0.0134 -0.0057 -0.0031 0.0013 0.3654 0.5769
400 110 0.292 0.218 0.501 0.431 0.017 0.004 0.016 0.003 0.043 0.041
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2000 110 1.769 2.742 3.361 5.156 0.018 0.004 0.014 0.006 0.374 0.635
400 150 0.217 0.427 0.372 0.738 0.017 0.004 0.016 0.004 0.033 0.035
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2000 150 2.143 2.998 3.728 5.661 0.011 0.004 -0.002 0.004 0.402 0.619

N T SD1 SD2 V1 V2 Sk1 Sk2 Ku1 Ku2 CF1 CF2
400 70 0.0307 0.0283 0.0009 0.0008 -0.1465 -0.1854 3.6835 3.8187 5.1288 6.7846
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2000 70 0.3651 0.5769 0.1333 0.3328 0.1465 -0.0981 2.9396 3.5181 3.8585 8.3429
400 110 0.040 0.041 0.002 0.002 0.401 0.092 6.123 3.908 6.716 5.263
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2000 110 0.374 0.635 0.140 0.403 -0.019 -0.028 3.432 3.065 4.723 4.319
400 150 0.028 0.034 0.001 0.001 -0.087 -0.361 3.956 10.07 6.603 12.35
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2000 150 0.402 0.619 0.161 0.383 0.209 0.016 3.383 3.239 5.336 4.847

N T fb fb′ fdn fd
400 70 0.0003 0.0005 0.0002 0.0006
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400 150 0.0004 0.0006 0.0007 0.0006
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2000 150 0.0097 0.0053 0.0115 0.0077

technique that is originally applied to classification problems [132]. More detail about the
LAD methodology are found in [141, 212]. The LADR technique transforms the standard
LAD methodology to solve regression problems. It uses LAD to extract the hidden patterns,
Pi , j=1,. . . ,J, where j is the identifier of the pattern. The patterns cover zones of values in
the dataset, such as the union of zones cover the totality of the dataset. The LADR technique
maps the features’ values in Q-dimensional {0, 1}Q, where the Q is features covering pattern.
It builds a model for response variable Y, and J independent binary variables XPj

, j=1,. . . ,J.
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The XPj
equals 1 when an observation “ω" is covered by the pattern Pj, otherwise it equals

0. The LADR model is applied to both linear and non-linear regressions between response
and independent variables although the relationship between the response variables and the
patterns’ variables is linear, as shown in equation (7.11).

Ŷ = β0 +
J∑
j=1

(βjXPj
) (7.11)

Considering a dataset Ω of n-independent variables (X1,. . . ,Xn), one dependent variable (Y ),
and m-observations (ω=1,. . . ,m). The LADR technique is implemented in four main steps:
response classification, pattern generation, data preparation and processing, and regression
modeling and validation [179] as depicted in Algorithm 2.

The LADR technique starts by sorting the Ω based on the Y -values in ascending order.
Subsequently, it classifies the Y -values into N -classes. I -thresholds; τ1,...,τI where I=N -1;
are derived from these classes. The τi threshold where i = 1,..., I is defined by the starting
value of (i+1)th class [179]. In this paper, we use two different classification methods: Equal
width intervals (EW ) and K-means clustering (KM ). They classify the Y -values into N -
classes based on having the same width, and by using the K-mean technique, respectively
[143]. For each τi, the Ω={Ω+

i , Ω−
i } where Ω+

i is called the positive set of observations, for
which the Y -values are greater than or equal to the τi-value. While Ω−

i is called the negative
set of observations, for which the Y -values are less than the τi-value. This is considered a two-
class classification problem for the LAD methodology. It is implemented using a cbmLAD
software [24] to extract hidden patterns at τi (Pi) that distinguish between these two classes.
The generated patterns Pi ={P+

i } ∪ {P−
i }, where P+

i (P−
i ) is the positive (negative) patterns

that cover at least one observation of the Ω+
i (Ω−

i ) at the τi. We repeat the same procedures
for all of I -thresholds and gather all of the generated patterns in a single dataset P=∪Pi.
Therefore, P contains J patterns that are included in Pi at all of the thresholds.Each pattern
Pj in P is considered as a binary independent variable XPj

where j=1,. . . ,J which indicates
that the pattern j exists. When an observation in the Ω is covered by Pj, the XPj

is equal
to 1, and 0 otherwise.

The prevalence of each pattern Pj is calculated. It is defined as the percentage of observations
in the original data that are covered by each Pj during the training phase. When a Pj has
a higher prevalence in a class, it is considered more significant. As such, the predicted value
of Y by the developed LADR model is likely to be within the range of Y -values in the class.
On the contrary, when the Pj has a lower prevalence in a class, it is less significant, and the
prediction may be outside the range of Y -values of that class.
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Algorithm 2 LADR Technique
1: Read (Ω)
2: Sort (Ω) ▷ Ascending order based on Y
3: for N ← 2 to 20 do ▷ N -Classes
4: τ= Discretize (Ω) ▷ Using the EW or KM method
5: I=Length (τ) ▷ I=N -1
6: P=[ ], MSE=[ ], R2=[ ]
7: for i← 1 to I do
8: for ω ← 1 to m do
9: Ω+

i ={Ωω ∈ Ω | Y (ω) ≥ τi}
10: Ω−

i ={Ωω ∈ Ω | Y (ω) < τi}
11: end for
12: Pi= cbmLAD (Ω+

i ,Ω−
i ) ▷ Generate pattern at τi

13: P=P ∪Pi

14: end for
15: XP=[ ]
16: if Cover(Pj, ω) then XPj

=1 ∀ j=1,..., Length(P)
17: else
18: XPj

=0
19: end if
20: Ω′=(XPj

,Y )
21: Ω′=Data processing (Ω′)
22: Model= Linear regression (XPj

,Y )
23: MSEi= MSE(Model) & R2

i= R2(Model) ▷ Using 10-cross validation for 10 times
24: end for
25: min(MSE), max (R2), & optimum-classes.
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7.4.2 Residual Control Chart

Residual Control Chart (RCC ) is a statistical tool that graphically monitors the residual
terms associated with the regression model [213–215]. In RCC, a regression technique is used
to fit the in-control data of the process to develop a regression model. The residuals “Et”
obtained from that model at each time “t” are implemented in the RCC as in equation (7.12).

Et = Yt − Ŷt (7.12)

Where Yt is the actual response at time t, and Ŷt is the response predicted by the regression
model at time t.

The merit is that the residuals from the regression model are typically uncorrelated even
though autocorrelation is presented in the original data [216]. Et is independently and nor-
mally distributed (iid) where Et ∼ N (0,σ2

E). In this paper, we use the LADR technique to
develop the regression model of Y and XPj

as discussed in the previous subsection.

In order to determine the RCC parameters, the data or vibration signals are collected during
the normal operation of the system. The control limits of the RCC are calculated as the
following:

UCL = µE + 3σE (7.13)

LCL = µE − 3σE (7.14)

Where the µE is residuals’ mean and the centerline of the RCC, which equals 0, and σE is
the standard deviation of the residuals obtained by the model in normal operation of the
system.

Thus, the Et are monitored instead of the original observations (Yt) in the control charts.
Consequently, the operating condition of the system is identified to be in-control when Et is
within the control limits, otherwise, it is out-of-control. Once the value of Et goes beyond
the RCC limits, a fault is detected. The model is analyzed at that out-of-control observation
based on two terms: 1) whether the Et>UCL or Et <LCL, 2) the prevalence of the Pj. By
using RCC, we determine which class the actual Y -value of the out-of-control observation is
in. At that observation, the LADR model consists of XPj

with positive and negative coeffi-
cients. When Et<LCL, Et has a negative value where the predicted value obtained by the
model is greater than the actual dependent variable. Consequently, the covering XPj

that



122

have the positive coefficients with the lowest prevalence in that observation’s class contribute
to that fault. Conversely, when Et>UCL, Et has a positive value where the predicted value
obtained by the model is lower than the actual dependent variable. Consequently, the cov-
ering XPj

that have the negative coefficients with the lowest prevalence in that observation’s
class contribute to that fault. For special cases in which the LADR model has XPj

of positive
coefficient(s) only and Et>UCL at an observation, the XPj

that have positive coefficients
with higher prevalence in that observation’s class contribute to that fault and vice versa.

7.4.3 Condition Monitoring and Warning Mechanism

The condition and warning mechanism is proposed to monitor the operational conditions of
the belt drive system. The mechanism is based on the integration of the Logical Analysis
of Data Regression (LADR) with the Residual Control Chart (RCC ). The structure of the
proposed mechanism is as depicted in figure 7.4. It is divided into two-stages, offline training
and online monitoring.

The vibration signals generated from the experiments that were carried out on the belt drive
system during normal operation using a healthy belt at different speeds “N” and pretension
“T” are considered to be the historical data. In this paper, we use the signals that are
measured from the accelerometers attached to the driver pulley. In the offline stage, the sta-
tistical features of the time and frequency domains are extracted from the historical data, as
previously mentioned in section 7.3.2. The LADR technique acts as a regression adjustment
to develop a regression model. The independent variables of that model are the controllable
input variables, speed “N” and pretension “T”, and the time domain features. The fd is
the dependent variable that is extracted from the frequency domain via the FFT method in
MATLAB. By training the LADR model during normal operation, the model’s residuals “Et”
represent the difference between the measured fdt and the predicted f̂dt . Consequently, the
mean and standard deviation of the model’s residuals are obtained. Moreover, the control
limits are calculated based on equations (7.13) and (7.14). Accordingly, the RCC is con-
structed to monitor the residual, detect, and diagnose any fault experiences in the system
during operation.

Considering the belt drive system operates at certain values of “N” and “T”, in the online
stage of monitoring the system, the vibration signals are collected by the accelerometer #1
attached to the driver pulley and transferred to the laptop as was previously mentioned in
section 3.1. The mechanism analyzes the signal and extracts the statistical features in the
time and frequency domains. Subsequently, the LADR model is used to predict the value of
the f̂dt . Then, the residual Et is implemented on RCC. When the Et lies within the control
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Figure 7.4 Schematic of proposed condition monitoring and warning Mechanism

limits, the system operates normally and has an in-control status. A fault is detected when
Et goes beyond the control limits and the mechanism provides a warning and the root cause
of the fault is determined. Therefore, this allows an appropriate decision to be made to
reduce damage caused by this fault.

7.5 Experimental case study to evaluate the mechanism

An experiment scenario was conducted to assess the performance of the proposed mechanism
using LADR-RCC to detect and diagnose a fault that occurs during the operation of the belt
drive system. The experiment was that the system operated at a constant speed, N=1350
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RPM, and a healthy belt was pre-tensioned with T= 70 N. The vibration signals are acquired
by accelerometer#1 and recorded for 100 seconds by the data acquisition system at a sampling
rate of 100 per second each time. Thus, the sample size of one sample is 10000. The
measurements are repeated every 200 seconds. We recorded 144 samples, and the statistical
features in the time and frequency domains were extracted for each sample. The system was
operating normally until sample 128, after which a persistent abnormal behavior was noticed
in the system due to a cut or damage on the belt cog.

The LADR was already trained by the historical data that was generated in section 7.4.1.
Then, LADR was integrated with the RCC to monitor the system online. Furthermore, we
implemented three different regression techniques that are integrated with the RCC in order
to compare their performance with the proposed approach. These techniques are described
in the following sections.

7.5.1 Multiple linear regression (MLR)

The MLR is a parametric and supervised learning approach that describes the linear relation-
ship between the independent and dependent variables [217]. It uses least square estimation
to find out the coefficients of the model [218]. It is used widely due to its simplicity. Never-
theless, four assumptions must be associated with the MLR to obtain an appropriate model:
1) the linearity relationship between the independent and dependent variables, 2) The ho-
moscedasticity where the residuals’ variance is constant, 3) The residuals obtained by the
model are independent and do not correlate, and 4) The normality of the residuals [219].

7.5.2 Support Vector Regression (SVR)

The SVR is based on the principle of the Support Vector Machine (SVM ) approach that can
be adapted to regression problems [162]. The main idea of SVR is to obtain a loss function
f(x) that can predict the dependent variables with ϵ-error during the training stage [220]. The
f(x) should be as flat as possible [221]. Unlike MLR, the SVR can handle the non-linearity
relationship using different kernel functions such as polynomial, radial,..., and so on. In this
paper, we use the radial kernel function using “E1071" in the RStudio package [154] to map
the space of the input feature to a new space. More details about the algorithm are available
in [175].
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7.5.3 Random Forest Regression (RF)

The RF is considered a supervised ensemble learning approach that is used for developing
a regression model. It combines many decision trees, ntree, to more accurately predict the
dependent variable. The ntree is determined based on the sample sets that are drawn from
the training data. Each tree is split into several nodes that represent the statistical fea-
tures extracted from the vibration signal of the system. For each sample set, mtry of the
independent variables are selected randomly, and accordingly, the best split is defined from
them [222]. The prediction of RF is the average from the aggregating the prediction for the
whole the ntree, as illustrated in figure 7.5 [223]. We implement the RF approach using the
randomForest package in RStudio software. See details about the approach in [222].

Figure 7.5 Random Forest Regression model



126

7.6 Results and Discussions

Referring to the original experiments, we develop a LADR model for the Y -variable as a
function of patterns instead of the original independent variables during the training stage.
We use the integration of this model with RCC to monitor the operating conditions of the belt
drive system in the scenario in section 5. In addition, we compared three different model-
based control charts (MLR-RCC, SVR-RCC, and RF-RCC ) with the proposed approach.
The comparison is carried out based on the performance of the regression model and fault
detection during a system’s operation.

The comparison between the performance of the regression approaches is based on two metric
terms: the MSE and R2 using 5 cross-validation for 10 replications. Table 7.2 presents the
comparative results of the different approaches.

Table 7.2 The performance of regression models

Approach Threshold MSE*10−4 R2

LADR-KM 4 0.003 93.288
LADR-EW 3 0.004 91.762

MLR - 0.013 71.618
SVR - 0.012 76.154
RF - 0.008 81.507

The LADR models, LADR-EW and LADR-KM, using the two classification methods EW
and KM, respectively have better performance compared to the other approaches. Moreover,
the LADR-KM is the best-fitted model that has the lowest MSE and the highest R2. The
RF model produces better results compared to the SVR and MLR and is competitive with
the LADR-KM. The MLR has the lowest performance. Although the LADR-KM model
is obtained using the multiple linear regression approach, it provides higher performance
compared with the MLR. The performance of RF relies on determining nTree and mTry.
Using 5 cross-validation for 10 replications, the optimum mTry = 10 where ten independent
variables are randomly selected to be candidates at each split. The nTree is 500 where the
average of their predictions is the prediction of the RF.

The LADR-KM model partitions the data into 4 classes, which are equivalent to 3 thresholds
as shown in table 7.2, C0 : C3.The structure of the model is in equation (7.15). Table 7.3
describes the patterns that are significant independent variables in the model, as in equation
(7.15). Furthermore, figure 7.6 indicates the prevalence of each pattern in each class.
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f̂d =0.0028− 0.0009XP1 − 0.0003XP2 + 0.0006XP5 − 0.0009XP7 + 0.0003

XP9 + 0.0010XP12 + 0.0013XP13 + 0.0009XP14 + 0.0015XP17

(7.15)

Table 7.3 The Patterns of the LADR-KM model
Pj Pattern Description Pj Pattern Description

P1

RMS1<0.1435
fb>0.000345
fb<0.00204

P12

Sk1>-0.139
Ku1<3.768
fb>0.004225
fb′>0.003355
fdn>0.00144
fdn>0.00485

P2

RMS1<0.1435
Sk1>-0.1535
fb>0.000345
fb′<0.002325

P13

Sk1>-0.1075
Sk1>-0.089
Ku1>3.8795
fb′>0.001255
fdn>0.00144

P5

RMS1>0.1285
fb′>0.001015
fdn>0.001285

P14 RMS1>0.317

P7
fb>0.000345
fb′<0.003355 P17

N>1750
Ku1<3.5025

P9

T>90
RMS1<0.317

Sk1<0.276
fb′<0.006985
fdn<0.007625

We integrate the LADR model as a regression adjustment method with the RCC to monitor
the operating conditions for the belt drive system. Then, we compare the performance of the
proposed LADR-RCC with the other regression models based RCC in fault detection. The
mean and standard deviation of the residuals are determined for each regression model based
RCC during the training stage of the normal system’s operation. Therefore, the Et of the
MLR, SVR, RF, and LADR-KM models follow N (0,0.001602), N (0,0.001532), N (0,0.001452),
and N (0,0.00142), respectively. Subsequently, the control limits of RCC, UCL and LCL, are
constructed as in equations (7.13) and (7.14). The regression models predict the fd each time
for the scenario mentioned in section 7.5. Afterward, the obtained residuals are implemented
in the RCC to detect any fault in the system during its operation. The results demonstrate
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Figure 7.6 The pattern’s prevalence for each class

that both LADR-KM-RCC and SVR-RCC perform the best in monitoring and detecting
a fault in the system, as depicted in figures 7.7 and 7.8. Several observations are greater
than the UCL, which represent out-of-control conditions. Both approaches provide alarms
at the 130th sample, which is the first out-of-control point. There are more missed detection
samples in the MLR-RCC where it detects the fault at the 134th sample, as depicted in figure
7.9. Moreover, the RF-RCC in figure 7.10 does not realize that a fault is experienced in the
system where no observation goes beyond the RCC limits. Nevertheless, many consecutive
points are located on one side of the RCC, which is considered abnormal behavior.
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Figure 7.7 The LADR-KM-RCC for belt drive system

Figure 7.9 The MLR-RCC for belt drive system



130

Figure 7.8 The SVR-RCC for belt drive system

Figure 7.10 The RF-RCC for belt drive system
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The strength of the LADR-KM model is developed using the generated patterns that deter-
mine the root cause of the out-of-control observation. Conversely, the other regression models
require an additional tool to interpret the reason for the alarm. Furthermore, it is necessary
to generate training data randomly or to carry out many experiments to offer enough data
that describes the operating condition of the belt drive system under the presence of different
types of faults that can be experienced in the system. Once an observation is detected as a
fault, a warning signal is alerted and that observation is investigated. The 130th observation
goes above the UCL in which the covered patterns in the LADR-KM and the uncovered
patterns are eliminated, as shown in equation (7.16).

f̂d = 0.00280.0006XP5 + 0.0009XP14 (7.16)

The actual value of the 130th sample belongs to class C3 while the one predicted by the
LADR-KM belongs to class C2. Since the E130>UCL, the reason for the faulty observation is
the presence of a XPj

with negative coefficient and lower prevalence in class C3. Nevertheless,
the LADR-KM contains XPj

with positive coefficients only. Referring to section 7.4, the XPj

with positive coefficient and higher prevalence in that class is the root cause. Therefore, it
can be concluded that the root cause of the warning alarm is the pattern XP14 . As shown in
table 7.3, the XP14 is RMS1>0.317. The current signal has a higher RMS value of the belt
at the driving pulley where higher vibration energy is induced in the system. This indicates
peak amplitudes appear in the signal during current operating conditions. It can be noted
that the peak of this signal is much greater than in normal conditions. This indicates fatigue
or damage to the belt of the system and this was confirmed when the belt of the system was
investigated.

7.7 Conclusion

Fault detection has a great impact on the safety and reliability of complex manufacturing and
industrial operations. A new online condition monitoring and warning mechanism has been
proposed in this paper, which adopts the integration of the LADR technique and the RCC.
The new mechanism monitors the manufacturing system to detect any abnormal behavior
during operation. Furthermore, it interprets the root cause of that behavior to make an
appropriate decision and to avoid any economic loss. The LADR technique extends the role
of the standard LAD methodology to develop a regression model based on extracted hidden
patterns in the original data. The RCC is used to monitor the residuals obtained from that
model to detect any fault in the system. We use the proposed mechanism to monitor the
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belt drive system, which is used widely in different industrial applications. A DOE scheme is
designed to apply extensive experiments with different levels of controllable variables in the
system: speed, pre-tension of the belt, and unbalance loading. Thus, the statistical features
of the time and frequency domains are extracted from the vibration signals of the system
during normal operation.

The proposed mechanism is used to obtain the LADR model and the parameters that are
used to construct the RCC during the offline training stage. LADR is considered a regression
adjustment to describe the relationship between the fd as a function of the controllable
variables, the motor speed and tension of the belt, and the extracted features from the signals
during normal operation. During the online stage, the RCC in the mechanism monitors the
difference between the actual fd and predicted value during operation. When the residuals go
beyond the RCC limits, a fault is detected. Subsequently, the LADR model interprets the
reason for that fault to take corrective actions and to return the system to normal condition.

A comparison is carried out between the proposed mechanism and the other model-based
RCC in terms of performance of the developed model and fault detection. Not only does
the mechanism exhibit better performance in fault detection, but the interpretation of the
root cause of the belt drive system as well. However, the SVR-RCC is competitive to the
LADR-RCC, but a classifier tool in addition to enough faulty data is required to interpret
the reason for the detected fault. Generally speaking, the proposed mechanism contributes
to improvements in the performance of fault detection, and it is considered a robust and
reliable approach for online industrial applications.

Our future research will implement our proposed technique to detect and diagnose other
types of faults in the belt drive system, such as bearing defects, bent and cracked shaft, and
eccentric pulleys.
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CHAPTER 8 GENERAL DISCUSSION

This thesis provides data management and analytics that serve process monitoring and qual-
ity control in the industrial field. Most of the data that is exchanged and collected through
the sensors and controllers within a process, or a system, includes diverse and heterogeneous
data. Different data structures with different formats are captured with low quality in terms
of data redundancy, incompleteness, and inconsistency. Therefore, the stakeholders take a
long time to get their required data top prepare their reports and further analyses. In thesis,
we focus on managing the data within a process to conduct the key performance indices for
all stakeholders, especially the quality team. On the other hand, the control charts have
several limitations to monitor the process variability to make sure that the process and/or
the product is in-control. High rates of false alarms and missed detection are provided, which
lead to economic losses. Moreover, control charts are not designed to diagnose or identify an
anomaly when it is detected in a process.

Based on the above mentioned problems and challenges, these were the motivation to develop
a research roadmap that is compatible with the aspects of the Quality 4.0 paradigm. Data
modeling using Entity-Relationship modeling (ERM ) has been developed to manage the
data within a process in a database with predefined structures. Then, an accurate machine
learning technique based on pattern recognition is called Logical Analysis of Data Regression
(LADR). LADR is used to obtain a regression model that describes the key performance
indices of process quality. LADR has been integrated with conventional control charts as a
new model-based control chart. The new integration is used for both anomaly detection and
identification, unlike the other well-known machine learning techniques.

The ERM provides structured and high-quality data that is visually represented and easily
understood by the business users. Each stakeholder receives the required information and
data in a predefined structure that facilitates preparing reports. Business organization is
capable of data exploitation for further analysis using Artificial Intelligence/Machine learning
techniques. This leads to new insights that improve the productivity performance in the
future. Furthermore, the stored data in the database represents the base of creation of
digital twin.

The LADR is considered as an extension of standard LAD methodology to be implemented
for regression problems. The predicted response of the LADR is a function in binary in-
dependent variables. The independent variables represent the extracted patterns from the
original dataset. We proposed a clear methodology for implementation of LADR using three
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new classification methods: equal width (EW ), K-means Clustering (KM ), and % standard
deviation (%STD). The LADR provides better and significant results compared to the other
well-known regression techniques.

The LADR is integrated with the control charts to solve the drawbacks of the existed model-
based control. Since the LADR constructs a regression model of high performance, this
increases the accuracy of anomaly detection. Unlike other integrations, LADR does not
require sufficient training data that describes different anomalies. Since the LADR model
is based on extracted patterns, we exploit these patterns to identify the reasons for the
detected anomaly. The results of the proposed integration show a reduction in false alarm
and missed detection rates. Generally, the proposed integration is used for anomaly detection
and diagnosis of the root cause of the anomaly. It represents a reliable and robust approach
for online-monitoring different applications.

A condition monitoring and warning mechanism has been developed based on integrating
the LADR-residual control chart to monitor the operation of the belt drive system. It is
considered a new vibration-based monitoring technique. It monitors the statistical features
that are extracted from the vibration signals of the system. When these features deviate
significantly from those defined in the normal operation, a fault is detected. Not only, the
mechanism provides better results for detecting any faults that are experienced in the system
but also for identifying and interpreting the root cause of that detected fault.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

9.1 Summary of Works

In this thesis, the entity-relationship approach is used to develop a data model that char-
acterizes, identifies, and stores the data in a pre-defined database structure. This database
defines all of the required data and information required by stakeholders. Consequently, it is
used to define key performance indices for the quality of the process data. The data stored in
the database will be considered historical data, which is used for process quality monitoring
in control charts.

Several limitations have appeared and have grown profusely because of an increase in the com-
plexity of manufacturing processes. Companies strive towards integrating machine learning
techniques with conventional quality tools according to Quality 4.0 aspects. A Logical Anal-
ysis of Data regression (LADR) technique has been developed based on generated patterns
using a standard LAD methodology. It constructs a regression model that describes process
performance in terms of the variables of the historical data that are stored and managed in
the designed database.

Furthermore, the LADR technique is integrated with control charts to improve the sensitivity
of anomaly detection. Since the LADR model is constructed based on interpretable patterns
extracted from the original data, these patterns are used to perform root cause analysis.
This determines the reason for an anomaly that is experienced in a process. Subsequently,
corrective actions are taken to return the process to normal operation.

The research conclusions are as follows:

• The entity-relationship modeling produces data models that organize data in the system
by identifying entities that represent the manufacturing process, and their relationships
with each other and their attributes. The developed data model characterizes the
relevant information, which is visually represented and easily and easily understood
by the organization’s users. It obtains well-structured and high-quality data required
by each stakeholder, with no missing or redundant data. It provides the required key
performance of indices and standardizes the communication between these stakeholders.
Consequently, each stakeholder accesses, views, understands and tracks the data flow
within the database. Subsequently, further analyses or reports take little time, unlike
before.
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• The LADR technique improves the performance of the regression models significantly
based on three metrics: MSE, MAE, and R2. The reason for that is the concept
improvement by introducing new three proposed classification methods: EW, KM, and
% STD. Moreover, strong patterns with different degrees, that are extracted from the
original data, are used to construct the model. The LADR technique demonstrates
better and more significant results compared to other machine learning techniques by
reducing the MSE with an average percentage of 70%.

• The LADR-EWMA is a newly developed model-based control chart that is used to
monitor the quality of the manufacturing process. This integration overcomes the
limitations of the conventional control charts.

– The LADR technique remedies the problems of autocorrelation and the curse of
dimensionality that lead to high false alarms and missed detection rates. Data
preprocessing are applied to remove any duplications, multicollinearity, and de-
pendency between the new binary independent variables that construct the LADR
model.

– Moreover, the LADR technique has a better performance that strengthens to
maintain accurate control chart limit. It improves the performance of anomaly
detection. Consequently, the LADR-EWMA reduces false alarm and missed de-
tection rates compared to well-known techniques-based control charts.

– The LADR-EWMA is not only used for anomaly detection but also for the iden-
tification of the root cause of that anomaly. Unlike the other machine learning
techniques, LADR-EWMA identifies and interprets the root cause of anomalies
based on the extracted patterns without acquiring anomalous data or even gener-
ating sufficient data that describes different anomalies.

Generally, it provides a reliable and robust approach for online monitoring of manufac-
turing processes.

• The integration of LADR with the residual control chart (RCC ) is used to develop a
new condition and warning mechanism to monitor the operating conditions of industrial
systems. The mechanism is used to determine whether the system operates under
normal or faulty conditions. The benefit of the mechanism is that it improves the
performance of detecting faults experienced in the system, in addition to determining
the reason for that fault. This reduces the downtime and allows to take corrective
action to return the system operates under normal conditions.
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9.2 Future Research

With regards to further research, several future research areas are considered to improve the
quality of a process, as follows:

• Extend data modeling to develop a physical model that will be implemented using
DBMS software in an industrial system. This model will represent a real database that
gathers the data in real-time from different sources in different formats from the system
to provide each stakeholder with relevant information. Moreover, the database will be
considered a base for the creation of a digital twin.

• Adapt the LADR to make an appropriate decision that will return the process to an
in-control condition. Once the LADR-EWMA detects and identifies the root cause of
an anomaly, it will be adapted to specify and adjust the exact values of the independent
variables using patterns that construct the LADR model.

• Investigate the LADR with adaptive control limits of the control charts. Sometimes,
the fixed threshold increases FAR and MDR, which affects the accuracy of anomaly
detection. Therefore, adaptive control limits can be a solution, as their value changes
based on historical statistics. The main challenge is to indicate the required parameters
for the adaptive control limit based on normal data to ensure that there will be no
presence of any false alarm when training the data.

• Implement the LADR based control chart in other applications such as profile monitor-
ing and monitoring fraction non-conforming products in manufacturing to investigate
the performance of the LADR compared to well-known existing approaches.
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APPENDIX A UCI DATASETS

The appendix provides a descriptions for the six datasets and identify the independent and
dependent variables that are are used to build the models.
Boston housing is a dataset that was obtained by the U.S Census Service. It concerns on
prediction of the median value of a house for different areas in Boston. It contains 13 inde-
pendent variables and single dependent variable as shown in A.1.

Table A.1 Boston housing dataset

Abbrev. Description Variable type
crim Per capita crime rate by town. Continuous Independent

zn Proportion of residential land
zoned for lots over 25,000 sq.ft. Continuous Independent

indus Proportion of non-retail
business acres per town. Continuous Independent

chas Charles River dummy variable
(= 1 if tract bounds river; 0 otherwise). Discrete Independent

nox Nitrogen oxides concentration
(parts per 10 million). Continuous Independent

rm Average number of rooms per dwelling. Continuous Independent

age Proportion of owner-occupied
units built prior to 1940. Continuous Independent

dis Weighted mean of distances to
five Boston employment centres. Continuous Independent

rad Index of accessibility to radial highways. Continuous Independent
tax Full-value property-tax rate per $10,000. Continuous Independent

ptratio Pupil-teacher ratio by town. Continuous Independent

b 1000(Bk - 0.63)^2 where Bk is
the proportion of blacks by town. Continuous Independent

lstat Lower status of the population (percent). Continuous Independent

medv Median value of owner-occupied
homes in $1000s. Continuous Dependent

Computer Hardware dataset gathered the performance of 209 CPUs on the market from 1981
to 1984 . It contains six independent variables represent the specifications of the CPU in
terms of memory size, cycle time,...etc in A.2. The models estimate the relative performance
of these CPUs with respect to a base machine-the IBM 370/158 [224].

Auto-MPG dataset was maintained at Carnegie Mellon University. It estimates the fuel con-
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Table A.2 Computer Hardware dataset

Abbrev. Description Variable type
MYCT Machine cycle time in nanoseconds Continuous Independent
MMIN Minimum main memory in kilobytes Continuous Independent
MMAX Maximum main memory in kilobytes Continuous Independent
CACH Cache memory in kilobytes Continuous Independent

CHMIN Minimum channels in units Continuous Independent
CHMAX Maximum channels in units Continuous Independent

PRP Published relative performance Continuous Dependent

sumption in miles per gallon in terms of 5 continuous and 3 multi-valued discrete independent
variables as depicted in A.3.

Table A.3 Auto-MPG dataset
Abbrev. Description Variable type

CYL Cylinders Multi-valued discrete Independent
DISP Displacement Continuous Independent
HP Horsepower Continuous Independent
W Weight Continuous Independent

ACCEL Acceleration Continuous Independent
M_Y Model_year Multi-valued discrete Independent
MPG Miles per gallon Continuous Dependent

Servo dataset was a servo system simulation that was done at MIT in 1986. The system
contains a motor, a servo amplifier, sliding carriage and a lead screw wit its nut. The
dependent variable is respond time that the system requires to change the position set point
A.4.

Table A.4 Servo dataset
Abbrev. Description Variable type

M Motor Multi-valued discrete Independent
S Screw Multi-valued discrete Independent

PG Pgain Multi-valued discrete Independent
VG Vgain Multi-valued discrete Independent
C Class Continuous Dependent

Airfoil Self-Noise dataset is experimental tests that was carried out by NASA. These tests
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were applied on different airfoils at various wind tunnel in terms of speeds and attack angles.
The dataset contains five independent variables and one dependent variable as shown in A.5.

Table A.5 Airfoil Self-Noise dataset
Abbrev. Description Variable type

X1 Frequency (Hz) Continuous Independent
X2 Angle of attack (degrees) Multi-valued discrete Independent
X3 Chord length (m) Continuous Independent
X4 Free-stream velocity (m/s) Continuous Independent

X5 Suction side displacement
thickness (m) Continuous Independent

Y Scaled sound pressure level (db) Continuous Dependent

Concrete Compressive Strength dataset represents various mixes of concrete. The aim is the
prediction of compressive strength in MPa of the high performance concrete (HPC). The
eight independent variables in this dataset are continuous A.6.

Table A.6 Concrete Compressive Strength dataset

Abbrev. Description Variable type
X1 Cement (kg in a m3 mixture) Continuous Independent
X2 Blast Furnace Slag (kg in a m3 mixture) Continuous Independent
X3 Fly Ash (kg in a m3 mixture) Continuous Independent
X4 Water (kg in a m3 mixture) Continuous Independent
X5 Superplasticizer (kg in a m3 mixture) Continuous Independent
X6 Coarse Aggregate (kg in a m3 mixture) Continuous Independent
X7 Fine Aggregate (kg in a m3 mixture) Continuous Independent
X8 Age (Day) Continuous Independent
Y Concrete compressive strength (Mpa) Continuous Dependent
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APPENDIX B LADR MODELS

The best LADR model for Boston Housing dataset:

Y[KM ] =1.2703− 0.1164XP3 + 0.0487XP4 − 0.1058XP5 − 0.1221XP7 − 0.1884XP8+

0.0164XP11 + 0.0238XP15 + 0.0198XP16 − 0.0605XP18 − 0.0689XP19−

0.0203XP20 − 0.0367XP23 − 0.025XP27 − 0.0345XP28 − 0.0738XP32−

0.0252XP35 − 0.0809XP36 + 0.0131XP38 − 0.0101XP43 + 0.0937XP46+

0.0284XP47 − 0.023XP48 + 0.0167XP49 + 0.0628XP51 + 0.0113XP56+

0.0329XP57 − 0.0254XP64 − 0.0311XP65 − 0.0167XP67 − 0.0328XP68−

0.0261XP70 − 0.0742XP71 + 0.0204XP73 + 0.015XP74 − 0.0265XP76−

0.0129XP77 + 0.0137XP79 − 0.0267XP80 + 0.0248XP83 + 0.0237XP84+

0.0201XP92 + 0.0212XP93 − 0.0216XP94 − 0.0139XP105 + 0.0124XP107−

0.0116XP113 + 0.0249XP114 + 0.0122XP116 + 0.1454XP117 + 0.0264XP119−

0.0198XP124 + 0.0225XP125 + 0.0235XP129 + 0.0359XP131 + 0.0379XP132−

0.0161XP133 + 0.0273XP134 + 0.0334XP140 − 0.0108XP143 − 0.0288XP149−

0.0163XP150 − 0.0268XP151 + 0.0116XP153 + 0.0125XP155 + 0.0185XP157−

0.0161XP158 + 0.0289XP159 + 0.036XP163 + 0.0247XP164 + 0.0566XP166+

0.042XP167

(B.1)

The best LADR model for Computer Hardware dataset:

Y[KM ] =11.2587− 2.0575XP1 − 1.3239XP2 + 1.2485XP4 − 1.4162XP5 − 1.3892XP6−

1.3585XP7 + 0.7451XP22 − 1.2595XP25 − 0.4814XP27 − 1.0078XP30−

0.9581XP32 − 0.8165XP33 + 0.9431XP39 + 0.6209XP45 − 0.5994XP51−

0.8359XP54 − 0.7095XP60 − 0.9653XP67 + 0.8524XP78 + 1.1236XP80+

2.6497XP110 − 1.5187XP111 + 1.0201XP112 + 0.8517XP113 + 4.49XP115+

3.867XP117 − 1.87XP129 + 1.105XP132 + 1.6002XP135 + 0.8697XP137−

2.2783XP141 + 2.0073XP152 + 1.2658XP155 − 0.9564XP157 − 1.001XP160+

1.431XP162 − 1.0867XP166 + 1.8233XP168 + 3.4175XP170 + 9.7904XP172

(B.2)
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The best LADR model for Auto-mpg dataset:

Y[EW ] =1.3714− 0.0294XP1 − 0.0617XP2 − 0.0292XP4 − 0.0464XP5 − 0.047XP7−

0.0489XP8 + 0.029XP9 − 0.0128XP10 − 0.0296XP13 + 0.0135XP19−

0.0314XP28 − 0.0444XP32 − 0.0301XP33 − 0.0543XP34 − 0.096XP35−

0.0452XP37 − 0.0257XP42 − 0.044XP43 + 0.0236XP49 + 0.0147XP50−

0.0294XP52 + 0.0234XP55 + 0.0134XP56 + 0.0245XP60 + 0.018XP61+

0.0152XP64 + 0.02XP65 + 0.0674XP66 + 0.0739XP67 + 0.0362XP68+

0.0128XP70 + 0.0139XP71 + 0.0234XP72 − 0.0251XP75 − 0.0107XP77−

0.0186XP78 − 0.0282XP79 − 0.0182XP90 − 0.0257XP91 − 0.0323XP92−

0.0301 ∗XP93 − 0.0801XP95 + 0.0179XP96 − 0.0712XP98 − 0.0635XP100+

0.0674XP102 + 0.1285XP103 + 0.0623XP104 + 0.1128XP106 + 0.024XP107+

0.1938XP108 + 0.0283XP109 + 0.0441XP110

(B.3)

The best LADR model for Servo dataset:

Y[KM ] =0.3816− 0.1031XP1 − 0.0696XP2 − 0.1315XP3 − 0.1079XP4 − 0.0562XP5−

0.0662XP6 − 0.046XP8 − 0.0596XP10 + 0.054XP13 + 0.0405XP14 + 0.0395XP15+

0.0522XP20 + 0.0593XP21 + 0.0842XP22 + 0.044XP23 + 0.1542XP24 − 0.0275XP26

− 0.0218XP28 − 0.0637XP30 + 0.0486XP32 + 0.0412XP33

(B.4)
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The best LADR model for Airfoil Self-Noise dataset:

Y[EW ] =125.1 + 1.5XP4 − 1.5XP5 + 2.1XP6 + 3.2XP8 + 2.2XP9 − 2.2XP10 + 1.3

XP28 + XP30 + 1.3XP33 + 3.1XP36 − 0.7XP37 + 2XP38 + 2XP43 + 0.9XP44

+ 1.2XP46 − 0.6XP48 − 0.9XP50 − 0.8XP51 − 0.5XP52 + 1.3XP54 − 6.3XP55

+ 5.3XP57 − 0.9XP58 − 3.9XP59 − 2.7XP63 − 2.6XP64 + 1.8XP66 − 1.4XP68

− 2.1XP71 + 8.4XP72 − 3.6XP73 − 2.2XP74 + 2.2XP77 − 0.8XP78 + 1.2XP79

+ 0.3XP82 + 1.1XP86 − 0.2XP90 + 0.4XP91 + 0.5XP96 − 0.6 ∗XP97 + 0.5

XP106 + 1.1 ∗XP110 + 0.3XP116 + 0.2XP117 − 1.6XP118 − 1.4XP120 + 1.3XP121

− 4.9XP122 + 1.5XP125 − 2.3XP126 − 1.2XP127 − 2.1XP128 − 1.3XP132 − 3.2

XP135 − 1.1XP138 − 2.7XP139 − 6XP140 + 4XP141 − 3.2XP142 − 1.3XP148 − 2.3

XP149 − 1.9XP151 − 1.6XP152 + 1.5XP153 + 1.1XP155 + 1.6XP157 − 0.6XP159−

2.7XP161 + 0.6XP168 + 0.5XP169 + 0.5XP172 − 6XP174 − 5XP175 + 2.1XP177−

1.4XP180 − 1.1XP181 − 2.3XP182 − 0.4XP183 − 2.2XP184 + 0.4XP185 − 1.6XP186

− 3.3XP188 − 0.7XP189 − 3XP191 − 0.8XP195 − 0.8XP196 − 1.4XP197 − 0.8XP198

+ XP200 + 1.9XP203 + 0.9XP205 − 1.4XP207 + 1.4XP209 −XP210 + 0.6XP216−

0.5XP220 + 0.5XP221 − 0.3XP223 + 0.8XP224 − 1.6XP227 + 0.8XP230 + 2.3XP234

− 0.8XP236 + 0.6XP237 + 1.2XP239 − 0.5XP245 + 0.4XP246 − 0.2XP247 − 1.4

XP248 + 0.5XP249 + 1.7XP252 + 0.5XP253 + 0.3XP255 + 0.7XP257 − 0.6XP258+

1.4XP259 − 0.9XP260 + XP261 + 0.6XP262 + XP265 + 1.2XP267 + 2XP268 + 0.9

XP271 + 1.1XP272 + 2.1XP279 − 0.3XP280 + 2.7XP281 + 0.5XP282 + 1.9XP283+

0.4XP284 + 1.1XP288 + 1.2XP289 + 2.7XP290 + 1.4XP291 + 2.2XP292 + 0.7XP293

− 1.1XP294 + 2.8XP295 − 0.7XP299 − 3.4XP308 − 0.4XP310 + XP313 − 2.45XP314

−XP319 − 2.5XP322 − 1.7XP324 − 0.4XP326 − 1.9XP327 − 1.1XP330 − 4.2XP331

+ 0.3XP332 − 3.4XP334 − 3.1XP339 − 1.1XP340 − 0.9XP341 − 2.7XP343 − 1.9

XP345 − 1.6XP347 − 0.7XP349 − 4XP350 − 1.2XP351 − 0.2XP352 − 1.4XP355−

1.9XP358 − 1.3XP360 − 1.1XP362 − 1.2XP363 − 2XP365 + 0.4XP366 − 0.8XP367−

1.1XP368 − 3.8XP372 − 2.2XP376 − 1.6XP377 − 2.1XP378 − 0.4XP379 − 0.7XP380

− 0.6XP382 −XP383 + 0.9XP384 − 1.5XP388 − 0.8XP389 − 1.8XP390 + 1.9XP392

− 1.7XP393 + 1.1XP399 − 1.7XP400 − 0.4XP404 − 0.3XP405 − 0.4XP406 − 0.8XP409

− 0.9XP412 − 0.9XP414 − 1.4XP415 −XP417 − 0.8XP419 + 2XP420 − 0.5XP424+

0.6XP425 + 1.6XP426 + 0.7XP429 − 1.4XP432 − 0.6XP433 − 1.7XP434 + 0.9XP436

+ XP437 + 1.1XP438 − 1.2XP439 + 2XP441 − 2XP444 + 1.3XP447 + 0.7XP451+

1.8XP454 + XP456 − 4XP457 + 2.4XP458 + 0.6XP459 + 1.9XP461 + 1.2XP462+
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1.5XP465 + 2.9XP466 + 4.6XP467 + 2.4XP468 − 1.2XP470 + 0.5XP471 + 1.9

XP472 + 1.3XP476 + 2.2XP478 + 2.2XP479 + 0.8XP483 − 2XP484 + 1.2XP485+

1.9XP486 + 0.6XP488 + 1.9XP489 − 1.5XP491 + 2XP493 + 3.1XP494 + 7.5XP496

− 2.2XP498 + 3.6XP499 + 4XP501 + 1.9XP502 − 3XP504 + 3.6XP505 + 1.9XP506

+ 2.1XP508 + 1.5XP509 + 2.7XP510 + 2.6XP511 + 1.5XP512 + 2.7XP513 + 1.9

XP514 + 3.5XP516 + 1.1XP517 + XP518 + 0.6XP520 + 2.2XP522 + 2.8XP524+

1.1XP525 + 5.4XP526 + 3.2XP528 + 2.1XP530 + 8.8XP531 + 3.6XP532 + 0.9XP533

− 0.3XP536 − 1.4XP537 − 1.6XP539 + 0.7XP543 + 1.1XP548 − 0.3XP557 − 0.4

XP559 − 1.5XP560 + 2XP562 − 0.8XP574 − 0.4XP579 − 1.3XP582 − 0.3XP583−

2XP584 − 0.5XP586 − 1.8XP587 −XP590 − 1.6XP592 + 0.5XP593 − 1.2XP598

− 2XP601 − 1.9XP602 + 3.1XP608 + 1.7XP611 + 6.2XP613 + 1.9XP617 + 3

XP620 + 2.5XP621 + 2.3XP623 − 1.6XP624 + 7.9XP625 + 5.1XP626 − 1.8XP629

+ 4.7XP630 + 4.6XP631 + 14.5XP632

(B.5)

The best LADR model for Concrete Compressive Strength dataset:

Y[EW ] =36.5 + 4.4XP1 + 3.3XP3 − 4.7XP6 − 6.6XP12 − 4.8XP13 − 3.6XP17 + 1.1XP20

+ 3.7XP21 + 2XP23 − 2.4XP24 + 0.7XP32 + 1.8XP34 − 2.3XP39 − 6.7XP41+

2XP46 + 4.4XP47 + 2.3XP48 − 12.6XP49 + 2.1XP56 + 3.8XP57 − 6.8XP62−

2.6XP63 + 1.8XP64 + 4XP68 + 1.3XP71 − 0.9XP73 − 1.2XP81 + 2.5XP83−

2.5XP90 − 1.7XP94 + 2XP95 − 1.2XP97 + 1.3XP100 + 1.5XP101 + 2.5XP110+

7.7XP120 + 1.5XP1121− 2.6XP122 − 3.8XP124 − 14.7XP131 − 1.7XP132−

1.5XP135 − 2XP137 − 5.6XP140 − 2.8XP142 − 2.3XP147 − 8.2XP150 + 1.7XP151

+ 0.9XP153 + 1.5XP158 − 3.6XP160 + 1.3XP161 − 0.8XP165 + 2.1XP166 + 2.6

XP167 + 2XP170 + 1.6XP173 + 2.7XP175 + 1.5XP176 + 4.2XP183 + 3XP186+

3.3XP187 − 3XP188 − 6.1XP208 − 1.6XP210 + 3.4XP211 − 6.7XP213 − 2XP217

+ 3.8XP218 − 2.7XP220 + 2.5XP222 − 3.8XP224 + 1.4XP225 − 1.5XP229 − 3.7

XP234 + 1.1XP235 + 5.5XP236 − 5.4XP237 − 4.9XP239 + XP240 − 1.6XP243+

3.7XP245 − 4.3XP248˘2.9XP249 + 1.2XP251 − 3.2XP252 + 1.7XP255 − 1.5XP258

− 5.4XP259 − 2.7XP260 + 2.6XP263 − 2.3XP266 − 4.1XP267 + 2.4XP269 + 10.3

XP270 − 4XP273 + 2.7XP279 + 1.6XP281 + 5.6XP284 + XP289 + 7.8XP291 + 1.9

XP292 + 2.7XP293 + 4XP294 + 6XP295 + 5.1XP297 + 3.2XP298 − 4.4XP3041.5XP306

− 3.2XP308 + 1.9XP309 + 4.4XP313 + 1.1XP315 − 3.6XP316 + 2.3XP317 + 4.4XP320−

2XP326 − 3.6XP334 − 0.7XP340 − 2.3XP346 − 1.5XP351 − 1.3XP353 − 1.5XP354−
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3.2XP361 − 3XP362 − 2.2XP363 − 1.7XP365 − 4XP366 − 0.9XP369 − 1.6XP371−

3.5XP372 − 6.2XP373 − 2.6XP374 − 4.5XP380 − 0.9XP381 + 1.2XP384 − 2.5

XP385 − 4.3XP386 − 2.3XP387 + 3.6XP390 − 2.8XP391 − 1.7XP394 + 3.7XP403+

4.3XP404 + 2.4XP406 + 1.9XP408 + 2XP411 − 2.7XP412 + 4.2XP419 − 1.5XP420

+ 5.3XP421 + 2.3XP424 + 5.5XP427 + 3.2XP429 + 3.2XP430 + 4.6XP431 − 5.3

XP433 + 3.4XP437 + 1.2XP438 + 2.6XP444 + 0.9XP474 − 1.6XP488 − 2XP492−

3.3XP498 − 2.4XP500 − 1.6XP502 + 8.1XP504 − 1.4XP510 − 3.4XP517 − 7.5XP522

+ 4.1XP526 + 2.8XP527 − 1.8XP533 − 12.8XP537 + 3XP538 + 3.4XP544 + 3.2

XP547 + 0.9XP557 − 0.8XP563 − 1.8XP565 − 3.2XP568 + 0.7XP571 − 5.6XP572−

3.8XP581 − 9.5XP585 + 10.3XP592 + 1.9XP613 − 3.4XP614 + 2.3XP616 − 2.6

XP617 + 3.1XP622 + 6.7XP624 + 6.1XP626 + 21.1XP627 + 6.4XP628 + 3.9XP630−

2.2XP640 − 2.3XP641 + 1.9XP643 − 1.1XP645 + 5.4XP648 + 10.8XP649 + 15.6

XP651 + 23XP653 + 11XP654 + 31.6XP655

(B.6)



166

APPENDIX C ARTICLE 5: EXPERIMENTAL VIBRATION DATA
COLLECTED FOR A BELT DRIVE SYSTEM UNDER DIFFERENT

OPERATING CONDITIONS

Ramy M. Khalifa, Soumaya Yacout, Samuel Bassetto, Yasser Shaban
Submitted to:

Data in Brief, 2022



167

C.1 Abstract

Vibration analysis is the cornerstone of vibration-based condition monitoring that analyzes a
vibration signal, detects faults or anomalies, and diagnoses the operating conditions of a belt
drive system. This data article contains experiments that collect vibration signals of a belt
drive system at different levels of speed and pretension of the belt under varying operating
conditions. The collected dataset includes low, medium, and high operating speeds at three
levels of the belt’s pretensioned values. This article covers three operating conditions: normal
or healthy operation using a healthy belt, unbalanced operation by adding unbalanced weight
to the system, and abnormal operation using a faulty belt. The collected data provides an
understanding of the performance of the belt drive system during the operation to identify
the root cause of an anomaly when detected.

Keyword: Vibration signal, Belt drive system, Condition monitoring, Belt conditions

C.2 Specifications Table

Subject Mechanical Engineering, Industrial Engineering

Specific subject area Vibration-based condition monitoring and vibration
analysis of a belt drive system under different operat-
ing conditions

Type of data Tables in .txt files and figures in .JPG files

How data were acquired The vibration data was collected by data acquisition
system (Accelerometers, Amplifier, and USB data ac-
quisition card) during system operation. The operating
speed of the system are controlled and maintained by
a speed controller. The pretension value of the belt is
adjusted by using a pretension gauge.

Data format Raw

Parameters for data
collection

The data was acquired based on three experimental set-
tings: healthy operation of the system, presence of un-
balanced weight, and faulty operation. All of these set-
tings have three parameters in which the experiments
are carried out at different operating speeds and preten-
sion values of the belt, in addition to the value of adding
weights in case the unbalanced weight settles.
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Description of data
collection

The data is of vibration signals that were collected by us-
ing data acquisition system through the two accelerom-
eters mounted on the test rig. Then, the data was trans-
mitted to a laptop for analysis.

Data source location Data was obtained from the test rig shown in Figure C.1
in:
Institution: Faculty of Engineering - Department of Me-
chanical Design - Helwan university
City: Cairo
Country: Egypt

Data accessibility The data is available in the Mendeley repos-
itory at: https://data.mendeley.com/datasets/
jf8v2ndydr/1

Related research
article

R. M. Khalifa, S. Yacout, S. Bassetto, Y. Shaban, Con-
dition monitoring and warning of the belt drive system
based on LADR based residual control chart, Mechani-
cal Systems and Signal Processing. In Press.

C.3 Value of the Data

• The data represents the vibration signals collected from the belt drive system under
healthy and faulty conditions. This data is for a commonly used system in various
industrial applications.

• The data is useful to the researcher and practitioners in mechanical and industrial
engineering, to analyze the vibration signals of the belt drive system and to determine
its characteristics under healthy and faulty conditions.

• The data can be used for online condition process monitoring in order to detect and
diagnose any anomaly or faulty condition in the system. It can be used to evaluate
developed machine learning approaches that distinguish the conditions of the belt drive
system.

C.4 Data Description

The belt drive system is widely used in different industrial applications for power transmission
such as conveyors, machine tools, and motors [186]. It consists of a motor, shaft(s), bearings,

https://data.mendeley.com/datasets/jf8v2ndydr/1
https://data.mendeley.com/datasets/jf8v2ndydr/1
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belt(s), and driver and driven pulleys [187]. The system operates at different speeds and
transmits power using a pretension of the belt. The system is used to produce different types
of anomalies that are developed due to several abnormal sources of vibrations in the system,
such as cut or damage of the belt, unbalance problems, and misalignment. [188–190].

This article comprises the experiments that collect vibration signals of the belt drive system
at different levels of speed and pretension of the belt under different conditions of healthy
belt, faulty belt, and the presence of unbalanced weight. The vibration signals are collected
from accelerometers attached to the driver and driven pulleys. The collected data includes 17
levels of speed; 400 to 2000 RPM by step of 100; three levels of pretension values, 70, 110, and
150 N, and two levels, according to whether there was the presence or absence of unbalanced
weight. The data is from three different operating conditions: normal operation using a
healthy belt, unbalanced operation by adding weights that cause imbalance in the system,
and anomalous operation from using a faulty belt. Each experiment has been repeated three
times, which resulted in 459 runs.

This article is accompanied by nine folders and its name is given as “T-BC-W” where T, BC,
W denote the belt pretension in newton, identification of the belt condition, and absence
(W=0) or presence (W=U) of unbalanced weight, respectively. Thus, the data contains the
following folders:

• Data 70-H-0: The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 70 N and in healthy condition in addition to the absence of
unbalanced weight at all levels of speed.

• Data 110-H-0 : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 110 N and in healthy condition in addition to the absence of
unbalanced weight at all levels of speed.

• Data 150-H-0 : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 150 N and in healthy condition in addition to the absence of
unbalanced weight at all levels of speed.

• Data 70-F-0 : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 70 N and in the faulty condition in addition to the absence of
unbalanced weight at all levels of speed.

• Data 110-F-0 : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 110 N and in the faulty condition in addition to the absence of
unbalanced weight.
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• Data 150-F-0: The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 150 N and in the faulty condition in addition to the absence of
unbalanced weight at all levels of speed.

• Data 70-H-U : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 70 N and in healthy condition in addition to the presence of
unbalanced weight at all levels of speed.

• Data 110-H-U : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 110 N and in healthy condition in addition to the presence of
unbalanced weight at all levels of speed.

• Data 150-H-U : The vibration signals are collected from the belt drive system when the
belt is pre-tensioned by 150 N and in healthy condition in addition to the presence of
unbalanced weight at all levels of speed.

Each folder contains 51 TXT files and 51 figures in JPG format that describe each operating
condition at different speeds. Both TXT and JPG have the same names. Each TXT file
contains 10000 samples. Since each experiment run has been repeated three times, every
three files represent the vibration signals that are collected from the operation of the system
at the same speed as in table C.1.

C.5 Experimental Design, Materials and Methods

The experiments are performed using the belt drive kit of the G.U.N.T machinery diagnostic
system (PT 500.14) [191] as depicted in figure C.1. The key component of the experiment
is a base, unit G.U.N.T (PT 500), [192] that consists of an electric motor as the rotating
equipment, a shaft, and two bearing blocks. The speed of the electric motor "N“ is adjusted
by a speed controller. An elastic coupling is considered as the connection between the motor
and the shaft where it is used to avoid misalignment and increase the flexibility of the shaft.
The two bearing blocks have a ball bearing type that supports the shaft. On the other hand,
the G.U.N.T (PT 500.14) consists of a per-tensioned V-belt that connects small driver and
large driven pulleys. The diameter of the small driver pulley is 63 mm which is connected
to the shaft of the G.U.N.T (PT 500). The V-belt is SPZ type with a length of 912mm and
width of 10 mm. It is the machine element that transmits power to the large driven pulley ,
which has a diameter of 125 mm. The pretension of the belt "T " is adjusted using tensioning
rollers. A pretension gauge is used to measure the value of T as shown in figure C.2.

The Vibration signals are collected using a Data Acquisition system. This has two piezoelec-
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Table C.1 Files and figures description

TXT/JPG files Speed, RPM
1 to 3 400
4 to 6 500
7 to 9 600

10 to 12 700
13 to 15 800
16 to 18 900
19 to 21 1000
22 to 24 1100
25 to 27 1200
28 to 30 1300
31 to 33 1400
34 to 36 1500
37 to 39 1600
40 to 42 1700
43 to 45 1800
46 to 48 1900
49 to 51 2000

tric accelerometers (IMI 603C01); accelerometers 1 and 2 are attached to the bearing block of
the driver and driven pulley, respectively, in a horizontal direction using studs. They are used
to measure the signals during the experimental run. An amplifier is used to amplify these
signals. The output signals from the amplifier are digitalized using a USB data acquisition
card (bmcm) and the collected signals are transferred to the LabVIEW script installed on a
laptop for further analysis. The experiments are conducted to investigate the characteristics
of the vibration signals for the belt drive system under three levels of T (70, 110, and 150
N), absence and presence of unbalanced weight, using healthy and faulty belts at 17 levels
of speed N that ranges from 400 to 2000 RPM in step 100. Figures C.3 and C.4 show the
presence of unbalanced weight, and the healthy and faulty belts.
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Figure 2 Experiment setup 
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Figure C.1 G.U.N.T machinery diagnostic system (PT 500.14) Description

Figure C.2 The pretension gauge
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(a) (b)

Figure C.3 G.U.N.T (PT 500.14) - the healthy and faulty belts

Figure C.4 G.U.N.T (PT 500.14) - presence of unbalanced weights
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