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RÉSUMÉ 

L'ostéoporose est une pathologie affectant la densité minérale osseuse. L'absence de symptômes 

fait en sorte que le diagnostic des patients est très difficile avant les stades avancés de la maladie. 

Des études visant à comprendre la biomécanique et le remodelage osseux sont ainsi développées 

pour mieux comprendre la maladie. Différentes approches sont utilisées pour mesurer les propriétés 

mécaniques des échantillons osseux et ce, dans des conditions ex vivo ou encore dans des conditions 

in vivo. Une de ces approches consiste en un chargement mécanique d'échantillons osseux combiné 

à des techniques d'imagerie médicale, comme le microCT, pour étudier les structures internes à un 

niveau microscopique. La quantité de microdommage accumulée et les patrons de déformation 3D 

peuvent par la suite être évalués à l'aide d'algorithmes à partir des images microCT. Ce projet 

présente deux études expérimentales présentant le développement d’une plateforme ex vivo pour 

étudier les propriétés d'échantillons d'os trabéculaire en 3D. 

Une première étude a investigué le potentiel de l'apprentissage profond pour la segmentation des 

microdommages osseux dans l’os trabéculaire. Six cylindres d'os bovin trabéculaire ont subi une 

compression jusqu'à la contrainte ultime et ont ensuite été imagés avec un microCT à une résolution 

de 1,95 um. Deux de ces échantillons (échantillons 1 et 2) ont ensuite été colorés à l'aide d’un agent 

de contraste, le sulfate de baryum (BaSO4), et imagés à nouveau. Les échantillons non colorés 

(échantillons 3 à 6) ont été utilisés pour entrainer deux réseaux de neurones, YOLOv4 pour détecter 

les régions présentant du microdommage à l’aide de boites englobantes, et Unet pour segmenter 

les pixels composant le microdommage dans les zones détectées. Quatre versions différentes de 

YOLOv4 ont été comparées à l'aide de la moyenne de l’intersection sur l'union (IoU) et de la 

moyenne de la précision moyenne (mAP). La performance de Unet a également été mesurée à l'aide 

de deux mesures de segmentation, le Dice Score et l'Intersection sur Union (IoU). Une comparaison 

qualitative a finalement été faite entre les approches d'apprentissage profond et d'agent de contraste. 

Les résultats de cette première étude ont montré le potentiel et les limites d’utiliser l'apprentissage 

profond pour la segmentation du microdommage osseux. De toutes les versions de YOLOv4, 

YOLOv4p5 a obtenu les meilleurs résultats avec une IoU moyenne de 45,32 % et 51,12 % et un 

mAP de 28,79 % et 46,22 %, pour les échantillons 1 et 2 respectivement. Pour Unet appliqué avec 

les boîtes englobantes de référence, l’IoU et le DICE score ont respectivement atteint 50,11 % et 
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66,77 % pour l'échantillon 1 et 70,73 % et 82,85 % pour l'échantillon 2. Lorsque Unet a été appliqué 

avec les résultats YOLOv4p5, l’IoU et le DICE score ont respectivement indiqué 26,04 % et 41,34 

% pour l'échantillon 1 et 58,21 % et 73,58 % pour l'échantillon 2. La performance plus basse de 

l'échantillon 1 peut s’expliquer à l’aide du ratio contraste bruit (CNR). En effet, l’échantillon 1 a 

montré un CNR plus bas (7,96) que l’échantillon 2 (10.08). Finalement, la comparaison qualitative 

entre l'agent de contraste et la segmentation par l’apprentissage profond du microdommage a 

montré que des régions différentes étaient segmentées par les deux techniques. L'apprentissage 

profond segmente la région à l'intérieur des fissures tandis que l'agent de contraste segmente la 

région l'entourant ou même les régions sans dommage visible. 

Une deuxième étude a exploré la relation entre les patrons de déformation 3D mesurés par la 

corrélation de volume numérique (DVC) et les microfissures dans l’os trabéculaire. L’étude a 

également testé la segmentation du microdommage à l’aide du réseau de neurones de la première 

étude. Un échantillon d'os trabéculaire bovin a été déformé à une vitesse quasi-statique en plusieurs 

incréments à l'aide du système d'essais in situ Deben combiné au système microCT. L'échantillon 

a été déformé à 6 % puis à 10 % de déformation, ou jusqu'à ce que la courbe s’approche de la 

contrainte ultime (pente nulle). L’échantillon a été imagé à une résolution de 2,09 um avant le 

premier chargement et après chaque incrément de chargement. Ensuite, le réseau YOLOv4p5, 

entrainé dans la première étude, a été appliqué au volume imagé après la deuxième déformation. 

Après avoir appliqué le réseau de neurones, l'ensemble de données a été sous-échantillonné par un 

facteur de quatre pour être traité à l’aide d’un algorithme DVC. 

La détection du microdommage à l'aide de l'apprentissage profond n’a pas donné de bons résultats. 

Cette faible performance pourrait être expliquée par le fait que les images de cette seconde étude 

avaient un CNR bien inférieur (1.8) comparé aux images de la première étude (7.96 à 10.08). La 

région de grande déformation mesurée par l'algorithme DVC a été colocalisée avec la région 

contenant plus de microdommage, selon l’axe des z (parallèle à l'axe de chargement). Cependant, 

pour les images analysées dans le plan XY , les résultats ne sont pas assez précis pour colocaliser 

avec confiance les régions de microdommage avec les régions de haute déformation. 

Ce projet a permis de développer une procédure expérimentale ex vivo pour l’étude du 

microdommage dans l’os trabéculaire en 3D. Le projet démontre la possibilité d'utiliser la 

segmentation par apprentissage profond pour détecter et évaluer le microdommage dans un 
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échantillon d'os trabéculaire à l'aide d’images obtenues par un microCT à rayons X hautes 

résolutions. Même si le modèle d'apprentissage profond discuté dans cette étude n'apparait pas 

encore optimal, le développement d'un ensemble de données plus varié, combiné à des réseaux de 

neurones modifiés pour la détection de microfissures dans l’os trabéculaire, permettrait d’améliorer 

les résultats. De plus, la colocalisation entre les régions de microfissures et les régions de forte 

déformation le long de l'axe de chargement, mesuré à l'aide d’un algorithme DVC, a montré 

l'importance d'inclure la corrélation de volume numérique pour mieux comprendre le mécanisme 

de fracture. Ce projet ouvre des avenues pour de futurs travaux qui utiliseront ce système de test 

mécanique in situ combiné à un scanner microCT pour étudier simultanément les propriétés 

mécaniques, les patrons de déformation et le microdommages en 3D. Ces connaissances sont 

indispensables pour le développement de nouvelles techniques pour le diagnostic de pathologie 

osseuses, comme l’ostéoporose. 
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ABSTRACT 

Osteoporosis is a pathology affecting bone mineral density. Lack of symptoms makes it hard to 

diagnose the patients before bone fracture. Studies aiming at understanding bone biomechanics and 

remodeling are developed to better understand the disease. Different approaches are used to 

measure the mechanical properties and behavior of bone samples. One of them consists of 

mechanical loading of bone samples combined with medical imaging techniques (Xray microCT) 

to investigate the internal structures at a microscopic level. Microdamage volume and strain 

patterns can be computed using post imaging algorithms. This project shows two experimental 

studies aimed to develop an ex vivo platform to study trabecular bone samples components in 3D. 

A first study aimed to investigate the potential of deep learning for the segmentation of bone 

microdamage in trabecular bone. Six trabecular bovine bone cylinders underwent compression 

until ultimate stress and were subsequently imaged with a microCT at a resolution of 1.95 um. Two 

of these samples (samples 1 and 2) were then stained using barium sulfate (BaSO4) and imaged 

again. The unstained samples (samples 3-6) were used to train two neural networks, YOLOv4 to 

detect regions with microdamage further combined with Unet to segment the microdamage at the 

pixel level in the detected regions. Four different versions of YOLOv4 model were compared using 

the average Intersection over Union (IoU) and the mean average precision (mAP). The performance 

of Unet was also measured using two segmentation metrics, the Dice Score and the Intersection 

over Union (IoU). A qualitative comparison was finally done between the deep learning and the 

contrast agent approaches. 

Among the four versions of YOLOv4, the YOLOv4p5 model resulted in the best performance with 

an average IoU of 45,32% and 51,12% and a mAP of 28.79% and 46.22%, respectively for samples 

1 and 2. The segmentation performance of Unet provided better IoU and DICE score on sample 2 

compared to sample 1. The poorer performance of the test on sample 1 could be explained by its 

poorer contrast to noise ratio (CNR). Indeed, sample 1 resulted in a CNR of 7,96, which was worse 

than the average CNR in the training samples, while sample 2 resulted in a CNR of 10,08. The 

qualitative comparison between the contrast agent and the deep learning segmentation showed that 

different regions were segmented by the two techniques. Deep learning is segmenting the region 

inside the cracks while the contrast agent segments the region around it or even regions with no 

visible damage. 
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A second study investigated the relationship between 3D strain maps measured by digital volume 

correlation (DVC) and micro-cracks localization. The complementary study also tested the deep 

learning models for microcracks segmentation from the first study. One trabecular bone sample 

was extracted from a bovine tail vertebra. It was then deformed at a quasi-static rate in multiple 

increments using the Deben in situ testing system inside the microCT scanner. The sample was 

deformed at 6% and then 10% strain or until it approached the ultimate stress (zero slope). The 

sample was imaged at a resolution of 2.09 um before the first loading and after every loading 

increment. Afterwards, the YOLOv4p5 neural network, which was trained in the first study, was 

applied to the volume imaged after the second deformation. The dataset was then downsampled by 

a factor of four to process with a DVC algorithm.  

In this second study, the detection of microdamage using deep learning did not provide good 

results. This could be explained by the dataset having a CNR much lower (1.8) than the CNR of 

the dataset used in the first study to train the neural network (range from 7.96 to 10.08). This 

strengthened the result from the first study, where training images should be diversified during 

training to avoid overfitting. Regions of high displacements measured by the DVC algorithm were 

correlated to regions of damage along the z-axis (parallel to the loading axis). However, for images 

in the XY plane, visualization was not precise enough to colocalize microdamage with regions of 

high strain. 

This project allowed to develop an ex vivo experimental procedure for the evaluation of micro-

damage in 3D in trabecular bone. It showed the feasibility of using deep learning segmentation to 

detect and segment microdamage in trabecular bone samples using high-resolution Xray microCT 

images. Even though the deep learning model discussed in this work was not optimal, the 

development of a more diverse dataset with improvement in the current neural networks could 

make it more performant and relevant for future work. Also, correlation between region of 

microcracks and region of high strain along the loading axis, using DVC and an in situ compression 

system, showed the importance of including DVC to have a better understanding of fracture 

mechanics. This project opens avenues for future future studies using the in situ Deben system 

inside the microCT scanner to simultaneously study mechanical properties, D strain patterns, and 

microdamage in 3D. This knowledge is essential for the development of new diagnosis techniques 

for bone pathologies, such as osteoporosis. 



ix 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................ iii 

RÉSUMÉ ......................................................................................................................................... iv 

ABSTRACT ................................................................................................................................... vii 

TABLE OF CONTENTS ................................................................................................................ ix 

LIST OF TABLES .......................................................................................................................... xi 

LIST OF FIGURES ........................................................................................................................ xii 

LIST OF SYMBOLS AND ABBREVIATIONS......................................................................... xvii 

CHAPTER 1    INTRODUCTION .................................................................................................. 1 

CHAPTER 2    LITERATURE REVIEW ....................................................................................... 3 

CHAPTER 3    PROJECT RATIONALE ....................................................................................... 37 

CHAPTER 4    ARTICLE 1: SEGMENTATION OF TRABECULAR BONE MICRODAMAGE 

IN XRAY MICROCT IMAGES USING A TWO-STEP DEEP LEARNING METHOD. .......... 40 

4.1 Introduction ..................................................................................................................... 42 

4.2 Dataset preparation .......................................................................................................... 45 

4.2.1 Sample preparation ................................................................................................... 45 

4.2.2 Mechanical test ......................................................................................................... 46 

4.2.3 Contrast agent and imaging ...................................................................................... 46 

4.3 Methods ........................................................................................................................... 47 

4.3.1 Data annotation ........................................................................................................ 47 

4.3.2 Training and testing .................................................................................................. 48 

4.4 Results ............................................................................................................................. 50 

4.4.1 Microcracks detection .............................................................................................. 50 

4.4.2 Microcracks segmentation ........................................................................................ 51 

4.4.3 Inter-operator variability in manual microcracks segmentation .............................. 52 



x 

4.4.4 Qualitative analysis .................................................................................................. 52 

4.4.5 Comparison with contrast agent ............................................................................... 55 

4.5 Discussion ........................................................................................................................ 56 

4.6 Conclusion ....................................................................................................................... 58 

4.7 Acknowledgement ........................................................................................................... 59 

4.8 Declaration of competing interest .................................................................................... 59 

4.9 References ....................................................................................................................... 59 

CHAPTER 5    COMPLEMENTARY ANALYSIS USING DIGITAL VOLUME 

CORRELATION. ........................................................................................................................... 64 

CHAPTER 6    GENERAL DISCUSSION .................................................................................... 74 

CHAPTER 7    CONCLUSION AND RECOMMANDATIONS. ................................................. 78 

REFERENCES ............................................................................................................................... 80 



xi 

 

LIST OF TABLES 

Table 1: Performance of the different YoloV4 models, based on the resulting Average IoU and 

mAP. The bolded text shows the best result for each metric and each sample. ............................. 51 

Table 2: Performance of Unet using manually annotated bounding boxes  as a mask and using the 

output of the detection model as a mask ........................................................................................ 51 

Table 3 : Inter-user comparison between the Unet’s reference segmentation (user 1) used in this 

study and another user outside of this study (user 2). The scores are given as the performance of 

user 2 segmentation compared to user 1. ....................................................................................... 52 

Table 4: Contrast to noise ratio (CNR) of every samples in both the training and testing groups.52 

  



xii 

 

LIST OF FIGURES 

Figure 2-1: Typical long bone structure with its epiphysis, metaphysi, and diaphysis zones [18] .. 4 

Figure 2-2: Cross-section of a bone showing the trabecular (spongy) and cortical bone(compact 

bone) including the osteon anatomy [24]. ........................................................................................ 5 

Figure 2-3: Stress-Distension curve ( also called stress-strain) showing the different regions of the 

mechanical deformation of an engineering sample. A) linear region representing the elastic region 

of the deformation with a slope equal to the Modulus of elasticity (E) and the energy of the elastic 

deformation is the area under the curve(D). B) is the yield point, announcing the beginning of the 

plastic region (C) [43] ...................................................................................................................... 8 

Figure 2-4: Stress strain curve showing the energy lost during plastic deformation and the resulting 

permanent deformation [51] ............................................................................................................. 9 

Figure 2-5: Stress and strain curve for the mechanical loading of a cortical bone sample (A) in the 

transverse direction and (B) in the longitudinal direction [52]. ..................................................... 10 

Figure 2-6: Compressive stress-strain curves for human femoral cortical bone as a function of strain 

rate  [58] ......................................................................................................................................... 10 

Figure 2-7: Dumbell shape where G is the test length, W the width, and B the thickness [75]. ... 12 

Figure 2-8: A) three points bending configuration B)four points bending configuration[83] ....... 13 

Figure 2-9: Schematic of an Xray tube where electrons are accelerated from the cathode to the 

anode to generate an X-ray cone [93] ............................................................................................ 15 

Figure 2-10: Graphical representation of the Bremsstrahlung radiation intensity and the peaks of 

each characteristic radiation, and this for different source energy [94] ......................................... 17 

Figure 2-11: Different steps included in the Xray tomography process. From the Xray scanning of 

the rotating sample to the 3D reconstruction made from multiple 2D scans [101]. ...................... 18 

Figure 2-12 : A sequence example of a single dilation and erosion to close the space between two 

black rectangle ( which represent the bone on each side of a crack). The blue circle represents a 

kernel of circle shape and the red is the area created by the morphological operations. On the left 

is the initial binary image. In the middle is the image following the dilation operation.On the right 

is the image following the erosion operation ................................................................................. 22 

Figure 2-13: Biological neuron (left): the dendrite receiving several input signals and the cell body 

processing the signal. If the sum of the inputs reaches the threshold, the cell body sends an action 

potential through the axon towards the synapses [126]. Artificial neuron (right): several inputs xi 



xiii 

 

are received and are attributed a weight wmi. Then the neuron computes an output value sm using 

its programmed activation function f [125]. ................................................................................... 23 

Figure 2-14: CNN architecture from the input on the left to the classification output on the right 

[130]. .............................................................................................................................................. 24 

Figure 2-15: Application of a 3x3x1 kernel on a 5x5x1 input with padding to keep the same size at 

the output. Darken squares represent the pixels involved in the current convolution. The input 

image is in blue and the output feature  map is in green [130]. ..................................................... 25 

Figure 2-16: FCNN architecture showing process from input image (left) to the output semantic 

segmentation(right) [138]. .............................................................................................................. 26 

Figure 2-17: (left) outer blue rectangle is the frame of the full image and the inner black rectangle 

is the reference bounding box of the object to be detected in the image. The green shaded square 

corresponds to the bounding box actually detected by the model. TP are in dark green, FP in light 

green, FN are in  dark red, and  TN in pink. (right) fractions representing what precision and recall 

is computing. .................................................................................................................................. 28 

Figure 2-18: (left) outer blue rectangle is the frame of the full image and the inner black rectangle 

is the reference bounding box of the object to be detected in the image. The green shaded square 

corresponds to the bounding box actually detected by the model.. TP are in dark green, FP in light 

green, FN are in dark red, and  TN in pink. (right) fraction representing what IoU is computing.

 ........................................................................................................................................................ 29 

Figure 2-19: (left) outer blue rectangle is the frame of the full image and the inner black rectangle 

is the image to be segmented. TP are in dark green, FP in light green, FN are in  dark red, and  TN 

in pink. (right) fraction representing what accuracy is computing. ............................................... 31 

Figure 2-20 : (left) outer blue rectangle is the frame of the full image and the inner black rectangle 

is the image to be segmented. TP are in dark green, FP in light green, FN are in  dark red, and  TN 

in pink. (right) fraction representing what Dice score is computing. ............................................. 32 

Figure 2-21: Unet architecture where each blue boxes are features map and whites boxes are copied 

feature maps. The arrows show the flow of the forward passing [154]. ........................................ 33 

Figure 2-22: region based object detection(left) and semantic segmentation focused inside the 

detection regions (right) [165] ........................................................................................................ 34 



xiv 

 

Figure 2-23: (a) RoI showed by the green area. Subsets of pixels separated by the yellow boxes. 

(b) Showing the correlation computation between a single subset of pixels between unloaded and 

loaded images[171]. ....................................................................................................................... 35 

Figure 2-24: 3D strain map of a trabecular bone sample[177]. ..................................................... 36 

Figure 4-1 : Reference segmentation for both NN models. (A) Bounding boxes (in pink) englobing 

regions with micro-cracks and (B) segmentation of pixels inside the cracks themselves (in red). 48 

Figure 4-2: Schematic of the all the results related to NN training and testing included in this study. 

The input image is going through three paths: 1) the fully automatic path: YOLO detects the cracks 

using bounding boxes and then this output is used as an input for Unet to segment the pixels inside 

the crack; 2) the semi-automatic path: the cracks are manually segmented using bounding boxes 

(BB) and then this output is used as an input for Unet to segment the pixels inside the crack; 3) the 

fully manual path: the bounding boxes and the pixels are manually segmented. This third path is 

used to evaluate the two other methods. ........................................................................................ 50 

Figure 4-3: (Left) Results from Yolov4p5 before applying Unet on the images. (Right) Results 

from the two-step technique tested on Sample 2:  The white box is YOLOv5 resulting bounding 

box, blue pixels are the Unet segmentation, red pixels are the manual reference and purple pixels 

are the overlapping regions between both colours. ........................................................................ 53 

Figure 4-4: (Left) Result from Yolov4p5 before applying Unet on the images. (Right) Results 

example from the two-step technique tested on sample 1, where the white box is YOLOv5 resulting 

bounding box, blue is Unet segmentation , red pixels are the manual reference and purple  is the 

overlapping region between both colours. ..................................................................................... 54 

Figure 4-5: Example of YOLOv4p5 results, where a red bounding box detects an exaggeratedly 

big region as a crack.  However, Unet is capable of limiting the mistake by having little false 

positive, circled in orange, inside the bounding box. Blue is Unet segmentation , red pixels are the 

manual reference and purple  is the overlapping region between both colours ............................. 54 

Figure 4-6 : Example of situation where crack-like feature is segmented by the two-step method. 

Top three images show the development of such a structure in the xz plane over multiple slices in 

the y axis. Where t is the first slice , t+1 the second slice and t+2 the third slice and the one 

containing Yolo false positive. Bottom image shows the false positive segmentation done by 

YOLO and Unet. ............................................................................................................................ 55 

file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298630
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298630
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298630
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298630
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298631
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298631
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298631
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298631
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298632
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298632
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298632
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298632
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298633
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298633
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298633
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298633
file:///C:/Users/Rodrigue/Desktop/mémoire/Mémoire_maitrise_GénieBiomédaical_RodrigueCaron_1776881.docx%23_Toc107298633


xv 

 

Figure 4-7: On the left there is a successful segmentation of microdamage done by Unet in blue, 

red is the reference segmentation and purple is the overlapping pixels and on the right there a 

microCT image with region enhanced with barium sulfate, seen as brighter white regions. We can 

see that Unet segments the area inside the microcracks, while the contrast agent seams to segment 

region around it (red arrow) and other regions of the trabeculae with no visible damage (red circles).
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z-direction D) magnitude of all displacements. Regions of high displacement are circled in red and 
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CHAPTER 1 INTRODUCTION 

Osteoporosis affects over 200 million people in the world, including 1 in 5 men during their lifetime 

and 1 in 3 women over 50 years old [1]. In North America, an estimated 10% of the population 

over 50 years old is affected [2] [3]. The disease is characterized by the reduction in bone density 

due to changes in bone remodeling, a process that happens normally throughout your life. However, 

in osteoporosis, bone reabsorption becomes faster than bone formation. Hence, the bone 

microarchitecture is affected and the risk of fracture increases [4]. The major problem with 

osteoporosis is the lack of symptom before fractures, making it hard to prevent severe accidents 

[5]. Current investigations aim at improving our understanding of bone by inferring on its 

mechanical and physical properties. Some of the current practices include the study of 

microfracture, mechanical properties and strain patterns. 

2D imaging is the oldest method used to evaluate microdamage in bones, but it requires the 

destruction of the sample, making it impossible to gather information about the sample before 

mechanical loading. The obtained information is also limited to one plane whereas microdamage 

is a 3D structure. Hence, 3D techniques, like microCT imaging, have been developed to retrieve a 

more complete evaluation of damaged bone structures. The gold standard is currently to use 

contrast agents to easily quantify the microdamage during image analysis. A contrast agent is a 

high-density substance that absorbs more Xray radiation than bone tissue and will also precipitate 

inside microcracks. However, it does not segment the absolute damage volume since it can also 

precipitate in any voids, like lacunae. It can also encounter problems segmenting damage 

developing deeper into the tissue. With the improvement of imaging techniques, new segmentation 

approaches using high-resolution images could make it possible to segment damage without a 

contrast agent [6-8].  

In addition to damage quantification, bone mechanical properties can be measured from 

mechanical testing. One can then establish relationships between mechanical parameters, such as 

Young’s modulus, and physical parameters, including microdamage volume [9]. Another way to 

study bone properties is to deform the sample in multiple steps and measure the 3D strain inside 

the bone sample, using digital volume correlation (DVC), which allows locating areas of high 
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strains in 3D. Indeed, DVC provides a lot more information than only using the relative 2D strain 

of the sample [10]. 

Currently, there is no study including the 3D measurement of bone microdamage, mechanical 

properties and 3D strain patterns using only one procedure. Hence, this project will focus on 

developing such a platform by conducting two studies. In a first study, trabecular bone cylinders 

were deformed at a quasi-static rate until ultimate stress is achieved and then imaged at high 

resolution. The images are used to train and test two neural networks, YOLOv4 and Unet, for the 

detection and segmentation of bone microdamage. Afterward, in a complementary study, a 

trabecular bone sample is deformed in 2 incremental steps combined with high resolution imaging 

before and after every loading step. The 3D volumes are then used to measure the 3D displacement 

maps using a DVC software. In both studies, the procedure for mechanical test and imaging were 

designed to include mechanical properties and physical properties measurement when required. 

This way a complete 3D ex vivo procedure can be derived from both study and include 

microdamage segmentation, 3D strains maps measurement and mechanical properties of bone 

tissue.  
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CHAPTER 2 LITERATURE REVIEW 

2.1  Bone Tissue Composition and Function  

 The human skeleton is a complex system composed of about 270 bones at birth, which will fuse 

to a total of 206 to 213 bones for an adult [11]. It might seem to be an unfunctional system at first 

glance, but it serves multiple important functions [12, 13]. First of all, it serves as support and 

protection for the rest of the human tissues, such as lungs and heart. It is also used by muscles, 

tendons, and ligaments to induce movements or control the body’s ranges of motion. Moreover, it 

serves as a storage to regulate the body’s minerals.  The bone marrow, found in trabecular bone 

and inside the diaphysis of long bones, is responsible for the production of different types of blood 

cells.  

The bone has the capacity to adapt to its surrounding environmental changes [12], referring to two 

important processes, bone modeling and remodeling. The first is the growth of the bone to adapt 

to outside forces by changing its shape or by adding mass. The second is the constant absorption 

and creation of bone matrix to replace damaged bone structures with new bone while maintaining 

or even decreasing mass. Both processes are similar, but modeling implies either absorption or 

formation of bone tissue separately and remodeling implies an alternation of both mechanisms 

together [14]. 

Bones can be categorized into five groups [15]: long bones, short bones, flat bones, irregular bones 

and sesamoid bones. Long bones are cylindrical and have a greater length-to-width ratio than other 

bone types. This last characteristic provides them with the ability to transmit a great amount of 

force, by acting as a lever, during muscles contraction. Their internal structure is practical for the 

visualization of the different parts of the bone micro architecture, since it includes most of them 

[16]. Long bones can be separated into three zones, each with specific characteristics: epiphysis, 

diaphysis and metaphysis (Figure 2-1). The epiphyses are located at each end of the bone. The 

diaphysis is located at the center of the bone and its hollow center is called the medullary cavity, 

which is full of yellow bone marrow. The diaphysis and epiphyses are separated by the metaphyses, 

which have a conical shape and include the epiphyseal line (or growth plate). 
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Bone tissue is a highly specialized connective tissue composed of a mineralized bone matrix and 

bone cells. The bone matrix is made from an organic part that links to an inorganic component. 

The inorganic part is made of minerals, composed principally of calcium hydroxyapatite crystals, 

and is responsible for the hardness and durability of the material. The organic fraction is made of 

90% collagen and 10% non-collagen protein [17].  

 

Figure 2-1: Typical long bone structure with its epiphysis, metaphysi, and diaphysis zones [18] 

There are four types of cells in bone tissue, which all have different roles during the bone 

remodeling process. Osteoblasts are responsible of bone formation while osteoclasts are 

responsible of bone resorption. The bone lining cells do not show signs of bone formation or 

resorption. They would play a role in stopping the osteoclast from resorbing bone when they should 

not [19]. Another theory would imply a role in synchronizing bone resorption and formation [20, 

21].  Lastly, osteocytes have been shown to act as mechanosensory guiding the bone remodeling 

process [19]. 
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2.1.1 Trabecular Bone and Cortical Bone 

Bone tissue can be separated into two structural categories : cortical and trabecular bone (Figure 

2-2)[22]. Cortical bone is a layer on the outside of the bone, its thickness varies depending on the 

skeleton location. Cortical bone is dense and has a low surface area, which is primarily due to the 

surface inside of osteons, a microscopic cylindrical structure parallel to the bone axis. Osteons have 

a hole in their center, called the Haversian canal, through which blood vessels and nerves can pass 

to supply the bone in nutriments and communicate with the different subsystem insides [23]. 

 

Figure 2-2: Cross-section of a bone showing the trabecular (spongy) and cortical bone(compact bone) including the osteon 

anatomy [24]. 

Trabecular bone has a greater surface area and lower density [22]. It is located in the center of flat 

bones, vertebrae, and long bones. It has a complex architecture made of interconnecting rods and 

plates called trabeculae. These are composed of layers made of mineralized collagen. The 

arrangement of the lamellae could be compared to the osteons in cortical bones. However, they are 

parallel to the trabeculae axis instead of the bone axis [25].  

About 80% of the human skeleton’s bone is made of cortical bone. However, the ratio of cortical 

to trabecular is dependent on the location in the skeleton [22]. Trabecular bone is predominant in 

regions like the vertebrae, the epiphysis, and metaphysis of the long bones [26], whereas cortical 

bone is thicker and predominant in the diaphysis of long bones and the femoral neck [27]. 
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2.1.2 Bone Tissue Properties 

Bone tissue can be characterized by its physical and mechanical properties, which will vary 

between trabecular and cortical bones and therefore reflect their roles. There are also strong 

correlations between some mechanical properties and some physical properties during mechanical 

testing [9]. 

2.1.2.1 Physical properties 

The physical configuration of bones can vary a lot from species to species and also from one 

individual to the other. It depends on the role the specific bone has to play and the condition under 

which it is living [28]. 

2.1.2.1.1 Micro-architecture 

Bone histomorphometry is useful for the evaluation of bone remodeling, metabolism, and micro-

architecture [29]. Some examples of the micro-architecture parameters are the trabecular thickness 

(Tb.Th, mm), trabecular separation(Tb.Sp, mm), trabecular number (Tb.N), bone volume over 

tissue volume (BV/TV), and cortical thickness (Cort.Th, mm) [30]. 

The Tb.Th and Tb.Sp are the average thickness of the trabeculae and the average separation 

between the edges of two trabeculae, respectively. Both parameters are expressed in millimeters. 

The cortical bone also has a parameter similar to the Tb.Th, the Cort.Th, which refers to the mean 

thickness of the cortical bone in millimeters. BV/TV is the percentage of bone volume over the 

total amount of tissue in the sample. Tb.N is given in mm-1 and is representative of the number of 

trabeculae per unit of length [31-33].  

2.1.2.1.2 Porosity 

The porosity in bone, just like any other material, is characterized by the ratio of void over the 

sample volume, and can range from 0 to 100%. Trabecular bone porosities vary from 30 to 90%, 

while more compact cortical bone has a porosity varying from 5 to 30% [34]. Trabecular bone 

porosity varies more because it has a much higher surface area exposed to marrow and blood flow, 

giving it faster bone remodeling and adaptability [35]. It will adapt depending on the loading a 

specific region in the skeleton will undergo during its host life.  
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2.1.2.2 Mechanical Properties 

Bone’s mechanical properties describe its ability to sustain the different loads the body must 

support or produce during its life. For example, the forces be used to induce movements or the 

force from the impact with another object. Bone mechanical behavior does not follow a simple 

linear relationship. On the contrary, it is a complicated structure that includes multiple variables. 

Indeed, it is said to be an anisotropic viscoelastic material [36]. Bone mechanical properties vary 

greatly between cortical and trabecular bone tissues [37]. The difference between both bone types 

can be characterized by their respective mechanical properties, such as the Young’s modulus, the 

ultimate forces/stresses, and the Poisson’s ratio. These parameters can be determined by 

mechanical tests on bone samples. Some of the common tests include the three or four-points 

bending tests, torsion test, the uniaxial tensile test, and the uniaxial compression test [38-40]. 

In engineering, the strength of a specific material can be measured using the relationship between 

the loading force and the displacement during mechanical testing.  The graph of this relationship 

results in the force-displacement curve. This curve depends on the dimension of the sample used 

for the test. The corresponding stress-strain curve can be derived by normalizing this graph to the 

sample geometry, now representing intrinsic properties of the material. In most mechanical test, 

the force is divided by the sample cross-section area to provide the stress: 

𝜎 =
𝐹

𝐴
  (1) 

and the displacement is divided by the sample initial length to provide the strain [41, 42]: 

𝜀 =
𝑙

𝐿
 (2) 

Figure 2-3 shows a typical stress-strain curve obtained from a mechanical test on a bone sample. It 

includes two regions that define different stages of the deformation: the elastic zone and the plastic 

(or permanently deformed) zone [43]. Even if biological tissues are more complex than the typical 

engineering material, their intrinsic properties can be extracted from these curves to characterize 

bone. Properties may however exhibit greater standard deviations depending on the origin and 

location of the bone in the body [44, 45].  
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Figure 2-3: Stress-Distension curve ( also called stress-strain) showing the different regions of the mechanical deformation of an 

engineering sample. A) linear region representing the elastic region of the deformation with a slope equal to the Modulus of 

elasticity (E) and the energy of the elastic deformation is the area under the curve(D). B) is the yield point, announcing the 

beginning of the plastic region (C) [43] 

The behavior of the perfect elastic material, usually represented by a spring, is described by 

Hooke’s law. It can be used for the elastic region of any material, since the material is assumed to 

be a perfectly elastic material before the plastic (permanent) region [46]. The law describes the 

deformation like a linear function between the stress and the strain in the material: 

𝜎 = 𝐸𝜀𝑒𝑙 (3) 

where E is the Young’s modulus in MPa, σ is the stress in MPa and εel is the strain in mm/mm. 

During the linear deformation, the material does not undergo permanent damage/deformation. 

Therefore, if the load is released during the elastic deformation, the sample should regain its initial 

shape. Point B in Figure 2-3 illustrates the yield stress (σy) and the yield strain (εy), which indicate 

the threshold where the material enters its plastic region. In the plastic region of the curve, the bone 

tissue starts to yield and a plastic flow can occur in the amorphous part of both the mineral and 

organic phase of the bone [47, 48]. During the plastic deformation, energy is used and ejected by 

the system, which is given by the area under the plastic curve. This results in permanent damage 

to the bone sample. If the load is removed, the sample will try to regain its initial shape but will be 

permanently deformed proportionally to the energy spent in the plastic zone [49, 50]. The size of 
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the permanent damage is represented by εplastic in Figure 2-4. The end of the plastic zone is marked 

by the failure of the sample. 

 

Figure 2-4: Stress strain curve showing the energy lost during plastic deformation and the resulting permanent deformation [51] 

An important characteristic of the mechanical properties of bone tissue is the difference in the 

response depending on the loading conditions. From Figure 2-5, we can observe a difference in 

elastic modulus between the longitudinal and transverse loading. S. Li observed an average 

Young’s modulus for longitudinal loading of 20.22±3.12 GPa and 19.09±2.84 GPa in tension and 

compression respectively. On the other hand, transverse loading averaged 12.43±2.37 GPa and 

11.62±2.4 GPa in tension and compression, respectively [52]. Other studies showed similar results 

[53].  

Even if the elastic moduli are quite similar between tension and compression in cortical bone, the 

load sustained by bone under tension is much lower than the load sustained under compression. 

Both failure of the sample and yeilding happen at much higher stresses in compression, meaning 

that bone is much tougher under compression than tension. Moreover, when the sample is under 

tension, it seems to be able to undergo more deformation in the longitudinal direction than in the 

transverse direction, before the failure of the sample. 

 

εplastic 
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Figure 2-5: Stress and strain curve for the mechanical loading of a cortical bone sample (A) in the transverse direction and (B) in 

the longitudinal direction [52]. 

2.1.2.2.1 Viscoelasticity 

Bone is considered a viscoelastic material, which implies that its mechanical properties will vary 

depending on the strain rate used during mechanical testing (Figure 2-6). The literature clearly 

shows that as the strain rate increases, the bone gets stiffer and sustains a higher load. However, 

since bone has a mineral inorganic part, the variation will not be as great as it would be with soft 

tissues like tendons and ligaments [54, 55]. Moreover, this behavior was further proven true by 

studying its stress relaxation after loading [56], which is a reduction in stress over time at a constant 

strain. This means that even if  the displacement is kept constant at the end of the test (the load is 

not removed from the sample), the bone should still undergo a reduction in stress [57].  

 

 

Figure 2-6: Compressive stress-strain curves for human femoral cortical bone as a function of strain rate  [58] 
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2.1.3 Ex vivo Mechanical Testing 

In order to obtain bone mechanical properties, different mechanical testing configurational can be 

used. Generally, the mechanical test done on bone tissue will be similar to a more typical 

engineering material. However, because of its complex structure, composed of an inorganic and 

organic part, the evaluation of said properties is challenging. The tissue can be studied from a 

macro level, whole bone or compact/spongy bone, to its sub-nano levels, collagen molecules[59]. 

This literature review will focus on tests done on sample size in the order of the bone 

macrostructure.  

Testing methods include monotonic, quasi-static loading (tension, compression, torsion, bending) 

[60-62] and dynamic loading( impact test and fatigue test) [61, 63, 64]. Some of the most common 

techniques are discussed below. Usually, the samples are prepared using a diamond tool,  saw, or 

core drill bit, under constant irrigation to reduce the amount of damage induced by the cut and heat 

created by friction and are conserved below freezing, generally -20 degrees Celsius, and thawed 

out before mechanical testing [65-68]. 

2.1.3.1 Compression and Tension 

Both compression and tension testing have a sample subjected to a uniaxial loading, which is a 

force applied along the primary axis of the sample. The samples are generally loaded until failure 

at a constant strain rate, with the test being controlled by force or displacement. Then the stress-

strain curve is computed from the force displacement-curve using the stress and strain equation (1) 

and (2) previously discussed. 

Compression testing and sample preparation. 

In the case of compression, the specimens are generally cylindrical or cubic samples. It is important 

to have an height less than twice the width of the sample to avoid any buckling [69]. To ensure 

parallelism of each end of the sample, some authors will glue each end of the sample to a brass 

end-cap, others will use an ultra-fine polisher to assure parallelism [66, 70, 71]. This way the load 

is ensure to be mostly applied along the principal axis of the sample.  

Tensile testing and sample preparation. 
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For tensile testing, the samples are attached at both ends using screws and mounting plates. The 

ideal shape is a dumble, also called dog-bone (Figure 2-7), where each end is larger than the center 

since they will have holes for the screws to be attached and have a higher surface for the test setup 

to grip and pull the sample. The dumble ends gradually reduce to the center width using a 

circular/rounded junction to reduce the stress concentration factor. The highest stress region is then 

assumed to be in the center of the sample. Hence the precise dimension of where the failure happens 

can be used to compute the stress-strain curve. Moreover, in the case of 3D imaging, the scanner 

can focus in the middle section of the sample [72-74].  

 

Figure 2-7: Dumbell shape where G is the test length, W the width, and B the thickness [75]. 

2.1.3.2 Bending 

Bending tests are generally set up following two different configurations: the three-points and the 

four-points bending test (Figure 2-8). The sample is either a whole long bone or shaped as a 

prismatic beam. Both configurations have two supports at the bottom of the samples, one at each 

end of the testing zone. The difference is that the three-points bending has one loading point directly 

in the center of the specimen, while the four-points bending has two loading points equally 

separated on each side of the center point. In an experiment including 3D imaging of the fracture 

zone, a notched can be done in the middle of the sample to help focusing the imaging zone if the 

sample is too big [76-78]. 

For three-points bending, the bending stress for a rectangular and annular cross section is 

determined by the equations (4) and (5) below: 

𝜎𝑟𝑒𝑐𝑡. =
3𝐹𝐿

2𝑤ℎ2 (4), 𝜎𝑎𝑛𝑛𝑢𝑙. =
3𝐹𝐿

𝜋(𝑅3−𝑟3)
 (5) 
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where F region is the load, L is the length between the two bottom supports, w the width and h the 

height of the rectangular sample and R the outside radius and r the inside radius of the annular 

sample.  

For four-points bending, the bending stress for a rectangular and annular cross section is 

determined by the equations (6) and (7) below: 

𝜎𝑟𝑒𝑐𝑡. =
3𝐹(𝐿−𝑎)

2𝑤ℎ2
 (6), 𝜎𝑎𝑛𝑛𝑢𝑙. =

3𝐹(𝐿−𝑎)

𝜋(𝑅3−𝑟3)
 (7) 

where a is the distance between the two applied load[79-82]. 

 

 

Figure 2-8: A) three points bending configuration B)four points bending configuration[83] 

 

2.1.3.3 Torsion 

Bone samples are tested under torsion when we want to investigate the shear properties of the 

biological material. The samples are generally cylindrical or annular cylinders. Both ends of the 

sample are fixed inside a chunk or other clamping system on the testing setup. Usually, only one 
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end of the system is rotating, and the other is fixed. Once the sample is mounted onto the test 

apparatus, the experiment is controlled by applying constant angular displacement until failure. 

The shear stress(τ) and shear strain(γ) can respectfully be computed using the following equations 

(8) and (9): 

𝜏 =
𝑇𝑟

𝐼𝑃
 (8),  𝛾 =

𝜙𝑟

𝐿
 (9) 

where T is the torque, IP is the polar moment of inertia, r is the gage radius, L is the gage length, 

and ϕ is the twist angle. Like other loading configurations, a stress-strain curve can be obtained 

and the shear modulus (G) can be computed from the slope of the elastic region [84, 85]. 

2.1.3.4 Fatigue loading 

All the loading configurations can be used to investigate the fatigue properties of bone tissue. The 

sample preparation should be the same as quasi-static loaded samples. The difference comes from 

how the load is applied. While quasi-static loading has a load consistently applied until failure. 

Fatigue loading uses a dynamic load, which is a cyclic repetitive application of a load on the 

specimen. The controlled parameters are generally the mean stress, the maximum stress, and the 

number of cycles the sample goes through. Then the result can be graphed using an S-N diagram, 

where S represents the constant amplitude stress level and N represents the number of cycles to 

failure. Since the tests are generally much longer than quasi-static loading tests, the sample 

temperature and hydration should be maintained to keep the result as close as possible to in vivo 

setting [86, 87]. 

2.1.4 Osteoporosis 

Osteoporosis causes a reduction in bone density and affects the integrity of bone micro-

architecture, hence increasing the risk of fractures [4]. It is also considered a silent disease due to 

the lack of symptoms before fracture [5]. Moreover, osteoporosis can have severe consequences in 

older patients [88], because of the frequent fracture in important bone like hips and the spine [89]. 

While studying osteoporosis, it is important to know the importance of the bone turnover rate in 

both trabecular and cortical bone. Bone loss in trabecular bone is going to be more important in the 

early stages of the disease because of its high surface area. However, since trabecular bone only 

accounts for a limited percentage of the total bone mass (20%) and because cortical bone pores 
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will grow bigger (because of bone resorption) as the disease progresses. The bone turnover in 

cortical bone gets more important in the later stages of osteoporosis because of its increasing 

surface area [90, 91]. 

2.2 MicroCT Imagery  

Microscopic computed tomography is a popular imaging technique for the identification and 

quantification of microdamage. It has the advantage of being non-destructive, allowing studying 

bone samples over time. It also has the advantage of showing the microdamage in 3D, giving more 

information on the damage configuration perpendicular to the usual 2D plane. 

2.2.1 Xrays 

Having energy from 200eV to one MeV, Xrays are electromagnetic radiation with high energy. On 

the electromagnetic spectrum, they are located between gamma and ultraviolet rays [92]. In clinical 

imaging, they are generated from a device called the Xray tube, showed in Figure 2-9. Electrons 

are accelerated from a cathode to an anode by heating a filament, generally made of tungsten, to 

about 2400 K [93]. 

 

Figure 2-9: Schematic of an Xray tube where electrons are accelerated from the cathode to the anode to generate an X-ray cone 

[93] 

Incident electrons can interact and transfer their energy with other atoms in two ways: collisional 

transfer and radiative transfer [94]. Collision is the most common energy transfer in Xray imaging. 
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The incoming electron transfers its energy to the absorbing atom’s electron and a fraction of the 

kinetic energy of the incident electron is transferred to the absorbing electron during the collision. 

The electron that now has a high level of energy, will return to its original state by emitting infrared 

radiation, creating high heat in the anode disk. The incident electron might be deviated by the 

collision and even though its energy is diminished it can still have more interactions with other 

atoms, collisional or radiative [94]. Sometimes, a new electron can be accelerated by the collision, 

if the energy is high enough, creating a delta ray, which is another electron in movement with the 

possibility of forming collisional and radiative energy transfer [94, 95]. 

Radiative transfer of energy is responsible for the generation of Xrays and there are two types: 

characteristic radiation and bremsstrahlung radiation. The first happens when an incident electron 

collides with the electrons in the shell closer to the nucleus, often the K-shell in imaging [94, 96]. 

Then, an electron of a shell further from the nucleus replaces it. Since the binding energy of the 

inner layers is higher than the binding energy of the outer layers, the electron will lose energy as 

Xrays. It is called characteristic radiation because the energy difference between two nuclear layers 

is always constant (Figure 2-10), therefore the Xray energy will have a constant value for each 

electron transfer between the same two layers [94, 97]. Bremsstrahlung radiation results from the 

deceleration of an incident electron by the nucleus (Figure 2-10). Indeed, sometimes the accelerated 

electrons will penetrate the atoms without colliding with any electron, but the charge of the nucleus 

will attract the incident electron and change its direction and decelerate it at the same time. The 

energy lost during this deceleration will result in the formation of an Xray. Unlike characteristic 

radiation, the Xray energy resulting from this deceleration is not constant because the initial speed 

of the electron and the distance from the nucleus is highly variable. It has a large range of values 

that depends on the source kV [94, 98]. 

Another type of interaction in Xray imaging is the electromagnetic (EM) radiation [94]. This type 

of energy transfer involves the interaction of an Xray photon with an atom instead of an electron 

(a particle). Two EM radiation mechanisms are the photoelectric effect and Compton scatter. The 

first one consists in the complete absorption of a photon by the atom, the absorption of this energy 

provokes the ejection of an electron, usually on the K layer, which is called a photoelectron. Like 

in characteristic radiation, its replacement by an outer layer electron generates a characteristic 

Xray. The photoelectric effect is the principal source of contrast in medical imaging. The 
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probability of photoelectric effect is proportional to the effective (or average) atomic number (Zeff) 

of a material to the power 4. Therefore, a material like bone, a mineralized tissue, has higher Xray 

absorption than soft tissue [93, 94, 99]. 

 

Figure 2-10: Graphical representation of the Bremsstrahlung radiation intensity and the peaks of each characteristic radiation, 

and this for different source energy [94] 

The second EM radiation mechanism does not involve the complete absorption of the Xray photon 

energy. It interacts with a peripheral electron, which is then ejected from the atom, while the photon 

is redirected with less energy. The ejected electron is then called the Compton electron. The 

redirected photon can still interact with other atoms, which induces more radiation to unwanted 

regions inside the material, which can create poor contrast or noise in the image [93, 94, 100]. 

2.2.2 Xray Imaging and Micro Computed Tomography 

The previous sections discussed the several forms of radiation created by an Xray tube. Now this 

section will discuss how an image is formed using those Xrays. 

 When going through a bone sample, radiation will be absorbed by all the atoms present inside the 

volume. The atoms in air, bone and marrow having different density (or Zeff), will absorb Xrays to 

a different degree [94]. Then the Xrays that went through the sample will be converted to visible 

light by a scintillator and the visible light will be recorded by a photodetector [101]. For every 
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continuous exposition to an Xray beam, one 2D image can be formed. Xray imaging uses a grey 

color scale to represent Xrays absorption: white being a dense material that absorbs a lot of Xrays, 

and black being a low density material that absorbs little Xrays. Therefore, the contrast between 

different tissue in the sample will depend on their density [94]. 

Micro-computed tomography (microCT) is an imaging technique used to recreate a 3D image of a 

specimen using Xrays. Thanks to this relatively new technique, it is possible to see the internal 

structure of a sample without its destruction and some apparatus can reach a resolution lower than 

a micrometer [101]. The technique uses several 2D scans to make a 3D reconstruction of the sample 

(Figure 2-11). This way, multiple scans can be taken of the specimen under different conditions, 

for example, after several steps of mechanical loading [102].  

 

 

Figure 2-11: Different steps included in the Xray tomography process. From the Xray scanning of the rotating sample to the 3D 

reconstruction made from multiple 2D scans [101]. 

2.2.3 Contrast Agent 

A contrast agent is a substance used to enhance the contrast of a specific tissue from the other living 

tissues. Contrast agents used for the microCT scanning of bone tissue consist of a material able to 

absorb more Xrays than bone. On a greyscale, the colored structure would be of a bright white, 

hence creating a different contrast between bone and targeted structure (white on grey) than the 

one between bone and background (grey on black). To be able to absorb more Xrays than bone, 
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the agent must have a high atomic number [103], which means that it will most likely be heavy 

metals. Therefore, contrast agents are toxic and must be properly disposed of.  

The contrast agents used in recent studies for microCT scanning of bone microdamage are barium 

sulfate (BaSO4) and lead uranyl acetate [104]. The contrast agent is typically applied after the last 

mechanical loading of the sample, in which the bone marrow has been washed out for better 

penetration of the substance. The literature does not seem to agree on one specific staining duration 

when it comes to bulk staining of bone sample, but it usually goes from 2 full days to several weeks 

for the proper penetration of the agent [66, 105-107].  

2.3 Bone Microdamage 

Bone like any other material is subject to physical damage. Some damage is not visible to the 

human eye, called microdamage, but it is believed to play a role in fracture mechanism and bone 

remodeling [108]. Therefore, microdamage is studied by using mechanical testing to induce 

microdamage in a trabecular or cortical bone sample, and then by scanning the sample using 

different techniques to visualize the microdamage. 

2.3.1  Types of Microdamage 

Microdamage can be separated into two categories: linear microcracks and diffuse damage [109]. 

Microcracks are characterized as sharp cracks with a length of about 50-100um. They tend to 

accumulate, because of fatigue, during normal human activities like walking and running. Non-

organic engineering material would normally fail under excessive fatigue loading. However, bone 

microcracks have been shown to interact with the osteocytes and therefore have an important role 

in the bone remodeling process [108, 110]. It is also believed that there is a correlation between 

multiple mechanical properties and the formation and quantity of bone microcracks [110]. 

Diffuse damage is an agglomeration of sublamellar sized cracks (submicron sized) [108, 110, 111]. 

Diffuse damage was also shown to correlate with bone fragility [112-114]. More specifically, in 

studies by Diab and Vashishth [112-114], it was shown that donors with more diffuse damage had 

a longer fatigue life compared to the ones forming more microcracks. Therefore, it was concluded 

that diffuse damage has an important role in the mechanical properties of bone tissue. Moreover, 
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they showed that younger donors tend to form more diffuse damage and that the older ones tend to 

form more microcracks [112-114].  

2.3.2 Evaluation Techniques 

There are multiple techniques used to identify, characterize and quantify bone microdamage. They 

can be separated into two main categories: 2D and 3D techniques. They are both used to give 

qualitative and/or quantitative characteristics of the damage. 

2.3.2.1 2D Methods 

2D imaging techniques are generally destructive techniques that do not allow analyzing a complete 

sample volume. Indeed, thin slices of bone samples must be cut off and then imaged. This means 

that these techniques cannot be used in a longitudinal study to investigate the same sample under 

different conditions, such as incremental loading steps. Popular techniques include light 

microscopy, scanning electron microscopy, laser scanning confocal microscopy, and atomic force 

microscopy, used in early bone microdamage studies [104].  

The simplest and most common way to quantify micro-damage in 2D is to evaluate the crack 

density (#/mm2) of bone including linear microcracks or/and diffuse damage. This represents the 

density of cracks normalized by a bone area [107]. More parameters like the crack number, crack 

length, and crack surface density can also be measured.  

2.3.2.2 3D Methods 

Even though 2D methods were used for an extended period and are still used today, 3D methods 

have obvious advantages over 2D methods. First, 3D methods do not require the destruction of the 

bone sample, the whole volume is scanned using 3D imaging technique like Xray microCT. This 

opens new possibilities, like scanning the sample before and after mechanical testing or it can even 

undergo multiple deformations and multiple intermediate scans to see the progress of the internal 

structure [115]. Secondly, a volume can be visualized instead of an area. This means that the 

information of microcracks perpendicular to the typical 2D plane discussed in the previous section 

is now available. This gives complementary information on the development and characteristics of 

microdamage and allows quantifying a volume instead of an area.  
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A popular technique to quantify microdamage is to use a contrast agent with microCT. It helps 

identifying and locating linear microcracks and diffuse damage. Moreover, the quantification of 

microdamage, while using a contrast agent, can be done using an image processing software. A 

thresholding segmentation is used to create a volume of interest (VoI) for the bone tissue and the 

stained microdamage since they have different grey intensities. The ratio of damage volume to 

bone volume (DV/BV) is often used to measure the amount of damage in bone, which is simply a 

ratio of the two segmented VoI. Other characteristics like crack density, damage surface (DS), and 

average crack dimension can still be extracted with 3D techniques [104, 116, 117]. 

While the use of a contrast agent makes it possible to visualize the area of micro-cracks and diffuse 

damage, which would normally be hard to see at the image resolution, it also has its drawback. 

Since the sample is not cut into a thin slice, sometimes the contrast agent will not be able to 

penetrate micro-cracks that are not connected to the surface area of the bone [118]. Moreover, the 

bulk staining period can be long, up to 2 to 3 weeks, and since it uses heavy metals. It can also be 

toxic to human and aquatic life [119]. The last disadvantage is that sometimes the agent will stain 

more than the microdamage itself. Indeed, it can also penetrate bone microstructure like lacuna and 

mark them as micro damage [107, 120].  

2.3.2.2.1 Without Contrast Agent 

The improvement in microCT resolution and computer hardware are opening new possibilities for 

the quantification of microdamage without a contrast agent. Some have developed an algorithm 

that uses different types of filters to automatically segment microdamage [6-8]. 

A first technique, based on mathematical morphology, applies a sequence of morphological 

dilations and erosions, on a binary segmentation of the image, to fill the area inside the cracks with 

pixels (Figure 2-12) [6]. First, a dilation kernel is applied. Its size and the number of times it is 

applied will determine the biggest possible crack detected by the method. Afterward, an erosion 

kernel of the same size and shape is applied the same number of times plus one, to retrieve a binary 

mask of the same size or slightly smaller than the initial segmentation and to close the cracks at its 

extremity. Although its simplicity, this technique does not discriminate crack-like features and 

often results in false positive cracks segmentation. 
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Figure 2-12 : A sequence example of a single dilation and erosion to close the space between two black rectangle ( which 

represent the bone on each side of a crack). The blue circle represents a kernel of circle shape and the red is the area created by 

the morphological operations. On the left is the initial binary image. In the middle is the image following the dilation 

operation.On the right is the image following the erosion operation 

Another technique consists of using the advantages of having a 3D information about the cracks. 

Microcracks being planar structures, a steerable filter is used to extract the relevant information 

[121], which is a filter that will result in high intensity around planar features. Combining the grey 

pixel intensity of the initial image to the steerable filter response using a nonlinear operation, they 

are then able to segment microcracks using thresholding. Lastly, cracks are separated from 

accidently segmented non-cracks features, like lacunae, using two thresholds: one on the anisotropy 

of the detected structures, and one on the ratio of the bounding box volume to the actual structure 

volume. By combining both thresholds, they can avoid rejecting long and curved cracks that would 

be rejected if only one of the two criteria was used [7, 8]. Both studies using this method were 

using Synchrotron radiation microCT as imaging modality which is expensive and not readily 

available. Moreover, it still made mistakes if microcracks were connected to pores, it would 

segment the entire pores as microcracks [7, 8]. 

2.4 Deep learning 

With the recent improvement of microCT scanners now reaching a spatial resolution of less than a 

micrometer and presenting a noise level sufficiently low, this imaging modality becomes more 

interesting for microdamage detection and analysis. This opens new opportunities for automatic 

segmentation without contrast agents. In contrast to classical segmentation techniques requiring 

empirical parameter tuning, supervised machine learning algorithms have the ability to learn a 

particular task (here segmentation) from an annotated set of images, called a training dataset. 

Currently, the state-of-the art in machine learning is deep learning, which is a subfield of machine 
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learning, it consists of multiple hidden layers of artificial neurons trying to simulate the capacity 

of the human brain to interpret different data types, like images [122, 123]. 

Artificial neural networks (ANN) or neural networks (NN) are algorithms based on the biological 

neurological system. A biological neuron receives an input at its cell body. If this input signal is 

above a certain threshold, the neuron will send a signal through its axon to the terminal synapses. 

Therefore, neurons are either sending or not sending a signal, no in between [124]. Similarly, an 

artificial neuron gets a series of inputs and depending on its activation function and the weights 

attributed to each input it computes an output value [125]. While biological neurons’ output is 

binary, artificial neurons can output a continuous numerical value. The inspiration from a 

biological neuron can be observed in Figure 2-13. 

 

Figure 2-13: Biological neuron (left): the dendrite receiving several input signals and the cell body processing the signal. If the 

sum of the inputs reaches the threshold, the cell body sends an action potential through the axon towards the synapses [126]. 

Artificial neuron (right): several inputs xi are received and are attributed a weight wmi. Then the neuron computes an output value 

sm using its programmed activation function f [125]. 

A NN is composed of multiple connected artificial neurons, which can get input and pass away 

outputs from neurons to neurons. Generally, these networks are arranged in layers. From a simple 

system composed of one input layer, one hidden layer and an output layer to more complex systems 

composed of several hidden layers, which are called deep layers neural networks and are the types 

of NN used in deep learning [127]. 

To train themselves, NN will go through their layers forward and backward. This process is called 

forward and backward propagation. During forward propagation, the network uses the current 

weights and activation functions to go from left to right, from the input training data to generate 

corresponding outputs. The latter are then compared to reference values associated to the training 
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data, using a loss function to be optimized. Then, the backward propagation is the process of 

computing the gradient of the loss function, and propagating it from right to left adjusting the 

neurons’ weights [128]. 

2.4.1 Fully convolutional neural network 

One type of ANN used in image analysis is the convolutional neural network (CNN) (Figure 2-14). 

This network is generally composed of a succession of several convolution layers, pooling layers, 

and fully connected layers [129]. A convolutional layer is a series of image filters, also called 

kernels, that are applied to the input to extract its feature maps, which are extracted information 

about the image. 

 

 

Figure 2-14: CNN architecture from the input on the left to the classification output on the right [130]. 

The center of the filter is applied to every pixel of the input and the mathematical result is one 

single value for every pixel the kernel is aligned with(Figure 2-15) [131]. The values inside the 

kernels are the convolutional layers’ weights, which can be modified during training. Depending 

on the number of convolution filters used, it can results in many feature maps. Therefore, to counter 

this expansion in terms of features information, the resolution of each feature maps must be 

decrease. Hence why pooling layers are useful. 
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Figure 2-15: Application of a 3x3x1 kernel on a 5x5x1 input with padding to keep the same size at the output. Darken squares 

represent the pixels involved in the current convolution. The input image is in blue and the output feature  map is in green [130]. 

 

The process of pooling layers, also called downsampling, is a way to reduce the dimension of the 

feature maps. To do so, a kernel similar to the convolutional layers is used. However, it does not 

have any weight. Instead, it uses an aggregate function to populate a smaller size output. The most 

popular filters are max pooling and average pooling. Max pooling outputs the pixel with the biggest 

value inside the filter and average pooling outputs the average of all the pixel’s value within the 

filter [131].  

Fully connected layers are composed of neurons layers, where every neuron of one layer is 

connected to every neuron of the previous layer [131]. Fully connected layers are composed of 

nodes, which can only give one value at its output. Therefore, CNN outputs are generally only 
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giving global information about the image, like  its class (is it an image of a cat or one of a dog ?), 

and not giving an image as its output [132]. If segmentation is desired, fully convolutional neural 

networks (FCNN or FCN) come into play, a network only composed of pooling, upsampling and 

convolutional layers [133]. Upsampling layers are a set of deconvolutions to increase the size of 

the feature maps by adding zeros as padding between the pixels value to ensure that the NN output 

is the same size as the input [134]. 

An example of a FCNN architecture is shown in Figure 2-16; this one is called the FCN32, which 

goes from the smaller feature map to the full-size output in only one upsampling layer. However, 

the result would only be a rough segmentation of the object learned by the FCN [135]. To improve 

the quality of the segmentation, a gradual upsampling can be done instead [136]. These models are 

called FCN16 and FCN8, and use multiple layers of upsampling to merge the features from earlier 

convolution layers to have a more refined segmentation [137]. 

 

Figure 2-16: FCNN architecture showing process from input image (left) to the output semantic segmentation(right) [138]. 

Deep learning NN have shown impressive performance when they are trained on an important 

amount of data. An example of this are dataset trained using ImageNet, a set of thousand images 

of different classed with quality controlled and human annotated [139]. Several of the best models 

presently achieving an accuracy over 90 % using this ImageNet dataset. For example there is Model 

Soups with 90.94% [140] and DaViT-G with 90.4% [141] This why deep learning is consider the 
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state of the art for computer vision tasks it as shown remarkable performance for image 

classification and it is now extended to object detection and semantic segmentation. 

2.4.2 CNN for object detection 

Object detection is the combination of two common tasks in image analysis, object classification 

and object location. Indeed, given a list of class names and images with bounding boxes marked 

with the correct class identification for their training, the NN can learn to identify and mark the 

location of those objects in new images with high accuracy. The CNN is not limited to one class 

per training, it can be trained to detect a multitude of different classes [142]. There exist several 

architectures using different techniques for object detection, but generally, it works as follows. The 

network extracts the feature map using convolution layers and identifies the possible objects in the 

images. It then tries to classify what the object could be and gives its answer with a certain degree 

of confidence, going from 0 to 100%. The object is further localized using a bounding box. The 

bounding box information can be in different formats, but it is usually given with the following 4 

values:  the x,y coordinates of the center and width and height of the bounding box[143]. 

The performance of object detection models is commonly evaluated using average precision (AP) 

or the mean of the average precision (mAP). The AP is a common way to relate both precision and 

recall, which are two other performance metrics used in image processing that are based on the 

relevant information found (Figure 2-17). Precision describes how many segmented pixels are 

relevant to the application while recall describes how many relevant pixels are segmented. AP is 

the area under the precision-recall curve given by the integral in equation (10) [144]: 

𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑𝑟
1

0
 (10) 

where p(r) is the precision expressed as a function of the dependent variable r, representing recall. 

The precision and recall are both computed from the numbers of true positive (TP), false positive 

(FP) and false negative (FN). A TP is a pixel of the reference object detected correctly as part of 

the object and a true negative (TN) is a pixel that is not part of the reference object and not detected 

as such by the NN. A FP is a pixel of the reference object detected incorrectly outside of the object 

and a FN is a pixel of the reference object that was  not detected as such by the NN. With these 
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quantities, we can now measure precision and recall with the following equations (11) and (12) 

[145]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11), 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

 

Figure 2-17: (left) outer blue rectangle is the frame of the full image and the inner black rectangle is the reference bounding box 

of the object to be detected in the image. The green shaded square corresponds to the bounding box actually detected by the 

model. TP are in dark green, FP in light green, FN are in  dark red, and  TN in pink. (right) fractions representing what precision 

and recall is computing. 

 

However, the bounding box around an object can be subjective to the user. Thus, using metrics on 

a pixel-per-pixel basis is not necessarily adequate. Indeed, since two bounding boxes can be slightly 

shifted and still indicate the correct answer, another metric needs to be used: the intersection over 

union (IoU) (Figure 2-18) [143]. Like its name says, the IoU is the ratio of the intersection of the 

ground truth bounding box and the detected bounding box (corresponding to the number of TP 

pixels), to the union of both regions, (corresponding to the total number of TP, FN, and FP pixels) 

(equation 13): 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 (13) 
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Figure 2-18: (left) outer blue rectangle is the frame of the full image and the inner black rectangle is the reference bounding box 

of the object to be detected in the image. The green shaded square corresponds to the bounding box actually detected by the 

model.. TP are in dark green, FP in light green, FN are in dark red, and  TN in pink. (right) fraction representing what IoU is 

computing. 

This metric ranges from zero to one, one being the perfect intersection between the two sections. 

Since the two bounding boxes might differ slightly and still be an excellent prediction, using an 

IoU threshold can be a relevant choice [146]. For example, if an IoU threshold is set to 0.5, only 

half the reference and detected bounding boxes need to intersect for the detected bounding box to 

be considered a TP detection. This way instead of comparing every pixel for the calculation of the 

precision and recall, every box can count as a TP, TN, FP, or FN detection, hence giving 

representation of the NN performance at the object level, instead of the pixel level. 

Two major families of object detection algorithms are presently used: region-based CNN family 

and YOLO family. Region-based CNN can be split into 3 steps. First, there is the extraction of 

region proposals, which are around 2000 bounding boxes of potential objects. Second, the feature 

maps for the proposed regions are computed via convolution layers. Last, the regions are classified 

according to the list of possible objects learned [147]. This proposal process makes this CNN 

considerably slow. Therefore, it was improved into a faster-RCNN, which first computes the 

feature maps and then uses it to propose regions where there is possibly an object. This reduces 

considerably the number of proposals, therefore increasing the speed of the NN [148]. In contrast, 

CNN in the YOLO family works by first dividing the image into a grid with equally sized squares. 

Then, the cells are responsible for detecting an object and give a confidence score, which 
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determines how sure the NN is that there is an object inside. Moreover, the grid cells are also 

responsible to predict a class probability map, which is the probability of that region being part of 

a specific class given to the NN as input. Then, both are combined by multiplying the class 

probability and prediction confidence to give the class-specific confidence of the detected region 

[149]. The Yolo family has 3 major advantages over the R-CNN family. Firstly, the model is fast. 

Indeed, since the detection is processed as a regression problem, it performs bounding box 

prediction and object classification using a single convolution network. Secondly, it has a general 

vision of the image when making its predictions, which is not the case for region-based predictions. 

Lastly, YOLO is learning a more generalized representation of objects, therefore it does a better 

job when used in new domains, like micro-cracks detection [150]. 

2.4.3 FCNN for Semantic segmentation 

Semantic segmentation is a much more complex process than object detection [151]. Instead of 

working on different regions of the image to detect the general location of objects, it provides a 

classification to every single pixel in the input image. Since the output has to be an image of the 

same size as the input, semantic segmentation has to be done by a FCNN [152]. 

Performance metrics for semantic segmentation are numerous. The most popular ones are accuracy 

(Figure 2-19), IoU, and Dice score (also called F1 score) (Figure 2-20). The pixel accuracy is the 

percentage of pixels correctly identified in the image (equation 14), where TP and TN rates are 

computed at the pixel level :  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
 (14) 
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Figure 2-19: (left) outer blue rectangle is the frame of the full image and the inner black rectangle is the image to be segmented. 

TP are in dark green, FP in light green, FN are in  dark red, and  TN in pink. (right) fraction representing what accuracy is 

computing. 

IoU was explained in the previous section as the percentage of intersection over union between two 

rectangular bounding boxes. In the context of semantic segmentation, there is no rectangular 

bounding boxes, the IoU is measured as the percentage of intersection per union of the reference 

segmentation and the segmentation provided by the NN. Dice score is another technique to measure 

the success of a segmentation (equation 15). However, while accuracy is used when the classes are 

balanced and when false negatives have not high impacts for the application, the Dice gives more 

importance to false negatives than accuracy [153].  

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (15) 
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Figure 2-20 : (left) outer blue rectangle is the frame of the full image and the inner black rectangle is the image to be segmented. 

TP are in dark green, FP in light green, FN are in  dark red, and  TN in pink. (right) fraction representing what Dice score is 

computing. 

The most commonly used FCN in biomedical applications is the Unet. It was proven to perform 

well even with  small annotated datasets, which is often the case when working with biomedical 

images. The network gets its name from the shape of its architecture (Figure 2-21). The symmetric 

structure is composed of a contracting branch on the left and an expanding one on the right. The 

left path is like the typical CNN with a series of convolution and pooling layers. In contrast, the 

right path includes one deconvolution layer for every pooling layer in the contracting branch. 

Moreover, after every deconvolution, the feature maps from the contracting path are copied to 

avoid the loss of features [154]. The contracting branch allows the extraction of features, answering 

the questions “what’s in the image”, whereas the expanding branch allows for the localization of 

the features in the image, answering the question “where are these features present in the image”. 
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Figure 2-21: Unet architecture where each blue boxes are features map and whites boxes are copied feature maps. The arrows 

show the flow of the forward passing [154]. 

2.4.4 Application for damage segmentation 

To our knowledge, deep learning semantic segmentation has never been applied to bone 

microdamage segmentation in microCT images. However, the topic is popular for infrastructure 

maintenance using drone pictures [155-159]. There are even examples of more typical engineering 

material, such as iron ore pellets, scanned in a microCT scanner [160]. 

Structures like roads and bridges have their pictures taken using different techniques, one of them 

using drones to reduce human labor. Then the pictures are used to train and test neural networks 

for the segmentation of cracks in concrete or asphalt [155, 156]. There is even an open source 

dataset to compare the performance of new deep learning models in the same conditions [161]. 

This kind of collaboration gives the opportunity to develop models specialized for damage 

segmentation, by either modifying existing models, like Unet [157-159], or by developing new 

custom networks [162, 163]. More recently, a two steps method was developed by combining 

object detection and semantic segmentation to improve the models both in accuracy and processing 
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time [164, 165]. These models have shown interesting results with the ability to differentiate 

between cracks and crack-like features (Figure 2-22). 

 

Figure 2-22: region based object detection(left) and semantic segmentation focused inside the detection regions (right) [165] 

In contrast, drone pictures are completely different from bone microCT images, which have 

different sources of noise and a different color spectrum. The studies using deep learning for 

damage segmentation in microCT images are more limited than pavement maintenance, but there 

are still some examples in the literature [166, 167]. One is even showing success in a porous 

material, more precisely iron ore pellets [160]. However, materials studied in these papers are still 

much less porous than trabecular bone and their structures are not as complex. Moreover, there is 

no trained NN or open-source dataset on which to train and test new NN for bone microdamage, 

making the application difficult to explore. 

2.5 Digital Volume Correlation 

Strain can be measured in 2D in one or multiple planes using strain gauges or extensometers. These 

techniques are however limited to surface strain and the overall strain of the sample. In a complex 

architecture like trabecular bone, in which the microarchitecture is anisotropic, the deformation is 

not equally distributed [168]. It is then impossible to measure the strain map inside the sample 

using these methods. This is why a method called digital image correlation (DIC) was developed 

in the early 1980, allowing to measure displacements of the internal structure [169, 170]. 2D images 

at different stages of the sample deformation can be compared to each other and groups of pixels 
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are tracked across them (Figure 2-23). To track subdivisions of pixels, different correlation 

functions are used[171], making it possible to track axial and shear strain separately[172]. Hence, 

the algorithm can measure the 2D vector field of displacement and strain inside the sample and 

map them[173]. The results are graphically represented using a colour legend, correlating 

displacement or strain magnitude to a colour. Generally, the region of high displacement will be 

represented by red pixel and the region of low displacement will be represented by blue pixel. 

However, it is not a strict rule and other colour legend can be used, as long as they have a range of 

colour big enough to give in detail the different displacement values in each subset. 

 

Figure 2-23: (a) RoI showed by the green area. Subsets of pixels separated by the yellow boxes. (b) Showing the correlation 

computation between a single subset of pixels between unloaded and loaded images[171]. 

DIC method has the limitation of being of 2D approach providing a limited evaluation of the 

displacement inside a sample volume. This is where digital volume correlation (DVC) comes into 

play. This technique is similar to DIC but works in 3D. The algorithm uses cubic subpixels groups 

instead of squared ones like in DIC and gives a 3D strain map(Figure 2-24)[102]. This relatively 

new technique opens new opportunities to study the fractures mechanisms and load distribution in 

the complex microarchitecture of the trabecular bone[10, 174-176]. 
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Figure 2-24: 3D strain map of a trabecular bone sample[177]. 
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CHAPTER 3 PROJECT RATIONALE 

Following the literature review, the project rationale can be summarized as follows: 

• Osteoporosis affects bone differently depending on the stage of the disease. Being a silent 

disease, understanding the changes in mechanical properties in early stages of the disease 

could help diagnose symptoms early and prevent severe fractures. Since trabecular bone is 

more affected in early stages, it would be a logical choice to study its mechanical behavior 

for future diagnostic technology. 

• Contrast agents are commonly used for bone microdamage evaluation. Generally, they only 

give an approximation of the microdamage volume, and they can also require a long 

staining process. Moreover, they often can be toxic since they use heavy metal for Xray 

absorption. Therefore, a replacement for contrast agent could make the process more 

accurate, less labor intensive and safer. 

• Damage segmentation, using deep learning, is widely used in pavement maintenance using 

drone pictures and provides very good accuracy. While bone is a more porous material, 

cracks still have features different than other bone structures and can be differentiated from 

the other features. 

• Damage accumulation could be tracked through increasing loading using deep learning and 

give the opportunity to track the damage accumulation through multiple loading. 

• Bone mechanical properties, such as Young’s modulus, can be characterized from 

mechanical testing.  

• Digital volume correlation allows visualizing 3D strain maps inside the bone sample. To 

do so, several increments of displacement are applied to the sample and microCT imaging 

is completed at each increment. This method is used to investigate fracture mechanics in 

bone samples. 

There is currently no study simultaneously combining damage quantification, mechanical 

properties, and 3D strain map. Therefore, current experimental procedures do not include all the 

information about the mechanical behavior of bone samples. Using this project to develop an ex 

vivo 3D experimental platform to study all three components could open the possibility to draw 
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new information about the bone mechanical behavior and help in the development of future 

diagnostic technologies. Moreover, using deep learning give the opportunity to track the damage 

accumulation through multiple loading and avoid the use of contrast agents. 

3.1 Main objective 

The main objective of this project was to develop a 3D ex vivo experimental platform to identify 

the relationship between microdamage, strain patterns and mechanical properties in trabecular bone 

samples under quasi-static compression loading. 

3.2 Specific objectives (SO) 

1. Develop an imaging procedure of trabecular bone samples using the Xray microCT scanner 

(Zeiss Xradia 520 versa). 

2. Develop a sample preparation and mechanical testing procedure to be used inside the 

microCT scanner that can evaluate bone samples mechanical properties. 

3. Develop a method for the evaluation of bone microdamage using a deep learning algorithm. 

4. Develop a method to map the 3D internal displacement  

3.3 Research Questions 

This project aims to answer the following research questions: 

• What is the potential of deep learning algorithms in the evaluation of bone microdamage in 

trabecular bone samples? 

• What additional information can be drawn by including digital volume correlation in the 

study of bone microdamage quantification vs mechanical properties? 

3.4 Thesis organization 

This thesis is divided into seven chapters. It begins with an Introduction in Chapter 1, followed by 

a literature review of bone properties, Xray imaging, bone microdamage, deep learning and DVC 

in Chapter 2. Chapter 3 explains the project rationale as well as the main and specific objectives of 

the project. Chapter 4 includes a scientific article presenting the feasibility of deep learning for 
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bone damage quantification. Chapter 5 introduces a complementary study presenting the results of 

a DVC algorithm. Chapter 6 covers the general discussion. Lastly, Chapter 7 concludes on the key 

points of the project and explores future ideas for the continuation of this research. 
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Abstract 

Introduction: One of the current approaches to improve our understanding of osteoporosis is to 

study the development of bone microdamage under mechanical loading. The current practice for 

evaluating bone microdamage is to quantify damage volume from images of bone samples stained 

with a contrast agent, often composed of toxic heavy metals and requiring long tissue preparation. 

This work aims to evaluate the potential of linear microcracks detection and segmentation in 

trabecular bone samples using well-known deep learning models, namely YOLOv4 and Unet, 

applied on microCT images. 

Methods: Six trabecular bovine bone cylinders underwent compression until ultimate stress and 

were subsequently imaged with a microCT at a resolution of 1.95 um. Two of these samples 

(samples 1 and 2) were then stained using barium sulfate (BaSO4) and imaged again. The unstained 

samples (samples 3-6) were used to train two neural networks YOLOv4 to detect regions with 

microdamage further combined with Unet to segment the microdamage at the pixel level in the 

detected regions. Four different model versions of YOLOv4 were compared using the average 

Intersection over Union (IoU) and the mean average precision (mAP). The performance of Unet 

was also measured using two segmentation metrics, the Dice Score and the Intersection over Union 

(IoU). A qualitative comparison was finally done between the deep learning and the contrast agent 

approaches. 

Results: Among the four versions of YOLOv4, the YOLOv4p5 model resulted in the best 

performance with an average IoU of 45,32% and 51,12% and a mAP of 28.79% and 46.22%, 

respectively for samples 1 and 2. The segmentation perfomance of Unet provided better IoU and 

DICE score on sample 2 compared to sample 1. The poorer performance of the test on sample 1 

could be explained by its poorer contrast to noise ratio (CNR). Indeed, sample 1 resulted in a CNR 

of 7,96, which was worse than the average CNR in the training samples, while sample 2 resulted 

in a CNR of 10,08. The qualitative comparison between the contrast agent and the deep learning 

segmentation showed that two different regions were segmented by the two techniques. Deep 

learning is segmenting the region inside the cracks while the contrast agent segments the region 

around it or even regions with no visible damage. 

Conclusion: The combination of YOLOv4 for microdamage detection with Unet for damage 

segmentation showed a potential for the detection and segmentation of microdamage in trabecular 

bone. The accuracy of both neural networks achieved in this work is acceptable considering it is 

their first application in this specific field and the amount of data was limited. Even if the errors 

from both neural networks are accumulated, the two-steps approach is faster than the semantic 

segmentation of the whole volume.  
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4.1 Introduction 

Over 200 million people in the world are affected by osteoporosis, including 33% women over 50 

years old and 20% men during their lifetime (Sözen el al., 2017). In Canada, there were an 

estimated 2.2 million people over 40 years old suffering from osteoporosis in 2015-2016 (Canada, 

2021) and an estimated 10.2 million people over 50 years old in the United States in 2010 (Wright 

et al., 2014). Both represent about 10% of their respective demographic. The pathology is 

characterized by a reduction in bone density and degradation in bone micro-architecture, leading 

to an increased risk of fracture for the diseased (Tu et al., 2018). Unfortunately, current knowledge 

does not allow the early detection of the disease. Indeed, because of the absence of symptoms 

before fracture, it is considered a silent disease (Lems & Raterman, 2017). Moreover, fractures can 

have catastrophic consequences in older patients (Gagnon & Lafrance, 2011). However, new 

research on bone tissue has led to a better understanding of the fracture mechanisms (Donahue & 

Galley, 2006; Presbítero et al., 2017).  

Bone microdamage analysis can be used to infer on bone quality. The accumulation of 

microdamage in bone leads to the reduction of its mechanical properties, such as bone rigidity  

(Donahue & Galley, 2006). Studying the relationship between bone microdamage and mechanical 

properties helps advance knowledge on osteoporosis (Presbítero et al., 2017). Current practices 

often use mechanical loading to induce microdamage in bone samples and further study the 

relationship between different physical and mechanical properties, such as bone density, rigidity, 

bone morphological parameters and microdamage (Nagaraja et al., 2005; Tang & Vashishth, 2007; 

X. Wang et al., 2007). The presence of bone microcracks was first reported by Frost (Frost, 1960). 

Since then, two types of microdamage were identified: linear microcracks and diffuse damage. The 

first is similar to a typical engineer crack but at the micrometer level, and the latter is a cluster of 

very small cracks at a sub lamellar size (Seref-Ferlengez et al., 2015). They are believed to have 

different roles in bone mechanical properties and remodeling (Herman et al., 2010). 

Several years after the discovery of microdamage, protocols were developed to study bone 

microdamage by staining samples with a contrast agent and imaging them using 2D imaging 

techniques (Burr & Stafford, 1990). However, they came with their set of limitations, since they 

only provided information about the microdamage structure in 2D and required samples 

destruction. More recently, imaging protocols using Xray microCT scanner have been developed 
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to study bone microdamage in 3D. These techniques allowed quantifying the accumulated damage 

volume using Xray absorbent contrast agent during in vitro or ex vivo loading (Turnbull et al., 

2011; X. Wang et al., 2007; X. Zhang et al., 2018). 

While the use of contrast agents makes it possible to visualize areas of microcracks and diffuse 

damage, which would normally be smaller than the image resolution, it also has its drawback. The 

microdamage can be internal to the bone tissue, preventing the contrast agent to penetrate 

microcracks that are not connected to the surface area of the bone. Moreover, the agent can stain 

more than the microdamage itself. Indeed, it can also penetrate bone microstructure, like lacunae, 

and mark them as microdamage (Landrigan et al., 2011; Leng et al., 2008). Also, in the case of 

cortical (or compact) bone samples, the agent might have more problems penetrating the sample 

(Presbitero et al., 2019). Lastly, the bulk staining period can be long and this method mostly use 

heavy metals, which can be toxic to human and aquatic life (Leng et al., 2006).  

A recent technique to identify and quantify microdamage is semantic segmentation using deep 

learning (L. Zhang et al., 2016). Although deep learning is used for bone fracture detection in 

clinical settings (Lindsey et al., 2018), the literature does not show prior usage of semantic 

segmentation for bone microdamage. Deep learning is commonly used in construction and 

maintenance to optimize manual inspection. Structures made of concrete, asphalt or similar 

material, which require frequent maintenance, are photographed using drones and pictures are 

further analyzed using a deep learning model (Jiang et al., 2020; Munawar et al., 2022). Neural 

networks (NN) can even be specifically modeled for pavement crack segmentation (Y. Liu et al., 

2019; A. Zhang et al., 2018) or they can be based on existing models, which can be optimized for 

crack segmentation (F. Liu & Wang, 2022; L. Wang et al., 2020; Lingxin Zhang et al., 2021). Crack 

segmentation using deep learning could be applied to the detection of bone microdamage. Indeed, 

with the improvement of microCT imaging to a resolution at a sub-micron level (Coulombe et al., 

2022; T. Zhang et al.), there is a potential for the detection of microdamage using a deep learning 

model. The closest application of deep learning for microcracks in trabecular bone aimed at 

classifying  cracks for fracture mechanics but not at segmentating them (Shen et al., 2021). 

However, deep learning based segmentation comes with its own set of limitations for applications 

on trabecular bone microCT images. Firstly, in contrast with pavement drone pictures commonly 

used in deep learning segmentation, the background of trabecular bone is not uniform. Indeed, 
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pavement made of asphalt or concrete has little to no visible pores (Chen et al., 2021), making it 

easier to detect cracks compared to trabecular bone, a highly porous material with background of 

grey intensity similar to cracks (Toppets et al., 2004). Even though deep learning segmentation of 

cracks was done on microCT images of iron ore pellets, the pores were generally small and circular 

and did not compose most of the background like in trabecular bone (Bezerra et al., 2020). 

Secondly, microCT imaging at high resolution can be challenging by itself. Since it requires smaller 

objectives, a longer exposition time must be used to have a sufficiently low noise level in order to 

have proper contrast between bone and cracks (Alsamadony et al., 2021; Chen et al., 2021; 

Heyndrickx et al., 2020), making the process of collecting a sufficient amount of data expensive, 

both in scan time and image processing time. The performance of a convolutional NN is highly 

dependent on the amount of data used during training. In machine learning, there is normally an 

open-access dataset that can be used to train and benchmark a new NN (Lin et al., 2014; Shi et al., 

2016). This is not the case for bone microdamage, making it difficult to have a performing NN 

with a small dataset. Because of the limitations listed above, a simple semantic segmentation would 

not be sufficient for bone micro damage, and a more robust approach should be developed to 

properly demonstrate the potential of deep learning segmentation. In the literature, a two-step deep 

learning approach for crack segmentation was developed to improve the performance (Chen et al., 

2021; Feng et al., 2020; Huang et al., 2022; Kalfarisi et al., 2020; J. Liu et al., 2020; X. Zhang et 

al., 2019). The first step consists in detecting the region of interest containing the cracks with an 

object detection NN and the second is the semantic segmentation, classification of pixels, of the 

cracks inside the region of interest using a segmentation NN. The bounding boxes (first step) are 

used as masks for the second step, hence limiting the searching areas for the semantic segmentation 

NN. This two-step approach reduces errors associated with the step of segmentation NN. It also 

improves the detection speed and reduces the segmentation of crack-like features, which could be 

erroneously  segmented using semantic segmentation only , since it is a much more complex 

process (J. Liu et al., 2020). In addition, a network like Unet is an excellent starting point for this 

work since it is designed to work in biomedical applications using imaging techniques like Xray 

or MRI. It uses integrated data augmentation to compensate for the smaller datasets (Ronneberger 

et al., 2015).   
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This work aims to evaluate the potential of linear microcracks detection and segmentation in 

trabecular bone samples using well-known deep learning models, namely YOLOv4 and Unet. 

More specifically, the work presented in this paper has the following contributions: 

1. Two-step segmentation of linear microcracks using two consecutive CNN models: Darknet 

YOLOv4 for the detection of regions with cracks, each region being defined by a bounding 

box, and then a Unet for the segmentation of the cracks inside the pre-defined bounding boxes, 

as opposed to the whole image. This approach allows to increase the segmentation speed and 

to reduce the false segmentation of structures similar to microcracks. 

2. Quantitative performance analysis of both models, taken individually and further combined. 

3. Inter-user comparison of reference segmentation, to evaluate the impact of human error, and 

computation of the datasets as well as contrast to Noise ratio (CNR) analysis to evaluate 

impacts of image quality. 

4. Qualitative comparison of the deep learning segmentation method with the contrast agent 

method, considered as the gold standard. 

4.2 Dataset preparation 

Deep learning, in its supervised form, requires a large amount of data to train a model. Usually 

publicly available very large datasets are used to this end. However, in the context of this study, 

deep learning is applied in a niche field where no domain-specific dataset exists. Therefore, the 

first step of this study was to build a dataset, i.e. bone samples with mechanically created 

microdamage, to train and test our models. 

4.2.1 Sample preparation 

Six trabecular bone cylinders of 8.3 mm in diameter were extracted from bovine tail vertebrae 

using a diamond core drill (Diamon Production, Canada) mounted on a drill press. The core drill 

was kept under constant irrigation with distilled water to reduce the heat created by the cut (Kogawa 

et al., 2018). The six samples were cut at a length of 7 mm using an isoMet 1000 (Buehler, Illinois) 

at a speed of 250 rpm. Obtained cylindrical samples had their bone marrow removed in two steps. 

First, most of the marrow was removed using a Waterpik flosser (Waterpik, Colorado) while 

samples were submerged in distilled water. Secondly, the remaining marrow was removed using a 

15 minutes ultrasonic bath at 20 kHz, while kept on ice to avoid reaching high temperature. 

Samples were further stored in saline solution and frozen at -20 Co until mechanical loading (Belda 

et al., 2020; Green et al., 2011).  
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4.2.2 Mechanical test  

Quasi-static compression loading was carried out on each bone cylinder. To do so, the sample was 

thawed out overnight at 4 oC the day before mechanical testing. The sample was then fixed inside 

a Deben micro tensile testing system (Deben, UK), following measurement of its thickness and 

diameter. Following a preload of 20 N, the samples were loaded at a rate of 0,5 mm/min until the 

force-displacement curve reached the ultimate stress, before the failure of the sample. The 

procedure ensured enough damage for image analysis without the complete failure of the bone 

microarchitecture.  After loading, the samples were removed from the testing system and rested for 

at least 30 minutes before being imaged (Nagaraja et al., 2005; Tang & Vashishth, 2007; X. Wang 

et al., 2007). 

4.2.3 Contrast agent and imaging 

The samples were split into two groups: the testing group (samples 1 and 2) and the training group 

(samples 3 to 6). Both groups were initially imaged with a microCT scanner (Xradia 520 Versa, 

Zeiss, Germany) at a resolution of 1.95 μm with a FOV of 3.95 mm3. The source was set at a 

voltage of 60kV and a power of 5W, giving a current of 83.9 uA. Imaging was done on 3201 

rotations with an exposition time of 4 seconds. The two testing samples were subsequently stained 

with barium sulfate following the procedure given by Wang (X. Wang et al., 2007). To do so, 

samples were submerged under vacuum for 48 hours in a solution of 0.5M BaCl2 then switched to 

a solution of 0.5M NaSO4 for 48 hours under vacuum. After staining, these two samples were 

imaged again with the same microCT parameters. The zone where the first images were taken was 

relocated using the image analysis software Dragonfly (Object research systems, Canada) and the 

coordinates were imported in the Zeiss software for the microCT scanner. 

For all samples, a sub-group of images were randomly selected in the plane transverse to the 

loading axis (plane xz), corresponding to about 10% of the images in that plane. The number of 

images extracted per sample varied depending on the amount of damage accumulated in the sample 

volume. Images with and without damage were included in the dataset. The training dataset was 

composed of all the images extracted from the four training samples (735 images), and the testing 

dataset was composed of all the images extracted from the two testing samples (349 images). 
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4.3 Methods 

4.3.1 Data annotation 

All images were manually annotated by one trained operator (user 1) at two levels (Figure 4-1).  At 

the global level the bounding boxes were identified for YOLOv4 (Figure 4-1A). For each image, a 

text file containing the information about the bounding boxes was saved, with each line containing 

the information of a bounding box. It included the corresponding class, center’s x and y 

coordinates, box’s width and height. At local level, DragonFLy was used for the manual 

segmentation of the linear microcracks’ pixels, inside the bounding boxes, for Unet (Figure 4-1B). 

Three classes were considered in the segmentation: background, bone and linear microcracks. 

The annotations performed by user 1 were considered as the reference for training and testing the 

models. A second user (user 2) provided manual segmentations at the pixel level for the images in 

the testing sub-group. This second set of annotations was not used to train nor to test the models, 

but to evaluate the inter-operator variability in terms of Intersection of Union (IoU) and Dice score: 

𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
             𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =

2∗|𝐴∩𝐵|

|𝐴|+|𝐵|
 , 

where A and B are two different segmented regions. 
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Figure 4-1 : Reference segmentation for both NN models. (A) Bounding boxes (in pink) englobing regions with micro-cracks and 

(B) segmentation of pixels inside the cracks themselves (in red). 

4.3.2 Training and testing 

The computer used in this study was equipped with a Geforce RTX 2070 super-8GB of VRAM,32 

GB of RAM and a ryzen 7 2700x. YOLOv4 and Unet were trained and tested on two different 

platforms. 

YOLOv4 implemented with the Darknet framework is an open-source code using primarily C and 

CUDA with a python interface (Bochkovski et al., 2020). The NN can do both image classification 

and detection. In this study, it was used for the detection of objects. To counter the disadvantages 

of having a small training dataset, data augmentation strategy was used as an artificial way to 

enlarge the training set by slightly modifying the images (Shorten & Khoshgoftaar, 2019). 

Saturation, brightness, hue, Gaussian noise and mosaic data augmentation were more precisely 

used for the training of the detection model. In addition, four versions of YOLOv4 were tested: the 

base model, a slightly modified model for smaller object detection, the base model with additional 

geometric data augmentation using an open-source python library called imgaug and a scaled 

model with bigger resolution and more layers. For training, a batch size of 64 was used with a 

maximum number of batch set at 6000, as recommended by the creator of the model for a data set 

with only one class (Bochkovskiy et al., 2020). The scaled model used was more precisely 

A B 
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YOLOv4-p5, since bigger models were too expensive on video RAM for this study. As for the test 

metric, average IoU and mean average precision (mAP) were used to evaluate the performance.  

Unet was trained using DragonFly implementation of the model. In both training and testing, the 

YOLO reference bounding boxes were used as a mask for the training and testing of Unet, making 

the process much faster and giving the opportunity to use more data augmentation. Unet tests were 

evaluated using the Dice score and IoU metrics, which were computed using the image processing 

software DragonFly (ORS, Montreal, Canada). 

The combination of YOLOV4 and Unet was also evaluated using DragonFly. The YOLOv4 output 

bounding boxes were used as a mask for the Unet evaluation test. Once again, the Dice score and 

IoU were used as metrics. Figure 4-2 shows a schematic of the different results evaluated during 

the testing phase of this study. 
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Figure 4-2: Schematic of the all the results related to NN training and testing included in this study. The input image is going 

through three paths: 1) the fully automatic path: YOLO detects the cracks using bounding boxes and then this output is used as an 

input for Unet to segment the pixels inside the crack; 2) the semi-automatic path: the cracks are manually segmented using 

bounding boxes (BB) and then this output is used as an input for Unet to segment the pixels inside the crack; 3) the fully manual 

path: the bounding boxes and the pixels are manually segmented. This third path is used to evaluate the two other methods. 

4.4 Results 

4.4.1 Microcracks detection 

Table 1 summarizes the performance obtained with the four YOLOv4 models for the two testing 

samples using the two metrics. The best performance was obtained with YOLOv4p5, with an 

average IoU of 45,32 % and a mAP of 28.79% for Sample 1 and an average IoU of 51.12 % and a 

mAP of 46.22% for Sample 2.  
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Table 1: Performance of the different YoloV4 models, based on the resulting Average IoU and mAP. The bolded text shows the 

best result for each metric and each sample. 

Model name Test set Average IoU (%) mAP (%) 

YOLOv4 Sample1 43,21 22,71 
 

Sample2 47,36 46,02 

YOLOv4p5 Sample 1 45,32 28,79 
 

Sample 2 51,12 46,22 

YOLOv4 with imgaug Sample 1 37,62 23,01 
 

Sample 2 39,82 28,63 

YOLOv4 for small obj. Sample 1 42,49 25,11 
 

Sample 2 45,95 34,7 

 

4.4.2 Microcracks segmentation 

Table 2 shows the performance of Unet combined with manually annotated bounding boxes as a 

mask and of Unet combined with bounding boxes obtained from Yolov4-p5. There is an important 

reduction in both IoU and Dice for Unet used with YOLO compared to Unet used with manual BB, 

probably because of the accumulation of mistakes done by both NN. 

Table 2: Performance of Unet using manually annotated bounding boxes  as a mask and using the output of the detection model 

as a mask 

Models dataset IoU (%) DICE (%) 

Manual BB + Unet  Sample 1 50,11 66,77 
 

Sample 2 70,73 82,85 

Yolov4p5 + Unet Sample 1 26,05 41,34 
 

Sample 2 58,21 73,58 
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4.4.3 Inter-operator variability in manual microcracks segmentation 

Table 3 gives a comparison between the microcracks manual segmentations provided by user 1 and 

user 2 on the testing group. It shows that the difference between both users’ segmentation is greater 

for Sample 1 than for Sample 2.  

Table 3 : Inter-user comparison between the Unet’s reference segmentation (user 1) used in this study and another user outside of 

this study (user 2). The scores are given as the performance of user 2 segmentation compared to user 1. 

 IOU (%) DICE (%) 

Sample 1 47,47 64,38 

Sample 2 69,18 81,79 

 

Tables 1, 2 and 3 all showed a difference in performance between Sample 1 and Sample 2 in all 

metrics. Therefore, further investigation of image quality was completed. Table 4 shows the CNR 

of all samples for both the testing and training groups. It shows that the CNR of Sample 1 is lower 

than the ones of the other samples and that Sample 2 has a similar CNR to the ones from the training 

group (average of 9.63). Furthermore, Sample 2 has the highest CNR overall. 

Table 4: Contrast to noise ratio (CNR) of every samples in both the training and testing groups. 

 
CNR 

Testing group   

Sample 1 7,96 

Sample 2 10,08 

Training group   

Sample 3 9,97 

Sample 4 9,81 

Sample 5 9,06 

Sample 6 9,66 

 

4.4.4 Qualitative analysis 

The qualitative analysis includes examples of good and poor segmentations (Figures 4-3 and 4-4). 

The white rectangles represent the bounding boxes detected by YOLOv4p5 as containing cracks. 
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The blue pixels correspond to cracks automatically segmented by the Unet model while the red 

pixels correspond to manually annotated cracks. Purple pixels are simply the overlapping regions 

between both segmentations. Figure 4-3 is an example of a good segmentation (in Sample 2) with 

mostly purple pixels.  

 

Figure 4-4 shows an example of a poor segmentation (in Sample 1). In this example, the white 

bounding box detected by YOLOv4 does not include the entire crack. This means that Unet cannot 

possibly match the reference segmentation, since it is limited to the region in the bounding box. 

Moreover, even inside the box, the blue segmentation provided by the Unet is missing a good 

portion of the annotated crack.  

Figure 4-3: (Left) Results from Yolov4p5 before applying Unet on the images. (Right) Results from the 

two-step technique tested on Sample 2:  The white box is YOLOv5 resulting bounding box, blue pixels are 

the Unet segmentation, red pixels are the manual reference and purple pixels are the overlapping regions 

between both colours. 
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Poor segmentation can also be obtained when YOLOv4 falsely detects a very large region as 

containing a micro-crack. One such example is provided in Figure 4-5. In this case, the Unet has a 

larger search area and has a higher chance to detect pores as microdamage. Although, the Unet  is 

still performant in differentiating between pores and cracks, there is some false positive in the 

boxes when the pores are not completely circular or a little bigger than average, as shown by the 

orange circles. 

 

Another example of limitation is shown in Figure 4-6. In this case, the structure detected by 

YOLOv4 is not a crack but a natural structure of trabecular bone where the bone is 

connecting/splitting. Since the structure is not different enough from the linear micro-cracks, Unet 

will also segment it completely. 

Figure 4-4: (Left) Result from Yolov4p5 before applying Unet on the images. (Right) Results example from the two-

step technique tested on sample 1, where the white box is YOLOv5 resulting bounding box, blue is Unet 

segmentation , red pixels are the manual reference and purple  is the overlapping region between both colours. 

Figure 4-5: Example of YOLOv4p5 results, where a red bounding box detects an exaggeratedly big region as a 

crack.  However, Unet is capable of limiting the mistake by having little false positive, circled in orange, inside the 

bounding box. Blue is Unet segmentation , red pixels are the manual reference and purple  is the overlapping 

region between both colours 
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4.4.5 Comparison with contrast agent 

This study compared the gold standard of microdamage identification, using the contrast agent, to 

the proposed deep learning approach. Figure 4-7 shows the differences in segmentation between 

contrast agent and deep learning methods. Generally, the contrast agent only marked the surface of 

the visible micro-cracks at the current resolution (2 microns), showed by red arrows. It also 

amplified some regions of the bone where there is no visible crack, showed by red circles. These 

regions could be showing possible damage at a size smaller than the image resolution. Figure 4-7 

also shows that deep learning focuses on segmenting the linear micro-cracks visible at the image 

resolution, while the contrast agent amplifies some regions, but not necessarily fills in the region 

inside the cracks. This explains why no quantitative comparison was made between both 

techniques, since they visually mark different regions of the images. This is why the current gold 

standard could not be used as a validation method. 

Figure 4-6 : Example of situation where crack-like feature is segmented by the two-step method. Top three images show 

the development of such a structure in the xz plane over multiple slices in the y axis. Where t is the first slice , t+1 the 

second slice and t+2 the third slice and the one containing Yolo false positive. Bottom image shows the false positive 

segmentation done by YOLO and Unet. 

t t+1 t+2 
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4.5 Discussion 

The goal of this study was to use a two-step deep learning method using YOLOv4 and Unet to 

evaluate the feasibility to segment bone microdamage. Data was collected from six mechanically 

deformed bone cylinders using a microCT scanner at high resolution. Stacks of images were then 

randomly selected and segmented to train and test the deep learning models.  

Deep learning has the potential to provide more accurate evaluation of bone microdamage 

than the contrast agent, considered as the gold standard. Indeed, Figure 4-7 shows that, with 

deep learning, the actual region inside the micro-cracks was segmented, whereas the barium sulfate 

highlights the region around the cracks and some other area that has no visible damage. This study 

supports the literature, which indicates that the contrast agent is mostly an approximation of the 

accumulated damage with increased loading and not an absolute segmentation of the damage 

volume (Leng et al., 2008). More investigation should be conducted to understand why the barium 

sulfate amplifies these regions specifically as opposed to filling the cracks. Concerning the crack 

being only segmented on the boundary, it might be because the contrast agent did not precipitate 

in larger region and only on the damage surface. As for the region without visible microcracks, it 

might be that smaller nonvisible damage was marked. A focus on these regions at higher resolution 

could indicated the nature of the segmentation.  

Figure 4-7: On the left there is a successful segmentation of microdamage done by Unet in blue, red is the 

reference segmentation and purple is the overlapping pixels and on the right there a microCT image with 

region enhanced with barium sulfate, seen as brighter white regions. We can see that Unet segments the area 

inside the microcracks, while the contrast agent seams to segment region around it (red arrow) and other 

regions of the trabeculae with no visible damage (red circles). 
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Both YOLO and Unet neural networks performed relatively well during testing, even from a 

limited training data set. In this study, the number of training images was limited. This is partly 

due to the time-consuming and labor intensive manual annotation of cracks in the images. 

Furthermore, the collection for the first time of such a dataset of bone microdamage is expensive 

in terms of imaging facility.  Nevertheless, the potential of the model was shown mostly in Sample 

2 (Figure 4-3), with most of the pixels identified as purple, meaning that both the reference and 

Unet segmentations overlapped. In addition, results (Figure 4-5) showed that Unet allowed 

differentiating between background, pores and cracks, while all these structures are technically on 

the lower end of the intensity spectrum of the Xray images. Hence, even if Unet was not as 

performant at differentiating features as object detection NN (J. Liu et al., 2020), it was still able 

to segment with a good accuracy. While this study suggests that NN can learn from such a small 

dataset, future work could focus on improving the performance by increasing the size of training 

image data set. 

The segmentation accuracy achieved by Unet is in the range of inter-user variability. When 

comparing the performance of the Unet segmentation combined to the manual bounding boxes 

(Table 2) with the performance of user 2 segmentation (Table 3), both IoU and Dice scores resulted 

in similar values. This result appears extremely positive for the Unet segmentation considering that 

the boundaries of bone micro-cracks are not always very sharp. At best, a neural network replicates 

the behavior it was trained to replicate. In this first study, we considered the annotations of only 

one user; any biases in the annotations, including systematic errors, can be transferred to the 

outcomes of the trained model ("Towards trustable machine learning", 2018). For this reason, more 

trustworthy annotations using at least three domain experts should be generated and considered for 

the training in future work.  

The performance of the segmentation is related to the image quality.  The performance of both 

models for sample 1 is considerably lower than for sample 2. Even for manual annotators, less 

agreement in the segmentation is observed for Sample 1.  This can be explained first by a lower 

CNR for Sample 1 (Table 4). Second, the images used to train the model were almost homogeneous 

in terms of CNR, which could explain that the model generalizes more easily to unseen images of 

similar quality like in Sample 2, rather than to images of much worse CNR like in Sample 1.  For 
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future work, it would be important to build a more diverse training set with a variety of CNR to 

avoid overfitting.  

The crack detection achieved with YOLO allows a faster segmentation although there is an 

accumulation of errors. Indeed, results (Table 2) showed a decrease in both IoU and Dice scores 

when Unet was applied with the bounding boxes from YOLOv4p5, especially for sample 1. 

However, this difference was far from unexpected; as there are errors associated with both NNs 

tested individually, accumulated errors were anticipated when combining NNs.  Conversely, there 

are advantages in combining NNs. Indeed, Unet is faster when combined with segmentation in BB 

only, instead of segmenting every single pixel in the whole image (J. Liu et al., 2020). Moreover, 

even if Yolov4p5 was shown to be more accurate than the YOLOv4 base model, it is not the deepest 

NN in the scaled-YOLOv4 family. The Darknet platform provides deeper YOLO models, such as 

the Yolov4-p6 model, which could possibly further increase the detection performance, but would 

also require more computational resources not available in this study. There is also the possibility 

of using a NN like mask-RCNN, that combines both object detection and semantic segmentation 

(He et al., 2017). 

This study is associated with some limitations. First, it was limited by the image resolution, where 

it is impossible to detect microdamage smaller than the image resolution. Using higher resolution 

and longer scans to reduce noise or using synchrotron radiation micro-computed tomography could 

be investigated to achieve higher resolution at good image quality (Salomé et al., 1999; Seo & Kim, 

2020). Secondly, this model was mainly trained for linear microcracks. Diffuse damage could not 

be segmented at the resolution used. In future work, evaluation of diffuse damage could provide a 

more complete analysis of bone microdamage, improve the comparison with contrast agents and 

make deep learning more compelling. Lastly, this model is limited by its application on 2D images, 

although microcracks are complex 3D structures (Ma et al., 2016). If the model was applied on a 

volume instead, it could use 3D information of microcracks to differentiate it from other bone 

features.  

4.6 Conclusion 

To our knowledge, this is the first study implementing a two-step deep learning model for the 

segmentation of bone microdamage. Even with a limited dataset, both YOLO and Unet models 



59 

 

could detect microdamage and differentiate it from other bone features with similar grey level. 

Even though accuracy was limited for Sample 1, the potential of this approach could be observed 

in Sample 2. Unet and Yolo not being specifically designed for bone microcracks detection, they 

could be further specialised for bone microdamage detection and segmentation. Moreover, working 

with 3D datasets could provide additional information to the neural network to learn microdamage 

features.  
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CHAPTER 5 COMPLEMENTARY ANALYSIS USING DIGITAL 

VOLUME CORRELATION. 

5.1 General introduction 

Digital image correlation (DIC) provides information on the internal strain and displacement 

patterns developing in a sample, which cannot be obtained from strain gauges and extensometers. 

DIC was developed in the early 1980s allowing for the measurement of strains from 2D images by 

correlating small subsets of images, before and after loading, using a variety of correlation 

functions [169, 170]. Digital volume correlation (DVC) was further developed to adapt the DIC 

technique to entire volume using cubic subsets instead of square subsets [102]. Since then, several 

studies have used DVC to investigate bone fracture mechanisms at the microscopic level using 

microCT images [10, 174-176]. For example, Marta Peña Fernández studied strain distributions in 

relation to newly formed bone in osteoinductive biomaterials [174]. G. Tozzi even correlated the 

region of high strains during mechanical loading of a full vertebra to its damaged area [178].  

Performing DVC from combined mechanical testing and imaging can provide additional 

information about the development of bone microdamage ex vivo. This second study consists in an 

explanatory work for the continuation of this research. The goal of this study was to explore the 

relationship between regions of high displacement and regions of microdamage in bone trabecular 

samples. To do so, one bone sample was deformed under two compression steps and imaged before 

mechanical testing and after each loading step to investigate the application of DVC.  

5.2 Material and method 

Sample preparation 

One trabecular bone cylinder of 8.3 mm in diameter was extracted from a bovine tail vertebra using 

a diamond core drill (Diamon Production, Canada) mounted on a drill press. The core drill was 

kept under constant irrigation with distilled water to reduce the heat created by the cut [179]. 

Afterward, the sample was cut at a height of 7mm using an isoMet 1000 (Buehler, Illinois) at a 

speed of 250 rpm. 

Mechanical testing 
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Quasi-static compression loading along the height of the sample (or z-axis) and with multiple steps 

was carried out on the cylinder. First, the sample was thawed out overnight at a temperature of 4 

oC the day before mechanical testing. The sample was installed inside the Deben in situ micro-

tensile testing system (Deben, UK) after having its length and diameter measured. A preload of 

20N was applied to ensure the stability of the setup. The sample was further loaded at a rate of 0,5 

mm/min until 6% deformation and then until 10% or until the ultimate stress (where the slope of 

the plastic region approaches zero), but before the complete failure of the sample. 

Imaging 

The sample was imaged inside the Deben system, before the first displacement and after each 

displacement at a resolution of 2.09 μm, voltage of 110kV and 10W with 2001 rotations and an 

exposition time of 16 seconds.  

Deep learning test 

YOLOv4p5 NN (Chapter 4) was applied to this dataset to test its capacity to localize bone 

microcracks on images from a dataset scanned inside the Deben in situ testing stage.  

DVC 

After the deep learning test, the sample was down sampled by a factor of 4, because the dataset 

was too big for the hardware used for this study. Then using IDVC, a Matlab DVC algorithm made 

by FranckLab [180], the internal 3D strain map was computed using the local approach. The 

algorithm computes the 3D displacement map in the x directions, y directions, z directions and for 

the magnitude displacement vectors. This algorithm also claims to be designed for large 

deformations and provides deformations in voxels on a normalized scale [180]. 

5.3 Results  

The second loading increment was stopped at 9% since the ultimate stress was reached (slope of 

the strain-stress curve approaching 0).  

After imaging, the dataset had a volume of 2022 (y), 1978 (x) and 1984 (z) voxels. After down 

sampling, the resulting dataset had a resolution of 8.35 μm with a volume of 505 (y), X 494 (x) and 

496 (z) voxels. 
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5.3.1 Deep learning 

The YOLOv4p5 NN was unable to correctly locate the damage in the images obtained inside the 

Deben in-situ loading system, which was used for both mechanical test and imaging. Indeed, 

images had a CNR considerably lower (1,8) than the samples imaged in the previous study (Chapter 

4), which CNR ranged from 7,96 to 10,08. This is probably due to the sample diameter being much 

smaller than the Deben system loading tube. Therefore, the Xray source had to be far from the 

sample compared to the previous study (Chapter 4) where the sample was imaged outside the 

Deben system and the source could be placed closer.  

5.3.2 DVC 

After the first loading step, reaching 6% strain, higher displacements in the z-direction and in 3D 

magnitude were observed in the lower region of the volume (along the z axis) (Figure 5-1C,D). 

Maximum displacements in the z-direction are larger (around 30 voxels) than in the x and y-

directions (around 5 and 10 voxels respectively), which is expected since the sample was loaded 

along the z-axis. 
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Figure 5-1: Each image represents a 2D sample of the 3D displacement field taken from the center of the sample after the first 

compression step (0-6% strain). 1)&2) The color map was adjusted for each image individually to better visualize the 

displacement gradient. 3)&4) The color map was adjusted to be on the same scale to compare displacement size. The 

displacements in the ZY plane are represented in 1)&3) and the displacements in the ZX plane are represented in the 2)&4). 

Columns with A) displacements in the x-direction B) displacements in the y-direction C) displacements in the z-direction and D) 

magnitude of the 3D displacements. 

 

After the first deformation (0-6% strain), there was barely any damage present in the sample. 

Therefore, it was difficult to establish any relationship between microdamage and high 

displacements. However, the regions showing high displacement magnitude (in the lower region 

along the z axis) started to show some microdamage (Figure 5-2), while the regions located higher 

along the z axis showed no damage at all.  
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Figure 5-2: Slice 62 (XY plane)is shown after the first deformation (6% strain). A small amount of damage is show with red 

circles. 

This behavior is even more apparent in Figure 5-3, which shows resulting displacement maps for 

the second loading step (6-9% strain). Displacement in x, y and z directions are at their maximum 

in the lower region along the z axis (Figure 5-3(A,B,C)), which is resulting in a maximum 

magnitude in the lower regions of the volume (Figure 5-3(D)).  
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Figure 5-3 : Each image represents a 2D sample of the 3D displacement field taken from the center of the sample after the second 

compression step (6-9% strain). 1)&2) The color map was adjusted for each image individually to better visualize the 

displacement gradient. 3)&4) The color map was adjusted to be on the same scale to compare displacement size. The 

displacements in the ZY plane are represented in 1)&3) and the displacements in the ZX plane are represented in the 2)&4). 

Columns with A) the displacements in the x-direction B) displacements in the y-direction C) displacements in the z-direction and 

D) magnitude of the 3D displacements. 

These regions of high strain are also the regions that have accumulated more microdamage. Figure 

5-4(E) and Figure 5-5(E) confirm that statement. They are respectively showing slices 40 and 80 

(of the XY plane), which both contain several zones with microdamage. Conversely, regions 

around slice 200 (XY plane), which is located further along the z-axis, only show negligible 

damage (Figure 5-6(E)), while regions around slice 300 show (XY plane) no damage at all (Figure 

5-7(E)). Visualization in the XY plane also confirms that maximum displacement in the z direction 

are relatively more important in the lower slices (around 15 voxels) (Figure 5-4(C) and Figure 

5-5(C)) than in the higher slices (around 2 to 5 voxels) (Figure 5-6(C) and Figure 5-7(C)). 

 Looking at Figure 5-4 A, B, C and D, there is a maximum displacement in the bottom left corner, 

which is an error associated to the DVC computation. This region is outside the bone cylinder and 

only composed of voids, and therefore cannot represent a real maximum displacement. Other 
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regions of high displacement can however be localized, and they are circled in red and black, with 

red circles being regions that also overlap with microdamage. In Figure 5-4(C, D), there are several 

regions of high displacement that also overlap with regions of microdamage. However, the region 

of high displacement circled in black does not seem to correspond to any microdamage. This 

indicates that the displacement-microdamage relationship might not be consistent in the XY plane.  

 

Figure 5-4: Representation of the displacement in the XY plane for slice 40 (along z-axis). The color map was adjusted for each 

image individually to better visualize the displacement gradient.  A) displacements in the x-direction. B) displacements in the y-

direction. C) displacements in the z-direction, the compression direction D) the magnitude of 3D displacements. Regions of high 

displacement are circled in red and black. E) Observed microdamage is delimited with red circles. 

Additionally, looking at slice 80 (Figure 5-5(C, D, E)), those correlations are hardly present since 

only one small displacement region overlap with microdamage and the other regions of high 

displacement, circled in black, does not correspond to microdamage. Therefore, these relationships 

are not extremely strong, and it is hard to conclude that regions of high damage and high 

displacement in the XY plane can be correlated using this approach. 
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Figure 5-5: Representation of the displacement in the XY plane for slice 80 (along z-axis). The color map was adjusted for each 

image individually to better visualize the displacement gradient. A) displacements in the x-direction. B) displacements in the y-

direction. C) displacements in the z-direction D) magnitude of all displacements. Regions of high displacement are circled in red 

and black. E) Observed microdamage is delimited with red circles. 

 

 

Figure 5-6 : Representation of the displacement in the XY plane for slice 200 (along z-axis). The color map was adjusted for each 

image individually to better visualize the displacement gradient. A) displacements in the x-direction. B) displacements in the y-

direction. C) displacements in the z-direction, the compression direction D) the magnitude of 3D displacements. Regions of high 

displacement are circled in red and black. E) Observed microdamage is delimited with red circles. 
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Figure 5-7 : Representation of the displacement in the XY plane for slice 300 (along z-axis). The color map was adjusted for each 

image individually to better visualize the displacement gradient. A) displacement in the x-direction. B) displacement in the y-

direction. C) displacement in the z-direction, the compression direction D) the magnitude of 3D displacement. Regions of high 

displacement are circled black. E) No observed microdamage at slice 300. 

5.4 Conclusion 

In this complimentary study, an open-source Matlab code for a DVC algorithm (IDVC) was applied 

to image volumes of a trabecular bone sample after it was mechanically loaded under two strain 

increments with microCT imaging between each loading step. Displacement maps were then 

illustrated and examined to establish colocalization with damaged area. 

This work comes with a major limitation, which is the number of sample. Since only one sample 

was studied in this work, no scientific conclusion can be drawn from this and the result should only 

be used to help developing the protocol for the next study. Another limitation is the use of a simple 

open source Matlab algorithm. Even if FranckLab has proven the efficiency of the algorithm [180], 

open source code like this one often has limitation in their application, since the lab often focus on 

their own work. Therefore, having a commercial license for a DVC software could greatly help 

develop a procedure in the future.  

In conclusion, this complementary study explores the application of DVC to correlate regions of 

high strain to region of microdamage and test the application of YOLOv4p5 for microcracks 
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detection. This study showed some relationship between location of high strain along the z axis 

and location of microcracks. However, the strain was hardly correlated to damage in the xy plane. 

Moreover, this study showed the importance of having a diverse dataset for deep learning training, 

since the NN (presented in Chapter 4) was not able to detect any microcracks. In future work, a 

more robust algorithm using a mesh reconstruction of the bone tissue could be used to improve the 

result. It would make computation between subsection more precise, and it would exclude the 

marrow space from the final volume, hence making visualization easier. Moreover, having smaller 

strain increment between each scan could improve the precision of the displacement calculation.  
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CHAPTER 6 GENERAL DISCUSSION 

This project allowed investigating trabecular bone biomechanics in a non-destructive way using in 

vitro mechanical testing and microCT imaging, combined with deep learning neural network for 

the automatic segmentation of microdamage in trabecular bone. The following points were drawn 

from the studies: 

• Image quality, including resolution and noise level, is important for the adequate detection 

of micro damage, namely bone microcracks. 

• Datasets with CNR lower than one used to train the deep learning models may show poor 

results compared to datasets with similar CNR. 

• Deep learning models can be used to classify and segment linear microcracks. However, 

the resulting accuracy was lower compared to more common application (pavement cracks) 

since it used a small dataset with little variability between images and it was also the first 

time using deep learning for this specific application. 

• General region of high strain can be colocalized with region of damage along the z axis. 

Complementary discussion points are presented below. 

6.1 Deep learning  

The performance of YOLOV4 coupled with Unet could not be compared to the literature. To 

our knowledge, there is no other study performing deep learning segmentation of microdamage in 

trabecular bone samples. However, when comparing to NN applied to a different (but similar) 

application, the performance obtained in this study was worse. Indeed, Liu et al.[151] did the 

comparison between different models which were all applied to the CrackForest Dataset, which is 

an opensource dataset of annotated road cracks. The listed studies achieved an F1 score (Dice 

score) ranging from 45,70 for a model in 2010 [181] to 95,75 for their model proposed in 2020. 

Our segmentation resulted in a Dice score of 41,34 and 73,58 for Samples 1 and 2 of the test group, 

respectively. This is fairly lower compared to the current crack segmentation models in other 

applications. However, these models have a pre-annotated dataset to train and test on. They also 

have been modified and improved for generations for their specific application. If such a data base 

was implemented using microCT images of different noise, resolution, and size, for bone 
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microdamage, it could greatly improve the models performance [182]. Moreover, bone images can 

be more challenging since other structures, such as lacunae, have the same grey intensity as the 

cracks, like the marrow space and lacunae. This is where using 3D input could help, since cracks 

are planar structures and this information can be used to help the NN make decision [121]. 

Image resolution was a limiting factor in segmenting the ground truth. It was sometimes hard 

to evaluate if a small structure was noise, an artefact or if it was a really small linear microcracks. 

This made the segmentation tedious and could have influenced the results. The inter-user study 

showed that the data set with lower CNR was harder to segment more consistently than the one 

with higher CNR. However, only two users were compared using only two datasets. A study with 

more data and more users could be beneficial to provide a more complete analysis. In addition, 

small clusters of cracks were sometimes hard to segment since they were close to each other’s. 

YOLOv4p5 was not trained with proper geometric data augmentation. The data augmentation 

included in YOLO (Hue and intensity) was tested in a preliminary study using DragonFly YOLOv3 

implementation and had poorer performance than geometric deformations for the detection of bone 

micro damage. In this study, the only geometric data augmentation tested was done before training 

the NN, using a python algorithm instead of having it integrated to the YOLO algorithm. This 

method showed poorer performance than without adding geometric data augmentation. Therefore, 

future work should include an algorithm that also includes geometric data augmentation inside its 

neural network instead of using an open-source python library. 

When using deep learning, it is not necessary to remove the bone marrow from the sample. 

Every bone sample (Chapter 4) had their marrow removed to keep the experimental conditions 

constant for mechanical loading and imaging. It was more precisely required to remove bone 

marrow before bulk staining for the optimal penetration of contrast agent in the two test samples 

and further comparison with the deep learning segmentation. However, it should be noted that 

microdamage localization and segmentation with deep learning can be effectively done without 

removing bone marrow. Avoiding marrow removal reduces the risk of inducing damage during the 

cleaning process and keeps the sample closer to its in vivo conditions. 

YOLOv4p5 was not able to annotate microcracks with the image quality when the sample is 

scanned inside the Deben (Chapter 5). After applying the NN to the high-resolution images 

scanned inside the Deben after the second deformation (6-9%), a qualitative observation showed 
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that no damage was annotated. This behavior reinforces that images with lower quality (lower 

CNR), and of quality different than the training set, will be difficult for the NN to treat. Therefore, 

having a range of different image qualities for training should be beneficial for the detection of 

bone microdamage. 

6.2 Hardware 

While training the deep learning NN, models were not always chosen for their performance 

but because of the 8GB of Video RAM available. Training a deep learning model is highly 

dependent on the amount of video RAM available. For example, YOLOv4P5 is not the biggest 

scaled YOLOv4 neural network available. YOLOv4P6 and YOLOv4p7 (with pyTorch) have better 

mAP than YOLOv4p5 but require more VRAM. Therefore, future work could use a GPU with 

more VRAM and a bigger scale YOLOv4 model to improve the performance. 

6.3 Digital Volume Correlation 

Regions of high displacement in the first deformation became relatively more important in 

the second deformation. Results show that if there was a region of maximum displacement in the 

lower region along the z-axis in the first deformation (Figure 5-3 (C,D) especially) it would 

generally stay the region of maximum displacement in the second deformation (Figure 5-6 (C,D)). 

Also, the region of low displacement became even smaller relative to the maximum displacement, 

often close to zero. It looks like the region of high displacement became a compression zone where 

the mechanical strength is lower and deforms more than the rest of the structure. This behavior 

agrees with a past study in the literature in which strain region became more concentrated to a 

specific location [178]. 

Strain increments used in this work were bigger than the increments used in the literature. 

DVC analysis normally uses small increments to be able to precisely measure the 3D strain map, 

lower than 2%  [174, 176, 183]. In this study, large deformations were used to ensure the 

development of microdamage, which started to be visible at 6-8 % strain in most samples. 

Preliminary test showed that trabecular bone sample extracted from bovine tails generally needed 

to be deformed between 10-14% to have enough microdamage accumulated for image analysis 

purposes at two microns. Therefore, large increments were adopted to limit the amount of scan, 
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since doing high resolution scan is time consuming and expensive. However, as shown in Chapter 

5, high resolution scans are not required for DVC and are actually a disadvantage since they require 

a lot of RAM and processing power. Therefore, for future study, it would be recommended to have 

more strain increments but of smaller magnitude (1-2%). This way, there could be a series of low 

and high resolution scans, with scans for DVC purposes done with a lower resolution (around 8 

microns) at every loading step. Additionally, at every increment of 5-6% strain, a high-resolution 

scan (0,5-2 microns) could be done to evaluate the microdamage using deep learning segmentation. 

This way it would be easier to track strain during the deformation and would still have multiple 

time during the deformation to study the progression of microdamage at high resolution. 

High displacement regions and regions with more damage are both located in the lower 

regions along the z-axis. DVC results (Figure 5-3) showed that regions of high displacements in 

x,y,z after the second deformation was colocalized with area of microcracks in the lower z slices. 

Even after the first deformation, the little amount of damage accumulated in the sample was located 

in the lower half of the sample. This behavior agrees with a past experimental studies in which the 

trabecular bone crushed zone was aligned with the high strain region [178]. In contrast, no strong 

correlation was made with the current algorithm when looking at region of displacement and 

damage in the xy plane. This could be explained by: strain increments between each deformation 

are too large for precise calculation or, the algorithm is not robust enough to provide good 

visualization of the displacement map (DVC subset too big). Indeed, IDVC was developed for fast 

iterations and large deformations. However, the literature more often uses small deformations and 

the computation is rather long [180]. Moreover, having a graphic representation with only the area 

composed of bone tissue (removing the pixel composing the empty space) could greatly improve 

the visualization of the result, since it would be easier to see if the regions of high strain are in bone 

(and close to the damage).  
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CHAPTER 7 CONCLUSION AND RECOMMANDATIONS. 

This research project led to the development of three components of a 3D ex vivo platform for the 

evaluation of bone micro damage, including two experimental studies. The first study showed the 

potential of deep learning to segment trabecular bone microdamage to eventually replace the 

approach based on contrast agents. Mechanical tests were performed to induce microdamage in 

trabecular bone samples. These samples were further imaged at high resolution and used to train 

and test YOLOv4 and Unet in a two-step segmentation process. The second study showed that 

strain maps obtained from a DVC software can allow colocalizing regions of high displacements 

with regions of high microdamage along the compression direction.  

The first study on deep learning segmentation allowed answering the first research question («What 

is the potential of deep learning algorithms in the evaluation of bone microdamage in trabecular 

bone samples? ») by showing that bone microdamage can be evaluated using deep learning 

segmentation. This study also showed that a good accuracy can be obtained when the training and 

testing images have a similar quality, as measured by the CNR. Conversely, a low accuracy can 

result when the training and testing images have different quality. This is why having a dataset 

with a range of different image qualities could be useful for the NN to learn different conditions 

during training. The NNs were also used for the first time for this application of bone microdamage 

segmentation. With incremental change in the NN layers, the performance should greatly increase 

in future work.  

The second study partially answered the second research question («What additional information 

can be drawn by including digital volume correlation in the study of bone microdamage 

quantification vs mechanical properties?») by showing that region of high displacements can also 

be regions with more microcracks. Additional work is however required to draw a more solid 

conclusion. In this study, a MATLAB algorithm called IDVC allowed measuring the 3D strain 

maps, which showed that regions of high displacements in the lower regions along the z axis were 

also regions of high microdamage. However, no consistent relationship between damage and strain 

could be drawn in the xy plane. As only one sample was tested, this research work should be 

pursued with more samples to infer on the relationship between bone microdamage and high 

displacement regions.  
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Listed below are recommendations for the continuation of this project, in order to improve the 

accuracy of the current model or bring additional information to the analysis: 

• include the evaluation of bone density in the analyzes; 

• compare Unet and YOLO to other NN models (RCNN, CrackNet, Mask-RCNN, etc.) to 

verify which one is the most performant; 

• create a dataset of bone microcracks with a range of image qualities and with multiple user 

annotations; 

• use a 3D image dataset to take advantage of the planar structure of microcracks; 

• use a commercial DVC software that could be more precise than an open source DVC 

algorithm; 

• use smaller increments in the compression steps for further DVC computation; 

• investigate the relationships between bone mechanical properties and microdamage 

volume. 

To our knowledge, this is the first study implementing a two-step deep learning model for the 

segmentation of bone microdamage. It is also the first ex vivo experiment to be design with the 

goal of analyzing the 3D components of bone and including mechanical properties, bone 

microdamage quantification and 3D strain maps all in one procedure. Future work should focus on 

using 3D datasets to quantify the damage volume in order to create correlation with mechanical 

properties. Moreover, including diffuse damage for the deep learning segmentation could be 

important since this type of damage might play a role in bone biomechanics and in osteoporosis 

fractures. Extending the ex vivo platform to cortical bone testing would then give information about 

both types of bone leading to an improved understanding of their respective roles in bone 

biomechanics and fracture mechanisms. Hopefully, the additional knowledge would lead to 

development of new diagnostic or treatment approaches. 
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